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ETAPS Foreword

Welcome to the proceedings of ETAPS 2018! After a somewhat coldish ETAPS 2017
in Uppsala in the north, ETAPS this year took place in Thessaloniki, Greece. I am
happy to announce that this is the first ETAPS with gold open access proceedings. This
means that all papers are accessible by anyone for free.

ETAPS 2018 was the 21st instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program facilitates
participation in an exciting event, offering attendees the possibility to meet many
researchers working in different directions in the field, and to easily attend talks of
different conferences. Before and after the main conference, numerous satellite work-
shops take place and attract many researchers from all over the globe.

ETAPS 2018 received 479 submissions in total, 144 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all the authors for their interest in
ETAPS, all the reviewers for their peer reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2018 was enriched by the unifying invited speaker Martin Abadi (Google
Brain, USA) and the conference-specific invited speakers (FASE) Pamela Zave (AT &
T Labs, USA), (POST) Benjamin C. Pierce (University of Pennsylvania, USA), and
(ESOP) Derek Dreyer (Max Planck Institute for Software Systems, Germany). Invited
tutorials were provided by Armin Biere (Johannes Kepler University, Linz, Austria) on
modern SAT solving and Fabio Somenzi (University of Colorado, Boulder, USA) on
hardware verification. My sincere thanks to all these speakers for their inspiring and
interesting talks!

ETAPS 2018 took place in Thessaloniki, Greece, and was organised by the
Department of Informatics of the Aristotle University of Thessaloniki. The university
was founded in 1925 and currently has around 75,000 students; it is the largest uni-
versity in Greece. ETAPS 2018 was further supported by the following associations
and societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Panagiotis Katsaros (general chair), loannis Stamelos,
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Lefteris Angelis, George Rahonis, Nick Bassiliades, Alexander Chatzigeorgiou, Ezio
Bartocci, Simon Bliudze, Emmanouela Stachtiari, Kyriakos Georgiadis, and Petros
Stratis (EasyConferences).

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Liittgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Wil van der Aalst (Aachen), Parosh Abdulla (Uppsala),
Amal Ahmed (Boston), Christel Baier (Dresden), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Mikolaj Bojanczyk (Warsaw), Luis Caires (Lisbon), Jurriaan Hage
(Utrecht), Rainer Hihnle (Darmstadt), Reiko Heckel (Leicester), Marieke Huisman
(Twente), Panagiotis Katsaros (Thessaloniki), Ralf Kiisters (Stuttgart), Ugo Dal Lago
(Bologna), Kim G. Larsen (Aalborg), Matteo Maffei (Vienna), Tiziana Margaria
(Limerick), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Andrew M. Pitts (Cambridge), Alessandra Russo (London), Dave Sands (Gdoteborg),
Don Sannella (Edinburgh), Andy Schiirr (Darmstadt), Alex Simpson (Ljubljana),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas
Vojnar (Brno), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2018. Finally, a big thanks to Panagiotis and his local orga-
nization team for all their enormous efforts that led to a fantastic ETAPS in
Thessaloniki!

February 2018 Joost-Pieter Katoen



Preface

This volume contains the papers presented at the 21st International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2018), which
was held April 16-19, 2018, in Thessaloniki, Greece. The conference is dedicated to
foundational research with a clear significance for software science and brings together
research on theories and methods to support the analysis, integration, synthesis,
transformation, and verification of programs and software systems.

The program consisted of 31 contributed papers, selected from among 103 sub-
missions. Each submission was reviewed by at least three Program Committee mem-
bers, with the help of external experts. After a three-day rebuttal phase, the selection
was made based on discussions via the EasyChair conference management system,
which was also used to assist with the compilation of the proceedings.

We wish to thank all authors who submitted to FoSSaCS 2018, all the Program
Committee members for their excellent work, and the external reviewers for their
thorough evaluation of the submissions. In addition, we would like to thank the ETAPS
organization for providing an excellent environment for FoSSaCS and other confer-
ences and workshops.

March 2018 Christel Baier
Ugo Dal Lago
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Non-angelic Concurrent Game Semantics

Simon Castellan!®™) | Pierre Clairambault?, Jonathan Hayman?,

and Glynn Winskel®

! Imperial College London, London, UK
simon@phis.me
2 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
3 Computer Laboratory, University of Cambridge, Cambridge, UK

Abstract. The hiding operation, crucial in the compositional aspect of
game semantics, removes computation paths not leading to observable
results. Accordingly, games models are usually biased towards angelic
non-determinism: diverging branches are forgotten.

We present here new categories of games, not suffering from this
bias. In our first category, we achieve this by avoiding hiding altogether;
instead morphisms are uncovered strategies (with neutral events) up to
weak bisimulation. Then, we show that by hiding only certain events
dubbed inessential we can consider strategies up to isomorphism, and
still get a category — this partial hiding remains sound up to weak bisim-
ulation, so we get a concrete representations of programs (as in standard
concurrent games) while avoiding the angelic bias. These techniques are
illustrated with an interpretation of affine nondeterministic PCF which
is adequate for weak bisimulation; and may, must and fair convergences.

1 Introduction

Game semantics represents programs as strategies for two player games deter-
mined by the types. Traditionally, a strategy is simply a collection of execution
traces, each presented as a play (a structured sequence of events) on the corre-
sponding game. Beyond giving a compositional framework for the formal seman-
tics of programming languages, game semantics proved exceptionally versatile,
providing very precise (often fully abstract) models of a variety of languages and
programming features. One of its rightly celebrated achievements is the reali-
sation that combinations of certain effects, such as various notions of state or
control, could be characterised via corresponding conditions on strategies (inno-
cence, well bracketing, ... ) in a single unifying framework. This led Abramsky to
propose the semantic cube programme [1], aiming to extend this success to fur-
ther programming features: concurrency, non-determinism, probabilities, etc. ..

However, this elegant picture soon showed some limitations. While indeed
the basic category of games was successfully extended to deal with concurrency
[10,13], non-determinism [11], and probabilities [9] among others, these exten-
sions (although fully abstract) are often incompatible with each other, and really,
incompatible as well with the central condition of innocence. Hence a semantic

© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 3-19, 2018.
https://doi.org/10.1007/978-3-319-89366-2_1
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hypercube encompassing all these effects remained out of reach. It is only recently
that some new progress has been made with the discovery that some of these
effects could be reconciled in a more refined, more intensional games framework.
For instance, in [6,16] innocence is reconciled with non-determinism, and in [15]
with probabilities. In [7], innocence is reconciled with concurrency.

But something is still missing: the works above dealing with non-deterministic
innocence consider only may-convergence; they ignore execution branches lead-
ing to divergence. To some extent this seems to be a fundamental limitation of
the game semantics methodology: at the heart of the composition of strategies
lies the hiding operation that removes unobservable events. Diverging paths, by
nature non-observable, are forgotten by hiding. Some models of must-testing
do exist for particular languages, notably McCusker and Harmer’s model for
non-deterministic Idealized Algol [11]; the model works by annotating strategies
with stopping traces, recording where the program may diverge. But this app-
roach again mixes poorly with other constructions (notably innocence), and more
importantly, is tied to may and must equivalences. It is not clear how it could
be extended to support richer notions of convergence, such as fair-testing [2].

Our aim is to present a basis for non-deterministic game semantics which,
besides being compatible with innocence, concurrency, etc., is not biased towards
may-testing; it is non-angelic. It should not be biased towards must-testing
either; it should in fact be agnostic with respect to the testing equivalence,
and support them all. Clearly, for this purpose it is paramount to remember the
non-deterministic branching information; indeed in the absence of that infor-
mation, notions such as fair-testing are lost. In fact, there has been a lot of
activity in the past five years or so around games model that do observe the
branching information. It is a feature of Hirschowitz’s work presenting strategies
as presheaves or sheaves on certain categories of cospans [12]; of Tsukada and
Ong’s work on nondeterministic innocence via sheaves [16]; and of our own line
of work presenting strategies as certain event structures [5,7,14].

But observing branching information is not sufficient. Of the works mentioned
above, those of Tsukada and Ong and our own previous work are still angelic,
because they rely on hiding for composition. On the other hand, Hirschowitz’s
work gets close to achieving our goals; by refraining from hiding altogether,
his model constructs an agnostic and precise representation of the operational
behaviour of programs, on which he then considers fair-testing. But by not con-
sidering hiding he departs from the previous work and methods of game seman-
tics, and from the methodology of denotational semantics. In contrast, we would
like an agnostic games model that still has the categorical structure of traditional
semantics. A games model with partial hiding was also recently introduced by
Yamada [18], albeit for a different purpose: he uses partial hiding to represent
normalization steps, whereas we use it to represent fine-grained nondeterminism.

Contributions. In this paper, we present the first category of games and strate-
gies equipped to handle non-determinism, but agnostic with respect to the
notion of convergence (including fair convergence). We showcase our model
by interpreting APCF, an affine variant of non-deterministic PCF: it is the



Non-angelic Concurrent Game Semantics 5

simplest language featuring the phenomena of interest. We show adequacy with
respect to may, must and fair convergences. The reader will find in the first
author’s PhD thesis [3] corresponding results for full non-deterministic PCF
(with detailed proofs), and an interpretation of a higher-order language with
shared memory concurrency. In [3], the model is proved compatible with our
earlier notions of innocence, by establishing a result of full abstraction for may
equivalence, for nondeterministic PCF. We have yet to prove full abstraction in
the fair and must cases; finite definability does not suffice anymore.

Outline. We begin Sect. 2 by introducing APCF . To set the stage, we describe
an angelic interpretation of APCF, in the category CG built in [14] with
strategies up to isomorphism, and hint at our two new interpretations. In Sect. 3,
starting from the observation that the cause of “angelism” is hiding, we omit it
altogether, constructing an uncovered variant of our concurrent games, similar
to that of Hirschowitz. Despite not hiding, when restricting the location of non-
deterministic choices to internal events, we can still obtain a category up to weak
bisimulation. But weak bisimulation is not perfect: it does not preserve must-
testing, and is not easily computed. So in Sect. 4, we reinstate some hiding: we
show that by hiding all synchronised events except some dubbed essential, we
arrive at the best of both worlds. We get an agnostic category of games and
strategies up to isomorphism, and we prove our adequacy results.

2 Three Interpretations of Affine Nondeterministic PCF

2.1 Syntax of APCF

The language APCF extends affine PCF with a nondeterministic boolean
choice, choice. Its types are A, B::=B | A — B, where A — B represents affine
functions from A to B. The following grammar describes terms of APCF . :

M,N:=xz|MN | .M |tt|£f|if M Ny Ny | choice | L

Typing rules are standard, we show application and conditionals. As usual,
a conditional eliminating to arbitrary types can be defined as syntactic sugar.

I'M:A—-B AFN: A I'EM:B AFN;: B AF Ny : B
I''A-MN:B I''AFif MNiNo: B

The first rule is multiplicative: I' and A are disjoint. The operational
semantics is that of PCF extended with the (only) two nondeterministic rules
choice — tt and choice — ff.

2.2 Game Semantics and Event Structures

Game semantics interprets an open program by a strategy, recording the
behaviour of the program (Player) against the context (Opponent) in a 2-
player game. Usually, the executions recorded are represented as plays, i.e. linear
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sequences of computational events called moves; a strategy being then a set of
such plays. For instance, the nondeterministic boolean would be represented as
the (even-prefix closure of the) set of plays {q™ - tt+,q™ - ££7} on the game for
booleans. In the play q~ - tt T, the context starts the computation by asking the
value of the program (q~) and the program replies (tt1). Polarity indicates the
origin (Program (+) or Opponent/Environment (—)) of the event.

Being based on sequences of moves, traditional game semantics handles con-
currency via interleavings [10]. In contrast, in concurrent games [14], plays are
generalised to partial orders which can express concurrency as a primitive. For
instance, the execution of a parallel implementation of and against the context
(tt, tt) gives the following partial order:

B=B=0B
a (=)
)
& & (-)
TR ()

In this picture, the usual chronological linear order is replaced by an explicit
partial order representing causality. Moves are concurrent when they are incom-
parable (as the two Player questions here). Following the longstanding conven-
tion in game semantics, we show which component of the type a computational
event corresponds to by displaying it under the corresponding occurrence of
a ground type. For instance in this diagram, Opponent first triggers the com-
putation by asking the output value, and then and concurrently evaluates his
two arguments. The arguments having evaluated to tt, and can finally answer
Opponent’s initial question and provide the output value.

In [7], we have shown how deterministic pure functional parallel programs
can be interpreted (in a fully abstract way) using such representations.

Partial-Orders and Non-determinism. To represent nondeterminism in this par-
tial order setting, one possibility is to use sets of partial orders [4]. This rep-
resentation suffers however from two drawbacks: firstly it forgets the point of
non-deterministic branching; secondly, one cannot talk of an occurrence of a
move independently of an execution. Those issues are solved by moving to event
structures [17], where the nondeterministic boolean can be represented as:

The wiggly line (~~) indicates conflict: the boolean values cannot coexist in an
execution. Together this forms an event structure, defined formally later.
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2.3 Interpretations of APCF with Event Structures

Let us introduce informally our interpretations by showing which event struc-
tures they associate to certain terms of APCF.

Angelic Covered Interpretation. Traditional game semantics interpretations
of nondeterminism are angelic (with exceptions, see e.g. [11]); they only describe
what terms may do, and forget where they might get stuck. The interpretation of
M = (Ab. if btt L) choice for instance, in usual game semantics is the same as
that of tt. This is due to the nature of composition which tends to forget paths
that do not lead to a value. Consider the strategy for the function Ab. if btt L:

B = B
a (=)
q/ (+)
PR
ot (-)
e (4)

The interpretation of M arises as the composition of this strategy with
the nondeterministic boolean. Composition is defined in two steps: interaction
(Fig. 1a) and then hiding (Fig. 1b). Hiding removes intermediate behaviour which
does not correspond to visible actions in the output type of the composition.

Hiding is crucial in order for composition to satisfy basic categorical proper-
ties (without it, the identity candidate, copycat, is not even idempotent). Strate-
gies on event structures are usually considered up to isomorphism, which is the
strongest equivalence relation that makes sense. Without hiding, there is no
hope to recover categorical laws up to isomorphism. However, it turns out that,
treating events in the middle as 7-transitions (* in Fig. la), weak bisimulation
equates enough strategies to get a category. Following these ideas, a category of
uncovered strategies up to weak bisimilarity is built in Sect. 3.

B B B
a (=) a (=) a (=)
*/ (%) A//
X Y
* e “ (*) * e “ ()
t (+) t (+) t (+)

(a) Interp. before hiding (b) Interp. after hiding  (c¢) Interp. with partial hiding

Fig. 1. Three interpretations of (Ab. if btt L) choice
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Interpretation with Partial Hiding. However, considering uncovered strate-
gies up to weak bisimulation blurs their concrete nature; causal information is
lost, for instance. Moreover checking for weak bisimilarity is computationally
expensive, and because of the absence of hiding, a term evaluating to skip may
yield a very large representative. However, there is a way to cut down the strate-
gies to reach a compromise between hiding no internal events, or hiding all of
them and collapsing to an angelic interpretation.

In our games based on event structures, having a non-ambiguous notion of an
occurrence of event allows us to give a simple definition of the internal events we
need to retain (Definition 9). Hiding other internal events yields a strategy still
weakly bisimilar to the original (uncovered) strategy, while allowing us to get
a category up to isomorphism. The interpretation of M in this setting appears
in Fig. lc. As before, only the events under the result type (not labelled *) are
now wvisible, i.e. observable by a context. But the events corresponding to the
argument evaluation are only partially hidden; those remaining are considered
internal, treated like T-transitions. Because of their presence, the partial hiding
performed loses no information (w.r.t. the uncovered interpretation) up to weak
bisimilarity. But we have hidden enough so that the required categorical laws
between strategies hold w.r.t. isomorphism. The model is more precise and con-
crete than that of weak bisimilarity, preserves causal information and preserves
must-convergence (unlike weak bisimilarity).

Following these ideas, a category of partially covered strategies up to iso (the
target of our adequacy results) is constructed in Sect. 4.

3 Uncovered Strategies up to Weak Bisimulation

We now construct a category of “uncovered strategies”, up to weak bisimulation.
Uncovered strategies are very close to the partial strategies of [8], but [8] focused
on connections with operational semantics rather than categorical structure.

3.1 Preliminaries on Event Structures

Definition 1. An event structure is a triple (E, <g,Cong) where (E,<g) is
a partial-order and Cong is a non-empty collection of finite subsets of E called
consistent sets subject to the following axioms:

Ife€ E, the set [e] = {e' € E| ¢ <e} is finite,

— For all e € E, the set {e} is consistent,

For allY € Cong, for all X CY, then X € Cong.

- If X € Cong and e < e’ € X then X U{e} is consistent.

A down-closed subset of events whose finite subsets are all consistent is called
a configuration. The set of finite configurations of E is denoted €' (E). If x €
€ (F) and e & x, we write 2—C o' when 2’ = zU {e} € €(E); this is the cover-
ing relation between configurations, and we say that e gives an extension of x.
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Two extensions e and €’ of x are compatible when x U {e, ¢’} € ¥(F), incom-
patible otherwise. In the latter case, we have a minimal conflict between e
and ¢’ in context = (written e~~,¢’).

These event structures are based on consistent sets rather than the more
commonly-encountered binary conflict relation. Consistent sets are more general,
and more handy mathematically, but throughout this paper, event structures
concretely represented in diagrams will only use binary conflict, i.e. the relation
e~~ze does not depend on z, meaning e~~, e’ whenever y extends with e,
and with ¢’ — in which case we only write e~~e¢’. Then consistent sets can be
recovered as those finite X C E such that —(e~~¢') for all e,/ € X. Our
diagrams display the relation ~~ along with the Hasse diagram of <g, called
immediate causality and denoted by —pg. All the diagrams above denote
event structures. The missing ingredient in making the diagrams formal is the
names accompanying the events (q, tt, ff,...). These will arise as annotations
by events from games, themselves event structures, representing the types.

The parallel composition Ey || E; of event structures Ey and E; has for
events ({0} x Eo) U ({1} x E1). The causal order is given by (i,e) <gy g, (j,€')
when i = j and e <g, €', and consistent sets by those finite subsets of Ey || E1
that project to consistent sets in both Fy and Ej.

A (partial) map of event structures f : A — B is a (partial) function on
events which (1) maps any finite configuration of A to a configuration of B, and
(2) is locally injective: for a,a’ € € €(A) and fa = fa' (both defined) then
a = a'. We write & for the category of event structures and total maps and &
for the category of event structures and partial maps.

An event structure with partial polarities is an event structure A with
a map pol : A — {—,+,x} (where events are labelled “negative”, “positive”, or
“internal” respectively). It is a game when no events are internal. The dual A+
of a game A is obtained by reversing polarities. Parallel composition naturally
extends to games. If x and y are configurations of an event structure with partial
polarities we use x CP y where p € {—,+, %} for x C y & pol(y \ z) C {p}.

Given an event structure E and a subset V' C FE of events, there is an event
structure F | V whose events are V and causality and consistency are inherited
from E. This construction is called the projection of E to V and is used in [14]
to perform hiding during composition.

3.2 Definition of Uncovered Pre-strategies

As in [14], we first introduce pre-strategies and their composition, and then
consider strategies, those pre-strategies well-behaved with respect to copycat.

Uncovered Pre-strategies. An uncovered pre-strategy on a game A is a
partial map of event structures o : S — A. Events in the domain of o are called
visible or external, and events outside invisible or internal. Via o, visible
events inherit polarities from A.

Uncovered pre-strategies are drawn just like the usual strategies of [14]: the
event structure S has its events drawn as their labelling in A if defined or * if
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undefined. The drawing of Fig. la is an example of an uncovered pre-strategy.
From an (uncovered) pre-strategy, one can get a pre-strategy in the sense of
[14]: for o : § — A, define S| = S | dom(o) where dom(o) is the domain
of 0. By restriction o yields o) : S| — A, called a covered pre-strategy. A
configuration = of S can be decomposed as the disjoint union x| U z, where x|
is a configuration of S| and x, a set of internal events of S.

A pre-strategy from a game A to a game B is a (uncovered) pre-strategy
on At || B. An important pre-strategy from a game A to itself is the copycat
pre-strategy. In A+ || A, each move of A appears twice with dual polarity. The
copycat pre-strategy @a simply waits for the negative occurrence of a move a
before playing the positive occurrence. See [5] for a formal definition.

Isomorphism of strategies [14] can be extended to uncovered pre-strategies:

Definition 2. Pre-strategies 0 : S — A,7 : T — A are isomorphic (written
o 2 1) if there is an iso ¢ : S =T s.t. T o = o (equality of partial maps).

Interaction of Pre-strategies. Recall that in the covered case, composition
is performed first by interaction, then hiding; where interaction of pre-strategies
is described as their pullback in the category of total maps [14]. Even though
&) has pullbacks, those pullbacks are inadequate to describe interaction. In [§],
uncovered strategies are seen as total maps o : S — A || N, and their interaction
as a pullback involving these. This method has its awkwardness so, instead, here
we give a direct universal construction of interaction, replacing pullbacks.

We start with the simpler case of a closed interaction of a pre-strategy o :
S — A against a counter pre-strategy 7 : T — AL. As in [5] we first describe the
expected states of the closed interaction in terms of secured bijections, from which
we construct an event structure; before characterising the whole construction via
a universal property.

Definition 3 (Secured bijection). Let q,q’ be partial orders and ¢ : q ~ q'
be a bijection between the carrier sets (non necessarily order-preserving). It is
secured when the following relation <, on the graph of ¢ is acyclic:

(5, 0()) < (s, 0(8)) iff 5 —q 5"V p(s) =gy (s") (1)

*

If so0, the resulting partial order (<,)* is written <.

Let 0 : S = A and 7 : T — A be partial maps of event structures (we
dropped polarities, as the construction is completely independent of them). A
pair (z,y) € €(S) x €(T) such that oz = 7|y € ¥(4), induces a bijection
Yey @ ||y, ~x, ||y defined by local injectivity of o and 7:

©0z.4(0,8) = (0,s) (seux,)
¢,y(0,8) = (1,771 (03)) (s €xy)
ng)y(l,t) = (1,t)

The configurations = and y have a partial order inherited from S and T.
Viewing y, and z, as discrete orders (the ordering relation is the equality), ¢, ,
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is a bijection between carrier sets of partial orders. An interaction state of o
and 7 is (z,y) € €(S) x €(T) with o,z = 7y for which ¢, , is secured. As a
result (the graph of) ¢, , is naturally partial ordered. Write .7, . for the set of
interaction states of o and 7. As usual [5], we can recover an event structure:

Definition 4 (Closed interaction of uncovered pre-strategies). Let A be
an event structure, and o : S — A and T : T — A be partial maps of event
structures. The following data defines an event structure S AT':

— events: those interaction states (x,y) such that ¢g . has a top element,

— causality: (z,y) <gar (@,¢) iff  C 2’ andy C ¥/,

— consistency: a finite set of interaction states X C S AT is consistent iff its
ungon |J X 1is an interaction state in Ly ;.

This event structure comes with partial maps IT; : SAT — Sand Il : SAT — T,
analogous to the usual projections of a pullback: for (z,y) € S AT, IT1(z,y)
is defined to s € S whenever the top-element of ¢, , is ((0,s),ws) for some
wg € x, || y. The map I1; is undefined only on events of S AT corresponding to
internal events of T' (i.e. (x,y) with top element of ¢, , of the form ((1,¢), (1,1))).
The map II5 is defined symmetrically, and undefined on events corresponding to
internal events of S. We write c A7 for coIl{ =7o0lly : SANT — A.

Lemma 1. Let 0 : S — A and 7 : T — A be partial maps. Let (X,f : X —
S,g: X —T) be a triple such that the following outer square commutes:

If for allp € X with fp and gp defined, o(f p) = 7(gp) is defined, then there
exists a unique {f,g) : X = S AT making the two upper triangles commute.

From this closed interaction, we define the open interaction as in [14]. Given
two pre-strategies o : S — AL | B and 7: T — B~ || C, their interaction

T@U:(S”C)/\(A”T)—\AJ' I C

is defined as the composite partial map (S || C)A(A || T) = A|| B||C — A | C,
where the “pullback” is first computed ignoring polarities — the codomain of the
resulting partial map is A || C, once we reinstate polarities.
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Weak Bisimulation. To compare uncovered pre-strategies, we cannot use iso-
morphisms as in [14], since as hinted earlier, @4 ® o comprises synchronised
events not corresponding to those in o. To solve this, we introduce weak bisim-
ulation between uncovered strategies:

Definition 5. Let 0 : S — A and 7 : T — A be uncovered pre-strategies. A
weak bisimulation between o and T is a relation Z C €(S) x €(T) containing
(0,0), such that for all x Ry, we have:

s t
— If x—C a’ such that s is visible, then there exists y C* y'—Cy" with os = 7t
and ' Zy" (and the symmetric condition for T)

- If w—C 2 such that s is internal, then there exists y C* y' such that ' Zy'
(and the symmetric condition for T)

Two uncovered pre-strategies o, T are weakly bisimilar (written o ~ 7) when
there is a weak bisimulation between them.

Associativity of interaction (up to isomorphism, hence up to weak bisimu-
lation) follows directly from Lemma 1. Moreover, it is straightforward to check
that weak bisimulation is a congruence (i.e. compatible with composition).

Composition of Covered Strategies. From interaction, we can easily define
the composition of covered strategies. If 0 : S — A+ | Band 7: T — B+ || C
are covered pre-strategies, their composition (in the sense of [14]) 7 ® o is defined
as (T ® o). The operation | is well-behaved with respect to interaction:

Lemma 2. For o,7 composable pre-strategies, (T ® )] =7 © o).

3.3 A Compact-Closed Category of Uncovered Strategies

Although we have a notion of morphism (pre-strategies) between games and
an associative composition, we do not have a category up to weak bisimulation
yet. Unlike in [14], races in a game may cause copycat on this game to not be
idempotent (see [3] for a counterexample), which is necessary for it to be an
identity. To ensure that, we restrict ourselves to race-free games: those such
that whenever a configuration x can be extended by a1, as of distinct polarities,
the union x U {a1,as} is consistent. From now on, games are assumed race-free.

Lemma 3. For a race-free game A, @€ ® @a ~ 4.

Proof. Tt will follow from the forthcoming Lemma 4.

Uncovered Strategies. Finally, we characterise the pre-strategies invariant
under composition with copycat. The two ingredients of [5,14], receptivity and
courtesy (called innocence in [14]) are needed, but this is not enough: we need
another condition as witnessed by the following example.
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Consider the strategy o : @1 ~~@, on the game A = @; &, playing non-
deterministically one of the two moves. Then the interaction @y ® o is:

A* A

¥ —>D

!
*g —> Do

It is not weakly bisimilar to o: @4 ® o can do %1, an internal transition, to
which ¢ can only respond by not doing anything. Then ¢ can still do ®; and
@2 whereas @y ® o cannot: it is committed to doing @;. To solve this problem,
we need to force strategies to decide their nondeterministic choices secretly, by
means of internal events — so ¢ will not be a valid uncovered strategy, but «4 ®o
will. Indeed, g ® (€4 ® o) below is indeed weakly bisimilar to «s ® o.

A* A* A

¥ —b*x] —>D
!
kg ——Pkg —H>Do

Definition 6. An (uncovered) strategy is a pre-strategy o : S — A satisfying:

— receptivity: if x € €(S) is such that or—C witha € A negative, then there

exists a unique x—SC with 0s = a.

— courtesy: if s — s’ and s is positive or s’ is negative, then os — os'.

- secrecy: if x € €(S) extends with s1,s2 but xU {s1,s2} & €(9), then s1 and
so are either both negative, or both internal.

Receptivity and courtesy are stated exactly as in [14]. As a result, hiding the
internal events of an uncovered strategy yields a strategy o) in the sense of [14].
For any game A, @4 is an uncovered strategy: it satisfies secrecy as its only
minimal conflicts are inherited from the game and are between negative events.

The Category CGg. Our definition of uncovered strategy does imply that
copycat is neutral for composition.

Lemma 4. Let 0 : S — A be an uncovered strategy. Then «q4 ® 0 ~ 0.
The result follows immediately:

Theorem 1. Race-free games and uncovered strategies up to weak bisimulation
form a compact-closed category CGeg.

3.4 Interpretation of Affine Nondeterministic PCF

From now on, strategies are by default considered uncovered. We sketch the
interpretation of APCF inside CGg. As a compact-closed category, CGg
supports an interpretation of the linear A-calculus. However, the empty game 1
is not terminal, as there are no natural transformation e4 : A — 1 in CGg.

The negative category CGg. We solve this issue as in [4], by looking at
negative strategies and negative games.
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Definition 7. An event structure with partial polarities is negative when all
its minimal events are negative.

A strategy o : S — A is negative when S is. Copycat on a negative game is
negative, and negative strategies are stable under composition:

Lemma 5. There is a subcategory CGg, of CGg consisting in negative race-
free games and negative strategies. It inherits a monoidal structure from CG in
which the unit (the empty game) is terminal.

Moreover, CGyg, has products. The product A & B of two games A and
B, has events, causality, polarities as for A || B, but consistent sets restricted
to those of the form {0} x X or {1} x X with X consistent in A or B. The
projections are wa : Ca — (A& B)* || A, and wp : Cp — (A& B)* || B.

Finally, the pairing of negative strategies o : S — AL || Band 7 : T —
AL || C is the obvious map (o,7) : S& T — Al || B & C, and the laws for the
cartesian product are direct verifications.

We also need a construction to interpret the function space. However, for A
and B negative, A+ || B is not usually negative. To circumvent this, we introduce
a negative variant A —o B, the linear arrow. To simplify the presentation, we
only define it in a special case. A game is well-opened when it has at most
one initial event. When B is well-opened, we define A — B to be 1 if B = 1;
and otherwise A+ || B with the exception that every move in A depends on the
single minimal move in B. As a result — preserves negativity. We get:

Lemma 6. If B is well-opened, A — B is well-opened and is an exponential
object of A and B.

In other words, well-opened games are an exponential ideal in CGg. We interpret
types of APCF inside well-opened games of CGg:

com]= "y Bl= L'  [A-Bl=[A]~[5]
done™ ttF ~~ ffF

Interpretation of Terms. Interpretation of the affine A-calculus in CG?® fol-
lows standard methods. First, the primitives tt, ff, |, if are interpreted as:

[tt]: B ff: B [L]: B if: B—-(B&B)—-B
(q ‘37 ¢ ——
- I
- a3 ¥ . =q ////\
\z /5y sl
\4 m%‘/ I
. q q (Y
(v Iy [ I
b v
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A non-standard point is the interpretation of L: usually interpreted in game
semantics by the minimal strategy simply playing ¢ (as will be done in the next
section), our interpretation here reflects the fact that L represents an infinite
computation that never returns. Conditionals are implemented as usual:

[if MNN']e =if ® ([M]e || ([N, [N']e))-

Soundness and Adequacy. We now prove adequacy for various notions of
convergence. First, we build an uncovered strategy from the operational seman-
tics.

Definition 8 (The operational tree). Let M be a closed term of type B. We
define the pre-strategy t(M) on B as follows:

Events: An initial event L plus one event per derivation M —* M’'.

Causality: L is below other events, and derivations are ordered by prefix

Consistency: A set of events is consistent when its events are comparable.

Labelling: | has label g, a derivation M —* b where b € {tt, £f} is labelled by
b. Other derivations are internal.

As a result, t(M) is a tree. Our main result of adequacy can now be stated:
Theorem 2. Foratermb M : B, t(if M tt ff) and [M]e are weakly bisimilar.

We need to consider t(if M tt £ff) and not simply t(M) to ensure secrecy.
From this theorem, adequacy results for may and fair convergences arise:

Corollary 1. For any term = M : B, we have:

May: M —* tt if and only if [M]e contains a positive move
Fair: For all M —* M’, M’ can converge, if and only if all finite configurations
of [M']e can be extended to contain a positive move.

However, we cannot conclude adequacy for must equivalence from Theorem 2.
Indeed, must convergence is not generally stable under weak bisimilarity: for
instance, (the strategies representing) tt and Y (Az. if choice tt ) are weakly
bisimilar but the latter is not must convergent. To address this in the next section
we will refine the interpretation to obtain a closer connection with syntax.

4 Essential Events

The model presented in the previous section is very operational; configurations
of [M]ge can be seen as derivations for an operational semantics. The price,
however, is that besides the fact that the interpretation grows dramatically in
size, we can only get a category up to weak bisimulation, which can be too
coarse (for instance for must convergence). We would like to remove all events
that are not relevant to the behaviour of terms up to weak bisimulation. In other
words, we want a notion of essential internal events that (1) suffices to recover
all behaviour with respect to weak bisimulation, but which (2) is not an obstacle
to getting a category up to isomorphism (which amounts to @y oo = o).
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4.1 Definition of Essential Events

As shown before, the loss of behaviours when hiding is due to the disappearance
of events participating in a conflict. A neutral event may not have visible con-
sequences but still be relevant if in a minimal conflict; such events are essential.

Definition 9. Leto : S — A be an uncovered pre-strategy. An essential event
of S is an event s which is either visible, or (internal and) involved in a minimal
conflict (that is such that we have s~~,s' for some s’ x).

Write Eg for the set of essential events of 0. Any pre-strategy o : S — A induces
another pre-strategy &(o) : &£(S) =S | Eg — A called the essential part of 0.
The following proves that our definition satisfies (1): no behaviour is lost.

Lemma 7. An uncovered pre-strategy o : S — A is weakly bisimilar to &(0).

This induces a new notion of (associative) composition only keeping the essen-
tial events. For o0 : At || Band 7: B+ || C, let T@ 0 = &(7 ® o). We observe
that &(t® o) = &(1) @ &(0).

Which pre-strategies compose well with copycat with this new composition?

4.2 Essential Strategies

We now can state property (2): the events added by composition with copycat
are inessential, hence hidden during composition:

Theorem 3. Let o : S — A be an uncovered strategy. Then wa ® 0 = & (o).

This prompts the following definition. An uncovered pre-strategy o is essential
when it is a strategy, and if, equivalently: (1) all its events are essential, (2)
o = & (o). We obtain a characterisation of strategies in the spirit of [14]:

Theorem 4. A pre-strategy o : S — A is essential if and only if €x © 0 = 0.
As a result, we get:

Theorem 5. Race-free games, and essential strategies up to isomorphism form
a compact-closed category CGg.

Relationship Between CG and CGg,. Covered strategies can be made into
a compact-closed category [5,14]. Remember that the composition of o : § —
At ||Band 7:T — Bt || C in CG is defined as T ©® 0 = (T ® 7).

Lemma 8. The operation o — o extends to an identity-on-object functor
CGy — CG.

In the other direction, a strategy o : A might not be an essential strategy; in
fact it might not even be an uncovered strategy, as it may fail secrecy. Sending
o to @ © o delegates the non-deterministic choices to internal events and yields
an essential strategy, but this operation is not functorial.
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Relationship Between CGg and CGg. The forgetful operation mapping an
essential strategy o to itself, seen as an uncovered strategy, defines a functor
CGg — CGg. Indeed, if two essential strategies are isomorphic, they are also
weakly bisimilar. Moreover, we have that T®0 ~ &(7®0) = T© 0. However the
operation &(-) does not extend to a functor in the other direction even though
E(1) @ &(0) 2 &(T ® o), as it is defined only on concrete representatives, not
on equivalence classes for weak bisimilarity.

4.3 Interpretation of APCF

We now show that this new category also supports a sound and adequate inter-
pretation of APCF ', for various testing equivalences, including must. As before,
we need to construct the category of negative games and strategies.

Lemma 9. There is a cartesian symmetric monoidal category CGyg of negative
race-free games and negative essential strategies up to isomorphism. Well-opened
negative race-free games form an exponential ideal of CGy.

We keep the same interpretation of types of affine nondeterministic PCF.
Moreover, the strategy if is essential. As a result, we let:

[Lle=¢:B  [if MNN']o =if® ([M]e || (IN]e:[N'le))

Using &(c ® 7) = &(0) ® &(7), one can prove by induction that for any
term M we have [M]g = &([M]g). Furthermore, this interpretation permits a
stronger link between the operational and the denotational semantics:

Theorem 6. For all terms+ M : B, &(t(M)) = [M]e-
Theorem 6 implies Theorem 2. It also implies adequacy for must:

Corollary 2. The interpretation [-]|e is adequate for may, and fair, and must:
F M : B has no infinite derivations if and only if all (possibly infinite) maximal
configurations of [M]e have a positive event.

This result also implies that [-] is adequate for must.

5 Conclusion

We have described an extension of the games of [14] to uncovered strategies,
composed without hiding. It has strong connections with operational semantics,
as the interpretations of terms of base type match their tree of reductions. It also
forms a compact-closed category up to weak bisimulation, and is adequate for
the denotational semantics of programming languages. Identifying the inessential
events as those responsible for the non-neutrality of copycat, we remove them
to yield a compact closed category up to isomorphism. Doing so we obtain our
sought-after setting for the denotational semantics of programming languages,
one agnostic w.r.t. the chosen testing equivalence. The work blends well with
the technology of [7] (symmetry, concurrent innocence) dealing with non-affine
languages and characterising strategies corresponding to pure programs; these
developments appear in the first author’s PhD thesis [3].
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Abstract. We present a trace model for Strachey parametric polymor-
phism. The model is built using operational nominal game semantics and
captures parametricity by using names. It is used here to prove an oper-
ational version of a conjecture of Abadi, Cardelli, Curien and Plotkin
which states that Strachey equivalence implies Reynolds equivalence in
System F.

1 Introduction

Parametricity was first introduced by Strachey [22] as a way to characterise the
behaviour of polymorphic programs as being uniform with respect to the type
of the arguments provided. He opposed this notion to ad-hoc polymorphism,
where a function can produce arbitrarily different outputs when provided inputs
of different types (for example an integer and a boolean). To formalise this
notion of parametricity, Reynolds introduced relational parametricity [21]. It is
defined using an equivalence on programs, that we call Reynolds equivalence
and is a generalisation of logical relations to System F. This equivalence uses
arbitrary relations over pairs of types to relate polymorphic programs. So a
parametric program that takes related arguments as input will produce related
results. Reynolds parametricity has been developed into a fundamental theory
for studying polymorphic programs [1,20,23].

Following results of Mitchell on PER-models of polymorphism [18], Abadi,
Cardelli, Curien and Plotkin [1,20] introduced another, more intentional notion
of equivalence, called Strachey equivalence. Two terms of System F are Strachey
equivalent whenever, by removing all their type annotations, we obtain two (n-
equivalent untyped terms. The authors conjectured that Strachey equivalence
implies Reynolds equivalence (the converse being easily shown to be false).

In this paper we examine a notion of Reynolds equivalence based on opera-
tional logical relations, and prove that, for this notion, the conjecture holds. To
do so, we introduce a trace model for System F based on operational nominal
game semantics [12,14]. Terms in our model are denoted as sets of traces, gener-
ated by a labelled transition system, which represent interactions with arbitrary
term contexts. In order to abstract away type information from inputs to poly-
morphic functions, our semantics uses names to model such inputs. The idea is
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ALz:0-M:0 AT-M:0-0  AT+N:0 | (\a.M)N =5, M{N/z}
AT -2’ M6 -6 AT MN -0 (AX.M)0 =5, M{0/X}
(x:0)el’ AX; - M:60 A l'-M:VX.0 M. Mz =g, M
ATrz:0 A T-AXM:VX.0  AT-MO:0{0/X} | AX.MX =3, M

Fig. 1. Typing rules and (n-equality axioms.

the following: since names have no internal structure, the function has no choice
but to act “the same way” on such inputs, i.e. be parametric. Our trace model
yields a third notion of equivalence: trace equivalence (i.e. equality of sets of
traces). Then, the result is proven by showing that trace equivalence is included
in (operational) Reynolds equivalence, while it includes Strachey equivalence.

The traces in our model are formed of mowves, which represent interactions
between the modelled term (the Player) and its context (the Opponent): either
of Player or Opponent can interrogate the terms provided by the other one,
or respond to a previous such interrogation. These moves are called questions
and answers respectively. Names enter the scene when calling terms which are
of polymorphic type, in which case the calling party would replace the actual
argument type 6 with a type name «, and record locally the correspondence
between « and 6. Another use of names in our model is for representing terms
that are passed around as arguments to questions. These are called computation
names, and are typed according to the term they each represent.

2 Definition of System F and Parametricity

We start off by giving the definitions of System F and of the parametric equiv-
alence relations we shall examine on it. The grammar for System F is standard
and given by:

Type > 0,0/ ==X |0 —0 | VX.0
Term > M, N == Az®.M | AX.M | MN | M6

We write x, etc. for (term) variables, sourced from a countable set Var; and X,
etc. for type variables, taken from TVar. We define substitutions of open variables
of either kind in the usual capture-avoiding way. For instance, the term obtained
by consecutively applying substitutions 7 : Var — Term and ¢ : TVar — Type on
M is written M{n}{0}.

Terms are typed in environments A; I', where A is a finite set of type vari-
ables, and I' is a set {1 : 01,...,2Zm : O} of variable-type pairs. The typing
rules are given in Fig. 1. The operational semantics we examine is fn-equality,
defined as the least syntactic congruence =g,, that includes the axioms given on
the RHS part of Fig. 1.
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We shall use the following common polymorphic encodings:

~Bool = VX. X — X — X, true = AX.\zX)\y%2z and false =
AX X y Xy,
~ Unit =V¥X. X — X and id = AX . \z¥X 2.

Reynolds Equivalence. We next introduce logical relations for System F'. First, we
let Rel be the set of all typed relations between closed terms that are compatible
with =g,:
Rel = {(01,02,R) | R C Term x Term AY(My, M3) € R. ;- = M; : 0;
/\VM{ =3 M1VM5 =3n M. (M{,Mé) S R}

Logical relations R[f]s are defined below, indexed by environments § : TVar —
Rel:

R[X]s = R when §(X) = (, , R)
R[[VXQ]]& = {(Mth) | V(91,92,R) € Rel. (M191,M292) (= R[[a]]g.[x,_,(glﬁg%]g)]}
7—\’,[[61 —>02]]§ = {(M1,M2) | V(N1,N2) S R[[elﬂg. (M1N1,M2N2) (S R[[ezﬂg}

We can now define the first notion of parametric equivalence for System F.

Definition 1. Given terms A; I' - My, My : 0, we say that they are Reynolds
equivalent, and write A; ' My ~oq My : 0, if:

Vo € RIAIV(m,m2) € R[5 (Myfm}{d1}, Mafna}{d2}) € R[0]s

where R[A] = dom(A) — Rel, §; = {(X,01) | 6(X) = (01,-,-)} (similar for
5t RITYs = {0, 10) € (o) = Tarm)” [ ¥(,0) €T o)t
Sf-

The following result is standard [21].

Theorem 2 (Fundamental Property). If A; ' M : 7 then A; '+ M ~,,
M 0.

Remark 3. Note that our definition of Reynolds equivalence does not coincide
with either of the definitions given in [1,20]: therein, parametricity is defined
using relational logics (and accompanying proof systems), whereas here we use
quantification over concrete relations over closed terms.

Strachey FEquivalence. Another notion of parametric equivalence is defined by
means of erasing types from terms. We define the type erasure erase(M) of a
term M by:

erase(AX.M) = erase(M)  erase(MN) = erase(M )erase(N)
erase(\z?. M) = \z.erase(M) erase(M0) = erase(M)

and erase(z) = x. Thus, erase(M) is an untyped A-term. Below we overload =g,
to also mean (Bn-equality in the untyped A-calculus.
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Definition 4. Given terms A; ' = My, M5 : 0, we say that they are Strachey
equivalent if erase(M;) =g, erase(My).

It was conjectured in [1,20] that Reynolds equivalence includes Strachey
equivalence. We prove this holds for the version of Reynolds equivalence given
in Definition 1.

Theorem 5. Any two Strachey equivalent terms are also Reynolds equivalent.

It is interesting to think why a direct approach would not work in order
to prove this conjecture. Given Strachey equivalent terms M;, My of type
Bool, suppose we want to prove them Reynolds equivalent. We therefore take
(01,02, R) € Rel, (N1,1,N21) € R, and (N2, N22) € R, and aim to prove that
(M1601 N1 1N1,2, Ma02No 1 Na o) € R. Ideally, we would like to prove that there
exists j € {1,2} s.t. for all i € {1,2}, M;0;N; 1N; 2 =g, N;;, but that seems
overly optimistic. A first trick is to use Theorem 2, to get that M, is related with
itself. Thus, we get that (M261N1,1 N1 2, M262N3 1 N2 2) € R, and it would suffice
to prove M101N11N1,2 =g, M201N1,1 N1 2 to conclude. However, our hypothesis
is simply that erase(M;) =g, erase(My).

A possible solution to the above could be to 3-reduce both M;0; N1 1N 2,
hoping that the distinction between the two terms will vanish. Our trace seman-
tics provides a way to model the interaction between such a term M; and a
context 60;N; 1N, and to deduce properties about the normal form reached
by their application via head reduction.

3 A Nominal Trace Semantics for System F

In this section we introduce a trace semantics for open terms which will be our
main vehicle of study for System F. The terms in our semantics will be allowed
to contain special constants representing any term that could fill in their open
variables (these be term or type variables). The use of names can be seen as a
nominal approach to parametricity: parametric types and values are represented
in our semantics by names, without internal structure. Thus, e.g. a parametric
function is going to behave “the same way” for any input, since the latter will
be nothing but a name.

Our approach follows the line of work on nominal techniques [7,19] and nom-
inal operational game semantics [12,14]. We let the set of names be:

N =TNwCN

We therefore use two kinds of names: type names «, 3 € TN; and computation
names ¢,d € CN. We will range over arbitrary names by a and variants. We
extend the syntax of terms and types by including computation and type names
as constants, and call the resulting syntax namey terms and types:

M,N:=cl|z | e M |AX.M | MN | M 6.6 :=a|X|0—6|AX0
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A namey term or type is closed if it contains no free (type/term) variables —
but it may contain names. On the other hand, a value is a closed term in head
normal form that contains no names. We range over values with v and variants.

We will use the notation M, N , and variants, to refer jointly to namey terms
and namey types. Namey terms are typed with additional typing hypotheses for
the added constants. These typings are made explicit in the trace model. By
abuse of terminology, we will drop the adjective “namey” and refer to the above
simply as “terms” and “types”. Formally speaking, namey terms and types form
nominal sets (cf. Definition 8).

Note 6 (what do ¢’s and «’s represent?). A computation name c represents a
term that can replace the open variables of a term M. That is, in order to
examine the semantics of Ax?. M, we will look instead at M{c/z} where ¢ a
computation name of appropriate type. Type names « have a similar purpose,
for types.

Our trace semantics is built on top of head reduction, which is reminded
next. Moreover, we shall be using types in extended form, which determines the
number and types of arguments needed in order to fully apply a term of a given

type.

Definition 7. The (standard) head reduction rules are given in Fig.2. Head
normal forms are given by the syntax on the LHS below,

Myt == Elz] | Elc] | M2 Mune | AX. Mg E:= e | EM | Ef

where E ranges over evaluation contexts (defined on the RHS). Evaluation
contexts are typed with types of the form 6~ 6’. We write E : 8~ if we can
derive @ : 6 - E : 6.

An extended type form is a sequence (71, ..., Ty, &) with £ € TVarUTN and,
for each i, 7; € Type U{VX | X € TVar}. Formally, the extended form of a type
0, written ext(#), is defined by:

ext(VX.0) = (VX) mext(d)  ext(d — 0') =0:ext(d) ext(£) = (§)

where we write h::¢ for the sequence with head h and tail ¢ (cf. list notation).
Elements of the form VX in these sequences are binders that bind to their right.

We let —* be the reflexive-transitive closure of —. It is a standard result
that —* preserves typing and (strongly) normalises to head normal forms.
We finally introduce some infrastructure for working with objects with names.

(Az.M)N - M{N/z} M= M M= M MM ()
(AX.M)0 - M{0/X} Az.M - z.M' AX.M - AX.M' E[M]- E[M']

Fig. 2. Head reduction rules. Condition (*) stipulates that M be not a A/A-abstraction.
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Definition 8. We call a permutation 7 : N — N finite if the set {a | 7(a) # a}
is finite, and component-preserving if, for all a € N, a € TN iff 7(a) € TN.

A nominal set [7] is a pair (Z,*) of a set Z along with an action (x) from
the set of finite component-preserving computations of N on the set Z. For each
z € Z, the set of names featuring in z form its support, written v(z), which we
stipulate to be finite.

In the sequel, when constructing objects with names (such as moves or traces)
we shall implicitly assume that these form nominal sets, where the permutation
action is defined by taking 7%z to be the result of applying 7 to each name in z.

3.1 Trace Semantics Preview

Before formally presenting the trace model, we look at some examples infor-
mally, postponing the full details for the next section. Head-reduction brings
terms into head normal form. The trace semantics allows us to further ‘reduce’
terms of the form E[cM; - - - M,], where ¢ is some computation name. For such a
term, following the game semantics approach [3,11], our model will issue a move
interrogating the computation ¢ on arguments MZ-, and putting F on top of an
evaluation stack, denoted £. The move is effectively a call to ¢, and £ functions
as a call stack which registers the calls that have been made and are still pend-
ing. This will effectively lead to a labelled transition system in which labels are
moves issued by two parties: a Player (P), representing the modelled term, and
an Opponent (O) representing its enclosing term context.

Traces are sequences of mowves, which in turn are tuples of names belonging
to one of these four classes, taking ¢ € CN and a; € N for each i:

— Player questions é(aq, ..., a,) (also P-questions),
— Opponent questions c(ay, ..., a,) (also O-questions),
— PO-answers OKOK, and O P-answers OKOK.

Given a question move as above, we let its core name be c¢. We distinguish a
computation name ¢;, € CN, and call questions with core name c¢;, initial. We
define a trace T to be a finite sequence of moves. Traces will be restricted to
legal ones in Definition 12.

In the following examples we give traces produced by simple System F terms.
Traces are formally produced by an LTS over configurations whose main com-
ponent is an evaluation stack. An evaluation stack is a stack whose elements
are typed evaluation contexts, apart from the top element which can also be a
typed term:

En=E&"|(M,0)::& Eu=0(E,0~0):¢&

We denote the empty stack with ¢. In the next two examples, for simplicity,
configurations shall only contain evaluation stacks.
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Ezample 9. Recall that id = AX . AzX.z : Unit and Unit = VX.X — X. The
extended type of Unit, ext(Unit) = (VX, X, X), indicates that id requires two
arguments in order to be evaluated: one type and one term of that given type.
Thus, the traces produced by id will start with an interrogating/calling move

cin(a, ¢) of O:

— ¢in is the computation name assigned (by convention) to the term being eval-
uated (in this case, id);

— a,c are names abstracting the actual type and term arguments which id is
called on. It is assumed that c is of type a.

Starting from the initial move ¢, (@, ¢), a trace of id can be produced as follows:

(0) 2% ((idae,a)) = {(e,a)) < ((#,a v a)) 2 (0)

Thus, O starts the interaction by interrogating id with «,c. This results in
id a ¢, which gets head reduced to c. At this point, ¢ is a head normal form
of type a, and P can answer the initial question ¢, (e, ¢). This is done in two
steps. First, P further reduces ¢ by playing a move ¢() (here ¢ takes 0 arguments
as ext(a) = (a)), and pushes the current evaluation context (e, ~>«) on the
stack. O then responds by triggering a pair of answers OKOK, which answer both
questions played so far. The resulting trace is: ¢, (a, ¢) - &() - OKOK.

Note 10 (what are OKOK and OKOK?). As System F base types are type vari-
ables, there is no real need for answer moves: a type X has no return values. For
example, in the game models of Hughes [9] and Laird [15], answer moves were
effectively suppressed (either explicitly, or by allowing moves ¢(-- ) to function
as answers). Here, to give the semantics an operational flavour, we introduce
instead explicit ‘dummy’ answers OK.

Ezample 11. Consider now M = \fYnt f . Unit — Unit. We have that
ext(Unit — Unit) = (Unit, VX, X, X), and therefore M requires three argu-
ments for its evaluation: one term of type Unit, one type, and one term if that
latter type. We can therefore start a trace of M with an initial move ¢, (¢1, a1, ¢)
and continue as follows.

<<>> 4}0;0(01,041702) <(MC1a1 Ca, Oél)> — <(Cl Qa1 C2, a1)> M’ <(.7 Qg ~> 0[1)>

Thus, the initial move leads to Mcjaqce, which in turn reaches the hnf ciaqco,
with ¢; : Unit, and at that point P needs to invoke ¢; with arguments «; and
co. These are abstracted away by fresh names s and c3 respectively, which
are passed as arguments to ¢;. c3 in particular has type as. The result of this
invocation will be of type ag, which is the hole type in (e : @y~ 7). O can only
produce a term of as by simply returning cs. Similarly to before, this is done
in two steps: by O playing c3(), which brings co (the term represented by c3) at
the top of the stack, which in turn triggers a pair of answers OKOK and brings
¢y inside the context (e : ag~> ay).
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(0,02 a1)) 2 ((ca,2) 5 (0,02 ~ a1)) T ((e2,01)) 22 (0,01 1)) 2 (0)
The latter step leaves us with (ca, 1), which reaches ¢ as in the previous
example.

3.2 Definition of the LTS

We now proceed with the formal definition of the trace semantics. We start off
with a series of definitions setting the conditions for a trace to be legal.

The names appearing in a trace are owned by whoever introduces them. A
move m introduces a name q in a trace T if m is a question ¢(d@) with a; = a
for some i. For each A € {O, P}, we let the set of names of T that are owned by
A be:

A(T) ={a € N | I3m. m is an A-question in T'A m introduces a}.

We will be referring to the names appearing in A(T) as A-names.

Each move in a trace needs to be justified, i.e. depend on an earlier move
(unless the move is initial). Justification is defined in different ways for questions
and answers. Given a trace T and two moves m, m’ in T, we say that m’ justifies
m when m’ is before m in T and:

— m is a question with core name ¢ and m’ introduces c, or
— m is an answer which answers m’ (and m’ is a question).

Answering of questions is defined as follows. Each answer (occurrence) m answers
the pair of question moves (mj,m2) containing the last two question moves in
T which are before m and have not been answered yet.

We can now define legality conditions for traces. Below, for A € {O, P}, we
say that a move is A-starting if it is an A-question or an AA!-answer (where
O+ = P and P+ = 0). Similarly, a move is A-ending if it is either an A-question
or an At A-answer.

Definition 12. A trace T is said to be legal when, for each A € {O, P}:

A-ending moves can only be followed by A+-starting moves;

all moves in T are justified, apart from the first move which must be initial;
apart from ¢, every name of T is introduced exactly once in it;

for each A-question with core name ¢ # c¢;,, we have ¢ € A+ (T);

if an AA*-answer answers (m,m’) then these are A- and A+-questions respec-
tively.

G o =

The conditions above can be given names (suggesting their purpose) as follows: 1.
alternation, 2. justification, 3. well-introduction, 4. well-calling, 5. well-answering.

Each trace T has a complement, which we denote 71 and is obtained from T
by switching O/ P in all of its moves (i.e. each ¢(&@) becomes &(@), OKOK becomes
OKOK, etc). T is legal iff T is.
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Traces are produced by use of a labelled transition system. The LTS com-
prises moves as labels, and of configurations as nodes. Each configuration con-
tains an evaluation stack of terms and environments that need to be evaluated, as
well as mappings containing type/term information on names that have appeared
so far. We introduced evaluation stacks in the previous section. Here we shall
restrict the allowed shapes thereof as follows. We let passive and active eval-
uation stacks be defined by the following two grammars respectively, and take
evaluation stacks to be € 1= Epass | Eactv,

Epass =0 | [(E,a~0)] | (E,a~a)::Epsss  Eacvii=[(M,0)] | (M, ) :: Epass

where 6 ranges over closed types with v(0) = @, and ¢ is the empty stack.
The other two components of configurations will be maps v and ¢ of the
shape:

v € (CN—=(Term x Type)) @ (TN—(Typex {U})), ¢ € (CN—=Type)®(TN—={U}),

with FRG ={fUg | f € FAg € G}. U is a special “universe” symbol that
represents the type of types — it is only used for convenience. Then, in words:

— 7y assigns term-type pairs to computation names, and type-U pairs to type
names,
— ¢ assigns types to computation names, and U to type names.

The role of a map 7 is to abstract away terms to computational names, and types
to type names. On the other hand, a map ¢ simply types names. In the LTS,
when P wants to interrogate an O-computation name ¢ with some arguments,
they will abstract away the actual arguments to names, record the abstraction
in -, and call ¢ on these names. On the other hand, when O interrogates a P-
computation name ¢ with some move ¢(@), we will record in ¢ the types of the
(new!) O-names d.

The abstraction of arguments to names is instrumented by a dedicated oper-
ation AVal. This operation assigns to each sequence ((]\Zfl,Tl),...,(]\an,Tn),f),
where (11, ..., 7, ) is an extended type (i.e. the type of the computation name
we want to call) and each M; is a closed term or type (the i-th argument), a set
of triples of the form (d,~, 8) where:

— @ is a sequence (aq, ..., a,) of names (abstracting each of the arguments Ml),
— v is a map as above, with domain {ay, ...,a,},
— [ is the result type one gets after applying each a; for each ;.

The operator is formally defined next. In the same definition we introduce the
semantics of types, [0], as sets of triples of the form (@, ¢, 3), which represent all
possible input-output name tuples (@, 3) that are allowed for 6, including their

typing ¢.
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(INT) ((M,0) = E,7,0) — ((M',0) = E,7,¢) when M —* M’ with M" a head normal form.
(0Q0) (0,7,0) S ([(Mar-an, )], 7.6+ &)

with y(c) = (M, 0), ((a1,...,an),¢’,a) € [0] and o € dom(¢p - ¢").
(0Q) ((Era~8) 1 €,7,0) < (Maran, o) = (Boa~ ) 2£,7,6-¢')

with o € dom(7), y(c) = (M, 0), ((a1,...,an),¢’,a’) € [0] and @’ € dom(¢- ¢") U {a}.

(PQo) ([(E[CZ\;Ian]ve)L'Yv ¢> M ([(E,Oé ~ 0)]777’7¢>
when 6 is a closed with empty support, ext(é(c)) = (71,...,7n, &)
and ((ai1,...,a,),7,a) € AVal((M1,71),...,(My, ), £).

(PQ) ((E[cMy-+-My],a') = E,7, d) ECIECELION ((E,a~a') = &y, ¢) when a’e dom(p),
ext((c)) = (11, ..., T, &) and ((a1,...,an), 7, @) € AVal((My,71),...,(Mn, ), €).

(0A) ((e,ax~a) = &,7,¢) — OIOK (€,7,¢) when o € dom(¢).

(PA) ((M,a) = (E,a ~ 0) = &,7,6) 225 (E[M],0) = £,~,) whena ¢ dom(y) and M a hnf.

Fig. 3. Reduction rules for the LTS.

Definition 13. Given a closed type 6 (which may contain type names), we let
its semantics be [0] = [ext(6)], where the latter is defined inductively by:

[(a)] = {(e,e, )}
[0:L] = {((c,@), 6 [c— 0],a) | ¢ € CN, (@, &, ) € [L]}
[VX L] ={((B,a),¢- [B—U],a) | BETN,(d ¢, a) € [L{a/X}[}

On the other hand, to each sequence ((Ml, T1)y eens (Mn, Tn), &) we assign a set of
abstract values AVal((M1,71), ..., (M, 7,),€)) inductively by:

AVal((a)) = {(e,e,)}
AVal((M,0):: L) = {((¢,@), 7 - [c— (M,0)],a) | ¢c € CN, (@,v,«) € AVal(L)}
AVal((6,VX):: L) = {((B,@),v - [B+— (6,U)],e) | BE€ TN, (a,v,) € AVal(L{3/X})}

Both ¢ and ~y are finite partial functions whose domains are sets of names. For
such maps, the extension notation we used e.g. in ¢ - [c — z] (for appropriate z)
means fresh extension: ¢ - [c — z] = ¢ U {(¢,2)} and given that ¢ ¢ dom(¢).
This notation is extended to whole maps: e.g. ¢ - ¢’ = ¢ U ¢’ and given that
dom(¢) N dom(¢’) = @. Moreover, for each map v we write fst(y) for its first
projection: fst(y) = {(a, M) | y(a) = (M,_)}. Similarly, second projection is
given by: snd() = {(a, 2) | 7(a) = (, Z)}.

Definition 14. A configuration is a triple (£, v, @) where £ is an evaluation
stack and v and ¢ are as above. The reduction rules of the LTS are given in
Fig. 3. We write Tr(C) for the set of traces generated by a configuration C.

Given a typed term A;I" = M : 0, with A = {Xl,.. yXnt, I' = {21 :
01, T O}, we set (A; T M :6) = (0, [cim — (M,6)],€) and

[A;TFM:0)={T e€Tr((A; 'F M :0)) | T has at most one initial move }

where 6 = VX;....VXp.00 — -+ — 0, — 0 and M = AXy.... AX, A0 ...
Axfm M
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A configuration is active (resp. passive) if its evaluation stack is so. An
active configuration stands for a term being computed and it may only produce
P-moves. A passive configuration, on the other hand, stands for a scenario where
O is next to play. Moreover, the map ¢ in a configuration contains information
on the O-names that have been played, i.e. dom(¢) contains O-names, while
dom() contains P-names.

To better grasp Fig.3 let us consider an initial configuration (Q,[cin —
(M, )], ) and look at its traces, for some closed term M (so no need for M, 6)
with empty support.

— At the beginning, the only rule that can be applied is (0OQq), whereby O
interrogates the term M by issuing a move ¢;,(@). The names @ are selected
from [f] and represent arguments that O fully applies the term M on. Since
0 has empty support, its extended form is of the shape (71, ...,7,, X) with
X bound by one of the 7;’s. Consequently, when the names aq,...,a, are
applied for 7, ..., 7,, the variable X will be replaced by some type name .
The rule makes this explicit, by requiring that (a@, ¢, ) € [6]. Thus, writing
¢ instead of ¢' and setting v9 = [cin — (M, 6)], the transition brings us to a
configuration ([(Md, )], Y0, $o), where dom(¢o) = {as, ..., an}

— At this point, the term Mda can be reduced using head reduction and
brought to head normal form. Applying the (INT) rule we reach some
((BleA, - - M), @)], 0, 60)-

— We next interrogate the computation name c. The latter must have come from
the ay, ..., a, that were applied to M, hence is an O-name. To interrogate it,
P plays a question ¢(d’), using the (PQ) rule and assuming (@',7',a’) €
AVal(((My,7]), .o, (M, 1), €)), do(c) = 6, ext(0) = (},..., 74, €). This leads
0 ([(E, 0~ a)], 11, o) (11 =70+ 7).

— We are now at a passive configuration, where F has been stored on the stack
and O is required to produce a response of type a’. By definition of AVal,
either o = o« or o is in df,...,a}, and hence belongs to P. In the latter
case, O can only produce such a response by calling back P, using rule (0Q),
playing an O-question and adding a new term on the evaluation stack. In the
former case, O would directly respond with a hnf of type «, say IV. But, since
E : a~ «a and therefore £ = o, P would simply reply back playing IV again.
To avoid this copycat of hnf’s, we simply play an O P-answer and remove the
top of the evaluation stack — this is what the (OA) rule achieves.

Ezample 15. In Fig.4 we include example traces for terms M, M5 : Unit —
Unit (taken from [1], Instance 3.25) and for the Church numerals M}, : Nat.
The former pair is an instance of Theorem 21 —Strachey equivalence implies trace
equivalence.

In our scenario above we started from a passive configuration with empty
stack and a singleton . A different way to produce a trace is to start from
an active configuration with a stack containing only a term E[cian . ]\an], in
which case the rule (PQg) would commence the trace. More generally, we call a
configuration C' with stack &:
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My = \fO™ £ Unit f : Unit - Unit, M> = AfV™AX. f(X - X)(fX) : Unit - Unit,
and ext(Unit — Unit) = (Unit, VX, X, X). Traces for M; (left) and M> (right):

(0,70,,¢) (0 = e = (M1, 0)]) (0,76,€,¢) (7 = [em > (M2,0)])
e cim(e1a1.02)

Cinler,en,e2), ((M1c1aic,01),70, ¢o) = ((Mzerarca, ), 75, 60)
— ((c1 Uniter ar e, a1),70, o) — ((c1(a1 — a1)(61a1)627a1)77{)7¢0>
¢1(az,c 1 (az,c3)

aloa), ((ea1ca, a2 ~ a1),71, ¢0) —=25 ((ec2, a2 ~ 1), 7, do)

B 50

0, ((c1,02) = (001 €2, 2 ~ 1), 71, ¢o) == ((era1,02) = (e 2,02 ~ a1),71, o)
— OKO

2 ((er i ez, 1), 71, o) 2 {(erones,0n),71, 00) = -
c1(ag,cy) ((.70/2 ~ 1), 72, do) where:

50, ((erah) # (o.05 ~ @) ppgo)  Go={er > Unitian o Usca s an)

oK Y1 =70 [a2 — (Unit,lxl), C3 = (Cl»Unit)]
=5 ((e2,a1),72, do) B Yo =1 - [oh - (an,U), s > (ca,0h)]

20 OKOK

I (('»041“"041)7%»(]50)—’ (0:’}’1:¢0> 'Y; :76'[(12'9(@1%06177/{)703'% (010117061%011)]

M= AXN "X 0™ Nyow  Nagpoag, = Mp(My (... (My My))...)

[ S —
ext(Nat) = (VX, X - X, X, X) %

Set vo = [¢in =~ (M, Nat)]. Reduction for Mj:

cin(a1,cf,ca)
o

(0,70,¢,¢) (M ax cg oy 1), 70, ¢0) — ((er(Neg,eq,k-1),01),%0, Po)

cf(c1) OKOK

s (a1~ 1), 71, d0) 2 (0,91, 00) < ((cr(Neg e k-2),01),71, %0)

cy(e2) OKOK ck-10
_ —

((o, a1 ~ a1),72,0) —— (0,72, po) ((cay 1), 7%-1, ¢0)

¢z () OK
s (o a1 ~ 1), Vo1, B0) —% (0, k-1, o)

where ¢o = {1 = U, cp = (a1 > a1),c; = ar}and v = i1 - [¢i = (Neg ey iy 1) ).

Fig. 4. Top: traces for two terms of type Unit—Unit. Bottom: traces for Church
numeral M.

— a term configuration, if £ = { or the bottom element of £ has type « or
a~al;

— a context configuration, if the bottom of £ has type 6 or a~~ 6, and 0 is a
closed with empty support.

Each reduction sequence in the LTS can only contain either term or context con-
figurations. In our discussion above and in Example 15 we examine the semantics
of terms, and therefore use term configurations. In later sections, when we shall
start looking at the semantics of contexts, we will be using context configurations
as well.

While we have not defined leaves for our LTS, there is a natural notion of
a trace being “completed”. In particular, we call a trace T' complete if all its
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questions have been answered. We write CTr(C) for the set of complete traces
generated from C'. Term and context configurations can both produce complete
traces. Given a term configuration C' and a complete trace T', we write C' |1
if ¢ 5 ¢ and €’ has an empty evaluation stack. On the other hand, given a
context configuration C, a complete trace T and a value v, we write C' {1, if

C L ¢’ and €’ has an evaluation stack with a single element (v, 6).

Lemma 16. Given a term configuration C and T € Tr(C), then T is complete
iff C r.

We conclude this section by looking at some restrictions characterising actual
configurations. We first extend fst to evaluation stacks by: fst(0) = ¢ and
fst((Z,-) = &) = Z ::Ast(E).

Definition 17. A configuration (£,7, ¢) is said to be legal when:

— dom(y) Ndom(¢) = @ and v(fst(£)) U v(cod(fst(y))) C dom(¢);

— for all ¢ € dom(y) N CN, given y(c) = (M, 0), we have Ay; Iy = M : 0{v,};

— if the top of £ is (M, 0), then Ay; Iy, = M : 0 with either = o € dom(y)
and v(c) = (6,U), or § = a € dom(¢) and § = 0, or 6 = 6 is a closed type
with empty support and € = [(M, 0)];

—IfE=(M,01):: (E,ag ~ 0):: &', either a; = g or a1 € dom(g);

— forall (E,a ~» 0) in & with @ € dom(y), Ag; Iy ~,F E : yy(a) ~ 6, and either
0 = « € dom(¢) or 0 is a closed type with empty support, and (E, a ~> 6) is
at the bottom of &;

— for all (E,a ~» 0) in € with o € dom(¢), we have § = a and E = e;

where Ay = dom(¢) N TN and Iy, = {(z, 0{fst(y)}) | (z,0) € ¢}.

Lemma 18. If C is a legal configuration and C = C' then C' is a legal con-
figuration.

4 Parametricity in the Trace Model, and Proof of
Theorem 5

We next examine the relationship between trace equivalence and the notions
of Reynolds and Strachey equivalence. We prove that Strachey equivalence is
included in trace equivalence (Theorem 21), which in turn is included in Reynolds
equivalence (Theorem 28).

4.1 From Strachey to Trace Equivalence

Definition 19. Let C; = (&;, i, ¢:), for i = 1,2, be two configurations. We say
that C; and Cs are Strachey-equivalent when £ and & have the same size,

dom(~y;) = dom(ys), ¢1 = ¢2 and:
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— for all ¢ € dom(vy), if vi(c) = (M;,6;) then 6, = 6> and erase(M;) =g,
erase(My);

— if (Z;,0;) is the j-th element of &, then a1 = a9 and erase(Z;) =g,
erase(Zs);

where Ey =g, Es just if Ey[z] =g, Es[z] for some/all fresh x.
The first inclusion can then be proven as follows.

Lemma 20. Given two Strachey-equivalent legal configurations Cy, Cy, if O —=
C4 for some m,C} then there is Co " CY such that C} and CY are Strachey-
equivalent.

Theorem 21. For all Strachey-equivalent A, " & My, My : 0, we have [M;] =
[M.].

Proof. Taking T € [A; ' = My : 6], we prove that T € [A; " - M, : 0] by
induction on the length of T, using the previous lemma. a

The inclusion above is strict. This is shown, for example, by the follow-
ing terms Mirue, Mfalse : Unit — Unit, which are trace equivalent but not
Strachey-equivalent:

My = AU AX \zX snd(f(Bool x X)(b,z)) (b= true, false)

Here we use the impredicative encoding of product types [8]: 61 x 0y =
VX0 — 0 — X) — X, (M,N) = AXAf%—~%=X fMN and snd =
A%z 1.0, (\y?r N\2%2.2). Setting 70 = [cim +— (Mp,Unit — Unit)] and
Cp = (:;- F My : Unit — Unit), we have:

cin(cg,a,c)
T

Cp ((snd(cs(Bool x a)(b,c)),a),v0,¢0) (Po = [c; — Unit,a — U, c+— a])
S5 (snde, B~ a), 71, b0) (1 =90+ [8 — (Bool x a,1), ¢’ = ((b, <), B))
0, ((b,¢), B) : (snde, B~ ), 71, b0) 2% ((snd(b, ), a), 71, bo)

c() OKOK

- <(Cva)7’ylv¢)0> - <(.7O‘Wa)’71»¢0> I <<>7'Yl:¢0>

and this is the only complete trace in [Mp]. Indeed, O cannot interrogate another
name, as ¢, can only be played once, and ¢’ cannot be played with the (OQp)
rule.

The other inclusion (trace included in Reynolds) is more challenging and
requires us to introduce machinery for relating the semantics of terms and seman-
tics of contexts to that of terms and contexts composed.

4.2 Composite LTS

We let a composite configuration be a tuple (Ep, o, vp,v0), where vp and
Yo are maps v as above, £p is a term evaluation stack, and &p is a context
evaluation stack. These configurations represent the interaction between a term
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(P-INT) ((M,a) = Ep,E0,7P,v0) — ((M',a) : Ep,E0,7P,Y0) When M —* M’ (hnf).
(O-INT) (Ep, (M, ) = Eo,vp,Y0) — (M’ a) = Sp,é'o,vp,'yo) when M —* M’ (hnf).

(PA) ((M,a) i (B~ o) = Ep, (s,0~ a) i €0,7p,70) ——>((E[M],0") : Ep, €0, 7P, 70)
with M a hnf and o € dom(yp).

(OA) ((. CM""C{) ng(]\/[ a) (E Ck'\?e) 50 ’va'YO) (Ep,(E[A{] 0) go,’}/p,’\/o)
with M a hnf and o € dom(v0).

(PQ) ((E[CMlmMn] Oz,) S 5p,50,7p,’yo)
0N — ((E,a~a'):€Ep,(Ma,a) = Eo,’yp'y ~Yo) when o edom(’yo) 'yo(c) (M, 0),
ext(0) = (71,...,m,&) and ((a1,...,an ,7 "a)e AVaI((]V[l,Tl) (]\42,7%) ).

(0Q) (Ep, (E[cMy--M,],0) = Eo,vp, 70) L (Ma,a) = &p, (E, 0“*9) €o,7vp,707Y')
when 6 = o’ € dom(+yp) or 0 a closed type with empty support, with yp(c) = (M,0),
ext(0) = (71, ™, &) and ((a1,...,an),7, ) € AVal((My,71), -, (M2, 7n), ).

Fig. 5. Composite LTS.

and a context. The term-part in the interaction is played by £p and yp, while the
context-part by £o and yo. As with ordinary configurations, we define an LTS
for composite ones in Fig. 5. Given a composite conﬁguratlon C, atrace T and a

value v (hnf with empty support) we write C' {1, when C KN (0, [(v,0)],vp,v0)-

Composite configurations allow us to compose a term and a context seman-
tically: we essentially play the traces of one against the other. Another way to
obtain a composite semantics is to work syntactically, i.e. by composing config-
urations and then executing the resulting term. This is defined next.

Definition 22. Given two evaluation stacks (Ep,Ep), we build their merge
(which may not always be defined) €p||€o inductively by Of|[(M,0)] = M and:

(M, 0) = Ep)|((E, o = ) £0) = E[|((EM],0) = £0)
(E,a~ 0):Ep)||(M,a) :E0) = ((E[M],0)::Ep)||E0

When it is defined, we say that £p,€o are compatible. Then, a composite
configuration C = (€p,E0,vp,v0) is legal when (Ep,Ep) are compatible and
when both (€p,vp,snd(v0)) and (£0,70,snd(yp)) are legal.

We now relate the reduction of a composite configuration with the head
reduction of the merge of its two evaluation stacks. First, taking the two envi-
ronments yp,vo of a legal composite configuration, we compute their closure
(vp - v0)* as follows. Setting 7° = fst(yp - v0), and 4% = {(a, M{~}) | (a, M) €
7"=1} (i > 0), there is an integer n such that v(cod(y")) = @. We write (yp-70)*
for the environment defined as 7™, for the least n satisfying this latter condition.

Theorem 23. Given a legal composite configuration C = (Ep,Eo,vp,Y0), then
Clro iff (Epll€0){(vp - 70)"} =" v.

Finally, we relate the LTS’s for composite configurations and ordinary config-
urations (Theorem 26). Combined with Theorem 23, this gives us a correlation
between the traces of two compatible configurations and the head reduction we
obtain once we merge their evaluation stacks.
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Definition 24. Given legal configurations Cp = (Ep,vp,¢p) and Cop =
(Eo,70,%0), we say that they are compatible when Ep,Eo are compatible,
snd(vp) = ¢o and snd(vyp) = ¢p. For each pair (Cp,Cp) of compatible con-
figurations, we define their merge Cp A Cp as the composite configuration
(€p,E0,7P,0)-

Lemma 25. Taking (Cp,Co) a pair of compatible configurations, CpACo 1.
iff Cp 1 and Co dpr -

Theorem 26. Given Cp;1,Cp2,Co such that Cp1,Co and Cpa,Co are pair-
wise compatible and Tr(Cp1) = Tr(Cpz2), if Cp1ACo 1w, then CpalCo Y1.y.

Proof. From Lemma 25 we get Cp; |1 and Co |r1,. Thus, T' € Tr(Cp;)
and hence T € Tr(Cps2). Lemma 16 then yields Cpgo {1 and, from Lemma 25,
Cp2aACo |1,0. O

4.3 Proof of Theorem 5

Theorem 5 follows from Theorems 21 and 28. Theorem 28, which is proved
below, shows that any trace equivalent terms are also Reynolds equivalent. This
is achieved as follows. In the previous section we saw how to relate reductions
of terms-in-context to the semantics of terms and contexts. Given terms My, My
which are trace equivalent, and fully applying them to related arguments, we
obtain head reductions to values. These reductions can be decomposed into LTS
reductions producing corresponding traces, for the terms and their argument
terms (which form contexts). But, since the terms are trace equivalent, My can
simulate the behaviour of M in the context of M;, and that allows us to show
that the two composites reduce to the same value.

We start by extending logical relations to extended types with empty support.
We define R[ext(8)]s by:

R[(X)]s ={R | 0(X) = (-~ R)}
R[O:: L[5 = {(My, Ny) = L' | (My, Ny) € R[0]s A L' € R[L]5)}
R[[VX ::L]](; = {(91,92) w L ‘ (91,92,R) cRelANL' € R[[L]]6~[X»—>(01,92,R)]}

Lemma 27. (M, Ma) € R[0]s iff for all (NI, N}, ..., (N, N}#),R) €
Rlext(0)]s, (MiNi--- NI, MaNj --- N&) € R.

Theorem 28. For all trace equivalent A;I" = Mqy,Ms : 6, we have that
M1 :log Mg.

Proof. Taking 6 € R[A] and (n,1m2) € R[[]s, we show (Mi{m}{d1},
My{n2}{65}) € R[#]s. Using Lemma 27, we take (N}, N3),..., (NP, N}),R) €
Rext(8)]s, and prove that (M {n: }{01 YN} --- NP*, Ma{no}{02} N3 --- N3) € R.

For each i € {1,2}, there exists a value v; s.t. M;{n;}{0;}N}--- NI —*
v;. Using the closure of R w.r.t. =g,, it suffices to show that (vi,v2) €
R. Suppose A = Xqi,..., X, and I' = x1 : 0,...,2,, : 6,. We write
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Cp, for the configuration (A;I" F M; : ), and Cp,; for the configura-
tion {cin6;(X1) -+ 6;(Xe)mi(1) -1 (2 )N} - NP &, [ein — 0]), where § =
VXy...VX,.00 — - — 0, —0.

From Theorem 23, for each ¢ € {1,2} there is a trace T; such that
CpiMNCo; U1, v, M1, My being trace equivalent, we have that Tr(Cp;) =
Tr(Cp2). So from Theorem 26, we get that Cpa A Co1 1, and from
Theorem 23 that My{n, }{01}N}--- N —* v;. Finally, from Theorem 2, we
get that (My{n }{01}N}--- NI, Mo{ny} {62} N4 --- N3') € R. Thus, using the
closure of R w.r.t. =g,, we have that (vi,vs) € R. O

5 Related and Future Work

The literature on parametric polymorphism is vast; here we look at the works
closest to ours, which come from the game semantics area. The first game model
for System F was introduced by Hughes [9,10]. The model is intentional, in the
sense that it is fully complete for Brn-equivalence. Starting from that model, de
Lataillade [5,6] characterised parametricity categorically via the notion of dinat-
urality [4]. In [2], Abramsky and Jagadeesan developed a model for System F
to characterise genericity, as introduced by Longo et al. [17]. A type 6 is said to
be generic when two terms Mj, M of type VX.0" are equivalent just if M6 and
M0 are equivalent. Their model contains several generic types. More recently,
Laird [15] has introduced a game model for System F augmented with mutable
variables. His model is closer to ours than the previous ones, and in particular
his notion of copycat links can be seen as connected to the use of names for
parametricity.

In all of the above models the denotation of terms is built compositionally by
induction on the structure of the term. In a different line of work, closer in spirit
to our model, Lassen and Levy [16] have introduced normal form bisimulations
for a language with parametric polymorphism. These bisimulations are defined
on LTSs whose definition has similarities with ours. However, the model is for
a CPS-style language which has not only polymorphic but also recursive types.
Finally, our own model for a higher-order polymorphic language with general
references [13] can be seen as a direct precursor to this work, albeit in a very
different setting (call-by-value, with references).

Further on, we would like to study the existence of generic types in our model,
as well as its dinaturality properties. We would moreover like to examine coarser
notions of trace equivalence that bring us closer to Reynolds polymorphism.
Finally, we would like to see if the trace model can be used to prove the original
conjecture of [1,20]. While this seems plausible in principle, proving equivalences
using definable logical relations requires additional tools, such as restrictions on
the LTS, to avoid circular reasoning.
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Abstract. The purpose of this paper is to define in a clean and concep-
tual way a non-deterministic and sheaf-theoretic variant of the category
of simple games and deterministic strategies. One thus starts by associat-
ing to every simple game a presheaf category of non-deterministic strate-
gies. The bicategory of simple games and non-deterministic strategies is
then obtained by a construction inspired by the recent work by Mellies
and Zeilberger on type refinement systems. We show that the resulting
bicategory is symmetric monoidal closed and cartesian. We also define
a 2-comonad which adapts the Curien-Lamarche exponential modality
of linear logic to the 2-dimensional and non deterministic framework.
We conclude by discussing in what sense the bicategory of simple games
defines a model of non deterministic intuitionistic linear logic.

Introduction

®

Check for
updates

A new generation of 2-categorical and sheaf-theoretic game semantics is currently
emerging in the field of programming language semantics. The games and strate-
gies which determine them are more sophisticated mathematically, and also more
difficult to define rigorously, than they were in the deterministic case. For that
reason, it is timely to examine more closely the 2-categorical and sheaf-theoretic
frameworks available to us in order to formulate these games and strategies in
a suitably clean and conceptual way. In this investigation, one benefits from the
efforts made in the past twenty-five years to give a clearer mathematical sta-
tus to the previous generation of game semantics, which was (to a large extent)
based on the notion of arena game. We recognize three main lines of work here:

1.

© The Author(s) 2018
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the logical approach advocated by Girard, and formulated in ludics [3], polar-
ized linear logic [7] or tensorial logic [12] with its connection to continuations
and string diagrams,
the combinatorial approach advocated by Hyland, inspired by algebraic topol-
ogy, and based on the combinatorial description of the structure of pointers
in arena games [4],
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3. the concurrent and asynchronous approach advocated by Mellies, based on
the description of arena games as asynchronous games, and of strategies as
causal concurrent structures playing on them, either in an alternated [9-11]
or in a non-alternated way [18].

Interestingly, all the sheaf-theoretic frameworks designed for game seman-
tics today are offsprings of the third approach based on asynchronous games:
on the one hand, the notion of concurrent strategy in [19] is a sheaf-theoretic
transcription of the notion of receptive ingenuous strategy formulated in [18]; on
the other hand, the sheaf-theoretic notion of non-deterministic innocent strat-
egy in [13,17] relies on the diagrammatic and local definition of innocence in
alternated asynchronous games [11]. For that reason, our purpose in this paper
is to investigate the connection with the second approach, different in spirit and
design, and to define a bicategory of simple games and non-deterministic strate-
gies in the sheaf-theoretic style of Harmer et al. [4]. As we will see, our work
also integrates a number of elements coming from the first approach, and more
specifically, the discovery by Mellies that strategies are presented by generators
and relations, and for that reason, are prone to factorisation theorems [14,15].
Since we are interested in sheaf-theoretic models of computations, we should not
forget to mention the pioneering work by Hirschowitz and Pous on models of
process calculi [5], and its recent connection to game semantics [2].

In the present paper, we start from the category G of simple games and
deterministic strategies between them, and we explain how to turn G into a
bicategory 8 of simple games and non-deterministic strategies. As we will see,
the construction of 8 relies on the discovery of a number of elementary but
fundamental fibrational properties of the original category §G. Since our work is
built on [4], let us recall that a simple game A is defined there as a contravariant
presheaf A : w°? — Set over the order category w = 0 — 1 — 2 — - -+ associated
to the infinite countable ordinal w. A simple game A is thus a family of sets A,
together with a function 7, : A,4+1 — A, for all n € N, depicted as:

Ap —— Ay —— Ay Ay —— A

One requires moreover that Ay is the singleton set. The intuition is that A is
a rooted tree; that A,, contains its plays (or branches) of length n; and that 7,
is the prefix function which transports every play of length n + 1 to its prefix of
length n. In particular, every simple game A contains only one play of length 0,
which should be thought as the empty play. Every simple game A should be
moreover understood as alternating: here, the intuition is that every play of odd
length 2n + 1 ends with an Opponent move, and that every play of even length
2n ends with a Player move if n > 0.

Terminology: An element a € A, is called a position of degree n in the game A.
The position a € A,, is called a P-position when its degree n is even, and a O-
position when its degree n is odd. Given a position a € A, 11, we write 7(a) for
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the position 7, (a); similarly, given a position a € A, 12, we write 72(a) for the
position 7, 0wy 41(a). A simple game A is called O-branching when the function
7w Agpyo — Agpq is injective, for all n € N. This means that every Opponent
position a € As,+1 can be extended in at most one way into a Player position
b€ Agyqo, for all n € N.

We start the paper by formulating a sheaf-theoretic notion of non-
deterministic P-strategy on a simple game A. Recall that a deterministic P-
strategy o of a simple game A is defined in [4] as a family of subsets 0q,, C As,
of P-positions, satisfying the following properties, for all n € N:

(i) Unique empty play — oy is equal to the singleton set Ay,
(ii) Closure under even prefixes — if a € 02,2 then 7%(a) € og,,
(iii) Determinacy — if a,b € o9, with 7(a) = m(b), then a = b.

In order to generalize this definition to non-deterministic P-strategies, we find
convenient to consider the full subcategory wp of w consisting of the strictly
positive even numbers, of the form 2n for n > 0; and the inclusion functor
tp : wp — w. Define the presheaf Ap = A o 1p as the simple game A obtained
as the restriction of the presheaf A : w°? — Set to the subcategory wp:

. A
Ap = wy —— wP Set

The collection Ap thus consists of all the Player positions in A, except for
the initial one * € A(0). This leads us to the following definition of (non-
deterministic) P-strategy on a simple game A:

Definition 1. A P-strategy o on a simple game A is a presheaf S : wp — Set
over the category wp together with a morphism of presheaves o : S — Ap. We
write o : A in that case. The presheaf S is called the support of the strategy o
and the elements of Sa,, are called the runs of degree 2n of the strategy, forn > 0.

In other words, a P-strategy o on A is a family of sets Ss, indexed by strictly
positive numbers n > 0, related between them by functions (7p)ay, : S2nta — Sn
pictured as:

T™p P
Sa Sy e Son Sonto & -+

together with a family of functions o9y, : S, — As, making the diagram below
commute, for all n > 0:

P
Son Son+2

O'Qn,J/ l02n+2

s s
Agp +——— Aoy +——— Aopio



42 C. Jacq and P.-A. Mellies

To every simple game A, we associate the category P(A) of P-strategies
over A, defined as the slice category

P(A) = [wp, Set]/ Ap (1)

whose objects are thus the strategies over A, and whose morphisms 0 : ¢ — T
between two strategies 0 : S — A and 7 : T — A are the morphisms 0 : S — T
of presheaves satisfying the expected equation: ¢ = 70 6. We will call those
simulations. One main contribution of the paper is the observation that the
family of categories P(A) can be organised into a pseudofunctor

P:G — Cat

from the category G of simple games and deterministic strategies. The pseudo-
functor P is moreover monoidal, in the sense that there exists a family of functors

ma,p:P(A) x P(B) — P(A® B)

indexed by simple games A, B. As a symmetric monoidal closed category, the
category G is enriched over itself, with the simple game G(A,B) = A — B
constructed from the simple games A and B. Here comes the nice point of the
construction: the bicategory § is simply defined as the bicategory with simple
games A, B as objects, and with

S(A,B) = P(A — B)

as category of morphisms between two simple games A and B. In other words,
a morphism ¢ : A — B in 8 is a P-strategy ¢ : A — B, and a 2-cell 0 :
0= 7:A— Bisamorphism § : 0 — 7 in the category P(A — B). At this
point, the fact that 8 defines a bicategory is easily derived from the lax monoidal
structure of the pseudofunctor P. Recall that, as a symmetric monoidal closed
category, the category G is enriched over itself. From a conceptual point of view,
the construction of the bicategory 8§ thus amounts to a change of enrichment
category along the lax monoidal pseudofunctor P : § — Cat, transforming the
G-enriched category G into the (weak) Cat-enriched category S.

Besides the construction of 8§, a great care will be devoted to the analysis of
the Curien-Lamarche exponential comonad ! on the category G and to the recipe
to turn it into an exponential 2-comonad on the bicategory 8. The construction
relies on the existence of a family of functors

pa : PA) — P(IA)

called “promotion” functors, and natural in the simple game A in the category G.
In particular, the functorial part of the exponential 2-comonad ! : § — 8§ is
defined as the composite:

P(A — B) —22=E 5 P(I(A — B)) P(IA — |B)

where ng g : (A — B) — |A —o |B is the canonical morphism in § which pro-
vides the structure of a lax monoidal functor to the original comonad ! : § — G.

P(na,B)
T
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2 Non-deterministic P-strategies as P-cartesian
Transductions

As explained in the introduction, a P-strategy o € P(A) over a simple game A
is defined as an object of the slice category (1) in the category (w3, Set] of
contravariant presheaves over wp. We will use the fact that the slice category is
equivalent to the category of contravariant presheaves

P(A) = [wy,Set]/Ap = [tree(Ap)°,Set]

over the Grothendieck category tree(Ap) generated by the presheaf Ap €
[wy’,Set]. The category tree(Ap) has the P-positions of the simple game A
as objects, and a morphism a — a’ between a € Ay, and a’ € Ay, precisely
when p < ¢ and 7297%P(a’) = a. In other words, it is the order category associ-
ated to the tree of P-positions of the simple game A.

We find convenient for later purposes to reformulate non-deterministic P-
strategies in the following way. This paves the way to a comprehension theorem
for the pseudofunctor P, which will be established in the next section. A trans-
duction 6 : A — B between two simple games A, B : w°? — Set is defined as
a natural transformation between the presheaves A and B, given by a family of
functions 6, : A,, — B,, making the square [J,, diagram below commute, for all
n e N:

s
Ap ¢——— Ana

e

B'I’L % Bn+1

A transduction 6 : A — B is called P-cartesian when [y, is a pullback
square for all n € N; and O-cartesian when g, 41 is a pullback square for all
n € N. We write T for the category of simple games and transductions between
them, and Tp (resp. Tp) for the subcategory of P-cartesian (resp. O-cartesian)
transductions. Note that the restriction functor

()p © WP.Set] — [ Set]

is a fibration, and that a transduction 6 : A — B between simple games is
P-cartesian precisely when it defines a cartesian morphism with respect to the
fibration (—)p. For that reason, a P-cartesian transduction 6 : A — B is entirely
characterized by the family of functions 6y, : Az, — B, on the P-positions
of the simple games A and B, for n € N. From this follows easily that

Proposition 1. A P-strateqgy o on a simple game A is the same thing as a
simple game S together with a P-cartesian transduction S — A. The simple
game S is uniquely determined by o up to isomorphism. It is called the support
(or run-tree) of o, and noted {A| o}, while the P-cartesian transduction is noted
supp, : {A]o} — A.
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Note that the definition applies the general principle formulated in [18] that a
strategy o of a game A is a specific kind of map (here a P-cartesian transduction)
S — A from a given game S = {A|o} to the game A of interest. One benefit
of this principle is that it unifies the two concepts of game and of strategy, by
regarding a strategy o of a game A as a game S “embedded” in an appropriate
way by S — A inside the simple game A. This insight coming from [18] underlies
for instance the construction in [19] of a category of non-deterministic strategies
between asynchronous games.

Typically, consider the simple game A = By —o By where B is the simple
boolean game with a unique initial Opponent move ¢ and two Player moves
tt for true and ff for false; and where the indices 1,2 are here to indicate the
component of the boolean game B. The simple game A may be represented as
the decision tree below:

Ao
Player T
o A
'pponent T
Player Az
Opponent L
Player bi1 ,I

S

where the sets of positions are defined as:
Ay = {a} Ay = {b,a1,a2} Az = {b1, b2} Ay = {b11,b12, b1, b2}

and where the branches are induced by the prefix functions 7, : 4,11 — A,
depicted on the picture above. For the reader’s convenience, we label every edge
of A by the name of the move which would be used in the more familiar definition
of simple games, where plays are defined as sequences of moves [1,6]. Note that
every position a € A, of degree n is determined by its occurrence, defined as the
sequence of n moves from the root * to the position a in the tree A. Typically,
the P-position b € A, has occurrence ¢ - ¢; and the P-position by; € Ay has
occurrence ¢o - qq - tty - ffo.

By way of illustration, we define the P-strategy o € P(A) as the presheaf below

w0 {6} a1 =0 ax - {2"}
b {2} bir =0 big =0 bay = {2/} oo — {272}

on the Grothendieck category tree(Ap) associated to the presheaf Ap of P-
positions in A. As explained in Proposition 1, the P-strategy ¢ may be equiva-
lently defined as the simple game S = {A|c} below
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Player Sf
Opponent 51
Player l:
Opponent J;r
Player l:

together with the P-cartesian transduction supp, : {A|o} — A described as:

T a z b " ag Yy b 2" boy 2"+ bao 2" s baa

It is worth mentioning that the transduction supp, may be recovered from
the moves labelled on the run-tree S = {A4|o}. This pictorial description pro-
vides a convenient way to describe how the non-deterministic P-strategy o plays
on A. Typically, when questioned by the initial move go of the game, the non-
deterministic P-strategy o answers tty with the run 2/ € Sy or asks the value of
the input boolean by playing the move ¢1; when the Opponent answers with the
move tt;, the P-strategy reacts by playing the value ffy with the run 2’ € Sy or
by playing the value ffy with the runs z”, 2" € S4. Note in particular that the
P-strategy o is allowed to play two different runs z”, 2’ € Sy of the same play
boo € Ay.

3 P-cartesian Transductions as Deterministic Strategies

In the previous section, we have seen how to regard every non-deterministic P-
strategy o € P(B) as a P-cartesian transduction supp, : {B|o} — B into the
simple game B. Our purpose here is to show that every P-cartesian transduction
0 : A — B can be seen as a particular kind of deterministic strategy of the simple
game A — B.

Definition 2 (Total strategies). A deterministic strategy o of a simple game
A is total when for every O-position s such that the P-position 7(s) is an element
of o, there exists a P-position t in the strategy o such that w(t) = s.

Definition 3 (Back-and-forth strategies). Given two simple games A
and B, a back-and-forth strategy f of the simple game A — B is a deterministic
and total strategy whose positions are all of the form (c,a,b) where c:n — n is
a copycat schedule.

Back-and-forth strategies compose, and thus define a subcategory of G:

Definition 4 (The category BF). The category BF of back-and-forth strate-
gies is the subcategory of G whose objects are the simple games and whose mor-
phisms f : A — B are the back-and-forth strategies of A — B.
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As a matter of fact, we will be particularly interested here in the subcategory
BFT of functional back-and-forth strategies in the category BF.

Definition 5 (Functional strategies). A functional strategy f of the simple
game A — B is a back-and-forth strategy such that for every position a € A,
of degree n in the simple game A, there exists a unique position b € By, of same
degree in B such that (c,a,b) € f, where ¢ : n — n is the copycat schedule.

The following basic observation justifies our interest in the notion of func-
tional strategy:

Proposition 2. For all simple games A, B, there is a one-to-one correspon-
dence between the P-cartesian transductions A — B and the functional strategies
i A — B.

Proof. See Appendix E.

For that reason, we will identify P-cartesian transductions and functional strate-
gies from now on. Put together with Proposition 1, this leads us to the following
correspondence, which holds for every simple game A:

Proposition 3. The category P(A) is equivalent to the slice category BF' /A.

The result may be understood as a preliminary form of comprehension: it states
that every non-deterministic P-strategy o € P(A) may be equivalently seen as
a functional P-strategy

supp, : f{Afo} — A (2)

in the category G of simple games and deterministic strategies, obtained by com-
posing the equivalences stated in Propositions 1 and 3. Note that the simple game
{A] o} coincides with the run-tree S of the non-deterministic strategy o formu-
lated in Proposition 1 and that the functional strategy supp, coincides with the
P-cartesian transduction which “projects” the support S on the simple game A.
The property (Proposition 3) is important from a methodological point of view,
because it enables us to use the rich toolbox developed for simple games and
deterministic strategies, in order to handle non-deterministic strategies inside
the category G.

4 The Pseudofunctor P
Suppose given a P-strategy o € P(A) over the simple game A and a morphism
f A — B in the category G.

Definition 6. The P-strategy P(f)(0) € P(B) over the simple game B is
defined as the contravariant presheaf over tree(Bp) which transports every P-
position b of the simple game B to the disjoint union defined below:

Pfile) = b = I . (3)
(e,a,b) € f
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The fact that (3) defines a presheaf over P(B) and that P is a pseudofunctor
(see Definition 24) is established in the AppendixF.

This construction equips the family of presheaf categories P(A) with the
structure of a pseudofunctor P : § — Cat. Moreover, the pseudo-functor P
has comprehension in the sense of Lawvere [8]. For every simple game B, the
comprehension functor is defined as the composite

{(B|-} : ?B) — BF"/B — G/B

which transports every non-deterministic P-strategy to the morphism (2) seen
as an object of G/B. One establishes that

Theorem 1 (Comprehension). For every simple game B, the comprehension
functor

{B|-} : P?B) — §/B
has a left adjoint functor
image : §/B — P(B).

Given a deterministic strategy f : A — B, the contravariant presheaf image(f)
over the category tree(Bp) transports every P-position b of the game B to the
set below:

mage(f) : b — { (cab) | (cabes }
Note that the presheaf image(f) may be also described by the formula

image(f) = P(f)(xa) € P(B)

where * 4 is the terminal object in the category P(A) of P-strategies over A. Note
that the run-tree {A|x4} of the P-strategy x4 € P(A) is the simple game A
itself, with supp, , the identity i4 : A — A. In other words, the P-strategy *a
has exactly one run over each position of the simple game A.

Also note that we will occasionally note positions of image(f) b q) when
there is need to emphasize the fact that image(f) is a contravariant presheaf
over tree(Bp).

5 The Slender-Functional Factorisation Theorem

In order to establish the comprehension theorem, we prove a factorization theo-
rem in the original category G, which involves slender and functional strategies.

Definition 7. A deterministic strategy f in a simple game A —o B is slender
when for every P-position b in the simple game B, there exists exactly one P-
position a of the simple game A and exactly one schedule e such that (e,a,b) € f.
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By extension, we say that a morphism f : A — B in the category G is
slender when the deterministic strategy f is slender in A — B. Note that every
isomorphism f : A — B in the category G is both slender and functional.

Proposition 4. Suppose that A and B are two simple games and that f is a
deterministic strateqy of A — B. Then, there exists a slender strategy g : A — C
and a functional strategy h : C' — B such that f = hog.

The simple game C' is defined as {B|image(f)} while the slender strategy g :
A — (' is defined as

g = { (e,a,(e,a,b)) (e,a,b) € f }

and i : C — B is the functional strategy suppimage(s) associated in Proposition 3
to the P-strategy image(f) € P(B).

Proposition 5. Suppose that s : U — V and f : A — B are two morphisms
of the category G. Suppose moreover that s is slender and that f is functional.
Then, s : X — Y is orthogonal to f : A — B in the sense that for all morphisms
u:X — Aandv:Y — B making the diagram (a) commute, there exists a
unique morphism h :' Y — B making the diagram (b) commute in the category G:

X 2= A X 2 A
@] O i~
f f
/
Yy Y~ B Y Y~ B

The deterministic strategy h : Y — A is defined as

h = { (e,y,a) ‘HxEX,bGB,e’,e”GT,
(e,y,b) €v A (c,a,b) e f A(e,z,y)€s A(e,z,a) € }
W { (e,y,a) ‘EIxEX,bEB,e/,e”ET,

(e,y,b) €v A (c,a,b) € f A(e,z,my) €s A (e, x,ma) € }

Note that the position b is uniquely determined by the position a because f
is functional, and that the pair (¢/, z) is uniquely determined by the position y
because s is slender. Moreover, by determinism of v = h o s, the schedule €” is
entirely determined by the schedules e and ¢’.

Theorem 2 (Factorization theorem). The classes S of slender morphisms
and F of functional morphisms define a factorization system (S,F) in the cat-
egory G.
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Tt is a folklore result that, in that situation, the comprehension theorem (The-
orem 1) follows from the factorization theorem. The reason is that the category
P(B) is equivalent (by Proposition3) to the full subcategory BF /B of func-
tional strategies in the slice category G/B. Seen from that point of view, the
comprehension functor {B|—} coincides with the embedding of BF'/B into
G/B. It is worth noting that for every P-strategy o € P(A), one has an isomor-
phism

~

o = image(supp,)

in the category P(A), and that one has an isomorphism

P(f)(o) = image(fosupp,) (4)

in the category P(B), for every morphism f : A — B in the category §. This
provides an alternative way to define the pseudofunctor P.

6 The Bicategory 8 of Simple Games
and Non-deterministic Strategies

In this section, we explain how to construct a bicategory 8 of simple games and
non-deterministic strategies, starting from the category G. The first step is to
equip the pseudofunctor P with a lax monoidal structure (See Definition 25),
based on the definition of tensor product in the category G formulated in [4], see
Appendix B for details. We start by observing that

Proposition 6. Suppose given two morphisms f : A — B and g : C — D in
the category G of simple games and deterministic strategies. The morphism

f®g:A®C —B®D
1s slender when f and g are slender, and functional when f and g are functional.
Proof. See Appendix G.

Note that the isomorphism image(f ® g) = image(f) ® image(g) follows immedi-
ately from this statement and from the factorization theorem (Theorem 2), for
every pair of morphisms f : A — B and g : C — D in the category G. The
tensor product ¢ ® 7 of two P-strategies ¢ and 7 is defined in the same spirit,
using comprehension:

Definition 8. Suppose that o € P(A) is a P-strategy of a simple game A and
that 7 € P(B) is a P-strategy of a simple game B. The tensor product o @ T is
the P-strategy of the simple game A ® B defined as

oc®T = image(supp, ®supp, ).
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Here, the morphism supp, ® supp, : {A|o} @ {B|7} — A ® B denotes the
tensor product (computed in the original category G) of the morphisms supp
and supp .. A direct description of 0 ® 7 € P(A® B) is also possible, as the
presheaf which transports every position (e, a,b) of the simple game A ® B to
the set-theoretic product below:

o1 : (e,a,b) +— o(a)x7(b).

As indicated in the introduction, the tensor product of P-strategies defines a
family of functors my g : P(A) x P(B) — P(A ® B) which, together with the
isomorphism of categories m; : 1 — P(1), equips the pseudofunctor P with a lax
monoidal structure:

Theorem 3. The pseudofunctor P equipped with the family of functors ma p
and mq defines a laxz monoidal pseudofunctor from (§,®,1) to (Cat, x, 1).

Proof. See Appendix H.

The bicategory 8 of simple games and non-deterministic strategies is deduced
from the lax monoidal pseudofunctor P in the following generic way, inspired by
the idea of monoidal refinement system [16].

Definition 9. The bicategory 8 has simple games A, B, C as objects, with the
hom-category 8(A, B) defined as

S(A,B) = P(A— B)
the composition functor
oapc:PB—-C)xPA—oB)— PA—C)

defined as the composite

MB_6C,A—B P(compa, B,c)
— —

P(B —o C) x P(A —o B) P((B — C) ® (A — B)) P(A —o C)

where compa pc : (B — C)® (A — B) — (A — C) is the morphism which
internalizes composition in the symmetric monoidal closed category G. In the
same way, the identity in P(A — A) is defined as the composite

1 mi T(l) P(ida)

P(A —o A)

where the morphism ida : 1 — (A —o A) internalizes the identity morphism in G.

Proposition 7. The bicategory S is symmetric monoidal closed in the sense
that there exists a family of isomorphisms

Pape : S(A®B,C) = §(B,A—C).
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The isomorphism @ 4 g, is defined as the image by the pseudofunctor P of the
isomorphism

oapc : (A®B)—C = B-—o(A—C)

in the category G between the underlying simple games. One benefit of our
conceptual approach is that the monoidal closed structure of 8 is neatly deduced
from the monoidal closed structure of the original category G.

7 The Exponentional Modality on the Category G
Now that the monoidal bicategory 8 has been defined, we analyze how the expo-
nential modality defined in [4] adapts to our sheaf-theoretic framework.

Definition 10. Let A be a simple game. |A is the simple game whose set (1A),
of positions of degree n consists of the pairs (¢,a) such that:

— ¢ is a O-heap over n and @ = (ay,...,a,) is a sequence of positions of A,
— for each k € {1,...,n}, the sequence of positions in @ = (ay,...,a,) corre-
sponding to the branch of k in ¢ defines a play
{ak, a¢,(k), a¢2(k), . }
of the simple game A.

The predecessor function m, : (1A)pt1 — (1A), is defined as w(p,a) = (¢ |
(n),a [ (n)).

Definition 11. Let f be a deterministic strategy of A —o B. The deterministic
strategy |f of A — |B consists of the positions (e, (¢, a), (1,b)) such that ¢ =
e*1p and, for each branch of (¢, e, ™), the positions associated to that branch are

played by f.

It is worth observing that the construction of !f : !A — !B can be decomposed
in the following way. Consider the morphism

nap : !/(A—-B) — A —IB

obtained by currying the composite morphism

'(A—OB)®'A laxz monoidal '((A—OB)®A)M>|B

in the symmetric monoidal closed category G, where we use the coercion mor-
phism which provides the exponential modality ! : § — G with the structure of
a lax monoidal functor.
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Definition 12 (#f). Given a deterministic strategy f of a simple game A, the
deterministic strategy #f of the simple game A has positions the pairs (¢, a)
such that for each branch of (¢, @), the positions associated to that branch are
played by the deterministic strategy f.

Proposition 8. Given a morphism f: A — B of the category S and its curried

form Aa.f : 1 — A — B, the composite morphism

#a:A.f

1 l(A—B) —22 14— B

is the curried form Ax : 'A. \f in the category G of the morphism \f : 1A — |B.

More details about the original exponential modality in § will be found in
Appendix C. By analogy with Proposition 6, we establish that

Proposition 9. Suppose that f : A — B is a morphism in the category G.
Then, the morphism

f 1A — B
1s slender when [ is slender, and functional when f is functional.

Proof. See Appendix]I.

8 The Exponential Modality on the Bicategory 8

In this section, we define the linear exponential modality ! : § — 8 on the
symmetric monoidal closed bicategory §, in order to define a bicategorical model
of intuitionistic linear logic. The construction is inspired by the observation made
in the previous section (Proposition 8).

Definition 13. Given a P-strategy o € P(A) of a simple game A, the P-strategy
#o of the simple game A is defined as the image in P(1A) of the morphism

I'supp, : !{A|c} — A

Note that the definition of #¢ induces a commutative diagram in the category G

isomorphism

H{Ala} {lA[#0}

!suppx‘ A#a
1A
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where the top arrow is an isomorphism. Moreover, the definition of #o coincides
with the previous definition (Definition 12) when the P-strategy ¢ = f hap-
pens to be deterministic.Consequently, for two games A, B and a deterministic
strategy f: A — B, we have image(!f) = #3image(f) and #5f = #f.

As mentioned in the introduction, this construction o +— #o defines a
functor

pa i PA) —  PLA).

Now, remember that a morphism ¢ : A — B of the bicategory 8 is defined as a
P-strategy

o€ P(A— B).
For that reason, every such morphism ¢ : A — B induces a P-strategy
#o € P(I(A — B)).
In order to turn the P-strategy #o into a P-strategy
lo € P(1A — IB)
we apply the functor
Pnap) :+ P((A—-B)) — P(lA—IB)
to the P-strategy #o, where
nap : !(A—-B) — A —IB

denotes the structural morphism of G defined in the previous section. The con-
struction may be summarized as follows:

Definition 14. The morphism lo : |A — B of the bicategory 8 associated to
the morphism o : A — B is defined as the P-strategy

Pnap)#o) € PIA—!B).

Theorem 4. With this definition, | : § — § defines a pseudofunctor from the
bicategory S to itself.

Proof. See Appendix J.
The family of morphisms
oa:1A—-1A ea:!A— A

are defined with the same deterministic strategies in P(lA — !l A) and
P(!A — A) as in the original category G. One checks that the families § and ¢
define natural transformations between pseudonatural functors on 8 (as defined
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in Definition 26), and that the 2-functor ! : § — § defines a 2-comonad in the
appropriate bicategorical sense (see Definition 27). The family of morphisms

da:!A—=1AR!'A eq:1A—1

are defined with the same deterministic strategies in P(1A —!A®!A) and
P(!A —o 1) as in the original category G, and one checks that they define natural
transformations between pseudonatural functors on §. One obtains in this way
that

Theorem 5. The bicategory p equipped with the exponential modality ! : § — 8
defines a bicategorical model of multiplicative intuitionistic linear logic.

The formal and rigorous verification of these facts would be extremely tedious
if done directly on the bicategory 8§ of nondeterministic strategies. Our proof
relies on the fact that the constructions of the model (Definitions9, 14) are
performed by “push” functors P(f) above a structural morphism f living in the
original category G. The interested reader will find part of the detailed proof in
Appendix K.

9 Conclusion

We construct a bicategory 8 of simple games and non-deterministic strategies,
which is symmetric monoidal closed in the extended 2-dimensional sense. We
then equip the bicategory 8 with a linear exponential modality ! : § — 8§ which
defines a bicategorical model of intuitionistic linear logic. This provides, as far
as we know, the first sheaf-theoretic and non-deterministic game semantics of
intuitionistic linear logic — including, in particular, a detailed description of the
exponential modality.

A The Category G of Simple Games and Deterministic
Strategies

We recall the construction of the category 1" of schedules performed in [4] and
how we deduce from it the category G of simple games and deterministic strate-
gies.

Definition 15 (Schedule). A schedule is defined as a functione: {1,...,n} —
{0,1} werifying e(1) = 1 and e(2k + 1) = e(2k) whenever 1 < 2k < n — 1. The
number of 0’s and 1’s in e are noted |e|y and |e|y respectively. A schedule e is
noted e : |elo — |e]1.

A schedule e : p — ¢ may be equivalently seen as a couple [ : (p) — (p + ¢) and
r:(q) — (p+ q) of order-preserving and globally surjective functions, such that
r(1) =1 and

l(i)odd = (i +1)=1(i) +1 r(j)even = r(j+1)=7r(j)+1
forall1 <i<p-—1and1l<j<q—1, where (n) stands for the finite ordinal

(n) ={1,...,n}.



Categorical Combinatorics for Non Deterministic Strategies 55

Definition 16. The category of schedules T has the natural numbers as objects,
the schedules e : p — q as morphisms from p to q.

The identity morphism c : p — p is the copycat schedule ¢ characterized by the
fact that c(2k + 1) # ¢(2k + 2) for all 1 < 2k < 2p. Details on the composition
of two schedules e : p — r and €’ : 1 — ¢ as a schedule e.e’ : p — ¢ can be found
in [4]. Now, we explain how we derive the category G from the category 7. We
start by defining the simple game A — B of linear maps from A to B:

Definition 17. The simple game A —o B is defined as the set (A — B),, of all
the triples (e, a,b) consisting of a schedule e : p — q with p+ q¢ = n, a position
a € A, and b € By. The predecessor function 7 is defined as

_f(el(n—=1),7(a),d) if e(n)=0
w(e,a,b){(er(n Do mle) 2] if ele) =0

Definition 18. The category G has simple games A, B as objects, and deter-
manistic P-strategies f,g of A — B as morphisms from A to B. Note that we
use latin letters instead of greek letters for deterministic strategies. The identity
morphism is : A — A is defined as the P-strateqy of A — A whose positions
of degree 2n are the triples (c,a,a) where ¢ : n — n is the copycat schedule,
and a € A,. The composite go f : A — C of two deterministic P-strategies
f:A— Bandg: B — C is the deterministic P-strategy whose set of positions
of degree 2n is defined as

(go flon = H { (e.€,a,c) ‘ 3be By, (e;a,b) € optr, (€/,b,¢) € Trig }
e:p—re:ir—gq
p+q=2n

B  The Tensor Product in the Category G

Definition 19 (Tensorial schedule). A ®-schedule is a function e
{1,...,n} — {0,1} verifying e(2k + 1) = e(2k + 2) whenever 0 < 2k <n — 2.

Definition 20 (A ® B). The positions of the simple game A ® B of degree n
are the triples (e, a,b) where e : p® q is a ®-schedule withp+q=mn, a € A,
and b € By. The predecessor function m is defined as

_ [T (=1),7(@),b) if e(n) =
rlesast) = L (¢ o 1)oalio) i o) =

The simple game 1 is the simple game with a unique position *, of degree 0.

We can also define ® on strategies. Intuitively, for f : A — B and g :
C — D two morphisms of the category G, the plays of the strategy f ® g of the
simple game (A ® C) —o (B ® D) are obtained by combining through a tensorial
schedule plays of f and g.
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The intuition is that, once we know the structure of f and g, the struc-
ture of plays of f ® g is entirely directed by what happens in B ® D. The only
agency that Opponent really has is to decide at some points whether to play
on B or D, the rest being handled by the plays of f, g and the structure of
(A® C) — (B ® D). Formally, this gives the proposition:

Proposition 10. Let f: A — B,g : C — D be two deterministic strategies.
Assuming a valid play of f @ g : A® C — B ® D and the associated schedules
e: ARC - BRD,t; : AxC,ty : BxD,e; : A— B,ey : C — D, the knowledge
of ta, e1, e is enough to reconstruct e and tq.

Proof. The first O move of such a play is in B ® D to follow the structure of
A®C — B®D. This is given to us by ts. Let us assume it is a move in D (The
other case is handled similarly).

The P move after that will necessarily be a move in C' or D, as playing a
move in A, B would break the structure of A — B, B ® D respectively. ey gives
us the information.

— If it is a move in D, We go back to a situation equivalent to the initial one.
We have also started to reconstruct e, which starts by 11.

— If it is a move in C, we start to reconstruct both e which starts by 10 and t;
which starts by 1.

In this last case, the following O move will be a move in C' as a move in
A, B, D would break the structure of A — B, B® D,C — D respectively. e is
then at 100 and ¢; at 11.

Finally, the following P move will be a move in either C or D as a move in
A, B would break the structure of A — B, B ® D respectively. ey gives us this
information.

— If it is a move in D, We go back to a situation equivalent to the initial one. We
have also started to reconstruct e, which starts by 1001 and ¢; which starts
by 11. We’ve also played the first two moves of ¢t which is at 11.

— If it is a move in C, we go back to the precedent situation (the one with a
fixed O move in C) with e at 1000 and ¢; at 111.

To sum up the described construction, once an opponent move in B or D
is played, the play is stuck playing in either A —o B or C' —o D until a player
move is played in B, D respectively. to decides whether to play the opponent
move in B or D and e; guides the play in A —o B in the first case, es guides it
in C' —o D in the second. This guides us through the whole play and allows us
to reconstruct both e and t;.

In particular, any compatible plays of f, g, B ® D induce a play of f ® g.

This proposition and its proof are key in several proofs we will make in the
rest of the paper.

Proposition 11. The category (G, ®,1,—) is symmetric monoidal closed.
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C The Exponential Modality on the Category G

In this section, we recall the combinatorial structures introduced in [4] to con-
struct the linear exponential comonad ! : § — G on the symmetric monoidal
closed category §G.

Definition 21 (Pointer function). A pointer function on nm is a parity-
reversing function

o : {1,....n} — {0,...,n—1}

such that ¢(i) < i for all i. A pointer function ¢ is called an O-heap if
o(2k) = 2k — 1 for all k, and a P-heap if ¢(2k + 1) = 2k for all k. The set
{k,p(k), $*(k),...} will be called the branch of ¢ associated to the integer k.
Note that the predecessor function 7 defined as w(i) =i — 1 for all i is both an
O-heap and a P-heap.

Definition 22. Suppose that e : p — q is a schedule, that ¢ is a O-heap over
q and that v is a P-heap over p. The O-heap (¢,e,v) on p + q is defined as
follows:

r(¢(5)) if k=r(j) is odd
(b, e,0)(k) = 1(Y(d)) if k=1(i) is odd

k—1 otherwise

where the schedule e is represented as a pair (I,7) as explained in Appendiz A.
Intuitively, the O-heap (¢, e, ) points alongside ¢ when the schedule e is at 1
and alongside ¢ otherwise. The fact that (¢,e,¥) defines an O-heap is ensured
by the even case.

We recall the partial order over the set of pointer functions introduced in [4].

Definition 23 (Generalization). Given two pointer functions ¢, v, we say
that ¢ is a generalization of ¥, and note ¢ = 1, if the branch of ¢ associated
to k € {1,..,n} can be injected in the branch of ¢ associated to k, or, in other
words, if for all k, there exists j such that ¢(k) = 7 (k).

Further in the paper, and in certain proofs, we will also need to look into the
structure of !l A. Intuitively, positions of !! A are pairs (¢, @) where @ is a sequence
of positions of !4 and ¢ an O-heap. It is equivalent to another representation
using only a sequence of positions of A:

Proposition 12. A position (¢,u) of A is equivalent to (¢,v,a) with ¢ = 1,
1 an O-heap, @ a sequence of positions of A, verifying

Vi, j e {1,...,n}, (i # j) = 3k, apr ) 7 apr(j)

The moves alongside the branches of 1 are then plays of the simple game A.
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From this follows a description of the strategy
nf . "4 — 1B
for a deterministic strategy f : A —o B. The positions of !! f are of the form

(67 <¢’ w?a)7 (¢/7 1/1/7 5))
where e*¢' = ¢, e*)’ = 1) and each thread of (v, e, ) is a play of the strategy f.

D Some Bicategorical Definitions

In this section, we recall a few definitions required by our bicategorical setting.

Definition 24. A pseudofunctor is a mapping between bicategories C and D
where the usual functorial equations F(fog) = F(f)oF(g) and F(Ida) = Idp(a)
are only valid up to natural bijectve 2-morphisms in D.

Definition 25. Let (C,®c,1c) and (D,®p,1p) be two monoidal bicategories.
A lax monoidal pseudofunctor between them is given by:

- a pseudofunctor F : C — D

~ a morphism € : 1p — F(l¢)

— for every pair of objects A, B € C, a natural transformation ua g : F(A) @p
F(B) — F(A®c¢ B)

satisfying the following conditions:

— associativity: For every triple of objects A, B,C € C, the following diagram
commutes:

(F(4) @p F(B)) @p F(C)

F(A) ®p (F(B)®@p F(C))

@F(A),F(B),F(C)
na,B®id id®u3,ci
F(A®c B)®p F(C) F(A) ®@p F(B®c C)
HARB, C\L MA,B®C\L
F((A®c B) ®c C) c F(A®c (B®c 0))
F(G'A‘B‘C)

C aP denote the associators of the two tensor

where the two morphisms a
products.
— unality: For every object A € C, the following diagram and its right symmetry

both commute:

lp ®p F(A) i F(le) ®p F(A)

_—
Z}?(A)i lnc,Ai
F(I€a)

F(A) F(le ®c A)

where I€,1P denote the left unitors of the two tensor products.
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Definition 26. Let F,G be two pseudofunctors between two bicategories C and
D. A pseudonatural transformation ¢ : F — G is given by:

— for every object A of C, a morphism ¢(A) : F(A) — G(A) of D.
— for every morphism f : A — B of C, a bijective 2—morphism ¢(f) : ¢(B) o
E(f) = G(f) o ¢(4)

such that

— ¢ respects composition of morphisms, meaning that we have an equivalence
between

(0(A) < G(f,9)) - (6(f) > G(g)) - (F(f) <26(9))
and

p(go f)- (F(f,g)>e(C)),

both being 2-morphisms from

P(C)o F(g) o F(f) = G(go f) o ¢(A),

where - is the vertical composition between 2-morphisms, <,> the two versions
of the horizontal composition between a morphism and a 2-morphism, (also
called whiskering), anf F(f,g) : F(g) o F(f) = F(go f) is the bijective 2-
morphism coming from the pseudofunctor F'.

— ¢ respects the identity morphisms, meaning we have an equivalence between

L34y €1a, > 0(A)
and
RY 4y - $(A) < €, dlida)
both being 2-morphisms from
d(A) o F(idy) = ¢(A)

where Lg(A) 1 9(A) oidp(ay = ¢(A) is the left unitor coming from the bicate-
gory D and ef;A : F(ida) = idpay is the bijective 2-morphism coming from
the pseudofunctor F.

- ¢ is natural in the following sense: for every 2-morphism i : f = g with
f,9: A— B, we have an equivalence between

¢(9) - F(¢) > ¢(B)

and

P(A) 1G(Y) - o(f).

Definition 27. A fully weak comonad G on a bicategory C is a pseudofunctor,
along with pseudonatural transformations 6 and € that satisfy the usual laws of
a comonad up to natural bijectitve 2-morphisms in C.
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E Proof of Proposition 2

Proof. Let A, B be two games.
Let o be a P-cartesian transduction between A and B. The associated deter-
ministic strategy f, is simply given by:

fo(2n) ={(c,a,0(a))la € A(n)}

This definition clearly gives a functional strategy, the determinism being given
by the fact that o is P-cartesian.

Conversely, let f be a functional strategy of A — B. The associated P-
cartesian transduction o is given by:

or(2n)(a) =b s.t. (c,a,b) € f(4n)

Such a b is unique by functionality of f.

F  Proof that P is a pseudofunctor

Proof. First we need to complete the definition of P by detailling why, for f a
deterministic strategy of A — B and o a P-strategy over A, P(f)(o) is indeed
a P-strategy over B, and thus a presheaf over tree(Bp). For this, we need to
define the collection of projector functions s, : P(f)(0)(2n) — P(f)(0)(2n —2)
as follows:

For z € P(f)(0)(2n) over b (meaning x € P(f)(c)(b) and b € Bsy,), there
exists by definition a unique e, a such that (e,a,b) € f and x € o(a). From this,

we define:
o () = mh (), (72 (e), 75" (a), 75 (b)) € f.

By determinism of f, there is only one such k. Moreover, we also have
7% (z) € o(7%(a)). Consequently, by definition of P(f)(c), we have 7&(z) €
P(f)(o)(n%(b)) as expected.

Next step is to show that, for a strategy f : A — B, P(f) is a functor
from P(A) to P(B). For that, we need to define its effects on simulations. For
a:o =1, P(f)a): P(f)(o) = P(f)(r) is simply defined by applying « to all
positions of P(f)(c), as all those are induced from positions of o by definition.
With this, it is easy to verify that P(f) preserves identities and composition of
simulations.

Finally, let us show that P is a pseudofunctor.

First, P(Id4)o associates to a position a of A the set:

PIda)(o) : a H ol(a).
(c,a,a) € Ida
which is instantly isomorphic to o(a). Factoring the effect on simulations, it

is easy to build a bijective natural natural transformation between P(Id,)
Idg:(A). Thus fP(IdA) = Id(p(A).



Categorical Combinatorics for Non Deterministic Strategies 61

Next, let f : A — B and g : B — C two deterministic strategies and o a
P-strategy of A. We have:

P@@(f)le) = e = H H o(a).

(627b7 C) €g (61,(176) € f

This is easily isomorphic to P(g o f)o which is given by:

Plgof)o) : ¢ I o

(e;a,c) e go f

This isomorphism is a consequence of the definition of composition for deter-
ministic strategies, as there is only one triple eq,es, b such that (e1,a,b) € f,
(e2,b,¢) € g and e = ey - e for a position (e,a,c) € go f.

This extends into a natural isomorphism between the functors P(g o f) and
P(g)(P(f), giving us the fact that P is indeed a pseudofunctor.

G  Proof of Proposition 6

Proof. — Let f: A— B,g:C — D be two slender strategies. Let (t, b, d)be
a player position of B ® D. Since f and g are slender, there exist unique
ef,a,eq,c such that (ey,a,b) € f,(e4,c,d) € g. Using o, ey, e, and Propo-
sition 10, we reconstruct e, t; such that (e, (¢1,a,c), (t2,b,d)) is a position of
f®g. This position is unique as the reconstruction of Proposition 10 is unique,
and thus f ® g is a slender strategy.

— Let f: A — B,g:C — D be two functional strategies. Let (t1,a,c) be an
opponent position of A ® C. Since f and g are functional strategies, there
exist unique b, d such that (cpy,a,b) € f,(cpg,c,d) € g. The study of f ® ¢
done in the proof of Proposition 10 gives us that any valid position of f ® g
would have a copycat schedule (as the schedule is built from sequences 1.0%.1
of cpy and cp,y. This implies immediately that the only possible position is
ep, (t1,a,¢), (t1,b,d) as no other play would verify the needed structures, and
thus f ® g is a functional strategy.

H Proof of Theorem 3

Proof. First, we can note that the unit 1 of § has a unique P-strategy, the empty
strategy. Consequently, P(1) is the singleton category, which is the unit of the
cartesian product in Cat.

Moreover, to extend P as a lax monoidal pseudofunctor, we need a transfor-
mation p4 g : P(A) x P(B) — P(A® B) natural in A and B.

Since the morphisms of that transformation live in Cat, they are functors.
We thus define:
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for o an object of P(A) and 7 an object of P(B),
paplo,T)=0®T

for @ : ¢ — ¢’ a morphism of P(A) and 5 : 7 — 7’ a morphism of P(B),
papla,B):0®7— o' @7’ is defined by:

NA,B(O" 6)(t7 z, y) = (ta a<x)a ﬂ(y))

We now need to prove that this transformation is natural in A and B, and that
it verifies the two commutative diagrams of a lax monoidal functor (associativity
and unitality), up to bijective simulations. Those last two are easy to verify and
use similar arguments, so we will focus on the naturality.

We need our transformation to verify the following commutative diagram
for A,B,A’, B’ four games and f : A — A’,g : B — B’ two deterministic
strategies:

P(A) x P(B) —5—= P(A® B)
T(f)xﬂ’(g)l 9’(f®g)l
P(A") x P(B) P P(A’® B')

Let 0 be a P-strategy of A and 7 a P-strategy of B. Verifying the
commutative diagram amounts to finding two reciprocal morphisms between:

P(f)(0) ©P(g)(r) and P(f @ g)(o @ 7).

P(f)(o) ® P(g)(r) = image(f o supp,) ® image(g o supp )
P(f)(o) ® P(g)(7) = image(f o supp, ® go supp,) by consequences of prop 6

P(f @ g)(c @)= image((f ®g) o supp,g,)
P(f®g)lc®7)=image((f ®g)o supp, ®supp,) by consequences of prop 6

o~

By bifunctoriality of ®, we have fo supp, ® go supp, = (f®g)o supp, ®
supp ., giving us the equality of the images we need, up to bijective simulations.

I  Proof of Proposition9

Proof. — Let (1,b = by,...b,) a P position of !B. Since f is slender, for all b;
player positions of b, there exists a unique pair (e;, a;) such that (e;, a;, b;) € f.

We use a method similar to the one used in the proof of Proposition 10.
Instead of using the tensorial schedule to guide us in reconstructing the play
of 1A —o!B, we use v, which indicates us what is the next player move b; to
get to (starting from b;_o, and assuming we have reconstructed e and ¢ so
far), and then use the play (e;, a;,b;) to construct the play.
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The sequence of moves we add is the suffix of the play (e;,a;,b;) looking
like b;_yal....akb; (with a¥ = a;) as any other move in the play (e;, a;, b;) has
already been played (since in particular any b move prior to b;—; has been
played.

Player cannot backtrack in the middle of the sequence bi,la% ....af b; without
breaking the fact that the full play is associated to a O-heap in (4 — B).

This allows us to extend e into e.1.0%.1 and ¢ by linking a} to its predecessor
in A of the play (e;, a;, b;).

This method constructs a valid position of !f as all branches are played
following f and ¢ is a O-Heap. It is the only possible position including v, b
as everything we have done was determined by 1, f and b. Thus !f is a slender
strategy.

— Let (¢,@ = ay, ...ay,) an O position of !A. Since f is a functional strategy, for
all a; opponent positions of @, there exists a unique b; such that (¢, a;, b;) € f.
By determinism of f, it is also true for all player positions of a. By using ¢ as
a guide, this easily allows us to construct the position of !f: (c, (¢, @), (¢,b =
by, ...bpn))-

It is the unique such position for (¢,a@) for reasons similar to the ones
evoked in the proof for slender strategies. Thus !f is a functional strategy.

J  Proof of Theorem 4
Proof. — For a game A, we have by construction:

(!p)as(Ida) = P(nap)o #°(Ida)
(!T)A,B(IdA) = ?(TLAB)(#ICZA) = Id!A

— Let A, B,C be three games and o a P-strategy of A — B, 7 a P-strategy
of B —o C. We need to prove that there is a natural isomorphic simulation
between lp(7 0 0) and lp(7) o lp(0).

First we will simplify those two strategies through the various properties we
have seen so far:
First lp(7 0 0):

Ly (7 0 ) = P(na,c)(# (7 0 0))
lp(T00) 2 image(ng,c © SUPP 45 (r05)) bY equationd
lp (T 00) 2 image(na,c © !supp ;,) by consequence of def 13
!p(T 00) = image(na c o !supp '}’(CompA,B,C)(“‘@T)) by definition 9
!p (7 00) =image(na, c o

ISUPP image(comp 4. ¢ osupp o)) DY equation 4

!p (T 00) =image(ng c o supp image(!(comPA,B,CC’S“PPa®7))> by consequence of def 13

lp(T00) = image(na,c o !(compa B,c ©supp,g,)) by theorem 1
!p (T 00) =image(ng c o lcompa B c o supp #5(6®7)) by functoriality of ! and consequence of def 13
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Then, lp(7) o lp(0):

lp(r) 0 l9(0) = P(np,c)(#°7) 0 P(na,B)(#0)
lp(7) o lp (o) = image(np,c © SUPP s (7)) ©image(na, B © SUPP xs(5)) by equationd
19(7) 019 (0) & P(compia, 15,10 (image(na, 5 o SUPP 4 (o)) ® image(npp,c © SUPP s (7)) by definition
lp(7) olp (o) = P(compia1p,1c)(image(na, B © SUPP 4s(o)® N pB,C OSUPP 45 (7))) by consequence of prop 6
lp(7) 0 lp(0) & image(compia,15,1C © (SUPPimage(n 4 0 supb s (o) ® 73,0 supP s () DY equationd
lp(7) o !y (o) = image(compia,1B,1c © (NA,B © SUPP 4s(5) ® MB,C © SUPP 45 (r))) by theorem 1
19(7) o lp(0) 2 image(compia1B,1Ic © A, B ® NB,C O Supp #5 (o) @ supp #s(.r)) by bifunctoriality of ®

lp(7) o lp (o) = image(compia1p1c ©nA,B® np,colsupp (5)®!supp (+)) by consequence of def 13

We intend to prove that those two images are isomorphic. For that, we will
make the following remark:

! is lax monoidal in §, meaning that there exists a transformation pa p
IA®!B —!(A ® B) natural in A and B. Thus we have the following diagram
with the top square commuting by naturality of u:

I({c|A— B}® {r| B — C}) T e {o| A — B}®!{r| B — C}

!(supp , ® supp ) Isupp , ®!supp .

(A—B®B — C) T (A — B)®!(B — C)

lcompa B,c na,B® np.c
(A — C) A —!B®!B —o!C
nA,C COMPpIA,IB,IC
1A —lC

In more details, positions of 14 p are of the form: (e, (¢, ¢,a,,b), (®,t,a,b)),
where, for a position (®,t, a,b) of |(A® B), one can rebuild the unique associ-
ated position by playing the moves in order and building the tensorial schedule
and the O-heaps incrementally, the general structure ensuring that we do get

them in the end. Consequently p4,p is slender and induces a transduction
from B to A.
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Note that it is not bijective as the play of !(A ® B) where we play in B, then
backtrack to play in A would produce the same play in !A®!B than playing
in B then in A without backtracking.

Thus, we have, since ({5 A—sB},{r| B—c} is slender:

image(na,c o !compa p,c© SUPP 4s(,@r)) = image(na,c o lcompa p,c o

SUPP 45 (5r) © H{o| A—oB},{r|B—oC})

Then, by naturality,

image(na,c o !compa p,c© SUPP 4s(,0r)) = image(na,c o lcompa p.c o

[LA—oB,B—oC © SUPP 45,457

Consequently,

image(na,c o lcompa p,c o SUPPi,gr)) =
image(compia,ipic ©na,p ® np,co'supp o @!supp ;)

if and only if

image(na,c © lcompa,p,c© [tA—B,B—C © SUPPiq1r) =
image(compia,ipic ©na,p ® np,colsupp (o ®!supp ;)

meaning if and only if

image(na,c o lcompapco pta—oBBoC) =
image(compia1p,ic ©na,B @ NB.c)

An important remark is that pa_op poc transfers plays p of ((4 —o
B)®!(B — (') such that there exists (e, (¢, @), (¢,€)), € image(compia 1p,co
nap ® np,c) to plays p’ of (A — B ® B — C) such that there exists
(e, (¢, @), (¥,¢));, € image(na,c o lcompap.c)

In other words p, when restricted to plays that play a role in the images we
outlined, acts as a function from the set of plays of ((A — B)®!(B — C)) to
the set of plays of /(A — B ® B —o (). This can be proved by looking at the
respective structures of the plays and induces one half of the isomorphism we
need.

We do a similar study by introducing a P-strategy of (A — B® B — C') —o
([(A — B)®!(B — ()) that acts as a converse of pa_.p g—oc for such plays
and thus get a converse to our morphism, which will give us the second half
of the isomorphism we need. Here is how we proceed:

Let (t,(¢,e,a,b), (¢, f,b,c)) be a play of (1(A — B)®!(B — () such that
there exists

(era—ics (014,@), (D10, 0))e (1.6, a0 Fhe) € IMage(compia 1B, 1conA, B NB.C).
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In particular, that implies that, since n4, g ® np,c doesn’t change the order
of moves, the sequence of moves of (¢,(¢,e,a,b), (¢, f,b,c)) must be able to
be the left projection of compia,1p,1c. This restricts the way the moves can be
played.

In particular, B moves from the two components must must answer each other
right away, giving sequences without backtrack of the form ¢(b,..b;.b;.b;.) * ¢,
with similar structures for sequences starting and /or finishing with a A move.
In addition, there cannot be any backtrack in A or any of the two B component
that would not be initiated by a backtrack in a C' component.

The idea is that a backtrack in C induces a backtrack in B which is mirrored on
the left component and induces a backtrack in A. Those backtracks give us a
heap structure and the moves inside a sequence follow a proper tensor schedule,
so it can be seen as a play of (A — B® B —o (') and it is easy to verify that
this play would produce an element of image(n,co lcompa p,co pa—oB,B—oC)
and that the P-strategy of (A — B® B — C) — (I(A — B)®!(B — ()
built by reorganizing structure without changing order of moves is a converse
t0 tA—oB,B—oC-

Consequently, we have the bijection of images we needed and thus an isomor-
phic simulation between !p(7 0 0) and !$(7) o !p(c). It is natural since p and
the isomorphisms involved in the manipulation of images are natural.

The few additional diagrams that must be checked are easy to verify with
similar methods, and thus we have that !y is a pseudofunctor.

K Proof that ! Is a Pseudocomonad

In the following section, we’ll detail the construction of the pseudonatural trans-
formations ¢ and e and prove their naturality. From those definitions, verifying
that ! is a pseudocomonad is easy as the morphism part of the two natural trans-
formations coincides with their definition in the deterministic case, making the
diagrams commute instantly. After that, we may do a similar study on d, e to
give ! the necessary structure to be a linear exponential modality.

We will handle here the case of J, for a P-strategy o : A — B. This is, by
Definiton 26, a bijective 2-morphism between !plpo0d4 and dgo !po, both being
P-strategies of |A —!lB.

First note that

lplpoodys = image(compgAJ!A,”B O SUPP 1,10 (29 supp(;A)
and that
dp o lpo = image(compia,pup © SUPP;s, @ SUPPy,,)-

We want to study the structure of both images to find an isomorphic simu-
lation between them.
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Ripo @ Rsp Rss @ Rigiyo
Supp,, @ supp s, SUpp 5, @ SUPP 1,1, 0
!A —!B®!B —l!B 1A —ollARIA —!!B
COMPIA\B!'B comprANANB
1A —o!!B

What we will do is start from a position

e,(¢a,a), (¥B, B, D)

of A —!!B and go back along the arrows to see what structure the positions
that produce this position must have.

First, on the left branch, the presence of compiap11p indicates that the
position in !A —!B®!B —!!B must be of the form

L, (617 (¢Aaa)7 (@B’y)a (623 (QSBay)a (7/}Ba ¢Bag)))

for some t, e, es, Pp, b’ such that e; - es = e.
_ Since the right component of this position comes from dp, we actually have
V=0, P = ¢, e2 = c and thus e; = e and we actually have the position

2 (6, (¢Aaa)’ (¢Ba6)a (Cv (¢ng)’ (¢B7¢Bag)))

for some t which is fixed by the two components for the composition to work.
And thus, this gives us the following position of Ri,, ® Rs,:

(tv ((¢A7 677T)7§)7 (C, (QSB,B)v (va ¢ng)))

where T is a sequence of moves that gets projected to the sequence of moves of
(e,(¢a,a),(65,b)). There is no modification of the order the moves are played
in this step, just a reorganization of the structure.

Thus a position of Rs,o 1,0 is of the form

(€, (04,@), (V508 0)) (1 ((6.4,0m),2)(c.(65 ), (5,058

We apply a similar reasoning to the right branch to obtain the form of a
position of Ri,150064:

(6, ((bA) 6)’ (wB7 ¢B7 b))(t’,(C,(d)A,E),(e*wB’(bAaa))v((e*wB 1677")7(¢A1377T)1F))
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where ¢ is fixed by the composition and the sequence of moves 2’ gets projected
to the same sequence of moves than T in the left branch. In particular, both
sequences have the same length.

Since everything is fixed from the initial position (e, (¢4, ), (¢¥B, ¢B5,b)) but
the two sequences T and 2/, we can then build J, as the simulation sending
one position to the other one sharing that same initial structure and the same
sequence T.

With a simlar study, we build ¢, as the simulation that sends positions of
the form

(eu (7T7 6)7 b)t,(c,(ﬂ',ﬁ),a),r)
to positions of the form

(e, (m,@), )y (.2 (e (m.) b))

where t,t' are fixed by construction and Z is the branch of positions finishing in
z in R,.

Proof. We will now prove the pseudonaturality of €,  is handled in a similar way.
Let us look at the naturality first. Let A, B be two games, o, T two P-strategies
of A — B and a: 0 — 7 a simulation We require that the two following pasting
diagrams are equivalent:

€o
€A €B

€
€A €B
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This amounts to the following equality of simulations:
(ea<a)-e,' =t (lpavep)

where <,> indicate the whiskering that results from the composition of P-
strategies and - indicates the vertical composition which is simply the com-
position of functions. Thus, for a position

(e (m.@),0) s (r2). (e, (m0) )
of eg o lpo, we have:

(ea90) 65! (e (M@ 1) (rz) (o) ) = (€4 90) (€3 (M@ B)¢ (o (m,m),a),0) DY def of €5

(cada) et (e (m @), O)r (7, (cs(m,8),0)) = (& (T,@), D¢ (e (m,a),a),a(x) Py defof P eq

On the other hand,

e (lpavep) ((e, (m,a), D) (om0 (er(mB) b))

= 6;1 ((e, (m, @), b)t/7(ﬂ,m),(c7(ﬂj)7b)) by def of P, ep,!p

et (lpavep) ((e (m,a), D) (r7) (er(m ) )

= (e, (m,@), )4, (c,(r,a),a),a(z)) Dydefof e

And thus, we have the equivalence we require. The other diagram equalitiies
we need to verify are done in a similar way.

The key point to remember from this proof and the similar ones that need to
be done, is that, while the form of the positions is a bit heavy, the structures that
underly them do most of the work for us, making most of the needed verifications
very easy, once the positions have been properly described.

We apply those methods to verify that ! is indeed a pseudocomonad, to define
and verify that da,es are proper pseudonatural transformations and to check
that !, along with those transformations, does have the structure of a linear
exponential modality.
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Abstract. When presenting a denotational semantics of a language with
recursion, it is necessary to show that the semantics is computationally
adequate, i.e. that every divergent term denotes the “bottom” element
of a domain.

We explain how to view such a theorem as a purely syntactic result.
Any theory (congruence) that includes basic laws and is closed under an
infinitary rule that we call “rational continuity” has the property that
every divergent term is equated with the divergent constant. Therefore,
to prove a model adequate, it suffices to show that it validates the basic
laws and the rational continuity rule. While this approach was inspired by
the categorical, ordered framework of Abramsky et al., neither category
theory nor order is needed.

The purpose of the paper is to present this syntactic result for call-by-
push-value extended with term-level recursion and polymorphic types.
Our account begins with PCF, then includes sum types, then moves to
call-by-push-value, and finally includes polymorphic types.

1 Introduction

Models of Recursion. A conventional denotational account of a language with
recursion proceeds as follows. First define the syntax and operational semantics.
Then give a denotational model. Lastly, prove soundness, i.e. if ¢t evaluates to u
(written ¢ |} u) then [t] = [u], and adequacy, i.e. if ¢t diverges (written ¢ {}) then
[t] = L.

Because it is often convenient to structure a model categorically, Fiore and
Plotkin (1994) gave categorical axioms on a model that imply (soundness and)
adequacy. Crucially, in their work, as detailed by Fiore (1996), a model is required
to be “wCpo-enriched”, meaning that a term denotes an element of a pointed
w-cpo (poset with least element | and suprema of all increasing w-chains), and
a term constructor is w-continuous (preserves suprema of w-chains). Thus (for
a call-by-name language) a term x : A t: A gives a continuous endofunction
f, and the recursion recx .M denotes the supremum of (f"L1),en, the least
(pre)fixpoint of f.
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However, for the models of Abramsky et al. (2000), Abramsky and McCusker
(1997), and McCusker (1998), the requirement of wCpo-enrichment is too
restrictive, because the posets arising do not have suprema of all increasing
w-chains (Normann 2006). So these papers use a more relaxed ordered framework
where the only suprema that must be preserved are those of chains (f™1),en of
iterated applications. This means that any so called rational chain (go f™ L)nen
has an upper bound given by ¢ (| | f™L)—a property known as rational continu-
ity (Wright et al. 1976; cf. also Bloom and Esik 1993).

Recursion but Rationally. Our goal is to give an even more relaxed version of this
“rational” framework for adequacy; one that uses no category theory, order or
denotational model. It could be viewed as a purely syntactic result: a property
of a theory (congruence) = rather than of a model. Thus we want ¢ |} u to imply
t ~ u,and t 1} to imply ¢t & §2, where {2 is a divergent constant. The benefit of such
a result is to modularize the narrative described at the start; we can get adequacy
out of the way before we start studying categorical and denotational semantics.

Rational Continuity. Currently we have accomplished this goal for term-level
recursion and polymorphic types. (Recursive and existential types are left to
future work; see Sect.6). Our result is that any theory (congruence) ~ will
be sound and adequate provided it (a) contains the S-laws, fixpoint law and
strictness laws and (b) is closed under an infinitary rule called rational continuity.
This rule says (for a call-by-name language) that if C[rec™ z.t] = D[rec” z .{]
for infinitely many n € N, then C[recz .t] ~ Drecx .t]. Here we write rec™ z . ¢
for the nth approzimant to recursion, defined by the clauses rec® .t := {2 and
rec"tl o .t :=t[rec” x.t/x].

Plan. To include both call-by-value (CBV) and call-by-name (CBN), we have
established our result for call-by-push-value. The latter has both value types
and computation types, but the treatment of value types in our proof is more
complicated, so we begin in the CBN setting, which has only computation types.
Our CBN account itself begins with PCF, which has only base types and func-
tion types; we then include sum types, using a proof method adapted from
McCusker (1998). Next we move to call-by-push-value, and use ultimate pattern
matching of values (Lassen and Levy 2008) to treat the value types. Finally we
include polymorphic types.

Related Work. Adequacy of topos models has been studied using an internal lan-
guage (Simpson 2004). Other adequacy results for polymorphic models include
realizability semantics (Mggelberg 2009) and game semantics (Laird 2013).

2 PCF

Language. We begin by introducing a version of Plotkin’s PCF (1997) that
replaces fixpoint combinators with recursion operators and an explicit divergence
construct {2 (Table 1). As per usual, terms are taken up to a-equivalence. The set
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Table 1. PCF
Types T,U =Bool | Nat | T - U
Typing
(x:Tel) I'Ft:Bool I'ktwu:T I'kq:T
I'txz:T ' it : Bool ' ff : Bool I' - iftthenuelseq: T
I'+t: Nat I'+t: Nat '+t : Nat
I zero : Nat I' - succt : Nat '+ predt: Nat I' - iszerot : Bool
z: T, '+t U I'kt:T—=U I'Fu:T z: T, 't T
I'FXet:T—U I'Ftu:U r=0:T I'trecx.t:T
Reduction
tdtt ulv tdff qlo
witt U iftthenuelseq | v iftthenuelseq | v
tiv t succov t | zero tl succov
zero |} zero succt | succv predt v iszerot || tt iszerot | ff
td Axt') t'u/z]lv tlrecz . t/x] | v
Azt Ax.t tu v recz.t{v

of closed terms of type T will be denoted by CTerms” and that of normal forms
by NFZ. For a closed term ¢ there is at most one v such that ¢ |} v; when there
is none we say it diverges and represent this by ¢ 1.

2.1 A Rationally Continuous Theory of PCF

The Theory. A congruence on terms is a type-indexed equivalence relation on
closed terms of said type satisfying ¢ =~ ¢/ = C|[t] = C[t'] for any context
C[—] where the hole is closed. (We omit type annotations.) A congruence is a
rationally continuous (-12-fix theory if it also satisfies the rules in Table 2.

The basis for the theory are the obvious [ rules that mimic the reduction
rules. In a similar vein, the fixpoint rule establishes that each recursive term
is the fixpoint of a substitution. These rules alone are enough to establish the
soundness of the theory with respect to reduction.

Proposition 1 (Soundness). Any congruence = satisfying the 3 and fizpoint
rules (Table 2) is sound: tJr = t=~r.

A Converse. Our sights now turn to proving that divergent terms are identical to
£2. The extra requirement calls for a more refined theory that can more closely
mirror the behaviour of reduction. The last two sets of equations in Table 2
fill the gaps in what the reduction rules don’t say about divergence. The first
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Table 2. Rationally continuous (3-2-fix theory of PCF

Basts An equivalence relation = on closed terms satisfying compatibility:

for any (closed) C[—], t * u = C[t] = Clu]
B Rules
iftt thenuelseq ~ u if ff thenuelseq ~ ¢ iszero zero = tt
iszerosucc™ ! zero ~ ff predsucc™' zero ~ succ” zero (Az.t)u = tlu/x]
Fizpoint Rule recx.t = t[recz.t/x]
Divergence Rules
Qu =~ if2thenuelseq ~ 2 iszero 2 ~ 2
succ {2 ~ (2 pred 2 = 2 pred zero = {?

Rational Continuity forx : T Ht:T

3*n.Clrec” x.t] = D[rec” z .t

Clrecz.t] = Dlrecz .t

where rec’ z.t = 2 and rec" " z.t = t[rec” x.t/x].

relates to the strictness of the operators: divergence of an argument leads to the
divergence of the operator, e.g., 2u ~ 2. The second is the rational continuity
rule presented in the introduction.

Rational Continuity and Chains. To prove adequacy, one often has to re-write
or equate certain terms built with recursion either with some constant or as
the unrolling of the recursive term a few times. In cpo models, continuity and
compositionality of the interpretations validate the following rule

Vn € N.[C[rec™ z .t]] = [D[rec” z .t]]
[Clrecz.t]] = [Drecx .t]]

But this can be further weakened by requiring only equality at infinitely many
n, for then one would still be able to define chains with exactly the same least
upper bounds. We write 3°n.P(n) to mean there exist infinitely many n in N
for which P(n) holds. This leads us to the syntactic continuity rule in Table 2.
Since adequacy refers solely to closed terms, we only require this property for
xz : T F t: T—and therefore rec” x.t and recz .t are closed. Similarly, by
a rational chain we mean a chain of the form C[rec”z.t] for infinitely many
n € N, and by its limit we mean the term C[recx .t].
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2.2 Adequacy

The Claim. We now embark on the syntactic journey towards a proof we have
an adequate theory—formally, that ¢t f = ¢t ~ (2. By the aforementioned
reasons the proof follows the usual approaches by replacing closure under bot-
tom elements and least upper bounds of the relevant chains with closure under
divergence and limits of rational chains.

Approzimations. First we define abstractly! the notion of an approximation can-
didate between terms and the values they approximate; these are then extended
to relations on terms. The concrete relations we use for each type are given by
certain actions on approximation candidates (cf., e.g., Pitts 2000). When using

the result of an action ¢ on approximation candidates <q,...,<, infix, we will
sometimes surround the result with brackets, as in ¢ (¢(<y,...,<)) u, to aid
readability.

Definition 1 (Approximation Candidates). An approzimation candidate <
for a type T is a subset of CTerms” x NFsT s.t.:

1. = Extension: t =t andt' <v = t<v
2. Rational Admissibility: forx: THt: T

(I*°n.Clrec” z .t} <v) = Clrecz.t]<qv

Proposition 2. If < is an approzimation candidate for type T, then the binary
relation on CTerms” defined by

t<u <= t= Q2 or (vulvandtav)

satisfies the following properties:

1. 2 Property: 2 <€ , for any u € CTerms”

2. ~ Extension: t =t andt' <“u = t<“u

3. || Eatension: t < uw and (Vvu v = ' Jv) = t<“u
4. Rational Admissibility: for x : T+t :T

(3*°n.Clrec™ z . t] <“u) = Clrecz.t] < u

Proof. To give a taste of how the proofs go using rational admissibility, assume
we have 3%°n.Clrec” x . t] <¢ u. From the definition, one of two options (possibly
both) is true: that an infinite number of terms on the left are identical to 2; or
that for an infinite series of m, Clrec™ x . t] is related to the value v that u reduces
to (determinism of reduction is paramount here). Admissibility then follows by
rational continuity in the first case (using the obvious constant context), and by
admissibility of < (Definition 1) in the second.

1 Anticipating our treatment of polymorphism in Sect. 4, we have purposefully set up
here a proof structure in the style of Girard (1989).
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Proposition 3 (Base Type Actions). The two binary relations <poor <
CTerms®° x NFsB° and <oy C CTerms™ x NFs™ defined by

t<dBool ¥V <= tx=v and tdyuv <= t=xv

are approximation candidates for Bool and Nat.

Proposition 4 (Arrow Action). Given approzimation candidates <t for T
and <y for U, the binary relation between CTerms™ ~Y and NFsT—Y

t (< — ) Azu = Vp <G q . tp <f ulg/x))
is an approximation candidate for T — U.

Definition 2 (Approximation Relation). The approxzimation relation <r is
the type-indexed family of approximation candidates defined by induction on
types, where base types are covered by their respective actions (Proposition 3),
and <4r_y= < — <y (Proposition 4).

Definition 3 (Environments). Given a typing context I', an environment o
for I' is a substitution that maps each x : T € I' to a closed term of type
Fo(z):T. If o1 and o2 are two such, we write o1 <G o2 to mean o1(x) <5 o2(x)
forallx : T el.

Proposition 5. For any I' -t : T and environments o1 <G o2, tlo1] < t{oa].
Corollary 1 (Adequacy). For every closed -t : T, t f = t =~ (2.

Proof. Applying Proposition5 tott : T (for the empty substitution), we conclude
that t <% t; the definition of (—)¢ (Proposition 2) asserts, then, that eithert ~ 2
or (t v and ¢ <r v); whereby if t {), it can only be that t =~ (2.

3 PCF with Sums

The Eztension. Sums provide a slight complication—but one which shows the
adaptability of the method. The extension to call-by-name sums is presented in
Table 3. With the new reduction rules come new [ rules and divergence rules
in the theory (Table4). As before, reduction is deterministic and the theory is
sound.

3.1 Adequacy

Action. The action for sums must reflect the structure of its parameters. That
is for <7 we expect t <r,y inlu exactly when (modulo the theory) ¢ decomposes
into some inl#’ for which ¢’ <7 u. The assertion of that existence, though, causes
us a small hiccup? in proving that — <7,y v is rationally admissible: If we have

2 A hiccup that will be much amplified in the proof of admissibility for <ra (Sect.4).
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Table 3. Extension of PCF with binary sums

Types T.U=...|T+U

Typing
I'tt:T I'tt:U
I'tinlt:T4+U I'Finrt:T+U
I't:T+T 2:T,'+tu:U y:T,I'tq:U
I' - matchtas{inlz.u, inry.q} : U

Reduction
t{inlt" wlt'/z] v
inlt || inlt inrt | inrt matchtas {inlz.u, inry.q} | v

tlinrt q[t'/x] v
matchtas{inlz.u, inry.q} J v

Table 4. Extension of the theory in Table 2 with binary sums

5 Rules

match inltas{inlz.u, inry.q} ~ u[t/x] match inrtas{inlz.u, inry.q} =~ ¢[t/x]

Divergence Rules match as{inlz.u, inry.q} =~ 2

a series of Clrec™ z.t] <4y inlu, then we know that each of the terms on the
left must be identical to some inlt,, with ¢,, < u—but do the ¢,, form a rational
chain? It turns out that for every ¢, simply from the existence of ¢ ~ inlt’,
and because each type is inhabited by (2, there is a context that can extract
directly the ¢’ (up to equivalence, obviously) from the original term. (An idea
we borrowed from McCusker 1998)

Lemma 1. The contexts
T'[~] = match — as{inlz.z, inry.02}

T"[-] = match — as{inlz.02, inry.y}
satisfy t ~ inlu = T't] ~u and t =~ inru = T"[t] ~ u.

Proposition 6 (Sum Action). Given approzimation candidates <7 for T and
au for U, the relation between CTerms™ ™Y and NFsTTV defined by

t (ar + <y) inlv < (3’ < u.t ~ inlt’)
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t (<r + <u) inrv < (3t' <, u.t ~inrt’)
is an approximation candidate for A+ B.

Proof. For rational admissibility, the pre-condition must hold for (at least) one
of the two clauses in the definition. Say we have 3°n.Clrec” x .t] (dr + <y)
inlu with each term on the left equivalent to some inlt,; rewriting t, =
T'[C[rec™ x.t]] (Lemma 1) it follows that (Proposition 2)

Clrec™ z.t] ~ inl T'[C[rec” z.]] and T'[C[rec™ x .t]] <5 u

An application of rational continuity of the theory, and one of rational admis-
sibility of <% (again, Proposition 2) yields Clrecx .t] ~ inlT'[C|recx .t]] and
also T'[C[recz .t]] <% u so that Clrecx .t] (<r + <) inlu. (Likewise for the
right injection.)

Adequacy. The rest of the proof of adequacy follows exactly as before. Approxi-
mation candidates for sums are derived by induction using the sum action; and
with them we can extend Proposition 5.

4 Call-by-Push-Value

Values vs. Computations. We now turn to Call-by-push-value (Levy 2004). This
language (Table 5) distinguishes between values and computations, with value
types represented by A, A’, etc., and computation types by B, B’, etc. The set of
closed values of type A will be represented by ValsA; that of closed computations
by Compsg. Variables always have value type. Here we include value products
and sums, products of computation types B 1 B’, types F A for computations
aiming to return a value, and functions which in CBPV are computations taking
values to computations. Central to CBPV, we also include value types UB of
suspended computations of type B—which can be of one of two forms.

Recursion. In addition to the usual thunks of computations, we also have recur-
sively defined thunks threcz.t. An alternative would be to use recursive com-
putations I' F¢ recz.t : B. Although the two are equivalent via the definitions
rec z.t := force threcz.t and threc z.t := thunkrec z.t, there are two reasons
for preferring threc: One is that, in some denotational models (e.g. state or
continuation passing), threc has a simpler denotation than rec. The other is
that a treatment based on threc would be more easily adapted to call-by-value,
where recursion and lambda are combined.

FEvaluation. Evaluation (Table 6) pertains only to computations. To those on the
co-domain side of the evaluation relation |}, we call the terminal computations
or, alternatively, the normal forms; and their (typed-indexed) set is represented
by NFsZ. Since we have two forms of thunked computations, the action of forc-
ing one such into execution much act accordingly; this unthunking (a derived
operation on the syntax) returns the computations suspended inside thunks,
or plucks out the computation from a threcx .t suitably instantiated by the
recursive thunk itself—i. e. t[threc x .¢/z]. Note that reduction is deterministic.
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Table 5. Call-by-push with recursion-value—syntax

Types
AA . =1|AxA |0|A+A" |UB BB, . =FA|A—-B|1,;|BnuB
Typing
(x:Ael) I'*v:A z:AT'Ft:B ' ov: A
I'c"z: A I'¢letvbex.t: B I'°return v: FA
I'“uw:FA z:AT'Ft:B I'=“t: B I'"v:UB
I'‘utox.t: B '+’ thunkt: UB I'+¢ forcev: B
z:UB,I'+°t: B
I' " threcx .t : UB ' 02:B v (:1
IF'FPov:A TI'FYo : A I'"v:AxA x:Ay:A,T'Ft:B
I'EY (v,0") : Ax A I' =° matchvas (z,y).t: B
I't’v:1 I'tt: B I'~"v:0
I' = matchwvas ().t: B I' - matchvas{}: B ' X{}: 1y
I'“t:B TI'+t:B I'“t:BnB I'“t:BnB
r=x{'t,"t}:BoB r+t:B I+t :B
z: AT t: B I'*v:A I'tt:A— B I'Fv: A
I'Xet: A— B I'tv: B I'Finlv: A4+ A
Y v: A I'"v:A+A z2:ATFt:B y: A, I'+°t B
I'F'inrv: A+ A’ I' ¢ matchwv as {inlz.t, inry.t/}:ﬁ

Table 6. Call-by-push-value with recursion—reduction

return v |} return v Azt Azt AMPUA{} )\{l.t,r.t'} U)x{l.t,r.t/}

tlv/x] 4 r tir tv/z, ' /y] br
letvbex.t{r match () as ().t | r match (v,v) as (z,y) .t |r
tv/x] 4 r tv/yl4r
match inlvas {inlz.t,inry.t'} | r match inrvas {inlz.t,inry.t'} || r
tUA{l-Uyr-Q} udr tl})\{l.u,r.q} qglr
t t"yr
u{ return v tv/z]r tyAzu ufv/x]dr unthunk v | r
utox.tr tolr forcev || r

where unthunk(thunkt) =t and unthunk(threcz.t) = t[threcz.t/z],
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4.1 Theory

Theory. By a (CBPV) congruence on closed terms we mean a type-indexed
equivalence relation & on closed values and computations such that for all closed
terms ¢t = t’ and (value or computation) context C[—] we have C[t] = C[t],
respectively. A congruence is a rationally continuous [(-2-fix theory when it
satisfies the rules in Table 7. Rational chains are now those built by the
application of a context C[—] to the (thunked) approximants threc™ of recur-
sive thunks and which are defined by the clauses threc’ z.¢ = thunk 2 and
threc"™! 2.t = thunkt[threc” z . t/z]; continuity is defined accordingly. Any
congruence including the 4 and fixpoint rules is easily seen to be sound. We shall
show that with the remaining rules it is also adequate.

Table 7. Call-by-push-value with recursion—rationally continuous (3-£2-fix theory

Basis An equivalence relation &~ on closed terms satisfying compatibility:

for any C[—], t = u = Ct] = C[u] for any C[—], v & w = C[v] = Clw]

B Rules

letvbex. .t~ tfv/x] match () as ().t~ ¢t
match (v,v") as (z,y) .t ~ tjv/z,v'/y]
match inlvas {inlxz.t,inry.t'} ~ t[v/a]

match inrvas {inlxz.t,inry.t'} ~ t'[v/y]

()\ {At,'ﬂt'})l ~t (A{’.t,r.t'})T ~t return v to z. t ~ t[v/z]

force thunkt ~ ¢ (Az.t)v = t[v/x]
Fizpoint Rule threcz .t ~ thunkt¢[threcz .t/x]
Divergence Rules Ntox.t~ 1 D=0 D'~ Qu=0

Rational Continuity for x : UB F¢t: B and C[—|, D[—] computation contexts

3*°n.C[threc” x .t] = D[threc” z .
C[threcz.t] ~ D[threcz .t

where threc® z .t = thunk £2 and threc"™* .t = thunk t[threc” z . t/z].

4.2 Adequacy

Values: Empty Shells. In the proof of adequacy for PCF with sums we were
required to introduce the tests so that we could, metaphorically, peek inside the
injections and transform the rational chains there into equivalent ones with the
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properties we needed (cf. proof of Proposition 6). Here the problem expands to
all value types. When checking rational admissibility, we need to decompose a
value into its ultimate pattern and its constituent thunks (Lassen and Levy 2008,
following ideas from Abramsky and McCusker 1997; also discernible in the work
of Zeilberger 2008) and use those to find equivalent chains that can be used to
establish adequacy.

Definition 4 (Ultimate Patterns). The set of of ultimate patterns UP# for
a value type A is given by induction on the following rules: —yp € UPYE,
() € UP' and
pe UP* p e UPY p e UPA pe UPY
(p,p/) € UPPA inlp € UPAT  inrp e UpAtA

For a given ultimate pattern p € UP# the finite sequence of hole-types in pattern
p is given by induction by

H(-vp) = (UB) H(() =¢ H((p,p")) = H(p) + H(p')
H(inlp) = H(p) ~ H(inrp) = H(p)

Proposition 7 (Value Decomposition). Given FY v : A, there is a unique
p € UP? and a unique sequence (FY i« H(p)i)i<|r(p)|—the filling—for which
v =pQ(vy)ic|H(p)|, using the reassembly function

(-up)@@)=v () @e=)
inlp @ (vi)i<|m(py = Inl(p @ (vi)ic|m(p)|)
inrpQ (v;)ic|m(p) = Ir(P Q (vi)ic|m ()|
(p.7") @ ((v)icim) # WDicime)) = (PQi)icim)), (P Q (v])iciHG)))

Tests. Ultimate patterns let us define the tests that extract the computations
embedded in a given value. Like in the PCF sum case, we can use them to define
values that are equivalent to a given one but make use only of the latter. If the
values are derived from some family of contexts for the holes, then we can derive
an equivalent context from the respective ultimate pattern.

Definition 5. For p € UP?, and i < |H(p)|, we define a context T[] by
induction on p € UP4 using the rules below. Note that when I' F — : A the test
has type I' +¢ T [—] : B; where UB; = H(p);.

Ty V7 [~] = force —
,];inlp[*] = match — as {inlz. 7 [z], inry.02}
,Einrl’[—] = match — as {inlz.02, inry.7;"[y]}
,T1<<p|f[(>p)‘[—] = match —as < T,y > ,sz[l’}
p.p’)

(2

T, 1 (p) [ —] = match —as < z,y > .Tf/[y]
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Proposition 8 (Tests Decompose). Given a pattern p € UPA, a sequence
(Fwi « H(p)i)i<iu(p)|, and i < |H(p)|, we have T[p @ (w;),; |, | = forcew;.

Proposition 9. For -¢ ¢ : FA , and p € UP", if t ~ return p@ (v;);< ()|
then, successively:

1. Yi < |H(p)|. thunk(t to z. T, [z]) = v;
2. p@ (Ui)’i<|H(p)| f"\ip@ (thunk(t to x. /Tlp[m]))l<|H(p)|
3. t = return pQ (thunk(t to z. T,"[z])) i< (p)|

Approximation Candidates. Unlike PCF where we have computations and nor-
mal forms, CBPV has three levels of syntax: values, terminals, and computations.
For the purposes of defining the needed approximation candidates, terminals
(read: normal forms) and computations, behave like their PCF counterparts and
have (now) familiar definitions of approximation candidates. Approximation can-
didates for value types enforce that: only structurally similar values are related;
that they are (left) closed under equivalence of their holes; and that they are
closed under the usual chains.

Definition 6 (Approximation Candidates). Given a value type A, an
approzimation candidate < for A is a subset of Vals® x Vals* such that

1. Structural Matching: p@Q (v;); <p’ @ (w;); = p=p'
2. Computational = Extension: if pQ (v;)i<|m(p)| <P Q (Ws)ic|H(p) then

(Vi < [H(p)|-vi ®v;) = pQ (vi)icir(p)) 4P Q (Wi)ic|H(p)|
8. Rational Admissibility: for x :UBFt: B
(3*°n.V[threc"z.t] <w) = V][threcz.t] qw

Given a computation type B, an approximation candidate < for B is a subset
of CompsZ x NFE such that

1. =~ Extension: t~t andt' <r = tar
2. Rational Admissibility: for x :UBFt: B

3°n.Clthrec” x.t] «r = Clthrecz.t|<r

Proposition 10. Given a (computation) approzimation candidate < on B,
define its closure as the binary relation CompsZ x Comps? where

t<Cu <= t= 2 or (Frulrandtar)

It satisfies the following properties:

1. 2 Property: 2 <¢ u for any u € CompsZ

2. ~ Extension: t ~t' andt' <“u = t<u

3. || Eatension: t <€’ and (Vra/ | r = ulr) = t<u
4. Rational Admissibility: for x : UBF¢t: B

(3*°n.C[threc"z .t] < u) = C[threcz.t] < u
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Actions. We can then define the actions on these approximation candidates
associated with each type constructor. Mostly this is done by structure (for
values) or by use (for computations); the exceptions are U types and F' types that
we define, respectively, by structure, and by use. Note that it is the existential
quantification in the definition of the F' action that—very much like PCF sums—
requires the use of the tests. Using them, we can easily define, by induction, the
approximation relation and thereby establish the adequacy of the theory.

Proposition 11 (Thunk Action). Let <4 be an approzimation candidate for
B. Then the binary relation

v (U(<)) w < forcev <¢ unthunk w

is an approximation candidate for UB.

Proposition 12 (F Action). Let < be an approzimation candidate for A. Then
the following is an approximation candidate for F A:

t (F(<)) return w <= Jv <w.t = return v

Definition 7 (Enviroments). Given a typing context I', an environment o for
I is a substitution that maps each x : A € I to a closed term of type F o(x) : A.
If o1 and o9 are two such, we write o1 4p o to mean o1(x) <4a o2(x) for all

r:Ael.

Proposition 13. For any I' F¢ ¢ : B (resp. I' Y v : A), and environments
o1 dr o2 we have t[o] <G t[oa] (resp. v[o1] €4 v[o]).

Corollary 2 (Adequacy). For any computation -t : B, if t {} then t =~ (2.

5 Polymorphic Call-by-Push-Value

Adequacy, Now For All. Our final extension deals with polymorphism. In Call-
by-push-value, polymorphic types are computation types. We may quantify over
both value and computation types. The extension is presented in Table 8.

We assume two disjoint countable sets of variables, X,Y,... € VVars and
XY, ... € CVars, for value and computation types (resp.). Types are now also
considered up to a-equivalence. They will also be considered under context,
O F¢ B and © Y A, where © is some finite subset of VVars U CVars that
includes the free type variables of the A or B. (These type judgements have
an obvious inductive definition). The proper extension of a type context © by
a type variable x will be denoted by x, ©. Typing judgements also need to be
annotated by a type context, as in @; I ¢t : B where @ includes all the free
type variables in the types of I" and B. The previous typing rules are extended
in the evident way.
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Table 8. Polymorphic Call-by-push-value with recursion

Types A=X e VVars| ... B=XecCVars|...|[[X.B|][[X.B
Typing
X,6;'+t:B (X¢O) ©6;I't:[[X.B O0F" A
O;I'+°AXt:[]X.B O;I'+°tA: B[A/X]
X,0;I'tt:B  (X¢0©) ©O;I'+t:[[X.B O0r°DB
O; I AX.t: [[X.B ©;I' - tB': B[B'/X]
Reduction
AX Y AX ¢ AX ) AX ¢
ty AXuw ulA/X]r tyAXuw u[B/X]|r
tAlr tBlr

Table 9. Extension of the theory in Table 7 to polymorphism

B Rules (AX4)A =~ t[A/X] (AX .t)B ~ t[B/X]

Divergence Rules NA =~ NB~ (2

Reduction and Theory. Reduction—defined only for closed terms of closed
type—is still deterministic. On the theory end of things, we equate only closed
terms of closed type so that we need only extend the theory of Sect.4 with the
obvious § and divergence rules (Table 9). Unsurprisingly, soundness still stands.

5.1 Adequacy

Approximation Candidates and Actions. Throughout we have worked with
approximation candidates—and now we can reap the fruits of that work. The
definition of approximation candidates (Definition 6) and of their extension to
computations (Proposition 10) can stay exactly the same; as can the actions for
non-polymorphic type constructors. The actions of polymorphic types follow.

Proposition 14. Let Y +¢ B be a computation type, and ¢ a mapping that
assigns to every closed type T and approzimation candidate < € ACs™ an approz-
imation candidate ¢ 4 € ACsBIT/Y] ; then

t <H Y.¢> AV <= for all € T,a € ACS™ AT (¢7.4)° u[T/Y]

is an approzimation candidate for [|Y.B—and likewise for [[Y.B



A Syntactic View of Computational Adequacy 85

Approzimations. The approximation relations need to be parametrized by the
candidates that will instantiate the type variables so that in the end we arrive at a
candidate for a closed type. As usual, we have that it satisfies the weakening and
substitution properties that are used in the proof of adequacy for abstractions
and type instantiations, respectively.

Definition 8 (Approximation Environment). An approximation environ-
ment v for © is a map taking each x € O to a closed type ¥* (x) of the same

kind as x and an adequacy candidate v©(x) € ACsT ),

Definition 9 (Parametrized Approximation Relations). Let © Y A
(resp. © - B) be a (possibly open) type and ~y an approzimation environment
for ©. The following parametrized approximation relations, defined by induction
on types, determine an approzimation candidate for AlyT]—i.e. A with each type
variable x replaced with T (x) (resp. B[y]).

vy =20) ey =)
vy =% orvaxa = (Grva) X (S9ev 4)
orvo =<0 rvara = (Grva) + (v )
Yrvyp = Ulgrop) orepa = F(95va)
rer, = (1) Brcpnp = ([orep) T (gcp)
Wrcap = [orva) = (SGrep)

_ Y (==)] _ Y (=)
Brenvs = 117 (Q@kcg }) Grenys =Y (Q;,QFCE })

Definition 10. For any © and approzximation environment v for ©, if o1 and
o9 are environments for I'[yT], we write oy d'é;r o2 to mean o1(x) <]’(IDFVA oa(x)
for everyx : Ae .

Proposition 15. For any ©; +°t : B (resp. ©,' ¥ v : A), approximation
environment v for ©, and environments oy 4’(1);1“ oo for I’

7o) (Brep) thTlloal  (resp. o llon] (v 1) vl llo2))

6 Concluding Remarks

We have thus seen how, for term-level recursion, the rational continuity rule
coupled with (3, the fixpoint property of recursion, and strictness of the basic
constructors of the language suffices to make a theory adequate. The recipe of
the previous sections applies to both call-by-name and call-by-value languages
and is compatible with polymorphic types. Along the way we used no category
theory; no models were mentioned. We relied only on syntactic constructions
and required no external machinery.
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Two extensions are conspicuous for their absence: to existential types and to
recursive types. In Call-by-push-value, existential types are value types. We con-
jecture our theorem holds for them but we must find a way to quantify over
ultimate patterns. For recursive types, even finding suitable conditions on = is
challenging. We would like to adapt Pitts’ (1996) method of minimal invari-
ant relations but we will need type constructors to be functorial over suitable
syntactic categories.

For term-recursion and polymorphism, however, we now know that to prove a
model adequate we need only to show that it satisfies the basic laws and rational
continuity.
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Abstract. The mw-calculus, viewed as a core concurrent programming
language, has been used as the target of much research on type systems
for concurrency. In this paper we propose a new type system for deadlock-
free session-typed m-calculus processes, by integrating two separate lines
of work. The first is the propositions-as-types approach by Caires and
Pfenning, which provides a linear logic foundation for session types and
guarantees deadlock-freedom by forbidding cyclic process connections.
The second is Kobayashi’s approach in which types are annotated with
priorities so that the type system can check whether or not processes
contain genuine cyclic dependencies between communication operations.
We combine these two techniques for the first time, and define a new
and more expressive variant of classical linear logic with a proof assign-
ment that gives a session type system with Kobayashi-style priorities.
This can be seen in three ways: (i) as a new linear logic in which cyclic
structures can be derived and a CycCLE-elimination theorem generalises
CuT-elimination; (ii) as a logically-based session type system, which is
more expressive than Caires and Pfenning’s; (iii) as a logical foundation
for Kobayashi’s system, bringing it into the sphere of the propositions-
as-types paradigm.

1 Introduction

The Curry-Howard correspondence, or propositions-as-types paradigm, provides
a canonical logical foundation for functional programming [42]. It identifies types
with logical propositions, programs with proofs, and computation with proof
normalisation. It was natural to ask for a similar account of concurrent pro-
gramming, and this question was brought into focus by the discovery of linear
logic [24] and Girard’s explicit suggestion that it should have some connection
with concurrent computation. Several attempts were made to relate m-calculus
processes to the proof nets of classical linear logic [1,8], and to relate CCS-like
processes to the x-autonomous categories that provide semantics for classical
linear logic [2]. However, this work did not result in a convincing propositions-
as-types framework for concurrency, and did not continue beyond the 1990s.
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collector process { P

process

Fig. 1. Cyclic scheduler

Meanwhile, Honda et al. [26,27,38] developed session types as a formalism for
statically checking that messages have the correct types and sequence according
to a communication protocol. Research on session types developed and matured
over several years, eventually inspiring Caires and Pfenning [12] to discover a
Curry-Howard correspondence between dual intuitionistic linear logic [7] and
a form of m-calculus with session types [38]. Wadler [41] subsequently gave an
alternative formulation based on classical linear logic, and related it to existing
work on session types for functional languages [23]. The Caires-Pfenning app-
roach has been widely accepted as a propositions-as-types theory of concurrent
programming, as well as providing a logical foundation for session types.

Caires and Pfenning’s type system guarantees deadlock-freedom by forbid-
ding cyclic process structures. It provides a logical foundation for deadlock-free
session processes, complementing previous approaches to deadlock-freedom in
session type systems [9,15,21,22]. The logical approach to session types has
been extended in many ways, including features such as dependent types [39],
failures and non-determinism [11], sharing and races [6]. All this work relies on
the acyclicity condition. However, rejecting cyclic process structures is unneces-
sarily strict: they are a necessary, but not sufficient, condition for the existence
of deadlocked communication operations. As we will show in Example 1 (Fig. 1),
there are deadlock-free processes that can naturally be implemented in a cyclic
way, but are rejected by Caires and Pfenning’s type system.

Our contribution is to define a new logic, priority-based linear logic (PLL),
and formulate it as a type system for priority-based CP (PCP), which is a more
expressive class of processes than Wadler’s CP [41]. This is the first Curry-
Howard correspondence that allows cyclic interconnected processes, while still
ensuring deadlock-freedom. The key idea is that PLL includes conditions on
inter-channel dependencies based on Kobayashi’s type systems [29,30,32]. Our
work can be viewed in three ways: (i) as a new linear logic in which cyclic proof
structures can be derived; (ii) as an extension of Caires-Pfenning type systems so
that they accept more processes, while maintaining the strong logical foundation;
(iii) as a logical foundation for Kobayashi-style type systems.
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An example of a deadlock-free cyclic process is Milner’s well-known scheduler
[35], described in the following Example 1.

Ezample 1 (Cyclic Scheduler, Fig.1). A set of agents Ao, ..., A,_1, for n > 1,
is scheduled to perform a certain task in cyclic order, starting with agent Ag.
For all i € {1,...,n — 1}, agent A; sends the result of computation to a collector
process P;, before transmitting further data to agent A(y1) noa n- At the end
of the round, A sends the final result to Py. Here we define a finite version of
Milner’s scheduler, which executes one round of communication.

Sched é (Ua ) (chd(z+l) mod n)(AO | A1 | | An—l | PO | P1 | | Pn—l)
AO £ Co [Ilo] dg(l‘o) ao[mo] C|OSEO
A; = di(xy). az[mz] ¢i[n;).close; i€ {l,..,n—1}
P 2 b;(y:).Q i€{0,...,n—1}

Prefix cg[ng] denotes an output on ¢y, and dy(z¢) an input on dy. For now,
let m and n denote data. Process close; closes the channels used by A;: the
details of this closure are irrelevant here (however, they are as in processes @
and R in Example 2). Process @); uses the message received from A;, in internal
computation. The construct (vab) creates two channel endpoints a and b and
binds them together. The system Sched is deadlock-free because Aq,..., A, 1
each wait for a message from the previous A; before sending, and A, sends the
initial message.

Sched is not typable in the original type systems by Caires-Pfenning and
Wadler. To do that, it would be necessary to break Ag into two parallel agents
Ay = co[ng).close., and A = doy(wo).ap[my].closey, q,- This changes the design
of the system, yielding a different one. Moreover, if the scheduler continues into
a second round of communication, this redesign is not possible because of the
potential dependency from the input on dy to the next output on ¢y. However,
Sched is typable in PCP; we will show the type assignment at the end of Sect. 2.

There is a natural question at this point: given that the cyclic scheduler is
deadlock-free, is it possible to encode its semantics in CP, thus eliminating the
need for PCP7? It is possible to define a centralised agent A that communicates
with all the collectors P;, resulting in a system that is semantically equivalent to
our Sched. However, such an encoding has a global character, and changes the
structure of the overall system from distributed to centralised. In programming
terms, it corresponds to changing the software design, as we pointed out in Exam-
ple 1, and ultimately the software architecture, which is not always desirable or
even feasible. The aim of PCP is to generalise CP so that deadlock-free processes
can be constructed with their natural structure. We would want any encoding
of PCP into CP to be structure-preserving, which would mean translating the
Cvctk rule (given in Fig. 2) homomorphically; this is clearly impossible.

Contributions and Structure of the Paper. In Sect.2 we define priority-
based linear logic (PLL), which extends classical linear logic (CLL) with priori-
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ties attached to propositions. These priorities are based on Kobayashi’s annota-
tions for deadlock freedom [32]. By following the propositions-as-types paradigm,
we define a term assignment for PLL proofs, resulting in priority-based clas-
sical processes (PCP), which extends Wadler’s CP [41] with Mix and CycLi
rules (Fig.2). In Sect.3 we define an operational semantics for PCP. In Sect.4
we prove Cycre-elimination (Theorem 1) for PLL, analogous to the standard
CuTt-elimination theorem for CLL. Consequently, the results for PCP are sub-
ject reduction (Theorem2), top-level deadlock-freedom (Theorem3), and full
deadlock-freedom for closed processes (Theorem4). In Sect. 5 we discuss related
work and conclude the paper.

2 PCP: Classical Processes with Mi1xX and CYCLE

Priority-based CP (PCP) follows the style of Wadler’s Classical Processes (CP)
[41], with details inspired by Carbone et al. [14] and Caires and Pérez [11].

Types. We start with types, which are based on CLL propositions. Let A, B
range over types, given in Definition 1. Let o, x € NU {w} range over priorities,
which are used to annotate types. Let w be a special element such that o < w for
all o € N. Often, we will omit w. We will explain priorities later in this section.

Definition 1 (Types). Types (A, B) are given by:
A7B n=1° | 1° | A®OB | A’QOB | @o{li : Ai}ie] | &o{li : Ai}'ie[ | 7 A | °A

1° and 1° are associated with channel endpoints that are ready to be closed.
A®° B (respectively, A79° B) is associated with a channel endpoint that first
outputs (respectively, inputs) a channel of type A and then proceeds as B.
@°{l; : A;}ier is associated with a channel endpoint over which we can select a
label from {l;};cs, and proceed as A;. Dually, &°{l; : A;}icr is associated with
a channel endpoint that can offer a set of labelled types. 7° A types a collection
of clients requesting A. Dually, !° A types a server repeatedly accepting A.

Duality on types is total and is given in Definition 2. It preserves priorities
of types.

Definition 2 (Duality). The duality function (-)* on types is given by:

(As°B)" = Ate°BY  (1°)f=1°
)L — AL ,90 BL (1O)L — |o
(&°{l; : Atier)t = @°{ls : At} 7P AT = 1o Al
(e°{l; : Ai}ie])L = &°{l; : Ail}ieI 1o AL — 70 4L

Processes. Let P, range over processes, given in Definition 3. Let z,y range
over channel endpoints, and m, n over channel endpoints of type either 1° or 1°.



A New Linear Logic for Deadlock-Free Session-Typed Processes 95

Definition 3 (Processes). Processes (P,Q) are given by:

P,Q ::=z[y].P (output) 0 (inaction)
x(y).P (input) P|Q  (composition)
x<l;.P (selection) (valy) P (sessionrestriction)
x> {l; : Pi}ier (branching)  x[].0 (emptyoutput)
r—y (forwarding) x().P  (emptyinput)

Process z[y].P (respectively, z(y).P) outputs (respectively, inputs) y on channel
endpoint x, and proceeds as P. Process x <l;.P uses x to select [; from a labelled
choice process, typically being x> {l; : P;}ics, and triggers P;; labels indexed by
the finite set I are pairwise distinct. Process x — y” forwards communications
from x to y, the latter having type A. Processes also include the inaction process
0, the parallel composition of P and @, denoted P | @, and the double restriction
constructor (vax4y)P: the intention is that = and y denote dual session channel
endpoints in P, and A is the type of z. Processes z[].0 and z().P are the empty
output and empty input, respectively. They denote the closure of a session from
the viewpoint of each of the two communicating participants.

Notions of bound/free names in processes are standard; we write £n(P) to
denote the set of free names of P. Also, we write P{%/2} to denote the (capture-
avoiding) substitution of x for the free occurrences of z in P. Finally, we let Z,
which is different from x, denote a sequence x1,...,x, for n > 0.

Typing Rules. Typing contexts, ranged over by Iy A @, are sets of typing
assumptions x: A. We write I', A for union, requiring the contexts to be disjoint.
A typing judgement P F I" means “process P is well typed using context I

Before presenting the typing rules, we need some auxiliary definitions. Our
priorities are based on the annotations used by Kobayashi [32], but simplified to
single priorities & la Padovani [37]. They obey the following laws:

(i) An action of priority o must be prefixed only by actions of priorities strictly
smaller than o.
(ii) Communication requires equal priorities for the complementary actions.

Definition 4 (Priority). The priority function pr(-) on types is given by:

pr(Ae°B) =pr(A®°B) =0 pr(L°) =pr(1°)=o
pr(®°{li : Aitier) = pr(&°{li : Aiticr) =0 pr(?7°A) =pr(1°A)=o
Definition 5 (Lift). Let t € N. The lift operator 1t () on types is given by:
1'(A»°B
1(A®°B
T (&l = Aitier
TH(@°{li : Aitier
We assume w4+t = w for allt € N.
The operator 1t is extended component-wise to typing contexts: Tt I .

_ (Tt A) ?(ojtt) (Tt B) Tt 1o = 1(o+t)
_ (Tt A) ®(o+t) (Tt B) Tt 1° = J_(o+t)
_ &(°+t){li . Tt Ai}iel Tt (?o A) _ 7(o+t) (Tt A)
= @O 1 18 A bier 11 (1° A) = 10040 (7t A)

—_— — — —
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PHFI QFA PrTa:Ay: At
A L X == Mix i, - CvcLe
z—ytFr: ATy A P|QFT,A (vz®y)P+ I
0 | PrI o<pr(l)

(N z[].0OF z:1° z().PFax:L1° T
PHTy:Az:B o<pr(I) - PrTy:A,z:B o<pr(l)
z(y).PFT,2:A%°B zly|PFIT,2:AR°B
Viel.(PFT,z:A;)) o<pr(l) PrILx:A; jel o<pr(I)
ZL‘D{li : Pi}ie[ FF,I:&O{L; : Ai}ie[ m<1l]~.Pl—F,x:69°{l¢ : Ai}ig[
Pr?y:A o<pr(?D) | PrI,y:A o<pr(l) )
le(y).PF 2z 1°A tx[y|.PFLaz:7°A
PET PrLy:7Az:7 A o<k o<k o<pr(I)

PHILz:7A P{%/y, ¥z} - Tx:7° A

Fig. 2. Typing rules for PCP.

The typing rules are given in Fig. 2. Ax states that the forwarding process x — y4
is well typed if  and y have dual types, respectively A+ and A. Mix types the
parallel composition of two processes P and @ in the union of their disjoint typing
contexts. CyCLE is our key typing rule; it states that the restriction process is
well typed, if the endpoints 2 and y have dual types, respectively A and A+. By
Definition 2, A and A" also have the same priorities, enforcing law (ii) above.
In classical logic this rule would be unsound, but in PLL it allows deadlock-free
cycles. Rule () states that inaction is well typed in the empty context. Rules 1
and L type channel closure actions from the viewpoint of each participant. Rule
2 (respectively ®) types an input process z(y).P (respectively, output process
z[y].P), with y bound and x of type A’8° B (respectively, A ®° B). The priority
0 is strictly smaller than any priorities in the continuation process P, enforcing
law (i) above. This is captured by o < pr(I') in the premises of both rules,
abbreviating “for all z € dom(I"),0 < pr(I'(z))”. Rules & and @ type external
and internal choice, respectively, and follow the previous two rules. Rule ! types
a server and states that if P communicates along y following protocol A, then
lz(y).P communicates along x following protocol !° A. The three remaining rules
type different numbers of clients. Rule ? is for a single client: if P communicates
along y following A, then ?z[y].P communicates along x following 7° A. Rule W
is for no client: if P does not communicate along any channel following A, then
it may be regarded as communicating along x following 7° A, for some priority
o. Rule C is for multiple clients: if P communicates along y following 7% A, and z
following protocol ?%" A, then P{%/y,%/ 2} communicates along a single channel
z following 7° A, where o < k and o < ’. The last two conditions are necessary
to deal with some cases in the proof of Cycre-elimination (Theorem 1).
Lifting preserves typability, by an easy induction on typing derivations.
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Lemma 1. If P+ T then P+ 1T,

PHT
We will use this result in the form of an admissible rule: P 7t I

Tt

The Design of PCP. We have included Mix and CycLE, which allow derivation
of both the standard Cur and the MurricuT by Abramsky et al. [2].

DAL Ay A AL AL

n

Mix
A AL A AL AL }MULTICUT

FTLA CYCLE

Conversely, Mix is the nullary case of Murricut, and CycLE can be derived from
Ax and MuULTICUT:

—F AX
FILA AL AL A CYCLE
Er MurrticuT

Having included Mix, we choose CycLE instead of MurricuT, as CYCLE is more
primitive.

In the presence of Mix and CycLE, there is an isomorphism between A ® B
and A B in CLL. Both AQ B —o A B and A® B — A® B, are derivable,
where C — D £ (19 D in CLL. Equivalently, both (A+ > B1) s (A% B)
and (A+ ® B1) 9 (A ® B) are derivable. For simplicity, let pr(A) = pr(B) = w;
by duality also pr(A+) = pr(B+) = w.

At A FBYB At A FBYB AL A FBLB
’ — Mix T ol IX T MiIx
F AL, BY A B FA-,B-,A B F AL B A B
01 <w o1 <w 09 < W
® 1 oo1 pl ® T 51 S ®
F ALt BY A B FA-®*B-,A B F A+, BY, A®* B
o 1L <o € o 1 1 Mix
02 < 01 A ®1B7A®2B7A 7A7B ,B .
¥ C
[ AL 01 BL7A>?02 B - - AL ®°1 BL,A®°2 B YCLE
F (A9 BY)9° (A% B) (AT ®° B)%° (A® B)

The above derivations without priorities show the isomorphism between AR B
and A’® B in CLL, which does not hold in our PLL, in particular as o; # os.
The distinction between ® and g, preserves the distinction between output and
input in the term assignment. However, to simplify derivations, both typing rules
(Fig. 2) have the same form. The usual tensor rule, where there are two separate
derivations in the premise rather than just one, is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [32] and the tool TyPiCal [28]. We have opted for
priority checking over priority inference, as the presentation is more elegant.
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The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from Sect. 1.

Ezample 2 (Cyclic process: deadlock-free). Consider the following process
P 2 (vaiy)(vasye) [21(v).2a(w).R | y1[n].ys[n].Q]

where R £ 21().v().22().w().0and @ £ 31[].0 | n[].0 | y2[].0 | n'[].0. First, we
show the typing derivation for the left-hand side of the parallel, z; (v).x2(w).R:

(UN ) Kqe < K3 < Ko < K1

4
RExy: LR 158 jxg: 1F2 w: 1M 01 < Kg
To(w).Rbxp: LR jv: 198 g | F1 901 | F2 09 < 01
z1(v).xo(w). Rt xg: LM @01 1 F2 gy |78 902 | Fa (1)

Now, the typing derivation for the right-hand side of the parallel, y; [n].y2[n'].Q,
and recall that k4 < k3 < Ko < K1:

y1[]-0F yp: 174 1 n[].0Fn:1"3 1 y2[]-0 F yp: 172 1 n'[].OFn": 1%
y1[].0 | n[].0 | y2[].0 | n'[].0 F y1: 174 | n: 178 [yp: 172 'n': 1™ 03 < K4
yo[n'].Q Fyr: 174 n: 178 [y 171 @3 172 04 < 03
yi[n].y2[n].Q F ya: 171 ®°3 172 gp: 173 @°4 14

Mix?

(2)

Finally, the typing derivation for process P is as follows:

(1) (2)
; Mix
21(v).z2(w).R | y1[n].y2[n'].Q F
To: 1P Q01 |72 gy 1780902 [ R4 g 171 @93 172 gy 178 @04 17
01 = 03
CYCLE
(vxay2) [1’1 (v).z2(w).R | y1[n].y2 [n’].Q} +
xp: L8902 | R gy 178 ®04 154 02 = 04
CYCLE

(vziy1) (vaays) [21(v).22(w). R | y1[n].y2[0n'].Q] - 0
The system of equations
0o < 01 04 < 03 01 = 03 Oy = 04
can be solved by the assignment o; = 03 =1 and 0oy = 04 = 0.

Ezxample 8 (Cyclic process: deadlocked!). Now consider the process

P’ = (vayyr) (vaoye) [#1(v).22(w).R | y2[n'].y1[0].Q]
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where R = z1().v().22().w().0 and Q@ = %1[].0 | n[].0 | y2[].0 | n’[].0. Notice
that the order of actions on channels y; and y» is now swapped, thus causing a
deadlock! If we tried to construct a typing derivation for process P’, we would
have for the right-hand side of the parallel the following:

nlo0rg 17 L alorn:1e b pormeie L oworn: 1
Mix?

y1[].0 | n[].0 | y2[].0 | n'[].OF y1: 174 n: 18 gyo: 172 n': 17! 04 < K4 @
yi[n].Q Fn': 171 [yo: 172 [y 173 ®@°4 14 03 < 04
yo[n'ly1[n].Q F y1: 178 @°4 174 [yo: 171 ®°3 12

Then, the system of equations
09 < 01 03 < 04 01 = 03 09 = 04
has no solution because it requires oo < o3 and o3 < 02, which is impossible.

Ezxample 1 continued (Cyclic Scheduler)

Sched £ ...(vab;)...(wcidiit1) moa n) (Ao | A1 | oo | Apei | Po | Py | oo | Pact)
Ay £ cg[ng).do(zo).ao[myg].closeg
A & di(xy). al[ml] ciln;).close; i€ {l,..,n—1}
Py 2 bi(y:).Q ie€{0,...,n—1}

By applying the typing rules in Fig.2 we can derive Sched + (, since it is a
closed process, and assign the following types and priorities:

co:1®° 1 dO:L??w*l) 1 ap:1 ®2_<"71)+1 1 for Ao
di:19¥2 | a;i:1@% 11 ci:1®%1 for A;, 0 <i<mn
bo: LD+ | b | 9%l | for Py and P;, 0 <i<n

The priorities of types 1 and 1 could be easily assigned as Example2. As the
priority of d;11 is 2(i + 1) — 2 = 2¢, we can connect it to a; with a CycLg.

3 Operational Semantics of PCP

In this section we define structural equivalence, the principal §-reduction rules
and commuting conversions. The detailed derivations can be found in [18].

We define structural equivalence to be the smallest congruence relation sat-
isfying the following axioms. SC-Ax-Swp allows swapping channels in the for-
warding process. SC-Ax-CycLE states that cycle applied to a forwarding process
is equivalent to inaction. This allows elimination of unnecessary cycles. Axioms
SC-Mix-NiL, SC-M1x-ComMm and SC-Mix-Asc state that parallel composition
uses the inaction as the neutral element and is commutative and associative.
SC-CycLe-ExT is the standard scope extrusion rule. SC-CycLe-Swp allows swap-
ping channels and SC-CycLe-ComM states the commutativity of restriction!.

! Note that associativity of restriction is derived from SC-Mix-ComMm and
SC-CycLE-COMM.
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SC-AX-Swp c—oyt oAty A = y—chL Fao:At y:A
SC-Ax-CvcLe  (va y)z—y? F0 = 0+ 0

SC-MiIx-NiIL O|PHI' = PHT

SC-Mix-ComM P|QFIA = Q|PHI,A

SC-Mix-Asc P|(Q|RFIL,AG = (P|Q)|RI—FA9

SC-CycLE-EXT (vzty) (P | Q)+ T, A = P|(vzy)Q+ I, A z,y¢tn(P)
SC-CYCLE-SwpP (vety)PHT = (uy )P I
SC-CycLe-ComMm  (vzty)(wzPw)PHT = (w2Pw)(wazty)P+T

The core of the operational semantics consists of f-reductions. In m-calculus
terms these are communication steps; in logical terms they are CycrLe-elimination
steps. Bgr is given in Fig. 3 to illustrate priorities. It simplifies a cycle connect-
ing = of type A®° B and y of type A’9° B, which corresponds to communication
between an output on x and an input on y, respectively. Both actions have pri-
ority o, which is strictly smaller than any priorities in their typing contexts,
respecting the fact that they are top-level prefixes. The remaining §-reductions
are summarised below. Baxcyers simplifies a CycLe involving an axiom. (31|
closes and eliminates channels. (gg, similarly to Bgrp, simplifies a communi-
cation between a selection and a branching. fj; simplifies a cycle between one
server of type !° A and one client of type 7° A. The last two rules differ in the
number of clients involved: rule Biw considers no clients, whether (¢ considers
multiple clients.

ﬁAXCYCLE ( )( — AlP)"F,Z‘IAL — fj{x/z}FF,Q;‘:AL
B (vziy)(z[].0|yO).P)FT — PFT
Boe (uz@{ Biviery)(zaly.P | y>{l; : Qi}ier) F I, A —
(ua:ny)(P | Qj) FI,A

Brr (wa" Ay)(lz(v).P | 7y[w].Q) F 1A — (vvtw)(P|Q)F T, A
Brw '°Ay)('x(v PlQ)FIMA — QFM,A
Bic  (vaAy)(lz(v).P | Q{y/y,y/y”}) FMLA —

l

"y ) (1 ()P | (e Y (e (0").P" | Q) 2T, A

o< pr(I) o < pr(4)
PrT,v:Az:B QF Aw: A+ y: B+
® 1 T
z[v| P T z:AR°B y(w).QF Ajy: A~ 9°B N
X
z].P | y(w).QF I A, z: A®° B,y: At 9° B+
CYCLE

(VxA®OBy)(:r[v].P | y(w).Q) FIA
PrTLwv:Az:B QF A w: At y: Bt
P|QFT,Av:Azx:Bw: At y: B+
— (I/’UA’LU)(V:IZBy) (P | Q) FIA

Mix

2

CYCLE

Fig. 3. (-reduction for ® and .
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Commuting conversions, following [12,41], allow communication prefixes to
be moved to the conclusion of a typing derivation, corresponding to pulling them
out of the scope of CycLk rules. In order to account for the sequence of CycLEs,
here we use ~. Due to this movement, if a prefix on a channel endpoint xz with
priority o is pulled out at top level, then to preserve priority conditions in the
typing rules in Fig. 2, it is necessary to increase priorities of all actions after the
prefix on z. This increase is achieved by using 7°1(-) in the typing contexts.

ki Wty (z().P| Q) F I Ax: 1° —
B z().[(wzy) (P | Q) F 1o I, 1°t ALz L°
K (V%A@( [U] P | Q) FIMA2:AR°B —
z[v]. L(VfAﬂ)(P | Q)] = (1°%1 1), (197 4), a:(1°F" A) @° (1°7! B)
ke (VT4 gj)(N( w).P | Q) FLLAz:A9°B —
z(w). [(vT4Y) (P | Q)] F (1971 I), (197 A), w: (1°7 A)w° (1971 B)
ke (VT (z AP Q)T A x:0°{l; : Bitier —
qui.[(uiAy (P Q)] F (1oL D), (1971 A), z:@°{l; : 1°7! B, Yier
K& (V%A@(xb {li : Pilicr | Q) F IA x:&°{l; : Bi}icr —
x> {l; (qug) (Pi ] Q)Yier F (1°T1 D), (1°T1 A), w:&°{l; : 1°T' B, }ier
ke (vTA @(%c[w]P | Q) FLLA x2:77A —
7zfw]. [(vEY) (P | Q)] = (1971 1), (1971 A), &2 7° (1011 A)
ke (A (lz(v).P | Q) F L A 1P A —
12(0). [ A5 (P | Q)] F (1P 1), (141 4), a: P (1o A)

Finally, we give the following additional reduction rules: closure under struc-
tural equivalence, and two congruence rules, for restriction and for parallel.

Crose-Equiv P=Q @Q— R R=S impliess P— S
Cong-CvcrE P — @ implies (vz?y)P — (vzdy)Q
ConNG-MIx P— Q@ implies P|R— Q| R

4 Results for PLL and PCP

4.1 CycLe-Elimination for PLL

We start with results for Cycre-elimination for PLL; thus here we refer to A, B
as propositions, rather than types. The detailed proofs can be found in [18].

Definition 6. The degree function O(-) on propositions is defined by:

9(1°) = 0(L°) =1
0(A®°B) =0(A%°B)=0(4A)+9(B)+1
- 8(&°{l Aitier) = 0(8°{li : Aitier) = 225, {0(Ai)} +1
O(7?A)=0(1°A)=0(A) + 1.
Definition 7. A Maxicur is a mazimal sequence of Mix and CYCLE Tules, end-
ing with a CycLE rule.
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Maximality means that the rules applied immediately before a MaxicuT are any
rules in Fig. 2, other than Mix or CycrLt. The order in which Mix and CycLE rules
are applied within a Maxicur is irrelevant. However, Proposition 1, which follows
directly from structural equivalence (Sect. 3), allows us to simplify a Maxicur.

Proposition 1 (Canonical MAXICUT). Given an arbitrary MaXicur, it is
always possible to obtain from it a canonical MaXicuT consisting of a sequence
of only Mix rules followed by a sequence of only CycLE Tules.

Definition 8. A single-Mix MaxicuT contains only one Mix rule.

Ay, ..., A, A are Maxicut propositions if they are eliminated by a MAXICUT.
The degree of a sequence of CyCLEs is the sum of the degrees of the eliminated
propositions.

The degree of a Maxicur is the sum of the degrees of the CycLEs in it.

The degree of a proof 7, d(r), is the sup of the degrees of its MaxicuTs, implying
d(m) = 0 if and only if proof © has no CyCLEs.

The height of a proof 7, h(rw), is the height of its tree, and it is defined as
h(m) = sup(h(m-))iel + 1, where {m;};c1 are the subproofs of .

MaxicuT has some similarities with the derived Murricut: it generalises
MucricuT in the number of Mixes, and a single-Mix MAXICUT is an occurrence
of MurricuT.

The core of CycrLe-elimination for our PLL, as for Cur-elimination for CLL
[10,25], is the Principal Lemma (Lemma 3), which eliminates a CycLE by either
(i) replacing it with another CycLE on simpler propositions, or (ii) pushing it fur-
ther up the proof tree. Item (i) corresponds to (the logical part of) S-reductions
(Sect. 3); and (ii) corresponds to (the logical part of) commuting conversions
(Sect. 3).

Exceptionally, fSic reduces the original proof in a way that neither (i) nor
(ii) are respected. In order to cope with this case, we introduce Lemma 2, which
is inspired by Lemma B.1.3 in Briauner [10], and adapted to our PLL. Lemma 2
allows us to reduce the degree of a proof ending with a single-Mix MaxicuT and
having the same degree as the whole proof, and where the last rule applied on
the left hand-side immediate subproof is |. Let [n] denote the set {1,...,n}.

Lemma 2 (Inspired by B.1.3 in Brauner [10]). Let 7 be a proof of the
following form, ending with a single-Mix MaXicuT:

/

T s
o< pr(?0) . 0 < pr(4)
Vie[n]:o<o; Vie[n|:o<o, Vjelk]:o<k,
F 20 701 Ay 0 A A FA 1o AL L 1o AL (76 AJ')je[k]
)’ AR B ns k—1
FIL 7 Ay, o AL AL FA AL e Al el ©
Mix

P A, 700 Ay, ., 700 Ay, 1A, 1T AL ton AL 70 AL
-7, A

CYCLE
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where d(m) < d(7) and d(n') < d(7). Then, there is a proof 7" of & 7', A such
that d(7") < d(T).

Proof. Induction on h(n’), with a case-analysis on the last rule applied in 7. O

Lemma 3 (The Principal Lemma). Let 7 be a proof of + I', ending with
a canonical MAXICUT:

T, ... Tm
Mix
FI,Aq, ...,An,A,All7 ...,A}L,AL
C CYCLE

such that for all i € [m], d(m;) < d(7). Then there is a proof 7" of + 11T, for
some t =0, such that d(7') < d(7).

Proof. The proof is by induction on Zz’e[m] h(m;). Let r; be the last rule applied
in 7;, for ¢ € [m] and let C,., be the proposition introduced by r;. Consider the
proposition with the smallest priority. If the proposition is not unique, Just pick

— Tk
one. Let this proposition be C,, . Then, 7, is the following proof: F C,k
We proceed by cases on .
— r, is ® on one of the Maxicur propositions Ay, ..., A,, A. Without loss of

generality, suppose 7 is applied on A, meaning A = E®° F for some F and F
and o > 0. By ® rule in Fig.2, o < pr(I). Since A is a MaxicuT proposition,
by Definition 2, A+ = E+° FL. Since o < pr(F’) and pr(A+) = o, it must be
that A' is in another proof, say m: F I, EJ- 90 F- "
Consider the case where 7}, is a multiplicative, additive, exponential or L rule
in Fig. 2. Suppose 7, is applied on C,, which is not A*. All the mentioned rules
require pr(C,.,) < pr(I"", E+9° F+\ C,.,), implying pr(C,,) < pr(E+9° F+) =
pr(E ®° F) = o. This contradicts the fact that o is the smallest priority. Hence,
r, must be a ’g introducing A*L.

We construct proof 74 ending with a single-Mix Maxicur applied on at
least A:

T 7T->9

FIEF o< pr(I”) - F”,EL,FL o< pr(I)

FI'EQ°F © I ELge FE
/A alli o 1L o L Mix
FI' T, EQ°F,E-9°F
= CycCLE

Then, by structural equivalence, we can rewrite 7 in terms of 74. By applying
Bewe on T4 (only considering the logical part), we obtain a proof 7/, such that
d(t)y) < d(ta) < d(7), because I(E)+0(F) < O(E ®° F'). We can then construct
7' by substituting 74 for 74 in 7, which concludes this case.
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— 1, is ! on one of the MaxicuT propositions Ai,...,A,, A. Without loss of
generality, suppose 7 introduces A, implying that A = 1° A’ for some A’ and
0 > 0. Then 7 is the following proof:

oy

-70,4" o< pr(?6) '
-0, 1o A/ '

where I = ?0. Since A is a MaxicuT proposition, by duality AL = 7° A+,
Since o < pr(I") and pr(A+) = o, it must be that A* is in another proof. Let it
be mp, for h € [m] and h # k. Then we apply Lemma?2 to 7, and 7, obtaining
a proof which we use to construct 7/, as we did in the previous case. a

Lemma 4. Given a proof T of = I', such that d(t) > 0, then for some t > 0
there is a proof T/ of + 1t I such that d(7") < d(7).

Proof. By induction on h(7). We have the following cases.

— If 7 ends in a Maxicut whose degree is the same as the degree of 7:

T o.M,
Mix™
F T, Ay, A, A, AL, AL AL
T CycLe™t!

we can apply the induction hypothesis to the subproofs of 7 right before the last
Mix preceding the sequence of Cycri. This allows us to reduce their degrees to
become smaller than d(7). Then we use Lemma 3.

— Otherwise, by using the inductive hypothesis on the immediate subproofs to
reduce their degree, we also reduce the degree of the whole proof. a

Theorem 1 (CycLE-Elimination). Given any proof of + I', we can con-
struct a CycLE-free proof of + 1t I, for somet > 0.

Proof. Tteration on Lemma 4. a
CycLe-elimination increases the priorities of the propositions in I". This is solely
due to the (logical part of) our commuting conversions in Sect. 3.

4.2 Deadlock-Freedom for PCP

Theorem 2 (Subject Reduction). If P+ T and P — Q, then Q - ' T,
for some t > 0.

Proof. Follows from the (-reductions and commuting conversions in Sect.3. 0O

Definition 9. A process is a CycLE if it is of the form (va?y)P.
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Theorem 3 (Top-Level Deadlock-Freedom). If P+ I' and P is a CYCLE,
then there is some @ such that P —* @ and @ is not a CYCLE.

Proof. The interpretation of Lemma 3 for PCP is that either (i) a top-level com-
munication occurs, corresponding to a [-reduction, or (ii) commuting conver-
sions are used to push Cycre further inwards in a process. Consequently, iterat-
ing Lemma 3 results in eliminating top-level CycLEs. a

Eliminating all CycLgs, as specified by Theorem 1, would correspond to a seman-
tics in which reduction occurs under prefixes, as discussed by Wadler [41]. In
order to achieve this, we would need to introduce additional congruence rules,

such as:
P—Q

z(y).P — x(y).Q

and similarly for other actions. Reductions of this kind are not present in the
m-calculus, and we also omit them in our framework.

However, we can eliminate all CycLEs in a proof of - ), corresponding to full
deadlock-freedom for closed processes. Kobayashi’s type system [32] satisfies the
same property.

Theorem 4 (Deadlock-Freedom for Closed Processes). If P+ (), then
either P = 0 or there is Q such that P — Q.

Proof. This follows from Theorems?2 and 3, because if Q@ F () and Q is not a
CycLe then @ must be a parallel composition of 0 processes. a

5 Related Work and Conclusion

Cycie and Murricut rules were explored by Abramsky et al. [2-4] in the context
of x-autonomous categories. That work is not directly comparable with ours, as
it only presented a typed semantics for CCS-like processes and did not give a
type system for a language or a term assignment for a logical system. Atkey
et al. [5] added a Murricur rule to CP, producing an isomorphism between ®
and '@, but they did not consider deadlock-freedom.

In Kobayashi’s original type-theoretic approach to deadlock-freedom [29],
priorities were abstract tags from a partially ordered set. In later work abstract
tags were simplified to natural numbers, and priorities were replaced by pairs of
obligations and capabilities [30,32]. The latter change allows more processes to
be typed, at the expense of a more complex type system. Padovani [36] adapted
Kobayashi’s approach to session types, and later on he simplified it to a single
priority for linear m-calculus [37]. Then, the single priority technique can be
transferred to session types by the encoding of session types into linear types
[16,17,19,33|. For simplicity, we have opted for single priorities, as Padovani [37].

The first work on progress for session types, by Dezani-Ciancaglini et al.
[15,22], guaranteed the property by allowing only one active session at a time.
Later work [21] introduced a partial order on channels in Kobayashi-style [29].
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Bettini et al. [9] applied similar ideas to multiparty session types. The main
difference with our work is that we associate priorities with individual commu-
nication operations, rather than with entire channels. Carbone et al. [13] proved
that progress is a compositional form of lock-freedom and introduced a new tech-
nique for progress in session types by adopting Kobayashi’s type system and the
encoding of session types [19]. Vieira and Vasconcelos [40] used single priorities
and an abstract partial order in session types to guarantee deadlock-freedom.

The linear logic approach to deadlock-free session types started with Caires
and Pfenning [12], based on dual intuitionistic linear logic, and was later for-
mulated for classical linear logic by Wadler [41]. All subsequent work on linear
logic and session types enforces deadlock-freedom by forbidding cyclic connec-
tions. In their original work, Caires and Pfenning commented that it would be
interesting to compare process typability in their system with other approaches
including Kobayashi’s and Dezani-Ciancaglini’s. However, we are aware of only
one comparative study of the expressivity of type systems for deadlock-freedom,
by Dardha and Pérez [20]. They compared Kobayashi-style typing and CLL typ-
ing, and proved that CLL corresponds to Kobayashi’s system with the restriction
that only single cuts, not multicuts, are allowed.

In this paper, we have presented a new logic, priority-based linear logic
(PLL), and a term assignment system, priority-based CP (PCP), that increase
the expressivity of deadlock-free session type systems, by combining Caires
and Pfenning’s linear logic-based approach and Kobayashi’s priority-based type
system. The novel feature of PLL and PCP is CycLg, which allows cyclic pro-
cess structures to be formed if they do not violate ordering conditions on the
priorities of prefixes. Following the propositions-as-types paradigm, we prove a
Cvycre-elimination theorem analogous to the standard Cur-elimination theorem.
As a result of this theorem, we obtain deadlock-freedom for a class of m-calculus
processes which is larger than the class typed by Caires and Pfenning. In partic-
ular, these are processes that typically share more than one channel in parallel.

There are two main directions for future work. First, develop a type system
for a functional language, priority-based GV, and translate it into PCP, along
the lines of Lindley and Morris’ [34] translation of GV [41] into CP. Second,
extend PCP to allow recursion and sharing [6], in order to support more gen-
eral concurrent programming, while maintaining deadlock-freedom, as well as
termination, or typed behavioural equivalence.
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Abstract. Graded linear exponential comonads are an extension of lin-
ear exponential comonads wih grading, and provide a categorical seman-
tics of resource-sensitive exponential modality in linear logic. In this
paper, we propose a concise double-category theoretic formulation of
graded linear exponential comonads as a kind of monoid homomorphisms
from the multiplicative monoids of semirings to the composition monoids
of symmetric monoidal endofunctors. We also exploit this formulation to
derive the category of graded comonoid-coalgebras, which decompose
graded linear exponential comonads into symmetric monoidal adjunc-
tions plus twists.

1 Introduction

One of the important discoveries in substructural logic is the decomposition of
the intuitionistic implication ¢ = 1 using the linear implication — and the
exponential modality !. This discovery was studied by Girard through his linear
logic, which brought many new ideas and perspectives to logic and programming
language semantics.

Inside linear logic proofs, propositions with the exponential modality !¢ can
be freely copied or discarded. Later, it was realized that by adding a copy limit
to the exponential modality, like !,.¢, linear logic gains fine control of assumption
usage. This idea was first implemented in bounded linear logic [9], and studied in
connection with implicit complexity theory [4,14]. Indexed exponential modal-
ities !,. were then used in wider context: resource management in programming
languages [3,7,8,20,23] and control of sensitivity in the metric semantics of pro-
grams [5,21].

The categorical structure corresponding to the exponential modality ! was
studied by various researchers, and it was identified as a categorical structure
called linear ezponential comonad [1]. One of the celebrated results about linear
exponential comonads is that any symmetric lax monoidal adjunction:

L
(D, 1, x) T (C,I,®) (the monoidal structure 1, x is cartesian)

yields a linear exponential comonad Lo R, and every linear exponential comonad
D arises in this way - for D take the category of Eilenberg-Moore coalgebras of D.
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The categorical structure corresponding to the indexed exponential modality
! has been proposed as exponential action [3] and graded linear exponential
comonad [7]; they are two different presentations of the same data. Compared
to linear exponential comonads, however, categorical understanding of graded
linear exponential comonads is not well-established. The aim of this paper is to
contribute to this point. Concretely speaking, we show the following categorical
results about graded linear exponential comonads:

— We give a new concise formulation of graded linear exponential comonads
as vertical monoid homomorphisms from multiplicative monoids of semirings
to the composition monoids of symmetric lax monoidal endofunctors. This
formulation is given in a rather complex multi-double category of symmetric
monoidal categories. The slogan is “to represent a complex structure in a
simple category as a simple structure in a complex category”.

— In the multi-double category, vertical monoid homomorphisms themselves can
be seen as monoids. By considering actions of such monoids, we obtain the
concept of graded comonoid-coalgebras. They are an extension of Eilenberg-
Moore coalgebras to graded linear exponential comonads, and the category of
graded comonoid-coalgebras provides a resolution of graded linear exponential
comonads by a symmetric lax monoidal adjunction plus a twist.

2 Related Work

Graded linear exponential comonads were first introduced as exponential actions
in [3], and an equivalent definition was given in [7]. This paper adopts the latter
definition as the starting point of study. These papers also consider linear type
systems with an indexed exponential modality !¢, which is directly interpreted
by a graded linear exponential comonad. This paper, however, focuses only on
the categorical axiomatics of the indexed exponential modality, and omit its
syntactic theory. In [2], Breuvart and Pagani gave a construction of graded lin-
ear exponential comonads from a set of data called stratification. They derived
various graded linear exponential comonads on the category of sets and binary
relations and the category of coherence spaces. Structures close to, but differ-
ent from, graded linear exponential comonads were considered in the categorical
semantics of the following calculi: INTML for interactive computation [23], coef-
fect calculus [20] and bounded affine types system [8].

Looking at the dual structure, graded monads, first considered in mathe-
matics [6,25], were recently used in the semantic study of logic, systems and
programming languages [13,18,19,22]. The resolution of graded monads were
studied in [12], mildly extending a classic work by Street [26]. The major differ-
ence between graded monads and graded linear exponential comonads is the way
how they interact with the monoidal structure. In [13] only strengths were con-
sidered for graded monads, while graded linear exponential comonads interact
with monoidal structures in an intricate manner.

The multicategory of symmetric lax monoidal multifunctors is related to
the 2-multicategory of T-algebras for a pseudo-commutative 2-monad T' [11].
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Hyland and Power studied multifunctors that are symmetric strong monoidal in
each argument, while in this paper we weaken “strong” to “lax”. Yet, we think
that by suitably extending their theory, the symmetric lax monoidal multifunc-
tors can also be given in the language of 2-monad theory.

Monoids in the multicategory MSMC; in Sect.5 are similar to the dis-
tributivity studied in [15], where Laplaza considered two symmetric non-strict
monoidal structures together with a colax distributivity between them. On the
other hand, in this paper, we consider a strict monoidal structure on top of the
underlying symmetric (non-strict) monoidal structure, and a laz distributivity
between them.

Preliminaries

For symmetric monoidal categories and symmetric lax monoidal functors, see
[16]. In a symmetric monoidal category C, by ¢ : I® I — I we mean the isomor-
phism A\ = pr, and by 7: (A B)® (C® D) - (A®C) ® (B® D) we mean
the symmetry swapping the second and third component of the tensor product.

For functors F; : H;ﬂ:ﬁ Ci; — D; where 1 <4 < n, we define Fy x --- x F,, to

be the composite functor H1<i<n,1<j<m,i Ciy — H?:l(H;n:H Cij) — H?:l Dy,
whose codomain is the product category without the nesting of products.

3 Graded Linear Exponential Comonad

In this paper, comonads are graded by a partially ordered semiring. It is a tuple
(R, <,0,+,1, %) such that (R,0,+, 1, %) is a unital semiring (not necessarily com-
mutative) and +,* are monotone in each argument w.r.t. the partial order <.
The partially ordered monoids of additive and multiplicative parts of R are
denoted by RT = (R, <,0,+) and R* = (R, <, 1, %), respectively.

Let C,D be symmetric monoidal categories. We write SMC;(D, C) for the
category of symmetric lax monoidal functors and monoidal natural transforma-
tions between them. The following pointwise extension of the tensor unit and
tensor product on C extends to a symmetric monoidal structure on SMC;(ID, C):

I(D)=1, (F®G)(D)=FD®GD.

(We note that the symmetry in C is used to make F' ® G a symmetric lax
monoidal functor.) Below by [D, C]; we mean the symmetric monoidal category
(SMC;(D,C),1,®) of symmetric lax monoidal functors and monoidal natural
transformations between them.

3.1 Graded Linear Exponential Comonad

Fix a partially ordered semiring (R, <,0,+, 1, ). We introduce the main subject
of this study, R-graded linear exponential comonad. This concept first appeared
in [3, Definition 13] under the name exponential action. We adopt the following
definition [7, Sect. 5.2], which is equivalent to the exponential action:
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D(0)(4) D(0 = 5)(A) D(0)(A) D(s + 0)(A)
WA D0)(D(s)(A)) a D(s)(D(0)(A))
lWD(:)(A) lu(s)(“’A)
[——1 I———— D(s)(D
D(r s s+ 71 % 5)(A) D((r +7') * 5)(A)
D(r * $)(A) ® D(r' = 5)(A) D(r + r')(D(s)(A))
D(r)(D(s)(A)) ® D(r' )(D(s)(A)) === D(r)(D(s)(A)) ® D(r")(D(s)(A))
D(s 1+ 5 % 1" )(A) =———==D(s * (r + ))(A)
D(s  r)(A) ® D(s * ' )(A) D(s)(D(r + 1 )(A))
63 A®0 g1 4 l D(s)(cppr p)

D(s)(D(r)(A)) ® D(s)(D(r')(A)) ~———> D(s)(D(r)(A) ® D(")(4))

.D(r)(A),D(r" )(A

Fig. 1. Four equational axioms related to distributive law

Definition 1. An R-graded linear exponential comonad on a symmetric

monoidal category C is a tuple (D, w,c,€,d) where

- D:(R,<) = SMC,(C,C) is a functor. Below we write m, : I — D(r)(I) and
me a5 D(r)(A) @ D(r)(B) — D(r)(A® B) for the symmetric laz monoidal
structure of D(r).

-~ (D,w,c): R — [C,C]; is a symmetric colax monoidal functor.

- (D,€,8) : R* — (SMC,(C,C),Id, o) is a colax monoidal functor.

They satisfy four equational axioms in Fig. 1. Moreover, we say that D is an R-
twist if Dr is strong monoidal for each r € R, and (D, ¢€,9) is a strict monoidal
functor (hence D1 =1d and D(r * ') = Dr o Dr').

When fully expanded, a graded linear exponential comonad specifies one
functor D : (R, <) — [C,C] and 6 natural transformations:

m,: D(r)(I) = 1, myap:D(r)(A® B) — D(r
wy : D(0)(A) =1 Crproa s D(r+1")(A) — D(r
ea:D(1)(A) — A 8pra: D(rx1")(A) — D(r)

satisfying more than 20 equational axioms.
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Ezample 1. Let C be a cartesian closed category. We take a partially ordered
monoid R* = (R, <, 1, x) such that (R, <) is a join semilattice and x preserves
joins in both arguments. This condition makes the tuple R = (R, <, 1,V,1, X)
a partially ordered semiring. We also take a lax monoidal functor G : R* — C.
Then the functor D : (R,<)? — [C,C] defined by DrA = Gr = A extends
to an R°P-graded linear exponential comonad on C (here R°P is the order-
opposite of R).

Ezample 2. Continuing the previous example, let R = (D, <, 1,V,T,A) be a
distributive lattice, regarded as a partially ordered semiring. We consider the
functor category [D, Set|, where D is regarded as the discrete category of the
carrier set D. We then define G : R — [D,Set] by (Gr)r’ = 0 if ' £ r, and
(Gr)r’ = {x} if v/ < r. This G extends to a lax monoidal functor of type G :
R* — [D, Set]. From the construction in the previous example, DrA = Gr = A
is a graded linear exponential comonad, which coincides with the masking functor
given in [7, Theorem 2]. It behaves as (DrA)r’ = {x} if v’ £ r and (DrA)r’ = Ar’
if 7’ < r. This graded linear exponential comonad is used to model the level of
information flow [7, Sect. 6.1].

Example 3. Consider the category EPMet of extended pseudometric spaces’
and nonexpansive functions between them. It has a symmetric monoidal (closed)
structure, whose unit is a terminal object, and whose tensor product is given by
(X, d)®(Y,e) = (X xY,d+e). It also has the scaling modality ,.(X,d) = (X, rd),
where r is an element of the ordered semiring of nonnegative extended reals,
which we denote by [0, 00]. The scaling modality is a [0, co]-twist with respect
to the above symmetric monoidal structure.

The concept of R-graded linear exponential comonad is a generalization of
non-graded linear exponential comonad [1, Definition 3]. This was first observed
in [3].

Theorem 1. A 1-graded linear exponential comonad on a symmetric monoidal
category C is exactly a non-graded linear exponential comonad on C.

On the other hand, 1-twists make monoidal structures cartesian:

Theorem 2. A 1-twist D exists on a symmetric monoidal category C if and
only if the symmetric monoidal structure of C is cartesian (i.e. I is terminal
and ® is a binary product).

Proof. If it exists, the functor part of D must specify the identity functor Id¢
because of the strictness. Next, (Id,w,c) becomes a commutative monoid in
[C, C];; especially w, ¢ are monoidal natural transformations. From [17, Corol-
lary 17], the monoidal structure of C is cartesian. The converse construction is
evident.

! Here, extended pseudometrics mean the pseudometrics that can return +oco.
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4 A Double-Category Theoretic Reformulation of Graded
Linear Exponential Comonad

Although it is in a reasonably compact form, the definition of graded linear
exponential comonad is yet technical, and it indeed specifies a quite complex
structure. The motivation of this study is to have a conceptually clean and
compact definition of it.

Particularly, what is less clear in the definition is the extra four axioms
related to the distributive law (Fig.1). In the non-graded setting (i.e. when
R = 1), these four axioms reduces to simpler axioms, which can be viewed as
the following conditions:

— comultiplication ¢ is a comonoid morphism, (item 4, Sect. 7.4, [17]) and
— weakening w and contraction ¢ are coalgebra morphisms (item 3, Sect. 7.4, [17]).

However, it is not obvious how to upgrade these axioms to the graded setting,
because the concept of “graded coalgebra” and “graded comonoid” are not yet
defined, at least for graded linear exponential comonads. Especially, the concept
of graded coalgebra should be defined after the concept of graded linear expo-
nential comonad, which we are going to define! From this circularity, the above
view of the four axioms are not very helpful when upgrading them in the current
situation.

It is therefore desirable to have an alternative account on four axioms in
Fig. 1, which relies on a notion that already exists before graded linear exponen-
tial comonads. The key observation of this paper is that these four axioms are
an instance of the axioms for 2-cells in the double category SMC of symmetric
monoidal categories, introduced by Grandis and Paré [10, Sect. 2.3]. In SMC, a
2-cell consists of the following data:

where each e is a (possibly distinct) symmetric monoidal category, horizontal
morphisms H, H' are symmetric lax monoidal functors, vertical morphisms V, V'
are symmetric colax monoidal functors, and a : Vo H — H’ o V' is a natural
transformation (between underlying functors of H, H',V, V') making the follow-
ing diagrams commute:

VI— VHI V(HX @ HY) —— = VH(X ®Y)
H'V'T VHX @ VHY HV'(X®Y) (1)

| | |

I——=H'T HV'XQHVY —H(V'XV'Y)
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We note that when V, V' (resp. H, H') are identity functors, the above axioms
are reduced to the ones for monoidal natural transformations of type V. — V'’
(resp. H — H').

Let us see how 2-cell axioms (1) in SMC derives the four axioms in Fig. 1.

Proposition 1. In Definition 1, the four axioms (Fig. 1) can be replaced by the
following statement: for each r € R, both

§—:D(r*x—)—DroD—, é_,:D(—xr)— D—oDr
are 2-cells of the following type in SMC:

Rt "~ L Rt Rt—" Rt
DJ/ Y6, — lD Dl Y- » iD
[‘C»Ql Droz [(C, (C]l [(Cv C]l “oDr [(C,(C]l

5 Multicategory of Symmetric Lax Monoidal
Multifunctors

Proposition 1 says that by fixing one index of the doubly-indexed natural trans-
formation 0_ — : D(—%=) — D—o D=, we obtain a 2-cell in the double category
SMC. However, ¢ itself does not live in SMC. In order to create a room to
accommodate § as a kind of 2-cell, we extend horizontal morphisms of SMC to
multi-ary functors that are symmetric lax monoidal in each argument. We first
study such multi-ary functors in this section.

Let C; (1 <4 < n) and D be symmetric monoidal categories. Intuitively,
an n-ary functor F : C; x --- x C,, — D is symmetric lax monoidal in each
argument if it comes with a structure making the functor F(C1, .., —m,..,Cp) :
C,n — D symmetric lax monoidal for each m € {1,--- ,n} and C; € C;, ¢ €
{1, -+ ,n}\{m}. Moreover, these symmetric lax monoidal structures commute
with each other in a coherent manner.

To formally define such multi-ary symmetric lax monoidal functors, we intro-
duce a notation for sequences. For a sequence C' = C4,---,C, of mathe-
matical objects, a natural number 1 < ¢ < n and another sequence D, by
C[i : D] we mean the sequence obtained by replacing C; with D. For instance,
(1,3,5)[2: X,Y] = 1,X,Y,5. When D is empty, C[i :] stands for the sequence
obtained by removing the i-th element of C.

Definition 2. A symmetric lax monoidal multifunctor of type (Cy,---,C,) —
D consists of a functor and a family of natural transformations indexed by 1 <
1< n:
F:Cix-+-xCp —D
dppg 1= F(CLi:1) (CeCix---xCn)
Sipixy) F(Cli: X))@ F(Cli: Y]) = F(Cli: X®Y]) (CECix  xCp, X,Y €Cy)
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such that:

1. For each C € Cy x --- x C,, and 1 < i < n, The tuple (F(Cli : —]),
qi)ic[i:], gbic[i:_,:]) is a symmetric lax monoidal functor from C; to D. We denote
it by F(C/i).

2. The following equalities hold for each C € C; X -+- X Cp and 1 <i < j < n:

i _ 47
- Py = oy
o 7 7 YY)
Pepapaq) © Poy:piin @ Soyiqii) = Popeqliin ©
_ 7 J J —_ AJ
Peparal © (Gonpy) © Sowayl) = Youre)y O

o o

J i i _ i
N (bC_[i:X@Y][j:P,Q] _(¢C[j:P][i:X,Y] ® ¢ZC[j;Q][i:X,Y]) = ¢Zc[sz®Q][i:X,y]

(Popx15:P.01 @ Popivi-pa) © T

We note that a symmetric lax monoidal multifunctor of type () — D is just an
object in D, because all natural transformations vanish and only the functor of
type 1 — D remains.

Example 4. Let us see how the definition of a binary symmetric lax monoidal
multifunctor M : (C,C) — C is unfolded. It consists of a functor M : CxC — C
and the following natural transformations:

¢1CI_>M(LC)7 ¢,]3(,Y,CM(ch)®M(KC)_>M(X®ch)
¢%’I_>M(Cvl)7 ¢%’,X,YM(OaX)®M(C7Y)_)M(OaX®Y)

such that

1. For each C € C, (M(—,C),qﬁa(b;:’c) and (M(C,—),(/)QC,¢%’7’:) are sym-
metric lax monoidal functors of type C — C.
2. The following coherence axioms holds:

1 2 1 2 1 1 2 1 2 2

o1 = 91, ¢c®cf oL = ¢I,C,c/ © (¢c ® ¢c/)7 ¢c®c/ oL = ¢c,c/,1 o (¢C ® ¢c')
2 1 1 1 2 2

¢’C®C/,D,D/ © (¢C,C/,D ® ¢C,C/,D/) = ¢C,C/,D®D/ o (¢C,D,D/ ® ¢C’,D,D/) °oT

We will later use the following binary symmetric lax monoidal multifunctors.
Let R be a partially ordered semiring and C be a symmetric monoidal category.

1. The multiplication (%) is a symmetric lax monoidal multifunctor of type
(R*,RT) — R*.

2. The evaluation functor ev : [C,C]; x C — C extends to a symmetric lax
monoidal multifunctor of type ([C,C];,C) — C.

3. The functor composition (o) extends to a symmetric lax monoidal multifunc-
tor of type (|C,C];, [C,C];) — [C,C];.

Note that (*) is symmetric strict monoidal in each argument, while (o), ev are
symmetric strict monoidal in the first argument, and symmetric lax monoidal in
the second argument.
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Next, for symmetric lax monoidal multifunctors (F,¢) : (Cy,---,C,,) — D
and (Gi,v(@)) @ Big, - ,Bim;) — C; (1 < i < n), we define their multi-
composition. First, we define a bijection (/) : {(4,7) | 1 <i<n,1 <j<m;}—
{1,--+,>>1<;<,, M}, and represent a number in the latter set as the pair of num-
bers uniquely determined by (/) in the former set. Then the multicomposition
is given by the following (H,n):

H=Fo(Gy X X Gp)

Ny Bayiisgn = FUGBL - (GBu)li i1 110 6laB, ... @B

By Bayisgix,y) = FUGBL - GBa)li s ¥ j.x v © 9(G By .G B [6:G (B, [5:X1),G (B3 17 Y D]

Theorem 3. Symmetric monoidal categories, symmetric lax monoidal multi-
functors, and the above multi-composition form a multicategory MSMC;.

Proof (Proof sketch). To check that symmetric lax monoidal multifunctors are
closed under multicomposition, the key case is when n = 2,m; = mo = 1 and
n = 1, my = 2.

In MSMC,; we consider monoids and monoid actions. A monoid is a tuple
(CCU : () - C,M : (C,C) — C) of a symmetric monoidal category C and
symmetric lax monoidal multifunctors U, M such that

Id= Mo (Id,U), Id=Mo(UId), Mo (Id,M)= M o (M,Id).

An action of a monoid (C,U, M) on a symmetric monoidal category D is a
symmetric lax monoidal multifunctor A : (C,D) — D such that

Ao(U,Id)=1d, Ao(Id,A) = Ao (M,I1d).

By unfolding the definition, a monoid (C, U, M) in MSMGC, equips C with an
additional strict monoidal structure (U, M). The argument-wise symmetric lax
monoidal structure on M becomes a lax distributivity (see Example 4). Thus we
call a monoid in MSMC,; a laz distributive strict rig category. It has a smaller
set of coherence axioms than the one given by Laplaza in [15], thanks to the
strictness of (U, M).

Ezample 5 (Continued from Example 4). (R*,1,*) and (|C,C];,1d, o) are both
lax distributive strict rig categories. Both monoids acts on themselves. The latter
monoid acts on C with the evaluation functor ev.

6 Graded Linear Exponential Comonads as Vertical
Monoid Homomorphisms

We now extend the double category SMC of Grandis and Paré by replacing
horizontal morphisms with symmetric lax monoidal multifunctors. The concept
of 2-cells in SMC is also replaced by prisms — the reason of the name is because
they are placed in the middle of the space surrounded by two horizontal multi-
functors and vertical morphisms. Such a prism is defined to be a natural trans-
formation that is a 2-cell of SMC in each argument.
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Definition 3. Let F: (Cy, -+ ,C,) > D and G : (Eq,--- ,E,) — F be symmet-
ric lax monoidal multifunctors and V; : C; - E; (1 <i<mn)and W :D — T be
symmetric colax monoidal functors. A prism « of type (V1,--- V) = W F —
G, which is depicted as

(Cl,"',@n) F > D

(Vl’...,vn)i Ja w

(Ela"' 7]En) F

is a natural transformation o : W o F — Go (Vi x --- x V,,) such that for each
CelliL,C;and1 <i<n, acli.—) 18 a 2-cell of the following type in the double
category SMC:

F(Cli:—
C, (Cli:=])

D
Vii Jacpi-) \LW

" G((ViCr e Vi C)lii—])

We note that when n =0, a prism a : () = W : F — G is simply a morphism
a:WF — GinF.

Proposition 2. Let D : Rt — [C,C]; be a symmetric colax monoidal functor
and 6 be a prism of type (D,D) — D : (x) — (o), where (x) and (o) are
symmetric lax monoidal multifunctors appeared in Example 4. Then for each
r € R, 0, and d_ , are 2-cells of the following type in SMC:

TR— — %7

Rt R* R* Rt
Dl oo lD Dl b iD
[(C7(C]l m [(C,(C]l [(C7 (C]l TDT [(C,(C]l

Like double categories, composition of prisms can be done in two directions.
Consider the following prisms (1 < i < n).

Gi

Bi, - Bim,) ——GC; (C4,---,C)) ———— =D
(Ui)l*""Uiamz')i Ui le‘ (Vl"”’V")l la iw
G’ ’
(B 1y B ,) ———C; (T, C) ———=D

W]y U)i " lv (V.o ,v,,nl s iw'

B1 e Bln) ——C/ (O, Cl) ———> D"

» Hi,my
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Then define vertical composition and horizontal multicomposition of prisms
by the following (ordinary) natural transformations:
Beoa=(Bo(Vix: - xVy))e (W oa)
a® (1) = (F o (% - X)) @ (@0 (Gr x -+ x Gp))

where e on the right hand side is the vertical composition of natural transfor-
mations.

Proposition 3. In the above setting,

1. B« is a prism of type (Vi o Vi, V! oV,) = W oW :F — F".

2.a® (v, ,7) s a prism of type (Ui, -, Unm,) — W : Fo
(G1,-+,Gn) — F' o (G, ,GL).

3. The interchange law holds:

(B@ (01, 0n) @ (@® (1, ) = (@) @ (51 @715+, 0n @ Yn)-

Definition 4. Let (C,U,M),(D,U’, M’) be monoids in MSMC,. A vertical
monoid homomorphism consists of a symmetric colax monoidal functor A : C —
D and prismse: () > A: U —-U and§: (A,A) - A: M — M':

)—L=c<X(c,c)

Je iA 48 i(A,A)

()TD7(DaD)

such that the following prism equalities hold:
0@ (id,e) =id, d® (¢,id) =id, d&® (id,d) = ® (4,1id).

The above prism equalities amounts to the following equality of natural trans-
formations:
2\4/(14)(7 6) O 5X,U = ld M’(e,AX) o 5U,X = ld
M'(AX,0y,z) 0 ox mv,z) = M'(Ox v, AZ) 0 dn(x,v).z

With this concept, we can concisely capture R-graded linear exponential
comonads:

Theorem 4. There is a bijective correspondence between

1. A wvertical monoid homomorphism (D, €,8) from (R*,1,%) to ([C,C];,1d,0).
2. An R-graded linear exponential comonad on C.

Vertical monoid homomorphisms vertically compose. Therefore we can
extend a graded linear exponential comonad (as a vertical monoid homomor-
phism) by stacking vertical monoid homomorphisms.
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Proposition 4. Let R, S be partially ordered semirings. Then a vertical monoid
homomorphism from (RY,1gr,*g) to (ST,1g,%xs) bijectively corresponds to a
monotone function h : (R,<gr) — (S,<g) such that h(}_pri) < > gh(r;) and
h(I1gri) < [lgh(rs) (which we call colax homomorphism).

Proposition 5. Let F 41U : C — D be a symmetric lax monoidal adjunction.
Then the functor VEU defined by VFUH = F o H o U is a vertical monoid
homomorphism from ([C,C];,1d, o) to ([D,D)];,1d, o).

Proof. Let F 4 U : C — D be a symmetric lax monoidal adjunction. From
Kelly’s doctrinal adjunction, F' is symmetric strong monoidal, hence so is F o —
in the following diagram:

Fo— —oU

VvEU = [C,q) [C,D] D, D]

Next, —oU above is always symmetric strict monoidal. By composing them,
we obtain that V' is symmetric strong, hence colax monoidal. We next intro-
duce prisms (e, d) of the following type:

() —%> [C,C); <= ([C,C];, [C, C)y)
le \LVFAU 6 i(vFﬁU7vF—<U)

() —7= D, D]; <<— ([, D}, [D, D];)

We define € to be the counit of the adjunction F' - U, which is monoidal natural,
and ¢ be the following natural transformation:

5H17H2 — VF#U(Hl o ,’7 o HQ) . VF#U(Hl o HQ) N VF4UH1 o VFAUHQ
It is routine to check that this satisfies the axioms of prism. O

Theorem 5. Let R be a partially ordered semiring and D be an R-graded linear
exponential comonad on a symmetric monoidal category C. We moreover let S
be another partially ordered semiring, h : S — R be a colaxz homomorphism and
F AU :C — D be a symmetric lax monoidal adjunction. Then the following
composite of vertical monoid homomorphisms is an S-graded linear exponential
comonad on D.

(S+7 157 *S) $ (R+a 1R7 *R) L ([Cy(c]lald(:7 O) g ([Da D]lvldmy O)

We call the above composite the extension of D with FF 4 U and h.

7 From Monoid Actions to Graded Comonoid-Coalgebras

Let (D,¢,6) : (RT,1,%x) — (|C,C];,Id,o) be an R-graded linear exponen-
tial comonad as a vertical monoid homomorphism. The prism equations in
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Definition 4 suggests that the vertical monoid homomorphism itself can be seen
as a monoid. We can thus consider monoid actions of (D,€,0): it consists of a
prism

(R*.R") ————R"

(D,A)l Ya A
(C,C, C) ————=C

such that the following prism equations hold:
a® (6,id) =a® (id,a), a® (¢id) =id.

We note that this makes sense because (*) and ev are also monoid actions in
MSMC;; see Example 5. By unfolding this definition, we obtain the following
structure, which we name graded comonoid-coalgebra.

Definition 5. Let R be a partially ordered semiring. An R-graded comonoid-
coalgebra of an R-graded linear exponential comonad (D,w,c,€,0) on a sym-
metric monoidal category C is a tuple (A, a,u,0) such that

~ (A,u,0) : RT — C is a symmetric colax monoidal functor.
= appr A(r ') — D(r)(A(r")) is a natural transformation.

They satisfy the following six equational axioms:

Qr sxt

A(r* s *t) D(r)(A(s+t)) A(l*t) — = D(1)(A(t))

l ; lD(r)ms,,,) \ i”(”

I T>D(7")(I)
A(sxr+txr) =—=A((s+1t) 1)
A(s*r) @ A(t 1) D(s+t)(A(r))

as,7-®at,7¢ ics,t,A(r)

D(s)(A(r)) @ D(t)(A(r)) === D(s)(A(r)) @ D(t)(A(r))
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Alr# s+ 1 % t) = A(r % (5 + 1))
A(r+ s) ® A(r +t) D(r)(A(s + 1))
U/r',s®awy~,tl lD(r)(os,t)

D(r)(A(s)) © D(r)(A(?)) D(r)(A(s) © A(t))

—_—
My, A(s),A(t)

A morphism from an R-graded comonoid-coalgebra (A, a,u,0) to another
(B,b,v,p) is a monoidal natural transformation h : (A,u,0) — (B,v,p) such
that h satisfies:

A(r = s) M>B(r*s)

Dr(As) e Dr(Bs)

We write C(C, D) for the category of R-graded comonoid-coalgebras of D.

Proposition 6. Let R be a partially ordered semiring and (D,w,c,¢€,8) be an
R-graded linear exponential comonad on a symmetric monoidal category C. The
following gives a symmetric monoidal structure on C(C, D):

I=(1,(\rs . mp),idr, (Ar,s . 071))

(A,a,u,0) ® (B,b,v,p)

=(A®B, A1’ mpap B 0 (A @by ), Lo (w@w), Aryr’ T 0 (0p 0 @ Ppr))

(f®g)r =fr®gr

(>\A)T‘ = >\A'r7 (pA)T‘ = PAr; (aA,B,C)T‘ = QAr,Br,Cr; (UA,B)T = O0Ar,Br

When R = 1, The category C(C, D) reduces to the category of Eilenberg-
Moore coalgebras of the non-graded linear exponential comonad.

Theorem 6. Let (D,w,c,€,0) be a 1-graded linear exponential comonad on a
symmetric monoidal category C. Then the category C(C, D) is strong monoidally
isomorphic to the category CP of Eilenberg-Moore coalgebras of the comonad
(D, ¢,0).

Like CP, there is a symmetric lax monoidal adjunction of the following type:

F
C(C, D) T C
U

but this itself is not enough to recover D — D takes two arguments, while the
composite F oU is only equal to the symmetric lax monoidal comonad D1 on C.
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The category C(C, D) actually carries an R-twist T', which acts on comonoid-
coalgebras as follows:

Tr(A,---)=(A(—x*71), ),

and D is recovered as the extension of T' with the adjunction F' 4 U (Theorem 5).

Theorem 7. Let R be a partially ordered semiring and (D, w,c,€,8) be an R-
graded linear exponential comonad on a symmetric monoidal category C.

1. The functor F : C(C,D) — C given by F(A,a,u,0) = Al and Fh = hy is
symmetric strict monoidal, and has a symmetric lax monoidal right adjoint U :
C — C(C, D), whose object part is given byUA = (Ar. DrA, Ar, 1" . 6p 4, w4,
A’ Cp a).

2. The following data give an R-twist T on C(C,D):

TrA=As. A(sx71), As,8 . Qssur, U, NS, S . Osursrar), (TTh) = hpwr
(mZ)t = idr, (ijA,B)t = idA(t*r)@B(t*r)a (wz;)t =u, (CZS,A)t = Otsxr,txs-

Here, A = (A,a,u,0) and B are R-graded comonoid coalgebras. From the
definition of twists, 7,67 are identities.

3. The extension of D with F 4 U (Theorem 5) coincides with the R-graded
linear exponential comonad D.

The following classic result [1, Theorem 6-1] can be reproved by Theorem 7.

Corollary 1. Let C be a symmetric monoidal category and Let D be a non-
graded linear exponential comonad on C. The canonical symmetric monoidal
structure on the category CP of Eilenberg-Moore coalgebras of D is cartesian.

Proof. From Theorem1, D is a l-graded linear exponential comonad on C.
Therefore C(C,D) has a 1-twist by Theorem 7-3. Therefore the symmetric
monoidal structure of C(C, D) is cartesian by Theorem 2. Finally, C(C, D)
is strong monoidally isomorphic to CP by Theorem 6, hence the symmetric
monoidal structure of CP is also cartesian. ad

We show the finality of the category of graded comonoid-coalgebras. Let R be
a partially ordered semiring and D be an R-graded linear exponential comonad
on a symmetric monoidal category C. We define a resolution of D to be a pair of
a symmetric lax monoidal adjunction J 4 K : E — C and an R-twist (S, w®, ¢%)
on E such that the extension of S with J 4 K is equal to D. Then the following
set of data becomes a strong monoidal functor (M, m™, m%IE,) :E— C(C,D):

ME = (A\r . J(ST)E, Ar,r’ . J(S'r‘)né:}]{a, (mJ)71 ow}?;7 Ar, (’"LérE,ST/E)71 o chvr/’E)

(Mf)r = J(S)f,  (mM)p = Tdm)yom?”, (my p)r=J(m g g)omb, g spm

(recall that Sr, J are both symmetric strong monoidal).
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Theorem 8. The above M is the unique symmetric strong monoidal functor
such that:

1. Equality of symmetric lax monoidal functors M o K = U and FoM = J
hold.

2. Let M* = —o M and M, = M o — be induced symmetric strict (resp. strong)
monoidal functors. Then the following square of symmetric colax monoidal
functors commutes.

R+ [Ea E]l

r lM*

[C(CvD)vc(C’D)]l [EvC(C’D)]l

*

8 Conclusion

We have given a concise characterization of graded linear exponential comonad
as a vertical monoid homomorphism (D, €,d) from (R*,1,%) to ([C,C];,1d, o).
This characterization is built upon a combination of the theory of symmetric lax
monoidal multifunctors and Grandis and Paré’s double category of symmetric
monoidal categories. After this characterization, we considered monoid actions,
and derived the concept of graded comonoid-coalgebras. The category of graded
comonoid-coalgebras are shown to give a resolution of the graded linear expo-
nential comonad D. These results are consistent with the theory of non-graded
linear exponential comonads developed in [1].

It remains to be seen if the category of graded comonoid-coalgebras can
be constructed in a purely double-category theoretic way. In non-graded case,
there are other type of categorical models of exponential modality using Lafont
category and Seely category [17]. Graded version of these categories are also an
interesting research topic.
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Abstract. This work proposes a dependent type theory that combines
functions and session-typed processes (with value dependencies) through
a contextual monad, internalising typed processes in a dependently-typed
A-calculus. The proposed framework, by allowing session processes to
depend on functions and vice-versa, enables us to specify and statically
verify protocols where the choice of the next communication action can
depend on specific values of received data. Moreover, the type theo-
retic nature of the framework endows us with the ability to internally
describe and prove predicates on process behaviours. Our main results
are type soundness of the framework, and a faithful embedding of the
functional layer of the calculus within the session-typed layer, showcasing
the expressiveness of dependent session types.

1 Introduction

Session types [14,24] are a typing discipline for communication protocols, whose
simplicity provides an extensible framework that allows for integration with a
variety of functional type features. One useful instance arising from the proof the-
oretic exploration of logical quantification is value dependent session types [25].
In this work, one can express properties of exchanged data in protocol speci-
fications separately from communication, but cannot describe protocols where
communication actions depend on the actual exchanged data (e.g. [16, Sect. 2]).
Moreover, it does not allow functions or values to depend on protocols (i.e. ses-
sions) or communication, thus preventing reasoning about dependent process
behaviours, exploring the proofs-as-programs paradigm of dependent type the-
ory, e.g. [8,17].

Our work addresses the limitations of existing formulations of session types
by proposing a type theory that integrates dependent functions and session
types using a contertual monad. This monad internalises a session-typed calculus
within a dependently-typed A-calculus. By allowing session types to depend on
A-terms and A-terms to depend on typed processes (using the monad), we are
able to achieve heightened degrees of expressiveness. Exploiting the former direc-
tion, we enable writing actual data-dependent communication protocols. Exploit-
ing the latter, we can define and prove properties of linearly-typed objects (i.e.
processes) within our intuitionistic theory.
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To informally demonstrate how our type theory goes beyond the state of the
art in order to represent data-dependent protocols, consider the following session
type (we write 7 A A for 3z:7. A where z does not occur in A and similarly 7 D A
for Vz:7.A when z is not free in A), T2 Bool D> @{t : Nat A 1,f : Bool A 1},
representable in existing session typing systems. The type T denotes a protocol
which first, inputs a boolean and then either emits the label t, which will be
followed by an output of a natural number; or emits the label £ and a boolean.
The intended protocol described by 7' is to take the t branch if the received value
is t and the f branch otherwise, which we can implement as @ with channel z
typed by T as follows:

Q = z(w).case z of (true = z.t;2(23).0, false = z.f; z(true).0)

where z(z).P denotes an input process, z.t is a process which selects label t
and z(23).P is an output on z. However, since the specification is imprecise,
process z(z).case x of (false = z.t;2(23).0, true = z.f; z(true).0) is also a type-
correct implementation of T' that does not adhere to the intended protocol. Using
our dependent type system, we can narrow the specification to guarantee that
the desired protocol is precisely enforced. Consider the following definition of a
session-type level conditional where we assume inductive definition and depen-
dent pattern matching mechanisms (stype denotes the kind of session types):

if :: Bool — stype — stype — stype
if trueAB = A if false AB = B

The type-level function above case analyses the boolean and produces its
first session type argument if the value is true and the second otherwise. We may
now specify a session type that faithfully implements the protocol:

T' £ Vx:Bool.if z (Nat A 1) (Bool A 1)
A process R implementing such a type on channel z is given below:
R = z(z).case z of (true = 2(23).0, false = z(true).0)

Note that if we flip the two branches of the case analysis in R, the session is no
longer typable with T, ensuring that the protocol is implemented faithfully.

The example above illustrates a simple yet useful data-dependent protocol.
When we further extend our dependent types with a process monad [29], where
{¢ — P «— 1u; d;} is a functional term denoting a process that may be spawned
by other processes by instantiating the names in u; and d;, we can provide more
powerful reasoning on processes, enabling refined specifications through the use
of type indices (i.e. type families) and an ability to internally specify and verify
predicates on process behaviours. We also show that all functional types and
terms can be faithfully embedded in the process layer using the dependently-
typed sessions and process monads.

Contributions. Section 2 introduces our dependent type theory, augmenting
the example above by showing how we can reason about process behaviour using
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Kinds K, K’ ::= type | stype | Iz:7.K | It: K.K'
Functional 7,0 == Hz:t.o | xir.o |7 M | {uj:By;diAi - cAY | M2 K1 |10
Sessions AB :=1A|A—-B|A®B |Vo:r.A|Jz:T. A1

| &{li: Ai} | ®{li: Ai} | de:m. A|AM | M:K.A|AB
Terms M,N = Xe:7.M |{c+ P+ u5;d;} | MN |
Processes  P,Q :==7¢(d).P | (vc)P |c(z).P|c(M).P|lc(x).P

| ccase{l; = P} |cl;P|[c+d]|0]|c M <+ T5;di; Q

Fig. 1. Syntax of kinds, types, terms and processes

type families and dependently-typed functions (Sect. 2.3). We then establish the
soundness of the theory (Sect. 2.4). Section 3 develops a faithful embedding
of the dependent function space in the process layer (Theorem 3.4). Section 4
concludes with related work. Proofs, omitted definitions and additional examples
can be found in [32].

2 A Dependent Type Theory of Processes

This section introduces our dependent type theory combining session-typed pro-
cesses and functions. The theory is a generalisation of the line of work relat-
ing linear logic and session types [4,25,29], considering type-level functions and
dependent kinds in an intensional type theory with full mutual dependencies
between functions and processes. This generalisation enables us to express more
sophisticated session types (such as those of Sect. 1) and also to define and
prove properties of processes expressed as type families with proofs as their
inhabitants. We focus on the new rules and judgements, pointing the interested
reader to [5,25,26] for additional details on the base theory.

2.1 Syntax

The calculus is stratified into two mutually dependent layers of processes and
terms, which we often refer to as the process and functional layers, respectively.
The syntax of the theory is given in Fig. 1 (we use z,y for variables ranging over
terms and ¢ for variables ranging over types).

Types and Kinds. The process layer is able to refer to terms of the functional
layer via appropriate (dependently-typed) communication actions and through
a spawn construct, allowing for processes encapsulated as functional values to
be executed. Dually, the functional layer can refer to the process layer via a con-
teztual monad [29] that internalises (open) typed processes as opaque functional
values. This mutual dependency is also explicit in the type structure on several
axes: process channel usages are typed by a language of session types, which spec-
ifies the communication protocols implemented on the used channels, extended
with two dependent communication operations Va:7.A and Jdx:7.A, where 7 is a
functional type and A is a session type in which x may occur. Moreover, we also
extend the language of session types with type-level A-abstraction over terms
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Az:T.A and session types At:: K.A (with the corresponding elimination forms
AM and A B). As we show in Sect. 1, the combination of these features allows
for a new degree of expressiveness, enabling us to construct session types whose
structure depends on previously communicated values.

The remaining session constructs are standard, following [5]: !A denotes a
shared session of type A that may be used an arbitrary (finite) number of times;
A — B represents a session offering to input a session of type A to then offer
the session behaviour B; A ® B is the dual operator, denoting a session that
outputs A and proceeds as B; ®{l; : A;} and &{l; : A;} represent internal and
external labelled choice, respectively; 1 denotes the terminated session.

The functional layer is a A-calculus with dependent functions I1z:7.0, type-
level M-abstractions over terms and types (and respective type-level applica-
tions) and a conteztual monadic type {u;:Bj;d;:A; - c:A}, denoting a (quoted)
process offering session c¢:A by using the linear sessions d;:A; and shared ses-
sions u;:B; [29]. We often write {A} for {-;- F c:A}. The kinding system for
our theory contains two base kinds type and stype of functional and session
types, respectively. Type-level A-abstractions require dependent kinds ITx:7. K
and ITt:: K.K', respectively. We note that the functional connectives form a
standard dependent type theory [11,21].

Terms and Processes. Terms include the standard A-abstractions Az:7.M,
applications M N and variables z. In order to internalise processes within the
functional layer we make use of a monadic process wrapper, written {c « P «—
uy; d;}. In such a construct, the channels c, u; and d; are bound in P, where c is
the session channel being offered and u; and d; are the session channels (linear
and shared, respectively) being used. We write {¢ < P « €} when P does not
use any ambient channels, which we abbreviate to {P}.

The syntax of processes follows that of [5] extended with the monadic elim-
ination form ¢ « M « uy; d;; Q. Such a process construct denotes a term M
that is to be evaluated to a monadic value of the form {c¢ « P « %j;d;} which
will then be executed in parallel with @, sharing with it a session channel ¢ and
using the provided channels u; and d;. We write ¢ « M « €;Q when no chan-
nels are provided for the execution of M and often abbreviate this to ¢ «— M; Q.
The process ¢(d).P denotes the output of the fresh channel d along channel ¢
with continuation P, which binds d; (vc¢)P denotes channel hiding, restricting
the scope of ¢ to P; ¢(z).P denotes an input along ¢, bound to = in P; ¢(M).P
denotes the output of term M along ¢ with continuation P; lc(x).P denotes a
replicated input which spawns copies of P; the construct c.case{l; = P;} codi-
fies a process that waits to receive some label [; along ¢, with continuation Pj;
dually, c.l; P denotes a process that emits a label [ along ¢ and continues as P;
[c <« d] denotes a forwarder between ¢ and d, which is operationally implemented
as renaming; P | @ denotes parallel composition and 0 the null process.

2.2 A Dependent Typing System

We now introduce our typing system, defined by a series of mutually inductive
judgements, given in Fig. 2. We use ¥ to stand for a typing context for dependent
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v+ Context ¥ is well-formed.

U, Ak Context A is well-formed, under assumptions in ¥.

UK K is a kind in context ¥.

Ukt K 7 is a (functional) type of kind K in context ¥.

vEA:K A is a session type of kind K in context V.

UEM:T M has type 7 in context .

U, AR Pz A P offers session z:A when composed with processes
offering sessions specified in I" and A in context ¥.

UK =K Kinds K; and K32 are equal.

Uhr=0uK Types 7 and o are equal of kind K.

VHFA=B:K Session types A and B are equal of kind K.

VEM=N:T1 Terms M and N are equal of type .

Uk A=A stype Contexts A and A’ are equal, under the assumptions in ¥.

U, I AP =Q:2:A Processes P and Q are equal with typing z:A.
Fig. 2. Typing judgements

A-terms (i.e. assumptions of the form z:7 or ¢:: K, not subject to exchange), I
for a typing context for shared sessions of the form w:A (implicitly subject to
weakening and contraction) and A for a linear context of sessions z:A. The
context well-formedness judgments ¥ + and ¥; A - require that types and kinds
(resp. session types) in ¥ (resp. A) are well-formed. The judgments ¥ + K,
U7 Kand ¥k A K codify well-formedness of kinds, functional and session
types (with kind K), respectively. Their rules are standard.

Typing. An excerpt of the typing rules for terms and processes is given in Figs. 3
and 4, respectively, noting that typing enforces types to be of base kind type
(respectively stype). The rules for dependent functions are standard, including
the type conversion rule which internalises definitional equality of types. We
highlight the introduction rule for the monadic construct, which requires the
appropriate session types to be well-formed and the process P to offer ¢:A when
provided with the appropriate session contexts.

In the typing rules for processes (Fig.4), presented as a set of right and left
rules (the former identifying how to offer a session of a given type and the latter
how to use such a session), we highlight the rules for dependently-typed com-
munication and monadic elimination (for type-checking purposes we annotate
constructs with the respective dependent type — this is akin to functional type
theories). To offer a session ¢:3z:7.A we send a term M of type 7 and then offer
a session c:A{M/x}; dually, to use such a session we perform an input along c,
bound to x in @, warranting a use of ¢ as a session of (open) type A. The rules
for the universal are dual. Offering a session ¢:Va:7.A entails receiving on ¢ a
term of type 7 and offering c¢:A. Using a session of such a type requires sending
along c a term M of type 7, warranting the use of ¢ as a session of type A{M/z}.

The rule for the monadic elimination form requires that the term M be of
the appropriate monadic type and that the provided channels u; and %; adhere
to the typing specified in M’s type. Under these conditions, the process ) may
then use the session ¢ as session A. The type conversion rules reflect session type
definitional equality in typing.
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(II1) (ITE)
UErtiutype YyoorFM:o YEM:[Hxito YVEN:T
Ut e M Hz:T.0o UEMN:o{N/x}
{3 - (Conv)
Vi, j W A;, By istype Wsu;iBj;ditAi-PrcA YEM:7 UET=0:type
WF{C(—P(—qu;dj}:{uj:Bj;di:Ail—c:A} UEM:o

Fig. 3. Typing for terms (Excerpt — See [32])

(3R) (3L)

UMt U, TAFPcA{M/z} VE7itype V,ar; [A cAFQ i d:D

U I AbE e(M)agra P i e: 3o A U I A e Ab e(x:r).Q o d:D

(VR) (VL)

Ukratype Y,im; [AFP A UEMr U A cA{M/x}FQ ::d:D
U AE e(xir).P o eVoir. A U I A eVer A b oM )vgira.Q i d:D

§872)

A'=d;:B; u;:C; CTI' WEM:{u;:Cj;di:B;i - c:A} U, A cAFQ :: z:C
U A AR e M+ 13755 Q = 2:C
(ConvR) (ConvL)
;I AFP:22A WHA=B:ustype W I A FPuzA U, T A =0;T: A
U, I';AF P z:B U I AR Pz A

U:IAFPcA O, A  cAFQ::d:D

() T A AT wo(P[Q) = dD

Fig. 4. Typing for processes (Excerpt — See [32])

Definitional Equality. The crux of any dependent type theory lies in its def-
initional equality. Type equality relies on equality of terms which, by including
the monadic construct, necessarily relies on a notion of process equality.

Our presentation of an intensional definitional equality of terms follows that
of [12], where we consider an intrinsically typed relation, including § and 7
conversion (similarly for type equality which includes 5 and 7 principles for the
type-level A-abstractions). An excerpt of the rules for term equality is given in
Fig. 5. The remaining rules are congruence rules and closure under symmetry,
reflexivity and transitivity. Rule (TMEqQ) captures the S-reduction, identifying
a A-abstraction applied to an argument with the substitution of the argument in
the function body (typed with the appropriately substituted type). We highlight
rule (TMEq{}n), which codifies a general n-like principle for arbitrary terms of
monadic type: We form a monadic term that applies the monadic elimination
form to M, forwarding the result along the appropriate channel, which becomes
a term equivalent to M.
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(TMEq) (TMEqn)
Ubkratype Yootk M:o YEN:7 YEM:Heto =& fo(M)
Ut (Az:m.M)N = M{N/z} : o{N/z} UkAperMx=M: IIz:T.o

(TMEq{}n)

Ut M:{u;:Bj;di:A; F c: A}
TF{c+ (y M;uy;di; [y < c]) « Ug;diy = M : {u;:By;di:A; b c: A}

Fig. 5. Definitional equality of terms (Excerpt — See [32])

U, I AFP:z2A P—Q VU, IARQ:z:A
U:IAFP=Q::z:A

(PEqRed)

(PEq¥n)

U I';dVe:r. AF o(z).d(z).[d < ] = [d+ ] eVair. A

U:IAFP:d:B VoI A dBFQ::c:A

(PEqCCY) T3 A, A (vd) (P | o(2).Q) = c(z).(vd)(P | Q) = cVair. A

Fig. 6. Definitional equality of processes (Excerpt — See [32])

Definitional equality of processes is summarised in Fig. 6. We rely on process
reduction defined below. Definitional equality of processes consists of the usual
congruence rules, (typed) reductions and the commutting conversions of linear
logic and n-like principles, which allows for forwarding actions to be equated with
the primitive syntactic forwarding construct. Commutting conversions amount
to sound observational equivalences between processes [22], given that session
composition requires name restriction (embodied by the (cut) rule): In rule
(PEqCCY), either process can only be interacted with via channel ¢ and so post-
poning actions of P to after the input on ¢ (when reading the equality from left
to right) cannot impact the process’ observable behaviours. While P can in gen-
eral interact with sessions in A (or with @), these interactions are unobservable
due to hiding in the (cut) rule.

Operational Semantics. The operational semantics for the A-calculus is stan-
dard, noting that no reduction can take place inside monadic terms. The opera-
tional (reduction) semantics for processes is presented below where we omit clo-
sure under structural congruence and the standard congruence rules [4,25,29].
The last rule defines spawning a process in a monadic term.

o(M).P | c(x).Q — P | Q{M/x} &(x).P | c(x).Q — (va)(P | Q) -~
le(z).P | 2(z).Q — le(z).P | (va)(P | Q) ccase{l; = Pi} | elj;Q — P | Q (I € L)
we)(P | [c < d]) — P{d/c} c—{c= P —jdi} —uj5d; Q — (ve)(P | Q)
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2.3 Example — Reasoning About Processes Using Dependent Types

The use of type indices (i.e. type families) in dependently typed frameworks
adds information to types to produce more refined specifications. Our framework
enables us to do this at the level of session types.

Consider a session type that “counts down” on a natural number (we assume
inductive definitions and dependent pattern matching in the style of [21]):

countDown :» ITx:Nat.stype
countDown (succ(n)) = Jy:Nat.countDown(n)
countDown z =1

The type family countDown(n) denotes a session type that emits exactly n num-
bers and then terminates. We can now write a (dependently-typed) function that
produces processes with the appropriate type, given a starting value:

counter : ITz:Nat.{countDown(z)}
counter (succ(n)) = {¢ « c¢(succ(n)). d « counter(n); [d < |}
counter z = {c < 0}

Note how the type of counter, through the type family countDown, allows us
to specify exactly the number of times a value is sent. This is in sharp contrast
with existing recursive (or inductive/coinductive [18,30]) session types, where
one may only specify the general iterative nature of the behaviour (e.g. “send a
number and then recurse or terminate”).

The example above relies on session type indexing in order to provide addi-
tional static guarantees about processes (and the functions that generate them).
An alternative way is to consider “simply-typed” programs and then prove that
they satisfy the desired properties, using the language itself. Consider a simply-
typed version of the counter above described as an inductive session type:

simpleCounterT :: stype
simpleCounterT = @{dec : Nat A simpleCounterT,done : 1}

There are many processes that correctly implement such a type, given that the
type merely dictates that the session outputs a natural number and recurses
(modulo the dec and done messages to signal which branch of the internal choice
is taken). A function that produces processes implementing such a session, mir-
roring those generated by the counter function above, is:

simpleCounter : Nat — {simpleCounterT}

simpleCounter (succ(n)) = {c¢ « c.dec; (vd)(d(succ(n)).0 | d(z).c(x).
d — simpleCounter(n); [d < ¢])}

simpleCounter z = {c¢ < c.done; 0}

The process generated by simpleCounter, after emiting the dec label, spawns a
process in parallel that sends the appropriate number, which is received by the
parallel thread and then sent along the session c. Despite its simplicity, this
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example embodies a general pattern where a computation is spawned in parallel
(itself potentially spawning many other threads) and the main thread then waits
for the result before proceeding.

While such a process is typable in most session typing frameworks, our theory
enables us to prove that the counter implementation above indeed counts down
from a given number by defining an appropriate (inductive) type family, indexed
by monadic values (i.e. processes):

corrCount :: I[Tz:Nat.ITy:{simpleCounterT }.type

corr, : corrCount z {c¢ « c.done; 0}

corry, : ITn:Nat.IT P:{simpleCounterT }.corrCountn P —
corrCount (succ(n)) {¢ < c.dec; c(succ(n)).d — P;[d < |}

The type family corrCount, indexed by a natural number and a monadic value
implementing the session type simpleCounter, is defined via two constructors:
corr,, which specifies that a correct 0 counter emits the done label and terminates;
and corr,, which given a monadic value P that is a correct n-counter, defines
that a correct (n + 1)-counter emits n + 1 and then proceeds as P (modulo the
label emission bookkeeping).

The proof of correctness of the simpleCounter function above is no more than
a function of type ITn:Nat.corrCountn (simpleCounter(n)), defined below:

prf : IIn:Nat.corrCount n (simpleCounter(n))
prf z = corr,
prf  (succ(n)) = corry, n (simpleCounter(n)) (prf n)

Note that in this scenario, the processes that index the corrCount type fam-
ily are not syntactically equal to those generated by simpleCounter, but rather
definitionally equal.

Typically, the processes that index such correctness specifications tend to
be distilled versions of the actual implementations, which often perform some
additional internal computation or communication steps. Since our notion of
definitional equality of processes includes reduction (and also commuting con-
versions which account for type-preserving shuffling of internal communication
actions [26]), the type conversion mechanism allows us to use the techniques
described above to generally reason about specification conformance.

2.4 Type Soundness of the Framework

The main goal of this section is to present type soundness of our framework
through a subject reduction result. We also show that our theory guarantees
progress for terms and processes. The development requires a series of auxiliary
results (detailed in [32]) pertaining to the functional and process layers which are
ultimately needed to produce the inversion properties necessary to establish sub-
ject reduction. We note that strong normalisation results for linear-logic based
session processes are known in the literature [3,26,30], even in the presence
of impredicative polymorphism, restricted corecursion and higher-order data.
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Such results are directly applicable to our work using appropriate semantics
preserving type erasures.

In the remainder we often write ¥ + J to stand for a well-formedness,
typing or definitional equality judgment of the appropriate form. Similarly for
U, I'; A+ J. We begin with the substitution property, which naturally holds for
both layers, noting that the dependently typed nature of the framework requires
substitution in both contexts, terms and in types.

Lemma 2.1 (Substitution). Let W+ M :7:

1. If U, x:m, W' = T then O, W' {M/x} - T{M/x};
2. If U, x:m W', I A T then O, W' {M/x}; T{M/x}; A{M/x} = T{M/x}

Combining substitution with a form of functionality for typing (i.e. that substi-
tution of equal terms in a well-typed term produces equal terms) and for equality
(i.e. that substitution of equal terms in a definitional equality proof produces
equal terms), we can establish validity for typing and equality, which is a form
of internal soundness of the type theory stating that judgments are consistent
across the different levels of the theory.

Lemma 2.2 (Validity for Typing). (1) If ¥ F 7:K or ¥ + A: K then
UEK; (2) IfUFM:7 thenW b 7:type; and (3) If U; T AE Piz:A then
U I A::stype.

Lemma 2.3 (Validity for Equality)

IfOFM=N:7thenWt+M:7, UV N:7 and ¥ F 7::type
Ifvrr=0cuK then¥ k1K, koK and¥ K

IfY-rA=B:K thenV+FA:K,YFB:K and¥ +F K

Ifv-K=K thenWVFK and¥ + K’

IfU, Ak P =Q:zA then ;A F PuzzA, U, A F Q22 A and
¥ A::stype.

Grds Lo do =

With these results we establish the appropriate inversion and injectivity prop-
erties which then enable us to show unicity of types (and kinds).

Theorem 2.4 (Unicity of Types and Kinds)

1. IfUEM:7and Wt M:7 thenWtT=1"":type

2. IfYrr:K and¥ k7K' thenV 't K =K'

S IfU; ' APz A and W; T A Piz: A thenW = A= A’ stype
4. If U A:K andPF Az K thenV - K =K'.

All the results above, combined with the process-level properties established
in [5,26,27] enable us to show the following:

Theorem 2.5 (Subject Reduction — Terms). If¥ + M : 7 and M — M’
then W = M’ : 7.

Theorem 2.6 (Subject Reduction — Processes). IfW;I; AF P::z:A and
P — P’ then 3Q such that P =Q and W;I'; A+ Q :: z:A.
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Theorem 2.7 (Progress — Terms). If¥ = M : 7 then either M is a value
or M — M'.

As common in logical-based session type theories, typing enforces a strong
notion of global progress which states that closed processes that are waiting to
perform communication actions cannot get stuck (this relies on a notion of live
process, defined as live(P) iff P = (vn)(7.Q | R) for some process R, sequence of
names 71 and a non-replicated guarded process 7.Q). We note that the restricted
typing for P is without loss of generality, due to the (cut) rule.

Theorem 2.8 (Progress — Processes). If U;-;- b P:c:1 and live(P) then
3Q such that P — Q.

3 Embedding the Functional Layer in the Process Layer

Having introduced our type theory and showcased some of its informal expres-
siveness in terms of the ability to specify and statically verify true data dependent
protocols, as well as the ability to prove properties of processes, we now develop
a formal expressiveness result for our theory, showing that the process level type
constructs are able to encode the dependently-typed functional layer, faithfully
preserving type dependencies.

Specifically, we show that (1) the type-level constructs in the functional
layer can be represented by those in the process layer combined with the con-
textual monad type, and (2) all term level constructs can be represented by
session-typed processes that exchange monadic values. Thus, we show that both
A-abstraction and application can be eliminated while still preserving non-trivial
type dependencies. Crucially, we note that the monadic construct cannot be fully
eliminated due to the cross-layer nature of session type dependencies: In the pro-
cess layer, simply-kinded dependent types (i.e. types with kind stype) are of the
form Va:7.A where 7 is of kind type and A of kind stype (where x may occur).
Operationally, such a session denotes an input of some term M of type 7 with a
continuation of type A{M/x}. Thus, to faithfully encode type dependencies we
cannot represent such a type with a non-dependently typed input (e.g. a type
of the form A — B).

3.1 The Embedding

A first attempt. Given the observation above, a seemingly reasonable option
would be to attempt an encoding that maintains monadic objects solely at the
level of type indices and then exploits Girard’s encoding [9] of function types
T — o as l[r] — [o], which is adequate for session-typed processes [28]. Thus
a candidate encoding for the type ITa:7.c would be Vz:{[7]}.![7] —o [o], where
[—] denotes our encoding on types. If we then consider the encoding at the level
of terms, typing dictates the following (we write [M], for the process encoding
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of M : 7, where z is the session channel along which one may observe the “result”
of the encoding, typed with [7]):

[Az:T.MT],
[M NI,

z(x).2(2").[M],
(wa)([M], | =({[N], ). 7(").(*2" (y)-[N], | [z < 2])

However, this candidate encoding breaks down once we consider definitional
equality. Specifically, compositionality (i.e. the relationship between [M{N/x}],
and the encoding of N substituted in that of M) requires us to relate [M{N/xz}],
with (va)([M] {{[N],}/=} | '2(y).[N],), which relies on reasoning up-to
observational equivalence of processes, a much stronger relation than our notion
of definitional equality. Therefore it is fundamentally impossible for such an
encoding to preserve our definitional equality, and thus it cannot preserve typ-
ing in the general case.

L
L

A faithful embedding. We now develop our embedding of the functional layer
into the process layer which is compatible with definitional equality. Our target
calculus is reminiscent of a higher-order (in the sense of higher-order processes
[23]) session calculus [19]. Our encoding [—] is inductively defined on kinds,
types, session types, terms and processes. As usual in process encodings of the
A-calculus, the encoding of a term M is indexed by a result channel z, written
[M],, where the behaviour of M may be observed.

[\v:r.M], = 2(x).2(z").[M].

[MNL. 2 @a)([M]. | 2({INT,}) 2)-02/ ()N, | [ © 2]
Kind:

[type] £ stype [stype] £ stype
[He:r.K] 2 Oo:{[7]}.[K] [t :: K,.K3] 2 [Tt:[K1].[K2]
Functional: -
[Hz:ro] 2 Vo:{[r]}.[o] [{uj:Bj; di:Bi F c:A}] £ 1[B;] —o [Bi] — [A]
Darol  2xa{ld}le] [ M] 2 [ {IM].}
S[[/\t::.K‘T]] 2 X\t [K].[7] [ro] £ [r] o]
[Va:7.A] £ vz {[r]}.[4] [Bx:m.A] 2 Jz:{[7]}.[A4]
[Aa:7.A] 2 \e:{[7]}.[4] [AM] 2 [AJ{[M]e}
Terms:

Do ML 2 2@ {l DML [MN]. 2 wa)(IMe | =({INT ).z < 2])
[z]: 2y + x; [y & 2] [{z < P <+ 5;d;}]. = 2(uo)..... z(uj).2(do). . . .. z(dy).[P]

Processes:

[(v2)(P | Q)] = @a)([P1QD [o] 20 [#y).(P| Q)] =z().(IP] | [QD)
[z(M).P] = z({[MD,}).[P] [z(y)-P] = 2(y).[P]
le = M 5,75 Q] £ (ve)([M]e | &(vr)-(Wi{ar).[ar <> o] | -+ |

&(d)-([yr & da] | -+ [ Edn)-(lyn < du] [ [Q]) - )

Fig. 7. An embedding of dependent functions into processes
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The embedding is presented in Fig.7, noting that the encoding extends
straightforwardly to typing contexts, where functional contexts W¥,x:7 are
mapped to {[¥]}, z:{[7]}. The mapping of base kinds is straightforward. Depen-
dent kinds ITx:7.K rely on the monad for well-formedness and are encoded as
(session) kinds of the form [Tx:{[7]}.[K]. The higher-kinded types in the func-
tional layer are translated to the corresponding type-level constructs of the pro-
cess layer where all objects that must be type-kinded rely on the monad to satisfy
this constraint. For instance, Az:7.0 is mapped to the session-type abstraction
Az:{[7]}.[o] and the type-level application 7 M is translated to [r] {[M],}.
Given the observation above on embedding the dependent function type I1x:7.0,
we translate it directly to Va:{[7]}.[o], that is, functions from 7 to o are mapped
to sessions that input processes implementing [7] and then behave as [o] accord-
ingly. The encoding for monadic types simply realises the contextual nature of
the monad by performing a sequence of inputs of the appropriate types (with
the shared sessions being of ! type).

The mutually dependent nature of the framework requires us to extend
the mapping to the process layer. Session types are mapped homomorphically
(e.g. [A — B] £ [A] —o [B]) with the exception of dependent inputs and out-
puts which rely on the monad, similarly for type-level functions and application.

The encoding of A-terms is guided by the embedding for types: the abstrac-
tion Ax:7.M is mapped to an input of a term of type {[7]} with continuation
[M],; application M N is mapped to the composition of the encoding of M on a
fresh name z with the corresponding output of {{N], }, which is then forwarded
to the result channel z; monadic expressions are translated to the appropriate
sequence of inputs, as dictated by the translation of the monadic type; and,
the translation of variables makes use of the monadic elimination form (since
the encoding enforces variables to always be of monadic type) combined with
forwarding to the appropriate result channel.

The mapping for processes is mostly homomorphic, using the monad con-
structor as needed. The only significant exception is the encoding for monadic
elimination which must provide the encoded monadic term [M], with the neces-
sary channels. Since the session calculus does not support communication of free
names this is achieved by a sequence of outputs of fresh names combined with
forwarding of the appropriate channel. To account for replicated sessions we must
first trigger the replication via an output which is then forwarded accordingly.

We can illustrate our encoding via a simple example of an encoded function
(we omit type annotations for conciseness):

[(Az.2) Az Ayy)], = (ve)([rz.a], | c{{[Az-Ay.y],}).[c < 2])
(ve)(e(@).y — a3y < | c{{w(z)w(y).d — y;[d = w]}).[c < 2])
T 2(2).2(y).d — yild = 2] = rdyyl,

|

3.2 Properties of the Embedding

We now state the key properties satisfied by our embedding, ultimately resulting
in type preservation and operational correspondence. For conciseness, in the
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statements below we list only the cases for terms and processes, omitting those
for types and kinds (see [32]). The key property that is needed is a notion of
compositionality, which unlike in the sketch above no longer falls outside of
definitional equality.

Lemma 3.1 (Compositionality)

L WD A v [M{N/2}], = [M1,{{IN],}/2} = =[A{N/a}]
2l o PO AADM ] o 004 PN )14

Given the dependently typed nature of the framework, establishing the key
properties of the encoding must be done simultaneously (relying on some auxil-
iary results — see [32]).

Theorem 3.2 (Preservation of Equality)

1. If U =M = N : 7 then {[¥]}; ;- = [M], = [N], :: z:[[7]
2. If ;' AF P = Q2 A then {[P]}; [I]; [A] F [P] = [Q] == =:[A].-

Theorem 3.3 (Preservation of Typing)

1. If U= M : 7 then {[¥]}; ;- & [M], i 2:7]
2. If ;T A Prz: A then {[@] 1 [T]; [A] F [P] :: 2:[A]-

Theorem 3.4 (Operational Correspondence). If U:I'; A+ P::z:A and
Uk M:T then:

1. (a) If P — P’ then [P] =% Q with {[¥]};['];[A] + Q = [P’] :: 2:[A] and
(b) if [P] — P’ then P —* Q with {[¥]}; [']; [A] + P’ = [Q] :: 2:[A]

2. (a) If M — M’ then [M], =+ N with {[¥]};;-+ N =[M'], : z:[r] and
(b) if [M], — P then M — N with {[¥]};-;-F [N], = P z[r].

In Theorem 3.4, (a) is commonly referred to as operational completeness,
with (b) establishing soundness. As exemplified above, our encoding satisfies a
very precise operational correspondence with the original A-terms.

4 Related and Future Work

Enriching Session Types via Type Structure. Exploiting the linear logical
foundations of session types, [25] considers a form of value dependencies where
session types can state properties of exchanged data values, while the work [29]
introduces the contextual monad in a simply-typed setting. Our development
not only subsumes these two works, but goes beyond simple value dependencies
by extending to a richer type structure and integrating dependencies with the
contextual monad. Recently, [1] considers a non-conservative extension of linear
logic-based session types with sharing, allowing true non-determinism. Their
work includes dependent quantifications with shared channels, but their type
syntax does mot include free type variables, so the actual type dependencies
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do not arise (see [1, 37:8]). Thus none of the examples in this paper can be
represented in [1]. The work [16] studies gradual session types. To the best of
our knowledge, the main example in [1, Sect. 2] is statically representable in our
framework as in the example of Sect. 1, where protocol actions depend on values
that are communicated (or passed as function arguments).

In the context of multiparty session types, the theory of multiparty indexed
session types is studied in [7], and implemented in a protocol description lan-
guage [20]. The main aim of these works is to use indexed types to represent
an arbitrary number of session participants. The work [31] extends [25] to mul-
tiparty sessions in order to treat value dependency across multiple participants.
Extending our framework to multiparty [15] or non-logic based session types [14]
is an interesting future topic.

Combining Linear and Dependent Types. Many works have studied the
various challenges of integrating linearity in dependent functional type theories.
We focus on the most closely related works. The work [6] introduced the Linear
Logical Framework (LLF), integrating linearity with the LF [11] type theory,
which was later extended to the Concurrent Logical Framework (CLF) [33],
accounting for further linear connectives. Their theory is representable in our
framework through the contextual monad (encompassing full intuitionistic linear
logic), depending on linearly-typed processes that can express dependently typed
functions (Sect. 3).

The work of [17] integrates linearity with type dependencies by extending
LNL [2]. Their work is aimed at reasoning about imperative programs using a
form of Hoare triples, requiring features that we do not study in this work such
has proof irrelevance and computationally irrelevant quantification. Formally,
their type theory is extensional which introduces significant technical differences
from our intensional type theory, such as a realisability model in the style of
NuPRL [10] to establish consistency.

Recently, [8] proposed an extension of LLF with first-class contexts (which
may contain both linear and unrestricted hypotheses). While the contextual
aspects of their theory are reminiscent of our contextual monad, their framework
differs significantly from ours, since it is designed to enable higher-order abstract
syntax (commonplace in the LF family of type theories), focusing on a type
system for canonical LF objects with a meta-language that includes contexts
and context manipulation. They do not consider additives since their integration
with first-class contexts can break canonicity.

While none of the above works considers processes as primitive, their tech-
niques should be useful for, e.g. developing algorithmic type-checking and inte-
grating inductive and coinductive session types based on [18,26,30].

Dependent Types and Higher-Order m-calculus. The work [35] studies a
form of dependent types where the type of processes takes the form of a mapping
A from channels x to channel types T representing an interface of process P. The
dependency is specified as II(z:T)A, representing a channel abstraction of the
environment. This notion is extended to an existential channel dependency type
X(2:T)A to address fresh name creation [13,34]. Combining our process monad
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with dependent types can be regarded as an “interface” which describes explicit
channel usages for processes. The main differences are (1) our dependent types
are more general, treating full dependent families including terms and processes
in types, while [13,34,35] study only channel dependency to environments (i.e.
neither terms nor processes appear in types, only channels); and (2) our calculus
emits only fresh names, not needing to handle the complex scoping mechanism
treated in [13,34]. In this sense, the process monad provides an elegant framework
to handle higher-order computations and assign non-trivial types to processes.
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Abstract. Instead of a monolithic programming language trying to
cover all features of interest, some programming systems are designed
by combining together simpler languages that cooperate to cover the
same feature space. This can improve usability by making each part sim-
pler than the whole, but there is a risk of abstraction leaks from one
language to another that would break expectations of the users familiar
with only one or some of the involved languages.

We propose a formal specification for what it means for a given lan-
guage in a multi-language system to be usable without leaks: it should
embed into the multi-language in a fully abstract way, that is, its con-
textual equivalence should be unchanged in the larger system.

To demonstrate our proposed design principle and formal specification
criterion, we design a multi-language programming system that combines
an ML-like statically typed functional language and another language
with linear types and linear state. Our goal is to cover a good part of the
expressiveness of languages that mix functional programming and linear
state (ownership), at only a fraction of the complexity. We prove that the
embedding of ML into the multi-language system is fully abstract: func-
tional programmers should not fear abstraction leaks. We show examples
of combined programs demonstrating in-place memory updates and safe
resource handling, and an implementation extending OCaml with our
linear language.

1 Introduction

Feature accretion is a common trend among mature but actively evolving pro-
gramming languages, including C++, Haskell, Java, OCaml, Python, and Scala.
Each new feature strives for generality and expressiveness, and may provide a large
usability improvement to users of the particular problem domain or programming

Note: Due to severe space restrictions, many details have been omitted from this
presentation of our work. We strongly encourage the reader to consult the complete
version at https://arxiv.org/pdf/1707.04984.
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style it was designed to empower (e.g., XML documents, asynchronous commu-
nication, staged evaluation). But feature creep in general-purpose languages may
also make it harder for programmers to master the language as a whole, degrade the
user experience (e.g., leading to more cryptic error messages), require additional
work on the part of tooling providers, and lead to fragility in language implemen-
tations.

A natural response to increased language complexity is to define subsets
of the language designed for a better programming experience. For instance, a
subset can be easier to teach (e.g., “Core” ML!, Haskell 98 as opposed to GHC
Haskell, Scala mastery levels?); it can facilitate static analysis or decrease the
risk of programming errors, while remaining sufficiently expressive for the target
users’ needs (e.g., MISRA C, Spark/Ada); it can enforce a common style within
a company; or it can be designed to encourage a transition to deprecate some
ill-behaved language features (e.g., strict Javascript).

Once a subset has been selected, it may be the case that users write whole
programs purely in the subset (possibly using tooling to enforce that property),
but programs will commonly rely on other libraries that are not themselves imple-
mented in the same subset of the language. If users stay in the subset while using
these libraries, they will only interact with the part of the library whose interface
is expressible in the subset. But does the behavior of the library respect the expec-
tations of users who only know the subset? When calling a function from within
the subset breaks subset expectations, it is a sign of leaky abstraction.

How should we design languages with useful subsets that manage complexity
and avoid abstraction leaks?

We propose to look at this question from a different, but equivalent, angle:
instead of designing a single big monolithic language with some nicer subsets, we
propose to consider multi-language programming systems where several smaller
programming languages interact together to cover the same feature space. Each
language or sub-combination of languages is a subset, in the above sense, of the
multi-language, and there is a clear definition of abstraction leaks in terms of user
experience: a user who only knows some of the languages of the system should be
able to use the multi-language system, interacting with code written in the other
languages, without have their expectations violated. If we write a program in Java
and call a function that, internally, is implemented in Scala, there should be no
surprises—our experience should be the same as when calling a pure Java function.
Similarly, consider the subset of Haskell that does not contain I0 (input-output as
a type-tracked effect): the expectations of a user of this language, for instance in
terms of valid equational reasoning, should not be violated by adding I0 back to
the language—in the absence of the abstraction-leaking unsafePerformIO0.

We propose a formal specification for a “no abstraction leaks” guarantee
that can be used as a design criterion to design new multi-language systems,
with graceful interoperation properties. It is based on the formal notion of full
abstraction which has previously been used to study the denotational semantics

! https://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html.
2 http://www.scala-lang.org/old /node/8610.
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of programming languages (Meyer and Sieber 1988; Milner 1977; Cartwright and
Felleisen 1992; Jeffrey and Rathke 2005; Abramsky, Jagadeesan, and Malacaria
2000), and the formal property of compilers (Ahmed and Blume 2008, 2011;
Devriese et al. 2016; New et al. 2016; Patrignani et al. 2015), but not for user-
facing languages. A compiler C from a source language S to a target language
T is fully abstract if, whenever two source terms s; and sq are indistinguishable
in S, their translations C(s1) and C(sz2) are indistinguishable in 7. In a multi-
language G + E formed of a general-purpose, user-friendly language G and a
more advanced language E—one that provides an escape hatch for experts to
write code that can’t be implemented in G—we say that E does not leak into G
if the embedding of G into the multi-language G + F is fully abstract.

To demonstrate that our formal specification is reasonable, we design a novel
multi-language programming system that satisfies it. Our multi-language A\U-
combines a general-purpose functional programming language AV (unrestricted)
of the ML family with an advanced language A" (linear) with linear types and
linear state. It is less convient to program in A’s restrictive type system, but
users can write programs in A" that could not be written in AV: they can use
linear types, locally, to enforce resource usage protocols (typestate), and they
can use linear state and the linear ownership discipline to write programs that
do in-place update to allocate less memory, yet remain observationally pure.

Consider for example the following mixed-language program. The blue frag-
ments are written in the general-purpose, user-friendly functional language, while
the red fragments are written in the linear language. The boundaries UL and
LU allow switching between languages. The program reads all lines from a file,
accumulating them in a list, and concatenating it into a single string when the
end-of-file (EOF) is reached.
let concat_lines path : String = UL(

loop (open LU(path)) LU(Nil)
where rec loop handle LU(acc : List String) =

match line handle with

| Next line LU(handle) -> loop handle LU(Cons line acc)

| EOF handle -> close handle; LU(rev_concat "\n" acc))

The linear type system ensures that the file handle is properly closed: removing
the close handle call would give a type error. On the other hand, only the parts
concerned with the resource-handling logic need to be written in the red linear
language; the user can keep all general-purpose logic (here, how to accumulate
lines and what to do with them at the end) in the more convenient general-
purpose blue language—and call this function from a blue-language program.
Fine-grained boundaries allow users to rely on each language’s strength and to
use the advanced features only when necessary.

In this example, the file-handle API specifies that the call to line, which reads
a line, returns the data at type ![String]. The latter represents how U values of
type String can be put into a lump type to be passed to the linear world where
they are treated as opaque blackboxes that must be passed back to the ML
world for consumption. For other examples, such as in-place list manipulation
or transient operations on an persistent data structure, we will need a deeper
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form of interoperability where the linear world creates, dissects or manipulates
U values. To enable this, our multi-language supports translation of types from
one language to the other, using a type compatibility relation o ~ o between AY
types o and A" types o.

We claim the following contributions:

1. We propose a formal specification of what it means for advanced language
features to be introduced in a (multi-)language system without introducing a
class of abstraction leaks that break equational reasoning. This specification
captures a useful usability property, and we hope it will help us and others
design more usable programming languages, much like the formal notion of
principal types served to better understand and design type inference systems.

2. We design a simple linear language, A", that supports linear state (Sect.2).
This simple design for linear state is a contribution of its own. A nice prop-
erty of the language (shared by some other linear languages) is that the
code has both an imperative interpretation—with in-place memory update,
which provides resource guarantees—and a functional interpretation—which
aids program reasoning. The imperative and functional interpretations have
different resource usage, but the same input/output behavior.

3. We present a multi-language programming system AY“ combining a core ML
language, A\Y (U for Unrestricted, as opposed to Linear) with A" and prove
that the embedding of the ML language AV in AU" is fully abstract (Sect.3).
Moreover, the multi-language is designed to ensure that our full abstraction
result is stable under extension of the embedded ML language \Y.

2 The AY and A" Languages

The unrestricted language AV is a run-of-the-mill idealized ML language with
functions, pairs, sums, iso-recursive types and polymorphism. It is presented in
its explicitly typed form—we will not discuss type inference in this work. The
full syntax is described in Fig.1, and the typing rules in Fig.2. The dynamic
semantics is completely standard. Having binary sums, binary products and iso-
recursive types lets us express algebraic datatypes in the usual way.

The novelty lies in the linear language A", which we present in several steps.
As is common in A-calculi with references, the small-step operational semantics
is given for a language that is not exactly the surface language in which programs

Types cu=a|oiXox |1|o1—02]| 01402 | pa.o | Va.o
Expr. e u=x| (ej,e2) | me | me | () | er;es | AM(x:0).e | e ez |

inje | casee’ of xi.e1 | x2.e2 | fold,n.o € | unfolde | Aa.e | e]o]
Values v u=x | (vi,v2) | () | A(x:0).e | inj;v | inj,v | foldya.ov | Aa.v
Contexts I' == - | I')x:o | I',«

Fig. 1. Unrestricted language: syntax
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x:o €I’ I'Fye:l I'bye:o
INFyx:o 'y ():1 I'kyee:o
I'Fye o I'Fyes:oo I'Fye:o1 X o9
I'by (e1,e2) : 01 X 02 'y mie:o;
F,x:al—ue:a’ Ibye:o o Ikye o
Fh,)\(xza).eto%ol Ibyee:o
I'x1:01Fpe1:o
I'Fye:o; I'kFye:o1+o09 I'yxg :09Fyex:o
I'tyinje: o1 + o2 I'ty caseeof xi. e | x2.€2 1 0
I'kye:ofpa.o/a] I'kye:pa.o
I'ty foldpa.oe: pa.o I' Fy unfolde : ofua. o/a]
INabyv:o I'ye:Va.o I'to'
I'ty Aa.v :Va.o I'tyelo]:olo’/q]

Fig. 2. Unrestricted language: static semantics

are written, because memory allocation returns locations ¢ that are not in the
grammar of surface terms. Reductions are defined on configurations, a local
store paired with a term in a slightly larger internal language. We have two
type systems, a type system on surface terms, that does not mention locations
and stores—which is the one a programmer needs to know—and a type system
on configurations, which contains enough static information to reason about the
dynamics of our language and prove subject reduction. Again, this follows the
standard structure of syntactic soundness proofs for languages with a mutable
store.

2.1 The Core of A"

Figure 3 presents the surface syntax of our linear language A-. For the syntactic
categories of types o, and expressions e, the last line contains the constructions
related to the linear store that we only discuss in Sect. 2.2.

In technical terms, our linear type system is exactly propositional intuition-
istic linear logic, extended with iso-recursive types. For simplicity and because
we did not need them, our current system also does not have polymorphism or
additive/lazy pairs o1 & oo. Additive pairs would be a trivial addition, but poly-
morphism would require more work when we define the multi-language semantics
in Sect. 3.

In less technical terms, our type system can enforce that values be used linearly,
meaning that they cannot be duplicated or erased, they have to be deconstructed
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Types o0 =010z | 1| 01—o02 | 0c1®0o2 | pav.o| allo ]| Box1lo | Box0
Ezxpr. e u=x| (er,e2) | let(vi,va) =erines | () | e1;e2 | A(x:0).e | e1 ez |
injre | injoe | casee’ of xi.e1 | x2.e2 | foldua.o € | unfolde |
sharee | copy e | new e | free e | box e | unbox e
Values v i=x | {(vi,va) | () | A(x:0).e | injiv | injav | folda.o v | sharev
Contexts I' == - | I',x:0

Fig. 3. Linear language: surface syntax

exactly once. Only some types have this linearity restriction; others allow duplica-
tion and sharing of values at will. We can think of linear values as resources to be
spent wisely; for any linear value somewhere in a term, there can be only one way
to access this value, so we can interpret the language as enforcing an ownership
discipline where whoever points to a linear value owns it.

In particular, linear functions of type o1 — o5 must be called exactly once,
and their results must in turn be consumed — they can safely capture linear
resources. On the other hand, the non-linear, duplicable values are those at
types of the form !0 — the exponential modality of linear logic. If the term e has
duplicable type !o, then the term copy e has type o: this creates a local copy of
the value that is uniquely-owned by its receiver and must be consumed linearily.

This resource-usage discipline is enforced by the surface typing rules of A",
presented in Fig.4. They are exactly the standard (two-sided) logical rules of
intuitionistic linear logic, annotated with program terms. The non-duplicability
of linear values is enforced by the way contexts are merged by the inference
rules: if ey is type-checked in the context /', and e, in %, then the linear pair
(e1,e5) is only valid in the combined context Iy Y I». The (Y) operation is
partial; this combined context is defined only if the variables shared by I} and
I are duplicable—their type is of the form !o. In other words, a variable at a
non-duplicable type in I Y I cannot possibly appear in both I} and [I5: it
must appear exactly once?.

The expression sharee takes a term at some type o and creates a “shared”
term, whose value will be duplicable. Its typing rule uses a context of the form |77,
which is defined as the pointwise application of the (!) connectives to all the types
in I'. In other words, the context of this rule must only have duplicable types: a
term can only be made duplicable if it does not depend on linear resources from
the context. Otherwise, duplicating the shared value could break the unique-
ownership discipline on these linear resources.

Finally, the linear isomorphism notation for fold and unfold in Fig. 4 defines
them as primitive functions, at the given linear function type, in the empty
context — using them does not consume resources. This notation also means
that, operationally, these two operations shall be inverses of each other. The
rules for the linear store type Box 1 ¢ and Box 0 are described in Sect. 2.2.

3 Standard presentations of linear logic force contexts to be completely distinct, but
have a separate rule to duplicate linear variables, which is less natural for program-
ming.
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(I,x:10) Y (2, x: o) Lof (I'v Y I'2),x:lo

(I'i,x:0)Y I's déf(]“l\[ljg),xza (x & 1I'3)

1Y (Fa,x:0) Y ), %0 (x¢ ')
Flhelzal F2|—L62:0’2

IIx:iokLx:0 'Y TI'a by (e1,e2) i 01 Q02

I'FLe:01®02
F/,xlzcrl,xzzag Foe o
Y Ik let (x1,x2) =eine’ : o

I'kFoe:1 ke o F,x:al—Le:(I'

INEL ()21 I'YI'Foee o 'k A\x:0).e:0—0

I'kFoe:0 —o0o I"bkoe o I'kFLe:o;
FYF’I—Lee':J 'y injie: o1 @ o2
F/,X1ZO'1|_Le1ZO'
I'Foe:o01Dos F/,XQZO'Ql_LCQZU 'Foe:o I'Foe:lo
'Y I, caseeofxi.e1 |x2.e2: 0 !I"F, sharee : lo 'k, copye:o

unfold new unbox

na. o : olpa.o/a] 10—_°Box0 Box1o __° (Box0)®o
foldya.o free box

Fig. 4. Linear language: surface static semantics

head reduction | e~ ¢’ (s]e)~ (s |e)
new bc|>_x
O10) T (w110 Gl 1) T W= (Y
free unbox
(A(x:0).e) v 5 e[v/x] copy (share(s:¥).injv) 5 inj; copy (share(s:¥).v)

(0] copy (share(s:¥). A(x:0).€)) 5 (s| A(x:0).e)

copy (share([¢ +— -]:(:;-F £:Box 0)).¢) 5 new ()

copy (share([¢ — (s |v)]: (¥;!I"+2:Box 1 0)).4)
% box (new (), copy (share(s:¥).v))

Fig. 5. Internal linear language: typing and reduction (excerpt)
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2.2 Linear Memory in A"

The surface typing rules for the linear store are given at the end of Fig.4. The
linear type Box 1 o represents a memory location that holds a value of type
0. The type Box 0 represents a location that has been allocated, but does not
currently hold a value. The primitive operations to act on this type are given as
linear isomorphisms: new allocates, turning a unit value into an empty location;
conversely, free reclaims an empty location. Putting a value into the location and
taking it out are expressed by box and unbox, which convert between a pair of
an empty location and a value, of type (Box 0)® o, and a full location, of type
Box 1 o.

For example, the following program takes a full reference and a value, and
swaps the value with the content of the reference:

A(p:(Box 1 o) ®o0).let (r,x) = pinlet(l,x;) = unbox rin (box (I,x),x;)

The programming style following from this presentation of linear memory is func-
tional, or applicative, rather than imperative. Rather than insisting on the muta-
bility of references—which is allowed by the linear discipline—we may think of
the type Box 1o as representing the indirection through the heap that is implicit
in functional programs. In a sense, we are not writing imperative programs with
a mutable store, but rather making explicit the allocations and dereferences hap-
pening in higher-level purely functional language. In this view, empty cells allow
memory reuse.

This view that Box 1 o represents indirection through the memory sug-

gests we can encode lists of values of type o by the type LinListo def

pel @ Box 1 (0@ ). The placement of the box inside the sum mirrors the fact
that empty list is represented as an immediate value in functional languages.
From this type definition, one can write an in-place reverse function on lists of
o as follows:
fix A(rev_into: LinList o —o LinList o — LinList o).
A(xs: LinList o). A(acc: LinList o).
case unfold xs of
ly- (y;acc)
|'y.let(l,p) = unbox yin
let (xs,x) = pin
rev__into xs (fold (injz (box (I, (x,acc)))))

Our linear language A" is a formal language that is not terribly convenient
to program directly. We will not present a full surface language in this work,
but one could easily define syntactic sugar to write the exact same function as
follows:

rev_into Nil acc = acc
rev_into (Cons (x,xs)@1) acc = rev_into xs (Cons (x,acc)@])

One can read this function as the usual functional rev_append function on
lists, annotated with memory reuse information: if we assume we are the unique
owner of the input list and won’t need it anymore, we can reuse the memory
of its cons cells (given in this example the name |) to store the reversed list.
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On the other hand, if you read the box and unbox as imperative operations, this
code expresses the usual imperative pointer-reversal algorithm.

This double view of linear state occurs in other programming systems with
linear state. It was recently emphasized in O’Connor et al. (2016), where the
functional point of view is seen as easing formal verification, while the imperative
view is used as a compilation technique to produce efficient C code from linear
programs.

2.3 Internal A\' Syntax and Typing

To give a dynamic semantics for A and prove it sound, we need to extend the
language with explicit stores and store locations. Indeed, the allocating term
new () should reduce to a “fresh location” ¢ allocated in some store s, and nei-
ther are part of the surface-language syntax. The corresponding internal typing
judgment is more complex, but note that users do not need to know about it to
reason about correctness of surface programs. The internal typing is essential for
the soundness proof, but also useful for defining the multi-language semantics
in Sect. 3.

We work with configurations (s | e), which are pairs of a store s and a term
e. Our internal typing judgment ¥; " b, s | e : o checks configurations, not just
terms, and relies not only on a typing context for variables I” but also on a store
typing ¥, which maps the locations of the configuration to typing assumptions.

Unfortunately, due to space limits, we will not present this part of the type
system — which is not directly exposed to users of the language. See some exam-
ples of reduction rules in Fig. 5, and the long version of this work.

2.4 Reduction of Internal Terms

In the long version of this work we give a reduction relation between linear

L
configurations (s | e) < (s’ | ') and prove a subject reduction result.

Theorem 1 (Subject reduction for \“). If V; "t s |e: o and (s | e) L
(s' | &), then there exists a (unique) V' such that W't s' | € : 0.

3 Multi-language Semantics

To formally define our multi-language semantics we create a combined language
AUt which lets us compose term fragments from both AV and A" together, and
we give an operational semantics to this combined language. Interoperability is
enabled by specifying how to transport values across the language boundaries.
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Multi-language systems in the wild are not defined in this way: both languages
are given a semantics, by interpretation or compilation, in terms of a shared lower-
level language (C, assembly, the JVM or CLR bytecode, or Racket’s core forms),
and the two languages are combined at that level. Our formal multi-language
description can be seen as a model of such combinations, that gives a specification
of the expected observable behavior of this language combination.

Another difference from multi-languages in the wild is our use of very fine-
grained language boundaries: a term written in one language can have its sub-
terms written in the other, provided the type-checking rules allow it. Most multi-
language systems, typically using Foreign Function Interfaces, offer coarser-
grained composition at the level of compilation units. Fine-grained composition
of existing languages, as done in the Eco project (Barrett et al. 2016), is difficult
because of semantic mismatches. In the full version of this work we demonstrate
that fine-grained composition is a rewarding language design, enabling new pro-
gramming patterns.

3.1 Lump Type and Language Boundaries

The core components the multi-language semantics are shown Fig. 6—the com-
munication of values from one language to the other will be described in the next
section. The multi-language AY" has two distinct syntactic categories of types,
values, and expressions: those that come from AU and those that come from A".
Contexts, on the other hand, are mixed, and can have variables of both sorts.
For a mixed context I', the notation !I" only applies (!) to its linear variables.

The typing rules of AV and A are imported into our multi-language system,
working on those two separate categories of program. They need to be extended
to handle mixed contexts I instead of their original contexts I" and I'. In the
linear case, the rules look exactly the same. In the ML case, the typing rules
implicitly duplicate all the variables in the context. It would be unsound to
extend them to arbitrary linear variables, so they use a duplicable context 7.

To build interesting multi-language programs, we need a way to insert a
fragment coming from a language into a term written in another. This is done
using language boundaries, two new term formers LU (e) and UL(s:¥ | e) that
inject an ML term into the syntactic category of linear terms, and a linear
configuration into the syntactic category of ML terms.

Of course, we need new typing rules for these term-level constructions, clar-
ifying when it is valid to send a value from AY into A" and vice versa. It would
be incorrect to allow sending any type from one language into the other—for
instance, by adding the counterpart of our language boundaries in the syntax
of types—since values of linear types must be uniquely owned so they cannot
possibly be sent to the ML side as the ML type system cannot enforce unique
ownership.

On the other hand, any ML value could safely be sent to the linear world. For
closed types, we could provide a corresponding linear type (1 maps to !1, etc.),
but an ML value may also be typed by an abstract type variable «, in which
case we can’t know what the linear counterpart should be. Instead of trying to
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provide translations, we will send any ML type o to the lump type [o], which
embeds ML types into linear types. A lump is a blackbox, not a type translation:
the linear language does not assume anything about the behavior of its values—
the values of o] are of the form [v], where v : ¢ is an ML value that the linear
world cannot use. More precisely, we only propagate the information that ML
values are all duplicable by sending o to ![o].

The typing rules for language boundaries insert lumps when going from AV
to AL, and remove them when going back from A" to A\V. In particular, arbitrary
linear types cannot occur at the boundary, they must be of the form ![o].

Types o | o
o (unchanged from Figure 1)
o +u=--| o]

Values v | v

v (unchanged from Figure 1)
v 4= | V]

Ezpressions e | e

e +u=--- |UL(s:V |e)
with UL(e) < ULO:|e)
e +u=---| LU(e)
Contexts I' == - | I')x:o | I';a | I';x:0
Typing rules kFye:o ‘W\FI—UL S|e:(r‘
with I'bye:io & | Thu0|e:o

(Typing rules of I' -y e : o reused, with mixed context !I")
(Typing rules of ¥; ' s | e : o reused, with mixed context I)

'kwe:o UM by, s | e o]
NI Ee O] LU(e) 2 o] M UL(s:W | e):o
Reduction rules
u 4
e—e

(Reduction rules of AV and A" reused unchanged)

LUV) ~ V] UL(D:- | share [v]) Sy

U lkwsle:o  (s|e)s(s]e) W |TFus|e:o
UL(s:0 | €) <> UL(S 0 | &)

Fig. 6. Multi-language: lump and boundaries
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static compatibility

EFULUIZ!U] EFULO’Z:!U'_}
Y ko o~ o] Yhuwor+or~l(o1®o0o2)
Yhowo~lo SNy o ~lo Yhowo~lo Yhowo~lo
Yoo —o ~ !(!(fw!rr') Yoo~ Y koo ~!(Box 1 o)

value conversion v 7 v

v ' share(s: ¥). v

v ') share [v] inj, v +'(71992) share(s: ). inji v
’ ’ ’ ’
o~0 o~ o~o o ~ao

e 71" ghare Alx:lo). ”/[ZL{(e UL (x)) Alx: U).Z/IEU/(copy e TLU(X))) ' <) e

v +'7 sharev v +'7 share(s:¥).v
v "7 share (sharev) v 517 share([0 = (s | v)]: (£ ¥ : Box 1 0)).¢

lo[pa.o/a)

V& share(s:¥).v

fold a0 v <37 share(s: ¥). (folda o v)

Fig. 7. Interoperability: static and dynamic semantics (excerpt)

Finally, boundaries have reduction rules: a term or configuration inside a
boundary in reduction position is reduced until it becomes a value, and then
a lump is added or removed depending on the boundary direction. Note that
because the v in UL(s:¥ | v) is at a duplicable type ![o], we know by inversion
that the store is empty.

3.2 Interoperability: Static Semantics

If the linear language could not interact with lumped values at all, our multi-
language programs would be rather boring, as the only way for the linear exten-
sion to provide a value back to ML would be to have received it from AY and
pass it back unchanged (as in the lump embedding of Matthews and Findler
(2009)). To provide a real interaction, we provide a way to extract values out of
a lump ![o], use it at some linear type o, and put it back in before sending the
result to AY.

The correspondence between intuitionistic types o and linear types o is spec-
ified by a heterogeneous compatibility relation o ~ o — defined in full in Fig.7.
The specification of this relation is that if o ~ ¢ holds, then the space of values
of l[o] and o are isomorphic: we can convert back and forth between them. When
this relation holds, the term-formers lump? and “unlump perform the conversion.

The term LU (e) turns a e : o into a lumped type ![o], and we need to unlump
it with some “unlump for a compatible o ~ o to interact with it on the linear
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side. It is common to combine both operations and we provide syntactic sugar
for it: 7LU(e). Similarly UL (e) first lumps a linear term then sends the result
to the ML world.

3.3 Interoperability: Dynamic Semantics

When the relation ¢ ~ ¢ holds, we can define a relation v <7 v between the
values of o and the values of o — see the long version of this work. It is func-
tional in both direction: with our definition v is uniquely determined from v and
conversely. We then define the reduction rule for (un)lumping: if v <+ v, then

(0] “unlump (share[v])) < (0] v) (@] lump” v) & (0] share [v])

3.4 Full Abstraction from \Y into AUt

We can now state the major meta-theoretical result of this work, which is the
proposed multi-language design extends the simple language AV in a way that
provably has, in a certain sense, “no abstraction leaks”.

Definition 1 (Contextual equivalence in \Y). We say that e, e’ such that
I' by e, € 1 o are contextually equivalent, written e =5® €', if, for any expression
context C[O] such that - Fy Cle] : 1, the closed terms Cle] and C[e] are equi-
terminating.

Definition 2 (Contextual equivalence in \U"). We say that e,e’ such that
I' by e, € : o are contextually equivalent, written e =~ €', if, for any expres-
sion context C[O] such that - by Cle] : 1, the closed terms Cle] and C[e'] are

equi-terminating.

Theorem 2 (Full Abstraction). The embedding of \Y into \Y“ is fully-
abstract:

~ctx /|

t
I'Fyexi™e 0 S I'Fyexile:o

4 Conclusion and Related Work

Having a stack of usable, interoperable languages, extensions or dialects is at the
forefront of the Racket approach to programming environments, in particular for
teaching (Felleisen et al. 2004).

Our multi-language semantics builds on the seminal work by Matthews
and Findler (2009), who gave a formal semantics of interoperability between
a dynamically and a statically typed language. Others have followed the
Matthews-Findler approach of designing multi-language systems with fine-
grained boundaries—for instance, formalizing interoperability between a simply
and dependently typed language (Osera et al. 2012); between a functional and
typed assembly language (Patterson et al. 2017); between an ML-like and an
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affinely typed language, where linearity is enforced at runtime on the ML side
using stateful contracts (Tov and Pucella 2010); and between the source and
target languages of compilation to specify compiler correctness (Perconti and
Ahmed 2014). However, all these papers address only the question of soundness
of the multi-language; we propose a formal treatment of usability and absence
of abstraction leaks.

The only work to establish that a language embeds into a multi-language
in a fully abstract way is the work on fully abstract compilation by Ahmed
and Blume (2011) and New et al. (2016) who show that their compiler’s source
language embeds into their source-target multi-language in a fully abstract way.
But the focus of this work was on fully abstract compilation, not on usability of
user-facing languages.

The Eco project (Barrett et al. 2016) is studying multi-language systems
where user-exposed languages are combined in a very fine-grained way; it is
closely related in that it studies the user experience in a multi-language sys-
tem. The choice of an existing dynamic language creates delicate interoperability
issues (conflicting variable scoping rules, etc.) as well as performance challenges.
We propose a different approach, to design new multi-languages from scratch
with interoperability in mind to avoid legacy obstacles.

We are not aware of existing systems exploiting the simple idea of using
promotion to capture uniquely-owned state and dereliction to copy it—common
formulations would rather perform copies on the contraction rule.

The general idea that linear types can permit reuse of unused allocated cells
is not new. In Wadler (1990), a system is proposed with both linear and non-
linear types to attack precisely this problem. It is however more distant from
standard linear logic and somewhat ad-hoc; for example, there is no way to
permanently turn a uniquely-owned value into a shared value, it provides instead
a local borrowing construction that comes with ad-hoc restrictions necessary for
safety. (The inability to give up unique ownership, which is essential in our list-
programming examples, seems to also be missing from Rust, where one would
need to perform a costly operation of traversing the graph of the value to turn
all pointers into Arc nodes.)

The RAML project (Hoffmann et al. 2012) also combines linear logic and
memory reuse: its destructive match operator will implicitly reuse consumed
cells in new allocations occurring within the match body. Multi-languages give
us the option to explore more explicit, flexible representations of those low-level
concern, without imposing the complexity to all programmers.

A recent related work is the Cogent language (O’Connor et al. 2016), in
which linear state is also viewed as both functional and imperative — the latter
view enabling memory reuse. The language design is interestingly reversed: in
Cogent, the linear layer is the simple language that everyone uses, and the non-
linear language is a complex but powerful language that is used when one really
has to, named C.
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Our linear language A" is sensibly simpler, and in several ways less expressive,
than advanced programming languages based on linear logic (Tov and Pucella
2011), separation logic (Balabonski et al. 2016), fine-grained permissions (Garcia
et al. 2014): it is not designed to stand on its own, but to serve as a useful side-
kick to a functional language, allowing safer resource handling.

One major simplification of our design compared to more advanced linear or
separation-logic-based languages is that we do not separate physical locations
from the logical capability /permission to access them (e.g., as in Ahmed et al.
(2007)). This restricts expressiveness in well-understood ways (Fahndrich and
DeLine 2002): shared values cannot point to linear values.

Alms (Tov and Pucella 2011), Quill (Morris 2016) and Linear Haskell
(Bernardy et al. 2018) add linear types to a functional language, trying hard
not to lose desirable usability property, such as type inference or the generic-
ity of polymorphic higher-order functions. This is very challenging; for exam-
ple, Linear Haskell gives up on principality of inference*. Our multi-language
design side-steps this issue as the general-purpose language remains unchanged.
Language boundaries are more rigid than an ideal no-compromise language, as
they force users to preserve the distinction between the general-purpose and the
advanced features; it is precisely this compromise that gives a design of reduced
complexity.

Finally, on the side of the semantics, our system is related to LNL (Benton
1994), a calculus for linear logic that, in a sense, is itself built as a multi-language
system where (non-duplicable) linear types and (duplicable) intuitionistic types
interact through a boundary. It is not surprising that our design contains an
instance of this adjunction: for any o there is a unique o such that o ~ !o, and
converting a o value to this o and back gives a !o and is provably equivalent, by
boundary cancellation, to just using share.
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Abstract. We present an automata-theoretic framework for the model
checking of true concurrency properties. These are specified in a fix-
point logic, corresponding to history-preserving bisimilarity, capable of
describing events in computations and their dependencies. The models
of the logic are event structures or any formalism which can be given a
causal semantics, like Petri nets. Given a formula and an event struc-
ture satisfying suitable regularity conditions we show how to construct
a parity tree automaton whose language is non-empty if and only if the
event structure satisfies the formula. The automaton, due to the nature
of event structure models, is usually infinite. We discuss how it can be
quotiented to an equivalent finite automaton, where emptiness can be
checked effectively. In order to show the applicability of the approach,
we discuss how it instantiates to finite safe Petri nets. As a proof of
concept we provide a model checking tool implementing the technique.

1 Introduction

Behavioural logics with the corresponding verification techniques are a corner-
stone of automated verification. For concurrent and distributed systems, so called
true concurrent models can be an appropriate choice, since they describe not only
the possible steps in the evolution of the system but also their causal dependen-
cies. A widely used foundational model in this class is given by Winskel’s event
structures [1]. They describe the behaviour of a system in terms of events in
computations and two dependency relations: a partial order modelling causality
and an additional relation modelling conflict. A survey on the use of such causal
models can be found in [2]. Recently they have been used in the study of con-
currency in weak memory models [3,4], for process mining and differencing [5],
in the study of atomicity [6] and of information flow [7] properties.

Operational models can be abstracted by considering true concurrent equiv-
alences that range from hereditary history preserving bisimilarity to the coarser
pomset and step equivalences (see, e.g., [8]) and behavioural logics expressing
causal properties (see, e.g., [9-14] for a necessarily partial list and [15-19] for
some related verification techniques).

Event-based logics have been recently introduced [20,21], capable of uni-
formly characterising the equivalences in the true concurrent spectrum. Their for-
mulae include variables which are bound to events in computations and describe
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their dependencies. While the relation between operational models, behavioural
equivalences and event-based true concurrent logics is well understood, the cor-
responding model checking problem has received limited attention.

We focus on the logic referred to as Ly, in [20], corresponding to a classical
equivalence in the spectrum, i.e., history preserving (hp-)bisimilarity [22-24].

Decidability of model checking is not obvious since event structure models are
infinite even for finite state systems and the possibility of expressing properties
that depends on the past often leads to undecidability [25]. In a recent paper [26]
we proved the decidability of the problem for the alternation free fragment of
the logic Ly, over a class of event structures satisfying a suitable regularity
condition [27] referred to as strong regularity. The proof relies on a tableau-
based model checking procedure. Despite the infiniteness of the model, a suitable
stop condition can be identified, ensuring that a successful finite tableau can be
generated if and only if the formula is satisfied by the model.

Besides the limitation to the alternation free fragment of £y, a shortcoming
of the approach is that a direct implementation of the procedure can be extremely
inefficient. Roughly speaking, the problem is that in the search of a successful
tableau, branches which are, in some sense, equivalent are explored several times.

In this paper we devise an automata-theoretic technique, in the style of [28],
for model checking Ly, that works for the full logic, without constraints on the
alternation depth. Besides providing an alternative approach for model-checking
L}y, amenable of a more efficient implementation, this generalises the decidabil-
ity result of [26] to the full logic L,. Given a formula in £p, and a strongly
regular event structure, the procedure generates a parity tree automaton. Sat-
isfiability is reduced to emptiness in the sense that the event structure satisfies
the formula if and only if the automaton accepts a non-empty language.

The result is not directly usable for practical purposes since the automaton
is infinite for any non-trivial event structure. However an equivalence on states
can be defined such that the quotiented automaton accepts the same language
as the original one. Whenever such equivalence is of finite index the quotiented
automaton is finite, so that satisfaction of the formula can be checked effectively
on the quotient. We show that for all strongly regular event structures a canonical
equivalence always exists that is of finite index.

The procedure is developed abstractly on event structures. A concrete algo-
rithm on some formalism requires the effectiveness of the chosen equivalence on
states. We develop a concrete instantiation of the algorithm on finite safe Petri
nets. It is implemented in a tool, wishfully called True concurrency workbench
(TCWB), written in Haskell. Roughly, the search of an accepting run in the
automaton can be seen as an optimisation of the procedure for building a suc-
cessful tableau in [26] where the graph structure underlying the automaton helps
in the reuse of the information discovered. Some tests reveal that the TCWB is
way more efficient than the direct implementation of the tableau-based proce-
dure (which could not manage most of the examples in the TCWB repository).

The rest of the paper is structured as follows. In Sect.2 we review event
structures, strong regularity and the logic Ly, of interest in the paper. In Sect. 3
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we introduce (infinite state) parity tree automata and we show how the model
checking problem for Ly, on strongly regular PES can be reduced to the non-
emptiness of the language of such automata. In Sect.4 we discuss the instanti-
ation of the approach to Petri nets. Finally, in Sect.5 we discuss some related
work and outline directions of future research. Due to space limitations, proofs
are only sketched.

2 Event Structures and True Concurrent Logic

We introduce prime event structures [1] and the subclass of strongly regular
event structures on which our model checking approach will be developed. Then
we present the logic for true concurrency of interest in the paper.

2.1 Prime Event Structures and Regularity

Throughout the paper E is a fixed countable set of events, A a finite set of labels
ranged over by a,b,c ... and A : E — A a labelling function.

Definition 1 (prime event structure). A (A-labelled) prime event structure
(PES) is a tuple £ = (E,<,#), where E C E is the set of events and <, #
are binary relations on E, called causality and conflict respectively, such that:
1. < is a partial order and [e] = {€' € E | ¢ < e} is finite for all e € E;
2. # is irreflexive, symmetric and inherited along <, i.e., for all e,e’, e’ € E, if
efte’ < e then e#te”.

The PES & = (E1,<1,#1), &2 = (B9, <o, #3) are isomorphic, written & ~
&y, when there is a bijection ¢ : By — Eo such that for all eq, e} € Ey, it holds
e1 <1 e} iff tler) <au(e}) and ex #1 e} iff tler) #2 t(e]) and A(er) = A(e(er)).

In the following, we will assume that the components of a PES £ are named
as in the definition above, possibly with subscripts. The concept of concurrent
computation for PESs is captured by the notion of configuration.

Definition 2 (configuration). A configuration of a PES & is a finite set of
events C C E consistent (i.e., —(e#te’) for all e,e’ € C) and causally closed
(i.e., [e] C C for alle € C). We denote by C(E) the set of configurations of £.

The evolution of a PES can be represented by a transition system over con-
figurations, with the empty configuration as initial state.

Definition 3 (transition system). Let £ be a PES and let C' € C(E). Given
e € EXC such that CU{e} € C(E), and X, Y CC with X CJe], YN[e] =10
we write C &u(e) C U{e}. The set of enabled events at a configuration C

is defined as en(C) = {e € E | C < C'}. The PES is called k-bounded for some
k € N (or simply bounded) if |en(C)| < k for all C € C(E).
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Fig. 1. (a) A PES Ex associated with the net A in (b) via its unfolding (c).

Transitions are labelled by the executed event e. In addition, they report its label
A(e), a subset of causes X and a set of events Y C C concurrent with e. When

X or Y are empty they are normally often, i.e., e.g., we write C' ﬁ>)\(e) c’

for C 255, (o) C" and C Sy C" for € 2225, ) €.
The PES modelling a non-trivial system is normally infinite. We will work on
a subclass identified by finitarity requirements on the possible substructures.

Definition 4 (residual). Let £ be a PES. For a configuration C € C(E), the
residual of € after C, is defined as E[C] = {e|e € EXC A CU{e} consistent}.

The residual of £ can be seen as a PES, endowed with the restriction of causality
and conflict of £. Intuitively, it represents the PES that remains to be executed
after the computation expressed by C. Given C € C(£) and X C C, we denote
by £[C] U X the PES obtained from £[C] by adding the events in X with the
causal dependencies they had in the original PES €.

Definition 5 (strong regularity). A PES & is called strongly regular when
it is bounded and for each k € N the set {E[C] U {e1,...,ex} | C € C(E) A
€1,...,ex € C} is finite up to isomorphism of PESs.

Strong regularity [26] is obtained from the notion of regularity in [27], by
replacing residuals with residuals extended with a bounded number of events
from the past. Intuitively, this is important since we are interested in history
dependent properties. We will later show in Sect.4 that the PESs associated
with finite safe Petri nets, i.e., the regular trace PESs [27], are strongly regular.

A simple PES is depicted in Fig. la. Graphically, curly lines represent imme-
diate conflicts and the causal partial order proceeds upwards along the straight
lines. Events are denoted by their labels, possibly with superscripts. For instance,
in £y, the events a and b?, labelled by a and b, respectively, are in conflict.
Event c® causes the events a’ and it is concurrent with b’ for all i € N. It is
an infinite PES associated with the Petri net A/ in Fig. 1b in a way that will
be discussed in Sect.4.1, hence it is strongly regular by Corollary 1. It has
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five (equivalence classes of) residuals extended with an event from the past
En[{BHU{B}, Enf{c”, b} U{b%}, En[{c®,aU{c"}, Enl{c”, "} U {a"}, and
gN[{C(), bov al}] U {bo}

2.2 True Concurrent Logic

The logic of interest for this paper, originally defined in [20], is a Hennessy-
Milner style logic that allows one to specify the dependencies (causality and
concurrency) between events in computation.

Logic formulae include event variables, from a fixed denumerable set Var,
denoted by z, ¥, . ... Tuples of variables like x1, . .., x, will be denoted by a corre-
sponding boldface letter x and, abusing the notation, tuples will be often used as
sets. The logic includes diamond and box modalities. The formula (x,y < a z)) ¢
holds in a configuration when an a-labelled event e is enabled which causally
depends on the events bound to x and is concurrent with those in y. Event e is
executed and then the formula ¢ must hold, with e bound to variable z. Dually,
[x,¥ < az] p is satisfied when all a-labelled events causally dependent on x and
concurrent with y bring to a configuration where ¢ holds.

For dealing with fixpoint operators we fix a denumerable set X* of abstract
propositions, ranged over by X, Y, .... Each abstract proposition X has an arity
ar(X) and it represents a formula with ar(X) (unnamed) free event variables.
Then, for x such that |x| = ar(X), we write X(x) to indicate the abstract
proposition X whose free event variables are named x.

Definition 6 (syntax). The syntaz of Lp, over the sets of event variables Var,
abstract propositions X* and labels A is defined as follows:

o u= XX | T | A | (x,y<az)hy | vX(x).@
| F | ove | [x,y<az]e | pX(x).p

For a formula ¢ we denote by fu(p) its free event variables, defined in the
obvious way. Just note that the modalities act as binders for the variable rep-
resenting the event executed, hence fu({x,¥ <az)y) = fo([x,¥ <az]y) =
(fu(p) ~ {z}) Ux U y. For formulae vX(x).0 and pX(x).¢ we require that
fu(¢) = x. The free propositions in ¢ not bound by u or v, are denoted by
fr(¢). When both fv(yp) and fp(p) are empty we say that ¢ is closed. When x
or y are empty are omitted, e.g., we write (a z) ¢ for (0,0 < az) ¢.

For example, the formula ¢ = {cz)({z < ay)T A (T < bz)T) requires
that, after the execution of a c-labelled event, one can choose between a causally
dependent a-labelled event and a concurrent b-labelled event. It is satisfied by
En in Fig.la. Instead @2 = (cz)((T < ay)T A (T < bz)T) requiring both
events to be concurrent would be false. Moving to infinite computations, consider
w3 = [ba]vZ(z).{cz){zZ < by)T Az < by]Z(y), expressing that all non-empty
causal chains of b-labelled events reach a state where it is possible to execute two
concurrent events labelled ¢ and b, respectively. Then ¢3 holds in Exr. Another
formula satisfied by Ex is w4 = (cz)(T < by)rX(x,y){y,T < bz)X(z,2)
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requiring the existence of an infinite causal chain of b-labelled events, concurrent
with a c-labelled event.

The logic Ly, is interpreted over PESs. The satisfaction of a formula is defined
with respect to a configuration C' and a (total) function n : Var — E| called
an environment, that binds free variables in ¢ to events in C. Namely, if Fnvg
denotes the set of environments, the semantics of a formula will be a set of pairs
in C(€) x Envg. The semantics of Ly, also depends on a proposition environment
7 X — 20(E)xEnve which provides an interpretation for propositions. In order to
ensure that the semantics of a formula only depends on the events associated with
its free variables and is independent on the naming of the variables, it is required
that if (C,n) € 7n(X(x)) and 7'(y) = n(x) pointwise, then (C,7') € n(X(y)).
We denote by PEnvg the set of proposition environments, ranged over by 7.

We can now give the semantics of logic Lp,. Given an event environment 7,
and an event e we write n[z — e] for the updated environment which maps x
to e. Similarly, for a proposition environment 7 and S C C(€) x Envg, we write
7[Z(x) — S] for the corresponding update.

Definition 7 (semantics). Let £ be a PES. The denotation of a formula ¢
in Lpy, is given by the function {|-}¢ : Lp, — PEnvg — 2CE)XEmve defined
inductively as follows, where we write {p[}S instead of {o[}¢ (7):

ATHE =C(&) x Brve  {FEE =0 {Z()DE = (Z(y))
o1 A2 = i e N el o1V o2l = o} U el
10x,7 <az) oS = {(Cn) | Fe.C 22T, 00 A (O fz v o) € oS}
(x5 < azl el = {(Cyn) | Ye.C 22T, r o (¢ fz > o)) € {hS)
W2(x)00E = gfp(foz00.7) QuZ() 1 = Up(f o z00.7)

where fo z(x)x - oC(E)x B, 9C(E)xEnve s defined by Jo,zx),7(S) =
{|‘P‘}i[2(x)HS] and gfp(fo,z(x),x) (resp. Uifp(fo,z(x),x)) denotes the correspond-
ing greatest (resp. least) fixpoint. We say that a PES & satisfies a formula ¢ and
write € = ¢ if (0,n) € {pl}& for all environments n and .

The semantics of boolean operators is standard. The formula (x,¥ < az) ¢
holds in (C,n) when configuration C' enables an a-labelled event e that causally
depends on (at least) the events bound to the variables in x and concurrent with
(at least) those bound to the variables in y and, once executed, it produces a new
configuration C’ = C' U {e} which, paired with the environment ' = [z — €],
satisfies the formula ¢. Dually, [x,¥ < az]¢ holds when all a-labelled events
executable from C, caused by x and concurrent with y bring to a configuration
where ¢ is satisfied.

The fixpoints corresponding to the formulae vZ(x).¢ and puZ(x). are guar-
anteed to exist by Knaster-Tarski theorem, since the set 2€(€)xEnve ordered by
subset inclusion is a complete lattice and the functions f,, z(x),» are monotonic.
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3 Automata-Based Model Checker

We introduce nondeterministic parity tree automata and we show how the model
checking problem for Ly, on strongly regular PESs can be reduced to the non-
emptiness of the language of such automata. The automaton naturally generated
from a PES and a formula has an infinite number of states. We discuss how the
automaton can be quotiented to a finite one accepting the same language and
thus potentially useful for model checking purposes.

3.1 Infinite Parity Tree Automata

Automata on infinite trees revealed to be a powerful tool to various problems in
the setting of branching temporal logics. Here we focus on nondeterministic par-
ity tree automata [29], with some (slightly) non-standard features. We work on
k-trees (rather than on binary trees), a choice that will simplify the presentation,
and we allow for possibly infinite state automata.

When automata are used for model checking purposes it is standard to
restrict to unlabelled trees. A k-bounded branching tree or k-tree, for short, is a
subset 7 C [1, k]*, such that

1. 7 is prefix closed, i.e., if wv € 7 then w € T
2. wleT forallweT
3. forallie[2,k]if wieT thenw(i—1)eT.

Elements of 7 are the nodes of the tree. The empty string e corresponds to
the root. A string of the form wi corresponds to the i-th child of w. Hence by
(2) each branch is infinite and by (3) the presence of the i-th child implies the
presence of the j-th children for j < i.

Definition 8 (nondeterministic parity automaton). A k-bounded nonde-
terministic parity tree automaton (NPA) is a tuple A = (Q,—, qo, F) where Q

s a set of states, —C @Q X U QF is the transition relation, gy € Q is the initial
1=1

state, and F = (Fy, ..., Fy) is the acceptance condition, where Fy,..., Fp C Q
are mutually disjoint subsets of states.

Transitions are written as ¢ — (q1,. .., qm) instead of (¢, (q1,...,qm)) €—.
Given a k-tree 7, a run of A on 7 is a labelling of 7 over the statesr : 7 — Q
consistent with the transition relation, i.e., such that r(¢) = go and for all u € 7,
with m children, there is a transition r(u) — (r(ul),...,r(um)) in A. A path in
the run r is an infinite sequence of states p = (qo, ¢1,...) labelling a complete
path from the root in the tree. It is called accepting if there exists an even
number [ € [0,h] such that the set {j | ¢; € Fi} is infinite and the set
{7 | @5 € Ujci<p Fi} is finite. The run r is accepting if all paths are accepting.
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Definition 9 (language of an NPA). Let A be an NPA. The language of A,
denoted by L(A), consists of the trees T which admit an accepting run.

Observe that for a k-bounded NPA, the language L(.A) is a set of k-trees.

The possibility of having an infinite number of states and the associated
acceptance condition are somehow non-standard. However, it is easy to see that
whenever an NPA is finite, the acceptance condition coincides with the standard
one requiring a single state with maximal even priority to occur infinitely often.

Since NPAs are nondeterministic, different runs (possibly infinitely many)
can exist for the same input tree. Still, the non-emptiness problem, also for our
k-ary variant, is decidable when the number of states is finite (and solvable by
a corresponding parity game [30]).

3.2 Infinite NPAs for Model Checking

We show how, given a PES and a closed formula in Ly, we can build an NPA in
a way that, for strongly regular PESs, the satisfaction of ¢ in £ reduces to the
non-emptiness of the automaton language. The construction is inspired by that
in [28] for the mu-calculus.

The acceptance condition for the automaton will refer to the fixpoint alterna-
tion in the formulae of £p,. We adapt a definition from [28]. A fixpoint formula
aX(y).¢', for a € {v, u}, is called an a-formula. Hereafter o ranges over {v, u}.
Given an a-formula ¢ = aX(y).¢’, we say that a subformula 1) of ¢ is a direct
active subformula, written ¢ Ty o, if the abstract proposition X appears free in
1. The transitive closure of T4 is a partial order and when 9 C}; ¢ we say that
¥ is an active subformula of ¢. We denote by sf(y) the set of subformulae of a
formula ¢ and by sf,(¢) the set of active a-subformulae.

The alternation depth of a formula ¢ in Lp,, written ad(y), is defined, for
a v-formula ¢, as ad(¢) = max{l + ad(¢) | ¢ € sf,(¢)} and dually, for a
p-formula ¢, as ad(p) = max{1 +ad(y)) | ¢ € sf,(¢)}. For any other formula ¢,
ad(¢) = mazx{ad(v) | ¥ € sf(p) \ {¢}}. It is intended that max® = 0. E.g., by
the first clause above, the alternation depth of ¥X (x). ¢ is 0 in absence of active
p-subformulae.

Hereafter we assume that in every formula different bound propositions have
different names, so that we can refer to the fixpoint subformula quantifying an
abstract proposition. This requirement can always be fulfilled by alpha-renaming.

Hereafter, if X and X'’ are abstract propositions quantified in a-subformulae
aX(x).¢ and o/ X' (x'). ¢/, we will write ad(X) for ad(aX (x).¢) and X T4 X’
for aX(x).¢ T4 o/ X'(x").¢'. Moreover, given a PES &, for a pair (C,n) €
C(€) x Envg and variables x, y, z, we define (x,y < az)-successors of (C,n), as

Succx7?<az(0’ 77) _ {(C/,H[Z — e]) | C n(x),n(y) <e N C/}
We can now illustrate the construction of the NPA for a formula and a PES.

Definition 10 (NPA for a formula). Let £ be a bounded PES and let ¢ € L,
be a closed formula. The NPA for €& and ¢ is As, = (Q,—,qo,F) defined
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as follows. The set of states Q@ C C(E) x Envg x sf(p) is Q = {(C,n,¢) |
n(fo(yp)) C C}. The initial state go = (0, n, ), for some chosen n € Envg. The
transition relation is defined, for any state ¢ = (C,n,%) € Q, by:

—ifp=T ortp=F, then ¢ — (q);

~if Y =11 Ao, then ¢ — (q1, q2) where ¢; = (C,n, 1), i € {1,2};

—if =1 Vo, then ¢ — (q1) and g — (q2) where g; = (C,n,¢), i € {1,2};

—if Y = [x,7 < az]Y' and Succ®Y<**(C,n) = {(C1,m),..,(Cnynn)} # 0
then ¢ — (qu,. .., qn) where ¢; = (Cj,m;, ") fori € [1,n], otherwise ¢ — (q);

—if Y = (x,¥ < az)y' and Succ®Y<*(C,n) = {(C1,m), -, (Crynn)} # 0
then g — (q;) where q; = (Ci,ni, ") for i € [1,n], otherwise ¢ — (q);

—if v = aX(x).9 then ¢ — (¢') where ¢ = (C,n, X (x));

—if v = X(y) and ¢ € sf(p) is the unique subformula such that ¢ =
aX(x)." then ¢ — (¢') where ¢’ = (C,n[x — n(y)],¥").

The acceptance condition is F = (Fy, ..., F),) where h = ad(y) + 1 and the
F; are as follows. Consider Ay, ..., A, C sf(p) such that for i € [0,h], if i is
even (odd) then A; contains exactly all propositions quantified in v-subformulae
(p-subformulae) with alternation depth i or i — 1. Then Fy = (C(£) x Enve X
(Ao U{T}H) U B where B = {(C,n,[x,¥ < az]y) | Succ™Y<**(C,n) = 0} is
the set of all subformulae of ¢ in a context where they are trivially true, and
F; =C() x Envg x A;, fori € [1,h].

States of Ag , are triples (C,n, ¢) consisting of a configuration C, an envi-
ronment 1 and a subformula v of the original formula . The intuition is that a
transition reduces the satisfaction of a formula in a state to that of subformulae
in possibly updated states. It can just decompose the formula, as it happens
for A or V, check the satisfaction of a modal operator, thus changing the state
consequently, or unfold a fixpoint.

The automaton Ag , is bounded but normally infinite (whenever the PES £
is infinite and the formula ¢ includes some non-trivial fixpoint).

We next show that for a strongly regular PES the satisfaction of the formula
© on the PES & reduces to the non-emptiness of the language of Ag ..

Theorem 1 (model checking via non-emptiness). Let £ be a strongly reg-
ular PES and let ¢ be a closed formula in Lyy,. Then L(Ag o) # 0 iff € = .

We next provide an outline of the proof. A basic ingredient is an equivalence
that can be defined on the NPA. As a first step we introduce a generalised notion
of residual in which the relation with some selected events in the past is kept.

Definition 11 (pointed residual). Given a PES € and a set X, a X-pointed
configuration is a pair (C, () where C € C(€) and ( : X — C is a function. We
say that the X -pointed configurations (C, ), (C',{") have isomorphic pointed
residuals, written E[(C, ()] = E[(C’,¢")] if there is an isomorphism of PESs ¢ :
E[C) — E[C] such that for allx € X, e € E[C] we have ((z) < e iff {'(x) < i(e).
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Then two states are deemed equivalent if they involve the same subformula
(up to renaming of the event variables) and the configurations, pointed by the
free variables in the formulae, have isomorphic residuals. This resembles the
notion of contextualised equivalence used on tableau judgments in [26].

Definition 12 (future equivalence). Let £ be a PES, ¢ be a formula and
let i = (Ci,mis i), @ € {1,2} be two states of the NPA Ag . We say that ¢
and g2 are future equivalent, written q1 ~¢ qo, if there exists a formula ¢ and
substitutions o; : fo(v) — fu(¢;) such that Yo, = ;, for i € {1,2}, and the
fo(¥)-pointed configurations (C;,n; o o;) have isomorphic pointed residuals.

It can be shown that, given ¢; = (Cy,m4,%;), i € {1,2} as above, for all
proposition environments 7 (satisfying a technical property of saturation) we
have that (C1,m) € {¥1[} if and only if (Ca,n2) € {2}S. Additionally, using
strong regularity, one can prove that the semantics of fixpoint formulae is prop-
erly captured by finite approximants and that equivalence ~ is of finite index.
These are fundamental building bricks in the proof of Theorem 1 which, roughly,
proceeds as follows.

Assume that the language L(Ag ) # 0. Then there is an accepting run r over
some k-tree 7. Since ¢ is finite, in each infinite path there are infinitely many
states q;, = (Ci,,n:,, i, ) where 1);, is the same subformula, up to renaming.
Since ~2; is of finite index, infinitely many such states are equivalent. Then
one deduces that, for some h, the subformula v;, is satisfied in (C;,,n;,). For
fixpoint subformulae, this requires to show that, since the run is accepting, the
subformula of maximal alternation depth that repeats infinitely often is a v-
formula and use the fact that, as mentioned before, its semantics can be finitely
approximated. Then, by a form of backward soundness of the transitions, we get
that all the nodes, including the root, contain formulae which are satisfied.

For the converse implication, assume that £ = ¢. Starting from the initial
state g = (0,7n,) where the formula is satisfied, and using the automaton
transitions, we can build a k-tree 7 and a run where for each state (C’,n’, ) the
subformula 1) is satisfied in (C’, ") and such run can be proved to be accepting.

3.3 Quotienting the Automaton

In order to have an effective procedure for checking the satisfaction of a formula
we need to build a suitable quotient of the NPA, with respect to an equivalence
which preserves emptiness. A simple but important observation is that it is
sufficient to require that the equivalence is a bisimulation in the following sense.
An analogous notion is studied in [31] in the setting of nondeterministic tree
automata over finite trees.

Definition 13 (bisimulation). Given an NPA A, a symmetric relation R C
Q x Q over the set of states is a bisimulation if for all (¢,q') € R

1. for alli € [0,h], ¢ € F; < ¢ € F};

2. 4fq— (q1,---,qm) then ¢ — (¢}, ..., q,) with (¢;,q¢;) € R fori € [1,m].
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Given an NPA A and an equivalence = on the set of states which is a
bisimulation, we define the quotient as A,_ = (Q,-,— =, [qo]=, F,=) where
[q}z-)/z([(h]za EER [Qm]z) if q — ((ha R Qm) and -7:/5 = (FO/Ea AR Fh/s)' An
NPA and its quotient accept exactly the same language.

Theorem 2 (language preservation). Let A be an NPA and let = be an
equivalence on the set of states which is a bisimulation. Then L(A,-) = L(A).

When = is of finite index, the quotient Ag o 18 finite and, exploiting
Theorems 1 and 2, we can verify whether £& = ¢ by checking the emptiness
of the language accepted by Ag o /- Clearly a concrete algorithm will not first
generate the infinite state NPA and then take the quotient, but it rather per-
forms the quotient on the fly: whenever a new state would be equivalent to one
already generated, the transition loops back to the existing state.

Whenever £ is strongly regular, the future equivalence on states (see
Definition 12) provides a bisimulation equivalence of finite index over Ag .

Lemma 1 (~; is a bisimulation). Let £ be a strongly regular PES and let
@ be a closed formula in Ly,. Then the future equivalence =y on Ag, 15 a
bisimulation and it is of finite index.

An obstacle towards the use of the quotiented NPA for model checking pur-
poses is the fact that the future equivalence could be hard to compute (or even
undecidable). In order to make the construction effective we need a decidable
bisimulation equivalence on the NPA and the effectiveness of the set of successors
of a state. This is further discussed in the next section.

4 Model Checking Petri Nets

We show how the model checking approach outlined before can be instantiated
on finite safe Petri nets, a classical model of concurrency and distribution [32],
by identifying a suitable effective bisimulation equivalence on the NPA.

4.1 Petri Nets and Their Event Structure Semantics

A Petri net is a tuple N = (P, T, F, My) where P, T are disjoint sets of places
and transitions, respectively, F' : (P xT)U(T x P) — {0, 1} is the flow function,
and M, is the initial marking, i.e., the initial state of the net. We assume that
the set of transitions is a subset of a fixed set T with a labelling Ay : T — A.
A marking of N is a function M : P — N, indicating for each place the
number of tokens in the place. A transition t € T is enabled at a marking M
if M(p) > F(p,t) for all p € P. In this case it can be fired leading to a new
marking M’ defined by M'(p) = M(p) + F(t,p) — F(p,t) for all places p € P.
This is written M [t)M’. We denote by R(N) the set of markings reachable in A/
via a sequence of firings starting from the initial marking. We say that a marking
M is coverable if there exists M’ € R(N) such that M < M’, pointwise. A net
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N is safe if for every reachable marking M € R(N) and all p € P we have
M(p) < 1. Hereafter we will consider only safe nets. Hence markings will be
often confused with the corresponding subset of places {p | M(p) = 1} C P. For
x € PUT the pre-set and post-set are defined *x ={y € PUT | F(y,z) = 1}
and 2®* ={y € PUT | F(x,y) = 1} respectively.

An example of Petri net can be found in Fig. 1b. Graphically places and tran-
sitions are drawn as circles and rectangles, respectively, while the flow function is
rendered by means of directed arcs connecting places and transitions. Markings
are represented by inserting tokens (black dots) in the corresponding places.

The concurrent behaviour of a Petri net can be represented by its unfolding
U(N), an acyclic net constructed inductively starting from the initial marking
of N and then adding, at each step, an occurrence of each enabled transition.

Definition 14 (unfolding). Let N' = (P, T, F,mg) be a safe net. Define the
net U = (PO 7O F©) qs 7O =, PO = {(p, L) | p € my} and FO =,
where L is an element not belonging to P, T or F. The unfolding is the least
net UN) = (P, T F@)) containing U®) and such that

—if t € T, the set of places X C P“) is coverable and m(X) = °t, then
e=(t,X)eTw;

~ for any e = (t,X) € T, the set Z = {(p,e) | p € m(e)*} € P“) where
1 (u,v) = u; moreover *e =X and e® = Z.

Places and transitions in the unfolding represent tokens and firing of transi-
tions, respectively, of the original net. The projection w1 over the first component
maps places and transitions of the unfolding to the corresponding items of the
original net /. The initial marking is implicitly identified as the set of minimal
places. For historical reasons transitions and places in the unfolding are also
called events and conditions, respectively.

One can define causality <y over the unfolding as the transitive closure of
the flow relation. Conflict is the relation efte’ if *e N ®e¢’ # (), inherited along
causality. The events T(“) of the unfolding of a finite safe net, endowed with
causality and conflict, form a PES, denoted £(N). The transitions of a configura-
tion C' € C(E(N)) can be fired in any order compatible with causality, producing
a marking C° = (PO U, t*) \ (Usee *t) in U(N); in turn, this corresponds
to a reachable marking of A/ given by M(C) = m1(C°). As an example, the
unfolding U (N') of the running example net N and the corresponding PES can
be found in Figs. 1c and a.

4.2 Automata Model Checking for Petri Nets

The PES associated with a safe Petri net is known to be regular [27]. We next
prove that it is also strongly regular and thus we can apply the theory developed
so far for model checking Ly, over safe Petri nets.

Let N = (S,T,F, M) be a safe Petri net. A basic observation is that the
residual of the PES £(N) with respect to a configuration C' € C(E(N)) is uniquely
determined by the marking produced by C. This correspondence can be extended
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to pointed configurations by considering markings which additionally record, for
the events of interest in the past, the places in the marking which are caused by
such events. This motivates the definition below.

Definition 15 (pointed marking). Let N = (S, T, F, My) be a safe Petri net.
Given a set X, a X-pointed marking is a pair (M,r) with r: X — 2M,

A X-pointed configuration (C, ¢) induces an X-pointed marking M((C, ()) =
(M(C),r) where r(z) = {m(b) | b € C° A ((z) < b}. Pointed configurations
producing the same pointed marking have isomorphic pointed residuals.

Proposition 1 (pointed markings vs residuals). Let N = (S, T, F, My) be a
safe Petri net. Given a set X and two X -pointed configurations (C1,¢1), (Ca, (2)
in UN), if M((C1, C1)) = M({C2, C2)) then EN)[(Cr, G)] = EN)[(Ca, ¢2)]-

By the previous result the PES associated with a finite safe Petri net is
strongly regular. Indeed, the number of residuals of X-pointed configurations,
up to isomorphism, by Proposition 1, is smaller than the number of X-pointed
markings, which is clearly finite since the net is safe.

Corollary 1 (strong regularity). Let N be finite safe Petri net. Then the
corresponding PES E(N) is strongly reqular.

In order to instantiate the model checking framework to finite safe Petri
nets, the idea is to take an equivalence over the infinite NPA by abstracting the
(pointed) configurations associated with its states to pointed markings.

Definition 16 (pointed-marking equivalence on NPA). Let N be a finite
safe Petri net and let ¢ be a closed formula in Ly,. Two states q1, g2 in the NPA
Agw),e are pointed-marking equivalent, written q1 =, qo, if ¢; = (Ci, 15, ),
i € {1,2}, for some ¢ € sf() and M((C1,m1 |10 (y))) = MU(C2, 0250 (4)))-

Using Proposition 1 we can immediately prove that =, refines ~y. Moreover
we can show that =, is a bisimulation in the sense of Definition 13.

Proposition 2 (marking equivalence is a bisimulation). Let N be a finite
safe Petri net and let ¢ be a closed formula in Ly,. The equivalence ~,, on the
automaton Ag(nr,, 5 a bisimulation and it is of finite index.

Relying on Propositions 1 and 2 we provide an explicit construction of the
quotient automaton Ag . o We introduce a convenient notation for tran-
sitions between pointed markings. Given the variables x, y, a set X such that
xUy C X and an X-pointed marking (M, r), we write (M, r) Ma’z (M )r")
it M[tYM', An(t) = a, for all x € x we have 7(z) N *¢t # 0 and for all y € y it
holds r(y) N *¢t = @ and 7’ is defined by '(z) = ¢t* and 7' (w) = (r(w)NM")U{s |
r(w)N *t#0 A se€t*}, for w# z. In words, from the pointed marking (M, r)
transition ¢ is fired and “pointed” by variable z. Transition ¢ is required to con-
sume tokens caused by x and not to consume tokens caused by y, in order to be
itself caused by x and independent from y. After the firing, variables which were
causes of some p € *t become causes of the places in ¢* and, clearly, z causes ¢°.
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Construction 1 (quotient NPA). Let N be a finite safe Petri net and let
v € Lpp be a closed formula. The quotient NPA AS(/\/),s&/zm is defined as follows.
The set of states Q = {(M,r,v)) | M € RIN) A 7: fo(yp) — 2M A o € sf(g)}.
The initial state g0 = (Mo, D, p). The transition relation is defined, for any state
q= (M»TJ/J) €Q, by:

- ifpy=T or=F, then ¢ — (q)

— if ¥ =1 AN b, then ¢ — (q1,q2) where g, = (M, r,1;), i € {1,2}

—if Y =11 Vo, then ¢ — (q1) and ¢ — (g2) where ¢; = (M, r,1;), i € {1,2}

—if Y = [[Xay < az]]wl’ let S = {(M/’rffv(w')) I <M’T> Lﬂ)a,z <M/77n/>};
if S = {(My,r1),..., (Mp,7m)} # O then ¢ — (q1,-..,qn) where q; =
(M;,ri, ") fori € [1,n], otherwise ¢ — (q);

- wa = vay < aZD¢/7 let S = {(M/’Tffv(¢/)) | <M7T> L<75)(1,.2 <M/arl>}7' Zf
S = {(Mi,71),...,(Mp,m0)} # 0 then ¢ — (q;) where q; = (M, r;,v") for
1 € [1,n], otherwise ¢ — (q);

—if = aX(x).) then ¢ — (¢') where ¢ = (M,r, X(x));

—if v = X(y) and ¢’ € sf(y) is the subformula such that ¢’ = aX (x).¢)" then
q— (¢') where ¢ = (M,r[x — r(y)],¢").

The acceptance condition is as in Definition 10.

4.3 A Prototype Tool

The algorithm for model checking Petri nets outlined before is implemented
in the prototype tool TCWB (True Concurrency Workbench) [33], written in
Haskell. The tool inputs a safe Petri net N and a closed formula ¢ of L,
and outputs the truth value of the formula on the initial marking of A'. The
algorithm builds the quotient NPA Agnr),, . “on demand”, i.e., the states
of the automaton are generated when they are explored in the search of an
accepting run. A path is recognised as successful when it includes a loop where
a Cj-maximal subformula is T, a []-subformula or a v-subformula. In this way
only the fragment of Ag( N m, relevant to decide the satisfaction of ¢ is built.

Given a net N' = (P, T, F, My) and a formula ¢, the number of states in the
quotient automaton Ag N)p,,, CAD be bounded as follows. Recall that a state
cousists of a triple (M, r, 1) where ¢ € sf(¢), M is a reachable marking and r :
fo(¥) — 2M is a function. This leads to an upper bound O(|sf (¢)|-|R(N)]-2!71),
where v = maz{|fo(¢)] : ¥ € sf(¢)} is the largest number of event variables
appearing free in a subformula of . In turn, since [R(N)| < 27, this is bounded
by O(|sf ()] -2!F1"(*+1). The size of the automaton is thus exponential in the size
of the net and linear in the size of the formula. Moving from the interleaving
fragment of the logic (where v = 0) to formulae capable of expressing true
concurrent properties thus causes an exponential blow up. However, note that
the worst case scenario requires all transitions to be related by causality and
concurrency to all places in any possible way, something that should be quite
unlikely in practice. Indeed, despite the fact that the tool is very preliminary
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and more tweaks and optimisations could improve its efficiency, for the practical
tests we performed the execution time seems to be typically well below than the
theoretical worst case upper bound.

5 Conclusions

We introduced an automata-theoretic framework for the model checking of the
logic for true concurrency Ly, representing the logical counterpart of a classical
true concurrent equivalence, i.e., history preserving bisimilarity. The approach is
developed abstractly for strongly regular PESs, that include regular trace PESs.
A concrete model-checking procedure requires the identification of an effective
bisimulation equivalence for the construction of the quotient automaton. We
showed how this can be done for finite safe Petri nets. The technique is imple-
mented in a proof-of-concept tool.

We proved that the class of regular trace PESs is included in that of strongly
regular PESs which in turn is included in the class of regular PESs. The precise
relation of strongly regular PESs with the other two classes is still unclear and
interesting in view of [34] that recently showed that regular trace PESs are strictly
included in regular PESs, disproving Thiagarajan’s conjecture.

Several other papers deal with model checking for logics on event structures.
In [35] a technique is proposed for model checking a CTL-style logic with modal-
ities for immediate causality and conflict on a subclass of PESs. The logic is quite
different from ours as formulae are satisfied by single events, the idea being that
an event, with its causes, represents the local state of a component. The pro-
cedure involves the construction of a finite representation of the PES associated
with a program which has some conceptual relation with our quotienting phase.
In [19] the author shows that first order logic and Monadic Trace Logic (MTL),
a restricted form of monadic second order (MSO) logic are decidable on regular
trace event structures. The possibility of directly observing conflicts in MTL and
thus of distinguishing behaviourally equivalent PESs (e.g., the PESs consisting of
a single or two conflicting copies of an event), and the presence in £y, of propo-
sitions which are non-monadic with respect to event variables, make these logics
not immediate to compare. Still, a deeper investigation is definitively worth to
pursue, especially in view of the fact that, in the propositional case, the mu-
calculus corresponds to the bisimulation invariant fragment of MSO logic [36].

The work summarised in [18] develops a game theoretic approach for model-
checking a concurrent logic over partial order models. It has been observed in [20]
that such logic is incomparable to L. Preliminary investigations shows that our
model-checking framework could be adapted to such a logic and, more generally,
to a logic joining the expressive power of the two. Moreover, further explor-
ing the potentialities of a game theoretic approach in our setting represents an
interesting venue of further research.

Compared to our previous work [26], we extended the range of the technique
to the full logic Lp,, without limitations concerning the alternation depth of
formulae. Relaxing the restriction to strongly regular PESs, instead, appears to



180 P. Baldan and T. Padoan

be quite problematic unless one is willing to deal with transfinite runs which,
however, would be of very limited practical interest.

The tool is still very preliminary. As suggested by its (wishful) name (inspired
by the classical Edinburgh Concurrency Workbench [37]) we would like to bring
the TCWB to a more mature stage, working on optimisations and adding an
interface that gives access to a richer set of commands.

Acknowledgements. We are grateful to Perdita Stevens for insightful hints and
pointers to the literature and to the anonymous reviewers for their comments.
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Abstract. This paper proposes a definition of what it means for one
system description language to encode another one, thereby enabling
an ordering of system description languages with respect to expressive
power. I compare the proposed definition with other definitions of encod-
ing and expressiveness found in the literature, and illustrate it on a well-
known case study: the encoding of the synchronous in the asynchronous
m-calculus.

1 Introduction

This paper, like [16,21], aims at answering the question what it means for one
language to encode another one, and making the resulting definition applicable
to order system description languages like CCS, CSP and the m-calculus with
respect to their expressive power.

To this end it proposes a unifying concept of valid translation between two
languages up to a semantic equivalence or preorder. It applies to languages whose
semantics interprets the operators and recursion constructs as operations on a set
of values, called a domain. Languages can be partially ordered by their expres-
siveness up to the chosen equivalence or preorder according to the existence of
valid translations between them.

The concept of a [valid] translation between system description languages (or
process calculi) was first formally defined by Boudol [3]. There, and in most other
related work in this area, the domain in which a system description language
is interpreted consists of the closed expressions from the language itself. In [14]
I have reformulated Boudol’s definition, while dropping the requirement that the
domain of interpretation is the set of closed terms. This allows (but does not
enforce) a clear separation of syntax and semantics, in the tradition of universal
algebra. Nevertheless, the definition employed in [14] only deals with the case
that all (relevant) elements in the domain are denotable as the interpretations
of closed terms. In [16] situations are described where such a restriction is unde-
sirable. In addition, both [3,14] require the semantic equivalence ~ under which
two languages are compared to be a congruence for both of them. This is too
severe a restriction to capture many recent encodings [1,2,7,30,31,33,38,43].
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In [16] T alleviated these two restrictions by proposing two notions of encod-
ing: correct and valid translations up to ~. Each of them generalises the propos-
als of [3,14]. The former drops the restriction on denotability as well as ~ being
a congruence for the whole target language, but it requires ~ to be a congru-
ence for the source language, as well as for the source’s image within the target.
The latter drops both congruence requirements (and allows ~ to be a preorder
rather than an equivalence), but at the expense of requiring denotability by
closed terms. In situations where ~ is a congruence for the source language’s
image within the target language and all semantic values are denotable, the two
notions agree.

The current paper further generalises the work of [16] by proposing a new
notion of a valid translation that incorporates the correct and valid translations
of [16] as special cases. It drops the congruence requirements as well as the
restriction on denotability.

Asin [16], my aim is to generalise the concept of a valid translation as much as
possible, so that it is uniformly applicable in many situations, and not just in the
world of process calculi. Also, it needs to be equally applicable to encodability
and separation results, the latter saying that an encoding of one language in
another does not exists. At the same time, I try to derive this concept from a
unifying principle, rather than collecting a set of criteria that justify a number
of known encodability and separation results that are intuitively justified.

Overview of the Paper. Section 2 defines my new concept of a valid translation
up to a semantic equivalence or preorder «. Roughly, a valid translation of one
language into another is a mapping from the expressions in the first language to
those in the second that preserves their meaning, i.e. such that the meaning of a
translated expression is semantically equivalent to the meaning of the original.

Section 3 shows that this concept generalises the notion of a correct transla-
tion from [16]: a translation is correct up to a semantic equivalence ~ iff it is
valid up to ~ and ~ is a congruence for the source language as well as for the
image of the source language within the target language.

Likewise, [18]—the full version of this paper—establishes the coincidence of
my validity-based notion of expressiveness with the one from [16] when applying
both to languages for which all semantic values are denotable by closed terms.

One language is said to be at least as expressive as another up to e iff
there exists a valid translation up to e of the latter language into the former.
Section 4 shows that “being at least as expressive as” is a preorder on languages.
This expressiveness preorder depends on the choice of e, and a coarser choice
(making less distinctions) yields a richer preorder of expressiveness inclusions.

Section 6 illustrates the framework on a well-known case study: the encoding
of the synchronous in the asynchronous w-calculus.

Section 7 discusses the congruence closure of a semantic equivalence for a
given language, and remarks that in the presence of operators with infinite arity
it is not always a congruence. Section 8 states a useful congruence closure prop-
erty for valid translations: if a translation between two languages exists that is
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valid up a semantic equivalence ~, then it is even valid up to an equivalence
that

— on the source language coincides with the congruence closure of ~

— on the image of the source within the target language also coincides with the
congruence closure of ~

— melts each equivalence class of the source with exactly one of the target.

Section 9 concludes that the framework established thus far is great for com-
paring the expressiveness of languages, but falls short for the purpose of combin-
ing language features. This requires a congruence reflection theorem, provided
in Sect. 12, for languages satisfying postulates formulated in Sects. 5, 10 and 11.

Section 12 defines when a translation is compositional, and shows that any
valid translation up to e can be modified into a compositional translation valid
up to e. This requires restricting attention to languages and preorders ¢ that
satisfy some mild sanity requirements—the postulates of Sects. 10 and 11. Hence,
for the purpose of comparing the expressive power of languages, valid translations
between them may be presumed compositional.

Section 13 compares my approach with the one of Gorla [21], and concludes.
Omitted proofs and counterexamples (marked by ) can be found in [18].

2 Languages, Valid Translations, and Expressiveness

A language consists of syntaxr and semantics. The syntax determines the valid
expressions in the language. The semantics is given by a mapping [ | that
associates with each valid expression its meaning, which can for instance be an
object, concept or statement.

Following [16], I represent a language £ as a pair (Tz,[ [,) of a set T, of
valid expressions in £ and a mapping [ |, : Tz — D, from T in some set of
meanings D,.

Definition 1 ([16]). A translation from a language £ into a language L' is a
mapping 7 : T, — Ty

In this paper, I consider single-sorted languages £ in which ezpressions or terms
are built from variables (taken from a set X’) by means of operators (including
constants) and possibly recursion constructs. For such languages the meaning
[E] . of an L-expression E is a function of type (X — V) —V for a given sets of
values V. It associates a value [E] .(p) €V to E that depends on the choice of a
valuation p: X— V. The valuation associates a value from V with each variable.

Since normally the names of variables are irrelevant and the cardinality of
the set of variables satisfies only the requirement that it is “sufficiently large”,
no generality is lost by insisting that two (system description) languages whose
expressiveness is being compared employ the same set of (process) variables.
On the other hand, two languages £ and £’ may be interpreted in different
domains of values V and V.
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Let £ and £’ be languages as considered above, with semantic mappings

[ ], Te—=(Xx—=V)=V) and [ ], : Ty —(X—-V)=>V).

In order to compare these languages w.r.t. their expressive power I need a seman-
tic equivalence or preorder ¢ that is defined on a unifying domain of interpreta-
tion Z, with V, V' C Z.! Intuitively, v’ e v with v € V and v’ € V' means that
values v and v’ are sufficiently alike for our purposes, so that one can accept a
translation of an expression with meaning v into an expression with meaning v’.
Below, target values of a translation (in V') are written on the left.

Correct and a valid translations up to a semantic equivalence or preorder o
were introduced in [16]. Here I redefine these concepts in terms of a new concept
of correctness w.r.t. a semantic translation.

Definition 2. Let V and V' be domains of values in which two languages £
and £’ are interpreted. A semantic translation from V into V' is a relation
R C V' x V such that Vv € V.30’ € V. v'Rw.

Thus every semantic value in 'V needs to have a counterpart in V/—possibly mul-
tiple ones. For valuations n: X — V' p: X — V T write nR p iff n(X) R p(X)
for each X € X.

Definition 3. A translation 7 : T, — T, is correct w.r.t. a semantic transla-
tion R if [T(E)] . (n) R[E],(p) for all expressions E € T, and all valuations
n:X -V and p: X -V with nRp.

Thus 7 is correct iff the meaning of the translation of an expression F is a
counterpart of the meaning of E, no matter what values are filled in for the
variables, provided that the value filled in for a given variable X occurring in
the translation 7 (F) is a counterpart of the value filled in for X in E.

Definition 4. A translation 7 : Tz — T,/ is correct up to o iff e is an
equivalence, the restriction R of & to V’ x V is a semantic translation, and 7
is correct w.r.t. R.

Definition 5. A translation 7 is wvalid up to e iff it is correct w.r.t. some
semantic translation R C e. Language £’ is at least as expressive as L up to e
if a translation valid up to e from £ into £’ exists.

Example 4 in [18] illustrates both notions and shows their difference.

1T will be chiefly interested in the case that e is an equivalence—hence the choice
of a symbol that looks like ~. However, to establish Observation 2 and Theorem 2
below, it suffices to know that ev is reflexive and transitive. My convention is that the
dotted end of e points to a translation and the other end to an original—without
offering an intuition for the possible asymmetry.
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3 Correct = Valid 4+ Congruence

In [16] the concept of a correct translation up to ~ was defined, for ~ a semantic
equivalence on Z. Here two valuations n,p : X — Z are called ~-equivalent,
n ~ p, if n(X) ~ p(X) for each X € X. In case there exists a v € V for
which there is no ~-equivalent v’ € V', there is no correct translation from £
into £ up to ~. Namely, the semantics of £ describes, among others, how any
L-operator evaluates the argument value v, and this aspect of the language has
no counterpart in £’. Therefore, [16] requires

Vo e V. e V. v ~o. (1)
This implies that for any valuation p: X — V thereisann: X — V’/ withn ~ p.

Definition 6 ([16]). A translation 7 from £ into £’ is correct up to ~ iff (1)
holds and [T (E)] . (n) ~ [E];(p) for all E € T and all valuations  : X — V'
and p: X — V with n ~ p.

Note that this definition agrees completely with Definition 4. Requirement (1)
above corresponds to R being a semantic translation in Definition 4.

If a correct translation up to ~ from £ into £’ exists, then ~ must be a
congruence for L.

Definition 7. An equivalence relation ~ is a congruence for a language £ inter-
preted in a semantic domain V if [E].(v) ~ [E],(p) for any L-expression E
and any valuations v, p: X — V with v ~ p.

Proposition 1 ([16]).If Tis a correct translation up to ~ from £ into £ then
~ is a congruence for £

The existence of a correct translation up to ~ from £ into £ does not imply
that ~ is a congruence for £’. However, ~ has the properties of a congruence
for those expressions of £’ that arise as translations of expressions of £, when
restricting attention to valuations into U := {v € V' | Jv € V. v/ ~ v}. In [16]
this called a congruence for T(L).

Definition 8. Let 7 : T, — Tz be a translation from £ into £’. An equiva-
lence ~ on V' is a congruence for T(L) if [T(E)] . (0) ~ [T(E)] . (n) for any
EeT, and 0,1: XU with 0 ~ 7.

Proposition 2 ([16]). If 7 is a correct translation up to ~ from £ into £', then
~ is a congruence for 7 (L).

The following theorem tells that the notion of validity proposed in Sect.2 can
be seen as a generalisation of the notion of correctness from [16] that applies to
equivalences (and preorders) o that need not be congruences for £ or 7(L).

Theorem 1. A translation 7 from £ into £’ is correct up to a semantic equiv-
alence ~ iff it is valid up to ~ and ~ is a congruence for 7 (L). 9

2 This is called a lean congruence in [17]; in the presence of recursion, stricter congru-
ence requirements are common. Those are not needed in this paper.
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4 A Hierarchy of Expressiveness Preorders

An equivalence or preorder o on a class Z is said to be finer, stronger, or more
discriminating than another equivalence or preorder & on Z if v &v w = v & w
for all v, w € Z.

Observation 1. Let 7 : T, — Tz be a translation from £ into £, and let o
be finer than &. If 7 is valid up to ev, then it is also valid up to .

The quality of a translation depends on the choice of the equivalence or pre-
order up to which it is valid. Any two languages are equally expressive up to
the universal equivalence, relating any two processes. Hence, the equivalence
or preorder needs to be chosen carefully to match the intended applications of
the languages under comparison. In general, as shown by Observation 1, using
a finer equivalence or preorder yields a stronger claim that one language can be
encoded in another. On the other hand, when separating two languages £ and
L' by showing that £ cannot be encoded in L', a coarser equivalence yields a
stronger claim.

Observation 2. The identity is a valid translation up to any preorder from any
language into itself.

Theorem 2. If valid translations up to e exists from £; into Lo and from Lo
into L3, then there is a valid translation up to e from £; into L3. q

Theorem 2 and Observation 2 show that the relation “being at least as expressive
as up to «” is a preorder on languages.

5 Closed-Term Languages

The languages considered in this paper feature variables, operators of arity n€IN,
and/or other constructs. The set Tz of L-expressions is inductively defined by:

— X € T, for each variable X € X,
- f(E4,...,E,) € T, for each n-ary operator f and expressions F; € T,
— and clauses for the other constructs, if any.

Examples of other constructs are the infinite summation operator » ,_; E; of
CCS, which takes arbitrary many arguments, or the recursion construct pX.FE,
that has one argument, but binds all occurrences of X in that argument.

In general a construct has a number (possibly infinite) of argument expres-
sions and it may bind certain variables within some of its arguments—the scope
of the binding. An occurrence of a variable X in an expression is bound if it
occurs within the scope of a construct that binds X, and free otherwise.

The semantics of such a language is given, in part, by a domain of values
V, and an interpretation of each n-ary operator f of £ as an n-ary operation
fV: V" =V on V. Using the equations

[X] (p) = p(X) and [f(Er,....Ed)](p) = [V ([E1](0): - [Eal L (0))



A Theory of Encodings and Expressiveness 189

this allows an inductive definition of the meaning [E], of an L-expression E.
Moreover, [E],(p) only depends on the restriction of p to the set fu(E) of
variables occurring free in F.

The set Tz C Tz of closed terms of L consists of those L-expressions E € T
with fu(E) = 0. If P € T and V # () then [P] .(p) is independent of the choice
of p: X — V, and therefore denoted [P] r

Definition 9. A substitution in L is a partial function o : X — T, from the
variables to the L-expressions. For a given L-expression E € T, E[o] € T,
denotes the L-expression F in which each free occurrence of a variable X €
dom(o) is replaced by o(X), while renaming bound variables in E so as to avoid
a free variable Y occurring in an expression ¢(X) ending up being bound in
E[o]. A substitution is closed if it has the form o : X — T,.

An important class of languages used in concurrency theory are the ones where
the distinction between syntax and semantic is effectively dropped by taking
V = T,, i.e. where the domain of values where the language is interpreted in
consists of the closed terms of the language. Here a valuation is the same as a
closed substitution, and [E].(p) for E € T, and p : X — T, is defined to be
E[p] € T,. I will call such languages closed-term languages.

6 Translating a Synchronous into an Asynchronous 7

As an illustration of the concepts introduced above, consider the w-calculus as
presented in [28], i.e., the one of [44] without matching, 7-prefixing, and choice.

Given a set of names N, the set T of process expressions or terms E of
the calculus is given by

E:=X | 0 | zyEF | z(2).E | E|E | (v2)E | 'E

with z,y, z ranging over A/, and X over X, the set of process variables. Process
variables are not considered in [44], although they are common in languages
like CCS [27] that feature a recursion construct. Since process variables form a
central part of my notion of a valid or correct translation, here they have simply
been added. This works generally. In Sect.12 I show that for the purpose of
accessing whether one language is as expressive as another, translations between
them can be assumed to be compositional. This important result would be lost if
process variables were dropped from the language. In that case compositionality
would need to be stated as a separate requirement for valid translations.

Closed process expressions are called processes. The m-calculus is usually
presented as a closed-term language, in that the semantic value associated with
a closed term is simply itself. Yet, the real semantics is given by a reduction
relation between processes, defined below.

Definition 10. An occurrence of a name z in w-calculus process P € T, is
bound if it occurs within a subexpression z(z).P’ or (vz)P' of P; otherwise it
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is free. Let n(P) (resp. bn(P)) be the set of names occurring (bound) in P €

T,. Structural congruence, =, is the smallest congruence relation on processes
satisfying

PP, = B|P (vz)0 = 0 z(2).P = z(w).P{wz}

Plo =P (v2)(vw)P = (vw)(vz)P (vz)P = (vw)P{w/z} .

Here the rightmost column only holds when w ¢ n(P), and P{W/z} denotes the
process obtained by replacing each free occurrence of z in P by w.

Definition 11. The reduction relation, — C T, x T, is generated by the
following rules.

(2 ¢ bn(Q))

Zz.Plz(y).Q — P|Q{*ly}
PP PP Q=P P—P P=¢
P|Q—>P/|Q (I/Z)P—> (I/Z)P/ QHQI

Let = be the reflexive and transitive closure of —. The observable behaviour
of m-calculus processes is often stated in terms of the outputs they can produce
(abstracting from the value communicated on an output channel).

Definition 12. Let z € N. A process P has a strong output barb on x, notation
P|z, if P can perform an output action Zz. This is defined inductively:

Plz Qlz Pl x#=z Plz
(PlQ)z  (PIQ)ls (v2)P)la ("P)lz

A process P has a weak output barb on x, Pllz, if there is a P’ with P = P’|};.

(72.(P))lz

A common semantic equivalence applied in the m-calculus is weak barbed con-
gruence [29,44].

Definition 13. Weak (output) barbed bisimilarity is the largest symmetric rela-
tion &~ C T, x T, such that

— P X Q@ and P|; implies Q| z, and
~ PAQ and P = P’ implies Q = Q' for some Q' with P’ & Q’.

Weak barbed congruence, =¢, is the largest congruence included in .

Often input barbs, defined similarly, are included in the definition of weak barbed
bisimilarity [44]. This is known to induce the same notion of weak barbed con-
gruence [44]. Another technique for defining weak barbed congruence is to use
a barb, or set of barbs, external to the language under investigation, that are
added to the language as constants [21], similar to the theory of testing of [9].
This method is useful for languages with a reduction semantics that do not fea-
ture a clear notion of barb, or where there is ambiguity in which barbs should be
counted and which not, or for comparing languages with different kinds of barb.
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Example 1. Zz.0 2¢ (vu)(Zu.0lu(v).92.0).
For let E := X|z(u).uv.0 with p(X) = Zz.0 and {(X) = (vu)(Zu.0lu(v).92.0).
Then E[(] — (vu)(u(v).v2.0[tv.0) — (92.0)]5 but (E[p])¥s.

The asynchronous r-calculus, as introduced by Honda and Tokoro in [24] and
by Boudol in [4], is the sublanguage arm of the fragment 7 of the m-calculus pre-
sented above where all subexpressions Zy.E have the form Zy.0. Asynchronous
barbed congruence, =, is the largest congruence for the asynchronous m-calculus
included in . Since a7 is a sublanguage of 7, ¢ is at least as coarse an equiv-
alence as ¢, ie. ¢ C 2¢ The inclusion is strict, since lz(z).2z.0 ¢ 0, yet
2(2).22.0 22° 0 [44]. Since all expressions used in Example 1 belong to am, one
even has zz.0 25 (vu)(Zu.0|u(v).v2.0).
Boudol [4] defined a translation 7 from 7 to ar inductively as follows:

T(X)=X for X € X
7(0)=0
T(z2.P) = (u)(Zu|u(v).(92|T (P))) choosing u,v ¢ n(P), u# v
T (x(y).P) = z(u).(v)(av|v(y).T (P)) choosing u,v ¢ n(P), u #v
T(PIQ) = (T(P)IT(Q)
T(\P)= T(P)
7 ((vx)P) = (vx)T (P)
Example 1 shows that 7 is not valid up to €. In fact, it is not even valid up to

. . . . e . e .
~¢ However, as shown in [25], it is valid up to ~. Since & is not a congruence
. . i
(for 7 or ar) it is not correct up to .

7 Congruence Closure

Definition 14. An equivalence relation ~ is a I-hole congruence for a language
L interpreted in a semantic domain V if [E] . (v) ~ [E] ,(p) for any L-expression
E and any valuations v,p : X — V with v ~! p. Here v, p are ~'-equivalent,
v~tp, if v(X) ~ p(X) for some X € X and v(Y)=p(Y) for all variables Y # X.

An n-hole congruence for any finite n € IN can be defined in the same vain, and
it is well known and easy to check that a 1-hole congruence ~ is also an n-hole
congruence, for any n € IN. However, in the presence of operators with infinitely
many arguments, a 1-hole congruence need not be a congruence.

Example 2. Let V be (IN x IN) U {oo}, with the well-order < on V inherited
lexicographically from the default order on IN and co the largest element. So
(n,m) < (n/,m') iff n <n'V(n=mAm<m'). Consider the language £ with
constants 0, 1 and (1), interpreted in V as (0,0), (1,0) and (0, 1), respectively,
the binary operator +, interpreted by (ny,m1) +V (ng,ma) = (n1+ng, mi+ms)
and co+F = E+00 = 00, and the construct sup(E;);cs that takes any number of
arguments (dependent on the set of the index sets I). The interpretation of sup
in V is to take the supremum of its arguments w.r.t. the well-order <. In case
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sup is given finitely many arguments, it simply returns the largest. However
sup((n,1))ienw = (n+1,0).

Now let the equivalence relation ~ on V be defined by (n,m) ~ (n/,m’) iff
n = n’/, leaving oo in an equivalence class of its own. This relation is a 1-hole
congruence on L. Hence, it is also a 2-hole congruence, so one has

((nlvml) ~ (nllvmll) A (n27m2) ~ (n,27m/2)) = (nlvml) + (’VLQ,TI’LQ) ~ (nllvm/l) + (n/27m,2)
Yet it fails to be a congruence: (n,i) ~ (n,0) for all ¢« € IN, but

(n4+1,0) = sup((n,4))iew # sup((n,0));enw = (n,0).

It is well known and easy to check that the collection of equivalence relations on
any domain V, ordered by inclusion, forms a complete lattice—mnamely the inter-
section of arbitrary many equivalence relations is again an equivalence relation.
Likewise, the collection of 1-hole congruences for £ is also a complete lattice,
and moreover a complete sublattice of the complete lattice of equivalence rela-
tions on V. The latter implies that for any collection C of 1-hole congruence
relations, the least equivalence relation that contains all elements of C' (exists
and) happens to be a 1-hole congruence relation. Again, this is a property that
is well known [22] and easy to prove. It follows that for any equivalence relation
~ there exists a largest 1-hole congruence for £ contained in ~. I will denote this
1-hole congruence by ~1LC, and call it the congruence closure of ~ w.r.t. L. One
has vy ~¢ vy for vy, v2 € V iff [E] . (v) ~ [E].(p) for any L-expression E and
any valuations v, p : X — V with v(X) =v; and p(X) = v, for some X € X and
v(Y)=p(Y) for all Y # X. Such results do not generally hold for congruences.

Example 3. Continue Example 2, but skipping the operator 4. Let ~j be the
equivalence on V defined by (n,m) ~j (n/,m’) iff n = n’A(m =m/vm,m’ < k).
It is easy to check that all ~; for k& € IN are congruences on the reduced £, and
contained in ~. Yet their least upper bound (in the lattice of equivalence relations
on V) is ~, which is not a congruence itself. In particular, there is no largest
congruence contained in ~.

When dealing with languages £ in which all operators and other constructs
have a finite arity, so that each E € T, contains only finitely many variables,
there is no difference between a congruence and a 1-hole congruence, and thus
rvlLC is a congruence relation for any equivalence ~. I will apply the theory of
expressiveness presented in this paper also to languages like CCS that have
operators (such as ), ; E;) of infinite arity. However, in all such cases I'm
currently aware of, the relevant choices of £ and ~ have the property that ~}°
is in fact a congruence relation. As an example, consider weak bisimilarity [27].
This equivalence relation fails to be a congruence for . However, the coarsest 1-
hole congruence contained in this relation, often called rooted weak bisimilarity,
happens to be a congruence. In fact, when congruence-closing weak bisimilarity
w.r.t. the binary sum, the result [15] is also a congruence for the infinitary sum,
as well as for all other operators of CCS [27].
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Definition 15. Let 7 be a translation from £ into £’. A subset W of V' is
closed under T (L) if [T(E)](n) € W for any expression E € T, and valuation
n: X — W. An equivalence ~ on W is a congruence (respectively I-hole
congruence) for T(L£) on W if for any F € T, and 6,7 : X — W with 0 ~ 7
(respectively 6 ~* ) one has [T (E)] ., (0) ~ [T(E)] . (n).

Proposition 3. Let 7 be a translation from £ into £’ that is correct w.r.t. a
semantic translation R C V' x V. Let R(V) := {v' € V' | Jv € V. v'Ru}. Then
R(V) is closed under 7 (L£).

Proof: Let E € T, and n : X — R(V). Take p : X — V with pR#. Then
[7(B)] o NRIE] (o). Since [E](p) € V one has [T(E)] () € R(V). O

Proposition 4. Let the translation 7 from £ into £’ be correct w.r.t. the
semantic translation R C ~. Then ~ is a (1-hole) congruence for £ iff it is
a (1-hole) congruence for 7 (£) on R(V).

Proof: First suppose ~ is a congruence for £. Let E€ T, and 0,7 : X — R(V)
with @ ~ 7. By the definition of R(V) there are valuations v,p : X — V with
ORvandn R p. Now v~ 60 ~n~p,so

[T(E)ﬂc,(Q)R[Eﬂc(u) ~ [[Eﬂz;(p)R_l[[T(E)ﬂL/ (n)
and hence [T(E)],,(0) ~ [T(E)], (n). The other direction proceeds in the

same way.

Now suppose ~ is a 1-hole congruence for £. Let E€ Tz and 8,1 : X — R(V)
with 6 ~1! 5. Then 6(X) ~ n(X) for some X € X and 6(Y) = n(Y) for all
Y # X. So there must be v,p: X — V with § Rv, n R p and v(Y) = p(Y)
for all Y # X. Since v(X) ~ 0(X) ~ n(X) ~ p(X) it follows that v ~' p. The
conclusion proceeds as above, and the other direction goes likewise. a

The requirement of being a congruence for 7(£) on R(V) is slightly weaker
than that of being a congruence for 7 (L£)—cf. Definition 8—for it proceeds by
restricting attention to valuations into R(V) C U. q

8 A Congruence Closure Property for Valid Translations

In many applications, semantic values in the domain of interpretation of a lan-
guage L are only meaningful up to a semantic equivalence ~¢, and the intended
semantic domain could just as well be seen as the set of ~°-equivalence classes
of values. For this purpose it is essential that ~¢ is a congruence for £. Often ~¢
is the congruence closure of a coarser semantic equivalence ~, so that two values
end up being identified iff they are ~-equivalent in every context. An example of
this occurred in Sect. 6, with ~ in the réle of ~ and ¢ in the réle of ~¢. Now
Theorem 4, contributed in this section, says that if a translation from £ into £’
is valid up to ~, then it is even valid up to an equivalence NlLfR that extends ~¢
from V to a subdomain W of V' that suffices for the interpretation of translated
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expressions from £. This equivalence ~¢ coincides with the congruence closure

of ~on L, as well as on 7 (L), and melts each equivalence class of V with exactly
one of W, and vice versa.

Let £ and £’ be languages with [ [, : T, — (¥ — V) — V) and
[ 1o : T — (X — V') — V’). In this section I assume that VNV’ = 0. To
apply the results to the general case, just adapt £’ by using a copy of V'—any
preorder & on V UV’ extends to this copy by considering each copied element
e-equivalent to the original.

Definition 16. Given any semantic translation R, let =g C (V UV’)? be the
smallest equivalence relation on V UV’ containing R.

Theorem 3. If a translation 7 is correct w.r.t. the semantic translation R, then
=R is a 1-hole congruence for L. q

By Proposition4 =g also is a 1-hole congruence for 7(£) on R(V). Only the
subset R(V) of V/ matters for the purpose of translating £ into £’. On V'\R(V)
the equivalence =g is the identity.

Theorem 4. Let 7 be a translation from a language £, with semantic domain
V, into a language £’, with domain V’, that is valid up to a semantic equivalence
~. Then 7 is even valid up to a semantic equivalence NER, contained in ~, such
that (1) the restriction of ~;% to V is the largest 1-hole congruence for £
contained in ~, (2) the set W := {v € V' | 3v € V. v/ ~R v} is closed under
T (L), and (3) the restriction of ~; to W is the largest 1-hole congruence for
7 (L) on W that is contained in ~. 9

Note that each equivalence class of NER on VUW melts an equivalence class of
~r on V with one of ~}% on W. Moreover, on V the relation is completely
determined by £ and ~. However, in general the whole relation ~j% is not

completely determined by £ and ~.

Corollary 1. Let 7 be a translation from a language £, with semantic domain
V, into a language £’, with domain V’, valid up to a semantic equivalence ~,
and suppose the congruence closure ~L of ~ w.r.t. £ is in fact a congruence.
Then 7 is correct up to the equivalence NZCR described in Theorem 4. q

The languages m and am of Sect.6 do not feature operators (or other con-
structs) of infinite arity. Hence the congruence closure ~1¢ or ~!¢ of an equiv-
alence ~ on 7 or ar is always a congruence. So by Corollary 1 Boudol’s trans-
lation 7 is correct up to an equivalence é;’R, defined on the disjoint union
of the domains T, and T, on which the two languages are interpreted. This
equivalence is contained in ~, and on the source domain T, coincides with ¢,
By Theorem 4, the restriction of é;r,R to a subdomain W C T, is the largest
congruence for 7 (7) on W that is contained in ~. As 2 is a congruence for all
of ar on all of Ty, and contained in A, it is certainly a congruence for 7 (m)
on W, and thus contained in éw)R. This inclusion turns out to be strict. As

an illustration of that, note that z2.0|Z2.0 =¢ Z2.220. (This follows since these
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processes are strong (early) bisimilar [44] and thus strong full blslmﬂar by [44
Definition 2.2.2].) Consequently, their translations must be related by & . So
for distinct u, v, y,w,z, 2 € N,

() (@ulu(v).(v2]0))| (u) (Fulu(v).(52]0) A7 g (¥)(@ylu(w).(@2](w)(@ulu(v).(v2]0)))).

Yet, these processes are not =:-equivalent, as can be seen by putting them in a
context x(y).x(y).7(s)|X. There, only the left-hand side has a weak barb {5.

9 Integrating Language Features Through Translations

The results of the previous section show how valid translations are satisfactory
for comparing the expressiveness of languages. If there is a valid translation 7
from £ to £’ up to ~, and (as usual) ~1¢ is a congruence, then all truths that
can be expressed in terms of £ can be mlmlcked in £’'. For the congruence classes
of Nlﬁc translate bijectively to congruence classes of an induced equivalence rela-
tion on the domain of 7(£) (within the domain of £’), and all operations on
those congruence classes that can be performed by contexts of £ have a perfect
counterpart in terms of contexts of 7 (L£). This state of affairs was illustrated on
Boudol’s translation from a synchronous to an asynchronous w-calculus.

There is however one desirable property of translations between languages
that has not yet been achieved, namely to combine the powers of two languages
into one unified language. If both languages £; and Lo have valid translations
into a language L', then all that can be done with £; can be mimicked in a
fragment of £’, and all that can be done with £> can be mimicked in another
fragment of £’. In order for these two fragments to combine, one would like to
employ a single congruence relation on £’ that specialises to congruence rela-
tions for 77 (£1) and 73(L2), which form the counterparts of relevant congruence
relations for the source languages £1 and Ls.

In terms of the translation 7 from 7 to am, the equivalence = on T,, would
be the right congruence relation to consider for ar. Ideally, this congruence would
extend to an equivalence =7 = on the disjoint union T; & Tz, such that the
restriction of =7 = to T, is a congruence for 7. Necessarily, this congruence
on T, would have to distinguish the terms 7zz.0|zz.0 and Zz. 562'0, since their
translations are distinguished by 2. One therefore expects =7 = on Tr to be
strictly finer than =¢. Here it is 1mp0rtant that the union of T and T, on
which this congruence is defined is required to be disjoint. For if one considers
Tar as a subset of Ty, then we obtain that the restriction of 7 = to that subset
(1) coincides with 2¢ and (2) is strictly finer than 22¢. This contradicts the fact
that =€ is strictly finer than =.

In Sect.12 I will show that such a congruence =7 indeed exists. In fact,
under a few very mild conditions this result holds g;enerally7 provided that the
source language L is a closed-term language. q
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10 A Unique Decomposition of Terms

The results of Sect. 12 apply only to languages satisfying two postulates, formu-
lated below, and to preorders e that “respect =”, defined in Sect. 11.

Definition 17. a-conversion is the act of renaming all occurrences of a bound
variable X within the scope of its binding into another variable, say Y, while
avoiding capture of free variables. Here one speaks of capture when a free occur-
rence of Y turns into a bound one.

Write E = F if expression E can be converted into F by acts of a-conversion.

In languages where there are multiple types of bound variables, = allows con-
version of all of them. In a m-calculus with recursion, for instance, there could
be bound process variables X € X" as well as bound names z € A/. The last two
conversions in the right column of Definition 10 define a-conversion for names.

Postulate 1 ([16], paraphrased). There exists a class of expressions called
standard heads, and a class of substitutions called standard substitutions, such
that for each expression E, if not a variable, there are unique standard heads H
and substitutions ¢ such that E £ Hlo].

A term f(c, g(c)), for instance, can be written as H[o] where H = f(X1, Xo) is
a head, and o : {X1, X2} — T, is given by 0(X;) = ¢ and o(X3) = g(c¢). The
head H is standardised by means of a particular (arbitrary) choice for its argu-
ment variables X; and X5. o is standardised through a particular choice of the
bound variables that may occur in the expressions o(X). A head for a recursive
expression uX.f(g(c), g(g(X))) is uX.f(Y,g(g(X))). See [16] for further detail.

This postulate is easy to show for each common type of system description
language, and I am not aware of any counterexamples. However, while striving
for maximal generality, I consider languages with (recursion-like) constructs that
are yet to be invented, and in view of those, this principle has to be postulated
rather than derived.

11 Invariance of Meaning Under a-conversion

Write v =, w, with v, w € V, iff there are terms E, F € T, with E = F, and
a valuation ¢ : X — V such that [E],(¢) = v and [F],({) = w. This relation
is reflexive and symmetric.

In [16] T limited attention to languages satisfying

if E= Fthen [E], =[F],. (2)

This postulate says that the meaning of an expression is invariant under a-
conversion. It can be reformulated as the requirement that =, is the identity
relation. This postulate is satisfied by all my intended applications, except for
the important class of closed-term languages. Languages like CCS and the -
calculus can be regarded as falling in this class (although it is also possible to
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declare the meaning of a term under a valuation to be an =-equivalence class of
closed terms). To bring this type of application within the scope of my theory,
here I weaken this postulate by requiring merely that =, is an equivalence.

Postulate 2. =/ is an equivalence relation.

This postulate is needed in Sect. 12. I also need to restrict attention to preorders
o with =, C «. When that holds I say that the preorder e respects =,. If (2)
holds—which strengthens of Postulate 2—then any preorder respects =/.

12 Compositionality

An important property of translations, defined below, is compositionality. In this
section show I that any valid translation up to a preorder e can be modified
into such a translation that moreover is compositional, provided one restricts
attention to languages that satisfy Postulates 1 and 2, and preorders o that
respect =

Definition 18. A translation 7 from £ into £’ is compositional if

(1) ’T(E[a]) 2T(E )[Toa} for each E € Tz and o : fu(E) — Ty,
(2) E = F implies T(E) = T(F) for all E, F € T,
(3) and moreover 7 (X) = X for each X € X.

In case E = f(t1,...,t,) for certain ¢; € T, this amounts to
T(f(tr,...,tn)) = Ef(T(t1),...,T(tn)), where E; = T(f(X1,...,X,)) and
E¢(uy,...,uy) denotes the result of the simultaneous substitution in this expres-
sion of the terms u; € T for the free variables X;, for i« = 1,...,n. The
first requirement of Definition 18 is more general and covers language constructs
other than functions, such as recursion. Requiring equality rather than = is too
demanding. q

Lemma 1. If 7; : Ty, — T,, and 75 : Ty, — T, are compositional
translations, then so is their composition 7o 0 77 : Ty, — T, defined by
T2 0T (E) :=T5(T1(F)) for all E € L;.

Proof: (1) T2(T(Elo))) & To(Ti(E)[Ti 0 0]) & T(Ti(E))[T; 0 T o o) for each
0:X —T,, and E € T,,. Here the derivation of the first = uses Property (2)
of Definition 18—and this is the reason for requiring that property.
(2) EZF implies 7, (E) =T, (F) and T2(71(E)) = To(T,(F)) for all E, F€T .
(3) T2(T1(X)) = T2(X) = X for each X € X. O

Theorem 5. Let £ and £’ be languages that satisfy Postulates 1 and 2, and &
a preorder that respects =, and =,/. If any valid (or correct) translation from
L into £ up to e exists, then there exists a compositional translation that is
valid (or correct) up to e-. q
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Hence, for the purpose of comparing the expressive power of languages, valid
translations between them can be assumed to be compositional. For correct
translations this was already established in [16], but assuming (2), a stronger
version of Postulate 2.

I can now establish the theorem promised in Sect. 9. In view of Theorem 5, no
great sacrifices are made by assuming that the translation 7 is compositional.
Other “mild conditions” needed are Postulate 2 for £’ and = respecting = ..

Theorem 6. Let £ be a closed-term language and £’ a language that satisfies
Postulate 2. Let 7 be a compositional translation from £ into £’ that is valid
up to ~. Let &~ be any congruence for £’ containing =, and contained in ~.
Then 7 is correct up to an equivalence ~7 on V UV’ contained in ~, that on
V' coincides with =. q

13 Related Work

The concept of full abstraction stems from Milner [26]. It indicates a satisfactory
connection between a denotational and an operational semantics of a language.
Riecke [42] and Shapiro [45] adapt this notion to translations between languages.

Definition 19. A translation 7: Tz, — T, is fully abstract w.r.t. the equiva-
lences ~g CT%_ and ~p CT% if, for all P,Q € Trg, P ~s Q & T(P) ~1 T(Q).

In [42,45], ~g and ~7 are required to be congruence closures—see [18] for more
detail. The simplified definition above was used in [1,30,31]. Fu [10] bases a
theory of expressiveness on full abstraction, with a divergence-preserving form
of barbed branching bisimilarity [19] in the rdle of ~g and ~r. A comparison of
full abstraction with the approach of the present paper appears in [18].

In the last twenty years, a great number of encodability and separation
results have appeared, comparing CCS, Mobile Ambients, and several versions
of the m-calculus (with and without recursion; with mixed choice, separated
choice or asynchronous) [1,2,5-8,11-13,23,30-34,38-41,43,46]; see [20,21] for
an overview. Many of these results employ different and somewhat ad-hoc crite-
ria on what constitutes a valid encoding, and thus are hard to compare with each
other. Several of these criteria are discussed and compared in [35,36]. Gorla [21]
collected some essential features of these approaches and integrated them in a
proposal for a valid encoding that justifies most encodings and some separation
results from the literature.

Like Boudol [3] and the present paper, Gorla requires a compositional-
ity condition for encodings. However, his criterion is weaker than mine (cf.
Definition 18) in that the expression Ef encoding an operator f may be depen-
dent on the set of names occurring freely in the expressions given as arguments
of f. This issue is further discussed in [16]. It is an interesting topic for future
research to see if there are any valid encodability results a la [21] that suffer
from my proposed strengthening of compositionality.
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The second criterion of [21] is a form of invariance under name-substitution.
It serves to partially undo the effect of making the compositionality requirement
name-dependent. In my setting I have not yet found the need for such a condition.
In [16] I argue that this criterion as formalised in [21] is too restrictive.

The remaining three requirements of Gorla (the ‘semantic’ requirements) are
very close to an instantiation of mine with a particular preorder e . If one takes
o to be weak barbed bisimilarity with explicit divergence (i.e. relating divergent
states with divergent states only), using barbs external to the language, as dis-
cussed in Sect. 6, then an valid translation in my sense satisfies Gorla’s semantic
criteria, provided that the equivalence = on the target language that acts as a
parameter in Gorla’s third criterion is also taken to be weak barbed bisimilar-
ity with explicit divergence. The precise relationships between the proposals of
[16,21] are further discussed in [37].

Further work is needed to sort out to what extent the two approaches have
relevant differences when evaluating encoding and separation results from the
literature. Another topic for future work is to sort out how dependent known
encoding and separation results are on the chosen equivalence or preorder.
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Abstract. We introduce a general framework for Runtime Verification,
parameterized with respect to a set of conditions. These conditions are
encoded in the trace generated by a monitored process, which a monitor
can observe. We present this parameterized framework in its general form
and prove that it corresponds to a fragment of HML with recursion,
extended with these conditions. We then show how this framework can
be applied to a number of instantiations of the set of conditions.

1 Introduction

Runtime Verification (RV) is a lightweight verification technique that checks
whether a system satisfies a correctness property by analysing the current exe-
cution of the system [20,29], expressed as a trace of execution events. Using the
additional information obtained at runtime, the technique can often mitigate
state explosion problems typically associated with more traditional verification
techniques. At the same time, limiting the verification analysis to the current exe-
cution trace hinders the expressiveness of RV when compared to more exhaustive
approaches. In fact, there are correctness properties that cannot be satisfactorily
verified at runtime (e.g. the finiteness of the trace considered up to the current
execution point prohibits the verification of liveness properties). Because of this
reason, RV is often used as part of a multi-pronged approach towards ensuring
system correctness [5,6,8,14,15,25], complementing other verification techniques
such as model checking, testing and type checking.

In order to attain an effective verification strategy consisting of multiple ver-
ification techniques that include RV, it is crucial to understand the expressive
power of each technique: one can then determine how to best decompose the
verification burden into subtasks that can then be assigned to the most appro-
priate verification technique. Monitorability concerns itself with identifying the
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properties that are analysable by RV. In [21,22] (and subsequently in [2]), the
problem of monitorability was studied for properties expressed in a variant of the
modal p-calculus [26] called pHML [28]. The choice of the logic was motivated
by the fact that it can embed widely used logics such as CTL and LTL, and
by the fact that it is agnostic of the underlying verification method used—this
leads to better separation of concerns and guarantees a good level of generality
for the results obtained. The main result in [2,21,22] is the identification of a
monitorable syntactic subset of the logic ygHML (i.e., a set of logical formulas for
which monitors carrying out the necessary runtime analysis exist) that is shown
to be maximally expressive (i.e., any property that is monitorable in the logic
may be expressed in terms of this syntactic subset). We are unaware of other
maximality results of this kind in the context of RV.

In this work we strive towards extending the monitorability limits identi-
fied in [2,21,22] for pHML. Particularly, for any logic or specification language,
monitorability is a function of the underlying monitoring setup. In [2,21,22],
the framework assumes a classical monitoring setup, whereby a (single) monitor
incrementally analyses an ordered trace of events describing the computation
steps that were executed by the system. A key observation made by this paper
is that, in general, execution traces need not be limited to the reporting of events
that happened. For instance, they may describe events that could not have hap-
pened at specific points in the execution of a system. Alternatively, they may also
include descriptions for depth-bounded trees of computations that were possible
at specific points in an execution. We conjecture that there are instances where
this additional information can be feasibly encoded in a trace, either dynami-
cally or by way of a pre-processing phase (based, e.g., on the examination of logs
of previous system executions, or on the full static checking of sub-components
making up the system). More importantly, this additional information could, in
principle, permit the verification of more properties at runtime.

The contribution of this paper is a study of how the aforementioned aug-
mented monitoring setups may affect the monitorability of pHML, potentially
extending the maximality limits identified in [2,21,22]. More concretely:

1. We show how these aspects can be expressed and studied in a general monitor-
ing framework with (abstract) conditions, Theorems 3 and 4 resp. in Sects. 3
and 5.

2. We instantiate the general framework with trace conditions that describe the
inability to perform actions, amounting to refusals [31], Propositions 1 and 5.

3. We also instantiate the framework with conditions describing finite exe-
cution graphs, amounting to the recursion-free fragment of the logic [24],
Propositions 2 and 3.

4. Finally, we instantiate the framework with trace conditions that record infor-
mation from previous monitored runs of the system, Proposition 4. This, in
turn, leads us to a notion of alternating monitoring that allows monitors to
aggregate information over monitored runs. We show that this extends the
monitorable fragment of our logic in a natural and significant way.
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The remainder of the paper is structured as follows. After outlining the necessary
preliminaries in Sect. 2, we develop our parameterized monitoring framework
with conditions in Sect. 3 for a monitoring setup that allows monitors to observe
both silent and external actions of systems. The two condition instantiations for
this strong setting are presented in Sect. 4. In Sect. 5 we extend the parameterized
monitoring framework with conditions to a weak monitoring setup that abstracts
from internal moves, followed by two instantiations similar to those presented in
Sect. 4. Section 6 concludes by discussing related and future work.

2 Background

Labelled Transition Systems. We assume a set of external actions ACT and
a distinguished silent action 7. We let o range over ACT and p over AcTU {7}.
A Labelled Transition System (LTS) on ACT is a triple

L= <P,ACT,—>L>,

where P is a nonempty set of system states referred to as processes p,q, ..., and
—1 C P x (AcTU{7}) x P is a transition relation. We write p £ ¢ instead
of (p,u,q) € —r. By p £, we mean that there is some q such that p LN q.
We use p = q to mean that, in L, p can derive g using a single p action
and any number of silent actions, i.e., p(=r1)* L (Z1)*q. We distinguish
between (general) traces s = piypio ... pr € (ACTU{7})* and external traces t =
a1 . ... € ACT*. For a general trace s = puipto . .. iy € (AcTU{T})*, p >1 ¢
means p “—1>L“—2>L .. M—WL g; and for an external trace t = aja ... a, € ACT",
P <. g means p =>; =3, ... =5, g when r > 1 and p(=)*q when t = ¢ is
the empty trace. We occasionally omit the subscript L when it is clear from the
context.

Ezample 1. The (standard) regular fragment of CCS [30] with grammar:
p,q € PROC ::= nil | w.p | p+4q | rec x.p | =,

where x,v, z, ... are from some countably infinite set of variables VAR, and the
transition relation defined as:
rec x.p/y] SN AN
Acr—mM — RECw SELL& SELR&
[0 0 - v,
wp—p recr.p — ¢ p+q—p p+qg—gq

constitutes the LTS (Proc, AcT, —). We often use the CCS notation above to
describe processes. |

Specification Logic. Properties about the behaviour of processes may be spec-
ified via the logic pHML [4,28], a reformulation of the modal p-calculus [26].
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Definition 1. pHML formulae on ACT are defined by the grammar:

o, € pHML = tt | ff | oA | oV
| (e | ue | minXe | mxXe | X

where X, Y, Z,... come from a countably infinite set of logical variables LVAR.
For a given LTS L = (P, ACT,—), an environment p is a function p : LVAR —
2P Given an environment p, X € LVAR, and S C P, p[z ~— S| denotes the
environment where p[X +— S|(X) =S and p[X — S|(Y) = p(Y), for allY # X.
The semantics of a pHML formula ¢ over an LTS L relative to an environment
p, denoted as [p, p]L, is defined as follows:

[tt.plL = P [ ol =10 [X, Pl = p(X)
le1nwa, plz = [e1, Pl N [92, Pl [p1Ves, plz = [e1, plL U [p2, ol

[, plo= {p | Vq. p £ q implies q € [[swﬂh}
[, pl = {p |3¢.p S qandqe [[%p]]L}
[min X.0,pl = (){S | S 2 [, p[X — Sl].}
[max X.0,pl = J{S | S C [¢,p[X = S]]L}

Formulas ¢ and ¢ are equivalent, denoted as ¢ = v, when [, p]r = [, p]L for
every environment p and LTS L. We often consider closed formulae and simply
write [¢] L for [, p]lr when the semantics of ¢ is independent of p. |

The logic pHML is very expressive. It is also agnostic of the technique to be
employed for verification. The property of monitorability, however, fundamen-
tally relies on the monitoring setup considered.

Monitoring Systems. A monitoring setup on ACT is a triple (M, I, L), where
L is a system LTS on AcT, M is a monitor LTS on AcT, and [ is the instru-
mentation describing how to compose L and M into an LTS, denoted by
I(M,L), on AcT. We call the pair (M,I) a monitoring system on ACT. For
M = (MON, ACT, — ), MON is set of monitor states (ranged over by m) and
— s 1s the monitor semantics described in terms of the behavioural state tran-
sitions a monitor takes when it analyses trace events u € AcT U {7}. The states
of the composite LTS I(M, L) are written as m < p, where m is a monitor state
and p is a system state; the monitored-system transition relation is denoted here
by —im,r)- We present our results with a focus on rejection monitors, i.e.,
monitors with a designated rejection state no, and hence safety fragments of the
logic pHML. However, our results and arguments apply dually to acceptance
monitors (with a designated acceptance state yes) and co-safety properties; see
[21,22] for details.
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Definition 2. Fiz a monitoring setup (M,I,L) on ACT and let m be a mon-
itor state of M and ¢ a closed formula of pHML on Act. We say that m
(M, I)-rejects (or simply rejects, if M, I are evident) a process p in L, written
as rejyy 1,1y (M, p), when there are a process q in L and a trace s € (ACTU{7})*
such that m<p iq(M,L) no<q. We say that m (M,I)-monitors for ¢ on L
whenever

for each process p of L,rej;r,ry(m,p) if and only if p ¢ [¢]r.

(Subscripts are omitted when they are clear from the context.) Finally, m (M, I)-
monitors for ¢ when m (M, I)-monitors for ¢ on L for every LTS L on AcCT.
The monitoring system (M, I) is often omitted when evident. |

We define monitorability for pHML in terms of monitoring systems (M, I).

Definition 3. Fiz a monitoring system (M, I) and a fragment A of uHML. We
say that (M, I) rejection-monitors for A whenever:

— For all closed p € A, there exists an m from M that (M, I)-monitors for .
— For allm of M, there exists a closed ¢ € A that is (M, I)-monitored by m. W

We note that if a monitoring system and a fragment A of pHML satisfy
the conditions of Definition 3, then A is the largest fragment of pHML that is
monitored by the monitoring system. Stated otherwise, any other logic fragment
A" that satisfies the conditions of Definition 3 must be equally expressive to
Ade, Vo' € A'-Fp € A-p = ¢ and vice versa. Definition 3 can be dually
given for acceptance-monitorability, when considering acceptance monitors. We
next review two monitoring systems that respectively rejection-monitor for two
different fragments of pHML. We omit the corresponding monitoring systems
for acceptance-monitors, that monitor for the dual fragments of pHML.

The Basic Monitoring Setup. The following monitoring system, presented
in [2], does not distinguish between silent actions and external actions.

Definition 4. A basic monitor on ACT is defined by the grammar:
m,n € MON, == end | no | pm | m+n | recxm | =z,

where © comes from a countably infinite set of monitor variables. Constant no
denotes the rejection verdict state whereas end denotes the inconclusive verdict
state. The basic monitor LTS My is the one whose states are the closed monitors
of MoON,, and whose transition relation is defined by the (standard) rules in
Table 1 (we elide the symmetric rule for m +n). [ |

Note that by rule MVRD in Table 1, verdicts are irrevocable and monitors can
only describe suffix-closed behaviour.
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Table 1. Behaviour and instrumentation rules for monitored systems (v€{end, no}).

Monitor semantics

n
m[rec z.m/z]—m’

oo,
MRECMTUEE ZMBITTM. - \SEL 2= MACT m MVRD —;
rec x.m—m/’ m+n—m’ p.m—m v—>v
Instrumentation semantics
2N 2N N N N
P q m n P q m p q
IMONZ—LS MZ ITER L M 1ABS 2L
m<1p—>I(M,L)n<1q m<1p—>1(]\41L)end<1q m<1p—>I(M’L)m<1q

Definition 5. Given a system LTS L and a monitor LTS M that agree on
Act, the basic instrumentation LTS, denoted by I,(M,L), is defined by the
rules IMON and 1TER in Table 1. (We do not consider rule 1ABS for now.) B

Instrumentation often relegates monitors to a passive role, whereby a moni-
tored system transitions only when the system itself can. In rule IMON, when the
system produces a trace event p that the monitor is able to analyse (and tran-
sition from m to n), the constituent components of a monitored system m < p
move in lockstep. Conversely, when the system produces an event p that the
monitor is unable to analyse, the monitored system still executes, according to
ITER, but the monitor transitions to the inconclusive state, where it remains for
the rest of the computation.

We refer to the pair (Mp, I) from Definitions 4 and 5 as the basic monitoring
system. For each system LTS L that agrees with the full monitoring system on
Act, we can show a correspondence between the respective monitoring setup
(My, I, L) and the following syntactic subset of pHML.

Definition 6. The safety pHML is defined by the grammar:
O,x e sHML == t | ff | [p]0 | 0Ax | max X.0 | X m

Theorem 1 ([2]). The basic monitoring system (My, I) monitors for the log-
ical fragment sHML. O

The proof of Theorem 1 relies on a monitor synthesis and a formula synthesis
function. The monitor synthesis function, (—|) : sHML — MON,, is defined on
the structure of the input formula and assumes a bijective mapping between
formula variables and monitor recursion variables:

(tt) = end (ff) = no (X) ==
_ Jend if(y)) = end ~ Jend if (1)) = end
() = {M-WD otherwise (max X4 = {rec z.(¢) otherwise
(1) if (1h2) = end
(1 Ap2) = 9 (W) if (1) = end

(1) + (¥2) otherwise
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The case analyses in the above synthesis procedure handle some of the redun-
dancies that may be present in formula specifications. For instance, it turns out
that max X.[u|tt = tt and, accordingly, (max X.[u]tt) = (tt) = end. The formula
synthesis function is defined analogously (see [2,22] for more details).

Monitoring for External Actions. The results obtained in [21,22] can be
expressed and recovered within our more general framework. We can express a
weak version of the modalities employed in [3,21,22] as follows:

[[1]]e = max X.([7]X A [p]max Y.(p A [7]Y)) and
() = min X.((1) X V (p)min Y.(p V (1)Y)).

Definition 7. Weak safety pHML, presented in [21,22], is defined by the
grammar:

m, k€ WSsHML = ¢ | ff | [[oflr | Ak | maxXnm | X. m

Definition 8. The set MON, of external monitors on ACT contains all the basic
monitors that do not use the silent action 7. The corresponding external monitor
LTS M., is defined similarly to My, but with the closed monitors in MON, as
its states. External instrumentation, denoted by I., is defined by the three rules
IMON, ITER and 1ABS in Table 1, where in the case of IMON and 1TER, action
w is substituted by the external action o. We refer to the pair (M., I.) as the
external monitoring system, amounting to the setup in [21,22]. |

Theorem 2 ([22]). The external monitoring system (M., I.) rejection-monitors
for the logical fragment WsHML. O

3 Monitors that Detect Conditions

Given a set of processes P, a pair (C,r) is a condition framework when C' is a
non-empty set of conditions and r : C' — 27 is a valuation function. We assume
a fixed condition framework (C,r) and we extend the syntax and semantics of
pHML so that for every condition ¢ € C, both ¢ and —c are formulas and for
every LTS L on set of processes P, [c] = r(¢) and [-¢] = P\ r(c). We call
the extended logic MHML(C’T). Since, in all the instances we consider, r is easily
inferred from C| it is often omitted and we simply write C instead of (C,r)
and MHML(C””) as uHMLC. We say that process p satisfies ¢ when p € [¢]. We
assume that C' is closed under negation, meaning that for every ¢ € C, there is
some ¢’ € C, such that [¢/] = [¢]. Conditions represent certain properties of
processes that the instrumentation is able to report.

We extend the syntax of monitors, so that if m is a monitor and ¢ a condition,
then c.m is a monitor. The idea is that if c.m detects that the process satisfies
¢, then it can transition to m.
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Definition 9. A basic C-monitor on ACT is defined by the grammar:
m,ne€ MONS = end | no | pm | em | m+n | recxm | =z,

where x comes from a countably infinite set of monitor variables and ¢ € C.
Basic C'-monitor behaviour is defined as in Table 1, but allowing p to range over
ActU C U {r}. We call the resulting monitor LTS ME . |

A monitor detects the satisfaction of condition ¢ when the monitored system
has transitioned to a process that satisfies c¢. To express this intuition, we add
rule ICON to the instrumentation rules of Table 1:

Con 2€ [c] and m Sy, n

m<dp ;I(M,L) ndap

We call the resulting instrumentation IS. We observe that the resulting monitor
setup is transparent with respect to external actions: an external trace of the
monitored system results in exactly the same external trace of the instrumenta-
tion LTS. However, the general traces are not preserved, as the rule ICON may
introduce additional silent transitions for the instrumentation trace. However,
we argue that this is an expected consequence of the instrumentation verifying
the conditions of C'. C-monitors monitor for sHMLC:

Definition 10. The strong safety fragment of pHMLC is defined as:
o, p e sHMLY == tt | ff | [ule | ~eVo | oA | max X.p | X,

where ¢ € C. We note that —c V ¢ can be viewed as an implication ¢ — ¢
asserting that if ¢ holds, then ¢ must also hold. |

It is immediate to see that sHMLC is a fragment of xHML® and when C C
pHML, it is also a fragment of pHML. Finally, if C' is closed under negation,
then —¢ V ¢ can be rewritten as ¢’ V ¢, where [¢] = [—¢], and in the following
we often take advantage of this equivalence to simplify the syntax of sHMLC.

Theorem 3. The monitoring system (ME, I) monitors for sHMLC. O

We note that Theorem 3 implies that sHML® is the largest monitorable
fragment of yHMLC | relative to C.

4 Instantiations

We consider two possible instantiations for parameter C in the framework pre-
sented in Sect. 3. Since each of these instantiations consists of a fragment from
the logic pHML itself, they both show how monitorability for pHML can be
extended when using certain augmented traces.
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4.1 The Inability to Perform an Action

The monitoring framework of [2,22] (used also in other works such as [18,19]),
is based on the idea that, while a system is executing, it performs discrete com-
putational steps called events (actions) that are recorded and relayed to the
monitor for analysis. Based on the analysed events, the monitor then transi-
tions from state to state. One may however also consider instrumentations that
record a system’s inability to perform a certain action. Examples of this arise
naturally in situations where actions are requested unsuccessfully by an external
entity on a system, or whenever the instrumentation is able to report system
stability (i.e., the inability of performing internal actions). For instance, such
observations were considered in [1,31], in the context of testing preorders.

In our setting, a process is unable to perform action u exactly when it satisfies
[]ff. For monitors that are able to detect the inability or failure of a process to
perform actions, we set Facr = {[u]ff | p € AcT U {7}} as the set of conditions.
By Theorem 3, the resulting maximal monitorable fragment of pHML is given
by the grammar:

¢, € SHML™ 5= tt | ff | (e | (Ve
| oA | max X.p | X.

We note the fact that pHML is closed under negation, where —[u]ff = (u)tt.

Proposition 1. The monitoring system (le%"', If“"’) monitors for the logical
fragment sHML et O

A special case of interest are monitors that can detect process stability, i.e.,
processes satisfying [7]ff. Such monitors monitor for sHMLU™®  namely sHML
from Definition 6 extended with formulas of the form (7)tt V .

4.2 Depth-Bounded Static Analysis

In multi-pronged approaches using a combination of verification techniques, one
could statically verify parts of a program (from specific execution points) with
respect to certain behavioural properties using techniques such as Bounded
Model Checking [11] and Partial Model Checking [7]. Typical examples arise in
component-based software using modules, objects or agents that can be verified
in isolation. This pre-computed verification can then be recorded as annotations
to a component and subsequently reported by the instrumentation as part of
the execution trace. This strategy would certainly be feasible for depth-bounded
static analysis for which the original logic HML [24]—the recursion-free fragment
of pHML given below—is an ideal fit.

mx€HML =t | ff | nAx [ nvx | [un | (W

Again, HML is closed under negation [4]. If we allow monitors to detect the
satisfaction of these kinds of conditions, then, according to Theorem 3, the
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maximal fragment of pHML that we can monitor for, with HML as a condi-
tion framework, is sHML"ME | defined by the following grammar:

e u=tt | ff | [ule [ Ve | Ay | maxXe | X,

where 7 € HML. Another way to describe sHML™™U is as the yHML fragment
that includes all formulas whereby for every subformula of the form ¢ V 9, at
most one of the constituent subformulas ¢, ¥ uses recursion.

Proposition 2. The monitoring system (MbHML, IZ?ML) monitors for the logical

fragment sHMLPML O

Instead of HML, we can alternatively use a fragment HML? of HML that
only allows formulas with nesting depth for the modalities of at most d. Since
the complexity of checking HML formulas is directly dependent on this modal
depth, there are cases where the overheads of checking such formulas are deemed
to be low enough to be adequately checked for at runtime instead of checking
for them statically.

5 Extending External Monitorability

We explore the impact of considering traces that encode conditions from Sect. 3
on the monitorability of the weak version of the logic used in [21,22]:

w0, € WuHML = tt | £f | pAY | oV
| (ap)e | lledle | min Xp | max X | X.

This version of the logic abstracts away from internal moves performed by the
system—mnote that the weak modality formulas are restricted to external actions
« as opposed to the general ones, . The semantics follows that presented in
Sect. 2, but can alternatively be given a more direct inductive definition, e.g.

[[[lp, Pl = {p | Ya. p = ¢ implies g € [, p]}.

The main aim of this section is to extend the maximally-expressive monitorable
subset of yuHML that was identified in [21,22] using the framework developed in
Sect. 3.

5.1 External Monitoring with Conditions

We define the external monitoring system with conditions similarly to Sect. 3.
The syntax of Definition 8 is extended so that, for any instance of C, if m is a
monitor and ¢ a condition from C, then c.m is a monitor.
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Definition 11. An external C-monitor on ACT is defined by the grammar:
mneMoNY = end | no | aom | em | m+n | recxm | =z,

where ¢ € C. C-monitor behaviour is defined as in Table 1, but extending rule
MACT to condition prefizes that generate condition actions (i.e., u ranges over
ActUC). We call the resulting monitor LTS ME .

For the instrumentation relation called Iec, we consider the rules IMON, ITER
from Table 1 for external actions « instead of the general action p, rule TABS
from the same table, and rule ICON from Sect. 3. ]

Note that the monitoring system (M, I¢) may be used to detect 7-
transitions implicitly—we conjecture that this cannot be avoided in general.
Counsider two conflicting conditions ¢; and c¢g, i.e., [e1]N[ca]=0. Definition 11
permits monitors of the form c¢;.co.m that encode the fact that state m can only
be reached when the system under scrutiny performs a non-empty sequence of
T-moves to transition from a state satisfying c¢; to another state satisfying co.
This, in some sense, is also related to obscure silent action monitoring studied
in [2].

We identify the grammar for the maximally-expressive monitorable syntactic
subset of the logic WyHML. It uses the formula [[¢]]¢ defined as:

[[€]le = max X.(¢ A [T]X)

The modality [[e]]¢ quantifies universally over the set of processes that can be
reached from a given one via any number of silent steps. Together with its dual
({€)) modality, [[¢]]¢ is used in the modal characterisation of weak bisimilarity
[30,34], in which 7 transitions from one process may be matched by a (possibly
empty) sequence of 7 transitions from another.

Definition 12. The weak safety fragment of WuHML with C' is defined as:

¢, € WsHMLC 1= tt | ff | el | [[ell(-e V)
| oAy | max X | X,
where ¢ € C. |
Theorem 4. The monitoring system (M, I€) monitors for WsHMLC . O

We highlight the need to insulate the appearance of the implication —c V ¢
from internal system behaviour by using the modality [[¢]] in Definition 12. For
conditions that are invariant under 7-transitions, this modality is not required
but it cannot be eliminated otherwise; we revisit this point in Example 2.

5.2 Instantiating External Monitors with Conditions

We consider three different instantiations to our parametric external monitoring
system of Sect.5.1.
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Recursion-Free Formulas. The weak version of HML, denoted by wHML, is
the recursion-free fragment of WyHML. Similarly to what was argued earlier in
Sect. 4.2 it is an appropriate set of conditions to instantiate set C' in WSHMLC,
and the maximal monitorable fragment of WuHML with conditions from wHML
is WsHMLYHML " defined by the following grammar, where 7 € wHML:

o= tt [ [ lafle [ [EllnVe) | Ad | max X | X

Proposition 3. The monitoring system (M*HML [WHML) monitors for the log-

ical fragment WsHMLWHML, O

An important observation (that is perhaps surprising) is that WsHMLwHML

is not a fragment of WuHML, as the following example demonstrates.

Ezxample 2. Although for any (closed) WsHML formula ¢ we have the logical
equivalence [[e]]¢ = ¢ (notice that the monitor for ¢ that is guaranteed by
Theorem 2 also monitors for [[¢]]e), this logical equivalence does not hold for a
formula ¢ from WyHML. Consider the formula ¢, below that may be expressed
using a formula from WsHMLWHME:

ve = [[e]]((e))tt = [[e])(({a))tt V ff) € WsHMLWHME,

Formula ¢, is not equivalent to ((a))tt (e.g. the process c.nil + 7.nil satisfies
({a))tt, but not ¢.) meaning that [[¢]] plays a discerning role in the context of
WprHML. Furthermore, ¢, holds for process 7.a.nil, but not for a.nil+7.nil, even
though these two processes cannot be distinguished by any WpHML formula. In
fact, it turns out that they are bisimilar with respect to weak external transitions
and this bisimulation characterises the satisfaction of WyHML formulas [24].
Thus, there is no formula in WuyHML that is equivalent to ¢.. |

Previous Runs and Alternating Monitoring. A monitoring system could
reuse information from previous system runs, perhaps recorded as execution logs,
and whenever (sub)traces can be associated with specific states of the system,
these can also be used as an instantiation for our parametric framework. More
concretely, in [21,22] it is shown that traces can be used to characterise the
violation of WsHML formulas, or the satisfaction of formulas from the dual
fragment, WcHML, defined below.

Definition 13. The co-safety WuHML is defined by the grammar:
mk€ WCHML = tt | ff | ()0 | O0vx | minX6 | X @m
The witnessed rejection and acceptance traces can in turn be used as part of an

augmented trace for an instantiation for C' to obtain the monitorable dual logics
WsHMLWHME 3nd WeHMLYSHME that alternate between rejection monitoring
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LWCHML

and acceptance monitoring. The logic WsHM is defined by the following

grammar, where § € WsHML:

g =ttt [ ff | [l | [[El(0Ve) [ oAy | maxXe [ X;
and WecHMLYSHML 5 defined by the following grammar, where y € WcHML:
mea=tt | ff | {(a))r | {()xA7T) | 7V | minXe | X.

Proposition 4. The monitoring system (MYWHML  [WeHMLY yojsection-monitors

or the logical fragment WsHMLWeHML ]
[ g g

One should observe that in this case, WsHMLYHME 45 o fragment of W HML,
in contrast to the previous instantiation WsHMLYMME from Sect. 5.2.

Lemma 1. For every [[]](nV ¢) € WsHMLWVH™ME (yhere n € WsHML), we
have [[e]l(nV @) =nV ¢. O

Corollary 1. For every formula in WsHMLYIMY there is a logically equiva-
lent formula in WuHML. O

This entails that WsHMLWHMML can be reformulated using the following,
simpler, grammar (here n € WsHML) which is clearly a fragment of WyHML:

popu=tt | ff | [[dle | nve [ oAy | mxXe [ X

If the monitoring system can use such information from previous runs, there is no
reason to limit this information to just one previous run. If the instrumentation
mechanism can record up to ¢ prior runs, the monitorable logic may be described
as WsHML ™!, defined inductively in the following way:

~ WsHML' = WsHML and WcHML' = WcHML; and ,
_ WSHMLlJrl — WSHMLWCHML% and WCHMLi+1 — WCHMLWSHMLl )

Whenever this setup can be extended to unlimited prior runs, the resulting
rejection-monitorable fragment would be WsHML® = |J, WsHML’, which is
also described by the following grammar:

o=ttt [ ff | lalle [ eVve | eAd | maxXp o | X

WsHMLY is a non-trivial extension of WsHML which is still within W uHML.

Failure to Execute an Action and Refusals. In Subsect. 4.1, we instantiated
the condition set C' as the set of formulas from pHML that assert the inability of
a process to perform an action. These formulas are of the form [a]ff. We recast
this approach in the setting of weak monitorability. In this setting where the
monitoring system and the specification formulas ignore any silent transitions,
the inability of a process to perform an a-transition acquires a different meaning
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from the one used for the basic system. In particular, we consider a stronger
version of these conditions that incorporates stability; this makes them invariant
over T-transitions. We say that p refuses o when p £ and p /4. In [31], a very
similar notion is used for refusal testing (see also [1]). Thus, much in line with
[31], we use the following definition.

Definition 14. A process p of an LTS L refuses action a € ACT and write
p ref a when p 51, andp 251 The set of conditions that corresponds to refusals
is thus Racr = {[7]ffA [a]ff| @ € ACT}. [ ]

According to Theorem 4, the largest fragment of pHML that we can mon-
itor for, using monitors that can detect refusals, is WsHMLRaer| given by the
following grammar:

Q.= tt | ff | lledle [ [tV {ajtt v @)
| oAy | max X.p | X.

Again, (7)tt V (a)tt V ¢ is best read as the implication ([7]ff A [a]ff) — ¢: if
the process is stable and cannot perform an a-transition, then ¢ must hold.

Proposition 5. The monitoring system (Mt [Tact) monitors for the logical
fragment WsHML®aer, O

Ezample 3. Consider the formula
@s = [[EN((M)tt v (a)tt v [[B]]ff) € WsHML e,

Formula ¢, claims that at every stable state that the system can reach, if action
« is impossible, then action § should also be impossible. We can see that ¢,
is true for 7.nil + G.nil, but not for F.nil. However, the two processes cannot
be distinguished by WuHML, as they have the same weak external transitions.
Therefore, WsHML4“" is not a fragment of WuHML—but, as we have seen, it
is a fragment of pHML. Here we have a part of the formula that clearly is not
part of WuHML. That is (7)tt, which asserts that the process can perform a
silent transition. ]

Ezxample 4. Let us consider an LTS L( of stable processes—that is, Ly is an
LTS without any silent transitions. Ly offers a simplified setting to cast our
observations. In this case, the [[¢]], [7], and (7) modalities can be eliminated
from our formulas, and weak modalities are equivalent to strong modalities.
This allows us to simplify the grammar for WsHML " as follows:

P, =t | ff | le]e | {a)tt Ve
| oA | max X.p | X.

Perhaps unsurprisingly, this grammar yields the same formulas as the restriction
of grammar of Subsect. 4.1 on external actions. An instance of a specification that
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can be formalized in this fragment is the following. Consider a simple server-client
system, where the client can request a resource, which is represented by action
rq, and the server may give a positive response, represented by action rs, after
which it needs to allocate said resource to the client, represented by action al.
A reasonable specification for the server is that if it is impossible at the moment
to provide a resource, then it should not give a positive response to the client.
In the above simplification of WsHML " this specification can be formalized
as [rq]((al)tt V [rs]ff). If the LTS includes silent transitions, the corresponding
specification would be written as

pr = [rql[[e]] ()t v (al)tt V [[rs]]f).

In other words, after a request, if the server cannot provide a resource and it
is stable—so, there is no possibility that after some time the resource will be
available—then the server should not give a positive response to the client. W

6 Conclusions

In order to devise effective verification strategies that straddle between the pre-
and post-deployment phases of software production, one needs to understand
better the monitorability aspects of the correctness properties that are to be
verified. We have presented a general framework that allows us to determine
maximal monitorable fragments of an expressive logic that is agnostic of the
verification technique employed, namely pHML. By way of a number of instan-
tiations, we also show how the framework can be used to reason about the mon-
itorability induced by various forms of augmented traces. Our next immediate
concern is to validate the proposed instantiations empirically by constructing
monitoring systems and tools that are based on these results, as we did already
for the original monitorability results of [21,22] in [9,10,12].

Related Work. Monitorability for pHML was first examined in [21,22]. This work
introduced the external monitoring system and identified WsHML as the largest
monitorable fragment of pHML, with respect to that system. The ensuring work
in [2] focused on monitoring setups that can distinguish silent actions to a varying
degree, and introduced the basic monitoring system, showing analogous moni-
torability results for pHML.

Monitorability has also been examined for languages defined over traces,
such as LTL. Pnueli and Zaks in [32] define a notion of monitorability over
traces, although they do not attempt maximal monitorability results. Diekert
and Leuckert revisited monitorability from a topological perspective in [16].
Falcone et al. in [17] extended the work in [32] to incorporate enforcement
and introduced a notion of monitorability on traces that is parameterized with
respect to a truth domain that corresponds to our separation to acceptance-
and rejection-monitorable properties. In [13], the authors use a monitoring sys-
tem that can generate derivations of satisfied formulas from a fragment of LTL.
However, they do not argue that this fragment is somehow maximal. There is
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a significant body of work on synthesizing monitors from LTL formulas, e.g.
[13,23,33,35], and it would be worth investigating whether our general tech-
niques for monitor synthesis can be applied effectively in these cases.

Phillips introduced refusal testing in [31] as a way to extend the capabilities
of testing (see [18] for a discussion on how our monitoring setup relates to testing
preorders). The meaning of refusals in [31] is very close to the one in Definition 14
and it is interesting to note how Phillips’ use of tests for refusal formulas is
similar to our monitoring mechanisms for refusals. Abramsky [1] uses refusals in
the context of a much more powerful testing machinery, in order to identify the
kind of testing power that is required for distinguishing non-bisimilar processes.

The decomposition of the verification burden across verification techniques,
or across iterations of alternating monitoring runs as presented in Sect. 5, can be
seen as a method for quotienting. In [7] Andersen studies quotienting of the spec-
ification logics discussed in this paper to reduce the state-space during model
checking and thus increase its efficiency (see also [27] for a more recent treat-
ment). The techniques used rely heavily on the model’s concurrency constructs
and may produce formulas that are larger in size than the original, but which
can be checked against a smaller component of the model. In multi-pronged
approaches to verification one would expect to encounter similar difficulties
occasionally.
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Abstract. The study of modal logics and various bisimulation equiv-
alences so far shows the following progression: 1. weak bisimilarity is
characterized by Hennessy-Milner logic (HML), a simple propositional
modal logic with a weak possibility modality, and 2. extending HML by
refining the weak possibility modality one obtains a logic which char-
acterizes branching bisimilarity, a refinement of weak bisimilarity, and
3. further extending the logic with a divergence modality one obtains
a logic which characterizes branching bisimilarity with explicit diver-
gence, a refinement of branching bisimilarity. In this paper, we explore
the development by exchanging the above 2 and 3, i.e. by first extending
HML with a divergence modality and then refining the weak possibil-
ity modality in the extended logic. We have the following findings: A.
extending HML with a new divergence modality one obtains a new logic
which characterizes complete weak bisimilarity, an equivalence relation
with distinguishing power in between weak bisimilarity and branching
bisimilarity with explicit divergence; B. further extending the obtained
logic by refining the weak possibility modality in it one obtains another
logic which characterizes branching bisimilarity with explicit divergence.
As main results of the paper, the logic in A. provides a modal character-
ization for complete weak bisimilarity, and moreover the two new logics
in A. and B. are both sub-logics of the known logic obtained in above 3.

1 Introduction

Weak bisimilarity is a popular equivalence relation introduced by Milner [9]. Tt is
defined through the notion of weak bisimulation which was proposed by Milner
[9] based on an idea independently discovered by van Benthem [4] and Park [8].
The importance of weak bisimulation is that it not only defines an equivalence
relation but also provides a verification technique for the equality. A well-known
theoretical result for weak bisimilarity is that the equivalence is characterized
by a modal logic which is known as Hennessy-Milner logic (HML) [2] in the
following sense: two processes are equivalent with respect to weak bisimilarity if
and only if they satisfy exactly the same set of HML formulas.
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Because weak bisimilarity does not preserve divergence, i.e. it is possible for
two equivalent processes that one of them is capable of endless internal computa-
tions while the other is not, various divergence preserving versions of weak bisim-
ulation equivalences and pre-orders are studied later [1,3,5,13]. Complete weak
bisimilarity is a newly proposed divergence preserving weak bisimulation equiv-
alence [10]. Like weak bisimilarity, complete weak bisimilarity is supported by
a bisimulation verification technique called inductive weak bisimulation, which
can be very helpful in practical verification that concerns divergence. One of the
main aims of this paper is to find a modal logic which characterizes complete
weak bisimilarity just as HML characterizes weak bisimilarity.

We will put our study into a more general context. The study of modal logics
and various bisimulation equivalences so far shows the following progression
which reveals the co-related increase for the expressive power of the logics and
the distinguishing power of the equivalences:

1. Weak bisimilarity is characterized by HML which is a simple propositional
modal logic with a weak possibility modality [2];

2. Extending HML by refining the weak possibility modality one obtains a logic
which characterizes branching bisimilarity [5,6], a refinement of weak bisim-
ilarity proposed in [12],

3. Further extending the logic with a divergence modality one obtains a logic
which characterizes branching bisimilarity with explicit divergence [13], a
refinement of branching bisimilarity proposed in [12].

In this paper, we explore the development by exchanging the order of 2 and 3,
i.e. by first extending HML with a divergence modality and then refining the
weak possibility modality in the extended logic. We have the following findings:

A. Extending HML with a new divergence modality one obtains a logic which
characterizes complete weak bisimilarity, an equivalence relation with distin-
guishing power in between weak bisimilarity and branching bisimilarity with
explicit divergence;

B. Further extending the obtained logic by refining the weak possibility modality
in it one obtains another logic which characterizes branching bisimilarity with
explicit divergence.

To summarize the results of the paper:

— The above A. is the wanted result of modal characterization of complete weak
bisimilarity.

— The two new logics in A. and B. are both sub-logics of the known logic men-
tioned in above 3, hence showing a clear picture of the sub-logic relationships
of the corresponding characterization results.

— For finite-state systems, we also use the modal characterization to show a
reduction from the problem of checking equality of complete weak bisimilar-
ity to the problem of checking equality of ordinary weak bisimilarity, thus
provide a decision procedure for the problem of checking equality of finite-
state systems with respect to complete weak bisimilarity.
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The rest of the paper is organized as follows. Section 2 presents the defini-
tions of the equalities, i.e. weak bisimilarity, complete weak bisimilarity, branch-
ing bisimilarity, and branching bisimilarity with explicit divergence. Section 3
studies the relationships of the modal logic characterizations of the equalities.
Section 4 studies reductions for decision problems concerning finite-state pro-
cesses. Section b concludes.

2 Bisimulations and Divergence

In this section, after settling some necessary preliminaries, we introduce the main
equivalence relation, i.e. complete weak bisimilarity, together with some related
equivalences like branching bisimilarity and branching bisimilarity with explicit
divergence.

Definition 1 (Labeled transition systems). A labeled transition system (or
LTS) is a triple A = (S, A, —) where:

— S is a set of states, A is a set of actions, —C S x (AU {7}) x S is the
transition relation. 7 is the silent action which is assumed not in A. An
element (s, a,t) of —, usually written as s —— t, is called a transition;

— A finite run of A is a finite, nonempty alternating sequence of states and
actions: p = SoQS1Q - .. Sp—10n_15, which begins with a state and ends
with a state, such that for 0 < i < n, s; —= s;,41. We also say that p is a
finite run from sg to s,;

— For p = $00081Q11 - . . Sp—1Qn_18y, define Act(p) = aoy ... ap_1, and
length(p) = n;

— An infinite run of A is an infinite, alternating sequence of states and actions:
p = SopS11 ... which begins with a state, such that for all for ¢ =0,1,...,
s; —% s;.1. We also say that p is an infinite run from so;

- A (finite or infinite) T-run of A is a (finite or infinite) run of A in which all
actions are T's.

For a finite sequence of actions [ € (AU {7})*, let 1 € A* be the sequence
obtained by deleting all 7’s from .

We use standard notations for multi-step 7 transitions, and the so-called
double-arrow transitions: write s = s’ if there is a finite 7-run from s to s’;
write s == s’ if there exist ¢,t’ such that s = ¢,t — ¢/,t’ = s'. Note the
important difference between s = s’ and s == s’: the former means that from
s to s’ there is a finite 7-run (could be a 7-run with zero length), while the latter
means that from s to s’ there is a finite 7-run with non-zero length. Thus s = s
holds for all s € S, while s == s holds only when s is on a 7-loop consisting of

one or more 7-transitions. Also for I € (AU {7})* we will write s =L, &' if there
is a finite run p from s to s’ with Act(p) = I. Note that s == s’ means exactly
s = &', where ¢ is the empty string.

Next, we review the well-known notions of weak bisimulation, weak bisimi-
larity [9], and branching bisimulation, branching bisimilarity [12].



224 X. Liu et al.

Definition 2 (Weak and branching bisimulations). Let A = (S, A, —) be an
LTS. A binary relation R C S x S is a weak bisimulation if it is symmetric and
moreover for all (s,t) € R the following holds:

whenever s — s/, then, there exists t' such that t == ' and (s',t') € R.

A binary relation R C S x S is a branching bisimulation if it is symmetric and
moreover for all (s,t) € R the following holds:

whenever s — ', then either a = T, and there exists t' such that t => t'
(e}

and (s,t'),(s',t') € R, or there exist t',t" such that t = t',t' — t"" and
(s,t),(s',t") € R.

Now define two relations =, = as follows:

~ =J{R| R is a weak bisimulation},
~p = J{R| R is a branching bisimulation}.

The notions of weak and branching bisimulations enjoy some nice properties
as stated in the following Lemmas 1 and 2, which then lead to the important
Theorem 1 that justifies Definition 2.

Lemma 1. If {R; |i € I} is a set of weak bisimulations, then |J{R;|i € I}
is a weak bisimulation. If {R; | i € I} is a set of branching bisimulations, then
U{R; | i € I} is a branching bisimulation.

For two binary relations Ry, Ro, we write Ry - Ry for the composition of Ry
and Ry, i.e. Ry - Re = {(s,t) | Ju.(s,u) € Ry, (u,t) € Ro}.

Lemma 2. If Ry, Ry are weak bisimulations, then Ry - Ro U Ry - Ry is also a
weak bisimulation. If Ry, Re are branching bisimulations, then Ry - Ro U Ry - Ry
18 also a branching bisimulation.

The proofs of the above two lemmas directly follow from Definition 2 (Note
that we modified the conditions for branching bisimulation as in [11]). With the
above two lemmas, it is routine to prove the following theorem, which justifies
the definitions of ~ and ~,.

Theorem 1. = is an equivalence relation, and it is the largest weak bisimula-
tion. =y is an equivalence relation, and it is the largest branching bisimulation.

With Theorem 1, =~ and ~;, are usually called weak bisimilarity and branching
bisimilarity respectively.

It is well-known that neither ~ nor =2, preserves divergence, i.e. it is possible
for two states s and ¢ such that s ~ ¢t while there is an infinite 7-run from s but
no infinite 7-run from t.

In order to obtain divergence preserving relations, we can adopt the approach
used in [12] by introducing the following definition.



Logics for Bisimulation and Divergence 225

Definition 3 (Weak and branching bisimulation with explicit divergence). Let
A= (S,A,—) be an LTS. A state s € S is said divergent with respect to an
equivalence relation =, written s =, if from s there is an infinite T-run p such
that all the states on p are =-equivalent to s.

An equivalence relation = on S is called a weak bisimulation with explicit
divergence if = is a weak bisimulation and moreover whenever s =t it holds that
s = if and only if t fi=.

An equivalence relation = on S is called a branching bisimulation with
explicit divergence if = is a branching bisimulation and moreover whenever s =t
it holds that s = if and only if t fi=.

, A
Now define two relations %A,%b as follows:

~> = J{= | = is a weak bisimulation with explicit divergence},
mbA =U{= | = is a branching bisimulation with explicit divergence}.

~® and sz are called weak bisimilarity with explicit divergence and branching

bisimilarity with explicit divergence respectively.

At this point, let us see a non-trivial example of branching bisimulation with
explicit divergence. Define =;.., the strongly connected relation, such that s =g, ¢
if and only if s = ¢t and t = s. That is s =, ¢ just in case s and t can reach
each other by performing 7 actions. It only takes a second to check that =, is
an equivalence relation. Moreover we have:

Proposition 1. =, is a branching bisimulation with explicit divergence.

The following lemma is easy to prove.

Lemma 3. If= is a weak bisimulation with explicit divergence, then = preserves
divergence, i.e. whenever s =t then there is an infinite T-run from s if and only
if there is one from t.

With this lemma, we can show that ~* preserves divergence as follows. If p is an
infinite 7-run from s and s ~* t, then there is a weak bisimulation with explicit
divergence = such that s = ¢, then by Lemma 3 there is an infinite 7-run from ¢,
thus ~° preserves divergence. One is tempting to say that with Lemma 3, ~*
obviously preserves divergence, since ~* is a weak bisimulation with explicit
divergence. However, to apply Lemma 3 in this way, we first have to prove that
~® is a weak bisimulation with explicit divergence, and at least for the moment
we do not know if this is indeed the case.

Thus, as the definitions of ~ and =, are justified by Theorem 1, the definitions
of ~% and sz also need justification. That is to say we need to confirm that ~%
as defined is indeed the largest weak bisimulation with explicit divergence and,
:ubA the largest branching bisimulation with explicit divergence (as it is stated
in the definition we even do not know whether ~2 and %bA are equivalence
relations!). But this time the task is not as easy, since we no longer have the
corresponding lemmas available as Lemmas 1 and 2 for Theorem 1. As a matter of



226 X. Liu et al.

fact this implies that we do not know whether the notion of weak bisimulation
with explicit divergence is a fixed-point of some monotonic functions on the
complete lattice of equivalence relations, and hence the Knaster-Tarski fixed-
point theorem is not applicable in this case. Thus we need to find a different
way to justify Definition 3. For the time being we have the following obvious
lemma, which clarifies the justification task.

Lemma 4. ~° (%bA) is the largest weak (branching) bisimulation with explicit
divergence if and only if the largest weak (branching) bisimulation with explicit
divergence exists.

Justification of the definition of %bA can be found in [13,14], while not in
[12] where it was introduced the first time. While a justification for %bA might
be taken as granted, a justification for ~° may seem to be more necessary.
This is because in a weak bisimulation equivalence relation, unlike branching
bisimulation, an infinite 7-run from a process may be matched by an infinite
7-run from a related process in a way that the sequences of equivalence classes
passed through by the two runs may not be the same. So one needs to be more
careful in dealing with ~*. According to Lemma4, in order to prove that ~*
is a weak bisimulation with explicit divergence we only need to show that the
largest weak bisimulation with explicit divergence exists. This approach was
taken in [10], where two relations called complete weak bisimilarity and complete
branching bisimilarity were constructed and proved to be the largest weak bisim-
ulation with explicit divergence and largest branching bisimulation with explicit
divergence respectively. In this paper, for self containment we will present a
justification of the definition of ~% in the next section, by using the logical
characterization result. For the convenience of names, in the paper we will freely
use the name of complete weak (branching) bisimilarity as synonym for weak
(branching) bisimilarity with explicit divergence.

3 Modal Characterization

The main aims of this section is to look for a modal logic characterization of
complete weak bisimilarity ~, and study its relationship with logic characteri-
zations of other bisimulation equivalences. For that, we first review some of the
existing logic characterization results.

In [2] a modal logic, later known as Hennessy-Milner logic (HML), was intro-
duced and proved that two given processes are equivalent under weak bisimu-
larity = if and only if they satisfy the same set of HML formulas. This is the
so-called Hennessy-Milner theorem. The key constructor in HML is the weak
possibility modality (u))F, which asserts that after the observation of u some
state with property F' is reached. In [6], the weak possibility modality was refined
to an until modality in the form of Fj{«)F5, meaning that there is a finite 7-run
such that all the states on it satisfy F7, and the last state can perform an « action
and arrives at a state satisfying F5, and it was proved that the refined logic char-
acterizes branching bisimilarity a2, just as HML characterizes weak bisimilarity.
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In [5] the weak possibility modality was refined to a just-before modality in the
form of Fy{a}F,, meaning that there is a finite 7-run such that the last state
satisfies F} and can perform an « action and arrives at a state satisfying Fy,
and it was proved that the refined logic, named @3, also characterizes branching
bisimilarity ~;. In [13], ®;, was further extended to the logic @jAb with a diver-
gence modality in the form of AF, meaning that there is an infinite 7-run on
which eventually all the states satisfy F', and it was proved that @fb characterizes
branching bisimilarity with explicit divergence %bA.

As the starting point of the work of this paper, we describe a modal logic
HMLDbA which is basically @ﬁ) with a derived operator {(u)). The set of formulas
of HMLDbA is defined by the following syntax of BNF rules:

F = Nie; Fi|7F|Fi{u} Fo| (u) F|AF

where I is an index set which could be infinite, {u} (with u € AU {e}) is the
Just-before modality introduced in [5], {(u)) is the usual weak possibility modality
as in [9], and A is the divergence modality introduced in [13].

Definition 4. Let A = (S,A,—) be an LTS. The satisfaction relation =
between states and formulas of HMLbVA is defined by induction on the struc-
ture of formulas as follows:

1. st N Fiif, forallic I, s = Fy;

2. s = -F if s = F does not hold;

3. s = Fi{u}Fy if there exist t,t' € S such that t = F1,t' |= Fa, s =t and
(t =t (whenu € A) ort —t' (when u = ¢)) or there is t € S such that
tE R, tEF, s=tandu=c¢;

s = (u)F if there is t € S such that s ==t and t |= F;

s = AF if there is an infinite T-run o from s such that 0 = $TS17S2 ... 8T ...
and there is n > 0 such that s; = F for all i > n (in other words, there are
only finitely many positions on o where F' does not hold).

Sia

First note that this logic can express some interesting properties of infinite
behaviours of processes. For example, Atrue asserts the existence of an infinite
7-run, where true is a short hand for A, , F; (which is the first formula of
HMLDbA according to the BNF rules). The logic is basic, however it might be
more expressive than one expect due to the use of infinite conjunction with the
construction A;.; F; when [ is an infinite set.

As usual we will write binary conjunction F} A F» for /\ie{l,2} F;, and binary
disjunction F; V Fy for — Aie{1,2} = F;. For two HMLbA formulas Fi, F5, we say
that F; and F5 are equivalent logic formulas, written F; < Fy, if for any process
s of any LTS it holds that s = Fy if and only if s = Fb.

The following proposition shows that ((u)) is a derived operator in the sense
that it can be defined in terms of the just-before operator {u}.
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Proposition 2. For any HMLbA formula F and a # T, the following equiva-
lences hold:

1. {(e)F < true{e}F;
2. {(a)F < true{a}(true{e}F).

Proof. Immediately follows from Definition 4. a

We write HMLbD for the sub-logic of HMLbA which consists of formulas con-
structed without the divergence modality A. Then HML, the normal Hennessy-
Milner logic, is a sub-logic of HMLDb consisting of formulas constructed without
the just-before modality {u}. With the result in Proposition2 that {(u)) is a
derived operator of {u}, then the following is a theorem which immediately
follows from the characterization result for @ﬁ in [13].

Theorem 2 (HMLbA characterization of %bA). Let s,t be two states. Then
s sz t if and only if s and t satisfy the same set of HMLbA formulas.

Likewise, the following is a theorem immediately follows from the character-
ization result for @, in [5].

Theorem 3 (HMLb characterization of m2p). Let s,t be two states. Then s = t
if and only if s and t satisfy the same set of HMLb formulas.

The following is the famous Hennessy-Milner theorem, which can be found
in Chap. 10 of [9].

Theorem 4 (HML characterization of =). Let s,t be two states. Then s ==t if
and only if s and t satisfy the same set of HML formulas.

The last three theorems give modal logic characterizations for sz, ~, and
~ respectively, still missing is a modal logic characterization for ~*. Consider-
ing that HMLDb is the extension of HML by the just-before modality and that
HMLbA is the extension of HML by the just-before and the divergence modal-
ity, an obvious attempt is to extend HML with the divergence modality and
hopefully that will give us a logic which characterizes ~*. However it turns out
that the divergence construction AF is not preserved by ~*, as the following
example shows.
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Ezample 1. The drawing shows an LTS P = (S, A, —) where A = {a; | i > 0},
S ={s;|i>0}U{t;|i> 0}, and the transition relation is as follows:

— for each ¢ > 0, if 7 is even then there are exactly three transitions out of s;:
a; T T
Si = 8iySi T Si4+1,5i — Si+2;
if ¢ is odd then there are exactly two transitions out of s;:
a; T
8i — 8, 8; — Sit1.
— for each ¢ > 0, there are exactly two transitions out of ¢;:

ti s byt — tig1.
Now define = to be the following relation:
{(si,si) |12 0y U{(ti, t) |4 > 0} U{(si,t5) [ i > 0} U {(ts, ) [ i > O}
The following facts about = are easy to verify:

1. = is an equivalence relation;

2. = is a weak bisimulation;

3. for every s € S, whenever s — t then s # t. Hence whenever s = t then
s 1= if and only if ¢ {=.

Thus = is a weak bisimulation with explicit divergence, and sy ~* ty. In the
following we show that there is an HML formula F' such that AF is satisfied by
so and not by %g.

Let Fj be the following formula:

({agk)true A {azi4+1)true) V (= {{az)true A ={{agx41)true).

That is, F} asserts that the pair of actions as; and asg41 are either both
enabled or both disabled. It is clear that Fj holds for every state of S except
sog+1 and toptr1. Thus A{Fy | K > 0} holds on every even numbered position
(i-e. sg,to, S2,ta,...) while does not hold on every odd numbered position (i.e.
817t1783,t3,...).

Now A A{F}) | k > 0} is satisfied by so but not by . To see that, note that
from sg there is an infinite 7-run ¢ = sg7s27...s9,7 ... and every state on o
satisfies A{Fx | & > 0}, while the only infinite 7-run from to is to7t17..., on
which there are infinitely many states that do not satisfy A{Fy | k > 0}. O

Thus, we need to find a different divergence modality. For that we introduce
the weak divergence modality A, into HMLbA, by extending the BNF rules as
follows:

F:=.. | AF.

And then add the following interpretation into Definition 4.

6. s = ACF if there is an infinite 7-run o from s such that for every state s’ on
o it holds that s’ = ¢ for some ¢t = F.
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The following is a depiction of the condition for s | A.F.

o080

Proposition 3. For any HMLbA formula F, the following equivalence holds:
AF & A{e)F.

Proof. Immediately follows from Definition 4 together with the above interpre-
tation for A F. O

This proposition shows that A, is a derived operator of A and {((¢)), and
that with A, added into HMLbA the expressiveness of the extended logic does
not increase. So we still call the logic HMLbA after extending with A., and we
write HMLA, for the sub-logic where the only modalities allowed are the weak
possibility modality {(u)) and the weak divergence modality A.. With the new
divergence modality we can obtain another sub-logic HMLbA, in which A, is
allowed but not A.

Given a sub-logic L of HMLbA, it induces an equivalence relation =;, on
states such that s =, ¢ if and only if s and ¢ satisfy the same set of formulas in the
sub-logic. We call =, the equivalence induced by L. The following is a summary
of the sub-logics of HMLbA that we concerned about and the corresponding
induced equivalences:

1. Let EbA be the equivalence induced by HMLbA;
2. Let = be the equivalence induced by HMLb;
3. Let =, be the equivalence induced by HML;
4. Let =%+ be the equivalence induced by HMLA,;
5. Let EbA“ be the equivalence induced by HMLbA..
In the rest of this section we will show that HMLA, characterizes ~%, i.e.
~% coincides with =4, To prove ~>C=%<, we show that for every weak bisim-

ulation with explicit divergence = it holds that =C=%< (Lemma5). To prove

=5<Cx®, we show that =5¢ is a weak bisimulation with explicit divergence
(Lemma 8).

Example 1 shows what AF is not preserved by ~%, while the following lemma
guarantees that A F is preserved by ~*. Here we omit the proof.

Lemma 5. Let = be a weak bisimulation with explicit divergence, F be an
HMLA, formula. If s=t and s = F, then t |= F. Thus if = is a weak bisimu-
lation with explicit divergence then =C=2%«.
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Lemma 6. Let s = t. Then

1. whenever t = Fi{u}Fs then s = F1{u}Fs;
2. whenever t |= (u)F then s = (u) F;
3. whenever t = AF then s |= AF.

Proof. We only prove 3. With the similar idea we can prove 1 and 2.

Suppose t = A.F. Thus from ¢ there is an infinite 7-run p such that for each
state ¢ on p there exists t” with ¢/ = ¢” and t” = F. Now since s = t, by
adding a prefix to p we can easily obtain an infinite run p’ with starting state s
such that for each state t' on p’ there exists ¢/ with ¢ = ¢/ and ¢” |= F, hence

s E ACF. 0
The following is the so-called stuttering lemma for =%.
Lemma 7. If s = s',s' = t, and s =5 t then s =5 s'.

Proof. In this case we only need to prove the following: for any HMLA, formula
F, it holds that s = F if and only if s’ = F. We carry out the proof by induction
on the structure of F'.

For A,c; Fi, we have the following sequence of equivalences: s = A;c; F;
iff s |= F; for every i € I (by definition of |=) iff s’ = F; for every i € I (by
induction hypothesis) iff s" = A,.; Fi (by definition of ). In the same way we
can prove it for the case = F.

For (u))F, suppose s = (u)F. Then t |= (u)F by s =4< t, then it imme-
diately follows that s’ = (u)F by s’ = t and Lemma6. On the other hand,
suppose s’ = (u)F, then s = (u)F immediately follows by s = s’ and
Lemma 6. In the same way we can prove it for the case A F. a

Lemma 8. =« is a weak bisimulation with explicit divergence.

Proof. To prove that =%¢ is a weak bisimulation with explicit divergence, we

need to establish the following:

1. =2< is an equivalence relation;
2. =2< is a weak bisimulation;

3. if s =5« ¢, then s f_a. iff t f_a..

It is obvious that =% is an equivalence relation. The way to prove that =%
is a weak bisimulation is exactly the same as the way to prove that =,, is a weak
bisimulation [9]. We prove 3. in the following.

First, let us note that for a pair of states s,t with s £ ¢, by the definition
of =% there exists an HMLA, formula F}, which is often called a distinguishing
formula of s and ¢, such that s = F¢ and t |~ Ff.

Suppose s =4¢ t, and s ﬂzﬁf, then there is an infinite 7-run p from s with

all the states on it =4<-equivalent to s. We construct the following formula F**

/\{Fj |t == u,u £5¢ s}.
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Clearly s = F*. Moreover s = A F*, since for any state s’ on p, there is s” such
that s = " and s = F* (just take s” to be §’, thus s = §’, and s’ = F’* by
s’ =5¢ 5). Now because t =4« s, thus t = A F*. In the following we will show
that ¢ = A.F® implies ¢ froae.

Since t = A F*, there is an infinite 7-run o from ¢ such that for any state ¢/
on o there exists t” with ' = ¢ and t"" |= F*. Now we will show that if ¢’ is a
state on p then t' =2« t.

Note that the construction of F'* guarantees the following property:

if t ==t and t' = F'® then t' =%« t.
To see that, let t == /. Suppose t' #2« t, then ¢’ #5< s, which implies ' £ F*
because in this case F}5, which is a distinguishing formula of s and ¢, is one of
the conjuncts of F*, and t' = F}.

Now for any state ¢’ on o, since t = t' and ¢ = t" for some t" with
t" = F*, and by the above property of F* we know that ¢’ =2< t, then by
Lemma7 t' =4¢ t, thus o is the infinite 7-run that we are looking for. O

At last, we can state the modal characterization theorem for ~%.

Theorem 5. (HMLA. characterization of ~* Eﬁﬁcoincides with ~*, that is
for any pair of states s and t, s =~ t if and only if s and t satisfy the same set
of HMLA. formulas.

Proof. By Lemma5, ~*C=2<, and by Lemma8 =4¢ is a weak bisimulation

—w w

with explicit divergence, hence Eﬁéng. g

And at the same time we obtain the following theorem which justifies the
definition of ~%.

Theorem 6. ~% is a weak bisimulation with explicit divergence, and it is the

largest weak bisimulation with explicit divergence.

Proof. By Lemmas5 and 8, =« is the largest weak bisimulation with explicit

divergence. By Theorem 5 ~* is the same as =%, hence ~* is the largest weak
bisimulation with explicit divergence. a

Perhaps a little surprise is the following new modal characterization result
for branching bisimilarity with explicit divergence ~;".

Theorem 7 (HMLbA. characterization of %bA) Let s,t be two states. Then
s sz t if and only if s and t satisfy the same set of HMLbA. formulas.

Proof. Here we give the following sketch.

Suppose s %bA t and s = F for some HMLbA, formula F, just note that by
Proposition 3 there is an HMLbA formula F’ with F’ < F| then s = F’ and by
Theorem 2 ¢ |= F’ thus t = F.

For the other direction, we prove that EbA

€

is a branching bisimulation with

€

explicit divergence. We can prove that EbA is a branching bisimulation in the
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same way to prove that = is a branching bisimulation as the proof of Theorem 3
in [5]. Suppose s EbA‘e t and there is an infinite 7-run from s with all the states
on the run in the same Efé—equivalence class of s, we can prove that there is an
infinite 7-run from ¢ with all the states on the run in the same EbAE—equivalence
class of t as we prove it for =2« in Lemma8, with the help of a lemma similar
to Lemma 7 with EbA in place of =4-. O

€

o iTA “HMLbA

~b (=bl=b8) |

\\
N HMLbA¢
(=) zA(_Ai)ff‘\ /
-~ LT HMLb\\\‘\“HMLAE
~ (Ew) \ /
\\
_____________ HML

By Theorems2 and 7, HMLbA and HMLbA, both characterize sz. Now
the results about the relationships of various bisimulation equivalence relations
and the logics can be summarized as the above lattice shaped diagrams, where
on the left the equality on the higher end of an edge is included in the equality
on the lower end of the edge, and on the right the logic on the lower end of an
edge is a sub-logic of the one on the higher end of the edge, and the dotted lines
represent the logic characterization results.

4 Divergence in Finite State Systems

The motivating problem of this section is the problem of checking complete weak
bisimilarity for finite-state processes:

given an LTS (S, A, —) and two states s,t € S, where S and A are finite
sets, decide whether s ~° t.

We will show that this problem can be solved by reducing it to the problem of
checking weak bisimilarity for finite-state processes which can be solved by a
well-known partition algorithm [7]:

given an LTS (S, A,—) and two states s,t € S, where S and A are finite
sets, decide whether s ~ t.

The reduction is as follows. Let P = (S, A,—) be a finite-state labeled
transition system, i.e. both S and A are finite sets, § be an action not in A. Then
we can construct a new finite-state LTS Ps = (S, A, —') where S = {§|s € S},
A=AU {6}, —'={(5,,8) | s = s} U{(5,6,3) | s == s}.



234 X. Liu et al.

The idea of the reduction is pretty straightforward: in a finite-state system,
the existence of an infinite 7-run from a state s is equivalent to the existence of
a so-called looping state s’ such that s = s’ and s’ == ', and then the looping
states can be marked by a particular new action §. Thus the transitions of the
constructed system P;s is like the original system P except that every looping

state s is indicated by a new transition § 2,75 Tn the following when there will
cause no confusion we will simply write § — ¢ instead of § —— ’{ for s,t € S.

Now to complete the reduction, we will show that for any s,t € S, it holds
that s ~2 t if and only if § ~ £. Then in order to check whether s ~* t we only
need to check whether § ~ . For any s,t € S, in order to show that s ~% t
if and only if § =~ t: we can show that =C S x S is a weak bisimulation with
explicit divergence if and only if £ = {(3,#) | s = t} is a weak bisimulation.
However, with the logic characterization results of the last section, here we will
take a different approach which reveals essential properties of the reduction
construction as stated in the following Theorems 8 and 9 and allows us to obtain
more general results as stated in the following Theorem 10.

We define a translation function — which maps every HMLbA formula F' to
another HMLDbA formula F. The function is inductively defined on the structure
of the formula as follows:

/\ieIFi:/\ieIE —F =-F
Fi{u}F, = Fi{u}F, (u#6) | Fi{§}F; = —true
(u)F = (u)F (u#9) (o) F = ~true
AF = true{d}F AF = (O)F

Theorem 8. IfF is an HMLbA formula, then F is an HMLb formula. Moreover
if F is an HMLA, formula, then F is an HML formula.

For a finite-state LTS P = (S, A, —), let Ps = (S, A,—') be the finite-
state LTS constructed above, s € S. Then for any HMLbA formula F, it holds
that s = F if and only if § = F.

The proof, which is omitted here, is a routine induction on the structure of the
formulas. Here we just explain the idea behind the translation function — from
which one can see the rationale behind Theorem 8. The key is to understand
why F1{0}F> is translated to —true. As we have pointed out above, ¢ is an
action which is not in A and which is used in the reduction to mark divergence.
That implies that any process s from P is not capable of an § action, hence the
property F1{d}F» will never be satisfied by any process from P. That is why
F1{0}F> is translated to —~true. For the same reason ((0)) F' is also translated to
—true.

Also, we can define a translation function _ which maps every HMLD formula
F to an HMLDbA formula F. The function is inductively defined on the structure
of the formula as follows:

Nier Fi = Nier Fi oF =-F
Fl{ujFo = Fi{u}Fy  (u#90) | Fi{d}Fy = A(F1 A F)
(u) P = (u)E (u#9) {o)r =AF
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Theorem 9. If F is an HMLb formula, then F is an HMLbA formula. Moreover
if F' is an HML formula, then F is an HMLA. formula.

For a finite-state LTS P = (S, A, —), let Ps = (S, A,—') be the finite-
state LTS constructed above, s € S. Then for any HMLb formula F, it holds
that s = F if and only if § = F.

Now we obtain the following theorem which guarantees the correctness of
our reduction.

Theorem 10. For a finite-state LTS P = (S, A —), let Ps = (S, A,—') be
the finite-state LTS constructed above. Then for s,t € S':

1. s~ t if and only if § ~ t;
2. SNb t if and only if § ~y 1.

Proof. Here we only prove 1. The way to prove 2. is the same. Since ~* coin-

c1des with ﬁf and = coincides with =,,, to prove 1. we only need to prove that
s =5t if and only if 5=, t.

Suppose s =4 t. If § = F for some HML formula F, then by Theorem 9, F
is an HMLA, formula and s = F. Then by the condition that s Eﬁe t, we have
t = I, and again by Theorem 9, { = F. Thus § =, {.

Suppose § =, t. If s |= F for some HMLA, formula F, then by Theorem 8,
F is an HML formula and § = F. Then by the condltlon that 8 = £, we have

t = F, and again by Theorem 8, t = F. Thus s =4 t. O

Theorem 8 also suggests a simple solution to the model checking problem for
HMLbA (which can have many solutions). The model checking problem here is
to ask, for any given state s of a fnite-state LTS P and any given finite HMLbA
formula F' (finite in the sense that only finite conjunctions are allowed in F),
how to decide whether s = F holds or not. By Theorem 8, this problem can be
reduced to the problem of deciding if § = F holds or not, which comes with
simple decision procedures because here § is a state in the finite-state LTS Py
and F is a finite HMLb formula.

5 Conclusion

To summarize, by introducing a new divergence modality, the weak divergence
modality A., we obtain logic characterization results for two divergence sensitive
bisimulation equivalence relations. One is the first modal logic characterization
for complete weak bisimilarity ~%, and the other is a new modal logic character-
ization for branching bisimilarity with explicit divergence %bA. With these new
characterization results we showed a clear picture of the sub-logic relationships
of various logic characterization results. By using these new characterization
results, we provide reductions from the divergence sensitive equality checking
problems and model checking problems to the divergence blind equality check-
ing problems and model checking problems respectively for finite-state systems.
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Complete weak bisimilarity ~* was first defined in [10], which is a refinement
of weak bisimilarity ~ [9] by taking divergence behavior into account. Since
this is a relatively new equivalence relation, the logic characterization problem
and equality checking problem for finite-state systems have not been treated
before this paper. The relation sz was defined in [12] which is a refinement of
branching bisimilarity a2, [12]. In [15], the equality checking problem of stutter
equivalence on Kripke structures is solved by a reduction to the equality checking
problem of divergence blind stutter equivalence problem. Stutter equivalence
and divergence blind stutter equivalence are the Kripke structure versions of
branching bisimilarity with explicit divergence and branching bisimilarity. The
reduction presented in Sect. 4 is inspired by the reduction in [15].

The study of modal logic characterization of bisimulation equivalence rela-
tions was initiated by Hennessy and Milner in [2]. For branching bisimilarity,
modal characterization results were studied in [5,6], where different modalities
for branching structures were used. In [6], besides the extension of Hennessy-
Milner logic with the until operator mentioned earlier in the paper, two other
logics were proposed to characterize branching bisimilarity. One is another exten-
sion of Hennessy-Milner logic which exploits the power of backward modalities.
The other is CTL* without the next-time operator interpreted over all paths,
not just over maximal ones. In [13] a modal logic was proposed to character-
ize branching bisimilarity with explicit divergence by combining modalities for
branching bisimilarity in [5] and a divergence modality A. In [14], an extension of
CTL* without the next operator is proposed which also characterizes branching
bisimilarity with explicit divergence.
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Abstract. We show that call-by-need is observationally equivalent to
weak-head needed reduction. The proof of this result uses a semantical
argument based on a (non-idempotent) intersection type system called V.
Interestingly, system V also allows to syntactically identify all the weak-
head needed redexes of a term.

1 Introduction

One of the fundamental notions underlying this paper is the one of needed reduc-
tion in A-calculus, which is to be used here to understand (lazy) evaluation
of functional programs. Key notions are those of reducible and non-reducible
programs: the former are programs (represented by A-terms) containing non-
evaluated subprograms, called reducible expressions (redexes), whereas the lat-
ter can be seen as definitive results of computations, called normal forms. It
turns out that every reducible program contains a special kind of redex known
as needed or, in other words, every A-term not in normal form contains a needed
redex. A redex r is said to be needed in a A-term t if r has to be contracted
(i.e. evaluated) sooner or later when reducing ¢ to normal form, or, informally
said, if there is no way of avoiding r to reach a normal form.

The needed strategy, which always contracts a needed redex, is normalis-
ing [8], i.e. if a term can be reduced (in any way) to a normal form, then con-
traction of needed redexes necessarily terminates. This is an excellent starting
point to design an evaluation strategy, but unfortunately, neededness of a redex
is not decidable [8]. As a consequence, real implementations of functional lan-
guages cannot be directly based on this notion.

Our goal is, however, to establish a clear connection between the semantical
notion of neededness and different implementations of lazy functional languages
(e.g. Miranda or Haskell). Such implementations are based on call-by-need cal-
culi, pioneered by Wadsworth [20], and extensively studied e.g. in [3]. Indeed,
call-by-need calculi fill the gap between the well-known operational semantics of
the call-by-name A-calculus and the actual implementations of lazy functional
languages. While call-by-name re-evaluates an argument each time it is used —an
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operation which is quite expensive— call-by-need can be seen as a memoized ver-
sion of call-by-name, where the value of an argument is stored the first time it is
evaluated for subsequent uses. For example, if t = A (I I), where A = \z.xz x and
I = Az.z, then call-by-name duplicates the argument I I, while lazy languages
first reduce I I to the value I so that further uses of this argument do not need
to evaluate it again.

While the notion of needed reduction is defined with respect to (full strong)
normal forms, call-by-need calculi evaluate programs to special values called
weak-head normal forms, which are either abstractions or arbitrary applications
headed by a variable (i.e. terms of the form x ¢; ... ¢, wheret; ...t, are arbitrary
terms). To overcome this shortfall, we first adapt the notion of needed redex to
terms that are not going to be fully reduced to normal forms but only to weak-
head normal forms. Thus, informally, a redex r is weak-head needed in a term t
if r has to be contracted sooner or later when reducing ¢ to a weak-head normal
form. The derived notion of strategy is called a weak-head needed strategy, which
always contracts a weak-head needed redex.

This paper introduces two independent results about weak-head neededness,
both obtained by means of (non-idempotent) intersection types [12,13] (a survey
can be found in [9]). We consider, in particular, typing system V [14] and show
that it allows to identify all the weak-head needed redexes of a weak-head nor-
malising term. This is done by adapting the classical notion of principal type [17]
and proving that a redex in a weak-head normalising term ¢ is weak-head needed
iff it is typed in a principally typed derivation for ¢ in V.

Our second goal is to show observational equivalence between call-by-need
and weak-head needed reduction. Two terms are observationally equivalent when
all the empirically testable computations on them are identical. This means that
a term t can be evaluated to a weak-head normal form using the call-by-need
machinery if and only if the weak-head needed reduction normalises ¢.

By means of system V mentioned so far we use a technique to reason about
observational equivalence that is flexible, general and easy to verify or even
certify. Indeed, system V provides a semantic argument: first showing that a
term t is typable in system V iff it is normalising for the weak-head needed
strategy (¢t € VWA uma), then by resorting to some results in [14], showing that
system V is complete for call-by-name, i.e. a term ¢ is typable in system V iff
t is normalising for call-by-name (¢t € WN jane); and that ¢ is normalising for
call-by-name iff ¢ is normalising for call-by-need (¢ € W yeeq). Thus completing
the following chain of equivalences:

t € WNunna < t typable in V <—= t € WN pane <—=t € WN peeda

This leads to the observational equivalence between call-by-need, call-by-
name and weak-head needed reduction.

Structure of the paper: Sect.2 introduces preliminary concepts while Sect.3
defines different notions of needed reduction. The type system V is stud-
ied in Sect.4. Sectionb extends [-reduction to derivation trees. We show in
Sect. 6 how system ) identifies weak-head needed redexes, while Sect. 7 gives a
characterisation of normalisation for the weak-head needed reduction. Sect. 8 is
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devoted to define call-by-need. Finally, Sect.9 presents the observational equiv-
alence result.

2 Preliminaries

This section introduces some standard definitions and notions concerning the
reduction strategies studied in this paper, that is, call-by-name, head and weak-
head reduction, and neededness, this later notion being based on the theory of
residuals [7].

2.1 The Call-by-Name Lambda-Calculus

Given a countable infinite set X of variables x, ¥, z, . . . we consider the following
grammar:
(Terms) t,u =2 € X |tu| Azt
(Values) v =zt
(Contexts) C:=0|Ct|tC|Az.C
(Name contexts) E:=[0|Et

The set of A-terms is denoted by 7,. We use I, K and {2 to denote the terms
Az.xz, Az Ay.x and (Az.z x) (A\z.z x) respectively. We use C(t) (resp. E(t)) for the
term obtained by replacing the hole O of C (resp. E) by t. The sets of free and
bound variables of a term t, written respectively fv(t) and bv(t), are defined
as usual [7]. We work with the standard notion of a-conversion, i.e. renaming
of bound variables for abstractions; thus for example Ax.x y =, Az.zy.

A term of the form (Az.t)u is called a B-redex (or just redex when ( is
clear from the context) and Az is called the anchor of the redex. The one-
step reduction relation —g (resp. —name) is given by the closure by contexts
C (rvesp. E) of the rewriting rule (Ax.t)u g t{z /u}, where _{_/_} denotes
the capture-free standard higher-order substitution. Thus, call-by-name forbids
reduction inside arguments and A-abstractions, e.g. (Ax.II)(II) —g (A\x.lI)I
and (Az.II)(II) —pg (Ax.I) (II) but neither (Ax.II)(II) —pame (Az.IT)I nor
(Ax.II) (II) —name (Ax.I) (IT) holds. We write — 3 (resp. —name) for the reflexive-
transitive closure of —g (resp. —name)-

2.2 Head, Weak-Head and Leftmost Reductions

In order to introduce different notions of reduction, we start by formalising
the general mechanism of reduction which consists in contracting a redex at
some specific occurrence. Occurrences are finite words over the alphabet {0, 1}.
We use € to denote the empty word and notation a" for n € N concatenations
of some letter a of the alphabet. The set of occurrences of a given term is
defined by induction as follows: oc(x) & {e}; oc(tu) = {¢} U{0p | p € oc(t)} U
{lp|p € oc(u)}; oc(Ax.t) £ {e} U{Op | p € oc(t)}.
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Given two occurrences p and g, we use the notation p < q to mean that p is a
prefiz of q, i.e. there is p’ such that pp’ = q. We denote by t|, the subterm of t
at occurrencep, defined as expected [4], thus for example ((Az.y) z)|oo = y. The
set of redex occurrences of t is defined by roc(t) & {p € oc(t) | t|, = (A\x.s) u}.
We use the notation r : t —g ¢’ to mean that r € roc(t) and ¢ reduces to ¢’ by
contracting the redex at occurrence r, e.g. 000 : (Az.(A\y.y) zx) z —g (A\z.x T) 2.
This notion is extended to reduction sequences as expected, and noted p : t —g
t', where p is the list of all the redex occurrences contracted along the reduction
sequence. We use nil to denote the empty reduction sequence, so that nil : ¢t -4zt
holds for every term t.

Any term t has exactly one of the following forms: Azq.... Az, yt1...tn,
or Axy.... A\xp.(Ay.s)uty...t, with n,m > 0. In the latter case we say that
(A\y.s) u is the head redex of t, while in the former case there is no head redex.
Moreover, if n = 0, we say that (Ay.s)u is the weak-head redex of t. In terms
of occurrences, the head redex of t is the minimal redex occurrence of the form
0" with n > 0. In particular, if it satisfies that ¢|o is not an abstraction for every
k < n, it is the weak-head redex of t. A reduction sequence contracting at each
step the head redex (resp. weak-head redex) of the corresponding term is called
the head reduction (resp. weak-head reduction).

Given two redex occurrences r,r’" € roc(t), we say that r is to-the-left of
r' if the anchor of r is to the left of the anchor of r’. Thus for example, the
redex occurrence 0 is to-the-left of 1 in the term (I x) (I y), and e is to-the-left
of 00 in (Ax.(I I)) z. Alternatively, the relation to-the-left can be understood as
a dictionary order between redex occurrences, i.e. r is to-the-left of r’ if either
t' = rq with q # € (i.e. r is a proper prefix of '); or r = p0q and r' = plq’ (i.e. they
share a common prefix and r is on the left-hand side of an application while r’
is on the right-hand side). Notice that in any case this implies r' £ r. Since this
notion defines a total order on redexes, every term not in normal form has a
unique leftmost redex. The term t leftmost reduces to t’' if t reduces to t
and the reduction step contracts the leftmost redex of ¢. For example, (I x) (I y)
leftmost reduces to z (I y) and (Ax.(II)) z leftmost reduces to I I. This notion
extends to reduction sequences as expected.

3 Towards Neededness

Needed reduction is based on two fundamental notions: that of residual, which
describes how a given redex is traced all along a reduction sequence, and that
of normal form, which gives the form of the expected result of the reduction
sequence. This section extends the standard notion of needed reduction [8] to
those of head and weak-head needed reductions.
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3.1 Residuals

Given a term t, p € oc(t) and r € roc(t), the descendants of p after r in t,
written p/r, is the set of occurrences defined as follows:

gifp=rorp=r0
{pyifr£p
{rq} if p = r00q
{rkq | s|lk = «} if p =rlq with ¢|, = (\z.s) u

For instance, given t = (Az.(Ay.z)x) z, then oc(t) = {e0,1,00,000,001,
0000}, roc(t) = {€,00}, 00/00 = &, ¢/00 = {e}, 00/e = {e} and 1/e = {1,00}.

Notice that p/r C oc(t’) where r : t —3 t’. Furthermore, if p is the occurrence
of a redex in ¢ (i.e. p € roc(t)), then p/r C roc(t'), and each position in p/r is
called a residual of p after reducing r. This notion is extended to sets of redex
occurrences, indeed, the residuals of P after r in t are P/r & Up673 p/r. In
particular @/r = @. Given p : t -5 t/ and P C roc(t), the residuals of P
after the sequence p are: P/nil &P and P/rp’ & (P/r)/p .

Stability of the to-the-left relation makes use of the notion of residual:

Lemma 1. Given a termt, let |,r,s € roc(t) such that | is to-the-left of r, s % |
ands:t —gt'. Then, | € roc(t') and | is to-the-left of r' for every r’ € r/s.

Proof. By case analysis using the definition of to-the-left [15]. O

Notice that this result does not only implies that the leftmost redex is pre-
served by reduction of other redexes, but also that the residual of the leftmost
redex occurs in exactly the same occurrence as the original one.

Corollary 1. Given a term t, and | € roc(t) the leftmost redex of t, if the
reduction p : t —g t' contracts neither | nor any of its residuals, then | € roc(t')
is the leftmost redex of t'.

Proof. By induction on the length of p using Lemma 1. O

3.2 Notions of Normal Form

The expected result of evaluating a program is specified by means of some appro-
priate notion of normal form. Given any relation —%, a term ¢ is said to be
in R-normal form (NFg) iff there is no t' such that ¢ —x ¢. A term ¢ is
R-normalising WN'R) iff there exists u € NFg such that t -z u. Thus,
given an R-normalising term ¢, we can define the set of R-normal forms of ¢ as
nfr(t) Z{t' |t »r t' Nt € NFR}.

In particular, it turns out that a term in weak-head (-normal form
(WHNZF ) is of the form xty...t, (n > 0) or \a.t, where t,t1,...,t, are arbi-
trary terms, i.e. it has no weak-head redex. The set of weak-head B-normal forms
of t iswhnfg(t) & {t' |t =5 t' ANt/ € WHNF3}.
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Similarly, a term in head (S-normal form (HNFg) turns out to be of the
form Azq.... A\xp.xt1 ...ty (n,m > 0), i.e. it has no head redex. The set of head
B-normal forms of ¢ is given by hnfg(t) & {t' |t g t' At € HNF3}.

Last, any term in S-normal form (NF ) has the form A\zq.... Az, ty ...ty
(n,m > 0) where t,...,t, are themselves in S-normal form. It is well-known
that the set nfg(t) is a singleton, so we may use it either as a set or as its unique
element.

It is worth noticing that NFg C HNFz C WHNF 3. Indeed, the inclusions
are strict, for instance Az.(Ay.y) z is in weak-head but not in head [B-normal
form, while  ((A\y.y) ) z is in head but not in S-normal form.

3.3 Notions of Needed Reduction

The different notions of normal form considered in Sect. 3.2 suggest different
notions of needed reduction, besides the standard one in the literature [8]. Indeed,
consider r € roc(t). We say that r is used in a reduction sequence p iff p reduces
r or some residual of r. Then:

1. ris needed in t if every reduction sequence from ¢ to B-normal form uses r;

2. r is head needed in t if every reduction sequence from ¢ to head [S-normal
form uses r;

3. r is weak-head needed in t if every reduction sequence of ¢ to weak-head
(B-normal form uses r.

Notice in particular that nfg(t) = @ (resp. hnfg(t) = @ or whnfg(t) = @)
implies every redex in t is needed (resp. head needed or weak-head needed).

A one-step reduction—g is needed (resp. head or weak-head needed),
noted —pq (resp. —mna OF —ynna), if the contracted redex is needed (resp. head
or weak-head needed). A reduction sequence—s is needed (resp. head or
weak-head needed), noted —»,4 (resp. —»pna OF —ymna), if every reduction step
in the sequence is needed (resp. head or weak-head needed).

For instance, consider the reduction sequence:

Ay Adedx(LL,)(I1) —na Ay dxdx, I)(I1) —na Ay Az.xl) (1) —pg Avxl

r3

which is needed but not head needed, since redex r; might not be contracted to
reach a head normal form:

Ay Axdlx, (I1))(II) —pa Ay Az (I1))(I1) —nna Az.x (1)

r3

Moreover, this second reduction sequence is head needed but not weak-head
needed since only redex r3 is needed to get a weak-head normal form:

Az Tz (IT)) (IT) —ama Ao.Tx (1)

3
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Notice that the following equalities hold: NFpq = NFg, NFma = HNF3
and wahnd = WHNfg
Leftmost redexes and reduction sequences are indeed needed:

Lemma 2. The leftmost redex in any term not in normal form (resp. head or
weak-head normal form) is needed (resp. head or weak-head needed).

Proof. By contradiction using the definition of needed [15]. O

Theorem 1. Let r € roc(t) and p : t —g t' be the leftmost reduction (resp.
head reduction or weak-head reduction) starting with t such that t' = nfg(t)
(resp. t' € hnfg(t) ort’ € whnfg(t)). Then, r is needed (resp. head or weak-head
needed) in t iff r is used in p.

Proof. By definition of needed using Lemma 2 [15]. O

Notice that the weak-head reduction is a prefix of the head reduction, which
is in turn a prefix of the leftmost reduction to normal form. As a consequence,
it is immediate to see that every weak-head needed redex is in particular head
needed, and every head needed redex is needed as well. For example, consider:

Ay e Iz™ (I1°)(IT")

1

where r3 is a needed redex but not head needed nor weak-head needed. However,
r, is both needed and head needed, while ry is the only weak-head needed redex
in the term, and r4 is not needed at all.

4 The Type System V

In this section we recall the (non-idempotent) intersection type system V [14]
—an extension of those in [12,13]- used here to characterise normalising terms
w.r.t. the weak-head strategy. More precisely, we show that ¢ is typable in system
V if and only if ¢ is normalising when only weak-head needed redexes are con-
tracted. This characterisation is used in Sect. 9 to conclude that the weak-head
needed strategy is observationally equivalent to the call-by-need calculus (to be
introduced in Sect. 8).

Given a constant type a that denotes answers and a countable infinite set B
of base type variables «, 3,7, ..., we define the following sets of types:

(Types) t,0:=alaeB|M—r
(Multiset types) M, N ::= {7 }icr where I is a finite set

The empty multiset is denoted by {J}. We remark that types are strict [18],
i.e. the right-hand sides of functional types are never multisets. Thus, the general
form of a type is My — ... — M,, — 7 with 7 being the constant type or a base
type variable.

Typing contexts (or just contexts), written I', A, are functions from vari-
ables to multiset types, assigning the empty multiset to all but a finite set of
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variables. The domain of I is given by dom(I") & {z | I"(z) # {} }. The union
of contexts, written I + A, is defined by (I + A)(z) & I'(z) U A(z), where U
denotes multiset union. An exampleis (z: {o},y: {7} +(z: {o},z: {r}) =
(x : {o,0},y: {7},z : {7}). This notion is extended to several contexts as
expected, so that +;c;; denotes a finite union of contexts (when I = & the
notation is to be understood as the empty context). We write I \ = for the
context (I'\ z)(z) = {} and (I" \\ 2)(y) = I'(y) if y # =.

Type judgements have the form I' - ¢ : 7, where I' is a typing context, ¢
is a term and 7 is a type. The intersection type system V for the A-calculus is
given in Fig. 1.

I'Ht:T
x:{[r}}}—x:T(aX) '\zkXet:I(z) =7

(—1)

I't+t: {Uiﬂ'ie] — T (A»L Fu: 0'7;)7;61
— (val) (—e)
FAx.t:a I +icr Aibtu:t

Fig. 1. The non-idempotent intersection type system V.

The constant type a in rule (val) is used to type values. The axiom (ax)
is relevant (there is no weakening) and the rule (—e) is multiplicative. Note
that the argument of an application is typed #(I) times by the premises of rule
(—e). A particular case is when I = @: the subterm u occurring in the typed
term ¢ turns out to be untyped.

A (type) derivation is a tree obtained by applying the (inductive) typing
rules of system V. The notation >y I'F ¢:7 means there is a derivation of
the judgement I' - ¢: 7 in system V. The term ¢ is typable in system V), or
V-typable, iff ¢ is the subject of some derivation, i.e. iff there are I' and 7
such that >y I'Ft: 7. We use the capital Greek letters @,¥, ... to name type
derivations, by writing for example @ >y, I' F t : 7. For short, we usually denote
with @; a derivation with subject ¢ for some type and context. The size of
the derivation P, denoted by sz(P), is defined as the number of nodes of
the corresponding derivation tree. We write RULE(®) € {(ax),(—1i),(—e)} to
access the last rule applied in the derivation @. Likewise, PREM(®) is the multiset
of proper maximal subderivations of @. For instance, given

D, (DY);
P — t (u)EI _)e)
I'Ftu:T

we have RULE(®) = (—e) and PREM(®) = {&,} U {&! |i € I}. We also use
functions CTXT(®), SUBJ(P) and TYPE(QP) to access the context, subject and type
of the judgement in the root of the derivation tree respectively. For short, we
also use notation @(x) to denote the type associated to the variable z in the
typing environment of the conclusion of @ (i.e. ®(z) & CTXT(®)(x)).
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Intersection type systems can usually be seen as models [11], i.e. typing
is stable by convertibility: if ¢ is typable and ¢ =g t/, then ¢’ is typable too.
This property splits in two different statements known as subject reduction and
subject expansion respectively, the first one giving stability of typing by reduc-
tion, the second one by expansion. In the particular case of mon-idempotent
types, subject reduction refines to weighted subject-reduction, stating that not
only typability is stable by reduction, but also that the size of type derivations
is decreasing. Moreover, this decrease is strict when reduction is performed on
special occurrences of redexes, called typed occurrences. We now introduce all
these concepts.

Given a type derivation @, the set TOC(P) of typed occurrences of ¢, which
is a subset of oc(SUBJ(®)), is defined by induction on the last rule of @.

— If RULE(®) € {(ax), (val)}, then TOC(®P) £ {¢}.

— IfRULE(®) = (— i) with SUBJ(®) = Az.t and PREM(®) = {&,}, then TOC(P) &
{e} U{0p | p € TOC(2:)} _

— If RULE(®) = (—e) with SUBJ(®) = tu and PREM(®) = {&, } LI {&°, | i € T},
then TOC(®) 2 {e} U{0p | p € TOC(P;)} U (U;e; {1p | p € TOC(PE)}).
Remark that there are two kind of untyped occurrences, those inside untyped

arguments of applications, and those inside untyped bodies of abstractions. For
instance consider the following type derivations:

x:{{a]}l—x:a(aX) L) o _@K I—I:a(‘(,al)
R O LR VLo @K’:—Fm;{{}}% ©
F K fa) — {} —a K10 =0 (Y

Then, TOC(Pk 1) = {¢,0,00,01,000,0000} C oc(KI1f2).
Remark 1. The weak-head redex of a typed term is always a typed occurrence.

Given @ and p € TOC(P), we define P|, as the multiset of all the subderiva-
tions of @ at occurrencep (a formal definition can be found in [15]). Note
that @|, is a multiset since the subterm of SUBJ(®) at position p may be typed
several times in @, due to rule (—e).

We can now state the two main properties of system V, whose proofs can be
found in Sect. 7 of [9].

Theorem 2 (Weighted Subject Reduction). Let $>y It 7. Ifr:t —g
t', then there exists ' s.t. &' >y I' =t : 7. Moreover,

1. If r € TOC(P), then sz(P) > sz(P').

2. Ifr ¢ TOC(P), then sz(P) = sz(P').

Theorem 3 (Subject Expansion). Let &' >y I'Ft' 7. Ift —p t, then there
erists ® s.t. D>y I'Ht:T.

Note that weighted subject reduction implies that reduction of typed redex
occurrences turns out to be normalising.
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5 Substitution and Reduction on Derivations

In order to relate typed redex occurrences of convertible terms, we now extend
the notion of [-reduction to derivation trees, by making use of a natural and
basic concept of typed substitution. In contrast to substitution and S-reduction
on terms, these operations are now both non-deterministic on derivation trees
(see [19] for discussions and examples). Given a variable z and type deriva-
tions @; and (P);cs, the typed substitution of x by (P.);c; in &y, written
D {ac / (D!)ic [} by making an abuse of notation, is a type derivation induc-
tively defined on &;, only if &;(z) = {TYPE(®')};cr. This non-deterministic
construction may be non-trivial but it can be naturally formalised in a quite
straightforward way (full details can be found in [15]). Intuitively, the typed sub-
stitution replaces typed occurrences of x in @; by a corresponding derivation &7,
matching the same type, where such a matching is chosen in a non-deterministic
way. Moreover, it also substitutes all untyped occurrences of x by u, where this
untyped operation is completely deterministic. Thus, for example, consider the
following substitution, where @ is defined in Sect. 4:

(ax) .
cA b e s ) e =— (L
z:{{} —a}Fzz:a (=e) o/} }_(KI)(KI):a( )

The following lemma relates the typed occurrences of the trees composing a
substitution and those of the substituted tree itself:

Lemma 3. Let @, and (P!);c; be derivations such that @, {x /(D)icr } is
defined, and p € oc(t). Then,

1. p € TOC(®,) iff p € TOC(Dy {x /(PL)icr })-
2. q € TOC(®F) for some k € I iff there exists p € TOC(®;) such that t[, = x and
pq € TOC(@t {x/(@;)zej })

Proof. By induction on @;. O

Based on the previous notion of substitutions on derivations, we are now able
to introduce (non-deterministic) reduction on derivation trees. The reduction
relation — g on derivation trees is then defined by first considering the following
basic rewriting rules.

1. For typed p-redexes:
S>>y e foitierbt:r
'zt {oi}ier — 7 (D! >y A - u:oy)ier
I't+ier AiF (Qzt)u: T

g O {x [(P)ier }
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2. For (-redexes in untyped occurrences, with u —g u':

ret:{}—r I'ct: {}—r
I—)V _— P—)g—
I'Ftu:T CHtu .7 FAz.u:a Faz.u' :a

As in the case of the A-calculus, where reduction is closed under usual term
contexts, we need to close the previous relation under derivation tree contexts.
However, a one-step reduction on a given subterm causes many one-step reduc-
tions in the corresponding derivation tree (recall @|, is defined to be a multiset).
Then, informally, given a redex occurrence r of ¢, a type derivation @ of ¢, and
the multiset of minimal subderivations of ¢ containing r, written .#, we apply
the reduction rules —g, ¢ to all the elements of .#, thus obtaining a multiset
A, and we recompose the type derivation of the reduct of ¢ (see [15] for a formal
definition). This gives the reduction relation —g on trees. A reduction sequence
on derivation trees contracting only redexes in typed positions is dubbed a typed
reduction sequence.

Note that typed reductions are normalising by Theorem 2, yielding a special
kind of derivation. Indeed, given a type derivation @ >y I' -t : 7, we say that
& is normal iff TOC(P) N roc(t) = @. Reduction on trees induces reduction on
terms: when p : @ —g @', then SUBJ(P) —3 SUBJ(P'). By abuse of notation we
may denote both sequences with the same letter p.

6 Weak-Head Neededness and Typed Occurrences

This section presents one of our main results. It establishes a connection between
weak-head needed redexes and typed redex occurrences. More precisely, we first
show in Sect.6.1 that every weak-head needed redex occurrence turns out to
be a typed occurrence, whatever its type derivation is. The converse does not
however hold. But, we show in Sect. 6.2 that any typed occurrence in a special
kind of typed derivation (that we call principal) corresponds to a weak-head
needed redex occurrence. We start with a technical lemma.

Lemma 4. Let r: & —g §p and p € oc(t) such that p # r and p # r0. Then,
p € TOC(P;) iff there exists p’ € p/r such that p’ € TOC(Py).

Proof. By induction on r using Lemma 3. a

6.1 Weak-Head Needed Redexes Are Typed

In order to show that every weak-head needed redex occurrence corresponds
to a typed occurrence in some type derivation we start by proving that typed
occurrences do not come from untyped ones.

Lemma 5. Let p: &, -3 $p and p € oc(t). If there exists p' € p/p such that
p’ € TOC(Py), then p € TOC(D,).

Proof. Straightforward induction on p using Lemma4. O
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Theorem 4. Let r be a weak-head needed redex in t. Let @ be a type derivation
of t. Then, r € TOC(D).

Proof. By Theorem 1, r is used in the weak-head reduction from t to t' €
WHNF 5. By Remark 1, the weak-head reduction contracts only typed redexes.
Thus, r or some of its residuals is a typed occurrence in its corresponding deriva-
tion tree. Finally, we conclude by Lemma5, r € TOC(®P). O

6.2 Principally Typed Redexes Are Weak-Head Needed

As mentioned before, the converse of Theorem 4 does not hold: there are some
typed occurrences that do not correspond to any weak-head needed redex occur-
rence. This can be illustrated in the following examples (recall @k, defined
in Sect. 4):

Pria s TS A vein

FMX.KIQ:{} —a y:{{a} —a} Fy(KIN):a

Indeed, the occurrence 0 (resp 1) in the term Ay. K12 (resp. y (KIf2)) is
typed but not weak-head needed, since both terms are already in weak-head
normal form. Fortunately, typing relates to redex occurrences if we restrict type
derivations to principal ones: given a term ¢ in weak-head -normal form, the
derivation @ >y I' -t : 7 is normal principally typed if:

n times

—_—~
—t=xty...t, (n>0),and I'={a: {{} — ... > {} — 7} } and 7 is a type
variable « (i.e. none of the t; are typed), or
—t=M.t/,and ' = & and 7 = a.

Given a weak-head normalising term ¢ such that @, >y I' - ¢ : 7, we say that
&, is principally typed if &, —3 Py for some t' € whnfg(t) implies Py is
normal principally typed.

Note in particular that the previous definition does not depend on the chosen
weak-head normal form t': suppose ¢ € whnfg(t) is another weak-head normal
form of ¢, then ¢’ and " are convertible terms by the Church-Rosser property [7]
so that ¢ can be normal principally typed iff ¢ can, by Theorems 2 and 3.

Lemma 6. Let @, be a type derivation with subject t and r € roc(t) N TOC(Py).
Let p: &, -5 Dy such that Py is normal. Then, r is used in p.

Proof. Straightforward induction on p using Lemma4. O

The notions of leftmost and weak-head needed reductions on (untyped) terms
naturally extends to typed reductions on tree derivations. We thus have:

Lemma 7. Let t be a weak-head normalising term and P; be principally typed.
Then, a leftmost typed reduction sequence starting at @; is weak-head needed.
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Proof. By induction on the leftmost typed sequence (called p). If p is empty the
result is immediate. If not, we show that ¢ has a typed weak-head needed redex
(which is leftmost by definition) and conclude by inductive hypothesis. Indeed,
assume t € WHNZF 3. By definition @; is normal principally typed and thus it
has no typed redexes. This contradicts p being non-empty. Hence, ¢t has a weak-
head redex r (i.e. t ¢ WHNFg). Moreover, r is both typed (by Remark 1) and
weak-head needed (by Lemma 2). Thus, we conclude. O

Theorem 5. Lett be a weak-head normalising term, @, be principally typed and
r € roc(t) N TOC(P;). Then, r is a weak-head needed redex in t.

Proof. Let p: & -3 P be the leftmost typed reduction sequence where @, is
normal. Note that @4 exists by definition of principally typed. By Lemma7, p is
a weak-head needed reduction sequence. Moreover, by Lemma6, r is used in p.
Hence, r is a weak-head needed redex in t. a

As a direct consequence of Theorems 4 and 5, given a weak-head normalising
term ¢, the typed redex occurrences in its principally typed derivation (which
always exists) correspond to its weak-head needed redexes. Hence, system V
allows to identify all the weak-head needed redexes of a weak-head normalising
term.

7 Characterising Weak-Head Needed Normalisation

This section presents one of the main pieces contributing to our observational
equivalence result. Indeed, we relate typing with weak-head neededness by show-
ing that any typable term in system )V is normalising for weak-head needed
reduction. This characterisation highlights the power of intersection types. We
start by a technical lemma.

Lemma 8. Let >y I'+t: 7. Then, ¢ normal implies t € WHNF 3.
Proof. By induction on @ analysing the last rule applied. O

Let p : t;1 =3 t,. We say that p is a left-to-right reduction sequence iff
for every i < nif rj : t; =g t;41 and [; is to the left of r; then, for every j > i
such that rj : t; —g t;41 we have that r; ¢ {li}/p;; where p;; : t; -3 ¢; is the
corresponding subsequence of p. In other words, for every j and every i < 7,
rj is not a residual of a redex to the left of r; (relative to the given reduction
subsequence from t; to t;) [7].

Left-to-right reductions define in particular standard strategies, which give
canonical ways to construct reduction sequences from one term to another:

Theorem 6 ([7]). Ift —gt', there exists a left-to-right reduction from t to t'.

Theorem 7. Lett € T,. Then, ®>y I'Ft: 7 iff t € WNynna-
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Proof. =) By Theorem 2 we know that the strategy reducing only typed redex
occurrences is normalising, i.e. there exist ¢’ and ¢’ such that ¢t -3 t/, &' >y
I' =t : 7 and @' normal. Then, by Lemma 8, ¢’ € WHNF 3. By Theorem 6, there
exists a left-to-right reduction p : t -3 t'. Let us write

pit=t; >»gt, »gt

such that ti,...,t,—1 ¢ WHNFg and t,, € WHNF 3.

We claim that all reduction steps in ¢; —g ¢, are leftmost. Assume towards
a contradiction that there exists k < n such that r : t;, —3 t;11 and r is not the
leftmost redex of ¢ (written lx). Since p is a left-to-right reduction, no residual
of I is contracted after the k-th step. Thus, there is a reduction sequence from
t, ¢ WHNFg to t,, € WHNFg such that lg is not used in it. This leads to a
contradiction with I, being weak-head needed in ¢; by Lemma 2.

As a consequence, there is a leftmost reduction sequence t —g t,,. Moreover,
by Lem. 2, t = ynna tn, € WHNF 3 = NFupna. Thus, ¢ € WN upng.

<) Consider the reduction p : t —»ypnq t' with ¢ € whnfg(t). Let &' >y
I' =t/ : 7 be the normal principally typed derivation for ¢’ as defined in Sect. 6.2.
Finally, we conclude by induction in p using Theorem3, @ >y I'Ft: 7. O

8 The Call-by-Need Lambda-Calculus

This section describes the syntax and the operational semantics of the call-by-
need lambda-calculus introduced in [1]. It is more concise than previous specifi-
cations of call-by-need [2,3,10,16], but it is operationally equivalent to them [6],
so that our results could also be presented by using alternative specifications.
Given a countable infinite set A’ of variables x,y, z, ... we define different
syntactic categories for terms, values, list contexts, answers and need contexts:

(Terms) t,u :=x € X | tu| Azt | t[z\u]
(Values) v = Azt
(List contexts) L :=0|L[x\¢]
(Answers) a ::=L{)\y.t)
(Need contexts) M,N :=0 | N¢ | N[z\¢t] | N{z)[z\M]

We denote the set of terms by 7,. Terms of the form ¢[z\u] are closures,
and [z\u] is called an explicit substitution (ES). The set of Z.-terms without
ES is the set of terms of the A-calculus, i.e. T,. The notions of free and bound
variables are defined as expected, in particular, fv(t[z\u]) & fv(t)\ {2} Ufv(u),
fv(Az.t) € £v(t)\{z}, bv(t[z\u]) £ bv(t)U{z}Ubv(u) and bv(\z.t) ¥ bv(t)U{z}.
We extend the standard notion of a-conversion to ES, as expected.

We use the special notation N{u) or L{u) when the free variables of u are not
captured by the context, i.e. there are no abstractions or explicit substitutions
in the context that binds the free variables of u. Thus for example, given N =
(Oz)[x\z], we have (yz)[z\z] = N{y) = N{y), but (xzz)[z\z] = N(z) cannot be



Call-by-Need, Neededness and All That 255

written as N{z}). Notice the use of this special notation in the last case of needed
contexts, an example of such case being (z y)[y\¢][z\O].

The call-by-need calculus, introduced in [1], is given by the set of terms
7. and the reduction relation —,..q, the union of —g and —14,, which are,
respectively, the closure by need contexts of the following rewriting rules:

Lz.t) u —qg L{t[z\u])
N{z)[2\L(v)] —1ev LIN(u)[2\0])
These rules avoid capture of free variables. An example of need-reduction
sequence is the following, where the redex of each step is underlined for clearness:

Axy I (z1 ) (Ny. I y) —a ([ (x11))[z1\A\y.Ty] —aB
xalxo\x1 I[z1\\y.1 ] —1sv To[r2\(Axs. 23) I|[z1\ y.T 3] — 4B
zo[va\(Lzg)[zs\]][x1\\y.Ty]  —as zowa\za[za\z3][23\I]][21\\Y-T Y] =189
zolz2\za[ra\I][23\I]][21\Ay. T Y] —16v Z2[22\I[2a\I][x5\I]][21\\y.T Y] —1sv

Hao\I[za\I[zs\I][z1\Ny.T y]

As for call-by-name, reduction preserves free variables, i.e. t —jeq t' implies
fv(t) D £v(t'). Notice that call-by-need reduction is also weak, so that answers
are not need-reducible.

9 Observational Equivalence

The results in Sect. 7 are used here to prove soundness and completeness of call-
by-need w.r.t weak-head neededness, our second main result. More precisely, a
call-by-need interpreter stops in a value if and only if the weak-head needed
reduction stops in a value. This means that call-by-need and call-by-name are
observationally equivalent.

Formally, given a reduction relation R on a term language 7, and an associ-
ated notion of context for 7, we define ¢ to be observationally equivalent to
u, written t g u, iff C(t) € WN'r & C{u) € WN ' for every context C. In order
to show our final result we resort to the following theorem:

Theorem 8 ([14]).

1. Lett€T,. Then, P>y I'Ft:7 iff t € WN pane-

2. For all terms t and u in Ty, t Zpane U iff t Zpeeq U-
These observations allows us to conclude:

Theorem 9. For all terms t and w in Ty, t Zpna U iff t Zneeq U-

Proof. By Theorem 8:2 it is sufficient to show ¢ = nng v iff ¢ Zpane . The proof
proceeds as follows:

t Shame U iff (definition)
C{t) € WNpame & C(u) € WNpane iff (Theorem 8:1)
C(t) typable in V <& C(u) typable in V iff (Theorem 7)
C{t) € WNuma < Clu) € WNiypna  iff (definition)

t gwhnd U
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10 Conclusion

We establish a clear connection between the semantical standard notion of need-
edness and the syntactical concept of call-by-need. The use of non-idempotent
types —a powerful technique being able to characterise different operational
properties— provides a simple and natural tool to show observational equiva-
lence between these two notions. We refer the reader to [5] for other proof tech-
niques (not based on intersection types) used to connect semantical notions of
neededness with syntactical notions of lazy evaluation.

An interesting (and not difficult) extension of our result in Sect.6 is that
call-by-need reduction (defined on A-terms with explicit substitutions) contracts
only dB weak-head needed redexes, for an appropriate (and very natural) notion
of weak-head needed redex for A-terms with explicit substitutions. A technical
tool to obtain such a result would be the type system A [14], a straightforward
adaptation of system V to call-by-need syntax.

Given the recent formulation of strong call-by-need [6] describing a determin-
istic call-by-need strategy to normal form (instead of weak-head normal form), it
would be natural to extend our technique to obtain an observational equivalence
result between the standard notion of needed reduction (to full normal forms)
and the strong call-by-need strategy. This remains as future work.
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