
21st International Conference, FOSSACS 2018
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14–20, 2018, Proceedings

Foundations
of Software Science and
Computation StructuresLN

CS
 1

08
03

AR
Co

SS
Christel Baier · Ugo Dal Lago (Eds.)

Lecture Notes in Computer Science 10803

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

Christel Baier • Ugo Dal Lago (Eds.)

Foundations
of Software Science and
Computation Structures
21st International Conference, FOSSACS 2018
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14–20, 2018
Proceedings

Editors
Christel Baier
TU Dresden
Dresden
Germany

Ugo Dal Lago
Università di Bologna
Bologna
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-89365-5 ISBN 978-3-319-89366-2 (eBook)
https://doi.org/10.1007/978-3-319-89366-2

Library of Congress Control Number: 2018937398

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0001-9200-070X

ETAPS Foreword

Welcome to the proceedings of ETAPS 2018! After a somewhat coldish ETAPS 2017
in Uppsala in the north, ETAPS this year took place in Thessaloniki, Greece. I am
happy to announce that this is the first ETAPS with gold open access proceedings. This
means that all papers are accessible by anyone for free.

ETAPS 2018 was the 21st instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program facilitates
participation in an exciting event, offering attendees the possibility to meet many
researchers working in different directions in the field, and to easily attend talks of
different conferences. Before and after the main conference, numerous satellite work-
shops take place and attract many researchers from all over the globe.

ETAPS 2018 received 479 submissions in total, 144 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all the authors for their interest in
ETAPS, all the reviewers for their peer reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2018 was enriched by the unifying invited speaker Martin Abadi (Google
Brain, USA) and the conference-specific invited speakers (FASE) Pamela Zave (AT &
T Labs, USA), (POST) Benjamin C. Pierce (University of Pennsylvania, USA), and
(ESOP) Derek Dreyer (Max Planck Institute for Software Systems, Germany). Invited
tutorials were provided by Armin Biere (Johannes Kepler University, Linz, Austria) on
modern SAT solving and Fabio Somenzi (University of Colorado, Boulder, USA) on
hardware verification. My sincere thanks to all these speakers for their inspiring and
interesting talks!

ETAPS 2018 took place in Thessaloniki, Greece, and was organised by the
Department of Informatics of the Aristotle University of Thessaloniki. The university
was founded in 1925 and currently has around 75,000 students; it is the largest uni-
versity in Greece. ETAPS 2018 was further supported by the following associations
and societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Panagiotis Katsaros (general chair), Ioannis Stamelos,

Lefteris Angelis, George Rahonis, Nick Bassiliades, Alexander Chatzigeorgiou, Ezio
Bartocci, Simon Bliudze, Emmanouela Stachtiari, Kyriakos Georgiadis, and Petros
Stratis (EasyConferences).

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Wil van der Aalst (Aachen), Parosh Abdulla (Uppsala),
Amal Ahmed (Boston), Christel Baier (Dresden), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Mikolaj Bojanczyk (Warsaw), Luis Caires (Lisbon), Jurriaan Hage
(Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester), Marieke Huisman
(Twente), Panagiotis Katsaros (Thessaloniki), Ralf Küsters (Stuttgart), Ugo Dal Lago
(Bologna), Kim G. Larsen (Aalborg), Matteo Maffei (Vienna), Tiziana Margaria
(Limerick), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Andrew M. Pitts (Cambridge), Alessandra Russo (London), Dave Sands (Göteborg),
Don Sannella (Edinburgh), Andy Schürr (Darmstadt), Alex Simpson (Ljubljana),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas
Vojnar (Brno), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2018. Finally, a big thanks to Panagiotis and his local orga-
nization team for all their enormous efforts that led to a fantastic ETAPS in
Thessaloniki!

February 2018 Joost-Pieter Katoen

VI ETAPS Foreword

Preface

This volume contains the papers presented at the 21st International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2018), which
was held April 16–19, 2018, in Thessaloniki, Greece. The conference is dedicated to
foundational research with a clear significance for software science and brings together
research on theories and methods to support the analysis, integration, synthesis,
transformation, and verification of programs and software systems.

The program consisted of 31 contributed papers, selected from among 103 sub-
missions. Each submission was reviewed by at least three Program Committee mem-
bers, with the help of external experts. After a three-day rebuttal phase, the selection
was made based on discussions via the EasyChair conference management system,
which was also used to assist with the compilation of the proceedings.

We wish to thank all authors who submitted to FoSSaCS 2018, all the Program
Committee members for their excellent work, and the external reviewers for their
thorough evaluation of the submissions. In addition, we would like to thank the ETAPS
organization for providing an excellent environment for FoSSaCS and other confer-
ences and workshops.

March 2018 Christel Baier
Ugo Dal Lago

Organization

Program Committee

Andreas Abel Gothenburg University, Sweden
Christel Baier TU Dresden, Germany
Nathalie Bertrand Inria, France
Mikolaj Bojanczyk Warsaw University, Poland
Udi Boker Interdisciplinary Center (IDC) Herzliya, Israel
Luis Caires Universidade NOVA de Lisboa, Portugal
Ugo Dal Lago University of Bologna, Italy
Yuxin Deng East China Normal University, China
Mariangiola Dezani-Ciancaglini Università di Torino, Italy
Ichiro Hasuo National Institute of Informatics, Japan
Radha Jagadeesan DePaul University, UK
Stefan Kiefer University of Oxford, UK
Barbara König Universität Duisburg-Essen, Germany
David Monniaux CNRS, VERIMAG, France
Andrzej Murawski The University of Warwick, UK
Joel Ouaknine Max Planck Institute for Software Systems,

Germany
Catuscia Palamidessi Inria, France
Kirstin Peters TU Berlin, Germany
Damien Pous CNRS, ENS Lyon, France
Jean-Francois Raskin Université Libre de Bruxelles, Belgium
Helmut Seidl Technical University of Munich, Germany
Alexandra Silva University College London, UK
Alex Simpson University of Ljubljana, Slovenia
Jiri Srba Aalborg University, Denmark
Jean-Marc Talbot Aix-Marseille Université, France
Christine Tasson Université Denis Diderot, France
Kazushige Terui Kyoto University, Japan

Additional Reviewers

Aler Tubella, Andrea
Almagor, Shaull
Asada, Kazuyuki
Atkey, Robert
Bacci, Giorgio
Bacci, Giovanni

Bagnol, Marc
Baldan, Paolo
Basold, Henning
Bavera, Francisco
Beffara, Emmanuel
Benveniste, Albert

Beohar, Harsh
Berardi, Stefano
Bertolissi, Clara
Berwanger, Dietmar
Blondin, Michael
Bocchi, Laura

Boreale, Michele
Boulmé, Sylvain
Bouyer, Patricia
Brazdil, Tomas
Brotherston, James
Brunet, Paul
Bruni, Roberto
Bucchiarone, Antonio
Busatto-Gaston, Damien
Bønneland, Frederik M.
Cabrera, Benjamin
Cadilhac, Michaël
Carayol, Arnaud
Castellan, Simon
Chen, Tzu-Chun
Clouston, Ranald
Cockx, Jesper
Coppo, Mario
Corbineau, Pierre
Cristescu, Ioana
Doumane, Amina
Dubut, Jérémy
Eberhart, Clovis
Emmi, Michael
Enea, Constantin
Enevoldsen, Søren
Enqvist, Sebastian
Exibard, Léo
Falcone, Ylies
Feng, Yuan
Figueira, Diego
Fijalkow, Nathanaël
Fournier, Paulin
Fujii, Soichiro
Galmiche, Didier
Geeraerts, Gilles
Genest, Blaise
Gorogiannis, Nikos
Graham-Lengrand,

Stéphane
Grellois, Charles
Haar, Stefan
Haase, Christoph
Halfon, Simon
Hartmann, Nico
Hautem, Quentin

Hirschkoff, Daniel
Hirschowitz, Tom
Hsu, Justin
Huang, Mingzhang
Jacobs, Bart
Jacquemard, Florent
Jansen, Nils
Jaskelioff, Mauro
Jecker, Ismaël
Junges, Sebastian
Kakutani, Yoshihiko
Kanovich, Max
Kaufmann, Isabella
Kerjean, Marie
King, Andy
Klein, Felix
Klin, Bartek
Kołodziejczyk, Leszek
Kretinsky, Jan
Krivine, Jean
Kupke, Clemens
Kutsia, Temur
Küpper, Sebastian
Laarman, Alfons
Laird, Jim
Lanese, Ivan
Lang, Frederic
Lazic, Ranko
Lefaucheux, Engel
Leifer, Matthew
Lepigre, Rodolphe
Letouzey, Pierre
Levy, Paul Blain
Li, Xin
Liang, Hongjin
Licata, Daniel R.
Litak, Tadeusz
Lohrey, Markus
Lombardy, Sylvain
Long, Huan
Luttik, Bas
López, Hugo A.
Mackie, Ian
Madnani, Khushraj
Maggi, Fabrizio Maria
Mallet, Frederic

Maranget, Luc
Markey, Nicolas
Martens, Wim
Mayr, Richard
Mazowiecki, Filip
Mikučionis, Marius
Milius, Stefan
Mio, Matteo
Moggi, Eugenio
Monmege, Benjamin
Muniz, Marco
Nestmann, Uwe
New, Max
Nielsen, Mogens
Nolte, Dennis
Nordvall Forsberg,

Fredrik
Nyman, Ulrik
Okudono, Takamasa
Orchard, Dominic
Oualhadj, Youssouf
Padovani, Luca
Panangaden, Prakash
Pang, Jun
Pavlovic, Dusko
Perez, Guillermo
Pitts, Andrew
Plump, Detlef
Pouly, Amaury
Power, John
Pruekprasert, Sasinee
Ramsay, Steven
Regnier, Laurent
Rehak, Vojtech
Roggenbach, Markus
Rot, Jurriaan
Sacerdoti Coen, Claudio
Sammartino, Matteo
Sankur, Ocan
Saurin, Alexis
Schalk, Andrea
Scherer, Gabriel
Schmidt-Schauß, Manfred
Selinger, Peter
Shirmohammadi, Mahsa
Sickert, Salomon

X Organization

Sighireanu, Mihaela
Sistla, A. Prasad
Sojakova, Kristina
Soloviev, Sergei
Sozeau, Matthieu
Sprunger, David
Strassburger, Lutz
Tang, Qiyi
Torres Vieira, Hugo
Tsuiki, Hideki
Tsukada, Takeshi

Turrini, Andrea
Tzevelekos, Nikos
Valencia, Frank
Valiron, Benoît
van Ditmarsch, Hans
Varacca, Daniele
Vial, Pierre
Vicary, Jamie
Vijayaraghavan,

Muralidaran
Villevalois, Didier

Waga, Masaki
Wagner, Christoph
Wojtczak, Dominik
Wolff, Sebastian
Worrell, James
Yamada, Akihisa
Yang, Pengfei
Yoshimizu, Akira
Yu, Tingting
Zimmermann, Martin

Organization XI

Contents

Semantics

Non-angelic Concurrent Game Semantics . 3
Simon Castellan, Pierre Clairambault, Jonathan Hayman,
and Glynn Winskel

A Trace Semantics for System F Parametric Polymorphism 20
Guilhem Jaber and Nikos Tzevelekos

Categorical Combinatorics for Non Deterministic Strategies
on Simple Games . 39

Clément Jacq and Paul-André Melliès

A Syntactic View of Computational Adequacy . 71
Marco Devesas Campos and Paul Blain Levy

Linearity

A New Linear Logic for Deadlock-Free Session-Typed Processes 91
Ornela Dardha and Simon J. Gay

A Double Category Theoretic Analysis of Graded Linear
Exponential Comonads . 110

Shin-ya Katsumata

Depending on Session-Typed Processes . 128
Bernardo Toninho and Nobuko Yoshida

Interoperability for ML and a Linear Language 146
Gabriel Scherer, Max New, Nick Rioux, and Amal Ahmed

Concurrency

Automata for True Concurrency Properties . 165
Paolo Baldan and Tommaso Padoan

A Theory of Encodings and Expressiveness (Extended Abstract). 183
Rob van Glabbeek

A Framework for Parameterized Monitorability. 203
Luca Aceto, Antonis Achilleos, Adrian Francalanza,
and Anna Ingólfsdóttir

Logics for Bisimulation and Divergence. 221
Xinxin Liu, Tingting Yu, and Wenhui Zhang

Lambda-Calculi and Types

Call-by-Need, Neededness and All That . 241
Delia Kesner, Alejandro Ríos, and Andrés Viso

Fitch-Style Modal Lambda Calculi . 258
Ranald Clouston

Realizability Interpretation and Normalization of Typed Call-by-Need
k-calculus with Control . 276

Étienne Miquey and Hugo Herbelin

Quotient Inductive-Inductive Types . 293
Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus,
and Fredrik Nordvall Forsberg

Category Theory and Quantum Control

Guarded Traced Categories. 313
Sergey Goncharov and Lutz Schröder

Proper Semirings and Proper Convex Functors . 331
Ana Sokolova and Harald Woracek

From Symmetric Pattern-Matching to Quantum Control 348
Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto

Quantitative Models

The Complexity of Graph-Based Reductions for Reachability
in Markov Decision Processes . 367

Stéphane Le Roux and Guillermo A. Pérez

A Hierarchy of Scheduler Classes for Stochastic Automata. 384
Pedro R. D’Argenio, Marcus Gerhold, Arnd Hartmanns,
and Sean Sedwards

Symbolically Quantifying Response Time in Stochastic Models
Using Moments and Semirings . 403

Hugo Bazille, Eric Fabre, and Blaise Genest

Comparator Automata in Quantitative Verification. 420
Suguman Bansal, Swarat Chaudhuri, and Moshe Y. Vardi

XIV Contents

Logics and Equational Theories

Modular Tableaux Calculi for Separation Theories 441
Simon Docherty and David Pym

Differential Calculus with Imprecise Input and Its Logical Framework. 459
Abbas Edalat and Mehrdad Maleki

The Effects of Adding Reachability Predicates in Propositional
Separation Logic . 476

Stéphane Demri, Étienne Lozes, and Alessio Mansutti

The Equational Theory of the Natural Join and Inner Union is Decidable. . . . 494
Luigi Santocanale

Graphs and Automata

Minimization of Graph Weighted Models over Circular Strings 513
Guillaume Rabusseau

Games on Graphs with a Public Signal Monitoring 530
Patricia Bouyer

WQO Dichotomy for 3-Graphs . 548
Sławomir Lasota and Radosław Piórkowski

Verifying Higher-Order Functions with Tree Automata 565
Thomas Genet, Timothée Haudebourg, and Thomas Jensen

Author Index . 583

Contents XV

Semantics

Non-angelic Concurrent Game Semantics

Simon Castellan1(B), Pierre Clairambault2, Jonathan Hayman3,
and Glynn Winskel3

1 Imperial College London, London, UK
simon@phis.me

2 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
3 Computer Laboratory, University of Cambridge, Cambridge, UK

Abstract. The hiding operation, crucial in the compositional aspect of
game semantics, removes computation paths not leading to observable
results. Accordingly, games models are usually biased towards angelic
non-determinism: diverging branches are forgotten.

We present here new categories of games, not suffering from this
bias. In our first category, we achieve this by avoiding hiding altogether;
instead morphisms are uncovered strategies (with neutral events) up to
weak bisimulation. Then, we show that by hiding only certain events
dubbed inessential we can consider strategies up to isomorphism, and
still get a category – this partial hiding remains sound up to weak bisim-
ulation, so we get a concrete representations of programs (as in standard
concurrent games) while avoiding the angelic bias. These techniques are
illustrated with an interpretation of affine nondeterministic PCF which
is adequate for weak bisimulation; and may, must and fair convergences.

1 Introduction

Game semantics represents programs as strategies for two player games deter-
mined by the types. Traditionally, a strategy is simply a collection of execution
traces, each presented as a play (a structured sequence of events) on the corre-
sponding game. Beyond giving a compositional framework for the formal seman-
tics of programming languages, game semantics proved exceptionally versatile,
providing very precise (often fully abstract) models of a variety of languages and
programming features. One of its rightly celebrated achievements is the reali-
sation that combinations of certain effects, such as various notions of state or
control, could be characterised via corresponding conditions on strategies (inno-
cence, well bracketing, . . .) in a single unifying framework. This led Abramsky to
propose the semantic cube programme [1], aiming to extend this success to fur-
ther programming features: concurrency, non-determinism, probabilities, etc. . .

However, this elegant picture soon showed some limitations. While indeed
the basic category of games was successfully extended to deal with concurrency
[10,13], non-determinism [11], and probabilities [9] among others, these exten-
sions (although fully abstract) are often incompatible with each other, and really,
incompatible as well with the central condition of innocence. Hence a semantic
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-89366-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_1&domain=pdf

4 S. Castellan et al.

hypercube encompassing all these effects remained out of reach. It is only recently
that some new progress has been made with the discovery that some of these
effects could be reconciled in a more refined, more intensional games framework.
For instance, in [6,16] innocence is reconciled with non-determinism, and in [15]
with probabilities. In [7], innocence is reconciled with concurrency.

But something is still missing: the works above dealing with non-deterministic
innocence consider only may-convergence; they ignore execution branches lead-
ing to divergence. To some extent this seems to be a fundamental limitation of
the game semantics methodology: at the heart of the composition of strategies
lies the hiding operation that removes unobservable events. Diverging paths, by
nature non-observable, are forgotten by hiding. Some models of must-testing
do exist for particular languages, notably McCusker and Harmer’s model for
non-deterministic Idealized Algol [11]; the model works by annotating strategies
with stopping traces, recording where the program may diverge. But this app-
roach again mixes poorly with other constructions (notably innocence), and more
importantly, is tied to may and must equivalences. It is not clear how it could
be extended to support richer notions of convergence, such as fair-testing [2].

Our aim is to present a basis for non-deterministic game semantics which,
besides being compatible with innocence, concurrency, etc., is not biased towards
may-testing; it is non-angelic. It should not be biased towards must-testing
either; it should in fact be agnostic with respect to the testing equivalence,
and support them all. Clearly, for this purpose it is paramount to remember the
non-deterministic branching information; indeed in the absence of that infor-
mation, notions such as fair-testing are lost. In fact, there has been a lot of
activity in the past five years or so around games model that do observe the
branching information. It is a feature of Hirschowitz’s work presenting strategies
as presheaves or sheaves on certain categories of cospans [12]; of Tsukada and
Ong’s work on nondeterministic innocence via sheaves [16]; and of our own line
of work presenting strategies as certain event structures [5,7,14].

But observing branching information is not sufficient. Of the works mentioned
above, those of Tsukada and Ong and our own previous work are still angelic,
because they rely on hiding for composition. On the other hand, Hirschowitz’s
work gets close to achieving our goals; by refraining from hiding altogether,
his model constructs an agnostic and precise representation of the operational
behaviour of programs, on which he then considers fair-testing. But by not con-
sidering hiding he departs from the previous work and methods of game seman-
tics, and from the methodology of denotational semantics. In contrast, we would
like an agnostic games model that still has the categorical structure of traditional
semantics. A games model with partial hiding was also recently introduced by
Yamada [18], albeit for a different purpose: he uses partial hiding to represent
normalization steps, whereas we use it to represent fine-grained nondeterminism.

Contributions. In this paper, we present the first category of games and strate-
gies equipped to handle non-determinism, but agnostic with respect to the
notion of convergence (including fair convergence). We showcase our model
by interpreting APCF+, an affine variant of non-deterministic PCF: it is the

Non-angelic Concurrent Game Semantics 5

simplest language featuring the phenomena of interest. We show adequacy with
respect to may, must and fair convergences. The reader will find in the first
author’s PhD thesis [3] corresponding results for full non-deterministic PCF
(with detailed proofs), and an interpretation of a higher-order language with
shared memory concurrency. In [3], the model is proved compatible with our
earlier notions of innocence, by establishing a result of full abstraction for may
equivalence, for nondeterministic PCF. We have yet to prove full abstraction in
the fair and must cases; finite definability does not suffice anymore.

Outline. We begin Sect. 2 by introducing APCF+. To set the stage, we describe
an angelic interpretation of APCF+ in the category CG built in [14] with
strategies up to isomorphism, and hint at our two new interpretations. In Sect. 3,
starting from the observation that the cause of “angelism” is hiding, we omit it
altogether, constructing an uncovered variant of our concurrent games, similar
to that of Hirschowitz. Despite not hiding, when restricting the location of non-
deterministic choices to internal events, we can still obtain a category up to weak
bisimulation. But weak bisimulation is not perfect: it does not preserve must-
testing, and is not easily computed. So in Sect. 4, we reinstate some hiding: we
show that by hiding all synchronised events except some dubbed essential, we
arrive at the best of both worlds. We get an agnostic category of games and
strategies up to isomorphism, and we prove our adequacy results.

2 Three Interpretations of Affine Nondeterministic PCF

2.1 Syntax of APCF+

The language APCF+ extends affine PCF with a nondeterministic boolean
choice, choice. Its types are A,B ::=B | A � B, where A � B represents affine
functions from A to B. The following grammar describes terms of APCF+:

M,N ::= x | M N | λx.M | tt | ff | if M N1 N2 | choice | ⊥
Typing rules are standard, we show application and conditionals. As usual,

a conditional eliminating to arbitrary types can be defined as syntactic sugar.

Γ � M : A � B Δ � N : A

Γ,Δ � M N : B

Γ � M : B Δ � N1 : B Δ � N2 : B
Γ,Δ � if M N1 N2 : B

The first rule is multiplicative: Γ and Δ are disjoint. The operational
semantics is that of PCF extended with the (only) two nondeterministic rules
choice → tt and choice → ff.

2.2 Game Semantics and Event Structures

Game semantics interprets an open program by a strategy, recording the
behaviour of the program (Player) against the context (Opponent) in a 2-
player game. Usually, the executions recorded are represented as plays, i.e. linear

6 S. Castellan et al.

sequences of computational events called moves; a strategy being then a set of
such plays. For instance, the nondeterministic boolean would be represented as
the (even-prefix closure of the) set of plays {q− · tt+, q− · ff+} on the game for
booleans. In the play q− · tt+, the context starts the computation by asking the
value of the program (q−) and the program replies (tt+). Polarity indicates the
origin (Program (+) or Opponent/Environment (−)) of the event.

Being based on sequences of moves, traditional game semantics handles con-
currency via interleavings [10]. In contrast, in concurrent games [14], plays are
generalised to partial orders which can express concurrency as a primitive. For
instance, the execution of a parallel implementation of and against the context
(tt, tt) gives the following partial order:

B ⇒ B ⇒ B

q
���� ��
�

���� ���
����

� (−)

q
����

q
����

(+)

tt

� ��	����
��� tt

	 �
�

(−)

tt (+)

In this picture, the usual chronological linear order is replaced by an explicit
partial order representing causality. Moves are concurrent when they are incom-
parable (as the two Player questions here). Following the longstanding conven-
tion in game semantics, we show which component of the type a computational
event corresponds to by displaying it under the corresponding occurrence of
a ground type. For instance in this diagram, Opponent first triggers the com-
putation by asking the output value, and then and concurrently evaluates his
two arguments. The arguments having evaluated to tt, and can finally answer
Opponent’s initial question and provide the output value.

In [7], we have shown how deterministic pure functional parallel programs
can be interpreted (in a fully abstract way) using such representations.

Partial-Orders and Non-determinism. To represent nondeterminism in this par-
tial order setting, one possibility is to use sets of partial orders [4]. This rep-
resentation suffers however from two drawbacks: firstly it forgets the point of
non-deterministic branching; secondly, one cannot talk of an occurrence of a
move independently of an execution. Those issues are solved by moving to event
structures [17], where the nondeterministic boolean can be represented as:

B

q��� ��� ������ (−)
tt �������� ff (+)

The wiggly line (����) indicates conflict : the boolean values cannot coexist in an
execution. Together this forms an event structure, defined formally later.

Non-angelic Concurrent Game Semantics 7

2.3 Interpretations of APCF+ with Event Structures

Let us introduce informally our interpretations by showing which event struc-
tures they associate to certain terms of APCF+.

Angelic Covered Interpretation. Traditional game semantics interpretations
of nondeterminism are angelic (with exceptions, see e.g. [11]); they only describe
what terms may do, and forget where they might get stuck. The interpretation of
M = (λb. if b tt⊥) choice for instance, in usual game semantics is the same as
that of tt. This is due to the nature of composition which tends to forget paths
that do not lead to a value. Consider the strategy for the function λb. if b tt⊥:

B ⇒ B

q
�	�� ���

��� (−)

q�
�� �� � ���
�� (+)

ff ������ tt
� ���
�� (−)

tt (+)

The interpretation of M arises as the composition of this strategy with
the nondeterministic boolean. Composition is defined in two steps: interaction
(Fig. 1a) and then hiding (Fig. 1b). Hiding removes intermediate behaviour which
does not correspond to visible actions in the output type of the composition.

Hiding is crucial in order for composition to satisfy basic categorical proper-
ties (without it, the identity candidate, copycat, is not even idempotent). Strate-
gies on event structures are usually considered up to isomorphism, which is the
strongest equivalence relation that makes sense. Without hiding, there is no
hope to recover categorical laws up to isomorphism. However, it turns out that,
treating events in the middle as τ -transitions (∗ in Fig. 1a), weak bisimulation
equates enough strategies to get a category. Following these ideas, a category of
uncovered strategies up to weak bisimilarity is built in Sect. 3.

Fig. 1. Three interpretations of (λb. if b tt⊥) choice

8 S. Castellan et al.

Interpretation with Partial Hiding. However, considering uncovered strate-
gies up to weak bisimulation blurs their concrete nature; causal information is
lost, for instance. Moreover checking for weak bisimilarity is computationally
expensive, and because of the absence of hiding, a term evaluating to skip may
yield a very large representative. However, there is a way to cut down the strate-
gies to reach a compromise between hiding no internal events, or hiding all of
them and collapsing to an angelic interpretation.

In our games based on event structures, having a non-ambiguous notion of an
occurrence of event allows us to give a simple definition of the internal events we
need to retain (Definition 9). Hiding other internal events yields a strategy still
weakly bisimilar to the original (uncovered) strategy, while allowing us to get
a category up to isomorphism. The interpretation of M in this setting appears
in Fig. 1c. As before, only the events under the result type (not labelled ∗) are
now visible, i.e. observable by a context. But the events corresponding to the
argument evaluation are only partially hidden; those remaining are considered
internal, treated like τ -transitions. Because of their presence, the partial hiding
performed loses no information (w.r.t. the uncovered interpretation) up to weak
bisimilarity. But we have hidden enough so that the required categorical laws
between strategies hold w.r.t. isomorphism. The model is more precise and con-
crete than that of weak bisimilarity, preserves causal information and preserves
must-convergence (unlike weak bisimilarity).

Following these ideas, a category of partially covered strategies up to iso (the
target of our adequacy results) is constructed in Sect. 4.

3 Uncovered Strategies up to Weak Bisimulation

We now construct a category of “uncovered strategies”, up to weak bisimulation.
Uncovered strategies are very close to the partial strategies of [8], but [8] focused
on connections with operational semantics rather than categorical structure.

3.1 Preliminaries on Event Structures

Definition 1. An event structure is a triple (E,≤E ,ConE) where (E,≤E) is
a partial-order and ConE is a non-empty collection of finite subsets of E called
consistent sets subject to the following axioms:

– If e ∈ E, the set [e] = {e′ ∈ E | e′ ≤ e} is finite,
– For all e ∈ E, the set {e} is consistent,
– For all Y ∈ ConE, for all X ⊆ Y , then X ∈ ConE.
– If X ∈ ConE and e ≤ e′ ∈ X then X ∪ {e} is consistent.

A down-closed subset of events whose finite subsets are all consistent is called
a configuration. The set of finite configurations of E is denoted C (E). If x ∈
C (E) and e
∈ x, we write x

e−−⊂x′ when x′ = x∪{e} ∈ C (E); this is the cover-
ing relation between configurations, and we say that e gives an extension of x.

Non-angelic Concurrent Game Semantics 9

Two extensions e and e′ of x are compatible when x ∪ {e, e′} ∈ C (E), incom-
patible otherwise. In the latter case, we have a minimal conflict between e
and e′ in context x (written e ����

xe′).
These event structures are based on consistent sets rather than the more

commonly-encountered binary conflict relation. Consistent sets are more general,
and more handy mathematically, but throughout this paper, event structures
concretely represented in diagrams will only use binary conflict, i.e. the relation
e ����

xe′ does not depend on x, meaning e ����
ye′ whenever y extends with e,

and with e′ – in which case we only write e ���� e′. Then consistent sets can be
recovered as those finite X ⊆ E such that ¬(e ���� e′) for all e, e′ ∈ X. Our
diagrams display the relation ���� , along with the Hasse diagram of ≤E , called
immediate causality and denoted by �E . All the diagrams above denote
event structures. The missing ingredient in making the diagrams formal is the
names accompanying the events (q, tt, ff, . . .). These will arise as annotations
by events from games, themselves event structures, representing the types.

The parallel composition E0 ‖ E1 of event structures E0 and E1 has for
events ({0} × E0) ∪ ({1} × E1). The causal order is given by (i, e) ≤E0‖E1 (j, e′)
when i = j and e ≤Ei

e′, and consistent sets by those finite subsets of E0 ‖ E1

that project to consistent sets in both E0 and E1.
A (partial) map of event structures f : A ⇀ B is a (partial) function on

events which (1) maps any finite configuration of A to a configuration of B, and
(2) is locally injective: for a, a′ ∈ x ∈ C (A) and fa = fa′ (both defined) then
a = a′. We write E for the category of event structures and total maps and E⊥
for the category of event structures and partial maps.

An event structure with partial polarities is an event structure A with
a map pol : A → {−,+, ∗} (where events are labelled “negative”, “positive”, or
“internal” respectively). It is a game when no events are internal. The dual A⊥

of a game A is obtained by reversing polarities. Parallel composition naturally
extends to games. If x and y are configurations of an event structure with partial
polarities we use x ⊆p y where p ∈ {−,+, ∗} for x ⊆ y & pol(y \ x) ⊆ {p}.

Given an event structure E and a subset V ⊆ E of events, there is an event
structure E ↓ V whose events are V and causality and consistency are inherited
from E. This construction is called the projection of E to V and is used in [14]
to perform hiding during composition.

3.2 Definition of Uncovered Pre-strategies

As in [14], we first introduce pre-strategies and their composition, and then
consider strategies, those pre-strategies well-behaved with respect to copycat.

Uncovered Pre-strategies. An uncovered pre-strategy on a game A is a
partial map of event structures σ : S ⇀ A. Events in the domain of σ are called
visible or external, and events outside invisible or internal. Via σ, visible
events inherit polarities from A.

Uncovered pre-strategies are drawn just like the usual strategies of [14]: the
event structure S has its events drawn as their labelling in A if defined or ∗ if

10 S. Castellan et al.

undefined. The drawing of Fig. 1a is an example of an uncovered pre-strategy.
From an (uncovered) pre-strategy, one can get a pre-strategy in the sense of
[14]: for σ : S ⇀ A, define S↓ = S ↓ dom(σ) where dom(σ) is the domain
of σ. By restriction σ yields σ↓ : S↓ → A, called a covered pre-strategy. A
configuration x of S can be decomposed as the disjoint union x↓ ∪ x∗ where x↓
is a configuration of S↓ and x∗ a set of internal events of S.

A pre-strategy from a game A to a game B is a (uncovered) pre-strategy
on A⊥ ‖ B. An important pre-strategy from a game A to itself is the copycat
pre-strategy. In A⊥ ‖ A, each move of A appears twice with dual polarity. The
copycat pre-strategy cc A simply waits for the negative occurrence of a move a
before playing the positive occurrence. See [5] for a formal definition.

Isomorphism of strategies [14] can be extended to uncovered pre-strategies:

Definition 2. Pre-strategies σ : S ⇀ A, τ : T ⇀ A are isomorphic (written
σ ∼= τ) if there is an iso ϕ : S ∼= T s.t. τ ◦ ϕ = σ (equality of partial maps).

Interaction of Pre-strategies. Recall that in the covered case, composition
is performed first by interaction, then hiding; where interaction of pre-strategies
is described as their pullback in the category of total maps [14]. Even though
E⊥ has pullbacks, those pullbacks are inadequate to describe interaction. In [8],
uncovered strategies are seen as total maps σ : S → A ‖ N , and their interaction
as a pullback involving these. This method has its awkwardness so, instead, here
we give a direct universal construction of interaction, replacing pullbacks.

We start with the simpler case of a closed interaction of a pre-strategy σ :
S ⇀ A against a counter pre-strategy τ : T ⇀ A⊥. As in [5] we first describe the
expected states of the closed interaction in terms of secured bijections, from which
we construct an event structure; before characterising the whole construction via
a universal property.

Definition 3 (Secured bijection). Let q,q′ be partial orders and ϕ : q � q′

be a bijection between the carrier sets (non necessarily order-preserving). It is
secured when the following relation 	ϕ on the graph of ϕ is acyclic:

(s, ϕ(s)) 	ϕ (s′, ϕ(s′)) iff s �q s′ ∨ ϕ(s) �q′ ϕ(s′) (1)

If so, the resulting partial order (ϕ)∗ is written ≤ϕ.

Let σ : S ⇀ A and τ : T ⇀ A be partial maps of event structures (we
dropped polarities, as the construction is completely independent of them). A
pair (x, y) ∈ C (S) × C (T) such that σ↓x = τ↓y ∈ C (A), induces a bijection
ϕx,y : x ‖ y∗ � x∗ ‖ y defined by local injectivity of σ and τ :

ϕx,y(0, s) = (0, s) (s ∈ x∗)

ϕx,y(0, s) = (1, τ−1(σs)) (s ∈ x↓)
ϕx,y(1, t) = (1, t)

The configurations x and y have a partial order inherited from S and T .
Viewing y∗ and x∗ as discrete orders (the ordering relation is the equality), ϕx,y

Non-angelic Concurrent Game Semantics 11

is a bijection between carrier sets of partial orders. An interaction state of σ
and τ is (x, y) ∈ C (S) × C (T) with σ↓x = τ↓y for which ϕx,y is secured. As a
result (the graph of) ϕx,y is naturally partial ordered. Write Sσ,τ for the set of
interaction states of σ and τ . As usual [5], we can recover an event structure:

Definition 4 (Closed interaction of uncovered pre-strategies). Let A be
an event structure, and σ : S ⇀ A and τ : T ⇀ A be partial maps of event
structures. The following data defines an event structure S ∧ T :

– events: those interaction states (x, y) such that ϕx,y has a top element,
– causality: (x, y) ≤S∧T (x′, y′) iff x ⊆ x′ and y ⊆ y′,
– consistency: a finite set of interaction states X ⊆ S ∧ T is consistent iff its

union
⋃

X is an interaction state in Sσ,τ .

This event structure comes with partial maps Π1 : S∧T ⇀ S and Π2 : S∧T ⇀ T ,
analogous to the usual projections of a pullback: for (x, y) ∈ S ∧ T , Π1(x, y)
is defined to s ∈ S whenever the top-element of ϕx,y is ((0, s), w2) for some
w2 ∈ x∗ ‖ y. The map Π1 is undefined only on events of S ∧ T corresponding to
internal events of T (i.e. (x, y) with top element of ϕx,y of the form ((1, t), (1, t))).
The map Π2 is defined symmetrically, and undefined on events corresponding to
internal events of S. We write σ ∧ τ for σ ◦ Π1 = τ ◦ Π2 : S ∧ T ⇀ A.

Lemma 1. Let σ : S ⇀ A and τ : T ⇀ A be partial maps. Let (X, f : X ⇀
S, g : X ⇀ T) be a triple such that the following outer square commutes:

X

S S ∧ T T

A

〈f,g〉f g

σ

Π2Π1

σ∧τ

τ

If for all p ∈ X with f p and g p defined, σ(f p) = τ(g p) is defined, then there
exists a unique 〈f, g〉 : X ⇀ S ∧ T making the two upper triangles commute.

From this closed interaction, we define the open interaction as in [14]. Given
two pre-strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, their interaction

τ � σ : (S ‖ C) ∧ (A ‖ T) ⇀ A⊥ ‖ C

is defined as the composite partial map (S ‖ C)∧(A ‖ T) ⇀ A ‖ B ‖ C ⇀ A ‖ C,
where the “pullback” is first computed ignoring polarities – the codomain of the
resulting partial map is A⊥ ‖ C, once we reinstate polarities.

12 S. Castellan et al.

Weak Bisimulation. To compare uncovered pre-strategies, we cannot use iso-
morphisms as in [14], since as hinted earlier, cc A � σ comprises synchronised
events not corresponding to those in σ. To solve this, we introduce weak bisim-
ulation between uncovered strategies:

Definition 5. Let σ : S ⇀ A and τ : T ⇀ A be uncovered pre-strategies. A
weak bisimulation between σ and τ is a relation R ⊆ C (S) × C (T) containing
(∅, ∅), such that for all xR y, we have:

– If x
s−−⊂x′ such that s is visible, then there exists y ⊆∗ y′ t−−⊂ y′′ with σs = τt

and x′ R y′′ (and the symmetric condition for τ)

– If x
s−−⊂x′ such that s is internal, then there exists y ⊆∗ y′ such that x′ R y′

(and the symmetric condition for τ)

Two uncovered pre-strategies σ, τ are weakly bisimilar (written σ � τ) when
there is a weak bisimulation between them.

Associativity of interaction (up to isomorphism, hence up to weak bisimu-
lation) follows directly from Lemma 1. Moreover, it is straightforward to check
that weak bisimulation is a congruence (i.e. compatible with composition).

Composition of Covered Strategies. From interaction, we can easily define
the composition of covered strategies. If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C
are covered pre-strategies, their composition (in the sense of [14]) τ �σ is defined
as (τ � σ)↓. The operation ↓ is well-behaved with respect to interaction:

Lemma 2. For σ, τ composable pre-strategies, (τ � σ)↓ ∼= τ↓ � σ↓.

3.3 A Compact-Closed Category of Uncovered Strategies

Although we have a notion of morphism (pre-strategies) between games and
an associative composition, we do not have a category up to weak bisimulation
yet. Unlike in [14], races in a game may cause copycat on this game to not be
idempotent (see [3] for a counterexample), which is necessary for it to be an
identity. To ensure that, we restrict ourselves to race-free games: those such
that whenever a configuration x can be extended by a1, a2 of distinct polarities,
the union x∪{a1, a2} is consistent. From now on, games are assumed race-free.

Lemma 3. For a race-free game A, cc A � cc A � cc A.

Proof. It will follow from the forthcoming Lemma4.

Uncovered Strategies. Finally, we characterise the pre-strategies invariant
under composition with copycat. The two ingredients of [5,14], receptivity and
courtesy (called innocence in [14]) are needed, but this is not enough: we need
another condition as witnessed by the following example.

Non-angelic Concurrent Game Semantics 13

Consider the strategy σ : ⊕1
���� ⊕2 on the game A = ⊕1 ⊕2 playing non-

deterministically one of the two moves. Then the interaction cc A � σ is:

It is not weakly bisimilar to σ: cc A � σ can do ∗1, an internal transition, to
which σ can only respond by not doing anything. Then σ can still do ⊕1 and
⊕2 whereas cc A � σ cannot: it is committed to doing ⊕1. To solve this problem,
we need to force strategies to decide their nondeterministic choices secretly, by
means of internal events – so σ will not be a valid uncovered strategy, but cc A �σ
will. Indeed, cc A � (cc A � σ) below is indeed weakly bisimilar to cc A � σ.

Definition 6. An (uncovered) strategy is a pre-strategy σ : S ⇀ A satisfying:

– receptivity: if x ∈ C (S) is such that σx
a−−⊂ with a ∈ A negative, then there

exists a unique x
s−−⊂ with σs = a.

– courtesy: if s � s′ and s is positive or s′ is negative, then σs � σs′.
– secrecy: if x ∈ C (S) extends with s1, s2 but x ∪ {s1, s2}
∈ C (S), then s1 and

s2 are either both negative, or both internal.

Receptivity and courtesy are stated exactly as in [14]. As a result, hiding the
internal events of an uncovered strategy yields a strategy σ↓ in the sense of [14].

For any game A, cc A is an uncovered strategy: it satisfies secrecy as its only
minimal conflicts are inherited from the game and are between negative events.

The Category CG�. Our definition of uncovered strategy does imply that
copycat is neutral for composition.

Lemma 4. Let σ : S ⇀ A be an uncovered strategy. Then cc A � σ � σ.

The result follows immediately:

Theorem 1. Race-free games and uncovered strategies up to weak bisimulation
form a compact-closed category CG�.

3.4 Interpretation of Affine Nondeterministic PCF

From now on, strategies are by default considered uncovered. We sketch the
interpretation of APCF+ inside CG�. As a compact-closed category, CG�
supports an interpretation of the linear λ-calculus. However, the empty game 1
is not terminal, as there are no natural transformation εA : A → 1 in CG�.

The negative category CG−
�. We solve this issue as in [4], by looking at

negative strategies and negative games.

14 S. Castellan et al.

Definition 7. An event structure with partial polarities is negative when all
its minimal events are negative.

A strategy σ : S ⇀ A is negative when S is. Copycat on a negative game is
negative, and negative strategies are stable under composition:

Lemma 5. There is a subcategory CG−
� of CG� consisting in negative race-

free games and negative strategies. It inherits a monoidal structure from CG in
which the unit (the empty game) is terminal.

Moreover, CG−
� has products. The product A & B of two games A and

B, has events, causality, polarities as for A ‖ B, but consistent sets restricted
to those of the form {0} × X or {1} × X with X consistent in A or B. The
projections are �A : CCA → (A & B)⊥ ‖ A, and �B : CCB → (A & B)⊥ ‖ B.

Finally, the pairing of negative strategies σ : S ⇀ A⊥ ‖ B and τ : T →
A⊥ ‖ C is the obvious map 〈σ, τ〉 : S & T ⇀ A⊥ ‖ B & C, and the laws for the
cartesian product are direct verifications.

We also need a construction to interpret the function space. However, for A
and B negative, A⊥ ‖ B is not usually negative. To circumvent this, we introduce
a negative variant A � B, the linear arrow. To simplify the presentation, we
only define it in a special case. A game is well-opened when it has at most
one initial event. When B is well-opened, we define A � B to be 1 if B = 1;
and otherwise A⊥ ‖ B with the exception that every move in A depends on the
single minimal move in B. As a result � preserves negativity. We get:

Lemma 6. If B is well-opened, A � B is well-opened and is an exponential
object of A and B.

In other words, well-opened games are an exponential ideal in CG−
�. We interpret

types of APCF+ inside well-opened games of CG−
�:

�com� =
run−
����

done+
�B� =

q−
��� �� ����

��

tt+ ���� ff+
�A � B� = �A� � �B�

Interpretation of Terms. Interpretation of the affine λ-calculus in CG�
− fol-

lows standard methods. First, the primitives tt, ff,⊥, if are interpreted as:

Non-angelic Concurrent Game Semantics 15

A non-standard point is the interpretation of ⊥: usually interpreted in game
semantics by the minimal strategy simply playing q (as will be done in the next
section), our interpretation here reflects the fact that ⊥ represents an infinite
computation that never returns. Conditionals are implemented as usual:

�if M N N ′
�� = if � (�M�� ‖ 〈�N��, �N ′

��〉).

Soundness and Adequacy. We now prove adequacy for various notions of
convergence. First, we build an uncovered strategy from the operational seman-
tics.

Definition 8 (The operational tree). Let M be a closed term of type B. We
define the pre-strategy t(M) on B as follows:

Events: An initial event ⊥ plus one event per derivation M →∗ M ′.
Causality: ⊥ is below other events, and derivations are ordered by prefix
Consistency: A set of events is consistent when its events are comparable.
Labelling: ⊥ has label q, a derivation M →∗ b where b ∈ {tt, ff} is labelled by

b. Other derivations are internal.

As a result, t(M) is a tree. Our main result of adequacy can now be stated:

Theorem 2. For a term � M : B, t(if M tt ff) and �M�� are weakly bisimilar.

We need to consider t(if M tt ff) and not simply t(M) to ensure secrecy.
From this theorem, adequacy results for may and fair convergences arise:

Corollary 1. For any term � M : B, we have:

May: M →∗ tt if and only if �M�� contains a positive move
Fair: For all M →∗ M ′, M ′ can converge, if and only if all finite configurations

of �M ′
�� can be extended to contain a positive move.

However, we cannot conclude adequacy for must equivalence from Theorem2.
Indeed, must convergence is not generally stable under weak bisimilarity: for
instance, (the strategies representing) tt and Y (λx. if choice ttx) are weakly
bisimilar but the latter is not must convergent. To address this in the next section
we will refine the interpretation to obtain a closer connection with syntax.

4 Essential Events

The model presented in the previous section is very operational; configurations
of �M�� can be seen as derivations for an operational semantics. The price,
however, is that besides the fact that the interpretation grows dramatically in
size, we can only get a category up to weak bisimulation, which can be too
coarse (for instance for must convergence). We would like to remove all events
that are not relevant to the behaviour of terms up to weak bisimulation. In other
words, we want a notion of essential internal events that (1) suffices to recover
all behaviour with respect to weak bisimulation, but which (2) is not an obstacle
to getting a category up to isomorphism (which amounts to cc A ◦ σ ∼= σ).

16 S. Castellan et al.

4.1 Definition of Essential Events

As shown before, the loss of behaviours when hiding is due to the disappearance
of events participating in a conflict. A neutral event may not have visible con-
sequences but still be relevant if in a minimal conflict; such events are essential.

Definition 9. Let σ : S ⇀ A be an uncovered pre-strategy. An essential event
of S is an event s which is either visible, or (internal and) involved in a minimal
conflict (that is such that we have s ����

xs′ for some s′, x).

Write ES for the set of essential events of σ. Any pre-strategy σ : S ⇀ A induces
another pre-strategy E (σ) : E (S) = S ↓ ES ⇀ A called the essential part of σ.
The following proves that our definition satisfies (1): no behaviour is lost.

Lemma 7. An uncovered pre-strategy σ : S ⇀ A is weakly bisimilar to E (σ).

This induces a new notion of (associative) composition only keeping the essen-
tial events. For σ : A⊥ ‖ B and τ : B⊥ ‖ C, let τ � σ = E (τ � σ). We observe
that E (τ � σ) ∼= E (τ) � E (σ).

Which pre-strategies compose well with copycat with this new composition?

4.2 Essential Strategies

We now can state property (2): the events added by composition with copycat
are inessential, hence hidden during composition:

Theorem 3. Let σ : S ⇀ A be an uncovered strategy. Then cc A � σ ∼= E (σ).

This prompts the following definition. An uncovered pre-strategy σ is essential
when it is a strategy, and if, equivalently: (1) all its events are essential, (2)
σ ∼= E (σ). We obtain a characterisation of strategies in the spirit of [14]:

Theorem 4. A pre-strategy σ : S ⇀ A is essential if and only if cc A � σ ∼= σ.

As a result, we get:

Theorem 5. Race-free games, and essential strategies up to isomorphism form
a compact-closed category CG�.

Relationship Between CG and CG�. Covered strategies can be made into
a compact-closed category [5,14]. Remember that the composition of σ : S →
A⊥ ‖ B and τ : T → B⊥ ‖ C in CG is defined as τ � σ = (τ � σ)↓.

Lemma 8. The operation σ �→ σ↓ extends to an identity-on-object functor
CG� → CG.

In the other direction, a strategy σ : A might not be an essential strategy; in
fact it might not even be an uncovered strategy, as it may fail secrecy. Sending
σ to cc A �σ delegates the non-deterministic choices to internal events and yields
an essential strategy, but this operation is not functorial.

Non-angelic Concurrent Game Semantics 17

Relationship Between CG� and CG�. The forgetful operation mapping an
essential strategy σ to itself, seen as an uncovered strategy, defines a functor
CG� → CG�. Indeed, if two essential strategies are isomorphic, they are also
weakly bisimilar. Moreover, we have that τ �σ � E (τ �σ) = τ �σ. However the
operation E (·) does not extend to a functor in the other direction even though
E (τ) � E (σ) ∼= E (τ � σ), as it is defined only on concrete representatives, not
on equivalence classes for weak bisimilarity.

4.3 Interpretation of APCF+

We now show that this new category also supports a sound and adequate inter-
pretation of APCF+ for various testing equivalences, including must. As before,
we need to construct the category of negative games and strategies.

Lemma 9. There is a cartesian symmetric monoidal category CG−
� of negative

race-free games and negative essential strategies up to isomorphism. Well-opened
negative race-free games form an exponential ideal of CG−

�.

We keep the same interpretation of types of affine nondeterministic PCF.
Moreover, the strategy if is essential. As a result, we let:

�⊥�� = q : B �if M N N ′
�� = if � (�M�� ‖ 〈�N��, �N ′

��〉)
Using E (σ � τ) = E (σ) � E (τ), one can prove by induction that for any

term M we have �M�� = E (�M��). Furthermore, this interpretation permits a
stronger link between the operational and the denotational semantics:

Theorem 6. For all terms � M : B, E (t(M)) ∼= �M��.

Theorem 6 implies Theorem 2. It also implies adequacy for must:

Corollary 2. The interpretation �·�� is adequate for may, and fair, and must:
� M : B has no infinite derivations if and only if all (possibly infinite) maximal
configurations of �M�� have a positive event.

This result also implies that �·�� is adequate for must.

5 Conclusion

We have described an extension of the games of [14] to uncovered strategies,
composed without hiding. It has strong connections with operational semantics,
as the interpretations of terms of base type match their tree of reductions. It also
forms a compact-closed category up to weak bisimulation, and is adequate for
the denotational semantics of programming languages. Identifying the inessential
events as those responsible for the non-neutrality of copycat, we remove them
to yield a compact closed category up to isomorphism. Doing so we obtain our
sought-after setting for the denotational semantics of programming languages,
one agnostic w.r.t. the chosen testing equivalence. The work blends well with
the technology of [7] (symmetry, concurrent innocence) dealing with non-affine
languages and characterising strategies corresponding to pure programs; these
developments appear in the first author’s PhD thesis [3].

18 S. Castellan et al.

Acknowledgements. We gratefully acknowledge the support of the ERC Advanced
Grant ECSYM, EPSRC grants EP/K034413/1 and EP/K011715/1, and LABEX
MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investisse-
ments d’Avenir” (ANR-11-IDEX-0007) operated by the ANR.

References

1. Abramsky, S.: Game semantics for programming languages. In: Pŕıvara, I., Ružička,
P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 1–4. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0029944

2. Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: Lee, I., Smolka, S.A. (eds.)
CONCUR 1995. LNCS, vol. 962, pp. 313–327. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60218-6 23

3. Castellan, S.: Concurrent structures in game semantics. Ph.D. thesis, ENS Lyon,
France (2017)

4. Castellan, S., Clairambault, P.: Causality vs. interleaving in game semantics. In:
CONCUR 2016 - Concurrency Theory (2016)

5. Castellan, S., Clairambault, P., Rideau, S., Winskel, G.: Games and strategies as
event structures. Log. Methods Comput. Sci. 13 (2017)

6. Castellan, S., Clairambault, P., Winskel, G.: Symmetry in concurrent games. In:
Henzinger, T.A., Miller, D. (eds.) CSL-LICS 2014, Vienna, Austria, July 14–18,
2014, p. 28. ACM (2014)

7. Castellan, S., Clairambault, P., Winskel, G.: The parallel intensionally fully
abstract games model of PCF. In: LICS 2015. IEEE Computer Society (2015)

8. Castellan, S., Hayman, J., Lasson, M., Winskel, G.: Strategies as concurrent pro-
cesses. Electr. Notes Theor. Comput. Sci. 308, 87–107 (2014)

9. Danos, V., Harmer, R.: Probabilistic game semantics. In: 15th Annual IEEE Sym-
posium on Logic in Computer Science, Santa Barbara, California, USA, 26–29 June
2000, pp. 204–213 (2000)

10. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. Ann.
Pure Appl. Log. 151(2–3), 89–114 (2008)

11. Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeter-
minism. In: 14th Annual IEEE Symposium on Logic in Computer Science, Trento,
Italy, 2–5 July 1999, pp. 422–430 (1999)

12. Hirschowitz, T.: Full abstraction for fair testing in CCS. In: Heckel, R., Milius, S.
(eds.) CALCO 2013. LNCS, vol. 8089, pp. 175–190. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40206-7 14

13. Laird, J.: A game semantics of idealized CSP. Electr. Notes Theor. Comput. Sci.
45, 232–257 (2001)

14. Rideau, S., Winskel, G.: Concurrent strategies. In: LICS, pp. 409–418. IEEE Com-
puter Society (2011)

15. Tsukada, T., Luke Ong, C.-H.: Innocent strategies are sheaves over plays - deter-
ministic, non-deterministic and probabilistic innocence. CoRR, abs/1409.2764
(2014)

16. Tsukada, T., Luke Ong, C.-H.: Nondeterminism in game semantics via sheaves. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, 6–10 July 2015, pp. 220–231 (2015)

https://doi.org/10.1007/BFb0029944
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/978-3-642-40206-7_14

Non-angelic Concurrent Game Semantics 19

17. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

18. Yamada, N., Abramsky, S.: Dynamic games and strategies. CoRR, abs/1601.04147
(2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
http://creativecommons.org/licenses/by/4.0/

A Trace Semantics for System
F Parametric Polymorphism

Guilhem Jaber1 and Nikos Tzevelekos2(B)

1 ENS de Lyon, Université de Lyon, LIP, Lyon, France
2 Queen Mary University of London, London, England

nikos.tzevelekos@qmul.ac.uk

Abstract. We present a trace model for Strachey parametric polymor-
phism. The model is built using operational nominal game semantics and
captures parametricity by using names. It is used here to prove an oper-
ational version of a conjecture of Abadi, Cardelli, Curien and Plotkin
which states that Strachey equivalence implies Reynolds equivalence in
System F.

1 Introduction

Parametricity was first introduced by Strachey [22] as a way to characterise the
behaviour of polymorphic programs as being uniform with respect to the type
of the arguments provided. He opposed this notion to ad-hoc polymorphism,
where a function can produce arbitrarily different outputs when provided inputs
of different types (for example an integer and a boolean). To formalise this
notion of parametricity, Reynolds introduced relational parametricity [21]. It is
defined using an equivalence on programs, that we call Reynolds equivalence
and is a generalisation of logical relations to System F. This equivalence uses
arbitrary relations over pairs of types to relate polymorphic programs. So a
parametric program that takes related arguments as input will produce related
results. Reynolds parametricity has been developed into a fundamental theory
for studying polymorphic programs [1,20,23].

Following results of Mitchell on PER-models of polymorphism [18], Abadi,
Cardelli, Curien and Plotkin [1,20] introduced another, more intentional notion
of equivalence, called Strachey equivalence. Two terms of System F are Strachey
equivalent whenever, by removing all their type annotations, we obtain two βη-
equivalent untyped terms. The authors conjectured that Strachey equivalence
implies Reynolds equivalence (the converse being easily shown to be false).

In this paper we examine a notion of Reynolds equivalence based on opera-
tional logical relations, and prove that, for this notion, the conjecture holds. To
do so, we introduce a trace model for System F based on operational nominal
game semantics [12,14]. Terms in our model are denoted as sets of traces, gener-
ated by a labelled transition system, which represent interactions with arbitrary
term contexts. In order to abstract away type information from inputs to poly-
morphic functions, our semantics uses names to model such inputs. The idea is
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 20–38, 2018.
https://doi.org/10.1007/978-3-319-89366-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_2&domain=pdf

A Trace Semantics for System F Parametric Polymorphism 21

Fig. 1. Typing rules and βη-equality axioms.

the following: since names have no internal structure, the function has no choice
but to act “the same way” on such inputs, i.e. be parametric. Our trace model
yields a third notion of equivalence: trace equivalence (i.e. equality of sets of
traces). Then, the result is proven by showing that trace equivalence is included
in (operational) Reynolds equivalence, while it includes Strachey equivalence.

The traces in our model are formed of moves, which represent interactions
between the modelled term (the Player) and its context (the Opponent): either
of Player or Opponent can interrogate the terms provided by the other one,
or respond to a previous such interrogation. These moves are called questions
and answers respectively. Names enter the scene when calling terms which are
of polymorphic type, in which case the calling party would replace the actual
argument type θ with a type name α, and record locally the correspondence
between α and θ. Another use of names in our model is for representing terms
that are passed around as arguments to questions. These are called computation
names, and are typed according to the term they each represent.

2 Definition of System F and Parametricity

We start off by giving the definitions of System F and of the parametric equiv-
alence relations we shall examine on it. The grammar for System F is standard
and given by:

Type � θ, θ′ ::= X | θ → θ′ | ∀X.θ
Term � M,N ::= λxθ.M | ΛX.M | MN | Mθ

We write x, etc. for (term) variables, sourced from a countable set Var; and X,
etc. for type variables, taken from TVar. We define substitutions of open variables
of either kind in the usual capture-avoiding way. For instance, the term obtained
by consecutively applying substitutions η : Var ⇀ Term and δ : TVar ⇀ Type on
M is written M{η}{δ}.

Terms are typed in environments Δ;Γ , where Δ is a finite set of type vari-
ables, and Γ is a set {x1 : θ1, . . . , xm : θm} of variable-type pairs. The typing
rules are given in Fig. 1. The operational semantics we examine is βη-equality,
defined as the least syntactic congruence =βη that includes the axioms given on
the RHS part of Fig. 1.

22 G. Jaber and N. Tzevelekos

We shall use the following common polymorphic encodings:

– Bool = ∀X. X → X → X, true = ΛX.λxX.λyX.x and false =
ΛX.λxX.λyX.y,

– Unit = ∀X. X → X and id = ΛX.λxX .x.

Reynolds Equivalence. We next introduce logical relations for System F. First, we
let Rel be the set of all typed relations between closed terms that are compatible
with =βη:

Rel = {(θ1, θ2, R) | R ⊆ Term × Term ∧ ∀(M1,M2) ∈ R. ·; · � Mi : θi

∧ ∀M ′
1 =βη M1.∀M ′

2 =βη M2. (M ′
1,M

′
2) ∈ R}

Logical relations R[[θ]]δ are defined below, indexed by environments δ : TVar ⇀
Rel:

R[[X]]δ = R when δ(X) = (, , R)

R[[∀X.θ]]δ = {(M1, M2) | ∀(θ1, θ2, R) ∈ Rel. (M1θ1, M2θ2) ∈ R[[θ]]δ·[X �→(θ1,θ2,R)]}
R[[θ1 → θ2]]δ = {(M1, M2) | ∀(N1, N2) ∈ R[[θ1]]δ. (M1N1, M2N2) ∈ R[[θ2]]δ}

We can now define the first notion of parametric equivalence for System F.

Definition 1. Given terms Δ;Γ � M1,M2 : θ, we say that they are Reynolds
equivalent , and write Δ;Γ � M1 	log M2 : θ, if:

∀δ ∈ R[[Δ]].∀(η1, η2) ∈ R[[Γ]]δ. (M1{η1}{δ1},M2{η2}{δ2}) ∈ R[[θ]]δ

where R[[Δ]] = dom(Δ) → Rel, δ1 = {(X, θ1) | δ(X) = (θ1, ,)} (similar for
δ2) and R[[Γ]]δ = {(η1, η2) ∈ (dom(Γ) ⇀ Term)2 | ∀(x, θ′) ∈ Γ. (η1(x), η2(x)) ∈
R[[θ′]]δ}.

The following result is standard [21].

Theorem 2 (Fundamental Property). If Δ;Γ � M : τ then Δ;Γ � M 	log

M : θ.

Remark 3. Note that our definition of Reynolds equivalence does not coincide
with either of the definitions given in [1,20]: therein, parametricity is defined
using relational logics (and accompanying proof systems), whereas here we use
quantification over concrete relations over closed terms.

Strachey Equivalence. Another notion of parametric equivalence is defined by
means of erasing types from terms. We define the type erasure erase(M) of a
term M by:

erase(ΛX.M) = erase(M) erase(MN) = erase(M)erase(N)
erase(λxθ.M) = λx.erase(M) erase(Mθ) = erase(M)

and erase(x) = x. Thus, erase(M) is an untyped λ-term. Below we overload =βη

to also mean βη-equality in the untyped λ-calculus.

A Trace Semantics for System F Parametric Polymorphism 23

Definition 4. Given terms Δ;Γ � M1,M2 : θ, we say that they are Strachey
equivalent if erase(M1) =βη erase(M2).

It was conjectured in [1,20] that Reynolds equivalence includes Strachey
equivalence. We prove this holds for the version of Reynolds equivalence given
in Definition 1.

Theorem 5. Any two Strachey equivalent terms are also Reynolds equivalent.

It is interesting to think why a direct approach would not work in order
to prove this conjecture. Given Strachey equivalent terms M1,M2 of type
Bool, suppose we want to prove them Reynolds equivalent. We therefore take
(θ1, θ2, R) ∈ Rel, (N1,1, N2,1) ∈ R, and (N1,2, N2,2) ∈ R, and aim to prove that
(M1θ1N1,1N1,2,M2θ2N2,1N2,2) ∈ R. Ideally, we would like to prove that there
exists j ∈ {1, 2} s.t. for all i ∈ {1, 2}, MiθiNi,1Ni,2 =βη Ni,j , but that seems
overly optimistic. A first trick is to use Theorem 2, to get that M2 is related with
itself. Thus, we get that (M2θ1N1,1N1,2,M2θ2N2,1N2,2) ∈ R, and it would suffice
to prove M1θ1N1,1N1,2 =βη M2θ1N1,1N1,2 to conclude. However, our hypothesis
is simply that erase(M1) =βη erase(M2).

A possible solution to the above could be to β-reduce both Miθ1N1,1N1,2,
hoping that the distinction between the two terms will vanish. Our trace seman-
tics provides a way to model the interaction between such a term Mi and a
context • θjNj,1Nj,2, and to deduce properties about the normal form reached
by their application via head reduction.

3 A Nominal Trace Semantics for System F

In this section we introduce a trace semantics for open terms which will be our
main vehicle of study for System F. The terms in our semantics will be allowed
to contain special constants representing any term that could fill in their open
variables (these be term or type variables). The use of names can be seen as a
nominal approach to parametricity: parametric types and values are represented
in our semantics by names, without internal structure. Thus, e.g. a parametric
function is going to behave “the same way” for any input, since the latter will
be nothing but a name.

Our approach follows the line of work on nominal techniques [7,19] and nom-
inal operational game semantics [12,14]. We let the set of names be:

N = TN
 CN

We therefore use two kinds of names: type names α, β ∈ TN; and computation
names c, d ∈ CN. We will range over arbitrary names by a and variants. We
extend the syntax of terms and types by including computation and type names
as constants, and call the resulting syntax namey terms and types:

M,N ::= c | x | λxθ.M | ΛX.M | MN | Mθ θ, θ′ ::= α | X | θ → θ′ | ΛX.θ

24 G. Jaber and N. Tzevelekos

A namey term or type is closed if it contains no free (type/term) variables –
but it may contain names. On the other hand, a value is a closed term in head
normal form that contains no names. We range over values with v and variants.

We will use the notation M̂, N̂ , and variants, to refer jointly to namey terms
and namey types. Namey terms are typed with additional typing hypotheses for
the added constants. These typings are made explicit in the trace model. By
abuse of terminology, we will drop the adjective “namey” and refer to the above
simply as “terms” and “types”. Formally speaking, namey terms and types form
nominal sets (cf. Definition 8).

Note 6 (what do c’s and α’s represent?). A computation name c represents a
term that can replace the open variables of a term M . That is, in order to
examine the semantics of λxθ.M , we will look instead at M{c/x} where c a
computation name of appropriate type. Type names α have a similar purpose,
for types.

Our trace semantics is built on top of head reduction, which is reminded
next. Moreover, we shall be using types in extended form, which determines the
number and types of arguments needed in order to fully apply a term of a given
type.

Definition 7. The (standard) head reduction rules are given in Fig. 2. Head
normal forms are given by the syntax on the LHS below,

Mhnf ::=E[x] | E[c] | λxθ.Mhnf | ΛX.Mhnf E ::= • | EM | Eθ

where E ranges over evaluation contexts (defined on the RHS). Evaluation
contexts are typed with types of the form θ � θ′. We write E : θ � θ′ if we can
derive • : θ � E : θ′.

An extended type form is a sequence (τ1, ..., τn, ξ) with ξ ∈ TVar∪TN and,
for each i, τi ∈ Type ∪ {∀X | X ∈ TVar}. Formally, the extended form of a type
θ, written ext(θ), is defined by:

ext(∀X.θ) = (∀X) :: ext(θ) ext(θ → θ′) = θ :: ext(θ′) ext(ξ) = (ξ)

where we write h :: t for the sequence with head h and tail t (cf. list notation).
Elements of the form ∀X in these sequences are binders that bind to their right.

We let →∗ be the reflexive-transitive closure of →. It is a standard result
that →∗ preserves typing and (strongly) normalises to head normal forms.

We finally introduce some infrastructure for working with objects with names.

Fig. 2. Head reduction rules. Condition (∗) stipulates that M be not a Λ/λ-abstraction.

A Trace Semantics for System F Parametric Polymorphism 25

Definition 8. We call a permutation π : N → N finite if the set {a | π(a) �= a}
is finite, and component-preserving if, for all a ∈ N, a ∈ TN iff π(a) ∈ TN.

A nominal set [7] is a pair (Z, ∗) of a set Z along with an action (∗) from
the set of finite component-preserving computations of N on the set Z. For each
z ∈ Z, the set of names featuring in z form its support , written ν(z), which we
stipulate to be finite.

In the sequel, when constructing objects with names (such as moves or traces)
we shall implicitly assume that these form nominal sets, where the permutation
action is defined by taking π ∗z to be the result of applying π to each name in z.

3.1 Trace Semantics Preview

Before formally presenting the trace model, we look at some examples infor-
mally, postponing the full details for the next section. Head-reduction brings
terms into head normal form. The trace semantics allows us to further ‘reduce’
terms of the form E[cM̂1 · · · M̂n], where c is some computation name. For such a
term, following the game semantics approach [3,11], our model will issue a move
interrogating the computation c on arguments M̂i, and putting E on top of an
evaluation stack, denoted E . The move is effectively a call to c, and E functions
as a call stack which registers the calls that have been made and are still pend-
ing. This will effectively lead to a labelled transition system in which labels are
moves issued by two parties: a Player (P), representing the modelled term, and
an Opponent (O) representing its enclosing term context.

Traces are sequences of moves, which in turn are tuples of names belonging
to one of these four classes, taking c ∈ CN and ai ∈ N for each i:

– Player questions c̄(a1, ..., an) (also P-questions),
– Opponent questions c(a1, ..., an) (also O-questions),
– PO-answers OKOK, and OP -answers OKOK.

Given a question move as above, we let its core name be c. We distinguish a
computation name cin ∈ CN, and call questions with core name cin initial . We
define a trace T to be a finite sequence of moves. Traces will be restricted to
legal ones in Definition 12.

In the following examples we give traces produced by simple System F terms.
Traces are formally produced by an LTS over configurations whose main com-
ponent is an evaluation stack. An evaluation stack is a stack whose elements
are typed evaluation contexts, apart from the top element which can also be a
typed term:

E ::= E ′ | (M, θ) :: E ′ E ′ ::= ♦ | (E, θ � θ′) :: E ′

We denote the empty stack with ♦. In the next two examples, for simplicity,
configurations shall only contain evaluation stacks.

26 G. Jaber and N. Tzevelekos

Example 9. Recall that id = ΛX.λxX . x : Unit and Unit = ∀X.X → X. The
extended type of Unit, ext(Unit) = (∀X,X,X), indicates that id requires two
arguments in order to be evaluated: one type and one term of that given type.
Thus, the traces produced by id will start with an interrogating/calling move
cin(α, c) of O:

– cin is the computation name assigned (by convention) to the term being eval-
uated (in this case, id);

– α, c are names abstracting the actual type and term arguments which id is
called on. It is assumed that c is of type α.

Starting from the initial move cin(α, c), a trace of id can be produced as follows:

〈♦〉 cin(α,c)−−−−−→ 〈(idα c, α)〉 → 〈(c, α)〉 c̄()−−→ 〈(•, α �α)〉 OKOK−−−→ 〈♦〉

Thus, O starts the interaction by interrogating id with α, c. This results in
idα c, which gets head reduced to c. At this point, c is a head normal form
of type α, and P can answer the initial question cin(α, c). This is done in two
steps. First, P further reduces c by playing a move c̄() (here c takes 0 arguments
as ext(α) = (α)), and pushes the current evaluation context (•, α �α) on the
stack. O then responds by triggering a pair of answers OKOK, which answer both
questions played so far. The resulting trace is: cin(α, c) · c̄() · OKOK.

Note 10 (what are OKOK and OKOK?). As System F base types are type vari-
ables, there is no real need for answer moves: a type X has no return values. For
example, in the game models of Hughes [9] and Laird [15], answer moves were
effectively suppressed (either explicitly, or by allowing moves c(· · ·) to function
as answers). Here, to give the semantics an operational flavour, we introduce
instead explicit ‘dummy’ answers OK.

Example 11. Consider now M = λfUnit. f : Unit → Unit. We have that
ext(Unit → Unit) = (Unit,∀X,X,X), and therefore M requires three argu-
ments for its evaluation: one term of type Unit, one type, and one term if that
latter type. We can therefore start a trace of M with an initial move cin(c1, α1, c)
and continue as follows.

〈♦〉 cin(c1,α1,c2)−−−−−−−−→ 〈(Mc1α1 c2, α1)〉 → 〈(c1 α1 c2, α1)〉 c̄1(α2,c3)−−−−−−→ 〈(•, α2 �α1)〉

Thus, the initial move leads to Mc1α1c2, which in turn reaches the hnf c1α1c2,
with c1 : Unit, and at that point P needs to invoke c1 with arguments α1 and
c2. These are abstracted away by fresh names α2 and c3 respectively, which
are passed as arguments to c1. c3 in particular has type α2. The result of this
invocation will be of type α2, which is the hole type in (• : α2 �α1). O can only
produce a term of α2 by simply returning c3. Similarly to before, this is done
in two steps: by O playing c3(), which brings c2 (the term represented by c3) at
the top of the stack, which in turn triggers a pair of answers OKOK and brings
c2 inside the context (• : α2 � α1).

A Trace Semantics for System F Parametric Polymorphism 27

〈(•, α2 � α1)〉 c3()−−−→ 〈(c2, α2) :: (•, α2 � α1)〉 OKOK−−−→ 〈(c2, α1)〉 c̄2()−−−→ 〈(•, α1 � α1)〉 OKOK−−−→ 〈♦〉

The latter step leaves us with (c2, α1), which reaches ♦ as in the previous
example.

3.2 Definition of the LTS

We now proceed with the formal definition of the trace semantics. We start off
with a series of definitions setting the conditions for a trace to be legal.

The names appearing in a trace are owned by whoever introduces them. A
move m introduces a name a in a trace T if m is a question q(�a) with ai = a
for some i. For each A ∈ {O,P}, we let the set of names of T that are owned by
A be:

A(T) = {a ∈ N | ∃m. m is an A-question in T ∧ m introduces a}.

We will be referring to the names appearing in A(T) as A-names.
Each move in a trace needs to be justified, i.e. depend on an earlier move

(unless the move is initial). Justification is defined in different ways for questions
and answers. Given a trace T and two moves m,m′ in T , we say that m′ justifies
m when m′ is before m in T and:

– m is a question with core name c and m′ introduces c, or
– m is an answer which answers m′ (and m′ is a question).

Answering of questions is defined as follows. Each answer (occurrence) m answers
the pair of question moves (m1,m2) containing the last two question moves in
T which are before m and have not been answered yet.

We can now define legality conditions for traces. Below, for A ∈ {O,P}, we
say that a move is A-starting if it is an A-question or an AA⊥-answer (where
O⊥ = P and P⊥ = O). Similarly, a move is A-ending if it is either an A-question
or an A⊥A-answer.

Definition 12. A trace T is said to be legal when, for each A ∈ {O,P}:

1. A-ending moves can only be followed by A⊥-starting moves;
2. all moves in T are justified, apart from the first move which must be initial;
3. apart from cin, every name of T is introduced exactly once in it;
4. for each A-question with core name c �= cin, we have c ∈ A⊥(T);
5. if an AA⊥-answer answers (m,m′) then these are A- and A⊥-questions respec-

tively.

The conditions above can be given names (suggesting their purpose) as follows: 1.
alternation, 2. justification, 3. well-introduction, 4. well-calling, 5. well-answering.

Each trace T has a complement, which we denote T⊥ and is obtained from T
by switching O/P in all of its moves (i.e. each c(�a) becomes c̄(�a), OKOK becomes
OKOK, etc). T is legal iff T⊥ is.

28 G. Jaber and N. Tzevelekos

Traces are produced by use of a labelled transition system. The LTS com-
prises moves as labels, and of configurations as nodes. Each configuration con-
tains an evaluation stack of terms and environments that need to be evaluated, as
well as mappings containing type/term information on names that have appeared
so far. We introduced evaluation stacks in the previous section. Here we shall
restrict the allowed shapes thereof as follows. We let passive and active eval-
uation stacks be defined by the following two grammars respectively, and take
evaluation stacks to be E ::= Epass | Eactv,

Epass ::= ♦ | [(E,α � θ)] | (E,α �α′) :: Epass , Eactv ::= [(M, θ)] | (M,α) :: Epass ,

where θ ranges over closed types with ν(θ) = ∅, and ♦ is the empty stack.
The other two components of configurations will be maps γ and φ of the

shape:

γ ∈ (CN⇀(Term×Type))⊗(TN⇀(Type×{U})), φ ∈ (CN⇀Type)⊗(TN⇀{U}),

with F ⊗ G = {f ∪ g | f ∈ F ∧ g ∈ G}. U is a special “universe” symbol that
represents the type of types – it is only used for convenience. Then, in words:

– γ assigns term-type pairs to computation names, and type-U pairs to type
names,

– φ assigns types to computation names, and U to type names.

The role of a map γ is to abstract away terms to computational names, and types
to type names. On the other hand, a map φ simply types names. In the LTS,
when P wants to interrogate an O-computation name c with some arguments,
they will abstract away the actual arguments to names, record the abstraction
in γ, and call c on these names. On the other hand, when O interrogates a P -
computation name c with some move c(�a), we will record in φ the types of the
(new!) O-names �a.

The abstraction of arguments to names is instrumented by a dedicated oper-
ation AVal. This operation assigns to each sequence ((M̂1, τ1), ..., (M̂n, τn), ξ),
where (τ1, ..., τn, ξ) is an extended type (i.e. the type of the computation name
we want to call) and each M̂i is a closed term or type (the i-th argument), a set
of triples of the form (�a, γ, β) where:

– �a is a sequence (a1, ..., an) of names (abstracting each of the arguments M̂i),
– γ is a map as above, with domain {a1, ..., an},
– β is the result type one gets after applying each ai for each τi.

The operator is formally defined next. In the same definition we introduce the
semantics of types, [[θ]], as sets of triples of the form (�a, φ, β), which represent all
possible input-output name tuples (�a, β) that are allowed for θ, including their
typing φ.

A Trace Semantics for System F Parametric Polymorphism 29

Fig. 3. Reduction rules for the LTS.

Definition 13. Given a closed type θ (which may contain type names), we let
its semantics be [[θ]] = [[ext(θ)]], where the latter is defined inductively by:

[[(α)]] = {(ε, ε, α)}
[[θ ::L]] = {((c,�a), φ · [c �→ θ], α) | c ∈ CN, (�a, φ, α) ∈ [[L]]}

[[∀X ::L]] = {((β,�a), φ · [β �→ U], α) | β ∈ TN, (�a, φ, α) ∈ [[L{α/X}]]}
On the other hand, to each sequence ((M̂1, τ1), ..., (M̂n, τn), ξ) we assign a set of
abstract values AVal(((M̂1, τ1), ..., (M̂n, τn), ξ)) inductively by:

AVal((α)) = {(ε, ε, α)}
AVal((M, θ) ::L) = {((c,
a), γ · [c �→ (M, θ)], α) | c ∈ CN, (
a, γ, α) ∈ AVal(L)}
AVal((θ, ∀X) ::L) = {((β,
a), γ · [β �→ (θ, U)], α) | β ∈ TN, (
a, γ, α) ∈ AVal(L{β/X})}

Both φ and γ are finite partial functions whose domains are sets of names. For
such maps, the extension notation we used e.g. in φ · [c �→ z] (for appropriate z)
means fresh extension: φ · [c �→ z] = φ ∪ {(c, z)} and given that c /∈ dom(φ).
This notation is extended to whole maps: e.g. φ · φ′ = φ ∪ φ′ and given that
dom(φ) ∩ dom(φ′) = ∅. Moreover, for each map γ we write fst(γ) for its first
projection: fst(γ) = {(a, M̂) | γ(a) = (M̂,)}. Similarly, second projection is
given by: snd(γ) = {(a, Z) | γ(a) = (, Z)}.

Definition 14. A configuration is a triple 〈E , γ, φ〉 where E is an evaluation
stack and γ and φ are as above. The reduction rules of the LTS are given in
Fig. 3. We write Tr(C) for the set of traces generated by a configuration C.

Given a typed term Δ;Γ � M : θ, with Δ = {X1, . . . , Xn}, Γ = {x1 :
θ1, . . . , xm : θm}, we set 〈Δ;Γ � M : θ〉 = 〈♦, [cin �→ (˜M, ˜θ)], ε〉 and

[[Δ;Γ � M : θ]] = {T ∈ Tr(〈Δ;Γ � M : θ〉) | T has at most one initial move }
where ˜θ = ∀X1. . . . ∀Xn.θ1 → · · · → θm → θ and ˜M = ΛX1. . . . ΛXn.λxθ1

1
λxθm

m .M .

30 G. Jaber and N. Tzevelekos

A configuration is active (resp. passive) if its evaluation stack is so. An
active configuration stands for a term being computed and it may only produce
P -moves. A passive configuration, on the other hand, stands for a scenario where
O is next to play. Moreover, the map φ in a configuration contains information
on the O-names that have been played, i.e. dom(φ) contains O-names, while
dom(γ) contains P -names.

To better grasp Fig. 3 let us consider an initial configuration 〈♦, [cin �→
(M, θ)], ε〉 and look at its traces, for some closed term M (so no need for ˜M, ˜θ)
with empty support.

– At the beginning, the only rule that can be applied is (OQ0), whereby O
interrogates the term M by issuing a move cin(�a). The names �a are selected
from [[θ]] and represent arguments that O fully applies the term M on. Since
θ has empty support, its extended form is of the shape (τ1, ..., τn,X) with
X bound by one of the τi’s. Consequently, when the names a1, ..., an are
applied for τ1, ..., τn, the variable X will be replaced by some type name α.
The rule makes this explicit, by requiring that (�a, φ′, α) ∈ [[θ]]. Thus, writing
φ0 instead of φ′ and setting γ0 = [cin �→ (M, θ)], the transition brings us to a
configuration 〈[(M�a, α)], γ0, φ0〉, where dom(φ0) = {a1, ..., an}.

– At this point, the term M�a can be reduced using head reduction and
brought to head normal form. Applying the (INT) rule we reach some
〈[(E[cM̂1 · · · M̂k], α)], γ0, φ0〉.

– We next interrogate the computation name c. The latter must have come from
the a1, ..., an that were applied to M , hence is an O-name. To interrogate it,
P plays a question c̄(�a′), using the (PQ) rule and assuming (�a′, γ′, α′) ∈
AVal(((M̂1, τ

′
1), ..., (M̂k, τ ′

k), ξ)), φ0(c) = θ′, ext(θ′) = (τ ′
1, ..., τ

′
k, ξ). This leads

to 〈[(E,α′ �α)], γ1, φ0〉 (γ1 = γ0 · γ′).
– We are now at a passive configuration, where E has been stored on the stack

and O is required to produce a response of type α′. By definition of AVal,
either α′ = α or α′ is in a′

1, ..., a
′
k and hence belongs to P . In the latter

case, O can only produce such a response by calling back P , using rule (OQ),
playing an O-question and adding a new term on the evaluation stack. In the
former case, O would directly respond with a hnf of type α, say N . But, since
E : α � α and therefore E = •, P would simply reply back playing N again.
To avoid this copycat of hnf’s, we simply play an OP -answer and remove the
top of the evaluation stack – this is what the (OA) rule achieves.

Example 15. In Fig. 4 we include example traces for terms M1,M2 : Unit →
Unit (taken from [1], Instance 3.25) and for the Church numerals Mk : Nat.
The former pair is an instance of Theorem 21 – Strachey equivalence implies trace
equivalence.

In our scenario above we started from a passive configuration with empty
stack and a singleton γ. A different way to produce a trace is to start from
an active configuration with a stack containing only a term E[cinM̂1 · · · M̂n], in
which case the rule (PQ0) would commence the trace. More generally, we call a
configuration C with stack E :

A Trace Semantics for System F Parametric Polymorphism 31

Fig. 4. Top: traces for two terms of type Unit→Unit. Bottom: traces for Church
numeral Mk.

– a term configuration , if E = ♦ or the bottom element of E has type α or
α �α′;

– a context configuration , if the bottom of E has type θ or α � θ, and θ is a
closed with empty support.

Each reduction sequence in the LTS can only contain either term or context con-
figurations. In our discussion above and in Example 15 we examine the semantics
of terms, and therefore use term configurations. In later sections, when we shall
start looking at the semantics of contexts, we will be using context configurations
as well.

While we have not defined leaves for our LTS, there is a natural notion of
a trace being “completed”. In particular, we call a trace T complete if all its

32 G. Jaber and N. Tzevelekos

questions have been answered. We write CTr(C) for the set of complete traces
generated from C. Term and context configurations can both produce complete
traces. Given a term configuration C and a complete trace T , we write C ⇓T

if C
T−→ C ′ and C ′ has an empty evaluation stack. On the other hand, given a

context configuration C, a complete trace T and a value v, we write C ⇓T,v if

C
T−→ C ′ and C ′ has an evaluation stack with a single element (v, θ).

Lemma 16. Given a term configuration C and T ∈ Tr(C), then T is complete
iff C ⇓T .

We conclude this section by looking at some restrictions characterising actual
configurations. We first extend fst to evaluation stacks by: fst(♦) = ♦ and
fst((Z,) :: E) = Z :: fst(E).

Definition 17. A configuration 〈E , γ, φ〉 is said to be legal when:

– dom(γ) ∩ dom(φ) = ∅ and ν(fst(E)) ∪ ν(cod(fst(γ))) ⊆ dom(φ);
– for all c ∈ dom(γ) ∩ CN, given γ(c) = (M, θ), we have Δφ;Γφ,γ � M : θ{γv};
– if the top of E is (M, θ), then Δφ;Γφ,γ � M : ˜θ with either θ = α ∈ dom(γ)

and γ(α) = (˜θ,U), or θ = α ∈ dom(φ) and ˜θ = θ, or θ = ˜θ is a closed type
with empty support and E = [(M, θ)];

– If E = (M,α1) :: (E,α2 � θ) :: E ′, either α1 = α2 or α1 ∈ dom(φ);
– for all (E,α � θ) in E with α ∈ dom(γ), Δφ;Γφ,γ ,� E : γv(α) � θ, and either

θ = α ∈ dom(φ) or θ is a closed type with empty support, and (E,α � θ) is
at the bottom of E ;

– for all (E,α � θ) in E with α ∈ dom(φ), we have θ = α and E = •;

where Δφ = dom(φ) ∩ TN and Γφ,γ = {(x, θ{fst(γ)}) | (x, θ) ∈ φ}.

Lemma 18. If C is a legal configuration and C
m−→ C ′ then C ′ is a legal con-

figuration.

4 Parametricity in the Trace Model, and Proof of
Theorem 5

We next examine the relationship between trace equivalence and the notions
of Reynolds and Strachey equivalence. We prove that Strachey equivalence is
included in trace equivalence (Theorem 21), which in turn is included in Reynolds
equivalence (Theorem 28).

4.1 From Strachey to Trace Equivalence

Definition 19. Let Ci = 〈Ei, γi, φi〉, for i = 1, 2, be two configurations. We say
that C1 and C2 are Strachey-equivalent when E1 and E2 have the same size,
dom(γ1) = dom(γ2), φ1 = φ2 and:

A Trace Semantics for System F Parametric Polymorphism 33

– for all c ∈ dom(γ1), if γi(c) = (Mi, θi) then θ1 = θ2 and erase(M1) =βη

erase(M2);
– if (Zi, αi) is the j-th element of Ei, then α1 = α2 and erase(Z1) =βη

erase(Z2);

where E1 =βη E2 just if E1[x] =βη E2[x] for some/all fresh x.

The first inclusion can then be proven as follows.

Lemma 20. Given two Strachey-equivalent legal configurations C1, C2, if C1
m−→

C ′
1 for some m,C ′

1 then there is C2
m−→ C ′

2 such that C ′
1 and C ′

2 are Strachey-
equivalent.

Theorem 21. For all Strachey-equivalent Δ,Γ � M1,M2 : θ, we have [[M1]] =
[[M2]].

Proof. Taking T ∈ [[Δ;Γ � M1 : θ]], we prove that T ∈ [[Δ;Γ � M2 : θ]] by
induction on the length of T , using the previous lemma. ��

The inclusion above is strict. This is shown, for example, by the follow-
ing terms Mtrue,Mfalse : Unit → Unit, which are trace equivalent but not
Strachey-equivalent:

Mb = λfUnit.ΛX.λxX .snd(f(Bool × X)〈b, x〉) (b = true, false)

Here we use the impredicative encoding of product types [8]: θ1 × θ2 =
∀X.(θ1 → θ2 → X) → X, 〈M,N〉 = ΛX.λfθ1→θ2→X .fMN and snd =
λxθ1×θ2 .xθ2(λyθ1 .λzθ2 .z). Setting γ0 = [cin �→ (Mb,Unit → Unit)] and
Cb = 〈·; · � Mb : Unit → Unit〉, we have:

Cb

cin(cf ,α,c)−−−−−−−−→ 〈(snd(cf (Bool × α)〈b, c〉), α), γ0, φ0〉 (φ0 = [cf �→ Unit, α �→ U , c �→ α])
c̄f (β,c′)−−−−−−→ 〈(snd•, β � α), γ1, φ0〉 (γ1 = γ0 · [β �→ (Bool × α, U), c′ �→ (〈b, c〉, β)])
c′()−−→ 〈(〈b, c〉, β) :: (snd•, β � α), γ1, φ0〉 OKOK−−−→ 〈(snd〈b, c〉, α), γ1, φ0〉
−−−→ 〈(c, α), γ1, φ0〉 c̄()−−→ 〈(•, α � α), γ1, φ0〉 OKOK−−−→ 〈�, γ1, φ0〉

and this is the only complete trace in [[Mb]]. Indeed, O cannot interrogate another
name, as cin can only be played once, and c′ cannot be played with the (OQ0)
rule.

The other inclusion (trace included in Reynolds) is more challenging and
requires us to introduce machinery for relating the semantics of terms and seman-
tics of contexts to that of terms and contexts composed.

4.2 Composite LTS

We let a composite configuration be a tuple 〈EP , EO, γP , γO〉, where γP and
γO are maps γ as above, EP is a term evaluation stack, and EO is a context
evaluation stack. These configurations represent the interaction between a term

34 G. Jaber and N. Tzevelekos

Fig. 5. Composite LTS.

and a context. The term-part in the interaction is played by EP and γP , while the
context-part by EO and γO. As with ordinary configurations, we define an LTS
for composite ones in Fig. 5. Given a composite configuration C, a trace T and a
value v (hnf with empty support) we write C ⇓T,v when C

T−→ 〈♦, [(v, θ)], γP , γO〉.
Composite configurations allow us to compose a term and a context seman-

tically: we essentially play the traces of one against the other. Another way to
obtain a composite semantics is to work syntactically, i.e. by composing config-
urations and then executing the resulting term. This is defined next.

Definition 22. Given two evaluation stacks (EP , EO), we build their merge
(which may not always be defined) EP ||EO inductively by ♦||[(M, θ)] = M and:

((M,α) :: EP)||((E,α � θ) :: EO) = EP ||((E[M], θ) :: EO)
((E,α � θ) :: EP)||((M,α) :: EO) = ((E[M], θ) :: EP)||EO

When it is defined, we say that EP , EO are compatible . Then, a composite
configuration C = 〈EP , EO, γP , γO〉 is legal when (EP , EO) are compatible and
when both 〈EP , γP , snd(γO)〉 and 〈EO, γO, snd(γP)〉 are legal.

We now relate the reduction of a composite configuration with the head
reduction of the merge of its two evaluation stacks. First, taking the two envi-
ronments γP , γO of a legal composite configuration, we compute their closure
(γP · γO)∗ as follows. Setting γ0 = fst(γP · γO), and γi = {(a, M̂{γ}) | (a, M̂) ∈
γi−1} (i > 0), there is an integer n such that ν(cod(γn)) = ∅. We write (γP ·γO)∗

for the environment defined as γn, for the least n satisfying this latter condition.

Theorem 23. Given a legal composite configuration C = 〈EP , EO, γP , γO〉, then
C ⇓T,v iff (EP ||EO){(γP · γO)∗} →∗ v.

Finally, we relate the LTS’s for composite configurations and ordinary config-
urations (Theorem 26). Combined with Theorem 23, this gives us a correlation
between the traces of two compatible configurations and the head reduction we
obtain once we merge their evaluation stacks.

A Trace Semantics for System F Parametric Polymorphism 35

Definition 24. Given legal configurations CP = 〈EP , γP , φP 〉 and CO =
〈EO, γO, φO〉, we say that they are compatible when EP , EO are compatible,
snd(γP) = φO and snd(γO) = φP . For each pair (CP , CO) of compatible con-
figurations, we define their merge CP ∧∧ CO as the composite configuration
〈EP , EO, γP , γO〉.
Lemma 25. Taking (CP , CO) a pair of compatible configurations, CP∧∧CO ⇓T,v

iff CP ⇓T and CO ⇓T ⊥,v.

Theorem 26. Given CP,1, CP,2, CO such that CP,1, CO and CP,2, CO are pair-
wise compatible and Tr(CP,1) = Tr(CP,2), if CP,1∧∧CO ⇓T,v, then CP,2∧∧CO ⇓T,v.

Proof. From Lemma 25 we get CP,1 ⇓T and CO ⇓T ⊥,v. Thus, T ∈ Tr(CP,1)
and hence T ∈ Tr(CP,2). Lemma 16 then yields CP,2 ⇓T and, from Lemma 25,
CP,2∧∧CO ⇓T,v. ��

4.3 Proof of Theorem 5

Theorem 5 follows from Theorems 21 and 28. Theorem 28, which is proved
below, shows that any trace equivalent terms are also Reynolds equivalent. This
is achieved as follows. In the previous section we saw how to relate reductions
of terms-in-context to the semantics of terms and contexts. Given terms M1,M2

which are trace equivalent, and fully applying them to related arguments, we
obtain head reductions to values. These reductions can be decomposed into LTS
reductions producing corresponding traces, for the terms and their argument
terms (which form contexts). But, since the terms are trace equivalent, M2 can
simulate the behaviour of M1 in the context of M1, and that allows us to show
that the two composites reduce to the same value.

We start by extending logical relations to extended types with empty support.
We define R[[ext(θ)]]δ by:

R[[(X)]]δ = {R | δ(X) = (, , R)}
R[[θ ::L]]δ = {(M1, N1) ::L′ | (M1, N1) ∈ R[[θ]]δ ∧ L′ ∈ R[[L]]δ}

R[[∀X ::L]]δ = {(θ1, θ2) ::L′ | (θ1, θ2, R) ∈ Rel ∧ L′ ∈ R[[L]]δ·[X 	→(θ1,θ2,R)]}

Lemma 27. (M1,M2) ∈ R[[θ]]δ iff for all ((N̂1
1 , N̂1

2), . . . , (N̂n
1 , N̂n

2), R) ∈
R[[ext(θ)]]δ, (M1N̂

1
1 · · · N̂n

1 ,M2N̂
1
2 · · · N̂n

2) ∈ R.

Theorem 28. For all trace equivalent Δ;Γ � M1,M2 : θ, we have that
M1 	log M2.

Proof. Taking δ ∈ R[[Δ]] and (η1, η2) ∈ R[[Γ]]δ, we show (M1{η1}{δ1},
M2{η2}{δ2}) ∈ R[[θ]]δ. Using Lemma 27, we take ((N̂1

1 , N̂1
2), . . . , (N̂n

1 , N̂n
2), R) ∈

R[[ext(θ)]]δ, and prove that (M1{η1}{δ1}N̂1
1 · · · N̂n

1 ,M2{η2}{δ2}N̂1
2 · · · N̂n

2) ∈ R.
For each i ∈ {1, 2}, there exists a value vi s.t. Mi{ηi}{δi}N̂1

i · · · N̂n
i →∗

vi. Using the closure of R w.r.t. =βη, it suffices to show that (v1, v2) ∈
R. Suppose Δ = X1, . . . , Xk and Γ = x1 : θ1, . . . , xm : θm. We write

36 G. Jaber and N. Tzevelekos

CPi
for the configuration 〈Δ;Γ � Mi : θ〉, and CO,i for the configura-

tion 〈cinδi(X1) · · · δi(Xk)ηi(x1) · · · ηi(xm)N̂1
i · · · N̂n

i , ε, [cin �→ ˜θ]〉, where ˜θ =
∀X1. . . . ∀Xn.θ1 → · · · → θm → θ.

From Theorem 23, for each i ∈ {1, 2} there is a trace Ti such that
CP,i ∧∧ CO,i ⇓Ti,vi

. M1,M2 being trace equivalent, we have that Tr(CP,1) =
Tr(CP,2). So from Theorem 26, we get that CP,2 ∧∧ CO,1 ⇓T1,v1 , and from
Theorem 23 that M2{η1}{δ1}N̂1

1 · · · N̂n
1 →∗ v1. Finally, from Theorem 2, we

get that (M2{η1}{δ1}N̂1
1 · · · N̂n

1 ,M2{η2}{δ2}N̂1
2 · · · N̂n

2) ∈ R. Thus, using the
closure of R w.r.t. =βη, we have that (v1, v2) ∈ R. ��

5 Related and Future Work

The literature on parametric polymorphism is vast; here we look at the works
closest to ours, which come from the game semantics area. The first game model
for System F was introduced by Hughes [9,10]. The model is intentional, in the
sense that it is fully complete for βη-equivalence. Starting from that model, de
Lataillade [5,6] characterised parametricity categorically via the notion of dinat-
urality [4]. In [2], Abramsky and Jagadeesan developed a model for System F
to characterise genericity, as introduced by Longo et al. [17]. A type θ is said to
be generic when two terms M1,M2 of type ∀X.θ′ are equivalent just if M1θ and
M2θ are equivalent. Their model contains several generic types. More recently,
Laird [15] has introduced a game model for System F augmented with mutable
variables. His model is closer to ours than the previous ones, and in particular
his notion of copycat links can be seen as connected to the use of names for
parametricity.

In all of the above models the denotation of terms is built compositionally by
induction on the structure of the term. In a different line of work, closer in spirit
to our model, Lassen and Levy [16] have introduced normal form bisimulations
for a language with parametric polymorphism. These bisimulations are defined
on LTSs whose definition has similarities with ours. However, the model is for
a CPS-style language which has not only polymorphic but also recursive types.
Finally, our own model for a higher-order polymorphic language with general
references [13] can be seen as a direct precursor to this work, albeit in a very
different setting (call-by-value, with references).

Further on, we would like to study the existence of generic types in our model,
as well as its dinaturality properties. We would moreover like to examine coarser
notions of trace equivalence that bring us closer to Reynolds polymorphism.
Finally, we would like to see if the trace model can be used to prove the original
conjecture of [1,20]. While this seems plausible in principle, proving equivalences
using definable logical relations requires additional tools, such as restrictions on
the LTS, to avoid circular reasoning.

Acknowledgement. Authors supported by the LABEX MILYON (ANR-10-LABX-
0070) of Université de Lyon, and the EPSRC (EP/P004172/1) respectively.

A Trace Semantics for System F Parametric Polymorphism 37

References

1. Abadi, M., Cardelli, L., Curien, P.-L.: Formal parametric polymorphism. Theor.
Comput. Sci. 121(1&2), 9–58 (1993)

2. Abramsky, S., Jagadeesan, R.: A game semantics for generic polymorphism. Ann.
Pure Appl. Logic 133(1), 3–37 (2005). Festschrift on the occasion of Helmut
Schwichtenberg’s 60th birthday

3. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

4. Bainbridge, E.S., Freyd, P.J., Scedrov, A., Scott, P.J.: Functorial polymorphism.
Theor. Comput. Sci. 70(1), 35–64 (1990)

5. de Lataillade, J.: Quantification du second ordre en sémentique des jeux: applica-
tion aux isomorphismes de types. Ph.D. thesis, Paris 7 (2007)

6. de Lataillade, J.: Second-order type isomorphisms through game semantics. Ann.
Pure Appl. Logic 151(2–3), 115–150 (2008)

7. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding.
Formal Asp. Comput. 13(3–5), 341–363 (2002)

8. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types, vol. 7. Cambridge Univer-
sity Press, Cambridge (1989)

9. Hughes, D.: Hypergame semantics: full completeness for System F. Ph.D. thesis,
D. Phil. thesis, Oxford University (2000)

10. Hughes, D.J.D.: Games and definability for System F. In: Proceedings of the 12th
Annual IEEE Symposium on Logic in Computer Science, LICS 1997, Washington,
DC, USA, 76 pages. IEEE Computer Society (1997)

11. Hyland, J.M.E., Ong, C.L.: On full abstraction for PCF: I, II, and III. Inf. Comput.
163(2), 285–408 (2000)

12. Jaber, G.: Operational nominal game semantics. In: Pitts, A. (ed.) FoSSaCS 2015.
LNCS, vol. 9034, pp. 264–278. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46678-0 17

13. Jaber, G., Tzevelekos, N.: Trace semantics for polymorphic references. In: Proceed-
ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2016, New York, NY, USA, 5–8 July 2016, pp. 585–594 (2016)

14. Laird, J.: A fully abstract trace semantics for general references. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
667–679. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-
8 58

15. Laird, J.: Game semantics for a polymorphic programming language. J. ACM
60(4), 29:1–29:27 (2013)

16. Lassen, S.B., Levy, P.B.: Typed normal form bisimulation for parametric polymor-
phism. In: Proceedings of the 2008 23rd Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, Washington, DC, USA, pp. 341–352. IEEE Com-
puter Society (2008)

17. Longo, G., Milsted, K., Soloviev, S.: The genericity theorem and parametricity in
the polymorphic lambda-calculus. Theor. Comput. Sci. 121(1–2), 323–349 (1993)

18. Mitchell, J.C.: On the equivalence of data representations. In: Lifschitz, V. (ed.)
Artificial Intelligence and Mathematical Theory of Computation, pp. 305–329. Aca-
demic Press Professional Inc., San Diego (1991)

19. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York (2013)

https://doi.org/10.1007/978-3-662-46678-0_17
https://doi.org/10.1007/978-3-662-46678-0_17
https://doi.org/10.1007/978-3-540-73420-8_58
https://doi.org/10.1007/978-3-540-73420-8_58

38 G. Jaber and N. Tzevelekos

20. Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0037118

21. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress, pp. 513–523 (1983)

22. Strachey, C.: Fundamental concepts in programming languages. Higher-Order Sym-
bolic Comput. 13(1), 11–49 (2000)

23. Wadler, P.: Theorems for free! In: Proceedings of the Fourth International Confer-
ence on Functional Programming Languages and Computer Architecture, FPCA
1989, pp. 347–359. ACM, New York (1989)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BFb0037118
http://creativecommons.org/licenses/by/4.0/

Categorical Combinatorics
for Non Deterministic Strategies

on Simple Games

Clément Jacq(B) and Paul-André Melliès

Institut de Recherche en Informatique Fondamentale,
Université Paris Diderot, Paris, France

Clement.Jacq@irif.fr

Abstract. The purpose of this paper is to define in a clean and concep-
tual way a non-deterministic and sheaf-theoretic variant of the category
of simple games and deterministic strategies. One thus starts by associat-
ing to every simple game a presheaf category of non-deterministic strate-
gies. The bicategory of simple games and non-deterministic strategies is
then obtained by a construction inspired by the recent work by Melliès
and Zeilberger on type refinement systems. We show that the resulting
bicategory is symmetric monoidal closed and cartesian. We also define
a 2-comonad which adapts the Curien-Lamarche exponential modality
of linear logic to the 2-dimensional and non deterministic framework.
We conclude by discussing in what sense the bicategory of simple games
defines a model of non deterministic intuitionistic linear logic.

1 Introduction

A new generation of 2-categorical and sheaf-theoretic game semantics is currently
emerging in the field of programming language semantics. The games and strate-
gies which determine them are more sophisticated mathematically, and also more
difficult to define rigorously, than they were in the deterministic case. For that
reason, it is timely to examine more closely the 2-categorical and sheaf-theoretic
frameworks available to us in order to formulate these games and strategies in
a suitably clean and conceptual way. In this investigation, one benefits from the
efforts made in the past twenty-five years to give a clearer mathematical sta-
tus to the previous generation of game semantics, which was (to a large extent)
based on the notion of arena game. We recognize three main lines of work here:

1. the logical approach advocated by Girard, and formulated in ludics [3], polar-
ized linear logic [7] or tensorial logic [12] with its connection to continuations
and string diagrams,

2. the combinatorial approach advocated by Hyland, inspired by algebraic topol-
ogy, and based on the combinatorial description of the structure of pointers
in arena games [4],

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 39–70, 2018.
https://doi.org/10.1007/978-3-319-89366-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_3&domain=pdf

40 C. Jacq and P.-A. Melliès

3. the concurrent and asynchronous approach advocated by Melliès, based on
the description of arena games as asynchronous games, and of strategies as
causal concurrent structures playing on them, either in an alternated [9–11]
or in a non-alternated way [18].

Interestingly, all the sheaf-theoretic frameworks designed for game seman-
tics today are offsprings of the third approach based on asynchronous games:
on the one hand, the notion of concurrent strategy in [19] is a sheaf-theoretic
transcription of the notion of receptive ingenuous strategy formulated in [18]; on
the other hand, the sheaf-theoretic notion of non-deterministic innocent strat-
egy in [13,17] relies on the diagrammatic and local definition of innocence in
alternated asynchronous games [11]. For that reason, our purpose in this paper
is to investigate the connection with the second approach, different in spirit and
design, and to define a bicategory of simple games and non-deterministic strate-
gies in the sheaf-theoretic style of Harmer et al. [4]. As we will see, our work
also integrates a number of elements coming from the first approach, and more
specifically, the discovery by Melliès that strategies are presented by generators
and relations, and for that reason, are prone to factorisation theorems [14,15].
Since we are interested in sheaf-theoretic models of computations, we should not
forget to mention the pioneering work by Hirschowitz and Pous on models of
process calculi [5], and its recent connection to game semantics [2].

In the present paper, we start from the category G of simple games and
deterministic strategies between them, and we explain how to turn G into a
bicategory S of simple games and non-deterministic strategies. As we will see,
the construction of S relies on the discovery of a number of elementary but
fundamental fibrational properties of the original category G. Since our work is
built on [4], let us recall that a simple game A is defined there as a contravariant
presheaf A : ωop → Set over the order category ω = 0 → 1 → 2 → · · · associated
to the infinite countable ordinal ω. A simple game A is thus a family of sets An

together with a function πn : An+1 → An for all n ∈ N, depicted as:

A0 A1 A2 · · · An An+1 · · ·π0 π1 πn

One requires moreover that A0 is the singleton set. The intuition is that A is
a rooted tree; that An contains its plays (or branches) of length n; and that πn

is the prefix function which transports every play of length n + 1 to its prefix of
length n. In particular, every simple game A contains only one play of length 0,
which should be thought as the empty play. Every simple game A should be
moreover understood as alternating: here, the intuition is that every play of odd
length 2n + 1 ends with an Opponent move, and that every play of even length
2n ends with a Player move if n > 0.

Terminology: An element a ∈ An is called a position of degree n in the game A.
The position a ∈ An is called a P -position when its degree n is even, and a O-
position when its degree n is odd. Given a position a ∈ An+1, we write π(a) for

Categorical Combinatorics for Non Deterministic Strategies 41

the position πn(a); similarly, given a position a ∈ An+2, we write π2(a) for the
position πn ◦πn+1(a). A simple game A is called O-branching when the function
π : A2n+2 → A2n+1 is injective, for all n ∈ N. This means that every Opponent
position a ∈ A2n+1 can be extended in at most one way into a Player position
b ∈ A2n+2, for all n ∈ N.

We start the paper by formulating a sheaf-theoretic notion of non-
deterministic P -strategy on a simple game A. Recall that a deterministic P -
strategy σ of a simple game A is defined in [4] as a family of subsets σ2n ⊆ A2n

of P -positions, satisfying the following properties, for all n ∈ N:

(i) Unique empty play — σ0 is equal to the singleton set A0,
(ii) Closure under even prefixes — if a ∈ σ2n+2 then π2(a) ∈ σ2n,
(iii) Determinacy — if a, b ∈ σ2n with π(a) = π(b), then a = b.

In order to generalize this definition to non-deterministic P -strategies, we find
convenient to consider the full subcategory ωP of ω consisting of the strictly
positive even numbers, of the form 2n for n > 0; and the inclusion functor
ιP : ωP → ω. Define the presheaf AP = A ◦ ιP as the simple game A obtained
as the restriction of the presheaf A : ωop → Set to the subcategory ωP :

AP = ωop
P ωop SetιP A

The collection AP thus consists of all the Player positions in A, except for
the initial one ∗ ∈ A(0). This leads us to the following definition of (non-
deterministic) P -strategy on a simple game A:

Definition 1. A P -strategy σ on a simple game A is a presheaf S : ωop
P → Set

over the category ωP together with a morphism of presheaves σ : S → AP . We
write σ : A in that case. The presheaf S is called the support of the strategy σ
and the elements of S2n are called the runs of degree 2n of the strategy, for n ≥ 0.

In other words, a P -strategy σ on A is a family of sets S2n indexed by strictly
positive numbers n > 0, related between them by functions (πP)2n : S2n+2 → Sn

pictured as:

S2 S4 · · · S2n S2n+2 · · ·πP πP

together with a family of functions σ2n : S2n → A2n making the diagram below
commute, for all n > 0:

S2n S2n+2

A2n A2n+1 A2n+2

σ2n

πP

σ2n+2

π π

42 C. Jacq and P.-A. Melliès

To every simple game A, we associate the category P(A) of P -strategies
over A, defined as the slice category

P(A) = [ωop
P , Set] /AP (1)

whose objects are thus the strategies over A, and whose morphisms θ : σ → τ
between two strategies σ : S → A and τ : T → A are the morphisms θ : S → T
of presheaves satisfying the expected equation: σ = τ ◦ θ. We will call those
simulations. One main contribution of the paper is the observation that the
family of categories P(A) can be organised into a pseudofunctor

P : G −→ Cat

from the category G of simple games and deterministic strategies. The pseudo-
functor P is moreover monoidal, in the sense that there exists a family of functors

mA,B : P(A) × P(B) −→ P(A ⊗ B)

indexed by simple games A,B. As a symmetric monoidal closed category, the
category G is enriched over itself, with the simple game G(A,B) = A � B
constructed from the simple games A and B. Here comes the nice point of the
construction: the bicategory S is simply defined as the bicategory with simple
games A,B as objects, and with

S(A,B) = P(A � B)

as category of morphisms between two simple games A and B. In other words,
a morphism σ : A → B in S is a P -strategy σ : A � B, and a 2-cell θ :
σ ⇒ τ : A → B is a morphism θ : σ → τ in the category P(A � B). At this
point, the fact that S defines a bicategory is easily derived from the lax monoidal
structure of the pseudofunctor P. Recall that, as a symmetric monoidal closed
category, the category G is enriched over itself. From a conceptual point of view,
the construction of the bicategory S thus amounts to a change of enrichment
category along the lax monoidal pseudofunctor P : G → Cat, transforming the
G-enriched category G into the (weak) Cat-enriched category S.

Besides the construction of S, a great care will be devoted to the analysis of
the Curien-Lamarche exponential comonad ! on the category G and to the recipe
to turn it into an exponential 2-comonad on the bicategory S. The construction
relies on the existence of a family of functors

pA : P(A) −→ P(!A)

called “promotion” functors, and natural in the simple game A in the category G.
In particular, the functorial part of the exponential 2-comonad ! : S → S is
defined as the composite:

P(A � B) P(!(A � B)) P(!A � !B)
pA�B P(nA,B)

where nA,B : !(A � B) → !A � !B is the canonical morphism in G which pro-
vides the structure of a lax monoidal functor to the original comonad ! : G → G.

Categorical Combinatorics for Non Deterministic Strategies 43

2 Non-deterministic P -strategies as P -cartesian
Transductions

As explained in the introduction, a P -strategy σ ∈ P(A) over a simple game A
is defined as an object of the slice category (1) in the category [ωop

P ,Set] of
contravariant presheaves over ωP . We will use the fact that the slice category is
equivalent to the category of contravariant presheaves

P(A) = [ωop
P , Set] /AP

∼= [tree(AP)op,Set]

over the Grothendieck category tree(AP) generated by the presheaf AP ∈
[ωop

P ,Set]. The category tree(AP) has the P -positions of the simple game A
as objects, and a morphism a → a′ between a ∈ A2p and a′ ∈ A2q precisely
when p ≤ q and π2q−2p(a′) = a. In other words, it is the order category associ-
ated to the tree of P -positions of the simple game A.

We find convenient for later purposes to reformulate non-deterministic P -
strategies in the following way. This paves the way to a comprehension theorem
for the pseudofunctor P, which will be established in the next section. A trans-
duction θ : A → B between two simple games A,B : ωop → Set is defined as
a natural transformation between the presheaves A and B, given by a family of
functions θn : An → Bn making the square �n diagram below commute, for all
n ∈ N:

An An+1

�n

Bn Bn+1

θn

πn

θn+1

πn

A transduction θ : A → B is called P -cartesian when �2n is a pullback
square for all n ∈ N; and O-cartesian when �2n+1 is a pullback square for all
n ∈ N. We write T for the category of simple games and transductions between
them, and TP (resp. TO) for the subcategory of P -cartesian (resp. O-cartesian)
transductions. Note that the restriction functor

(−)P : [ωop,Set] −→ [ωop
P ,Set]

is a fibration, and that a transduction θ : A → B between simple games is
P -cartesian precisely when it defines a cartesian morphism with respect to the
fibration (−)P . For that reason, a P -cartesian transduction θ : A → B is entirely
characterized by the family of functions θ2n : A2n −→ B2n on the P -positions
of the simple games A and B, for n ∈ N. From this follows easily that

Proposition 1. A P -strategy σ on a simple game A is the same thing as a
simple game S together with a P -cartesian transduction S → A. The simple
game S is uniquely determined by σ up to isomorphism. It is called the support
(or run-tree) of σ, and noted {A |σ}, while the P -cartesian transduction is noted
suppσ : {A |σ} −→ A.

44 C. Jacq and P.-A. Melliès

Note that the definition applies the general principle formulated in [18] that a
strategy σ of a game A is a specific kind of map (here a P -cartesian transduction)
S → A from a given game S = {A |σ} to the game A of interest. One benefit
of this principle is that it unifies the two concepts of game and of strategy, by
regarding a strategy σ of a game A as a game S “embedded” in an appropriate
way by S → A inside the simple game A. This insight coming from [18] underlies
for instance the construction in [19] of a category of non-deterministic strategies
between asynchronous games.

Typically, consider the simple game A = B1 � B2 where B is the simple
boolean game with a unique initial Opponent move q and two Player moves
tt for true and ff for false; and where the indices 1, 2 are here to indicate the
component of the boolean game B. The simple game A may be represented as
the decision tree below:

A

π

π

π

π

a

b

Opponent

layer

Opponent

P

P reyal

P reyal

0

1A

2A

3A

4A

a1

*

a2

b1 b2

b11 b22b12 b21

2

1

tt2

tt1

2
tt2

2

tt2

2q

1q

where the sets of positions are defined as:

A1 = {a} A2 = {b, a1, a2} A3 = {b1, b2} A4 = {b11, b12, b21, b22}

and where the branches are induced by the prefix functions πn : An+1 → An

depicted on the picture above. For the reader’s convenience, we label every edge
of A by the name of the move which would be used in the more familiar definition
of simple games, where plays are defined as sequences of moves [1,6]. Note that
every position a ∈ An of degree n is determined by its occurrence, defined as the
sequence of n moves from the root ∗ to the position a in the tree A. Typically,
the P -position b ∈ A2 has occurrence q2 · q1 and the P -position b21 ∈ A4 has
occurrence q2 · q1 · tt1 · ff2.

By way of illustration, we define the P -strategy σ ∈ P(A) as the presheaf below

∗ �→ {∗} a1 �→ ∅ a2 �→ {x′′}
b �→ {x′} b11 �→ ∅ b12 �→ ∅ b21 �→ {z′} b22 �→ {z′′, z′′′}

on the Grothendieck category tree(AP) associated to the presheaf AP of P -
positions in A. As explained in Proposition 1, the P -strategy σ may be equiva-
lently defined as the simple game S = {A |σ} below

Categorical Combinatorics for Non Deterministic Strategies 45

x

z

Opponent

layer

Opponent

P

P reyal

P reyal

*

x

zy

z

1 tt1

2

tt2

2q

1q

S

π

π

π

π

0

1S

2S

3S

4Sz

tt2
tt2

’x ‘’

’ ‘’ ‘’’

together with the P -cartesian transduction suppσ : {A |σ} → A described as:

x �→ a x′ �→ b x′′ �→ a2 y �→ b1 z′ �→ b21 z′′ �→ b22 z′′′ �→ b22

It is worth mentioning that the transduction suppσ may be recovered from
the moves labelled on the run-tree S = {A |σ}. This pictorial description pro-
vides a convenient way to describe how the non-deterministic P -strategy σ plays
on A. Typically, when questioned by the initial move q2 of the game, the non-
deterministic P -strategy σ answers tt2 with the run x′′ ∈ S2 or asks the value of
the input boolean by playing the move q1; when the Opponent answers with the
move tt1, the P -strategy reacts by playing the value ff2 with the run z′ ∈ S4 or
by playing the value ff2 with the runs z′′, z′′′ ∈ S4. Note in particular that the
P -strategy σ is allowed to play two different runs z′′, z′′′ ∈ S4 of the same play
b22 ∈ A4.

3 P -cartesian Transductions as Deterministic Strategies

In the previous section, we have seen how to regard every non-deterministic P -
strategy σ ∈ P(B) as a P -cartesian transduction suppσ : {B |σ} → B into the
simple game B. Our purpose here is to show that every P -cartesian transduction
θ : A → B can be seen as a particular kind of deterministic strategy of the simple
game A � B.

Definition 2 (Total strategies). A deterministic strategy σ of a simple game
A is total when for every O-position s such that the P -position π(s) is an element
of σ, there exists a P -position t in the strategy σ such that π(t) = s.

Definition 3 (Back-and-forth strategies). Given two simple games A
and B, a back-and-forth strategy f of the simple game A � B is a deterministic
and total strategy whose positions are all of the form (c, a, b) where c : n → n is
a copycat schedule.

Back-and-forth strategies compose, and thus define a subcategory of G:

Definition 4 (The category BF). The category BF of back-and-forth strate-
gies is the subcategory of G whose objects are the simple games and whose mor-
phisms f : A → B are the back-and-forth strategies of A � B.

46 C. Jacq and P.-A. Melliès

As a matter of fact, we will be particularly interested here in the subcategory
BF+ of functional back-and-forth strategies in the category BF.

Definition 5 (Functional strategies). A functional strategy f of the simple
game A � B is a back-and-forth strategy such that for every position a ∈ An

of degree n in the simple game A, there exists a unique position b ∈ Bn of same
degree in B such that (c, a, b) ∈ f , where c : n → n is the copycat schedule.

The following basic observation justifies our interest in the notion of func-
tional strategy:

Proposition 2. For all simple games A, B, there is a one-to-one correspon-
dence between the P -cartesian transductions A → B and the functional strategies
in A � B.

Proof. See AppendixE.

For that reason, we will identify P -cartesian transductions and functional strate-
gies from now on. Put together with Proposition 1, this leads us to the following
correspondence, which holds for every simple game A:

Proposition 3. The category P(A) is equivalent to the slice category BF+/A.

The result may be understood as a preliminary form of comprehension: it states
that every non-deterministic P -strategy σ ∈ P(A) may be equivalently seen as
a functional P -strategy

suppσ : {A |σ} −→ A (2)

in the category G of simple games and deterministic strategies, obtained by com-
posing the equivalences stated in Propositions 1 and 3. Note that the simple game
{A |σ} coincides with the run-tree S of the non-deterministic strategy σ formu-
lated in Proposition 1 and that the functional strategy suppσ coincides with the
P -cartesian transduction which “projects” the support S on the simple game A.
The property (Proposition 3) is important from a methodological point of view,
because it enables us to use the rich toolbox developed for simple games and
deterministic strategies, in order to handle non-deterministic strategies inside
the category G.

4 The Pseudofunctor P

Suppose given a P -strategy σ ∈ P(A) over the simple game A and a morphism
f : A → B in the category G.

Definition 6. The P -strategy P(f)(σ) ∈ P(B) over the simple game B is
defined as the contravariant presheaf over tree(BP) which transports every P -
position b of the simple game B to the disjoint union defined below:

P(f)(σ) : b �→
∐

(e, a, b) ∈ f

σ(a). (3)

Categorical Combinatorics for Non Deterministic Strategies 47

The fact that (3) defines a presheaf over P(B) and that P is a pseudofunctor
(see Definition 24) is established in the AppendixF.

This construction equips the family of presheaf categories P(A) with the
structure of a pseudofunctor P : G −→ Cat. Moreover, the pseudo-functor P

has comprehension in the sense of Lawvere [8]. For every simple game B, the
comprehension functor is defined as the composite

{B | −} : P(B) −→ BF+/B −→ G/B

which transports every non-deterministic P -strategy to the morphism (2) seen
as an object of G/B. One establishes that

Theorem 1 (Comprehension). For every simple game B, the comprehension
functor

{B | −} : P(B) −→ G/B

has a left adjoint functor

image : G/B −→ P(B).

Given a deterministic strategy f : A → B, the contravariant presheaf image(f)
over the category tree(BP) transports every P -position b of the game B to the
set below:

image(f) : b �→
{

(e, a, b)
∣∣∣ (e, a, b) ∈ f

}

Note that the presheaf image(f) may be also described by the formula

image(f) = P(f)(∗A) ∈ P(B)

where ∗A is the terminal object in the category P(A) of P -strategies over A. Note
that the run-tree {A | ∗A} of the P -strategy ∗A ∈ P(A) is the simple game A
itself, with supp ∗A

the identity iA : A → A. In other words, the P -strategy ∗A

has exactly one run over each position of the simple game A.
Also note that we will occasionally note positions of image(f) b(e,a) when

there is need to emphasize the fact that image(f) is a contravariant presheaf
over tree(BP).

5 The Slender-Functional Factorisation Theorem

In order to establish the comprehension theorem, we prove a factorization theo-
rem in the original category G, which involves slender and functional strategies.

Definition 7. A deterministic strategy f in a simple game A � B is slender
when for every P -position b in the simple game B, there exists exactly one P -
position a of the simple game A and exactly one schedule e such that (e, a, b) ∈ f .

48 C. Jacq and P.-A. Melliès

By extension, we say that a morphism f : A → B in the category G is
slender when the deterministic strategy f is slender in A � B. Note that every
isomorphism f : A → B in the category G is both slender and functional.

Proposition 4. Suppose that A and B are two simple games and that f is a
deterministic strategy of A � B. Then, there exists a slender strategy g : A → C
and a functional strategy h : C → B such that f = h ◦ g.

The simple game C is defined as {B | image(f)} while the slender strategy g :
A → C is defined as

g =
{

(e, a, (e, a, b))
∣∣∣ (e, a, b) ∈ f

}

and h : C → B is the functional strategy supp image(f) associated in Proposition 3
to the P -strategy image(f) ∈ P(B).

Proposition 5. Suppose that s : U → V and f : A → B are two morphisms
of the category G. Suppose moreover that s is slender and that f is functional.
Then, s : X → Y is orthogonal to f : A → B in the sense that for all morphisms
u : X → A and v : Y → B making the diagram (a) commute, there exists a
unique morphism h : Y → B making the diagram (b) commute in the category G:

(a)

X A

Y B

u

s f

v

(b)

X A

Y B

u

s f

v

h

The deterministic strategy h : Y → A is defined as

h =
{

(e, y, a)
∣∣∣ ∃x ∈ X, b ∈ B, e′, e′′ ∈ Υ,

(e, y, b) ∈ v ∧ (c, a, b) ∈ f ∧ (e′, x, y) ∈ s ∧ (e′′, x, a) ∈ u
}

�
{

(e, y, a)
∣∣∣ ∃x ∈ X, b ∈ B, e′, e′′ ∈ Υ,

(e, y, b) ∈ v ∧ (c, a, b) ∈ f ∧ (e′, x, πy) ∈ s ∧ (e′′, x, πa) ∈ u
}

Note that the position b is uniquely determined by the position a because f
is functional, and that the pair (e′, x) is uniquely determined by the position y
because s is slender. Moreover, by determinism of u = h ◦ s, the schedule e′′ is
entirely determined by the schedules e and e′.

Theorem 2 (Factorization theorem). The classes S of slender morphisms
and F of functional morphisms define a factorization system (S,F) in the cat-
egory G.

Categorical Combinatorics for Non Deterministic Strategies 49

It is a folklore result that, in that situation, the comprehension theorem (The-
orem 1) follows from the factorization theorem. The reason is that the category
P(B) is equivalent (by Proposition 3) to the full subcategory BF+/B of func-
tional strategies in the slice category G/B. Seen from that point of view, the
comprehension functor {B | −} coincides with the embedding of BF+/B into
G/B. It is worth noting that for every P -strategy σ ∈ P(A), one has an isomor-
phism

σ ∼= image(suppσ)

in the category P(A), and that one has an isomorphism

P(f)(σ) ∼= image(f ◦ suppσ) (4)

in the category P(B), for every morphism f : A → B in the category G. This
provides an alternative way to define the pseudofunctor P.

6 The Bicategory S of Simple Games
and Non-deterministic Strategies

In this section, we explain how to construct a bicategory S of simple games and
non-deterministic strategies, starting from the category G. The first step is to
equip the pseudofunctor P with a lax monoidal structure (See Definition 25),
based on the definition of tensor product in the category G formulated in [4], see
AppendixB for details. We start by observing that

Proposition 6. Suppose given two morphisms f : A → B and g : C → D in
the category G of simple games and deterministic strategies. The morphism

f ⊗ g : A ⊗ C −→ B ⊗ D

is slender when f and g are slender, and functional when f and g are functional.

Proof. See AppendixG.

Note that the isomorphism image(f ⊗ g) ∼= image(f) ⊗ image(g) follows immedi-
ately from this statement and from the factorization theorem (Theorem 2), for
every pair of morphisms f : A → B and g : C → D in the category G. The
tensor product σ ⊗ τ of two P -strategies σ and τ is defined in the same spirit,
using comprehension:

Definition 8. Suppose that σ ∈ P(A) is a P -strategy of a simple game A and
that τ ∈ P(B) is a P -strategy of a simple game B. The tensor product σ ⊗ τ is
the P -strategy of the simple game A ⊗ B defined as

σ ⊗ τ = image(suppσ ⊗ supp τ).

50 C. Jacq and P.-A. Melliès

Here, the morphism suppσ ⊗ supp τ : {A |σ} ⊗ {B | τ} → A ⊗ B denotes the
tensor product (computed in the original category G) of the morphisms suppσ

and supp τ . A direct description of σ ⊗ τ ∈ P(A ⊗ B) is also possible, as the
presheaf which transports every position (e, a, b) of the simple game A ⊗ B to
the set-theoretic product below:

σ ⊗ τ : (e, a, b) �→ σ(a) × τ(b).

As indicated in the introduction, the tensor product of P -strategies defines a
family of functors mA,B : P(A) × P(B) → P(A ⊗ B) which, together with the
isomorphism of categories m1 : 1 → P(1), equips the pseudofunctor P with a lax
monoidal structure:

Theorem 3. The pseudofunctor P equipped with the family of functors mA,B

and m1 defines a lax monoidal pseudofunctor from (G,⊗, 1) to (Cat,×, 1).

Proof. See AppendixH.

The bicategory S of simple games and non-deterministic strategies is deduced
from the lax monoidal pseudofunctor P in the following generic way, inspired by
the idea of monoidal refinement system [16].

Definition 9. The bicategory S has simple games A, B, C as objects, with the
hom-category S(A,B) defined as

S(A,B) = P(A � B)

the composition functor

◦A,B,C : P(B � C) × P(A � B) −→ P(A � C)

defined as the composite

P(B � C) × P(A � B) P((B � C) ⊗ (A � B)) P(A � C)
mB�C,A�B P(compA,B,C)

where compA,B,C : (B � C) ⊗ (A � B) −→ (A � C) is the morphism which
internalizes composition in the symmetric monoidal closed category G. In the
same way, the identity in P(A � A) is defined as the composite

1 P(1) P(A � A)m1 P(idA)

where the morphism idA : 1 → (A � A) internalizes the identity morphism in G.

Proposition 7. The bicategory S is symmetric monoidal closed in the sense
that there exists a family of isomorphisms

ΦA,B,C : S(A ⊗ B,C) ∼= S(B,A � C).

Categorical Combinatorics for Non Deterministic Strategies 51

The isomorphism ΦA,B,C is defined as the image by the pseudofunctor P of the
isomorphism

ϕA,B,C : (A ⊗ B) � C ∼= B � (A � C)

in the category G between the underlying simple games. One benefit of our
conceptual approach is that the monoidal closed structure of S is neatly deduced
from the monoidal closed structure of the original category G.

7 The Exponentional Modality on the Category G

Now that the monoidal bicategory S has been defined, we analyze how the expo-
nential modality defined in [4] adapts to our sheaf-theoretic framework.

Definition 10. Let A be a simple game. !A is the simple game whose set (!A)n

of positions of degree n consists of the pairs (φ, a) such that:

– φ is a O-heap over n and a = (a1, . . . , an) is a sequence of positions of A,
– for each k ∈ {1, . . . , n}, the sequence of positions in a = (a1, . . . , an) corre-

sponding to the branch of k in φ defines a play

{ak, aφ(k), aφ2(k), . . . }

of the simple game A.

The predecessor function πn : (!A)n+1 → (!A)n is defined as π(φ, a) = (φ �
(n), a � (n)).

Definition 11. Let f be a deterministic strategy of A � B. The deterministic
strategy !f of !A � !B consists of the positions (e, (φ, a), (ψ, b)) such that φ =
e∗ψ and, for each branch of (φ, e, π), the positions associated to that branch are
played by f .

It is worth observing that the construction of !f : !A → !B can be decomposed
in the following way. Consider the morphism

nA,B : ! (A � B) −→ !A � !B

obtained by currying the composite morphism

! (A � B) ⊗ !A ! ((A � B) ⊗ A) !Blax monoidal !evaluation

in the symmetric monoidal closed category G, where we use the coercion mor-
phism which provides the exponential modality ! : G → G with the structure of
a lax monoidal functor.

52 C. Jacq and P.-A. Melliès

Definition 12 (#f). Given a deterministic strategy f of a simple game A, the
deterministic strategy #f of the simple game !A has positions the pairs (φ, a)
such that for each branch of (φ, a), the positions associated to that branch are
played by the deterministic strategy f .

Proposition 8. Given a morphism f : A → B of the category G and its curried
form λa.f : 1 → A � B, the composite morphism

1 ! (A � B) !A � !B
#λa:A.f nA,B

is the curried form λx : !A. !f in the category G of the morphism !f : !A −→ !B.

More details about the original exponential modality in G will be found in
AppendixC. By analogy with Proposition 6, we establish that

Proposition 9. Suppose that f : A → B is a morphism in the category G.
Then, the morphism

!f : !A −→ !B

is slender when f is slender, and functional when f is functional.

Proof. See Appendix I.

8 The Exponential Modality on the Bicategory S

In this section, we define the linear exponential modality ! : S → S on the
symmetric monoidal closed bicategory S, in order to define a bicategorical model
of intuitionistic linear logic. The construction is inspired by the observation made
in the previous section (Proposition 8).

Definition 13. Given a P -strategy σ ∈ P(A) of a simple game A, the P -strategy
#σ of the simple game !A is defined as the image in P(!A) of the morphism

! suppσ : ! {A |σ} −→ !A.

Note that the definition of #σ induces a commutative diagram in the category G

! {A |σ} {!A |#σ}

!A

isomorphism

!suppσ
supp#σ

Categorical Combinatorics for Non Deterministic Strategies 53

where the top arrow is an isomorphism. Moreover, the definition of #σ coincides
with the previous definition (Definition 12) when the P -strategy σ = f hap-
pens to be deterministic.Consequently, for two games A,B and a deterministic
strategy f : A � B, we have image(!f) ∼= #Simage(f) and #Sf = #f .

As mentioned in the introduction, this construction σ �→ #σ defines a
functor

pA : P(A) −→ P(!A).

Now, remember that a morphism σ : A → B of the bicategory S is defined as a
P -strategy

σ ∈ P(A � B).

For that reason, every such morphism σ : A → B induces a P -strategy

#σ ∈ P(!(A � B)).

In order to turn the P -strategy #σ into a P -strategy

!σ ∈ P(!A � !B)

we apply the functor

P(nA,B) : P(!(A � B)) −→ P(!A � !B)

to the P -strategy #σ, where

nA,B : ! (A � B) −→ !A � !B

denotes the structural morphism of G defined in the previous section. The con-
struction may be summarized as follows:

Definition 14. The morphism !σ : !A → !B of the bicategory S associated to
the morphism σ : A → B is defined as the P -strategy

P(nA,B)(#σ) ∈ P(!A � !B).

Theorem 4. With this definition, ! : S → S defines a pseudofunctor from the
bicategory S to itself.

Proof. See Appendix J.

The family of morphisms

δA : !A → !!A εA : !A → A

are defined with the same deterministic strategies in P(!A � !!A) and
P(!A � A) as in the original category G. One checks that the families δ and ε
define natural transformations between pseudonatural functors on S (as defined

54 C. Jacq and P.-A. Melliès

in Definition 26), and that the 2-functor ! : S → S defines a 2-comonad in the
appropriate bicategorical sense (see Definition 27). The family of morphisms

dA : !A → ! A ⊗ ! A eA : !A → 1

are defined with the same deterministic strategies in P(!A � !A⊗!A) and
P(!A � 1) as in the original category G, and one checks that they define natural
transformations between pseudonatural functors on S. One obtains in this way
that

Theorem 5. The bicategory p equipped with the exponential modality ! : S → S

defines a bicategorical model of multiplicative intuitionistic linear logic.

The formal and rigorous verification of these facts would be extremely tedious
if done directly on the bicategory S of nondeterministic strategies. Our proof
relies on the fact that the constructions of the model (Definitions 9, 14) are
performed by “push” functors P(f) above a structural morphism f living in the
original category G. The interested reader will find part of the detailed proof in
AppendixK.

9 Conclusion

We construct a bicategory S of simple games and non-deterministic strategies,
which is symmetric monoidal closed in the extended 2-dimensional sense. We
then equip the bicategory S with a linear exponential modality ! : S → S which
defines a bicategorical model of intuitionistic linear logic. This provides, as far
as we know, the first sheaf-theoretic and non-deterministic game semantics of
intuitionistic linear logic — including, in particular, a detailed description of the
exponential modality.

A The Category G of Simple Games and Deterministic
Strategies

We recall the construction of the category Υ of schedules performed in [4] and
how we deduce from it the category G of simple games and deterministic strate-
gies.

Definition 15 (Schedule). A schedule is defined as a function e : {1, . . . , n} →
{0, 1} verifying e(1) = 1 and e(2k + 1) = e(2k) whenever 1 ≤ 2k ≤ n − 1. The
number of 0’s and 1’s in e are noted |e|0 and |e|1 respectively. A schedule e is
noted e : |e|0 → |e|1.
A schedule e : p → q may be equivalently seen as a couple l : (p) → (p + q) and
r : (q) → (p + q) of order-preserving and globally surjective functions, such that
r(1) = 1 and

l(i) odd ⇒ l(i + 1) = l(i) + 1 r(j) even ⇒ r(j + 1) = r(j) + 1

for all 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ q − 1, where (n) stands for the finite ordinal
(n) = {1, . . . , n}.

Categorical Combinatorics for Non Deterministic Strategies 55

Definition 16. The category of schedules Υ has the natural numbers as objects,
the schedules e : p → q as morphisms from p to q.

The identity morphism c : p → p is the copycat schedule c characterized by the
fact that c(2k + 1) �= c(2k + 2) for all 1 ≤ 2k ≤ 2p. Details on the composition
of two schedules e : p → r and e′ : r → q as a schedule e � e′ : p → q can be found
in [4]. Now, we explain how we derive the category G from the category Υ . We
start by defining the simple game A � B of linear maps from A to B:

Definition 17. The simple game A � B is defined as the set (A � B)n of all
the triples (e, a, b) consisting of a schedule e : p → q with p + q = n, a position
a ∈ Ap and b ∈ Bq. The predecessor function π is defined as

π(e, a, b) =
{

(e � (n − 1) , π(a) , b) if e(n) = 0
(e � (n − 1) , a , π(b)) if e(n) = 1

Definition 18. The category G has simple games A,B as objects, and deter-
ministic P -strategies f, g of A � B as morphisms from A to B. Note that we
use latin letters instead of greek letters for deterministic strategies. The identity
morphism iA : A → A is defined as the P -strategy of A � A whose positions
of degree 2n are the triples (c, a, a) where c : n → n is the copycat schedule,
and a ∈ An. The composite g ◦ f : A → C of two deterministic P -strategies
f : A → B and g : B → C is the deterministic P -strategy whose set of positions
of degree 2n is defined as

(g ◦ f)2n =
∐

e : p → r, e′ : r → q
p + q = 2n

{
(e � e′, a, c)

∣∣∣ ∃b ∈ Br , (e, a, b) ∈ σp+r , (e′, b, c) ∈ τr+q

}

B The Tensor Product in the Category G

Definition 19 (Tensorial schedule). A ⊗-schedule is a function e :
{1, . . . , n} → {0, 1} verifying e(2k + 1) = e(2k + 2) whenever 0 ≤ 2k ≤ n − 2.

Definition 20 (A ⊗ B). The positions of the simple game A ⊗ B of degree n
are the triples (e, a, b) where e : p ⊗ q is a ⊗-schedule with p + q = n, a ∈ Ap

and b ∈ Bq. The predecessor function π is defined as

π(e, a, b) =
{

(e � (n − 1), π(a), b) if e(n) = 0
(e � (n − 1), a, π(b)) if e(n) = 1

The simple game 1 is the simple game with a unique position ∗, of degree 0.

We can also define ⊗ on strategies. Intuitively, for f : A → B and g :
C → D two morphisms of the category G, the plays of the strategy f ⊗ g of the
simple game (A ⊗ C) � (B ⊗ D) are obtained by combining through a tensorial
schedule plays of f and g.

56 C. Jacq and P.-A. Melliès

The intuition is that, once we know the structure of f and g, the struc-
ture of plays of f ⊗ g is entirely directed by what happens in B ⊗ D. The only
agency that Opponent really has is to decide at some points whether to play
on B or D, the rest being handled by the plays of f , g and the structure of
(A ⊗ C) � (B ⊗ D). Formally, this gives the proposition:

Proposition 10. Let f : A � B, g : C � D be two deterministic strategies.
Assuming a valid play of f ⊗ g : A ⊗ C � B ⊗ D and the associated schedules
e : A⊗C → B ⊗D, t1 : A×C, t2 : B ×D, e1 : A → B, e2 : C → D, the knowledge
of t2, e1, e2 is enough to reconstruct e and t1.

Proof. The first O move of such a play is in B ⊗ D to follow the structure of
A⊗C � B ⊗D. This is given to us by t2. Let us assume it is a move in D (The
other case is handled similarly).

The P move after that will necessarily be a move in C or D, as playing a
move in A,B would break the structure of A � B,B ⊗ D respectively. e2 gives
us the information.

– If it is a move in D, We go back to a situation equivalent to the initial one.
We have also started to reconstruct e, which starts by 11.

– If it is a move in C, we start to reconstruct both e which starts by 10 and t1
which starts by 1.

In this last case, the following O move will be a move in C as a move in
A,B,D would break the structure of A � B,B ⊗ D,C � D respectively. e is
then at 100 and t1 at 11.

Finally, the following P move will be a move in either C or D as a move in
A,B would break the structure of A � B,B ⊗ D respectively. e2 gives us this
information.

– If it is a move in D, We go back to a situation equivalent to the initial one. We
have also started to reconstruct e, which starts by 1001 and t1 which starts
by 11. We’ve also played the first two moves of t2 which is at 11.

– If it is a move in C, we go back to the precedent situation (the one with a
fixed O move in C) with e at 1000 and t1 at 111.

To sum up the described construction, once an opponent move in B or D
is played, the play is stuck playing in either A � B or C � D until a player
move is played in B,D respectively. t2 decides whether to play the opponent
move in B or D and e1 guides the play in A � B in the first case, e2 guides it
in C � D in the second. This guides us through the whole play and allows us
to reconstruct both e and t1.

In particular, any compatible plays of f, g,B ⊗ D induce a play of f ⊗ g.

This proposition and its proof are key in several proofs we will make in the
rest of the paper.

Proposition 11. The category (G,⊗, 1,�) is symmetric monoidal closed.

Categorical Combinatorics for Non Deterministic Strategies 57

C The Exponential Modality on the Category G

In this section, we recall the combinatorial structures introduced in [4] to con-
struct the linear exponential comonad ! : G → G on the symmetric monoidal
closed category G.

Definition 21 (Pointer function). A pointer function on n is a parity-
reversing function

φ : {1, . . . , n} −→ {0, . . . , n − 1}

such that φ(i) < i for all i. A pointer function φ is called an O-heap if
φ(2k) = 2k − 1 for all k, and a P -heap if φ(2k + 1) = 2k for all k. The set
{k, φ(k), φ2(k), ...} will be called the branch of φ associated to the integer k.
Note that the predecessor function π defined as π(i) = i − 1 for all i is both an
O-heap and a P -heap.

Definition 22. Suppose that e : p → q is a schedule, that φ is a O-heap over
q and that ψ is a P -heap over p. The O-heap (φ, e, ψ) on p + q is defined as
follows:

(φ, e, ψ)(k) =

⎧
⎨

⎩

r(φ(j)) if k = r(j) is odd
l(ψ(i)) if k = l(i) is odd
k − 1 otherwise

where the schedule e is represented as a pair (l, r) as explained in AppendixA.
Intuitively, the O-heap (φ, e, ψ) points alongside φ when the schedule e is at 1
and alongside ψ otherwise. The fact that (φ, e, ψ) defines an O-heap is ensured
by the even case.

We recall the partial order over the set of pointer functions introduced in [4].

Definition 23 (Generalization). Given two pointer functions φ, ψ, we say
that φ is a generalization of ψ, and note φ � ψ, if the branch of φ associated
to k ∈ {1, .., n} can be injected in the branch of ψ associated to k, or, in other
words, if for all k, there exists j such that φ(k) = ψj(k).

Further in the paper, and in certain proofs, we will also need to look into the
structure of !!A. Intuitively, positions of !!A are pairs (φ, u) where u is a sequence
of positions of !A and φ an O-heap. It is equivalent to another representation
using only a sequence of positions of A:

Proposition 12. A position (φ, u) of !!A is equivalent to (φ, ψ, a) with φ � ψ,
ψ an O-heap, a a sequence of positions of A, verifying

∀i, j ∈ {1, . . . , n}, (i �= j) ⇒ ∃k, aφk(i) �= aφk(j)

The moves alongside the branches of ψ are then plays of the simple game A.

58 C. Jacq and P.-A. Melliès

From this follows a description of the strategy

!!f : !!A −→ !!B

for a deterministic strategy f : A � B. The positions of !!f are of the form

(e, (φ, ψ, a), (φ′, ψ′, b))

where e∗φ′ = φ, e∗ψ′ = ψ and each thread of (ψ, e, π) is a play of the strategy f .

D Some Bicategorical Definitions

In this section, we recall a few definitions required by our bicategorical setting.

Definition 24. A pseudofunctor is a mapping between bicategories C and D
where the usual functorial equations F (f ◦g) = F (f)◦F (g) and F (IdA) = IdF (A)

are only valid up to natural bijectve 2-morphisms in D.

Definition 25. Let (C,⊗C , 1C) and (D,⊗D, 1D) be two monoidal bicategories.
A lax monoidal pseudofunctor between them is given by:

– a pseudofunctor F : C → D
– a morphism ε : 1D → F (1C)
– for every pair of objects A,B ∈ C, a natural transformation μA,B : F (A) ⊗D

F (B) → F (A ⊗C B)

satisfying the following conditions:

– associativity: For every triple of objects A,B,C ∈ C, the following diagram
commutes:

(F (A) ⊗D F (B)) ⊗D F (C)

μA,B⊗id

��

aD
F (A),F (B),F (C)

�� F (A) ⊗D (F (B) ⊗D F (C))

id⊗μB,C

��
F (A ⊗C B) ⊗D F (C)

μA⊗B,C

��

F (A) ⊗D F (B ⊗C C)

μA,B⊗C

��
F ((A ⊗C B) ⊗C C)

F (aC
A,B,C)

�� F (A ⊗C (B ⊗C C))

where the two morphisms aC , aD denote the associators of the two tensor
products.

– unality: For every object A ∈ C, the following diagram and its right symmetry
both commute:

1D ⊗D F (A)

lDF (A)

��

ε⊗id
�� F (1C) ⊗D F (A)

μ1C ,A

��
F (A) F (1C ⊗C A)

F (lCA)��

where lC , lD denote the left unitors of the two tensor products.

Categorical Combinatorics for Non Deterministic Strategies 59

Definition 26. Let F,G be two pseudofunctors between two bicategories C and
D. A pseudonatural transformation φ : F → G is given by:

– for every object A of C, a morphism φ(A) : F (A) → G(A) of D.
– for every morphism f : A → B of C, a bijective 2−morphism φ(f) : φ(B) ◦

F (f) ⇒ G(f) ◦ φ(A)

such that

– φ respects composition of morphisms, meaning that we have an equivalence
between

(φ(A) � G(f, g)) · (φ(f) � G(g)) · (F (f) � φ(g))

and
φ(g ◦ f) · (F (f, g) � φ(C)),

both being 2-morphisms from

φ(C) ◦ F (g) ◦ F (f) ⇒ G(g ◦ f) ◦ φ(A),

where · is the vertical composition between 2-morphisms, �, � the two versions
of the horizontal composition between a morphism and a 2-morphism, (also
called whiskering), anf F (f, g) : F (g) ◦ F (f) ⇒ F (g ◦ f) is the bijective 2-
morphism coming from the pseudofunctor F .

– φ respects the identity morphisms, meaning we have an equivalence between

LD
φ(A) · εF

idA
� φ(A)

and

RD
φ(A) · φ(A) � εG

idA
· φ(idA)

both being 2-morphisms from

φ(A) ◦ F (idA) ⇒ φ(A)

where LD
φ(A) : φ(A) ◦ idF (A) ⇒ φ(A) is the left unitor coming from the bicate-

gory D and εF
idA

: F (idA) ⇒ idF (A) is the bijective 2-morphism coming from
the pseudofunctor F .

– φ is natural in the following sense: for every 2-morphism ψ : f ⇒ g with
f, g : A → B, we have an equivalence between

φ(g) · F (ψ) � φ(B)

and
φ(A) � G(ψ) · φ(f).

Definition 27. A fully weak comonad G on a bicategory C is a pseudofunctor,
along with pseudonatural transformations δ and ε that satisfy the usual laws of
a comonad up to natural bijectiive 2-morphisms in C.

60 C. Jacq and P.-A. Melliès

E Proof of Proposition 2

Proof. Let A,B be two games.
Let σ be a P -cartesian transduction between A and B. The associated deter-

ministic strategy fσ is simply given by:

fσ(2n) = {(c, a, σ(a))|a ∈ A(n)}
This definition clearly gives a functional strategy, the determinism being given
by the fact that σ is P -cartesian.

Conversely, let f be a functional strategy of A � B. The associated P -
cartesian transduction σf is given by:

σf (2n)(a) = b s.t. (c, a, b) ∈ f(4n)

Such a b is unique by functionality of f .

F Proof that P is a pseudofunctor

Proof. First we need to complete the definition of P by detailling why, for f a
deterministic strategy of A → B and σ a P -strategy over A, P(f)(σ) is indeed
a P -strategy over B, and thus a presheaf over tree(BP). For this, we need to
define the collection of projector functions π2n : P(f)(σ)(2n) → P(f)(σ)(2n− 2)
as follows:

For x ∈ P(f)(σ)(2n) over b (meaning x ∈ P(f)(σ)(b) and b ∈ B2n), there
exists by definition a unique e, a such that (e, a, b) ∈ f and x ∈ σ(a). From this,
we define:

π2n(x) = πk
σ(x), (π2k+2(e), π2k

A (a), π2
B(b)) ∈ f.

By determinism of f , there is only one such k. Moreover, we also have
πk

σ(x) ∈ σ(π2k
A (a)). Consequently, by definition of P(f)(σ), we have πk

σ(x) ∈
P(f)(σ)(π2

B(b)) as expected.
Next step is to show that, for a strategy f : A → B, P(f) is a functor

from P(A) to P(B). For that, we need to define its effects on simulations. For
α : σ → τ , P(f)(α) : P(f)(σ) → P(f)(τ) is simply defined by applying α to all
positions of P(f)(σ), as all those are induced from positions of σ by definition.
With this, it is easy to verify that P(f) preserves identities and composition of
simulations.

Finally, let us show that P is a pseudofunctor.
First, P(IdA)σ associates to a position a of A the set:

P(IdA)(σ) : a �→
∐

(c, a, a) ∈ IdA

σ(a).

which is instantly isomorphic to σ(a). Factoring the effect on simulations, it
is easy to build a bijective natural natural transformation between P(IdA) ∼=
IdP(A). Thus P(IdA) ∼= IdP(A).

Categorical Combinatorics for Non Deterministic Strategies 61

Next, let f : A → B and g : B → C two deterministic strategies and σ a
P -strategy of A. We have:

P(g)(P(f)(σ) : c �→
∐

(e2, b, c) ∈ g

∐

(e1, a, b) ∈ f

σ(a).

This is easily isomorphic to P(g ◦ f)σ which is given by:

P(g ◦ f)(σ) : c �→
∐

(e, a, c) ∈ g ◦ f

σ(a).

This isomorphism is a consequence of the definition of composition for deter-
ministic strategies, as there is only one triple e1, e2, b such that (e1, a, b) ∈ f ,
(e2, b, c) ∈ g and e = e1 · e2 for a position (e, a, c) ∈ g ◦ f .

This extends into a natural isomorphism between the functors P(g ◦ f) and
P(g)(P(f), giving us the fact that P is indeed a pseudofunctor.

G Proof of Proposition 6

Proof. – Let f : A � B, g : C � D be two slender strategies. Let (t2, b, d)be
a player position of B ⊗ D. Since f and g are slender, there exist unique
ef , a, eg, c such that (ef , a, b) ∈ f, (eg, c, d) ∈ g. Using t2, ef , eg and Propo-
sition 10, we reconstruct e, t1 such that (e, (t1, a, c), (t2, b, d)) is a position of
f⊗g. This position is unique as the reconstruction of Proposition 10 is unique,
and thus f ⊗ g is a slender strategy.

– Let f : A � B, g : C � D be two functional strategies. Let (t1, a, c) be an
opponent position of A ⊗ C. Since f and g are functional strategies, there
exist unique b, d such that (cpf , a, b) ∈ f, (cpg, c, d) ∈ g. The study of f ⊗ g
done in the proof of Proposition 10 gives us that any valid position of f ⊗ g
would have a copycat schedule (as the schedule is built from sequences 1.0k.1
of cpf and cpg. This implies immediately that the only possible position is
cp, (t1, a, c), (t1, b, d) as no other play would verify the needed structures, and
thus f ⊗ g is a functional strategy.

H Proof of Theorem3

Proof. First, we can note that the unit 1 of G has a unique P -strategy, the empty
strategy. Consequently, P(1) is the singleton category, which is the unit of the
cartesian product in Cat.

Moreover, to extend P as a lax monoidal pseudofunctor, we need a transfor-
mation μA,B : P(A) × P(B) → P(A ⊗ B) natural in A and B.

Since the morphisms of that transformation live in Cat, they are functors.
We thus define:

62 C. Jacq and P.-A. Melliès

for σ an object of P(A) and τ an object of P(B),

μA,B(σ, τ) = σ ⊗ τ

for α : σ → σ′ a morphism of P(A) and β : τ → τ ′ a morphism of P(B),
μA,B(α, β) : σ ⊗ τ → σ′ ⊗ τ ′ is defined by:

μA,B(α, β)(t, x, y) = (t, α(x), β(y))

We now need to prove that this transformation is natural in A and B, and that
it verifies the two commutative diagrams of a lax monoidal functor (associativity
and unitality), up to bijective simulations. Those last two are easy to verify and
use similar arguments, so we will focus on the naturality.

We need our transformation to verify the following commutative diagram
for A,B,A′, B′ four games and f : A � A′, g : B � B′ two deterministic
strategies:

P(A) × P(B)

P(f)×P(g)

��

μA,B

�� P(A ⊗ B)

P(f⊗g)

��
P(A′) × P(B′)

μA′,B′
�� P(A′ ⊗ B′)

Let σ be a P -strategy of A and τ a P -strategy of B. Verifying the
commutative diagram amounts to finding two reciprocal morphisms between:
P(f)(σ) ⊗ P(g)(τ) and P(f ⊗ g)(σ ⊗ τ).

P(f)(σ) ⊗ P(g)(τ) ∼= image(f ◦ suppσ) ⊗ image(g ◦ supp τ)
P(f)(σ) ⊗ P(g)(τ) ∼= image(f ◦ suppσ ⊗ g ◦ supp τ) by consequences of prop 6

P(f ⊗ g)(σ ⊗ τ) ∼= image((f ⊗ g) ◦ suppσ⊗τ)
P(f ⊗ g)(σ ⊗ τ) ∼= image((f ⊗ g) ◦ suppσ ⊗ supp τ) by consequences of prop 6

By bifunctoriality of ⊗, we have f ◦ suppσ ⊗ g ◦ supp τ
∼= (f ⊗ g) ◦ suppσ ⊗

supp τ , giving us the equality of the images we need, up to bijective simulations.

I Proof of Proposition 9

Proof. – Let (ψ, b = b1, ...bn) a P position of !B. Since f is slender, for all bi

player positions of b, there exists a unique pair (ei, ai) such that (ei, ai, bi) ∈ f .

We use a method similar to the one used in the proof of Proposition 10.
Instead of using the tensorial schedule to guide us in reconstructing the play
of !A �!B, we use ψ, which indicates us what is the next player move bi to
get to (starting from bi−2, and assuming we have reconstructed e and φ so
far), and then use the play (ei, ai, bi) to construct the play.

Categorical Combinatorics for Non Deterministic Strategies 63

The sequence of moves we add is the suffix of the play (ei, ai, bi) looking
like bi−1a

1
ia

k
i bi (with ak

i = ai) as any other move in the play (ei, ai, bi) has
already been played (since in particular any b move prior to bi−1 has been
played.

Player cannot backtrack in the middle of the sequence bi−1a
1
ia

k
i bi without

breaking the fact that the full play is associated to a O-heap in !(A � B).
This allows us to extend e into e.1.0k.1 and φ by linking a1

i to its predecessor
in A of the play (ei, ai, bi).

This method constructs a valid position of !f as all branches are played
following f and φ is a O-Heap. It is the only possible position including ψ, b
as everything we have done was determined by ψ, f and b. Thus !f is a slender
strategy.

– Let (φ, a = a1, ...an) an O position of !A. Since f is a functional strategy, for
all ai opponent positions of a, there exists a unique bi such that (c, ai, bi) ∈ f .
By determinism of f , it is also true for all player positions of a. By using φ as
a guide, this easily allows us to construct the position of !f : (c, (φ, a), (φ, b =
b1, ...bn)).

It is the unique such position for (φ, a) for reasons similar to the ones
evoked in the proof for slender strategies. Thus !f is a functional strategy.

J Proof of Theorem4

Proof. – For a game A, we have by construction:

(!P)A,B(IdA) = P(nA,B) ◦ #S(IdA)
(!P)A,B(IdA) = P(nA,B)(#IdA) = Id!A

– Let A,B,C be three games and σ a P -strategy of A � B, τ a P -strategy
of B � C. We need to prove that there is a natural isomorphic simulation
between !P(τ ◦ σ) and !P(τ) ◦ !P(σ).

First we will simplify those two strategies through the various properties we
have seen so far:
First !P(τ ◦ σ):

!P(τ ◦ σ) = P(nA,C)(#S(τ ◦ σ))

!P(τ ◦ σ) ∼= image(nA,C ◦ supp#S(τ◦σ)) by equation 4

!P(τ ◦ σ) ∼= image(nA,C ◦ !supp τ◦σ) by consequence of def 13

!P(τ ◦ σ) ∼= image(nA,C ◦ !suppP(compA,B,C)(σ⊗τ)) by definition 9

!P(τ ◦ σ) ∼= image(nA,C ◦ !supp image(compA,B,C ◦supp σ⊗τ)) by equation 4

!P(τ ◦ σ) ∼= image(nA,C ◦ supp image(!(compA,B,C ◦supp σ⊗τ))) by consequence of def 13

!P(τ ◦ σ) ∼= image(nA,C ◦ !(compA,B,C ◦ supp σ⊗τ)) by theorem 1

!P(τ ◦ σ) ∼= image(nA,C ◦ !compA,B,C ◦ supp#S(σ⊗τ)) by functoriality of ! and consequence of def 13

64 C. Jacq and P.-A. Melliès

Then, !P(τ) ◦ !P(σ):

!P(τ) ◦ !P(σ) = P(nB,C)(#
S
τ) ◦ P(nA,B)(#

S
σ)

!P(τ) ◦ !P(σ) ∼= image(nB,C ◦ supp#S(τ)) ◦ image(nA,B ◦ supp#S(σ)) by equation 4

!P(τ) ◦ !P(σ) ∼= P(comp!A,!B,!C)(image(nA,B ◦ supp#S(σ)) ⊗ image(nB,C ◦ supp#S(τ))) by definition 9

!P(τ) ◦ !P(σ) ∼= P(comp!A,!B,!C)(image(nA,B ◦ supp#S(σ)⊗ nB,C ◦supp#S(τ))) by consequence of prop 6

!P(τ) ◦ !P(σ) ∼= image(comp!A,!B,!C ◦ (supp image(nA,B◦ supp#S(σ)⊗ nB,C◦ supp#S(τ))
)) by equation 4

!P(τ) ◦ !P(σ) ∼= image(comp!A,!B,!C ◦ (nA,B ◦ supp#S(σ) ⊗ nB,C ◦ supp#S(τ))) by theorem 1

!P(τ) ◦ !P(σ) ∼= image(comp!A,!B,!C ◦ nA,B ⊗ nB,C ◦ supp#S(σ) ⊗ supp#S(τ)) by bifunctoriality of ⊗
!P(τ) ◦ !P(σ) ∼= image(comp!A,!B,!C ◦ nA,B ⊗ nB,C◦!supp (σ)⊗!supp (τ)) by consequence of def 13

We intend to prove that those two images are isomorphic. For that, we will
make the following remark:
! is lax monoidal in G, meaning that there exists a transformation μA,B :
!A⊗!B →!(A ⊗ B) natural in A and B. Thus we have the following diagram
with the top square commuting by naturality of μ:

!({σ | A � B} ⊗ {τ | B � C}) !{σ | A � B}⊗!{τ | B � C}

!(A � B ⊗ B � C) !(A � B)⊗!(B � C)

!(A � C) !A �!B⊗!B �!C

!A �!C

μ{σ | A�B},{τ | B�C}

μA�B,B�C

!(suppσ ⊗ supp τ)

!compA,B,C

nA,C

nA,B ⊗ nB,C

comp!A,!B,!C

!suppσ⊗!supp τ

In more details, positions of μA,B are of the form: (e, (t, φ, a, ψ, b), (Φ, t′, a, b)),
where, for a position (Φ, t′, a, b) of !(A⊗B), one can rebuild the unique associ-
ated position by playing the moves in order and building the tensorial schedule
and the O-heaps incrementally, the general structure ensuring that we do get
them in the end. Consequently μA,B is slender and induces a transduction
from B to A.

Categorical Combinatorics for Non Deterministic Strategies 65

Note that it is not bijective as the play of !(A ⊗ B) where we play in B, then
backtrack to play in A would produce the same play in !A⊗!B than playing
in B then in A without backtracking.
Thus, we have, since μ{σ | A�B},{τ | B�C} is slender:

image(nA,C ◦ !compA,B,C ◦ supp#S(σ⊗τ)) ∼= image(nA,C ◦ !compA,B,C ◦
supp#S(σ⊗τ) ◦ μ{σ | A�B},{τ | B�C})

Then, by naturality,

image(nA,C ◦ !compA,B,C ◦ supp#S(σ⊗τ)) ∼= image(nA,C ◦ !compA,B,C ◦
μA�B,B�C ◦ supp#Sσ⊗#Sτ)

Consequently,

image(nA,C ◦ !compA,B,C ◦ supp !(σ⊗τ)) ∼=
image(comp!A,!B,!C ◦ nA,B ⊗ nB,C◦!supp (σ)⊗!supp (τ))

if and only if

image(nA,C ◦ !compA,B,C ◦ μA�B,B�C ◦ supp !σ⊗!τ) ∼=
image(comp!A,!B,!C ◦ nA,B ⊗ nB,C◦!supp (σ)⊗!supp (τ))

meaning if and only if

image(nA,C ◦ !compA,B,C ◦ μA�B,B�C) ∼=
image(comp!A,!B,!C ◦ nA,B ⊗ nB,C)

An important remark is that μA�B,B�C transfers plays p of (!(A �
B)⊗!(B � C)) such that there exists (e, (φ, a), (ψ, c))p ∈ image(comp!A,!B,!C ◦
nA,B ⊗ nB,C) to plays p′ of !(A � B ⊗ B � C) such that there exists
(e, (φ, a), (ψ, c))′

p ∈ image(nA,C ◦ !compA,B,C).

In other words μ, when restricted to plays that play a role in the images we
outlined, acts as a function from the set of plays of (!(A � B)⊗!(B � C)) to
the set of plays of !(A � B ⊗ B � C). This can be proved by looking at the
respective structures of the plays and induces one half of the isomorphism we
need.

We do a similar study by introducing a P -strategy of !(A � B ⊗ B � C) �
(!(A � B)⊗!(B � C)) that acts as a converse of μA�B,B�C for such plays
and thus get a converse to our morphism, which will give us the second half
of the isomorphism we need. Here is how we proceed:
Let (t, (φ, e, a, b), (ψ, f, b, c)) be a play of (!(A � B)⊗!(B � C)) such that
there exists

(e!A�!C , (φ!A, a), (φ!C , c))e,(t,φ,e,a,b,ψ,f,b,c) ∈ image(comp!A,!B,!C◦nA,B⊗ nB,C).

66 C. Jacq and P.-A. Melliès

In particular, that implies that, since nA,B ⊗ nB,C doesn’t change the order
of moves, the sequence of moves of (t, (φ, e, a, b), (ψ, f, b, c)) must be able to
be the left projection of comp!A,!B,!C . This restricts the way the moves can be
played.

In particular, B moves from the two components must must answer each other
right away, giving sequences without backtrack of the form c(br.bl.bl.br) ∗ c,
with similar structures for sequences starting and/or finishing with a A move.
In addition, there cannot be any backtrack in A or any of the two B component
that would not be initiated by a backtrack in a C component.

The idea is that a backtrack in C induces a backtrack in B which is mirrored on
the left component and induces a backtrack in A. Those backtracks give us a
heap structure and the moves inside a sequence follow a proper tensor schedule,
so it can be seen as a play of !(A � B ⊗ B � C) and it is easy to verify that
this play would produce an element of image(nA,C ◦ !compA,B,C ◦ μA�B,B�C)
and that the P -strategy of !(A � B ⊗ B � C) � (!(A � B)⊗!(B � C))
built by reorganizing structure without changing order of moves is a converse
to μA�B,B�C .

Consequently, we have the bijection of images we needed and thus an isomor-
phic simulation between !P(τ ◦ σ) and !P(τ) ◦ !P(σ). It is natural since μ and
the isomorphisms involved in the manipulation of images are natural.
The few additional diagrams that must be checked are easy to verify with
similar methods, and thus we have that !P is a pseudofunctor.

K Proof that ! Is a Pseudocomonad

In the following section, we’ll detail the construction of the pseudonatural trans-
formations δ and ε and prove their naturality. From those definitions, verifying
that ! is a pseudocomonad is easy as the morphism part of the two natural trans-
formations coincides with their definition in the deterministic case, making the
diagrams commute instantly. After that, we may do a similar study on d, e to
give ! the necessary structure to be a linear exponential modality.

We will handle here the case of δσ for a P -strategy σ : A → B. This is, by
Definiton 26, a bijective 2-morphism between !P!Pσ◦δA and δB ◦ !Pσ, both being
P -strategies of !A �!!B.

First note that

!P!Pσ ◦ δA = image(comp!A,!!A,!!B ◦ supp !P!Pσ ⊗ supp δA
)

and that

δB ◦ !Pσ = image(comp!A,!B,!!B ◦ supp δB
⊗ supp !Pσ).

We want to study the structure of both images to find an isomorphic simu-
lation between them.

Categorical Combinatorics for Non Deterministic Strategies 67

R!Pσ ⊗ RδB
RδA

⊗ R!P!Pσ

!A �!B⊗!B �!!B !A �!!A⊗!!A �!!B

!A �!!B

supp !Pσ ⊗ supp δB

comp!A,!B,!!B

supp δA
⊗ supp !P!Pσ

comp!A,!!A,!!B

What we will do is start from a position

e, (φA, a), (ψB , φB , b)

of !A �!!B and go back along the arrows to see what structure the positions
that produce this position must have.

First, on the left branch, the presence of comp!A,!B,!!B indicates that the
position in !A �!B⊗!B �!!B must be of the form

t, (e1, (φA, a), (ΦB , b′), (e2, (ΦB , b′), (ψB , φB , b)))

for some t, e1, e2, ΦB , b′ such that e1 · e2 = e.
Since the right component of this position comes from δB , we actually have

b′ = b, ΦB = φB, e2 = c and thus e1 = e and we actually have the position

t, (e, (φA, a), (φB , b), (c, (φB , b), (ψB , φB , b)))

for some t which is fixed by the two components for the composition to work.
And thus, this gives us the following position of R!Pσ ⊗ RδB

:

(t, ((φA, e, π), x), (c, (φB , b), (ψB , φB , b)))

where x is a sequence of moves that gets projected to the sequence of moves of
(e, (φA, a), (φB , b)). There is no modification of the order the moves are played
in this step, just a reorganization of the structure.

Thus a position of RδB◦ !Pσ is of the form

(e, (φA, a), (ψB , φB , b))(t,((φA,e,π),x),(c,(φB ,b),(ψB ,φB ,b))).

We apply a similar reasoning to the right branch to obtain the form of a
position of R!P!Pσ◦δA

:

(e, (φA, a), (ψB , φB , b))(t′,(c,(φA,a),(e∗ψB ,φA,a)),((e∗ψB ,e,π),(φA,e,π),x′))

68 C. Jacq and P.-A. Melliès

where t′ is fixed by the composition and the sequence of moves x′ gets projected
to the same sequence of moves than x in the left branch. In particular, both
sequences have the same length.

Since everything is fixed from the initial position (e, (φA, a), (ψB , φB , b)) but
the two sequences x and x′, we can then build δσ as the simulation sending
one position to the other one sharing that same initial structure and the same
sequence x.

With a simlar study, we build εσ as the simulation that sends positions of
the form

(e, (π, a), b)t,(c,(π,a),a),x)

to positions of the form

(e, (π, a), b)t′,(π,x),(c,(π,b),b)).

where t, t′ are fixed by construction and x is the branch of positions finishing in
x in Rσ.

Proof. We will now prove the pseudonaturality of ε, δ is handled in a similar way.
Let us look at the naturality first. Let A,B be two games, σ, τ two P -strategies
of A � B and α : σ → τ a simulation We require that the two following pasting
diagrams are equivalent:

!A !B

A B

εA εB

!Pσ

σ

τ

α

εσ

!A !B

A B

εA εB

!Pτ

τ

!Pσ

!Pα

ετ

Categorical Combinatorics for Non Deterministic Strategies 69

This amounts to the following equality of simulations:

(εA � α) · ε−1
σ = ε−1

τ · (!Pα � εB)

where �, � indicate the whiskering that results from the composition of P -
strategies and · indicates the vertical composition which is simply the com-
position of functions. Thus, for a position

(e, (π, a), b)t′,(π,x),(c,(π,b),b)

of εB ◦ !Pσ, we have:

(εA � α) · ε
−1
σ ((e, (π, a), b)

t′,(π,x),(c,(π,b),b)) = (εA � α) ((e, (π, a), b)t,(c,(π,a),a),x) by def of εσ

(εA � α) · ε
−1
σ ((e, (π, a), b)

t′,(π,x),(c,(π,b),b)) = (e, (π, a), b)t,(c,(π,a),a),α(x) by def of P, εA

On the other hand,

ε−1
τ · (!Pα � εB) ((e, (π, a), b)t′,(π,x),(c,(π,b),b))

= ε−1
τ ((e, (π, a), b)

t′,(π,α(x)),(c,(π,b),b)
) by def of P, εB , !P

ε−1
τ · (!Pα � εB) ((e, (π, a), b)t′,(π,x),(c,(π,b),b))

= (e, (π, a), b)t,(c,(π,a),a),α(x)) by def of ετ

And thus, we have the equivalence we require. The other diagram equalitiies
we need to verify are done in a similar way.

The key point to remember from this proof and the similar ones that need to
be done, is that, while the form of the positions is a bit heavy, the structures that
underly them do most of the work for us, making most of the needed verifications
very easy, once the positions have been properly described.

We apply those methods to verify that ! is indeed a pseudocomonad, to define
and verify that dA, eA are proper pseudonatural transformations and to check
that !, along with those transformations, does have the structure of a linear
exponential modality.

References

1. Curien, P.-L.: On the symmetry of sequentiality. In: Brookes, S., Main, M., Melton,
A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 29–71.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58027-1 2

2. Eberhart, C., Hirschowitz, T.: Justified sequences in string diagrams: a comparison
between two approached to concurrent game semantics (2016)

3. Girard, J.Y.: Locus Solum: from the rules of logic to the logic of rules. Math.
Struct. Comput. Sci. 11(03), 301–506 (2001)

4. Harmer, R., Hyland, J.M.E., Melliès, P.-A.: Categorical combinatorics for innocent
strategies. In: LICS, pp. 379–388 (2007)

https://doi.org/10.1007/3-540-58027-1_2

70 C. Jacq and P.-A. Melliès

5. Hirschowitz, T., Pous, D.: Innocent strategies as presheaves and interactive equiv-
alences for CCS. Sci. Ann. Comput. Sci. (2012)

6. Hyland, M.: Game semantics. In: Semantics of Logics and Computation, Publica-
tions of the Newton Institute, pp. 131–184. Cambridge University Press (1997)

7. Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130(1–3), 79–123 (2004)
8. Lawvere, F.W.: Equality in hyperdoctrines and comprehension schema as an

adjoint functor. In: Proceedings of the New York Symposium on Applications of
Categorical Algebra, pp. 1–14 (1970)

9. Melliès, P.-A.: Asynchronous games 3: an innocent model of linear logic. In: Cate-
gory Theory and Computer Science, pp. 171–192 (2004)

10. Melliès, P.-A.: Asynchronous games 4: a fully complete model of propositional
linear logic. In: LICS 2005 (2005)

11. Melliès, P.-A.: Asynchronous games 2: the true concurrency of innocence. Theor.
Comput. Sci. 358, 200–228 (2006)

12. Melliès, P.-A.: Game semantics in string diagrams. In: LICS 2012 (2012)
13. Melliès, P.-A.: Tensorial logic with algebraic effects. Talk at the Institut

Henri Poincaré, June 2014
14. Melliès, P.-A.: Dialogue categories and chiralities. In: Publications of the Research

Institute in Mathematical Sciences (2015)
15. Melliès, P.-A.: Une étude micrologique de la négation. Habilitation thesis (2017)
16. Mellies, P.-A., Zeilberger, N.: Functors are type refinement systems (2015)
17. Ong, C.H.L., Tsukada, T.: Nondeterminism in game semantics via sheaves. In:

LICS 2016 (2016)
18. Melliès, P.-A., Mimram, S.: Asynchronous games: innocence without alternation.

In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 395–
411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 27

19. Rideau, S., Winskel, G.: Concurrent strategies. In: LICS 2011 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-74407-8_27
http://creativecommons.org/licenses/by/4.0/

A Syntactic View of Computational
Adequacy

Marco Devesas Campos(B) and Paul Blain Levy

School of Computer Science, University of Birmingham, Birmignham, UK
{m.devesascampos,pbl}@cs.bham.ac.uk

Abstract. When presenting a denotational semantics of a language with
recursion, it is necessary to show that the semantics is computationally
adequate, i.e. that every divergent term denotes the “bottom” element
of a domain.

We explain how to view such a theorem as a purely syntactic result.
Any theory (congruence) that includes basic laws and is closed under an
infinitary rule that we call “rational continuity” has the property that
every divergent term is equated with the divergent constant. Therefore,
to prove a model adequate, it suffices to show that it validates the basic
laws and the rational continuity rule. While this approach was inspired by
the categorical, ordered framework of Abramsky et al., neither category
theory nor order is needed.

The purpose of the paper is to present this syntactic result for call-by-
push-value extended with term-level recursion and polymorphic types.
Our account begins with PCF, then includes sum types, then moves to
call-by-push-value, and finally includes polymorphic types.

1 Introduction

Models of Recursion. A conventional denotational account of a language with
recursion proceeds as follows. First define the syntax and operational semantics.
Then give a denotational model. Lastly, prove soundness, i.e. if t evaluates to u
(written t ⇓ u) then �t� = �u�, and adequacy, i.e. if t diverges (written t ⇑) then
�t� = ⊥.

Because it is often convenient to structure a model categorically, Fiore and
Plotkin (1994) gave categorical axioms on a model that imply (soundness and)
adequacy. Crucially, in their work, as detailed by Fiore (1996), a model is required
to be “ωCpo-enriched”, meaning that a term denotes an element of a pointed
ω-cpo (poset with least element ⊥ and suprema of all increasing ω-chains), and
a term constructor is ω-continuous (preserves suprema of ω-chains). Thus (for
a call-by-name language) a term x : A � t : A gives a continuous endofunction
f , and the recursion recx .M denotes the supremum of (fn⊥)n∈N, the least
(pre)fixpoint of f .

P. B. Levy—Research Supported by UK EPSRC Grant EP/N023757/1.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 71–87, 2018.
https://doi.org/10.1007/978-3-319-89366-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_4&domain=pdf

72 M. Devesas Campos and P. B. Levy

However, for the models of Abramsky et al. (2000), Abramsky and McCusker
(1997), and McCusker (1998), the requirement of ωCpo-enrichment is too
restrictive, because the posets arising do not have suprema of all increasing
ω-chains (Normann 2006). So these papers use a more relaxed ordered framework
where the only suprema that must be preserved are those of chains (fn⊥)n∈N of
iterated applications. This means that any so called rational chain (g ◦fn⊥)n∈N

has an upper bound given by g (
⊔

fn⊥)—a property known as rational continu-
ity (Wright et al. 1976; cf. also Bloom and Ésik 1993).

Recursion but Rationally. Our goal is to give an even more relaxed version of this
“rational” framework for adequacy; one that uses no category theory, order or
denotational model. It could be viewed as a purely syntactic result: a property
of a theory (congruence) ≈ rather than of a model. Thus we want t ⇓ u to imply
t ≈ u, and t ⇑ to imply t ≈ Ω, where Ω is a divergent constant. The benefit of such
a result is to modularize the narrative described at the start; we can get adequacy
out of the way before we start studying categorical and denotational semantics.

Rational Continuity. Currently we have accomplished this goal for term-level
recursion and polymorphic types. (Recursive and existential types are left to
future work; see Sect. 6). Our result is that any theory (congruence) ≈ will
be sound and adequate provided it (a) contains the β-laws, fixpoint law and
strictness laws and (b) is closed under an infinitary rule called rational continuity.
This rule says (for a call-by-name language) that if C[recn x . t] ≈ D[recn x . t]
for infinitely many n ∈ N, then C[recx . t] ≈ D[recx . t]. Here we write recn x . t
for the nth approximant to recursion, defined by the clauses rec0 x . t := Ω and
recn+1 x . t := t[recn x . t/x].

Plan. To include both call-by-value (CBV) and call-by-name (CBN), we have
established our result for call-by-push-value. The latter has both value types
and computation types, but the treatment of value types in our proof is more
complicated, so we begin in the CBN setting, which has only computation types.
Our CBN account itself begins with PCF, which has only base types and func-
tion types; we then include sum types, using a proof method adapted from
McCusker (1998). Next we move to call-by-push-value, and use ultimate pattern
matching of values (Lassen and Levy 2008) to treat the value types. Finally we
include polymorphic types.

Related Work. Adequacy of topos models has been studied using an internal lan-
guage (Simpson 2004). Other adequacy results for polymorphic models include
realizability semantics (Møgelberg 2009) and game semantics (Laird 2013).

2 PCF

Language. We begin by introducing a version of Plotkin’s PCF (1997) that
replaces fixpoint combinators with recursion operators and an explicit divergence
construct Ω (Table 1). As per usual, terms are taken up to α-equivalence. The set

A Syntactic View of Computational Adequacy 73

Table 1. PCF

of closed terms of type T will be denoted by CTermsT and that of normal forms
by NFT . For a closed term t there is at most one v such that t ⇓ v; when there
is none we say it diverges and represent this by t ⇑.

2.1 A Rationally Continuous Theory of PCF

The Theory. A congruence on terms is a type-indexed equivalence relation on
closed terms of said type satisfying t ≈ t′ =⇒ C[t] ≈ C[t′] for any context
C[−] where the hole is closed. (We omit type annotations.) A congruence is a
rationally continuous β-Ω-fix theory if it also satisfies the rules in Table 2.

The basis for the theory are the obvious β rules that mimic the reduction
rules. In a similar vein, the fixpoint rule establishes that each recursive term
is the fixpoint of a substitution. These rules alone are enough to establish the
soundness of the theory with respect to reduction.

Proposition 1 (Soundness). Any congruence ≈ satisfying the β and fixpoint
rules (Table 2) is sound: t ⇓ r =⇒ t ≈ r.

A Converse. Our sights now turn to proving that divergent terms are identical to
Ω. The extra requirement calls for a more refined theory that can more closely
mirror the behaviour of reduction. The last two sets of equations in Table 2
fill the gaps in what the reduction rules don’t say about divergence. The first

74 M. Devesas Campos and P. B. Levy

Table 2. Rationally continuous β-Ω-fix theory of PCF

relates to the strictness of the operators: divergence of an argument leads to the
divergence of the operator, e.g., Ωu ≈ Ω. The second is the rational continuity
rule presented in the introduction.

Rational Continuity and Chains. To prove adequacy, one often has to re-write
or equate certain terms built with recursion either with some constant or as
the unrolling of the recursive term a few times. In cpo models, continuity and
compositionality of the interpretations validate the following rule

∀n ∈ N.�C[recn x . t]� = �D[recn x . t]�

�C[recx . t]� = �D[recx . t]�

But this can be further weakened by requiring only equality at infinitely many
n, for then one would still be able to define chains with exactly the same least
upper bounds. We write ∃∞n.P (n) to mean there exist infinitely many n in N

for which P (n) holds. This leads us to the syntactic continuity rule in Table 2.
Since adequacy refers solely to closed terms, we only require this property for
x : T � t : T—and therefore recn x . t and recx . t are closed. Similarly, by
a rational chain we mean a chain of the form C[rec nx . t] for infinitely many
n ∈ N, and by its limit we mean the term C[recx . t].

A Syntactic View of Computational Adequacy 75

2.2 Adequacy

The Claim. We now embark on the syntactic journey towards a proof we have
an adequate theory—formally, that t ⇑ =⇒ t ≈ Ω. By the aforementioned
reasons the proof follows the usual approaches by replacing closure under bot-
tom elements and least upper bounds of the relevant chains with closure under
divergence and limits of rational chains.

Approximations. First we define abstractly1 the notion of an approximation can-
didate between terms and the values they approximate; these are then extended
to relations on terms. The concrete relations we use for each type are given by
certain actions on approximation candidates (cf., e.g., Pitts 2000). When using
the result of an action φ on approximation candidates �1, . . . , �n infix, we will
sometimes surround the result with brackets, as in t 〈φ(�1, . . . , �n)〉 u, to aid
readability.

Definition 1 (Approximation Candidates). An approximation candidate �
for a type T is a subset of CTermsT × NFsT s.t.:

1. ≈ Extension: t ≈ t′ and t′ � v =⇒ t � v
2. Rational Admissibility: for x : T � t : T

(∃∞n.C[recn x . t] � v) =⇒ C[recx . t] � v

Proposition 2. If � is an approximation candidate for type T , then the binary
relation on CTermsT defined by

t �c u ⇐⇒ t ≈ Ω or (∃v.u ⇓ v and t � v)

satisfies the following properties:

1. Ω Property: Ω �c u , for any u ∈ CTermsT

2. ≈ Extension: t ≈ t′ and t′ �c u =⇒ t �c u
3. ⇓ Extension: t �c u and (∀v.u ⇓ v =⇒ u′ ⇓ v) =⇒ t �c u′

4. Rational Admissibility: for x : T � t : T

(∃∞n.C[recn x . t] �c u) =⇒ C[recx . t] �c u

Proof. To give a taste of how the proofs go using rational admissibility, assume
we have ∃∞n.C[recn x . t] �c u. From the definition, one of two options (possibly
both) is true: that an infinite number of terms on the left are identical to Ω; or
that for an infinite series of m, C[recm x . t] is related to the value v that u reduces
to (determinism of reduction is paramount here). Admissibility then follows by
rational continuity in the first case (using the obvious constant context), and by
admissibility of � (Definition 1) in the second.

1 Anticipating our treatment of polymorphism in Sect. 4, we have purposefully set up
here a proof structure in the style of Girard (1989).

76 M. Devesas Campos and P. B. Levy

Proposition 3 (Base Type Actions). The two binary relations �Bool ⊆
CTermsBool × NFsBool and �Nat ⊆ CTermsNat × NFsNat defined by

t �Bool v ⇐⇒ t ≈ v and t �Nat v ⇐⇒ t ≈ v

are approximation candidates for Bool and Nat.

Proposition 4 (Arrow Action). Given approximation candidates �T for T
and �U for U , the binary relation between CTermsT→U and NFsT→U

t 〈�T → �U 〉 λx.u ⇐⇒ ∀p �c
T q . tp �c

U u[q/x])

is an approximation candidate for T → U .

Definition 2 (Approximation Relation). The approximation relation �T is
the type-indexed family of approximation candidates defined by induction on
types, where base types are covered by their respective actions (Proposition 3),
and �T→U= �T → �U (Proposition 4).

Definition 3 (Environments). Given a typing context Γ , an environment σ
for Γ is a substitution that maps each x : T ∈ Γ to a closed term of type
� σ(x) : T . If σ1 and σ2 are two such, we write σ1 �c

Γ σ2 to mean σ1(x) �c
T σ2(x)

for all x : T ∈ Γ .

Proposition 5. For any Γ � t : T and environments σ1 �c
Γ σ2, t[σ1] �c

T t[σ2].

Corollary 1 (Adequacy). For every closed � t : T , t ⇑ =⇒ t ≈ Ω.

Proof. Applying Proposition 5 to � t : T (for the empty substitution), we conclude
that t �c

T t; the definition of (−)c (Proposition 2) asserts, then, that either t ≈ Ω
or (t ⇓ v and t �T v); whereby if t ⇑, it can only be that t ≈ Ω.

3 PCF with Sums

The Extension. Sums provide a slight complication—but one which shows the
adaptability of the method. The extension to call-by-name sums is presented in
Table 3. With the new reduction rules come new β rules and divergence rules
in the theory (Table 4). As before, reduction is deterministic and the theory is
sound.

3.1 Adequacy

Action. The action for sums must reflect the structure of its parameters. That
is for �T we expect t �T+U inlu exactly when (modulo the theory) t decomposes
into some inl t′ for which t′ �T u. The assertion of that existence, though, causes
us a small hiccup2 in proving that − �T+U v is rationally admissible: If we have
2 A hiccup that will be much amplified in the proof of admissibility for �FA (Sect. 4).

A Syntactic View of Computational Adequacy 77

Table 3. Extension of PCF with binary sums

Table 4. Extension of the theory in Table 2 with binary sums

a series of C[recn x . t] �T+U inlu, then we know that each of the terms on the
left must be identical to some inl tn with tn �T u—but do the tn form a rational
chain? It turns out that for every t, simply from the existence of t ≈ inl t′,
and because each type is inhabited by Ω, there is a context that can extract
directly the t′ (up to equivalence, obviously) from the original term. (An idea
we borrowed from McCusker 1998)

Lemma 1. The contexts

T l[−] = match − as {inlx.x , inr y.Ω}

T r[−] = match − as {inlx.Ω , inr y.y}
satisfy t ≈ inlu =⇒ T l[t] ≈ u and t ≈ inru =⇒ T r[t] ≈ u.

Proposition 6 (Sum Action). Given approximation candidates �T for T and
�U for U , the relation between CTermsT+U and NFsT+U defined by

t 〈�T + �U 〉 inl v ⇐⇒ (∃t′ �c
T u.t ≈ inl t′)

78 M. Devesas Campos and P. B. Levy

t 〈�T + �U 〉 inr v ⇐⇒ (∃t′ �c
U u.t ≈ inr t′)

is an approximation candidate for A + B.

Proof. For rational admissibility, the pre-condition must hold for (at least) one
of the two clauses in the definition. Say we have ∃∞n.C[recn x . t] 〈�T + �U 〉
inlu with each term on the left equivalent to some inl tn; rewriting tn ≈
T l[C[recn x . t]] (Lemma 1) it follows that (Proposition 2)

C[recn x . t] ≈ inl T l[C[recn x . t]] and T l[C[recn x . t]] �c
T u

An application of rational continuity of the theory, and one of rational admis-
sibility of �c

T (again, Proposition 2) yields C[recx . t] ≈ inl T l[C[recx . t]] and
also T l[C[recx . t]] �c

T u so that C[recx . t] 〈�T + �U 〉 inlu. (Likewise for the
right injection.)

Adequacy. The rest of the proof of adequacy follows exactly as before. Approxi-
mation candidates for sums are derived by induction using the sum action; and
with them we can extend Proposition 5.

4 Call-by-Push-Value

Values vs. Computations. We now turn to Call-by-push-value (Levy 2004). This
language (Table 5) distinguishes between values and computations, with value
types represented by A, A′, etc., and computation types by B, B′, etc. The set of
closed values of type A will be represented by ValsA; that of closed computations
by CompsB . Variables always have value type. Here we include value products
and sums, products of computation types B Π B′, types FA for computations
aiming to return a value, and functions which in CBPV are computations taking
values to computations. Central to CBPV, we also include value types UB of
suspended computations of type B—which can be of one of two forms.

Recursion. In addition to the usual thunks of computations, we also have recur-
sively defined thunks threcx.t. An alternative would be to use recursive com-
putations Γ �c recx.t : B. Although the two are equivalent via the definitions
recx.t := force threcx.t and threcx.t := thunk recx.t, there are two reasons
for preferring threc: One is that, in some denotational models (e.g. state or
continuation passing), threc has a simpler denotation than rec. The other is
that a treatment based on threc would be more easily adapted to call-by-value,
where recursion and lambda are combined.

Evaluation. Evaluation (Table 6) pertains only to computations. To those on the
co-domain side of the evaluation relation ⇓, we call the terminal computations
or, alternatively, the normal forms; and their (typed-indexed) set is represented
by NFsB . Since we have two forms of thunked computations, the action of forc-
ing one such into execution much act accordingly; this unthunk ing (a derived
operation on the syntax) returns the computations suspended inside thunks,
or plucks out the computation from a threcx . t suitably instantiated by the
recursive thunk itself—i. e. t[threcx . t/x]. Note that reduction is deterministic.

A Syntactic View of Computational Adequacy 79

Table 5. Call-by-push with recursion-value—syntax

Table 6. Call-by-push-value with recursion—reduction

80 M. Devesas Campos and P. B. Levy

4.1 Theory

Theory. By a (CBPV) congruence on closed terms we mean a type-indexed
equivalence relation ≈ on closed values and computations such that for all closed
terms t ≈ t′ and (value or computation) context C[−] we have C[t] ≈ C[t′],
respectively. A congruence is a rationally continuous β-Ω-fix theory when it
satisfies the rules in Table 7. Rational chains are now those built by the
application of a context C[−] to the (thunked) approximants threcn of recur-
sive thunks and which are defined by the clauses threc0 x . t = thunkΩ and
threcn+1 x . t = thunk t[threcn x . t/x]; continuity is defined accordingly. Any
congruence including the β and fixpoint rules is easily seen to be sound. We shall
show that with the remaining rules it is also adequate.

Table 7. Call-by-push-value with recursion—rationally continuous β-Ω-fix theory

4.2 Adequacy

Values: Empty Shells. In the proof of adequacy for PCF with sums we were
required to introduce the tests so that we could, metaphorically, peek inside the
injections and transform the rational chains there into equivalent ones with the

A Syntactic View of Computational Adequacy 81

properties we needed (cf. proof of Proposition 6). Here the problem expands to
all value types. When checking rational admissibility, we need to decompose a
value into its ultimate pattern and its constituent thunks (Lassen and Levy 2008,
following ideas from Abramsky and McCusker 1997; also discernible in the work
of Zeilberger 2008) and use those to find equivalent chains that can be used to
establish adequacy.

Definition 4 (Ultimate Patterns). The set of of ultimate patterns UPA for
a value type A is given by induction on the following rules: −UB ∈ UPUB,
〈〉 ∈ UP1 and

p ∈ UPA p′ ∈ UPA′

〈p, p′〉 ∈ UPA×A′
p ∈ UPA

inl p ∈ UPA+A′
p ∈ UPA′

inr p ∈ UPA+A′

For a given ultimate pattern p ∈ UPA the finite sequence of hole-types in pattern
p is given by induction by

H(−UB) = (UB) H(〈〉) = ε H(〈p, p′〉) = H(p) ++ H(p′)
H(inl p) = H(p) H(inr p) = H(p)

Proposition 7 (Value Decomposition). Given �v v : A, there is a unique
p ∈ UPA and a unique sequence (�v vi : H(p)i)i<|H(p)|—the filling—for which
v = p @ (vi)i<|H(p)|, using the reassembly function

(−UB) @ (v) = v 〈〉 @ ε = 〈〉
inl p @ (vi)i<|H(p)| = inl(p @ (vi)i<|H(p)|)
inr p @ (vi)i<|H(p)| = inr(p @ (vi)i<|H(p)|)

〈p, p′〉 @
(
(vi)i<|H(p)| ++ (v′

i)i<|H(p′)|
)

=
〈
(p @ (vi)i<|H(p)|), (p′ @ (v′

i)i<|H(p′)|)
〉

Tests. Ultimate patterns let us define the tests that extract the computations
embedded in a given value. Like in the PCF sum case, we can use them to define
values that are equivalent to a given one but make use only of the latter. If the
values are derived from some family of contexts for the holes, then we can derive
an equivalent context from the respective ultimate pattern.

Definition 5. For p ∈ UPA, and i < |H(p)|, we define a context T p
i [−] by

induction on p ∈ UPA using the rules below. Note that when Γ �v − : A the test
has type Γ �c T p

i [−] : Bi where UBi = H(p)i.

T −UB
0 [−] = force−

T inl p
i [−] = match − as {inlx. T p

i [x], inr y.Ω}
T inr p

i [−] = match − as {inlx.Ω, inr y. T p
i [y]}

T 〈p,p′〉
i<|H(p)|[−] = match − as < x, y > . T p

i [x]

T 〈p,p′〉
i=|H(p)|+i′ [−] = match − as < x, y > . T p′

i′ [y]

82 M. Devesas Campos and P. B. Levy

Proposition 8 (Tests Decompose). Given a pattern p ∈ UPA, a sequence
(� wi : H(p)i)i<|H(p)|, and i < |H(p)|, we have T p

i [p @ (wi)i<|H(p)|] ≈ forcewi.

Proposition 9. For �c t : FA , and p ∈ UPA, if t ≈ return p @ (vi)i<|H(p)|
then, successively:

1. ∀i < |H(p)|. thunk(t to x. T p
i [x]) ≈ vi

2. p @ (vi)i<|H(p)| ≈ p @ (thunk(t to x. T p
i [x]))i<|H(p)|

3. t ≈ return p @ (thunk(t to x. T p
i [x]))i<|H(p)|

Approximation Candidates. Unlike PCF where we have computations and nor-
mal forms, CBPV has three levels of syntax: values, terminals, and computations.
For the purposes of defining the needed approximation candidates, terminals
(read: normal forms) and computations, behave like their PCF counterparts and
have (now) familiar definitions of approximation candidates. Approximation can-
didates for value types enforce that: only structurally similar values are related;
that they are (left) closed under equivalence of their holes; and that they are
closed under the usual chains.

Definition 6 (Approximation Candidates). Given a value type A, an
approximation candidate � for A is a subset of ValsA × ValsA such that

1. Structural Matching: p @ (vi)i � p′ @ (wi)i =⇒ p = p′

2. Computational ≈ Extension: if p @ (v′
i)i<|H(p)| � p @ (wi)i<|H(p)| then

(∀i < |H(p)|.vi ≈ v′
i) =⇒ p @ (vi)i<|H(p)| � p @ (wi)i<|H(p)|

3. Rational Admissibility: for x : UB �c t : B

(∃∞n.V [threcnx.t] � w) =⇒ V [threcx . t] � w

Given a computation type B, an approximation candidate � for B is a subset
of CompsB × NFB such that

1. ≈ Extension: t ≈ t′ and t′ � r =⇒ t � r
2. Rational Admissibility: for x : UB �c t : B

∃∞n.C[threcn x . t] � r =⇒ C[threcx . t] � r

Proposition 10. Given a (computation) approximation candidate � on B,
define its closure as the binary relation CompsB × CompsB where

t �c u ⇐⇒ t ≈ Ω or (∃r.u ⇓ r and t � r)

It satisfies the following properties:

1. Ω Property: Ω �c u for any u ∈ CompsB

2. ≈ Extension: t ≈ t′ and t′ �c u =⇒ t �c u
3. ⇓ Extension: t �c u′ and (∀r.u′ ⇓ r =⇒ u ⇓ r) =⇒ t �c u
4. Rational Admissibility: for x : UB �c t : B

(∃∞n.C[threcnx . t] �c u) =⇒ C[threcx . t] �c u

A Syntactic View of Computational Adequacy 83

Actions. We can then define the actions on these approximation candidates
associated with each type constructor. Mostly this is done by structure (for
values) or by use (for computations); the exceptions are U types and F types that
we define, respectively, by structure, and by use. Note that it is the existential
quantification in the definition of the F action that—very much like PCF sums—
requires the use of the tests. Using them, we can easily define, by induction, the
approximation relation and thereby establish the adequacy of the theory.

Proposition 11 (Thunk Action). Let � be an approximation candidate for
B. Then the binary relation

v 〈U(�)〉 w ⇐⇒ force v �c unthunk w

is an approximation candidate for UB.

Proposition 12 (F Action). Let � be an approximation candidate for A. Then
the following is an approximation candidate for FA:

t 〈F (�)〉 return w ⇐⇒ ∃v � w.t ≈ return v

Definition 7 (Enviroments). Given a typing context Γ , an environment σ for
Γ is a substitution that maps each x : A ∈ Γ to a closed term of type �v σ(x) : A.
If σ1 and σ2 are two such, we write σ1 �Γ σ2 to mean σ1(x) �A σ2(x) for all
x : A ∈ Γ .

Proposition 13. For any Γ �c t : B (resp. Γ �v v : A), and environments
σ1 �Γ σ2 we have t[σ1] �c

B t[σ2] (resp. v[σ1] �A v[σ2]).

Corollary 2 (Adequacy). For any computation �c t : B, if t ⇑ then t ≈ Ω.

5 Polymorphic Call-by-Push-Value

Adequacy, Now For All. Our final extension deals with polymorphism. In Call-
by-push-value, polymorphic types are computation types. We may quantify over
both value and computation types. The extension is presented in Table 8.

We assume two disjoint countable sets of variables, X,Y, . . . ∈ VVars and
X,Y , . . . ∈ CVars, for value and computation types (resp.). Types are now also
considered up to α-equivalence. They will also be considered under context,
Θ �C B and Θ �V A, where Θ is some finite subset of VVars ∪ CVars that
includes the free type variables of the A or B. (These type judgements have
an obvious inductive definition). The proper extension of a type context Θ by
a type variable χ will be denoted by χ,Θ. Typing judgements also need to be
annotated by a type context, as in Θ;Γ �c t : B where Θ includes all the free
type variables in the types of Γ and B. The previous typing rules are extended
in the evident way.

84 M. Devesas Campos and P. B. Levy

Table 8. Polymorphic Call-by-push-value with recursion

Table 9. Extension of the theory in Table 7 to polymorphism

Reduction and Theory. Reduction—defined only for closed terms of closed
type—is still deterministic. On the theory end of things, we equate only closed
terms of closed type so that we need only extend the theory of Sect. 4 with the
obvious β and divergence rules (Table 9). Unsurprisingly, soundness still stands.

5.1 Adequacy

Approximation Candidates and Actions. Throughout we have worked with
approximation candidates—and now we can reap the fruits of that work. The
definition of approximation candidates (Definition 6) and of their extension to
computations (Proposition 10) can stay exactly the same; as can the actions for
non-polymorphic type constructors. The actions of polymorphic types follow.

Proposition 14. Let Y �C B be a computation type, and φ a mapping that
assigns to every closed type T and approximation candidate � ∈ ACsT an approx-
imation candidate φT,� ∈ ACsB[T/Y]; then

t
〈∏

Y.φ
〉

ΛY.u ⇐⇒ for all �C T, � ∈ ACsT . tT 〈φT,�〉c
u[T/Y]

is an approximation candidate for
∏

Y.B—and likewise for
∏

Y .B

A Syntactic View of Computational Adequacy 85

Approximations. The approximation relations need to be parametrized by the
candidates that will instantiate the type variables so that in the end we arrive at a
candidate for a closed type. As usual, we have that it satisfies the weakening and
substitution properties that are used in the proof of adequacy for abstractions
and type instantiations, respectively.

Definition 8 (Approximation Environment). An approximation environ-
ment γ for Θ is a map taking each χ ∈ Θ to a closed type γT (χ) of the same
kind as χ and an adequacy candidate γC(χ) ∈ ACsγT (χ).

Definition 9 (Parametrized Approximation Relations). Let Θ �V A
(resp. Θ �C B) be a (possibly open) type and γ an approximation environment
for Θ. The following parametrized approximation relations, defined by induction
on types, determine an approximation candidate for A[γT]—i.e. A with each type
variable χ replaced with γT (χ) (resp. B[γT]).

�γ
Θ�V X

= γC(X) �γ
Θ�CX

= γC(X)

�γ
Θ�V 1

=�1 �γ
Θ�V A×A′ = (�γ

Θ�V A
) × (�γ

Θ�V A′)

�γ
Θ�V 0

=�0 �γ
Θ�V A+A′ = (�γ

Θ�V A
) + (�γ

Θ�V A′)

�γ
Θ�V UB

= U(�γ
Θ�CB

) �γ
Θ�CFA

= F (�γ
Θ�V A

)

�γ
Θ�C1Π

= (�1Π
) �γ

Θ�CBΠB′ = (�γ
Θ�CB

) Π (�γ
Θ�CB′)

�γ
Θ�CA→B

= (�γ
Θ�V A

) → (�γ
Θ�CB

)

�γ
Θ�C

∏
Y.B

=
∏

Y.
(
�

γ[Y �→(−,=)]

Y,Θ�CB
}
)

�γ
Θ�C

∏
Y .B

=
∏

Y .
(
�

γ[Y �→(−,=)]

Y ,Θ�CB
}
)

Definition 10. For any Θ and approximation environment γ for Θ, if σ1 and
σ2 are environments for Γ [γT], we write σ1 �γ

Θ;Γ σ2 to mean σ1(x) �γ
Θ�V A

σ2(x)
for every x : A ∈ Γ .

Proposition 15. For any Θ;Γ �c t : B (resp. Θ,Γ �v v : A), approximation
environment γ for Θ, and environments σ1 �γ

Θ;Γ σ2 for Γ

t[γT][σ1]
〈
�γ

Θ�CB

〉c

t[γT][σ2]
(
resp. v[γT][σ1]

〈
�γ

Θ�V A

〉
v[γT][σ2]

)

6 Concluding Remarks

We have thus seen how, for term-level recursion, the rational continuity rule
coupled with β, the fixpoint property of recursion, and strictness of the basic
constructors of the language suffices to make a theory adequate. The recipe of
the previous sections applies to both call-by-name and call-by-value languages
and is compatible with polymorphic types. Along the way we used no category
theory; no models were mentioned. We relied only on syntactic constructions
and required no external machinery.

86 M. Devesas Campos and P. B. Levy

Two extensions are conspicuous for their absence: to existential types and to
recursive types. In Call-by-push-value, existential types are value types. We con-
jecture our theorem holds for them but we must find a way to quantify over
ultimate patterns. For recursive types, even finding suitable conditions on ≈ is
challenging. We would like to adapt Pitts’ (1996) method of minimal invari-
ant relations but we will need type constructors to be functorial over suitable
syntactic categories.

For term-recursion and polymorphism, however, we now know that to prove a
model adequate we need only to show that it satisfies the basic laws and rational
continuity.

References

Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput.
163(2), 409–470 (2000)

Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M., Thomas, W. (eds.)
CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028004

Bloom, S.L., Ésik, Z.: Iteration Theories - The Equational Logic of Iterative Processes.
EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993).
https://doi.org/10.1007/978-3-642-78034-9

Fiore, M.P., Plotkin, G.D.: An axiomatization of computationally adequate domain
theoretic models of FPC. In: LICS: IEEE Symposium on Logic in Computer Science
(1994)

Fiore, M.P.: Axiomatic Domain Theory in Categories of Partial Maps, Distinguished
Dissertations in Computer Science, vol. 14. Cambridge University Press, Cambridge
(1996)

Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types, Cambridge Tracts in Theoretical
Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)

Laird, J.: Game semantics for a polymorphic programming language. J. ACM 60(4),
29:1–29:27 (2013)

Lassen, S.B., Levy, P.B.: Typed normal form bisimulation for parametric polymor-
phism. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24–27 June 2008, Pittsburgh, PA, USA, pp. 341–352
(2008)

Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semantics Struc-
tures in Computation, vol. 2. Springer, Dordrecht (2004). https://doi.org/10.1007/
978-94-007-0954-6

McCusker, G.: Games and Full Abstraction for a Functional Metalanguage with
Recursive Types. CPHC/BCS Distinguished Dissertations. Springer, London (1998).
https://doi.org/10.1007/978-1-4471-0615-9

Møgelberg, R.E.: From parametric polymorphism to models of polymorphic FPC.
Math. Struct. Comput. Sci. 19(4), 639–686 (2009)

Normann, D.: On sequential functionals of type 3. Math. Struct. Comput. Sci. 16(2),
279–289 (2006)

Pitts, A.M.: Relational properties of domains. Inf. Comput. 127(2), 66–90 (1996)
Pitts, A.M.: Parametric polymorphism and operational equivalence. Math. Struct.

Comput. Sci. 10(3), 321–359 (2000)

https://doi.org/10.1007/BFb0028004
https://doi.org/10.1007/BFb0028004
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-1-4471-0615-9

A Syntactic View of Computational Adequacy 87

Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci. 5(3),
223–255 (1977)

Simpson, A.K.: Computational adequacy for recursive types in models of intuitionistic
set theory. Ann. Pure Appl. Log. 130(1–3), 207–275 (2004)

Wright, J.B., Thatcher, J.W., Wagner, E.G., Goguen, J.A.: Rational algebraic theo-
ries and fixed-point solutions. In: 1976 17th Annual Symposium on Foundations of
Computer Science, pp. 147–158. IEEE (1976)

Zeilberger, N.: Focusing and higher-order abstract syntax. In: Proceedings of the 35th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, pp. 359–369. ACM, New York (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Linearity

A New Linear Logic for Deadlock-Free
Session-Typed Processes

Ornela Dardha(B) and Simon J. Gay

School of Computing Science, University of Glasgow, Glasgow, UK
{Ornela.Dardha,Simon.Gay}@glasgow.ac.uk

Abstract. The π-calculus, viewed as a core concurrent programming
language, has been used as the target of much research on type systems
for concurrency. In this paper we propose a new type system for deadlock-
free session-typed π-calculus processes, by integrating two separate lines
of work. The first is the propositions-as-types approach by Caires and
Pfenning, which provides a linear logic foundation for session types and
guarantees deadlock-freedom by forbidding cyclic process connections.
The second is Kobayashi’s approach in which types are annotated with
priorities so that the type system can check whether or not processes
contain genuine cyclic dependencies between communication operations.
We combine these two techniques for the first time, and define a new
and more expressive variant of classical linear logic with a proof assign-
ment that gives a session type system with Kobayashi-style priorities.
This can be seen in three ways: (i) as a new linear logic in which cyclic
structures can be derived and a Cycle-elimination theorem generalises
Cut-elimination; (ii) as a logically-based session type system, which is
more expressive than Caires and Pfenning’s; (iii) as a logical foundation
for Kobayashi’s system, bringing it into the sphere of the propositions-
as-types paradigm.

1 Introduction

The Curry-Howard correspondence, or propositions-as-types paradigm, provides
a canonical logical foundation for functional programming [42]. It identifies types
with logical propositions, programs with proofs, and computation with proof
normalisation. It was natural to ask for a similar account of concurrent pro-
gramming, and this question was brought into focus by the discovery of linear
logic [24] and Girard’s explicit suggestion that it should have some connection
with concurrent computation. Several attempts were made to relate π-calculus
processes to the proof nets of classical linear logic [1,8], and to relate CCS-like
processes to the ∗-autonomous categories that provide semantics for classical
linear logic [2]. However, this work did not result in a convincing propositions-
as-types framework for concurrency, and did not continue beyond the 1990s.

Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)”, and by COST Action
IC1201, “Behavioural Types for Reliable Large-Scale Software Systems (BETTY)”.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 91–109, 2018.
https://doi.org/10.1007/978-3-319-89366-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_5&domain=pdf
http://orcid.org/0000-0001-9927-7875

92 O. Dardha and S. J. Gay

Fig. 1. Cyclic scheduler

Meanwhile, Honda et al. [26,27,38] developed session types as a formalism for
statically checking that messages have the correct types and sequence according
to a communication protocol. Research on session types developed and matured
over several years, eventually inspiring Caires and Pfenning [12] to discover a
Curry-Howard correspondence between dual intuitionistic linear logic [7] and
a form of π-calculus with session types [38]. Wadler [41] subsequently gave an
alternative formulation based on classical linear logic, and related it to existing
work on session types for functional languages [23]. The Caires-Pfenning app-
roach has been widely accepted as a propositions-as-types theory of concurrent
programming, as well as providing a logical foundation for session types.

Caires and Pfenning’s type system guarantees deadlock-freedom by forbid-
ding cyclic process structures. It provides a logical foundation for deadlock-free
session processes, complementing previous approaches to deadlock-freedom in
session type systems [9,15,21,22]. The logical approach to session types has
been extended in many ways, including features such as dependent types [39],
failures and non-determinism [11], sharing and races [6]. All this work relies on
the acyclicity condition. However, rejecting cyclic process structures is unneces-
sarily strict: they are a necessary, but not sufficient, condition for the existence
of deadlocked communication operations. As we will show in Example 1 (Fig. 1),
there are deadlock-free processes that can naturally be implemented in a cyclic
way, but are rejected by Caires and Pfenning’s type system.

Our contribution is to define a new logic, priority-based linear logic (PLL),
and formulate it as a type system for priority-based CP (PCP), which is a more
expressive class of processes than Wadler’s CP [41]. This is the first Curry-
Howard correspondence that allows cyclic interconnected processes, while still
ensuring deadlock-freedom. The key idea is that PLL includes conditions on
inter-channel dependencies based on Kobayashi’s type systems [29,30,32]. Our
work can be viewed in three ways: (i) as a new linear logic in which cyclic proof
structures can be derived; (ii) as an extension of Caires-Pfenning type systems so
that they accept more processes, while maintaining the strong logical foundation;
(iii) as a logical foundation for Kobayashi-style type systems.

A New Linear Logic for Deadlock-Free Session-Typed Processes 93

An example of a deadlock-free cyclic process is Milner’s well-known scheduler
[35], described in the following Example 1.

Example 1 (Cyclic Scheduler, Fig. 1). A set of agents A0, ..., An−1, for n > 1,
is scheduled to perform a certain task in cyclic order, starting with agent A0.
For all i ∈ {1, ..., n − 1}, agent Ai sends the result of computation to a collector
process Pi, before transmitting further data to agent A(i+1) mod n. At the end
of the round, A0 sends the final result to P0. Here we define a finite version of
Milner’s scheduler, which executes one round of communication.

Sched � ...(νaibi)...(νcid(i+1) mod n)
(
A0 | A1 | ... | An−1 | P0 | P1 | ... | Pn−1

)

A0 � c0[n0].d0(x0).a0[m0].close0
Ai � di(xi).ai[mi].ci[ni].closei i ∈ {1, ..., n − 1}
Pi � bi(yi).Qi i ∈ {0, ..., n − 1}

Prefix c0[n0] denotes an output on c0, and d0(x0) an input on d0. For now,
let m and n denote data. Process closei closes the channels used by Ai: the
details of this closure are irrelevant here (however, they are as in processes Q
and R in Example 2). Process Qi uses the message received from Ai, in internal
computation. The construct (νab) creates two channel endpoints a and b and
binds them together. The system Sched is deadlock-free because A1, ..., An−1

each wait for a message from the previous Ai before sending, and A0 sends the
initial message.

Sched is not typable in the original type systems by Caires-Pfenning and
Wadler. To do that, it would be necessary to break A0 into two parallel agents
A′

0 � c0[n0].closec0 and A′′
0 � d0(x0).a0[m0].closed0,a0 . This changes the design

of the system, yielding a different one. Moreover, if the scheduler continues into
a second round of communication, this redesign is not possible because of the
potential dependency from the input on d0 to the next output on c0. However,
Sched is typable in PCP; we will show the type assignment at the end of Sect. 2.

There is a natural question at this point: given that the cyclic scheduler is
deadlock-free, is it possible to encode its semantics in CP, thus eliminating the
need for PCP? It is possible to define a centralised agent A that communicates
with all the collectors Pi, resulting in a system that is semantically equivalent to
our Sched. However, such an encoding has a global character, and changes the
structure of the overall system from distributed to centralised. In programming
terms, it corresponds to changing the software design, as we pointed out in Exam-
ple 1, and ultimately the software architecture, which is not always desirable or
even feasible. The aim of PCP is to generalise CP so that deadlock-free processes
can be constructed with their natural structure. We would want any encoding
of PCP into CP to be structure-preserving, which would mean translating the
Cycle rule (given in Fig. 2) homomorphically; this is clearly impossible.

Contributions and Structure of the Paper. In Sect. 2 we define priority-
based linear logic (PLL), which extends classical linear logic (CLL) with priori-

94 O. Dardha and S. J. Gay

ties attached to propositions. These priorities are based on Kobayashi’s annota-
tions for deadlock freedom [32]. By following the propositions-as-types paradigm,
we define a term assignment for PLL proofs, resulting in priority-based clas-
sical processes (PCP), which extends Wadler’s CP [41] with Mix and Cycle
rules (Fig. 2). In Sect. 3 we define an operational semantics for PCP. In Sect. 4
we prove Cycle-elimination (Theorem 1) for PLL, analogous to the standard
Cut-elimination theorem for CLL. Consequently, the results for PCP are sub-
ject reduction (Theorem 2), top-level deadlock-freedom (Theorem 3), and full
deadlock-freedom for closed processes (Theorem 4). In Sect. 5 we discuss related
work and conclude the paper.

2 PCP: Classical Processes with Mix and Cycle

Priority-based CP (PCP) follows the style of Wadler’s Classical Processes (CP)
[41], with details inspired by Carbone et al. [14] and Caires and Pérez [11].

Types. We start with types, which are based on CLL propositions. Let A,B
range over types, given in Definition 1. Let o, κ ∈ N ∪ {ω} range over priorities,
which are used to annotate types. Let ω be a special element such that o < ω for
all o ∈ N. Often, we will omit ω. We will explain priorities later in this section.

Definition 1 (Types). Types (A,B) are given by:

A,B :: = ⊥o | 1o | A⊗o B | A�
o B | ⊕o{li : Ai}i∈I | &o{li : Ai}i∈I | ?o A | !o A

⊥o and 1o are associated with channel endpoints that are ready to be closed.
A⊗o B (respectively, A�

o B) is associated with a channel endpoint that first
outputs (respectively, inputs) a channel of type A and then proceeds as B.
⊕o{li : Ai}i∈I is associated with a channel endpoint over which we can select a
label from {li}i∈I , and proceed as Ai. Dually, &o{li : Ai}i∈I is associated with
a channel endpoint that can offer a set of labelled types. ?o A types a collection
of clients requesting A. Dually, !o A types a server repeatedly accepting A.

Duality on types is total and is given in Definition 2. It preserves priorities
of types.

Definition 2 (Duality). The duality function (·)⊥ on types is given by:

(A�
o B)⊥ = A⊥ ⊗o B⊥ (⊥o)⊥ = 1o

(A⊗o B)⊥ = A⊥
�

o B⊥ (1o)⊥ = ⊥o

(&o{li : Ai}i∈I)
⊥ = ⊕o{li : Ai

⊥}i∈I ?o A⊥ = !o A⊥

(⊕o{li : Ai}i∈I)
⊥ = &o{li : Ai

⊥}i∈I !o A⊥ = ?o A⊥

Processes. Let P,Q range over processes, given in Definition 3. Let x, y range
over channel endpoints, and m,n over channel endpoints of type either ⊥o or 1o.

A New Linear Logic for Deadlock-Free Session-Typed Processes 95

Definition 3 (Processes). Processes (P,Q) are given by:

P,Q :: = x[y].P (output) 0 (inaction)
x(y).P (input) P | Q (composition)
x � lj .P (selection) (νxAy)P (sessionrestriction)
x � {li : Pi}i∈I (branching) x[].0 (emptyoutput)
x→yA (forwarding) x().P (emptyinput)

Process x[y].P (respectively, x(y).P) outputs (respectively, inputs) y on channel
endpoint x, and proceeds as P . Process x�lj .P uses x to select lj from a labelled
choice process, typically being x� {li : Pi}i∈I , and triggers Pj ; labels indexed by
the finite set I are pairwise distinct. Process x → yA forwards communications
from x to y, the latter having type A. Processes also include the inaction process
0, the parallel composition of P and Q, denoted P | Q, and the double restriction
constructor (νxAy)P : the intention is that x and y denote dual session channel
endpoints in P , and A is the type of x. Processes x[].0 and x().P are the empty
output and empty input, respectively. They denote the closure of a session from
the viewpoint of each of the two communicating participants.

Notions of bound/free names in processes are standard; we write fn(P) to
denote the set of free names of P . Also, we write P{x/z} to denote the (capture-
avoiding) substitution of x for the free occurrences of z in P . Finally, we let x̃,
which is different from x, denote a sequence x1, . . . , xn for n > 0.

Typing Rules. Typing contexts, ranged over by Γ,Δ,Θ, are sets of typing
assumptions x :A. We write Γ,Δ for union, requiring the contexts to be disjoint.
A typing judgement P 	 Γ means “process P is well typed using context Γ ”.

Before presenting the typing rules, we need some auxiliary definitions. Our
priorities are based on the annotations used by Kobayashi [32], but simplified to
single priorities à la Padovani [37]. They obey the following laws:

(i) An action of priority o must be prefixed only by actions of priorities strictly
smaller than o.

(ii) Communication requires equal priorities for the complementary actions.

Definition 4 (Priority). The priority function pr(·) on types is given by:

pr(A�
o B) = pr(A⊗o B) = o pr(⊥o) = pr(1o) = o

pr(⊕o{li : Ai}i∈I) = pr(&o{li : Ai}i∈I) = o pr(?o A) = pr(!o A) = o

Definition 5 (Lift). Let t ∈ N. The lift operator ↑t (·) on types is given by:

↑t(A�
o B) = (↑t A)�

(o+t) (↑t B) ↑t ⊥o = 1(o+t)

↑t(A⊗o B) = (↑t A)⊗(o+t) (↑t B) ↑t 1o = ⊥(o+t)

↑t (&o{li : Ai}i∈I) = &(o+t){li : ↑t Ai}i∈I ↑t (?o A) = ?(o+t) (↑t A)
↑t (⊕o{li : Ai}i∈I) = ⊕(o+t){li : ↑t Ai}i∈I ↑t (!o A) = !(o+t) (↑t A)

We assume ω + t = ω for all t ∈ N.
The operator ↑t is extended component-wise to typing contexts: ↑t Γ .

96 O. Dardha and S. J. Gay

Fig. 2. Typing rules for PCP.

The typing rules are given in Fig. 2. Ax states that the forwarding process x→yA

is well typed if x and y have dual types, respectively A⊥ and A. Mix types the
parallel composition of two processes P and Q in the union of their disjoint typing
contexts. Cycle is our key typing rule; it states that the restriction process is
well typed, if the endpoints x and y have dual types, respectively A and A⊥. By
Definition 2, A and A⊥ also have the same priorities, enforcing law (ii) above.
In classical logic this rule would be unsound, but in PLL it allows deadlock-free
cycles. Rule ∅ states that inaction is well typed in the empty context. Rules 1
and ⊥ type channel closure actions from the viewpoint of each participant. Rule
� (respectively ⊗) types an input process x(y).P (respectively, output process
x[y].P), with y bound and x of type A�

o B (respectively, A⊗o B). The priority
o is strictly smaller than any priorities in the continuation process P , enforcing
law (i) above. This is captured by o < pr(Γ) in the premises of both rules,
abbreviating “for all z ∈ dom(Γ), o < pr(Γ (z))”. Rules & and ⊕ type external
and internal choice, respectively, and follow the previous two rules. Rule ! types
a server and states that if P communicates along y following protocol A, then
!x(y).P communicates along x following protocol !o A. The three remaining rules
type different numbers of clients. Rule ? is for a single client: if P communicates
along y following A, then ?x[y].P communicates along x following ?o A. Rule W
is for no client: if P does not communicate along any channel following A, then
it may be regarded as communicating along x following ?o A, for some priority
o. Rule C is for multiple clients: if P communicates along y following ?κ A, and z
following protocol ?κ′

A, then P{x/y, x/z} communicates along a single channel
x following ?o A, where o � κ and o � κ′. The last two conditions are necessary
to deal with some cases in the proof of Cycle-elimination (Theorem 1).

Lifting preserves typability, by an easy induction on typing derivations.

A New Linear Logic for Deadlock-Free Session-Typed Processes 97

Lemma 1. If P 	 Γ then P 	 ↑t Γ .

We will use this result in the form of an admissible rule:
P 	 Γ

P 	 ↑t Γ
↑t

The Design of PCP. We have included Mix and Cycle, which allow derivation
of both the standard Cut and the Multicut by Abramsky et al. [2].

	 Γ,A1, . . . , An 	 Δ,A⊥
1 , . . . , A⊥

n

	 Γ,Δ,A1, . . . , An, A⊥
1 , . . . , A⊥

n

Mix

	 Γ,Δ
Cyclen

}

Multicut

Conversely, Mix is the nullary case of Multicut, and Cycle can be derived from
Ax and Multicut:

	 Γ,A,A⊥ 	 A⊥, A
Ax

	 Γ
Multicut

}

Cycle

Having included Mix, we choose Cycle instead of Multicut, as Cycle is more
primitive.

In the presence of Mix and Cycle, there is an isomorphism between A ⊗ B
and A � B in CLL. Both A ⊗ B � A � B and A � B � A ⊗ B, are derivable,
where C � D � C⊥

� D in CLL. Equivalently, both (A⊥
� B⊥) � (A � B)

and (A⊥ ⊗ B⊥) � (A ⊗ B) are derivable. For simplicity, let pr(A) = pr(B) = ω;
by duality also pr(A⊥) = pr(B⊥) = ω.

� A⊥, A � B⊥, B

� A⊥, B⊥, A, B
o1 < ω

Mix

� A⊥
�

o1 B⊥, A, B
o2 < o1

�

� A⊥
�

o1 B⊥, A �
o2 B

�

� (A⊥
�

o1 B⊥)�
o (A �

o2 B)
�

� A⊥, A � B⊥, B

� A⊥, B⊥, A, B
o1 < ω

Mix

� A⊥ ⊗o1 B⊥, A, B
⊗

� A⊥, A � B⊥, B

� A⊥, B⊥, A, B
o2 < ω

Mix

� A⊥, B⊥, A ⊗o2 B
⊗

� A⊥ ⊗o1 B⊥, A ⊗o2 B, A⊥, A, B⊥, B
Mix

� A⊥ ⊗o1 B⊥, A ⊗o2 B
Cycle2

� (A⊥ ⊗o1 B⊥)�
o (A ⊗o2 B)

�

The above derivations without priorities show the isomorphism between A⊗B
and A � B in CLL, which does not hold in our PLL, in particular as o1 �= o2.
The distinction between ⊗ and �, preserves the distinction between output and
input in the term assignment. However, to simplify derivations, both typing rules
(Fig. 2) have the same form. The usual tensor rule, where there are two separate
derivations in the premise rather than just one, is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [32] and the tool TyPiCal [28]. We have opted for
priority checking over priority inference, as the presentation is more elegant.

98 O. Dardha and S. J. Gay

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from Sect. 1.

Example 2 (Cyclic process: deadlock-free). Consider the following process

P � (νx1y1)(νx2y2)
[
x1(v).x2(w).R | y1[n].y2[n′].Q

]

where R � x1().v().x2().w().0 and Q � y1[].0 | n[].0 | y2[].0 | n′[].0. First, we
show the typing derivation for the left-hand side of the parallel, x1(v).x2(w).R:

0 	 ∅ κ4 < κ3 < κ2 < κ1
∅

R 	 x1 : ⊥κ4 v : ⊥κ3 , x2 : ⊥κ2 , w : ⊥κ1 o1 < κ4
⊥4

x2(w).R 	 x1 : ⊥κ4 , v : ⊥κ3 , x2 : ⊥κ1 �
o1 ⊥κ2

�
o2 < o1

x1(v).x2(w).R 	 x2 : ⊥κ1 �
o1 ⊥κ2 , x1 : ⊥κ3 �

o2 ⊥κ4
�

(1)

Now, the typing derivation for the right-hand side of the parallel, y1[n].y2[n′].Q,
and recall that κ4 < κ3 < κ2 < κ1:

y1[].0 � y1 : 1
κ4

1
n[].0 � n : 1κ3

1
y2[].0 � y1 : 1

κ2
1

n′[].0 � n′ : 1κ1
1

y1[].0 | n[].0 | y2[].0 | n′[].0 � y1 : 1
κ4 ,n : 1κ3 , y2 : 1

κ2 ,n′ : 1κ1 o3 < κ4
Mix3

y2[n
′].Q � y1 : 1

κ4 ,n : 1κ3 , y2 : 1
κ1 ⊗o3 1κ2 o4 < o3

⊗

y1[n].y2[n
′].Q � y2 : 1

κ1 ⊗o3 1κ2 , y1 : 1
κ3 ⊗o4 1κ4

⊗
(2)

Finally, the typing derivation for process P is as follows:

(1) (2)

x1(v).x2(w).R | y1[n].y2[n
′].Q �

x2 : ⊥κ1 �
o1 ⊥κ2 , x1 : ⊥κ3 �

o2 ⊥κ4 , y2 : 1
κ1 ⊗o3 1κ2 , y1 : 1

κ3 ⊗o4 1κ4

o1 = o3

Mix

(νx2y2)
[
x1(v).x2(w).R | y1[n].y2[n

′].Q
] �

x1 : ⊥κ3 �
o2 ⊥κ4 , y1 : 1

κ3 ⊗o4 1κ4 o2 = o4

Cycle

(νx1y1)(νx2y2)
[
x1(v).x2(w).R | y1[n].y2[n

′].Q
] � ∅ Cycle

The system of equations

o2 < o1 o4 < o3 o1 = o3 o2 = o4

can be solved by the assignment o1 = o3 = 1 and o2 = o4 = 0.

Example 3 (Cyclic process: deadlocked!). Now consider the process

P ′ = (νx1y1)(νx2y2)
[
x1(v).x2(w).R | y2[n′].y1[n].Q

]

A New Linear Logic for Deadlock-Free Session-Typed Processes 99

where R = x1().v().x2().w().0 and Q = y1[].0 | n[].0 | y2[].0 | n′[].0. Notice
that the order of actions on channels y1 and y2 is now swapped, thus causing a
deadlock! If we tried to construct a typing derivation for process P ′, we would
have for the right-hand side of the parallel the following:

y1[].0 � y1 : 1
κ4

1
n[].0 � n : 1κ3

1
y2[].0 � y1 : 1

κ2
1

n′[].0 � n′ : 1κ1
1

y1[].0 | n[].0 | y2[].0 | n′[].0 � y1 : 1
κ4 ,n : 1κ3 , y2 : 1

κ2 ,n′ : 1κ1 o4 < κ4
Mix3

y1[n].Q � n′ : 1κ1 , y2 : 1
κ2 , y1 : 1

κ3 ⊗o4 1κ4 o3 < o4
⊗

y2[n
′].y1[n].Q � y1 : 1

κ3 ⊗o4 1κ4 , y2 : 1
κ1 ⊗o3 1κ2

⊗

Then, the system of equations

o2 < o1 o3 < o4 o1 = o3 o2 = o4

has no solution because it requires o2 < o3 and o3 < o2, which is impossible.

Example 1 continued (Cyclic Scheduler)

Sched � ...(νaibi)...(νcid(i+1) mod n)
(
A0 | A1 | ... | An−1 | P0 | P1 | ... | Pn−1

)

A0 � c0[n0].d0(x0).a0[m0].close0
Ai � di(xi).ai[mi].ci[ni].closei i ∈ {1, ..., n − 1}
Pi � bi(yi).Qi i ∈ {0, ..., n − 1}

By applying the typing rules in Fig. 2 we can derive Sched 	 ∅, since it is a
closed process, and assign the following types and priorities:

c0 :1⊗0 1 d0 :⊥ �
2(n−1) ⊥ a0 :1⊗2(n−1)+1 1 for A0

di :⊥ �
2i−2 ⊥ ai :1⊗2i−1 1 ci :1⊗2i 1 for Ai, 0 < i < n

b0 :⊥ �
2(n−1)+1 ⊥ bi :⊥ �

2i−1 ⊥ for P0 and Pi, 0 < i < n

The priorities of types ⊥ and 1 could be easily assigned as Example 2. As the
priority of di+1 is 2(i + 1) − 2 = 2i, we can connect it to ai with a Cycle.

3 Operational Semantics of PCP

In this section we define structural equivalence, the principal β-reduction rules
and commuting conversions. The detailed derivations can be found in [18].

We define structural equivalence to be the smallest congruence relation sat-
isfying the following axioms. SC-Ax-Swp allows swapping channels in the for-
warding process. SC-Ax-Cycle states that cycle applied to a forwarding process
is equivalent to inaction. This allows elimination of unnecessary cycles. Axioms
SC-Mix-Nil, SC-Mix-Comm and SC-Mix-Asc state that parallel composition
uses the inaction as the neutral element and is commutative and associative.
SC-Cycle-Ext is the standard scope extrusion rule. SC-Cycle-Swp allows swap-
ping channels and SC-Cycle-Comm states the commutativity of restriction1.
1 Note that associativity of restriction is derived from SC-Mix-Comm and
SC-Cycle-Comm.

100 O. Dardha and S. J. Gay

SC-Ax-Swp x→yA � x :A⊥, y :A ≡ y→xA⊥ � x :A⊥, y :A

SC-Ax-Cycle (νxA⊥
y)x→yA � ∅ ≡ 0 � ∅

SC-Mix-Nil 0 | P � Γ ≡ P � Γ
SC-Mix-Comm P | Q � Γ, Δ ≡ Q | P � Γ, Δ
SC-Mix-Asc P | (Q | R) � Γ, Δ, Θ ≡ (P | Q) | R � Γ, Δ, Θ
SC-Cycle-Ext (νxAy)(P | Q) � Γ, Δ ≡ P | (νxAy)Q � Γ, Δ x, y /∈ fn(P)

SC-Cycle-Swp (νxAy)P � Γ ≡ (νyA⊥
x)P � Γ

SC-Cycle-Comm (νxAy)(νzBw)P � Γ ≡ (νzBw)(νxAy)P � Γ

The core of the operational semantics consists of β-reductions. In π-calculus
terms these are communication steps; in logical terms they are Cycle-elimination
steps. β⊗� is given in Fig. 3 to illustrate priorities. It simplifies a cycle connect-
ing x of type A⊗o B and y of type A�

o B, which corresponds to communication
between an output on x and an input on y, respectively. Both actions have pri-
ority o, which is strictly smaller than any priorities in their typing contexts,
respecting the fact that they are top-level prefixes. The remaining β-reductions
are summarised below. βAxCycle simplifies a Cycle involving an axiom. β1⊥
closes and eliminates channels. β⊕&, similarly to β⊗�, simplifies a communi-
cation between a selection and a branching. β!? simplifies a cycle between one
server of type !o A and one client of type ?o A. The last two rules differ in the
number of clients involved: rule β!W considers no clients, whether β!C considers
multiple clients.

βAxCycle (νyAz)(x→yA | P) 	 Γ, x :A⊥ −→ P{x/z} 	 Γ, x :A⊥

β1⊥ (νxAy)(x[].0 | y().P) 	 Γ −→ P 	 Γ
β⊕& (νx⊕o{li:Bi}i∈Iy)

(
x � lj .P | y � {li : Qi}i∈I

) 	 Γ,Δ −→
(νxBjy)

(
P | Qj

) 	 Γ,Δ
β!? (νx !o Ay)

(
!x(v).P | ?y[w].Q

) 	 ?Γ,Δ −→ (νvAw)
(
P | Q

) 	 ?Γ,Δ
β!W (νx !o Ay)

(
!x(v).P | Q

) 	 ?Γ,Δ −→ Q 	 ?Γ,Δ
β!C (νx !o Ay)

(
!x(v).P | Q{y/y′, y/y′′}) 	 ?Γ,Δ −→

(νx′ !o A
y′)(!x′(v′).P ′ | (νx′′ !o A

y′′)(!x′′(v′′).P ′′ | Q)) 	 ?Γ,Δ

Fig. 3. β-reduction for ⊗ and �.

A New Linear Logic for Deadlock-Free Session-Typed Processes 101

Commuting conversions, following [12,41], allow communication prefixes to
be moved to the conclusion of a typing derivation, corresponding to pulling them
out of the scope of Cycle rules. In order to account for the sequence of Cycles,
here we use ·̃. Due to this movement, if a prefix on a channel endpoint x with
priority o is pulled out at top level, then to preserve priority conditions in the
typing rules in Fig. 2, it is necessary to increase priorities of all actions after the
prefix on x. This increase is achieved by using ↑o+1(·) in the typing contexts.

κ⊥ (νx̃
˜Aỹ)

(
x().P | Q

) 	 Γ,Δ, x : ⊥o −→
x().[(νx̃

˜Aỹ)
(
P | Q

)
] 	 ↑o+1 Γ, ↑o+1 Δ,x : ⊥o

κ⊗ (νx̃
˜Aỹ)

(
x[v].P | Q

) 	 Γ,Δ, x :A⊗o B −→
x[v].

[
(νx̃

˜Aỹ)
(
P | Q

)] 	 (↑o+1 Γ), (↑o+1 Δ), x : (↑o+1 A)⊗o (↑o+1 B)
κ� (νx̃

˜Aỹ)
(
x(w).P | Q

) 	 Γ,Δ, x :A�
o B −→

x(w).
[
(νx̃

˜Aỹ)
(
P | Q

)] 	 (↑o+1 Γ), (↑o+1 Δ), x : (↑o+1 A)�
o (↑o+1 B)

κ⊕ (νx̃
˜Aỹ)(x � lj .P | Q) 	 Γ,Δ, x :⊕o{li : Bi}i∈I −→

x � lj .
[
(νx̃

˜Aỹ)
(
P | Q

)] 	 (↑o+1 Γ), (↑o+1 Δ), x :⊕o{li : ↑o+1 Bi}i∈I

κ& (νx̃
˜Aỹ)(x � {li : Pi}i∈I | Q) 	 Γ,Δ, x :&o{li : Bi}i∈I −→

x � {li : (νx̃
˜Aỹ)

(
Pi | Q

)}i∈I 	 (↑o+1 Γ), (↑o+1 Δ), x :&o{li : ↑o+1 Bi}i∈I

κ? (νx̃
˜Aỹ)

(
?x[w].P | Q

) 	 Γ, Δ, x : ?o A −→
?x[w].

[
(νx̃

˜Aỹ)
(
P | Q

)] 	 (↑o+1 Γ), (↑o+1 Δ), x : ?o (↑o+1 A)
κ! (νx̃

˜?o Aỹ)
(
!x(v).P | Q

) 	 ?Γ, Δ, x : !o A −→
!x(v).

[
(νx̃

˜?o Aỹ)
(
P | Q

)] 	 (↑o+1 Γ), (↑o+1 Δ), x : !o (↑o+1 A)

Finally, we give the following additional reduction rules: closure under struc-
tural equivalence, and two congruence rules, for restriction and for parallel.

Close-Equiv P ≡ Q Q −→ R R ≡ S implies P −→ S
Cong-Cycle P −→ Q implies (νxAy)P −→ (νxAy)Q
Cong-Mix P −→ Q implies P | R −→ Q | R

4 Results for PLL and PCP

4.1 Cycle-Elimination for PLL

We start with results for Cycle-elimination for PLL; thus here we refer to A,B
as propositions, rather than types. The detailed proofs can be found in [18].

Definition 6. The degree function ∂(·) on propositions is defined by:

– ∂(1o) = ∂(⊥o) = 1
– ∂(A⊗o B) = ∂(A�

o B) = ∂(A) + ∂(B) + 1
– ∂(&o{li : Ai}i∈I) = ∂(⊕o{li : Ai}i∈I) =

∑
i∈I{∂(Ai)} + 1

– ∂(?o A) = ∂(!o A) = ∂(A) + 1.

Definition 7. A Maxicut is a maximal sequence of Mix and Cycle rules, end-
ing with a Cycle rule.

102 O. Dardha and S. J. Gay

Maximality means that the rules applied immediately before a Maxicut are any
rules in Fig. 2, other than Mix or Cycle. The order in which Mix and Cycle rules
are applied within a Maxicut is irrelevant. However, Proposition 1, which follows
directly from structural equivalence (Sect. 3), allows us to simplify a Maxicut.

Proposition 1 (Canonical Maxicut). Given an arbitrary Maxicut, it is
always possible to obtain from it a canonical Maxicut consisting of a sequence
of only Mix rules followed by a sequence of only Cycle rules.

Definition 8. A single-Mix Maxicut contains only one Mix rule.
A1, . . . , An, A are Maxicut propositions if they are eliminated by a Maxicut.
The degree of a sequence of Cycles is the sum of the degrees of the eliminated
propositions.
The degree of a Maxicut is the sum of the degrees of the Cycles in it.
The degree of a proof π, d(π), is the sup of the degrees of its Maxicuts, implying
d(π) = 0 if and only if proof π has no Cycles.
The height of a proof π, h(π), is the height of its tree, and it is defined as
h(π) = sup

(
h(πi)

)
i∈I

+ 1, where {πi}i∈I are the subproofs of π.

Maxicut has some similarities with the derived Multicut: it generalises
Multicut in the number of Mixes, and a single-Mix Maxicut is an occurrence
of Multicut.

The core of Cycle-elimination for our PLL, as for Cut-elimination for CLL
[10,25], is the Principal Lemma (Lemma 3), which eliminates a Cycle by either
(i) replacing it with another Cycle on simpler propositions, or (ii) pushing it fur-
ther up the proof tree. Item (i) corresponds to (the logical part of) β-reductions
(Sect. 3); and (ii) corresponds to (the logical part of) commuting conversions
(Sect. 3).

Exceptionally, β!C reduces the original proof in a way that neither (i) nor
(ii) are respected. In order to cope with this case, we introduce Lemma 2, which
is inspired by Lemma B.1.3 in Bräuner [10], and adapted to our PLL. Lemma2
allows us to reduce the degree of a proof ending with a single-Mix Maxicut and
having the same degree as the whole proof, and where the last rule applied on
the left hand-side immediate subproof is !. Let [n] denote the set {1, . . . , n}.

Lemma 2 (Inspired by B.1.3 in Bräuner [10]). Let τ be a proof of the
following form, ending with a single-Mix Maxicut:

π....
o < pr(?Γ)

∀i ∈ [n] : o < oi

	 ?Γ, ?o1 A1, ..., ?on An, A

	 ?Γ, ?o1 A1, ..., ?on An, !o A
!

π′
....

o < pr(Δ)
∀i ∈ [n] : o < oi ∀j ∈ [k] : o � κj

	 Δ, !o1 A⊥
1 , ..., !on A⊥

n , (?κj A⊥)j∈[k]

	 Δ, !o1 A⊥
1 , ..., !on A⊥

n , ?o A⊥ Ck−1

	 ?Γ,Δ, ?o1 A1, ..., ?on An, !o A, !o1 A⊥
1 , ..., !on A⊥

n , ?o A⊥ Mix

	 ?Γ,Δ
Cycle

A New Linear Logic for Deadlock-Free Session-Typed Processes 103

where d(π) < d(τ) and d(π′) < d(τ). Then, there is a proof τ ′ of 	 ?Γ,Δ such
that d(τ ′) < d(τ).

Proof. Induction on h(π′), with a case-analysis on the last rule applied in π′. ��
Lemma 3 (The Principal Lemma). Let τ be a proof of 	 Γ , ending with
a canonical Maxicut:

π1 . . . πm

	 Γ,A1, ..., An, A,A⊥
1 , ..., A⊥

n , A⊥ Mix

	 Γ
Cycle

such that for all i ∈ [m], d(πi) < d(τ). Then there is a proof τ ′ of 	 ↑t Γ , for
some t � 0, such that d(τ ′) < d(τ).

Proof. The proof is by induction on
∑

i∈[m] h(πi). Let ri be the last rule applied
in πi, for i ∈ [m] and let Cri

be the proposition introduced by ri. Consider the
proposition with the smallest priority. If the proposition is not unique, just pick

one. Let this proposition be Crk
. Then, πk is the following proof:

. . .
	 Γ ′, Crk

rk

We proceed by cases on πk.

− rk is ⊗ on one of the Maxicut propositions A1, . . . , An, A. Without loss of
generality, suppose rk is applied on A, meaning A = E ⊗o F for some E and F
and o � 0. By ⊗ rule in Fig. 2, o < pr(Γ ′). Since A is a Maxicut proposition,
by Definition 2, A⊥ = E⊥

�
o F⊥. Since o < pr(Γ ′) and pr(A⊥) = o, it must be

that A⊥ is in another proof, say πh:
. . .

	 Γ ′′, E⊥
�

o F⊥ rh

Consider the case where rh is a multiplicative, additive, exponential or ⊥ rule
in Fig. 2. Suppose rh is applied on Crh

which is not A⊥. All the mentioned rules
require pr(Crh

) < pr(Γ ′′, E⊥
�

o F⊥ \ Crh
), implying pr(Crh

) < pr(E⊥
�

o F⊥) =
pr(E ⊗o F) = o. This contradicts the fact that o is the smallest priority. Hence,
rh must be a � introducing A⊥.

We construct proof τA ending with a single-Mix Maxicut applied on at
least A:

π⊗....
	 Γ ′, E, F o < pr(Γ ′)

	 Γ ′, E ⊗o F
⊗

π�....
	 Γ ′′, E⊥, F⊥ o < pr(Γ ′′)

	 Γ ′′, E⊥
�

o F⊥ �

	 Γ ′, Γ ′′, E ⊗o F,E⊥
�

o F⊥ Mix

	 Γ ′′′ Cycle

Then, by structural equivalence, we can rewrite τ in terms of τA. By applying
β⊗� on τA (only considering the logical part), we obtain a proof τ ′

A such that
d(τ ′

A) < d(τA) ≤ d(τ), because ∂(E)+∂(F) < ∂(E ⊗o F). We can then construct
τ ′ by substituting τ ′

A for τA in τ , which concludes this case.

104 O. Dardha and S. J. Gay

− rk is ! on one of the Maxicut propositions A1, . . . , An, A. Without loss of
generality, suppose rk introduces A, implying that A = !o A′ for some A′ and
o � 0. Then πk is the following proof:

π!....
	 ?Θ,A′ o < pr(?Θ)

	 ?Θ, !o A′ !

where Γ ′ = ?Θ. Since A is a Maxicut proposition, by duality A⊥ = ?o A′⊥.
Since o < pr(Γ ′) and pr(A⊥) = o, it must be that A⊥ is in another proof. Let it
be πh for h ∈ [m] and h �= k. Then we apply Lemma 2 to πk and πh, obtaining
a proof which we use to construct τ ′, as we did in the previous case. ��
Lemma 4. Given a proof τ of 	 Γ , such that d(τ) > 0, then for some t � 0
there is a proof τ ′ of 	 ↑t Γ such that d(τ ′) < d(τ).

Proof. By induction on h(τ). We have the following cases.

− If τ ends in a Maxicut whose degree is the same as the degree of τ :

π1 . . . πm

	 Γ,A1, ..., An, A,A⊥
1 , ..., A⊥

n , A⊥ Mixm

	 Γ Cyclen+1

we can apply the induction hypothesis to the subproofs of τ right before the last
Mix preceding the sequence of Cycle. This allows us to reduce their degrees to
become smaller than d(τ). Then we use Lemma 3.
− Otherwise, by using the inductive hypothesis on the immediate subproofs to
reduce their degree, we also reduce the degree of the whole proof. ��
Theorem 1 (Cycle-Elimination). Given any proof of 	 Γ , we can con-
struct a Cycle-free proof of 	 ↑t Γ , for some t � 0.

Proof. Iteration on Lemma 4. ��
Cycle-elimination increases the priorities of the propositions in Γ . This is solely
due to the (logical part of) our commuting conversions in Sect. 3.

4.2 Deadlock-Freedom for PCP

Theorem 2 (Subject Reduction). If P 	 Γ and P −→ Q, then Q 	 ↑t Γ ,
for some t � 0.

Proof. Follows from the β-reductions and commuting conversions in Sect. 3. ��
Definition 9. A process is a Cycle if it is of the form (νxAy)P .

A New Linear Logic for Deadlock-Free Session-Typed Processes 105

Theorem 3 (Top-Level Deadlock-Freedom). If P 	 Γ and P is a Cycle,
then there is some Q such that P −→∗ Q and Q is not a Cycle.

Proof. The interpretation of Lemma 3 for PCP is that either (i) a top-level com-
munication occurs, corresponding to a β-reduction, or (ii) commuting conver-
sions are used to push Cycle further inwards in a process. Consequently, iterat-
ing Lemma 3 results in eliminating top-level Cycles. ��
Eliminating all Cycles, as specified by Theorem 1, would correspond to a seman-
tics in which reduction occurs under prefixes, as discussed by Wadler [41]. In
order to achieve this, we would need to introduce additional congruence rules,
such as:

P −→ Q

x(y).P −→ x(y).Q

and similarly for other actions. Reductions of this kind are not present in the
π-calculus, and we also omit them in our framework.

However, we can eliminate all Cycles in a proof of 	 ∅, corresponding to full
deadlock-freedom for closed processes. Kobayashi’s type system [32] satisfies the
same property.

Theorem 4 (Deadlock-Freedom for Closed Processes). If P 	 ∅, then
either P ≡ 0 or there is Q such that P −→ Q.

Proof. This follows from Theorems 2 and 3, because if Q 	 ∅ and Q is not a
Cycle then Q must be a parallel composition of 0 processes. ��

5 Related Work and Conclusion

Cycle and Multicut rules were explored by Abramsky et al. [2–4] in the context
of ∗-autonomous categories. That work is not directly comparable with ours, as
it only presented a typed semantics for CCS-like processes and did not give a
type system for a language or a term assignment for a logical system. Atkey
et al. [5] added a Multicut rule to CP, producing an isomorphism between ⊗
and �, but they did not consider deadlock-freedom.

In Kobayashi’s original type-theoretic approach to deadlock-freedom [29],
priorities were abstract tags from a partially ordered set. In later work abstract
tags were simplified to natural numbers, and priorities were replaced by pairs of
obligations and capabilities [30,32]. The latter change allows more processes to
be typed, at the expense of a more complex type system. Padovani [36] adapted
Kobayashi’s approach to session types, and later on he simplified it to a single
priority for linear π-calculus [37]. Then, the single priority technique can be
transferred to session types by the encoding of session types into linear types
[16,17,19,33]. For simplicity, we have opted for single priorities, as Padovani [37].

The first work on progress for session types, by Dezani-Ciancaglini et al.
[15,22], guaranteed the property by allowing only one active session at a time.
Later work [21] introduced a partial order on channels in Kobayashi-style [29].

106 O. Dardha and S. J. Gay

Bettini et al. [9] applied similar ideas to multiparty session types. The main
difference with our work is that we associate priorities with individual commu-
nication operations, rather than with entire channels. Carbone et al. [13] proved
that progress is a compositional form of lock-freedom and introduced a new tech-
nique for progress in session types by adopting Kobayashi’s type system and the
encoding of session types [19]. Vieira and Vasconcelos [40] used single priorities
and an abstract partial order in session types to guarantee deadlock-freedom.

The linear logic approach to deadlock-free session types started with Caires
and Pfenning [12], based on dual intuitionistic linear logic, and was later for-
mulated for classical linear logic by Wadler [41]. All subsequent work on linear
logic and session types enforces deadlock-freedom by forbidding cyclic connec-
tions. In their original work, Caires and Pfenning commented that it would be
interesting to compare process typability in their system with other approaches
including Kobayashi’s and Dezani-Ciancaglini’s. However, we are aware of only
one comparative study of the expressivity of type systems for deadlock-freedom,
by Dardha and Pérez [20]. They compared Kobayashi-style typing and CLL typ-
ing, and proved that CLL corresponds to Kobayashi’s system with the restriction
that only single cuts, not multicuts, are allowed.

In this paper, we have presented a new logic, priority-based linear logic
(PLL), and a term assignment system, priority-based CP (PCP), that increase
the expressivity of deadlock-free session type systems, by combining Caires
and Pfenning’s linear logic-based approach and Kobayashi’s priority-based type
system. The novel feature of PLL and PCP is Cycle, which allows cyclic pro-
cess structures to be formed if they do not violate ordering conditions on the
priorities of prefixes. Following the propositions-as-types paradigm, we prove a
Cycle-elimination theorem analogous to the standard Cut-elimination theorem.
As a result of this theorem, we obtain deadlock-freedom for a class of π-calculus
processes which is larger than the class typed by Caires and Pfenning. In partic-
ular, these are processes that typically share more than one channel in parallel.

There are two main directions for future work. First, develop a type system
for a functional language, priority-based GV, and translate it into PCP, along
the lines of Lindley and Morris’ [34] translation of GV [41] into CP. Second,
extend PCP to allow recursion and sharing [6], in order to support more gen-
eral concurrent programming, while maintaining deadlock-freedom, as well as
termination, or typed behavioural equivalence.

Acknowledgements. We are grateful for suggestions and feedback from the anony-
mous reviewers and colleagues: Wen Kokke, Sam Lindley, Roly Perera, Frank Pfenning,
Carsten Schürmann and Philip Wadler.

References

1. Abramsky, S.: Proofs as processes. Theor. Comput. Sci. 135(1), 5–9 (1994)
2. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the foundations

of typed concurrent programming. In: Broy, M. (ed.) Proceedings of the NATO
Advanced Study Institute on Deductive Program Design, pp. 35–113 (1996)

A New Linear Logic for Deadlock-Free Session-Typed Processes 107

3. Abramsky, S., Gay, S., Nagarajan, R.: A type-theoretic approach to deadlock-
freedom of asynchronous systems. In: Abadi, M., Ito, T. (eds.) TACS 1997.
LNCS, vol. 1281, pp. 295–320. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0014557

4. Abramsky, S., Gay, S.J., Nagarajan, R.: A specification structure for deadlock-
freedom of synchronous processes. Theor. Comput. Sci. 222(1–2), 1–53 (1999)

5. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley, S.,
McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change
the World. LNCS, vol. 9600, pp. 32–55. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-30936-1_2

6. Balzer, S., Pfenning, F.: Manifest sharing with session types. In: Proceedings of
the ACM on Programming Languages, vol. 1(ICFP), pp. 37:1–37:29 (2017)

7. Barber, A.: Dual intuitionistic linear logic. Technical report ECS-LFCS-96-347,
University of Edinburgh (1996). www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-
347

8. Bellin, G., Scott, P.J.: On the pi-calculus and linear logic. Theor. Comput. Sci.
135(1), 11–65 (1994)

9. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_33

10. Bräuner, T.: Introduction to linear logic. Technical report BRICS LS-96-6, Basic
Research Institute in Computer Science, University of Aarhus (1996)

11. Caires, L., Pérez, J.A.: Linearity, control effects, and behavioral types. In: Yang,
H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 229–259. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1_9

12. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_16

13. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 49–64.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-8_4

14. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: a logical explanation of multiparty session types. In: CONCUR.
LIPIcs, vol. 59, pp. 33:1–33:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik
(2016)

15. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous session types and
progress for object oriented languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.)
FMOODS 2007. LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-72952-5_1

16. Dardha, O.: Recursive session types revisited. In: BEAT. EPTCS, vol. 162, pp.
27–34 (2014)

17. Dardha, O.: Type Systems for Distributed Programs: Components and Sessions.
Atlantis Studies in Computing, vol. 7. Atlantis Press, Paris (2016). https://doi.
org/10.2991/978-94-6239-204-5

18. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session typed processes.
In: 21st International Conference on Foundations of Software Science and Compu-
tation Structures, FoSSaCS 2018 (Extended Version). http://www.dcs.gla.ac.uk/
~ornela/publications/DG18-Extended.pdf

19. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: PPDP, pp.
139–150. ACM (2012)

https://doi.org/10.1007/BFb0014557
https://doi.org/10.1007/BFb0014557
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/978-3-319-30936-1_2
www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.1007/978-3-540-72952-5_1
https://doi.org/10.1007/978-3-540-72952-5_1
https://doi.org/10.2991/978-94-6239-204-5
https://doi.org/10.2991/978-94-6239-204-5
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf

108 O. Dardha and S. J. Gay

20. Dardha, O., Pérez, J.A.: Comparing deadlock-free session typed processes. In:
EXPRESS/SOS. EPTCS, vol. 190, pp. 1–15 (2015)

21. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
257–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4_18

22. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006). https://doi.org/10.1007/11785477_20

23. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010)

24. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
25. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University

Press, New York (1989)
26. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2_35

27. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

28. Kobayashi, N.: TyPiCal: type-based static analyzer for the pi-calculus. www-kb.
is.s.u-tokyo.ac.jp/~koba/typical

29. Kobayashi, N.: A partially deadlock-free typed process calculus. ACM Trans. Pro-
gram. Lang. Syst. 20(2), 436–482 (1998)

30. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159
(2002)

31. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K.,
Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Founda-
tional Support. LNCS, vol. 2757, pp. 439–453. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-40007-3_26

32. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11817949_16

33. Kobayashi, N.: Type systems for concurrent programs. Extended version of [31],
Tohoku University (2007)

34. Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek, J. (ed.)
ESOP 2015. LNCS, vol. 9032, pp. 560–584. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46669-8_23

35. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

36. Padovani, L.: From lock freedom to progress using session types. In: PLACES.
EPTCS, vol. 137, pp. 3–19 (2013)

37. Padovani, L.: Deadlock and lock freedom in the linear π-Calculus. In: CSL-LICS,
pp. 72:1–72:10. ACM (2014)

38. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7_118

39. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: PPDP, pp. 161–172. ACM (2011)

https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
www-kb.is.s.u-tokyo.ac.jp/~koba/typical
www-kb.is.s.u-tokyo.ac.jp/~koba/typical
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1007/11817949_16
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118

A New Linear Logic for Deadlock-Free Session-Typed Processes 109

40. Torres Vieira, H., Thudichum Vasconcelos, V.: Typing progress in communication-
centred systems. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013.
LNCS, vol. 7890, pp. 236–250. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38493-6_17

41. Wadler, P.: Propositions as sessions. In: ICFP, pp. 273–286. ACM (2012)
42. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-38493-6_17
https://doi.org/10.1007/978-3-642-38493-6_17
http://creativecommons.org/licenses/by/4.0/

A Double Category Theoretic Analysis
of Graded Linear Exponential Comonads

Shin-ya Katsumata(B)

National Institute of Informatics, Tokyo, Japan
s-katsumata@nii.ac.jp

Abstract. Graded linear exponential comonads are an extension of lin-
ear exponential comonads wih grading, and provide a categorical seman-
tics of resource-sensitive exponential modality in linear logic. In this
paper, we propose a concise double-category theoretic formulation of
graded linear exponential comonads as a kind of monoid homomorphisms
from the multiplicative monoids of semirings to the composition monoids
of symmetric monoidal endofunctors. We also exploit this formulation to
derive the category of graded comonoid-coalgebras, which decompose
graded linear exponential comonads into symmetric monoidal adjunc-
tions plus twists.

1 Introduction

One of the important discoveries in substructural logic is the decomposition of
the intuitionistic implication φ ⇒ ψ using the linear implication � and the
exponential modality !. This discovery was studied by Girard through his linear
logic, which brought many new ideas and perspectives to logic and programming
language semantics.

Inside linear logic proofs, propositions with the exponential modality !φ can
be freely copied or discarded. Later, it was realized that by adding a copy limit
to the exponential modality, like !rφ, linear logic gains fine control of assumption
usage. This idea was first implemented in bounded linear logic [9], and studied in
connection with implicit complexity theory [4,14]. Indexed exponential modal-
ities !r were then used in wider context: resource management in programming
languages [3,7,8,20,23] and control of sensitivity in the metric semantics of pro-
grams [5,21].

The categorical structure corresponding to the exponential modality ! was
studied by various researchers, and it was identified as a categorical structure
called linear exponential comonad [1]. One of the celebrated results about linear
exponential comonads is that any symmetric lax monoidal adjunction:

(D, 1,×)
L ��⊥ (C, I,⊗)
R

�� (the monoidal structure 1,× is cartesian)

yields a linear exponential comonad L◦R, and every linear exponential comonad
D arises in this way - for D take the category of Eilenberg-Moore coalgebras of D.
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 110–127, 2018.
https://doi.org/10.1007/978-3-319-89366-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_6&domain=pdf

A Double Category Theoretic Analysis 111

The categorical structure corresponding to the indexed exponential modality
!r has been proposed as exponential action [3] and graded linear exponential
comonad [7]; they are two different presentations of the same data. Compared
to linear exponential comonads, however, categorical understanding of graded
linear exponential comonads is not well-established. The aim of this paper is to
contribute to this point. Concretely speaking, we show the following categorical
results about graded linear exponential comonads:

– We give a new concise formulation of graded linear exponential comonads
as vertical monoid homomorphisms from multiplicative monoids of semirings
to the composition monoids of symmetric lax monoidal endofunctors. This
formulation is given in a rather complex multi-double category of symmetric
monoidal categories. The slogan is “to represent a complex structure in a
simple category as a simple structure in a complex category”.

– In the multi-double category, vertical monoid homomorphisms themselves can
be seen as monoids. By considering actions of such monoids, we obtain the
concept of graded comonoid-coalgebras. They are an extension of Eilenberg-
Moore coalgebras to graded linear exponential comonads, and the category of
graded comonoid-coalgebras provides a resolution of graded linear exponential
comonads by a symmetric lax monoidal adjunction plus a twist.

2 Related Work

Graded linear exponential comonads were first introduced as exponential actions
in [3], and an equivalent definition was given in [7]. This paper adopts the latter
definition as the starting point of study. These papers also consider linear type
systems with an indexed exponential modality !rφ, which is directly interpreted
by a graded linear exponential comonad. This paper, however, focuses only on
the categorical axiomatics of the indexed exponential modality, and omit its
syntactic theory. In [2], Breuvart and Pagani gave a construction of graded lin-
ear exponential comonads from a set of data called stratification. They derived
various graded linear exponential comonads on the category of sets and binary
relations and the category of coherence spaces. Structures close to, but differ-
ent from, graded linear exponential comonads were considered in the categorical
semantics of the following calculi: INTML for interactive computation [23], coef-
fect calculus [20] and bounded affine types system [8].

Looking at the dual structure, graded monads, first considered in mathe-
matics [6,25], were recently used in the semantic study of logic, systems and
programming languages [13,18,19,22]. The resolution of graded monads were
studied in [12], mildly extending a classic work by Street [26]. The major differ-
ence between graded monads and graded linear exponential comonads is the way
how they interact with the monoidal structure. In [13] only strengths were con-
sidered for graded monads, while graded linear exponential comonads interact
with monoidal structures in an intricate manner.

The multicategory of symmetric lax monoidal multifunctors is related to
the 2-multicategory of T -algebras for a pseudo-commutative 2-monad T [11].

112 S. Katsumata

Hyland and Power studied multifunctors that are symmetric strong monoidal in
each argument, while in this paper we weaken “strong” to “lax”. Yet, we think
that by suitably extending their theory, the symmetric lax monoidal multifunc-
tors can also be given in the language of 2-monad theory.

Monoids in the multicategory MSMCl in Sect. 5 are similar to the dis-
tributivity studied in [15], where Laplaza considered two symmetric non-strict
monoidal structures together with a colax distributivity between them. On the
other hand, in this paper, we consider a strict monoidal structure on top of the
underlying symmetric (non-strict) monoidal structure, and a lax distributivity
between them.

Preliminaries

For symmetric monoidal categories and symmetric lax monoidal functors, see
[16]. In a symmetric monoidal category C, by ι : I⊗ I → I we mean the isomor-
phism λI = ρI, and by τ : (A ⊗ B) ⊗ (C ⊗ D) → (A ⊗ C) ⊗ (B ⊗ D) we mean
the symmetry swapping the second and third component of the tensor product.
For functors Fi :

∏mi

j=1 Ci,j → Di where 1 ≤ i ≤ n, we define F1 × · · · × Fn to
be the composite functor

∏
1≤i≤n,1≤j≤mi

Ci,j → ∏n
i=1(

∏mi

j=1 Ci,j) → ∏n
i=1 Di,

whose codomain is the product category without the nesting of products.

3 Graded Linear Exponential Comonad

In this paper, comonads are graded by a partially ordered semiring. It is a tuple
(R,≤, 0,+, 1, ∗) such that (R, 0,+, 1, ∗) is a unital semiring (not necessarily com-
mutative) and +, ∗ are monotone in each argument w.r.t. the partial order ≤.
The partially ordered monoids of additive and multiplicative parts of R are
denoted by R+ = (R,≤, 0,+) and R∗ = (R,≤, 1, ∗), respectively.

Let C,D be symmetric monoidal categories. We write SMCl(D,C) for the
category of symmetric lax monoidal functors and monoidal natural transforma-
tions between them. The following pointwise extension of the tensor unit and
tensor product on C extends to a symmetric monoidal structure on SMCl(D,C):

İ(D) = I, (F ⊗̇ G)(D) = FD ⊗ GD.

(We note that the symmetry in C is used to make F ⊗̇ G a symmetric lax
monoidal functor.) Below by [D,C]l we mean the symmetric monoidal category
(SMCl(D,C), İ, ⊗̇) of symmetric lax monoidal functors and monoidal natural
transformations between them.

3.1 Graded Linear Exponential Comonad

Fix a partially ordered semiring (R,≤, 0,+, 1, ∗). We introduce the main subject
of this study, R-graded linear exponential comonad. This concept first appeared
in [3, Definition 13] under the name exponential action. We adopt the following
definition [7, Sect. 5.2], which is equivalent to the exponential action:

A Double Category Theoretic Analysis 113

Fig. 1. Four equational axioms related to distributive law

Definition 1. An R-graded linear exponential comonad on a symmetric
monoidal category C is a tuple (D,w, c, ε, δ) where

– D : (R,≤) → SMCl(C,C) is a functor. Below we write mr : I → D(r)(I) and
mr,A,B : D(r)(A) ⊗ D(r)(B) → D(r)(A ⊗ B) for the symmetric lax monoidal
structure of D(r).

– (D,w, c) : R+ → [C,C]l is a symmetric colax monoidal functor.
– (D, ε, δ) : R∗ → (SMCl(C,C), Id, ◦) is a colax monoidal functor.

They satisfy four equational axioms in Fig. 1. Moreover, we say that D is an R-
twist if Dr is strong monoidal for each r ∈ R, and (D, ε, δ) is a strict monoidal
functor (hence D1 = Id and D(r ∗ r′) = Dr ◦ Dr′).

When fully expanded, a graded linear exponential comonad specifies one
functor D : (R,≤) → [C,C] and 6 natural transformations:

mr : D(r)(I) → I, mr,A,B : D(r)(A ⊗ B) → D(r)(A) ⊗ D(r)(B)
wA : D(0)(A) → I cr,r′,A : D(r + r′)(A) → D(r)(A) ⊗ D(r′)(A)
εA : D(1)(A) → A δr,r′,A : D(r ∗ r′)(A) → D(r)(D(r′)(A))

satisfying more than 20 equational axioms.

114 S. Katsumata

Example 1. Let C be a cartesian closed category. We take a partially ordered
monoid R× = (R,≤, 1,×) such that (R,≤) is a join semilattice and × preserves
joins in both arguments. This condition makes the tuple R = (R,≤,⊥,∨, 1,×)
a partially ordered semiring. We also take a lax monoidal functor G : R× → C.
Then the functor D : (R,≤)op → [C,C] defined by DrA = Gr ⇒ A extends
to an Rop-graded linear exponential comonad on C (here Rop is the order-
opposite of R).

Example 2. Continuing the previous example, let R = (D,≤,⊥,∨,�,∧) be a
distributive lattice, regarded as a partially ordered semiring. We consider the
functor category [D,Set], where D is regarded as the discrete category of the
carrier set D. We then define G : R → [D,Set] by (Gr)r′ = ∅ if r′ �≤ r, and
(Gr)r′ = {∗} if r′ ≤ r. This G extends to a lax monoidal functor of type G :
R× → [D,Set]. From the construction in the previous example, DrA = Gr ⇒ A
is a graded linear exponential comonad, which coincides with the masking functor
given in [7, Theorem 2]. It behaves as (DrA)r′ = {∗} if r′ �≤ r and (DrA)r′ = Ar′

if r′ ≤ r. This graded linear exponential comonad is used to model the level of
information flow [7, Sect. 6.1].

Example 3. Consider the category EPMet of extended pseudometric spaces1

and nonexpansive functions between them. It has a symmetric monoidal (closed)
structure, whose unit is a terminal object, and whose tensor product is given by
(X, d)⊗(Y, e) = (X×Y, d+e). It also has the scaling modality !r(X, d) = (X, rd),
where r is an element of the ordered semiring of nonnegative extended reals,
which we denote by [0,∞]. The scaling modality is a [0,∞]-twist with respect
to the above symmetric monoidal structure.

The concept of R-graded linear exponential comonad is a generalization of
non-graded linear exponential comonad [1, Definition 3]. This was first observed
in [3].

Theorem 1. A 1-graded linear exponential comonad on a symmetric monoidal
category C is exactly a non-graded linear exponential comonad on C.

On the other hand, 1-twists make monoidal structures cartesian:

Theorem 2. A 1-twist D exists on a symmetric monoidal category C if and
only if the symmetric monoidal structure of C is cartesian (i.e. I is terminal
and ⊗ is a binary product).

Proof. If it exists, the functor part of D must specify the identity functor IdC

because of the strictness. Next, (Id, w, c) becomes a commutative monoid in
[C,C]l; especially w, c are monoidal natural transformations. From [17, Corol-
lary 17], the monoidal structure of C is cartesian. The converse construction is
evident.

1 Here, extended pseudometrics mean the pseudometrics that can return +∞.

A Double Category Theoretic Analysis 115

4 A Double-Category Theoretic Reformulation of Graded
Linear Exponential Comonad

Although it is in a reasonably compact form, the definition of graded linear
exponential comonad is yet technical, and it indeed specifies a quite complex
structure. The motivation of this study is to have a conceptually clean and
compact definition of it.

Particularly, what is less clear in the definition is the extra four axioms
related to the distributive law (Fig. 1). In the non-graded setting (i.e. when
R = 1), these four axioms reduces to simpler axioms, which can be viewed as
the following conditions:

– comultiplication δ is a comonoid morphism, (item 4, Sect. 7.4, [17]) and
– weakening w and contraction c are coalgebra morphisms (item 3, Sect. 7.4, [17]).

However, it is not obvious how to upgrade these axioms to the graded setting,
because the concept of “graded coalgebra” and “graded comonoid” are not yet
defined, at least for graded linear exponential comonads. Especially, the concept
of graded coalgebra should be defined after the concept of graded linear expo-
nential comonad, which we are going to define! From this circularity, the above
view of the four axioms are not very helpful when upgrading them in the current
situation.

It is therefore desirable to have an alternative account on four axioms in
Fig. 1, which relies on a notion that already exists before graded linear exponen-
tial comonads. The key observation of this paper is that these four axioms are
an instance of the axioms for 2-cells in the double category SMC of symmetric
monoidal categories, introduced by Grandis and Paré [10, Sect. 2.3]. In SMC, a
2-cell consists of the following data:

• H ��

V ′

��
⇓a

•
V

��•
H′

�� •

where each • is a (possibly distinct) symmetric monoidal category, horizontal
morphisms H,H ′ are symmetric lax monoidal functors, vertical morphisms V, V ′

are symmetric colax monoidal functors, and a : V ◦ H → H ′ ◦ V ′ is a natural
transformation (between underlying functors of H,H ′, V, V ′) making the follow-
ing diagrams commute:

V I ��

��

V HI

��

V (HX ⊗ HY)

��

�� V H(X ⊗ Y)

��
H ′V ′I

��

V HX ⊗ V HY

��

H ′V ′(X ⊗ Y)

��
I �� H ′I H ′V ′X ⊗ H ′V ′Y �� H ′(V ′X ⊗ V ′Y)

(1)

116 S. Katsumata

We note that when V, V ′ (resp. H,H ′) are identity functors, the above axioms
are reduced to the ones for monoidal natural transformations of type V → V ′

(resp. H → H ′).
Let us see how 2-cell axioms (1) in SMC derives the four axioms in Fig. 1.

Proposition 1. In Definition 1, the four axioms (Fig. 1) can be replaced by the
following statement: for each r ∈ R, both

δr,− : D(r ∗ −) → Dr ◦ D−, δ−,r : D(− ∗ r) → D− ◦ Dr

are 2-cells of the following type in SMC:

R+

D

��

r∗− ��

⇓δr,−

R+

D

��

R+

D

��

−∗r ��

⇓δ−,r

R+

D

��
[C,C]l

Dr◦−
�� [C,C]l [C,C]l −◦Dr

�� [C,C]l

5 Multicategory of Symmetric Lax Monoidal
Multifunctors

Proposition 1 says that by fixing one index of the doubly-indexed natural trans-
formation δ−,= : D(−∗=) → D−◦D=, we obtain a 2-cell in the double category
SMC. However, δ itself does not live in SMC. In order to create a room to
accommodate δ as a kind of 2-cell, we extend horizontal morphisms of SMC to
multi-ary functors that are symmetric lax monoidal in each argument. We first
study such multi-ary functors in this section.

Let Ci (1 ≤ i ≤ n) and D be symmetric monoidal categories. Intuitively,
an n-ary functor F : C1 × · · · × Cn → D is symmetric lax monoidal in each
argument if it comes with a structure making the functor F (C1, ..,−m, .., Cn) :
Cm → D symmetric lax monoidal for each m ∈ {1, · · · , n} and Ci ∈ Ci, i ∈
{1, · · · , n}\{m}. Moreover, these symmetric lax monoidal structures commute
with each other in a coherent manner.

To formally define such multi-ary symmetric lax monoidal functors, we intro-
duce a notation for sequences. For a sequence C = C1, · · · , Cn of mathe-
matical objects, a natural number 1 ≤ i ≤ n and another sequence D, by
C[i : D] we mean the sequence obtained by replacing Ci with D. For instance,
(1, 3, 5)[2 : X,Y] = 1,X, Y, 5. When D is empty, C[i :] stands for the sequence
obtained by removing the i-th element of C.

Definition 2. A symmetric lax monoidal multifunctor of type (C1, · · · ,Cn) →
D consists of a functor and a family of natural transformations indexed by 1 ≤
i ≤ n:

F : C1 × · · · × Cn → D

φi
C[i:] : I → F (C[i : I]) (C ∈ C1 × · · · × Cn)

φi
C[i:X,Y] : F (C[i : X]) ⊗ F (C[i : Y]) → F (C[i : X ⊗ Y]) (C ∈ C1 × · · · × Cn, X, Y ∈ Ci)

A Double Category Theoretic Analysis 117

such that:

1. For each C ∈ C1 × · · · × Cn and 1 ≤ i ≤ n, The tuple (F (C[i : −]),
φi

C[i:], φ
i
C[i:−,=]) is a symmetric lax monoidal functor from Ci to D. We denote

it by F (C/i).
2. The following equalities hold for each C ∈ C1 × · · · × Cn and 1 ≤ i < j ≤ n:

– φi
C[j:I][i:] = φj

C[i:I][j:]

– φj
C[i:I][j:P,Q] ◦ (φi

C[j:P][i:] ⊗ φi
C[j:Q][i:]) = φi

C[j:P⊗Q][i:] ◦ ι

– φi
C[j:I][i:P,Q] ◦ (φj

C[i:P][j:] ⊗ φj
C[i:Q][j:]) = φj

C[i:P⊗Q][j:] ◦ ι

– φj
C[i:X⊗Y][j:P,Q] ◦ (φi

C[j:P][i:X,Y] ⊗ φi
C[j:Q][i:X,Y]) = φi

C[j:P⊗Q][i:X,Y] ◦
(φj

C[i:X][j:P,Q] ⊗ φj
C[i:Y][j:P,Q]) ◦ τ .

We note that a symmetric lax monoidal multifunctor of type () → D is just an
object in D, because all natural transformations vanish and only the functor of
type 1 → D remains.

Example 4. Let us see how the definition of a binary symmetric lax monoidal
multifunctor M : (C,C) → C is unfolded. It consists of a functor M : C×C → C

and the following natural transformations:

φ1
C : I → M(I, C), φ1

X,Y,C : M(X,C) ⊗ M(Y,C) → M(X ⊗ Y,C)

φ2
C : I → M(C, I), φ2

C,X,Y : M(C,X) ⊗ M(C, Y) → M(C,X ⊗ Y)

such that

1. For each C ∈ C, (M(−, C), φ1
C , φ1

−,=,C) and (M(C,−), φ2
C , φ2

C,−,=) are sym-
metric lax monoidal functors of type C → C.

2. The following coherence axioms holds:

φ1
I = φ2

I , φ1
C⊗C′ ◦ ι = φ2

I,C,C′ ◦ (φ1
C ⊗ φ1

C′), φ2
C⊗C′ ◦ ι = φ1

C,C′,I ◦ (φ2
C ⊗ φ2

C′)

φ2
C⊗C′,D,D′ ◦ (φ1

C,C′,D ⊗ φ1
C,C′,D′) = φ1

C,C′,D⊗D′ ◦ (φ2
C,D,D′ ⊗ φ2

C′,D,D′) ◦ τ

We will later use the following binary symmetric lax monoidal multifunctors.
Let R be a partially ordered semiring and C be a symmetric monoidal category.

1. The multiplication (∗) is a symmetric lax monoidal multifunctor of type
(R+, R+) → R+.

2. The evaluation functor ev : [C,C]l × C → C extends to a symmetric lax
monoidal multifunctor of type ([C,C]l,C) → C.

3. The functor composition (◦) extends to a symmetric lax monoidal multifunc-
tor of type ([C,C]l, [C,C]l) → [C,C]l.

Note that (∗) is symmetric strict monoidal in each argument, while (◦), ev are
symmetric strict monoidal in the first argument, and symmetric lax monoidal in
the second argument.

118 S. Katsumata

Next, for symmetric lax monoidal multifunctors (F, φ) : (C1, · · · ,Cn) → D

and (Gi, γ(i)) : (Bi,1, · · · ,Bi,mi
) → Ci (1 ≤ i ≤ n), we define their multi-

composition. First, we define a bijection (/) : {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} →
{1, · · · ,

∑
1≤i≤n mi}, and represent a number in the latter set as the pair of num-

bers uniquely determined by (/) in the former set. Then the multicomposition
is given by the following (H, η):

H = F ◦ (G1 × · · · × Gn)

η
i/j

(B1,··· ,Bn)[i/j:] = F ((GB1, · · · , GBn)[i : γ(i)
j
Bi[j:]

] ◦ φ
i
(GB1,··· ,GBn)[i:]

η
i/j

(B1,··· ,Bn)[i/j:X,Y] = F ((GB1, · · · , GBn)[i : γ(i)
j
Bi[j:X,Y]] ◦ φ

i
(GB1,··· ,GBn)[i:G(Bi[j:X]),G(Bi[j:Y])]

Theorem 3. Symmetric monoidal categories, symmetric lax monoidal multi-
functors, and the above multi-composition form a multicategory MSMCl.

Proof (Proof sketch). To check that symmetric lax monoidal multifunctors are
closed under multicomposition, the key case is when n = 2,m1 = m2 = 1 and
n = 1,m1 = 2.

In MSMCl we consider monoids and monoid actions. A monoid is a tuple
(C, U : () → C,M : (C,C) → C) of a symmetric monoidal category C and
symmetric lax monoidal multifunctors U,M such that

Id = M ◦ (Id, U), Id = M ◦ (U, Id), M ◦ (Id,M) = M ◦ (M, Id).

An action of a monoid (C, U,M) on a symmetric monoidal category D is a
symmetric lax monoidal multifunctor A : (C,D) → D such that

A ◦ (U, Id) = Id, A ◦ (Id, A) = A ◦ (M, Id).

By unfolding the definition, a monoid (C, U,M) in MSMCl equips C with an
additional strict monoidal structure (U,M). The argument-wise symmetric lax
monoidal structure on M becomes a lax distributivity (see Example 4). Thus we
call a monoid in MSMCl a lax distributive strict rig category. It has a smaller
set of coherence axioms than the one given by Laplaza in [15], thanks to the
strictness of (U,M).

Example 5 (Continued from Example 4). (R+, 1, ∗) and ([C,C]l, Id, ◦) are both
lax distributive strict rig categories. Both monoids acts on themselves. The latter
monoid acts on C with the evaluation functor ev.

6 Graded Linear Exponential Comonads as Vertical
Monoid Homomorphisms

We now extend the double category SMC of Grandis and Paré by replacing
horizontal morphisms with symmetric lax monoidal multifunctors. The concept
of 2-cells in SMC is also replaced by prisms — the reason of the name is because
they are placed in the middle of the space surrounded by two horizontal multi-
functors and vertical morphisms. Such a prism is defined to be a natural trans-
formation that is a 2-cell of SMC in each argument.

A Double Category Theoretic Analysis 119

Definition 3. Let F : (C1, · · · ,Cn) → D and G : (E1, · · · ,En) → F be symmet-
ric lax monoidal multifunctors and Vi : Ci → Ei (1 ≤ i ≤ n) and W : D → F be
symmetric colax monoidal functors. A prism α of type (V1, · · · , Vn) → W : F →
G, which is depicted as

(C1, · · · ,Cn) F ��

(V1,··· ,Vn)

��
⇓α

D

W

��
(E1, · · · ,En)

G
�� F

is a natural transformation α : W ◦ F → G ◦ (V1 × · · · × Vn) such that for each
C ∈ ∏n

i=1 Ci and 1 ≤ i ≤ n, αC[i:−] is a 2-cell of the following type in the double
category SMC:

Ci

⇓αC[i:−]

F (C[i:−]) ��

Vi

��

D

W

��
Ei

G((V1C1,··· ,VnCn)[i:−])
�� F

We note that when n = 0, a prism α : () → W : F → G is simply a morphism
α : WF → G in F.

Proposition 2. Let D : R+ → [C,C]l be a symmetric colax monoidal functor
and δ be a prism of type (D,D) → D : (∗) → (◦), where (∗) and (◦) are
symmetric lax monoidal multifunctors appeared in Example 4. Then for each
r ∈ R, δr,− and δ−,r are 2-cells of the following type in SMC:

R+

D

��

r∗− ��

⇓δr,−

R+

D

��

R+

D

��

−∗r ��

⇓δ−,r

R+

D

��
[C,C]l

Dr◦−
�� [C,C]l [C,C]l −◦Dr

�� [C,C]l

Like double categories, composition of prisms can be done in two directions.
Consider the following prisms (1 ≤ i ≤ n).

(Bi,1, · · · ,Bi,mi
)

Gi ��

(Ui,1,··· ,Ui,mi
)

��
⇓γi

Ci

Vi

��

(C1, · · · ,Cn) F ��

(V1,··· ,Vn)

��
⇓α

D

W

��
(B′

i,1, · · · ,B′
i,mi

)
G′

i ��

(U ′
i,1,··· ,U ′

i,mi
)

��
⇓δi

C
′
i

Vi

��

(C′
1, · · · ,C′

n) F ′
��

(V ′
1 ,··· ,V ′

n)

��
⇓β

D
′

W ′

��
(B′′

i,1, · · · ,B′′
i,mi

)
G′′

i

�� C′′
i (C′′

1 , · · · ,C′′
n)

F ′′
�� D′′

120 S. Katsumata

Then define vertical composition and horizontal multicomposition of prisms
by the following (ordinary) natural transformations:

β � α = (β ◦ (V1 × · · · × Vn)) • (W ′ ◦ α)
α � (γ1, · · · , γn) = (F ′ ◦ (γ1 × · · · × γn)) • (α ◦ (G1 × · · · × Gn))

where • on the right hand side is the vertical composition of natural transfor-
mations.

Proposition 3. In the above setting,

1. β � α is a prism of type (V ′
1 ◦ V1, · · · , V ′

n ◦ Vn) → W ′ ◦ W : F → F ′′.
2. α � (γ1, · · · , γn) is a prism of type (U1,1, · · · , Un,mn

) → W : F ◦
(G1, · · · , Gn) → F ′ ◦ (G′

1, · · · , G′
n).

3. The interchange law holds:

(β � (δ1, · · · , δn)) � (α � (γ1, · · · , γn)) = (β � α) � (δ1 � γ1, · · · , δn � γn).

Definition 4. Let (C, U,M), (D, U ′,M ′) be monoids in MSMCl. A vertical
monoid homomorphism consists of a symmetric colax monoidal functor A : C →
D and prisms ε : () → A : U → U ′ and δ : (A,A) → A : M → M ′:

()

⇓ε

U �� C

⇓δA

��

(C,C)M��

(A,A)

��
()

U ′
�� D (D,D)

M ′
��

such that the following prism equalities hold:

δ � (id, ε) = id, δ � (ε, id) = id, δ � (id, δ) = δ � (δ, id).

The above prism equalities amounts to the following equality of natural trans-
formations:

M ′(AX, ε) ◦ δX,U = id M ′(ε, AX) ◦ δU,X = id
M ′(AX, δY,Z) ◦ δX,M(Y,Z) = M ′(δX,Y , AZ) ◦ δM(X,Y),Z

With this concept, we can concisely capture R-graded linear exponential
comonads:

Theorem 4. There is a bijective correspondence between

1. A vertical monoid homomorphism (D, ε, δ) from (R+, 1, ∗) to ([C,C]l, Id, ◦).
2. An R-graded linear exponential comonad on C.

Vertical monoid homomorphisms vertically compose. Therefore we can
extend a graded linear exponential comonad (as a vertical monoid homomor-
phism) by stacking vertical monoid homomorphisms.

A Double Category Theoretic Analysis 121

Proposition 4. Let R,S be partially ordered semirings. Then a vertical monoid
homomorphism from (R+, 1R, ∗R) to (S+, 1S , ∗S) bijectively corresponds to a
monotone function h : (R,≤R) → (S,≤S) such that h(

∑
R ri) ≤ ∑

S h(ri) and
h(

∏
R ri) ≤ ∏

S h(ri) (which we call colax homomorphism).

Proposition 5. Let F � U : C → D be a symmetric lax monoidal adjunction.
Then the functor V F
U defined by V F
UH = F ◦ H ◦ U is a vertical monoid
homomorphism from ([C,C]l, Id, ◦) to ([D,D]l, Id, ◦).

Proof. Let F � U : C → D be a symmetric lax monoidal adjunction. From
Kelly’s doctrinal adjunction, F is symmetric strong monoidal, hence so is F ◦ −
in the following diagram:

V F
U = [C,C]l
F◦− �� [C,D]l

−◦U �� [D,D]l

Next, −◦U above is always symmetric strict monoidal. By composing them,
we obtain that V F
U is symmetric strong, hence colax monoidal. We next intro-
duce prisms (ε, δ) of the following type:

()

⇓ε

Id �� [C,C]l

⇓δV F�U

��

([C,C]l, [C,C]l)
◦��

(V F�U ,V F�U)

��
()

Id
�� [D,D]l ([D,D]l, [D,D]l)◦

��

We define ε to be the counit of the adjunction F � U , which is monoidal natural,
and δ be the following natural transformation:

δH1,H2 = V F
U (H1 ◦ η ◦ H2) : V F
U (H1 ◦ H2) → V F
UH1 ◦ V F
UH2

It is routine to check that this satisfies the axioms of prism. ��
Theorem 5. Let R be a partially ordered semiring and D be an R-graded linear
exponential comonad on a symmetric monoidal category C. We moreover let S
be another partially ordered semiring, h : S → R be a colax homomorphism and
F � U : C → D be a symmetric lax monoidal adjunction. Then the following
composite of vertical monoid homomorphisms is an S-graded linear exponential
comonad on D.

(S+, 1S , ∗S) h �� (R+, 1R, ∗R) D �� ([C,C]l, IdC, ◦) V F�U
�� ([D,D]l, IdD, ◦)

We call the above composite the extension of D with F � U and h.

7 From Monoid Actions to Graded Comonoid-Coalgebras

Let (D, ε, δ) : (R+, 1, ∗) → ([C,C]l, Id, ◦) be an R-graded linear exponen-
tial comonad as a vertical monoid homomorphism. The prism equations in

122 S. Katsumata

Definition 4 suggests that the vertical monoid homomorphism itself can be seen
as a monoid. We can thus consider monoid actions of (D, ε, δ): it consists of a
prism

(R+, R+)

(D,A)

��

∗ ��

⇓a

R+

A

��
([C,C]l,C)

ev
�� C

such that the following prism equations hold:

a � (δ, id) = a � (id, a), a � (ε, id) = id.

We note that this makes sense because (∗) and ev are also monoid actions in
MSMCl; see Example 5. By unfolding this definition, we obtain the following
structure, which we name graded comonoid-coalgebra.

Definition 5. Let R be a partially ordered semiring. An R-graded comonoid-
coalgebra of an R-graded linear exponential comonad (D,w, c, ε, δ) on a sym-
metric monoidal category C is a tuple (A, a, u, o) such that

– (A, u, o) : R+ → C is a symmetric colax monoidal functor.
– ar,r′ : A(r ∗ r′) → D(r)(A(r′)) is a natural transformation.

They satisfy the following six equational axioms:

A(r ∗ s ∗ t)
ar,s∗t ��

ar∗s,t

��

D(r)(A(s ∗ t))

D(r)(as,t)

��
D(r ∗ s)(A(t))

δr,s,A(t)

�� D(r)(D(s)(A(t)))

A(1 ∗ t)
a1,t ��

���
���

���
��

���
���

���
��

D(1)(A(t))

εA(t)

��
A(t)

A(0)

u

��

A(0 ∗ r)

a0,r

��
D(0)(A(r))

wA(r)

��
I I

A(0)

u

��

A(r ∗ 0)

ar,0

��
D(r)(A(0))

D(r)(u)

��
I

mr

�� D(r)(I)

A(s ∗ r + t ∗ r)

os∗r,t∗r

��

A((s + t) ∗ r)

as+t,r

��
A(s ∗ r) ⊗ A(t ∗ r)

as,r⊗at,r

��

D(s + t)(A(r))

cs,t,A(r)

��
D(s)(A(r)) ⊗ D(t)(A(r)) D(s)(A(r)) ⊗ D(t)(A(r))

A Double Category Theoretic Analysis 123

A(r ∗ s + r ∗ t)

or∗s,r∗t

��

A(r ∗ (s + t))

ar,s+t

��
A(r ∗ s) ⊗ A(r ∗ t)

ar,s⊗ar,t

��

D(r)(A(s + t))

D(r)(os,t)

��
D(r)(A(s)) ⊗ D(r)(A(t))

mr,A(s),A(t)
�� D(r)(A(s) ⊗ A(t))

A morphism from an R-graded comonoid-coalgebra (A, a, u, o) to another
(B, b, v, p) is a monoidal natural transformation h : (A, u, o) → (B, v, p) such
that h satisfies:

A(r ∗ s)
hr∗s ��

ar,s

��

B(r ∗ s)

br,s

��
Dr(As)

Drhs

�� Dr(Bs)

We write C(C,D) for the category of R-graded comonoid-coalgebras of D.

Proposition 6. Let R be a partially ordered semiring and (D,w, c, ε, δ) be an
R-graded linear exponential comonad on a symmetric monoidal category C. The
following gives a symmetric monoidal structure on C(C,D):

I = (İ, (λr, s . mr), idI, (λr, s . ι−1))

(A, a, u, o) ⊗ (B, b, v, p)

= (A ⊗̇ B, λr, r′ . mr,Ar′,Br′ ◦ (ar,r′ ⊗ br,r′), ι ◦ (u ⊗ v), λr, r′ . τ ◦ (or,r′ ⊗ pr,r′))

(f ⊗ g)r = fr ⊗ gr

(λA)r = λAr, (ρA)r = ρAr, (αA,B,C)r = αAr,Br,Cr, (σA,B)r = σAr,Br

When R = 1, The category C(C,D) reduces to the category of Eilenberg-
Moore coalgebras of the non-graded linear exponential comonad.

Theorem 6. Let (D,w, c, ε, δ) be a 1-graded linear exponential comonad on a
symmetric monoidal category C. Then the category C(C,D) is strong monoidally
isomorphic to the category C

D of Eilenberg-Moore coalgebras of the comonad
(D, ε, δ).

Like C
D, there is a symmetric lax monoidal adjunction of the following type:

C(C,D)
F ��⊥ C

U
��

but this itself is not enough to recover D — D takes two arguments, while the
composite F ◦U is only equal to the symmetric lax monoidal comonad D1 on C.

124 S. Katsumata

The category C(C,D) actually carries an R-twist T , which acts on comonoid-
coalgebras as follows:

Tr(A, · · ·) = (A(− ∗ r), · · ·),

and D is recovered as the extension of T with the adjunction F � U (Theorem 5).

Theorem 7. Let R be a partially ordered semiring and (D,w, c, ε, δ) be an R-
graded linear exponential comonad on a symmetric monoidal category C.

1. The functor F : C(C,D) → C given by F (A, a, u, o) = A1 and Fh = h1 is
symmetric strict monoidal, and has a symmetric lax monoidal right adjoint U :
C → C(C,D), whose object part is given by UA = (λr .DrA, λr, r′ . δr,r′,A, wA,
λr, r′ . cr,r′,A).

2. The following data give an R-twist T on C(C,D):

TrA = (λs . A(s ∗ r), λs, s′ . as,s′∗r, u, λs, s′ . os∗r,s′∗r), (Trh)t = ht∗r

(mT
r)t = idI, (mT

r,A,B)t = idA(t∗r)⊗B(t∗r), (wT
A)t = u, (cT

r,s,A)t = ot∗r,t∗s.

Here, A = (A, a, u, o) and B are R-graded comonoid coalgebras. From the
definition of twists, εT , δT are identities.

3. The extension of D with F � U (Theorem 5) coincides with the R-graded
linear exponential comonad D.

The following classic result [1, Theorem 6-1] can be reproved by Theorem 7.

Corollary 1. Let C be a symmetric monoidal category and Let D be a non-
graded linear exponential comonad on C. The canonical symmetric monoidal
structure on the category C

D of Eilenberg-Moore coalgebras of D is cartesian.

Proof. From Theorem 1, D is a 1-graded linear exponential comonad on C.
Therefore C(C,D) has a 1-twist by Theorem 7-3. Therefore the symmetric
monoidal structure of C(C,D) is cartesian by Theorem 2. Finally, C(C,D)
is strong monoidally isomorphic to C

D by Theorem 6, hence the symmetric
monoidal structure of CD is also cartesian. ��

We show the finality of the category of graded comonoid-coalgebras. Let R be
a partially ordered semiring and D be an R-graded linear exponential comonad
on a symmetric monoidal category C. We define a resolution of D to be a pair of
a symmetric lax monoidal adjunction J � K : E → C and an R-twist (S,wS , cS)
on E such that the extension of S with J � K is equal to D. Then the following
set of data becomes a strong monoidal functor (M,mM ,mM

E,E′) : E → C(C,D):

ME = (λr . J(Sr)E, λr, r
′

. J(Sr)η
J�K
Sr′E , (m

J
)
−1 ◦ w

S
E , λr, r

′
. (m

J
SrE,Sr′E)

−1 ◦ Jc
S
r,r′,E)

(Mf)r = J(Sr)f, (m
M

)r = J(m
S
r) ◦ m

J
, (m

M
E,E′)r = J(m

S
r,E,E′) ◦ m

J
SrE,SrE′

(recall that Sr, J are both symmetric strong monoidal).

A Double Category Theoretic Analysis 125

Theorem 8. The above M is the unique symmetric strong monoidal functor
such that:

1. Equality of symmetric lax monoidal functors M ◦ K = U and F ◦ M = J
hold.

2. Let M∗ = − ◦ M and M∗ = M ◦ − be induced symmetric strict (resp. strong)
monoidal functors. Then the following square of symmetric colax monoidal
functors commutes.

R+ S ��

T

��

[E,E]l

M∗
��

[C(C,D), C(C,D)]l
M∗

�� [E, C(C,D)]l

8 Conclusion

We have given a concise characterization of graded linear exponential comonad
as a vertical monoid homomorphism (D, ε, δ) from (R+, 1, ∗) to ([C,C]l, Id, ◦).
This characterization is built upon a combination of the theory of symmetric lax
monoidal multifunctors and Grandis and Paré’s double category of symmetric
monoidal categories. After this characterization, we considered monoid actions,
and derived the concept of graded comonoid-coalgebras. The category of graded
comonoid-coalgebras are shown to give a resolution of the graded linear expo-
nential comonad D. These results are consistent with the theory of non-graded
linear exponential comonads developed in [1].

It remains to be seen if the category of graded comonoid-coalgebras can
be constructed in a purely double-category theoretic way. In non-graded case,
there are other type of categorical models of exponential modality using Lafont
category and Seely category [17]. Graded version of these categories are also an
interesting research topic.

Acknowledgment. The author is grateful to Marco Gaboardi, Naohiko Hoshino,
Flavien Breuvart, Soichiro Fujii and Paul-Andrè Melliès for many fruitful discussions.
This research was supported by JSPS KAKENHI Grant Number JP15K00014 and
ERATO Hasuo Metamathematics for Systems Design Project (No. JPMJER1603), JST.

References

1. Benton, N., Bierman, G., de Paiva, V., Hyland, M.: Linear λ-calculus and cate-
gorical models revisited. In: Börger, E., Jäger, G., Kleine Büning, H., Martini, S.,
Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 61–84. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-56992-8 6

2. Breuvart, F., Pagani, M.: Modelling coeffects in the relational semantics of linear
logic. In: Kreutzer, S. (ed.) 24th EACSL Annual Conference on Computer Science
Logic, CSL 2015, 7–10 September 2015, Berlin, Germany, vol. 41. LIPIcs, pp. 567–
581. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

https://doi.org/10.1007/3-540-56992-8_6

126 S. Katsumata

3. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coeffect
calculus. In: Shao [24], pp. 351–370

4. Dal Lago, U., Schöpp, U.: Functional programming in sublinear space. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 205–225. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11957-6 12

5. de Amorim, A.A., Gaboardi, M., Hsu, J., Katsumata, S., Cherigui, I.: A semantic
account of metric preservation. In: Castagna, G., Gordon, A.D. (eds.) Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, 18–20 January 2017, pp. 545–556. ACM (2017)

6. Durov, N.: New approach to Arakelov geometry. arXiv: 0704.2030 v1 [math AG],
April 2008

7. Gaboardi, M., Katsumata, S.-Y., Orchard, D.A., Breuvart, F., Uustalu, T.: Com-
bining effects and coeffects via grading. In: Garrigue, J., Keller, G., Sumii, E. (eds.)
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, 18–22 September 2016, pp. 476–489. ACM
(2016)

8. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao
[24], pp. 331–350

9. Girard, J.-Y., Scedrov, A., Scott, P.J.: Bounded linear logic: a modular approach
to polynomial-time computability. Theoret. Comput. Sci. 97(1), 1–66 (1992)

10. Grandis, M., Paré, R.: Adjoint for double categories. Cahiers de Topologie et
Gomtrie Diffrentielle Catgoriques 45(3), 193–240 (2004)

11. Hyland, M., Power, J.: Pseudo-commutative monads and pseudo-closed 2-
categories. J. Pure Appl. Algebra 175(1), 141–185 (2002). Special Volume cele-
brating the 70th birthday of Professor Max Kelly

12. Jacobs, B., Löding, C. (eds.): FoSSaCS 2016. LNCS, vol. 9634. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49630-5

13. Katsumata, S.: Parametric effect monads and semantics of effect systems. In:
Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, San Diego,
CA, USA, 20–21 January 2014, pp. 633–646. ACM (2014)

14. Lago, U.D., Gaboardi, M.: Linear dependent types and relative completeness. In:
2011 IEEE 26th Annual Symposium on Logic in Computer Science, pp. 133–142,
June 2011

15. Laplaza, M.L.: Coherence for distributivity. In: Kelly, G.M., Laplaza, M., Lewis, G.,
Mac Lane, S. (eds.) Coherence in Categories. LNM, vol. 281, pp. 29–65. Springer,
Heidelberg (1972). https://doi.org/10.1007/BFb0059555

16. Mac Lane, S.: Categories for the Working Mathematician. GTM, vol. 5. Springer,
New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

17. Melliès, P.-A.: Categorical semantics of linear logic. In: Interactive Models of
Computation and Program Behaviour, vol. 27. Panoramas et synthses. Société
Mathématique de France (2009)

18. Melliès, P.-A.: The parametric continuation monad. Math. Struct. Comput. Sci.
27(5), 651–680 (2017)

19. Milius, S., Pattinson, D., Schröder, L.: Generic trace semantics and graded monads.
In: Moss, L.S., Sobocinski, P. (eds.) 6th Conference on Algebra and Coalgebra in
Computer Science, CALCO 2015, 24–26 June 2015, Nijmegen, The Netherlands,
vol. 35. LIPIcs, pp. 253–269. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015)

https://doi.org/10.1007/978-3-642-11957-6_12
http://arxiv.org/abs/0704.2030
https://doi.org/10.1007/978-3-662-49630-5
https://doi.org/10.1007/BFb0059555
https://doi.org/10.1007/978-1-4757-4721-8

A Double Category Theoretic Analysis 127

20. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: unified static analysis of context-
dependence. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7966, pp. 385–397. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39212-2 35

21. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for dif-
ferential privacy. In: Hudak, P., Weirich, S. (eds.) Proceeding of the 15th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2010, Bal-
timore, Maryland, USA, 27–29 September 2010, pp. 157–168. ACM (2010)

22. Sato, T.: Approximate relational Hoare logic for continuous random samplings.
Electr. Notes Theor. Comput. Sci. 325, 277–298 (2016)

23. Schöpp, U.: Computation-by-interaction with effects. In: Yang, H. (ed.) APLAS
2011. LNCS, vol. 7078, pp. 305–321. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25318-8 23

24. Shao, Z. (ed.): ESOP 2014. LNCS, vol. 8410. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54833-8

25. Smirnov, A.L.: Graded monads and rings of polynomials. J. Math. Sci. 151(3),
3032–3051 (2008)

26. Street, R.: Two constructions on lax functors. Cahiers de Topologie et Géométrie
Différentielle Catégoriques (1972)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-25318-8_23
https://doi.org/10.1007/978-3-642-25318-8_23
https://doi.org/10.1007/978-3-642-54833-8
https://doi.org/10.1007/978-3-642-54833-8
http://creativecommons.org/licenses/by/4.0/

Depending on Session-Typed Processes

Bernardo Toninho1,2(B) and Nobuko Yoshida2

1 NOVA-LINCS, Departamento de Informática, FCT,
Universidade Nova de Lisboa, Lisbon, Portugal

2 Imperial College London, London, UK
b.toninho@imperial.ac.uk

Abstract. This work proposes a dependent type theory that combines
functions and session-typed processes (with value dependencies) through
a contextual monad, internalising typed processes in a dependently-typed
λ-calculus. The proposed framework, by allowing session processes to
depend on functions and vice-versa, enables us to specify and statically
verify protocols where the choice of the next communication action can
depend on specific values of received data. Moreover, the type theo-
retic nature of the framework endows us with the ability to internally
describe and prove predicates on process behaviours. Our main results
are type soundness of the framework, and a faithful embedding of the
functional layer of the calculus within the session-typed layer, showcasing
the expressiveness of dependent session types.

1 Introduction

Session types [14,24] are a typing discipline for communication protocols, whose
simplicity provides an extensible framework that allows for integration with a
variety of functional type features. One useful instance arising from the proof the-
oretic exploration of logical quantification is value dependent session types [25].
In this work, one can express properties of exchanged data in protocol speci-
fications separately from communication, but cannot describe protocols where
communication actions depend on the actual exchanged data (e.g. [16, Sect. 2]).
Moreover, it does not allow functions or values to depend on protocols (i.e. ses-
sions) or communication, thus preventing reasoning about dependent process
behaviours, exploring the proofs-as-programs paradigm of dependent type the-
ory, e.g. [8,17].

Our work addresses the limitations of existing formulations of session types
by proposing a type theory that integrates dependent functions and session
types using a contextual monad. This monad internalises a session-typed calculus
within a dependently-typed λ-calculus. By allowing session types to depend on
λ-terms and λ-terms to depend on typed processes (using the monad), we are
able to achieve heightened degrees of expressiveness. Exploiting the former direc-
tion, we enable writing actual data-dependent communication protocols. Exploit-
ing the latter, we can define and prove properties of linearly-typed objects (i.e.
processes) within our intuitionistic theory.
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 128–145, 2018.
https://doi.org/10.1007/978-3-319-89366-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_7&domain=pdf
http://orcid.org/0000-0002-0746-7514
http://orcid.org/0000-0002-3925-8557

Depending on Session-Typed Processes 129

To informally demonstrate how our type theory goes beyond the state of the
art in order to represent data-dependent protocols, consider the following session
type (we write τ ∧A for ∃x:τ.A where x does not occur in A and similarly τ ⊃ A
for ∀x:τ.A when x is not free in A), T � Bool ⊃ ⊕{t : Nat ∧ 1, f : Bool ∧ 1},
representable in existing session typing systems. The type T denotes a protocol
which first, inputs a boolean and then either emits the label t, which will be
followed by an output of a natural number; or emits the label f and a boolean.
The intended protocol described by T is to take the t branch if the received value
is t and the f branch otherwise, which we can implement as Q with channel z
typed by T as follows:

Q � z(x).case x of (true ⇒ z.t; z〈23〉.0, false ⇒ z.f; z〈true〉.0)

where z(x).P denotes an input process, z.t is a process which selects label t
and z〈23〉.P is an output on z. However, since the specification is imprecise,
process z(x).case x of (false ⇒ z.t; z〈23〉.0, true ⇒ z.f; z〈true〉.0) is also a type-
correct implementation of T that does not adhere to the intended protocol. Using
our dependent type system, we can narrow the specification to guarantee that
the desired protocol is precisely enforced. Consider the following definition of a
session-type level conditional where we assume inductive definition and depen-
dent pattern matching mechanisms (stype denotes the kind of session types):

if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

The type-level function above case analyses the boolean and produces its
first session type argument if the value is true and the second otherwise. We may
now specify a session type that faithfully implements the protocol:

T ′ � ∀x:Bool.ifx (Nat ∧ 1) (Bool ∧ 1)

A process R implementing such a type on channel z is given below:

R � z(x).case x of (true ⇒ z〈23〉.0, false ⇒ z〈true〉.0)

Note that if we flip the two branches of the case analysis in R, the session is no
longer typable with T ′, ensuring that the protocol is implemented faithfully.

The example above illustrates a simple yet useful data-dependent protocol.
When we further extend our dependent types with a process monad [29], where
{c ← P ← uj ; di} is a functional term denoting a process that may be spawned
by other processes by instantiating the names in uj and di, we can provide more
powerful reasoning on processes, enabling refined specifications through the use
of type indices (i.e. type families) and an ability to internally specify and verify
predicates on process behaviours. We also show that all functional types and
terms can be faithfully embedded in the process layer using the dependently-
typed sessions and process monads.

Contributions. Section 2 introduces our dependent type theory, augmenting
the example above by showing how we can reason about process behaviour using

130 B. Toninho and N. Yoshida

Fig. 1. Syntax of kinds, types, terms and processes

type families and dependently-typed functions (Sect. 2.3). We then establish the
soundness of the theory (Sect. 2.4). Section 3 develops a faithful embedding
of the dependent function space in the process layer (Theorem 3.4). Section 4
concludes with related work. Proofs, omitted definitions and additional examples
can be found in [32].

2 A Dependent Type Theory of Processes

This section introduces our dependent type theory combining session-typed pro-
cesses and functions. The theory is a generalisation of the line of work relat-
ing linear logic and session types [4,25,29], considering type-level functions and
dependent kinds in an intensional type theory with full mutual dependencies
between functions and processes. This generalisation enables us to express more
sophisticated session types (such as those of Sect. 1) and also to define and
prove properties of processes expressed as type families with proofs as their
inhabitants. We focus on the new rules and judgements, pointing the interested
reader to [5,25,26] for additional details on the base theory.

2.1 Syntax

The calculus is stratified into two mutually dependent layers of processes and
terms, which we often refer to as the process and functional layers, respectively.
The syntax of the theory is given in Fig. 1 (we use x, y for variables ranging over
terms and t for variables ranging over types).
Types and Kinds. The process layer is able to refer to terms of the functional
layer via appropriate (dependently-typed) communication actions and through
a spawn construct, allowing for processes encapsulated as functional values to
be executed. Dually, the functional layer can refer to the process layer via a con-
textual monad [29] that internalises (open) typed processes as opaque functional
values. This mutual dependency is also explicit in the type structure on several
axes: process channel usages are typed by a language of session types, which spec-
ifies the communication protocols implemented on the used channels, extended
with two dependent communication operations ∀x:τ.A and ∃x:τ.A, where τ is a
functional type and A is a session type in which x may occur. Moreover, we also
extend the language of session types with type-level λ-abstraction over terms

Depending on Session-Typed Processes 131

λx:τ.A and session types λt ::K.A (with the corresponding elimination forms
AM and AB). As we show in Sect. 1, the combination of these features allows
for a new degree of expressiveness, enabling us to construct session types whose
structure depends on previously communicated values.

The remaining session constructs are standard, following [5]: !A denotes a
shared session of type A that may be used an arbitrary (finite) number of times;
A � B represents a session offering to input a session of type A to then offer
the session behaviour B; A ⊗ B is the dual operator, denoting a session that
outputs A and proceeds as B; ⊕{li : Ai} and �{li : Ai} represent internal and
external labelled choice, respectively; 1 denotes the terminated session.

The functional layer is a λ-calculus with dependent functions Πx:τ.σ, type-
level λ-abstractions over terms and types (and respective type-level applica-
tions) and a contextual monadic type {uj :Bj ; di:Ai c:A}, denoting a (quoted)
process offering session c:A by using the linear sessions di:Ai and shared ses-
sions uj :Bj [29]. We often write {A} for {·; · c:A}. The kinding system for
our theory contains two base kinds type and stype of functional and session
types, respectively. Type-level λ-abstractions require dependent kinds Πx:τ.K
and Πt :: K.K ′, respectively. We note that the functional connectives form a
standard dependent type theory [11,21].
Terms and Processes. Terms include the standard λ-abstractions λx:τ.M ,
applications M N and variables x. In order to internalise processes within the
functional layer we make use of a monadic process wrapper, written {c ← P ←
uj ; di}. In such a construct, the channels c, uj and di are bound in P , where c is
the session channel being offered and uj and di are the session channels (linear
and shared, respectively) being used. We write {c ← P ← ε} when P does not
use any ambient channels, which we abbreviate to {P}.

The syntax of processes follows that of [5] extended with the monadic elim-
ination form c ← M ← uj ; di;Q. Such a process construct denotes a term M
that is to be evaluated to a monadic value of the form {c ← P ← uj ; di} which
will then be executed in parallel with Q, sharing with it a session channel c and
using the provided channels uj and di. We write c ← M ← ε;Q when no chan-
nels are provided for the execution of M and often abbreviate this to c ← M ;Q.
The process c〈d〉.P denotes the output of the fresh channel d along channel c
with continuation P , which binds d; (νc)P denotes channel hiding, restricting
the scope of c to P ; c(x).P denotes an input along c, bound to x in P ; c〈M〉.P
denotes the output of term M along c with continuation P ; !c(x).P denotes a
replicated input which spawns copies of P ; the construct c.case{li ⇒ Pi} codi-
fies a process that waits to receive some label lj along c, with continuation Pj ;
dually, c.l;P denotes a process that emits a label l along c and continues as P ;
[c ↔ d] denotes a forwarder between c and d, which is operationally implemented
as renaming; P | Q denotes parallel composition and 0 the null process.

2.2 A Dependent Typing System

We now introduce our typing system, defined by a series of mutually inductive
judgements, given in Fig. 2. We use Ψ to stand for a typing context for dependent

132 B. Toninho and N. Yoshida

Fig. 2. Typing judgements

λ-terms (i.e. assumptions of the form x:τ or t :: K, not subject to exchange), Γ
for a typing context for shared sessions of the form u:A (implicitly subject to
weakening and contraction) and Δ for a linear context of sessions x:A. The
context well-formedness judgments Ψ and Ψ ;Δ require that types and kinds
(resp. session types) in Ψ (resp. Δ) are well-formed. The judgments Ψ K,
Ψ τ ::K and Ψ A :: K codify well-formedness of kinds, functional and session
types (with kind K), respectively. Their rules are standard.

Typing. An excerpt of the typing rules for terms and processes is given in Figs. 3
and 4, respectively, noting that typing enforces types to be of base kind type
(respectively stype). The rules for dependent functions are standard, including
the type conversion rule which internalises definitional equality of types. We
highlight the introduction rule for the monadic construct, which requires the
appropriate session types to be well-formed and the process P to offer c:A when
provided with the appropriate session contexts.

In the typing rules for processes (Fig. 4), presented as a set of right and left
rules (the former identifying how to offer a session of a given type and the latter
how to use such a session), we highlight the rules for dependently-typed com-
munication and monadic elimination (for type-checking purposes we annotate
constructs with the respective dependent type – this is akin to functional type
theories). To offer a session c:∃x:τ.A we send a term M of type τ and then offer
a session c:A{M/x}; dually, to use such a session we perform an input along c,
bound to x in Q, warranting a use of c as a session of (open) type A. The rules
for the universal are dual. Offering a session c:∀x:τ.A entails receiving on c a
term of type τ and offering c:A. Using a session of such a type requires sending
along c a term M of type τ , warranting the use of c as a session of type A{M/x}.

The rule for the monadic elimination form requires that the term M be of
the appropriate monadic type and that the provided channels uj and yi adhere
to the typing specified in M ’s type. Under these conditions, the process Q may
then use the session c as session A. The type conversion rules reflect session type
definitional equality in typing.

Depending on Session-Typed Processes 133

Fig. 3. Typing for terms (Excerpt – See [32])

Fig. 4. Typing for processes (Excerpt – See [32])

Definitional Equality. The crux of any dependent type theory lies in its def-
initional equality. Type equality relies on equality of terms which, by including
the monadic construct, necessarily relies on a notion of process equality.

Our presentation of an intensional definitional equality of terms follows that
of [12], where we consider an intrinsically typed relation, including β and η
conversion (similarly for type equality which includes β and η principles for the
type-level λ-abstractions). An excerpt of the rules for term equality is given in
Fig. 5. The remaining rules are congruence rules and closure under symmetry,
reflexivity and transitivity. Rule (TMEqβ) captures the β-reduction, identifying
a λ-abstraction applied to an argument with the substitution of the argument in
the function body (typed with the appropriately substituted type). We highlight
rule (TMEq{}η), which codifies a general η-like principle for arbitrary terms of
monadic type: We form a monadic term that applies the monadic elimination
form to M , forwarding the result along the appropriate channel, which becomes
a term equivalent to M .

134 B. Toninho and N. Yoshida

Fig. 5. Definitional equality of terms (Excerpt – See [32])

Fig. 6. Definitional equality of processes (Excerpt – See [32])

Definitional equality of processes is summarised in Fig. 6. We rely on process
reduction defined below. Definitional equality of processes consists of the usual
congruence rules, (typed) reductions and the commutting conversions of linear
logic and η-like principles, which allows for forwarding actions to be equated with
the primitive syntactic forwarding construct. Commutting conversions amount
to sound observational equivalences between processes [22], given that session
composition requires name restriction (embodied by the (cut) rule): In rule
(PEqCC∀), either process can only be interacted with via channel c and so post-
poning actions of P to after the input on c (when reading the equality from left
to right) cannot impact the process’ observable behaviours. While P can in gen-
eral interact with sessions in Δ (or with Q), these interactions are unobservable
due to hiding in the (cut) rule.
Operational Semantics. The operational semantics for the λ-calculus is stan-
dard, noting that no reduction can take place inside monadic terms. The opera-
tional (reduction) semantics for processes is presented below where we omit clo-
sure under structural congruence and the standard congruence rules [4,25,29].
The last rule defines spawning a process in a monadic term.

c〈M〉.P | c(x).Q −→ P | Q{M/x} c〈x〉.P | c(x).Q −→ (νx)(P | Q)

!c(x).P | c〈x〉.Q −→ !c(x).P | (νx)(P | Q) c.case{li ⇒ Pi} | c.lj ; Q −→ Pj | Q (lj ∈ li)

(νc)(P | [c ↔ d]) −→ P{d/c} c ← {c ← P ← uj ; di} ← uj ; di; Q −→ (νc)(P | Q)

Depending on Session-Typed Processes 135

2.3 Example – Reasoning About Processes Using Dependent Types

The use of type indices (i.e. type families) in dependently typed frameworks
adds information to types to produce more refined specifications. Our framework
enables us to do this at the level of session types.

Consider a session type that “counts down” on a natural number (we assume
inductive definitions and dependent pattern matching in the style of [21]):

countDown :: Πx:Nat.stype
countDown (succ(n)) = ∃y:Nat.countDown(n)
countDown z = 1

The type family countDown(n) denotes a session type that emits exactly n num-
bers and then terminates. We can now write a (dependently-typed) function that
produces processes with the appropriate type, given a starting value:

counter : Πx:Nat.{countDown(x)}
counter (succ(n)) = {c ← c〈succ(n)〉. d ← counter(n); [d ↔ c]}
counter z = {c ← 0}

Note how the type of counter, through the type family countDown, allows us
to specify exactly the number of times a value is sent. This is in sharp contrast
with existing recursive (or inductive/coinductive [18,30]) session types, where
one may only specify the general iterative nature of the behaviour (e.g. “send a
number and then recurse or terminate”).

The example above relies on session type indexing in order to provide addi-
tional static guarantees about processes (and the functions that generate them).
An alternative way is to consider “simply-typed” programs and then prove that
they satisfy the desired properties, using the language itself. Consider a simply-
typed version of the counter above described as an inductive session type:

simpleCounterT :: stype
simpleCounterT = ⊕{dec : Nat ∧ simpleCounterT, done : 1}

There are many processes that correctly implement such a type, given that the
type merely dictates that the session outputs a natural number and recurses
(modulo the dec and done messages to signal which branch of the internal choice
is taken). A function that produces processes implementing such a session, mir-
roring those generated by the counter function above, is:

simpleCounter : Nat → {simpleCounterT}
simpleCounter (succ(n)) = {c ← c.dec; (νd)(d〈succ(n)〉.0 | d(x).c〈x〉.

d ← simpleCounter(n); [d ↔ c])}
simpleCounter z = {c ← c.done;0}

The process generated by simpleCounter, after emiting the dec label, spawns a
process in parallel that sends the appropriate number, which is received by the
parallel thread and then sent along the session c. Despite its simplicity, this

136 B. Toninho and N. Yoshida

example embodies a general pattern where a computation is spawned in parallel
(itself potentially spawning many other threads) and the main thread then waits
for the result before proceeding.

While such a process is typable in most session typing frameworks, our theory
enables us to prove that the counter implementation above indeed counts down
from a given number by defining an appropriate (inductive) type family, indexed
by monadic values (i.e. processes):

corrCount :: Πx:Nat.Πy:{simpleCounterT}.type
corrz : corrCount z {c ← c.done;0}
corrn : Πn:Nat.ΠP :{simpleCounterT}.corrCountnP →

corrCount (succ(n)) {c ← c.dec; c〈succ(n)〉.d ← P ; [d ↔ c]}
The type family corrCount, indexed by a natural number and a monadic value
implementing the session type simpleCounter, is defined via two constructors:
corrz, which specifies that a correct 0 counter emits the done label and terminates;
and corrn, which given a monadic value P that is a correct n-counter, defines
that a correct (n + 1)-counter emits n + 1 and then proceeds as P (modulo the
label emission bookkeeping).

The proof of correctness of the simpleCounter function above is no more than
a function of type Πn:Nat.corrCountn (simpleCounter(n)), defined below:

prf : Πn:Nat.corrCountn (simpleCounter(n))
prf z = corrz
prf (succ(n)) = corrn n (simpleCounter(n)) (prf n)

Note that in this scenario, the processes that index the corrCount type fam-
ily are not syntactically equal to those generated by simpleCounter, but rather
definitionally equal.

Typically, the processes that index such correctness specifications tend to
be distilled versions of the actual implementations, which often perform some
additional internal computation or communication steps. Since our notion of
definitional equality of processes includes reduction (and also commuting con-
versions which account for type-preserving shuffling of internal communication
actions [26]), the type conversion mechanism allows us to use the techniques
described above to generally reason about specification conformance.

2.4 Type Soundness of the Framework

The main goal of this section is to present type soundness of our framework
through a subject reduction result. We also show that our theory guarantees
progress for terms and processes. The development requires a series of auxiliary
results (detailed in [32]) pertaining to the functional and process layers which are
ultimately needed to produce the inversion properties necessary to establish sub-
ject reduction. We note that strong normalisation results for linear-logic based
session processes are known in the literature [3,26,30], even in the presence
of impredicative polymorphism, restricted corecursion and higher-order data.

Depending on Session-Typed Processes 137

Such results are directly applicable to our work using appropriate semantics
preserving type erasures.

In the remainder we often write Ψ J to stand for a well-formedness,
typing or definitional equality judgment of the appropriate form. Similarly for
Ψ ;Γ ;Δ J . We begin with the substitution property, which naturally holds for
both layers, noting that the dependently typed nature of the framework requires
substitution in both contexts, terms and in types.

Lemma 2.1 (Substitution). Let Ψ M : τ :

1. If Ψ, x:τ, Ψ ′ J then Ψ, Ψ ′{M/x} J {M/x};
2. If Ψ, x:τ, Ψ ′;Γ ;Δ J then Ψ, Ψ ′{M/x};Γ{M/x};Δ{M/x} J {M/x}
Combining substitution with a form of functionality for typing (i.e. that substi-
tution of equal terms in a well-typed term produces equal terms) and for equality
(i.e. that substitution of equal terms in a definitional equality proof produces
equal terms), we can establish validity for typing and equality, which is a form
of internal soundness of the type theory stating that judgments are consistent
across the different levels of the theory.

Lemma 2.2 (Validity for Typing). (1) If Ψ τ :: K or Ψ A :: K then
Ψ K; (2) If Ψ M : τ then Ψ τ :: type; and (3) If Ψ ;Γ ;Δ P :: z:A then
Ψ A :: stype.

Lemma 2.3 (Validity for Equality)

1. If Ψ M = N : τ then Ψ M : τ , Ψ N : τ and Ψ τ :: type
2. If Ψ τ = σ ::K then Ψ τ :: K, Ψ σ :: K and Ψ K
3. If Ψ A = B ::K then Ψ A :: K, Ψ B :: K and Ψ K
4. If Ψ K = K ′ then Ψ K and Ψ K ′

5. If Ψ ;Γ ;Δ P = Q :: z:A then Ψ ;Γ ;Δ P :: z:A, Ψ ;Γ ;Δ Q :: z:A and
Ψ A :: stype.

With these results we establish the appropriate inversion and injectivity prop-
erties which then enable us to show unicity of types (and kinds).

Theorem 2.4 (Unicity of Types and Kinds)

1. If Ψ M : τ and Ψ M : τ ′ then Ψ τ = τ ′ :: type
2. If Ψ τ ::K and Ψ τ :: K ′ then Ψ K = K ′

3. If Ψ ;Γ ;Δ P :: z:A and Ψ ;Γ ;Δ P :: z:A′ then Ψ A = A′ :: stype
4. If Ψ A :: K and Ψ A :: K ′ then Ψ K = K ′.

All the results above, combined with the process-level properties established
in [5,26,27] enable us to show the following:

Theorem 2.5 (Subject Reduction – Terms). If Ψ M : τ and M −→ M ′

then Ψ M ′ : τ .

Theorem 2.6 (Subject Reduction – Processes). If Ψ ;Γ ;Δ P :: z:A and
P −→ P ′ then ∃Q such that P ′ ≡ Q and Ψ ;Γ ;Δ Q :: z:A.

138 B. Toninho and N. Yoshida

Theorem 2.7 (Progress – Terms). If Ψ M : τ then either M is a value
or M −→ M ′.

As common in logical-based session type theories, typing enforces a strong
notion of global progress which states that closed processes that are waiting to
perform communication actions cannot get stuck (this relies on a notion of live
process, defined as live(P) iff P ≡ (νñ)(π.Q | R) for some process R, sequence of
names ñ and a non-replicated guarded process π.Q). We note that the restricted
typing for P is without loss of generality, due to the (cut) rule.

Theorem 2.8 (Progress – Processes). If Ψ ; ·; · P :: c:1 and live(P) then
∃Q such that P −→ Q.

3 Embedding the Functional Layer in the Process Layer

Having introduced our type theory and showcased some of its informal expres-
siveness in terms of the ability to specify and statically verify true data dependent
protocols, as well as the ability to prove properties of processes, we now develop
a formal expressiveness result for our theory, showing that the process level type
constructs are able to encode the dependently-typed functional layer, faithfully
preserving type dependencies.

Specifically, we show that (1) the type-level constructs in the functional
layer can be represented by those in the process layer combined with the con-
textual monad type, and (2) all term level constructs can be represented by
session-typed processes that exchange monadic values. Thus, we show that both
λ-abstraction and application can be eliminated while still preserving non-trivial
type dependencies. Crucially, we note that the monadic construct cannot be fully
eliminated due to the cross-layer nature of session type dependencies: In the pro-
cess layer, simply-kinded dependent types (i.e. types with kind stype) are of the
form ∀x:τ.A where τ is of kind type and A of kind stype (where x may occur).
Operationally, such a session denotes an input of some term M of type τ with a
continuation of type A{M/x}. Thus, to faithfully encode type dependencies we
cannot represent such a type with a non-dependently typed input (e.g. a type
of the form A � B).

3.1 The Embedding

A first attempt. Given the observation above, a seemingly reasonable option
would be to attempt an encoding that maintains monadic objects solely at the
level of type indices and then exploits Girard’s encoding [9] of function types
τ → σ as !�τ� → �σ�, which is adequate for session-typed processes [28]. Thus
a candidate encoding for the type Πx:τ.σ would be ∀x:{�τ�}.!�τ� � �σ�, where
�−� denotes our encoding on types. If we then consider the encoding at the level
of terms, typing dictates the following (we write �M�z for the process encoding

Depending on Session-Typed Processes 139

of M : τ , where z is the session channel along which one may observe the “result”
of the encoding, typed with �τ�):

�λx:τ.M�z � z(x).z(x′).�M�z

�M N�z � (νx)(�M�x | x〈{�N�y}〉.x〈x′〉.(!x′(y).�N�y | [x ↔ z])

However, this candidate encoding breaks down once we consider definitional
equality. Specifically, compositionality (i.e. the relationship between �M{N/x}�z

and the encoding of N substituted in that of M) requires us to relate �M{N/x}�z

with (νx)(�M�z{{�N�y}/x} | !x′(y).�N�y), which relies on reasoning up-to
observational equivalence of processes, a much stronger relation than our notion
of definitional equality. Therefore it is fundamentally impossible for such an
encoding to preserve our definitional equality, and thus it cannot preserve typ-
ing in the general case.

A faithful embedding. We now develop our embedding of the functional layer
into the process layer which is compatible with definitional equality. Our target
calculus is reminiscent of a higher-order (in the sense of higher-order processes
[23]) session calculus [19]. Our encoding �−� is inductively defined on kinds,
types, session types, terms and processes. As usual in process encodings of the
λ-calculus, the encoding of a term M is indexed by a result channel z, written
�M�z, where the behaviour of M may be observed.

Fig. 7. An embedding of dependent functions into processes

140 B. Toninho and N. Yoshida

The embedding is presented in Fig. 7, noting that the encoding extends
straightforwardly to typing contexts, where functional contexts Ψ, x:τ are
mapped to {�Ψ�}, x:{�τ�}. The mapping of base kinds is straightforward. Depen-
dent kinds Πx:τ.K rely on the monad for well-formedness and are encoded as
(session) kinds of the form Πx:{�τ�}.�K�. The higher-kinded types in the func-
tional layer are translated to the corresponding type-level constructs of the pro-
cess layer where all objects that must be type-kinded rely on the monad to satisfy
this constraint. For instance, λx:τ.σ is mapped to the session-type abstraction
λx:{�τ�}.�σ� and the type-level application τ M is translated to �τ� {�M�c}.
Given the observation above on embedding the dependent function type Πx:τ.σ,
we translate it directly to ∀x:{�τ�}.�σ�, that is, functions from τ to σ are mapped
to sessions that input processes implementing �τ� and then behave as �σ� accord-
ingly. The encoding for monadic types simply realises the contextual nature of
the monad by performing a sequence of inputs of the appropriate types (with
the shared sessions being of ! type).

The mutually dependent nature of the framework requires us to extend
the mapping to the process layer. Session types are mapped homomorphically
(e.g. �A � B� � �A� � �B�) with the exception of dependent inputs and out-
puts which rely on the monad, similarly for type-level functions and application.

The encoding of λ-terms is guided by the embedding for types: the abstrac-
tion λx:τ.M is mapped to an input of a term of type {�τ�} with continuation
�M�z; application M N is mapped to the composition of the encoding of M on a
fresh name x with the corresponding output of {�N�y}, which is then forwarded
to the result channel z; monadic expressions are translated to the appropriate
sequence of inputs, as dictated by the translation of the monadic type; and,
the translation of variables makes use of the monadic elimination form (since
the encoding enforces variables to always be of monadic type) combined with
forwarding to the appropriate result channel.

The mapping for processes is mostly homomorphic, using the monad con-
structor as needed. The only significant exception is the encoding for monadic
elimination which must provide the encoded monadic term �M�c with the neces-
sary channels. Since the session calculus does not support communication of free
names this is achieved by a sequence of outputs of fresh names combined with
forwarding of the appropriate channel. To account for replicated sessions we must
first trigger the replication via an output which is then forwarded accordingly.

We can illustrate our encoding via a simple example of an encoded function
(we omit type annotations for conciseness):

�(λx.x) (λx.λy.y)�z = (νc)(�λx.x�c | c〈{�λx.λy.y�w}〉.[c ↔ z])
= (νc)(c(x).y ← x; [y ↔ c] | c〈{w(x).w(y).d ← y; [d ↔ w]}〉.[c ↔ z])
−→+ z(x).z(y).d ← y; [d ↔ z] = �λx.λy.y�z

3.2 Properties of the Embedding

We now state the key properties satisfied by our embedding, ultimately resulting
in type preservation and operational correspondence. For conciseness, in the

Depending on Session-Typed Processes 141

statements below we list only the cases for terms and processes, omitting those
for types and kinds (see [32]). The key property that is needed is a notion of
compositionality, which unlike in the sketch above no longer falls outside of
definitional equality.

Lemma 3.1 (Compositionality)

1. Ψ ;Γ ;Δ �M{N/x}�z = �M�z{{�N�y}/x} :: z:�A{N/x}�

2. Ψ ;Γ ;Δ �P{M/x}� :: z:�A{M/x}� iff Ψ ;Γ ;Δ �P �{{�M�c}/x} :: z:�A�

{{�M�c}/x}.
Given the dependently typed nature of the framework, establishing the key

properties of the encoding must be done simultaneously (relying on some auxil-
iary results – see [32]).

Theorem 3.2 (Preservation of Equality)

1. If Ψ M = N : τ then {�Ψ�}; ·; · �M�z = �N�z :: z:�τ�

2. If Ψ ;Γ ;Δ P = Q :: z:A then {�Ψ�}; �Γ �; �Δ� �P � = �Q� :: z:�A�.

Theorem 3.3 (Preservation of Typing)

1. If Ψ M : τ then {�Ψ�}; ·; · �M�z :: z:�τ�

2. If Ψ ;Γ ;Δ P :: z:A then {�Ψ�}; �Γ �; �Δ� �P � :: z:�A�.

Theorem 3.4 (Operational Correspondence). If Ψ ;Γ ;Δ P :: z:A and
Ψ M : τ then:

1. (a) If P −→ P ′ then �P � −→+ Q with {�Ψ�}; �Γ �; �Δ� Q = �P ′
� :: z:�A� and

(b) if �P � −→ P ′ then P −→+ Q with {�Ψ�}; �Γ �; �Δ� P ′ = �Q� :: z:�A�

2. (a) If M −→ M ′ then �M�z −→+ N with {�Ψ�}; ·; · N = �M ′
�z :: z:�τ� and

(b) if �M�z −→ P then M −→ N with {�Ψ�}; ·; · �N�z = P :: z:�τ�.

In Theorem 3.4, (a) is commonly referred to as operational completeness,
with (b) establishing soundness. As exemplified above, our encoding satisfies a
very precise operational correspondence with the original λ-terms.

4 Related and Future Work

Enriching Session Types via Type Structure. Exploiting the linear logical
foundations of session types, [25] considers a form of value dependencies where
session types can state properties of exchanged data values, while the work [29]
introduces the contextual monad in a simply-typed setting. Our development
not only subsumes these two works, but goes beyond simple value dependencies
by extending to a richer type structure and integrating dependencies with the
contextual monad. Recently, [1] considers a non-conservative extension of linear
logic-based session types with sharing, allowing true non-determinism. Their
work includes dependent quantifications with shared channels, but their type
syntax does not include free type variables, so the actual type dependencies

142 B. Toninho and N. Yoshida

do not arise (see [1, 37:8]). Thus none of the examples in this paper can be
represented in [1]. The work [16] studies gradual session types. To the best of
our knowledge, the main example in [1, Sect. 2] is statically representable in our
framework as in the example of Sect. 1, where protocol actions depend on values
that are communicated (or passed as function arguments).

In the context of multiparty session types, the theory of multiparty indexed
session types is studied in [7], and implemented in a protocol description lan-
guage [20]. The main aim of these works is to use indexed types to represent
an arbitrary number of session participants. The work [31] extends [25] to mul-
tiparty sessions in order to treat value dependency across multiple participants.
Extending our framework to multiparty [15] or non-logic based session types [14]
is an interesting future topic.

Combining Linear and Dependent Types. Many works have studied the
various challenges of integrating linearity in dependent functional type theories.
We focus on the most closely related works. The work [6] introduced the Linear
Logical Framework (LLF), integrating linearity with the LF [11] type theory,
which was later extended to the Concurrent Logical Framework (CLF) [33],
accounting for further linear connectives. Their theory is representable in our
framework through the contextual monad (encompassing full intuitionistic linear
logic), depending on linearly-typed processes that can express dependently typed
functions (Sect. 3).

The work of [17] integrates linearity with type dependencies by extending
LNL [2]. Their work is aimed at reasoning about imperative programs using a
form of Hoare triples, requiring features that we do not study in this work such
has proof irrelevance and computationally irrelevant quantification. Formally,
their type theory is extensional which introduces significant technical differences
from our intensional type theory, such as a realisability model in the style of
NuPRL [10] to establish consistency.

Recently, [8] proposed an extension of LLF with first-class contexts (which
may contain both linear and unrestricted hypotheses). While the contextual
aspects of their theory are reminiscent of our contextual monad, their framework
differs significantly from ours, since it is designed to enable higher-order abstract
syntax (commonplace in the LF family of type theories), focusing on a type
system for canonical LF objects with a meta-language that includes contexts
and context manipulation. They do not consider additives since their integration
with first-class contexts can break canonicity.

While none of the above works considers processes as primitive, their tech-
niques should be useful for, e.g. developing algorithmic type-checking and inte-
grating inductive and coinductive session types based on [18,26,30].

Dependent Types and Higher-Order π-calculus. The work [35] studies a
form of dependent types where the type of processes takes the form of a mapping
Δ from channels x to channel types T representing an interface of process P . The
dependency is specified as Π(x:T)Δ, representing a channel abstraction of the
environment. This notion is extended to an existential channel dependency type
Σ(x:T)Δ to address fresh name creation [13,34]. Combining our process monad

Depending on Session-Typed Processes 143

with dependent types can be regarded as an “interface” which describes explicit
channel usages for processes. The main differences are (1) our dependent types
are more general, treating full dependent families including terms and processes
in types, while [13,34,35] study only channel dependency to environments (i.e.
neither terms nor processes appear in types, only channels); and (2) our calculus
emits only fresh names, not needing to handle the complex scoping mechanism
treated in [13,34]. In this sense, the process monad provides an elegant framework
to handle higher-order computations and assign non-trivial types to processes.

Acknowledgements. The authors would like to thank the anonymous reviews
for their comments and suggestions. This work is partially supported by EPSRC
EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1 and
NOVA LINCS (UID/CEC/04516/2013).

References

1. Balzer, S., Pfenning, F.: Manifest sharing with session types. PACMPL 1(ICFP),
37:1–37:29 (2017)

2. Benton, P.N.: A mixed linear and non-linear logic: proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0022251

3. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 330–349. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6 19

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

5. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(3), 367–423 (2016)

6. Cervesato, I., Pfenning, F.: A linear logical framework. Inf. Comput. 179(1), 19–75
(2002)

7. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Log. Methods Comput. Sci. 8(4), 1–46 (2012). https://doi.org/10.2168/
LMCS-8(4:6)2012

8. Georges, A.L., Murawska, A., Otis, S., Pientka, B.: LINCX: a linear logical frame-
work with first-class contexts. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp.
530–555. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-
1 20

9. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
10. Harper, R.: Constructing type systems over an operational semantics. J. Symbolic

Comput. 14(1), 71–84 (1992)
11. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. J. ACM

40(1), 143–184 (1993)
12. Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type

theory. ACM Trans. Comput. Log. 6(1), 61–101 (2005)
13. Hennessy, M., Rathke, J., Yoshida, N.: safeDpi: a language for controlling mobile

code. Acta Inf. 42(4–5), 227–290 (2005)

https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/978-3-662-54434-1_20
https://doi.org/10.1007/978-3-662-54434-1_20

144 B. Toninho and N. Yoshida

14. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

16. Igarashi, A., Thiemann, P., Vasconcelos, V.T., Wadler, P.: Gradual session types.
PACMPL 1(ICFP), 38:1–38:28 (2017)

17. Krishnaswami, N.R., Pradic, P., Benton, N.: Integrating linear and dependent
types. In: POPL 2015, pp. 17–30 (2015)

18. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types.
In: ICFP 2016, pp. 434–447 (2016)

19. Mostrous, D., Yoshida, N.: Two session typing systems for higher-order mobile
processes. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 321–335.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73228-0 23

20. Ng, N., Yoshida, N.: Pabble: parameterised scribble. Serv. Oriented Comput. Appl.
9(3–4), 269–284 (2015)

21. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology (2007)

22. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for
session-based concurrency. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
539–558. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-
2 27

23. Sangiorgi, D., Walker, D.: The Pi-calculus: A Theory of Mobile Processes. C.U.P,
Cambridge (2001)

24. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

25. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: PPDP 2011, pp. 161–172 (2011)

26. Toninho, B.: A logical foundation for session-based concurrent computation. Ph.D.
thesis, Carnegie Mellon University and New University of Lisbon (2015)

27. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. Technical report CMU-CS-11-139, School of Computer Science,
Carnegie Mellon University (2011)

28. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. In:
Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28729-9 23

29. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 20

30. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-
typed processes. In: Maffei, M., Tuosto, E. (eds.) TGC 2014. LNCS, vol. 8902, pp.
159–175. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45917-
1 11

31. Toninho, B., Yoshida, N.: Certifying data in multiparty session types. J. Log.
Algebraic Methods Program. 90(C), 61–83 (2017)

https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-540-73228-0_23
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-662-45917-1_11
https://doi.org/10.1007/978-3-662-45917-1_11

Depending on Session-Typed Processes 145

32. Toninho, B., Yoshida, N.: Depending on session-typed processes. CoRR
abs/1801.08114 (2017). https://arxiv.org/abs/1801.08114

33. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work: the propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.)
TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24849-1 23

34. Yoshida, N.: Channel dependent types for higher-order mobile processes. In: Pro-
ceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2004, Venice, Italy, 14–16 January 2004, pp. 147–160
(2004)

35. Yoshida, N., Hennessy, M.: Assigning types to processes. Inf. Comput. 174(2),
143–179 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/1801.08114
https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1007/978-3-540-24849-1_23
http://creativecommons.org/licenses/by/4.0/

FabULous Interoperability for ML
and a Linear Language

Gabriel Scherer1,2(B), Max New1, Nick Rioux1, and Amal Ahmed1,3

1 Northeastern University, Boston, USA
maxnew@ccs.neu.edu, rioux.n@husky.neu.edu, A.Ahmed@northeastern.edu

2 Inria Saclay, Palaiseau, France
gabriel.scherer@inria.fr
3 Inria Paris, Paris, France

Abstract. Instead of a monolithic programming language trying to
cover all features of interest, some programming systems are designed
by combining together simpler languages that cooperate to cover the
same feature space. This can improve usability by making each part sim-
pler than the whole, but there is a risk of abstraction leaks from one
language to another that would break expectations of the users familiar
with only one or some of the involved languages.

We propose a formal specification for what it means for a given lan-
guage in a multi-language system to be usable without leaks: it should
embed into the multi-language in a fully abstract way, that is, its con-
textual equivalence should be unchanged in the larger system.

To demonstrate our proposed design principle and formal specification
criterion, we design a multi-language programming system that combines
an ML-like statically typed functional language and another language
with linear types and linear state. Our goal is to cover a good part of the
expressiveness of languages that mix functional programming and linear
state (ownership), at only a fraction of the complexity. We prove that the
embedding of ML into the multi-language system is fully abstract: func-
tional programmers should not fear abstraction leaks. We show examples
of combined programs demonstrating in-place memory updates and safe
resource handling, and an implementation extending OCaml with our
linear language.

1 Introduction

Feature accretion is a common trend among mature but actively evolving pro-
gramming languages, including C++, Haskell, Java, OCaml, Python, and Scala.
Each new feature strives for generality and expressiveness, and may provide a large
usability improvement to users of the particular problem domain or programming

Note: Due to severe space restrictions, many details have been omitted from this
presentation of our work. We strongly encourage the reader to consult the complete
version at https://arxiv.org/pdf/1707.04984.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 146–162, 2018.
https://doi.org/10.1007/978-3-319-89366-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_8&domain=pdf
https://arxiv.org/pdf/1707.04984

FabULous Interoperability for ML and a Linear Language 147

style it was designed to empower (e.g., XML documents, asynchronous commu-
nication, staged evaluation). But feature creep in general-purpose languages may
alsomake it harder for programmers tomaster the language as awhole, degrade the
user experience (e.g., leading to more cryptic error messages), require additional
work on the part of tooling providers, and lead to fragility in language implemen-
tations.

A natural response to increased language complexity is to define subsets
of the language designed for a better programming experience. For instance, a
subset can be easier to teach (e.g., “Core” ML1, Haskell 98 as opposed to GHC
Haskell, Scala mastery levels2); it can facilitate static analysis or decrease the
risk of programming errors, while remaining sufficiently expressive for the target
users’ needs (e.g., MISRA C, Spark/Ada); it can enforce a common style within
a company; or it can be designed to encourage a transition to deprecate some
ill-behaved language features (e.g., strict Javascript).

Once a subset has been selected, it may be the case that users write whole
programs purely in the subset (possibly using tooling to enforce that property),
but programs will commonly rely on other libraries that are not themselves imple-
mented in the same subset of the language. If users stay in the subset while using
these libraries, they will only interact with the part of the library whose interface
is expressible in the subset. But does the behavior of the library respect the expec-
tations of users who only know the subset? When calling a function from within
the subset breaks subset expectations, it is a sign of leaky abstraction.

How should we design languages with useful subsets that manage complexity
and avoid abstraction leaks?

We propose to look at this question from a different, but equivalent, angle:
instead of designing a single big monolithic language with some nicer subsets, we
propose to consider multi-language programming systems where several smaller
programming languages interact together to cover the same feature space. Each
language or sub-combination of languages is a subset, in the above sense, of the
multi-language, and there is a clear definition of abstraction leaks in terms of user
experience: a user who only knows some of the languages of the system should be
able to use the multi-language system, interacting with code written in the other
languages, without have their expectations violated. If we write a program in Java
and call a function that, internally, is implemented in Scala, there should be no
surprises—our experience should be the same as when calling a pure Java function.
Similarly, consider the subset of Haskell that does not contain IO (input-output as
a type-tracked effect): the expectations of a user of this language, for instance in
terms of valid equational reasoning, should not be violated by adding IO back to
the language—in the absence of the abstraction-leaking unsafePerformIO.

We propose a formal specification for a “no abstraction leaks” guarantee
that can be used as a design criterion to design new multi-language systems,
with graceful interoperation properties. It is based on the formal notion of full
abstraction which has previously been used to study the denotational semantics

1 https://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html.
2 http://www.scala-lang.org/old/node/8610.

https://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html
http://www.scala-lang.org/old/node/8610

148 G. Scherer et al.

of programming languages (Meyer and Sieber 1988; Milner 1977; Cartwright and
Felleisen 1992; Jeffrey and Rathke 2005; Abramsky, Jagadeesan, and Malacaria
2000), and the formal property of compilers (Ahmed and Blume 2008, 2011;
Devriese et al. 2016; New et al. 2016; Patrignani et al. 2015), but not for user-
facing languages. A compiler C from a source language S to a target language
T is fully abstract if, whenever two source terms s1 and s2 are indistinguishable
in S, their translations C(s1) and C(s2) are indistinguishable in T . In a multi-
language G + E formed of a general-purpose, user-friendly language G and a
more advanced language E—one that provides an escape hatch for experts to
write code that can’t be implemented in G—we say that E does not leak into G
if the embedding of G into the multi-language G + E is fully abstract.

To demonstrate that our formal specification is reasonable, we design a novel
multi-language programming system that satisfies it. Our multi-language λUL

combines a general-purpose functional programming language λU (unrestricted)
of the ML family with an advanced language λL (linear) with linear types and
linear state. It is less convient to program in λL’s restrictive type system, but
users can write programs in λL that could not be written in λU: they can use
linear types, locally, to enforce resource usage protocols (typestate), and they
can use linear state and the linear ownership discipline to write programs that
do in-place update to allocate less memory, yet remain observationally pure.

Consider for example the following mixed-language program. The blue frag-
ments are written in the general-purpose, user-friendly functional language, while
the red fragments are written in the linear language. The boundaries UL and
LU allow switching between languages. The program reads all lines from a file,
accumulating them in a list, and concatenating it into a single string when the
end-of-file (EOF) is reached.
let concat_lines path : String = UL(

loop (open LU(path)) LU(Nil)

where rec loop handle LU(acc : List String) =

match line handle with

| Next line LU(handle) -> loop handle LU(Cons line acc)

| EOF handle -> close handle; LU(rev_concat "\n" acc))

The linear type system ensures that the file handle is properly closed: removing
the close handle call would give a type error. On the other hand, only the parts
concerned with the resource-handling logic need to be written in the red linear
language; the user can keep all general-purpose logic (here, how to accumulate
lines and what to do with them at the end) in the more convenient general-
purpose blue language—and call this function from a blue-language program.
Fine-grained boundaries allow users to rely on each language’s strength and to
use the advanced features only when necessary.

In this example, the file-handle API specifies that the call to line, which reads
a line, returns the data at type ![String]. The latter represents how U values of
type String can be put into a lump type to be passed to the linear world where
they are treated as opaque blackboxes that must be passed back to the ML
world for consumption. For other examples, such as in-place list manipulation
or transient operations on an persistent data structure, we will need a deeper

FabULous Interoperability for ML and a Linear Language 149

form of interoperability where the linear world creates, dissects or manipulates
U values. To enable this, our multi-language supports translation of types from
one language to the other, using a type compatibility relation σ � σ between λU

types σ and λL types σ.
We claim the following contributions:

1. We propose a formal specification of what it means for advanced language
features to be introduced in a (multi-)language system without introducing a
class of abstraction leaks that break equational reasoning. This specification
captures a useful usability property, and we hope it will help us and others
design more usable programming languages, much like the formal notion of
principal types served to better understand and design type inference systems.

2. We design a simple linear language, λL, that supports linear state (Sect. 2).
This simple design for linear state is a contribution of its own. A nice prop-
erty of the language (shared by some other linear languages) is that the
code has both an imperative interpretation—with in-place memory update,
which provides resource guarantees—and a functional interpretation—which
aids program reasoning. The imperative and functional interpretations have
different resource usage, but the same input/output behavior.

3. We present a multi-language programming system λUL combining a core ML
language, λU (U for Unrestricted, as opposed to Linear) with λL and prove
that the embedding of the ML language λU in λUL is fully abstract (Sect. 3).
Moreover, the multi-language is designed to ensure that our full abstraction
result is stable under extension of the embedded ML language λU.

2 The λU and λL Languages

The unrestricted language λU is a run-of-the-mill idealized ML language with
functions, pairs, sums, iso-recursive types and polymorphism. It is presented in
its explicitly typed form—we will not discuss type inference in this work. The
full syntax is described in Fig. 1, and the typing rules in Fig. 2. The dynamic
semantics is completely standard. Having binary sums, binary products and iso-
recursive types lets us express algebraic datatypes in the usual way.

The novelty lies in the linear language λL, which we present in several steps.
As is common in λ-calculi with references, the small-step operational semantics
is given for a language that is not exactly the surface language in which programs

Fig. 1. Unrestricted language: syntax

150 G. Scherer et al.

Fig. 2. Unrestricted language: static semantics

are written, because memory allocation returns locations � that are not in the
grammar of surface terms. Reductions are defined on configurations, a local
store paired with a term in a slightly larger internal language. We have two
type systems, a type system on surface terms, that does not mention locations
and stores—which is the one a programmer needs to know—and a type system
on configurations, which contains enough static information to reason about the
dynamics of our language and prove subject reduction. Again, this follows the
standard structure of syntactic soundness proofs for languages with a mutable
store.

2.1 The Core of λL

Figure 3 presents the surface syntax of our linear language λL. For the syntactic
categories of types σ, and expressions e, the last line contains the constructions
related to the linear store that we only discuss in Sect. 2.2.

In technical terms, our linear type system is exactly propositional intuition-
istic linear logic, extended with iso-recursive types. For simplicity and because
we did not need them, our current system also does not have polymorphism or
additive/lazy pairs σ1 & σ2. Additive pairs would be a trivial addition, but poly-
morphism would require more work when we define the multi-language semantics
in Sect. 3.

In less technical terms, our type system can enforce that values be used linearly,
meaning that they cannot be duplicated or erased, they have to be deconstructed

FabULous Interoperability for ML and a Linear Language 151

Fig. 3. Linear language: surface syntax

exactly once. Only some types have this linearity restriction; others allow duplica-
tion and sharing of values at will. We can think of linear values as resources to be
spent wisely; for any linear value somewhere in a term, there can be only one way
to access this value, so we can interpret the language as enforcing an ownership
discipline where whoever points to a linear value owns it.

In particular, linear functions of type σ1 �σ2 must be called exactly once,
and their results must in turn be consumed – they can safely capture linear
resources. On the other hand, the non-linear, duplicable values are those at
types of the form !σ — the exponential modality of linear logic. If the term e has
duplicable type !σ, then the term copy e has type σ: this creates a local copy of
the value that is uniquely-owned by its receiver and must be consumed linearily.

This resource-usage discipline is enforced by the surface typing rules of λL,
presented in Fig. 4. They are exactly the standard (two-sided) logical rules of
intuitionistic linear logic, annotated with program terms. The non-duplicability
of linear values is enforced by the way contexts are merged by the inference
rules: if e1 is type-checked in the context Γ1 and e2 in Γ2, then the linear pair
〈e1, e2〉 is only valid in the combined context Γ1 � Γ2. The (�) operation is
partial; this combined context is defined only if the variables shared by Γ1 and
Γ2 are duplicable—their type is of the form !σ. In other words, a variable at a
non-duplicable type in Γ1 � Γ2 cannot possibly appear in both Γ1 and Γ2: it
must appear exactly once3.

The expression share e takes a term at some type σ and creates a “shared”
term, whose value will be duplicable. Its typing rule uses a context of the form !Γ ,
which is defined as the pointwise application of the (!) connectives to all the types
in Γ . In other words, the context of this rule must only have duplicable types: a
term can only be made duplicable if it does not depend on linear resources from
the context. Otherwise, duplicating the shared value could break the unique-
ownership discipline on these linear resources.

Finally, the linear isomorphism notation for fold and unfold in Fig. 4 defines
them as primitive functions, at the given linear function type, in the empty
context – using them does not consume resources. This notation also means
that, operationally, these two operations shall be inverses of each other. The
rules for the linear store type Box 1 σ and Box 0 are described in Sect. 2.2.

3 Standard presentations of linear logic force contexts to be completely distinct, but
have a separate rule to duplicate linear variables, which is less natural for program-
ming.

152 G. Scherer et al.

Fig. 4. Linear language: surface static semantics

Fig. 5. Internal linear language: typing and reduction (excerpt)

FabULous Interoperability for ML and a Linear Language 153

2.2 Linear Memory in λL

The surface typing rules for the linear store are given at the end of Fig. 4. The
linear type Box 1 σ represents a memory location that holds a value of type
σ. The type Box 0 represents a location that has been allocated, but does not
currently hold a value. The primitive operations to act on this type are given as
linear isomorphisms: new allocates, turning a unit value into an empty location;
conversely, free reclaims an empty location. Putting a value into the location and
taking it out are expressed by box and unbox, which convert between a pair of
an empty location and a value, of type (Box 0)⊗ σ, and a full location, of type
Box 1 σ.

For example, the following program takes a full reference and a value, and
swaps the value with the content of the reference:

The programming style following from this presentation of linear memory is func-
tional, or applicative, rather than imperative. Rather than insisting on the muta-
bility of references—which is allowed by the linear discipline—we may think of
the type Box 1σ as representing the indirection through the heap that is implicit
in functional programs. In a sense, we are not writing imperative programs with
a mutable store, but rather making explicit the allocations and dereferences hap-
pening in higher-level purely functional language. In this view, empty cells allow
memory reuse.

This view that Box 1 σ represents indirection through the memory sug-
gests we can encode lists of values of type σ by the type LinListσ

def=
μα.1 ⊕ Box 1 (σ⊗ α). The placement of the box inside the sum mirrors the fact
that empty list is represented as an immediate value in functional languages.
From this type definition, one can write an in-place reverse function on lists of
σ as follows:

Our linear language λL is a formal language that is not terribly convenient
to program directly. We will not present a full surface language in this work,
but one could easily define syntactic sugar to write the exact same function as
follows:

One can read this function as the usual functional rev append function on
lists, annotated with memory reuse information: if we assume we are the unique
owner of the input list and won’t need it anymore, we can reuse the memory
of its cons cells (given in this example the name l) to store the reversed list.

154 G. Scherer et al.

On the other hand, if you read the box and unbox as imperative operations, this
code expresses the usual imperative pointer-reversal algorithm.

This double view of linear state occurs in other programming systems with
linear state. It was recently emphasized in O’Connor et al. (2016), where the
functional point of view is seen as easing formal verification, while the imperative
view is used as a compilation technique to produce efficient C code from linear
programs.

2.3 Internal λL Syntax and Typing

To give a dynamic semantics for λL and prove it sound, we need to extend the
language with explicit stores and store locations. Indeed, the allocating term
new 〈〉 should reduce to a “fresh location” � allocated in some store s, and nei-
ther are part of the surface-language syntax. The corresponding internal typing
judgment is more complex, but note that users do not need to know about it to
reason about correctness of surface programs. The internal typing is essential for
the soundness proof, but also useful for defining the multi-language semantics
in Sect. 3.

We work with configurations (s | e), which are pairs of a store s and a term
e. Our internal typing judgment Ψ ;Γ �l s | e : σ checks configurations, not just
terms, and relies not only on a typing context for variables Γ but also on a store
typing Ψ , which maps the locations of the configuration to typing assumptions.

Unfortunately, due to space limits, we will not present this part of the type
system – which is not directly exposed to users of the language. See some exam-
ples of reduction rules in Fig. 5, and the long version of this work.

2.4 Reduction of Internal Terms

In the long version of this work we give a reduction relation between linear

configurations (s | e) L
↪→ (s′ | e′) and prove a subject reduction result.

Theorem 1 (Subject reduction for λL). If Ψ ;Γ �l s | e : σ and (s | e) L
↪→

(s′ | e′), then there exists a (unique) Ψ ′ such that Ψ ′;Γ �l s′ | e′ : σ.

3 Multi-language Semantics

To formally define our multi-language semantics we create a combined language
λUL which lets us compose term fragments from both λU and λL together, and
we give an operational semantics to this combined language. Interoperability is
enabled by specifying how to transport values across the language boundaries.

FabULous Interoperability for ML and a Linear Language 155

Multi-language systems in the wild are not defined in this way: both languages
are given a semantics, by interpretation or compilation, in terms of a shared lower-
level language (C, assembly, the JVM or CLR bytecode, or Racket’s core forms),
and the two languages are combined at that level. Our formal multi-language
description can be seen as a model of such combinations, that gives a specification
of the expected observable behavior of this language combination.

Another difference from multi-languages in the wild is our use of very fine-
grained language boundaries: a term written in one language can have its sub-
terms written in the other, provided the type-checking rules allow it. Most multi-
language systems, typically using Foreign Function Interfaces, offer coarser-
grained composition at the level of compilation units. Fine-grained composition
of existing languages, as done in the Eco project (Barrett et al. 2016), is difficult
because of semantic mismatches. In the full version of this work we demonstrate
that fine-grained composition is a rewarding language design, enabling new pro-
gramming patterns.

3.1 Lump Type and Language Boundaries

The core components the multi-language semantics are shown Fig. 6—the com-
munication of values from one language to the other will be described in the next
section. The multi-language λUL has two distinct syntactic categories of types,
values, and expressions: those that come from λU and those that come from λL.
Contexts, on the other hand, are mixed, and can have variables of both sorts.
For a mixed context Γ , the notation !Γ only applies (!) to its linear variables.

The typing rules of λU and λL are imported into our multi-language system,
working on those two separate categories of program. They need to be extended
to handle mixed contexts Γ instead of their original contexts Γ and Γ . In the
linear case, the rules look exactly the same. In the ML case, the typing rules
implicitly duplicate all the variables in the context. It would be unsound to
extend them to arbitrary linear variables, so they use a duplicable context !Γ .

To build interesting multi-language programs, we need a way to insert a
fragment coming from a language into a term written in another. This is done
using language boundaries, two new term formers LU(e) and UL(s :Ψ | e) that
inject an ML term into the syntactic category of linear terms, and a linear
configuration into the syntactic category of ML terms.

Of course, we need new typing rules for these term-level constructions, clar-
ifying when it is valid to send a value from λU into λL and vice versa. It would
be incorrect to allow sending any type from one language into the other—for
instance, by adding the counterpart of our language boundaries in the syntax
of types—since values of linear types must be uniquely owned so they cannot
possibly be sent to the ML side as the ML type system cannot enforce unique
ownership.

On the other hand, any ML value could safely be sent to the linear world. For
closed types, we could provide a corresponding linear type (1 maps to !1, etc.),
but an ML value may also be typed by an abstract type variable α, in which
case we can’t know what the linear counterpart should be. Instead of trying to

156 G. Scherer et al.

provide translations, we will send any ML type σ to the lump type [σ], which
embeds ML types into linear types. A lump is a blackbox, not a type translation:
the linear language does not assume anything about the behavior of its values—
the values of [σ] are of the form [v], where v : σ is an ML value that the linear
world cannot use. More precisely, we only propagate the information that ML
values are all duplicable by sending σ to ![σ].

The typing rules for language boundaries insert lumps when going from λU

to λL, and remove them when going back from λL to λU. In particular, arbitrary
linear types cannot occur at the boundary, they must be of the form ![σ].

Fig. 6. Multi-language: lump and boundaries

FabULous Interoperability for ML and a Linear Language 157

Fig. 7. Interoperability: static and dynamic semantics (excerpt)

Finally, boundaries have reduction rules: a term or configuration inside a
boundary in reduction position is reduced until it becomes a value, and then
a lump is added or removed depending on the boundary direction. Note that
because the v in UL(s :Ψ | v) is at a duplicable type ![σ], we know by inversion
that the store is empty.

3.2 Interoperability: Static Semantics

If the linear language could not interact with lumped values at all, our multi-
language programs would be rather boring, as the only way for the linear exten-
sion to provide a value back to ML would be to have received it from λU and
pass it back unchanged (as in the lump embedding of Matthews and Findler
(2009)). To provide a real interaction, we provide a way to extract values out of
a lump ![σ], use it at some linear type σ, and put it back in before sending the
result to λU.

The correspondence between intuitionistic types σ and linear types σ is spec-
ified by a heterogeneous compatibility relation σ � σ – defined in full in Fig. 7.
The specification of this relation is that if σ � σ holds, then the space of values
of ![σ] and σ are isomorphic: we can convert back and forth between them. When
this relation holds, the term-formers lumpσ and σunlump perform the conversion.

The term LU(e) turns a e : σ into a lumped type ![σ], and we need to unlump
it with some σunlump for a compatible σ � σ to interact with it on the linear

158 G. Scherer et al.

side. It is common to combine both operations and we provide syntactic sugar
for it: σLU(e). Similarly ULσ(e) first lumps a linear term then sends the result
to the ML world.

3.3 Interoperability: Dynamic Semantics

When the relation σ � σ holds, we can define a relation v ↔σ v between the
values of σ and the values of σ – see the long version of this work. It is func-
tional in both direction: with our definition v is uniquely determined from v and
conversely. We then define the reduction rule for (un)lumping: if v ↔σ v, then

3.4 Full Abstraction from λU into λUL

We can now state the major meta-theoretical result of this work, which is the
proposed multi-language design extends the simple language λU in a way that
provably has, in a certain sense, “no abstraction leaks”.

Definition 1 (Contextual equivalence in λU). We say that e, e′ such that
Γ �u e, e′ : σ are contextually equivalent, written e ≈ctx

u e′, if, for any expression
context C[�] such that · �u C[e] : 1, the closed terms C[e] and C[e′] are equi-
terminating.

Definition 2 (Contextual equivalence in λUL). We say that e, e′ such that
Γ �lu e, e′ : σ are contextually equivalent, written e ≈ctx

lu e′, if, for any expres-
sion context C[�] such that · �lu C[e] : 1, the closed terms C[e] and C[e′] are
equi-terminating.

Theorem 2 (Full Abstraction). The embedding of λU into λUL is fully-
abstract:

4 Conclusion and Related Work

Having a stack of usable, interoperable languages, extensions or dialects is at the
forefront of the Racket approach to programming environments, in particular for
teaching (Felleisen et al. 2004).

Our multi-language semantics builds on the seminal work by Matthews
and Findler (2009), who gave a formal semantics of interoperability between
a dynamically and a statically typed language. Others have followed the
Matthews-Findler approach of designing multi-language systems with fine-
grained boundaries—for instance, formalizing interoperability between a simply
and dependently typed language (Osera et al. 2012); between a functional and
typed assembly language (Patterson et al. 2017); between an ML-like and an

FabULous Interoperability for ML and a Linear Language 159

affinely typed language, where linearity is enforced at runtime on the ML side
using stateful contracts (Tov and Pucella 2010); and between the source and
target languages of compilation to specify compiler correctness (Perconti and
Ahmed 2014). However, all these papers address only the question of soundness
of the multi-language; we propose a formal treatment of usability and absence
of abstraction leaks.

The only work to establish that a language embeds into a multi-language
in a fully abstract way is the work on fully abstract compilation by Ahmed
and Blume (2011) and New et al. (2016) who show that their compiler’s source
language embeds into their source-target multi-language in a fully abstract way.
But the focus of this work was on fully abstract compilation, not on usability of
user-facing languages.

The Eco project (Barrett et al. 2016) is studying multi-language systems
where user-exposed languages are combined in a very fine-grained way; it is
closely related in that it studies the user experience in a multi-language sys-
tem. The choice of an existing dynamic language creates delicate interoperability
issues (conflicting variable scoping rules, etc.) as well as performance challenges.
We propose a different approach, to design new multi-languages from scratch
with interoperability in mind to avoid legacy obstacles.

We are not aware of existing systems exploiting the simple idea of using
promotion to capture uniquely-owned state and dereliction to copy it—common
formulations would rather perform copies on the contraction rule.

The general idea that linear types can permit reuse of unused allocated cells
is not new. In Wadler (1990), a system is proposed with both linear and non-
linear types to attack precisely this problem. It is however more distant from
standard linear logic and somewhat ad-hoc; for example, there is no way to
permanently turn a uniquely-owned value into a shared value, it provides instead
a local borrowing construction that comes with ad-hoc restrictions necessary for
safety. (The inability to give up unique ownership, which is essential in our list-
programming examples, seems to also be missing from Rust, where one would
need to perform a costly operation of traversing the graph of the value to turn
all pointers into Arc nodes.)

The RAML project (Hoffmann et al. 2012) also combines linear logic and
memory reuse: its destructive match operator will implicitly reuse consumed
cells in new allocations occurring within the match body. Multi-languages give
us the option to explore more explicit, flexible representations of those low-level
concern, without imposing the complexity to all programmers.

A recent related work is the Cogent language (O’Connor et al. 2016), in
which linear state is also viewed as both functional and imperative – the latter
view enabling memory reuse. The language design is interestingly reversed: in
Cogent, the linear layer is the simple language that everyone uses, and the non-
linear language is a complex but powerful language that is used when one really
has to, named C.

160 G. Scherer et al.

Our linear language λL is sensibly simpler, and in several ways less expressive,
than advanced programming languages based on linear logic (Tov and Pucella
2011), separation logic (Balabonski et al. 2016), fine-grained permissions (Garcia
et al. 2014): it is not designed to stand on its own, but to serve as a useful side-
kick to a functional language, allowing safer resource handling.

One major simplification of our design compared to more advanced linear or
separation-logic-based languages is that we do not separate physical locations
from the logical capability/permission to access them (e.g., as in Ahmed et al.
(2007)). This restricts expressiveness in well-understood ways (Fahndrich and
DeLine 2002): shared values cannot point to linear values.

Alms (Tov and Pucella 2011), Quill (Morris 2016) and Linear Haskell
(Bernardy et al. 2018) add linear types to a functional language, trying hard
not to lose desirable usability property, such as type inference or the generic-
ity of polymorphic higher-order functions. This is very challenging; for exam-
ple, Linear Haskell gives up on principality of inference4. Our multi-language
design side-steps this issue as the general-purpose language remains unchanged.
Language boundaries are more rigid than an ideal no-compromise language, as
they force users to preserve the distinction between the general-purpose and the
advanced features; it is precisely this compromise that gives a design of reduced
complexity.

Finally, on the side of the semantics, our system is related to LNL (Benton
1994), a calculus for linear logic that, in a sense, is itself built as a multi-language
system where (non-duplicable) linear types and (duplicable) intuitionistic types
interact through a boundary. It is not surprising that our design contains an
instance of this adjunction: for any σ there is a unique σ such that σ � !σ, and
converting a σ value to this σ and back gives a !σ and is provably equivalent, by
boundary cancellation, to just using share.

Acknowledgments. We thank our anonymous reviewers for their feedback, as well
as Neelakantan Krishnaswami, François Pottier, Jennifer Paykin, Sylvie Boldot and
Simon Peyton-Jones for our discussions on this work.

This work was supported in part by the National Science Foundation under grants
CCF-1422133 and CCF-1453796, and the European Research Council under ERC
Starting Grant SECOMP (715753). Any opinions, findings, and conclusions expressed
in this material are those of the authors and do not necessarily reflect the views of our
funding agencies.

References

Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput.
163(2), 409–470 (2000)

Ahmed, A., Blume, M.: Typed closure conversion preserves observational equivalence.
In: International Conference on Functional Programming (ICFP), Victoria, British
Columbia, Canada, pp. 157–168, September 2008

4 Thanks to Stephen Dolan for pointing out that λf.λx. f x has several incompatible
Linear Haskell types.

FabULous Interoperability for ML and a Linear Language 161

Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-language
semantics. In: International Conference on Functional Programming (ICFP), Tokyo,
Japan, pp. 431–444, September 2011

Ahmed, A., Fluet, M., Morrisett, G.: L3: a linear language with locations. Fundamenta
Informaticae 77(4), 397–449 (2007)

Balabonski, T., Pottier, F., Protzenko, J.: The design and formalization of Mezzo, a
permission-based programming language. ACM Trans. Program. Lang. Syst. 38(4),
14:1–14:94 (2016)

Barrett, E., Bolz, C.F., Diekmann, L., Tratt, L.: Fine-grained language composition: a
case study. In: ECOOP (2016)

Benton, P.N.: A mixed linear and non-linear logic: proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0022251

Bernardy, J.-P., Boespflug, M., Newton, R.R., Jones, S.P., Spiwack, A.: Linear haskell:
practical linearity in a higher-order polymorphic language. PACMPL 2(POPL), 5:1–
5:29 (2018). https://doi.org/10.1145/3158093

Cartwright, R., Felleisen, M.: Observable sequentiality and full abstraction. In: ACM
Symposium on Principles of Programming Languages (POPL), Albuquerque, New
Mexico, pp. 328–342 (1992)

Devriese, D., Patrignani, M., Piessens, F.: Fully-abstract compilation by approximate
back-translation. In: ACM Symposium on Principles of Programming Languages
(POPL), St. Petersburg, Florida (2016)

Fahndrich, M., DeLine, R.: Adoption and focus: practical linear types for imperative
programming. In: PLDI 2002 (2002)

Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: The teachscheme! project:
computing and programming for every student. Comput. Sci. Educ. 14(1), 55–77
(2004)

Garcia, R., Tanter, É., Wolff, R., Aldrich, J.: Foundations of typestate-oriented pro-
gramming. TOPLAS 36, 12 (2014)

Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 781–786. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 64

Jeffrey, A., Rathke, J.: Java JR: fully abstract trace semantics for a Core Java Lan-
guage. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423–438. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 29

Matthews, J., Findler, R.B.: Operational semantics for multi-language programs. ACM
Trans. Program. Lang. Syst. (TOPLAS) 31(3), 12 (2009)

Meyer, A.R., Sieber, K.: Towards fully abstract semantics for local variables. In:
ACM Symposium on Principles of Programming Languages (POPL), San Diego,
California, pp. 191–203 (1988)

Milner, R.: Fully abstract models of typed lambda calculi. Theor. Comput. Sci. 4(1),
1–22 (1977)

Morris, J.G.: The best of both worlds: linear functional programming without compro-
mise. In: ICFP (2016)

New, M.S., Bowman, W.J., Ahmed, A.: Fully abstract compilation via universal embed-
ding. In: International Conference on Functional Programming (ICFP), Nara, Japan,
September 2016

O’Connor, L., Chen, Z., Rizkallah, C., Amani, S., Lim, J., Murray, T., Nagashima,
Y., Sewell, T., Klein, G.: Refinement through restraint: bringing down the cost of
verification. In: ICFP (2016)

https://doi.org/10.1007/BFb0022251
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-540-31987-0_29

162 G. Scherer et al.

Osera, P.M., Sjöberg, V., Zdancewic, S.: Dependent interoperability. In: Programming
Languages Meets Program Verification (PLPV), January 2012

Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D., Piessens, F.: Secure
compilation to protected module architectures. ACM Trans. Program. Lang. Syst.
37(2), 6:1–6:50 (2015)

Patterson, D., Perconti, J., Dimoulas, C., Ahmed, A.: FunTAL: reasonably mixing a
functional language with assembly. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Barcelona, Spain, June 2017. http://
www.ccs.neu.edu/home/amal/papers/funtal.pdf

Perconti, J.T., Ahmed, A.: Verifying an open compiler using multi-language semantics.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 128–148. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8 8

Tov, J.A., Pucella, R.: Stateful contracts for affine types. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 550–569. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11957-6 29

Tov, J.A., Pucella, R.: Practical affine types. In: POPL (2011)
Wadler, P.: Linear types can change the world! In: Programming Concepts and Methods

(1990)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://www.ccs.neu.edu/home/amal/papers/funtal.pdf
http://www.ccs.neu.edu/home/amal/papers/funtal.pdf
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-642-11957-6_29
https://doi.org/10.1007/978-3-642-11957-6_29
http://creativecommons.org/licenses/by/4.0/

Concurrency

Automata for True Concurrency
Properties

Paolo Baldan(B) and Tommaso Padoan

Dipartimento di Matematica, Università di Padova, Padua, Italy
{baldan,padoan}@math.unipd.it

Abstract. We present an automata-theoretic framework for the model
checking of true concurrency properties. These are specified in a fix-
point logic, corresponding to history-preserving bisimilarity, capable of
describing events in computations and their dependencies. The models
of the logic are event structures or any formalism which can be given a
causal semantics, like Petri nets. Given a formula and an event struc-
ture satisfying suitable regularity conditions we show how to construct
a parity tree automaton whose language is non-empty if and only if the
event structure satisfies the formula. The automaton, due to the nature
of event structure models, is usually infinite. We discuss how it can be
quotiented to an equivalent finite automaton, where emptiness can be
checked effectively. In order to show the applicability of the approach,
we discuss how it instantiates to finite safe Petri nets. As a proof of
concept we provide a model checking tool implementing the technique.

1 Introduction

Behavioural logics with the corresponding verification techniques are a corner-
stone of automated verification. For concurrent and distributed systems, so called
true concurrent models can be an appropriate choice, since they describe not only
the possible steps in the evolution of the system but also their causal dependen-
cies. A widely used foundational model in this class is given by Winskel’s event
structures [1]. They describe the behaviour of a system in terms of events in
computations and two dependency relations: a partial order modelling causality
and an additional relation modelling conflict. A survey on the use of such causal
models can be found in [2]. Recently they have been used in the study of con-
currency in weak memory models [3,4], for process mining and differencing [5],
in the study of atomicity [6] and of information flow [7] properties.

Operational models can be abstracted by considering true concurrent equiv-
alences that range from hereditary history preserving bisimilarity to the coarser
pomset and step equivalences (see, e.g., [8]) and behavioural logics expressing
causal properties (see, e.g., [9–14] for a necessarily partial list and [15–19] for
some related verification techniques).

Event-based logics have been recently introduced [20,21], capable of uni-
formly characterising the equivalences in the true concurrent spectrum. Their for-
mulae include variables which are bound to events in computations and describe
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 165–182, 2018.
https://doi.org/10.1007/978-3-319-89366-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_9&domain=pdf

166 P. Baldan and T. Padoan

their dependencies. While the relation between operational models, behavioural
equivalences and event-based true concurrent logics is well understood, the cor-
responding model checking problem has received limited attention.

We focus on the logic referred to as Lhp in [20], corresponding to a classical
equivalence in the spectrum, i.e., history preserving (hp-)bisimilarity [22–24].

Decidability of model checking is not obvious since event structure models are
infinite even for finite state systems and the possibility of expressing properties
that depends on the past often leads to undecidability [25]. In a recent paper [26]
we proved the decidability of the problem for the alternation free fragment of
the logic Lhp over a class of event structures satisfying a suitable regularity
condition [27] referred to as strong regularity. The proof relies on a tableau-
based model checking procedure. Despite the infiniteness of the model, a suitable
stop condition can be identified, ensuring that a successful finite tableau can be
generated if and only if the formula is satisfied by the model.

Besides the limitation to the alternation free fragment of Lhp, a shortcoming
of the approach is that a direct implementation of the procedure can be extremely
inefficient. Roughly speaking, the problem is that in the search of a successful
tableau, branches which are, in some sense, equivalent are explored several times.

In this paper we devise an automata-theoretic technique, in the style of [28],
for model checking Lhp that works for the full logic, without constraints on the
alternation depth. Besides providing an alternative approach for model-checking
Lhp, amenable of a more efficient implementation, this generalises the decidabil-
ity result of [26] to the full logic Lhp. Given a formula in Lhp and a strongly
regular event structure, the procedure generates a parity tree automaton. Sat-
isfiability is reduced to emptiness in the sense that the event structure satisfies
the formula if and only if the automaton accepts a non-empty language.

The result is not directly usable for practical purposes since the automaton
is infinite for any non-trivial event structure. However an equivalence on states
can be defined such that the quotiented automaton accepts the same language
as the original one. Whenever such equivalence is of finite index the quotiented
automaton is finite, so that satisfaction of the formula can be checked effectively
on the quotient. We show that for all strongly regular event structures a canonical
equivalence always exists that is of finite index.

The procedure is developed abstractly on event structures. A concrete algo-
rithm on some formalism requires the effectiveness of the chosen equivalence on
states. We develop a concrete instantiation of the algorithm on finite safe Petri
nets. It is implemented in a tool, wishfully called True concurrency workbench
(TCWB), written in Haskell. Roughly, the search of an accepting run in the
automaton can be seen as an optimisation of the procedure for building a suc-
cessful tableau in [26] where the graph structure underlying the automaton helps
in the reuse of the information discovered. Some tests reveal that the TCWB is
way more efficient than the direct implementation of the tableau-based proce-
dure (which could not manage most of the examples in the TCWB repository).

The rest of the paper is structured as follows. In Sect. 2 we review event
structures, strong regularity and the logic Lhp of interest in the paper. In Sect. 3

Automata for True Concurrency Properties 167

we introduce (infinite state) parity tree automata and we show how the model
checking problem for Lhp on strongly regular pes can be reduced to the non-
emptiness of the language of such automata. In Sect. 4 we discuss the instanti-
ation of the approach to Petri nets. Finally, in Sect. 5 we discuss some related
work and outline directions of future research. Due to space limitations, proofs
are only sketched.

2 Event Structures and True Concurrent Logic

We introduce prime event structures [1] and the subclass of strongly regular
event structures on which our model checking approach will be developed. Then
we present the logic for true concurrency of interest in the paper.

2.1 Prime Event Structures and Regularity

Throughout the paper E is a fixed countable set of events, Λ a finite set of labels
ranged over by a, b, c . . . and λ : E → Λ a labelling function.

Definition 1 (prime event structure). A (Λ-labelled) prime event structure
(pes) is a tuple E = 〈E,≤,#〉, where E ⊆ E is the set of events and ≤, #
are binary relations on E, called causality and conflict respectively, such that:
1. ≤ is a partial order and �e� = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and inherited along ≤, i.e., for all e, e′, e′′ ∈ E, if
e#e′ ≤ e′′ then e#e′′.

The pes E1 = 〈E1,≤1,#1〉, E2 = 〈E2,≤2,#2〉 are isomorphic, written E1 ∼
E2, when there is a bijection ι : E1 → E2 such that for all e1, e

′
1 ∈ E1, it holds

e1 ≤1 e′
1 iff ι(e1) ≤2 ι(e′

1) and e1 #1 e′
1 iff ι(e1) #2 ι(e′

1) and λ(e1) = λ(ι(e1)).

In the following, we will assume that the components of a pes E are named
as in the definition above, possibly with subscripts. The concept of concurrent
computation for pess is captured by the notion of configuration.

Definition 2 (configuration). A configuration of a pes E is a finite set of
events C ⊆ E consistent (i.e., ¬(e#e′) for all e, e′ ∈ C) and causally closed
(i.e., �e� ⊆ C for all e ∈ C). We denote by C(E) the set of configurations of E.

The evolution of a pes can be represented by a transition system over con-
figurations, with the empty configuration as initial state.

Definition 3 (transition system). Let E be a pes and let C ∈ C(E). Given
e ∈ E � C such that C ∪ {e} ∈ C(E), and X,Y ⊆ C with X ⊆ �e�, Y ∩ �e� = ∅
we write C

X,Y < e−−−−−→λ(e) C ∪ {e}. The set of enabled events at a configuration C

is defined as en(C) = {e ∈ E | C
e−→ C ′}. The pes is called k-bounded for some

k ∈ N (or simply bounded) if |en(C)| ≤ k for all C ∈ C(E).

168 P. Baldan and T. Padoan

c0

a0 b0

a1 b1

a2 b2

(a) EN

p3

p2

p1

b

c

a

(b) N

p3

p2

p01

p11

p21

b0

b1

c

a0

a1

(c) U(N)

Fig. 1. (a) A pes EN associated with the net N in (b) via its unfolding (c).

Transitions are labelled by the executed event e. In addition, they report its label
λ(e), a subset of causes X and a set of events Y ⊆ C concurrent with e. When
X or Y are empty they are normally often, i.e., e.g., we write C

X < e−−−→λ(e) C ′

for C
∅ < e−−−→λ(e) C ′ and C

e−→λ(e) C ′ for C
∅,∅ < e−−−−→λ(e) C ′.

The pes modelling a non-trivial system is normally infinite. We will work on
a subclass identified by finitarity requirements on the possible substructures.

Definition 4 (residual). Let E be a pes. For a configuration C ∈ C(E), the
residual of E after C, is defined as E [C] = {e | e ∈ E �C ∧ C ∪{e} consistent}.

The residual of E can be seen as a pes, endowed with the restriction of causality
and conflict of E . Intuitively, it represents the pes that remains to be executed
after the computation expressed by C. Given C ∈ C(E) and X ⊆ C, we denote
by E [C] ∪ X the pes obtained from E [C] by adding the events in X with the
causal dependencies they had in the original pes E .

Definition 5 (strong regularity). A pes E is called strongly regular when
it is bounded and for each k ∈ N the set {E [C] ∪ {e1, . . . , ek} | C ∈ C(E) ∧
e1, . . . , ek ∈ C} is finite up to isomorphism of pess.

Strong regularity [26] is obtained from the notion of regularity in [27], by
replacing residuals with residuals extended with a bounded number of events
from the past. Intuitively, this is important since we are interested in history
dependent properties. We will later show in Sect. 4 that the pess associated
with finite safe Petri nets, i.e., the regular trace pess [27], are strongly regular.

A simple pes is depicted in Fig. 1a. Graphically, curly lines represent imme-
diate conflicts and the causal partial order proceeds upwards along the straight
lines. Events are denoted by their labels, possibly with superscripts. For instance,
in EN , the events a0 and b0, labelled by a and b, respectively, are in conflict.
Event c0 causes the events ai and it is concurrent with bi for all i ∈ N. It is
an infinite pes associated with the Petri net N in Fig. 1b in a way that will
be discussed in Sect. 4.1, hence it is strongly regular by Corollary 1. It has

Automata for True Concurrency Properties 169

five (equivalence classes of) residuals extended with an event from the past
EN [{b0}]∪{b0}, EN [{c0, b0}]∪{b0}, EN [{c0, a0}]∪{c0}, EN [{c0, a0}]∪{a0}, and
EN [{c0, b0, a1}] ∪ {b0}.

2.2 True Concurrent Logic

The logic of interest for this paper, originally defined in [20], is a Hennessy-
Milner style logic that allows one to specify the dependencies (causality and
concurrency) between events in computation.

Logic formulae include event variables, from a fixed denumerable set Var ,
denoted by x, y, Tuples of variables like x1, . . . , xn will be denoted by a corre-
sponding boldface letter x and, abusing the notation, tuples will be often used as
sets. The logic includes diamond and box modalities. The formula 〈|x,y < a z|〉ϕ
holds in a configuration when an a-labelled event e is enabled which causally
depends on the events bound to x and is concurrent with those in y. Event e is
executed and then the formula ϕ must hold, with e bound to variable z. Dually,
[[x,y < a z]]ϕ is satisfied when all a-labelled events causally dependent on x and
concurrent with y bring to a configuration where ϕ holds.

For dealing with fixpoint operators we fix a denumerable set X a of abstract
propositions, ranged over by X, Y , Each abstract proposition X has an arity
ar(X) and it represents a formula with ar(X) (unnamed) free event variables.
Then, for x such that |x| = ar(X), we write X(x) to indicate the abstract
proposition X whose free event variables are named x.

Definition 6 (syntax). The syntax of Lhp over the sets of event variables Var,
abstract propositions X a and labels Λ is defined as follows:

ϕ ::= X(x) | T | ϕ ∧ ϕ | 〈|x,y < a z|〉ϕ | νX(x).ϕ
| F | ϕ ∨ ϕ | [[x,y < a z]]ϕ | μX(x).ϕ

For a formula ϕ we denote by fv(ϕ) its free event variables, defined in the
obvious way. Just note that the modalities act as binders for the variable rep-
resenting the event executed, hence fv(〈|x,y < a z|〉ϕ) = fv([[x,y < a z]]ϕ) =
(fv(ϕ) � {z}) ∪ x ∪ y. For formulae νX(x).ϕ and μX(x).ϕ we require that
fv(ϕ) = x. The free propositions in ϕ not bound by μ or ν, are denoted by
fp(ϕ). When both fv(ϕ) and fp(ϕ) are empty we say that ϕ is closed. When x
or y are empty are omitted, e.g., we write 〈|a z|〉ϕ for 〈|∅, ∅ < a z|〉ϕ.

For example, the formula ϕ1 = 〈|cx|〉(〈|x < a y|〉T ∧ 〈|x < b z|〉T) requires
that, after the execution of a c-labelled event, one can choose between a causally
dependent a-labelled event and a concurrent b-labelled event. It is satisfied by
EN in Fig. 1a. Instead ϕ2 = 〈|cx|〉(〈|x < a y|〉T ∧ 〈|x < b z|〉T) requiring both
events to be concurrent would be false. Moving to infinite computations, consider
ϕ3 = [[bx]]νZ(x).〈|c z|〉〈|z < b y|〉T∧ [[x < b y]]Z(y), expressing that all non-empty
causal chains of b-labelled events reach a state where it is possible to execute two
concurrent events labelled c and b, respectively. Then ϕ3 holds in EN . Another
formula satisfied by EN is ϕ4 = 〈|cx|〉〈|x < b y|〉νX(x, y).〈|y, x < b z|〉X(x, z)

170 P. Baldan and T. Padoan

requiring the existence of an infinite causal chain of b-labelled events, concurrent
with a c-labelled event.

The logic Lhp is interpreted over pess. The satisfaction of a formula is defined
with respect to a configuration C and a (total) function η : Var → E, called
an environment, that binds free variables in ϕ to events in C. Namely, if EnvE
denotes the set of environments, the semantics of a formula will be a set of pairs
in C(E)×EnvE . The semantics of Lhp also depends on a proposition environment
π : X → 2C(E)×EnvE which provides an interpretation for propositions. In order to
ensure that the semantics of a formula only depends on the events associated with
its free variables and is independent on the naming of the variables, it is required
that if (C, η) ∈ π(X(x)) and η′(y) = η(x) pointwise, then (C, η′) ∈ π(X(y)).
We denote by PEnvE the set of proposition environments, ranged over by π.

We can now give the semantics of logic Lhp. Given an event environment η
and an event e we write η[x �→ e] for the updated environment which maps x
to e. Similarly, for a proposition environment π and S ⊆ C(E) × EnvE , we write
π[Z(x) �→ S] for the corresponding update.

Definition 7 (semantics). Let E be a pes. The denotation of a formula ϕ
in Lhp is given by the function {|·|}E : Lhp → PEnvE → 2C(E)×EnvE defined
inductively as follows, where we write {|ϕ|}E

π instead of {|ϕ|}E(π):

{|T|}E
π = C(E) × EnvE {|F|}E

π = ∅ {|Z(y)|}E
π = π(Z(y))

{|ϕ1 ∧ ϕ2|}E
π = {|ϕ1|}E

π ∩ {|ϕ2|}E
π {|ϕ1 ∨ ϕ2|}E

π = {|ϕ1|}E
π ∪ {|ϕ2|}E

π

{|〈|x,y < a z|〉 ϕ|}E
π = {(C, η) | ∃e. C

η(x),η(y) < e−−−−−−−−→a C′ ∧ (C′, η[z �→ e]) ∈ {|ϕ|}E
π}

{|[[x,y < a z]] ϕ|}E
π = {(C, η) | ∀e. C

η(x),η(y) < e−−−−−−−−→a C′ ⇒ (C′, η[z �→ e]) ∈ {|ϕ|}E
π}

{|νZ(x).ϕ|}E
π = gfp(fϕ,Z(x),π) {|μZ(x).ϕ|}E

π = lfp(fϕ,Z(x),π)

where fϕ,Z(x),π : 2C(E)×EnvE → 2C(E)×EnvE is defined by fϕ,Z(x),π(S) =
{|ϕ|}E

π[Z(x) �→S] and gfp(fϕ,Z(x),π) (resp. lfp(fϕ,Z(x),π)) denotes the correspond-
ing greatest (resp. least) fixpoint. We say that a pes E satisfies a formula ϕ and
write E |= ϕ if (∅, η) ∈ {|ϕ|}E

π for all environments η and π.

The semantics of boolean operators is standard. The formula 〈|x,y < a z|〉ϕ
holds in (C, η) when configuration C enables an a-labelled event e that causally
depends on (at least) the events bound to the variables in x and concurrent with
(at least) those bound to the variables in y and, once executed, it produces a new
configuration C ′ = C ∪ {e} which, paired with the environment η′ = η[z �→ e],
satisfies the formula ϕ. Dually, [[x,y < a z]]ϕ holds when all a-labelled events
executable from C, caused by x and concurrent with y bring to a configuration
where ϕ is satisfied.

The fixpoints corresponding to the formulae νZ(x).ϕ and μZ(x).ϕ are guar-
anteed to exist by Knaster-Tarski theorem, since the set 2C(E)×EnvE ordered by
subset inclusion is a complete lattice and the functions fϕ,Z(x),π are monotonic.

Automata for True Concurrency Properties 171

3 Automata-Based Model Checker

We introduce nondeterministic parity tree automata and we show how the model
checking problem for Lhp on strongly regular pess can be reduced to the non-
emptiness of the language of such automata. The automaton naturally generated
from a pes and a formula has an infinite number of states. We discuss how the
automaton can be quotiented to a finite one accepting the same language and
thus potentially useful for model checking purposes.

3.1 Infinite Parity Tree Automata

Automata on infinite trees revealed to be a powerful tool to various problems in
the setting of branching temporal logics. Here we focus on nondeterministic par-
ity tree automata [29], with some (slightly) non-standard features. We work on
k-trees (rather than on binary trees), a choice that will simplify the presentation,
and we allow for possibly infinite state automata.

When automata are used for model checking purposes it is standard to
restrict to unlabelled trees. A k-bounded branching tree or k-tree, for short, is a
subset T ⊆ [1, k]�, such that

1. T is prefix closed, i.e., if wv ∈ T then w ∈ T
2. w1 ∈ T for all w ∈ T
3. for all i ∈ [2, k] if wi ∈ T then w(i − 1) ∈ T .

Elements of T are the nodes of the tree. The empty string ε corresponds to
the root. A string of the form wi corresponds to the i-th child of w. Hence by
(2) each branch is infinite and by (3) the presence of the i-th child implies the
presence of the j-th children for j ≤ i.

Definition 8 (nondeterministic parity automaton). A k-bounded nonde-
terministic parity tree automaton (NPA) is a tuple A = 〈Q,−→, q0,F〉 where Q

is a set of states, −→⊆ Q ×
k⋃

i=1

Qk is the transition relation, q0 ∈ Q is the initial

state, and F = (F0, . . . , Fh) is the acceptance condition, where F0, . . . , Fh ⊆ Q
are mutually disjoint subsets of states.

Transitions are written as q −→ (q1, . . . , qm) instead of (q, (q1, . . . , qm)) ∈−→.
Given a k-tree T , a run of A on T is a labelling of T over the states r : T → Q

consistent with the transition relation, i.e., such that r(ε) = q0 and for all u ∈ T ,
with m children, there is a transition r(u) −→ (r(u1), . . . , r(um)) in A. A path in
the run r is an infinite sequence of states p = (q0, q1, . . .) labelling a complete
path from the root in the tree. It is called accepting if there exists an even
number l ∈ [0, h] such that the set {j | qj ∈ Fl} is infinite and the set
{j | qj ∈

⋃
l<i≤h Fi} is finite. The run r is accepting if all paths are accepting.

172 P. Baldan and T. Padoan

Definition 9 (language of an NPA). Let A be an NPA. The language of A,
denoted by L(A), consists of the trees T which admit an accepting run.

Observe that for a k-bounded NPA, the language L(A) is a set of k-trees.
The possibility of having an infinite number of states and the associated

acceptance condition are somehow non-standard. However, it is easy to see that
whenever an NPA is finite, the acceptance condition coincides with the standard
one requiring a single state with maximal even priority to occur infinitely often.

Since NPAs are nondeterministic, different runs (possibly infinitely many)
can exist for the same input tree. Still, the non-emptiness problem, also for our
k-ary variant, is decidable when the number of states is finite (and solvable by
a corresponding parity game [30]).

3.2 Infinite NPAs for Model Checking

We show how, given a pes and a closed formula in Lhp, we can build an NPA in
a way that, for strongly regular pess, the satisfaction of ϕ in E reduces to the
non-emptiness of the automaton language. The construction is inspired by that
in [28] for the mu-calculus.

The acceptance condition for the automaton will refer to the fixpoint alterna-
tion in the formulae of Lhp. We adapt a definition from [28]. A fixpoint formula
αX(y).ϕ′, for α ∈ {ν, μ}, is called an α-formula. Hereafter α ranges over {ν, μ}.
Given an α-formula ϕ = αX(y).ϕ′, we say that a subformula ψ of ϕ is a direct
active subformula, written ψ �d ϕ, if the abstract proposition X appears free in
ψ. The transitive closure of �d is a partial order and when ψ �∗

d ϕ we say that
ψ is an active subformula of ϕ. We denote by sf (ϕ) the set of subformulae of a
formula ϕ and by sfα(ϕ) the set of active α-subformulae.

The alternation depth of a formula ϕ in Lhp, written ad(ϕ), is defined, for
a ν-formula ϕ, as ad(ϕ) = max{1 + ad(ψ) | ψ ∈ sfμ(ϕ)} and dually, for a
μ-formula ϕ, as ad(ϕ) = max{1 + ad(ψ) | ψ ∈ sfν(ϕ)}. For any other formula ϕ,
ad(ϕ) = max{ad(ψ) | ψ ∈ sf (ϕ) \ {ϕ}}. It is intended that max ∅ = 0. E.g., by
the first clause above, the alternation depth of νX(x). ϕ is 0 in absence of active
μ-subformulae.

Hereafter we assume that in every formula different bound propositions have
different names, so that we can refer to the fixpoint subformula quantifying an
abstract proposition. This requirement can always be fulfilled by alpha-renaming.

Hereafter, if X and X ′ are abstract propositions quantified in α-subformulae
αX(x). ϕ and α′X ′(x′). ϕ′, we will write ad(X) for ad(αX(x). ϕ) and X �d X ′

for αX(x). ϕ �d α′X ′(x′). ϕ′. Moreover, given a pes E , for a pair (C, η) ∈
C(E) × EnvE and variables x, y, z, we define (x,y < az)-successors of (C, η), as

Succx,y<az(C, η) = {(C ′, η[z �→ e]) | C
η(x),η(y)< e−−−−−−−−→a C ′}.

We can now illustrate the construction of the NPA for a formula and a pes.

Definition 10 (NPA for a formula). Let E be a bounded pes and let ϕ ∈ Lhp

be a closed formula. The NPA for E and ϕ is AE,ϕ = 〈Q,−→, q0,F〉 defined

Automata for True Concurrency Properties 173

as follows. The set of states Q ⊆ C(E) × EnvE × sf (ϕ) is Q = {(C, η, ψ) |
η(fv(ψ)) ⊆ C}. The initial state q0 = (∅, η, ϕ), for some chosen η ∈ EnvE . The
transition relation is defined, for any state q = (C, η, ψ) ∈ Q, by:

– if ψ = T or ψ = F, then q −→ (q);
– if ψ = ψ1 ∧ ψ2, then q −→ (q1, q2) where qi = (C, η, ψi), i ∈ {1, 2};
– if ψ = ψ1 ∨ ψ2, then q −→ (q1) and q −→ (q2) where qi = (C, η, ψi), i ∈ {1, 2};
– if ψ = [[x,y < a z]]ψ′ and Succx,y<az(C, η) = {(C1, η1), . . . , (Cn, ηn)} �= ∅

then q −→ (q1, . . . , qn) where qi = (Ci, ηi, ψ
′) for i ∈ [1, n], otherwise q −→ (q);

– if ψ = 〈|x,y < a z|〉ψ′ and Succx,y<az(C, η) = {(C1, η1), . . . , (Cn, ηn)} �= ∅
then q −→ (qi) where qi = (Ci, ηi, ψ

′) for i ∈ [1, n], otherwise q −→ (q);
– if ψ = αX(x).ψ′ then q −→ (q′) where q′ = (C, η,X(x));
– if ψ = X(y) and ψ′ ∈ sf (ϕ) is the unique subformula such that ψ′ =

αX(x).ψ′′ then q −→ (q′) where q′ = (C, η[x �→ η(y)], ψ′′).

The acceptance condition is F = (F0, . . . , Fh) where h = ad(ϕ) + 1 and the
Fi are as follows. Consider A0, . . . , Ah ⊆ sf (ϕ) such that for i ∈ [0, h], if i is
even (odd) then Ai contains exactly all propositions quantified in ν-subformulae
(μ-subformulae) with alternation depth i or i − 1. Then F0 = (C(E) × EnvE ×
(A0 ∪ {T})) ∪ B where B = {(C, η, [[x,y < a z]]ψ) | Succx,y<az(C, η) = ∅} is
the set of all subformulae of ϕ in a context where they are trivially true, and
Fi = C(E) × EnvE × Ai, for i ∈ [1, h].

States of AE,ϕ are triples (C, η, ϕ) consisting of a configuration C, an envi-
ronment η and a subformula ψ of the original formula ϕ. The intuition is that a
transition reduces the satisfaction of a formula in a state to that of subformulae
in possibly updated states. It can just decompose the formula, as it happens
for ∧ or ∨, check the satisfaction of a modal operator, thus changing the state
consequently, or unfold a fixpoint.

The automaton AE,ϕ is bounded but normally infinite (whenever the pes E
is infinite and the formula ϕ includes some non-trivial fixpoint).

We next show that for a strongly regular pes the satisfaction of the formula
ϕ on the pes E reduces to the non-emptiness of the language of AE,ϕ.

Theorem 1 (model checking via non-emptiness). Let E be a strongly reg-
ular pes and let ϕ̌ be a closed formula in Lhp. Then L(AE,ϕ̌) �= ∅ iff E |= ϕ̌.

We next provide an outline of the proof. A basic ingredient is an equivalence
that can be defined on the NPA. As a first step we introduce a generalised notion
of residual in which the relation with some selected events in the past is kept.

Definition 11 (pointed residual). Given a pes E and a set X, a X-pointed
configuration is a pair 〈C, ζ〉 where C ∈ C(E) and ζ : X → C is a function. We
say that the X-pointed configurations 〈C, ζ〉, 〈C ′, ζ ′〉 have isomorphic pointed
residuals, written E [〈C, ζ〉] ≈ E [〈C ′, ζ ′〉] if there is an isomorphism of pess ι :
E [C] → E [C ′] such that for all x ∈ X, e ∈ E [C] we have ζ(x) ≤ e iff ζ ′(x) ≤ ι(e).

174 P. Baldan and T. Padoan

Then two states are deemed equivalent if they involve the same subformula
(up to renaming of the event variables) and the configurations, pointed by the
free variables in the formulae, have isomorphic residuals. This resembles the
notion of contextualised equivalence used on tableau judgments in [26].

Definition 12 (future equivalence). Let E be a pes, ϕ be a formula and
let qi = (Ci, ηi, ψi), i ∈ {1, 2} be two states of the NPA AE,ϕ. We say that q1
and q2 are future equivalent, written q1 ≈f q2, if there exists a formula ψ and
substitutions σi : fv(ψ) → fv(ψi) such that ψσi = ψi, for i ∈ {1, 2}, and the
fv(ψ)-pointed configurations 〈Ci, ηi ◦ σi〉 have isomorphic pointed residuals.

It can be shown that, given qi = (Ci, ηi, ψi), i ∈ {1, 2} as above, for all
proposition environments π (satisfying a technical property of saturation) we
have that (C1, η1) ∈ {|ψ1|}E

π if and only if (C2, η2) ∈ {|ψ2|}E
π. Additionally, using

strong regularity, one can prove that the semantics of fixpoint formulae is prop-
erly captured by finite approximants and that equivalence ≈f is of finite index.
These are fundamental building bricks in the proof of Theorem 1 which, roughly,
proceeds as follows.

Assume that the language L(AE,ϕ) �= ∅. Then there is an accepting run r over
some k-tree T . Since ϕ is finite, in each infinite path there are infinitely many
states qih = (Cih , ηih , ψih) where ψih is the same subformula, up to renaming.
Since ≈f is of finite index, infinitely many such states are equivalent. Then
one deduces that, for some h, the subformula ψih is satisfied in (Cih , ηih). For
fixpoint subformulae, this requires to show that, since the run is accepting, the
subformula of maximal alternation depth that repeats infinitely often is a ν-
formula and use the fact that, as mentioned before, its semantics can be finitely
approximated. Then, by a form of backward soundness of the transitions, we get
that all the nodes, including the root, contain formulae which are satisfied.

For the converse implication, assume that E |= ϕ. Starting from the initial
state q0 = (∅, η, ϕ) where the formula is satisfied, and using the automaton
transitions, we can build a k-tree T and a run where for each state (C ′, η′, ψ) the
subformula ψ is satisfied in (C ′, η′) and such run can be proved to be accepting.

3.3 Quotienting the Automaton

In order to have an effective procedure for checking the satisfaction of a formula
we need to build a suitable quotient of the NPA, with respect to an equivalence
which preserves emptiness. A simple but important observation is that it is
sufficient to require that the equivalence is a bisimulation in the following sense.
An analogous notion is studied in [31] in the setting of nondeterministic tree
automata over finite trees.

Definition 13 (bisimulation). Given an NPA A, a symmetric relation R ⊆
Q × Q over the set of states is a bisimulation if for all (q, q′) ∈ R

1. for all i ∈ [0, h], q ∈ Fi ⇐⇒ q′ ∈ Fi;
2. if q −→ (q1, . . . , qm) then q′ −→ (q′

1, . . . , q
′
m) with (qi, q

′
i) ∈ R for i ∈ [1,m].

Automata for True Concurrency Properties 175

Given an NPA A and an equivalence ≡ on the set of states which is a
bisimulation, we define the quotient as A/≡ = 〈Q/≡,−→/≡, [q0]≡,F/≡〉 where
[q]≡−→/≡([q1]≡, . . . , [qm]≡) if q −→ (q1, . . . , qm) and F/≡ = (F0/≡, . . . , Fh/≡). An
NPA and its quotient accept exactly the same language.

Theorem 2 (language preservation). Let A be an NPA and let ≡ be an
equivalence on the set of states which is a bisimulation. Then L(A/≡) = L(A).

When ≡ is of finite index, the quotient AE,ϕ/≡ is finite and, exploiting
Theorems 1 and 2, we can verify whether E |= ϕ by checking the emptiness
of the language accepted by AE,ϕ/≡. Clearly a concrete algorithm will not first
generate the infinite state NPA and then take the quotient, but it rather per-
forms the quotient on the fly: whenever a new state would be equivalent to one
already generated, the transition loops back to the existing state.

Whenever E is strongly regular, the future equivalence on states (see
Definition 12) provides a bisimulation equivalence of finite index over AE,ϕ.

Lemma 1 (≈f is a bisimulation). Let E be a strongly regular pes and let
ϕ be a closed formula in Lhp. Then the future equivalence ≈f on AE,ϕ is a
bisimulation and it is of finite index.

An obstacle towards the use of the quotiented NPA for model checking pur-
poses is the fact that the future equivalence could be hard to compute (or even
undecidable). In order to make the construction effective we need a decidable
bisimulation equivalence on the NPA and the effectiveness of the set of successors
of a state. This is further discussed in the next section.

4 Model Checking Petri Nets

We show how the model checking approach outlined before can be instantiated
on finite safe Petri nets, a classical model of concurrency and distribution [32],
by identifying a suitable effective bisimulation equivalence on the NPA.

4.1 Petri Nets and Their Event Structure Semantics

A Petri net is a tuple N = (P, T, F,M0) where P , T are disjoint sets of places
and transitions, respectively, F : (P ×T)∪ (T ×P) → {0, 1} is the flow function,
and M0 is the initial marking, i.e., the initial state of the net. We assume that
the set of transitions is a subset of a fixed set T with a labelling λN : T → Λ.

A marking of N is a function M : P → N, indicating for each place the
number of tokens in the place. A transition t ∈ T is enabled at a marking M
if M(p) ≥ F (p, t) for all p ∈ P . In this case it can be fired leading to a new
marking M ′ defined by M ′(p) = M(p) + F (t, p) − F (p, t) for all places p ∈ P .
This is written M [t〉M ′. We denote by R(N) the set of markings reachable in N
via a sequence of firings starting from the initial marking. We say that a marking
M is coverable if there exists M ′ ∈ R(N) such that M ≤ M ′, pointwise. A net

176 P. Baldan and T. Padoan

N is safe if for every reachable marking M ∈ R(N) and all p ∈ P we have
M(p) ≤ 1. Hereafter we will consider only safe nets. Hence markings will be
often confused with the corresponding subset of places {p | M(p) = 1} ⊆ P . For
x ∈ P ∪ T the pre-set and post-set are defined •x = {y ∈ P ∪ T | F (y, x) = 1}
and x• = {y ∈ P ∪ T | F (x, y) = 1} respectively.

An example of Petri net can be found in Fig. 1b. Graphically places and tran-
sitions are drawn as circles and rectangles, respectively, while the flow function is
rendered by means of directed arcs connecting places and transitions. Markings
are represented by inserting tokens (black dots) in the corresponding places.

The concurrent behaviour of a Petri net can be represented by its unfolding
U(N), an acyclic net constructed inductively starting from the initial marking
of N and then adding, at each step, an occurrence of each enabled transition.

Definition 14 (unfolding). Let N = (P, T, F,m0) be a safe net. Define the
net U (0) = (P (0), T (0), F (0)) as T (0) = ∅, P (0) = {(p,⊥) | p ∈ m0} and F (0) = ∅,
where ⊥ is an element not belonging to P , T or F . The unfolding is the least
net U(N) = (P (ω), T (ω), F (ω)) containing U (0) and such that

– if t ∈ T , the set of places X ⊆ P (ω) is coverable and π1(X) = •t, then
e = (t,X) ∈ T (ω);

– for any e = (t,X) ∈ T (ω), the set Z = {(p, e) | p ∈ π1(e)•} ⊆ P (ω) where
π1(u, v) = u; moreover •e = X and e• = Z.

Places and transitions in the unfolding represent tokens and firing of transi-
tions, respectively, of the original net. The projection π1 over the first component
maps places and transitions of the unfolding to the corresponding items of the
original net N . The initial marking is implicitly identified as the set of minimal
places. For historical reasons transitions and places in the unfolding are also
called events and conditions, respectively.

One can define causality ≤N over the unfolding as the transitive closure of
the flow relation. Conflict is the relation e#e′ if •e ∩ •e′ �= ∅, inherited along
causality. The events T (ω) of the unfolding of a finite safe net, endowed with
causality and conflict, form a pes, denoted E(N). The transitions of a configura-
tion C ∈ C(E(N)) can be fired in any order compatible with causality, producing
a marking C◦ = (P (0) ∪

⋃
t∈C t•) \ (

⋃
t∈C

•t) in U(N); in turn, this corresponds
to a reachable marking of N given by M(C) = π1(C◦). As an example, the
unfolding U(N) of the running example net N and the corresponding pes can
be found in Figs. 1c and a.

4.2 Automata Model Checking for Petri Nets

The pes associated with a safe Petri net is known to be regular [27]. We next
prove that it is also strongly regular and thus we can apply the theory developed
so far for model checking Lhp over safe Petri nets.

Let N = 〈S, T, F,M0〉 be a safe Petri net. A basic observation is that the
residual of the pes E(N) with respect to a configuration C ∈ C(E(N)) is uniquely
determined by the marking produced by C. This correspondence can be extended

Automata for True Concurrency Properties 177

to pointed configurations by considering markings which additionally record, for
the events of interest in the past, the places in the marking which are caused by
such events. This motivates the definition below.

Definition 15 (pointed marking). Let N = 〈S, T, F,M0〉 be a safe Petri net.
Given a set X, a X-pointed marking is a pair 〈M, r〉 with r : X → 2M .

A X-pointed configuration 〈C, ζ〉 induces an X-pointed marking M(〈C, ζ〉) =
〈M(C), r〉 where r(x) = {π1(b) | b ∈ C◦ ∧ ζ(x) < b}. Pointed configurations
producing the same pointed marking have isomorphic pointed residuals.

Proposition 1 (pointed markings vs residuals). Let N = 〈S, T, F,M0〉 be a
safe Petri net. Given a set X and two X-pointed configurations 〈C1, ζ1〉, 〈C2, ζ2〉
in U(N), if M(〈C1, ζ1〉) = M(〈C2, ζ2〉) then E(N)[〈C1, ζ1〉] ≈ E(N)[〈C2, ζ2〉].

By the previous result the pes associated with a finite safe Petri net is
strongly regular. Indeed, the number of residuals of X-pointed configurations,
up to isomorphism, by Proposition 1, is smaller than the number of X-pointed
markings, which is clearly finite since the net is safe.

Corollary 1 (strong regularity). Let N be finite safe Petri net. Then the
corresponding pes E(N) is strongly regular.

In order to instantiate the model checking framework to finite safe Petri
nets, the idea is to take an equivalence over the infinite NPA by abstracting the
(pointed) configurations associated with its states to pointed markings.

Definition 16 (pointed-marking equivalence on NPA). Let N be a finite
safe Petri net and let ϕ be a closed formula in Lhp. Two states q1, q2 in the NPA
AE(N),ϕ are pointed-marking equivalent, written q1 ≈m q2, if qi = 〈Ci, ηi, ψ〉,
i ∈ {1, 2}, for some ψ ∈ sf (ϕ) and M(〈C1, η1|fv(ψ)〉) = M(〈C2, η2|fv(ψ)〉).

Using Proposition 1 we can immediately prove that ≈m refines ≈f . Moreover
we can show that ≈m is a bisimulation in the sense of Definition 13.

Proposition 2 (marking equivalence is a bisimulation). Let N be a finite
safe Petri net and let ϕ be a closed formula in Lhp. The equivalence ≈m on the
automaton AE(N),ϕ is a bisimulation and it is of finite index.

Relying on Propositions 1 and 2 we provide an explicit construction of the
quotient automaton AE(N),ϕ/≈m

. We introduce a convenient notation for tran-
sitions between pointed markings. Given the variables x, y, a set X such that
x∪y ⊆ X and an X-pointed marking 〈M, r〉, we write 〈M, r〉 x,y < t−−−−→a,z 〈M ′, r′〉
if M [t〉M ′, λN (t) = a, for all x ∈ x we have r(x) ∩ •t �= ∅ and for all y ∈ y it
holds r(y)∩ •t = ∅ and r′ is defined by r′(z) = t• and r′(w) = (r(w)∩M ′)∪{s |
r(w) ∩ •t �= ∅ ∧ s ∈ t•}, for w �= z. In words, from the pointed marking 〈M, r〉
transition t is fired and “pointed” by variable z. Transition t is required to con-
sume tokens caused by x and not to consume tokens caused by y, in order to be
itself caused by x and independent from y. After the firing, variables which were
causes of some p ∈ •t become causes of the places in t• and, clearly, z causes t•.

178 P. Baldan and T. Padoan

Construction 1 (quotient NPA). Let N be a finite safe Petri net and let
ϕ ∈ Lhp be a closed formula. The quotient NPA AE(N),ϕ/≈m

is defined as follows.
The set of states Q = {(M, r, ψ) | M ∈ R(N) ∧ r : fv(ψ) → 2M ∧ ψ ∈ sf (ϕ)}.
The initial state q0 = (M0, ∅, ϕ). The transition relation is defined, for any state
q = (M, r, ψ) ∈ Q, by:

– if ψ = T or ψ = F, then q −→ (q)
– if ψ = ψ1 ∧ ψ2, then q −→ (q1, q2) where qi = (M, r, ψi), i ∈ {1, 2}
– if ψ = ψ1 ∨ ψ2, then q −→ (q1) and q −→ (q2) where qi = (M, r, ψi), i ∈ {1, 2}
– if ψ = [[x,y < a z]]ψ′, let S = {(M ′, r′

|fv(ψ′)) | 〈M, r〉 x,y < t−−−−→a,z 〈M ′, r′〉};
if S = {(M1, r1), . . . , (Mn, rn)} �= ∅ then q −→ (q1, . . . , qn) where qi =
(Mi, ri, ψ

′) for i ∈ [1, n], otherwise q −→ (q);
– if ψ = 〈|x,y < a z|〉ψ′, let S = {(M ′, r′

|fv(ψ′)) | 〈M, r〉 x,y < t−−−−→a,z 〈M ′, r′〉}; if
S = {(M1, r1), . . . , (Mn, rn)} �= ∅ then q −→ (qi) where qi = (Mi, ri, ψ

′) for
i ∈ [1, n], otherwise q −→ (q);

– if ψ = αX(x).ψ′ then q −→ (q′) where q′ = (M, r,X(x));
– if ψ = X(y) and ψ′ ∈ sf (ϕ) is the subformula such that ψ′ = αX(x).ψ′′ then

q −→ (q′) where q′ = (M, r[x �→ r(y)], ψ′′).

The acceptance condition is as in Definition 10.

4.3 A Prototype Tool

The algorithm for model checking Petri nets outlined before is implemented
in the prototype tool TCWB (True Concurrency Workbench) [33], written in
Haskell. The tool inputs a safe Petri net N and a closed formula ϕ of Lhp

and outputs the truth value of the formula on the initial marking of N . The
algorithm builds the quotient NPA AE(N),ϕ/≈m

“on demand”, i.e., the states
of the automaton are generated when they are explored in the search of an
accepting run. A path is recognised as successful when it includes a loop where
a �∗

d-maximal subformula is T, a [[]]-subformula or a ν-subformula. In this way
only the fragment of AE(N),ϕ/≈m

relevant to decide the satisfaction of ϕ is built.
Given a net N = (P, T, F,M0) and a formula ϕ, the number of states in the

quotient automaton AE(N),ϕ/≈m
can be bounded as follows. Recall that a state

consists of a triple (M, r, ψ) where ψ ∈ sf (ϕ), M is a reachable marking and r :
fv(ψ) → 2M is a function. This leads to an upper bound O(|sf (ϕ)|·|R(N)|·2|P |·v),
where v = max{|fv(ψ)| : ψ ∈ sf (ϕ)} is the largest number of event variables
appearing free in a subformula of ϕ. In turn, since |R(N)| ≤ 2|P |, this is bounded
by O(|sf (ϕ)|·2|P |·(v+1)). The size of the automaton is thus exponential in the size
of the net and linear in the size of the formula. Moving from the interleaving
fragment of the logic (where v = 0) to formulae capable of expressing true
concurrent properties thus causes an exponential blow up. However, note that
the worst case scenario requires all transitions to be related by causality and
concurrency to all places in any possible way, something that should be quite
unlikely in practice. Indeed, despite the fact that the tool is very preliminary

Automata for True Concurrency Properties 179

and more tweaks and optimisations could improve its efficiency, for the practical
tests we performed the execution time seems to be typically well below than the
theoretical worst case upper bound.

5 Conclusions

We introduced an automata-theoretic framework for the model checking of the
logic for true concurrency Lhp, representing the logical counterpart of a classical
true concurrent equivalence, i.e., history preserving bisimilarity. The approach is
developed abstractly for strongly regular pess, that include regular trace pess.
A concrete model-checking procedure requires the identification of an effective
bisimulation equivalence for the construction of the quotient automaton. We
showed how this can be done for finite safe Petri nets. The technique is imple-
mented in a proof-of-concept tool.

We proved that the class of regular trace pess is included in that of strongly
regular pess which in turn is included in the class of regular pess. The precise
relation of strongly regular pess with the other two classes is still unclear and
interesting in view of [34] that recently showed that regular trace pess are strictly
included in regular pess, disproving Thiagarajan’s conjecture.

Several other papers deal with model checking for logics on event structures.
In [35] a technique is proposed for model checking a CTL-style logic with modal-
ities for immediate causality and conflict on a subclass of pess. The logic is quite
different from ours as formulae are satisfied by single events, the idea being that
an event, with its causes, represents the local state of a component. The pro-
cedure involves the construction of a finite representation of the pes associated
with a program which has some conceptual relation with our quotienting phase.
In [19] the author shows that first order logic and Monadic Trace Logic (MTL),
a restricted form of monadic second order (MSO) logic are decidable on regular
trace event structures. The possibility of directly observing conflicts in MTL and
thus of distinguishing behaviourally equivalent pess (e.g., the pess consisting of
a single or two conflicting copies of an event), and the presence in Lhp of propo-
sitions which are non-monadic with respect to event variables, make these logics
not immediate to compare. Still, a deeper investigation is definitively worth to
pursue, especially in view of the fact that, in the propositional case, the mu-
calculus corresponds to the bisimulation invariant fragment of MSO logic [36].

The work summarised in [18] develops a game theoretic approach for model-
checking a concurrent logic over partial order models. It has been observed in [20]
that such logic is incomparable to Lhp. Preliminary investigations shows that our
model-checking framework could be adapted to such a logic and, more generally,
to a logic joining the expressive power of the two. Moreover, further explor-
ing the potentialities of a game theoretic approach in our setting represents an
interesting venue of further research.

Compared to our previous work [26], we extended the range of the technique
to the full logic Lhp, without limitations concerning the alternation depth of
formulae. Relaxing the restriction to strongly regular pess, instead, appears to

180 P. Baldan and T. Padoan

be quite problematic unless one is willing to deal with transfinite runs which,
however, would be of very limited practical interest.

The tool is still very preliminary. As suggested by its (wishful) name (inspired
by the classical Edinburgh Concurrency Workbench [37]) we would like to bring
the TCWB to a more mature stage, working on optimisations and adding an
interface that gives access to a richer set of commands.

Acknowledgements. We are grateful to Perdita Stevens for insightful hints and
pointers to the literature and to the anonymous reviewers for their comments.

References

1. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

2. Winskel, G.: Events, causality and symmetry. Comput. J. 54(1), 42–57 (2011)
3. Pichon-Pharabod, J., Sewell, P.: A concurrency semantics for relaxed atomics that

permits optimisation and avoids thin-air executions. In: Bod́ık, R., Majumdar, R.
(eds.) Proceedings of POPL 2016, pp. 622–633. ACM (2016)

4. Jeffrey, A., Riely, J.: On thin air reads towards an event structures model of relaxed
memory. In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of LICS 2016,
pp. 759–767. ACM (2016)

5. Dumas, M., Garćıa-Bañuelos, L.: Process mining reloaded: event structures as a
unified representation of process models and event logs. In: Devillers, R., Valmari,
A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19488-2 2

6. Farzan, A., Madhusudan, P.: Causal atomicity. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006). https://doi.org/
10.1007/11817963 30

7. Baldan, P., Carraro, A.: A causal view on non-intereference. Fundamenta Infor-
maticae 140(1), 1–38 (2015)

8. van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37(4/5), 229–327 (2001)

9. De Nicola, R., Ferrari, G.L.: Observational logics and concurrency models. In: Nori,
K.V., Veni Madhavan, C.E. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 301–315.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53487-3 53

10. Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Polish Academy of
Sciences (1991)

11. Pinchinat, S., Laroussinie, F., Schnoebelen, P.: Logical characterization of truly
concurrent bisimulation. Technical report 114, LIFIA-IMAG, Grenoble (1994)

12. Penczek, W.: Branching time and partial order in temporal logics. In: Time and
Logic: A Computational Approach, pp. 179–228. UCL Press (1995)

13. Nielsen, M., Clausen, C.: Games and logics for a noninterleaving bisimulation.
Nord. J. Comput. 2(2), 221–249 (1995)

14. Bradfield, J., Fröschle, S.: Independence-friendly modal logic and true concurrency.
Nord. J. Comput. 9(1), 102–117 (2002)

15. Alur, R., Peled, D., Penczek, W.: Model-checking of causality properties. In: Pro-
ceedings of LICS 1995, pp. 90–100. IEEE Computer Society (1995)

https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/978-3-319-19488-2_2
https://doi.org/10.1007/11817963_30
https://doi.org/10.1007/11817963_30
https://doi.org/10.1007/3-540-53487-3_53

Automata for True Concurrency Properties 181

16. Gutierrez, J., Bradfield, J.: Model-checking games for fixpoint logics with partial
order models. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol.
5710, pp. 354–368. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04081-8 24

17. Gutierrez, J.: Logics and bisimulation games for concurrency, causality and con-
flict. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 48–62. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1 5

18. Gutierrez, J.: On bisimulation and model-checking for concurrent systems with
partial order semantics. Ph.D. thesis, University of Edinburgh (2011)

19. Madhusudan, P.: Model-checking trace event structures. In: Proceedings of LICS
2013, pp. 371–380. IEEE Computer Society (2003)

20. Baldan, P., Crafa, S.: A logic for true concurrency. J. ACM 61(4), 24:1–24:36
(2014)

21. Phillips, I., Ulidowski, I.: Event identifier logic. Math. Struct. Comput. Sci. 24(2),
1–51 (2014)

22. Best, E., Devillers, R., Kiehn, A., Pomello, L.: Fully concurrent bisimulation. Acta
Informatica 28, 231–261 (1991)

23. Rabinovich, A.M., Trakhtenbrot, B.A.: Behaviour structures and nets. Fundamenta
Informaticae 11, 357–404 (1988)

24. Degano, P., De Nicola, R., Montanari, U.: Partial orderings descriptions and obser-
vations of nondeterministic concurrent processes. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 438–466. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0013030

25. Jurdzinski, M., Nielsen, M., Srba, J.: Undecidability of domino games and hhp-
bisimilarity. Inf. Comput. 184(2), 343–368 (2003)

26. Baldan, P., Padoan, T.: Local model checking in a logic for true concurrency. In:
Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 407–423.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 24

27. Thiagarajan, P.S.: Regular event structures and finite Petri nets: a conjecture. In:
Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing. LNCS, vol. 2300, pp. 244–253. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45711-9 14

28. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the μ-calculus and
its fragments. Theor. Comput. Sci. 258(1–2), 491–522 (2001)

29. Mostowski, A.W.: Regular expressions for infinite trees and a standard form of
automata. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-16066-3 15

30. Klauck, H.: Algorithms for parity games. In: Grädel, E., Thomas, W., Wilke,
T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp. 107–129.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4 7

31. Abdulla, P.A., Kaati, L., Högberg, J.: Bisimulation minimization of tree automata.
In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 173–185.
Springer, Heidelberg (2006). https://doi.org/10.1007/11812128 17

32. Petri, C.: Kommunikation mit Automaten. Schriften des Institutes für Instru-
mentelle Matematik, Bonn (1962)

33. Padoan, T.: True concurrency workbench. http://github.com/tpadoan/TCWB
34. Chalopin, J., Chepoi, V.: A counterexample to Thiagarajan’s conjecture on regular

event structures. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.)
Proceedings of ICALP 2017, LIPIcs, vol. 80, pp. 101:1–101:14, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2017)

https://doi.org/10.1007/978-3-642-04081-8_24
https://doi.org/10.1007/978-3-642-04081-8_24
https://doi.org/10.1007/978-3-642-00596-1_5
https://doi.org/10.1007/BFb0013030
https://doi.org/10.1007/978-3-662-54458-7_24
https://doi.org/10.1007/3-540-45711-9_14
https://doi.org/10.1007/3-540-45711-9_14
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.1007/3-540-36387-4_7
https://doi.org/10.1007/11812128_17
http://github.com/tpadoan/TCWB

182 P. Baldan and T. Padoan

35. Penczek, W.: Model-checking for a subclass of event structures. In: Brinksma, E.
(ed.) TACAS 1997. LNCS, vol. 1217, pp. 145–164. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0035386

36. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 60

37. Stevens, P., Stirling, C.: Practical model-checking using games. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 85–101. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054166

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BFb0035386
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1007/BFb0054166
https://doi.org/10.1007/BFb0054166
http://creativecommons.org/licenses/by/4.0/

A Theory of Encodings
and Expressiveness
(Extended Abstract)

Rob van Glabbeek1,2(B)

1 Data61, CSIRO, Sydney, Australia
rvg@cs.stanford.edu

2 Computer Science and Engineering, University of New South Wales,
Sydney, Australia

Abstract. This paper proposes a definition of what it means for one
system description language to encode another one, thereby enabling
an ordering of system description languages with respect to expressive
power. I compare the proposed definition with other definitions of encod-
ing and expressiveness found in the literature, and illustrate it on a well-
known case study: the encoding of the synchronous in the asynchronous
π-calculus.

1 Introduction

This paper, like [16,21], aims at answering the question what it means for one
language to encode another one, and making the resulting definition applicable
to order system description languages like CCS, CSP and the π-calculus with
respect to their expressive power.

To this end it proposes a unifying concept of valid translation between two
languages up to a semantic equivalence or preorder. It applies to languages whose
semantics interprets the operators and recursion constructs as operations on a set
of values, called a domain. Languages can be partially ordered by their expres-
siveness up to the chosen equivalence or preorder according to the existence of
valid translations between them.

The concept of a [valid] translation between system description languages (or
process calculi) was first formally defined by Boudol [3]. There, and in most other
related work in this area, the domain in which a system description language
is interpreted consists of the closed expressions from the language itself. In [14]
I have reformulated Boudol’s definition, while dropping the requirement that the
domain of interpretation is the set of closed terms. This allows (but does not
enforce) a clear separation of syntax and semantics, in the tradition of universal
algebra. Nevertheless, the definition employed in [14] only deals with the case
that all (relevant) elements in the domain are denotable as the interpretations
of closed terms. In [16] situations are described where such a restriction is unde-
sirable. In addition, both [3,14] require the semantic equivalence ∼ under which
two languages are compared to be a congruence for both of them. This is too
severe a restriction to capture many recent encodings [1,2,7,30,31,33,38,43].
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 183–202, 2018.
https://doi.org/10.1007/978-3-319-89366-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_10&domain=pdf

184 R. van Glabbeek

In [16] I alleviated these two restrictions by proposing two notions of encod-
ing: correct and valid translations up to ∼. Each of them generalises the propos-
als of [3,14]. The former drops the restriction on denotability as well as ∼ being
a congruence for the whole target language, but it requires ∼ to be a congru-
ence for the source language, as well as for the source’s image within the target.
The latter drops both congruence requirements (and allows ∼ to be a preorder
rather than an equivalence), but at the expense of requiring denotability by
closed terms. In situations where ∼ is a congruence for the source language’s
image within the target language and all semantic values are denotable, the two
notions agree.

The current paper further generalises the work of [16] by proposing a new
notion of a valid translation that incorporates the correct and valid translations
of [16] as special cases. It drops the congruence requirements as well as the
restriction on denotability.

As in [16], my aim is to generalise the concept of a valid translation as much as
possible, so that it is uniformly applicable in many situations, and not just in the
world of process calculi. Also, it needs to be equally applicable to encodability
and separation results, the latter saying that an encoding of one language in
another does not exists. At the same time, I try to derive this concept from a
unifying principle, rather than collecting a set of criteria that justify a number
of known encodability and separation results that are intuitively justified.

Overview of the Paper. Section 2 defines my new concept of a valid translation
up to a semantic equivalence or preorder •∼. Roughly, a valid translation of one
language into another is a mapping from the expressions in the first language to
those in the second that preserves their meaning, i.e. such that the meaning of a
translated expression is semantically equivalent to the meaning of the original.

Section 3 shows that this concept generalises the notion of a correct transla-
tion from [16]: a translation is correct up to a semantic equivalence ∼ iff it is
valid up to ∼ and ∼ is a congruence for the source language as well as for the
image of the source language within the target language.

Likewise, [18]—the full version of this paper—establishes the coincidence of
my validity-based notion of expressiveness with the one from [16] when applying
both to languages for which all semantic values are denotable by closed terms.

One language is said to be at least as expressive as another up to •∼ iff
there exists a valid translation up to •∼ of the latter language into the former.
Section 4 shows that “being at least as expressive as” is a preorder on languages.
This expressiveness preorder depends on the choice of •∼, and a coarser choice
(making less distinctions) yields a richer preorder of expressiveness inclusions.

Section 6 illustrates the framework on a well-known case study: the encoding
of the synchronous in the asynchronous π-calculus.

Section 7 discusses the congruence closure of a semantic equivalence for a
given language, and remarks that in the presence of operators with infinite arity
it is not always a congruence. Section 8 states a useful congruence closure prop-
erty for valid translations: if a translation between two languages exists that is

A Theory of Encodings and Expressiveness 185

valid up a semantic equivalence ∼, then it is even valid up to an equivalence
that

– on the source language coincides with the congruence closure of ∼
– on the image of the source within the target language also coincides with the

congruence closure of ∼
– melts each equivalence class of the source with exactly one of the target.

Section 9 concludes that the framework established thus far is great for com-
paring the expressiveness of languages, but falls short for the purpose of combin-
ing language features. This requires a congruence reflection theorem, provided
in Sect. 12, for languages satisfying postulates formulated in Sects. 5, 10 and 11.

Section 12 defines when a translation is compositional, and shows that any
valid translation up to •∼ can be modified into a compositional translation valid
up to •∼. This requires restricting attention to languages and preorders •∼ that
satisfy some mild sanity requirements—the postulates of Sects. 10 and 11. Hence,
for the purpose of comparing the expressive power of languages, valid translations
between them may be presumed compositional.

Section 13 compares my approach with the one of Gorla [21], and concludes.
Omitted proofs and counterexamples (marked by ¶) can be found in [18].

2 Languages, Valid Translations, and Expressiveness

A language consists of syntax and semantics. The syntax determines the valid
expressions in the language. The semantics is given by a mapping [] that
associates with each valid expression its meaning, which can for instance be an
object, concept or statement.

Following [16], I represent a language L as a pair (TL, []L) of a set TL of
valid expressions in L and a mapping []L : TL → DL from TL in some set of
meanings DL.

Definition 1 ([16]). A translation from a language L into a language L′ is a
mapping T : TL → TL′ .

In this paper, I consider single-sorted languages L in which expressions or terms
are built from variables (taken from a set X) by means of operators (including
constants) and possibly recursion constructs. For such languages the meaning
[E]L of an L-expression E is a function of type (X →V)→V for a given sets of
values V. It associates a value [E]L(ρ)∈V to E that depends on the choice of a
valuation ρ : X→V. The valuation associates a value from V with each variable.

Since normally the names of variables are irrelevant and the cardinality of
the set of variables satisfies only the requirement that it is “sufficiently large”,
no generality is lost by insisting that two (system description) languages whose
expressiveness is being compared employ the same set of (process) variables.
On the other hand, two languages L and L′ may be interpreted in different
domains of values V and V′.

186 R. van Glabbeek

Let L and L′ be languages as considered above, with semantic mappings

[]L : TL → ((X → V) → V) and []L′ : TL′ → ((X → V′) → V′).

In order to compare these languages w.r.t. their expressive power I need a seman-
tic equivalence or preorder •∼ that is defined on a unifying domain of interpreta-
tion Z, with V,V′ ⊆ Z.1 Intuitively, v ′ •∼ v with v ∈ V and v ′ ∈ V′ means that
values v and v ′ are sufficiently alike for our purposes, so that one can accept a
translation of an expression with meaning v into an expression with meaning v ′.
Below, target values of a translation (in V′) are written on the left.

Correct and a valid translations up to a semantic equivalence or preorder •∼
were introduced in [16]. Here I redefine these concepts in terms of a new concept
of correctness w.r.t. a semantic translation.

Definition 2. Let V and V′ be domains of values in which two languages L
and L′ are interpreted. A semantic translation from V into V′ is a relation
R ⊆ V′ × V such that ∀v ∈ V.∃v ′ ∈ V′. v ′Rv .

Thus every semantic value in V needs to have a counterpart in V′—possibly mul-
tiple ones. For valuations η : X → V′, ρ : X → V I write ηR ρ iff η(X)R ρ(X)
for each X ∈ X .

Definition 3. A translation T : TL → TL′ is correct w.r.t. a semantic transla-
tion R if [T (E)]L′(η)R [E]L(ρ) for all expressions E ∈ TL and all valuations
η : X → V′ and ρ : X → V with ηR ρ.

Thus T is correct iff the meaning of the translation of an expression E is a
counterpart of the meaning of E, no matter what values are filled in for the
variables, provided that the value filled in for a given variable X occurring in
the translation T (E) is a counterpart of the value filled in for X in E.

Definition 4. A translation T : TL → TL′ is correct up to •∼ iff •∼ is an
equivalence, the restriction R of •∼ to V′ × V is a semantic translation, and T
is correct w.r.t. R.

Definition 5. A translation T is valid up to •∼ iff it is correct w.r.t. some
semantic translation R ⊆ •∼. Language L′ is at least as expressive as L up to •∼
if a translation valid up to •∼ from L into L′ exists.

Example 4 in [18] illustrates both notions and shows their difference.

1 I will be chiefly interested in the case that •∼ is an equivalence—hence the choice
of a symbol that looks like ∼. However, to establish Observation 2 and Theorem 2
below, it suffices to know that •∼ is reflexive and transitive. My convention is that the
dotted end of •∼ points to a translation and the other end to an original—without
offering an intuition for the possible asymmetry.

A Theory of Encodings and Expressiveness 187

3 Correct = Valid + Congruence

In [16] the concept of a correct translation up to ∼ was defined, for ∼ a semantic
equivalence on Z. Here two valuations η, ρ : X → Z are called ∼-equivalent,
η ∼ ρ, if η(X) ∼ ρ(X) for each X ∈ X . In case there exists a v ∈ V for
which there is no ∼-equivalent v ′ ∈ V′, there is no correct translation from L
into L′ up to ∼. Namely, the semantics of L describes, among others, how any
L-operator evaluates the argument value v , and this aspect of the language has
no counterpart in L′. Therefore, [16] requires

∀v ∈ V. ∃v ′ ∈ V′. v ′ ∼ v . (1)

This implies that for any valuation ρ : X → V there is an η : X → V′ with η ∼ ρ.

Definition 6 ([16]). A translation T from L into L′ is correct up to ∼ iff (1)
holds and [T (E)]L′(η) ∼ [E]L(ρ) for all E ∈ TL and all valuations η : X → V′

and ρ : X → V with η ∼ ρ.

Note that this definition agrees completely with Definition 4. Requirement (1)
above corresponds to R being a semantic translation in Definition 4.

If a correct translation up to ∼ from L into L′ exists, then ∼ must be a
congruence for L.

Definition 7. An equivalence relation ∼ is a congruence for a language L inter-
preted in a semantic domain V if [E]L(ν) ∼ [E]L(ρ) for any L-expression E
and any valuations ν, ρ : X → V with ν ∼ ρ.2

Proposition 1 ([16]). If T is a correct translation up to ∼ from L into L′, then
∼ is a congruence for L.

The existence of a correct translation up to ∼ from L into L′ does not imply
that ∼ is a congruence for L′. However, ∼ has the properties of a congruence
for those expressions of L′ that arise as translations of expressions of L, when
restricting attention to valuations into U := {v ∈ V′ | ∃v ∈ V. v ′ ∼ v}. In [16]
this called a congruence for T (L).

Definition 8. Let T : TL → TL′ be a translation from L into L′. An equiva-
lence ∼ on V′ is a congruence for T (L) if [T (E)]L′(θ) ∼ [T (E)]L′(η) for any
E ∈ TL and θ, η :X→U with θ ∼ η.

Proposition 2 ([16]). If T is a correct translation up to ∼ from L into L′, then
∼ is a congruence for T (L).

The following theorem tells that the notion of validity proposed in Sect. 2 can
be seen as a generalisation of the notion of correctness from [16] that applies to
equivalences (and preorders) •∼ that need not be congruences for L or T (L).

Theorem 1. A translation T from L into L′ is correct up to a semantic equiv-
alence ∼ iff it is valid up to ∼ and ∼ is a congruence for T (L). ¶
2 This is called a lean congruence in [17]; in the presence of recursion, stricter congru-

ence requirements are common. Those are not needed in this paper.

188 R. van Glabbeek

4 A Hierarchy of Expressiveness Preorders

An equivalence or preorder •∼ on a class Z is said to be finer, stronger, or more
discriminating than another equivalence or preorder •≈ on Z if v •∼ w ⇒ v •≈ w
for all v ,w ∈ Z.

Observation 1. Let T : TL → TL′ be a translation from L into L′, and let •∼
be finer than •≈. If T is valid up to •∼, then it is also valid up to •≈.

The quality of a translation depends on the choice of the equivalence or pre-
order up to which it is valid. Any two languages are equally expressive up to
the universal equivalence, relating any two processes. Hence, the equivalence
or preorder needs to be chosen carefully to match the intended applications of
the languages under comparison. In general, as shown by Observation 1, using
a finer equivalence or preorder yields a stronger claim that one language can be
encoded in another. On the other hand, when separating two languages L and
L′ by showing that L cannot be encoded in L′, a coarser equivalence yields a
stronger claim.

Observation 2. The identity is a valid translation up to any preorder from any
language into itself.

Theorem 2. If valid translations up to •∼ exists from L1 into L2 and from L2

into L3, then there is a valid translation up to •∼ from L1 into L3. ¶

Theorem 2 and Observation 2 show that the relation “being at least as expressive
as up to •∼” is a preorder on languages.

5 Closed-Term Languages

The languages considered in this paper feature variables, operators of arity n∈IN,
and/or other constructs. The set TL of L-expressions is inductively defined by:

– X ∈ TL for each variable X ∈ X ,
– f(E1, . . . , En) ∈ TL for each n-ary operator f and expressions Ei ∈ TL,
– and clauses for the other constructs, if any.

Examples of other constructs are the infinite summation operator
∑

i∈I Ei of
CCS, which takes arbitrary many arguments, or the recursion construct μX.E,
that has one argument, but binds all occurrences of X in that argument.

In general a construct has a number (possibly infinite) of argument expres-
sions and it may bind certain variables within some of its arguments—the scope
of the binding. An occurrence of a variable X in an expression is bound if it
occurs within the scope of a construct that binds X, and free otherwise.

The semantics of such a language is given, in part, by a domain of values
V, and an interpretation of each n-ary operator f of L as an n-ary operation
fV : Vn → V on V. Using the equations

[X]L(ρ) = ρ(X) and [f(E1, . . . , En)]L(ρ) = fV([E1]L(ρ), . . . , [En]L(ρ))

A Theory of Encodings and Expressiveness 189

this allows an inductive definition of the meaning [E]L of an L-expression E.
Moreover, [E]L(ρ) only depends on the restriction of ρ to the set fv(E) of
variables occurring free in E.

The set TL ⊆ TL of closed terms of L consists of those L-expressions E ∈ TL
with fv(E) = ∅. If P ∈ TL and V �= ∅ then [P]L(ρ) is independent of the choice
of ρ : X → V, and therefore denoted [P]L.

Definition 9. A substitution in L is a partial function σ : X ⇀ TL from the
variables to the L-expressions. For a given L-expression E ∈ TL, E[σ] ∈ TL
denotes the L-expression E in which each free occurrence of a variable X ∈
dom(σ) is replaced by σ(X), while renaming bound variables in E so as to avoid
a free variable Y occurring in an expression σ(X) ending up being bound in
E[σ]. A substitution is closed if it has the form σ : X → TL.

An important class of languages used in concurrency theory are the ones where
the distinction between syntax and semantic is effectively dropped by taking
V = TL, i.e. where the domain of values where the language is interpreted in
consists of the closed terms of the language. Here a valuation is the same as a
closed substitution, and [E]L(ρ) for E ∈ TL and ρ : X → TL is defined to be
E[ρ] ∈ TL. I will call such languages closed-term languages.

6 Translating a Synchronous into an Asynchronous π

As an illustration of the concepts introduced above, consider the π-calculus as
presented in [28], i.e., the one of [44] without matching, τ -prefixing, and choice.

Given a set of names N , the set Tπ of process expressions or terms E of
the calculus is given by

E ::= X | 0 | x̄y.E | x(z).E | E|E′ | (νz)E | !E

with x, y, z ranging over N , and X over X , the set of process variables. Process
variables are not considered in [44], although they are common in languages
like CCS [27] that feature a recursion construct. Since process variables form a
central part of my notion of a valid or correct translation, here they have simply
been added. This works generally. In Sect. 12 I show that for the purpose of
accessing whether one language is as expressive as another, translations between
them can be assumed to be compositional. This important result would be lost if
process variables were dropped from the language. In that case compositionality
would need to be stated as a separate requirement for valid translations.

Closed process expressions are called processes. The π-calculus is usually
presented as a closed-term language, in that the semantic value associated with
a closed term is simply itself. Yet, the real semantics is given by a reduction
relation between processes, defined below.

Definition 10. An occurrence of a name z in π-calculus process P ∈ Tπ is
bound if it occurs within a subexpression x(z).P ′ or (νz)P ′ of P ; otherwise it

190 R. van Glabbeek

is free. Let n(P) (resp. bn(P)) be the set of names occurring (bound) in P ∈
Tπ. Structural congruence, ≡, is the smallest congruence relation on processes
satisfying

P1|(P2|P3) ≡ (P1|P2)|P3 !P ≡ P |!P (νw)(P |Q) ≡ P |(νw)Q
P1|P2 ≡ P2|P1 (νz)0 ≡ 0 x(z).P ≡ x(w).P{w/z}

P |0 ≡ P (νz)(νw)P ≡ (νw)(νz)P (νz)P ≡ (νw)P{w/z} .

Here the rightmost column only holds when w /∈ n(P), and P{w/z} denotes the
process obtained by replacing each free occurrence of z in P by w.

Definition 11. The reduction relation, → ⊆ Tπ × Tπ, is generated by the
following rules.

x̄z.P |x(y).Q → P |Q{z/y} (z /∈ bn(Q))

P → P ′

P |Q → P ′|Q
P → P ′

(νz)P → (νz)P ′
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′

Let =⇒ be the reflexive and transitive closure of →. The observable behaviour
of π-calculus processes is often stated in terms of the outputs they can produce
(abstracting from the value communicated on an output channel).

Definition 12. Let x ∈ N . A process P has a strong output barb on x, notation
P↓x̄, if P can perform an output action x̄z. This is defined inductively:

(x̄z.(P))↓x̄
P↓x̄

(P |Q)↓x̄

Q↓x̄

(P |Q)↓x̄

P↓x̄ x �= z

((νz)P)↓x̄

P↓x̄

(!P)↓x̄

A process P has a weak output barb on x, P⇓x̄, if there is a P ′ with P =⇒ P ′⇓x̄.

A common semantic equivalence applied in the π-calculus is weak barbed con-
gruence [29,44].

Definition 13. Weak (output) barbed bisimilarity is the largest symmetric rela-
tion •≈ ⊆ Tπ × Tπ such that

– P
•≈ Q and P↓x̄ implies Q⇓x̄, and

– P
•≈ Q and P =⇒ P ′ implies Q =⇒ Q′ for some Q′ with P ′ •≈ Q′.

Weak barbed congruence, ∼=c, is the largest congruence included in •≈.

Often input barbs, defined similarly, are included in the definition of weak barbed
bisimilarity [44]. This is known to induce the same notion of weak barbed con-
gruence [44]. Another technique for defining weak barbed congruence is to use
a barb, or set of barbs, external to the language under investigation, that are
added to the language as constants [21], similar to the theory of testing of [9].
This method is useful for languages with a reduction semantics that do not fea-
ture a clear notion of barb, or where there is ambiguity in which barbs should be
counted and which not, or for comparing languages with different kinds of barb.

A Theory of Encodings and Expressiveness 191

Example 1. x̄z.0 �∼=c (νu)(x̄u.0|u(v).v̄z.0).
For let E := X|x(u).ūv.0 with ρ(X) = x̄z.0 and ζ(X) = (νu)(x̄u.0|u(v).v̄z.0).
Then E[ζ] → (νu)

(
u(v).v̄z.0|ūv.0

)
→ (v̄z.0)↓v̄ but (E[ρ])�⇓v̄.

The asynchronous π-calculus, as introduced by Honda and Tokoro in [24] and
by Boudol in [4], is the sublanguage aπ of the fragment π of the π-calculus pre-
sented above where all subexpressions x̄y.E have the form x̄y.0. Asynchronous
barbed congruence, ∼=c

a, is the largest congruence for the asynchronous π-calculus
included in •≈. Since aπ is a sublanguage of π, ∼=c

a is at least as coarse an equiv-
alence as ∼=c, i.e. ∼=c ⊆ ∼=c

a. The inclusion is strict, since !x(z).x̄z.0 ∼=c
a 0, yet

!x(z).x̄z.0 �∼=c 0 [44]. Since all expressions used in Example 1 belong to aπ, one
even has x̄z.0 �∼=c

a (νu)(x̄u.0|u(v).v̄z.0).
Boudol [4] defined a translation T from π to aπ inductively as follows:

T (X) = X for X ∈ X
T (0) = 0

T (x̄z.P) = (u)(x̄u|u(v).(v̄z|T (P))) choosing u, v /∈ n(P), u �= v
T (x(y).P) = x(u).(v)(ūv|v(y).T (P)) choosing u, v /∈ n(P), u �= v

T (P |Q) = (T (P)|T (Q))
T (!P) = !T (P)

T ((νx)P) = (νx)T (P)

Example 1 shows that T is not valid up to ∼=c. In fact, it is not even valid up to
∼=c

a. However, as shown in [25], it is valid up to •≈. Since •≈ is not a congruence
(for π or aπ) it is not correct up to •≈.

7 Congruence Closure

Definition 14. An equivalence relation ∼ is a 1-hole congruence for a language
L interpreted in a semantic domain V if [E]L(ν) ∼ [E]L(ρ) for any L-expression
E and any valuations ν, ρ : X → V with ν ∼1 ρ. Here ν, ρ are ∼1-equivalent,
ν ∼1 ρ, if ν(X) ∼ ρ(X) for some X ∈ X and ν(Y) = ρ(Y) for all variables Y �= X.

An n-hole congruence for any finite n ∈ IN can be defined in the same vain, and
it is well known and easy to check that a 1-hole congruence ∼ is also an n-hole
congruence, for any n ∈ IN. However, in the presence of operators with infinitely
many arguments, a 1-hole congruence need not be a congruence.

Example 2. Let V be (IN × IN) ∪ {∞}, with the well-order ≤ on V inherited
lexicographically from the default order on IN and ∞ the largest element. So
(n,m) ≤ (n′,m′) iff n ≤ n′ ∨ (n = m ∧ m ≤ m′). Consider the language L with
constants 0, 1 and (1), interpreted in V as (0, 0), (1, 0) and (0, 1), respectively,
the binary operator +, interpreted by (n1,m1) +V (n2,m2) = (n1+n2,m1+m2)
and ∞+E = E+∞ = ∞, and the construct sup(Ei)i∈I that takes any number of
arguments (dependent on the set of the index sets I). The interpretation of sup
in V is to take the supremum of its arguments w.r.t. the well-order ≤. In case

192 R. van Glabbeek

sup is given finitely many arguments, it simply returns the largest. However
sup((n, i))i∈IN = (n+1, 0).

Now let the equivalence relation ∼ on V be defined by (n,m) ∼ (n′,m′) iff
n = n′, leaving ∞ in an equivalence class of its own. This relation is a 1-hole
congruence on L. Hence, it is also a 2-hole congruence, so one has
(
(n1,m1) ∼ (n′

1,m
′
1) ∧ (n2,m2) ∼ (n′

2,m
′
2)

) ⇒ (n1,m1) + (n2,m2) ∼ (n′
1,m

′
1) + (n′

2,m
′
2).

Yet it fails to be a congruence: (n, i) ∼ (n, 0) for all i ∈ IN, but

(n+1, 0) = sup((n, i))i∈IN �∼ sup((n, 0))i∈IN = (n, 0).

It is well known and easy to check that the collection of equivalence relations on
any domain V, ordered by inclusion, forms a complete lattice—namely the inter-
section of arbitrary many equivalence relations is again an equivalence relation.
Likewise, the collection of 1-hole congruences for L is also a complete lattice,
and moreover a complete sublattice of the complete lattice of equivalence rela-
tions on V. The latter implies that for any collection C of 1-hole congruence
relations, the least equivalence relation that contains all elements of C (exists
and) happens to be a 1-hole congruence relation. Again, this is a property that
is well known [22] and easy to prove. It follows that for any equivalence relation
∼ there exists a largest 1-hole congruence for L contained in ∼. I will denote this
1-hole congruence by ∼1c

L , and call it the congruence closure of ∼ w.r.t. L. One
has v1 ∼1c

L v2 for v1, v2 ∈ V iff [E]L(ν) ∼ [E]L(ρ) for any L-expression E and
any valuations ν, ρ : X → V with ν(X) = v1 and ρ(X) = v2 for some X ∈ X and
ν(Y) = ρ(Y) for all Y �= X. Such results do not generally hold for congruences.

Example 3. Continue Example 2, but skipping the operator +. Let ∼k be the
equivalence on V defined by (n,m) ∼k (n′,m′) iff n = n′∧(m = m′∨m,m′ ≤ k).
It is easy to check that all ∼k for k ∈ IN are congruences on the reduced L, and
contained in ∼. Yet their least upper bound (in the lattice of equivalence relations
on V) is ∼, which is not a congruence itself. In particular, there is no largest
congruence contained in ∼.

When dealing with languages L in which all operators and other constructs
have a finite arity, so that each E ∈ TL contains only finitely many variables,
there is no difference between a congruence and a 1-hole congruence, and thus
∼1c

L is a congruence relation for any equivalence ∼. I will apply the theory of
expressiveness presented in this paper also to languages like CCS that have
operators (such as

∑
i∈I Ei) of infinite arity. However, in all such cases I’m

currently aware of, the relevant choices of L and ∼ have the property that ∼1c
L

is in fact a congruence relation. As an example, consider weak bisimilarity [27].
This equivalence relation fails to be a congruence for

∑
. However, the coarsest 1-

hole congruence contained in this relation, often called rooted weak bisimilarity,
happens to be a congruence. In fact, when congruence-closing weak bisimilarity
w.r.t. the binary sum, the result [15] is also a congruence for the infinitary sum,
as well as for all other operators of CCS [27].

A Theory of Encodings and Expressiveness 193

Definition 15. Let T be a translation from L into L′. A subset W of V′ is
closed under T (L) if [T (E)](η) ∈ W for any expression E ∈ TL and valuation
η : X → W. An equivalence ∼ on W is a congruence (respectively 1-hole
congruence) for T (L) on W if for any E ∈ TL and θ, η : X → W with θ ∼ η
(respectively θ ∼1 η) one has [T (E)]L′(θ) ∼ [T (E)]L′(η).

Proposition 3. Let T be a translation from L into L′ that is correct w.r.t. a
semantic translation R ⊆ V′ ×V. Let R(V) := {v ′ ∈ V′ | ∃v ∈ V. v ′Rv}. Then
R(V) is closed under T (L).

Proof: Let E ∈ TL and η : X → R(V). Take ρ : X → V with ρRη. Then
[T (E)]L′(η)R[E]L(ρ). Since [E]L(ρ) ∈ V one has [T (E)]L′(η) ∈ R(V). ��

Proposition 4. Let the translation T from L into L′ be correct w.r.t. the
semantic translation R ⊆ ∼. Then ∼ is a (1-hole) congruence for L iff it is
a (1-hole) congruence for T (L) on R(V).

Proof: First suppose ∼ is a congruence for L. Let E ∈TL and θ, η : X → R(V)
with θ ∼ η. By the definition of R(V) there are valuations ν, ρ : X → V with
θ R ν and η R ρ. Now ν ∼ θ ∼ η ∼ ρ, so

[T (E)]L′(θ)R[E]L(ν) ∼ [E]L(ρ)R−1[T (E)]L′(η)

and hence [T (E)]L′(θ) ∼ [T (E)]L′(η). The other direction proceeds in the
same way.

Now suppose ∼ is a 1-hole congruence for L. Let E∈TL and θ, η : X → R(V)
with θ ∼1 η. Then θ(X) ∼ η(X) for some X ∈ X and θ(Y) = η(Y) for all
Y �= X. So there must be ν, ρ : X → V with θ R ν, η R ρ and ν(Y) = ρ(Y)
for all Y �= X. Since ν(X) ∼ θ(X) ∼ η(X) ∼ ρ(X) it follows that ν ∼1 ρ. The
conclusion proceeds as above, and the other direction goes likewise. ��

The requirement of being a congruence for T (L) on R(V) is slightly weaker
than that of being a congruence for T (L)—cf. Definition 8—for it proceeds by
restricting attention to valuations into R(V) ⊆ U. ¶

8 A Congruence Closure Property for Valid Translations

In many applications, semantic values in the domain of interpretation of a lan-
guage L are only meaningful up to a semantic equivalence ∼c, and the intended
semantic domain could just as well be seen as the set of ∼c-equivalence classes
of values. For this purpose it is essential that ∼c is a congruence for L. Often ∼c

is the congruence closure of a coarser semantic equivalence ∼, so that two values
end up being identified iff they are ∼-equivalent in every context. An example of
this occurred in Sect. 6, with •≈ in the rôle of ∼ and ∼=c in the rôle of ∼c. Now
Theorem 4, contributed in this section, says that if a translation from L into L′

is valid up to ∼, then it is even valid up to an equivalence ∼1c
L,R that extends ∼c

from V to a subdomain W of V′ that suffices for the interpretation of translated

194 R. van Glabbeek

expressions from L. This equivalence ∼1c
L,R coincides with the congruence closure

of ∼ on L, as well as on T (L), and melts each equivalence class of V with exactly
one of W, and vice versa.

Let L and L′ be languages with []L : TL → ((X → V) → V) and
[]L′ : TL′ → ((X → V′) → V′). In this section I assume that V ∩ V′ = ∅. To
apply the results to the general case, just adapt L′ by using a copy of V′—any
preorder •∼ on V ∪ V′ extends to this copy by considering each copied element
•∼-equivalent to the original.

Definition 16. Given any semantic translation R, let ≡R ⊆ (V ∪ V′)2 be the
smallest equivalence relation on V ∪ V′ containing R.

Theorem 3. If a translation T is correct w.r.t. the semantic translation R, then
≡R is a 1-hole congruence for L. ¶

By Proposition 4 ≡R also is a 1-hole congruence for T (L) on R(V). Only the
subset R(V) of V′ matters for the purpose of translating L into L′. On V′\R(V)
the equivalence ≡R is the identity.

Theorem 4. Let T be a translation from a language L, with semantic domain
V, into a language L′, with domain V′, that is valid up to a semantic equivalence
∼. Then T is even valid up to a semantic equivalence ∼1c

L,R, contained in ∼, such
that (1) the restriction of ∼1c

L,R to V is the largest 1-hole congruence for L
contained in ∼, (2) the set W := {v ∈ V′ | ∃v ∈ V. v ′ ∼1c

L,R v} is closed under
T (L), and (3) the restriction of ∼1c

L,R to W is the largest 1-hole congruence for
T (L) on W that is contained in ∼. ¶

Note that each equivalence class of ∼1c
L,R on V∪W melts an equivalence class of

∼1c
L,R on V with one of ∼1c

L,R on W. Moreover, on V the relation is completely
determined by L and ∼. However, in general the whole relation ∼1c

L,R is not
completely determined by L and ∼. ¶

Corollary 1. Let T be a translation from a language L, with semantic domain
V, into a language L′, with domain V′, valid up to a semantic equivalence ∼,
and suppose the congruence closure ∼1

L of ∼ w.r.t. L is in fact a congruence.
Then T is correct up to the equivalence ∼1c

L,R described in Theorem 4. ¶

The languages π and aπ of Sect. 6 do not feature operators (or other con-
structs) of infinite arity. Hence the congruence closure ∼1c

π or ∼1c
aπ of an equiv-

alence ∼ on π or aπ is always a congruence. So by Corollary 1 Boudol’s trans-
lation T is correct up to an equivalence •≈c

π,R, defined on the disjoint union
of the domains Tπ and Taπ on which the two languages are interpreted. This
equivalence is contained in •≈, and on the source domain Tπ coincides with ∼=c.
By Theorem 4, the restriction of •≈c

π,R to a subdomain W ⊆ Taπ is the largest
congruence for T (π) on W that is contained in ∼. As ∼=c

a is a congruence for all
of aπ on all of Taπ, and contained in •≈, it is certainly a congruence for T (π)
on W, and thus contained in •≈c

π,R. This inclusion turns out to be strict. As
an illustration of that, note that x̄z.0|x̄z.0 ∼=c x̄z.x̄z0. (This follows since these

A Theory of Encodings and Expressiveness 195

processes are strong (early) bisimilar [44] and thus strong full bisimilar by [44,
Definition 2.2.2].) Consequently, their translations must be related by •≈c

π,R. So,
for distinct u, v, y, w, x, z ∈ N ,

(u)(x̄u|u(v).(v̄z|0))
∣
∣(u)(x̄u|u(v).(v̄z|0)) •≈c

π,R (y)(x̄y|u(w).(w̄z|(u)(x̄u|u(v).(v̄z|0)))).

Yet, these processes are not ∼=c
a-equivalent, as can be seen by putting them in a

context x(y).x(y).r̄(s)|X. There, only the left-hand side has a weak barb ⇓r̄.

9 Integrating Language Features Through Translations

The results of the previous section show how valid translations are satisfactory
for comparing the expressiveness of languages. If there is a valid translation T
from L to L′ up to ∼, and (as usual) ∼1c

L is a congruence, then all truths that
can be expressed in terms of L can be mimicked in L′. For the congruence classes
of ∼1c

L translate bijectively to congruence classes of an induced equivalence rela-
tion on the domain of T (L) (within the domain of L′), and all operations on
those congruence classes that can be performed by contexts of L have a perfect
counterpart in terms of contexts of T (L). This state of affairs was illustrated on
Boudol’s translation from a synchronous to an asynchronous π-calculus.

There is however one desirable property of translations between languages
that has not yet been achieved, namely to combine the powers of two languages
into one unified language. If both languages L1 and L2 have valid translations
into a language L′, then all that can be done with L1 can be mimicked in a
fragment of L′, and all that can be done with L2 can be mimicked in another
fragment of L′. In order for these two fragments to combine, one would like to
employ a single congruence relation on L′ that specialises to congruence rela-
tions for T1(L1) and T2(L2), which form the counterparts of relevant congruence
relations for the source languages L1 and L2.

In terms of the translation T from π to aπ, the equivalence ∼=c
a on Taπ would

be the right congruence relation to consider for aπ. Ideally, this congruence would
extend to an equivalence ∼=c

π,aπ on the disjoint union Tπ � Taπ, such that the
restriction of ∼=c

π,aπ to Tπ is a congruence for π. Necessarily, this congruence
on Tπ would have to distinguish the terms x̄z.0|x̄z.0 and x̄z.x̄z0, since their
translations are distinguished by ∼=c

a. One therefore expects ∼=c
π,aπ on Tπ to be

strictly finer than ∼=c. Here it is important that the union of Tπ and Taπ on
which this congruence is defined is required to be disjoint. For if one considers
Taπ as a subset of Tπ, then we obtain that the restriction of ∼=c

π,aπ to that subset
(1) coincides with ∼=c

a and (2) is strictly finer than ∼=c. This contradicts the fact
that ∼=c is strictly finer than ∼=c

a.
In Sect. 12 I will show that such a congruence ∼=c

π,aπ indeed exists. In fact,
under a few very mild conditions this result holds generally, provided that the
source language L is a closed-term language. ¶

196 R. van Glabbeek

10 A Unique Decomposition of Terms

The results of Sect. 12 apply only to languages satisfying two postulates, formu-
lated below, and to preorders •∼ that “respect α=”, defined in Sect. 11.

Definition 17. α-conversion is the act of renaming all occurrences of a bound
variable X within the scope of its binding into another variable, say Y , while
avoiding capture of free variables. Here one speaks of capture when a free occur-
rence of Y turns into a bound one.

Write E
α= F if expression E can be converted into F by acts of α-conversion.

In languages where there are multiple types of bound variables, α= allows con-
version of all of them. In a π-calculus with recursion, for instance, there could
be bound process variables X ∈ X as well as bound names x ∈ N . The last two
conversions in the right column of Definition 10 define α-conversion for names.

Postulate 1 ([16], paraphrased). There exists a class of expressions called
standard heads, and a class of substitutions called standard substitutions, such
that for each expression E, if not a variable, there are unique standard heads H
and substitutions σ such that E

α= H[σ].

A term f(c, g(c)), for instance, can be written as H[σ] where H = f(X1,X2) is
a head, and σ : {X1,X2} → TL is given by σ(X1) = c and σ(X2) = g(c). The
head H is standardised by means of a particular (arbitrary) choice for its argu-
ment variables X1 and X2. σ is standardised through a particular choice of the
bound variables that may occur in the expressions σ(X). A head for a recursive
expression μX.f(g(c), g(g(X))) is μX.f(Y, g(g(X))). See [16] for further detail.

This postulate is easy to show for each common type of system description
language, and I am not aware of any counterexamples. However, while striving
for maximal generality, I consider languages with (recursion-like) constructs that
are yet to be invented, and in view of those, this principle has to be postulated
rather than derived.

11 Invariance of Meaning Under α-conversion

Write v α=L w , with v ,w ∈ V, iff there are terms E,F ∈ TL with E
α= F , and

a valuation ζ : X → V such that [E]L(ζ) = v and [F]L(ζ) = w . This relation
is reflexive and symmetric.

In [16] I limited attention to languages satisfying

if E
α= F then [E]L = [F]L. (2)

This postulate says that the meaning of an expression is invariant under α-
conversion. It can be reformulated as the requirement that α=L is the identity
relation. This postulate is satisfied by all my intended applications, except for
the important class of closed-term languages. Languages like CCS and the π-
calculus can be regarded as falling in this class (although it is also possible to

A Theory of Encodings and Expressiveness 197

declare the meaning of a term under a valuation to be an α=-equivalence class of
closed terms). To bring this type of application within the scope of my theory,
here I weaken this postulate by requiring merely that α=L is an equivalence.

Postulate 2. α=L is an equivalence relation.

This postulate is needed in Sect. 12. I also need to restrict attention to preorders
•∼ with α=L ⊆ •∼. When that holds I say that the preorder •∼ respects α=L. If (2)
holds—which strengthens of Postulate 2—then any preorder respects α=L.

12 Compositionality

An important property of translations, defined below, is compositionality. In this
section show I that any valid translation up to a preorder •∼ can be modified
into such a translation that moreover is compositional, provided one restricts
attention to languages that satisfy Postulates 1 and 2, and preorders •∼ that
respect α=.

Definition 18. A translation T from L into L′ is compositional if

(1) T (E[σ]) α= T (E)[T ◦ σ] for each E ∈ TL and σ : fv(E) → TL,
(2) E

α= F implies T (E) α= T (F) for all E,F ∈ TL,
(3) and moreover T (X) = X for each X ∈ X .

In case E = f(t1, . . . , tn) for certain ti ∈ TL this amounts to
T (f(t1, . . . , tn)) α= Ef (T (t1), . . . , T (tn)), where Ef := T (f(X1, . . . , Xn)) and
Ef (u1, . . . , un) denotes the result of the simultaneous substitution in this expres-
sion of the terms ui ∈ TL′ for the free variables Xi, for i = 1, . . . , n. The
first requirement of Definition 18 is more general and covers language constructs
other than functions, such as recursion. Requiring equality rather than α= is too
demanding. ¶

Lemma 1. If T1 : TL1 → TL2 and T2 : TL2 → TL3 are compositional
translations, then so is their composition T2 ◦ T1 : TL1 → TL3 , defined by
T2 ◦ T1(E) := T2(T1(E)) for all E ∈ L1.

Proof: (1) T2(T1(E[σ])) α= T2(T1(E)[T1 ◦ σ]) α= T2(T1(E))[T2 ◦ T1 ◦ σ]) for each
σ : X ⇀ TL1 and E ∈ TL1 . Here the derivation of the first α= uses Property (2)
of Definition 18—and this is the reason for requiring that property.

(2) E
α=F implies T1(E) α=T1(F) and T2(T1(E)) α= T2(T1(F)) for all E,F ∈TL.

(3) T2(T1(X)) = T2(X) = X for each X ∈ X . ��

Theorem 5. Let L and L′ be languages that satisfy Postulates 1 and 2, and •∼
a preorder that respects α=L and α=L′ . If any valid (or correct) translation from
L into L′ up to •∼ exists, then there exists a compositional translation that is
valid (or correct) up to •∼. ¶

198 R. van Glabbeek

Hence, for the purpose of comparing the expressive power of languages, valid
translations between them can be assumed to be compositional. For correct
translations this was already established in [16], but assuming (2), a stronger
version of Postulate 2.

I can now establish the theorem promised in Sect. 9. In view of Theorem 5, no
great sacrifices are made by assuming that the translation T is compositional.
Other “mild conditions” needed are Postulate 2 for L′ and ≈ respecting α=L′ .

Theorem 6. Let L be a closed-term language and L′ a language that satisfies
Postulate 2. Let T be a compositional translation from L into L′ that is valid
up to ∼. Let ≈ be any congruence for L′ containing α=L′ and contained in ∼.
Then T is correct up to an equivalence ≈T on V ∪ V′, contained in ∼, that on
V′ coincides with ≈. ¶

13 Related Work

The concept of full abstraction stems from Milner [26]. It indicates a satisfactory
connection between a denotational and an operational semantics of a language.
Riecke [42] and Shapiro [45] adapt this notion to translations between languages.

Definition 19. A translation T : TLS → TLT is fully abstract w.r.t. the equiva-
lences ∼S⊆T2

LS
and ∼T⊆T2

LT
if, for all P,Q ∈ TLS , P ∼S Q ⇔ T (P) ∼T T (Q).

In [42,45], ∼S and ∼T are required to be congruence closures—see [18] for more
detail. The simplified definition above was used in [1,30,31]. Fu [10] bases a
theory of expressiveness on full abstraction, with a divergence-preserving form
of barbed branching bisimilarity [19] in the rôle of ∼S and ∼T. A comparison of
full abstraction with the approach of the present paper appears in [18].

In the last twenty years, a great number of encodability and separation
results have appeared, comparing CCS, Mobile Ambients, and several versions
of the π-calculus (with and without recursion; with mixed choice, separated
choice or asynchronous) [1,2,5–8,11–13,23,30–34,38–41,43,46]; see [20,21] for
an overview. Many of these results employ different and somewhat ad-hoc crite-
ria on what constitutes a valid encoding, and thus are hard to compare with each
other. Several of these criteria are discussed and compared in [35,36]. Gorla [21]
collected some essential features of these approaches and integrated them in a
proposal for a valid encoding that justifies most encodings and some separation
results from the literature.

Like Boudol [3] and the present paper, Gorla requires a compositional-
ity condition for encodings. However, his criterion is weaker than mine (cf.
Definition 18) in that the expression Ef encoding an operator f may be depen-
dent on the set of names occurring freely in the expressions given as arguments
of f . This issue is further discussed in [16]. It is an interesting topic for future
research to see if there are any valid encodability results à la [21] that suffer
from my proposed strengthening of compositionality.

A Theory of Encodings and Expressiveness 199

The second criterion of [21] is a form of invariance under name-substitution.
It serves to partially undo the effect of making the compositionality requirement
name-dependent. In my setting I have not yet found the need for such a condition.
In [16] I argue that this criterion as formalised in [21] is too restrictive.

The remaining three requirements of Gorla (the ‘semantic’ requirements) are
very close to an instantiation of mine with a particular preorder •∼. If one takes
•∼ to be weak barbed bisimilarity with explicit divergence (i.e. relating divergent
states with divergent states only), using barbs external to the language, as dis-
cussed in Sect. 6, then an valid translation in my sense satisfies Gorla’s semantic
criteria, provided that the equivalence ≡ on the target language that acts as a
parameter in Gorla’s third criterion is also taken to be weak barbed bisimilar-
ity with explicit divergence. The precise relationships between the proposals of
[16,21] are further discussed in [37].

Further work is needed to sort out to what extent the two approaches have
relevant differences when evaluating encoding and separation results from the
literature. Another topic for future work is to sort out how dependent known
encoding and separation results are on the chosen equivalence or preorder.

References

1. Baldamus, M., Parrow, J., Victor, B.: A fully abstract encoding of the pi-calculus
with data terms. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1202–1213. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 97

2. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi.
TCS 195(2), 205–226 (1998). https://doi.org/10.1016/S0304-3975(97)00220-X

3. Boudol, G.: Notes on algebraic calculi of processes. In: Apt, K. (ed.) Logics and
Models of Concurrent Systems. NATO ASI Series, vol. 13, pp. 261–303. Springer,
Heidelberg (1985). https://doi.org/10.1007/978-3-642-82453-1 9

4. Boudol, G.: Asynchrony and the π-calculus (Note). Technical report 1702, INRIA
(1992)

5. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, repli-
cation and iteration in process calculi. Math. Struct. Comput. Sci. 19(6), 1191–
1222 (2009). https://doi.org/10.1017/S096012950999017X

6. Cacciagrano, D., Corradini, F., Aranda, J., Valencia, F.D.: Linearity, persistence
and testing semantics in the asynchronous pi-calculus. ENTCS 194(2), 59–84
(2008). https://doi.org/10.1016/j.entcs.2007.11.006

7. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in
pi-calculus. Nord. J. Comput. 10(2), 70–98 (2003)

8. Cardelli, L., Gordon, A.D.: Mobile ambients. TCS 240(1), 177–213 (2000).
https://doi.org/10.1016/S0304-3975(99)00231–5

9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. TCS 34, 83–133
(1984). https://doi.org/10.1016/0304-3975(84)90113-0

10. Fu, Y.: Theory of interaction. Theor. Comput. Sci. 611, 1–49 (2016).
https://doi.org/10.1016/j.tcs.2015.07.043

11. Given-Wilson, T.: Expressiveness via intensionality and concurrency. In: Ciobanu,
G., Méry, D. (eds.) ICTAC 2014. LNCS, vol. 8687, pp. 206–223. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10882-7 13

https://doi.org/10.1007/11523468_97
https://doi.org/10.1016/S0304-3975(97)00220-X
https://doi.org/10.1007/978-3-642-82453-1_9
https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1016/j.entcs.2007.11.006
https://doi.org/10.1016/S0304-3975(99)00231--5
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1016/j.tcs.2015.07.043
https://doi.org/10.1007/978-3-319-10882-7_13

200 R. van Glabbeek

12. Given-Wilson, T.: On the expressiveness of intensional communication. In: Pro-
ceedings of EXPRESS/SOS 2014. EPTCS, vol. 160, pp. 30–46 (2014). https://doi.
org/10.4204/EPTCS.160.4

13. Given-Wilson, T., Legay, A.: On the expressiveness of joining. In: Proceedings of
ICE 2015. EPTCS, vol. 189, pp. 99–113 (2015). https://doi.org/10.4204/EPTCS.
189.9

14. van Glabbeek, R.J.: On the expressiveness of ACP (extended abstract). In: Ponse,
A., Verhoef, C., van Vlijmen, S.F.M. (eds.) ACP 1994. Workshops in Computing,
pp. 188–217. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2120-
6 8. http://theory.stanford.edu/ rvg/abstracts.html#31

15. Glabbeek, R.J.: A characterisation of weak bisimulation congruence. In: Middel-
dorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes,
Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 26–39.
Springer, Heidelberg (2005). https://doi.org/10.1007/11601548 4

16. van Glabbeek, R.J.: Musings on encodings and expressiveness. In: Proceedings of
EXPRESS/SOS 2012. EPTCS, vol. 89, pp. 81–98 (2012). https://doi.org/10.4204/
EPTCS.89.7

17. van Glabbeek, R.J.: Lean and full congruence formats for recursion. In: Proceedings
of LICS 2017 (2017). https://doi.org/10.1109/LICS.2017.8005142

18. van Glabbeek, R.J.: A theory of encodings and expressiveness (2018). http://
theory.stanford.edu/∼rvg/abstracts.html#tra. Full version of current paper

19. van Glabbeek, R.J., Luttik, B., Trčka, N.: Branching bisimilar-
ity with explicit divergence. Fund. Inform. 93(4), 371–392 (2009).
https://doi.org/10.3233/FI-2009-109

20. Gorla, D.: A taxonomy of process calculi for distribution and mobility. Distrib.
Comput. 23(4), 273–299 (2010). https://doi.org/10.1007/s00446-010-0120-6

21. Gorla, D.: Towards a unified approach to encodability and sepa-
ration results for process calculi. I&C 208(9), 1031–1053 (2010).
https://doi.org/10.1016/j.ic.2010.05.002

22. Grätzer, G.: Lattice theory: foundation (2010). https://doi.org/10.1007/978-3-
0348-0018-1

23. Hatzel, M., Wagner, C., Peters, K., Nestmann, U.: Encoding CSP into CCS. In:
Proceedings of EXPRESS/SOS 2015. EPTCS, vol. 190, pp. 61–75 (2015). https://
doi.org/10.4204/EPTCS.190.5

24. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991). https://doi.org/10.1007/BFb0057019

25. Lippert, C., Mennicke, S., van Glabbeek, R.J., Goltz, U.: A case study on evaluating
encodings between process calculi. Technical report (2018). http://theory.stanford.
edu/∼rvg/abstracts.html#129

26. Milner, R.: Processes: a mathematical model for computing agents. Stud. Log.
Found. Math. 80, 157–173 (1975). https://doi.org/10.1016/S0049-237X(08)71948-
7. Logic Colloquium 1973

27. Milner, R.: Operational and algebraic semantics of concurrent processes. In: Hand-
book of Theoretical Computer Science, Chap. 19, pp. 1201–1242 (1990)

28. Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(2), 119–141
(1992). https://doi.org/10.1017/S0960129500001407

29. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55719-9 114

https://doi.org/10.4204/EPTCS.160.4
https://doi.org/10.4204/EPTCS.160.4
https://doi.org/10.4204/EPTCS.189.9
https://doi.org/10.4204/EPTCS.189.9
https://doi.org/10.1007/978-1-4471-2120-6_8
https://doi.org/10.1007/978-1-4471-2120-6_8
http://theory.stanford.edu/~rvg/abstracts.html#31
https://doi.org/10.1007/11601548_4
https://doi.org/10.4204/EPTCS.89.7
https://doi.org/10.4204/EPTCS.89.7
https://doi.org/10.1109/LICS.2017.8005142
http://theory.stanford.edu/~rvg/abstracts.html#tra
http://theory.stanford.edu/~rvg/abstracts.html#tra
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.1007/s00446-010-0120-6
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1007/978-3-0348-0018-1
https://doi.org/10.1007/978-3-0348-0018-1
https://doi.org/10.4204/EPTCS.190.5
https://doi.org/10.4204/EPTCS.190.5
https://doi.org/10.1007/BFb0057019
http://theory.stanford.edu/~rvg/abstracts.html#129
http://theory.stanford.edu/~rvg/abstracts.html#129
https://doi.org/10.1016/S0049-237X(08)71948-7
https://doi.org/10.1016/S0049-237X(08)71948-7
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114

A Theory of Encodings and Expressiveness 201

30. Nestmann, U.: What is a “Good” encoding of guarded choice? I&C 156(1–2),
287–319 (2000). https://doi.org/10.1006/inco.1999.2822

31. Nestmann, U., Pierce, B.C.: Decoding choice encodings. I&C 163(1), 1–59 (2000).
https://doi.org/10.1006/inco.2000.2868. An earlier version appeared in Proc.
CONCUR ’96

32. Palamidessi, C.: Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Math. Struct. Comput. Sci. 13(5), 685–719 (2003). https://
doi.org/10.1017/S0960129503004043

33. Palamidessi, C., Saraswat, V.A., Valencia, F.D., Victor, B.: On the expressiveness
of linearity vs persistence in the asychronous pi-calculus. In: Proceedings of LICS
2006, pp. 59–68. IEEE Computer Society Press (2006). https://doi.org/10.1109/
LICS.2006.39

34. Parrow, J.: Trios in concert. In: Proof, Language, and Interaction, Essays in Honour
of Robin Milner, pp. 623–638. The MIT Press (2000)

35. Parrow, J.: Expressiveness of process algebras. In: ENTCS, vol. 209, pp. 173–186
(2008). https://doi.org/10.1016/j.entcs.2008.04.011

36. Peters, K.: Translational expressiveness. Comparing process calculi using encod-
ings. Ph.D. thesis, TU Berlin (2012). https://doi.org/10.14279/depositonce-3416

37. Peters, K., van Glabbeek, R.J.: Analysing and comparing encodability criteria.
In: EXPRESS/SOS 2015. EPTCS, vol. 190, pp. 46–60 (2015). https://doi.org/10.
4204/EPTCS.190.4

38. Peters, K., Nestmann, U.: Is it a “Good” encoding of mixed choice? In: Birkedal, L.
(ed.) FoSSaCS 2012, vol. 7213, pp. 210–224. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28729-9 14

39. Peters, K., Nestmann, U.: Breaking symmetries. Math. Struct. Comput. Sci. 26(6),
1054–1106 (2016). https://doi.org/10.1017/S0960129514000346

40. Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi. In:
Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 310–329.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 18

41. Phillips, I., Vigliotti, M.G.: Leader election in rings of ambient processes. TCS
356(3), 468–494 (2006). https://doi.org/10.1016/j.tcs.2006.02.004

42. Riecke, J.G.: Fully abstract translations between functional languages. In: Pro-
ceedings of POPL 1991, pp. 245–254. ACM Press (1991). https://doi.org/10.1145/
99583.99617

43. Sangiorgi, D.: From π-calculus to higher-order π-calculus — and back. In: Gaudel,
M.-C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol. 668, pp. 151–166. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56610-4 62

44. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

45. Shapiro, E.Y.: Separating concurrent languages with categories of language embed-
dings. In: STOC 1991, pp. 198–208. ACM (1991). https://doi.org/10.1145/103418.
103423

46. Vigliotti, M.G., Phillips, I., Palamidessi, C.: Tutorial on separation results in pro-
cess calculi via leader election problems. TCS 388(1–3), 267–289 (2007). https://
doi.org/10.1016/j.tcs.2007.09.001

https://doi.org/10.1006/inco.1999.2822
https://doi.org/10.1006/inco.2000.2868
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1109/LICS.2006.39
https://doi.org/10.1109/LICS.2006.39
https://doi.org/10.1016/j.entcs.2008.04.011
https://doi.org/10.14279/depositonce-3416
https://doi.org/10.4204/EPTCS.190.4
https://doi.org/10.4204/EPTCS.190.4
https://doi.org/10.1007/978-3-642-28729-9_14
https://doi.org/10.1007/978-3-642-28729-9_14
https://doi.org/10.1017/S0960129514000346
https://doi.org/10.1007/978-3-642-37036-6_18
https://doi.org/10.1016/j.tcs.2006.02.004
https://doi.org/10.1145/99583.99617
https://doi.org/10.1145/99583.99617
https://doi.org/10.1007/3-540-56610-4_62
https://doi.org/10.1145/103418.103423
https://doi.org/10.1145/103418.103423
https://doi.org/10.1016/j.tcs.2007.09.001
https://doi.org/10.1016/j.tcs.2007.09.001

202 R. van Glabbeek

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Framework for Parameterized
Monitorability

Luca Aceto1,2 , Antonis Achilleos2(B) , Adrian Francalanza3 ,
and Anna Ingólfsdóttir2

1 Gran Sasso Science Institute, L’Aquila, Italy
2 School of Computer Science, Reykjavik University, Reykjavik, Iceland

{luca,antonios,annai}@ru.is
3 Department of Computer Science, ICT, University of Malta, Msida, Malta

adrian.francalanza@um.edu.mt

Abstract. We introduce a general framework for Runtime Verification,
parameterized with respect to a set of conditions. These conditions are
encoded in the trace generated by a monitored process, which a monitor
can observe. We present this parameterized framework in its general form
and prove that it corresponds to a fragment of HML with recursion,
extended with these conditions. We then show how this framework can
be applied to a number of instantiations of the set of conditions.

1 Introduction

Runtime Verification (RV) is a lightweight verification technique that checks
whether a system satisfies a correctness property by analysing the current exe-
cution of the system [20,29], expressed as a trace of execution events. Using the
additional information obtained at runtime, the technique can often mitigate
state explosion problems typically associated with more traditional verification
techniques. At the same time, limiting the verification analysis to the current exe-
cution trace hinders the expressiveness of RV when compared to more exhaustive
approaches. In fact, there are correctness properties that cannot be satisfactorily
verified at runtime (e.g. the finiteness of the trace considered up to the current
execution point prohibits the verification of liveness properties). Because of this
reason, RV is often used as part of a multi-pronged approach towards ensuring
system correctness [5,6,8,14,15,25], complementing other verification techniques
such as model checking, testing and type checking.

In order to attain an effective verification strategy consisting of multiple ver-
ification techniques that include RV, it is crucial to understand the expressive
power of each technique: one can then determine how to best decompose the
verification burden into subtasks that can then be assigned to the most appro-
priate verification technique. Monitorability concerns itself with identifying the

This research was supported by the project “TheoFoMon: Theoretical Foundations
for Monitorability” (grant number: 163406-051) of the Icelandic Research Fund.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 203–220, 2018.
https://doi.org/10.1007/978-3-319-89366-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_11&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0002-1314-333X
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0001-8362-3075

204 L. Aceto et al.

properties that are analysable by RV. In [21,22] (and subsequently in [2]), the
problem of monitorability was studied for properties expressed in a variant of the
modal μ-calculus [26] called μHML [28]. The choice of the logic was motivated
by the fact that it can embed widely used logics such as CTL and LTL, and
by the fact that it is agnostic of the underlying verification method used—this
leads to better separation of concerns and guarantees a good level of generality
for the results obtained. The main result in [2,21,22] is the identification of a
monitorable syntactic subset of the logic μHML (i.e., a set of logical formulas for
which monitors carrying out the necessary runtime analysis exist) that is shown
to be maximally expressive (i.e., any property that is monitorable in the logic
may be expressed in terms of this syntactic subset). We are unaware of other
maximality results of this kind in the context of RV.

In this work we strive towards extending the monitorability limits identi-
fied in [2,21,22] for μHML. Particularly, for any logic or specification language,
monitorability is a function of the underlying monitoring setup. In [2,21,22],
the framework assumes a classical monitoring setup, whereby a (single) monitor
incrementally analyses an ordered trace of events describing the computation
steps that were executed by the system. A key observation made by this paper
is that, in general, execution traces need not be limited to the reporting of events
that happened. For instance, they may describe events that could not have hap-
pened at specific points in the execution of a system. Alternatively, they may also
include descriptions for depth-bounded trees of computations that were possible
at specific points in an execution. We conjecture that there are instances where
this additional information can be feasibly encoded in a trace, either dynami-
cally or by way of a pre-processing phase (based, e.g., on the examination of logs
of previous system executions, or on the full static checking of sub-components
making up the system). More importantly, this additional information could, in
principle, permit the verification of more properties at runtime.

The contribution of this paper is a study of how the aforementioned aug-
mented monitoring setups may affect the monitorability of μHML, potentially
extending the maximality limits identified in [2,21,22]. More concretely:

1. We show how these aspects can be expressed and studied in a general monitor-
ing framework with (abstract) conditions, Theorems 3 and 4 resp. in Sects. 3
and 5.

2. We instantiate the general framework with trace conditions that describe the
inability to perform actions, amounting to refusals [31], Propositions 1 and 5.

3. We also instantiate the framework with conditions describing finite exe-
cution graphs, amounting to the recursion-free fragment of the logic [24],
Propositions 2 and 3.

4. Finally, we instantiate the framework with trace conditions that record infor-
mation from previous monitored runs of the system, Proposition 4. This, in
turn, leads us to a notion of alternating monitoring that allows monitors to
aggregate information over monitored runs. We show that this extends the
monitorable fragment of our logic in a natural and significant way.

A Framework for Parameterized Monitorability 205

The remainder of the paper is structured as follows. After outlining the necessary
preliminaries in Sect. 2, we develop our parameterized monitoring framework
with conditions in Sect. 3 for a monitoring setup that allows monitors to observe
both silent and external actions of systems. The two condition instantiations for
this strong setting are presented in Sect. 4. In Sect. 5 we extend the parameterized
monitoring framework with conditions to a weak monitoring setup that abstracts
from internal moves, followed by two instantiations similar to those presented in
Sect. 4. Section 6 concludes by discussing related and future work.

2 Background

Labelled Transition Systems. We assume a set of external actions Act and
a distinguished silent action τ . We let α range over Act and μ over Act∪ {τ}.
A Labelled Transition System (LTS) on Act is a triple

L = 〈P,Act,→L〉,

where P is a nonempty set of system states referred to as processes p, q, . . ., and
→L ⊆ P × (Act ∪ {τ}) × P is a transition relation. We write p

μ−→L q instead
of (p, μ, q) ∈ →L. By p

μ−→L we mean that there is some q such that p
μ−→L q.

We use p
μ
=⇒L q to mean that, in L, p can derive q using a single μ action

and any number of silent actions, i.e., p(τ−→L)∗ μ−→L (τ−→L)∗q. We distinguish
between (general) traces s = μ1μ2 . . . μr ∈ (Act∪ {τ})∗ and external traces t =
α1α2 . . . αr ∈ Act∗. For a general trace s = μ1μ2 . . . μr ∈ (Act∪ {τ})∗, p

s−→L q

means p
μ1−→L

μ2−→L . . .
μr−→L q; and for an external trace t = α1α2 . . . αr ∈ Act∗,

p
t=⇒L q means p

α1=⇒L
α2=⇒L . . .

αr=⇒L q when r ≥ 1 and p(τ−→)∗q when t = ε is
the empty trace. We occasionally omit the subscript L when it is clear from the
context.

Example 1. The (standard) regular fragment of CCS [30] with grammar:

p, q ∈ Proc ::= nil | μ.p | p + q | rec x.p | x,

where x, y, z, . . . are from some countably infinite set of variables Var, and the
transition relation defined as:

Act
μ.p

μ−→ p
Rec

p[rec x.p/x]
μ−→ q

recx.p
μ−→ q

SelL
p

μ−→ p′

p + q
μ−→ p′

SelR
q

μ−→ q′

p + q
μ−→ q′

constitutes the LTS 〈Proc,Act,→〉. We often use the CCS notation above to
describe processes. �

Specification Logic. Properties about the behaviour of processes may be spec-
ified via the logic μHML [4,28], a reformulation of the modal μ-calculus [26].

206 L. Aceto et al.

Definition 1. μHML formulae on Act are defined by the grammar:

ϕ,ψ ∈ μHML ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ

| 〈μ〉ϕ | [μ]ϕ | min X.ϕ | max X.ϕ | X

where X,Y,Z, . . . come from a countably infinite set of logical variables LVar.
For a given LTS L = 〈P,Act,→〉, an environment ρ is a function ρ : LVar →
2P . Given an environment ρ, X ∈ LVar, and S ⊆ P , ρ[x �→ S] denotes the
environment where ρ[X �→ S](X) = S and ρ[X �→ S](Y) = ρ(Y), for all Y = X.
The semantics of a μHML formula ϕ over an LTS L relative to an environment
ρ, denoted as [[ϕ, ρ]]L, is defined as follows:

[[tt, ρ]]L = P [[ff, ρ]]L = ∅ [[X, ρ]]L = ρ(X)
[[ϕ1∧ϕ2, ρ]]L = [[ϕ1, ρ]]L ∩ [[ϕ2, ρ]]L [[ϕ1∨ϕ2, ρ]]L = [[ϕ1, ρ]]L ∪ [[ϕ2, ρ]]L

[[[μ]ϕ, ρ]]L=
{

p
∣∣ ∀q. p

μ−→ q implies q ∈ [[ϕ, ρ]]L
}

[[〈μ〉ϕ, ρ]]L=
{

p
∣∣ ∃q. p

μ−→ q and q ∈ [[ϕ, ρ]]L
}

[[min X.ϕ, ρ]]L =
⋂ {

S
∣∣ S ⊇ [[ϕ, ρ[X �→ S]]]L

}

[[max X.ϕ, ρ]]L =
⋃ {

S
∣∣ S ⊆ [[ϕ, ρ[X �→ S]]]L

}

Formulas ϕ and ψ are equivalent, denoted as ϕ ≡ ψ, when [[ϕ, ρ]]L = [[ψ, ρ]]L for
every environment ρ and LTS L. We often consider closed formulae and simply
write [[ϕ]]L for [[ϕ, ρ]]L when the semantics of ϕ is independent of ρ. �

The logic μHML is very expressive. It is also agnostic of the technique to be
employed for verification. The property of monitorability, however, fundamen-
tally relies on the monitoring setup considered.

Monitoring Systems. A monitoring setup on Act is a triple 〈M, I, L〉, where
L is a system LTS on Act, M is a monitor LTS on Act, and I is the instru-
mentation describing how to compose L and M into an LTS, denoted by
I(M,L), on Act. We call the pair (M, I) a monitoring system on Act. For
M = 〈Mon,Act,→M 〉, Mon is set of monitor states (ranged over by m) and
→M is the monitor semantics described in terms of the behavioural state tran-
sitions a monitor takes when it analyses trace events μ ∈ Act∪ {τ}. The states
of the composite LTS I(M,L) are written as m � p, where m is a monitor state
and p is a system state; the monitored-system transition relation is denoted here
by →I(M,L). We present our results with a focus on rejection monitors, i.e.,
monitors with a designated rejection state no, and hence safety fragments of the
logic μHML. However, our results and arguments apply dually to acceptance
monitors (with a designated acceptance state yes) and co-safety properties; see
[21,22] for details.

A Framework for Parameterized Monitorability 207

Definition 2. Fix a monitoring setup 〈M, I, L〉 on Act and let m be a mon-
itor state of M and ϕ a closed formula of μHML on Act. We say that m
(M, I)-rejects (or simply rejects, if M, I are evident) a process p in L, written
as rej〈M,I,L〉(m, p), when there are a process q in L and a trace s ∈ (Act∪{τ})∗

such that m � p
s−→I(M,L) no � q. We say that m (M, I)-monitors for ϕ on L

whenever

for each process p of L, rej〈M,I,L〉(m, p) if and only if p /∈ [[ϕ]]L.

(Subscripts are omitted when they are clear from the context.) Finally, m (M, I)-
monitors for ϕ when m (M, I)-monitors for ϕ on L for every LTS L on Act.
The monitoring system (M, I) is often omitted when evident. �

We define monitorability for μHML in terms of monitoring systems (M, I).

Definition 3. Fix a monitoring system (M, I) and a fragment Λ of μHML. We
say that (M, I) rejection-monitors for Λ whenever:

– For all closed ϕ ∈ Λ, there exists an m from M that (M, I)-monitors for ϕ.
– For all m of M , there exists a closed ϕ ∈ Λ that is (M, I)-monitored by m. �

We note that if a monitoring system and a fragment Λ of μHML satisfy
the conditions of Definition 3, then Λ is the largest fragment of μHML that is
monitored by the monitoring system. Stated otherwise, any other logic fragment
Λ′ that satisfies the conditions of Definition 3 must be equally expressive to
Λ, i.e., ∀ϕ′ ∈ Λ′ · ∃ϕ ∈ Λ · ϕ ≡ ϕ′ and vice versa. Definition 3 can be dually
given for acceptance-monitorability, when considering acceptance monitors. We
next review two monitoring systems that respectively rejection-monitor for two
different fragments of μHML. We omit the corresponding monitoring systems
for acceptance-monitors, that monitor for the dual fragments of μHML.

The Basic Monitoring Setup. The following monitoring system, presented
in [2], does not distinguish between silent actions and external actions.

Definition 4. A basic monitor on Act is defined by the grammar:

m,n ∈ Monb ::= end | no | μ.m | m + n | rec x.m | x,

where x comes from a countably infinite set of monitor variables. Constant no
denotes the rejection verdict state whereas end denotes the inconclusive verdict
state. The basic monitor LTS Mb is the one whose states are the closed monitors
of Monb and whose transition relation is defined by the (standard) rules in
Table 1 (we elide the symmetric rule for m + n). �

Note that by rule mVrd in Table 1, verdicts are irrevocable and monitors can
only describe suffix-closed behaviour.

208 L. Aceto et al.

Table 1. Behaviour and instrumentation rules for monitored systems (v∈{end, no}).

Monitor semantics

mRecm[rec x.m/x]
μ−→m′

rec x.m
μ−→m′

mSel m
μ−→m′

m+n
μ−→m′

mAct
μ.m

μ−→m
mVrd

v
μ−→v

Instrumentation semantics

iMon p
μ−→Lq m

μ−→M n

m�p
μ−→I(M,L)n�q

iTer p
μ−→Lq m

μ−→M

m�p
μ−→I(M,L)end�q

iAbs p
τ−→Lq

m�p
τ−→I(M,L)m�q

Definition 5. Given a system LTS L and a monitor LTS M that agree on
Act, the basic instrumentation LTS, denoted by Ib(M,L), is defined by the
rules iMon and iTer in Table 1. (We do not consider rule iAbs for now.) �

Instrumentation often relegates monitors to a passive role, whereby a moni-
tored system transitions only when the system itself can. In rule iMon, when the
system produces a trace event μ that the monitor is able to analyse (and tran-
sition from m to n), the constituent components of a monitored system m � p
move in lockstep. Conversely, when the system produces an event μ that the
monitor is unable to analyse, the monitored system still executes, according to
iTer, but the monitor transitions to the inconclusive state, where it remains for
the rest of the computation.

We refer to the pair (Mb, Ib) from Definitions 4 and 5 as the basic monitoring
system. For each system LTS L that agrees with the full monitoring system on
Act, we can show a correspondence between the respective monitoring setup
〈Mb, Ib, L〉 and the following syntactic subset of μHML.

Definition 6. The safety μHML is defined by the grammar:

θ, χ ∈ sHML ::= tt | ff | [μ]θ | θ ∧ χ | max X.θ | X �

Theorem 1 ([2]). The basic monitoring system (Mb, Ib) monitors for the log-
ical fragment sHML. ��
The proof of Theorem 1 relies on a monitor synthesis and a formula synthesis
function. The monitor synthesis function, �−� : sHML → Monb, is defined on
the structure of the input formula and assumes a bijective mapping between
formula variables and monitor recursion variables:

�tt� = end �ff� = no �X� = x

�[μ]ψ� =

{
end if �ψ� = end

μ.�ψ� otherwise
�max X.ψ� =

{
end if �ψ� = end

rec x.�ψ� otherwise

�ψ1 ∧ ψ2� =

⎧
⎪⎨
⎪⎩

�ψ1� if �ψ2� = end

�ψ2� if �ψ1� = end

�ψ1� + �ψ2� otherwise

A Framework for Parameterized Monitorability 209

The case analyses in the above synthesis procedure handle some of the redun-
dancies that may be present in formula specifications. For instance, it turns out
that max X.[μ]tt ≡ tt and, accordingly, �max X.[μ]tt� = �tt� = end. The formula
synthesis function is defined analogously (see [2,22] for more details).

Monitoring for External Actions. The results obtained in [21,22] can be
expressed and recovered within our more general framework. We can express a
weak version of the modalities employed in [3,21,22] as follows:

[[μ]]ϕ ≡ max X.([τ]X ∧ [μ]max Y.(ϕ ∧ [τ]Y)) and
〈〈μ〉〉ϕ ≡ min X.(〈τ〉X ∨ 〈μ〉min Y.(ϕ ∨ 〈τ〉Y)).

Definition 7. Weak safety μHML, presented in [21,22], is defined by the
grammar:

π, κ ∈ WsHML ::= tt | ff | [[α]]π | π ∧ κ | max X.π | X. �

Definition 8. The set Mone of external monitors on Act contains all the basic
monitors that do not use the silent action τ . The corresponding external monitor
LTS Me, is defined similarly to Mb, but with the closed monitors in Mone as
its states. External instrumentation, denoted by Ie, is defined by the three rules
iMon, iTer and iAbs in Table 1, where in the case of iMon and iTer, action
μ is substituted by the external action α. We refer to the pair (Me, Ie) as the
external monitoring system, amounting to the setup in [21,22]. �

Theorem 2 ([22]). The external monitoring system (Me, Ie) rejection-monitors
for the logical fragment WsHML. ��

3 Monitors that Detect Conditions

Given a set of processes P , a pair (C, r) is a condition framework when C is a
non-empty set of conditions and r : C → 2P is a valuation function. We assume
a fixed condition framework (C, r) and we extend the syntax and semantics of
μHML so that for every condition c ∈ C, both c and ¬c are formulas and for
every LTS L on set of processes P , [[c]] = r(c) and [[¬c]] = P \ r(c). We call
the extended logic μHML(C,r). Since, in all the instances we consider, r is easily
inferred from C, it is often omitted and we simply write C instead of (C, r)
and μHML(C,r) as μHMLC . We say that process p satisfies c when p ∈ [[c]]. We
assume that C is closed under negation, meaning that for every c ∈ C, there is
some c′ ∈ C, such that [[c′]] = [[¬c]]. Conditions represent certain properties of
processes that the instrumentation is able to report.

We extend the syntax of monitors, so that if m is a monitor and c a condition,
then c.m is a monitor. The idea is that if c.m detects that the process satisfies
c, then it can transition to m.

210 L. Aceto et al.

Definition 9. A basic C-monitor on Act is defined by the grammar:

m,n ∈ MonC
b ::= end | no | μ.m | c.m | m + n | rec x.m | x,

where x comes from a countably infinite set of monitor variables and c ∈ C.
Basic C-monitor behaviour is defined as in Table 1, but allowing μ to range over
Act ∪ C ∪ {τ}. We call the resulting monitor LTS MC

b . �

A monitor detects the satisfaction of condition c when the monitored system
has transitioned to a process that satisfies c. To express this intuition, we add
rule iCon to the instrumentation rules of Table 1:

iCon
p ∈ [[c]] and m

c−→M n

m � p
τ−→I(M,L) n � p

.

We call the resulting instrumentation IC
b . We observe that the resulting monitor

setup is transparent with respect to external actions: an external trace of the
monitored system results in exactly the same external trace of the instrumenta-
tion LTS. However, the general traces are not preserved, as the rule iCon may
introduce additional silent transitions for the instrumentation trace. However,
we argue that this is an expected consequence of the instrumentation verifying
the conditions of C. C-monitors monitor for sHMLC :

Definition 10. The strong safety fragment of μHMLC is defined as:

ϕ,ψ ∈ sHMLC ::= tt | ff | [μ]ϕ | ¬c∨ϕ | ϕ∧ψ | max X.ϕ | X,

where c ∈ C. We note that ¬c ∨ ϕ can be viewed as an implication c → ϕ
asserting that if c holds, then ϕ must also hold. �

It is immediate to see that sHMLC is a fragment of μHMLC and when C ⊆
μHML, it is also a fragment of μHML. Finally, if C is closed under negation,
then ¬c ∨ ϕ can be rewritten as c′ ∨ ϕ, where [[c′]] = [[¬c]], and in the following
we often take advantage of this equivalence to simplify the syntax of sHMLC .

Theorem 3. The monitoring system (MC
b , IC

b) monitors for sHMLC . ��
We note that Theorem 3 implies that sHMLC is the largest monitorable

fragment of μHMLC , relative to C.

4 Instantiations

We consider two possible instantiations for parameter C in the framework pre-
sented in Sect. 3. Since each of these instantiations consists of a fragment from
the logic μHML itself, they both show how monitorability for μHML can be
extended when using certain augmented traces.

A Framework for Parameterized Monitorability 211

4.1 The Inability to Perform an Action

The monitoring framework of [2,22] (used also in other works such as [18,19]),
is based on the idea that, while a system is executing, it performs discrete com-
putational steps called events (actions) that are recorded and relayed to the
monitor for analysis. Based on the analysed events, the monitor then transi-
tions from state to state. One may however also consider instrumentations that
record a system’s inability to perform a certain action. Examples of this arise
naturally in situations where actions are requested unsuccessfully by an external
entity on a system, or whenever the instrumentation is able to report system
stability (i.e., the inability of performing internal actions). For instance, such
observations were considered in [1,31], in the context of testing preorders.

In our setting, a process is unable to perform action μ exactly when it satisfies
[μ]ff. For monitors that are able to detect the inability or failure of a process to
perform actions, we set FAct = {[μ]ff | μ ∈ Act ∪ {τ}} as the set of conditions.
By Theorem 3, the resulting maximal monitorable fragment of μHML is given
by the grammar:

ϕ,ψ ∈ sHMLFAct ::= tt | ff | [μ]ϕ | 〈μ〉tt ∨ ϕ

| ϕ ∧ ψ | max X.ϕ | X.

We note the fact that μHML is closed under negation, where ¬[μ]ff = 〈μ〉tt.
Proposition 1. The monitoring system (MFAct

b , IFAct

b) monitors for the logical
fragment sHMLFAct . ��

A special case of interest are monitors that can detect process stability, i.e.,
processes satisfying [τ]ff. Such monitors monitor for sHML{[τ]ff}, namely sHML
from Definition 6 extended with formulas of the form 〈τ〉tt ∨ ϕ.

4.2 Depth-Bounded Static Analysis

In multi-pronged approaches using a combination of verification techniques, one
could statically verify parts of a program (from specific execution points) with
respect to certain behavioural properties using techniques such as Bounded
Model Checking [11] and Partial Model Checking [7]. Typical examples arise in
component-based software using modules, objects or agents that can be verified
in isolation. This pre-computed verification can then be recorded as annotations
to a component and subsequently reported by the instrumentation as part of
the execution trace. This strategy would certainly be feasible for depth-bounded
static analysis for which the original logic HML [24]—the recursion-free fragment
of μHML given below—is an ideal fit.

η, χ ∈ HML ::= tt | ff | η ∧ χ | η ∨ χ | [μ]η | 〈μ〉η.

Again, HML is closed under negation [4]. If we allow monitors to detect the
satisfaction of these kinds of conditions, then, according to Theorem 3, the

212 L. Aceto et al.

maximal fragment of μHML that we can monitor for, with HML as a condi-
tion framework, is sHMLHML, defined by the following grammar:

ϕ,ψ ::= tt | ff | [μ]ϕ | η ∨ ϕ | ϕ ∧ ψ | max X.ϕ | X,

where η ∈ HML. Another way to describe sHMLHML is as the μHML fragment
that includes all formulas whereby for every subformula of the form ϕ ∨ ψ, at
most one of the constituent subformulas ϕ,ψ uses recursion.

Proposition 2. The monitoring system (MHML
b , IHML

b) monitors for the logical
fragment sHMLHML. ��

Instead of HML, we can alternatively use a fragment HMLd of HML that
only allows formulas with nesting depth for the modalities of at most d. Since
the complexity of checking HML formulas is directly dependent on this modal
depth, there are cases where the overheads of checking such formulas are deemed
to be low enough to be adequately checked for at runtime instead of checking
for them statically.

5 Extending External Monitorability

We explore the impact of considering traces that encode conditions from Sect. 3
on the monitorability of the weak version of the logic used in [21,22]:

ϕ,ψ ∈ WμHML ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ

| 〈〈α〉〉ϕ | [[α]]ϕ | min X.ϕ | max X.ϕ | X.

This version of the logic abstracts away from internal moves performed by the
system—note that the weak modality formulas are restricted to external actions
α as opposed to the general ones, μ. The semantics follows that presented in
Sect. 2, but can alternatively be given a more direct inductive definition, e.g.

[[[[α]]ϕ, ρ]] = {p
∣∣ ∀q. p

α=⇒ q implies q ∈ [[ϕ, ρ]]}.

The main aim of this section is to extend the maximally-expressive monitorable
subset of μHML that was identified in [21,22] using the framework developed in
Sect. 3.

5.1 External Monitoring with Conditions

We define the external monitoring system with conditions similarly to Sect. 3.
The syntax of Definition 8 is extended so that, for any instance of C, if m is a
monitor and c a condition from C, then c.m is a monitor.

A Framework for Parameterized Monitorability 213

Definition 11. An external C-monitor on Act is defined by the grammar:

m,n ∈ MonC
e ::= end | no | α.m | c.m | m + n | rec x.m | x,

where c ∈ C. C-monitor behaviour is defined as in Table 1, but extending rule
mAct to condition prefixes that generate condition actions (i.e., μ ranges over
Act ∪ C). We call the resulting monitor LTS MC

e .
For the instrumentation relation called IC

e , we consider the rules iMon, iTer
from Table 1 for external actions α instead of the general action μ, rule iAbs
from the same table, and rule iCon from Sect. 3. �

Note that the monitoring system (MC
e , IC

e) may be used to detect τ -
transitions implicitly—we conjecture that this cannot be avoided in general.
Consider two conflicting conditions c1 and c2, i.e., [[c1]]∩[[c2]]=∅. Definition 11
permits monitors of the form c1.c2.m that encode the fact that state m can only
be reached when the system under scrutiny performs a non-empty sequence of
τ -moves to transition from a state satisfying c1 to another state satisfying c2.
This, in some sense, is also related to obscure silent action monitoring studied
in [2].

We identify the grammar for the maximally-expressive monitorable syntactic
subset of the logic WμHML. It uses the formula [[ε]]ϕ defined as:

[[ε]]ϕ ≡ max X.(ϕ ∧ [τ]X)

The modality [[ε]]ϕ quantifies universally over the set of processes that can be
reached from a given one via any number of silent steps. Together with its dual
〈〈ε〉〉ϕ modality, [[ε]]ϕ is used in the modal characterisation of weak bisimilarity
[30,34], in which τ transitions from one process may be matched by a (possibly
empty) sequence of τ transitions from another.

Definition 12. The weak safety fragment of WμHML with C is defined as:

ϕ,ψ ∈ WsHMLC ::= tt | ff | [[α]]ϕ | [[ε]](¬c ∨ ϕ)
| ϕ ∧ ψ | max X.ϕ | X,

where c ∈ C. �

Theorem 4. The monitoring system (MC
e , IC

e) monitors for WsHMLC . ��
We highlight the need to insulate the appearance of the implication ¬c ∨ ϕ

from internal system behaviour by using the modality [[ε]] in Definition 12. For
conditions that are invariant under τ -transitions, this modality is not required
but it cannot be eliminated otherwise; we revisit this point in Example 2.

5.2 Instantiating External Monitors with Conditions

We consider three different instantiations to our parametric external monitoring
system of Sect. 5.1.

214 L. Aceto et al.

Recursion-Free Formulas. The weak version of HML, denoted by wHML, is
the recursion-free fragment of WμHML. Similarly to what was argued earlier in
Sect. 4.2, it is an appropriate set of conditions to instantiate set C in WsHMLC ,
and the maximal monitorable fragment of WμHML with conditions from wHML
is WsHMLwHML, defined by the following grammar, where η ∈ wHML:

ϕ,ψ ::= tt | ff | [[α]]ϕ | [[ε]](η ∨ ϕ) | ϕ ∧ ψ | max X.ϕ | X.

Proposition 3. The monitoring system (MwHML
e , IwHML

e) monitors for the log-
ical fragment WsHMLwHML. ��

An important observation (that is perhaps surprising) is that WsHMLwHML

is not a fragment of WμHML, as the following example demonstrates.

Example 2. Although for any (closed) WsHML formula ϕ we have the logical
equivalence [[ε]]ϕ ≡ ϕ (notice that the monitor for ϕ that is guaranteed by
Theorem 2 also monitors for [[ε]]ϕ), this logical equivalence does not hold for a
formula ϕ from WμHML. Consider the formula ϕε below that may be expressed
using a formula from WsHMLwHML:

ϕε = [[ε]]〈〈α〉〉tt ≡ [[ε]](〈〈α〉〉tt ∨ ff) ∈ WsHMLwHML.

Formula ϕε is not equivalent to 〈〈α〉〉tt (e.g. the process α.nil + τ.nil satisfies
〈〈α〉〉tt, but not ϕε) meaning that [[ε]] plays a discerning role in the context of
WμHML. Furthermore, ϕε holds for process τ.α.nil, but not for α.nil+τ.nil, even
though these two processes cannot be distinguished by any WμHML formula. In
fact, it turns out that they are bisimilar with respect to weak external transitions
and this bisimulation characterises the satisfaction of WμHML formulas [24].
Thus, there is no formula in WμHML that is equivalent to ϕε. �

Previous Runs and Alternating Monitoring. A monitoring system could
reuse information from previous system runs, perhaps recorded as execution logs,
and whenever (sub)traces can be associated with specific states of the system,
these can also be used as an instantiation for our parametric framework. More
concretely, in [21,22] it is shown that traces can be used to characterise the
violation of WsHML formulas, or the satisfaction of formulas from the dual
fragment, WcHML, defined below.

Definition 13. The co-safety WμHML is defined by the grammar:

π, κ ∈ WcHML ::= tt | ff | 〈〈α〉〉θ | θ ∨ χ | min X.θ | X �

The witnessed rejection and acceptance traces can in turn be used as part of an
augmented trace for an instantiation for C to obtain the monitorable dual logics
WsHMLWcHML and WcHMLWsHML that alternate between rejection monitoring

A Framework for Parameterized Monitorability 215

and acceptance monitoring. The logic WsHMLWcHML is defined by the following
grammar, where θ ∈ WsHML:

ϕ,ψ ::= tt | ff | [[α]]ϕ | [[ε]](θ ∨ ϕ) | ϕ ∧ ψ | max X.ϕ | X;

and WcHMLWsHML is defined by the following grammar, where χ ∈ WcHML:

π, κ ::= tt | ff | 〈〈α〉〉π | 〈〈ε〉〉(χ ∧ π) | π ∨ κ | min X.ϕ | X.

Proposition 4. The monitoring system (MWcHML
e , IWcHML

e) rejection-monitors
for the logical fragment WsHMLWcHML. ��
One should observe that in this case, WsHMLWcHML is a fragment of WμHML,
in contrast to the previous instantiation WsHMLwHML from Sect. 5.2.

Lemma 1. For every [[ε]](η ∨ ϕ) ∈ WsHMLWcHML (where η ∈ WsHML), we
have [[ε]](η ∨ ϕ) ≡ η ∨ ϕ. ��
Corollary 1. For every formula in WsHMLWcHML, there is a logically equiva-
lent formula in WμHML. ��

This entails that WsHMLWcHML can be reformulated using the following,
simpler, grammar (here η ∈ WsHML) which is clearly a fragment of WμHML:

ϕ,ψ ::= tt | ff | [[α]]ϕ | η ∨ ϕ | ϕ ∧ ψ | max X.ϕ | X.

If the monitoring system can use such information from previous runs, there is no
reason to limit this information to just one previous run. If the instrumentation
mechanism can record up to i prior runs, the monitorable logic may be described
as WsHMLi+1, defined inductively in the following way:

– WsHML1 = WsHML and WcHML1 = WcHML; and
– WsHMLi+1 = WsHMLWcHMLi

and WcHMLi+1 = WcHMLWsHMLi

.

Whenever this setup can be extended to unlimited prior runs, the resulting
rejection-monitorable fragment would be WsHMLω =

⋃
i WsHMLi, which is

also described by the following grammar:

ϕ,ψ ::= tt | ff | [[α]]ϕ | ϕ ∨ ψ | ϕ ∧ ψ | max X.ϕ | X.

WsHMLω is a non-trivial extension of WsHML which is still within WμHML.

Failure to Execute an Action and Refusals. In Subsect. 4.1, we instantiated
the condition set C as the set of formulas from μHML that assert the inability of
a process to perform an action. These formulas are of the form [α]ff. We recast
this approach in the setting of weak monitorability. In this setting where the
monitoring system and the specification formulas ignore any silent transitions,
the inability of a process to perform an α-transition acquires a different meaning

216 L. Aceto et al.

from the one used for the basic system. In particular, we consider a stronger
version of these conditions that incorporates stability; this makes them invariant
over τ -transitions. We say that p refuses α when p τ−→ and p α−→. In [31], a very
similar notion is used for refusal testing (see also [1]). Thus, much in line with
[31], we use the following definition.

Definition 14. A process p of an LTS L refuses action α ∈ Act and write
p ref α when p τ−→L and p α−→L. The set of conditions that corresponds to refusals
is thus RAct = {[τ]ff ∧ [α]ff | α ∈ Act}. �

According to Theorem 4, the largest fragment of μHML that we can mon-
itor for, using monitors that can detect refusals, is WsHMLRAct , given by the
following grammar:

ϕ,ψ ::= tt | ff | [[α]]ϕ | [[ε]](〈τ〉tt ∨ 〈α〉tt ∨ ϕ)
| ϕ ∧ ψ | max X.ϕ | X.

Again, 〈τ〉tt ∨ 〈α〉tt ∨ ϕ is best read as the implication ([τ]ff ∧ [α]ff) → ϕ: if
the process is stable and cannot perform an α-transition, then ϕ must hold.

Proposition 5. The monitoring system (MRAct
e , IRAct

e) monitors for the logical
fragment WsHMLRAct . ��
Example 3. Consider the formula

ϕs = [[ε]](〈τ〉tt ∨ 〈α〉tt ∨ [[β]]ff) ∈ WsHMLRAct .

Formula ϕs claims that at every stable state that the system can reach, if action
α is impossible, then action β should also be impossible. We can see that ϕs

is true for τ.nil + β.nil, but not for β.nil. However, the two processes cannot
be distinguished by WμHML, as they have the same weak external transitions.
Therefore, WsHMLRAct is not a fragment of WμHML—but, as we have seen, it
is a fragment of μHML. Here we have a part of the formula that clearly is not
part of WμHML. That is 〈τ〉tt, which asserts that the process can perform a
silent transition. �

Example 4. Let us consider an LTS L0 of stable processes—that is, L0 is an
LTS without any silent transitions. L0 offers a simplified setting to cast our
observations. In this case, the [[ε]], [τ], and 〈τ〉 modalities can be eliminated
from our formulas, and weak modalities are equivalent to strong modalities.
This allows us to simplify the grammar for WsHMLFAct as follows:

ϕ,ψ ::= tt | ff | [α]ϕ | 〈α〉tt ∨ ϕ

| ϕ ∧ ψ | max X.ϕ | X.

Perhaps unsurprisingly, this grammar yields the same formulas as the restriction
of grammar of Subsect. 4.1 on external actions. An instance of a specification that

A Framework for Parameterized Monitorability 217

can be formalized in this fragment is the following. Consider a simple server-client
system, where the client can request a resource, which is represented by action
rq, and the server may give a positive response, represented by action rs, after
which it needs to allocate said resource to the client, represented by action al.
A reasonable specification for the server is that if it is impossible at the moment
to provide a resource, then it should not give a positive response to the client.
In the above simplification of WsHMLFAct , this specification can be formalized
as [rq](〈al〉tt ∨ [rs]ff). If the LTS includes silent transitions, the corresponding
specification would be written as

ϕr = [rq][[ε]](〈τ〉tt ∨ 〈al〉tt ∨ [[rs]]ff).

In other words, after a request, if the server cannot provide a resource and it
is stable—so, there is no possibility that after some time the resource will be
available—then the server should not give a positive response to the client. �

6 Conclusions

In order to devise effective verification strategies that straddle between the pre-
and post-deployment phases of software production, one needs to understand
better the monitorability aspects of the correctness properties that are to be
verified. We have presented a general framework that allows us to determine
maximal monitorable fragments of an expressive logic that is agnostic of the
verification technique employed, namely μHML. By way of a number of instan-
tiations, we also show how the framework can be used to reason about the mon-
itorability induced by various forms of augmented traces. Our next immediate
concern is to validate the proposed instantiations empirically by constructing
monitoring systems and tools that are based on these results, as we did already
for the original monitorability results of [21,22] in [9,10,12].

Related Work. Monitorability for μHML was first examined in [21,22]. This work
introduced the external monitoring system and identified WsHML as the largest
monitorable fragment of μHML, with respect to that system. The ensuring work
in [2] focused on monitoring setups that can distinguish silent actions to a varying
degree, and introduced the basic monitoring system, showing analogous moni-
torability results for μHML.

Monitorability has also been examined for languages defined over traces,
such as LTL. Pnueli and Zaks in [32] define a notion of monitorability over
traces, although they do not attempt maximal monitorability results. Diekert
and Leuckert revisited monitorability from a topological perspective in [16].
Falcone et al. in [17] extended the work in [32] to incorporate enforcement
and introduced a notion of monitorability on traces that is parameterized with
respect to a truth domain that corresponds to our separation to acceptance-
and rejection-monitorable properties. In [13], the authors use a monitoring sys-
tem that can generate derivations of satisfied formulas from a fragment of LTL.
However, they do not argue that this fragment is somehow maximal. There is

218 L. Aceto et al.

a significant body of work on synthesizing monitors from LTL formulas, e.g.
[13,23,33,35], and it would be worth investigating whether our general tech-
niques for monitor synthesis can be applied effectively in these cases.

Phillips introduced refusal testing in [31] as a way to extend the capabilities
of testing (see [18] for a discussion on how our monitoring setup relates to testing
preorders). The meaning of refusals in [31] is very close to the one in Definition 14
and it is interesting to note how Phillips’ use of tests for refusal formulas is
similar to our monitoring mechanisms for refusals. Abramsky [1] uses refusals in
the context of a much more powerful testing machinery, in order to identify the
kind of testing power that is required for distinguishing non-bisimilar processes.

The decomposition of the verification burden across verification techniques,
or across iterations of alternating monitoring runs as presented in Sect. 5, can be
seen as a method for quotienting. In [7] Andersen studies quotienting of the spec-
ification logics discussed in this paper to reduce the state-space during model
checking and thus increase its efficiency (see also [27] for a more recent treat-
ment). The techniques used rely heavily on the model’s concurrency constructs
and may produce formulas that are larger in size than the original, but which
can be checked against a smaller component of the model. In multi-pronged
approaches to verification one would expect to encounter similar difficulties
occasionally.

References

1. Abramsky, S.: Observation equivalence as a testing equivalence. Theor. Comput.
Sci. 53(2–3), 225–241 (1987)

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: Monitoring for silent
actions. In: 37th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2017 (2017, to appear)

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. CoRR abs/1611.10212 (2016)

4. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, New York (2007)

5. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: A specification language
for static and runtime verification of data and control properties. In: Bjørner, N.,
de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 108–125. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19249-9 8

6. Aktug, I., Naliuka, K.: ConSpec - a formal language for policy specification. Sci.
Comput. Programm. 74(1–2), 2–12 (2008)

7. Andersen, H.R.: Partial model checking (extended). In: Proceedings of Tenth
Annual IEEE Symposium on Logic in Computer Science, pp. 398–407. IEEE (1995)

8. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.R.,
Pasareanu, C.S., Rosu, G., Sen, K., Visser, W., Washington, R.: Combining test
case generation and runtime verification. Theor. Comput. Sci. 336(2–3), 209–234
(2005)

9. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:
Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 31

https://doi.org/10.1007/978-3-319-19249-9_8
https://doi.org/10.1007/978-3-319-46982-9_31

A Framework for Parameterized Monitorability 219

10. Attard, D.P., Francalanza, A.: Trace partitioning and local monitoring for asyn-
chronous components. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol.
10469, pp. 219–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66197-1 14

11. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

12. Cassar, I., Francalanza, A.: On implementing a monitor-oriented programming
framework for actor systems. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016.
LNCS, vol. 9681, pp. 176–192. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33693-0 12

13. Cini, C., Francalanza, A.: An LTL proof system for runtime verification. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 581–595. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 54

14. Decker, N., Leucker, M., Thoma, D.: jUnitRV–adding runtime verification to jUnit.
In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 459–464.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4 34

15. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime ver-
ification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2 11

16. Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verifica-
tion. Theor. Comput. Sci. 537, 29–41 (2014)

17. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Trans. 14(3), 349–382 (2012)

18. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49630-5 9

19. Francalanza, A.: Consistently-detecting monitors. In: Meyer, R., Nestmann, U.
(eds.) 28th International Conference on Concurrency Theory (CONCUR 2017).
LIPIcs, vol. 85, pp. 8:1–8:19. Schloss Dagstuhl, Dagstuhl (2017)

20. Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Della Monica,
D., Ingólfsdóttir, A.: A foundation for runtime monitoring. In: Lahiri, S., Reger,
G. (eds.) RV 2017. LNCS, vol. 10548, pp. 8–29. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67531-2 2

21. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying Hennessy-Milner logic
with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 71–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3 5

22. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Formal Meth. Syst. Des. (FMSD) 51(1), 87–116 (2017)

23. Geilen, M.: On the construction of monitors for temporal logic properties. Electron.
Notes Theor. Comput. Sci. 55(2), 181–199 (2001)

24. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

25. Kejstová, K., Ročkai, P., Barnat, J.: From model checking to runtime verifica-
tion and back. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp.
225–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 14

26. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27(3),
333–354 (1983)

https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-33693-0_12
https://doi.org/10.1007/978-3-319-33693-0_12
https://doi.org/10.1007/978-3-662-46681-0_54
https://doi.org/10.1007/978-3-642-38088-4_34
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-67531-2_14

220 L. Aceto et al.

27. Lang, F., Mateescu, R.: Partial model checking using networks of labelled transition
systems and boolean equation systems. Log. Meth. Comput. Sci. 9(4), 1–32 (2013)

28. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. Theor. Comput. Sci. 72(2), 265–288 (1990)

29. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Program. 78(5), 293–303 (2009)

30. Milner, R.: Communication and Concurrency. Prentice-Hall Inc, Upper Saddle
River (1989)

31. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50(3), 241–284 (1987)
32. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:

Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

33. Sen, K., Roşu, G., Agha, G.: Generating optimal linear temporal logic monitors by
coinduction. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 260–275.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40965-6 17

34. Stirling, C.: Modal and Temporal Properties of Processes. Springer, New York
(2001)

35. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/978-3-540-40965-6_17
https://doi.org/10.1007/3-540-60915-6_6
http://creativecommons.org/licenses/by/4.0/

Logics for Bisimulation and Divergence

Xinxin Liu, Tingting Yu(B) , and Wenhui Zhang

State Key Laboratory of Computer Science, Institute of Software, CAS,
University of Chinese Academy of Sciences, Beijing, China

{xinxin,yutt,zwh}@ios.ac.cn

Abstract. The study of modal logics and various bisimulation equiv-
alences so far shows the following progression: 1. weak bisimilarity is
characterized by Hennessy-Milner logic (HML), a simple propositional
modal logic with a weak possibility modality, and 2. extending HML by
refining the weak possibility modality one obtains a logic which char-
acterizes branching bisimilarity, a refinement of weak bisimilarity, and
3. further extending the logic with a divergence modality one obtains
a logic which characterizes branching bisimilarity with explicit diver-
gence, a refinement of branching bisimilarity. In this paper, we explore
the development by exchanging the above 2 and 3, i.e. by first extending
HML with a divergence modality and then refining the weak possibil-
ity modality in the extended logic. We have the following findings: A.
extending HML with a new divergence modality one obtains a new logic
which characterizes complete weak bisimilarity, an equivalence relation
with distinguishing power in between weak bisimilarity and branching
bisimilarity with explicit divergence; B. further extending the obtained
logic by refining the weak possibility modality in it one obtains another
logic which characterizes branching bisimilarity with explicit divergence.
As main results of the paper, the logic in A. provides a modal character-
ization for complete weak bisimilarity, and moreover the two new logics
in A. and B. are both sub-logics of the known logic obtained in above 3.

1 Introduction

Weak bisimilarity is a popular equivalence relation introduced by Milner [9]. It is
defined through the notion of weak bisimulation which was proposed by Milner
[9] based on an idea independently discovered by van Benthem [4] and Park [8].
The importance of weak bisimulation is that it not only defines an equivalence
relation but also provides a verification technique for the equality. A well-known
theoretical result for weak bisimilarity is that the equivalence is characterized
by a modal logic which is known as Hennessy-Milner logic (HML) [2] in the
following sense: two processes are equivalent with respect to weak bisimilarity if
and only if they satisfy exactly the same set of HML formulas.

Supported by the CAS-INRIA major project No. GJHZ1844.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 221–237, 2018.
https://doi.org/10.1007/978-3-319-89366-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_12&domain=pdf
http://orcid.org/0000-0002-5645-0874

222 X. Liu et al.

Because weak bisimilarity does not preserve divergence, i.e. it is possible for
two equivalent processes that one of them is capable of endless internal computa-
tions while the other is not, various divergence preserving versions of weak bisim-
ulation equivalences and pre-orders are studied later [1,3,5,13]. Complete weak
bisimilarity is a newly proposed divergence preserving weak bisimulation equiv-
alence [10]. Like weak bisimilarity, complete weak bisimilarity is supported by
a bisimulation verification technique called inductive weak bisimulation, which
can be very helpful in practical verification that concerns divergence. One of the
main aims of this paper is to find a modal logic which characterizes complete
weak bisimilarity just as HML characterizes weak bisimilarity.

We will put our study into a more general context. The study of modal logics
and various bisimulation equivalences so far shows the following progression
which reveals the co-related increase for the expressive power of the logics and
the distinguishing power of the equivalences:

1. Weak bisimilarity is characterized by HML which is a simple propositional
modal logic with a weak possibility modality [2];

2. Extending HML by refining the weak possibility modality one obtains a logic
which characterizes branching bisimilarity [5,6], a refinement of weak bisim-
ilarity proposed in [12],

3. Further extending the logic with a divergence modality one obtains a logic
which characterizes branching bisimilarity with explicit divergence [13], a
refinement of branching bisimilarity proposed in [12].

In this paper, we explore the development by exchanging the order of 2 and 3,
i.e. by first extending HML with a divergence modality and then refining the
weak possibility modality in the extended logic. We have the following findings:

A. Extending HML with a new divergence modality one obtains a logic which
characterizes complete weak bisimilarity, an equivalence relation with distin-
guishing power in between weak bisimilarity and branching bisimilarity with
explicit divergence;

B. Further extending the obtained logic by refining the weak possibility modality
in it one obtains another logic which characterizes branching bisimilarity with
explicit divergence.

To summarize the results of the paper:

– The above A. is the wanted result of modal characterization of complete weak
bisimilarity.

– The two new logics in A. and B. are both sub-logics of the known logic men-
tioned in above 3, hence showing a clear picture of the sub-logic relationships
of the corresponding characterization results.

– For finite-state systems, we also use the modal characterization to show a
reduction from the problem of checking equality of complete weak bisimilar-
ity to the problem of checking equality of ordinary weak bisimilarity, thus
provide a decision procedure for the problem of checking equality of finite-
state systems with respect to complete weak bisimilarity.

Logics for Bisimulation and Divergence 223

The rest of the paper is organized as follows. Section 2 presents the defini-
tions of the equalities, i.e. weak bisimilarity, complete weak bisimilarity, branch-
ing bisimilarity, and branching bisimilarity with explicit divergence. Section 3
studies the relationships of the modal logic characterizations of the equalities.
Section 4 studies reductions for decision problems concerning finite-state pro-
cesses. Section 5 concludes.

2 Bisimulations and Divergence

In this section, after settling some necessary preliminaries, we introduce the main
equivalence relation, i.e. complete weak bisimilarity, together with some related
equivalences like branching bisimilarity and branching bisimilarity with explicit
divergence.

Definition 1 (Labeled transition systems). A labeled transition system (or
LTS) is a triple A = 〈S,A,−→〉 where:

– S is a set of states, A is a set of actions, −→⊆ S × (A ∪ {τ}) × S is the
transition relation. τ is the silent action which is assumed not in A. An
element (s, α, t) of −→, usually written as s

α−→ t, is called a transition;
– A finite run of A is a finite, nonempty alternating sequence of states and

actions: ρ = s0α0s1α1 . . . sn−1αn−1sn which begins with a state and ends
with a state, such that for 0 ≤ i < n, si

αi−→ si+1. We also say that ρ is a
finite run from s0 to sn;

– For ρ = s0α0s1α1 . . . sn−1αn−1sn, define Act(ρ) = α0α1 . . . αn−1, and
length(ρ) = n;

– An infinite run of A is an infinite, alternating sequence of states and actions:
ρ = s0α0s1α1 . . . which begins with a state, such that for all for i = 0, 1, . . .,
si

αi−→ si+1. We also say that ρ is an infinite run from s0;
– A (finite or infinite) τ -run of A is a (finite or infinite) run of A in which all

actions are τ ’s.

For a finite sequence of actions l ∈ (A ∪ {τ})∗, let ̂l ∈ A∗ be the sequence
obtained by deleting all τ ’s from l.

We use standard notations for multi-step τ transitions, and the so-called
double-arrow transitions: write s =⇒ s′ if there is a finite τ -run from s to s′;
write s

α=⇒ s′ if there exist t, t′ such that s =⇒ t, t
α−→ t′, t′ =⇒ s′. Note the

important difference between s =⇒ s′ and s
τ=⇒ s′: the former means that from

s to s′ there is a finite τ -run (could be a τ -run with zero length), while the latter
means that from s to s′ there is a finite τ -run with non-zero length. Thus s =⇒ s
holds for all s ∈ S, while s

τ=⇒ s holds only when s is on a τ -loop consisting of

one or more τ -transitions. Also for l ∈ (A ∪ {τ})∗ we will write s
̂l=⇒ s′ if there

is a finite run ρ from s to s′ with Act(ρ) = l. Note that s
ε=⇒ s′ means exactly

s =⇒ s′, where ε is the empty string.
Next, we review the well-known notions of weak bisimulation, weak bisimi-

larity [9], and branching bisimulation, branching bisimilarity [12].

224 X. Liu et al.

Definition 2 (Weak and branching bisimulations). Let A = 〈S,A,−→〉 be an
LTS. A binary relation R ⊆ S × S is a weak bisimulation if it is symmetric and
moreover for all (s, t) ∈ R the following holds:

whenever s
α−→ s′, then there exists t′ such that t

α̂=⇒ t′ and (s′, t′) ∈ R.

A binary relation R ⊆ S × S is a branching bisimulation if it is symmetric and
moreover for all (s, t) ∈ R the following holds:

whenever s
α−→ s′, then either α = τ , and there exists t′ such that t =⇒ t′

and (s, t′), (s′, t′) ∈ R, or there exist t′, t′′ such that t =⇒ t′, t′ α−→ t′′ and
(s, t′), (s′, t′′) ∈ R.

Now define two relations ≈,≈b as follows:

≈ =
⋃{R | R is a weak bisimulation},

≈b =
⋃{R | R is a branching bisimulation}.

The notions of weak and branching bisimulations enjoy some nice properties
as stated in the following Lemmas 1 and 2, which then lead to the important
Theorem 1 that justifies Definition 2.

Lemma 1. If {Ri | i ∈ I} is a set of weak bisimulations, then
⋃{Ri | i ∈ I}

is a weak bisimulation. If {Ri | i ∈ I} is a set of branching bisimulations, then
⋃{Ri | i ∈ I} is a branching bisimulation.

For two binary relations R1, R2, we write R1 · R2 for the composition of R1

and R2, i.e. R1 · R2 = {(s, t) | ∃u.(s, u) ∈ R1, (u, t) ∈ R2}.

Lemma 2. If R1, R2 are weak bisimulations, then R1 · R2 ∪ R2 · R1 is also a
weak bisimulation. If R1, R2 are branching bisimulations, then R1 · R2 ∪ R2 · R1

is also a branching bisimulation.

The proofs of the above two lemmas directly follow from Definition 2 (Note
that we modified the conditions for branching bisimulation as in [11]). With the
above two lemmas, it is routine to prove the following theorem, which justifies
the definitions of ≈ and ≈b.

Theorem 1. ≈ is an equivalence relation, and it is the largest weak bisimula-
tion. ≈b is an equivalence relation, and it is the largest branching bisimulation.

With Theorem 1, ≈ and ≈b are usually called weak bisimilarity and branching
bisimilarity respectively.

It is well-known that neither ≈ nor ≈b preserves divergence, i.e. it is possible
for two states s and t such that s ≈ t while there is an infinite τ -run from s but
no infinite τ -run from t.

In order to obtain divergence preserving relations, we can adopt the approach
used in [12] by introducing the following definition.

Logics for Bisimulation and Divergence 225

Definition 3 (Weak and branching bisimulation with explicit divergence). Let
A = 〈S,A,−→〉 be an LTS. A state s ∈ S is said divergent with respect to an
equivalence relation ≡, written s ⇑≡, if from s there is an infinite τ -run ρ such
that all the states on ρ are ≡-equivalent to s.

An equivalence relation ≡ on S is called a weak bisimulation with explicit
divergence if ≡ is a weak bisimulation and moreover whenever s ≡ t it holds that
s ⇑≡ if and only if t ⇑≡.

An equivalence relation ≡ on S is called a branching bisimulation with
explicit divergence if ≡ is a branching bisimulation and moreover whenever s ≡ t
it holds that s ⇑≡ if and only if t ⇑≡.

Now define two relations ≈�,≈�
b as follows:

≈� =
⋃{≡ | ≡ is a weak bisimulation with explicit divergence},

≈�
b =

⋃{≡ | ≡ is a branching bisimulation with explicit divergence}.

≈� and ≈�
b are called weak bisimilarity with explicit divergence and branching

bisimilarity with explicit divergence respectively.

At this point, let us see a non-trivial example of branching bisimulation with
explicit divergence. Define ≡sc, the strongly connected relation, such that s ≡sc t
if and only if s =⇒ t and t =⇒ s. That is s ≡sc t just in case s and t can reach
each other by performing τ actions. It only takes a second to check that ≡sc is
an equivalence relation. Moreover we have:

Proposition 1. ≡sc is a branching bisimulation with explicit divergence.

The following lemma is easy to prove.

Lemma 3. If ≡ is a weak bisimulation with explicit divergence, then ≡ preserves
divergence, i.e. whenever s ≡ t then there is an infinite τ -run from s if and only
if there is one from t.

With this lemma, we can show that ≈� preserves divergence as follows. If ρ is an
infinite τ -run from s and s ≈� t, then there is a weak bisimulation with explicit
divergence ≡ such that s ≡ t, then by Lemma 3 there is an infinite τ -run from t,
thus ≈� preserves divergence. One is tempting to say that with Lemma 3, ≈�

obviously preserves divergence, since ≈� is a weak bisimulation with explicit
divergence. However, to apply Lemma 3 in this way, we first have to prove that
≈� is a weak bisimulation with explicit divergence, and at least for the moment
we do not know if this is indeed the case.

Thus, as the definitions of ≈ and ≈b are justified by Theorem1, the definitions
of ≈� and ≈�

b also need justification. That is to say we need to confirm that ≈�

as defined is indeed the largest weak bisimulation with explicit divergence and,
≈�

b the largest branching bisimulation with explicit divergence (as it is stated
in the definition we even do not know whether ≈� and ≈�

b are equivalence
relations!). But this time the task is not as easy, since we no longer have the
corresponding lemmas available as Lemmas 1 and 2 for Theorem 1. As a matter of

226 X. Liu et al.

fact this implies that we do not know whether the notion of weak bisimulation
with explicit divergence is a fixed-point of some monotonic functions on the
complete lattice of equivalence relations, and hence the Knaster-Tarski fixed-
point theorem is not applicable in this case. Thus we need to find a different
way to justify Definition 3. For the time being we have the following obvious
lemma, which clarifies the justification task.

Lemma 4. ≈� (≈�
b) is the largest weak (branching) bisimulation with explicit

divergence if and only if the largest weak (branching) bisimulation with explicit
divergence exists.

Justification of the definition of ≈�
b can be found in [13,14], while not in

[12] where it was introduced the first time. While a justification for ≈�
b might

be taken as granted, a justification for ≈� may seem to be more necessary.
This is because in a weak bisimulation equivalence relation, unlike branching
bisimulation, an infinite τ -run from a process may be matched by an infinite
τ -run from a related process in a way that the sequences of equivalence classes
passed through by the two runs may not be the same. So one needs to be more
careful in dealing with ≈�. According to Lemma 4, in order to prove that ≈�

is a weak bisimulation with explicit divergence we only need to show that the
largest weak bisimulation with explicit divergence exists. This approach was
taken in [10], where two relations called complete weak bisimilarity and complete
branching bisimilarity were constructed and proved to be the largest weak bisim-
ulation with explicit divergence and largest branching bisimulation with explicit
divergence respectively. In this paper, for self containment we will present a
justification of the definition of ≈� in the next section, by using the logical
characterization result. For the convenience of names, in the paper we will freely
use the name of complete weak (branching) bisimilarity as synonym for weak
(branching) bisimilarity with explicit divergence.

3 Modal Characterization

The main aims of this section is to look for a modal logic characterization of
complete weak bisimilarity ≈�, and study its relationship with logic characteri-
zations of other bisimulation equivalences. For that, we first review some of the
existing logic characterization results.

In [2] a modal logic, later known as Hennessy-Milner logic (HML), was intro-
duced and proved that two given processes are equivalent under weak bisimu-
larity ≈ if and only if they satisfy the same set of HML formulas. This is the
so-called Hennessy-Milner theorem. The key constructor in HML is the weak
possibility modality 〈〈u〉〉F , which asserts that after the observation of u some
state with property F is reached. In [6], the weak possibility modality was refined
to an until modality in the form of F1〈α〉F2, meaning that there is a finite τ -run
such that all the states on it satisfy F1, and the last state can perform an α action
and arrives at a state satisfying F2, and it was proved that the refined logic char-
acterizes branching bisimilarity ≈b, just as HML characterizes weak bisimilarity.

Logics for Bisimulation and Divergence 227

In [5] the weak possibility modality was refined to a just-before modality in the
form of F1{α}F2, meaning that there is a finite τ -run such that the last state
satisfies F1 and can perform an α action and arrives at a state satisfying F2,
and it was proved that the refined logic, named Φjb, also characterizes branching
bisimilarity ≈b. In [13], Φjb was further extended to the logic Φ�

jb with a diver-
gence modality in the form of ΔF , meaning that there is an infinite τ -run on
which eventually all the states satisfy F , and it was proved that Φ�

jb characterizes
branching bisimilarity with explicit divergence ≈�

b .
As the starting point of the work of this paper, we describe a modal logic

HMLbΔ which is basically Φ�
jb with a derived operator 〈〈u〉〉. The set of formulas

of HMLbΔ is defined by the following syntax of BNF rules:

F ::=
∧

i∈I Fi ¬F F1{u}F2 〈〈u〉〉F ΔF

where I is an index set which could be infinite, {u} (with u ∈ A ∪ {ε}) is the
just-before modality introduced in [5], 〈〈u〉〉 is the usual weak possibility modality
as in [9], and Δ is the divergence modality introduced in [13].

Definition 4. Let A = 〈S,A,−→〉 be an LTS. The satisfaction relation |=
between states and formulas of HMLbΔ is defined by induction on the struc-
ture of formulas as follows:

1. s |= ∧

i∈I Fi if, for all i ∈ I, s |= Fi;
2. s |= ¬F if s |= F does not hold;
3. s |= F1{u}F2 if there exist t, t′ ∈ S such that t |= F1, t

′ |= F2, s =⇒ t and
(t u−→ t′ (when u ∈ A) or t

τ−→ t′ (when u = ε)) or there is t ∈ S such that
t |= F1, t |= F2, s =⇒ t and u = ε;

4. s |= 〈〈u〉〉F if there is t ∈ S such that s
u=⇒ t and t |= F ;

5. s |= ΔF if there is an infinite τ -run σ from s such that σ = sτs1τs2 . . . siτ . . .
and there is n > 0 such that si |= F for all i ≥ n (in other words, there are
only finitely many positions on σ where F does not hold).

First note that this logic can express some interesting properties of infinite
behaviours of processes. For example, Δtrue asserts the existence of an infinite
τ -run, where true is a short hand for

∧

i∈∅ Fi (which is the first formula of
HMLbΔ according to the BNF rules). The logic is basic, however it might be
more expressive than one expect due to the use of infinite conjunction with the
construction

∧

i∈I Fi when I is an infinite set.
As usual we will write binary conjunction F1 ∧F2 for

∧

i∈{1,2} Fi, and binary
disjunction F1 ∨ F2 for ¬∧

i∈{1,2} ¬Fi. For two HMLbΔ formulas F1, F2, we say
that F1 and F2 are equivalent logic formulas, written F1 ⇔ F2, if for any process
s of any LTS it holds that s |= F1 if and only if s |= F2.

The following proposition shows that 〈〈u〉〉 is a derived operator in the sense
that it can be defined in terms of the just-before operator {u}.

228 X. Liu et al.

Proposition 2. For any HMLbΔ formula F and a �= τ , the following equiva-
lences hold:

1. 〈〈ε〉〉F ⇔ true{ε}F ;
2. 〈〈a〉〉F ⇔ true{a}(true{ε}F).

Proof. Immediately follows from Definition 4. ��
We write HMLb for the sub-logic of HMLbΔ which consists of formulas con-

structed without the divergence modality Δ. Then HML, the normal Hennessy-
Milner logic, is a sub-logic of HMLb consisting of formulas constructed without
the just-before modality {u}. With the result in Proposition 2 that 〈〈u〉〉 is a
derived operator of {u}, then the following is a theorem which immediately
follows from the characterization result for Φ�

jb in [13].

Theorem 2 (HMLbΔ characterization of ≈�
b). Let s, t be two states. Then

s ≈�
b t if and only if s and t satisfy the same set of HMLbΔ formulas.

Likewise, the following is a theorem immediately follows from the character-
ization result for Φjb in [5].

Theorem 3 (HMLb characterization of ≈b). Let s, t be two states. Then s ≈b t
if and only if s and t satisfy the same set of HMLb formulas.

The following is the famous Hennessy-Milner theorem, which can be found
in Chap. 10 of [9].

Theorem 4 (HML characterization of ≈). Let s, t be two states. Then s ≈ t if
and only if s and t satisfy the same set of HML formulas.

The last three theorems give modal logic characterizations for ≈�
b ,≈b and

≈ respectively, still missing is a modal logic characterization for ≈�. Consider-
ing that HMLb is the extension of HML by the just-before modality and that
HMLbΔ is the extension of HML by the just-before and the divergence modal-
ity, an obvious attempt is to extend HML with the divergence modality and
hopefully that will give us a logic which characterizes ≈�. However it turns out
that the divergence construction ΔF is not preserved by ≈�, as the following
example shows.

Logics for Bisimulation and Divergence 229

Example 1. The drawing shows an LTS P = 〈S,A,−→〉 where A = {ai | i ≥ 0},
S = {si | i ≥ 0} ∪ {ti | i ≥ 0}, and the transition relation is as follows:

– for each i ≥ 0, if i is even then there are exactly three transitions out of si:
si

ai−→ si, si
τ−→ si+1, si

τ−→ si+2;
if i is odd then there are exactly two transitions out of si:
si

ai−→ si, si
τ−→ si+1.

– for each i ≥ 0, there are exactly two transitions out of ti:
ti

ai−→ ti, ti
τ−→ ti+1.

Now define ≡ to be the following relation:

{(si, si) | i ≥ 0} ∪ {(ti, ti) | i ≥ 0} ∪ {(si, ti) | i ≥ 0} ∪ {(ti, si) | i ≥ 0}.

The following facts about ≡ are easy to verify:

1. ≡ is an equivalence relation;
2. ≡ is a weak bisimulation;
3. for every s ∈ S, whenever s

τ−→ t then s �≡ t. Hence whenever s ≡ t then
s ⇑≡ if and only if t ⇑≡.

Thus ≡ is a weak bisimulation with explicit divergence, and s0 ≈� t0. In the
following we show that there is an HML formula F such that ΔF is satisfied by
s0 and not by t0.

Let Fk be the following formula:

(〈〈a2k〉〉true ∧ 〈〈a2k+1〉〉true) ∨ (¬〈〈a2k〉〉true ∧ ¬〈〈a2k+1〉〉true).

That is, Fk asserts that the pair of actions a2k and a2k+1 are either both
enabled or both disabled. It is clear that Fk holds for every state of S except
s2k+1 and t2k+1. Thus

∧{Fk | k ≥ 0} holds on every even numbered position
(i.e. s0, t0, s2, t2, . . .) while does not hold on every odd numbered position (i.e.
s1, t1, s3, t3, . . .).

Now Δ
∧{Fk | k ≥ 0} is satisfied by s0 but not by t0. To see that, note that

from s0 there is an infinite τ -run σ = s0τs2τ . . . s2kτ . . . and every state on σ
satisfies

∧{Fk | k ≥ 0}, while the only infinite τ -run from t0 is t0τt1τ . . ., on
which there are infinitely many states that do not satisfy

∧{Fk | k ≥ 0}. ��
Thus, we need to find a different divergence modality. For that we introduce

the weak divergence modality Δε into HMLbΔ, by extending the BNF rules as
follows:

F :: = . . . | ΔεF.

And then add the following interpretation into Definition 4.

6. s |= ΔεF if there is an infinite τ -run σ from s such that for every state s′ on
σ it holds that s′ =⇒ t for some t |= F .

230 X. Liu et al.

The following is a depiction of the condition for s |= ΔεF .

Proposition 3. For any HMLbΔ formula F , the following equivalence holds:

ΔεF ⇔ Δ〈〈ε〉〉F.

Proof. Immediately follows from Definition 4 together with the above interpre-
tation for ΔεF . ��

This proposition shows that Δε is a derived operator of Δ and 〈〈ε〉〉, and
that with Δε added into HMLbΔ the expressiveness of the extended logic does
not increase. So we still call the logic HMLbΔ after extending with Δε, and we
write HMLΔε for the sub-logic where the only modalities allowed are the weak
possibility modality 〈〈u〉〉 and the weak divergence modality Δε. With the new
divergence modality we can obtain another sub-logic HMLbΔε in which Δε is
allowed but not Δ.

Given a sub-logic L of HMLbΔ, it induces an equivalence relation ≡L on
states such that s ≡L t if and only if s and t satisfy the same set of formulas in the
sub-logic. We call ≡L the equivalence induced by L. The following is a summary
of the sub-logics of HMLbΔ that we concerned about and the corresponding
induced equivalences:

1. Let ≡�
b be the equivalence induced by HMLbΔ;

2. Let ≡b be the equivalence induced by HMLb;
3. Let ≡w be the equivalence induced by HML;
4. Let ≡�ε

w be the equivalence induced by HMLΔε;
5. Let ≡�ε

b be the equivalence induced by HMLbΔε.

In the rest of this section we will show that HMLΔε characterizes ≈�, i.e.
≈� coincides with ≡�ε

w . To prove ≈�⊆≡�ε
w , we show that for every weak bisim-

ulation with explicit divergence ≡ it holds that ≡⊆≡�ε
w (Lemma 5). To prove

≡�ε
w ⊆≈�, we show that ≡�ε

w is a weak bisimulation with explicit divergence
(Lemma 8).

Example 1 shows what ΔF is not preserved by ≈�, while the following lemma
guarantees that ΔεF is preserved by ≈�. Here we omit the proof.

Lemma 5. Let ≡ be a weak bisimulation with explicit divergence, F be an
HMLΔε formula. If s ≡ t and s |= F , then t |= F . Thus if ≡ is a weak bisimu-
lation with explicit divergence then ≡⊆≡�ε

w .

Logics for Bisimulation and Divergence 231

Lemma 6. Let s =⇒ t. Then

1. whenever t |= F1{u}F2 then s |= F1{u}F2;
2. whenever t |= 〈〈u〉〉F then s |= 〈〈u〉〉F ;
3. whenever t |= ΔεF then s |= ΔεF .

Proof. We only prove 3. With the similar idea we can prove 1 and 2.
Suppose t |= ΔεF . Thus from t there is an infinite τ -run ρ such that for each

state t′ on ρ there exists t′′ with t′ =⇒ t′′ and t′′ |= F . Now since s =⇒ t, by
adding a prefix to ρ we can easily obtain an infinite run ρ′ with starting state s
such that for each state t′ on ρ′ there exists t′′ with t′ =⇒ t′′ and t′′ |= F , hence
s |= ΔεF . ��

The following is the so-called stuttering lemma for ≡�ε
w .

Lemma 7. If s =⇒ s′, s′ =⇒ t, and s ≡�ε
w t then s ≡�ε

w s′.

Proof. In this case we only need to prove the following: for any HMLΔε formula
F , it holds that s |= F if and only if s′ |= F . We carry out the proof by induction
on the structure of F .

For
∧

i∈I Fi, we have the following sequence of equivalences: s |= ∧

i∈I Fi

iff s |= Fi for every i ∈ I (by definition of |=) iff s′ |= Fi for every i ∈ I (by
induction hypothesis) iff s′ |= ∧

i∈I Fi (by definition of |=). In the same way we
can prove it for the case ¬F .

For 〈〈u〉〉F , suppose s |= 〈〈u〉〉F . Then t |= 〈〈u〉〉F by s ≡�ε
w t, then it imme-

diately follows that s′ |= 〈〈u〉〉F by s′ =⇒ t and Lemma 6. On the other hand,
suppose s′ |= 〈〈u〉〉F , then s |= 〈〈u〉〉F immediately follows by s =⇒ s′ and
Lemma 6. In the same way we can prove it for the case ΔεF . ��
Lemma 8. ≡�ε

w is a weak bisimulation with explicit divergence.

Proof. To prove that ≡�ε
w is a weak bisimulation with explicit divergence, we

need to establish the following:

1. ≡�ε
w is an equivalence relation;

2. ≡�ε
w is a weak bisimulation;

3. if s ≡�ε
w t, then s ⇑≡�ε

w
iff t ⇑≡�ε

w
.

It is obvious that ≡�ε
w is an equivalence relation. The way to prove that ≡�ε

w

is a weak bisimulation is exactly the same as the way to prove that ≡w is a weak
bisimulation [9]. We prove 3. in the following.

First, let us note that for a pair of states s, t with s �≡�ε
w t, by the definition

of ≡�ε
w there exists an HMLΔε formula F s

t , which is often called a distinguishing
formula of s and t, such that s |= F s

t and t �|= F s
t .

Suppose s ≡�ε
w t, and s ⇑≡�ε

w
, then there is an infinite τ -run ρ from s with

all the states on it ≡�ε
w -equivalent to s. We construct the following formula F s

∧

{F s
u | t

τ=⇒ u, u �≡�ε
w s}.

232 X. Liu et al.

Clearly s |= F s. Moreover s |= ΔεF
s, since for any state s′ on ρ, there is s′′ such

that s′ =⇒ s′′ and s′′ |= F s (just take s′′ to be s′, thus s′ =⇒ s′, and s′ |= F s by
s′ ≡�ε

w s). Now because t ≡�ε
w s, thus t |= ΔεF

s. In the following we will show
that t |= ΔεF

s implies t ⇑≡�ε
w

.
Since t |= ΔεF

s, there is an infinite τ -run σ from t such that for any state t′

on σ there exists t′′ with t′ =⇒ t′′ and t′′ |= F s. Now we will show that if t′ is a
state on ρ then t′ ≡�ε

w t.
Note that the construction of F s guarantees the following property:

if t =⇒ t′ and t′ |= F s then t′ ≡�ε
w t.

To see that, let t
τ=⇒ t′. Suppose t′ �≡�ε

w t, then t′ �≡�ε
w s, which implies t′ �|= F s

because in this case F s
t′ , which is a distinguishing formula of s and t′, is one of

the conjuncts of F s, and t′ �|= F s
t′ .

Now for any state t′ on σ, since t =⇒ t′ and t′ =⇒ t′′ for some t′′ with
t′′ |= F s, and by the above property of F s we know that t′′ ≡�ε

w t, then by
Lemma 7 t′ ≡�ε

w t, thus σ is the infinite τ -run that we are looking for. ��
At last, we can state the modal characterization theorem for ≈�.

Theorem 5. (HMLΔε characterization of ≈�) ≡�ε
w coincides with ≈�, that is

for any pair of states s and t, s ≈� t if and only if s and t satisfy the same set
of HMLΔε formulas.

Proof. By Lemma 5, ≈�⊆≡�ε
w , and by Lemma 8 ≡�ε

w is a weak bisimulation
with explicit divergence, hence ≡�ε

w ⊆≈�. ��
And at the same time we obtain the following theorem which justifies the

definition of ≈�.

Theorem 6. ≈� is a weak bisimulation with explicit divergence, and it is the
largest weak bisimulation with explicit divergence.

Proof. By Lemmas 5 and 8, ≡�ε
w is the largest weak bisimulation with explicit

divergence. By Theorem 5 ≈� is the same as ≡�ε
w , hence ≈� is the largest weak

bisimulation with explicit divergence. ��
Perhaps a little surprise is the following new modal characterization result

for branching bisimilarity with explicit divergence ≈�
b .

Theorem 7 (HMLbΔε characterization of ≈�
b). Let s, t be two states. Then

s ≈�
b t if and only if s and t satisfy the same set of HMLbΔε formulas.

Proof. Here we give the following sketch.
Suppose s ≈�

b t and s |= F for some HMLbΔε formula F , just note that by
Proposition 3 there is an HMLbΔ formula F ′ with F ′ ⇔ F , then s |= F ′ and by
Theorem 2 t |= F ′ thus t |= F .

For the other direction, we prove that ≡�ε

b is a branching bisimulation with
explicit divergence. We can prove that ≡�ε

b is a branching bisimulation in the

Logics for Bisimulation and Divergence 233

same way to prove that ≡b is a branching bisimulation as the proof of Theorem3
in [5]. Suppose s ≡�ε

b t and there is an infinite τ -run from s with all the states
on the run in the same ≡�ε

b -equivalence class of s, we can prove that there is an
infinite τ -run from t with all the states on the run in the same ≡�ε

b -equivalence
class of t as we prove it for ≡�ε

w in Lemma 8, with the help of a lemma similar
to Lemma 7 with ≡�ε

b in place of ≡�ε
w . ��

By Theorems 2 and 7, HMLbΔ and HMLbΔε both characterize ≈�
b . Now

the results about the relationships of various bisimulation equivalence relations
and the logics can be summarized as the above lattice shaped diagrams, where
on the left the equality on the higher end of an edge is included in the equality
on the lower end of the edge, and on the right the logic on the lower end of an
edge is a sub-logic of the one on the higher end of the edge, and the dotted lines
represent the logic characterization results.

4 Divergence in Finite State Systems

The motivating problem of this section is the problem of checking complete weak
bisimilarity for finite-state processes:

given an LTS 〈S,A,−→〉 and two states s, t ∈ S, where S and A are finite
sets, decide whether s ≈� t.

We will show that this problem can be solved by reducing it to the problem of
checking weak bisimilarity for finite-state processes which can be solved by a
well-known partition algorithm [7]:

given an LTS 〈S,A,−→〉 and two states s, t ∈ S, where S and A are finite
sets, decide whether s ≈ t.

The reduction is as follows. Let P = 〈S,A,−→〉 be a finite-state labeled
transition system, i.e. both S and A are finite sets, δ be an action not in A. Then
we can construct a new finite-state LTS Pδ = 〈̂S, ̂A,−→′〉 where ̂S = {ŝ |s ∈ S},
̂A = A ∪ {δ}, −→′= {(ŝ, α, ŝ′) | s

α−→ s′} ∪ {(ŝ, δ, ŝ) | s
τ=⇒ s}.

234 X. Liu et al.

The idea of the reduction is pretty straightforward: in a finite-state system,
the existence of an infinite τ -run from a state s is equivalent to the existence of
a so-called looping state s′ such that s =⇒ s′ and s′ τ=⇒ s′, and then the looping
states can be marked by a particular new action δ. Thus the transitions of the
constructed system Pδ is like the original system P except that every looping
state s is indicated by a new transition ŝ

δ−→ ′ŝ. In the following when there will
cause no confusion we will simply write ŝ

α−→ t̂ instead of ŝ
α−→ ′t̂ for s, t ∈ S.

Now to complete the reduction, we will show that for any s, t ∈ S, it holds
that s ≈� t if and only if ŝ ≈ t̂. Then in order to check whether s ≈� t we only
need to check whether ŝ ≈ t̂. For any s, t ∈ S, in order to show that s ≈� t
if and only if ŝ ≈ t̂, we can show that ≡⊆ S × S is a weak bisimulation with
explicit divergence if and only if ≡̂ = {(ŝ, t̂) | s ≡ t} is a weak bisimulation.
However, with the logic characterization results of the last section, here we will
take a different approach which reveals essential properties of the reduction
construction as stated in the following Theorems 8 and 9 and allows us to obtain
more general results as stated in the following Theorem10.

We define a translation function which maps every HMLbΔ formula F to
another HMLbΔ formula F . The function is inductively defined on the structure
of the formula as follows:

∧

i∈I Fi =
∧

i∈I Fi ¬F = ¬F

F1{u}F2 = F1{u}F2 (u �= δ) F1{δ}F2 = ¬true
〈〈u〉〉F = 〈〈u〉〉F (u �= δ) 〈〈δ〉〉F = ¬true

ΔF = true{δ}F ΔεF = 〈〈δ〉〉F
Theorem 8. If F is an HMLbΔ formula, then F is an HMLb formula. Moreover
if F is an HMLΔε formula, then F is an HML formula.

For a finite-state LTS P = 〈S,A,−→〉, let Pδ = 〈̂S,A,−→′〉 be the finite-
state LTS constructed above, s ∈ S. Then for any HMLbΔ formula F , it holds
that s |= F if and only if ŝ |= F .

The proof, which is omitted here, is a routine induction on the structure of the
formulas. Here we just explain the idea behind the translation function from
which one can see the rationale behind Theorem 8. The key is to understand
why F1{δ}F2 is translated to ¬true. As we have pointed out above, δ is an
action which is not in A and which is used in the reduction to mark divergence.
That implies that any process s from P is not capable of an δ action, hence the
property F1{δ}F2 will never be satisfied by any process from P. That is why
F1{δ}F2 is translated to ¬true. For the same reason 〈〈δ〉〉F is also translated to
¬true.

Also, we can define a translation function which maps every HMLb formula
F to an HMLbΔ formula F . The function is inductively defined on the structure
of the formula as follows:

∧

i∈I Fi =
∧

i∈I Fi ¬F = ¬F

F1{u}F2 = F1{u}F2 (u �= δ) F1{δ}F2 = Δ(F1 ∧ F2)
〈〈u〉〉F = 〈〈u〉〉F (u �= δ) 〈〈δ〉〉F = ΔεF

Logics for Bisimulation and Divergence 235

Theorem 9. If F is an HMLb formula, then F is an HMLbΔ formula. Moreover
if F is an HML formula, then F is an HMLΔε formula.

For a finite-state LTS P = 〈S,A,−→〉, let Pδ = 〈̂S,A,−→′〉 be the finite-
state LTS constructed above, s ∈ S. Then for any HMLb formula F , it holds
that s |= F if and only if ŝ |= F .

Now we obtain the following theorem which guarantees the correctness of
our reduction.

Theorem 10. For a finite-state LTS P = 〈S,A −→〉, let Pδ = 〈̂S,A,−→′〉 be
the finite-state LTS constructed above. Then for s, t ∈ S:

1. s ≈� t if and only if ŝ ≈ t̂;
2. s ≈�

b t if and only if ŝ ≈b t̂.

Proof. Here we only prove 1. The way to prove 2. is the same. Since ≈� coin-
cides with ≡�ε

w and ≈ coincides with ≡w, to prove 1. we only need to prove that
s ≡�ε

w t if and only if ŝ ≡w t̂.
Suppose s ≡�ε

w t. If ŝ |= F for some HML formula F , then by Theorem 9, F
is an HMLΔε formula and s |= F . Then by the condition that s ≡�ε

w t, we have
t |= F , and again by Theorem9, t̂ |= F . Thus ŝ ≡w t̂.

Suppose ŝ ≡w t̂. If s |= F for some HMLΔε formula F , then by Theorem8,
F is an HML formula and ŝ |= F . Then by the condition that ŝ ≡ t̂, we have
t̂ |= F , and again by Theorem8, t |= F . Thus s ≡�ε

w t. ��
Theorem 8 also suggests a simple solution to the model checking problem for

HMLbΔ (which can have many solutions). The model checking problem here is
to ask, for any given state s of a fnite-state LTS P and any given finite HMLbΔ
formula F (finite in the sense that only finite conjunctions are allowed in F),
how to decide whether s |= F holds or not. By Theorem8, this problem can be
reduced to the problem of deciding if ŝ |= F holds or not, which comes with
simple decision procedures because here ŝ is a state in the finite-state LTS Pδ

and F is a finite HMLb formula.

5 Conclusion

To summarize, by introducing a new divergence modality, the weak divergence
modality Δε, we obtain logic characterization results for two divergence sensitive
bisimulation equivalence relations. One is the first modal logic characterization
for complete weak bisimilarity ≈�, and the other is a new modal logic character-
ization for branching bisimilarity with explicit divergence ≈�

b . With these new
characterization results we showed a clear picture of the sub-logic relationships
of various logic characterization results. By using these new characterization
results, we provide reductions from the divergence sensitive equality checking
problems and model checking problems to the divergence blind equality check-
ing problems and model checking problems respectively for finite-state systems.

236 X. Liu et al.

Complete weak bisimilarity ≈� was first defined in [10], which is a refinement
of weak bisimilarity ≈ [9] by taking divergence behavior into account. Since
this is a relatively new equivalence relation, the logic characterization problem
and equality checking problem for finite-state systems have not been treated
before this paper. The relation ≈�

b was defined in [12] which is a refinement of
branching bisimilarity ≈b [12]. In [15], the equality checking problem of stutter
equivalence on Kripke structures is solved by a reduction to the equality checking
problem of divergence blind stutter equivalence problem. Stutter equivalence
and divergence blind stutter equivalence are the Kripke structure versions of
branching bisimilarity with explicit divergence and branching bisimilarity. The
reduction presented in Sect. 4 is inspired by the reduction in [15].

The study of modal logic characterization of bisimulation equivalence rela-
tions was initiated by Hennessy and Milner in [2]. For branching bisimilarity,
modal characterization results were studied in [5,6], where different modalities
for branching structures were used. In [6], besides the extension of Hennessy-
Milner logic with the until operator mentioned earlier in the paper, two other
logics were proposed to characterize branching bisimilarity. One is another exten-
sion of Hennessy-Milner logic which exploits the power of backward modalities.
The other is CTL∗ without the next-time operator interpreted over all paths,
not just over maximal ones. In [13] a modal logic was proposed to character-
ize branching bisimilarity with explicit divergence by combining modalities for
branching bisimilarity in [5] and a divergence modality Δ. In [14], an extension of
CTL∗ without the next operator is proposed which also characterizes branching
bisimilarity with explicit divergence.

References

1. Hennessy, M.C.B., Plotkin, G.D.: A term model for CCS. In: Dembiński, P. (ed.)
MFCS 1980. LNCS, vol. 88, pp. 261–274. Springer, Heidelberg (1980). https://doi.
org/10.1007/BFb0022510

2. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. J.
ACM 32(1), 131–161 (1985)

3. Walker, D.J.: Bisimulation and divergence. Inf. Comput. 85, 212–241 (1990)
4. van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Naples (1983)
5. Glabbeek, R.J.: The linear time—branching time spectrum II. In: Best, E. (ed.)

CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57208-2 6

6. de Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

7. Kannelakis, P., Smolka, S.: CCS expressions, finite state processes and three prob-
lems of equivalence. Inf. Comput. 86, 43–68 (1990)

8. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

9. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

https://doi.org/10.1007/BFb0022510
https://doi.org/10.1007/BFb0022510
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309

Logics for Bisimulation and Divergence 237

10. Liu, X., Yu, T., Zhang, W.: Analyzing divergence in bisimulation semantics. In:
Proceedings of POPL (2017)

11. Basten, T.: Branching bisimularity is an equivalence indeed!. Inf. Process. Lett.
58(3), 141–147 (1996)

12. van Glabbeek, R.J., Weijland, P.: Branching time and abstraction in bisimulation
semantics. J. ACM 43(3), 555–600 (1996)

13. van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inf. 93(4), 371–392 (2009)

14. van Glabbeek, R.J., Luttik, B., Trcka, N.: Computation tree logic with deadlock
detection. Log. Methods Comput. Sci. 5(4) (2009)

15. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and
stuttering equivalence. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032063

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BFb0032063
http://creativecommons.org/licenses/by/4.0/

Lambda-Calculi and Types

Call-by-Need, Neededness and All That

Delia Kesner1, Alejandro Ŕıos2, and Andrés Viso2,3(B)

1 IRIF, CNRS and Univ. Paris-Diderot, Paris, France
2 Universidad de Buenos Aires, Buenos Aires, Argentina

aeviso@dc.uba.ar
3 CONICET, Buenos Aires, Argentina

Abstract. We show that call-by-need is observationally equivalent to
weak-head needed reduction. The proof of this result uses a semantical
argument based on a (non-idempotent) intersection type system called V.
Interestingly, system V also allows to syntactically identify all the weak-
head needed redexes of a term.

1 Introduction

One of the fundamental notions underlying this paper is the one of needed reduc-
tion in λ-calculus, which is to be used here to understand (lazy) evaluation
of functional programs. Key notions are those of reducible and non-reducible
programs: the former are programs (represented by λ-terms) containing non-
evaluated subprograms, called reducible expressions (redexes), whereas the lat-
ter can be seen as definitive results of computations, called normal forms. It
turns out that every reducible program contains a special kind of redex known
as needed or, in other words, every λ-term not in normal form contains a needed
redex. A redex r is said to be needed in a λ-term t if r has to be contracted
(i.e. evaluated) sooner or later when reducing t to normal form, or, informally
said, if there is no way of avoiding r to reach a normal form.

The needed strategy, which always contracts a needed redex, is normalis-
ing [8], i.e. if a term can be reduced (in any way) to a normal form, then con-
traction of needed redexes necessarily terminates. This is an excellent starting
point to design an evaluation strategy, but unfortunately, neededness of a redex
is not decidable [8]. As a consequence, real implementations of functional lan-
guages cannot be directly based on this notion.

Our goal is, however, to establish a clear connection between the semantical
notion of neededness and different implementations of lazy functional languages
(e.g. Miranda or Haskell). Such implementations are based on call-by-need cal-
culi, pioneered by Wadsworth [20], and extensively studied e.g. in [3]. Indeed,
call-by-need calculi fill the gap between the well-known operational semantics of
the call-by-name λ-calculus and the actual implementations of lazy functional
languages. While call-by-name re-evaluates an argument each time it is used –an

This work was partially founded by LIA INFINIS.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 241–257, 2018.
https://doi.org/10.1007/978-3-319-89366-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_13&domain=pdf
http://orcid.org/0000-0002-6822-8453

242 D. Kesner et al.

operation which is quite expensive– call-by-need can be seen as a memoized ver-
sion of call-by-name, where the value of an argument is stored the first time it is
evaluated for subsequent uses. For example, if t = Δ (I I), where Δ = λx.x x and
I = λz.z, then call-by-name duplicates the argument I I, while lazy languages
first reduce I I to the value I so that further uses of this argument do not need
to evaluate it again.

While the notion of needed reduction is defined with respect to (full strong)
normal forms, call-by-need calculi evaluate programs to special values called
weak-head normal forms, which are either abstractions or arbitrary applications
headed by a variable (i.e. terms of the form x t1 . . . tn where t1 . . . tn are arbitrary
terms). To overcome this shortfall, we first adapt the notion of needed redex to
terms that are not going to be fully reduced to normal forms but only to weak-
head normal forms. Thus, informally, a redex r is weak-head needed in a term t
if r has to be contracted sooner or later when reducing t to a weak-head normal
form. The derived notion of strategy is called a weak-head needed strategy, which
always contracts a weak-head needed redex.

This paper introduces two independent results about weak-head neededness,
both obtained by means of (non-idempotent) intersection types [12,13] (a survey
can be found in [9]). We consider, in particular, typing system V [14] and show
that it allows to identify all the weak-head needed redexes of a weak-head nor-
malising term. This is done by adapting the classical notion of principal type [17]
and proving that a redex in a weak-head normalising term t is weak-head needed
iff it is typed in a principally typed derivation for t in V.

Our second goal is to show observational equivalence between call-by-need
and weak-head needed reduction. Two terms are observationally equivalent when
all the empirically testable computations on them are identical. This means that
a term t can be evaluated to a weak-head normal form using the call-by-need
machinery if and only if the weak-head needed reduction normalises t.

By means of system V mentioned so far we use a technique to reason about
observational equivalence that is flexible, general and easy to verify or even
certify. Indeed, system V provides a semantic argument: first showing that a
term t is typable in system V iff it is normalising for the weak-head needed
strategy (t ∈ WN whnd), then by resorting to some results in [14], showing that
system V is complete for call-by-name, i.e. a term t is typable in system V iff
t is normalising for call-by-name (t ∈ WN name); and that t is normalising for
call-by-name iff t is normalising for call-by-need (t ∈ WN need). Thus completing
the following chain of equivalences:

t ∈ WN whnd t typable in V t ∈ WN name t ∈ WN need

This leads to the observational equivalence between call-by-need, call-by-
name and weak-head needed reduction.

Structure of the paper : Sect. 2 introduces preliminary concepts while Sect. 3
defines different notions of needed reduction. The type system V is stud-
ied in Sect. 4. Section 5 extends β-reduction to derivation trees. We show in
Sect. 6 how system V identifies weak-head needed redexes, while Sect. 7 gives a
characterisation of normalisation for the weak-head needed reduction. Sect. 8 is

Call-by-Need, Neededness and All That 243

devoted to define call-by-need. Finally, Sect. 9 presents the observational equiv-
alence result.

2 Preliminaries

This section introduces some standard definitions and notions concerning the
reduction strategies studied in this paper, that is, call-by-name, head and weak-
head reduction, and neededness, this later notion being based on the theory of
residuals [7].

2.1 The Call-by-Name Lambda-Calculus

Given a countable infinite set X of variables x, y, z, . . . we consider the following
grammar:

(Terms) t, u ::= x ∈ X | t u | λx.t
(Values) v ::= λx.t

(Contexts) C ::= � | C t | t C | λx.C
(Name contexts) E ::= � | E t

The set of λ-terms is denoted by Ta. We use I, K and Ω to denote the terms
λx.x, λx.λy.x and (λx.x x) (λx.x x) respectively. We use C〈t〉 (resp. E〈t〉) for the
term obtained by replacing the hole � of C (resp. E) by t. The sets of free and
bound variables of a term t, written respectively fv(t) and bv(t), are defined
as usual [7]. We work with the standard notion of α-conversion , i.e. renaming
of bound variables for abstractions; thus for example λx.x y =α λz.z y.

A term of the form (λx.t) u is called a β-redex (or just redex when β is
clear from the context) and λx is called the anchor of the redex. The one-
step reduction relation →β (resp. →name) is given by the closure by contexts
C (resp. E) of the rewriting rule (λx.t) u �→β t {x /u}, where { / } denotes
the capture-free standard higher-order substitution. Thus, call-by-name forbids
reduction inside arguments and λ-abstractions, e.g. (λx.II) (II) →β (λx.II) I
and (λx.II) (II) →β (λx.I) (II) but neither (λx.II) (II) →name (λx.II) I nor
(λx.II) (II) →name (λx.I) (II) holds. We write �β (resp. �name) for the reflexive-
transitive closure of →β (resp. →name).

2.2 Head, Weak-Head and Leftmost Reductions

In order to introduce different notions of reduction, we start by formalising
the general mechanism of reduction which consists in contracting a redex at
some specific occurrence. Occurrences are finite words over the alphabet {0, 1}.
We use ε to denote the empty word and notation an for n ∈ N concatenations
of some letter a of the alphabet. The set of occurrences of a given term is
defined by induction as follows: oc(x) def= {ε}; oc(t u) def= {ε} ∪ {0p | p ∈ oc(t)} ∪
{1p | p ∈ oc(u)}; oc(λx.t) def= {ε} ∪ {0p | p ∈ oc(t)}.

244 D. Kesner et al.

Given two occurrences p and q, we use the notation p ≤ q to mean that p is a
prefix of q, i.e. there is p′ such that pp′ = q. We denote by t|p the subterm of t
at occurrencep, defined as expected [4], thus for example ((λx.y) z)|00 = y. The
set of redex occurrences of t is defined by roc(t) def= {p ∈ oc(t) | t|p = (λx.s) u}.
We use the notation r : t →β t′ to mean that r ∈ roc(t) and t reduces to t′ by
contracting the redex at occurrence r, e.g. 000 : (λx.(λy.y) xx) z →β (λx.x x) z.
This notion is extended to reduction sequences as expected, and noted ρ : t �β

t′, where ρ is the list of all the redex occurrences contracted along the reduction
sequence. We use nil to denote the empty reduction sequence, so that nil : t �β t
holds for every term t.

Any term t has exactly one of the following forms: λx1.. . . λxn.y t1 . . . tm
or λx1.. . . λxn.(λy.s) u t1 . . . tm with n,m ≥ 0. In the latter case we say that
(λy.s) u is the head redex of t, while in the former case there is no head redex.
Moreover, if n = 0, we say that (λy.s) u is the weak-head redex of t. In terms
of occurrences, the head redex of t is the minimal redex occurrence of the form
0n with n ≥ 0. In particular, if it satisfies that t|0k is not an abstraction for every
k ≤ n, it is the weak-head redex of t. A reduction sequence contracting at each
step the head redex (resp. weak-head redex) of the corresponding term is called
the head reduction (resp. weak-head reduction).

Given two redex occurrences r, r′ ∈ roc(t), we say that r is to-the-left of
r′ if the anchor of r is to the left of the anchor of r′. Thus for example, the
redex occurrence 0 is to-the-left of 1 in the term (I x) (I y), and ε is to-the-left
of 00 in (λx.(I I)) z. Alternatively, the relation to-the-left can be understood as
a dictionary order between redex occurrences, i.e. r is to-the-left of r′ if either
r′ = rq with q
= ε (i.e. r is a proper prefix of r′); or r = p0q and r′ = p1q′ (i.e. they
share a common prefix and r is on the left-hand side of an application while r′

is on the right-hand side). Notice that in any case this implies r′
≤ r. Since this
notion defines a total order on redexes, every term not in normal form has a
unique leftmost redex . The term t leftmost reduces to t′ if t reduces to t′

and the reduction step contracts the leftmost redex of t. For example, (I x) (I y)
leftmost reduces to x (I y) and (λx.(I I)) z leftmost reduces to I I. This notion
extends to reduction sequences as expected.

3 Towards Neededness

Needed reduction is based on two fundamental notions: that of residual, which
describes how a given redex is traced all along a reduction sequence, and that
of normal form, which gives the form of the expected result of the reduction
sequence. This section extends the standard notion of needed reduction [8] to
those of head and weak-head needed reductions.

Call-by-Need, Neededness and All That 245

3.1 Residuals

Given a term t, p ∈ oc(t) and r ∈ roc(t), the descendants of p after r in t,
written p/r, is the set of occurrences defined as follows:

∅ if p = r or p = r0
{p} if r
≤ p

{rq} if p = r00q
{rkq | s|k = x} if p = r1q with t|r = (λx.s) u

For instance, given t = (λx.(λy.x) x) z, then oc(t) = {ε, 0, 1, 00, 000, 001,
0000}, roc(t) = {ε, 00}, 00/00 = ∅, ε/00 = {ε}, 00/ε = {ε} and 1/ε = {1, 00}.

Notice that p/r ⊆ oc(t′) where r : t →β t′. Furthermore, if p is the occurrence
of a redex in t (i.e. p ∈ roc(t)), then p/r ⊆ roc(t′), and each position in p/r is
called a residual of p after reducing r. This notion is extended to sets of redex
occurrences, indeed, the residuals of P after r in t are P/r def=

⋃
p∈P p/r. In

particular ∅/r = ∅. Given ρ : t �β t′ and P ⊆ roc(t), the residuals of P
after the sequence ρ are: P/nil def= P and P/rρ′ def= (P/r)/ρ′.

Stability of the to-the-left relation makes use of the notion of residual:

Lemma 1. Given a term t, let l, r, s ∈ roc(t) such that l is to-the-left of r, s � l
and s : t →β t′. Then, l ∈ roc(t′) and l is to-the-left of r′ for every r′ ∈ r/s.

Proof. By case analysis using the definition of to-the-left [15]. �

Notice that this result does not only implies that the leftmost redex is pre-
served by reduction of other redexes, but also that the residual of the leftmost
redex occurs in exactly the same occurrence as the original one.

Corollary 1. Given a term t, and l ∈ roc(t) the leftmost redex of t, if the
reduction ρ : t �β t′ contracts neither l nor any of its residuals, then l ∈ roc(t′)
is the leftmost redex of t′.

Proof. By induction on the length of ρ using Lemma 1. �

3.2 Notions of Normal Form

The expected result of evaluating a program is specified by means of some appro-
priate notion of normal form. Given any relation →R, a term t is said to be
in R-normal form (NFR) iff there is no t′ such that t →R t′. A term t is
R-normalising (WN R) iff there exists u ∈ NFR such that t �R u. Thus,
given an R-normalising term t, we can define the set of R-normal forms of t as
nfR(t) def= {t′ | t �R t′ ∧ t′ ∈ NFR}.

In particular, it turns out that a term in weak-head β-normal form
(WHNFβ) is of the form x t1 . . . tn (n ≥ 0) or λx.t, where t, t1, . . . , tn are arbi-
trary terms, i.e. it has no weak-head redex. The set of weak-head β-normal forms
of t is whnfβ(t) def= {t′ | t �β t′ ∧ t′ ∈ WHNFβ}.

246 D. Kesner et al.

Similarly, a term in head β-normal form (HNFβ) turns out to be of the
form λx1.. . . λxn.x t1 . . . tm (n,m ≥ 0), i.e. it has no head redex. The set of head
β-normal forms of t is given by hnfβ(t) def= {t′ | t �β t′ ∧ t′ ∈ HNFβ}.

Last, any term in β-normal form (NFβ) has the form λx1.. . . λxn.x t1 . . . tm
(n,m ≥ 0) where t1, . . . , tm are themselves in β-normal form. It is well-known
that the set nfβ(t) is a singleton, so we may use it either as a set or as its unique
element.

It is worth noticing that NFβ ⊂ HNFβ ⊂ WHNFβ . Indeed, the inclusions
are strict, for instance λx.(λy.y) z is in weak-head but not in head β-normal
form, while x ((λy.y) x) z is in head but not in β-normal form.

3.3 Notions of Needed Reduction

The different notions of normal form considered in Sect. 3.2 suggest different
notions of needed reduction, besides the standard one in the literature [8]. Indeed,
consider r ∈ roc(t). We say that r is used in a reduction sequence ρ iff ρ reduces
r or some residual of r. Then:

1. r is needed in t if every reduction sequence from t to β-normal form uses r;
2. r is head needed in t if every reduction sequence from t to head β-normal

form uses r;
3. r is weak-head needed in t if every reduction sequence of t to weak-head

β-normal form uses r.

Notice in particular that nfβ(t) = ∅ (resp. hnfβ(t) = ∅ or whnfβ(t) = ∅)
implies every redex in t is needed (resp. head needed or weak-head needed).

A one-step reduction→β is needed (resp. head or weak-head needed),
noted →nd (resp. →hnd or →whnd), if the contracted redex is needed (resp. head
or weak-head needed). A reduction sequence�β is needed (resp. head or
weak-head needed), noted �nd (resp. �hnd or �whnd), if every reduction step
in the sequence is needed (resp. head or weak-head needed).

For instance, consider the reduction sequence:

(λy.λx.I x (I I r1)) (I I) →nd (λy.λx.I xr2 I) (I I) →nd (λy.λx.x I) (I I)
r3
→nd λx.x I

which is needed but not head needed, since redex r1 might not be contracted to
reach a head normal form:

(λy.λx.I xr2 (I I)) (I I) →hnd (λy.λx.x (I I)) (I I)
r3
→hnd λx.x (I I)

Moreover, this second reduction sequence is head needed but not weak-head
needed since only redex r3 is needed to get a weak-head normal form:

(λy.λx.I x (I I)) (I I)
r3
→whnd λx.I x (I I)

Call-by-Need, Neededness and All That 247

Notice that the following equalities hold: NFnd = NFβ , NFhnd = HNFβ

and NFwhnd = WHNFβ .
Leftmost redexes and reduction sequences are indeed needed:

Lemma 2. The leftmost redex in any term not in normal form (resp. head or
weak-head normal form) is needed (resp. head or weak-head needed).

Proof. By contradiction using the definition of needed [15]. �

Theorem 1. Let r ∈ roc(t) and ρ : t �β t′ be the leftmost reduction (resp.
head reduction or weak-head reduction) starting with t such that t′ = nfβ(t)
(resp. t′ ∈ hnfβ(t) or t′ ∈ whnfβ(t)). Then, r is needed (resp. head or weak-head
needed) in t iff r is used in ρ.

Proof. By definition of needed using Lemma 2 [15]. �

Notice that the weak-head reduction is a prefix of the head reduction, which
is in turn a prefix of the leftmost reduction to normal form. As a consequence,
it is immediate to see that every weak-head needed redex is in particular head
needed, and every head needed redex is needed as well. For example, consider:

(λy.λx.I x
r2 (I I

r3)) (I I
r4)

r1

where r3 is a needed redex but not head needed nor weak-head needed. However,
r2 is both needed and head needed, while r1 is the only weak-head needed redex
in the term, and r4 is not needed at all.

4 The Type System V
In this section we recall the (non-idempotent) intersection type system V [14]
–an extension of those in [12,13]– used here to characterise normalising terms
w.r.t. the weak-head strategy. More precisely, we show that t is typable in system
V if and only if t is normalising when only weak-head needed redexes are con-
tracted. This characterisation is used in Sect. 9 to conclude that the weak-head
needed strategy is observationally equivalent to the call-by-need calculus (to be
introduced in Sect. 8).

Given a constant type a that denotes answers and a countable infinite set B
of base type variables α, β, γ, . . ., we define the following sets of types:

(Types) τ, σ ::= a | α ∈ B | M → τ
(Multiset types) M,N ::= {{τi}}i∈I where I is a finite set

The empty multiset is denoted by {{}}. We remark that types are strict [18],
i.e. the right-hand sides of functional types are never multisets. Thus, the general
form of a type is M1 → . . . → Mn → τ with τ being the constant type or a base
type variable.

Typing contexts (or just contexts), written Γ,Δ, are functions from vari-
ables to multiset types, assigning the empty multiset to all but a finite set of

248 D. Kesner et al.

variables. The domain of Γ is given by dom(Γ) def= {x | Γ (x)
= {{}}}. The union
of contexts, written Γ + Δ, is defined by (Γ + Δ)(x) def= Γ (x)Δ(x), where
denotes multiset union. An example is (x : {{σ}}, y : {{τ}})+(x : {{σ}}, z : {{τ}}) =
(x : {{σ, σ}}, y : {{τ}}, z : {{τ}}). This notion is extended to several contexts as
expected, so that +i∈IΓi denotes a finite union of contexts (when I = ∅ the
notation is to be understood as the empty context). We write Γ \\ x for the
context (Γ \\ x)(x) = {{}} and (Γ \\ x)(y) = Γ (y) if y
= x.

Type judgements have the form Γ � t : τ , where Γ is a typing context, t
is a term and τ is a type. The intersection type system V for the λ-calculus is
given in Fig. 1.

Fig. 1. The non-idempotent intersection type system V.

The constant type a in rule (val) is used to type values. The axiom (ax)
is relevant (there is no weakening) and the rule (→e) is multiplicative. Note
that the argument of an application is typed #(I) times by the premises of rule
(→e). A particular case is when I = ∅: the subterm u occurring in the typed
term t u turns out to be untyped.

A (type) derivation is a tree obtained by applying the (inductive) typing
rules of system V. The notation �V Γ � t : τ means there is a derivation of
the judgement Γ � t : τ in system V. The term t is typable in system V, or
V-typable, iff t is the subject of some derivation, i.e. iff there are Γ and τ
such that �V Γ � t : τ . We use the capital Greek letters Φ, Ψ, . . . to name type
derivations, by writing for example Φ �V Γ � t : τ . For short, we usually denote
with Φt a derivation with subject t for some type and context. The size of
the derivation Φ, denoted by sz(Φ), is defined as the number of nodes of
the corresponding derivation tree. We write RULE(Φ) ∈ {(ax), (→i), (→e)} to
access the last rule applied in the derivation Φ. Likewise, PREM(Φ) is the multiset
of proper maximal subderivations of Φ. For instance, given

Φt (Φi
u)i∈I

Φ = (→e)
Γ � t u : τ

we have RULE(Φ) = (→e) and PREM(Φ) = {{Φt}} {{Φi
u | i ∈ I}}. We also use

functions CTXT(Φ), SUBJ(Φ) and TYPE(Φ) to access the context, subject and type
of the judgement in the root of the derivation tree respectively. For short, we
also use notation Φ(x) to denote the type associated to the variable x in the
typing environment of the conclusion of Φ (i.e. Φ(x) def= CTXT(Φ)(x)).

Call-by-Need, Neededness and All That 249

Intersection type systems can usually be seen as models [11], i.e. typing
is stable by convertibility: if t is typable and t =β t′, then t′ is typable too.
This property splits in two different statements known as subject reduction and
subject expansion respectively, the first one giving stability of typing by reduc-
tion, the second one by expansion. In the particular case of non-idempotent
types, subject reduction refines to weighted subject-reduction, stating that not
only typability is stable by reduction, but also that the size of type derivations
is decreasing. Moreover, this decrease is strict when reduction is performed on
special occurrences of redexes, called typed occurrences. We now introduce all
these concepts.

Given a type derivation Φ, the set TOC(Φ) of typed occurrences of Φ, which
is a subset of oc(SUBJ(Φ)), is defined by induction on the last rule of Φ.

– If RULE(Φ) ∈ {(ax), (val)}, then TOC(Φ) def= {ε}.
– If RULE(Φ) = (→i) with SUBJ(Φ) = λx.t and PREM(Φ) = {{Φt}}, then TOC(Φ) def=

{ε} ∪ {0p | p ∈ TOC(Φt)}.
– If RULE(Φ) = (→e) with SUBJ(Φ) = t u and PREM(Φ) = {{Φt}} {{Φi

u | i ∈ I}},
then TOC(Φ) def= {ε} ∪ {0p | p ∈ TOC(Φt)} ∪ (

⋃
i∈I {1p | p ∈ TOC(Φi

u)}).

Remark that there are two kind of untyped occurrences, those inside untyped
arguments of applications, and those inside untyped bodies of abstractions. For
instance consider the following type derivations:

(ax)
x : {{a}} � x : a

(→i)
x : {{a}} � λy.x : {{}} → a

ΦK = (→i)
� K : {{a}} → {{}} → a

ΦK

(val)
� I : a

ΦKI = (→e)
� K I : {{}} → a

ΦKIΩ = (→e)
� K I Ω : a

Then, TOC(ΦKIΩ) = {ε, 0, 00, 01, 000, 0000} ⊆ oc(KIΩ).

Remark 1. The weak-head redex of a typed term is always a typed occurrence.

Given Φ and p ∈ TOC(Φ), we define Φ|p as the multiset of all the subderiva-
tions of Φ at occurrencep (a formal definition can be found in [15]). Note
that Φ|p is a multiset since the subterm of SUBJ(Φ) at position p may be typed
several times in Φ, due to rule (→e).

We can now state the two main properties of system V, whose proofs can be
found in Sect. 7 of [9].

Theorem 2 (Weighted Subject Reduction). Let Φ�V Γ � t : τ . If r : t →β

t′, then there exists Φ′ s.t. Φ′ �V Γ � t′ : τ . Moreover,

1. If r ∈ TOC(Φ), then sz(Φ) > sz(Φ′).
2. If r /∈ TOC(Φ), then sz(Φ) = sz(Φ′).

Theorem 3 (Subject Expansion). Let Φ′�V Γ � t′ : τ . If t →β t′, then there
exists Φ s.t. Φ �V Γ � t : τ .

Note that weighted subject reduction implies that reduction of typed redex
occurrences turns out to be normalising.

250 D. Kesner et al.

5 Substitution and Reduction on Derivations

In order to relate typed redex occurrences of convertible terms, we now extend
the notion of β-reduction to derivation trees, by making use of a natural and
basic concept of typed substitution. In contrast to substitution and β-reduction
on terms, these operations are now both non-deterministic on derivation trees
(see [19] for discussions and examples). Given a variable x and type deriva-
tions Φt and (Φi

u)i∈I , the typed substitution of x by (Φi
u)i∈I in Φt, written

Φt

{
x

/
(Φi

u)i∈I

}
by making an abuse of notation, is a type derivation induc-

tively defined on Φt, only if Φt(x) = {{TYPE(Φi
u)}}i∈I . This non-deterministic

construction may be non-trivial but it can be naturally formalised in a quite
straightforward way (full details can be found in [15]). Intuitively, the typed sub-
stitution replaces typed occurrences of x in Φt by a corresponding derivation Φi

u

matching the same type, where such a matching is chosen in a non-deterministic
way. Moreover, it also substitutes all untyped occurrences of x by u, where this
untyped operation is completely deterministic. Thus, for example, consider the
following substitution, where ΦKI is defined in Sect. 4:

⎛

⎝
(ax)

x : {{{{}} → a}} � x : {{}} → a
(→e)

x : {{{{}} → a}} � xx : a

⎞

⎠ {x /ΦKI } =
ΦKI

(→e)
� (KI) (KI) : a

The following lemma relates the typed occurrences of the trees composing a
substitution and those of the substituted tree itself:

Lemma 3. Let Φt and (Φi
u)i∈I be derivations such that Φt

{
x

/
(Φi

u)i∈I

}
is

defined, and p ∈ oc(t). Then,

1. p ∈ TOC(Φt) iff p ∈ TOC(Φt

{
x

/
(Φi

u)i∈I

}
).

2. q ∈ TOC(Φk
u) for some k ∈ I iff there exists p ∈ TOC(Φt) such that t|p = x and

pq ∈ TOC(Φt

{
x

/
(Φi

u)i∈I

}
).

Proof. By induction on Φt. �

Based on the previous notion of substitutions on derivations, we are now able
to introduce (non-deterministic) reduction on derivation trees. The reduction
relation →β on derivation trees is then defined by first considering the following
basic rewriting rules.

1. For typed β-redexes:

Φt �V Γ ;x : {{σi}}i∈I � t : τ

Γ � λx.t : {{σi}}i∈I → τ (Φi
u �V Δi � u : σi)i∈I �→β Φt

{
x

/
(Φi

u)i∈I

}

Γ +i∈I Δi � (λx.t) u : τ

Call-by-Need, Neededness and All That 251

2. For β-redexes in untyped occurrences, with u →β u′:

Γ � t : {{}} → τ

Γ � t u : τ
�→ν

Γ � t : {{}} → τ

Γ � t u′ : τ � λx.u : a
�→ξ

� λx.u′ : a

As in the case of the λ-calculus, where reduction is closed under usual term
contexts, we need to close the previous relation under derivation tree contexts.
However, a one-step reduction on a given subterm causes many one-step reduc-
tions in the corresponding derivation tree (recall Φ|p is defined to be a multiset).
Then, informally, given a redex occurrence r of t, a type derivation Φ of t, and
the multiset of minimal subderivations of Φ containing r, written M , we apply
the reduction rules �→β,ν,ξ to all the elements of M , thus obtaining a multiset
M ′, and we recompose the type derivation of the reduct of t (see [15] for a formal
definition). This gives the reduction relation →β on trees. A reduction sequence
on derivation trees contracting only redexes in typed positions is dubbed a typed
reduction sequence .

Note that typed reductions are normalising by Theorem2, yielding a special
kind of derivation. Indeed, given a type derivation Φ �V Γ � t : τ , we say that
Φ is normal iff TOC(Φ) ∩ roc(t) = ∅. Reduction on trees induces reduction on
terms: when ρ : Φ �β Φ′, then SUBJ(Φ) �β SUBJ(Φ′). By abuse of notation we
may denote both sequences with the same letter ρ.

6 Weak-Head Neededness and Typed Occurrences

This section presents one of our main results. It establishes a connection between
weak-head needed redexes and typed redex occurrences. More precisely, we first
show in Sect. 6.1 that every weak-head needed redex occurrence turns out to
be a typed occurrence, whatever its type derivation is. The converse does not
however hold. But, we show in Sect. 6.2 that any typed occurrence in a special
kind of typed derivation (that we call principal) corresponds to a weak-head
needed redex occurrence. We start with a technical lemma.

Lemma 4. Let r : Φt →β Φt′ and p ∈ oc(t) such that p
= r and p
= r0. Then,
p ∈ TOC(Φt) iff there exists p′ ∈ p/r such that p′ ∈ TOC(Φt′).

Proof. By induction on r using Lemma 3. �

6.1 Weak-Head Needed Redexes Are Typed

In order to show that every weak-head needed redex occurrence corresponds
to a typed occurrence in some type derivation we start by proving that typed
occurrences do not come from untyped ones.

Lemma 5. Let ρ : Φt �β Φt′ and p ∈ oc(t). If there exists p′ ∈ p/ρ such that
p′ ∈ TOC(Φt′), then p ∈ TOC(Φt).

Proof. Straightforward induction on ρ using Lemma 4. �

252 D. Kesner et al.

Theorem 4. Let r be a weak-head needed redex in t. Let Φ be a type derivation
of t. Then, r ∈ TOC(Φ).

Proof. By Theorem 1, r is used in the weak-head reduction from t to t′ ∈
WHNFβ . By Remark 1, the weak-head reduction contracts only typed redexes.
Thus, r or some of its residuals is a typed occurrence in its corresponding deriva-
tion tree. Finally, we conclude by Lemma 5, r ∈ TOC(Φ). �

6.2 Principally Typed Redexes Are Weak-Head Needed

As mentioned before, the converse of Theorem 4 does not hold: there are some
typed occurrences that do not correspond to any weak-head needed redex occur-
rence. This can be illustrated in the following examples (recall ΦKIΩ defined
in Sect. 4):

ΦKIΩ

(→i)
� λy.KIΩ : {{}} → a

(ax)
y : {{{{a}} → a}} � y : {{a}} → a ΦKIΩ

(→e)
y : {{{{a}} → a}} � y (KIΩ) : a

Indeed, the occurrence 0 (resp 1) in the term λy.KIΩ (resp. y (KIΩ)) is
typed but not weak-head needed, since both terms are already in weak-head
normal form. Fortunately, typing relates to redex occurrences if we restrict type
derivations to principal ones: given a term t in weak-head β-normal form, the
derivation Φ �V Γ � t : τ is normal principally typed if:

– t = x t1 . . . tn (n ≥ 0), and Γ = {x : {{
n times

︷ ︸︸ ︷
{{}} → . . . → {{}} → τ}}} and τ is a type

variable α (i.e. none of the ti are typed), or
– t = λx.t′, and Γ = ∅ and τ = a.

Given a weak-head normalising term t such that Φt �V Γ � t : τ , we say that
Φt is principally typed if Φt �β Φt′ for some t′ ∈ whnfβ(t) implies Φt′ is
normal principally typed.

Note in particular that the previous definition does not depend on the chosen
weak-head normal form t′: suppose t′′ ∈ whnfβ(t) is another weak-head normal
form of t, then t′ and t′′ are convertible terms by the Church-Rosser property [7]
so that t′ can be normal principally typed iff t′′ can, by Theorems 2 and 3.

Lemma 6. Let Φt be a type derivation with subject t and r ∈ roc(t) ∩ TOC(Φt).
Let ρ : Φt �β Φt′ such that Φt′ is normal. Then, r is used in ρ.

Proof. Straightforward induction on ρ using Lemma 4. �

The notions of leftmost and weak-head needed reductions on (untyped) terms
naturally extends to typed reductions on tree derivations. We thus have:

Lemma 7. Let t be a weak-head normalising term and Φt be principally typed.
Then, a leftmost typed reduction sequence starting at Φt is weak-head needed.

Call-by-Need, Neededness and All That 253

Proof. By induction on the leftmost typed sequence (called ρ). If ρ is empty the
result is immediate. If not, we show that t has a typed weak-head needed redex
(which is leftmost by definition) and conclude by inductive hypothesis. Indeed,
assume t ∈ WHNFβ . By definition Φt is normal principally typed and thus it
has no typed redexes. This contradicts ρ being non-empty. Hence, t has a weak-
head redex r (i.e. t /∈ WHNFβ). Moreover, r is both typed (by Remark 1) and
weak-head needed (by Lemma 2). Thus, we conclude. �

Theorem 5. Let t be a weak-head normalising term, Φt be principally typed and
r ∈ roc(t) ∩ TOC(Φt). Then, r is a weak-head needed redex in t.

Proof. Let ρ : Φt �β Φt′ be the leftmost typed reduction sequence where Φt′ is
normal. Note that Φt′ exists by definition of principally typed. By Lemma 7, ρ is
a weak-head needed reduction sequence. Moreover, by Lemma 6, r is used in ρ.
Hence, r is a weak-head needed redex in t. �

As a direct consequence of Theorems 4 and 5, given a weak-head normalising
term t, the typed redex occurrences in its principally typed derivation (which
always exists) correspond to its weak-head needed redexes. Hence, system V
allows to identify all the weak-head needed redexes of a weak-head normalising
term.

7 Characterising Weak-Head Needed Normalisation

This section presents one of the main pieces contributing to our observational
equivalence result. Indeed, we relate typing with weak-head neededness by show-
ing that any typable term in system V is normalising for weak-head needed
reduction. This characterisation highlights the power of intersection types. We
start by a technical lemma.

Lemma 8. Let Φ �V Γ � t : τ . Then, Φ normal implies t ∈ WHNFβ.

Proof. By induction on Φ analysing the last rule applied. �

Let ρ : t1 �β tn. We say that ρ is a left-to-right reduction sequence iff
for every i < n if ri : ti →β ti+1 and li is to the left of ri then, for every j > i
such that rj : tj →β tj+1 we have that rj /∈ {li}/ρij where ρij : ti �β tj is the
corresponding subsequence of ρ. In other words, for every j and every i < j,
rj is not a residual of a redex to the left of ri (relative to the given reduction
subsequence from ti to tj) [7].

Left-to-right reductions define in particular standard strategies, which give
canonical ways to construct reduction sequences from one term to another:

Theorem 6 ([7]). If t �β t′, there exists a left-to-right reduction from t to t′.

Theorem 7. Let t ∈ Ta. Then, Φ �V Γ � t : τ iff t ∈ WN whnd.

254 D. Kesner et al.

Proof. ⇒) By Theorem 2 we know that the strategy reducing only typed redex
occurrences is normalising, i.e. there exist t′ and Φ′ such that t �β t′, Φ′ �V
Γ � t′ : τ and Φ′ normal. Then, by Lemma 8, t′ ∈ WHNFβ . By Theorem 6, there
exists a left-to-right reduction ρ : t �β t′. Let us write

ρ : t = t1 �β tn �β t′

such that t1, . . . , tn−1 /∈ WHNFβ and tn ∈ WHNFβ .
We claim that all reduction steps in t1 �β tn are leftmost. Assume towards

a contradiction that there exists k < n such that r : tk →β tk+1 and r is not the
leftmost redex of tk (written lk). Since ρ is a left-to-right reduction, no residual
of lk is contracted after the k-th step. Thus, there is a reduction sequence from
tk /∈ WHNFβ to tn ∈ WHNFβ such that lk is not used in it. This leads to a
contradiction with lk being weak-head needed in tk by Lemma 2.

As a consequence, there is a leftmost reduction sequence t �β tn. Moreover,
by Lem. 2, t �whnd tn ∈ WHNFβ = NFwhnd. Thus, t ∈ WN whnd.

⇐) Consider the reduction ρ : t �whnd t′ with t′ ∈ whnfβ(t). Let Φ′ �V
Γ � t′ : τ be the normal principally typed derivation for t′ as defined in Sect. 6.2.
Finally, we conclude by induction in ρ using Theorem 3, Φ �V Γ � t : τ . �

8 The Call-by-Need Lambda-Calculus

This section describes the syntax and the operational semantics of the call-by-
need lambda-calculus introduced in [1]. It is more concise than previous specifi-
cations of call-by-need [2,3,10,16], but it is operationally equivalent to them [6],
so that our results could also be presented by using alternative specifications.

Given a countable infinite set X of variables x, y, z, . . . we define different
syntactic categories for terms, values, list contexts, answers and need contexts:

(Terms) t, u ::= x ∈ X | t u | λx.t | t[x\u]
(Values) v ::= λx.t

(List contexts) L ::= � | L[x\t]
(Answers) a ::= L〈λy.t〉

(Need contexts) M, N ::= � | N t | N[x\t] | N〈〈x〉〉[x\M]

We denote the set of terms by Te. Terms of the form t[x\u] are closures,
and [x\u] is called an explicit substitution (ES). The set of Te-terms without
ES is the set of terms of the λ-calculus, i.e. Ta. The notions of free and bound
variables are defined as expected, in particular, fv(t[x\u]) def= fv(t) \ {x}∪fv(u),
fv(λx.t) def= fv(t)\{x}, bv(t[x\u]) def= bv(t)∪{x}∪bv(u) and bv(λx.t) def= bv(t)∪{x}.
We extend the standard notion of α-conversion to ES, as expected.

We use the special notation N〈〈u〉〉 or L〈〈u〉〉 when the free variables of u are not
captured by the context, i.e. there are no abstractions or explicit substitutions
in the context that binds the free variables of u. Thus for example, given N =
(�x)[x\z], we have (y x)[x\z] = N〈y〉 = N〈〈y〉〉, but (xx)[x\z] = N〈x〉 cannot be

Call-by-Need, Neededness and All That 255

written as N〈〈x〉〉. Notice the use of this special notation in the last case of needed
contexts, an example of such case being (x y)[y\t][x\�].

The call-by-need calculus, introduced in [1], is given by the set of terms
Te and the reduction relation →need, the union of →dB and →lsv, which are,
respectively, the closure by need contexts of the following rewriting rules:

L〈λx.t〉 u �→dB L〈t[x\u]〉
N〈〈x〉〉[x\L〈v〉] �→lsv L〈N〈〈v〉〉[x\v]〉

These rules avoid capture of free variables. An example of need-reduction
sequence is the following, where the redex of each step is underlined for clearness:

(λx1.I (x1 I)) (λy.I y) →dB (I (x1 I))[x1\λy.I y] →dB

x2[x2\x1 I][x1\λy.I y] →lsv x2[x2\(λx3.I x3) I][x1\λy.I y] →dB

x2[x2\(I x3)[x3\I]][x1\λy.I y] →dB x2[x2\x4[x4\x3][x3\I]][x1\λy.I y] →lsv

x2[x2\x4[x4\I][x3\I]][x1\λy.I y] →lsv x2[x2\I[x4\I][x3\I]][x1\λy.I y] →lsv

I[x2\I][x4\I][x3\I][x1\λy.I y]

As for call-by-name, reduction preserves free variables, i.e. t →need t′ implies
fv(t) ⊇ fv(t′). Notice that call-by-need reduction is also weak, so that answers
are not need-reducible.

9 Observational Equivalence

The results in Sect. 7 are used here to prove soundness and completeness of call-
by-need w.r.t weak-head neededness, our second main result. More precisely, a
call-by-need interpreter stops in a value if and only if the weak-head needed
reduction stops in a value. This means that call-by-need and call-by-name are
observationally equivalent.

Formally, given a reduction relation R on a term language T , and an associ-
ated notion of context for T , we define t to be observationally equivalent to
u, written t ∼=R u, iff C〈t〉 ∈ WN R ⇔ C〈u〉 ∈ WN R for every context C. In order
to show our final result we resort to the following theorem:

Theorem 8 ([14]).
1. Let t ∈ Ta. Then, Φ �V Γ � t : τ iff t ∈ WN name.
2. For all terms t and u in Ta, t ∼=name u iff t ∼=need u.

These observations allows us to conclude:

Theorem 9. For all terms t and u in Ta, t ∼=whnd u iff t ∼=need u.

Proof. By Theorem 8:2 it is sufficient to show t ∼=whnd u iff t ∼=name u. The proof
proceeds as follows:

t ∼=name u iff (definition)
C〈t〉 ∈ WN name ⇔ C〈u〉 ∈ WN name iff (Theorem 8:1)

C〈t〉 typable in V ⇔ C〈u〉 typable in V iff (Theorem 7)
C〈t〉 ∈ WN whnd ⇔ C〈u〉 ∈ WN whnd iff (definition)

t ∼=whnd u

�

256 D. Kesner et al.

10 Conclusion

We establish a clear connection between the semantical standard notion of need-
edness and the syntactical concept of call-by-need. The use of non-idempotent
types –a powerful technique being able to characterise different operational
properties– provides a simple and natural tool to show observational equiva-
lence between these two notions. We refer the reader to [5] for other proof tech-
niques (not based on intersection types) used to connect semantical notions of
neededness with syntactical notions of lazy evaluation.

An interesting (and not difficult) extension of our result in Sect. 6 is that
call-by-need reduction (defined on λ-terms with explicit substitutions) contracts
only dB weak-head needed redexes, for an appropriate (and very natural) notion
of weak-head needed redex for λ-terms with explicit substitutions. A technical
tool to obtain such a result would be the type system A [14], a straightforward
adaptation of system V to call-by-need syntax.

Given the recent formulation of strong call-by-need [6] describing a determin-
istic call-by-need strategy to normal form (instead of weak-head normal form), it
would be natural to extend our technique to obtain an observational equivalence
result between the standard notion of needed reduction (to full normal forms)
and the strong call-by-need strategy. This remains as future work.

References

1. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Jeuring,
J., Chakravarty, M.M.T. (eds.) Proceedings of the 19th ACM SIGPLAN Interna-
tional Conference on Functional Programming, Gothenburg, Sweden, 1–3 Septem-
ber 2014, pp. 363–376. ACM (2014)

2. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1997)

3. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need
lambda calculus. In: Cytron, R.K., Lee, P. (eds.) Conference Record of POPL 1995:
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, San Francisco, California, USA, 23–25 January 1995, pp. 233–246. ACM
Press (1995)

4. Baader, F., Nipkow, T.: Term Rewriting and all That. Cambridge University Press,
New York (1998)

5. Balabonski, T.: La pleine paresse, une certaine optimalité. Ph.D. Thesis, Université
Paris-Diderot (2012)

6. Balabonski, T., Barenbaum, P., Bonelli, E., Kesner, D.: Foundations of strong call
by need. PACMPL 1(ICFP), 20:1–20:29 (2017)

7. Barendregt, H.P.: The Lambda Calculus Its Syntax and Semantics, vol. 103, revised
edition, North Holland (1984)

8. Barendregt, H.P., Kennaway, J.R., Klop, J.W., Sleep, M.R.: Needed reduction and
spine strategies for the lambda calculus. Inf. Comput. 75(3), 191–231 (1987)

9. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for the
lambda-calculus. Logic J. IGPL 25(4), 431–464 (2017)

Call-by-Need, Neededness and All That 257

10. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl,
H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 128–147. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28869-2 7

11. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the λ-calculus. Notre Dame J. Formal Log. 21(4), 685–693 (1980)

12. de Carvalho, D.: Sémantiques de la logique linéaire et temps de calcul. Ph.D. thesis,
Université Aix-Marseille II (2007)

13. Gardner, P.: Discovering needed reductions using type theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 555–574. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 115

14. Kesner, D.: Reasoning about call-by-need by means of types. In: Jacobs, B.,
Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 424–441. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5 25

15. Kesner, D., Ŕıos, A., Viso, A.: Call-by-need, neededness and all that. Extended
report (2017). https://arxiv.org/abs/1801.10519

16. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

17. Rocca, S.R.D.: Principal type scheme and unification for intersection type disci-
pline. Theor. Comput. Sci. 59, 181–209 (1988)

18. van Bakel, S.: Complete restrictions of the intersection type discipline. Theor.
Comput. Sci. 102(1), 135–163 (1992)

19. Vial, P.: Non-idempotent intersection types, beyond lambda-calculus. Ph.D. thesis,
Université Paris-Diderot (2017)

20. Wadsworth, C.P.: Semantics and pragmatics of the lambda calculus. Ph.D. thesis,
Oxford University (1971)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-28869-2_7
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1007/978-3-662-49630-5_25
https://arxiv.org/abs/1801.10519
http://creativecommons.org/licenses/by/4.0/

Fitch-Style Modal Lambda Calculi

Ranald Clouston(B)

Department of Computer Science, Aarhus University, Aarhus, Denmark
ranald.clouston@cs.au.dk

Abstract. Fitch-style modal deduction, in which modalities are elimi-
nated by opening a subordinate proof, and introduced by shutting one,
were investigated in the 1990s as a basis for lambda calculi. We show
that such calculi have good computational properties for a variety of
intuitionistic modal logics. Semantics are given in cartesian closed cate-
gories equipped with an adjunction of endofunctors, with the necessity
modality interpreted by the right adjoint. Where this functor is an idem-
potent comonad, a coherence result on the semantics allows us to present
a calculus for intuitionistic S4 that is simpler than others in the litera-
ture. We show the calculi can be extended à la tense logic with the left
adjoint of necessity, and are then complete for the categorical semantics.

Keywords: Intuitionistic modal logic · Typed lambda calculi
Categorical semantics

1 Introduction

The Curry-Howard propositions-as-types isomorphism [21,39,41] provides a cor-
respondence between natural deduction and typed lambda calculus of interest
to both logicians and computer scientists. For the logician, term assignment
offers a convenient notation to express and reason about syntactic properties
such as proof normalisation, and, especially in the presence of dependent types,
allows proofs of non-trivial mathematical theorems to be checked by computer
programs. For the computer scientist, logics have been repurposed as typing
disciplines to address problems in computing in sometimes surprising ways. Fol-
lowing Lambek [25], categories form a third leg of the isomorphism. Categorical
semantics can be used to prove the consistency of a calculus, and they are cru-
cial if we wish to prove or program in some particular mathematical setting. For
example, see the use of the topos of trees as a setting for both programming
with guarded recursion, and proof by Löb induction, by Clouston et al. [11].

This work involved two functors, ‘later’ and ‘constant’. Where functors inter-
act appropriately with finite products they correspond to necessity modalities in

We gratefully acknowledge discussions with Patrick Bahr, Lars Birkedal, Aleš Bizjak,
Christian Uldal Graulund, G.A. Kavvos, Bassel Mannaa, Rasmus Ejlers Møgelberg,
Andrew M. Pitts, and Bas Spitters, and the comments of the anonymous referees.
This research was supported by a research grant (12386) from Villum Fonden.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 258–275, 2018.
https://doi.org/10.1007/978-3-319-89366-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_14&domain=pdf

Fitch-Style Modal Lambda Calculi 259

intuitionistic normal modal logic, usually written �. Such modalities have been
extensively studied by logicians, and the corresponding type-formers are widely
applicable in computing, for example to monads [32], staged programming [13],
propositional truncation [2], and recent work in homotopy type theory [37]. There
is hence a need to develop all sides of the Curry-Howard-Lambek isomorphism
for necessity modalities. Approaches to modal lambda calculi are diverse; see the
survey by Kavvos [23], and remarks in the final section of this paper. This paper
focuses on Fitch-style modal lambda calculi as first proposed by Borghuis [9]
and (as the “two-dimensional” approach) by Martini and Masini [29].

Fitch-style modal lambda calculi1 adapt the proof methods of Fitch [19] in
which given a formula �A we may open a ‘(strict) subordinate proof’ in which
we eliminate the � to get premise A. Such a subordinate proof with conclusion
B can then be shut by introducing a � to conclude �B. Different modal logics
can be encoded by tweaking the open and shut rules; for example we could shut
the proof to conclude merely B, if we had the T axiom �B → B. Normal modal
logics are usually understood with respect to Kripke’s possible worlds semantics
(for the intuitionistic version, see e.g. Simpson [38, Sect. 3.3]). In this setting
Fitch’s approach is highly intuitive, as opening a subordinate proof corresponds
to travelling to a generic related world, while shutting corresponds to returning
to the original world. See Fitting [20, Chap. 4] for a lengthier discussion of this
approach to natural deduction.

Borghuis [9] kept track of subordinate proofs in a sequent presentation by
introducing a new structural connective to the context when a � is eliminated,
and removing it from the context when one is introduced, in a style reminiscent
of the treatment of modal logic in display calculus [42], or for that matter of
the standard duality between implication and comma. To the category theorist,
this suggests an operation on contexts left adjoint to �. This paper exploits this
insight by presenting categorical semantics for Fitch-style modal calculi for the
first time, answering the challenge of de Paiva and Ritter [33, Sect. 4], by mod-
elling necessity modalities as right adjoints. This is logically sound and complete,
yet less general than modelling modalities as monoidal functors as done for exam-
ple by Bellin et al. [4]. For example, truncation in sets is monoidal but has no
right adjoint. Nonetheless adjunctions are ubiquitous, and in their presence we
argue that the case for Fitch-style calculi is compelling. Examples of right adoints
of interest to type theorists include the aforementioned modalities of guarded
recursion, the closure modalities of (differential) cohesive ∞-toposes [36, Sect. 3],
and atom-abstraction in nominal sets [31].

In Sect. 2 we present Borghuis’s calculus for the logic Intuitionistic K, the
most basic intuitionistic modal logic of necessity. To the results of confluence,
subject reduction, and strong normalisation already shown by Borghuis we add
canonicity and the subformula property, with the latter proof raising a subtle
issue with sums not previously observed. We give categorical semantics for this
style of calculus for the first time and prove soundness. In Sect. 3 we introduce the

1 ‘Fitch-style’ deduction can also be used to mean the linear presentation of natural
deduction with subordinate proofs for implication.

260 R. Clouston

left adjoint as a first-class type former à la intuitionistic tense logic [17], in which
the “everywhere in the future” modality is paired with “somewhere in the past”.
To our knowledge this is the first natural deduction calculus, let alone lambda
calculus, for any notion of tense logic. It is not entirely satisfactory as it lacks the
subformula property, but it does allow us to prove categorical completeness. In
Sect. 4 we show how the basic techniques developed for Intuitionistic K extend
to Intuitionistic S4, one of the most-studied intuitionistic modal logics. Instead
of working with known Fitch-style calculi for this logic [13,34] we explore a
new, particularly simple, calculus where the modality is idempotent, i.e. �A
and ��A are not merely logically equivalent, but isomorphic. Our semantics
for this calculus rely on an unusual ‘coherence’ proof. In Sect. 5 we present a
calculus corresponding to the logic Intuitionistic R. In Sect. 6 we conclude with
a discussion of related and further work.

2 Intuitionistic K

This section presents results for the calculus of Borghuis [9] for the most basic
modal logic for necessity, first identified to our knowledge by Božić et al. [10] as
HK�; following Yokota [43] we use the name Intuitionistic K (IK). This logic
extends intuitionistic logic with a new unary connective �, one new axiom

K: �(A → B) → �A → �B

and one new inference rule

Necessitation: if A is a theorem, then so is �A.

2.1 Type System

Contexts are defined by the grammar

Γ � · | Γ, x : A | Γ,�

where x is a variable not in Γ , A is a formula of intuitionistic modal logic, and
� is called a lock. The open lock symbol is used to suggest that a box has been
opened, allowing access to its contents.

Ignoring variables and terms, sequents Γ � A may be interpreted as intu-
itionistic modal formulae by the translation

– �· � A� = A;
– �B,Γ � A� = B → �Γ � A�;
– ��, Γ � A� = ��Γ � A�.

Fitch-Style Modal Lambda Calculi 261

This interpretation will suffice to confirm the soundness and completeness of
our calculus, considered as a natural deduction calculus, with respect to IK. It is
however not a satisfactory basis for a categorical semantics, because it does not
interpret the context as an object. In Sect. 2.3 we shall see that � may instead
by interpreted as a left adjoint of �, applied to the context to its left.

Figure 1 presents the typing rules. Rules for the product constructions 1,
A × B, 〈〉, 〈t, u〉, π1 t, π2 t are as usual and so are omitted, while sums are
discussed at the end of Sect. 2.2. Note that variables can only be introduced
or abstracted if they do not appear to the left of a lock. In the variable rule
the context Γ ′ builds in variable exchange, while in the open rule Γ ′ builds in
variable weakening. Exchange of variables with locks, and weakening for locks,
are not admissible.

Fig. 1. Typing rules for Intuitionistic K

Theorem 2.1 (Logical Soundness and Completeness). A formula is a the-
orem of IK if and only if it is an inhabited type in the empty context.

We can for example show that the K axiom is inhabited:

f : �(A → B), x : �A,� � open f : A → B f, x,� � openx : A

f : �(A → B), x : �A,� � (open f)(openx) : B

f : �(A → B), x : �A � shut((open f)(openx)) : �B

2.2 Computation

We extend the usual notion of β-reduction on untyped terms with the rule

open shut t �→ t

We write � for the reflexive transitive closure of �→. This relation is plainly
confluent. Two lemmas, proved by easy inductions on the derivation of the terms
t, then allow us to prove subject reduction:

Lemma 2.2 (Variable Weakening). If Γ, Γ ′ � t : B then Γ, x : A,Γ ′ � t : B.

Lemma 2.3 (Substitution). If Γ, x : A,Γ ′ � t : B and Γ � u : A then
Γ, Γ ′ � t[u/x] : B.

262 R. Clouston

Theorem 2.4 (Subject Reduction). If Γ � t : A and t �→ u then Γ � u : A.

Proof. β-reduction for → requires Lemma 2.3, and for � requires Lemma 2.2.

A term t is normalisable if there exists an integer ν(t) bounding the length
of any reduction sequence starting with t, and normal if ν(t) is 0. By standard
techniques we prove the following theorems:

Theorem 2.5 (Strong Normalisation). Given Γ � t : A, the term t is nor-
malisable.

Theorem 2.6 (Canonicity). If Γ is a context containing no variable assign-
ments, Γ � t : A, and t is normal, then the main term-former of t is the
introduction for the main type-former of A.

Concretely, if A is some base type then t is a value of that type.

Theorem 2.7 (Subformula Property). Given Γ � t : A with t normal, all
subterms of t have as their type in the derivation tree a subtype of A, or a subtype
of a type assigned in Γ .

To attain this final theorem we need to take some care with sums. It is well
known that lambda calculi with sums do not enjoy the subformula property
unless they have additional reductions called commuting conversions [21, Chap.
10]. However the commuting conversions for the � type

open case s of x.t; y.u �→ case s of x.open t; y.openu

open abort t �→ abort t

do not obviously enjoy subject reduction because open might change the context.
However if we tweak the definitions of the elimination term-formers for sums
according to Fig. 2 then all results of this section indeed hold.

Fig. 2. Elimination term-formers for sums

Finally, while we will not explore computational aspects of η-equivalence in
this paper, we do note that

shut open t = t

obeys subject reduction in both directions (provided, in the expansion case, that
the type of t has � as its main type-former).

Fitch-Style Modal Lambda Calculi 263

2.3 Categorical Semantics

This section goes beyond Theorem 2.1 to establish the soundness of the type
system with respect to a categorical semantics, in cartesian closed categories C
equipped with an endofunctor � that has a left adjoint, which we write �.

We interpret types as C-objects via the structure of C in the obvious way. We
then interpret contexts as C-objects by

– �·� � 1;
– �Γ, x : A� � �Γ � × A;
– �Γ,�� � ��Γ �.

We omit the brackets �· · ·� where no confusion is possible, and usually abuse
notation by omitting the left-most ‘1×’ where the left of the context is a variable.

We will also sometimes interpret contexts Γ as endofunctors, abusing nota-
tion to also write them as �Γ �, or merely Γ , by taking �·� as the identity,
�Γ, x : A� = �Γ � × A, and �Γ,�� = ��Γ �.

We interpret Γ � t : A as a C-arrow �Γ � t : A� : �Γ � → A, often abbreviated
to �t�, or merely t, by induction on the derivation of t as follows.

Standard constructions such as variables, abstraction and application are
interpreted as usual. To interpret the rules for sums of Fig. 2 we use the fact
that �, as a left adjoint, preserves colimits.

shut: we simply apply the isomorphism C(��Γ �, A) → C(�Γ �,�A) given by
the � � � adjunction.

open: We apply the isomorphism C(�Γ �,�A) → C(��Γ �, A) to the arrow
interpreting the premise, then compose with the projection �Γ,�, Γ ′� → �Γ,��.

Theorem 2.8 (Categorical Soundness). If Γ � t : A and t �→ t′ then �t� =
�t′�.

We also have that η-equivalent terms have the same denotation.

3 Left Adjoints and Categorical Completeness

In this section we extend the calculus to include the left adjoint � as a first-class
type-former, and hence prove categorical completeness. The underlying logic is
the fragment of intuitionistic tense logic [17] with just one pair of modalities,
studied by Dzik et al. [15] as ‘intuitionistic logic with a Galois connection’; we
use the name IK�. We have two new axioms

ηm: A → ��A
εm: ��A → A

We use the superscript m to identify these as the unit as the unit and counit
of the modal adjunction � � �, to differentiate them from other (co)units used
elsewhere in the paper. We have one new inference rule:

Monotonicity: if A → B is a theorem, then so is �A → �B.

264 R. Clouston

3.1 Type System and Computation

We extend the type system of Fig. 1 with the new rules for � presented in Fig. 3.
�, unlike �, need not commute with products, so does not interact well with
contexts. Hence the subterms of a let dia term may not share variables.

Fig. 3. Additional typing rules for logic IK�

We can construct the axioms of IK�:

x : A,� � diax : �A

x : A � shut diax : ��A

x : ��A � x : ��A y : �A,� � open y : A

x : ��A � let dia y bex in open y : A

and given a closed term f : A → B we have the monotonicity construction

x : �A � x : �A y : A,� � dia(f y) : �B

x : �A � let dia y bex in dia(f y) : �B

To this we add the new β rule

let diax be dia t inu �→ u[t/x]

We can hence extend the syntactic results of the previous section to the logic
IK�, with the exception of the subformula property. Consider the term

x : �A � let dia y bex inλz.dia y : �A → �A x : �A � x : �A

x : �A � (let dia y bex inλz.dia y)x : �A

This term is normal but evidently fails the subformula property. One might
expect, as with sums, that a commuting conversion would save the day by reduc-
ing the term to let dia y bex in ((λz.dia y)x), but this term sees the free variable
x appear in the second subterm of a let dia expression, which is not permitted.

We now turn to η-equivalence, and an equivalence which we call associativity :

let diax be t in diax = t

let diax be s in (t[u/y]) = t[let diax be s inu/y]if t’s context contains y only

For example, under associativity the counter-example to the subformula property
equals (λz.let dia y bex in dia y)x, which reduces to let dia y bex in dia y, which is
η-equal to x. The equivalences enjoy subject reduction in both directions (requir-
ing, as usual, that t has the right type for η-expansion).

Fitch-Style Modal Lambda Calculi 265

3.2 Categorical Semantics

We interpret the new term-formers in the same categories as used in Sect. 2.3.
For dia, given t : Γ → A we compose �t with the projection Γ,�, Γ ′ → Γ,�.
The denotation of let diax be t inu is simply u◦t. We may then confirm the sound-
ness of β-reduction, η-equivalence, and associativity; we call these equivalences
collectively definitional equivalence.

We extend standard techniques for proving completeness [25], constructing
a term model, a category with types as objects and, as arrows A → B, terms of
form x : A � t : B modulo definitional equivalence. This is a category by taking
identity as the term x and composition u ◦ t as u[t/x]. It is a cartesian closed
category using the type- and term-formers for products and function spaces.

The modalities � and � act on types; they also act on terms by, for �, the
monotonicity construction, and for �, mapping x : A � t : B to x : �A �
shut t[openx/x] : �B. One can check these constructions are functorial, and
that the terms for ηm and εm are natural and obey the triangle equalities for
the adjunction � � �.

Given a context Γ we define the context term Γ � cΓ : �Γ � by

– c· � 〈〉;
– cΓ,x:A � 〈cΓ , x〉;
– cΓ,� � dia cΓ .

Lemma 3.1. Given Γ � t : A, t is definitionally equal to �Γ � t : A�[cΓ /x].

Theorem 3.2 (Categorical Completeness). If Γ � t : A and Γ � u : A are
equal in all models then they are definitionally equal.

Proof. t and u have equal denotations in the term model, so their denotations
are definitionally equal. Definitional equality is preserved by substitution, so
�Γ � t : A�[cΓ /x] = �Γ � u : A�[cΓ /x], so by Lemma 3.1, t = u.

4 Intuitionistic S4 for Idempotent Comonads

Intuitionistic S4 (IS4) is the extension of IK with the axioms
T: �A → A
4: �A → ��A

To the category theorist IS4 naturally suggests the notion of a comonad. IS4 is
one of the most studied and widely applied intuitionistic modal logics; in partic-
ular there exist two Fitch-style calculi [13,34]. We conjecture that similar results
to the previous sections could be developed for these calculi. Instead of pursu-
ing such a result, we here show that a simpler calculus is possible if we restrict
to idempotent comonads, where �A and ��A are isomorphic. This restriction
picks out an important class of examples – see for example the discussion of
Rijke et al. [35] – and relies on a novel ‘coherence’ proof.

266 R. Clouston

4.1 Type System and Computation

A calculus for IS4 is obtained by replacing the open rule of Fig. 1 by

Γ � t : �A

Γ, Γ ′ � open t : A

The T and 4 axioms are obtained by

x : �A � x : �A

x : �A � openx : A

x : �A,�,� � openx : A

x : �A,� � shut openx : �A

x : �A � shut shut openx : ��A

This confirms logical completeness; once can also easily check soundness.
Subject reduction for the β-reduction open shut t �→ t requires a new lemma,

proved by an easy induction on t:

Lemma 4.1 (Lock Replacement). If Γ,�, Γ ′′ � t : A then Γ, Γ ′, Γ ′′ � t : A.

The key syntactic Theorems 2.5, 2.6, and 2.7 then follow easily.
η-expansion obeys subject reduction as before, but it is not the case, for

example, that the term presented above for the 4 axiom reduces to shutx. We
may however accept a notion of η-reduction on typed terms-in-context:

Γ � shut open t �→ t : �A provided that Γ � t : �A

This equivalence is more powerful than it might appear; it allows us to derive
the idempotence of �, as the 4 axiom is mutually inverse with the instance
��A → �A of the T axiom. That is, λx.open shut shut openx reduces to the
identity on �A, and λx.shut shut open openx reduces to the identity on ��A.

4.2 Categorical Semantics

We give semantics to our type theory in a cartesian closed category with an
adjunction of endofunctors � � � in which � is a comonad. Equivalently [16,
Sect. 3], � is a monad, equipped with a unit η and multiplication μ. To con-
firm the coherence of these semantics, discussed in the next subsection, and the
soundness of η-equivalence, we further require that � is idempotent, or equiva-
lently that all μA : ��A → �A are isomorphisms with inverses η�A = �ηA.

To define the semantics we define lock replacement natural transformations
lΓ : �Γ � → �, corresponding to Lemma 4.1, by induction on Γ :

– l· is the unit η of the monad;
– lΓ,x:A is the projection composed with lΓ ;
– lΓ,� is �lΓ composed with μ.

Note that l� is the identity by the monad laws.

Fitch-Style Modal Lambda Calculi 267

We may now define the interpretation of open: given t : Γ → �A we apply
the adjunction to get an arrow �Γ → A, then compose with lΓ ′ : Γ, Γ ′ → Γ,�.

Lemma 4.2. If we replace part of a context with a lock, then replace part of the
new context that includes the new lock, we could have done this in one step:

Γ1, Γ2, Γ3, Γ4

lΓ2,Γ3,Γ4 ��

Γ4(lΓ3) ����
���

���
���

� Γ1,�

Γ1, Γ2,�, Γ4

lΓ2,�,Γ4

������������

Proof. By induction on Γ4, with the base case following by induction on Γ3.

Lemma 4.3. �Γ,�, Γ ′′ � t : A� ◦ �Γ ′′�(lΓ ′) = �Γ, Γ ′, Γ ′′ � t : A�.

Proof. By induction on the derivation of t.

Now open shut t, where the open has weakening Γ ′, has denotation εm ◦��t◦
�ηm ◦ lΓ ′ , which is t ◦ lΓ ′ by the naturality of εm, and the adjunction. This is
what is required by Lemma 4.3, so β-reduction for � is soundly modelled.

4.3 Coherence

Because the open rule involves a weakening, and does not explicitly record in the
term what that weakening is, the same typed term-in-context can be the root of
multiple derivation trees, for example:

x : ��A � x : ��A

x : ��A,� � openx : �A

x : ��A,�,� � open openx : A

x : ��A � x : ��A

x : ��A � openx : �A

x : ��A,�,� � open openx : A

The categorical semantics of the previous section is defined by induction on
derivations, and so does not truly give semantics to terms unless any two trees
with the same root must have the same denotation. In this section we show that
this property, here called coherence, indeed holds. We make crucial use of the
idempotence of the comonad �.

We first observe that if Γ, Γ ′, Γ ′′ � t : A and all variables of Γ ′ are not free in
t, then Γ, Γ ′′ � t : A. The following lemma, proved by easy inductions, describes
how the denotations of these derivations are related:

Lemma 4.4. 1. If x is not free in t then Γ, x : A,Γ ′ � t : B has the same
denotation as Γ, Γ ′ � t : B ◦ Γ ′(pr).

2. Γ, Γ ′ � t : B has denotation Γ,�, Γ ′ � t : B ◦ Γ ′(η).

The technical lemma below is the only place where idempotence is used.

268 R. Clouston

Lemma 4.5. Given Γ, Γ ′ � t : A with Γ ′ not free in t, we have

Γ, Γ ′ t ��

lΓ ′
��

A

η

��

Γ,� �t
�� �A

where t on the bottom line is the original arrow with Γ ′ strengthened away.

Proof. By induction on Γ ′. The base case holds by the naturality of η.
We present only the lock case: η ◦ t = �t ◦ η by the naturality of η. But

by idempotence, η : Γ, Γ ′,� → Γ, Γ ′,�,� equals �η. Then by Lemma 4.4
�t◦�η is ��Γ, Γ ′ � t : A�, i.e. we have strengthened the lock away and can hence
use our induction hypothesis, making the top trapezium commute in:

Γ, Γ ′,�
�t

��

�lΓ ′
����

���
���

��

lΓ ′,�

��

�A

�η
����
��
��
��
�

id

��

Γ,�,�
��t

��

μ

�����
���

���
�

��A
μ

		�
��

��
��

�

�Γ �t
�� �A

The left triangle commutes by definition, the bottom trapezium commutes by
the naturality of μ, and the right triangle commutes by the monad laws.

Lemma 4.6. Given Γ, Γ ′ � t : A with Γ ′ not free in t, we have

Γ, Γ ′, Γ ′′ lΓ ′′
��

lΓ ′,Γ ′′
��

Γ, Γ ′,�

�t

��

Γ,� �t
�� �A

where the bottom t is obtained via strengthening.

Proof. By induction on Γ ′′. The base case follows by Lemma 4.5.

Lemma 4.7. Given Γ, Γ ′ � t : �A with the variables of Γ ′ not free in t, the
following arrows are equal:

– Γ, Γ ′, Γ ′′ � open t : A where the weakening is Γ ′′;
– obtaining an arrow Γ → �A via Lemma 4.4, then applying open with weak-

ening Γ, Γ ′′.

Fitch-Style Modal Lambda Calculi 269

Proof. Immediate from Lemma 4.6, i.e.

Γ, Γ ′, Γ ′′ lΓ ′′
��

lΓ ′,Γ ′′
��

Γ, Γ ′,�

�t

��

Γ,� �t
�� ��A

εm
�� A

Theorem 4.8 (Coherence). Given two different derivation trees of a term,
their denotation is equal.

Proof. By induction on the number of nodes in the trees. The base case with
one node is trivial. Suppose we have n+1 nodes. Then the induction hypothesis
immediately completes the proof unless the nodes above the roots are non-equal.
Then the final construction must be an instance of open, i.e. we have

Γ � t : �A

Γ, Γ ′, Γ ′′ � open t : A

Γ, Γ ′ � t : �A

Γ, Γ ′, Γ ′′ � open t : A

Clearly any variables in Γ ′ are not free in t, so we can use Lemma 4.4 on the top
line of the right hand tree to derive Γ � t : �A. By induction hypothesis this
has the same denotation as the top line of the left hand tree. But Lemma 4.7
tells us that applying this strengthening and then opening with Γ ′, Γ ′′ is the
same as opening with Γ ′′ only.

We can now demonstrate the soundness of η-equivalence: given Γ � t : �A
and Γ � shut open t : �A by any derivations, we can by coherence safely assume
that open used one lock only as its weakening, and so the arrows are equal by
the � � � adjunction.

4.4 Left Adjoints and Categorical Completeness

Following Sect. 3 we can add � to the type theory; we need only modify the dia
rule to

Γ � t : A

Γ, Γ ′ � dia t : �A

to retain Lemma 4.1. The results of the previous sections, apart once more for the
subformula property, still hold, where we define the denotation of Γ, Γ ′ � dia t as
�t composed with lΓ ′ . In particular, we must confirm that Lemma 3.1 extends
to the new definitions of open and dia, for which we need the lemma below:

Lemma 4.9. Given the term x : �Γ, Γ ′� � lΓ ′ : ��Γ � defined in the term model,
lΓ ′ [cΓ,Γ ′/x] is definitionally equal to dia cΓ .

Now �open t�[cΓ,Γ ′/x] is let diax be (let diax be lΓ ′ [cΓ,Γ ′/x] in dia�t�) in openx,
which by the lemma above is let diax be (let diax be dia cΓ in dia�t�) in openx �→
open�t�[cΓ /x], which equals open t by induction. The proof for dia is similar.

270 R. Clouston

5 Intuitionistic R

One can readily imagine how the calculus for IS4 could be modified for logics
with only one of the T and 4 axioms. In this section we instead illustrate the
flexibility of Fitch-style calculi by defining a calculus for the rather different logic
Intuitionistic R (IR), which extends IK with the axiom

R: A → �A
This axiom was first studied for intuitionistic necessity modalities by Curry [12],
along with the axiom M, ��A → �A, to develop a logic for monads. The
importance of the logic with R but without M was established by McBride and
Paterson [30] who showed that it captured the useful programming abstraction
of applicative functors. We take the name R for the axiom from Fairtlough and
Mendler [18], and for the logic from Litak [28].

We modify Figs. 1 and 3 simply by removing the side-conditions � /∈ Γ from
the variable, open, and dia rules. We can then derive R:

x : A,� � x : A

x : A � shutx : �A

For substitution and subject reduction we require the following lemma, easily
proved by induction on the derivation of t:

Lemma 5.1 (Lock Weakening). If Γ, Γ ′ � t : A then Γ,�, Γ ′ � t : A.

We can also observe that η-equivalence preserves types in both directions.
We give semantics for this calculus in a cartesian closed category equipped

with an adjunction of endofunctors � � � and a ‘point’ natural transformation
r : Id → � preserved by �, i.e. �r = r : �A → ��A. This last property makes
this model slightly less general than the notion of tensorial strength used for
categorical semantics by McBride and Paterson [30], but is needed for coherence
and the soundness of η-equivalence. We will use the arrow �A → A defined by
applying the adjunction to r; we call this q and note the property:

Lemma 5.2. q = �q : ��A → �A.

The weakening natural transformation wΓ : Γ → Id is defined by induc-
tion on Γ via projection and q. Variables are then denoted by projection com-
posed with weakening, and weakening is used similarly for open and dia. We
can hence show the soundness of β-reduction for � and �. For the soundness of
η-equivalence for � we need the following lemma:

Lemma 5.3. wΓ ′,� = �w�,Γ ′ : Γ,�, Γ ′,� → Γ,�.

The denotation of Γ,�, Γ ′ � shut open t is �εm ◦ ��t ◦ �wΓ ′,� ◦ ηm. By the
above lemma we replace �wΓ ′,� with ��w�,Γ ′ , so by the naturality of ηm we
have �εm ◦ ηm ◦ t ◦ w�,Γ ′ , which is t ◦ w�,Γ ′ by the monad laws.

Fitch-Style Modal Lambda Calculi 271

Moving to coherence, we conduct a similar induction to Theorem 4.8, con-
sidering the case

Γ � t : �A

Γ,�, Γ ′,�, Γ ′′ � open t : A

Γ,�, Γ ′ � t : �A

Γ,�, Γ ′,�, Γ ′′ � open t : A

The top line on the left weakens to the top line on the right, with denotation
t◦w�,Γ ′ . By induction this equals the denotation of the top line of the right. Then
the right hand term has denotation εm ◦ �t ◦ �w�,Γ ′ ◦ wΓ ′′ . But by Lemma 5.3
�w�,Γ ′ = wΓ ′,�. It is clear that wΓ ′,� ◦ wΓ ′′ = wΓ ′,�,Γ ′′ , which is exactly the
weakening used on the left. Coherence for dia follows similarly.

Moving finally to categorical completeness, in the term model �t ◦ r is
shut t[open shutx/x], which reduces to shut t, so r is natural. �r : �A → ��A
is shut shut openx, which is indeed η-equal to shutx.

We finally need to update Lemma 3.1 for our new definitions. We do this via
a lemma similar to Lemma 4.9:

Lemma 5.4. Given the term x : �Γ, Γ ′� � wΓ ′ : �Γ � defined in the term model,
wΓ ′ [cΓ,Γ ′/x] is definitionally equal to cΓ .

Now the denotation of Γ, x : A,Γ ′ � x : A is π2wΓ ′ . Therefore we have
π2wΓ ′ [cΓ,A,Γ ′/x], which is π2cΓ,A by the lemma above. This is π2〈cΓ , x〉, which
reduces to x.

The denotation of Γ,�, Γ ′ � open t : A is let diax bewΓ ′ in open�t�. Apply-
ing the substitution [cΓ,�,Γ ′/x] along with the lemma above yields the term
let diax be dia cΓ in open�t� �→ open�t�[cΓ /x], and induction completes. The cal-
culations for dia follow similarly.

6 Related and Further Work

Conventional contexts. Lambda calculi with conventional contexts containing
typed variables only have been proposed for the logic of monads [32], for IS4 [5],
for IK [4], and for a logic with ‘Löb induction’ [6], from which one can extract a
calculus for IR. In previous work [11] we developed the guarded lambda calculus
featuring two modalities, where one (‘constant’) was an (idempotent) comonad,
and the other (‘later’) supported a notion of guarded recursion corresponding to
Löb induction. We therefore used the existing work [5,6] ‘off the shelf’.

Problems arose when we attempted to extend our calculus with dependent
types [7]. Neither of the calculi with conventional contexts we had used scaled
well to this extension. The calculus for IS4 [5], whose terms involved explicit sub-
stitutions, turned out to require these substitutions on types also, which added
a level of complexity that made it difficult to write even quite basic dependently
typed programs. The constant modality was therefore jettisoned in favour of an
approach based on clock quantification [1], of which more below. The calculus for
later employed a connective � (from McBride and Patterson [30]) which acted
on function spaces under the modality. However with dependent types we need

272 R. Clouston

to act not merely on function spaces, but on Π-types, and � was unable to be
used. Instead a novel notion of ‘delayed substitution’ was introduced. These were
given an equational theory, but some of these equations could not be directed,
so they did not give rise to a useful notion of computation.

Modalities as quantifiers. The suggestive but formally rather underdevel-
oped paper of De Queiroz and Gabbay [14] proposed that necessity modalities
should be treated as universal quantifiers, inspired by the standard semantics of
necessity as ‘for all possible worlds’. This is one way to understand the relation-
ship between the constant modality and clock quantification [1]. However clock
quantification is more general than a single constant modality because we can
identify multiple free clock variables with multiple ‘dimensions’ in which a type
may or may not be constant. This gap in generality can probably be bridged by
using multiple independent constant modalities. More problematically, while it
is clear what the denotational semantics of the constant modality are, the best
model for clock quantifiers yet found [8] is rather complicated and still leaves
open some problems with coherence in the presence of a universe.

Previous Fitch-style calculi. The Fitch-style approach was pioneered, appar-
ently independently, by Martini and Masini [29] and Borghuis [9]. Martini and
Masini’s work is rather notationally heavy, and weakening appears not to be
admissible. Borghuis’s calculus for IK is excellent, but his calculi for stronger
logics are not so compelling, as each different axiom is expressed with another
version of the open or shut rules, not all of which compute when combined. The
calculus for IS4 of Pfenning and Wong [34], refined by Davies and Pfenning [13,
Sect. 4], provide the basis of the IS4 calculus of this paper, but involve some
complications which appear to correlate to not assuming idempotence. We have
extended this previous work by investigating the subformula property, introduc-
ing categorical semantics, and showing how left adjoints to necessity modalities
à la tense logic can be used as types. Finally, the recent clocked type theory
of Bahr et al. [3] independently gave a treatment of the later modality that on
inspection is precisely Fitch-style (albeit with named ‘locks’), and which has
better computational properties than the delayed substitution approach.

Dual contexts. Davies and Pfenning [13] use a pair of contexts Δ;Γ with
intended meaning �Δ ∧ Γ . This is quite different from the semantics of Fitch-
style sequents, where structure in the context denotes the left adjoint of �. In
recent work Kavvos [24] has shown that dual contexts may capture a number of
different modal logics, and the approach has been used as a foundation for both
pen-and-paper mathematics [37] and, via an Agda fork [40], formalisation [26].
We support this work but there is reason to explore other options. First, writ-
ing programs with dual context calculi was described by Davies and Pfenning
themselves as ‘somewhat awkward’, and in the same paper they suggest the
Fitch-style approach as a less awkward alternative. Indeed, Fitch’s approach
was exactly designed to capture ‘natural’ modal deduction. Second, any appli-
cation with multiple interacting modalities is unlikely to be accommodated in
a mere two zones; the mode theories of Licata et al. [27] extend the dual zone

Fitch-Style Modal Lambda Calculi 273

approach to a richer setting in which interacting modalities, substructural con-
texts, and even Fitch-style natural deduction can be expressed2, but the increase
in complexity is considerable and much work remains to be done.

Further logics and algorithmic properties. We wish to bring more logics
into the Fitch-style framework, in particular the logic of the later modality,
extending IR with the strong Löb axiom (�A → A) → A. The obvious treatment
of this axiom does not terminate. but Bahr et al. [3] suggest that this can be
managed by giving names to locks. We would further like to develop calculi with
multiple modalities. This is easy to do by assigning each modality its own lock;
two IK modalities give exactly the intuitionistic tense logic of Goré et al. [22].
The situation is rather more interesting where the modalities interact, as with
the later and constant modalities. Finally, we would like to further investigate
algorithmic properties of Fitch-style calculi such as type checking, type inference,
and η-expansion and other notions of computation. In particular, we wonder if a
notion of commuting conversion can be defined so that the calculi with � enjoy
the subformula property.

References

1. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
ICFP (2013)

2. Awodey, S., Bauer, A.: Propositions as [types]. J. Log. Comput. 14(4), 447–471
(2004)

3. Bahr, P., Grathwohl, H.B., Møgelberg, R.E.: The clocks are ticking: no more delays!
In: LICS, pp. 1–12 (2017)

4. Bellin, G., De Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a
basic constructive modal logic. In: M4M (2001)

5. Bierman, G.M., de Paiva, V.C.: On an intuitionistic modal logic. Stud. Logica.
65(3), 383–416 (2000)

6. Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types
qua fixed points on universes. In: LICS (2013)

7. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
dependent type theory with coinductive types. In: Jacobs, B., Löding, C. (eds.)
FoSSaCS 2016. LNCS, vol. 9634, pp. 20–35. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49630-5 2

8. Bizjak, A., Møgelberg, R.E.: Denotational semantics for guarded dependent type
theory. Math. Struct. Comput. Sci. (2018, to appear)

9. Borghuis, V.A.J.: Coming to terms with modal logic: on the interpretation of
modalities in typed lambda-calculus. Ph.D. thesis, Technische Universiteit Eind-
hoven (1994)

10. Božić, M., Došen, K.: Models for normal intuitionistic modal logics. Stud. Logica.
43(3), 217–245 (1984)

11. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: The guarded lambda-
calculus: programming and reasoning with guarded recursion for coinductive types.
LMCS 12(3) (2016). https://lmcs.episciences.org/2019

2 We are grateful to an anoymous reviewer for this last observation.

https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1007/978-3-662-49630-5_2
https://lmcs.episciences.org/2019

274 R. Clouston

12. Curry, H.B.: A Theory of Formal Deducibility. University of Notre Dame Press,
Indiana (1957)

13. Davies, R., Pfenning, F.: A modal analysis of staged computation. JACM 48(3),
555–604 (2001)

14. De Queiroz, R.J., Gabbay, D.M.: The functional interpretation of modal neces-
sity. In: de Rijike, M. (eds.) Advances in Intensional Logic, pp. 61–91. Springer,
Dordrecht (1997). https://doi.org/10.1007/978-94-015-8879-9 3

15. Dzik, W., Järvinen, J., Kondo, M.: Intuitionistic propositional logic with Galois
connections. Log. J. IGPL 18(6), 837–858 (2009)

16. Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois J. Math. 9(3),
381–398 (1965)

17. Ewald, W.: Intuitionistic tense and modal logic. J. Symb. Log. 51(1), 166–179
(1986)

18. Fairtlough, M., Mendler, M.: Propositional lax logic. Inform. Comput. 137(1), 1–33
(1997)

19. Fitch, F.B.: Symbolic Logic, An Introduction. Ronald Press Co., New York (1952)
20. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publish-

ing Co., Dordrecht (1983)
21. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,

Cambridge (1989)
22. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof search for bi-

intuitionistic tense logic. In: AiML (2010)
23. Kavvos, G.A.: The many worlds of modal λ-calculi: I. Curry-Howard for necessity,

possibility and time. arXiv:1605.08106 (2016)
24. Kavvos, G.: Dual-context calculi for modal logic. In: LICS (2017)
25. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic.

Cambridge University Press, Cambridge (1986)
26. Licata, D.R., Orton, I., Pitts, A.M., Spitters, B.: Internal universes in models of

homotopy type theory (2018, unpublished)
27. Licata, D.R., Shulman, M., Riley, M.: A fibrational framework for substructural

and modal logics. In: FSCD (2017)
28. Litak, T.: Constructive modalities with provability smack. In: Bezhanishvili, G.

(ed.) Leo Esakia on Duality in Modal and Intuitionistic Logics. OCL, vol. 4, pp.
187–216. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-8860-
1 8

29. Martini, S., Masini, A.: A computational interpretation of modal proofs. In:
Wansing, H. (ed.) Proof Theory of Modal Logic, pp. 213–241. Springer, Dordrecht
(1996). https://doi.org/10.1007/978-94-017-2798-3 12

30. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

31. Menni, M.: About -quantifiers. Appl. Categ. Struct. 11(5), 421–445 (2003)
32. Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23 (1989)
33. de Paiva, V., Ritter, E.: Basic constructive modality. In: Logic without Frontiers:

Festschrift for Walter Alexandre Carnielli on the occasion of his 60th Birthday, pp.
411–428. College Publication (2011)

34. Pfenning, F., Wong, H.C.: On a modal λ-calculus for S4. In: MFPS (1995)
35. Rijke, E., Shulman, M., Spitters, B.: Modalities in homotopy type theory.

arXiv:1706.07526 (2017)
36. Schreiber, U.: Differential cohomology in a cohesive infinity-topos. arXiv:1310.7930

(2013)

https://doi.org/10.1007/978-94-015-8879-9_3
http://arxiv.org/abs/1605.08106
https://doi.org/10.1007/978-94-017-8860-1_8
https://doi.org/10.1007/978-94-017-8860-1_8
https://doi.org/10.1007/978-94-017-2798-3_12
http://arxiv.org/abs/1706.07526
http://arxiv.org/abs/1310.7930

Fitch-Style Modal Lambda Calculi 275

37. Shulman, M.: Brouwer’s fixed-point theorem in real-cohesive homo-
topy type theory. Math. Struct. Comput. Sci. (2017). https://www.
cambridge.org/core/journals/mathematical-structures-in-computer-science/
article/brouwers-fixedpoint-theorem-in-realcohesive-homotopy-type-theory/
8270C2EAC4EE5D5CDBA17EEB3FF6B19E

38. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh (1994)

39. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism.
Elsevier, New York (2006)

40. Vezzosi, A.: Agda-flat (2017). https://github.com/agda/agda/tree/flat. GitHub
repository

41. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015)
42. Wansing, H.: Sequent calculi for normal modal propositional logics. J. Log. Com-

put. 4(2), 125–142 (1994)
43. Yokota, S.: General characterization results on intuitionistic modal propositional

logics. Commentarii Mathematici Universitatis Sancti Pauli 34(2), 177–199 (1985)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/brouwers-fixedpoint-theorem-in-realcohesive-homotopy-type-theory/8270C2EAC4EE5D5CDBA17EEB3FF6B19E
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/brouwers-fixedpoint-theorem-in-realcohesive-homotopy-type-theory/8270C2EAC4EE5D5CDBA17EEB3FF6B19E
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/brouwers-fixedpoint-theorem-in-realcohesive-homotopy-type-theory/8270C2EAC4EE5D5CDBA17EEB3FF6B19E
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/brouwers-fixedpoint-theorem-in-realcohesive-homotopy-type-theory/8270C2EAC4EE5D5CDBA17EEB3FF6B19E
https://github.com/agda/agda/tree/flat
http://creativecommons.org/licenses/by/4.0/

Realizability Interpretation
and Normalization of Typed Call-by-Need

λ-calculus with Control

Étienne Miquey1,2(B) and Hugo Herbelin2

1 Équipe Gallinette, Inria, LS2N (CNRS), Université de Nantes, Nantes, France
etienne.miquey@inria.fr

2 Équipe πr2, Inria, IRIF (CNRS), Université Paris-Diderot, Paris, France
herbelin@inria.fr

Abstract. We define a variant of Krivine realizability where realizers
are pairs of a term and a substitution. This variant allows us to prove
the normalization of a simply-typed call-by-need λ-calculus with control
due to Ariola et al. Indeed, in such call-by-need calculus, substitutions
have to be delayed until knowing if an argument is really needed. We
then extend the proof to a call-by-need λ-calculus equipped with a type
system equivalent to classical second-order predicate logic, representing
one step towards proving the normalization of the call-by-need classical
second-order arithmetic introduced by the second author to provide a
proof-as-program interpretation of the axiom of dependent choice.

1 Introduction

1.1 Realizability-Based Normalization

Normalization by realizability is a standard technique to prove the normalization
of typed λ-calculi. Originally introduced by Tait [36] to prove the normalization
of System T, it was extended by Girard to prove the normalization of Sys-
tem F [11]. This kind of techniques, also called normalization by reducibility or
normalization by logical relations, works by interpreting each type by a set of
typed or untyped terms seen as realizers of the type, then showing that the way
these sets of realizers are built preserve properties such as normalization. Over
the years, multiple uses and generalization of this method have been done, for a
more detailed account of which we refer the reader to the work of Gallier [9].

Realizability techniques were adapted to the normalization of various calculi
for classical logic (see e.g. [3,32]). A specific framework tailored to the study of
realizability for classical logic has been designed by Krivine [19] on top of a λ-
calculus with control whose reduction is defined in terms of an abstract machine.
In such a machinery, terms are evaluated in front of stacks; and control (thus
classical logic) is made available through the possibility of saving and restoring
stacks. During the last twenty years, Krivine’s classical realizability turned out
to be fruitful both from the point of view of logic, leading to the construction of
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 276–292, 2018.
https://doi.org/10.1007/978-3-319-89366-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_15&domain=pdf

Realizability Interpretation and Normalization 277

new models of set theory, and generalizing in particular the technique of Cohen’s
forcing [20–22]; and on its computational facet, providing alternative tools to the
analysis of the computational content of classical programs1.

Noteworthily, Krivine realizability is one of the approaches contributing to
advocating the motto that through the Curry-Howard correspondence, with new
programming instructions come new reasoning principles2. Our original motiva-
tion for the present work is actually in line with this idea, in the sense that our
long-term purpose is to give a realizability interpretation to dPAω, a call-by-need
calculus defined by the second author [15]. In this calculus, the lazy evaluation
is indeed a fundamental ingredient in order to obtain an executable proof term
for the axiom of dependent choice.

1.2 Contributions of the Paper

In order to address the normalization of typed call-by-need λ-calculus, we design
a variant of Krivine’s classical realizability, where the realizers are closures
(a term with a substitution for its free variables). The call-by-need λ-calculus
with control that we consider is the λ[lvτ�]-calculus. This calculus, that was
defined by Ariola et al. [2], is syntactically described in an extension with explicit
substitutions of the λμμ̃-calculus [6,14,29]. The syntax of the λμμ̃-calculus itself
refines the syntax of the λ-calculus by syntactically distinguishing between terms
and evaluation contexts. It also contains commands which combine terms and
evaluation contexts so that they can interact together. Thinking of evaluation
contexts as stacks and commands as states, the λμμ̃-calculus can also be seen
as a syntax for abstract machines. As for a proof-as-program point of view, the
λμμ̃-calculus and its variants can be seen as a term syntax for proofs of Gentzen’s
sequent calculus. In particular, the λμμ̃-calculus contains control operators which
give a computational interpretation to classical logic.

We give a proof of normalization first for the simply-typed λ[lvτ�]-calculus3,
then for a type system with first-order and second-order quantification. While
we only apply our technique to the normalization of the λ[lvτ�]-calculus, our
interpretation incidentally suggests a way to adapt Krivine realizability to other
call-by-need settings. This paves the way to the computational interpretation of
classical proofs using lazy evaluation or shared memory cells, including the case
of the call-by-need second order arithmetic dPAω [15].

1 See for instance [27] about witness extraction or [12,13] about specification problems.
2 For instance, one way to realize the axiom of dependent choice in classical realizabil-

ity is by means of an extra instruction quote [18].
3 Even though it has not been done formally, the normalization of the λlv-calculus pre-

sented in [2] should also be derivable from Polonowski’s proof of strong normalization
of the non-deterministic λμμ̃-calculus [35]. The λlv-calculus (a big-step variant of the
λ[lvτ�]-calculus introduced in Ariola et al.) is indeed a particular evaluation strat-
egy for the λμμ̃-calculus, so that the strong normalization of the non-deterministic
variant of the latter should imply the normalization of the former as a particular
case.

278 É. Miquey and H. Herbelin

2 The λ[lvτ �]-calculus

2.1 The Call-by-Need Evaluation Strategy

The call-by-need evaluation strategy of the λ-calculus evaluates arguments of
functions only when needed, and, when needed, shares their evaluations across all
places where the argument is required. The call-by-need evaluation is at the heart
of a functional programming language such as Haskell. It has in common with
the call-by-value evaluation strategy that all places where a same argument is
used share the same value. Nevertheless, it observationally behaves like the call-
by-name evaluation strategy (for the pure λ-calculus), in the sense that a given
computation eventually evaluates to a value if and only if it evaluates to the same
value (up to inner reduction) along the call-by-name evaluation. In particular, in
a setting with non-terminating computations, it is not observationally equivalent
to the call-by-value evaluation. Indeed, if the evaluation of a useless argument
loops in the call-by-value evaluation, the whole computation loops, which is not
the case of call-by-name and call-by-need evaluations.

These three evaluation strategies can be turned into equational theories. For
call-by-name and call-by-value, this was done by Plotkin through continuation-
passing-style (CPS) semantics characterizing these theories [34]. For the call-by-
need evaluation strategy, a specific equational theory reflecting the intensional
behavior of the strategy into a semantics was proposed independently by
Ariola and Felleisen [1], and by Maraist et al. [26]. A continuation-passing-style
semantics was proposed in the 90s by Okasaki et al. [30]. However, this seman-
tics does not ensure normalization of simply-typed call-by-need evaluation, as
shown in [2], thus failing to ensure a property which holds in the simply-typed
call-by-name and call-by-value cases.

Continuation-passing-style semantics de facto gives a semantics to the exten-
sion of λ-calculus with control operators4. In particular, even though call-by-
name and call-by-need are observationally equivalent on pure λ-calculus, their
different intentional behaviors induce different CPS semantics, leading to differ-
ent observational behaviors when control operators are considered. On the other
hand, the semantics of calculi with control can also be reconstructed from an
analysis of the duality between programs and their evaluation contexts, and the
duality between the let construct (which binds programs) and a control opera-
tor such as Parigot’s μ (which binds evaluation contexts). Such an analysis can
be done in the context of the λμμ̃-calculus [6,14].

In the call-by-name and call-by-value cases, the approach based on λμμ̃-
calculus leads to continuation-passing style semantics similar to the ones given
by Plotkin or, in the call-by-name case, also to the one by Lafont et al. [23].
As for call-by-need, in [2] is defined the λlv-calculus, a call-by-need version of
the λμμ̃-calculus. A continuation-passing style semantics is then defined via a
calculus called λ[lvτ�] [2]. This semantics, which is different from Okasaki, Lee
and Tarditi’s one [30], is the object of study in this paper.
4 That is to say with operators such as Scheme’s callcc, Felleisen’s C, K, or A opera-

tors [8], Parigot’s μ and [] operators [31], Crolard’s catch and throw operators [5].

Realizability Interpretation and Normalization 279

2.2 Explicit Environments

While the results presented in this paper could be directly expressed using the
λlv-calculus, the realizability interpretation naturally arises from the decompo-
sition of this calculus into a different calculus with an explicit environment, the
λ[lvτ�]-calculus [2]. Indeed, as we shall see in the sequel, the decomposition high-
lights different syntactic categories that are deeply involved in the type system
and in the definition of the realizability interpretation.

The λ[lvτ�]-calculus is a reformulation of the λlv-calculus with explicit envi-
ronments, called stores and denoted by τ . Stores consists of a list of bindings of
the form [x := t], where x is a term variable and t a term, and of bindings of
the form [α := e] where α is a context variable and e a context. For instance,
in the closure cτ [x := t]τ ′, the variable x is bound to t in c and τ ′. Besides, the
term t might be an unevaluated term (i.e. lazily stored), so that if x is eagerly
demanded at some point during the execution of this closure, t will be reduced
in order to obtain a value. In the case where t indeed produces a value V , the
store will be updated with the binding [x := V]. However, a binding of this form
(with a value) is fixed for the rest of the execution. As such, our so-called stores
somewhat behave like lazy explicit substitutions or mutable environments.

To draw the comparison between our structures and the usual notions of
stores and environments, two things should be observed. First, the usual notion
of store refers to a structure of list that is fully mutable, in the sense that the
cells can be updated at any time and thus values might be replaced. Second,
the usual notion of environment designates a structure in which variables are
bounded to closures made of a term and an environment. In particular, terms
and environments are duplicated, i.e. sharing is not allowed. Such a structure
resemble to a tree whose nodes are decorated by terms, as opposed to a machinery
allowing sharing (like ours) whose underlying structure is broadly a directed
acyclic graph. See for instance [24] for a Krivine abstract machine with sharing.

2.3 Syntax and Reduction Rules

The lazy evaluation of terms allows for the following reduction rule: us to reduce a
command 〈μα.c||μ̃x.c′〉 to the command c′ together with the binding [x := μα.c].

〈μα.c||μ̃x.c′〉 → c′[x := μα.c]

In this case, the term μα.c is left unevaluated (“frozen”) in the store, until
possibly reaching a command in which the variable x is needed. When evaluation
reaches a command of the form 〈x||F 〉τ [x := μα.c]τ ′, the binding is opened and
the term is evaluated in front of the context μ̃[x].〈x||F 〉τ ′ :

〈x||F 〉τ [x := μα.c]τ ′ → 〈μα.c||μ̃[x].〈x||F 〉τ ′〉τ
The reader can think of the previous rule as the “defrosting” operation of the
frozen term μα.c : this term is evaluated in the prefix of the store τ which predates
it, in front of the context μ̃[x].〈x||F 〉τ ′ where the μ̃[x] binder is waiting for a value.

280 É. Miquey and H. Herbelin

Fig. 1. Syntax and reduction rules of the λ[lvτ�]-calculus

This context keeps trace of the part of the store τ ′ that was originally located
after the binding [x := ...]. This way, if a value V is indeed furnished for the
binder μ̃[x], the original command 〈x||F 〉 is evaluated in the updated full store:

〈V ||μ̃[x].〈x||F 〉τ ′〉τ → 〈V ||F 〉τ [x := V]τ ′

The brackets in μ̃[x].c are used to express the fact that the variable x is forced
at top-level (unlike contexts of the shape μ̃x.C[〈x||F 〉] in the λlv-calculus). The
reduction system resembles the one of an abstract machine. Especially, it allows
us to keep the standard redex at the top of a command and avoids searching
through the meta-context for work to be done.

Note that our approach slightly differ from [2] since we split values into two
categories: strong values (v) and weak values (V). The strong values correspond
to values strictly speaking. The weak values include the variables which force the
evaluation of terms to which they refer into shared strong value. Their evaluation
may require capturing a continuation. The syntax of the language, which includes
constants k and co-constants κ, is given in Fig. 1. As for the reduction →, we
define it as the compatible reflexive transitive closure of the rules given in Fig. 1.

The different syntactic categories can be understood as the different levels
of alternation in a context-free abstract machine (see [2]): the priority is first
given to contexts at level e (lazy storage of terms), then to terms at level t
(evaluation of μα into values), then back to contexts at level E and so on until
level v. These different categories are directly reflected in the definition of the
abstract machine defined in [2], and will thus be involved in the definition of our
realizability interpretation. We chose to highlight this by distinguishing different
types of sequents already in the typing rules that we shall now present.

Realizability Interpretation and Normalization 281

Fig. 2. Typing rules of the λ[lvτ�]-calculus

2.4 A Type System for the λ[lvτ �]-calculus

We have nine kinds of (one-sided) sequents, one for typing each of the nine
syntactic categories. We write them with an annotation on the � sign, using
one of the letters v, V , t, F , E, e, l, c, τ . Sequents typing values and terms are
asserting a type, with the type written on the right; sequents typing contexts
are expecting a type A with the type written A⊥⊥; sequents typing commands
and closures are black boxes neither asserting nor expecting a type; sequents
typing substitutions are instantiating a typing context. In other words, we have
the following nine kinds of sequents:

Γ �l l
Γ �c c
Γ �τ τ : Γ ′

Γ �t t : A
Γ �V V : A
Γ �v v : A

Γ �e e : A⊥⊥

Γ �E E : A⊥⊥

Γ �F F : A⊥⊥

where types and typing contexts are defined by:

A,B ::= X | A → B Γ ::= ε | Γ, x : A | Γ, α : A⊥⊥

The typing rules are given on Fig. 2 where we assume that a variable x
(resp. co-variable α) only occurs once in a context Γ (we implicitly assume the
possibility of renaming variables by α-conversion). We also adopt the convention
that constants k and co-constants κ come with a signature S which assigns them
a type. This type system enjoys the property of subject reduction.

Theorem 1 (Subject reduction). If Γ �l cτ and cτ → c′τ ′ then Γ �l c′τ ′.

Proof. By induction on typing derivations. ��

282 É. Miquey and H. Herbelin

3 Normalization of the λ[lvτ �]-calculus

3.1 Normalization by Realizability

The proof of normalization for the λ[lvτ�]-calculus that we present in this section
is inspired from techniques of Krivine’s classical realizability [19], whose nota-
tions we borrow. Actually, it is also very close to a proof by reducibility5. In
a nutshell, to each type A is associated a set |A|t of terms whose execution is
guided by the structure of A. These terms are the ones usually called realizers in
Krivine’s classical realizability. Their definition is in fact indirect, and is done by
orthogonality to a set of “correct” computations, called a pole. The choice of this
set is central when studying models induced by classical realizability for second-
order-logic, but in the present case we only pay attention to the particular pole
of terminating computations. This is where lies one of the difference with usual
proofs by reducibility, where everything is done with respect to SN , while our
definition are parametric in the pole (which is chosen to be SN in the end). The
adequacy lemma, which is the central piece, consists in proving that typed terms
belong to the corresponding sets of realizers, and are thus normalizing.

More in details, our proof can be sketched as follows. First, we generalize
the usual notion of closed term to the notion of closed term-in-store. Intuitively,
this is due to the fact that we are no longer interested in closed terms and
substitutions to close opened terms, but rather in terms that are closed when
considered in the current store. This is based on the simple observation that a
store is nothing more than a shared substitution whose content might evolve
along the execution. Second, we define the notion of pole ⊥⊥, which are sets of
closures closed by anti-evaluation and store extension. In particular, the set of
normalizing closures is a valid pole. This allows to relate terms and contexts
thanks to a notion of orthogonality with respect to the pole. We then define
for each formula A and typing level o (of e, t, E, V, F, v) a set |A|o (resp. ‖A‖o)
of terms (resp. contexts) in the corresponding syntactic category. These sets
correspond to reducibility candidates, or to what is usually called truth values
and falsity values in Krivine realizability. Finally, the core of the proof consists
in the adequacy lemma, which shows that any closed term of type A at level
o is in the corresponding set |A|o. This guarantees that any typed closure is in
any pole, and in particular in the pole of normalizing closures. Technically, the
proof of adequacy evaluates in each case a state of an abstract machine (in our
case a closure), so that the proof also proceeds by evaluation. A more detailed
explanation of this observation as well as a more introductory presentation of
normalization proofs by classical realizability are given in an article by Dagand
and Scherer [7].

3.2 Realizability Interpretation for the λ[lvτ �]-calculus

We begin by defining some key notions for stores that we shall need further in
the proof.
5 See for instance the proof of normalization for system D presented in [17, Sect. 3.2].

Realizability Interpretation and Normalization 283

Definition 2 (Closed store). We extend the notion of free variable to stores:

FV (ε) � ∅
FV (τ [x := t]) � FV (τ) ∪ {y ∈ FV (t) : y /∈ dom(τ)}
FV (τ [α := E]) � FV (τ) ∪ {β ∈ FV (E) : β /∈ dom(τ)}

so that we can define a closed store to be a store τ such that FV (τ) = ∅.
Definition 3 (Compatible stores). We say that two stores τ and τ ′ are inde-
pendent and write τ # τ ′ when dom(τ) ∩ dom(τ ′) = ∅. We say that they are com-
patible and write τ � τ ′ whenever for all variables x (resp. co-variables α) present
in both stores: x ∈ dom(τ) ∩ dom(τ ′); the corresponding terms (resp. contexts) in
τ and τ ′ coincide. Finally, we say that τ ′ is an extension of τ and write τ � τ ′

whenever dom(τ) ⊆ dom(τ ′) and τ � τ ′.
We denote by ττ ′ the compatible union join(ττ ′) of closed stores τ and τ ′,

defined by:

join(τ0[x := t]τ1, τ ′
0[x := t]τ ′

1) � τ0τ
′
0[x := t]join(τ1, τ ′

1)
join(τ, τ ′) � ττ ′

join(ε, τ) � τ

join(τ, ε) � τ

(if τ0 # τ ′
0)

(if τ # τ ′)

The following lemma (which follows easily from the previous definition) states
the main property we will use about union of compatible stores.

Lemma 4. If τ and τ ′ are two compatible stores, then τ � ττ ′ and τ ′ � ττ ′.
Besides, if τ is of the form τ0[x := t]τ1, then ττ ′ is of the form τ2[x := t]τ3 with
τ0 � τ2 and τ1 � τ3.

Proof. This follows easily from the previous definition. ��
As we explained in the introduction of this section, we will not consider

closed terms in the usual sense. Indeed, while it is frequent in the proofs of
normalization (e.g. by realizability or reducibility) of a calculus to consider only
closed terms and to perform substitutions to maintain the closure of terms,
this only makes sense if it corresponds to the computational behavior of the
calculus. For instance, to prove the normalization of λx.t in typed call-by-name
λμμ̃-calculus, one would consider a substitution ρ that is suitable for with respect
to the typing context Γ , then a context u · e of type A → B, and evaluates:

〈λx.tρ||u · e〉 → 〈tρ[u/x]||e〉
Then we would observe that tρ[u/x] = tρ[x:=u] and deduce that ρ[x := u] is
suitable for Γ, x : A, which would allow us to conclude by induction.

However, in the λ[lvτ�]-calculus we do not perform global substitution when
reducing a command, but rather add a new binding [x := u] in the store:

〈λx.t||u · E〉τ → 〈t||E〉τ [x := u]

284 É. Miquey and H. Herbelin

Therefore, the natural notion of closed term invokes the closure under a store,
which might evolve during the rest of the execution (this is to contrast with a
substitution).

Definition 5 (Term-in-store). We call closed term-in-store (resp. closed
context-in-store, closed closures) the combination of a term t (resp. context e,
command c) with a closed store τ such that FV (t) ⊆ dom(τ). We use the notation
(t|τ) (resp. (e|τ), (c|τ)) to denote such a pair.

We should note that in particular, if t is a closed term, then (t|τ) is a term-in-
store for any closed store τ . The notion of closed term-in-store is thus a gener-
alization of the notion of closed terms, and we will (ab)use of this terminology
in the sequel. We denote the sets of closed closures by C0, and will identify (c|τ)
and the closure cτ when c is closed in τ . Observe that if cτ is a closure in C0 and
τ ′ is a store extending τ , then cτ ′ is also in C0. We are now equipped to define
the notion of pole, and verify that the set of normalizing closures is indeed a
valid pole.

Definition 6 (Pole). A subset ⊥⊥ ⊆ C0 is said to be saturated or closed by
anti-reduction whenever for all (c|τ), (c′|τ ′) ∈ C0, if c′τ ′ ∈ ⊥⊥ and cτ → c′τ ′

then cτ ∈ ⊥⊥. It is said to be closed by store extension if whenever cτ ∈ ⊥⊥, for
any store τ ′ extending τ : τ � τ ′, cτ ′ ∈ ⊥⊥. A pole is defined as any subset of C0

that is closed by anti-reduction and store extension.

The following proposition is the one supporting the claim that our realizabil-
ity proof is almost a reducibility proof whose definitions have been generalized
with respect to a pole instead of the fixed set SN.

Proposition 7. The set ⊥⊥⇓ = {cτ ∈ C0 : cτ normalizes } is a pole.

Proof. As we only considered closures in C0, both conditions (closure by anti-
reduction and store extension) are clearly satisfied:

– if cτ → c′τ ′ and c′τ ′ normalizes, then cτ normalizes too;
– if c is closed in τ and cτ normalizes, if τ � τ ′ then cτ ′ will reduce as cτ does

(since c is closed under τ , it can only use terms in τ ′ that already were in τ)
and thus will normalize. ��

Definition 8 (Orthogonality). Given a pole ⊥⊥, we say that a term-in-store
(t|τ) is orthogonal to a context-in-store (e|τ ′) and write (t|τ)⊥⊥(e|τ ′) if τ and τ ′

are compatible and 〈t||e〉ττ ′ ∈ ⊥⊥.

Remark 9. The reader familiar with Krivine’s forcing machine [20] might recog-
nize his definition of orthogonality between terms of the shape (t, p) and stacks
of the shape (π, q), where p and q are forcing conditions6:

(t, p)⊥⊥(π, q) ⇔ (t
 π, p ∧ q) ∈ ⊥⊥
6 The meet of forcing conditions is indeed a refinement containing somewhat the

“union” of information contained in each, just like the union of two compatible
stores.

Realizability Interpretation and Normalization 285

We can now relate closed terms and contexts by orthogonality with respect
to a given pole. This allows us to define for any formula A the sets |A|v, |A|V , |A|t
(resp. ‖A‖F ,‖A‖E , ‖A‖e) of realizers (or reducibility candidates) at level v, V ,
t (resp. F , E, e) for the formula A. It is to be observed that realizers are here
closed terms-in-store.

Definition 10 (Realizers). Given a fixed pole ⊥⊥, we set:

|X|v = {(k|τ) : � k : X}
|A → B|v = {(λx.t|τ) : ∀uτ ′, τ � τ ′ ∧ (u|τ ′) ∈ |A|t ⇒ (t|ττ ′[x := u]) ∈ |B|t}

‖A‖F = {(F |τ) : ∀vτ ′, τ � τ ′ ∧ (v|τ ′) ∈ |A|v ⇒ (v|τ ′)⊥⊥(F |τ)}
|A|V = {(V |τ) : ∀Fτ ′, τ � τ ′ ∧ (F |τ ′) ∈ ‖A‖F ⇒ (V |τ)⊥⊥(F |τ ′)}
‖A‖E = {(E|τ) : ∀V τ ′, τ � τ ′ ∧ (V |τ ′) ∈ |A|V ⇒ (V |τ ′)⊥⊥(E|τ)}
|A|t = {(t|τ) : ∀Eτ ′, τ � τ ′ ∧ (E|τ ′) ∈ ‖A‖E ⇒ (t|τ)⊥⊥(E|τ ′)}
‖A‖e = {(e|τ) : ∀tτ ′, τ � τ ′ ∧ (t|τ ′) ∈ |A|t ⇒ (t|τ ′)⊥⊥(e|τ)}

Remark 11. We draw the reader attention to the fact that we should actually
write |A|⊥⊥v , ‖A‖⊥⊥

F , etc. and τ �⊥⊥ Γ , because the corresponding definitions are
parameterized by a pole ⊥⊥. As it is common in Krivine’s classical realizability, we
ease the notations by removing the annotation ⊥⊥ whenever there is no ambiguity
on the pole. Besides, it is worth noting that if co-constants do not occur directly
in the definitions, they may still appear in the realizers by mean of the pole.

If the definition of the different sets might seem complex at first sight, we
claim that they are quite natural in regards of the methodology of Danvy’s
semantics artifacts presented in [2]. Indeed, having an abstract machine in
context-free form (the last step in this methodology before deriving the CPS)
allows us to have both the term and the context (in a command) that behave
independently of each other. Intuitively, a realizer at a given level is precisely
a term which is going to behave well (be in the pole) in front of any opponent
chosen in the previous level (in the hierarchy v, F, V , etc.). For instance, in a
call-by-value setting, there are only three levels of definition (values, contexts
and terms) in the interpretation, because the abstract machine in context-free
form also has three. Here the ground level corresponds to strong values, and the
other levels are somewhat defined as terms (or context) which are well-behaved
in front of any opponent in the previous one. The definition of the different sets
|A|v, ‖A‖F , |A|V , etc. directly stems from this intuition.

In comparison with the usual definition of Krivine’s classical realizability,
we only considered orthogonal sets restricted to some syntactical subcategories.
However, the definition still satisfies the usual monotonicity properties of bi-
orthogonal sets:

Proposition 12. For any type A and any given pole ⊥⊥, we have:

1 . |A|v ⊆ |A|V ⊆ |A|t; 2 . ‖A‖F ⊆ ‖A‖E ⊆ ‖A‖e.

Proof. All the inclusions are proved in a similar way. We only give the proof for
|A|v ⊆ |A|V . Let ⊥⊥ be a pole and (v|τ) be in |A|v. We want to show that (v|τ)

286 É. Miquey and H. Herbelin

is in |A|V , that is to say that v is in the syntactic category V (which is true),
and that for any (F |τ ′) ∈ ‖A‖F such that τ � τ ′, (v|τ)⊥⊥(F |τ ′). The latter holds
by definition of (F |τ ′) ∈ ‖A‖F , since (v|τ) ∈ |A|v. ��

We now extend the notion of realizers to stores, by stating that a store τ
realizes a context Γ if it binds all the variables x and α in Γ to a realizer of the
corresponding formula.

Definition 13. Given a closed store τ and a fixed pole ⊥⊥, we say that τ realizes
Γ , which we write7 τ � Γ , if:

1. for any (x : A) ∈ Γ , τ ≡ τ0[x := t]τ1 and (t|τ0) ∈ |A|t
2. for any (α : A⊥⊥) ∈ Γ , τ ≡ τ0[α := E]τ1 and (E|τ0) ∈ ‖A‖E

In the same way than weakening rules (for the typing context) are admissible
for each level of the typing system:

Γ �t t : A Γ ⊆ Γ ′

Γ ′ �t t : A

Γ �e e : A⊥⊥ Γ ⊆ Γ ′

Γ ′ �e e : A⊥⊥
. . . Γ �τ τ : Γ ′′ Γ ⊆ Γ ′

Γ ′ �τ τ : Γ ′′

the definition of realizers is compatible with a weakening of the store.

Lemma 14 (Store weakening). Let τ and τ ′ be two stores such that τ � τ ′,
let Γ be a typing context and let ⊥⊥ be a pole. The following statements hold:

1. ττ ′ = τ ′

2. If (t|τ) ∈ |A|t for some closed term (t|τ) and type A, then (t|τ ′) ∈ |A|t.
The same holds for each level e,E, V, F, v of the typing rules.

3. If τ � Γ then τ ′ � Γ .

Proof. 1. Straightforward from the definition of ¯ττ ′.
2. This essentially amounts to the following observations. First, one remarks that

if (t|τ) is a closed term, so then so is (t|ττ ′) for any closed store τ ′ compatible
with τ . Second, we observe that if we consider for instance a closed context
(E|τ ′′) ∈ ‖A‖E , then ττ ′ � τ ′′ implies τ � τ ′′, thus (t|τ)⊥⊥(E|τ ′′) and finally
(t|ττ ′)⊥⊥(E|τ ′′) by closure of the pole under store extension. We conclude
that (t|τ ′)⊥⊥(E|τ ′′) using the first statement.

3. By definition, for all (x : A) ∈ Γ , τ is of the form τ0[x := t]τ1 such that
(t|τ0) ∈ |A|t. As τ and τ ′ are compatible, we know by Lemma 4 that ττ ′ is
of the form τ ′

0[x := t]τ ′
1 with τ ′

0 an extension of τ0, and using the first point
we get that (t|τ ′

0) ∈ |A|t. ��
Definition 15 (Adequacy). Given a fixed pole ⊥⊥, we say that:

– A typing judgment Γ �t t : A is adequate (w.r.t. the pole ⊥⊥) if for all stores
τ � Γ , we have (t|τ) ∈ |A|t.

7 Once again, we should formally write τ �⊥⊥ Γ but we will omit the annotation by ⊥⊥
as often as possible.

Realizability Interpretation and Normalization 287

– More generally, we say that an inference rule

J1 · · · Jn

J0

is adequate (w.r.t. the pole ⊥⊥) if the adequacy of all typing judgments
J1, . . . , Jn implies the adequacy of the typing judgment J0.

Remark 16. From the latter definition, it is clear that a typing judgment that is
derivable from a set of adequate inference rules is adequate too.

We will now show the main result of this section, namely that the typing
rules of Fig. 2 for the λ[lvτ�]-calculus without co-constants are adequate with any
pole. Observe that this result requires to consider the λ[lvτ�]-calculus without
co-constants. Indeed, we consider co-constants as coming with their typing rules,
potentially giving them any type (whereas constants can only be given an atomic
type). Thus, there is a priori no reason8 why their types should be adequate with
any pole.

However, as observed in the previous remark, given a fixed pole it suffices
to check whether the typing rules for a given co-constant are adequate with
this pole. If they are, any judgment that is derivable using these rules will be
adequate.

Theorem 17 (Adequacy). If Γ is a typing context, ⊥⊥ is a pole and τ is a
store such that τ � Γ , then the following holds in the λ[lvτ�]-calculus without
co-constants:

1. If v is a strong value such that Γ �v v : A, then (v|τ) ∈ |A|v.
2. If F is a forcing context such that Γ �F F : A⊥⊥, then (F |τ) ∈ ‖A‖F .
3. If V is a weak value such that Γ �V V : A, then (V |τ) ∈ |A|V .
4. If E is a catchable context such that Γ �E E : A⊥⊥, then (E|τ) ∈ ‖A‖F .
5. If t is a term such that Γ �t t : A, then (t|τ) ∈ |A|t.
6. If e is a context such that Γ �e e : A⊥⊥, then (e|τ) ∈ ‖A‖e.
7. If c is a command such that Γ �c c, then cτ ∈ ⊥⊥.
8. If τ ′ is a store such that Γ �τ τ ′ : Γ ′, then ττ ′ � Γ, Γ ′.

Proof. The different statements are proved by mutual induction over typing
derivations. We only give the most important cases here.

Rule (→l). Assume that

Γ �t u : A Γ �E E : B⊥⊥

Γ �F u · E : (A → B)⊥⊥ (→l)

and let ⊥⊥ be a pole and τ a store such that τ � Γ . Let (λx.t|τ ′) be a closed
term in the set |A → B|v such that τ � τ ′, then we have:

〈λx.t||u · E〉ττ ′ → 〈u||μ̃x.〈t||E〉〉ττ ′ → 〈t||E〉ττ ′[x := u]
8 Think for instance of a co-constant of type (A → B)⊥⊥, there is no reason why it

should be orthogonal to any function in |A → B|v.

288 É. Miquey and H. Herbelin

By definition of |A → B|v, this closure is in the pole, and we can conclude by
anti-reduction.

Rule (x). Assume that

(x : A) ∈ Γ

Γ �V x : A
(x)

and let ⊥⊥ be a pole and τ a store such that τ � Γ . As (x : A) ∈ Γ , we know
that τ is of the form τ0[x := t]τ1 with (t|τ0) ∈ |A|t. Let (F |τ ′) be in ‖A‖F , with
τ � τ ′. By Lemma 4, we know that ττ ′ is of the form τ0[x := t]τ1. Hence we
have:

〈x||F 〉τ0[x := t]τ1 → 〈t||μ̃[x].〈x||F 〉τ1〉τ0
and it suffices by anti-reduction to show that the last closure is in the pole ⊥⊥.
By induction hypothesis, we know that (t|τ0) ∈ |A|t thus we only need to show
that it is in front of a catchable context in ‖A‖E . This corresponds exactly to
the next case that we shall prove now.

Rule (μ̃[]). Assume that

Γ, x : A,Γ ′ �F F : A Γ, x : A � τ ′ : Γ ′

Γ �E μ̃[x].〈x||F 〉τ ′ : A
(μ̃[])

and let ⊥⊥ be a pole and τ a store such that τ � Γ . Let (V |τ0) be a closed term
in |A|V such that τ0 � τ . We have that:

〈V ||μ̃[x].〈x||F 〉τ ′〉τ0τ → 〈V ||F 〉τ0τ [x := V]τ ′

By induction hypothesis, we obtain τ [x := V]τ ′ � Γ, x : A,Γ ′. Up to α-
conversion in F and τ ′, so that the variables in τ ′ are disjoint from those in τ0, we
have that τ0τ � Γ (by Lemma 14) and then τ ′′ � τ0τ [x := V]τ ′ � Γ, x : A,Γ ′.
By induction hypothesis again, we obtain that (F |τ ′′) ∈ ‖A‖F (this was an
assumption in the previous case) and as (V |τ0) ∈ |A|V , we finally get that
(V |τ0)⊥⊥(F |τ ′′) and conclude again by anti-reduction. ��
Corollary 18. If cτ is a closure such that �l cτ is derivable, then for any pole
⊥⊥ such that the typing rules for co-constants used in the derivation are adequate
with ⊥⊥, cτ ∈ ⊥⊥.

We can now put our focus back on the normalization of typed closures. As
we already saw in Proposition 7, the set ⊥⊥⇓ of normalizing closure is a valid
pole, so that it only remains to prove that any typing rule for co-constants is
adequate with ⊥⊥⇓.

Lemma 19. Any typing rule for co-constants is adequate with the pole ⊥⊥⇓, i.e.
if Γ is a typing context, and τ is a store such that τ � Γ , if κ is a co-constant
such that Γ �F κ : A⊥⊥, then (κ|τ) ∈ ‖A‖F .

Realizability Interpretation and Normalization 289

Proof. This lemma directly stems from the observation that for any store τ and
any closed strong value (v|τ ′) ∈ |A|v, 〈v||κ〉ττ ′ does not reduce and thus belongs
to the pole ⊥⊥⇓.

As a consequence, we obtain the normalization of typed closures of the full
calculus.

Theorem 20. If cτ is a closure of the λ[lvτ�]-calculus such that �l cτ is deriv-
able, then cτ normalizes.

This is to be contrasted with Okasaki, Lee and Tarditi’s semantics for the
call-by-need λ-calculus, which is not normalizing in the simply-typed case, as
shown in Ariola et al. [2].

3.3 Extension to 2nd-Order Type Systems

We focused in this article on simply-typed versions of the λlv and λ[lvτ�] calculi.
But as it is common in Krivine classical realizability, first and second-order
quantifications (in Curry style) come for free through the interpretation. This
means that we can for instance extend the language of types to first and second-
order predicate logic:

e1, e2 ::= x | f(e1, . . . , ek)
A,B ::= X(e1, . . . , ek) | A → B | ∀x.A | ∀X.A

We can then define the following introduction rules for universal quantifica-
tions:

Γ �v v : A x /∈ FV (Γ)
Γ �v v : ∀x.A

(∀1
r)

Γ �v v : A X /∈ FV (Γ)
Γ �v v : ∀X.A

(∀2
r)

Observe that these rules need to be restricted at the level of strong values, just
as they are restricted to values in the case of call-by-value9. As for the left rules,
they can be defined at any levels, let say the more general e:

Γ �e e : (A[n/x])⊥⊥

Γ �e e : (∀x.A)⊥⊥ (∀1
l)

Γ �e e : (A[B/X])⊥⊥

Γ �e e : (∀X.A)⊥⊥ (∀2
l)

where n is any natural number and B any formula. The usual (call-by-value)
interpretation of the quantification is defined as an intersection over all the
possible instantiations of the variables within the model. We do not wish to
enter into too many details10 on this topic here, but first-order variable are to
be instantiated by integers, while second order are to be instantiated by subset
of terms at the lower level, i.e. closed strong-values in store (which we write V0):

|∀x.A|v =
⋂

n∈N

|A[n/x]|v |∀X.A|v =
⋂

S∈Nk→P(V0)

|A[S/X]|v

9 For further explanation on the need for a value restriction in Krivine realizability,
we refer the reader to [29] or [25].

10 Once again, we advise the interested reader to refer to [29] or [25] for further details.

290 É. Miquey and H. Herbelin

where the variable X is of arity k. It is then routine to check that the typing
rules are adequate with the realizability interpretation.

4 Conclusion and Further Work

In this paper, we presented a system of simple types for a call-by-need calculus
with control, which we proved to be safe in that it satisfies subject reduction
(Theorem 1) and that typed terms are normalizing (Theorem 20). We proved
the normalization by means of realizability-inspired interpretation of the λ[lvτ�]-
calculus. Incidentally, this opens the doors to the computational analysis (in
the spirit of Krivine realizability) of classical proofs using control, laziness and
shared memory.

In further work, we intend to present two extensions of the present paper.
First, following the definition of the realizability interpretation, we managed to
type the continuation-and-store passing style translation for the λ[lvτ�]-calculus
(see [2]). Interestingly, typing the translation emphasizes its computational con-
tent, and in particular, the store-passing part is reflected in a Kripke forcing-like
manner of typing the extensibility of the store [28, Chap. 6].

Second, on a different aspect, the realizability interpretation we introduced
could be a first step towards new ways of realizing axioms. In particular, the
first author used in his Ph.D. thesis [28, Chap. 8] the techniques presented in
this paper to give a normalization proof for dPAω, a proof system developed by
the second author [15]. Indeed, this proof system allows to define a proof for the
axiom of dependent choice thanks to the use of streams that are lazily evaluated,
and was lacking a proper normalization proof.

Finally, to determine the range of our technique, it would be natural to inves-
tigate the relation between our framework and the many different presentations
of call-by-need calculi (with or without control). Amongst other calculi, we could
cite Chang-Felleisen presentation of call-by-need [4], Garcia et al. lazy calculus
with delimited control [10] or Kesner’s recent paper on normalizing by-need
terms characterized by an intersection type system [16]. To this end, we might
rely on Pédrot and Saurin’s classical by-need [33]. They indeed relate (classi-
cal) call-by-need with linear head-reduction from a computational point of view,
and draw the connections with the presentations of Ariola et al. [2] and Chang-
Felleisen [4]. Ariola et al. λlv-calculus being close to the λ[lvτ�]-calculus (see [2]
for further details), our technique is likely to be adaptable to their framework,
and thus to Pédrot and Saurin’s system.

References

1. Ariola, Z., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1993)

2. Ariola, Z.M., Downen, P., Herbelin, H., Nakata, K., Saurin, A.: Classical call-by-
need sequent calculi: the unity of semantic artifacts. In: Schrijvers, T., Thiemann,
P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 32–46. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29822-6 6

https://doi.org/10.1007/978-3-642-29822-6_6

Realizability Interpretation and Normalization 291

3. Barbanera, F., Berardi, S.: A symmetric λ-calculus for classical program extraction.
Inf. Comput. 125(2), 103–117 (1996)

4. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl,
H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 128–147. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28869-2 7

5. Crolard, T.: A confluent lambda-calculus with a catch/throw mechanism. J. Funct.
Program. 9(6), 625–647 (1999)

6. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proceedings of ICFP
2000, SIGPLAN Notices, vol. 35, no. 9, pp. 233–243. ACM (2000)

7. Dagand, P.-É., Scherer, G.: Normalization by realizability also evaluates. In:
Baelde, D., Alglave, J. (eds.) Proceedings of JFLA 2015, Le Val d’Ajol, France,
January 2015

8. Felleisen, M., Friedman, D.P., Kohlbecker, E.E., Duba, B.F.: Reasoning with con-
tinuations. In: Proceedings of LICS 1986, Cambridge, Massachusetts, USA, 16–18
June 1986, pp. 131–141. IEEE Computer Society (1986)

9. Gallier, J.: On girard’s “candidats de reductibilité”. In: Odifreddi, P. (ed.) Logic
and Computer Science, pp. 123–203. Academic Press (1900)

10. Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control. Log.
Methods Comput. Sci. 6(3) (2010)

11. Girard, J.-Y.: Une extension de L’interpretation de gödel a L’analyse, et son appli-
cation a L’elimination des coupures dans L’analyse et la theorie des types. In:
Fenstad, J.E., (ed.) Proceedings of the Second Scandinavian Logic Symposium.
Studies in Logic and the Foundations of Mathematics, vol. 63, pp. 63–92. Elsevier
(1971)

12. Guillermo, M., Miquel, A.: Specifying peirce’s law in classical realizability. Math.
Struct. Comput. Sci. 26(7), 1269–1303 (2016)

13. Guillermo, M., Miquey, É.: Classical realizability and arithmetical formulæ. Math.
Struct. Comput. Sci. 1–40 (2016)

14. Herbelin, H.: C’est maintenant qu’on calcule: au cœur de la dualité. Habilitation
thesis, University Paris 11, December 2005

15. Herbelin, H.: A constructive proof of dependent choice, compatible with classical
logic. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 365–374. IEEE
Computer Society (2012)

16. Kesner, D.: Reasoning about call-by-need by means of types. In: Jacobs, B.,
Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 424–441. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5 25

17. Krivine, J.-L.: Lambda-calculus, Types and Models. Ellis Horwood series in com-
puters and their applications. Ellis Horwood, Masson (1993)

18. Krivine, J.-L.: Dependent choice, ‘quote’ and the clock. Theor. Comp. Sc. 308,
259–276 (2003)

19. Krivine, J.-L.: Realizability in classical logic. Panoramas et synthèses 27, 197–229
(2009). Interactive models of computation and program behaviour

20. Krivine, J.-L.: Realizability algebras: a program to well order r. Log. Methods
Comput. Sci. 7(3) (2011)

21. Krivine, J.-L.: Realizability algebras II: new models of ZF + DC. Log. Methods
Comput. Sci. 8(1:10), 1–28 (2012)

22. Krivine, J.-L.: On the structure of classical realizability models of ZF (2014)
23. Lafont, Y., Reus, B., Streicher, T.: Continuations semantics or expressing

implication by negation. Technical report 9321, Ludwig-Maximilians-Universität,
München (1993)

https://doi.org/10.1007/978-3-642-28869-2_7
https://doi.org/10.1007/978-3-662-49630-5_25

292 É. Miquey and H. Herbelin

24. Lang, F.: Explaining the lazy Krivine machine using explicit substitution and
addresses. High.-Order Symbolic Comput. 20(3), 257–270 (2007)

25. Lepigre, R.: A classical realizability model for a semantical value restriction. In:
Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 476–502. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49498-1 19

26. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

27. Miquel, A.: Existential witness extraction in classical realizability and via a nega-
tive translation. Log. Methods Comput. Sci. 7(2), 188–202 (2011)

28. Miquey, É.: Classical realizability and side-effects. Ph.D. thesis, Université Paris-
Diderot, Universidad de la República (Uruguay) (2017)

29. Munch-Maccagnoni, G.: Focalisation and classical realisability. In: Grädel, E.,
Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 409–423. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04027-6 30

30. Okasaki, C., Lee, P., Tarditi, D.: Call-by-need and continuation-passing style. Lisp
Symbolic Comput. 7(1), 57–82 (1994)

31. Parigot, M.: Free deduction: an analysis of “computations” in classical logic. In:
Voronkov, A. (ed.) RCLP -1990. LNCS, vol. 592, pp. 361–380. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55460-2 27

32. Parigot, M.: Strong normalization of second order symmetric λ-calculus. In:
Kapoor, S., Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974, pp. 442–453.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44450-5 36

33. Pédrot, P.-M., Saurin, A.: Classical by-need. In: Thiemann, P. (ed.) ESOP 2016.
LNCS, vol. 9632, pp. 616–643. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49498-1 24

34. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

35. Polonovski, E.: Strong normalization of λμμ̃-calculus with explicit substitutions.
In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 423–437. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24727-2 30

36. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symbolic
Log. 32(2), 198–212 (1967)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-49498-1_19
https://doi.org/10.1007/978-3-642-04027-6_30
https://doi.org/10.1007/3-540-55460-2_27
https://doi.org/10.1007/3-540-44450-5_36
https://doi.org/10.1007/978-3-662-49498-1_24
https://doi.org/10.1007/978-3-662-49498-1_24
https://doi.org/10.1007/978-3-540-24727-2_30
http://creativecommons.org/licenses/by/4.0/

Quotient Inductive-Inductive Types

Thorsten Altenkirch1 , Paolo Capriotti1 , Gabe Dijkstra3 ,
Nicolai Kraus1(B) , and Fredrik Nordvall Forsberg2

1 University of Nottingham, Nottingham, UK
{thorsten.altenkirch,paolo.capriotti,nicolai.kraus}@nottingham.ac.uk

2 University of Strathclyde, Glasgow, Scotland
fredrik.nordvall-forsberg@strath.ac.uk

3 London, UK
gabe.dijkstra@gmail.com

Abstract. Higher inductive types (HITs) in Homotopy Type Theory
allow the definition of datatypes which have constructors for equalities
over the defined type. HITs generalise quotient types, and allow to define
types with non-trivial higher equality types, such as spheres, suspensions
and the torus. However, there are also interesting uses of HITs to define
types satisfying uniqueness of equality proofs, such as the Cauchy reals,
the partiality monad, and the well-typed syntax of type theory. In each of
these examples we define several types that depend on each other mutu-
ally, i.e. they are inductive-inductive definitions. We call those HITs quo-
tient inductive-inductive types (QIITs). Although there has been recent
progress on a general theory of HITs, there is not yet a theoretical founda-
tion for the combination of equality constructors and induction-induction,
despite many interesting applications. In the present paper we present a
first step towards a semantic definition of QIITs. In particular, we give an
initial-algebra semantics. We further derive a section induction principle,
stating that every algebra morphism into the algebra in question has a
section, which is close to the intuitively expected elimination rules.

1 Introduction

This paper is about type theory in the sense of Martin-Löf [29], a theory which
proof assistants such as Coq [7] and Lean [14] as well as programming languages
such as Agda [31] and Idris [8] are based on. Recently, Homotopy type theory
(HoTT) [34] has been introduced inspired by homotopy theoretic interpretations
of type theory by Awodey and Warren [5] and Voevodsky [25,36].

A central concept in type theory is the concept of inductive definitions, which
allows us to define inductive datatypes like the natural numbers, lists and trees
just by presenting constructors with strictly positive occurrences of the inductive
type being defined. Using the propositions as types explanation, we can use the
same mechanism to inductively define predicates and relations, like an order on the
natural numbers, or the derivability predicate for a logic defined by rules. Concep-
tually, HoTT changes what we mean by an inductive definition, because we view
a type not only as given by its elements (points) but also by its equality proofs
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 293–310, 2018.
https://doi.org/10.1007/978-3-319-89366-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_16&domain=pdf
http://orcid.org/0000-0002-6582-5025
http://orcid.org/0000-0002-4836-1804
http://orcid.org/0000-0003-2131-0182
http://orcid.org/0000-0002-8729-4077
http://orcid.org/0000-0001-6157-9288

294 T. Altenkirch et al.

(paths). Hence an inductive definition may not only feature constructors for ele-
ments but also for equalities. This concept of higher inductive types (HITs) has
been used to represent the homotopical structure of geometric objects, like circles,
spheres and tori, and gives rise to synthetic homotopy theory in HoTT [32].

However, as already noted in the HoTT Book [34], HITs have also more quo-
tidian applications, such as a definition of the Cauchy reals for which the use
of the axiom of choice can be avoided when proving e.g. Cauchy completeness.
Instead of defining the real numbers as a quotient of sequences of rationals, a HIT
is used to define them as the Cauchy completion of the rational numbers, with
the quotienting happening simultaneously with the completion definition. Simi-
larly, a definition of the partiality monad, which represents potentially diverging
operations over a given type, was given using a HIT [2,13,35], again avoiding
the axiom of choice when showing e.g. that the construction is a monad [12].

As we see from these examples, the idea of generating points and equalities of
a type inductively is interesting, even if we do not care about the higher equality
structure of types, or if we do not want it. For example: consider trees branching
over an arbitrary type A, quotiented by arbitrary permutations of subtrees. We
first define the type T0(A) of A-branching trees, given by the constructors

leaf0 : T0(A)
node0 : (A → T0(A)) → T0(A).

We then form the binary relation R on T0(A) that we want to quotient by
as follows: R is the smallest relation such that for any auto-equivalence on A
(i.e. any e : A → A which has an inverse) and f : A → T0(A), we have a
proof pf,e : R(node0(f), node0(f ◦ e)), and, secondly, for g, h : A → T0(A) such
that (n : A) → R(g(n), h(n)), we have a proof cf,g : R(node0(g), node0(h)). We
can then form the quotient type T0(A)/R, which is the type of unlabelled trees
where each node has an A-indexed family of subtrees, and two trees which agree
modulo the “order” of its subtrees are equal. For A ≡ 2, these are binary trees
where the order of the two subtrees of each node does not matter.

Now, morally, from a family A → (T0(A)/R), we should be able to construct
an element of the quotient T0(A)/R. This is indeed possible if A is 2 or another
finite type, by applying the induction principle of the quotient type A times.
However, it seems that, for a general type A, this would require the axiom of
choice [34], which unfortunately is not a constructive principle [15]. But using
a higher inductive type, we can give an alternative definition for the type of
A-branching trees modulo permutation of subtrees.

Example 1. Given a type A, we define T (A) : hSet by

leaf : T (A)
node : (A → T (A)) → T (A)
mix : (f : A → T) → (e : A ∼= A) → node(f) = node(f ◦ e).

Note that the fact that T (A) is a homotopy set (see preliminaries below)
is implicitly included in the statement T (A) : hSet. The construction we were

Quotient Inductive-Inductive Types 295

looking for is now directly given by the constructor node. This demonstration of
the usefulness of higher inductive constructions to increase the strength of quo-
tients was first discussed in Altenkirch and Kaposi [1], where such set-truncated
HITs are called quotient inductive types (QITs).

Another example of the use of higher inductive types is type theory in type
theory [1], where the well-typed syntax of type theory is implemented as a higher
inductive-inductive [30] type in type theory itself. A significantly simplified ver-
sion of this will serve as a running example for us:

Example 2. We define the syntax of a (very basic) type theory by constructing
types representing contexts and types as follows. A set Con : hSet and a type
family Ty : Con → hSet are simultaneously defined by giving the constructors

ε : Con

ext : (Γ : Con) → Ty(Γ) → Con

ι : (Γ : Con) → Ty(Γ)
σ : (Γ : Con) → (A : Ty(Γ)) → Ty(extΓ A) → Ty(Γ)
σeq : (Γ : Con) → (A : Ty(Γ)) → (B : Ty(extΓ A))

→ ext (extΓ A)B =Con extΓ (σ Γ AB).

For simplicity, we do not consider terms. Contexts are either empty ε, or
an extended context extΓ A representing the context Γ extended by a fresh
variable of type A. Types are either the base type ι (well-typed in any context),
or Σ-types represented by σ Γ AB (well-typed in context Γ if A is well-typed in
context Γ , and B is well-typed in the extended context extΓ A). Type theory
in type theory as in [1] has plenty of equality constructors, which play a role
as soon as terms are introduced. To keep the example simple we instead use
another equality, stating that extending a context by A followed by B is equal
to extending it by σ Γ AB. This equality is given by σeq. Note that it is not
possible to list the constructors of Con and Ty separately: due to the mutual
dependency, the Ty-constructor σ has to be given in between of the two Con-
constructors ext and σeq.

Despite a lot of work making use of concrete HITs [4,9–11,23,26,27], and
despite the fact that it is usually — on some intuitive level — clear for the
expert how the elimination principle for such a HIT can be derived, giving a
general specification and a theoretical foundation for HITs has turned out to
be a major difficulty. Several approaches have been proposed [6,18,28,33], and
they do indeed give a satisfactory specification of HITs in the sense that they
cover all HITs which have been used so far (see related work below). However,
to the best of our knowledge, no approach covers higher inductive-inductive def-
initions such as Example 2. The purpose of the current paper is to remedy this.
We restrict ourselves to sets, i.e. to quotient inductive-inductive types (QIITs).
This is of course a serious restriction, since it means that we cannot capture
many ordinary HITs such as e.g. the circle S

1. At the same time, all higher
inductive-inductive types that we know of are indeed sets — the Cauchy reals, the

296 T. Altenkirch et al.

surreal numbers, the partiality monad, type theory in type theory, permutable
trees — and will be instances of our framework, which allows arbitrarily compli-
cated dependency structures. In particular, we allow intermixing of constructors
as in Example 2.

Contributions. We give a formal specification of quotient inductive-inductive
types with arbitrary dependency structure. This can be viewed as the general-
isation of the usual semantics of inductive types as initial algebras of a func-
tor to quotient inductive-inductive types. A QIIT is specified by (i) its sorts,
which encode the types and type families that it consists of (Sect. 2), and (ii)
by a sequence of constructors, that in turn are specified by argument and tar-
get functors (Sect. 3). This is a very general framework, covering in particular
point (Sect. 3.2) and path constructors (Sect. 3.4). Each constructor specification
gives rise to a category of algebras, and we establish conditions on the target
functors that allow us to conclude that these categories of algebras are complete
(Sect. 3.5). This is important, because it allows us to prove the equivalence of
initiality and a principle that we call section induction (Sect. 4), stating that
every algebra morphism into the algebra in question has a section; this principle
is close to the intuitively expected elimination rules.

A full version of the paper, including all proofs, is available on the arXiv [3].

Related Work. Sojakova [33] shows the correspondence between initiality and
induction (a variant of our Theorem 31) for W-suspensions, a restricted class
of HITs. Basold, Geuvers and van der Weide [6] introduce a syntactic schema
for HITs without higher path constructors, and derive their elimination rules.
Dybjer and Moeneclaey [18] give a syntactic schema for finitary HITs with at
most paths between paths, and give an interpretation in Hofmann and Streicher’s
groupoid model [22]. Finally, Lumsdaine and Shulman’s work on the semantics
of HITs in model categories [28] is similar to an external version of our approach.

Preliminaries. We work in a standard Martin-Löf style type theory and assume
function extensionality. We do not assume univalence, but also do not contradict
it; in particular, everything we do works in the type theory from the HoTT
Book [34]. We write U for “the” universe of types, omitting universe indices
in the typical ambiguity style [21]. A type is a set if all its equality proofs are
equal, and hSet is defined as Σ(A : U).is-set(A); we implicitly treat elements of
hSet as their first projections — this allows us to view hSet as a universe. By a
category, we mean a precategory [34, Definition 9.1.1] in the sense of the HoTT
Book (all our categories become univalent categories if univalence is assumed).
We write C ⇒ D for functors and X → Y for functions between types. We
denote the obvious category of sets and functions by hSet as well; consequently,
F : A → hSet denotes a type family, while F : C ⇒ hSet denotes a functor. For
such a functor F : C ⇒ hSet, we write

∫ C
F for the category of elements of F ,

whose objects are pairs (X,x) of an object X in C and an element x : FX. For a

Quotient Inductive-Inductive Types 297

function f : X → Y and z, w : X, we write ap f : z = w → f(z) = f(w) for the
usual “action of a function to paths”, −1 : x = y → y = x for “path reversal”,
and � : x = y → y = z → x = z for “path concatenation” [34, Lemmas 2.2.1,
2.1.1, 2.1.2].

2 Sorts

Single inductive (and quotient inductive) sets are simply elements of hSet. Induc-
tive families [17] indexed over some fixed type A are families A → hSet. For the
inductive-inductive definitions we are considering, the situation is more compli-
cated, since we allow very general dependency structures. Our only requirement
is that there is no looping dependency, since this is easily seen to lead to contra-
dictions, e.g. we do not allow the definition of a family A : B → hSet mutually
with a family B : A → hSet (whatever this would mean). Concretely, we will
ensure that the collection of type formation rules (the type signatures) is given
in a valid order, and we refer to the types used as family indices as the sorts of
the definition. Hence our first step towards a specification of general QIITs is to
explain what a valid specification of the sorts is.

Sorts do not only determine the formation rules of the inductive definitions,
but also the types of the eliminators. To capture this, it is not enough to specify
a type of sorts — in order to take the shape of the elimination rules into account,
we need to specify a category.

Definition 3 (Sort specifications). A specification of the sorts of a quotient
inductive-inductive definition of n types is given by a list

H0,H1, . . . , Hn−1,

where each Hi is a functor Hi : Ci ⇒ hSet. Here, C0 :≡ 1 is the terminal category,
and Ci+1 is defined as follows:

– objects are pairs (X,P), where X is an object in Ci, and P : Hi(X) → hSet
is a family of sets;

– a morphism (f, g) : (X,P) → (Y,Q) consists of a morphism f : X → Y in Ci,
and a dependent function g : (x : Hi(X)) → P (x) → Q(Hi(f)x) (in hSet).

We say that Cn is the base category for the sort signature H0, . . . , Hn−1.

The following examples will hopefully make clear the connection between the
specification in Definition 3 and common classes of data types.

Example 4 (Permutable trees). For a single inductive type such as the type of
trees T (A) in Example 1, the sorts are specified by a single functor H0 : C0 ⇒
hSet which maps the single object � of C0 to the unit type 1. Objects in the
base category C1 are thus pairs (�,W), where W : 1 → hSet, and morphisms
are given by f : � → � in 1 (necessarily the identity morphism), together with
a dependent function g : (x : 1) → W (x) → V (x). It is easy to see that this
category C1 is equivalent to the category hSet.

298 T. Altenkirch et al.

Example 5 (The finite types). Consider the inductive family Fin : N → hSet of
finite types. Again, this is a single type family, i.e. we are in the case n ≡ 1.
We have H0(�) :≡ N, and the base category C1 is equivalent to the category
of N-indexed families, where objects are families X : N → hSet and morphisms
C1(X,Y) are dependent functions f : (n : N) → X(n) → Y (n).

Example 6 (Contexts and types). Let us consider the QIIT (Con,Ty) from Exam-
ple 2. Here, we need two functors H0, H1, the first corresponding to Con and the
second to Ty. The first is given by H0(�) :≡ 1 as in Example 4, since Con is a type
on its own. Next, we need H1 : C1 ⇒ hSet. Applying the equivalence between
C1 and hSet established in Example 4, we define H1 to be the identity functor
H1(A) :≡ A, since then Ty : H1(Con) → hSet. The base category C2 is equiva-
lent to the category Fam(hSet), whose objects are pairs (A,B) where A : hSet
and B : A → hSet, and whose morphisms (A,B) to (A′, B′) consist of functions
f : A → A′ together with dependent functions g : (x : A) → B(x) → B′(f x).

Example 7 (the Cauchy reals). Recall that the Cauchy reals in the HoTT
book [34] are constructed by simultaneously defining R : hSet and ∼: R × R →
hSet (we ignore the fact that [34] uses U instead of hSet). This time the sorts
H0,H1 are given by H0(�) :≡ 1 and H1(A) :≡ A × A, corresponding to the
fact that ∼ is a binary relation on R. The base category has (up to equivalence)
pairs (X,Y) with Y : X × X → hSet as objects, and morphisms are defined
accordingly.

Example 8 (The full syntax of type theory). Altenkirch and Kaposi [1] give the
complete syntax of a basic type theory as a (at that point unspecified) QIIT.
Although this construction is far too involved to be treated as an example in
the rest of this paper (where we prefer to work with the simplified version of
Example 2), we can give the sort signature H0,H1,H2,H3 of this QIIT. Apart
from contexts Con and types Ty, this definition also involves context morphisms
Tms and terms Tm:

Con : hSet Tms : Con × Con → hSet

Ty : Con → hSet Tm :
(
Σ(Γ : Con).Ty(Γ)

) → hSet.

We have:

H0(�) :≡ 1 C1
∼= hSet as in Example 4;

H1(A) :≡ A C2
∼= Fam(hSet) as in Example 6;

H2(A, B) :≡ A × A C3 has objects (A, B, C), where C : A × A → hSet;

H3(A, B, C) :≡ Σ A B C4 has objects (A, B, C, D), where D :
(
Σ A B

) → hSet.

Remark 9. Although we work in type theory also in the meta-theory, we give
the presentation informally in natural language. Formally, the specification of
sorts and base categories of Definition 3 can be defined as an inductive-recursive
definition [19] of the list H0, . . . , Hn simultaneously with a function that turns
such a list into a category. Details can be found in Dijkstra’s thesis [16, Sect. 4.3].

Quotient Inductive-Inductive Types 299

The main result of this section states that base categories of sort signatures
are complete, i.e. have all small limits. By a small limit, we mean a limit of a
diagram D : I → C, where the shape category I has a set of objects, and the
collection of morphisms between any two objects is a set. This result will be
needed later to show that categories of QIIT algebras are complete. Recall that
hSet has all small limits by a standard construction.

Theorem 10 (Base categories are complete). For any sort signature H0,
. . . , Hn−1, the corresponding base category Cn has all small limits.

Proof. All proofs can be found in the arXiv version of the paper [3]. ��

3 Algebras

Once the sorts of an inductive definition have been established, the next step is to
specify the constructors. In this section, we will give a very general definition of
constructor specifications, although we will mainly focus on two specific kinds:
point constructors, which can be thought of as the operations of an algebraic
signature, and path constructors, which correspond to the axioms.

Similarly to how sorts are specified inductively in Sect. 2, we construct suit-
able categories of algebras by starting with a finitely complete category C such
as the one obtained from a sort signature, specify a constructor on C, and then
extend C using this constructor specification to get a new finitely complete cate-
gory C′. This process is repeated until all constructors have been added, and we
obtain the sought-after inductive type as the underlying set of an initial object
of the category at the last stage, provided this initial object exists. In the case of
the inductive definition of natural numbers, this process will turn out as follows:

– we start with hSet as our base category (only one trivial sort, as in Example 4);
– we add a point constructor for the constant corresponding to 0; the category

of algebras at this stage is the category of pointed sets;
– we add a second point constructor for the operation corresponding to suc;

the category of algebras at this stage is the category of sets equipped with a
point and a unary operation;

– the set of natural numbers, together with its usual structure, can now be
regarded as an initial object in the category of algebras just constructed.

3.1 Relative Continuity and Constructor Specifications

Roughly speaking, constructors at each stage are given by pairs of hSet-valued
functors F and G on C, where G is continuous (i.e. preserves all small limits).
The intuition is that F specifies the arguments of the constructor, while G
determines its target. For instance, in the example of the natural numbers when
specifying the constructor suc : N → N, C is the category of pointed sets, and
both F and G are the forgetful functor to hSet. The continuity condition on G
is needed for the corresponding category of algebras to be complete. Intuitively,

300 T. Altenkirch et al.

this expresses that a constructor should only “construct” elements of one of the
sorts, or equalities thereof.1 In particular, a constant functor is usually not a
valid choice for G.

Unfortunately, this simple description falls short of capturing many of the
examples of QIITs mentioned in Sect. 1. The problem is that we want G to be
able to depend on the elements of F . However, since F is assumed to be an
arbitrary functor, its category of elements is not necessarily complete, and so we
need to refine the notion of G being continuous to this case.

Definition 11 (Relative continuity). Let C be a category, C0 a complete
category, and U : C ⇒ C0 a functor. If I is a small category, and X : I → C
is a diagram, we say that a cone A → X in C is a U -limit cone, or limit cone
relative to U , if the induced cone UA → UX is a limit cone in C0. A functor
C ⇒ hSet is continuous relative to U if it maps U -limit cones to limit cones in
hSet.

In the special case C0 ≡ hSet, the functor U in Definition 11 is continuous
relative to itself. Also note that if C is complete and U creates limits, then
relative continuity with respect to U reduces to ordinary continuity. If C is a
complete category, and F : C ⇒ hSet is an arbitrary functor, the category

∫ C
F

of elements of F is equipped with a forgetful functor into C. We will implicitly
consider relative limit cones and relative continuity with respect to this forgetful
functor, unless specified otherwise. Note that if C is complete and F is continuous,
then

∫ C
F is also complete, and relative continuity of functors on

∫ C
F is the same

as continuity, as observed above.
We can now give a precise definition of what is needed to specify a

constructor:

Definition 12 (Constructor specifications). A constructor specification on
a complete category C is given by:

– a functor F : C ⇒ hSet, called the argument functor of the specification;
– a relatively continuous functor G :

∫ C
F ⇒ hSet, called the target functor.

Given a constructor specification, we can define the corresponding category
of algebras. In Theorem 25, we will see that the assumptions of Definition 12
guarantee that this category is complete.

Definition 13 (Category of algebras). Let (F,G) be a constructor specifi-
cation on a complete category C. The category of algebras of (F,G) is denoted
C.(F,G), and is defined as follows:

1 More concretely, elements of a sort correspond to representable functors for algebras
over a single generator for that sort, while equalities correspond to algebras with no
generators and the given equality as the only relation. Clearly, representable functors
are continuous, and the converse holds for reasonable functors (e.g. accessible ones).
However, we do not attempt to make this construction precise here, and the following
results do not depend on it.

Quotient Inductive-Inductive Types 301

– objects are pairs (X, θ), where X is an object of C, and θ : (x : FX) → G(X,x)
is a dependent function (in hSet);

– morphisms (X, θ) → (Y, ψ) are given by morphisms f : X → Y in C, with the
property that for all x : FX,

ψ(F (f)x) = G(f)(θ x),

where f : (X,x) → (Y, F (f)x) is the morphism in
∫ C

F determined by f .

We think of C.(F,G) as a category of “dependent dialgebras” [20]. Note that
there is an obvious forgetful functor C.(F,G) → C.

Similarly to how we defined sort specifications (Definition 3), we now have
all the necessary notions in place to be able to give the full definition of a QIIT.

Definition 14 (QIIT descriptions). A QIIT description is given by

– a sort specification H0, . . . ,Hn−1;
– a list of constructor specifications (F0, G0), . . . , (Fn−1, Gn−1) on B0, . . . ,Bn−1

respectively, where B0 is the base category of the given sort specification, and
Bi+1 is the category of algebras of (Fi, Gi).

For Definition 14 to make sense, the categories Bi need to be complete,
since constructor specifications are only defined on complete categories. This
will follow from Theorem 25.

Example 15 (Permutable trees). The constructor leaf : T (A) from Example 1
can be specified by functors F0 : hSet ⇒ hSet and G0 :

∫ hSet
F0 ⇒ hSet, where

F0(X) :≡ 1 and G0(X, l) :≡ X. Note how F0 specifies the (trivial) arguments of
leaf, and G0 the target. Next the constructor node : (A → T (A)) → T (A) can be
specified by functors F1 : hSet• ⇒ hSet and G1 :

∫ hSet•F1 ⇒ hSet, where hSet•
is the category of pointed sets (we think of the point as the previous constructor
leaf): F1 and G1 are defined as F1(X, l) :≡ A → X and G1(X, l, f) :≡ X, so that

node : (f : F1(T (A), leaf)) → G1(T (A), leaf, f).

Theorem 18 will show that G0 and G1 are relatively continuous.
The corresponding category of algebras for this constructor specification

(F1, G1) for node is equivalent to the category whose objects are triples (X, l, n)
where X : hSet, l : A, and n : (A → X) → X. After specifying also the mix-
constructor, the new category of algebras further contains a dependent function
p : (f : A → X) → (e : X ∼= X) → n(f) = n(f ◦ e).

Example 16 (Contexts and types). The constructor σeq of type

(Γ : Con)(A : Ty(Γ))(B : Ty(extΓ A)) → ext (extΓ A)B =Con extΓ (σ Γ AB)

from Example 2 is specified in the context of the previous constructors ε, ext and
σ by functors F : C ⇒ hSet and G :

∫ C
F ⇒ hSet, where C is the category of

algebras of the previous constructors, with

F (C, T, ε, ext, σ) :≡ Σ(Γ : C).Σ(A : T (Γ)).T (ext, Γ A)

302 T. Altenkirch et al.

and

G(C, T, ε, ext, σ, Γ,A,B) :≡ ext (extΓ A)B =C extΓ (σ Γ AB).

Theorem 23 will show that G is relatively continuous. The corresponding
category of algebras for this constructor specification has objects tuples
(C, T, e, c, b, s, seq) where (C, T, e, c, b, s) is an algebra for the previous construc-
tors, and

seq : (Γ : C) → (A : T (Γ)) → (B : T (c Γ A)) → c (c Γ A)B =C c Γ (s Γ AB).

3.2 Point Constructors

If C is the base category for a sort signature as in Definition 3, we can define
specific target functors C ⇒ hSet which are guaranteed to be relatively continu-
ous. Constructors having those as targets are referred to as point constructors.
Intuitively, a point constructor is an operation that returns an element (point)
of one of the sorts. The corresponding target functor is the forgetful functor
that projects out the chosen sort. However, sorts can be dependent, so such a
projection needs to be defined on a category of elements.

Specifically, let C be a finitely complete category, H : C ⇒ hSet a functor,
and C′ the extended base category with one more sort indexed over H. Recall
from Definition 13 that the objects of C′ are pairs (X,P), where X is an object
of C, and P is a family of sets indexed over HX. Let VH : C′ ⇒ C be the forgetful
functor. We define the base target functor corresponding to H to be the functor
UH :

∫ C′
(H ◦ VH) ⇒ hSet given by

UH(X,P, x) = P (x).

In other words, given an object X of C, a family P over HX, and a point x in
the base, the functor UH returns the fibre of the family P over x. The action of
UH on morphisms is the obvious one.

Example 17 (Permutable trees). In Example 15, the functor G0 :
∫ hSet

F0 ⇒ hSet

specifying the target of leaf is the composition of the forgetful
∫ hSet

F0 ⇒ hSet
with the base target functor for the only sort, in this case the identity id : hSet ⇒
hSet.

Note that UH = id in Example 17 is relatively continuous, as required by Def-
inition 12. In the rest of this section, we will show that this is true in general.
Given a category C and a functor F : C ⇒ hSet, it is well known that the slice
category over F of the functor category C ⇒ hSet is equivalent to the functor
category

∫ C
F ⇒ hSet (see for example [24, Proposition 1.1.7]). Given a functor

G : C ⇒ hSet and a natural transformation α : G → F , we will refer to the func-
tor G :

∫ C
F ⇒ hSet corresponding to α as the functor of fibres of α. Concretely,

G maps an object (X,x), where x : FX, to the fibre of αX over x. The following
theorem is proved by noting that UH is a functor of fibres.

Quotient Inductive-Inductive Types 303

Theorem 18 (Base target functors are relatively continuous). Let C be
a complete category, H : C ⇒ hSet any functor, and C′ the extended base category
corresponding to H. Then the base target functor UH is relatively continuous. ��

3.3 Reindexing Target Functors

In many cases, we can obtain suitable target functors by composing the desired
base target functor with the forgetful functor to the appropriate stage of the
base category. When building constructors one at a time, it will follow from
Theorems 25 and 10 applied to the previous steps that this forgetful functor is
continuous, and the relative continuity of the target functor will follow. In more
complicated examples, composing with a forgetful functor is not quite enough.
We often want to “substitute into” or reindex a target functor to target a spe-
cific element. For example, in the context of Example 2, consider a hypothetical
modified σ constructor of the form

σ′ :
(
Σ(Γ : Con).Σ(A : Ty(Γ)).Ty(extΓ A)

) → Ty(extΓ A).

We want the target functor to return the set Ty(extΓ A), and not just Ty(x) for
a new argument x, which is the result of the base target functor. We can obtain
the desired target functor as a composition

∫ C
F

S ��
∫ Fam(hSet)

π1
UH �� hSet, (1)

where C is the category with objects tuples (C, T, ε, ext), F : C ⇒ hSet is
the functor giving the arguments of the constructor σ′, UH is the base tar-
get functor corresponding to the second sort, and S is the functor defined by
S(C, T, ε, ext, Γ,A,B) :≡ (C, T, extΓ A).

Since the functors S that we compose with in order to “substitute” are of a
special form, the resulting functor will still be relatively continuous when starting
with a relatively continuous functor. This is made precise by the following result:

A F ��

U ′

��

B
V ′

��
C

G
��

U

��

D
V

��
C0 D0

Lemma 19 (Preservation of relative limit cones).
Suppose given is a commutative diagram of categories and
functors as shown on the right, where C0 and D0 are com-
plete, and G maps U -limit cones to V -limit cones. Then F
maps (U ◦ U ′)-limit cones to (V ◦ V ′)-limit cones. In partic-
ular, if C and D are complete and G is continuous, then F
preserves relative limit cones. ��

∫ C
F

S ��

��

∫ Fam(hSet)
π1

UH ��

��

hSet

C V �� Fam(hSet)

Example 20. Starting from the situation
in (1) we can form the diagram shown on
the left, where V : C ⇒ Fam(hSet) is the
forgetful functor and hence continuous.
It follows from the second statement of
Lemma 19 that S preserves relative limit
cones, hence G = UH ◦ S is relatively
continuous by Theorem 18.

304 T. Altenkirch et al.

3.4 Path Constructors

Path constructors are constructors where the target functor G returns an equality
type. They can e.g. be used to express laws when constructing an initial algebra
of an algebraic theory as a QIT. We saw an example of this in Example 1, where
we had a path constructor of the form

mix : (f : A → T) → (e : A ∼= A) → node(f) = node(f ◦ e).

The argument functor for mix is entirely unproblematic. However, it is perhaps
not so clear that the target functor, which sends (X, l, n, f, e) to the equality type
n(f) =X n(f ◦ e), is relatively continuous. The aim of the current section is to
show this for any functor of this form. We first observe that the prototypical such
equality functor is relatively continuous, and then show that any other target
functor for a path constructor can be obtained by substitution using Lemma19.

Definition 21. Let Eq :
∫ hSet(id × id) ⇒ hSet be the functor defined on objects by

Eq(X,x, y) :≡ x = X y and on morphisms by Eq(f, px, py) :≡ px � (ap f −) � p−1
y .

It is not hard to see that Eq is a functor. Furthermore, Eq is the functor of
fibres of the obvious diagonal natural transformation Δ : id → id × id.

Lemma 22. The standard equality functor Eq is relatively continuous. ��
The lemma we have just given is central to the observation that a large class

of equality functors are suitable targets for constructors:

Theorem 23 (Equality functors are relatively continuous). Let C be a
complete category, F : C ⇒ hSet any functor, and G :

∫ C
F ⇒ hSet a relatively

continuous functor. Suppose given two global elements l, r of G, i.e. natural
transformations l, r : 1 → G. The map

EqG(l, r) :
∫ C

F → hSet

with EqG(l, r)(Y) = (lY =G(Y) rY) extends to a relatively continuous functor. ��
Example 24 (Permutable trees). The target of the mix constructor from Exam-
ple 1 can be obtained as an equality functor in this sense. We take G to be
the underlying sort, which is relatively continuous by the results of the previ-
ous section. The global elements l and r are defined by l(X,l,n,f,e) :≡ n(f) and
r(X,l,n,f,e) :≡ n(f ◦ e). Their naturality can easily be verified directly.

Iterating equality functors, one can also express higher path constructors,
but in our limited setting of inductively defined sets, there is little reason to go
beyond one level of path constructors — higher ones will have no effect on the
resulting inductive type. However, we believe that the ease with which Theo-
rem 23 can be applied iteratively will be an important feature when generalising
our technique to general higher inductive types. We discuss this further in Sect. 5.

Quotient Inductive-Inductive Types 305

3.5 Categories of Algebras are Complete

Recall from Definition 13 that the category of algebras C.(F,G) for a constructor
specification (F,G) on a complete category C has “dependent (F,G)-dialgebras”
as objects, and maps that commute with the dialgebra structure as morphisms.
In this section, we will show that C.(F,G) is complete, and that its forgetful
functor is continuous. The significance of this result is twofold: First of all, it
enables the use of limits when reasoning about algebras; in particular, we will
show in Sect. 4 how, using products and equalisers, one can extend the classical
equivalence between initiality and induction for ordinary inductive types to our
setting. Secondly, it goes a long way towards establishing existence of initial
algebras; since a category of algebras over n + 1 constructors is complete, and
the forgetful functor to the category of algebras over the first n preserves limits,
the adjoint functor theorem says that this functor has a left adjoint if and only
if it satisfies the solution set condition. Applying this argument at every stage,
we get a left adjoint for the forgetful functor down to hSet, and in particular
an initial object. There is no reason to expect the solution set condition to hold
at this generality, but we expect it to follow from appropriate “accessibility”
conditions on the argument functors. This is discussed further in Sect. 5.

Theorem 25 (Categories of algebras are complete). Let (F,G) be a con-
structor specification on a complete category C. Then C.(F,G) is complete. ��

4 Elimination Principles

So far, we have given rules for specifying a QIIT by giving a sort signature
and a list of constructors. As type-theoretical rules, these correspond to the
formation and introduction rules for the QIIT. In this section, we introduce the
corresponding elimination rules, stating that a QIIT is the smallest type closed
under its constructors. We show that a categorical formulation of the elimination
rules is equivalent to the universal property of initiality.

4.1 The Section Induction Principle

The elimination principle for an algebra X states that every fibred algebra over X
has a section, where a fibred algebra over X is an algebra family “Q : X → hSet”,
and a section of it a dependent algebra morphism “(x : X) → Q(x)”.2 The usual
correspondence between type families and fibrations extends to algebras, and
so we formulate the elimination rule for X as X being section inductive in the
category of algebras in the following sense:

Definition 26 (Section inductive). An object X of a category C is section
inductive if for every object Y of C and morphism p : Y → X, there exists
s : X → Y such that p ◦ s = idX .
2 See Dijkstra’s thesis [16, Sect. 5.4] for the general definition of fibred algebras and
their morphisms — here we restrict ourselves to examples only for space reasons.

306 T. Altenkirch et al.

For an algebra X, the existence of the underlying function(s) X → Y corre-
sponds to the elimination rules, while the fact that they are algebra morphisms
corresponds to the computation rules.

Example 27 (Permutable trees). Consider permutable-tree algebras, e.g. tuples
(X, l, n, p) as in Example 15. A fibred permutable-tree algebra over (X, l, n, p)
consists of Q : X → hSet together with ml : Q(l) and

mn : (f : A → X) → (g : (a : A) → Q(f a)) → Q(n f)
mp : (f : A → X) → (g : (a : A) → Q(f a)) → (e : A ∼= A)

→ mn f g =[ap Q p] mn (f ◦ e) (g ◦ e)

Here the type x = [p] y is the types of equalities between elements x : A
and y : B in different types, themselves related by an equality proof p : A = B.
This data can be arranged into an ordinary algebra Σ(x : X).Q(x), together
with an algebra morphism π1 :

(
Σ(x : X).Q(x)

) → X. A section of π1 is
a dependent function h : (x : X) → Q(x). Since h comes from an algebra
morphism, we further know e.g. h(l) = ml and h(n f) = mn f (h◦f). Conversely,
every algebra morphism g : (X ′, l′, n′, p′) → (X, l, n, p) gives rise to a fibred
algebra (Q,ml,mn,mp) by considering the fibres Q(x) = Σ(y : A′).g(y) = x
of p. The points ml, mn and the path mp arise from the proof that g preserves
l′, n′ and p′.

Example 28 (Contexts and types). For context-and-types algebras from Exam-
ple 16, a fibred algebra over (C, T, e, c, b, s, seq) consists of Q : C → hSet and
R : (x : C) → T (x) → Q(x) → hSet, together with me : Q(e) and

mc : (Γ : C) → (x : Q(Γ)) → (A : T (Γ)) → R(Γ,A, x) → Q(c Γ A)
mb : (Γ : C) → (x : Q(Γ)) → R(Γ, b Γ, x)
ms : (Γ : C) → (x : Q(Γ)) → (A : T (Γ)) → (y : R(Γ,A, x) → (B : T (c Γ A))

→ (z : R(c Γ A,B,mc Γ xAy)) → R(Γ, s Γ AB, x)
mseq : (Γ : C) → (x : Q(Γ)) → (A : T (Γ)) → (y : R(Γ,A, x))

→ (B : T (c Γ A)) → (z : R(c Γ A,B,mc Γ xAy))
→ mc (c Γ A) (mc Γ xAy)B z = [ap Q (seq Γ AB)]

mc Γ x (s Γ AB) (ms Γ xAy B z)

Again, this data can be arranged into an ordinary algebra with base C ′ : hSet,
T ′ : C ′ → hSet, where C ′ = Σ(x : C).Q(x) and T ′(x, q) = Σ(y : T (x)).R(x, y, q),
together with an algebra morphism (π1, π1) : (C ′, T ′) → (C, T). A section of this
morphism gives functions f : (x : C) → Q(x) and g : (x : C) → (y : T (x)) →
R(x, y, f x) that preserve the algebra structure.

A general account of the equivalence between the usual formulation of the
elimination rules and the section induction principle is in Dijkstra [16, Sect. 5.4].

Quotient Inductive-Inductive Types 307

4.2 Initiality, and its Relation to the Section Induction Principle

The section induction principle for an algebra X matches our intuitive under-
standing of the elimination rules for X quite well, but it is perhaps a priori not
so clear that e.g. satisfying it defines an algebra uniquely up to equivalence. In
this section, we show that this is the case by proving that the section induction
principle is equivalent to the categorical property of initiality. Recall that a type
is contractible if it is equivalent to the unit type [34, Definition 3.11.1].

Definition 29 (Initiality). An object X of a category C is (homotopy) initial
if for every object Y of C, the set of morphisms X → Y is contractible.

It is easy to see that initiality implies section induction, while the converse
requires additional structure on C:

Lemma 30. If an object X in a category C is initial, then it is section inductive.
If C has finite limits and X is section inductive, then X is initial. ��

From here, we can show the main theorem of the current section. The proof
uses the fact that both statements involved are mere propositions, i.e. they have
at most one proof.

Theorem 31 (Initiality ∼= section induction). An object X in a in a cate-
gory of algebras C.(F,G) being initial is equivalent to it being section inductive. ��

As an application, we can now reason about QIITs using their categories of
algebras. For instance, we get a short proof of the following fact:

Corollary 32. The interval is equivalent to the unit type.

Proof. By Theorem 31, the interval is the initial object in the category with
objects Σ(X : hSet).Σ(x : X).Σ(y : X).x =X y, while the unit type is the
initial object in the category with objects Σ(X : hSet).X. By contractibility
of singleton types [34, Lemma 3.11.8], the former is equivalent to the latter,
and since initiality is a universal property, the two initial objects coincide up to
equivalence. ��

5 Conclusions and Further Work

We have developed a semantic framework for QIITs: A QIIT description gives
rise to a category of algebras, and the initial object of this category represent
the types and constructors of the QIIT. This generalises the usual functorial
semantics of inductive types to a more general setting. So far we have verified the
appropriateness of this setting by means of examples. In future work, we would
like to explicitly relate the syntax of QIITs to the corresponding semantics.

Our categories of algebras are complete. This is helpful for the metatheory
of QIITs, as demonstrated by the proof of initiality being equivalent to section
induction (Theorem 31), justifying elimination principles. Of course, complete-
ness is not by itself sufficient to derive the existence of initial algebras, but it

308 T. Altenkirch et al.

suggests that it should be possible to restrict the argument functors to guaran-
tee this, possibly by reducing QIITs to a basic type former playing an analogous
role to that of W-types for inductive types. We believe that completeness of
the categories of algebras allows an existence proof using the adjoint functor
theorem.

We have restricted our attention to QIITs, but we believe that our construc-
tion is applicable to general HITs (and even HIITs). While at first glance such
an extension of our framework seems to require an internal theory of (∞, 1)-
categories, we believe that it is enough to keep track of only a very limited
number of coherence conditions, making this extension possible even without
solving the well-known problem of specifying an infinite tower of coherences in
HoTT.

Other possible future directions include the combination of QIITs and
induction-recursion, and the possibility of generalising coinductive types along
similar lines. These generalisations should be driven by examples, similar to how
the examples discussed in the current paper have motivated the need for a theory
of QIITs.

Acknowledgements. We thank Ambrus Kaposi and Jakob von Raumer for many
interesting discussions, and the anonymous referees for their valuable comments. This
research was supported by EPSRC grants EP/M016994/1 and EP/K023837/1, as well
as AFOSR award FA9550-16-1-0029.

References

1. Altenkirch, T., Kaposi, A.: Type theory in type theory using quotient inductive
types. In: Principles of Programming Languages, pp. 18–29. ACM (2016)

2. Altenkirch, T., Danielsson, N.A., Kraus, N.: Partiality, revisited. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 534–549. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 31

3. Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., Nordvall Forsberg, F.: Quo-
tient inductive-inductive types (2018). arXiv:1612.02346

4. Angiuli, C., Morehouse, E., Licata, D.R., Harper, R.: Homotopical patch theory.
In: International Conference on Functional Programming, pp. 243–256 (2014)

5. Awodey, S., Warren, M.A.: Homotopy theoretic models of identity types. Math.
Proc. Camb. Philos. Soc. 146(1), 45–55 (2009)

6. Basold, H., Geuvers, H., van der Weide, N.: Higher inductive types in programming.
J. Univ. Comput. Sci. 23(1), 63–88 (2016)

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

8. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23(9), pp. 552–593 (2013)

9. Brunerie, G.: On the homotopy groups of spheres in homotopy type theory. Ph.D.
thesis, Université de Nice (2016)

10. Buchholtz, U., Rijke, E.: The real projective spaces in homotopy type theory. In:
Logic in Computer Science, pp. 1–8 (2017)

https://doi.org/10.1007/978-3-662-54458-7_31
http://arxiv.org/abs/1612.02346
https://doi.org/10.1007/978-3-662-07964-5

Quotient Inductive-Inductive Types 309

11. Cavallo, E.: Synthetic cohomology in Homotopy Type Theory. Master’s thesis,
Carnegie-Mellon University (2015)

12. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay monad by weak bisim-
ilarity. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS,
vol. 9399, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25150-9 8

13. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay monad by weak bisim-
ilarity. Math. Struct. Comput. Sci. 1–26 (2017)

14. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
theorem prover. In: Conference on Automated Deduction (2015)

15. Diaconescu, R.: Axiom of choice and complementation. Proc. Am. Math. Soc.
51(1), 176–178 (1975)

16. Dijkstra, G.: Quotient inductive-inductive types. Ph.D. thesis, University of
Nottingham (2017)

17. Dybjer, P.: Inductive families. Formal Aspects Comput. 6(4), 440–465 (1994)
18. Dybjer, P., Moeneclaey, H.: Finitary higher inductive types in the groupoid model.

In: Silva, A. (ed.) Mathematical Foundations of Programming Semantics (2017)
19. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In:

Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48959-2 11

20. Hagino, T.: A categorical programming language. Ph.D. thesis, University of
Edinburgh (1987)

21. Harper, R., Pollack, R.: Type checking with universes. Theor. Comput. Sci. 89(1),
107–136 (1991)

22. Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In:
Twenty-Five Years of Constructive Type Theory of Oxford Logic Guides, vol. 36.
Oxford University Press, New York, pp. 83–111 (1998)

23. Hou (Favonia), K.B., Finster, E., Licata, D.R., Lumsdaine, P.L.: A mechanization
of the Blakers-Massey connectivity theorem in homotopy type theory. In: Logic in
Computer Science (2016)

24. Johnstone, P.: Sketches of an Elephant: A Topos Theory Compendium. Oxford
University Press, New York (2002)

25. Kapulkin, C., Lumsdaine, P.L.: The simplicial model of univalent foundations (after
Voevodsky) (2016). arXiv:1211.2851

26. Licata, D.R., Finster, E.: Eilenberg-Maclane spaces in homotopy type theory. In:
Logic in Computer Science, pp. 66:1–66:9 (2014)

27. Licata, D.R., Shulman, M.: Calculating the fundamental group of the circle in
homotopy type theory. In: Logic in Computer Science, pp. 223–232 (2013)

28. Lumsdaine, P.L., Shulman, M.: Semantics of higher inductive types (2017).
arXiv:1705.07088

29. Martin-Löf, P.: An intuitionistic theory of types. Published in Twenty-Five Years
of Constructive Type Theory (1972)

30. Nordvall Forsberg, F.: Inductive-inductive definitions. Ph.D. thesis, Swansea Uni-
versity (2013)

31. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

32. Shulman, M.: Homotopy type theory: the logic of space. In: New Spaces for Math-
ematics and Physics (2017, to appear). arXiv:1703.03007

33. Sojakova, K.: Higher inductive types as homotopy-initial algebras. In: Principles
of Programming Languages, pp. 31–42. ACM (2015)

https://doi.org/10.1007/978-3-319-25150-9_8
https://doi.org/10.1007/978-3-319-25150-9_8
https://doi.org/10.1007/3-540-48959-2_11
http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1705.07088
http://arxiv.org/abs/1703.03007

310 T. Altenkirch et al.

34. The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics, Institute for Advanced Study (2013). https://
homotopytypetheory.org/book

35. Veltri, N.: A type-theoretical study of nontermination. Ph.D. thesis, Tallinn
University of Technology (2017)

36. Voevodsky, V.: The equivalence axiom and univalent models of type theory (talk
at CMU on February 4, 2010). arXiv:1402.5556

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
http://arxiv.org/abs/1402.5556
http://creativecommons.org/licenses/by/4.0/

Category Theory and Quantum Control

Guarded Traced Categories

Sergey Goncharov(B) and Lutz Schröder(B)

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{Sergey.Goncharov,Lutz.Schroeder}@fau.de

Abstract. Notions of guardedness serve to delineate the admissibility of
cycles, e.g. in recursion, corecursion, iteration, or tracing. We introduce
an abstract notion of guardedness structure on a symmetric monoidal
category, along with a corresponding notion of guarded traces, which are
defined only if the cycles they induce are guarded. We relate structural
guardedness, determined by propagating guardedness along the oper-
ations of the category, to geometric guardedness phrased in terms of
a diagrammatic language. In our setup, the Cartesian case (recursion)
and the co-Cartesian case (iteration) become completely dual, and we
show that in these cases, guarded tracedness is equivalent to presence
of a guarded Conway operator, in analogy to an observation on total
traces by Hasegawa and Hyland. Moreover, we relate guarded traces to
unguarded categorical uniform fixpoint operators in the style of Simp-
son and Plotkin. Finally, we show that partial traces based on Hilbert-
Schmidt operators in the category of Hilbert spaces are an instance of
guarded traces.

1 Introduction

In models of computation, various notions of guardedness serve to control
cyclic behaviour by allowing only guarded cycles, with the aim to ensure
properties such as solvability of recursive equations or productivity. Typical
examples are guarded process algebra specifications [6,29], coalgebraic guarded
(co-)recursion [27,33], finite delay in online Turing machines [9], and produc-
tive definitions in intensional type theory [1,30], but also contractive maps in
(ultra-)metric spaces [24].

A highly general model for unrestricted cyclic computations, on the other
hand, are traced monoidal categories [22]; besides recursion and iteration,
they cover further kinds of cyclic behaviour, e.g. in Girard’s Geometry of
Interaction [4,14] and quantum programming [3,34]. In the present paper we
parametrize the framework of traced symmetric monoidal categories with a
notion of guardedness, arriving at (abstractly) guarded traced categories, which
effectively vary between two extreme cases: symmetric monoidal categories
(nothing is guarded) and traced symmetric monoidal categories (everything is
guarded). In terms of the standard diagrammatic language for traced monoidal
categories, we decorate input and output gates of boxes to indicate guarded-
ness; the diagram governing trace formation would then have the general form
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 313–330, 2018.
https://doi.org/10.1007/978-3-319-89366-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_17&domain=pdf

314 S. Goncharov and L. Schröder

depicted in Fig. 1 – that is, we can only form traces connecting guarded (black)
output gates to input gates that are unguarded (black), i.e. not assumed to be
already guarded.

Fig. 1. Guarded trace

We provide basic structural results on our notion
of abstract guardedness, and identify a wide array of
examples. Specifically, we establish a geometric charac-
terization of guardedness in terms of paths in diagrams;
we identify a notion of guarded ideal, along with a con-
struction of guardedness structures from guarded ideals
and simplifications of this construction for the (co-)Cartesian and the Carte-
sian closed case; and we describe ‘vacuous’ guardedness structures where traces
do not actually generate proper diagrammatic cycles. In terms of examples, we
begin with the case where the monoidal structure is either product (Cartesian),
corresponding to guarded recursion, or coproduct (co-Cartesian), for guarded
iteration; the axioms for guardedness allow for a basic duality that indeed makes
these two cases precisely dual. For total traces in Cartesian categories, Hasegawa
and Hyland observed that trace operators are in one-to-one correspondence with
Conway fixpoint operators [18,19]; we extend this correspondence to the guarded
case, showing that guarded trace operators on a Cartesian category are in one-to-
one correspondence with guarded Conway operators. In a more specific setting,
we relate guarded traces in Cartesian categories to unguarded categorical uniform
fixpoints as studied by Crole and Pitts [11] and by Simpson and Plotkin [37,38].
Concluding with a case where the monoidal structure is a proper tensor product,
we show that the partial trace operation on (infinite-dimensional) Hilbert spaces
is an instance of vacuous guardedness; this result relates to work by Abramsky,
Blute, and Panangaden on traces over nuclear ideals, in this case over Hilbert-
Schmidt operators [2].

Related Work. Abstract guardedness serves to determine definedness of a
guarded trace operation, and thus relates to work on partial traces. We dis-
cuss work on nuclear ideals [2] in Sect. 6. In partial traced categories [17,26],
traces are governed by a partial equational version (consisting of both strong and
directed equations) of the Joyal-Street-Verity axioms; morphisms for which trace
is defined are called trace class. A key difference to the approach via guardedness
is that being trace class applies only to morphisms with inputs and outputs of
matching types while guardedness applies to arbitrary morphisms, allowing for
compositional propagation. Also, the axiomatizations are incomparable: Unlike
for trace class morphisms [17, Remark 2.2], we require guardedness to be closed
under composition with arbitrary morphisms (thus covering contractivity but
not, e.g., monotonicity as in the modal μ-calculus); on the other hand, as noted
by Jeffrey [21], guarded traces, e.g. of contractions, need not satisfy Vanishing
II as a Kleene equality as assumed in partial traced categories. Some approaches
treat traces as partial over objects [8,20]. In concrete algebraic categories, par-
tial traces can be seen as induced by total traces in an ambient category of
relations [5]. We discuss work on guardedness via endofunctors in Remark 23.

Guarded Traced Categories 315

2 Preliminaries

We recall requisite categorical notions; see [25] for a comprehensive introduction.

Symmetric Monoidal Categories. A symmetric monoidal category (C,⊗, I)
consists of a category C (with object class |C|), a bifunctor ⊗ (tensor product),
and a (tensor) unit I ∈ |C|, and coherent isomorphisms witnessing that ⊗ is,
up to isomorphism, a commutative monoid structure with unit I. For the latter,
we reserve the notation αA,B,C : (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C) (associator),
γA,B : A ⊗ B ∼= B ⊗ A (symmetry), and υA : I ⊗ A ∼= A (left unitor); the right
unitor υ̂A : A ⊗ I ∼= A is expressible via the symmetry. A symmetric monoidal
category is Cartesian if the monoidal structure is finite product (i.e. ⊗ = ×,
and I = 1 is a terminal object), and, dually, co-Cartesian if the monoidal struc-
ture is finite coproduct (i.e. ⊗ = +, and I = ∅ is an initial object). Coproduct
injections are written ini : Xi → X1 + X2 (i = 1, 2), and product projections
pri : X1 × X2 → Xi. Various notions of algebraic tensor products also induce
symmetric monoidal structures; see Sect. 6 for the case of Hilbert spaces. One
has an obvious expression language for objects and morphisms in symmetric
monoidal categories [36], the former obtained by postulating basic objects and
closing under I and ⊗, and the latter by postulating basic morphisms of given
profile and closing under ⊗, I, composition, identities, and the monoidal isomor-
phisms, subject to the evident notion of well-typedness. Morphism expressions are
conveniently represented as diagrams consisting of boxes representing the basic
morphisms, with input and output gates corresponding to the given profile. Ten-
soring is represented by putting boxes on top of each other, and composition by
wires connecting outputs to inputs [36]. In a traced symmetric monoidal category
one has an additional operation (trace) that essentially enables the formation of
loops in diagrams, as in Fig. 1 (but without decorations).

Monads and (Co-)algebras. A(n F)-coalgebra for a functor F : C → C is
a pair (X, f : X → FX) where X ∈ |C|, thought of as modelling states and
generalized transitions [33]. A final coalgebra is a final object in the category of
coalgebras (with C-morphisms h : X → Y such that (Fh)f = gh as morphisms
(X, f) → (Y, g)), denoted (νF, out : νF → FνF) if it exists. Dually, an F -
algebra has the form (X, f : FX → X). A monad T = (T, μ, η) on a category
C consists of an endofunctor T on C and natural transformations η : Id → T
(unit) and μ : T 2 → T (multiplication) subject to standard equations [25]. As
observed by Moggi [31], monads can be seen as capturing computational effects
of programs, with TX read as a type of computations with side effects from
T and results in X. In this view, the Kleisli category CT of T, which has the
same objects as C and HomCT

(X,Y) = HomC(X,TY), is a category of side-
effecting programs. A monad is strong if it is equipped with a strength, i.e.
a natural transformation X × TY → T (X × Y) satisfying evident coherence
conditions (e.g. [31]). A T -algebra (A, a) is an (Eilenberg-Moore) T-algebra (for
the monad T) if additionally aη = id and a(Ta) = aμA; the category of T-
algebras is denoted CT.

316 S. Goncharov and L. Schröder

3 Guarded Categories

We now introduce our notion of guarded structure. A standard example of guard-
edness are guarded definitions in process algebra. E.g. in the definition P = a.P ,
the right hand occurrence of P is guarded, ensuring unique solvability (by a
process that keeps outputting a). A further example is contractivity of maps
between complete metric spaces. We formulate abstract closure properties for
partial guardedness where only some of the inputs and outputs of a morphism
are guarded. Specifically, we distinguish guarded outputs and guarded inputs (D
and B, respectively, in the following definition), with the intended reading that
guarded outputs yield guarded data provided guarded data is already provided
at guarded inputs, while unguarded inputs may be fed arbitrarily.

Fig. 2. Axioms of guarded categories

Definition 1 (Guarded category). An (abstractly) guarded category is a
symmetric monoidal category (C,⊗, I) equipped with distinguished subsets
Hom•(A ⊗ B,C ⊗ D) ⊆ Hom(A ⊗ B,C ⊗ D) of partially guarded morphisms
for A,B,C,D ∈ |C|, satisfying the following conditions:

(uni⊗) γI,A ∈ Hom•(I ⊗ A,A ⊗ I);
(vac⊗) f ⊗ g ∈ Hom•(A ⊗ B,C ⊗ D) for all f : A → C, g : B → D;
(cmp⊗) g ∈ Hom•(A ⊗ B,E ⊗ F) and f ∈ Hom•(E ⊗ F,C ⊗ D) imply f g ∈

Hom•(A ⊗ B,C ⊗ D);
(par⊗) for f ∈ Hom•(A ⊗ B,C ⊗ D), g ∈ Hom•(A′ ⊗ B′, C ′ ⊗ D′), the evident

transpose of f ⊗ g is in Hom•((A ⊗ A′) ⊗ (B ⊗ B′), (C ⊗ C ′) ⊗ (D ⊗ D′)).

We emphasize that Hom•(A ⊗ B,C ⊗ D) is meant to depend individually on A,
B, C, D and not just on A ⊗ B and C ⊗ D.

One easily derives a weakening rule stating that if f ∈ Hom•((A ⊗ A′) ⊗ B,C ⊗
(D′⊗D)), then the obvious transpose of f is in Hom•(A⊗(A′⊗B), (C⊗D′)⊗D).

B

A C

DWe extend the standard diagram language for symmet-
ric monoidal categories (Sect. 2), representing morphisms f ∈
Hom•(A ⊗ B,C ⊗ D) by decorated boxes as shown on the right,
with black bars marking the unguarded input gates A and the guarded output
gates D. Weakening then corresponds to shrinking the black bars of decorated
boxes. Figure 2 depicts the above axioms in this language. Solid boxes represent
the assumptions, while dashed boxes represent the conclusions. The latter only
occur in the derivation process and do not form part of the actual diagrams rep-
resenting concrete morphisms. We silently identify object expressions and sets

Guarded Traced Categories 317

of gates in diagrams. Given a (well-typed) morphism expression e, a judgement
e ∈ Hom•(A ⊗ B,C ⊗ D), called a guardedness typing of e, is derivable if it can
be derived from the assumed guardedness typing of the constituent basic boxes
of e using the rules in Definition 1. We have an obvious notion of (directed)
paths in diagrams; a path is guarded if it passes some basic box f through an
unguarded input gate and a guarded output gate (intuitively, guardedness is
then introduced along the path as the passage through f will guarantee guarded
output without assuming guarded input). We then have the following geometric
characterization of guardedness typing:

Theorem 2. For a well-typed morphism expression e ∈ Hom(A ⊗ B,C ⊗ D),
the guardedness typing e ∈ Hom•(A ⊗ B,C ⊗ D) is derivable iff in the diagram
of e, every path from an input gate in A to an output gate in D is guarded.

Every symmetric monoidal category has both a largest (Hom•(A ⊗ B,C ⊗ D) =
Hom(A ⊗ B,C ⊗ D)) and a least guarded structure:

Lemma and Definition 3 (Vacuous guardedness). Every symmetric
monoidal category is guarded under taking f ∈ Hom•(A ⊗ B,C ⊗ D) iff f fac-
tors as

A ⊗ B
idA⊗g−−−−→ A ⊗ E ⊗ D

h⊗idD−−−−→ C ⊗ D

(eliding associativity) with g : B → E ⊗ D, h : A ⊗ E → C. This is the least
guarded structure on C, the vacuous guarded structure.

E.g. the natural guarded structure on Hilbert spaces (Sect. 6) is vacuous.

Remark 4 (Duality). The rules and axioms in Fig. 2 are stable under 180◦-
rotation, that is, under reversing arrows and applying the monoidal symmetry
on both sides (this motivates decorating the unguarded inputs). Consequently, if
C is guarded, then so is the dual category Cop, with guardedness given by f ∈
Hom•

Cop(A⊗B,C ⊗D) iff the obvious transpose of f is in Hom•
C(D ⊗C,B ⊗A).

In case ⊗ is coproduct, we can simplify the description of partial guardedness:

Proposition 5. Partial guardedness in a co-Cartesian category (C,+, ∅) is
equivalently determined by distinguished subsets Homσ(X,Y) ⊆ Hom(X,Y) with
σ ranging over coproduct injections Y2 → Y1 + Y2

∼= Y , subject to the rules on
the right hand side of Fig. 3, where f : X →σ Y denotes f ∈ Homσ(X,Y), with
f ∈ Hom•(X1 + X2, Y1 + Y2) iff (f in1) ∈ Homin2(X1, Y1 + Y2).

We have used the mentioned rules for →σ in previous work on guarded iter-
ation [16] (with (vac×) called (trv), and together with weakening, which as
indicated above turns out to be derivable). By duality (Remark 4), we immedi-
ately have a corresponding description for the Cartesian case:

Corollary 6. Partial guardedness in a Cartesian category (C,×, 1) is equiv-
alently determined by distinguished subsets Homσ(X,Y) ⊆ Hom(X,Y) with σ
ranging over product projections X ∼= X1 × X2 → X1, subject to the rules on
the left hand side of Fig. 3, where f : X →σ Y denotes f ∈ Homσ(X,Y), with
f ∈ Hom•(X1 × X2, Y1 × Y2) iff pr2f ∈ Hompr1(X1 × X2, Y2).

318 S. Goncharov and L. Schröder

Fig. 3. Axioms of Cartesian (left) and co-Cartesian (right) guarded categories

Remark 7. In a co-Cartesian category, vacuous guardedness (Lemma 3) can
equivalently be described by f ∈ Hom•(A + B,C + D) iff f decomposes as
f = [in1h, g] (uniquely provided that in1 is monic), or in terms of the description
from Proposition 5, u ∈ Homin2(X,Y + Z) iff u factors through in1. Of course,
the dual situation obtains in Cartesian categories.

Example 8 (Process algebra). Fix a monad T on (C,+, ∅) and an endofunc-
tor Σ : C → C such that the generalized coalgebraic resumption transform
TΣ = νγ. T (− + Σγ) exists; we think of TΣX as a type of processes that have
side-effects in T and perform communication actions from Σ, seen as a general-
ized signature. The Kleisli category CTΣ

of TΣ is again co-Cartesian. Putting

f : X →in2 TΣ(Y + Z) ⇐⇒ outf ∈ {T (in1 + id)g | g : X → T (Y + ΣTΣ(Y + Z))}

(cf. Sect. 2 for notation), we make CTΣ
into a guarded category [16]. The stan-

dard motivating example of finitely nondeterministic processes is obtained by
taking T = Pω (finite powerset monad) and Σ = A × − (action prefixing).

Example 9 (Metric spaces). Let C be the Cartesian category of metric spaces
and non-expansive maps. Taking f : X × Y →pr2 Z iff λy. f(x, y) is contractive
for every x ∈ X makes C into a guarded Cartesian category.

4 Guardedness via Guarded Ideals

Most of the time, the structure of a guarded category is determined by morphisms
with only unguarded inputs and guarded outputs, which form an ideal :

Definition 10 (Guarded morphisms). A morphism f : X → Y in a
guarded category is guarded (as opposed to only partially guarded) if υ−1

Y f υ̂X ∈
Hom•(X ⊗ I, I ⊗ Y); we write Hom�(X,Y) for the set of guarded morphisms
f : X → Y .

Definition 11 (Guarded ideal). A family G of subsets G(X,Y) ⊆ Hom(X,Y)
(X,Y ∈ |C|) in a monoidal category (C,⊗, I) is a guarded ideal if it is closed
under ⊗ and under composition with arbitrary C-morphisms on both sides, and
G(I, I) = Hom(I, I).

Guarded Traced Categories 319

There is always a least guarded ideal, G(X,Y) = {gf | f : X → I, g : I → Y }.
Moreover, as indicated above:

Lemma and Definition 12. In a guarded category, the sets Hom�(X,Y) form
a guarded ideal, the guarded ideal induced by the guarded structure.

Conversely, it is clear that every guarded ideal generates a guarded structure by
just closing under the rules of Definition 1.

Definition 13 (Ideally guarded category). A guarded category is ideal or
ideally guarded (over G) if it is generated by some guarded ideal (G).

We give a more concrete description:

Theorem 14. Let (C,⊗, I) be ideally guarded over G. Then Hom•(A⊗B,C⊗D)
consists of the morphisms of the form

for gi in G and arbitrary p, q, fi, hi.

The transitions between guarded ideals and guarded structures are not in general
mutually inverse: The guarded structure generated the guarded ideal induced by
a guarded structure may be smaller than the original one (Example 21), and the
guarded ideal induced by the guarded structure generated by a guarded ideal G
may be larger than G (Remark 16). We proceed to analyse details.

Proposition 15. On every symmetric monoidal category, the least guarded
structure (Lemma 3) is ideal.

Remark 16. Vacuously guarded categories need not induce the least guarded
ideal (although by the next results, this does hold in the Cartesian and the co-
Cartesian case). In fact, by Lemma 3, the guarded ideal induced by the vacuous
guarded structure consists of the morphisms of the form (h ⊗ idD)(idA ⊗ g)
(eliding associativity and the unitor) where g : I → E ⊗ D, h : A ⊗ E → I:

(1)

This ideal will resurface in the discussion of Hilbert spaces (Sect. 6).

The situation is simpler in the Cartesian and, dually, in the co-Cartesian case.

Lemma 17. Let C be ideally guarded over G, and suppose that every f ∈
G(X ⊗ Y , Z) factors through f̂ ⊗ id : X ⊗ Y → V ⊗ Y for some f̂ ∈ G(X,V).
Then the guardedness structure of C induces G.

320 S. Goncharov and L. Schröder

If ⊗ = +, the premise of the lemma is automatic, since f ∈ G(X + Y,Z) can
be represented as [f in1, f in2] = [id, f in2](f in1 + id) where f in1 ∈ G(X,Z) by
the closure properties of guarded ideals. Hence, we obtain

Theorem 18. The guarded structure generated by a guarded ideal G on a co-
Cartesian category is equivalently described by Homin2(X,Y + Z) = {[in1, g]h |
g ∈ G(W,Y + Z), h : X → Y + W}, and hence induces G.

Corollary 19. The guarded structure generated by a guarded ideal G on a
Cartesian category is equivalently described by Hompr1(X × Y,Z) = {h〈g, pr2〉 |
g ∈ G(X × Y,W), h : W × Y → Z}, and hence induces G.

The description can be further simplified in the Cartesian closed case.

Corollary 20. Given a guarded ideal G on a Cartesian closed category, put
f : X × Y →pr1 Z iff curry f ∈ G(X,ZY). This describes the guarded structure
induced by G iff G is exponential, i.e. f ∈ G(X,Y) implies fV ∈ G(XV , Y V).

(We leave it as an open question whether a similar characterization holds in the
monoidal closed case.) Natural examples of both ideal and non-ideal guardedness
are found in metric spaces:

Example 21 (Metric spaces). The guarded structure on metric spaces from
Example 9 fails to be ideal: It induces the guarded ideal of contractive maps,
which however generates the (ideal) guarded structure described by f : X ×
Y →pr2 Z iff f(x, y) is uniformly contractive in y, i.e. there is c < 1 such that
for every x, λy. f(x, y) is contractive with contraction factor c.

A large class of ideally guarded structures arises as follows.

Proposition 22. Let C be a Cartesian category equipped with an endofunctor
� : C → C and a natural transformation next : Id → �. Then the following
definition yields a guarded ideal in C: G(X,Y) = {f next | f : �X → Y }. The
arising guarded structure is Hompr1(X × Y,Z) = {f〈next, pr2〉 | f : �(X × Y) ×
Y → Z}. If moreover next : X × Y → �(X × Y) factors through next × id :
X × Y → �X × Y , then Hompr1(X × Y,Z) = {f (next× id) | f : �X × Y → Z}.
Remark 23. Proposition 22 connects our approach to previous work based pre-
cisely on the assumptions of the proposition [28] (in fact, the term guarded traced
category is already used there, with different meaning). A limitation of the app-
roach via a functor � arises from the need to fix � globally, so that, e.g., the
ideal guarded structure on metric spaces (Example 21) is not covered – capturing
contractivity via � requires fixing a single global contraction factor.

The following instance of Proposition 22 has received extensive recent interest
in programming semantics:

Example 24 (Topos of Trees). Let C be the topos of trees [7], i.e. the
presheaf category Setωop

where ω is the preorder of natural numbers (starting
from 1) ordered by inclusion. An object X of C is thus a family (X(n))n=1,2...

Guarded Traced Categories 321

Fig. 4. Axioms of guarded traced categories

of sets with restriction maps rn : X(n + 1) → X(n). The later -endofunctor
� : C → C is defined by �X(1) = {�} and �X(n + 1) = X(n), and the
natural transformation nextX : X → �X by nextX(1) = ! : X(1) → {�},
nextX(n + 1) = rn+1 : X(n + 1) → X(n). Guarded morphisms according to
Proposition 22 are called contractive, generalizing the metric setup. Contractive
morphisms form an exponential ideal, so partial guardedness is described as in
Corollary 20, and hence agrees with contractivity in part of the input as in [7,
Definition 2.2].

5 Guarded Traces

As indicated previously, the main purpose of our notion of abstract guardedness
is to enable fine-grained control over the formation of feedback loops, viz, traces.

Definition 25 (Guarded traced category). We call a guarded category
(C,⊗, I) guarded traced if it is equipped with a guarded trace operator

trUA,B,C,D : Hom•((A ⊗ U) ⊗ B,C ⊗ (D ⊗ U)) → Hom•(A ⊗ B,C ⊗ D),

visually corresponding to the diagram formation rule in Fig. 1, so that the adap-
tation of the Joyal-Street-Verity axiomatization of traced symmetric monoidal
categories [22] shown in Fig. 4 is satisfied.

322 S. Goncharov and L. Schröder

Remark 26. The versions of the sliding axiom in Fig. 4 differ in the way the
loop is guarded. They are in line with duality (Remark 4): Sliding II arises from
Sliding I by 180◦ rotation, and Sliding III is symmetric under 180◦ rotation.

We proceed to investigate the geometric properties of guarded traced categories,
partly extending Theorem 2. The syntactic setting extends the one for guarded
categories by additionally closing morphism expressions under the trace operator
(interpreted diagrammatically as in Fig. 1), obtaining traced morphism expres-
sions. Term formation thus becomes mutually recursive with guardedness typ-
ing: if e is a traced morphism expression such that e ∈ Hom•((A ⊗ U) ⊗ B,C ⊗
(D ⊗ U)) is derivable, then trA,B,C,D(e) is a traced morphism expression, and
trA,B,C,D(e) ∈ Hom•(A ⊗ B,C ⊗ D) is derivable. Traced diagrams consists of
finitely many (decorated) basic boxes and wires connecting output gates of basic
boxes to input gates, with each gate attached to at most one wire; open gates
are regarded as inputs or outputs, respectively, of the whole diagram. Of course,
acyclicity is not required. We first note that the easy direction of Theorem 2
adapts straightforwardly to the setting with traces:

Proposition 27. Let e be a traced morphism expression such that e ∈ Hom•(A⊗
B,C ⊗ D) is derivable. Then in the diagram of e, all loops and all paths from
input gates in A to output gates in D are guarded (p. 4).

Remarkably, the converse of Proposition 27 in general fails in several ways:

Example 28. The left diagram below

(2)

shows that guardedness typing is not closed under equality of traced morphism
expressions: Write e for the expression inducing the dashed box. By Proposi-
tion 27, e, and hence tr(e), fail to type as indicated. However, tr(e) = gf , for
which the overall guardedness typing indicated is easily derivable.

Moreover, the diagram on the right above satisfies the necessary condition
from Proposition 27 but is not induced by an expression for which the indicated
guardedness typing is derivable, essentially because both ways of cutting the
loop violate the necessary condition from Proposition 27.

However, if C is ideally guarded over a guarded ideal G, we do have a converse
to Proposition 27: By Theorem 14, we can then restrict basic boxes in diagrams
to be either guarded, i.e. have only black gates, or unguarded, i.e. have only
white gates. We call the correspondingly restricted diagrams ideally guarded. (We
emphasize that the guardedness typing of composite ideally guarded diagrams
still needs to mix guarded and unguarded inputs and outputs.) A path in an
ideally guarded diagram is guarded iff it passes through a guarded basic box.

The left-hand diagram in (2) is in fact ideally guarded, so guardedness typing
fails to be closed under equality also in the ideally guarded case. However, for
ideally guarded diagrams we have the following converse of Proposition 27.

Guarded Traced Categories 323

Theorem 29. Let Δ be an ideally guarded diagram, with sets of input and out-
put gates disjointly decomposed as A ∪· B and C ∪· D, respectively. If every loop
in Δ and every path from a gate in A to a gate in D is guarded, then Δ is
induced by a traced morphism expression e such that e ∈ Hom•(A ⊗ B,C ⊗ D)
is derivable.

We next take a look at the Cartesian and co-Cartesian cases. Recall that by
Proposition 5, the definition of guarded category can be simplified if ⊗ = + (and
dually if ⊗ = ×). This simplification extends to guarded traced categories by
generalizing Hyland-Hasegawa’s equivalence between Cartesian trace operators
and Conway fixpoint operators [18,19].

Definition 30 (Guarded Conway operators). Let C be a guarded co-
Cartesian category. We call an operator (−)† of profile

f ∈ Homσ+id(X,Y + X) �→ f† ∈ Homσ(X,Y) (3)

a guarded iteration operator if it satisfies

– fixpoint: f† = [id, f†]f for f : X →in2 Y + X;

and a Conway iteration operator if it additionally satisfies

– naturality: gf† = ((g + id)f)† for f : X →in2 Y + X, g : Y → Z;
– dinaturality: ([in1, h]g)† = [id, ([in1, g]h)†]g for g : X →in2 Y +Z and h : Z →

Y + X or g : X → Y + Z and h : Z →in2 Y + X;
– (co)diagonal: ([id, in2]f)† = f†† for f : X →in2+id (Y + X) + X.

Furthermore, we distinguish the following principles:

– squaring [12]: f† = ([in1, f]f)† for f : X →in2 Y + X;
– uniformity w.r.t. a subcategory S of C: (id + h)f = gh implies f† = g† h for

all f : X →in2 Z + X, g : Y →in2 Z + Y and h : Y → X from S;

and call (−)† squarable or uniform if it satisfies squaring or uniformity, respec-
tively.

Guarded (Conway) recursion operators (−)† on guarded Cartesian categories are
defined dually in a straightforward manner. We collect the following facts about
guarded iteration operators for further reference.

Lemma 31. Let (−)† be a guarded iteration operator on (C,+, ∅).

1. If (−)† is uniform w.r.t. some co-Cartesian subcategory of C and satisfies the
codiagonal identity then it is squarable.

2. If (−)† is squarable and uniform w.r.t. coproduct injections then it is dinat-
ural.

3. If (−)† is Conway then it is uniform w.r.t. coproduct injections.

Proposition 32. A guarded co-Cartesian category C is traced iff it is equipped
with a guarded Conway iteration operator (−)†, with mutual conversions like in
the total case [18,19].

324 S. Goncharov and L. Schröder

Example 33 (Guarded Conway operators). We list some examples of
guarded Conway iteration/recursion operators. In all cases except 2, Conwayness
follows from uniqueness of fixpoints [16, Theorem 17].

1. In a vacuously guarded co-Cartesian category (Remark 7), f : X →in2 Y + Z
iff f = in1g for some g : X → Y . If coproduct injections are monic, then g is
uniquely determined, and f† = g defines a guarded Conway operator.

2. Every Cartesian category C is guarded under Homπ(X,Y) = Hom(X,Y)
(making every morphism guarded). Then C has a guarded Conway recursion
operator iff C is a Conway category [13], i.e. models standard total recursion.

3. The guarded Cartesian category of complete metric spaces as in Example 9 is
traced: For f : X×Y →pr2 Y , define f†(x) as the unique fixpoint of λy. f(x, y)
according to Banach’s fixpoint theorem.

4. Similarly, the topos of trees, ideally guarded as in Example 24, has a guarded
Conway recursion operator obtained by taking unique fixpoints [7, Theo-
rem 2.4].

5. The guarded co-Cartesian category CTΣ
of side-effecting processes (Exam-

ple 8) has a guarded Conway iteration operator obtained by taking unique
fixpoints, thanks to the universal property of the final coalgebra TΣX [32].

Guarded vs. Unguarded Recursion. We proceed to present a class of exam-
ples relating guarded and unguarded recursion. For motivation, consider the
category (Cpo,×, 1) of complete partial orders (cpos) and continuous maps.
This category nearly supports recursion via least fixpoints, except that, e.g.,
id : X → X only has a least fixpoint if X has a bottom. The following equivalent
approaches involve the lifting monad (−)⊥, which adjoins a fresh bottom ⊥ to
a given X ∈ |Cpo|.

Classical approach [38,39]: Define a total recursion operator (−)‡ on the cat-
egory Cpo⊥ of pointed cpos and continuous maps, using least fixpoints.

Guarded approach (cf. [28]): Extend Cpo to a guarded category: f : X ×
Y →pr2 Z iff f ∈ {g (id × η) | g : X × Y⊥ → Z} (see Proposition 22), and
define a guarded recursion operator sending f = g (id × η) : Y × X →pr2 X

to f† = g 〈id, f̂〉 : Y → X with f̂(y) ∈ X⊥ calculated as the least fixpoint of
λz. ηg(y, z).

Pointed cpos happen to be always of the form X⊥ with X ∈ |Cpo|, which
indicates that (−)‡ is a special case of (−)†. This is no longer true in more general
cases when the connection between (−)‡ and (−)† is more intricate. We show
that (−)‡ and (−)† are nevertheless equivalent under reasonable assumptions.

Definition 34 ([11]). A let-ccc with a fixpoint object is a tuple (C,T, Ω, ω),
consisting of a Cartesian closed category C, a strong monad T on it, an initial
T -algebra (Ω, in) and an equalizer ω : 1 → Ω of in η : Ω → Ω and id : Ω → Ω.

The key requirement is the last one, satisfied, e.g., for Cpo and the lifting monad.
Given a monad T on C, CT

� denotes the category of T-algebras and C-morphisms
(instead of T-algebra homomorphisms).

Guarded Traced Categories 325

Proposition 35 ([37, Theorem 4.6]). Let (C,T, Ω, ω) be a let-ccc with a fixpoint
object. Then CT

� has a unique CT-uniform recursion operator (−)‡.

By [38, Theorem 4], the operator (−)‡ in Proposition 35 is Conway, in par-
ticular, by Lemma 31, squarable, if C has a natural numbers object and T

is an equational lifting monad [10], such as (−)⊥. There are however further
squarable operators obtained via Proposition 35, e.g. for the partial state monad
TX = (X × S)S

⊥ [11]. By Lemma 31, the following result applies in particular
in the setup of Proposition 35 under the additional assumption of squarability.

Theorem 36. Let T be a strong monad on a Cartesian category C. The follow-
ing gives a bijective correspondence between squarable dinatural recursive opera-
tors (−)‡ on CT

� and squarable dinatural guarded recursive operators (−)† on C
ideally guarded over Hom�(X,Y) = {f η | f : TX → Y }:

(f : B × A → A)‡ = a(ηf(id × a))† for (A, a) ∈ |CT

� | (4)

(f = g (id × η) : Y × X → X)† = g〈id, (ηg)‡〉 (5)

(in (5) we call on a slight extension of (−)‡; the right hand side of (4) is defined
because ηf(id× a) factors as ηf(id× a(Ta)η)). Moreover, (−)† is Conway iff so
is (−)‡.

6 Vacuous Guardedness and Nuclear Ideals

We proceed to discuss traces in vacuously guarded categories (Lemma 3), and
show that the partial trace operation in the category of (possibly infinite-
dimensional) Hilbert spaces [2] in fact lives over the vacuous guarded structure.
We first note that vacuous guarded structures are traced as soon as a simple
rewiring operation satisfies a suitable well-definedness condition (similar to one
defining traced nuclear ideals [2, Definition 8.14]):

Proposition 37. Let (C,⊗, I) be vacuously guarded. If for f ∈ Hom•(A ⊗ B,
C ⊗ D) with factorization f = (h ⊗ idD⊗U)(idA⊗U ⊗ g) (eliding associativity),
g : B → E ⊗ D ⊗ U , h : A ⊗ U ⊗ E → C as per Lemma 3, the composite

A ⊗ B
idA⊗g−−−−→ A ⊗ E ⊗ D ⊗ U ∼= A ⊗ U ⊗ E ⊗ D

h⊗idD−−−−→ C ⊗ D (6)

depends only on f , then C is guarded traced, with trUA,B,C,D(f) defined as (6).

Diagrammatically, the trace in a vacuously guarded category is thus given by

326 S. Goncharov and L. Schröder

We proceed to instantiate the above to Hilbert spaces. On a more abstract
level, a dagger symmetric monoidal category [35] (or tensored ∗-category [2]) is
a symmetric monoidal category (C,⊗, I) equipped with an identity-on-objects
strictly involutive functor (−)† : C → Cop coherently preserving the symmet-
ric monoidal structure. The main motivation for dagger symmetric monoidal
categories is to capture categories that are similar to (dagger) compact closed
categories in that they admit a canonical trace construction for certain mor-
phisms, but fail to be closed, much less compact closed. The “compact closed
part” of a dagger symmetric monoidal category is axiomatized as follows.

Definition 38 (Nuclear Ideal, [2]). A nuclear ideal N in a dagger symmetric
monoidal category (C,⊗, I, (−)†) is a family of subsets N(X,Y) ⊆ HomC(X,Y),
X,Y ∈ |C|, satisfying the following conditions:

1. N is closed under ⊗, (−)†, and composition with arbitrary morphisms on both
sides;

2. There is a bijection θ : N(X,Y) → HomC(I,X† ⊗ Y), natural in X and Y ,
coherently preserving the dagger symmetric monoidal structure.

3. (Compactness) For f ∈ N(B,A) and g ∈ N(B,C), the following diagram
commutes:

The above definition is slightly simplified in that we elide a covariant involutive
functor (−) : C → C, capturing, e.g. complex conjugation; i.e., we essentially
restrict to spaces over the reals.

We proceed to present a representative example of a nuclear ideal in the
category of Hilbert spaces. Recall that a Hilbert space [23] H over the field R
of reals is a vector space with an inner product 〈−,−〉 : H × H → R that is
complete as a normed space under the induced norm ‖x‖ =

√〈x, x〉. Let Hilb
be the category of Hilbert spaces and bounded linear operators.

Clearly, R itself is a Hilbert space; linear operators X → R are conventionally
called functionals. More generally, we consider (multi-)linear functionals X1 ×
. . . × Xn → R, i.e. maps that are linear in every argument. Such a functional
is bounded if |f(x1, . . . , xn)| � c‖x1‖ · · · ‖xn‖ for some constant c ∈ R. We can
move between bounded linear operators and bounded linear functionals, similarly
as we can move between relations and functions to the Booleans:

Proposition 39 ([23, Theorem 2.4.1]). Given a bounded linear operator f :
X → Y , f◦(x, y) = 〈fx, y〉 defines a bounded linear functional f◦, and every
bounded linear functional X × Y → R arises in this way.

Definition 40 (Hilbert-Schmidt operators/functionals). A bounded lin-
ear functional f : X1 × . . . × Xn → R is Hilbert-Schmidt if the sum

∑
x1∈B1

. . .
∑

xn∈Bn
(f(x1, . . . , xn))2

Guarded Traced Categories 327

is finite for some, and then any, orthonormal bases B1, . . . , Bn of X1, . . . , Xn,
respectively. A bounded linear operator f : X → Y is Hilbert-Schmidt if
the induced functional f◦ (Proposition 39) is Hilbert-Schmidt, equivalently if∑

x∈B ‖fx‖2 is finite for some, and then any, orthonormal basis B of X. We
denote by HS(X,Y) the space of all Hilbert-Schmidt operators from X to Y .

For X,Y ∈ |Hilb|, the space of Hilbert-Schmidt functionals X × Y → R is
itself a Hilbert space, denoted X ⊗ Y , with the pointwise vector space structure
and the inner product 〈f, g〉 =

∑
x∈B

∑
y∈B′ f(x, y)g(x, y) where B and B′ are

orthonormal bases of X and Y , respectively. By virtue of the equivalence between
f and f◦, this induces a Hilbert space structure on HS(X,Y), with induced
norm ‖f‖2 =

√∑
x∈B ‖fx‖2. The operator ⊗ forms part of a dagger symmetric

monoidal structure on Hilb, with unit R. For a bounded linear operator f :
X → Y , f† : Y → X is the adjoint operator uniquely determined by equation
〈x, f†y〉 = 〈fx, y〉. The tensor product of f : A → B and g : C → D is the
functional sending h : A × C → R to h(f† × g†) : B × D → R. Given a ∈ A and
c ∈ C, let us denote by a ⊗ c ∈ A ⊗ C the functional (a′, c′) �→ 〈a, a′〉〈c, c′〉, and
so, with the above f and g, (f ⊗ g)(a ⊗ c) = f(a) ⊗ g(c).

Proposition 41 ([2]). The Hilbert-Schmidt operators form a nuclear ideal in
Hilb with θ : HS(X,Y) ∼= Hom(R,X† ⊗ Y) defined by

θ(f : X → Y)(r : R)(x : X, y : Y) = r 〈fx, y〉.

A crucial fact underlying the proof of Proposition 41 is that HS(X,Y) is isomor-
phic to X†⊗Y , naturally in X and Y . We emphasize that what makes the case of
Hilb significant is that we do not restrict to finite-dimensional Hilbert spaces.
In that case all bounded linear operators would be Hilbert-Schmidt and the
corresponding category would be (dagger) compact closed [35]. In the infinite-
dimensional case, identities need not be Hilbert-Schmidt, so HS is indeed only
an ideal and not a subcategory.

Let N2(X,Y) = {g†h : X → Y | h ∈ N(X,Z), g ∈ N(Y,Z)} for any nuclear
ideal N. The main theorem of the section now can be stated as follows.

Theorem 42. 1. The guarded ideal induced by the vacuous guarded structure
on Hilb (see (1)) is precisely HS2, and Hilb is guarded traced over HS2.

2. Guarded traces in Hilb commute with (−)† in the sense that if f ∈ Hom•((A⊗
U)⊗B,C⊗(D⊗U)), then γB,A⊗Uf†γD⊗U,C ∈ Hom•((D⊗U)⊗C,B⊗(A⊗U))
and trUD,C,B,A(γB,A⊗Uf†γD⊗U,C) = γA,B (trUA,B,C,D(f))† γC,D.

Clause 1 is a generalization of the result in [2, Theorem 8.16] to parametrized
traces. Specifically, we obtain agreement with the conventional mathematical
definition of trace: given f ∈ HS2(X,X), tr(f) =

∑
i〈f(ei), ei〉 for any choice of

an orthonormal basis (ei)i, and HS2(X,X) contains precisely those f for which
this sum is absolutely convergent independently of the basis.

328 S. Goncharov and L. Schröder

7 Conclusions and Further Work

We have presented and investigated a notion of abstract guardedness and
guarded traces, focusing on foundational results and important classes of exam-
ples. We have distinguished a more specific notion of ideal guardedness, which in
many respects appears to be better behaved than the unrestricted one, in partic-
ular ensures closer agreement between structural and geometric guardedness. An
unexpectedly prominent role is played by ‘vacuous’ guardedness, characterized
by the absence of paths connecting unguarded inputs to guarded outputs; e.g.,
partial traces in Hilbert spaces [2] turn out to be based on this form of guard-
edness. Further research will concern a coherence theorem for guarded traced
categories generalizing the well-known unguarded case [22,34], and a generaliza-
tion of the Int-construction [22], which would relate guarded traced categories to
a suitable guarded version of compact closed categories. Also, we plan to investi-
gate guarded traced categories as a basis for generalized Hoare logics, extending
and unifying previous work [5,15].

References

1. Abel, A., Pientka, B.: Wellfounded recursion with copatterns: a unified approach
to termination and productivity. In: International Conference on Functional Pro-
gramming, ICFP 2013, pp. 185–196. ACM (2013)

2. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored*-
categories. J. Pure Appl. Algebra 143, 3–47 (1999)

3. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Logic
in Computer Science, LICS 2004, pp. 415–425. IEEE Computer Society (2004)

4. Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear combi-
natory algebras. Math. Struct. Comput. Sci. 12(5), 625–665 (2002)

5. Arthan, R., Martin, U., Mathiesen, E., Oliva, P.: A general framework for sound
and complete Floyd-Hoare logics. ACM Trans. Comput. Log. 11, 7:1–7:31 (2009)

6. Baeten, J., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Com-
municating Processes. Cambridge University Press, Cambridge (2010)

7. Birkedal, L., Møgelberg, R., Schwinghammer, J., Støvring, K.: First steps in syn-
thetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci. 8(4:1), 1–45 (2012)

8. Blute, R., Cockett, R., Seely, R.: Feedback for linearly distributive categories: traces
and fixpoints. J. Pure Appl. Algebra 154, 27–69 (2000)

9. Book, R., Greibach, S.: Quasi-realtime languages. Math. Syst. Theory 4(2), 97–111
(1970)

10. Bucalo, A., Führmann, C., Simpson, A.: An equational notion of lifting monad.
Theoret. Comput. Sci. 294, 31–60 (2003)

11. Crole, R., Pitts, A.: New foundations for fixpoint computations. In: Logic in Com-
puter Science, LICS 1990, pp. 489–497. IEEE Computer Society (1990)

12. Ésik, Z.: Axiomatizing iteration categories. Acta Cybern. 14(1), 65–82 (1999)
13. Ésik, Z.: Equational properties of fixed point operations in Cartesian categories:

an overview. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 18–37. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48057-1 2

https://doi.org/10.1007/978-3-662-48057-1_2
https://doi.org/10.1007/978-3-662-48057-1_2

Guarded Traced Categories 329

14. Girard, J.-Y.: Towards a geometry of interaction. Contemp. Math. 92(69–108), 6
(1989)

15. Goncharov, S., Schröder, L.: A relatively complete generic Hoare logic for order-
enriched effects. In: Proceedings of 28th Annual Symposium on Logic in Computer
Science (LICS 2013), pp. 273–282. IEEE (2013)

16. Goncharov, S., Schröder, L., Rauch, C., Piróg, M.: Unifying guarded and unguarded
iteration. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol.
10203, pp. 517–533. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54458-7 30

17. Haghverdi, E., Scott, P.: Towards a typed geometry of interaction. Math. Struct.
Comput. Sci. 20, 473–521 (2010)

18. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and mod-
els of cyclic lambda calculi. In: de Groote, P., Roger Hindley, J. (eds.) TLCA 1997.
LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-62688-3 37

19. Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of let and
letrec. Distinguished Dissertations. Springer, London (1999). https://doi.org/10.
1007/978-1-4471-0865-8

20. Jeffrey, A.: Premonoidal categories and flow graphs. In: Higher-Order Operational
Techniques in Semantics, HOOTS 1997, vol. 10 of ENTCS, p. 51. Elsevier (1997)

21. Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as types, proofs
as functional reactive programs. In: Programming Languages Meets Program Ver-
ification, PLPV 2012, pp. 49–60. ACM (2012)

22. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb.
Philos. Soc. 119, 447–468 (1996)

23. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras:
Advanced Theory, vol. 2. AMS (1997)

24. Krishnaswami, N., Benton, N.: Ultrametric semantics of reactive programs. In:
Logic in Computer Science, LICS 2011, pp. 257–266. IEEE Computer Society
(2011)

25. MacLane, S.: Categories for the Working Mathematician. Springer, New York
(1971). https://doi.org/10.1007/978-1-4612-9839-7

26. Malherbe, O., Scott, P.J., Selinger, P.: Partially traced categories. J. Pure Appl.
Algebra 216, 2563–2585 (2012)

27. Milius, S.: Completely iterative algebras and completely iterative monads. Inf.
Comput. 196, 1–41 (2005)

28. Milius, S., Litak, T.: Guard your daggers and traces: properties of guarded
(co-)recursion. Fund. Inf. 150, 407–449 (2017)

29. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

30. Møgelberg, R.: A type theory for productive coprogramming via guarded recursion.
In: Computer Science Logic/Logic in Computer Science, CSL-LICS 2014, pp. 71:1–
71:10. ACM (2014)

31. Moggi, E.: Notions of computation and monads. Inf. Comput. 93, 55–92 (1991)
32. Piróg, M., Gibbons, J.: The coinductive resumption monad. In: Mathematical

Foundations of Programming Semantics, MFPS 2014. ENTCS, vol. 308, pp. 273–
288 (2014)

33. Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249,
3–80 (2000)

34. Selinger, P.: Towards a quantum programming language. Math. Struct. Comput.
Sci. 14, 527–586 (2004)

https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.1007/3-540-62688-3_37
https://doi.org/10.1007/3-540-62688-3_37
https://doi.org/10.1007/978-1-4471-0865-8
https://doi.org/10.1007/978-1-4471-0865-8
https://doi.org/10.1007/978-1-4612-9839-7

330 S. Goncharov and L. Schröder

35. Selinger, P.: Dagger compact closed categories and completely positive maps. In:
Quantum Programming Languages, QPL 2005. ENTCS, vol. 170, pp. 139–163.
Elsevier (2007)

36. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B.
(ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 289–355.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12821-9 4

37. Simpson, A.: Recursive types in Kleisli categories. Technical report, University of
Edinburgh (1992)

38. Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators.
In: Logic in Computer Science, LICS 2000, pp. 30–41 (2000)

39. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press,
Cambridge (1993)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-12821-9_4
http://creativecommons.org/licenses/by/4.0/

Proper Semirings and Proper Convex
Functors

Ana Sokolova1(B) and Harald Woracek2

1 University of Salzburg, Salzburg, Austria
ana.sokolova@cs.uni-salzburg.at

2 TU Vienna, Vienna, Austria
harald.woracek@tuwien.ac.at

Abstract. Esik and Maletti introduced the notion of a proper semir-
ing and proved that some important (classes of) semirings – Noethe-
rian semirings, natural numbers – are proper. Properness matters as
the equivalence problem for weighted automata over a semiring which
is proper and finitely and effectively presented is decidable. Milius gen-
eralised the notion of properness from a semiring to a functor. As a
consequence, a semiring is proper if and only if its associated “cubic
functor” is proper. Moreover, properness of a functor renders soundness
and completeness proofs for axiomatizations of equivalent behaviour.

In this paper we provide a method for proving properness of func-
tors, and instantiate it to cover both the known cases and several novel
ones: (1) properness of the semirings of positive rationals and positive
reals, via properness of the corresponding cubic functors; and (2) proper-
ness of two functors on (positive) convex algebras. The latter functors
are important for axiomatizing trace equivalence of probabilistic transi-
tion systems. Our proofs rely on results that stretch all the way back to
Hilbert and Minkowski.

Keywords: Proper semirings · Proper functors · Coalgebra
Weighted automata · Probabilistic transition systems

1 Introduction

In this paper we deal with algebraic categories and deterministic weighted
automata functors on them. Such categories are the target of generalized deter-
minization [10,22,23] and enable coalgebraic modelling beyond sets. For exam-
ple, non-deterministic automata, weighted, or probabilistic ones are coalge-
braically modelled over the categories of join-semilattices, semimodules for a
semiring, and convex sets, respectively. Moreover, expressions for axiomatizing
behavior semantics often live in algebraic categories.

In order to prove completeness of such axiomatizations, the common app-
roach [4,21,23] is to prove finality of a certain object in a category of coalgebras

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 331–347, 2018.
https://doi.org/10.1007/978-3-319-89366-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_18&domain=pdf
http://orcid.org/0000-0002-8384-3438
http://orcid.org/0000-0002-7823-3408

332 A. Sokolova and H. Woracek

over an algebraic category. Proofs are significantly simplified if it suffices to ver-
ify finality only w.r.t. coalgebras carried by free finitely generated algebras, as
those are the coalgebras that result from generalized determinization.

In recent work, Milius [16] proposed the notion of a proper functor on an
algebraic category that provides a sufficient condition for this purpose. This
notion is an extension of the notion of a proper semiring introduced by Esik
and Maletti [8]: A semiring is proper if and only if its “cubic” functor is proper.
A cubic functor is a functor S × (−)A where A is a finite alphabet and S is a
free algebra with a single generator in the algebraic category. Cubic functors
model deterministic weighted automata which are models of determinizations of
non-deterministic and probabilistic transition systems.

Properness is the property that for any two states that are behaviourally
equivalent in coalgebras with free finitely generated carriers, there is a zig-zag of
homomorphisms (called a chain of simulations in the original works on weighted
automata and proper semirings) that identifies the two states and whose nodes
are all carried by free finitely generated algebras.

Even though the notion of properness is relatively new for a semiring and
very new for a functor, results on properness of semirings can be found in more
distant literature as well. Here is a brief history, to the best of our knowledge:

– The Boolean semiring was proven to be proper in [3].
– Finite commutative ordered semirings were proven to be proper in [7, Theo-

rem 5.1]. Interestingly, the proof provides a zig-zag with at most seven inter-
mediate nodes.

– Any euclidean domain and any skew field were proven proper in [1, Theorem
3]. In each case the zig-zag has two intermediate nodes.

– The semiring of natural numbers N, the Boolean semiring B, the ring of
integers Z and any skew field were proven proper in [2, Theorem 1]. All zig-
zags were spans, i.e., had a single intermediate node with outgoing arrows.

– Noetherian semirings were proven proper in [8, Theorem 4.2], commutative
rings also in [8, Corollary 4.4], and finite semirings as well in [8, Corollary
4.5], all with a zig-zag being a span. Moreover, the tropical semiring is not
proper, as proven in [8, Theorem 5.4].

Having properness of a semiring, together with the property of the semiring
being finitely and effectively presentable, yields decidability of the equivalence
problem (decidability of trace equivalence) for weighted automata.

In this paper, motivated by the wish to prove properness of a certain func-
tor ̂F on convex algebras used for axiomatizing trace semantics of probabilistic
systems in [23], as well as by the open questions stated in [16, Example 3.19],
we provide a framework for proving properness. We instantiate this framework
on known cases like Noetherian semirings and N (with a zig-zag that is a span),
and further prove new results of properness:

– The semirings Q+ and R+ of non-negative rationals and reals, respectively,
are proper. The shape of the zig-zag is a span as well.

– The functor [0, 1] × (−)A on PCA is proper, again the zig-zag being a span.

Proper Semirings and Proper Convex Functors 333

– The functor ̂F on PCA is proper. This proof is the most involved, and inter-
estingly, provides the only case where the zig-zag is not a span: it contains
three intermediate nodes of which the middle one forms a span.

Our framework requires a proof of so-called extension and reduction lemmas
in each case. While the extension lemma is a generic result that covers all cubic
functors of interest, the reduction lemma is in all cases a nontrivial property
intrinsic to the algebras under consideration. For the semiring of natural numbers
it is a consequence of a result that we trace back to Hilbert; for the case of convex
algebra [0, 1] the result is due to Minkowski. In the case of ̂F , we use Kakutani’s
set-valued fixpoint theorem.

It is an interesting question for future work whether these new properness
results may lead to new complete axiomatizations of expressions for certain
weighted automata.

The organization of the rest of the paper is as follows. In Sect. 2 we give some
basic definitions and introduce the semirings, the categories, and the functors of
interest. Section 3 provides the general framework as well as proofs of properness
of the cubic functors. Sections 4, 5 and 6 lead us to properness of ̂F on PCA. For
space reasons, we present the ideas of proofs and constructions in the main paper
and defer all detailed proofs to the arXiv-version [24].

2 Proper Functors

We start with a brief introduction of the basic notions from algebra and coalgebra
needed in the rest of the paper, as well as the important definition of proper
functors [16]. We refer the interested reader to [9,11,20] for more details. We
assume basic knowledge of category theory, see e.g. [14] or [24, Appendix A].

Let C be a category and F a C-endofunctor. The category Coalg(F) of F -
coalgebras is the category having as objects pairs (X, c) where X is an object of
C and c is a C-morphism from X to FX, and as morphisms f : (X, c) → (Y, d)
those C-morphisms from X to Y that make the diagram on the right commute.

X
f ��

c ��
Y

d��
FX

Ff �� FY

All base categories C in this paper will be algebraic cate-
gories, i.e., categories SetT of Eilenberg-Moore algebras of a
finitary monad 1 in Set. Hence, all base categories are con-
crete with forgetful functor that is identity on morphisms.

In such categories behavioural equivalence [13,25,26] can be defined as fol-
lows. Let (X, c) and (Y, d) be F -coalgebras and let x ∈ X and y ∈ Y . Then
x and y are behaviourally equivalent, and we write x ∼ y, if there exists an F -
coalgebra (Z, e) and Coalg(F)-morphisms f : (X, c) → (Z, e), g : (Y, d) → (Z, e),
with f(x) = g(y).

(X, c)
f �� (Z, e)

f(x)=g(y)

(Y, d)
g��

1 The notions of monads and algebraic categories are central to this paper. We recall
them in [24, Appendix A] to make the paper better accessible to all readers.

334 A. Sokolova and H. Woracek

If there exists a final coalgebra in Coalg(F), and all functors considered in this
paper will have this property, then two elements are behaviourally equivalent if
and only if they have the same image in the final coalgebra. If we have a zig-zag
diagram in Coalg(F)

(X, c)
f1
����

��
(Z2, e2)f2

������
f3
�����

�
· · ·

f4
�����

� f2n−1
����

���
(Y, d)

f2n
�����

�

(Z1, e1) (Z3, e1) (Z2n−1, e1)

(1)

which relates x with y in the sense that there exist elements z2k ∈ Z2k, k =
1, . . . , n − 1, with (setting z0 = x and z2n = y)

f2k(z2k) = f2k−1(z2k−2), k = 1, . . . , n,

then x ∼ y.
We now recall the notion of a proper functor, introduced by Milius [16] which

is central to this paper. It is very helpful for establishing completeness of regular
expressions calculi, cf. [16, Corollary 3.17].

Definition 2.1. Let T : Set → Set be a finitary monad with unit η and multi-
plication μ. A SetT -endofunctor F is proper, if the following statement holds.

For each pair (TB1, c1) and (TB2, c2) of F -coalgebras with B1 and B2 finite
sets, and each two elements b1 ∈ B1 and b2 ∈ B2 with ηB1(b1) ∼ ηB2(b2), there
exists a zig-zag (1) in Coalg(F) which relates ηB1(b1) with ηB2(b2), and whose
nodes (Zj , ej) all have free and finitely generated carrier.

This notion generalizes the notion of a proper semiring introduced by Esik
and Maletti in [8, Definition 3.2], cf. [16, Remark 3.10].

Remark 2.2. In the definition of properness the condition that intermediate
nodes have free and finitely generated carrier is necessary for nodes with incom-
ing arrows (the nodes Z2k−1 in (1)). For the intermediate nodes with outgoing
arrows (Z2k in (1)), it is enough to require that their carrier is finitely gener-
ated. This follows since every F -coalgebra with finitely generated carrier is the
image under an F -coalgebra morphism of an F -coalgebra with free and finitely
generated carrier.

Moreover, note that zig-zags which start (or end) with incoming arrows
instead of outgoing ones, can also be allowed since a zig-zag of this form can
be turned into one of the form (1) by appending identity maps.

Some Concrete Monads and Functors

We deal with the following base categories.

– The category S-SMOD of semimodules over a semiring S induced by the monad
TS of finitely supported maps into S, see, e.g., [15, Example 4.2.5].

– The category PCA of positively convex algebras induced by the monad of
finitely supported subprobability distributions, see, e.g., [5,6] and [17].

Proper Semirings and Proper Convex Functors 335

For n ∈ N, the free algebra with n generators in S-SMOD is the direct product S
n,

and in PCA it is the n-simplex Δn = {(ξ1, . . . , ξn) | ξj ≥ 0,
∑n

j=1 ξj ≤ 1}.
Concerning semimodule-categories, we mainly deal with the semirings N,

Q+, and R+, and their ring completions Z, Q, and R. For these semirings the
categories of S-semimodules are

– CMON of commutative monoids for N,
– AB of abelian groups for Z,
– CONE of convex cones for R+,
– Q-VEC and R-VEC of vector spaces over the field of rational and real numbers,

respectively, for Q and R.

We consider the following functors, where A is a fixed finite alphabet. Recall that
we use the term cubic functor for the functor T1 × (−)A where T is a monad
on Set. We chose the name since T1 × (−)A assigns to objects X a full direct
product, i.e., a full cube.

– The cubic functor F S on S-SMOD, i.e., the functor acting as

F SX = S × XA for X object of S-SMOD,
F Sf = idS ×(f ◦ −) for f : X → Y morphism of S-SMOD.

The underlying Set functors of cubic functors are also sometimes called
deterministic-automata functors, see e.g. [10], as their coalgebras are deter-
ministic weighted automata with output in the semiring.

– The cubic functor F [0,1] on PCA, i.e., the functor F [0,1]X = [0, 1] × XA and
F [0,1]f = id[0,1] ×(f ◦ −).

– A subcubic convex functor ̂F on PCA whose action will be introduced in Def-
inition 4.1.2 The name originates from the fact that ̂FX is a certain convex
subset of F [0,1]X and that ̂Ff = (F [0,1]f)|

̂FX for f : X → Y .

Cubic functors are liftings of Set-endofunctors, in particular, they preserve
surjective algebra homomorphisms. It is easy to see that also the functor ̂F
preserves surjectivity, cf. [24, Lemma D.1]. This property is needed to apply the
work of Milius, cf. [16, Assumptions 3.1].

Remark 2.3. We can now formulate precisely the connection between proper
semirings and proper functors mentioned after Definition 2.1. A semiring S is
proper in the sense of [8], if and only if for every finite input alphabet A the
cubic functor F S on S-SMOD is proper.

We shall interchangeably think of direct products as sets of functions or as
sets of tuples. Taking the viewpoint of tuples, the definition of F Sf reads as

(F Sf)
(

(o, (xa)a∈A)
)

=
(

o, (f(xa))a∈A

)

, o ∈ S, xa ∈ X for a ∈ A.

2 This functor was denoted Ĝ in [23] where it was first studied in the context of
axiomatization of trace semantics.

336 A. Sokolova and H. Woracek

A coalgebra structure c : X → F SX writes as

c(x) =
(

co(x), (ca(x))a∈A

)

, x ∈ X,

and we use co : X → S and ca : X → X as generic notation for the components
of the map c. More generally, we define cw : X → X for any word w ∈ A∗

inductively as cε = idX and cwa = ca ◦ cw, w ∈ A∗, a ∈ A.
The map from a coalgebra (X, c) into the final F S-coalgebra, the trace map,

is then given as trc(x) =
(

(co ◦ cw)(x)
)

w∈A∗ for x ∈ X. Behavioural equivalence
for cubic functors is the kernel of the trace map.

3 Properness of Cubic Functors

Our proofs of properness in this section and in Sect. 6 below start from the
following idea. Let S be a semiring, and assume we are given two F S-coalgebras
which have free finitely generated carrier, say (Sn1 , c1) and (Sn2 , c2). Moreover,
assume x1 ∈ S

n1 and x2 ∈ S
n2 are two elements having the same trace. For

j = 1, 2, let dj : S
n1 × S

n2 → F S(Sn1 × S
n2) be given by

dj(y1, y2) =
(

cjo(yj), ((c1a(y1), c2a(y2)))a∈A

)

.

Denoting by πj : S
n1 ×S

n2 → S
nj the canonical projections, both sides of the

following diagram separately commute.

S
n1

c1

��

S
n1 × S

n2
π1�� π2 ��

d1

		

d2

S
n2

c2

��

�=

F SS
n1 F S(Sn1 × S

n2)
F Sπ1�� F Sπ2 �� F SS

n2

However, in general the maps d1 and d2 do not coincide.
The next lemma contains a simple observation: there exists a subsemimodule

Z of S
n1 × S

n2 , such that the restrictions of d1 and d2 to Z coincide and turn Z
into an F S-coalgebra.

Lemma 3.1. Let Z be the subsemimodule of S
n1 × S

n2 generated by the pairs
(c1w(x1), c2w(x2)) for w ∈ A∗. Then d1|Z = d2|Z and dj(Z) ⊆ F S(Z).

Proper Semirings and Proper Convex Functors 337

The significance of Lemma 3.1 in the present context is that it leads to the
diagram (we denote d = dj |Z)

S
n1

c1

��

Z
π1�� π2 ��

d

��

⊆

S
n1× S

n2

S
n2

c2

��

F SS
n1 F SZ

F Sπ1�� F Sπ2 ��

⊆
S× (Sn1× S

n2)A

F SS
n2

In other words, it leads to the zig-zag in Coalg(F S)

(Sn1 , c1) (Z, d)
π1�� π2 �� (Sn2 , c2) (2)

This zig-zag relates x1 with x2 since (x1, x2) ∈ Z. If it can be shown that Z is
always finitely generated, it will follow that F S is proper.

Let S be a Noetherian semiring, i.e., such that every S-subsemimodule of
some finitely generated S-semimodule is itself finitely generated. Then Z is, as an
S-subsemimodule of S

n1 ×S
n2 , finitely generated. We reobtain [8, Theorem 4.2].

Corollary 3.2 (Esik–Maletti 2010). Every Noetherian semiring is proper.

Our first main result is Theorem 3.3 below, where we show properness of the
cubic functors F S on S-SMOD, for S being one of the semirings N, Q+, R+, and of
the cubic functor F [0,1] on PCA. The case of FN is known from [2, Theorem 4]3,
the case of F [0,1] is stated as an open problem in [16, Example 3.19].

Theorem 3.3. The cubic functors FN, FQ+ , FR+ , and F [0,1] are proper.
In fact, for any two coalgebras with free finitely generated carrier and any two

elements having the same trace, a zig-zag with free and finitely generated nodes
relating those elements can be found, which is a span (has a single intermediate
node with outgoing arrows).

The proof proceeds via relating to the Noetherian case. It always follows the
same scheme, which we now outline. Observe that the ring completion of each of
N, Q+, R+, is Noetherian (for the last two it actually is a field), and that [0, 1]
is the positive part of the unit ball in R.

Step 1. The extension lemma: We use an extension of scalars process to pass
from the given category C to an associated category E-MOD with a Noetherian
ring E. This is a general categorical argument.
3 In [2] only a sketch of the proof is given, cf. [2, Sect. 3.3]. In this sketch one important

point is not mentioned. Using the terminology of [2, Sect. 3.3]: it could a priori be
possible that the size of the vectors in G and the size of G both oscillate.

338 A. Sokolova and H. Woracek

To unify notation, we agree that S may also take the value [0, 1], and that
T[0,1] is the monad of finitely supported subprobability distributions giving rise
to the category PCA.

S N Q+ R+ [0, 1]

C N-SMOD (CMON) Q+-SMOD R+-SMOD (CONE) PCA

E-MOD Z-MOD (AB) Q-MOD (Q-VEC) R-MOD (R-VEC) R-MOD (R-VEC)

For the formulation of the extension lemma, recall that the starting category
C is the Eilenberg-Moore category of the monad TS and the target category
E-MOD is the Eilenberg-Moore category of TE. We write ηS and μS for the unit
and multiplication of TS and analogously for TE. We have TS ≤ TE, via the
inclusion monad morphism ι : TS ⇒ TE given by ιX(u) = u, as ηE = ι ◦ ηS

and μE ◦ ιι = ι ◦ μS where ιι
def= TEι ◦ ι

nat.= ι ◦ TSι. Recall that a monad
morphism ι : TS → TE defines a functor Mι : SetTE → SetTS which maps a TE-
algebra (X,αX) to (X, ιX ◦ αX) and is identity on morphisms. Obviously, Mι

commutes with the forgetful functors US : SetTS → Set and UE : SetTE → Set,
i.e., US ◦ Mι = UE.

Definition 3.4. Let (X,αX) ∈ SetTS and (Y, αY) ∈ SetTE where TS and TE are
monads with TS ≤ TE via ι : TS ⇒ TE. A Set-arrow h : X → Y is a TS ≤ TE-
homomorphism from (X,αX) to (Y, αY) if and only if the following diagram
commutes (in Set)

TSX
ιh ��

αX ��
TEY

αY��
X

h �� Y

where ιh denotes the map ιh
def= TEh ◦ ιX

nat.= ιY ◦ TSh. In other words, a
TS ≤ TE-homomorphism from (X,αX) to (Y, αY) is a morphism in SetTS from
(X,αX) to M(Y, αY).

Now we can formulate the extension lemma.

Proposition 3.5 (Extension Lemma). For every F S-coalgebra TSB
c→

F S(TSB) with free finitely generated carrier TSB for a finite set B, there exists
an FE-coalgebra TEB

c̃→ FE(TEB) with free finitely generated carrier TEB such
that

TSB
ιB ��

c ��
TEB

c̃��
F S(TSB)

ι1×(ιB)A �� FE(TEB)

where the horizontal arrows (ιB and ι1 × ιAB) are TS ≤ TE-homomorphisms, and
moreover they both amount to inclusion.

Proper Semirings and Proper Convex Functors 339

Step 2. The basic diagram: Let n1, n2 ∈ N, let Bj be the nj-element set consisting
of the canonical basis vectors of E

nj , and set Xj = TSBj . Assume we are given
F S-coalgebras (X1, c1) and (X2, c2), and elements xj ∈ Xj with trc1 x1 = trc2 x2.

The extension lemma provides FE-coalgebras (Enj , c̃j) with c̃j |Xj
= cj .

Clearly, trc̃1 x1 = trc̃2 x2. Using the zig-zag diagram (2) in Coalg(FE) and append-
ing inclusion maps, we obtain what we call the basic diagram. In this diagram
all solid arrows are arrows in E-MOD, and all dotted arrows are arrows in C. The
horizontal dotted arrows denote the inclusion maps, and πj are the restrictions
to Z of the canonical projections.

X1
��

c1

��

E
n1

c̃1

��

Z
π1�� π2 ��

d

��

⊆

E
n1× E

n2

E
n2

c̃2

��

X2
��

c2

��

F SX1
�� FEE

n1 FEZ
F Eπ1�� F Eπ2 ��

⊆

E× (En1× E
n2)A

FEE
n2 F SX2

��

Commutativity of this diagram yields d
(

π−1
j (Xj)

) ⊆ (FEπj)−1
(

F SXj) for
j = 1, 2. Now we observe the following properties of cubic functors.

Lemma 3.6. We have FEX ∩ F SY = F S(X ∩ Y). Moreover, if Yj ⊆ Xj, then
(FEπ1)−1(F SY1) ∩ (FEπ2)−1(F SY2) = F S(Y1 × Y2).

Using this, yields

d
(

Z ∩ (X1 × X2)
) ⊆FEZ ∩ (FEπ1)−1

(

F SX1) ∩ (FEπ2)−1
(

F SX2)

=FEZ ∩ F S(X1 × X2) = F S

(

Z ∩ (X1 × X2)
)

.

This shows that Z ∩ (X1 × X2) becomes an F S-coalgebra with the restriction
d|Z∩(X1×X2). Again referring to the basic diagram, we have the following zig-
zag in Coalg(FS) (to shorten notation, denote the restrictions of d, π1, π2 to
Z ∩ (X1 × X2) again as d, π1, π2):

(X1, c1)
(

Z ∩ (X1 × X2), d
)π1�� π2 �� (X2, c2) (3)

This zig-zag relates x1 with x2 since (x1, x2) ∈ Z ∩ (X1 × X2).

Step 3. The reduction lemma: In view of the zig-zag (3), the proof of Theorem 3.3
can be completed by showing that Z∩(X1×X2) is finitely generated as an algebra
in C. Since Z is a submodule of the finitely generated module E

n1 ×E
n2 over the

Noetherian ring E, it is finitely generated as an E-module. The task thus is to
show that being finitely generated is preserved when reducing scalars.

This is done by what we call the reduction lemma. Contrasting the exten-
sion lemma, the reduction lemma is not a general categorical fact, and requires
specific proof in each situation.

340 A. Sokolova and H. Woracek

Proposition 3.7 (Reduction Lemma). Let n1, n2 ∈ N, let Bj be the set
consisting of the nj canonical basis vectors of E

nj , and set Xj = TSBj. Moreover,
let Z be an E-submodule of E

n1 × E
n2 . Then Z ∩ (X1 × X2) is finitely generated

as an algebra in C.

4 A Subcubic Convex Functor

Recall the following definition from [23, p. 309].

Definition 4.1. We introduce a functor ̂F : PCA → PCA.

1. Let X be a PCA. Then

̂FX =
{

(o, φ) ∈ [0, 1] × XA |
∃ na ∈ N. ∃ pa,j ∈ [0, 1], xa,j ∈ X for j = 1, . . . , na, a ∈ A.

o +
∑

a∈A

na
∑

j=1

pa,j ≤ 1, φ(a) =

na
∑

j=1

pa,jxa,j

}

.

2. Let X,Y be PCAs, and f : X → Y a convex map. Then ̂Ff : ̂FX → ̂FY is the
map ̂Ff = id[0,1] ×(f ◦ −).

For every X we have ̂FX ⊆ F [0,1]X, and for every f : X → Y we have
̂Ff = (F [0,1]f)|

̂FX . For this reason, we think of ̂F as a subcubic functor.
The definition of ̂F can be simplified.

Lemma 4.2. Let X be a PCA, then

̂FX =
{

(o, f) ∈ [0, 1] × XA |∃ pa ∈ [0, 1], xa ∈ X for a ∈ A.

o +
∑

a∈A

pa ≤ 1, f(a) = paxa

}

.

From this representation it is obvious that ̂F is monotone in the sense that

– If X1 ⊆ X2, then ̂FX1 ⊆ ̂FX2.
– If f1 : X1 → Y1, f2 : X2 → Y2 with X1 ⊆ X2, Y1 ⊆ Y2 and f2|X1 = f1, then

̂Ff2| ̂FX1
= ̂Ff1.

Note that ̂F does not preserve direct products.
For a PCA X whose carrier is a compact subset of a euclidean space, ̂FX

can be described with help of a geometric notion, namely using the Minkowksi
functional of X. Before we can state this fact, we have to make a brief digression
to explain this notion and its properties.

Definition 4.3. Let X ⊆ R
n be a PCA. The Minkowski functional of X is the

map μX : R
n → [0,∞] defined as μX(x) = inf{t > 0 | x ∈ tX}, where the

infimum of the empty set is understood as ∞.

Proper Semirings and Proper Convex Functors 341

Minkowski functionals, sometimes also called gauge, are a central and exhaus-
tively studied notion in convex geometry, see, e.g., [19, p. 34] or [18, p. 28].

We list some basic properties whose proof can be found in the mentioned
textbooks.

1. μX(px) = pμX(x) for x ∈ R
n, p ≥ 0,

2. μX(x + y) ≤ μX(x) + μX(y) for x, y ∈ R
n,

3. μX∩Y (x) = max{μX(x), μY (x)} for x ∈ R
n.

4. If X is bounded, then μX(x) = 0 if and only if x = 0.

The set X can almost be recovered from μX .

5. {x ∈ R
n | μX(x) < 1} ⊆ X ⊆ {x ∈ R

n | μX(x) ≤ 1}.
6. If X is closed, equality holds in the second inclusion of 5.
7. Let X,Y be closed. Then X ⊆ Y if and only if μX ≥ μY .

Example 4.4. As two simple examples, consider the n-simplex Δn ⊆ R
n and a

convex cone C ⊆ R
n. Then (here ≥ denotes the product order on R

n)

μΔn(x) =

{

∑n
j=1 ξj , x = (ξ1, . . . , ξn) ≥ 0,

∞ , otherwise.
μC(x) =

{

0 , x ∈ C,

∞ , otherwise.

Observe that Δn = {x ∈ R
n | μΔn(x) ≤ 1}.

Another illustrative example is given by general pyramids in a euclidean
space. This example will play an important role later on.

Example 4.5. For u ∈ R
n consider the set

X =
{

x ∈ R
n | x ≥ 0 and (x, u) ≤ 1

}

,

where (·, ·) denotes the euclidean scalar product on R
n. The set X is intersection

of the cone R
n
+ with the half-space given by the inequality (x, u) ≤ 1, hence it

is convex and contains 0. Thus X is a PCA.
Let us first assume that u is strictly positive, i.e., u ≥ 0 and no component

of u equals zero. Then X is a pyramid (in 2-dimensional space, a triangle).

u

X

(x,u)=1

The n-simplex Δn is the pyramid obtained using u = (1, . . . , 1).
The Minkowski functional of the pyramid X associated with u is

μX(x) = (x, u) if x ≥ 0, μX(x) = ∞ otherwise.

342 A. Sokolova and H. Woracek

Write u =
∑n

j=1 αjej , where ej is the j-th canonical basis vector, and set yj =
1

αj
ej . Clearly, {y1, . . . , yn} is linearly independent. Each vector x =

∑n
j=1 ξjej

can be written as x =
∑n

j=1(ξjαj)yj , and this is a subconvex combination if and
only if ξj ≥ 0 and

∑n
j=1 ξjαj ≤ 1, i.e., if and only if x ∈ X. Thus X is generated

by {y1, . . . , yn} as a PCA.
The linear map given by the diagonal matrix made up of the αj ’s induces a

bijection of X onto Δn, and maps the yj ’s to the corner points of Δn. Hence, X
is free with basis {y1, . . . , yn}.

If u is not strictly positive, the situation changes drastically. Then X is not
finitely generated as a PCA, because it is unbounded whereas the subconvex hull
of a finite set is certainly bounded.

u

X

(x,u)=1

Now we return to the functor ̂F .

Lemma 4.6. Let X ⊆ R
n be a PCA, and assume that X is compact. Then

̂FX =
{

(o, φ) ∈ R × (Rn)A | o ≥ 0, o +
∑

a∈A

μX(φ(a)) ≤ 1
}

.

In the following we use the elementary fact that every convex map has a
linear extension.

Lemma 4.7. Let V1, V2 be vector spaces, let X ⊆ V1 be a PCA, and let c : X → V2

be a convex map. Then c has a linear extension c̃ : V1 → V2. If span X = V1,
this extension is unique.

Rescaling in this representation of ̂FX leads to a characterisation of ̂F -
coalgebra maps. We give a slightly more general statement.

Corollary 4.8. Let X,Y ⊆ R
n be PCA s, and assume that X and Y are compact.

Further, let c : X → R+ × (Rn)A be a convex map, and let c̃ : R
n → R × (Rn)A

be a linear extension of c. Then c(X) ⊆ ̂FY , if and only if

c̃o(x) +
∑

a∈A

μY (c̃a(x)) ≤ μX(x), x ∈ R
n. (4)

5 An Extension Theorem for ̂F -coalgebras

In this section we establish an extension theorem for ̂F -coalgebras. It states that
an ̂F -coalgebra, whose carrier has a particular geometric form, can, under a mild
additional condition, be embedded into an ̂F -coalgebra whose carrier is free and
finitely generated.

Proper Semirings and Proper Convex Functors 343

Theorem 5.1. Let (X, c) be an ̂F -coalgebra whose carrier X is a compact subset
of a euclidean space R

n with Δn ⊆ X ⊆ R
n
+. Assume that the output map co

does not vanish on invariant coordinate hyperplanes in the sense that (ej denotes
again the j-th canonical basis vector in R

n)

� I ⊆ {1, . . . , n}.

I �= ∅, co(ej) = 0, j ∈ I, ca(ej) ⊆ span{ei | i ∈ I}, a ∈ A, j ∈ I.
(5)

Then there exists an ̂F -coalgebra (Y, d), such that X ⊆ Y ⊆ R
n
+, the inclusion

map ι : X → Y is a Coalg(̂F)-morphism, and Y is the subconvex hull of n linearly
independent vectors (in particular, Y is free with n generators).

The idea of the proof can be explained by geometric intuition. Say, we have
an ̂F -coalgebra (X, c) of the stated form, and let c̃ : R

n → R × (Rn)A be the
linear extension of c to all of R

n, cf. Lemma 4.7.

•e2

•e1

̂FXX

c = c̃|X

Remembering that pyramids are free and finitely generated, we will be done if
we find a pyramid Y ⊇ X which is mapped into ̂FY by c̃:

•e2

•e1

̂FXX

c = c̃|X

Y

̂FY

⊆

c̃|Y

This task can be reformulated as follows: For each pyramid Y1 containing X let
P (Y1) be the set of all pyramids Y2 containing X, such that c̃(Y2) ⊆ ̂FY1. If we
find Y with Y ∈ P (Y), we are done.

Existence of Y can be established by applying a fixed point principle for set-
valued maps. The result sufficient for our present level of generality is Kakutani’s
generalisation [12, Corollary] of Brouwers fixed point theorem.

6 Properness of ̂F

In this section we give the second main result of the paper.

Theorem 6.1. The functor ̂F is proper.
In fact, for each two given coalgebras with free finitely generated carrier and

each two elements having the same trace, a zig-zag with free and finitely generated
nodes relating those elements can be found, which has three intermediate nodes
with the middle one forming a span.

344 A. Sokolova and H. Woracek

We try to follow the proof scheme familiar from the cubic case. Assume we
are given two ̂F -coalgebras with free finitely generated carrier, say (Δn1 , c1) and
(Δn2 , c2), and elements x1 ∈ Δn1 and x2 ∈ Δn2 having the same trace. Since
̂FΔnj ⊆ R×(Rnj)A we can apply Lemma 4.7 and obtain FR-coalgebras (Rnj , c̃j)
with c̃j |Δnj = cj . This leads to the basic diagram:

Δn1 ��

c1

��

R
n1

c̃1

��

Z
π1�� π2 ��

d

��
⊆

R
n1× R

n2

R
n2

c̃2

��

Δn2��

c2

��

̂FΔn1 �� FRR
n1 FRZ

F Rπ1�� F Rπ2 ��

⊆
R× (Rn1× R

n2)A

FRR
n2 ̂FΔn2��

At this point the line of argument known from the cubic case breaks: it is not
granted that Z ∩ (Δn1 × Δn2) becomes an ̂F -coalgebra with the restriction of d.

The substitute for Z ∩(Δn1 ×Δn2) suitable for proceeding one step further is
given by the following lemma, where we tacitly identify R

n1 × R
n2 with R

n1+n2 .

Lemma 6.2. We have d(Z ∩ 2Δn1+n2) ⊆ ̂F (Z ∩ 2Δn1+n2).

This shows that Z ∩ 2Δn1+n2 becomes an ̂F -coalgebra with the restriction
of d. Still, we cannot return to the usual line of argument: it is not granted that
πj(Z ∩2Δn1+n2) ⊆ Δnj . This forces us to introduce additional nodes to produce
a zig-zag in Coalg(̂F). These additional nodes are given by the following lemma.
There co(−) denotes the convex hull.

Lemma 6.3. Set Yj = co(Δnj ∪ πj(Z ∩ 2Δn1+n2)). Then c̃j(Yj) ⊆ ̂FYj.

This shows that Yj becomes an ̂F -coalgebra with the restriction of c̃j . We
are led to a zig-zag in Coalg(̂F):

(Δn1 , c1)
⊆ �� (Y1, c̃1)

(

Z ∩ 2Δn1+n2 , d
)π1�� π2 �� (Y2, c̃2) (Δn2 , c2)

⊇��

This zig-zag relates x1 and x2 since (x1, x2) ∈ Z ∩ 2Δn1+n2 .
Using Minkowski’s Theorem and the argument from [24, Lemma B.8] shows

that the middle node has finitely generated carrier. The two nodes with incoming
arrows are, as convex hulls of two finitely generated PCAs, of course also finitely
generated. But in general they will not be free (and this is essential, remember
Remark 2.2). Now Theorem 5.1 comes into play.

Proper Semirings and Proper Convex Functors 345

Lemma 6.4. Assume that each of (Δn1 , c1) and (Δn2 , c2) satisfies the following
condition:

� I ⊆ {1, . . . , n}.

I �= ∅, cjo(ek) = 0, k ∈ I, cja(ek) ⊆ co({ei | i ∈ I} ∪ {0}), a ∈ A, k ∈ I.
(6)

Then there exist free finitely generated PCAs Uj with Yj ⊆ Uj ⊆ R
nj

+ which satisfy
c̃j(Uj) ⊆ ̂FUj.

This shows that Uj , under the additional assumption (6) on (Δnj , cj),
becomes an ̂F -coalgebra with the restriction of c̃j . Thus we have a zig-zag in
Coalg(̂F) relating x1 and x2 whose nodes with incoming arrows are free and
finitely generated, and whose node with outgoing arrows is finitely generated:

(Δn1 , c1)
⊆ ��

����
���

���
��

(Y1, c̃1)

��

⊆

(

Z ∩ 2Δn1+n2 , d
)π1�� π2 ��

�����
���

���
��

����
���

���
���

(Y2, c̃2)

��

⊆

(Δn2 , c2)
⊇��

�����
���

���
�

(U1, c̃1) (U2, c̃2)

Removing the additional assumption on (Δnj , cj) is an easy exercise.

Lemma 6.5. Let (Δn, c) be an ̂F -coalgebra. Assume that I is a nonempty subset
of {1, . . . , n} with

co(ek) = 0, k ∈ I and ca(ek) ∈ co
({ei | i ∈ I} ∪ {0}), a ∈ A, k ∈ I. (7)

Let X be the free PCA with basis {ek | k ∈ {1, . . . , n} \ I}, and let f : Δn → X be
the PCA-morphism with f(ek) = 0 if k ∈ I and f(ek) = ek if k �∈ I. Further, let
g : X → [0, 1] × XA be the PCA-morphism with

g(ek) =
(

co(ek),
(

f(ca(ek))
)

a∈A

)

, k ∈ {1, . . . , n} \ I.

Then (X, g) is an ̂F -coalgebra, and f is an ̂F -coalgebra morphism of (Δn, c)
onto (X, g).

Corollary 6.6. Let (Δn, c) be an ̂F -coalgebra. Then there exists k ≤ n, an ̂F -
coalgebra (Δk, g), such that (Δk, g) satisfies the assumption in Lemma 6.4 and
such that there exists an ̂F -coalgebra map f of (Δn, c) onto (Δk, g).

The proof of Theorem 6.1 is now finished by putting together what we showed
so far. Starting with ̂F -coalgebras (Δnj , cj) without any additional assumptions,
and elements xj ∈ Δnj having the same trace, we first reduce by means of
Corollary 6.6 and then apply Lemma 6.4. This gives a zig-zag as required:

(Δn1 , c1)

ψ1

�� ��	
		

		
		

		

(

Z ∩ 2Δk1+k2 , d
)

����
���

���
���

(Δn2 , c2)

ψ2

������
��
��
��
�

(Δk1 , g1) �� (U1, g̃1) (U2, g̃2) (Δk2 , g2)��

and completes the proof of properness of ̂F .

346 A. Sokolova and H. Woracek

Acknowledgements. We thank the anonymous reviewers for many valuable com-
ments, in particular for reminding us of a categorical property that shortened the
proof of the extension lemma.

References

1. Béal, M.-P., Lombardy, S., Sakarovitch, J.: On the equivalence of Z-automata. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 397–409. Springer, Heidelberg (2005). https://doi.org/
10.1007/11523468 33

2. Béal, M.-P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted
automata and functional transducers. In: Grigoriev, D., Harrison, J., Hirsch, E.A.
(eds.) CSR 2006. LNCS, vol. 3967, pp. 58–69. Springer, Heidelberg (2006). https://
doi.org/10.1007/11753728 9

3. Bloom, S.L., Ésik, Z.: Iteration Theories - The Equational Logic of Itera-
tive Processes. EATCS Monographs on Theoretical Computer Science. Springer,
Heidelberg (1993). https://doi.org/10.1007/978-3-642-78034-9

4. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of
coalgebraic language equivalence. CoRR abs/1104.2803 (2011)

5. Doberkat, E.E.: Eilenberg-Moore algebras for stochastic relations. Inf. Comput.
204(12), 1756–1781 (2006). https://doi.org/10.1016/j.ic.2006.09.001

6. Doberkat, E.E.: Erratum and addendum: Eilenberg-Moore algebras for stochastic
relations. Inf. Comput. 206(12), 1476–1484 (2008). https://doi.org/10.1016/j.ic.
2008.08.002. [mr2277336]

7. Ésik, Z., Kuich, W.: A generation of Kozen’s Axiomatization of the equational
theory of the regular sets. In: Words, Semigroups, and Transductions - Festschrift
in Honor of Gabriel Thierrin, pp. 99–114 (2001)

8. Ésik, Z., Maletti, A.: Simulation vs. equivalence. In: Proceedings of the 2010 Inter-
national Conference on Foundations of Computer Science, FCS 2010, 12–15 July
2010, Las Vegas, Nevada, USA, pp. 119–124 (2010)

9. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316823187

10. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. J. Comput.
Syst. Sci. 81(5), 859–879 (2015)

11. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bull. EATCS
62, 222–259 (1996)

12. Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8,
457–459 (1941). http://projecteuclid.org/euclid.dmj/1077492791

13. Kurz, A.: Logics for coalgebras and applications to computer science. Ph.D. thesis,
Ludwig-Maximilians-Universität München (2000)

14. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5, 2nd edn. Springer, New York (1998)

15. Manes, E., Mulry, P.: Monad compositions I. General constructions and recursive
distributive laws. Theor. Appl. Categ. 18(7), 172–208 (2007)

16. Milius, S.: Proper functors and their rational fixed point. In: 7th Conference
on Algebra and Coalgebra in Computer Science, CALCO 2017, 12–16 June
2017, Ljubljana, Slovenia, pp. 18:1–18:16 (2017). https://doi.org/10.4230/LIPIcs.
CALCO.2017.18

https://doi.org/10.1007/11523468_33
https://doi.org/10.1007/11523468_33
https://doi.org/10.1007/11753728_9
https://doi.org/10.1007/11753728_9
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1016/j.ic.2006.09.001
https://doi.org/10.1016/j.ic.2008.08.002
https://doi.org/10.1016/j.ic.2008.08.002
https://doi.org/10.1017/CBO9781316823187
http://projecteuclid.org/euclid.dmj/1077492791
https://doi.org/10.4230/LIPIcs.CALCO.2017.18
https://doi.org/10.4230/LIPIcs.CALCO.2017.18

Proper Semirings and Proper Convex Functors 347

17. Pumplün, D.: Regularly ordered Banach spaces and positively convex spaces. Res.
Math. 7(1), 85–112 (1984). https://doi.org/10.1007/BF03322493

18. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Prince-
ton University Press, Princeton (1970)

19. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathe-
matics, 2nd edn. McGraw-Hill Inc., New York (1991)

20. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249,
3–80 (2000)

21. Silva, A.: Kleene coalgebra. Ph.D. thesis, Radboud University Nijmegen (2010)
22. Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing the powerset con-

struction, coalgebraically. In: Proceedings of FSTTCS 2010. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 8, pp. 272–283 (2010)

23. Silva, A., Sokolova, A.: Sound and complete axiomatization of trace semantics
for probabilistic systems. Electr. Notes Theor. Comput. Sci. 276, 291–311 (2011).
https://doi.org/10.1016/j.entcs.2011.09.027

24. Sokolova, A., Woracek, H.: Proper semirings and proper convex functors. arXiv
1802.07830 (2018). https://arxiv.org/abs/1802.07830

25. Staton, S.: Relating coalgebraic notions of bisimulation. Log. Methods Comput.
Sci. 7(1), 1–21 (2011)

26. Wolter, U.: On corelations, cokernels, and coequations. Electron. Notes Theor.
Comput. Sci. 33, 317–336 (2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BF03322493
https://doi.org/10.1016/j.entcs.2011.09.027
https://arxiv.org/abs/1802.07830
http://creativecommons.org/licenses/by/4.0/

From Symmetric Pattern-Matching
to Quantum Control

Amr Sabry1 , Benôıt Valiron2(B), and Juliana Kaizer Vizzotto3

1 Indiana University, Bloomington, IN, USA
sabry@indiana.edu

2 LRI, CentraleSupélec, Université Paris-Saclay, Orsay, France
benoit.valiron@lri.fr

3 Universidade Federal de Santa Maria, Santa Maria, Brazil
juvizzotto@inf.ufsm.br

Abstract. One perspective on quantum algorithms is that they are clas-
sical algorithms having access to a special kind of memory with exotic
properties. This perspective suggests that, even in the case of quantum
algorithms, the control flow notions of sequencing, conditionals, loops,
and recursion are entirely classical. There is however, another notion
of control flow, that is itself quantum. The notion of quantum condi-
tional expression is reasonably well-understood: the execution of the two
expressions becomes itself a superposition of executions. The quantum
counterpart of loops and recursion is however not believed to be mean-
ingful in its most general form.

In this paper, we argue that, under the right circumstances, a rea-
sonable notion of quantum loops and recursion is possible. To this aim,
we first propose a classical, typed, reversible language with lists and fix-
points. We then extend this language to the closed quantum domain
(without measurements) by allowing linear combinations of terms and
restricting fixpoints to structurally recursive fixpoints whose termina-
tion proofs match the proofs of convergence of sequences in infinite-
dimensional Hilbert spaces. We additionally give an operational seman-
tics for the quantum language in the spirit of algebraic lambda-calculi
and illustrate its expressiveness by modeling several common unitary
operations.

1 Introduction

The control flow of a program describes how its elementary operations are orga-
nized along the execution. Usual primitive control mechanisms are sequences,
tests, iteration and recursion. Elementary operations placed in sequence are exe-
cuted in order. Tests allow conditionally executing a group of operations and
changing the course of the execution of the program. Finally, iteration gives the

B. Valiron and J. K. Vizzotto—Partially funded by FoQCoss STIC AmSud project -
STIC-AmSUD/Capes - Foundations of Quantum Computation: Syntax and
Semantics.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 348–364, 2018.
https://doi.org/10.1007/978-3-319-89366-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_19&domain=pdf
http://orcid.org/0000-0002-1025-7331

From Symmetric Pattern-Matching to Quantum Control 349

possibility to iterate a process an arbitrary number of times and recursion gener-
alizes iteration to automatically manage the history of the operations performed
during iteration. The structure of control flow for conventional (classical) com-
putation is well-understood. In the case of quantum computation, control flow is
still subject to debate. This paper proposes a working notion of quantum control
in closed quantum systems, shedding new light on the problem, and clarifying
several of the previous concerns.

Quantum Computation. A good starting point for understanding quantum com-
putation is to consider classical circuits over bits but replacing the bits with
qubits, which are intuitively superpositions of bits weighed by complex num-
ber amplitudes. Computationally, a qubit is an abstract data type governed
by the laws of quantum physics, whose values are normalized vectors of com-
plex numbers in the Hilbert space C2 (modulo a global phase). By choosing an
orthonormal basis, say the classical bits tt and ff, a qubit can be regarded as a
complex linear combination, α tt + β ff, where α and β are complex numbers
such that |α|2 + |β|2 = 1. This generalizes naturally to multiple qubits: the state
of a system of n qubits is a vector in the Hilbert space (C2)⊗n.

The operations one can perform on a quantum memory are of two kinds:
quantum gates and measurements. Quantum gates are unitary operations that
are “purely quantum” in the sense that they modify the quantum memory with-
out giving any feedback to the outside world: the quantum memory is viewed
as a closed system. A customary graphical representation for these operations
is the quantum circuit, akin to conventional boolean circuits: wires represent
qubits while boxes represents operations to perform on them. One of the peculiar
aspects of quantum computation is that the state of a qubit is non-duplicable [1],
a result known as the no-cloning theorem. A corollary is that a quantum circuit
is a very simple kind of circuit: wires neither split nor merge.

Measurement is a fundamentally different kind of operation: it queries the
state of the quantum memory and returns a classical result. Measuring the state
of a quantum bit is a probabilistic and destructive operation: it produces a
classical answer with a probability that depends on the amplitudes α, β in the
state of the qubit while projecting this state onto tt or ff, based on the result.

For a more detailed introduction to quantum computation, we refer the reader
to recent textbooks (e.g., [2]).

Control Flow in Quantum Computation. In the context of quantum program-
ming languages, there is a well-understood notion of control flow: the so-called
classical control flow. A quantum program can be seen as the construction,
manipulation and evaluation of quantum circuits [3,4]. In this setting, circuits
are simply considered as special kinds of data without much computational con-
tent, and programs are ruled by regular classical control.

One can however consider the circuit being manipulated as a program in
its own right: a particular sequence of execution on the quantum memory is
then seen as a closed system. One can then try to derive a notion of quantum
control [5], with “quantum tests” and “quantum loops”. Quantum tests are a

350 A. Sabry et al.

bit tricky to perform [5,6] but they essentially correspond to well-understood
controlled operations. The situation with quantum loops is more subtle [6,7].
First, a hypothetical quantum loop must terminate. Indeed, a non-terminating
quantum loop would entail an infinite quantum circuit, and this concept has so
far no meaning. Second, the interaction of quantum loops with measurement is
problematic: it is known that the canonical model of open quantum computa-
tion based on superoperators [8,9] is incompatible with such quantum control [6].
Finally, the mathematical operator corresponding to a quantum loop would need
to act on an infinite-dimensional Hilbert space and the question of mixing pro-
gramming languages with infinitary Hilbert spaces is still an unresolved issue.

Our Contribution. In this paper, we offer a novel solution to the question of
quantum control: we define a purely quantum language, inspired by Theseus [10],
featuring tests and fixpoints in the presence of lists. More precisely, we propose
(1) a typed, reversible language, extensible to linear combinations of terms, with
a reduction strategy akin to algebraic lambda-calculi [11–13]; (2) a model for
the language based on unitary operators over infinite-dimensional Hilbert spaces,
simplifying the Fock space model of Ying [7]. This model captures lists, tests, and
structurally recursive fixpoints. We therefore settle two longstanding issues. (1)
We offer a solution to the problem of quantum loops, with the use of terminating,
structurally recursive, purely quantum fixpoints. We dodge previously noted con-
cerns (e.g., [6]) by staying in the closed quantum setting and answer the problem
of the external system of quantum “coins” [7] with the use of lists. (2) By using a
linear language based on patterns and clauses, we give an extensible framework
for reconciling algebraic calculi with quantum computation [11,12,16].

In the remainder of the paper, we first introduce the key idea underlying our
classical reversible language in a simple first-order setting. We then generalize the
setting to allow second-order functions, recursive types (e.g., lists), and fixpoints.
After illustrating the expressiveness of this classical language, we adapt it to the
quantum domain and give a semantics to the resulting quantum language in
infinite-dimensional Hilbert spaces. Technical material that would interrupt the
flow or that is somewhat complementary has been relegated to an extended
version of the paper [17].

2 Pattern-Matching Isomorphisms

The most elementary control structure in a programming language is the ability
to conditionally execute one of several possible code fragments. Expressing such
an abstraction using predicates and nested if -expressions makes it difficult for
both humans and compilers to reason about the control flow structure. Instead,
in modern functional languages, this control flow paradigm is elegantly expressed
using pattern-matching. This approach yields code that is not only more concise
and readable but also enables the compiler to easily verify two crucial properties:
(i) non-overlapping patterns and (ii) exhaustive coverage of a datatype using a
collection of patterns. Indeed most compilers for functional languages perform

From Symmetric Pattern-Matching to Quantum Control 351

these checks, warning the user when they are violated. At a more fundamental
level, e.g., in type theories and proof assistants, these properties are actually nec-
essary for correct reasoning about programs. Our first insight, explained in this
section, is that these properties, perhaps surprisingly, are sufficient to produce
a simple and intuitive first-order reversible programming language.

f :: Either Int Int -> a
f (Left 0) = undefined
f (Left (n+1)) = undefined
f (Right n) = undefined

Fig. 1. A skeleton

g :: (Bool,Int) -> a
g (False,n) = undefined
g (True,0) = undefined
g (True,n+1) = undefined

Fig. 2. Another skeleton

h :: Either Int Int <-> (Bool,Int)
h (Left 0) = (True,0)
h (Left (n+1)) = (False,n)
h (Right n) = (True,n+1)

Fig. 3. An isomorphism

2.1 An Example

We start with a small illustrative example, written in a Haskell-like syn-
tax. Figure 1 gives the skeleton of a function f that accepts a value of type
Either Int Int; the patterns on the left-hand side exhaustively cover every
possible incoming value and are non-overlapping. Similarly, Fig. 2 gives the
skeleton for a function g that accepts a value of type (Bool,Int); again the
patterns on the left-hand side exhaustively cover every possible incoming value
and are non-overlapping. Now we claim that since the types Either Int Int
and (Bool,Int) are isomorphic, we can combine the patterns of f and g into
symmetric pattern-matching clauses to produce a reversible function between
the types Either Int Int and (Bool,Int). Figure 3 gives one such function;
there, we suggestively use <-> to indicate that the function can be executed in
either direction. This reversible function is obtained by simply combining the
non-overlapping exhaustive patterns on the two sides of a clause. In order to be
well-formed in either direction, these clauses are subject to the constraint that
each variable occurring on one side must occur exactly once on the other side
(and with the same type). Thus it is acceptable to swap the second and third
right-hand sides of h but not the first and second ones.

2.2 Terms and Types

We present a formalization of the ideas presented above using a simple typed
first-order reversible language. The language is two-layered. The first layer con-
tains values, which also play the role of patterns. These values are constructed
from variables ranged over x and the introduction forms for the finite types a, b
constructed from the unit type and sums and products of types. The second
layer contains collections of pattern-matching clauses that denote isomorphisms
of type a ↔ b. Computations are chained applications of isomorphisms to values:

352 A. Sabry et al.

(Value types) a, b ::= 1 | a ⊕ b | a ⊗ b
(Iso types) T ::= a ↔ b

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉
(Isos) ω ::= { | v1 ↔ v′

1 | v2 ↔ v′
2 . . . }

(Terms) t ::= v | ω t

The typing rules are defined using two judgments: Δ �v v : a for typing values (or
patterns) and terms; and �ω ω : a ↔ b for typing collections of pattern-matching
clauses denoting an isomorphism. As it is customary, we write a1 ⊗ a2 ⊗ · · ·⊗an

for ((a1 ⊗ a2) ⊗ · · · ⊗ an), and similarly 〈x1, x2, . . . , xn〉 for 〈〈x1, x2〉, . . . , xn〉.
The typing rules for values are the expected ones. The only subtlety is the

fact that they are linear: because values act as patterns, we forbid the repetition
of variables. A typing context Δ is a set of typed variables x1 : a1, . . . , xn : an.
A value typing judgment is valid if it can be derived from the following rules:

�v () : 1, x : a �v x : a,

Δ1 �v v1 : a Δ2 �v v2 : b

Δ1,Δ2 �v 〈v1, v2〉 : a ⊗ b.

Δ �v v : a

Δ �v injl v : a ⊕ b,

Δ �v v : b

Δ �v injr v : a ⊕ b,

The typing rule for term construction is simple and forces the term to be closed:

�v t : a �ω ω : a ↔ b

�v ω t : b

The most interesting type rule is the one for isomorphisms. We present the rule
and then explain it in detail:

Δ1 �v v1 : a
Δ1 �v v′

1 : b
. . .

Δn �v vn : a
Δn �v v′

n : b
∀i 	= j, vi⊥vj

∀i 	= j, v′
i⊥v′

j

dim(a) = n
dim(b) = n

�ω { | v1 ↔ v′
1 | v2 ↔ v′

2 . . . } : a ↔ b, (1)

The rule relies on two auxiliary conditions as motivated in the beginning of the
section. These conditions are (i) the orthogonality judgment v⊥v′ that formalizes
that patterns must be non-overlapping and (ii) the condition dim(a) = n which
formalizes that patterns are exhaustive. The rules for deriving orthogonality of
values or patterns are:

injl v1 ⊥ injr v2 injr v1 ⊥ injl v2
v1 ⊥ v2

injl v1 ⊥ injl v2

v1 ⊥ v2
injr v1 ⊥ injr v2

v1 ⊥ v2
〈v, v1〉 ⊥ 〈v′, v2〉

v1 ⊥ v2
〈v1, v〉 ⊥ 〈v2, v′〉

The idea is simply that the left and right injections are disjoint subspaces of val-
ues. To characterize that a set of patterns is exhaustive, we associate a dimension
with each type. For finite types, this is just the number of elements in the type
and is inductively defined as follows: dim(1) = 1; dim(a ⊕ b) = dim(a) + dim(b);

From Symmetric Pattern-Matching to Quantum Control 353

and dim(a ⊗ b) = dim(a) · dim(b). For a given type a, if a set of non-overlapping
clauses has cardinality dim(a), it is exhaustive. Conversely, any set of exhaus-
tive clauses for a type a either has cardinality dim(a) or can be extended to an
equivalent exhaustive set of clauses of cardinality dim(a).

2.3 Semantics

We equip our language with a simple operational semantics on terms, using the
natural notion of matching. To formally define it, we first introduce the notion
of variable assignation, or valuation, which is a partial map from a finite set of
variables (the support) to a set of values. We denote the matching of a value w
against a pattern v and its associated valuation σ as σ[v] = w and define it as
follows:

σ[()] = ()
σ = {x �→ v}

σ[x] = v

σ[v] = w

σ[injl v] = injl w

σ[v] = w

σ[injr v] = injr w

σ2[v1] = w1 σ1[v2] = w2 supp(σ1) ∩ supp(σ2) = ∅ σ = σ1 ∪ σ2

σ[〈v1, v2〉] = 〈w1, w2〉

If σ is a valuation whose support contains the variables of v, we write σ(v) for
the value where the variables of v have been replaced with the corresponding
values in σ.

Given these definitions, we can define the reduction relation on terms. The
redex { | v1 ↔ v′

1 | v2 ↔ v′
2 . . . } v reduces to σ(v′

i) whenever σ[vi] = v′
i.

Because of the conditions on patterns, a matching pattern exists by exhaus-
tivity of coverage, and this pattern is unique by the non-overlapping condition.
Congruence holds: ω t → ω t′ whenever t → t′. As usual, we write s → t to say
that s rewrites in one step to t and s →∗ t to say that s rewrites to t in 0 or
more steps.

Because of the conditions set on patterns, the rewrite system is deterministic.
More interestingly, we can swap the two sides of all pattern-matching clauses in
an isomorphism ω to get ω−1. The execution of ω−1 is the reverse execution of
ω in the sense that ω−1(ω t) →∗ t and ω(ω−1 t′) →∗ t′.

3 Second-Order Functions, Lists, and Recursion

The first-order reversible language from the previous section embodies symmet-
ric-pattern matching clauses as its core notion of control. Its expressiveness is
limited, however. We now show that it is possible to extend it to have more in
common with a conventional functional language. To that end, we extend the
language with the ability to parametrically manipulate isomorphisms, with a
recursive type (lists), and with recursion.

354 A. Sabry et al.

3.1 Terms and Types

Formally, the language is now defined as follows.

(Val & term types) a, b ::= 1 | a ⊕ b | a ⊗ b | [a]
(Iso types) T ::= a ↔ b | (a ↔ b) → T

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉
(Products) p ::= () | x | 〈p1, p2〉
(Extended Values) e ::= v | let p1 = ω p2 in e
(Isos) ω ::= { | v1 ↔ e1 | v2 ↔ e2 . . . } | λf.ω |

μf.ω | f | ω1 ω2

(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |
ω t | let p = t1 in t2

We use variables f to span a set of iso-variables and variables x to span a set
of term-variables. We extend the layer of isos so that it can be parameterized
by a fixed number of other isos, i.e., we now allow higher-order manipulation
of isos using λf.ω, iso-variables, and applications. Isos can now be used inside
the definition of other isos with a let-notation. These let-constructs are however
restricted to products of term-variables: they essentially serve as syntactic sugar
for composition of isos. An extended value is then a value where some of its free
variables are substituted with the result of the application of one or several isos.
Given an extended value e, we define its bottom value, denoted with Val(e) as
the value “at the end” of the let-chain: Val(v) = v, and Val(let p = ωp in e) =
Val(e). The orthogonality of extended values is simply the orthogonality of their
bottom value.

As usual, the type of lists [a] of elements of type a is a recursive type and
is equivalent to 1 ⊕ (a × [a]). We build the value [] (empty list) as injl () and
the term t1 : t2 (cons of t1 and t2) as injr 〈t1, t2〉. In addition, to take full
advantage of recursive datatypes, it is natural to consider recursion. Modulo a
termination guarantee it is possible to add a fixpoint to the language: we extend
isos with the fixpoint constructor μf.ω. Some reversible languages allow infinite
loops and must work with partial isomorphisms instead. Since we plan on using
our language as a foundation for a quantum language we insist of termination.

Since the language features two kinds of variables, there are typing contexts
(written Δ) consisting of base-level typed variables of the form x : a, and typing
context (written Ψ) consisting of typed iso-variables of the form f : T . As terms
and values contain both base-level and iso-variables, one needs two typing con-
texts. Typing judgments are therefore written respectively as Δ;Ψ �v t : a. The
updated rules for (�v) are found in Table 1. As the only possible free variables
in isos are iso-variables, their typing judgments only need one context and are
written as Ψ �ω ω : T .

The rules for typing derivations of isos are in Table 2. It is worthwhile men-
tioning that isos are treated in a usual, non-linear way: this is the purpose of
the typing context separation. The intuition is that an iso is the description of
a closed computation with respect to inputs: remark that isos cannot accept

From Symmetric Pattern-Matching to Quantum Control 355

Table 1. Typing rules for terms and values

∅;Ψ �v () : 1 x : a;Ψ �v x : a

Δ;Ψ �v t : a

Δ;Ψ �v injl t : a ⊕ b

Δ;Ψ �v t : b

Δ;Ψ �v injr t : a ⊕ b

Δ1;Ψ �v t1 : a Δ2;Ψ �v t2 : b

Δ1, Δ2;Ψ �v 〈t1, t2〉 : a ⊗ b

Ψ �ω ω : a ↔ b Δ;Ψ �v t : a

Δ;Ψ �v ω t : b

Δ;Ψ �v t1 : a ⊗ b Δ, x : a, y : b;Ψ �v t2 : c

Δ;Ψ �v let 〈x, y〉 = t1 in t2 : c

Table 2. Typing rules for isos

Δ1;Ψ �v v1 : a . . . Δn;Ψ �v vn : a ODa{v1, . . . , vn}
Δ1;Ψ �v e1 : b . . . Δn;Ψ �v en : b ODext

b {e1, . . . , en}
Ψ �ω { | v1 ↔ e1 | v2 ↔ e2 . . . } : a ↔ b.

Ψ, f : a ↔ b �ω ω : T

Ψ �ω λf.ω : (a ↔ b) → T Ψ, f : T �ω f : T

Ψ �ω ω1 : (a ↔ b) → T Ψ �ω ω2 : a ↔ b

Ψ �ω ω1ω2 : T

Ψ, f : a ↔ b �ω ω : (a1 ↔ b1) → · · · → (an ↔ bn) → (a ↔ b)
μf.ω terminates in any finite context

Ψ �ω μf.ω : (a1 ↔ b1) → · · · → (an ↔ bn) → (a ↔ b)

value-types. As computations, they can be erased or duplicated without issues.
On the other hand, value-types still need to be treated linearly.

In the typing rule for recursion, the condition “μf.ω terminates in any finite
context” formally refers to the following requirement. A well-typed fixpoint μf.ω
of type Ψ �ω μf.ω : (a1 ↔ b1) → · · · → (an ↔ bn) → (a ↔ b) is terminating
in a 0-context if for all closed isos ωi : ai ↔ bi not using fixpoints and for every
closed value v of type a, the term ((μf.ω)ω1 . . . ωn)v terminates. We say that
the fixpoint is terminating in an (n + 1)-context if for all closed isos ωi : ai ↔ bi

terminating in n-contexts, and for every closed value v of type a, the term
((μf.ω)ω1 . . . ωn)v terminates. Finally, we say that the fixpoint is terminating in
any finitary context if for all n it is terminating in any n-context.

With the addition of lists, the non-overlapping and exhaustivity conditions
need to be modified. The main problem is that we can no longer define the
dimension of types using natural numbers: [a] is in essence an infinite sum, and
would have an “infinite” dimension. Instead, we combine the two conditions
into the concept of orthogonal decomposition. Formally, given a type a, we say
that a set S of patterns is an orthogonal decomposition, written ODa(S), when
these patterns are pairwise orthogonal and when they cover the whole type. We

356 A. Sabry et al.

Table 3. Reduction rules

t1 → t2
C[t1] → C[t2]

Cong
σ[p] = v1

let p = v1 in t2 → σ(t2)
LetE

σ[vi] = v

{ | v1 ↔ t1 | . . . | vn ↔ tn } v → σ(ti)
IsoApp

(λf.ω) ω2 → ω[ω2/f]
HIsoApp

Ψ, f : a ↔ b �ω ω : (a1 ↔ b1) → · · · → (an ↔ bn) → (a ↔ b)
μf.ω → λf1 . . . fn.(ω[((μf.ω)f1 . . . fn)/f])f1 . . . fn

IsoRec

formally define ODa(S) as follows. For all types a, ODa{x} is valid. For the unit
type, OD1{()} is valid. If ODa(S) and ODb(T), then

ODa⊕b({injl v | v ∈ S} ∪ {injr v | v ∈ T})
and ODa⊗b{〈v1, v2〉 | v1 ∈ S, v2 ∈ T, FV(v1) ∩ FV(v2) = ∅},

where FV(t) stands for the set of free value-variables in t. We then extend the
notion of orthogonal decomposition to extended values as follows. If S is a set
of extended values, ODext

a (S) is true whenever ODa{Val(e) | e ∈ S}. With this
new characterization, the typing rule of iso in Eq. 1 still holds, and then can be
re-written using this notion of orthogonal decomposition as shown in Table 2.

3.2 Semantics

In Table 3 we present the reduction rules for the reversible language. We assume
that the reduction relation applies to well-typed terms. In the rules, the notation
C[−] stands for an applicative context, and is defined as: C[−] ::= [−] | injl C[−] |
injr C[−] | (C[−])ω | {· · · } (C[−]) | let p = C[−] in t2 | 〈C[−], v〉 | 〈v, C[−]〉.

The inversion of isos is still possible but more subtle than in the first-order
case. We define an inversion operation (−)−1 on iso types with, (a ↔ b)−1 :=
(b ↔ a), ((a ↔ b) → T)−1 := ((b ↔ a) → (T−1)). Inversion of isos is defined as
follows. For fixpoints, (μf.ω)−1 = μf.(ω−1). For variables, (f)−1 := f . For appli-
cations, (ω1 ω2)−1 := (ω1)−1 (ω2)−1. For abstraction, (λf.ω)−1 := λf.(ω−1).
Finally, clauses are inverted as follows:

⎛
⎝

v1 ↔ let p1 = ω1 p′
1 in

· · ·
let pn = ωn p′

n in v′
1

⎞
⎠

−1

:=

⎛
⎝

v′
1 ↔ let p′

n= ω−1
n pn in

· · ·
let p′

1 = ω−1
1 p1 in v1

⎞
⎠ .

Note that (−)−1 only inverts first-order arrows (↔), not second-order arrows
(→). This is reflected by the fact that iso-variable are non-linear while value-
variables are. This is due to the clear separation of the two layers of the language.

The rewriting system satisfies the usual properties for well-typed terms: it
is terminating, well-typed closed terms have a unique normal value-form, and it
preserves typing.

From Symmetric Pattern-Matching to Quantum Control 357

Theorem 1. The inversion operation is well-typed, in the sense that if f1 :
a1 ↔ b1, . . . , fn : an ↔ bn �ω ω : T then we also have f1 : b1 ↔ a1, . . . , fn :
bn ↔ an �ω ω−1 : T−1. ��

Thanks to the fact that the language is terminating, we also recover the
operational result of Sect. 2.3.

Theorem 2. Consider a well-typed, closed iso �ω ω : a ↔ b, and suppose that
�v v : a and that �v w : b, then ω−1(ω v) →∗ v and ω(ω−1 w) →∗ w. ��

4 Examples

In the previous sections, we developed a novel classical reversible language with
a familiar syntax based on pattern-matching. The language includes a limited
notion of higher-order functions and (terminating) recursive functions. We illus-
trate the expressiveness of the language with a few examples and motivate the
changes and extensions needed to adapt the language to the quantum domain.

We encode booleans as follows: B = 1 ⊕ 1, tt = injl (), and ff = injr ().
One of the easiest function to define is not : B ↔ B which flips a boolean. The
controlled-not gate which flips the second bit when the first is true can also be
expressed:

not : B ↔ B =

(
ff ↔ tt
tt ↔ ff

)
, cnot : B ⊗ B ↔ B ⊗ B =

⎛
⎝

〈ff, x〉 ↔ 〈ff, x〉
〈tt, ff〉 ↔ 〈tt, tt〉
〈tt, tt〉 ↔ 〈tt, ff〉

⎞
⎠ .

All the patterns in the previous two functions are orthogonal decompositions
which guarantee reversibility as desired.

By using the abstraction facilities in the language, we can define higher-
order operations that build complex reversible functions from simpler ones. For
example, we can define a conditional expression parameterized by the functions
used in the two branches:

if : (a ↔ b) → (a ↔ b) → (B ⊗ a ↔ B ⊗ b)

if = λg.λh.

(〈tt, x〉 ↔ let y = g x in 〈tt, y〉
〈ff, x〉 ↔ let y = h x in 〈ff, y〉

)

Using if and the obvious definition for the identity function id, we can define
ctrl :: (a ↔ a) → (B ⊗ a ↔ B ⊗ a) as ctrl f = if f id and recover an
alternative definition of cnot as ctrl not. We can then define the controlled-
controlled-not gate (aka the Toffoli gate) by writing ctrl cnot. We can even
iterate this construction using fixpoints to produce an n-controlled-not function
that takes a list of n control bits and a target bit and flips the target bit iff all
the control bits are tt:

358 A. Sabry et al.

cnot∗ : ([B] ⊗ B) ↔ ([B] ⊗ B)

cnot∗ = μf.

⎛
⎝

〈[], tb〉 ↔ let tb′ = not tb in 〈[], tb′〉
〈ff : cbs, tb〉 ↔ 〈ff : cbs, tb〉
〈tt : cbs, tb〉 ↔ let 〈cbs′, tb′〉 = f 〈cbs, tb〉 in 〈tt : cbs′, tb′〉

⎞
⎠

The language is also expressible enough to write conventional recursive (and
higher-order) programs. We illustrate this expressiveness using the usual map
operation and an accumulating variant mapAccu:

map : (a ↔ b) → ([a] ↔ [b])

λg.μf.

⎛
⎝

[] ↔ []

h : t ↔ let x = g h in

let y = f t in x : y

⎞
⎠ ,

mapAccu : (a ⊗ b ↔ a ⊗ c) → (a ⊗ [b] ↔ a ⊗ [c])

λg.μf.

⎛
⎜⎜⎝

〈x, []〉 ↔ 〈x, []〉
〈x, (h : t)〉 ↔ let 〈y, h′〉 = g 〈x, h〉 in

let 〈z, t′〉 = f 〈y, t〉 in

〈z, (h′ : t′)〉

⎞
⎟⎟⎠ .

The three examples cnot*, map and mapAccu uses fixpoints which are clearly
terminating in any finite context. Indeed, the functions are structurally recursive.
A formal definition of this notion for the reversible language is as follows.

v1 v2 v3()
v′
1 1 0 0

v′
2 0 1 0

v′
3 0 0 1

Fig. 4. Classical iso

v1 v2 v3()
v′
1 a11 a12 a13

v′
2 a21 a22 a23

v′
3 a31 a32 a33

Fig. 5. Quantum iso

〈tt, x〉 〈ff, x〉()〈tt, x〉 1√
2
Had 1√

2
Id

〈ff, x〉 1√
2
Had −1√

2
Id

Fig. 6. Semantics of Gate

Definition 1. Define a structurally recursive type as a type of the form [a] ⊗
b1⊗ . . .⊗bn. Let ω = {vi ↔ ei | i ∈ I} be an iso such that f : a ↔ b �ω ω : a ↔ c
where a is a structurally recursive type. We say that μf.ω is structurally recursive
provided that for each i ∈ I, the value vi is either of the form 〈[], p1, . . . pn〉 or
of the form 〈h : t, p1, . . . pn〉. In the former case, ei does not contain f as a free
variable. In the latter case, ei is of the form C[f〈t, p′

1, . . . , p
′
n〉] where C is a

context of the form C[−] ::= [−] | let p = C[−] in t | let p = t in C[−].

This definition will be critical for quantum loops in the next section.

5 From Reversible Isos to Quantum Control

In the language presented so far, an iso ω : a ↔ b describes a bijection between
the set Ba of closed values of type a and the set Bb of closed values of type b. If
one regards Ba and Bb as the basis elements of some vector space �a� and �b�,
the iso ω becomes a 0/1 matrix.

As an example, consider an iso ω defined using three clauses of the form
{ | v1 ↔ v′

1 | v2 ↔ v′
2 | v3 ↔ v′

3 }. From the exhaustivity and non-overlapping
conditions derives the fact that the space �a� can be split into the direct sum
of the three subspaces �a�vi

(i = 1, 2, 3) generated by vi. Similarly, �b� is split

From Symmetric Pattern-Matching to Quantum Control 359

into the direct sum of the subspaces �b�v′
i

generated by v′
i. One can therefore

represent ω as the matrix �ω� in Fig. 4: The “1” in each column vi indicates to
which subspace �b�v′

j
an element of �a�vi

is sent to.
In Sect. 2.2 we discussed the fact that vi⊥vj when i 	= j. This notation hints

at the fact that �a� and �b� could be seen as Hilbert spaces and the mapping �ω�
as a unitary map from �a� to �b�. The purpose of this section is to extend and
formalize precisely the correspondence between isos and unitary maps.

The definition of clauses is extended following this idea of see-
ing isos as unitaries, and not only bijections on basis elements of the

⎧⎨
⎩

| v1 ↔ a11v′
1 + a21v′

2 + a31v′
3

| v2 ↔ a12v′
1 + a22v′

2 + a23v′
3

| v3 ↔ a31v′
1 + a32v′

2 + a33v′
3

⎫⎬
⎭

input space. We therefore essentially propose to
generalize the clauses to complex, linear combi-
nations of values on the right-hand-side, such as
shown on the left, with the side conditions on

that the matrix of Fig. 5 is unitary. We define in Sect. 5.1 how this extends to
second-order.

5.1 Extending the Language to Linear Combinations of Terms

The quantum unitary language extends the reversible language from the previ-
ous section by closing extended values and terms under complex, finite linear
combinations. For example, if v1 and v2 are values and α and β are complex
numbers, α · v1 + β · v2 is now an extended value.

Several approaches exist for performing such an extension. One can update
the reduction strategy to be able to reduce these sums and scalar multiplications
to normal forms [12,18], or one can instead consider terms modulo the usual
algebraic equalities [13,18]: this is the strategy we follow for this paper.

When extending a language to linear combination of terms in a naive way, this
added structure might generate inconsistencies in the presence of unconstrained
fixpoints [12,13,18]. The weak condition on termination we imposed on fixpoints
in the classical language was enough to guarantee reversibility. With the presence
of linear combinations, we want the much stronger guarantee of unitarity. For
this reason, we instead impose fixpoints to be structurally recursive.

The quantum unitary language is defined by allowing sums of terms and
values and multiplications by complex numbers: if t and t′ are terms, so is
α · t + t′. Terms and values are taken modulo the equational theory of modules.
We furthermore consider the value and term constructs 〈−,−〉, let p = − in −,
injl (−), injr (−) distributive over sum and scalar multiplication. We do
not however take iso-constructions as distributive over sum and scalar multi-
plication: { | v1 ↔ αv2 + βv3 } is not the same thing as α { | v1 ↔ v2 } +
β { | v1 ↔ v3 }. This is in the spirit of Lineal [11,12].

The typing rules for terms and extended values are updated as follows. We
only allow linear combinations of terms and values of the same type and of
the same free variables. Fixpoints are now required to be structurally recursive,
as introduced in Definition 1. Finally, an iso is now not only performing an
“identity” as in Fig. 4 but a true unitary operation:

360 A. Sabry et al.

Δ1;Ψ �v v1 : a . . . Δn;Ψ �v vn : a
Δ1;Ψ �v e1 : b . . . Δn;Ψ �v en : b
ODa{v1, . . . , vn} ODext

b {e1, . . . , en}

⎛
⎜⎝

a11 · · · a1n

...
...

an1 · · · ann

⎞
⎟⎠ is unitary

Ψ �ω

⎧⎨
⎩

v1 ↔ a11 · e1 + · · · + a1n · en

. . .
vn ↔ an1 · e1 + · · · + ann · en

⎫⎬
⎭ : a ↔ b.

The reduction relation is updated in a way that it remains deterministic in
this extended setting. It is split into two parts: the reduction of pure terms, i.e.
non-extended terms or values, and linear combinations thereof. Pure terms and
values reduce using the reduction rules found in Table 3. We do not extend
applicative contexts to linear combinations. For linear combinations of pure
terms, we simply ask that all pure terms that are not normal forms in the com-
bination are reduced. This makes the extended reduction relation deterministic.

Example 1. This allows one to define an iso behaving as the Hadamard gate, or
a slightly more complex iso conditionally applying another iso, whose behavior
as a matrix is shown in Fig. 6.

Had : B ↔ B(
tt ↔ 1√

2
tt + 1√

2
ff

ff ↔ 1√
2
tt − 1√

2
ff

)
,

Gate : B ⊗ B ↔ B ⊗ B(
〈tt, x〉 ↔ let y = Hadx in 1√

2
〈tt, y〉 + 1√

2
〈ff, y〉

〈ff, x〉 ↔ let y = Idx in 1√
2
〈tt, y〉 − 1√

2
〈ff, y〉

)
.

With this extension to linear combinations of terms, one can characterize
normal forms as follows.

Lemma 1 (Structure of the Normal Forms). Let ω be such that �ω ω :
a ↔ b. For all closed values v of type a, the term ω v rewrites to a normal form∑N

i=1 αi · wi where N < ∞, each wi is a closed value of type b and
∑

i |αi| = 1.

Proof. The fact that ω v converges to a normal form is a corollary of the fact
that we impose structural recursion on fixpoints. The property of the structure
of the normal form is then proven by induction on the maximal number of steps
it takes to reach it. It uses the restriction on the introduction of sums in the
typing rule for clauses in isos and the determinism of the reduction. ��

In the classical setting, isos describe bijections between sets of closed val-
ues: it was proven by considering the behavior of an iso against its inverse. In
the presence of linear combinations of terms, we claim that isos describe more
than bijections: they describe unitary maps. In the next section, we discuss how
types can be understood as Hilbert spaces (Sect. 5.2) and isos as unitary maps
(Sects. 5.3 and 5.4).

5.2 Modeling Types as Hilbert Spaces

By allowing complex linear combinations of terms, closed normal forms of finite
types such as B or B ⊗ B can be regarded as complex vector spaces with basis

From Symmetric Pattern-Matching to Quantum Control 361

consisting of closed values. For example, B is associated with �B� = {α · tt + β ·
ff | α, β ∈ C} ≡ C2. We can consider this space as a complex Hilbert space where
the scalar product is defined on basis elements in the obvious way: 〈v|v〉 = 1 and
〈v|w〉 = 0 if v 	= w. The map Had of Example 1 is then effectively a unitary map
on the space �B�.

The problem comes from lists: the type [1] is inhabited by an infinite number
of closed values: [], [()], [(), ()], [(), (), ()],. . . To account for this case, we need to
consider infinitely dimensional complex Hilbert spaces. In general, a complex
Hilbert space [19] is a complex vector space endowed with a scalar product that
is complete with respect the distance induced by the scalar product. The com-
pleteness requirement implies for example that the infinite linear combination
[]+ 1

2 · [()]+ 1
4 [(), ()]+ 1

8 [(), (), ()]+ · · · needs to be an element of �[B]�. To account
for these limit elements, we propose to use the standard [19] Hilbert space 	2 of
infinite sequences.

Definition 2. Let a be a value type. As before, we write Ba for the set of closed
values of type a, that is, Ba = {v | �v v : a}. The span of a is defined as the
Hilbert space �a� = 	2(Ba) consisting of sequences (φv)v∈Ba

of complex numbers
indexed by Ba such that

∑
v∈Ba

|φv|2 < ∞. The scalar product on this space is
defined as 〈(φv)v∈Ba

|(ψv)v∈Ba
〉 =

∑
v∈Ba

φvψv.

We shall use the following conventions. A closed value v of �a� is identified
with the sequence (δv,v′)v′∈Ba

where δv,v = 1 and δv,v′ = 0 if v 	= v′. An element
(φv)v∈Ba

of �a� is also written as the infinite, formal sum
∑

v∈Ba
φv · v.

5.3 Modeling Isos as Bounded Linear Maps

We can now define what is the linear map associated to an iso.

Definition 3. For each closed iso �ω ω : a ↔ b we define �ω� as the linear map
from �a� to �b� sending the closed value v : a to the normal form of ω v : b under
the rewrite system.

In general, the fact that �ω� is well-defined is not trivial. If it is formally
stated in Theorem 3, we can first try to understand what could go wrong. The
problem comes from the fact that the space �a� is not finite in general. Consider
the iso map Had : [B] ↔ [B]. Any closed value v : [B] is a list and the term
(map Had) v rewrites to a normal form consisting of a linear combination of lists.
Denote the linear combination associated to v with Lv. An element of �[B]� is
a sequence φ = (φv)v∈B[B] . From Definition 3, the map �ω� sends the element
φ ∈ �[B]� to

∑
v∈B[B]

φv ·Lv. This is an infinite sum of sums of complex numbers:
we need to make sure that it is well-defined: this is the purpose of the next
result. Because of the constraints on the language, we can even show that it is
a bounded linear map.

In the case of the map map Had, we can understand why it works as follows.
The space �[B]� can be decomposed as the direct sum

∑∞
i=0 Ei, where Ei is

generated with all the lists in B of size i. The map map Had is acting locally on

362 A. Sabry et al.

each finitely-dimensional subspace Ei. It is therefore well-defined. Because of the
unitarity constraint on the linear combinations appearing in Had, the operation
performed by map Had sends elements of norm 1 to elements of norm 1. This idea
can be formalized and yield the following theorem.

Theorem 3. For each closed iso �ω ω : a ↔ b the linear map �ω� : �a� → �b� is
well-defined and bounded. ��

5.4 Modeling Isos as Unitary Maps

In this section, we show that not only closed isos can be modeled as bounded
linear maps, but that these linear maps are in fact unitary maps. The problem
comes from fixpoints. We first consider the case of isos written without fixpoints,
and then the case with fixpoints.

Without recursion. The case without recursion is relatively easy to treat, as the
linear map modeling the iso can be compositionally constructed out of elemen-
tary unitary maps.

Theorem 4. Given a closed iso �ω ω : a ↔ b defined without the use of recur-
sion, the linear map �π� : �a� → �b� is unitary. ��

The proof of the theorem relies on the fact that to each closed iso �ω ω : a ↔ b
one can associate an operationally equivalent iso �ω ω′ : a ↔ b that does not use
iso-variables nor lambda-abstractions. We can define a notion of depth of an iso
as the number of nested isos. The proof is done by induction on this depth of
the iso ω: it is possible to construct a unitary map for ω using the unitary maps
for each ωij as elementary building blocks.

As an illustration, the semantics of Gate of Example 1 is given in Fig. 6.

Isos with structural recursion. When considering fixpoints, we cannot rely any-
more on this finite compositional construction: the space �a� cannot anymore be
regarded as a finite sum of subspaces described by each clause.

We therefore need to rely on the formal definition of unitary maps in general,
infinite Hilbert spaces. On top of being bounded linear, a map �ω� : �a� → �b�
is unitary if (1) it preserves the scalar product: 〈�ω�(e)|�ω�(f)〉 = 〈e|f〉 for all e
and f in �a� and (2) it is surjective.

Theorem 5. Given a closed iso �ω ω : a ↔ b that can use structural recursion,
the linear map �π� : �a� → �b� is unitary. ��

The proof uses the idea highlighted in Sect. 5.4: for a structurally recursive
iso of type [a] ⊗ b ↔ c, the Hilbert space �[a] ⊗ b� can be split into a canonical
decomposition E0 ⊕E1 ⊕E2 ⊕· · · , where Ei contains only the values of the form
〈[x1 . . . xi], y〉, containing the lists of size i. On each Ei, the iso is equivalent to
an iso without structural recursion.

From Symmetric Pattern-Matching to Quantum Control 363

6 Conclusion

In this paper, we proposed a reversible language amenable to quantum super-
positions of values. The language features a weak form of higher-order that is
nonetheless expressible enough to get interesting maps such as generalized Toffoli
operators. We sketched how this language effectively encodes bijections in the
classical case and unitary operations in the quantum case. It would be interesting
to see how this relates to join inverse categories [14,15].

In the vectorial extension of the language we have the same control as in
the classical, reversible language. Tests are captured by clauses, and naturally
yield quantum tests: this is similar to what can be found in QML [5,6], yet more
general since the QML approach is restricted to if-then-else constructs. The
novel aspect of quantum control that we are able to capture here is a notion of
quantum loops. These loops were believed to be hard, if not impossible. What
makes it work in our approach is the fact that we are firmly within a closed
quantum system, without measurements. This makes it possible to only consider
unitary maps and frees us from the Löwer order on positive matrices [6]. As we
restrict fixpoints to structural recursion, valid isos are regular enough to capture
unitarity. Ying [7] also proposes a framework for quantum while-loops that is
similar in spirit to our approach at the level of denotations: in his approach the
control part of the loops is modeled using an external systems of “coins” which,
in our case, correspond to conventional lists. Reducing the manipulation of this
external coin system to iteration on lists allowed us to give a simple operational
semantics for the language.

References

1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299,
802–803 (1982)

2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2002)

3. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a
scalable quantum programming language. In: Proceedings of PLDI 2013, pp. 333–
342 (2013)

4. Paykin, J., Rand, R., Zdancewic, S.: QWIRE: A core language for quantum circuits.
In: Proceedings of POPL 2017, pp. 846–858 (2017)

5. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
Proceedings of LICS 2005, pp. 249–258 (2005)

6. Badescu, C., Panangaden, P.: Quantum alternation: Prospects and problems. In:
Proceedings 12th International Workshop on Quantum Physics and Logic, QPL
2015, Oxford, UK, 15–17 July 2015, pp. 33–42 (2015)

7. Ying, M.: Foundations of Quantum Programming. Morgan Kaufmann, Cambridge
(2016)

8. Selinger, P.: Towards a quantum programming language. Math. Struct. Comput.
Sci. 14(4), 527–586 (2004)

9. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: superoper-
ators as arrows. Math. Struct. Comput. Sci. 16(3), 453–468 (2006)

364 A. Sabry et al.

10. James, R.P., Sabry, A.: Theseus: a high-level language for reversible computation.
In: Reversible Computation, Booklet of work-in-progress and short reports (2016)

11. Arrighi, P., Dı́az-Caro, A., Valiron, B.: The vectorial λ-calculus. Inf. Comput.
254(1), 105–139 (2017)

12. Arrighi, P., Dowek, G.: Lineal: a linear-algebraic lambda-calculus. Log. Methods
Comput. Sci. 13(1) (2013). https://doi.org/10.23638/LMCS-13(1:8)2017

13. Vaux, L.: The algebraic lambda calculus. Math. Struct. Comput. Sci. 19(5), 1029–
1059 (2009)

14. Glück, R., Kaarsgaard, R.: A categorical foundation for structured reversible
flowchart languages: soundness and adequacy. arXiv:1710.03666 [cs.PL] (2017)

15. Kaarsgaard, R., Axelsen, H.B., Glück, R.: Join inverse categories and reversible
recursion. J. Log. Algebraic Methods Program. 87, 33–50 (2017)

16. van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Comput.
33(5), 1109–1135 (2004)

17. Sabry, A., Valiron, B., Vizzotto, J.K.: From symmetric pattern-matching to quan-
tum control (extended version). In: FOSSACS 2018 (2018, to appear)

18. Assaf, A., Dı́az-Caro, A., Perdrix, S., Tasson, C., Valiron, B.: Call-by-value, call-
by-name and the vectorial behaviour of the algebraic λ-calculus. Log. Methods
Comput. Sci. 10(4:8) (2014)

19. Young, N.: An Introduction to Hilbert Space. Cambridge University Press, New
York (1988)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.23638/LMCS-13(1:8)2017
http://arxiv.org/abs/1710.03666
http://creativecommons.org/licenses/by/4.0/

Quantitative Models

The Complexity of Graph-Based
Reductions for Reachability in Markov

Decision Processes

Stéphane Le Roux1(B) and Guillermo A. Pérez2

1 Department of Mathematics, Technische Universität Darmstadt,
Darmstadt, Germany

leroux@mathematik.tu-darmstadt.de
2 Departement d’Informatique, Université libre de Bruxelles, Brussels, Belgium

gperezme@ulb.ac.be

Abstract. We study the never-worse relation (NWR) for Markov deci-
sion processes with an infinite-horizon reachability objective. A state q
is never worse than a state p if the maximal probability of reaching the
target set of states from p is at most the same value from q, regardless
of the probabilities labelling the transitions. Extremal-probability states,
end components, and essential states are all special cases of the equiva-
lence relation induced by the NWR. Using the NWR, states in the same
equivalence class can be collapsed. Then, actions leading to sub-optimal
states can be removed. We show that the natural decision problem asso-
ciated to computing the NWR is coNP-complete. Finally, we extend
a previously known incomplete polynomial-time iterative algorithm to
under-approximate the NWR.

1 Introduction

Markov decision processes (MDPs) are a useful model for decision-making in the
presence of a stochastic environment. They are used in several fields, including
robotics, automated control, economics, manufacturing and in particular plan-
ning [20], model-based reinforcement learning [22], and formal verification [1]. We
elaborate on the use of MDPs and the need for graph-based reductions thereof
in verification and reinforcement learning applications below.

Several verification problems for MDPs reduce to reachability [1,5]. For
instance, MDPs can be model checked against linear-time objectives (expressed
in, say, LTL) by constructing an omega-automaton recognizing the set of runs
that satisfy the objective and considering the product of the automaton with the
original MDP [6]. In this product MDP, accepting end components—a general-
ization of strongly connected components—are identified and selected as tar-
get components. The question of maximizing the probability that the MDP
behaviours satisfy the linear-time objective is thus reduced to maximizing the
probability of reaching the target components.

The maximal reachability probability is computable in polynomial time by
reduction to linear programming [1,6]. In practice, however, most model checkers
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 367–383, 2018.
https://doi.org/10.1007/978-3-319-89366-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_20&domain=pdf
http://orcid.org/0000-0002-1200-4952

368 S. Le Roux and G. A. Pérez

use value iteration to compute this value [9,17]. The worst-case time complex-
ity of value iteration is pseudo-polynomial. Hence, when implementing model
checkers it is usual for a graph-based pre-processing step to remove as many
unnecessary states and transitions as possible while preserving the maximal
reachability probability. Well-known reductions include the identification of
extremal-probability states and maximal end components [1,5]. The intended
outcome of this pre-processing step is a reduced amount of transition probabil-
ity values that need to be considered when computing the number of iterations
required by value iteration.

The main idea behind MDP reduction heuristics is to identify subsets of
states from which the maximal probability of reaching the target set of states
is the same. Such states are in fact redundant and can be “collapsed”. Figure 1
depicts an MDP with actions and probabilities omitted for clarity. From p and
q there are strategies to ensure that s is reached with probability 1. The same
holds for t. For instance, from p, to get to t almost surely, one plays to go to
the distribution directly below q; from q, to the distribution above q. Since from
the state p, there is no strategy to ensure that q is reached with probability 1,
p and q do not form an end component. In fact, to the best of our knowledge,
no known MDP reduction heuristic captures this example (i.e., recognizes that
p and q have the same maximal reachability probability for all possible values
of the transition probabilities).

p qs t.

Fig. 1. An MDP with states depicted as circles and distributions as squares. The
maximal reachability probability values from p and q are the same since, from both,
one can enforce to reach s with probability 1, or t with probability 1, using different
strategies.

In reinforcement learning the actual probabilities labelling the transitions of
an MDP are not assumed to be known in advance. Thus, they have to be esti-
mated by experimenting with different actions in different states and collecting
statistics about the observed outcomes [14]. In order for the statistics to be good
approximations, the number of experiments has to be high enough. In particular,
when the approximations are required to be probably approximately correct [23],
the necessary and sufficient number of experiments is pseudo-polynomial [13].
Furthermore, the expected number of steps before reaching a particular state
even once may already be exponential (even if all the probabilities are fixed).
The fact that an excessive amount of experiments is required is a known draw-
back of reinforcement learning [15,19].

A natural and key question to ask in this context is whether the maximal
reachability probability does indeed depend on the actual value of the probability
labelling a particular transition of the MDP. If this is not the case, then it need

The Complexity of Graph-Based Reductions for Reachability 369

not be learnt. One natural way to remove transition probabilities which do not
affect the maximal reachability value is to apply model checking MDP reduction
techniques.

Contributions and Structure of the Paper. We view the directed graph underlying
an MDP as a directed bipartite graph. Vertices in this graph are controlled by
players Protagonist and Nature. Nature is only allowed to choose full-support
probability distributions for each one of her vertices, thus instantiating an MDP
from the graph; Protagonist has strategies just as he would in an MDP. Hence,
we consider infinite families of MDPs with the same support. In the game played
between Protagonist and Nature, and for vertices u and v, we are interested in
knowing whether the maximal reachability probability from u is never (in any of
the MDPs with the game as its underlying directed graph) worse than the same
value from v.

In Sect. 2 we give the required definitions. We formalize the never-worse
relation in Sect. 3. We also show that we can “collapse” sets of equivalent vertices
with respect to the NWR (Theorem 1) and remove sub-optimal edges according
to the NWR (Theorem 2). Finally, we also argue that the NWR generalizes
most known heuristics to reduce MDP size before applying linear programming
or value iteration. Then, in Sect. 4 we give a graph-based characterization of
the relation (Theorem 3), which in turn gives us a coNP upper bound on its
complexity. A matching lower bound is presented in Sect. 5 (Theorem 4). To
conclude, we recall and extend an iterative algorithm to efficiently (in polynomial
time) under-approximate the never-worse relation from [2].

Previous and Related Work. Reductions for MDP model checking were consid-
ered in [5,7]. From the reductions studied in both papers, extremal-probability
states, essential states, and end components are computable using only graph-
based algorithms. In [3], learning-based techniques are proposed to obtain
approximations of the maximal reachability probability in MDPs. Their algo-
rithms, however, do rely on the actual probability values of the MDP.

This work is also related to the widely studied model of interval MDPs,
where the transition probabilities are given as intervals meant to model the
uncertainty of the numerical values. Numberless MDPs [11] are a particular case
of the latter in which values are only known to be zero or non-zero. In the
context of numberless MDPs, a special case of the question we study can be
simply rephrased as the comparison of the maximal reachability values of two
given states.

In [2] a preliminary version of the iterative algorithm we give in Sect. 6 was
described, implemented, and shown to be efficient in practice. Proposition 1 was
first stated therein. In contrast with [2], we focus chiefly on characterizing the
never-worse relation and determining its computational complexity.

370 S. Le Roux and G. A. Pérez

2 Preliminaries

We use set-theoretic notation to indicate whether a letter b ∈ Σ occurs in a word
α = a0 . . . ak ∈ Σ∗, i.e. b ∈ α if and only if b = ai for some 0 ≤ i ≤ k.

Consider a directed graph G = (V,E) and a vertex u ∈ V . We write uE for
the set of successors of u. That is to say, uE := {v ∈ V | (u, v) ∈ E}. We say
that a path π = u0 . . . uk ∈ V ∗ in G visits a vertex v if v ∈ π. We also say that
π is a v–T path, for T ⊆ V , if u0 = v and uk ∈ T .

2.1 Stochastic Models

Let S be a finite set. We denote by D(S) the set of all (rational) probabilistic dis-
tributions on S, i.e. the set of all functions f : S → Q≥0 such that

∑
s∈S f(s) = 1.

A probabilistic distribution f ∈ D(S) has full support if f(s) > 0 for all s ∈ S.

Definition 1 (Markov chains). A Markov chain C is a tuple (Q, δ) where Q
is a finite set of states and δ is a probabilistic transition function δ : Q → D(Q).

A run of a Markov chain is a finite non-empty word � = p0 . . . pn over Q. We
say � reaches q if q = pi for some 0 ≤ i ≤ n. The probability of the run is∏

0≤i<n δ(pi, pi+1).

Let T ⊆ Q be a set of states. The probability of (eventually) reaching T in
C from q0, which will be denoted by P

q0
C [♦T], is the measure of the runs of C

that start at q0 and reach T . For convenience, let us first define the probability
of staying in states from S ⊆ Q until T is reached1, written P

q0
C [S U T], as 1 if

q0 ∈ T and otherwise

∑
⎧
⎨

⎩

∏

0≤i<n

δ(qi, qi+1)

∣
∣
∣
∣
∣
∣
q0 . . . qn ∈ (S \ T)∗T for n ≥ 1

⎫
⎬

⎭
.

We then define P
q0
C [♦T] := P

q0
C [Q U T].

When all runs from q0 to T reach some set U ⊆ Q before, the probability of
reaching T can be decomposed into a finite sum as in the lemma below.

Lemma 1. Consider a Markov chain C = (Q, δ), sets of states U, T ⊆ Q, and
a state q0 ∈ Q \ U . If P

q0
C [(Q \ U) U T] = 0, then

P
q0
C [♦T] =

∑

u∈U

P
q0
C [(Q \ U) U u] Pu

C [♦T].

Definition 2 (Markov decision processes). A (finite, discrete-time) Markov
decision process M, MDP for short, is a tuple (Q,A, δ, T) where Q is a finite set
of states, A a finite set of actions, δ : Q × A → D(Q) a probabilistic transition
function, and T ⊆ Q a set of target states.

For convenience, we write δ(q|p, a) instead of δ(p, a)(q).
1 S U T should be read as “S until T” and not understood as a set union.

The Complexity of Graph-Based Reductions for Reachability 371

Definition 3 (Strategies). A (memoryless deterministic) strategy σ in an
MDP M = (Q,A, δ, T) is a function σ : Q → A.

Note that we have deliberately defined only memoryless deterministic strate-
gies. This is at no loss of generality since, in this work, we focus on maximizing
the probability of reaching a set of states. It is known that for this type of
objective, memoryless deterministic strategies suffice [18].

From MDPs to Chains. An MDP M = (Q,A, δ, T) and a strategy σ induce the
Markov chain Mσ = (Q,μ) where μ(q) = δ(q, σ(q)) for all q ∈ Q.

p q

1
4

3
4

1
4

3
4

b

a

ba

1
2

1
2

1
2

1
2

p q

1
4

3
4

1
2

1
2

Fig. 2. On the left we have an MDP with actions {a, b}. On the right we have the
Markov chain induced by the left MDP and the strategy {p �→ a, q �→ b}.

Example 1. Figure 2 depicts an MDP on the left. Circles represent states; double-
circles, target states; and squares, distributions. The labels on arrows from states
to distributions are actions; those on arrows from distributions to states, prob-
abilities.

Consider the strategy σ that plays from p the action a and from q the action
b, i.e. σ(p) = a and σ(q) = b. The Markov chain on the right is the chain induced
by σ and the MDP on the left. Note that we no longer have action labels.

The probability of reaching a target state from q under σ is easily seen to
be 3/4. In other words, if we write M for the MDP and T for the set of target
states then P

q
Mσ [♦T] = 3

4 .

2.2 Reachability Games Against Nature

We will speak about families of MDPs whose probabilistic transition functions
have the same support. To do so, we abstract away the probabilities and focus
on a game played on a graph. That is, given an MDP M = (Q,A, δ, T) we
consider its underlying directed graph GM = (V,E) where V := Q∪ (Q×A) and
E := {(q, 〈q, a〉) ∈ Q × (Q × A)} ∪ {(〈p, a〉, q) | δ(q|p, a) > 0}. In GM, Nature
controls the vertices Q × A. We formalize the game and the arena it is played
on below.

Definition 4 (Target arena). A target arena A is a tuple (V, VP , E, T) such
that (VP , VN := V \VP , E) is a bipartite directed graph, T ⊆ VP is a set of target
vertices, and uE
= ∅ for all u ∈ VN .

Informally, there are two agents in a target arena: Nature, who controls the
vertices in VN , and Protagonist, who controls the vertices in VP .

372 S. Le Roux and G. A. Pérez

From Arenas to MDPs. A target arena A = (V, VP , E, T) together with a family
of probability distributions μ = (μu ∈ D(uE))u∈VN

induce an MDP. Formally,
let Aμ be the MDP (Q,A, δ, T) where Q = VP � {⊥}, A = VN , δ(q|p, a) is μa(q)
if (p, a), (a, q) ∈ E and 0 otherwise, for all p ∈ VP ∪ {⊥} and a ∈ A we have
δ(⊥|p, a) = 1 if (p, a)
∈ E.

The Value of a Vertex. Consider a target arena A = (V, VP , E, T) and a vertex
v ∈ VP . We define its (maximal reachability probability) value with respect to
a family of full-support probability distributions μ as Valμ(v):= maxσ P

v
Aσ

μ
[♦T].

For u ∈ VN we set Valμ(u) :=
∑{μu(v)Valμ(v) | v ∈ uE}.

3 The Never-Worse Relation

We are now in a position to define the relation that we study in this work. Let
us fix a target arena A = (V, VP , E, T).

Definition 5 (The never-worse relation (NWR)). A subset W ⊆ V of
vertices is never worse than a vertex v ∈ V , written v � W , if and only if

∀μ = (μu ∈ D(uE))u∈VN
,∃w ∈ W : Valμ(v) ≤ Valμ(w)

where all the μu have full support. We write v ∼ w if v � {w} and w � {v}.
It should be clear from the definition that ∼ is an equivalence relation. For u ∈ V
let us denote by ũ the set of vertices that are ∼-equivalent and belong to the
same owner, i.e. ũ is {v ∈ VP | v ∼ u} if u ∈ VP and {v ∈ VN | v ∼ u} otherwise.

p

q

t fin

fail

p

s

q

t

fin

fail

Fig. 3. Two target arenas with T = {fin} are shown. Round vertices are elements from
VP ; square vertices, from VN . In the left target arena we have that p� {q} and q� {p}
since any path from either vertex visits t before T—see Lemma 1. In the right target
arena we have that t � {p}—see Proposition 1.

Example 2. Consider the left target arena depicted in Fig. 3. Using Lemma 1, it
is easy to show that neither p nor q is ever worse than the other since t is visited
before fin by all paths starting from p or q.

The literature contains various heuristics which consist in computing sets of
states and “collapsing” them to reduce the size of the MDP without affecting the
maximal reachability probability of the remaining states. We now show that we
can collapse equivalence classes and, further, remove sub-optimal distributions
using the NWR.

The Complexity of Graph-Based Reductions for Reachability 373

3.1 The Usefulness of the NWR

We will now formalize the idea of “collapsing” equivalent vertices with respect
to the NWR. For convenience, we will also remove self-loops while doing so.

Consider a target arena A = (V, VP , E, T). We denote by A/∼ its ∼-quotient.
That is, A/∼ is the target arena (S, SP , R, U) where SP = {ṽ | ∃v ∈ VP },
S = {ṽ | ∃v ∈ VN} ∪ SP , U = {t̃ | ∃t ∈ T}, and

R ={(ũ, ṽ) | ∃(u, v) ∈ (VP × VN) ∩ E : vE \ ũ
= ∅}
∪{(ũ, ṽ) | ∃(u, v) ∈ (VN × VP) ∩ E}.

For a family μ = (μu ∈ D(uE))u∈VN
of full-support distributions we denote by

μ/∼ the family ν = (νũ ∈ D(ũR))ũ∈SN
defined as follows. For all ũ ∈ SN and all

ṽ ∈ ũR we have νũ(ṽ) =
∑

w∈ṽ μu(w), where u is any element of ũ.
The following property of the ∼-quotient follows from the fact that all the

vertices in ṽ have the same maximal probability of reaching the target vertices.

Theorem 1. Consider a target arena A = (V, VP , E, T). For all families μ =
(μu ∈ D(uE))u∈VN

of full-support probability distributions and all v ∈ VP we
have

max
σ

P
v
Aσ

μ
[♦T] = max

σ′
P

ṽ
Bσ′

ν
[♦U],

where B = A/∼, ν = μ/∼, and U = {t̃ | ∃t ∈ T}.
We can further remove edges that lead to sub-optimal Nature vertices.

When this is done after ∼-quotienting the maximal reachability probabilities are
preserved.

Theorem 2. Consider a target arena A = (V, VP , E, T) such that A/∼ = A.
For all families μ = (μu ∈ D(uE))u∈VN

of full-support probability distributions,
for all (w, x) ∈ E ∩ (VP × VN) such that x� (wE \{x}), and all v ∈ VP we have

max
σ

P
v
Aσ

μ
[♦T] = max

σ′
P

v
Bσ′

μ
[♦T],

where B = (V, VP , E \ {(w, x)}, T).

3.2 Known Efficiently-Computable Special Cases

We now recall the definitions of the set of extremal-probability states, end com-
ponents, and essential states. Then, we observe that for all these sets of states
their maximal probability reachability coincide and their definitions are inde-
pendent of the probabilities labelling the transitions of the MDP. Hence, they
are subsets of the set of the equivalence classes induced by ∼.

374 S. Le Roux and G. A. Pérez

Extremal-Probability States. The set of extremal-probability states of an
MDP M = (Q,A, δ, T) consists of the set of states with maximal probability
reachability 0 and 1. Both sets can be computed in polynomial time [1,4]. We give
below a game-based definition of both sets inspired by the classical polynomial-
time algorithm to compute them (see, e.g., [1]). Let us fix a target arena A =
(V, VP , E, T) for the sequel.

For a set T ⊆ V , let us write ZT := {v ∈ V | T is not reachable from v}.

(Almost-Surely Winning) Strategies. A strategy for Protagonist in a target arena
is a function σ : VP → VN . We then say that a path v0 . . . vn ∈ V ∗ is consistent
with σ if vi ∈ VP =⇒ σ(vi) = vi+1 for all 0 ≤ i < n. Let Reach(v0, σ)
denote the set of vertices reachable from v0 under σ, i.e. Reach(v0, σ) := {vk |
v0 . . . vk is a path consistent with σ}.

We say that a strategy σ for Protagonist is almost-surely winning from u0 ∈ V
to T ⊆ VP if, after modifying the arena to make all t ∈ T into sinks, for all
v0 ∈ Reach(u0, σ) we have Reach(v0, σ)∩T
= ∅. We denote the set of all such
strategies by Winv0

T .
The following properties regarding almost-surely winning strategies in a tar-

get arena follow from the correctness of the graph-based algorithm used to com-
pute extremal-probability states in an MDP [1, Lemma 10.108].

Lemma 2 (From [1]). Consider a target arena A = (V, VP , E, T). For all fam-
ilies μ = (μu ∈ D(uE))u∈VN

of full-support probability distributions, for all
v ∈ VP the following hold.

(i) maxσ P
v
Aσ

μ
[♦T] = 0 ⇐⇒ v ∈ ZT

(ii) ∀σ : σ ∈ Winv
T ⇐⇒ P

v
Aσ

μ
[♦T] = 1

End Components. Let us consider an MDP M = (Q,A, δ, T). A set S ⊆ Q
of states is an end component in M if for all pairs of states p, q ∈ S there exists
a strategy σ such that P

p
Mσ [S U q] = 1.

Example 3. Let us consider the MDP shown on the left in Fig. 2. The set {p, q}
is an end component since, by playing a from both states, one can ensure to
reach either state from the other with probability 1.

It follows immediately from the definition of end component that the maximal
probability of reaching T from states in the same end component is the same.

Lemma 3. Let S ⊆ Q be an end component in M. For all p, q ∈ S we have
that maxσ P

p
Mσ [♦T] = maxσ P

q
Mσ [♦T].

We say an end component is maximal if it is maximal with respect to set inclu-
sion. Furthermore, from the definition of end components in MDPs and Lemma 2
it follows that we can lift the notion of end component to target arenas. More pre-
cisely, a set S ⊆ VP is an end component in A if and only if for some family of

The Complexity of Graph-Based Reductions for Reachability 375

full-support probability distributions μ we have that S is an end component in Aμ

(if and only if for all μ′ the set S is an end component in Aμ′).
The set of all maximal end components of a target arena can be computed in

polynomial time using an algorithm based on the strongly connected components
of the graph [1,8].

Essential States. Consider a target arena A = (V, VP , E, T) and let � be the
smallest relation satisfying the following. For all u ∈ VP we have u � u. For all
u0, v ∈ VP \ZT such that u0
= v we have u0 � v if for all paths u0u1u2 we have
that u2 � v and there is at least one such path. Intuitively, u � v holds whenever
all paths starting from u reach v. In [7], the maximal vertices according to � are
called essential states2.

Lemma 4 (From [7]). Consider a target arena A = (V, VP , E, T). For all fam-
ilies μ = (μu ∈ D(uE))u∈VN

of full-support probability distributions, for all v ∈
VP and all essential states w, if v � w then maxσ P

v
Aσ

μ
[♦T] = maxσ′ P

w
Aσ′

μ
[♦T].

Note that, in the left arena in Fig. 3, p � t does not hold since there is a cycle
between p and q which does not visit t.

It was also shown in [7] that the � relation is computable in polynomial time.

4 Graph-Based Characterization of the NWR

In this section we give a characterization of the NWR that is reminiscent of the
topological-based value iteration proposed in [5]. The main intuition behind our
characterization is as follows. If v � W does not hold, then for all 0 < ε < 1
there is some family μ of full-support distributions such that Valμ(v) is at least
1 − ε, while Valμ(w) is at most ε for all w ∈ W . In turn, this must mean that
there is a path from v to T which can be assigned a high probability by μ while,
from W , all paths go with high probability to ZT .

We capture the idea of separating a “good” v–T path from all paths starting
from W by using partitioning of V into layers Si ⊆ V . Intuitively, we would like
it to be easy to construct a family μ of probability distributions such that from
all vertices in Si+1 all paths going to vertices outside of Si+1 end up, with high
probability, in lower layers, i.e. some Sk with k < i. A formal definition follows.

Definition 6 (Drift partition and vertices). Consider a target arena A =
(V, VP , E, T) and a partition (Si)0≤i≤k of V . For all 0 ≤ i ≤ k, let S+

i := ∪i<jSj

and S−
i := ∪j<iSj, and let Di := {v ∈ Si ∩ VN | vE ∩ S−

i
= ∅}. We define the
set D := ∪0<i<kDi of drift vertices. The partition is called a drift partition if
the following hold.

– For all i ≤ k and all v ∈ Si ∩ VP we have vE ∩ S+
i = ∅.

– For all i ≤ k and all v ∈ Si ∩ VN we have vE ∩ S+
i
= ∅ =⇒ v ∈ D.

2 This is not the usual notion of essential states from classical Markov chain theory.

376 S. Le Roux and G. A. Pérez

Using drift partitions, we can now formalize our characterization of the nega-
tion of the NWR.

Theorem 3. Consider a target arena A = (V, VP , E, T), a non-empty set of
vertices W ⊆ V , and a vertex v ∈ V . The following are equivalent

(i) ¬ (v � W)
(ii) There exists a drift partition (Si)0≤i≤k and a simple path π starting in v

and ending in T such that π ⊆ Sk and W ⊆ S−
k .

Before proving Theorem 3 we need an additional definition and two interme-
diate results.

Definition 7 (Value-monotone paths). Let A = (V, VP , E, T) be a target
arena and consider a family of full-support probability distributions μ = (μu ∈
D(uE))u∈VN

. A path v0 . . . vk is μ-non-increasing if and only if Valμ(vi+1) ≤
Valμ(vi) for all 0 ≤ i < k; it is μ-non-decreasing if and only if Valμ(vi) ≤
Valμ(vi+1) for all 0 ≤ i < k.

It can be shown that from any path in a target arena ending in T one can obtain
a simple non-decreasing one.

Lemma 5. Consider a target arena A = (V, VP , E, T) and a family of full-
support probability distributions μ = (μu ∈ D(uE))u∈VN

. If there is a path from
some v ∈ V to T , there is also a simple μ-non-decreasing one.

Additionally, we will make use of the following properties regarding vertex-
values. They formalize the relation between the value of a vertex, its owner, and
the values of its successors.

Lemma 6. Consider a target arena A = (V, VP , E, T) and a family of full-
support probability distributions μ = (μu ∈ D(uE))u∈VN

.

(i) For all u ∈ VP , for all successors v ∈ uE it holds that Valμ(v) ≤ Valμ(u).
(ii) For all u ∈ VN it holds that

(∃v ∈ uE : Valμ(u) < Valμ(v)) =⇒ (∃w ∈ uE : Valμ(w) < Valμ(u)).

Proof (of Theorem 3). Recall that, by definition, (i) holds if and only if there
exists a family μ = (μu ∈ D(uE))u∈VN

of full-support probability distributions
such that ∀w ∈ W : Valμ(w) < Valμ(v).

Let us prove (i) =⇒ (ii). Let x0 < x1 < . . . be the finitely many (i.e. at most
|V |) values that occur in the MDP Aμ, and let k be such that Valμ(v) = xk. For
all 0 ≤ i < k let Si := {u ∈ V | Valμ(u) = xi}, and let Sk := V \ ∪i<kSi. Let us
show below that the Si form a drift partition.

– ∀i ≤ k,∀u ∈ Si ∩ SP : uE ∩ S+
i = ∅ by Lemma 6(i) (for i < k) and since

S+
k = ∅.

– ∀i ≤ k,∀u ∈ Si ∩ SN : uE ∩ S+
i
= ∅ =⇒ x ∈ D by Lemma 6(ii) (for i < k)

and since S+
k = ∅.

The Complexity of Graph-Based Reductions for Reachability 377

We have that Valμ(w) < Valμ(v) = xk for all w ∈ W , by assumption, so
W ⊆ S−

k by construction. By Lemma 5 there exists a simple μ-non-decreasing
path π from v to T , so all the vertices occurring in π have values at least Valμ(v),
so π ⊆ Sk.

We will prove (ii) =⇒ (i) by defining some full-support distribution family
μ. The definition will be partial only, first on π ∩ VN , and then on the drift
vertices in V \ Sk. Let 0 < ε < 1, which is meant to be small enough. Let us
write π = v0 . . . vn so that v0 = v and vn ∈ T . Let us define μ on π ∩ VN as
follows: for all i < n, if vi ∈ VN let μvi

(vi+1) := 1 − ε. Let σ be an arbitrary
Protagonist strategy such that for all i < n, if vi ∈ VP then σ(vi) := vi+1.
Therefore

(1 − ε)|V | ≤ (1 − ε)n since π is simple

≤
∏

i<n,vi∈SN

μvi
(vi+1) by definition of μ

≤ P
v
Aσ

μ
[♦T]

≤ max
σ′

P
v
Aσ′

μ
[♦T] = Valμ(v). (1)

So, for 0 < ε < 1 − 1
|V |√2

, we have 1
2 < (1 − ε)|V | ≤ Valμ(v). Below we will

further define μ such that Valμ(w) ≤ 1 − (1 − ε)|V | < 1
2 for all w ∈ W and all

0 < ε < 1 − 1
|V |√2

, which will prove (ii) =⇒ (i). However, the last part of the
proof is more difficult.

For all 1 ≤ i ≤ k, for all drift vertices u ∈ Si, let �(u) be a successor of u in S−
i .

Such a �(u) exists by definition of the drift vertices. Then let μu(�(u)) := 1 − ε.
We then claim that

∀u ∈ D : (1 − ε)(1 − P
�(u)
Aσ

μ
[♦T]) ≤ 1 − P

u
Aσ

μ
[♦T]. (2)

Indeed, 1 − P
u
Aσ

μ
[♦T] is the probability that, starting at u and following σ, T is

never reached; and (1 − ε)(1 − P
�(u)
Aσ

μ
[♦T]) is the probability that, starting at u

and following σ, the second vertex is �(u) and T is never reached.
Now let σ be an arbitrary strategy, and let us prove the following by induction

on j.

∀0 ≤ j < k,∀w ∈ Sj ∪ S−
j : P

w
Aσ

μ
[♦T] ≤ 1 − (1 − ε)j

Base case, j = 0: by assumption W is non-empty and included in S−
k , so

0 < k. Also by assumption T ⊆ Sk, so T ∩ S0 = ∅. By definition of a drift
partition, there are no edges going out of S0, regardless of whether the starting
vertex is in VP or VN . So there is no path from w to T , which implies Valμ(w) = 0
for all w ∈ S0, and the claim holds for the base case. Inductive case, let w ∈ Sj ,
let D′ := D ∩ (Sj ∪ S−

j) and let us argue that every path π from w to T must at
some point leave Sj ∪ S−

j to reach a vertex with higher index, i.e. there is some
edge (πi, πi+1) from πi ∈ Sj ∪ S−

j to some πi+1 ∈ S� with j <
. By definition

378 S. Le Roux and G. A. Pérez

of a drift partition, πi must also be a drift vertex, i.e. πi ∈ D′. Thus, if we let
F := VP \ D′, Lemma 1 implies that P

w
Aσ

μ
[♦T] =

∑
u∈D′ P

w
Aσ

μ
[F U u] Pu

Aσ
μ
[♦T].

Now, since
∑

u∈D′
P

u
Aσ

μ
[♦T]

=
∑

u∈D∩S−
j

P
u
Aσ

μ
[♦T] +

∑

u∈Dj

P
u
Aσ

μ
[♦T] by splitting the sum

≤
∑

u∈D∩S−
j

P
u
Aσ

μ
[♦T] +

∑

u∈Dj

(1 − (1 − ε)(1 − P
�(u)
Aσ

μ
[♦T])) by (2)

≤
∑

u∈D∩S−
j

(1 − (1 − ε)j−1)+ by IH and since

∑

u∈Dj

(1 − (1 − ε)(1 − ε)j−1) ∀x ∈ Dj : �(x) ∈ S−
j

≤
∑

u∈D′
(1 − (1 − ε)j) (1 − ε)j ≤ (1 − ε)j−1

and
∑

u∈D′ P
w
Aσ

μ
[F U u] ≤ 1, we have that P

w
Aσ

μ
[♦T] ≤ 1−(1−ε)j . The induction

is thus complete. Since σ is arbitrary in the calculations above, and since j <
k ≤ |V |, we find that Valμ(w) ≤ 1 − (1 − ε)|V | for all w ∈ W ⊆ S−

k .
For 0 < ε < 1 − 1

|V |√2
we have 1

2 < (1 − ε)|V |, as mentioned after (1), so

Valμ(w) ≤ 1 − (1 − ε)|V | < 1
2 . ��

5 Intractability of the NWR

It follows from Theorem 3 that we can decide whether a vertex is sometimes
worse than a set of vertices by guessing a partition of the vertices and verifying
that it is a drift partition. The verification can clearly be done in polynomial
time.

Corollary 1. Given a target arena A = (V, VP , E, T), a non-empty set W ⊆ V ,
and a vertex v ∈ V , determining whether v � W is decidable and in coNP.

We will now show that the problem is in fact coNP-complete already for
Markov chains.

Theorem 4. Given a target arena A = (V, VP , E, T), a non-empty vertex set
W ⊆ V , and a vertex v ∈ V , determining whether v � W is coNP-complete
even if |uE| = 1 for all u ∈ VP .

The idea is to reduce the 2-Disjoint Paths problem (2DP) to the existence
of a drift partition witnessing that v � {w} does not hold, for some v ∈ V .
Recall that 2DP asks, given a directed graph G = (V,E) and vertex pairs

The Complexity of Graph-Based Reductions for Reachability 379

(s1, t1), (s2, t2) ∈ V × V , whether there exists an s1–t1 path π1 and an s2–t2
path π2 such that π1 and π2 are vertex disjoint, i.e. π1 ∩ π2 = ∅. The problem
is known to be NP-complete [10,12]. In the sequel, we assume without loss of
generality that (a) t1 and t2 are reachable from all s ∈ V \ {t1, t2}; and (b) t1
and t2 are the only sinks G.

Proof (of Theorem 4). From the 2DP input instance, we construct the target
arena A = (S, SP , R, T) with S := V ∪ E, R := {(u, 〈u, v〉), (〈u, v〉, v) ∈ S × S |
(u, v) ∈ E or u = v ∈ {t1, t2}}, SP := V × V , and T := {〈t1, t1〉}. We will show
there are vertex-disjoint s1–t1 and s2–t2 paths in G if and only if there is a drift
partition (Si)0≤i≤k and a simple s1–t1 path π such that π ⊆ Sk and s2 ∈ S−

k .
The result will then follow from Theorem 3.

Suppose we have a drift partition (Si)0≤i≤k with s2 ∈ S−
k and a simple path

π = v0〈v0, v1〉 . . . 〈vn−1, vn〉vn with v0 = s1, vn = t1. Since the set {t2, 〈t2, t2〉} is
trapping in A, i.e. all paths from vertices in the set visit only vertices from it,
we can assume that S0 = {t2, 〈t2, t2〉}. (Indeed, for any drift partition, one can
obtain a new drift partition by moving any trapping set to a new lowest layer.)
Now, using the assumption that t2 is reachable from all s ∈ V \ {t1, t2} one can
show by induction that for all 0 ≤ j < k and for all � = u0 ∈ Sj there is a path
u0 . . . um in G with um = t2 and � ⊆ S−

j+1. This implies that there is a s2–t2
path π2 in G such that π2 ⊆ S−

k . It follows that π2 is vertex disjoint with the
s1–t1 path v0 . . . vn in G.

Now, let us suppose that we have s1–t1 and s2–t2 vertex disjoint paths π1 =
u0 . . . un and π2 = v0 . . . vm. Clearly, we can assume both π1, π2 are simple.
We will construct a partition (Si)0≤i≤m+1 and show that it is indeed a drift
partition, that u0〈u0, u1〉 . . . 〈un−1, un〉un ⊆ Sm+1, and s2 = v0 ∈ S−

m+1. Let us
set S0 := {〈vm−1, vm〉, vm, 〈t2, t2〉}, Si := {〈vm−i−1, vm−i〉, vm−i} for all 0 < i ≤
m, and Sm+1 := S \ ∪0≤i≤mSi. Since π2 is simple, (Si)0≤i≤m+1 is a partition of
V . Furthermore, we have that s2 = v0 ∈ S−

m+1, and u0〈u0, u1〉 . . . 〈un−1, un〉un ⊆
Sm+1 since π1 and π2 are vertex disjoint. Thus, it only remains for us to argue
that for all 0 ≤ i ≤ m+1: for all w ∈ Si ∩SN we have wR ∩S+

i = ∅, and for all
w ∈ Si ∩ VN we have wR ∩ S+

i
= ∅ =⇒ wR ∩ S−
i
= ∅. By construction of the

Si, we have that eR ⊆ Si for all 0 ≤ i ≤ m and all e ∈ Si ∩ SP . Furthermore,
for all 0 < i ≤ m, for all x ∈ Si ∩ SN = {vm−i}, there exists y ∈ Si−1 ∩ SP =
{〈vm−i, vm−i+1〉} such that (x, y) ∈ R—induced by (vm−i, vm−1+1) ∈ E from
π2. To conclude, we observe that since S0 = {〈vm−1, vm〉, vm = t2, 〈t2, t2〉} and
{t2, 〈t2, t2〉} is trapping in A, the set t2R is contained in S0. ��

6 Efficiently Under-Approximating the NWR

Although the full NWR cannot be efficiently computed for a given MDP, we can
hope for “under-approximations” that are accurate and efficiently computable.

Definition 8 (Under-approximation of the NWR). Let A = (V, VP , E, T)
be a target arena and consider a relation � : V × P(V). The relation � is an
under-approximation of the NWR if and only if �⊆ �.

380 S. Le Roux and G. A. Pérez

We denote by �∗ the pseudo transitive closure of �. That is, �∗ is the smallest
relation such that �⊆�∗ and for all u ∈ V,X ⊆ V if there exists W ⊆ V such
that u �∗ W and w �∗ X for all w ∈ W , then u �∗ X.

Remark 1. The empty set is an under-approximation of the NWR. For all under-
approximations � of the NWR, the pseudo transitive closure �∗ of � is also an
under-approximation of the NWR.

In [2], efficiently-decidable sufficient conditions for the NWR were given. In
particular, those conditions suffice to infer relations such as those in the right
MDP from Fig. 3. We recall (Proposition 1) and extend (Proposition 2) these
conditions below.

Proposition 1 (From [2]). Consider a target arena A = (V, VP , E, T) and an
under-approximation � of the NWR. For all vertices v0 ∈ V , and sets W ⊆ V
the following hold.

(i) If there exists S ⊆ {s ∈ V | s � W} such that there exists no path v0 . . . vn ∈
(V \ S)∗T , then v0 � W .

(ii) If W = {w} and there exists S ⊆ {s ∈ VP | w � {s}} such that Winv0
S∪T
=

∅, then w � {v0}.
Proof (Sketch). The main idea of the proof of item (i) is to note that S is
visited before T . The desired result then follows from Lemma 1. For item (ii),
we intuitively have that there is a strategy to visit T with some probability or
visit W , where the chances of visiting T are worse than before. We then show
that it is never worse to start from v0 to have better odds of visiting T . ��

The above “rules” give an iterative algorithm to obtain increasingly bet-
ter under-approximations of the NWR: from �i apply the rules and obtain a
new under-approximation �i+1 by adding the new pairs and taking the pseudo
transitive closure; then repeat until convergence. Using the special cases from
Sect. 3.2 we can obtain a nontrivial initial under-approximation �0 of the NWR
in polynomial time.

The main problem is how to avoid testing all subsets W ⊆ V in every iter-
ation. One natural way to ensure we do not consider all subsets of vertices in
every iteration is to apply the rules from Proposition 1 only on the successors of
Protagonist vertices.

In the same spirit of the iterative algorithm described above, we now give
two new rules to infer NWR pairs.

Proposition 2. Consider a target arena A = (V, VP , E, T) and � an under-
approximation of the NWR.

(i) For all u ∈ VN , if for all v, w ∈ uE we have v � {w} and w � {v}, then
u ∼ x for all x ∈ uE.

(i) For all u, v ∈ VP \ T , if for all w ∈ uE such that w � (uE \ {w}) does not
hold we have that w � vE, then u � {v}.

The Complexity of Graph-Based Reductions for Reachability 381

Proof (Sketch). Item (i) follows immediately from the definition of Val. For
item (ii) one can use the Bellman optimality equations for infinite-horizon reach-
ability in MDPs to show that since the successors of v are never worse than the
non-dominated successors of u, we must have u � {v}. ��

p q

finfail

p q

fin fail

Fig. 4. Two target arenas with T = {fin} are shown. Using Propositions 1 and 2 one
can conclude that p ∼ q in both target arenas.

The rules stated in Proposition 2 can be used to infer relations like those
depicted in Fig. 4 and are clearly seen to be computable in polynomial time as
they speak only of successors of vertices.

7 Conclusions

We have shown that the never-worse relation is, unfortunately, not computable in
polynomial time. On the bright side, we have extended the iterative polynomial-
time algorithm from [2] to under-approximate the relation. In that paper, a
prototype implementation of the algorithm was used to empirically show that
interesting MDPs (from the set of benchmarks included in PRISM [17]) can be
drastically reduced.

As future work, we believe it would be interesting to implement an exact
algorithm to compute the NWR using SMT solvers. Symbolic implementations
of the iterative algorithms should also be tested in practice. In a more theoretical
direction, we observe that the planning community has also studied maximizing
the probability of reaching a target set of states under the name of MAXPROB
(see, e.g., [16,21]). There, online approximations of the NWR would make more
sense than the under-approximation we have proposed here. Finally, one could
define a notion of never-worse for finite-horizon or quantitative objectives.

Acknowledgements. The research leading to these results was supported by the
ERC Starting grant 279499: inVEST. Guillermo A. Pérez is an F.R.S.-FNRS Aspirant
and FWA postdoc fellow.

We thank Nathanaël Fijalkow for pointing out the relation between this work and
the study of interval MDPs and numberless MDPs. We also thank Shaull Almagor,
Michaël Cadilhac, Filip Mazowiecki, and Jean-François Raskin for useful comments on
earlier drafts of this paper.

382 S. Le Roux and G. A. Pérez

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, New York
(2008)

2. Bharadwaj, S., Le Roux, S., Pérez, G.A., Topcu, U.: Reduction techniques for
model checking and learning in MDPs. In: IJCAI, pp. 4273–4279 (2017)

3. Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

4. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: SODA, pp. 1318–1336. SIAM (2011)

5. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction techniques for model
checking Markov decision processes. In: QEST, pp. 45–54 (2008)

6. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

7. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of
probabilistic systems by successive refinements. In: de Alfaro, L., Gilmore, S. (eds.)
PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44804-7 3

8. De Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University (1997)

9. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part
II. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 31

10. Eilam-Tzoreff, T.: The disjoint shortest paths problem. Discret. Appl. Math. 85(2),
113–138 (1998)

11. Fijalkow, N., Gimbert, H., Horn, F., Oualhadj, Y.: Two recursively inseparable
problems for probabilistic automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik,
Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 267–278. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44522-8 23

12. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism
problem. Theor. Comput. Sci. 10, 111–121 (1980)

13. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with
temporal logic constraints. In: RSS (2014)

14. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey.
JAIR 4, 237–285 (1996)

15. Kawaguchi, K.: Bounded optimal exploration in MDP. In AAAI, pp. 1758–1764
(2016)

16. Kolobov, A., Mausam, M., Weld, D.S., Geffner, H.: Heuristic search for general-
ized stochastic shortest path MDPs. In: Bacchus, F., Domshlak, C., Edelkamp, S.,
Helmert, M. (eds.) ICAPS. AAAI (2011)

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

18. Puterman, M.L.: Markov Decision Processes. Wiley-Interscience, Hoboken (2005)

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-662-44522-8_23
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

The Complexity of Graph-Based Reductions for Reachability 383

19. Russell, S.J., Dewey, D., Tegmark, M.: Research priorities for robust and beneficial
artificial intelligence. AI Mag. 36(4), 105–114 (2015)

20. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd Int. edn.,
Pearson Education, London (2010)

21. Steinmetz, M., Hoffmann, J., Buffet, O.: Goal probability analysis in probabilistic
planning: exploring and enhancing the state of the art. JAIR 57, 229–271 (2016)

22. Strehl, A.L., Li, L., Littman, M.L.: Reinforcement learning in finite MDPs: PAC
analysis. J. Mach. Learn. Res. 10, 2413–2444 (2009)

23. Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning
and Prospering in a Complex World. Basic Books, New York (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Hierarchy of Scheduler Classes
for Stochastic Automata

Pedro R. D’Argenio1,2,3, Marcus Gerhold4 , Arnd Hartmanns4(B) ,
and Sean Sedwards5

1 Universidad Nacional de Córdoba, Córdoba, Argentina
dargenio@famaf.unc.edu.ar

2 CONICET, Córdoba, Argentina
3 Saarland University, Saarbrücken, Germany

4 University of Twente, Enschede, The Netherlands
{m.gerhold,a.hartmanns}@utwente.nl

5 University of Waterloo, Waterloo, Canada
sean.sedwards@uwaterloo.ca

Abstract. Stochastic automata are a formal compositional model for
concurrent stochastic timed systems, with general distributions and non-
deterministic choices. Measures of interest are defined over schedulers
that resolve the nondeterminism. In this paper we investigate the power
of various theoretically and practically motivated classes of schedulers,
considering the classic complete-information view and a restriction to
non-prophetic schedulers. We prove a hierarchy of scheduler classes w.r.t.
unbounded probabilistic reachability. We find that, unlike Markovian for-
malisms, stochastic automata distinguish most classes even in this basic
setting. Verification and strategy synthesis methods thus face a tradeoff
between powerful and efficient classes. Using lightweight scheduler sam-
pling, we explore this tradeoff and demonstrate the concept of a useful
approximative verification technique for stochastic automata.

1 Introduction

The need to analyse continuous-time stochastic models arises in many practical
contexts, including critical infrastructures [4], railway engineering [36], space mis-
sion planning [7], and security [28]. This has led to a number of discrete event sim-
ulation tools, such as those for networking [34,35,42], whose probabilistic seman-
tics is founded on generalised semi-Markov processes (GSMP [21,33]). Nonde-
terminism arises through inherent concurrency of independent processes [11],
but may also be deliberate underspecification. Modelling such uncertainty with
probability is convenient for simulation, but not always adequate [3,29]. Vari-
ous models and formalisms have thus been proposed to extend continuous-time

This work is supported by the 3TU.BSR, NWO BEAT (602.001.303) and JST
ERATO HASUO Metamathematics for Systems Design (JPMJER1603) projects, by
ERC grant 695614 (POWVER), and by SeCyT-UNC projects 05/BP12, 05/B497.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 384–402, 2018.
https://doi.org/10.1007/978-3-319-89366-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_21&domain=pdf
http://orcid.org/0000-0002-2655-9617
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-2903-0823

A Hierarchy of Scheduler Classes for Stochastic Automata 385

stochastic processes with nondeterminism [8,10,19,23,27,38]. It is then possible
to verify such systems by considering the extremal probabilities of a property.
These are the supremum and infimum of the probabilities of the property in the
purely stochastic systems induced by classes of schedulers (also called strategies,
policies or adversaries) that resolve all nondeterminism. If the nondeterminism
is considered controllable, one may alternatively be interested in the planning
problem of synthesising a scheduler that satisfies certain probability bounds.

We consider closed systems of stochastic automata (SA [16]), which extend
GSMP and feature both generally distributed stochastic delays as well as discrete
nondeterministic choices. The latter may arise from non-continuous distributions
(e.g. deterministic delays), urgent edges, and edges waiting on multiple clocks.
Numerical verification algorithms exist for very limited subclasses of SA only:
Buchholz et al. [13] restrict to phase-type or matrix-exponential distributions,
such that nondeterminism cannot arise (as each edge is guarded by a single
clock). Bryans et al. [12] propose two algorithms that require an a priori fixed
scheduler, continuous bounded distributions, and that all active clocks be reset
when a location is entered. The latter forces regeneration on every edge, making
it impossible to use clocks as memory between locations. Regeneration is central
to the work of Ballarini et al. [6], however they again exclude nondeterminism.
The only approach that handles nondeterminism is the region-based approxima-
tion scheme of Kwiatkowska et al. [30] for a model closely related to SA, but
restricted to bounded continuous distributions. Without that restriction [22],
error bounds and convergence guarantees are lost.

Evidently, the combination of nondeterminism and continuous probability
distributions is a particularly challenging one. With this paper, we take on the
underlying problem from a fundamental perspective: we investigate the power of,
and relationships between, different classes of schedulers for SA. Our motivation
is, on the one hand, that a clear understanding of scheduler classes is crucial
to design verification algorithms. For example, Markov decision process (MDP)
model checking works well because memoryless schedulers suffice for reachabil-
ity, and the efficient time-bounded analysis of continuous-time MDP (CTMDP)
exploits a relationship between two scheduler classes that are sufficiently simple,
but on their own do not realise the desired extremal probabilities [14]. When it
comes to planning problems, on the other hand, practitioners desire simple solu-
tions, i.e. schedulers that need little information and limited memory, so as to be
explainable and suitable for implementation on e.g. resource-constrained embed-
ded systems. Understanding the capabilities of scheduler classes helps decide on
the tradeoff between simplicity and the ability to attain optimal results.

We use two perspectives on schedulers from the literature: the classic
complete-information residual lifetimes semantics [9], where optimality is defined
via history-dependent schedulers that see the entire current state, and non-
prophetic schedulers [25] that cannot observe the timing of future events. Within
each perspective, we define classes of schedulers whose views of the state and
history are variously restricted (Sect. 3). We prove their relative ordering w.r.t.
achieving optimal reachability probabilities (Sect. 4). We find that SA distin-
guish most classes. In particular, memoryless schedulers suffice in the complete-
information setting (as is implicit in the method of Kwiatkowska et al. [30]), but

386 P. R. D’Argenio et al.

turn out to be suboptimal in the more realistic non-prophetic case. Consider-
ing only the relative order of clock expiration times, as suggested by the first
algorithm of Bryans et al. [12], surprisingly leads to partly suboptimal, partly
incomparable classes. Our distinguishing SA are small and employ a common
nondeterministic gadget. They precisely pinpoint the crucial differences and how
schedulers interact with the various features of SA, providing deep insights into
the formalism itself.

Our study furthermore forms the basis for the application of lightweight
scheduler sampling (LSS) to SA. LSS is a technique to use Monte Carlo sim-
ulation/statistical model checking with nondeterministic models. On every LSS
simulation step, a pseudo-random number generator (PRNG) is re-seeded with
a hash of the identifier of the current scheduler and the (restricted) information
about the current state (and previous states, for history-dependent schedulers)
that the scheduler’s class may observe. The PRNG’s first iterate then determines
the scheduler’s action deterministically. LSS has been successfully applied to
MDP [18,31,32] and probabilistic timed automata [15,26]. Using only constant
memory, LSS samples schedulers uniformly from a selected scheduler class to find
“near-optimal” schedulers that conservatively approximate the true extremal
probabilities. Its principal advantage is that it is largely indifferent to the size
of the state space and of the scheduler space; in general, sampling efficiency
depends only on the likelihood of selecting near-optimal schedulers. However,
the mass of near-optimal schedulers in a scheduler class that also includes the
optimal scheduler may be less than the mass in a class that does not include
it. Given that the mass of optimal schedulers may be vanishingly small, it may
be advantageous to sample from a class of less powerful schedulers. We explore
these tradeoffs and demonstrate the concept of LSS for SA in Sect. 5.

Other Related Work. Alur et al. first mention nondeterministic stochastic
systems similar to SA in [2]. Markov automata (MA [19]), interactive Markov
chains (IMC [27]) and CTMDP are special cases of SA restricted to exponential
distributions. Song et al. [37] look into partial information distributed schedulers
for MA, combining earlier works of de Alfaro [1] and Giro and D’Argenio [20]
for MDP. Their focus is on information flow and hiding in parallel specifications.
Wolf et al. [39] investigate the power of classic (time-abstract, deterministic and
memoryless) scheduler classes for IMC. They establish (non-strict) subset rela-
tionships for almost all classes w.r.t. trace distribution equivalence, a very strong
measure. Wolovick and Johr [41] show that the class of measurable schedulers
for CTMDP is complete and sufficient for reachability problems.

2 Preliminaries

For a given set S, its power set is P(S). We denote by R, R+, and R
+
0 the sets of

real numbers, positive real numbers and non-negative real numbers, respectively.
A (discrete) probability distribution over a set Ω is a function μ : Ω → [0, 1], such
that support(μ) def= {ω ∈ Ω | μ(ω) > 0 } is countable and

∑
ω∈support(μ) μ(ω) = 1.

Dist(Ω) is the set of probability distributions over Ω. We write D(ω) for the Dirac

A Hierarchy of Scheduler Classes for Stochastic Automata 387

distribution for ω, defined by D(ω)(ω) = 1. Ω is measurable if it is endowed
with a σ-algebra σ(Ω): a collection of measurable subsets of Ω. A (continuous)
probability measure over Ω is a function μ : σ(Ω) → [0, 1], such that μ(Ω) = 1
and μ(∪i∈I Bi) =

∑
i∈I μ(Bi) for any countable index set I and pairwise disjoint

measurable sets Bi ⊆ Ω. Prob(Ω) is the set of probability measures over Ω. Each
μ ∈ Dist(Ω) induces a probability measure. Given probability measures μ1 and
μ2, we denote by μ1 ⊗ μ2 the product measure: the unique probability measure
such that (μ1 ⊗ μ2)(B1 × B2) = μ1(B1) · μ2(B2), for all measurable B1 and B2.
For a collection of measures (μi)i∈I , we analogously denote the product measure
by

⊗
i∈I μi. Let Val def= V → R

+
0 be the set of valuations for an (implicit)

set V of (non-negative real-valued) variables. 0 ∈ Val assigns value zero to all
variables. Given X ⊆ V and v ∈ Val , we write v[X] for the valuation defined
by v[X](x) = 0 if x ∈ X and v[X](y) = v(y) otherwise. For t ∈ R

+
0 , v + t is the

valuation defined by (v + t)(x) = v(x) + t for all x ∈ V .

Stochastic Automata [16] extend labelled transition systems with stochastic
clocks: real-valued variables that increase synchronously with rate 1 over time
and expire some random amount of time after having been restarted. Formally:

Definition 1. A stochastic automaton (SA) is a tuple 〈Loc, C, A,E, F, �init 〉,
where Loc is a countable set of locations, C is a finite set of clocks, A is the
finite action alphabet, and E : Loc → P(P(C) × A × P(C) × Dist(Loc)) is the
edge function, which maps each location to a finite set of edges that in turn
consist of a guard set of clocks, a label, a restart set of clocks and a distribution
over target locations. F : C → Prob(R+

0) is the delay measure function that maps
each clock to a probability measure, and �init ∈ Loc is the initial location.

We also write �
G,a,R−−−−→E μ for 〈G, a,R, μ〉 ∈ E(�). W.l.o.g. we restrict to SA

where edges are fully characterised by source state and action label, i.e. whenever
�

G1,a,R1−−−−−→E μ1 and �
G2,a,R2−−−−−→E μ2, then G1 = G2, R1 = R2 and μ1 = μ2.

Intuitively, an SA starts in �init with all clocks expired. An edge �
G,a,R−−−−→E μ

may be taken only if all clocks in G are expired. If any edge is enabled, some
edge must be taken (i.e. all actions are urgent and thus the SA is closed). When
an edge is taken, its action is a, all clocks in R are restarted, other expired
clocks remain expired, and we move to successor location �′ with probability
μ(�′). There, another edge may be taken immediately or we may need to wait
until some further clocks expire, and so on. When a clock c is restarted, the time
until it expires is chosen randomly according to the probability measure F (c).

Example 1. We show an example SA, M0, in Fig. 1. Its initial location is �0. It
has two clocks, x and y, with F (x) and F (y) both being the continuous uniform
distribution over the interval [0, 1]. No time can pass in locations �0 and �1,
since they have outgoing edges with empty guard sets. We omit action labels
and assume every edge to have a unique label. On entering �1, both clocks are
restarted. The choice of going to either �2 or �3 from �1 is nondeterministic, since

388 P. R. D’Argenio et al.

Fig. 1. Example SA M0 Fig. 2. Excerpt of the TPTS semantics of M0

the two edges are always enabled at the same time. In �2, we have to wait until
the first of the two clocks expires. If that is x, we have to move to location ✓; if it
is y, we have to move to ✗. The probability that both expire at the same time is
zero. Location �3 behaves analogously, but with the target states interchanged.

Timed Probabilistic Transition Systems form the semantics of SA. They
are finitely-nondeterministic uncountable-state transition systems:

Definition 2. A (finitely nondeterministic) timed probabilistic transition sys-
tem (TPTS) is a tuple 〈S,A′, T, sinit 〉. S is a measurable set of states. A′ =
R

+ 	 A is the alphabet, partitioned into delays in R
+ and jumps in A.

T : S → P(A′ × Prob(S)) is the transition function, which maps each state to
a finite set of transitions, each consisting of a label in A′ and a measure over
target states. The initial state is sinit ∈ S. For all s ∈ S, we require |T (s)| = 1
if ∃ 〈t, μ〉 ∈ T (s) : t ∈ R

+, i.e. states admitting delays are deterministic.

We also write s
a−→T μ for 〈a, μ〉 ∈ T (s). A run is an infinite alternating sequence

s0a0s1a1. . . ∈ (S×A′)ω, with s0 = sinit . A history is a finite prefix of a run ending
in a state, i.e. an element of (S × A′)∗ × S. Runs resolve all nondeterministic
and probabilistic choices. A scheduler resolves only the nondeterminism:

Definition 3. A measurable function s : (S ×A′)∗ ×S → Dist(A′ × Prob(S)) is
a scheduler if, for all histories h ∈ (S × A′)∗ × S, 〈a, μ〉 ∈ support(s(h)) implies
lsth

a−→T μ, where lsth is the last state of h.

Once a scheduler has chosen si
a−→T μ, the successor state si+1 is picked randomly

according to μ. Every scheduler s defines a probability measure Ps on the space
of all runs. For a formal definition, see [40]. As is usual, we restrict to non-Zeno
schedulers that make time diverge with probability one: we require Ps(Π∞) = 1,
where Π∞ is the set of runs where the sum of delays is ∞. In the remainder of this
paper we consider extremal probabilities of reaching a set of goal locations G:

Definition 4. For G ⊆ Loc, let JG
def= { 〈�, v, e〉 ∈ S | � ∈ G }. Let S be a

class of schedulers. Then PS
min(G) and PS

max(G) are the minimum and maximum
reachability probabilities for G under S, defined as PS

min(G) = infs∈S Ps(ΠJG
)

and PS
max(G) = sups∈S Ps(ΠJG

), respectively.

A Hierarchy of Scheduler Classes for Stochastic Automata 389

Semantics of Stochastic Automata. We present here the residual lifetimes
semantics of [9], simplified for closed SA: any delay step must be of the minimum
delay that makes some edge become enabled.

Definition 5. The semantics of an SA M = 〈Loc, C, A,E, F, �init 〉 is the TPTS

[[M]] = 〈Loc × Val × Val , A 	 R
+, TM , 〈�init ,0,0〉〉

where the states are triples 〈�, v, e〉 of the current location �, a valuation v assign-
ing to each clock its current value, and a valuation e keeping track of all clocks’
expiration times. TM is the smallest transition function satisfying inference rules

�
G,a,R−−−−→E μ En(G, v, e)

〈�, v, e〉 a−→TM μ ⊗ D(v[R]) ⊗ SampleRe

t ∈ R
+ ∃�

G,a,R−−−−→E μ : En(G, v + t, e) ∀ t′ ∈ [0, t), �
G,a,R−−−−→E μ : ¬ En(G, v + t′, e)

〈�, v, e〉 t−→TM D(〈�, v + t , e〉)
with En(G, v, e) def= ∀x ∈ G : v(x) ≥ e(x) characterising the enabled edges and

SampleR
e

def=
⊗

c∈C

{
F (c) if c ∈ R

D(e(c)) if c /∈ R.

The second rule creates delay steps of t time units if no edge is enabled from now
until just before t time units have elapsed (third premise) but then, after exactly
t time units, some edge becomes enabled (second premise). The first rule applies

if an edge �
G,a,R−−−−→E μ is enabled: a transition is taken with the edge’s label, the

successor state’s location is chosen by μ, v is updated by resetting the clocks in R
to zero, and the expiration times for the restarted clocks are resampled. All other
expiration times remain unchanged. Notice that [[M]] is also a nondeterministic
labelled Markov process [40] (a proof can be found in [17]).

Example 2. Figure 2 outlines the semantics of M0. The first step from �0 to all
the states in �1 is a single transition. Its probability measure is the product of
F (x) and F (y), sampling the expiration times of the two clocks. We exemplify
the behaviour of all of these states by showing it for the case of expiration times
e(x) and e(y), with e(x) < e(y). In this case, to maximise the probability of
reaching ✓, we should take the transition to the state in �2. If a scheduler s can
see the expiration times, noting that only their order matters here, it can always
make the optimal choice and achieve P{s}

max({ ✓ }) = 1.

3 Classes of Schedulers

We now define classes of schedulers for SA with restricted information, hiding
in various combinations the history and parts of states such as clock values and
expiration times. All definitions consider TPTS as in Definition 5 with states
〈�, v, e〉 and we require for all s that 〈a, μ〉 ∈ support(s(h)) ⇒ lsth

a−→T μ, as in
Definition 3.

390 P. R. D’Argenio et al.

3.1 Classic Schedulers

We first consider the “classic” complete-information setting where schedulers can
in particular see expiration times. We start with restricted classes of history-
dependent schedulers. Our first restriction hides the values of all clocks, only
revealing the total time since the start of the history. This is inspired by the step-
counting or time-tracking schedulers needed to obtain optimal step-bounded or
time-bounded reachability probabilities on MDP or Markov automata:

Definition 6. A classic history-dependent global-time scheduler is a measurable
function s : (S|�,t,e × A′)∗ × S|�,t,e → Dist(A′ × Prob(S)), where S|�,t,e def= Loc ×
R

+
0 ×Val with the second component being the total time t elapsed since the start

of the history. We write Shist
�,t,e for the set of all such schedulers.

We next hide the values of all clocks, revealing only their expiration times:

Definition 7. A classic history-dependent location-based scheduler is a mea-
surable function s : (S|�,e × A′)∗ × S|�,e → Dist(A′ × Prob(S)), where S|�,e def=
Loc × Val, with the second component being the clock expiration times e. We
write Shist

�,e for the set of all such schedulers.

Having defined three classes of classic history-dependent schedulers, Shist
�,v,e,

Shist
�,t,e and Shist

�,e , noting that Shist
�,v,e denotes all schedulers of Definition 3, we

also consider them with the restriction that they only see the relative order of
clock expiration, instead of the exact expiration times: for each pair of clocks
c1, c2, these schedulers see the relation ∼ ∈ {<,=, >} in e(c1) − v(c1) ∼ e(c2) −
v(c2). E.g. in �1 of Example 2, the scheduler would not see e(x) and e(y), but
only whether e(x) < e(y) or vice-versa (since v(x) = v(y) = 0, and equality
has probability 0 here). We consider this case because the expiration order is
sufficient for the first algorithm of Bryans et al. [12], and would allow optimal
decisions in M0 of Fig. 1. We denote the relative order information by o, and
the corresponding scheduler classes by Shist

�,v,o, S
hist
�,t,o and Shist

�,o . We now define
memoryless schedulers, which only see the current state and are at the core of
e.g. MDP model checking. On most formalisms, they suffice to obtain optimal
reachability probabilities.

Definition 8. A classic memoryless scheduler is a measurable function s : S →
Dist(A′ × Prob(S)). We write Sml

�,v,e for the set of all such schedulers.

We apply the same restrictions as for history-dependent schedulers:

Definition 9. A classic memoryless global-time scheduler is a measurable func-
tion s : S|�,t,e → Dist(A′ × Prob(S)), with S|�,t,e as in Definition 6. We write
Sml

�,t,e for the set of all such schedulers.

Definition 10. A classic memoryless location-based scheduler is a measurable
function s : S|�,e → Dist(A′ × Prob(S)), with S|�,e as in Definition 7. We write
Sml

�,e for the set of all such schedulers.

Again, we also consider memoryless schedulers that only see the expiration order,
so we have memoryless scheduler classes Sml

�,v,e, S
ml
�,t,e, S

ml
�,e, S

ml
�,v,o, S

ml
�,t,o and

Sml
�,o. Class Sml

�,o is particularly attractive because it has a compact finite domain.

A Hierarchy of Scheduler Classes for Stochastic Automata 391

3.2 Non-prophetic Schedulers

Consider the SA M0 in Fig. 1. No matter which of the previously defined sched-
uler classes we choose, we always find a scheduler that achieves probability 1 to
reach ✓, and a scheduler that achieves probability 0. This is because they can all
see the expiration times or expiration order of x and y when in �1. When in �1,
x and y have not yet expired—this will only happen later, in �2 or �3—yet the
schedulers already know which clock will “win”. The classic schedulers can thus
be seen to make decisions based on the timing of future events. This prophetic
scheduling has already been observed in [9], where a “fix” in the form of the spent
lifetimes semantics was proposed. Hartmanns et al. [25] have shown that this not
only still permits prophetic scheduling, but even admits divine scheduling, where
a scheduler can change the future. The authors propose a complex non-prophetic
semantics that provably removes all prophetic and divine behaviour.

Much of the complication of the non-prophetic semantics of [25] is due to it
being specified for open SA that include delayable actions. For the closed SA
setting of this paper, prophetic scheduling can be more easily excluded by hiding
from the schedulers all information about what will happen in the future of the
system’s evolution. This information is only contained in the expiration times e
or the expiration order o. We can thus keep the semantics of Sect. 2 and modify
the definition of schedulers to exclude prophetic behaviour by construction.

In what follows, we thus also consider all scheduler classes of Sect. 3.1 with
the added constraint that the expiration times, resp. the expiration order, are not
visible, resulting in the non-prophetic classes Shist

�,v , Shist
�,t , Shist

� , Sml
�,v, Sml

�,t and
Sml

� . Any non-prophetic scheduler can only reach ✓ of M0 with probability 1
2 .

4 The Power of Schedulers

Now that we have defined a number of classes of schedulers, we need to determine
what the effect of the restrictions is on our ability to optimally control an SA.
We thus evaluate the power of scheduler classes w.r.t. unbounded reachability
probabilities (Definition 4) on the semantics of SA. We will see that this simple
setting already suffices to reveal interesting differences between scheduler classes.

For two scheduler classes S1 and S2, we write S1 � S2 if, for all SA and
all sets of goal locations G, PS1

min(G) ≤ PS2
min(G) and PS1

max(G) ≥ PS2
max(G). We

write S1 � S2 if additionally there exists at least one SA and set G′ where
PS1
min(G

′) < PS2
min(G

′) or PS1
max(G

′) > PS2
max(G

′). Finally, we write S1 ≈ S2 for
S1 � S2 ∧ S2 � S1, and S1 �≈ S2, i.e. the classes are incomparable, for
S1 �� S2 ∧ S2 �� S1. Unless noted otherwise, we omit proofs for S1 � S2

when it is obvious that the information available to S1 includes the information
available to S2. All our distinguishing examples are based on the resolution of
a single nondeterministic choice between two actions to eventually reach one of
two locations. We therefore prove only w.r.t. the maximum probability, pmax,
for these examples since the minimum probability is given by 1 − pmax and an
analogous proof for pmin can be made by relabelling locations. We may write
Pmax(S

y
x) for PSy

x
max({ ✓ }) to improve readability.

392 P. R. D’Argenio et al.

Fig. 3. Hierarchy of classic scheduler classes Fig. 4. Non-prophetic classes

4.1 The Classic Hierarchy

We first establish that all classic history-dependent scheduler classes are equiv-
alent:

Proposition 1. Shist
�,v,e ≈ Shist

�,t,e ≈ Shist
�,e .

Proof. From the transition labels in A′ = A	R
+ in the history (S′ ×A′)∗, with

S′ ∈ {S, S|�,t,e, S|�,e } depending on the scheduler class, we can reconstruct the
total elapsed time as well as the values of all clocks: to obtain the total elapsed
time, sum the labels in R

+ up to each state; to obtain the values of all clocks, do
the same per clock and perform the resets of the edges identified by the actions.

The same argument applies among the expiration-order history-dependent
classes:

Proposition 2. Shist
�,v,o ≈ Shist

�,t,o ≈ Shist
�,o .

However, the expiration-order history-dependent schedulers are strictly less pow-
erful than the classic history-dependent ones:

Proposition 3. Shist
�,v,e � Shist

�,v,o.

Proof. Consider the SA M1 in Fig. 5. Note that the history does not provide
any information for making the choice in �1: we always arrive after having spent
zero time in �0 and then having taken the single edge to �1. We can analytically
determine that Pmax(S

hist
�,v,e) = 3

4 by going from �1 to �2 if e(x) ≤ 1
2 and to �3

otherwise. We would obtain a probability equal to 1
2 by always going to either

�2 or �3 or by picking either edge with equal probability. This is the best we can
do if e is not visible, and thus Pmax(S

hist
�,v,o) = 1

2 : in �1, v(x) = v(y) = 0 and the
expiration order is always “y before x” because y has not yet been started.

Just like for MDP and unbounded reachability probabilities, the classic history-
dependent and memoryless schedulers with complete information are equivalent:

Proposition 4. Shist
�,v,e ≈ Sml

�,v,e.

A Hierarchy of Scheduler Classes for Stochastic Automata 393

Fig. 5. SA M1 Fig. 6. SA M2 Fig. 7. SA M3

Proof sketch. Our definition of TPTS only allows finite nondeterministic choices,
i.e. we have a very restricted form of continuous-space MDP. We can thus adapt
the argument of the corresponding proof for MDP [5, Lemma 10.102]: For each
state (of possibly countably many), we construct a notional optimal memoryless
(and deterministic) scheduler in the same way, replacing the summation by an
integration for the continuous measures in the transition function. It remains to
show that this scheduler is indeed measurable. For TPTS that are the semantics
of SA, this follows from the way clock values are used in the guard sets so that
optimal decisions are constant over intervals of clock values and expiration times
(see e.g. the arguments in [12] or [30]).

On the other hand, when restricting schedulers to see the expiration order
only, history-dependent and memoryless schedulers are no longer equivalent:

Proposition 5. Shist
�,v,o � Sml

�,v,o.

Proof. Consider the SA M2 in Fig. 6. Let soptml(l,v,o) be the (unknown) optimal
scheduler in Sml

�,v,o w.r.t. the max. probability of reaching ✓. Define sbetterhist(l,v,o) ∈
Shist

�,v,o as: when in �2 and the last edge in the history is the left one (i.e. x is
expired), go to �3; otherwise, behave like soptml(l,v,o). This scheduler distinguishes

Shist
�,v,o and Sml

�,v,o (by achieving a strictly higher max. probability than soptml(l,v,o)) if
and only if there are some combinations of clock values (aspect v) and expiration
orders (aspect o) in �2 that can be reached with positive probability via the left
edge into �2, for which soptml(l,v,o) must nevertheless decide to go to �4.

All possible clock valuations in �2 can be achieved via either the left or the
right edge, but taking the left edge implies that x expires before z in �2. It
is thus sufficient to show that soptml(l,v,o) must go to �4 in some cases where x

394 P. R. D’Argenio et al.

expires before z. The general form of schedulers in Sml
�,v,o in �2 is “go to �3 iff

(a) x expires before z and v(x) ∈ S1 or (b) z expires before x and v(x) ∈ S2”
where the Si are measurable subsets of [0, 8]. S2 is in fact irrelevant : whatever
soptml(l,v,o) does when (b) is satisfied will be mimicked by sbetterhist(l,v,o) because z can
only expire before x when coming via the right edge into �2. Conditions (a) and
(b) are independent.

With S1 = [0, 8], the max. probability is 77
96 = 0.802083̄. Since this is the

only scheduler in Sml
�,v,o that is relevant for our proof and never goes to l4 when

x expires before z, it remains to show that the max. probability under soptml(l,v,o)

is > 77
96 . With S1 = [0, 35

12), we have a max. probability of 7561
9216 ≈ 0.820421. Thus

soptml(l,v,o) must sometimes go to l4 even when the left edge was taken, so sbetterhist(l,v,o)

achieves a higher probability and thus distinguishes the classes.

Knowing only the global elapsed time is less powerful than knowing the full
history or the values of all clocks:

Proposition 6. Shist
�,t,e � Sml

�,t,e and Sml
�,v,e � Sml

�,t,e.

Proof sketch. Consider the SA M3 in Fig. 7. We have Pmax(S
hist
�,t,e) = 1: when

in �3, the scheduler sees from the history which of the two incoming edges was
used, and thus knows whether x or y is already expired. It can then make the
optimal choice: go to �4 if x is already expired, or to �5 otherwise. We also have
Pmax(S

ml
�,v,e) = 1: the scheduler sees that either v(x) = 0 or v(y) = 0, which

implies that the other clock is already expired, and the argument above applies.
However, Pmax(S

ml
�,t,e) < 1: the distribution of elapsed time t on entering �3 is

itself independent of which edge is taken. With probability 1
4 , exactly one of e(x)

and e(y) is below t in �3, which implies that that clock has just expired and thus
the scheduler can decide optimally. Yet with probability 3

4 , the expiration times
are not useful: they are both positive and drawn from the same distribution,
but one unknown clock is expired. The wait for x in �1 ensures that comparing
t with the expiration times in e does not reveal further information in this case.

In the case of MDP, knowing the total elapsed time (i.e. steps) does not make
a difference for unbounded reachability. Only for step-bounded properties is that
extra knowledge necessary to achieve optimal probabilities. With SA, however,
it makes a difference even in the unbounded case:

Proposition 7. Sml
�,t,e � Sml

�,e.

Proof. Consider SA M4 in Fig. 8. We have Pmax(S
ml
�,t,e) = 1: in �2, the remaining

time until y expires is e(y) and the remaining time until x expires is e(x) − t for
the global time value t as �2 is entered. The scheduler can observe all of these
quantities and thus optimally go to �3 if x will expire first, or to �4 otherwise.
However, Pmax(S

ml
�,e) < 1: e(x) only contains the absolute expiration time of x,

but without knowing t or the expiration time of z in �1, and thus the current
value v(x), this scheduler cannot know with certainty which of the clocks will
expire first and is therefore unable to make an optimal choice in �2.

A Hierarchy of Scheduler Classes for Stochastic Automata 395

Fig. 8. SA M4 Fig. 9. SA M5 Fig. 10. SA M6

Finally, we need to compare the memoryless schedulers that see the clock expi-
ration times with memoryless schedulers that see the expiration order. As noted
in Sect. 3.1, these two views of the current state are incomparable unless we also
see the clock values:

Proposition 8. Sml
�,v,e � Sml

�,v,o.

Proof. Sml
�,v,e �� Sml

�,v,o follows from the same argument as in the proof of Propo-
sition 3. Sml

�,v,e � Sml
�,v,o is because knowing the current clock values v and the

expiration times e is equivalent to knowing the expiration order, since that is
precisely the order of the differences e(c) − v(c) for all clocks c.

Proposition 9. Sml
�,t,e �≈ Sml

�,t,o.

Proof. Sml
�,t,e �� Sml

�,t,o follows from the same argument as in the proof of Propo-
sition 3. For Sml

�,t,e �� Sml
�,t,o, consider the SA M3 of Fig. 7. We know from the

proof of Proposition 6 that Pmax(S
ml
�,t,e) < 1. However, if the scheduler knows

the order in which the clocks will expire, it knows which one has already expired
(the first one in the order), and can thus make the optimal choice in �3 to achieve
Pmax(S

ml
�,t,o) = 1.

Proposition 10. Sml
�,e �≈ Sml

�,o.

Proof. The argument of Proposition 9 applies by observing that, in M3 of
Fig. 7, we also have Pmax(S

ml
�,e) < 1 via the same argument as for Sml

�,t,e in
the proof of Proposition 6.

Among the expiration-order schedulers, the hierarchy is as expected:

Proposition 11. Sml
�,v,o � Sml

�,t,o � Sml
�,o.

396 P. R. D’Argenio et al.

Proof sketch. Consider M5 of Fig. 9. To maximise the probability, in �3 we should
go to �4 whenever x is already expired or close to expiring, for which the amount
of time spent in �2 is an indicator. Sml

�,o only knows that x may have expired
when the expiration order is “x before y”, but definitely has not expired when it
is “y before x”. Schedulers in Sml

�,t,o can do better: They also see the amount of
time spent in �2. Thus Sml

�,t,o � Sml
�,o. If we modify M5 by adding an initial delay

on x from a new �0 to �1 as in M3, then the same argument can be used to prove
Sml

�,v,o � Sml
�,t,o: the extra delay makes knowing the elapsed time t useless with

positive probability, but the exact time spent in l2 is visible to Sml
�,v,o as v(x).

We have thus established the hierarchy of classic schedulers shown in Fig. 3,
noting that some of the relationships follow from the propositions by transitivity.

4.2 The Non-prophetic Hierarchy

Each non-prophetic scheduler class is clearly dominated by the classic and
expiration-order scheduler classes that otherwise have the same information,
for example Shist

�,v,e � Shist
�,v (with very simple distinguishing SA). We show that

the non-prophetic hierarchy follows the shape of the classic case, including the
difference between global-time and pure memoryless schedulers, with the notable
exception of memoryless schedulers being weaker than history-dependent ones.

Proposition 12. Shist
�,v ≈ Shist

�,t ≈ Shist
� .

Proof. This follows from the argument of Proposition 1.

Proposition 13. Shist
�,v � Sml

�,v.

Proof. Consider the SA M6 in Fig. 10. It is similar to M4 of Fig. 8, and our
arguments are thus similar to the proof of Proposition 7. On M6, we have
Pmax(S

hist
�,v) = 1: in �2, the history reveals which of the two incoming edges was

used, i.e. which clock is already expired, thus the scheduler can make the optimal
choice. However, if neither the history nor e is available, we get Pmax(S

ml
�,v) = 1

2 :
the only information that can be used in �2 are the values of the clocks, but
v(x) = v(y), so there is no basis for an informed choice.

Proposition 14. Shist
�,t � Sml

�,t and Sml
�,v � Sml

�,t .

Proof. Consider the SA M3 in Fig. 7. We have Pmax(S
hist
�,t) = Pmax(S

ml
�,v) = 1,

but Pmax(S
ml
�,t) = 1

2 by the same arguments as in the proof of Proposition 6.

Proposition 15. Sml
�,t � Sml

� .

Proof. Consider the SA M4 in Fig. 8. The schedulers in Sml
� have no information

but the current location, so they cannot make an informed choice in �2. This and
the simple loop-free structure of M4 make it possible to analytically calculate
the resulting probability: Pmax(S

ml
�) = 17

24 = 0.7083. If information about the
global elapsed time t in �2 is available, however, the value of x is revealed. This
allows making a better choice, e.g. going to �3 when t ≤ 1

2 and to �4 otherwise,
resulting in Pmax(S

ml
�,t) ≈ 0.771 (statistically estimated with high confidence).

A Hierarchy of Scheduler Classes for Stochastic Automata 397

We have thus established the hierarchy of non-prophetic schedulers shown in
Fig. 4, where some relationships follow from the propositions by transitivity.

5 Experiments

We have built a prototype implementation of lightweight scheduler sampling for
SA by extending the Modest Toolset’s [24] modes simulator, which already
supports deterministic stochastic timed automata (STA [8]). With some care,
SA can be encoded into STA. Using the original algorithm for MDP of [18],
our prototype works by providing to the schedulers a discretised view of the
continuous components of the SA’s semantics, which, we recall, is a continuous-
space MDP. The currently implemented discretisation is simple: for each real-
valued quantity (the value v(c) of clock c, its expiration time e(c), and the global
elapsed time t), it identifies all values that lie within the same interval [i

n , i+1
n),

for integers i, n. We note that better static discretisations are almost certainly
possible, e.g. a region construction for the clock values as in [30].

We have modelled M1 through M6 as STA in Modest. For each sched-
uler class and model in the proof of a proposition, and discretisation factors
n ∈ { 1, 2, 4 }, we sampled 10 000 schedulers and performed statistical model
checking for each of them in the lightweight manner. In Fig. 11 we report the min.
and max. estimates, (p̂min, p̂max)..., over all sampled schedulers. Where different
discretisations lead to different estimates, we report the most extremal values.
The subscript denotes the discretisation factors that achieved the reported esti-
mates. The analysis for each sampled scheduler was performed with a number of
simulation runs sufficient for the overall max./min. estimates to be within ± 0.01
of the true maxima/minima of the sampled set of schedulers with probability
≥0.95 [18]. Note that p̂min is an upper bound on the true minimum probability
and p̂max is a lower bound on the true maximum probability.

Increasing the discretisation factor or increasing the scheduler power gener-
ally increases the number of decisions the schedulers can make. This may also
increase the number of critical decisions a scheduler must make to achieve the
extremal probability. Hence, the sets of discretisation factors associated to spe-
cific experiments may be informally interpreted in the following way:

– {1, 2, 4}: Fine discretisation is not important for optimality and optimal
schedulers are not rare.

– {1, 2}: Fine discretisation is not important for optimality, but increases rarity
of optimal schedulers.

– {2, 4}: Fine discretisation is important for optimality, optimal schedulers are
not rare.

– {1}: Optimal schedulers are very rare.
– {2}: Fine discretisation is important for optimality, but increases rarity of

schedulers.
– {4}: Fine discretisation is important for optimality and optimal schedulers

are not rare.

398 P. R. D’Argenio et al.

Fig. 11. Results from the prototype of lightweight scheduler sampling for SA

The results in Fig. 11 respect and differentiate our hierarchy. In most cases, we
found schedulers whose estimates were within the statistical error of calculated
optima or of high confidence estimates achieved by alternative statistical tech-
niques. The exceptions involve M3 and M4. We note that M4 makes use of an
additional clock, increasing the dimensionality of the problem and potentially
making near-optimal schedulers rarer. The best result for M3 and class Sml

l,t,e

was obtained using discretisation factor n = 2: a compromise between nearness
to optimality and rarity. A greater compromise was necessary for M4 and classes
Sml

l,t,e,S
ml
l,e , where we found near-optimal schedulers to be very rare and achieved

best results using discretisation factor n = 1.
The experiments demonstrate that lightweight scheduler sampling can pro-

duce useful and informative results with SA. The present theoretical results will
allow us to develop better abstractions for SA and thus to construct a refinement
algorithm for efficient lightweight verification of SA that will be applicable to
realistically sized case studies. As is, they already demonstrate the importance
of selecting a proper scheduler class for efficient verification, and that restricted
classes are useful in planning scenarios.

6 Conclusion

We have shown that the various notions of information available to a scheduler
class, such as history, clock order, expiration times or overall elapsed time, almost
all make distinct contributions to the power of the class in SA. Our choice of
notions was based on classic scheduler classes relevant for other stochastic mod-
els, previous literature on the character of nondeterminism in and verification of
SA, and the need to synthesise simple schedulers in planning. Our distinguishing
examples clearly expose how to exploit each notion to improve the probability

A Hierarchy of Scheduler Classes for Stochastic Automata 399

of reaching a goal. For verification of SA, we have demonstrated the feasibility
of lightweight scheduler sampling, where the different notions may be used to
finely control the power of the lightweight schedulers. To solve stochastic timed
planning problems defined via SA, our analysis helps in the case-by-case selec-
tion of an appropriate scheduler class that achieves the desired tradeoff between
optimal probabilities and ease of implementation of the resulting plan.

We expect the arguments of this paper to extend to steady-state/frequency
measures (by adding loops back from absorbing to initial states in our examples),
and that our results for classic schedulers transfer to SA with delayable actions.
We propose to use the results to develop better abstractions for SA, the next
goal being a refinement algorithm for efficient lightweight verification of SA.

References

1. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. Technical report, DTIC Document (1999)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time
systems. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS,
vol. 510, pp. 115–126. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
54233-7 128

3. Andel, T.R., Yasinsac, A.: On the credibility of MANET simulations. IEEE Com-
put. 39(7), 48–54 (2006)

4. Avritzer, A., Carnevali, L., Ghasemieh, H., Happe, L., Haverkort, B.R., Koziolek,
A., Menasché, D.S., Remke, A., Sarvestani, S.S., Vicario, E.: Survivability evalu-
ation of gas, water and electricity infrastructures. Electr. Notes Theor. Comput.
Sci. 310, 5–25 (2015)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Ballarini, P., Bertrand, N., Horváth, A., Paolieri, M., Vicario, E.: Transient anal-
ysis of networks of stochastic timed automata using stochastic state classes. In:
Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS,
vol. 8054, pp. 355–371. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40196-1 30

7. Bisgaard, M., Gerhardt, D., Hermanns, H., Krčál, J., Nies, G., Stenger, M.:
Battery-aware scheduling in low orbit: the GomX–3 case. In: Fitzgerald, J., Heit-
meyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 559–576.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 34

8. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

9. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: concepts, discussions and
relations of stochastic process algebras with general distributions. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24611-4 2

10. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov pro-
cesses. Theor. Comput. Sci. 282(1), 5–32 (2002)

https://doi.org/10.1007/3-540-54233-7_128
https://doi.org/10.1007/3-540-54233-7_128
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1007/978-3-319-48989-6_34
https://doi.org/10.1007/978-3-540-24611-4_2

400 P. R. D’Argenio et al.

11. Brázdil, T., Krčál, J., Křet́ınský, J., Řehák, V.: Fixed-delay events in generalized
semi-Markov processes revisited. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 140–155. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23217-6 10

12. Bryans, J., Bowman, H., Derrick, J.: Model checking stochastic automata. ACM
Trans. Comput. Log. 4(4), 452–492 (2003)

13. Buchholz, P., Kriege, J., Scheftelowitsch, D.: Model checking stochastic automata
for dependability and performance measures. In: DSN, pp. 503–514. IEEE Com-
puter Society (2014)

14. Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov
decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-
7 12

15. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0 7

16. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

17. D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/output stochastic automata. In:
Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 53–68.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 4

18. D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015)

19. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

20. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable
nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75454-1 14

21. Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. com-
mun. stat. Stochast. Models 3(3), 409–438 (1987)

22. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. In: Electronic Communications of the EASST, AVoCS
2014, vol. 70 (2014)

23. Harrison, P.G., Strulo, B.: SPADES - a process algebra for discrete event simula-
tion. J. Log. Comput. 10(1), 3–42 (2000)

24. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

25. Hartmanns, A., Hermanns, H., Krčál, J.: Schedulers are no Prophets. In: Probst,
C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics, and Calculi. LNCS,
vol. 9560, pp. 214–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
27810-0 11

26. Hartmanns, A., Sedwards, S., D’Argenio, P.: Efficient simulation-based verification
of probabilistic timed automata. In: WSC. IEEE (2017). https://doi.org/10.1109/
WSC.2017.8247885

27. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45804-2

https://doi.org/10.1007/978-3-642-23217-6_10
https://doi.org/10.1007/978-3-642-23217-6_10
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-319-44878-7_4
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-27810-0_11
https://doi.org/10.1007/978-3-319-27810-0_11
https://doi.org/10.1109/WSC.2017.8247885
https://doi.org/10.1109/WSC.2017.8247885
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2

A Hierarchy of Scheduler Classes for Stochastic Automata 401

28. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-
0 9

29. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incred-
ibles. Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)

30. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative
properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 11

31. Legay, A., Sedwards, S., Traonouez, L.M.: Estimating rewards & rare events in
nondeterministic systems. In: Electronic Communications of the EASST, AVoCS
2015, vol. 72 (2015)

32. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

33. Matthes, K.: Zur Theorie der Bedienungsprozesse. In: 3rd Prague Conference on
Information Theory, Stat. Dec. Fns. and Random Processes, pp. 513–528 (1962)

34. NS-3 Consortium: ns-3: A Discrete-event Network Simulator for Internet Systems.
https://www.nsnam.org/

35. Pongor, G.: OMNeT: objective modular network testbed. In: MASCOTS, pp. 323–
326. The Society for Computer Simulation (1993)

36. Ruijters, E., Stoelinga, M.: Better railway engineering through statistical model
checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp.
151–165. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 10

37. Song, L., Zhang, L., Godskesen, J.C.: Late weak bisimulation for Markov automata.
CoRR abs/1202.4116 (2012)

38. Strulo, B.: Process algebra for discrete event simulation. Ph.D. thesis, Imperial
College of Science, Technology and Medicine. University of London, October 1993

39. Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace semantics for stochastic sys-
tems with nondeterminism. Electr. Notes Theor. Comput. Sci. 164(3), 187–204
(2006)

40. Wolovick, N.: Continuous probability and nondeterminism in labeled transition sys-
tems. Ph.D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2012)

41. Wolovick, N., Johr, S.: A characterization of meaningful schedulers for continuous-
time Markov decision processes. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 352–367. Springer, Heidelberg (2006). https://doi.org/10.
1007/11867340 25

42. Zeng, X., Bagrodia, R.L., Gerla, M.: Glomosim: a library for parallel simulation
of large-scale wireless networks. In: PADS, pp. 154–161. IEEE Computer Society
(1998)

https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/3-540-44618-4_11
https://doi.org/10.1007/978-3-319-15201-1_23
https://www.nsnam.org/
https://doi.org/10.1007/978-3-319-47166-2_10
https://doi.org/10.1007/11867340_25
https://doi.org/10.1007/11867340_25

402 P. R. D’Argenio et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Symbolically Quantifying Response Time
in Stochastic Models Using Moments

and Semirings

Hugo Bazille1, Eric Fabre1, and Blaise Genest2(B)

1 Univ Rennes, Inria, SUMO Team, Rennes, France
2 Univ Rennes, CNRS, IRISA, Rennes, France

bgenest@irisa.fr

Abstract. We study quantitative properties of the response time in
stochastic models. For instance, we are interested in quantifying bounds
such that a high percentage of the runs answers a query within these
bounds. To study such problems, computing probabilities on a state-
space blown-up by a factor depending on the bound could be used, but
this solution is not satisfactory when the bound is large.

In this paper, we propose a new symbolic method to quantify bounds
on the response time, using the moments of the distribution of sim-
ple stochastic systems. We prove that the distribution (and hence the
bounds) is uniquely defined given its moments. We provide optimal
bounds for the response time over all distributions having a pair of
these moments. We explain how to symbolically compute in polynomial
time any moment of the distribution of response times using adequately-
defined semirings. This allows us to compute optimal bounds in para-
metric models and to reduce complexity for computing optimal bounds
in hierarchical models.

1 Introduction

Response time has been considered lately as an important property of systems
[8,15,21]. In this context, one does not simply want a query to be answered even-
tually, but to be answered in a reasonable amount of time. In the model-checking
community, problems on response time have been studied mainly qualitatively,
in the context of (pure, that is non stochastic) two-player games [8,21]. There,
one looks for a strategy ensuring that the lim-sup of response time is finite. It
ensures that under this strategy, there will be a bound on the response time to
any query. This has been extended in [15] to a quantitative setting, where one
wants to optimize the mean response time in a pure two-player game.

In this paper, we consider stochastic systems. In such systems, the response
time is a random variable, unlikely to be bounded as even a single probabilistic
loop on a reachable state will make the response time longer than T for a set
of runs of small but positive probability, no matter T . Instead, we propose to
quantify such response times. One way to do that is to obtain the distribution
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 403–419, 2018.
https://doi.org/10.1007/978-3-319-89366-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_22&domain=pdf
http://orcid.org/0000-0002-5758-1876

404 H. Bazille et al.

of response times. Another way is to compute, for a probability 0 < p < 1, the
bound T that is satisfied (by a set of runs) with probability at least 1 − p. In
this paper, we tackle both problems. For that, we use the concept of moments
of the distribution of response times, as described next.

The moment of order r of a probability distribution δ over R or R+ is defined
as the integral of xrδ(x) over the support of δ, when defined (that is if xrδ(x) is
measurable and the integral is defined). For instance, the moment of order 1 is
the expected value of δ, while the moment of order 2 allows one to compute the
standard deviation of δ. Inspired by the computation of entropy for automata [10]
(see also [1] for the computation of entropy for (non-Zeno) timed-automata), we
design new semirings in which each moment corresponds to the sum of weights of
runs reaching a state. This construction can be applied to probabilistic automata
(that is, labeled discrete time Markov chains), as well as labeled continuous time
Markov chains, where time is continuous and is drawn according to some rate.
Adapting the Floyd-Warshall algorithm provides a symbolic way to perform the
computation of the n first moments in time cubic in the number of states of the
Markov Chain, and quadratic in n. For any n, we can thus compute the value
of the first n moments. In some sense, we extend the approach of [12,16] from
computing probabilities to computing any moments. This allows us to evaluate
the distribution of response times in two ways:

Firstly, thanks to the symbolic expression of moments, we prove that there
is a unique distribution having the moments of a distribution of response times
of a probabilistic automaton. We can then build a sequence of distributions
matching the first n moments, for instance the maximal entropy one [11]. Here,
maximal entropy means assuming the least information besides these moments.
This sequence of distributions is then ensured to converge in law towards the
distribution of response times.

Secondly, we study optimal symbolic bounds on the time to answer a high
percentage of queries, obtained from moments. The Tchebychev inequality pro-
vides optimal symbolic bounds when considering the space of distributions hav-
ing one given moment, of any order i. We obtain bounds optimal in the space
of distributions having two given moments, of any orders i, j. We show how this
improves Tchebychev bounds on some example. Having symbolic methods allows
for instance to deal with parametric systems where the parameters represent
uncertain probabilities. In this case, we can compute optimal bounds satisfying
all valuations of parameters. For hierarchical systems [3], which are compact
representations of large systems, our symbolic method allows to design a much
more efficient algorithm (e.g. it does not consider twice the same component) to
compute the moments, and thus the bounds. Missing proofs can be found in [5].

Related Work: Response times in stochastic systems have been studied for a
long time by the perf.eval. community under the name “first passage times”,
e.g. in [22]. Techniques used in this community to compute moments of Markov
chains are mostly based on numerical methods, e.g. [13]. While [13] has the same
complexity as our symbolic technique, it is very efficient on explicit models. How-
ever, these numerical methods are less adaptable than our symbolic algorithm,
in particular concerning parametric or hierarchical systems.

Symbolically Quantifying Response Time in Stochastic Models 405

Concerning the determinacy of the distribution given moments, it is known
[20] that phase-type distributions of order n are determined by their first 2n− 1
moments. First passage distribution time in Markov chains with n states are
phase type distribution of order n. However, [20] does not help characterizing
bounds as it does not ensure that a non-phase type distribution cannot have the
exact same moments as a phase type distribution, unlike our result.

Bounding the response time has also been studied in the perf.eval. commu-
nity. Again, methods used there are mostly numerical [6,19]. In [19] (pp. 68–69),
a symbolic bound is also provided in the particular case of moments of order 1,
2 and 3. In [2], it is shown how to use the two first moments of response time
across various components to compute general bounds, using techniques close
to ours, but restricted to moments of order 1 and 2. In our paper, we provide
optimal bounds for any order (i, j) ∈ N

2. Taking into account moments of order
i, j > 3 is important when the proportion of runs to answer is close to 1.

Last, computing moments find other applications. For instance, in [4,7,14],
complex functions describing the evolution of molecular species are approximated
using the first k moments, for some k.

2 Probabilistic Automata

We first introduce a simple class of models, namely probabilistic automata (also
called labeled discrete time Markov chains), on which we can demonstrate our
techniques. Later, we will extend our results to handle continuous time, con-
sidering Continuous-Time Markov Chains (CTMC), as well as parametric and
hierarchical systems.

Definition 1. A probabilistic automaton A over a finite alphabet Σ is a tuple
(S, Pr, δ0) where:

– S is a finite set of states,
– Pr : S × Σ × S → [0, 1] is a stochastic transition function such that for all

s ∈ S,
∑

a∈Σ,t∈S

Pr(s, a, t) = 1: the weights of paths leaving s sum to 1,

– δ0 : S → [0, 1] is the initial distribution over states such that
∑

s∈S

δ0(s) = 1.

Example 1. For instance, the model depicted on Fig. 1 is a probabilistic automa-
ton with 3 states {1, 2, 3}. There is a transition between 1 and 2 labeled query
with probability 1. From state 2, with probability .9 we stay in state 2 with a
transition labeled wait, and with probability .1 we go to state 3 with a transition
labeled response. We loop in state 3 with probability 1.

1 2 3query
0.1

response

0.9
wait

1
compute

Fig. 1. A simple example of a query-response model

406 H. Bazille et al.

A finite sequence π = s0, a1, s1, . . . , an, sn ∈ (SΣ)nS is called a finite path
starting from s0 and ending in sn, and a transition t ∈ π if t = siai+1si+1 for
some i. We denote |π| = n the length of the path π. For a path π1 ending in
sn and a path π2 starting from sn, we can define the concatenated path π1 · π2

where the last node of π1 and the first node of π2 are merged. A path π1 is a
prefix of π if there exists a path π2 such that π1 · π2 = π.

For a path π starting in a state s0, we define P(π) =
∏

t∈π
Pr(t) the probability

that a path with prefix π is executed from s0. A path π is realizable if P(π) > 0.
Let s be a state, and Π be a set of finite paths starting from s such that

no path in Π is a prefix of another path in Π. Then the probability that a
path starting from s has a prefix in Π is P(Π) =

∑

ρ∈Π

P(ρ). We say that Π is

disjoint if no path ρ of Π is a prefix of another path ρ′ �= ρ of Π or similarly,
Cyl(ρ) ∩ Cyl(ρ′) = ∅ with Cyl(ρ) = {π, ρ prefix of π}.

Some labels of an automaton will be of particular interest concerning response
time. Let ΣQ ⊆ Σ be a subset of labels standing for queries, and ΣR ⊆ Σ be a
subset of labels standing for responses. For simplicity, we will assume that there
is a unique query type ΣQ = {q} and a unique response type ΣR = {r}, with
q �= r. We will also assume that there is no path with two (similar) queries q.
To handle cases with several query/response types, it suffices for each type to
consider only queries and answers of that type and disregard other types.

Problem Statement: We are interested in quantifying the time between queries
and responses, called the response time, which is a random variable. A way
to quantify it is to produce the distribution of response times, either for each
transition labeled by a query, or averaged on these transitions, weighted by the
probability to see each of these transitions. Another way is to answer model-
checking questions such as: what is the smallest delay T such that the mass of
paths unanswered after T units of time is smaller than some probability p?

To compute both the distribution and the delay T , we will use the so called
moments of the distribution of response times. The moment of order 1 is the mean
value, and the moment of order 2 allows to compute the standard deviation.

3 Symbolically Computing Moments Using Semirings

In this section, we define moments and explain how to compute them symbolically
using appropriately-defined semirings.

Let X be the random variable of the response time. If all queries are answered,
then X takes values in Nmax, else X takes values in Nmax ∪ {∞}. Let p(x) be
the probability that the response is obtained x units of time after the query, that
is, the probability that X = x. Variable p is a distribution over response time,
with

∑
x p(x) = 1.

Definition 2. For p : N → [0, 1] and n ∈ N, we define the n-th moment of p by∑
x∈N

p(x) · xn = E(Xn), that is the expected value of Xn.

Symbolically Quantifying Response Time in Stochastic Models 407

3.1 Semirings Associated with Moments

We will compute moments of the distribution of response times by considering
each query individually. We can then take e.g. the average over all queries (as
we assumed that there are no two queries on the same path). Thus, we first fix
a state q, target of a transition labeled by a query. State q symbolizes that a
query has just been asked. We then let R be the set of target states of transitions
labeled by a response. A state is in R if a response to this query has just been
given. For instance, on Fig. 1, we have q = 2 and R = {3}.

We introduce a set of semirings that will allow us to compute symbolically the
moment of order n of the distribution of response times to the query associated
with state q, for all n ∈ N. We will compute the moment inductively on a disjoint
subset Π of paths of A from q to R. For an integer n, we denote μn(Π) =∑

ρ∈Π

P(ρ)|ρ|n. Let PathR
q be the set of paths in the automaton A between q and

the first occurrence of R. Notice that PathR
q is disjoint. Thus, we have that

μn(PathR
q) is the moment of order n of the distribution of response times to

the query associated with state q. To avoid some heavy notations, when R is
reduced to one state t, let μn(Patht

s) be the set of paths between s to the first
occurrence of t and we denote μn(s, t) = μn(Patht

s).
We now give some properties of μ. Let Π1 be a set of paths ending in some

state s and let Π2 be a set of paths starting from s. We denote by Π1 · Π2 the
set of paths ρ1ρ2 with ρ1 ∈ Π1 and ρ2 ∈ Π2.

Proposition 1. For all n, we have μn(Π1 · Π2) =
n∑

i=0

(
n
i

)
μi(Π1) · μn−i(Π2)

This property hints to a set of semirings (R,⊕n,⊗n, 0n, 1n) with good prop-
erties to compute moments. For (n + 1)-tuples (x0, . . . , xn) and (y0, . . . , yn), we
define operations ⊕n and ⊗n:

– (x0, . . . , xn) ⊕n (y0, . . . , yn) = (x0 + y0, . . . , xn + yn)

– (x0, . . . , xn) ⊗n (y0, . . . , yn) = (z0, . . . , zn) with zi =
i∑

j=0

(
i
j

)
xjyi−j

The neutral element for ⊕n is 0n = (0, . . . , 0). 0n is an annihilator for ⊗n.
The neutral element for ⊗n is 1n = (1, 0, . . . , 0). In the following, we will denote
the different laws and elements by ⊕, ⊗, 0 and 1.

Proposition 2. For n ≥ 0, (Rn+1,⊕,⊗, 0, 1) defines a commutative semiring.

Notice that if for all i ≤ n, we have xi = μi(Π1) and yi = μi(Π2), denoting
(z0, . . . , zn) = (x0, . . . , xn) ⊗n (y0, . . . , yn), we get μi(Π1 · Π2) = zi. Further, if
both Π1,Π2 are disjoint, and if no path of Π1 (resp. Π2) is a prefix of a path of
Π2 (resp. Π1), then μi(Π1 ∪ Π2) = xi + yi.

408 H. Bazille et al.

3.2 Computations in a Semiring

Following the Floyd-Warshall algorithm to sum weights of paths reaching a state,
we will decompose inductively PathR

q using operations ∪ and ·. We will then use
the semiring (Rn+1,⊕,⊗, 0, 1) to perform these computations inductively. The
induction will be over the number of states in S. Let G be a subset of S disjoint
with R: G ∩ R = ∅. For all state s ∈ S \ R, we define Patht

s(G) = {s0 · · · sn |
s0 = s, sn = t,∀1 ≤ i ≤ n − 1, si ∈ G} the set of paths from state s to state t
using only states G, except for the initial state, which is s and for the last state
which is t, even if s, t ∈ R or s, t /∈ G.

For a set of paths Π, we define wn(Π) = (P(Π), μ1(Π), . . . , μn(Π)). Let
g ∈ G be a state of G. A path ρ in Patht

s(G) has two possibilities: either it does
not use g, or it uses g one or several times. We deduce the inductive formula:

Proposition 3. wn(Patht
s(G)) = wn(Patht

s(G \ {g})) ⊕
wn(Pathg

s(G \ {g})) ⊗ (∞⊕

k=1

wn(Pathg
g(G \ {g}))⊗k

) ⊗ wn(Patht
g(G \ {g}))

Proof (Sketch of). If ρ does not use g, we have ρ is in Patht
s(G\{g}). Otherwise,

ρ can be expressed as ρ0 . . . ρk with:

– ρ0 is in Pathg
s(G \ {g}),

– ρk is in Patht
g(G \ {g}),

– and for all 0 < j < k, ρj ∈ Pathg
g(G \ {g}).

We can then write an inductive formula satisfied by Patht
s(G):

Patht
s(∅) = {(s, a, t) | Pr(s, a, t) �= 0}

Patht
s(G) = Patht

s(G \ {g}) ∪
∞⋃

k=1

{ρ0...ρk | ρ0 ∈ Pathg
s(G \ {g}),

ρk ∈ Patht
g(G \ {g}),∀j ∈ [1, k − 1], ρj ∈ Pathg

g(G \ {g})} ��

In order to use this formula, we need to compute
∞⊕

k=1

wn(Pathg
g(G \ {g}))⊗k =

wn(Pathg
g(G)), which represents what happens along a cycle from g to g. Let

(g,Π) a pair with g a state and Π a set of paths (cycles) using g exactly twice:
the first state and the last states are g. The pair (g,Pathg

g(G \ {g})) satisfies

this property. We define w∗
n(Π) =

∞⊕

k=1

wn(Π)⊗k. The restriction on (r,Π) ensures

that
∞⋃

k=1

Π⊗k is disjoint. We show that w∗
n(Π) is defined in most cases, namely

when P(Π) < 1.

Proposition 4. Let Π be a set of paths using state g exactly twice, as first and
last state. If P(Π) < 1, then

Symbolically Quantifying Response Time in Stochastic Models 409

w∗
n(Π)[0] = w∗

0(Π) = P(
∞⋃

k=1

Π⊗k) =
1

1 − P(Π)
, and for i > 0

w∗
n(Π)[i] = μi(

∞⋃

k=1

Π⊗k) =
1

1 − P(Π)

i−1∑

j=0

(
i

j

)

wn(Π)[i − j] × w∗
n(Π)[j]

Notice that P (Π) = 1 describes cases where s cannot reach t (as t /∈ G,
if P(wn(Pathg

g(G)) = 1, it would mean that every path reaching g stays in
G forever, and in particular never meets t). Thus, we first compute the set of
states S1 from which there exists a path to R. Notice that for each set Π of paths
ending in g ∈ S1 \ R, we have P(Π) < 1, because there is a positive probability
to reach R from g, which is not captured by paths in Π.

3.3 A Symbolic Algorithm

From the inductive formulae to compute set of paths from subsets of paths and to
compute w∗

n(Π)[i] from w∗
n(Π)[j] for j < i, we deduce Algorithm 1, following the

ideas of Floyd-Warshall, incrementally adding non response states from S1 \ R,
which can be used as intermediate states. Notice that states in S \ S1 cannot
reach R anyway. This algorithm is symbolic (or algebraic) in that every constant
(e.g. Pr(s, a, t)) can be replaced by a variable (see e.g. Sect. 4.2).

Theorem 1. Let A = (S, δ, δ0) be a probabilistic automaton. One can compute
μi(s, t) for all i ≤ n and s, t ∈ S in time O(n2 × |S|3).

Proof. In Algorithm 1, after running the outer for-loop on g1, . . . , gj , we have
wn(s, t)[n] = μn(Patht

s({g1, . . . , gj})). At the end of Algorithm 1, we obtain
wn(s, t)[n] = μn(Patht

s) = μn(s, t).

Algorithm 1: Algorithm computing the moment of order n

for s ∈ S do
for t ∈ S do

%Initialization
w :=

∑

a∈Σ

Pr(s, a, t)

wn(s, t) := (w, w, . . . , w)
end

end
for g ∈ S1 \ R do

for s ∈ S do
for t ∈ S do

wn(s, t) := wn(s, t) ⊕ wn(s, g) ⊗ w∗
n(g, g) ⊗ wn(g, t)

end

end

end

410 H. Bazille et al.

To obtain μi(s, t) for all i ≤ n, it suffices to run Algorithm 1 inductively on
moment of order 1, . . . , n. Computing w∗

n[i](s, t) in the inner for-loop takes time
O(i) as wn[j](s, t) = wj [j](s, t) has already been computed inductively for all
j < i. This yields the complexity of O(

∑n
j=1 i × |S|3) = O(n2 × |S|3). ��

Now, for each query q, we have μi(PathR
q) =

∑
r∈R μi(q, r), as Pathr1

q and
Pathr2

q have no path prefix of each other for r1 �= r2, r1, r2 ∈ R. Now, the
moment of order n of the distribution of response times of q is formally either ∞
if μ0(PathR

q) < 1 (there is positive probability to never answer q, that is have
infinite response time), and μn(PathR

q) otherwise.

Example 2. For the example of Fig. 1, unfolding the algorithm for n = 2 (that
is for probability, and moments of order 1 and 2) gives after initialization:

w(1, 2) = (1, 1, 1), w(2, 2) = (0.9, 0.9, 0.9), w(2, 3) = (0.1, 0.1, 0.1), and
w(1, 3) = (0, 0, 0), as there is no direct transition from state 1 to state 3.

There are no paths with intermediary states 1 or 3, so g = 1 or g = 3 does
not have any impact. For paths with intermediary states g = 2, the algorithm
gives:

– w(2, 2) ← w(2, 2) ⊕ w(2, 2) ⊗ w(2, 2)∗ ⊗ w(2, 2) = w(2, 2) ⊗ w(2, 2)∗

– w(2, 3) ← w(2, 3) ⊕ w(2, 2) ⊗ w(2, 2)∗ ⊗ w(2, 3) = w(2, 3) ⊗ w(2, 2)∗

– w(1, 3) ← w(1, 3) ⊕ w(1, 2) ⊗ w(2, 2)∗ ⊗ w(2, 3)

We have w(2, 2)∗ = (1
1−0.9 , 0.9

(1−0.9)2 , 0.9
(1−0.9)2 + 2×0.92

(1−0.9)3) = (10, 90, 1710)

At the end of the algorithm, we obtain μi(2, 3) = μi(Path{2}
2) = w(2, 3) =

(0.1, 0.1, 0.1)⊗(10, 90, 1710) = (1, 10, 190). Hence, in this probabilistic automata,
the probability of responding to the query is 1, in a mean time of 10, with a
standard deviation of

√
190 − 102 = 9.5.

3.4 Extension to Continuous Time

We now extend the symbolic computation of moments to continuous time
Markov Chains (CTMCs). In order to be as close as possible to the setting of
probabilistic automata, we use the sojourn time representation of CTMCs. This
representation is fully equivalent with the more usual representation of CTMCs
with transition rates, see Chap. 7.3 of [9].

Definition 3. A CTMC is a tuple (S, Pr, δ0, (λs)s∈S) with:

– (S, Pr, δ0) is a probabilistic automata, and
– for all s, λs is the sojourn parameter associated with state s. That is, the

PDF function of the sojourn time is Xs(t) = λse
−λs·t and the probability to

stay in s at least t units of time is e−λs·t.

In this continuous context, we need integrals instead of sums to define the
i-th moment of a variable X: μi(X) =

∫ ∞
0

X(t)tidt = 1. For every state s ∈ S,
let Xs(t) = λse

−λs·t. For all i, for all s, μi(Xs) is well defined and μi(Xs) = i!
λi
s

Symbolically Quantifying Response Time in Stochastic Models 411

We can easily extend the computation of moments for CTMCs. The induc-
tive formulas for probabilities and moments of the reaching time distribution
remain unchanged. We only need to change the definition of moments for
every transition, which is input at the initialization phase of the Algorithm 1:
for all s, t ∈ S, we set wn(s, t) to be (w0(s, t), w1(s, t), . . . , wn(s, t)), where
w0(s, t) =

∑

a∈Σ

Pr(s, a, t) and wi(s, t) =
∑

a∈Σ

Pr(s, a, t) i!
λi
s

for all i ∈ [1, n].

Theorem 2. Let A = (S, Pr, δ0, (λs)s∈S) be a CTMC. One can compute μi(s, t)
for all i ≤ n and s, t ∈ S in time O(n2 × |S|3).

4 Uniqueness of Distribution, Parameters and Hierarchy

In this section, we present cases where having a symbolic algorithm allows effi-
cient techniques, compared to numerical methods. We start with hierarchical
systems which are a way to compactly describe systems. Then, we present the
possibility to work on systems with parameters. Finally, thanks to the symbolic
expression of moments, we prove that there is a unique distribution having the
moments of a distribution of reaching times of a (continuous-time) Markov chain.

4.1 Hierarchical Probabilistic Automata

We use notations mainly from [3] to describe hierarchical structures:

Definition 4. A hierarchical probabilistic automaton (HPA) A over a finite
alphabet Σ is a tuple of n modules (Si, P ri, λi, s

0
i , s

f
i)1≤i≤n where for all i,

– Si is the finite set of states of module i,
– s0i ∈ Si is the initial state of module i, and sf

i the finial state of module i,
– Pri : Si \ {sf

i } × Σ × Si → [0, 1] is a stochastic transition function such that
for all s ∈ Si \ {sf} (resp. s ∈ S1 for i = 1),

∑

a∈Σ,t∈Si

Pri(s, a, t) = 1,

– λi : Si → {i + 1, . . . , n} is a partial mapping associating some states of Si

from module i to deeper modules.

Intuitively, the system starts in module 1, in state s01. Each time a state
s ∈ Si associated with a module j > i, that is λi(s) = j, is entered by a

Fig. 2. An HPA with an exponential number of states.

412 H. Bazille et al.

si0 sifSi+1
0.1

0.9

Fig. 3. An HPA without redundancy

transition t → s, the system goes to state s0j and stays in Sj till sf
j is seen, in

which case it comes back to state s and takes a transition s → t′ (according
to the probability distribution from s). This process can be repeated from any
state in a module i to any module j as long as j > i.

To define the semantics of (Si, P ri, λi, s
0
i , s

f
i)1≤i≤n formally, we inductively

replace states associated with the deepest module by their definition. Indeed,
nodes from the deepest module are not associated with any module by defini-
tion. Once every module has been replaced, a (flat) probabilistic automaton is
obtained with the intended semantics.

Hence, HPA have the same expressive power as probabilistic automata. Yet,
they may be much more compact: we denote by |A| the size of the description of
the hierarchical automaton and by ‖A‖ the size of the unfolded automaton. The
interest of such a description is that it may be exponentially smaller than the size
of the unfolded automaton, as depicted in Fig. 2: here, every module contains
two copies of the next module, with the exception of the last one. While the
number of states in the description is linear (4n), the number of states in the
unfolded automaton is equal to 3 · 2n − 2.

The symbolic Algorithm 1 is naturally modular, in that computations on
a module used several times can be performed only once by considering states
of the deepest module first. Indeed, one module can be summarized by three
information items: the probability (and moments) to answer the query in this
module, the probability (and moments) to leave this module without answer-
ing the query in the module and the probability to stay forever in this module
without answering the query. Then the information can be used for shallower
modules: every time a state s in a module i is associated with the deepest mod-
ule, it can be replaced by this small set of states containing all the relevant
information about the deepest module (and computed only once). Then, this
process can be repeated to eliminate modules recursively. This leads to a com-
plexity in the small size |A| of the compact HPA representation rather than in
the large size ||A|| of the unfolded PA:

Theorem 3. Let A be an HPA with k modules of size at most m. The n
first moments of the distribution associated with A can be computed in time
O(n2km3).

Not only does Theorem 3 reduces the complexity for hierarchical represen-
tations with redundancy (O(n2k) for the example in Fig. 2 instead of O(n223k)
when running the algorithm in [13] on the equivalent flat PA), it also gives a
better complexity on structure without redundancy. Consider the example in

Symbolically Quantifying Response Time in Stochastic Models 413

Fig. 3, without redundancy, with an unfolded PA with 3k + 1 states. Theorem 3
takes time O(n2k33), while the algorithm in [13] on the equivalent flat PA would
take time O(n2(3k)3).

4.2 Parametric Systems

Another case where having a symbolic algorithm is helpful is when the system
has parameters standing for probability values (see for instance Fig. 4, where p
is such a parameter). We illustrate two cases here.

The first case is when parameters help with redundancy. Often, stochastic
systems reuse the same constructions, but with different probability values. This
would be naturally encoded as a module M of a hierarchical system using a set
of parameters P . This module M would be used several times, with different
values of parameters specified in each module using it.

In this case, one can run Algorithm 1 on M , using the parameter values
literally in the equations. This yields rational functions fn : [0, 1]P → (0, 1] of
the parameters expressing the moments of order n for module M , for all n. For
instance with the example of Fig. 4, the probability to reach state 4 from state 1
is equal to 2p+4

5p+4 , and the mean time is equal to 112+44p−12p2

(5p+4)(2p+4) . Each time module
M is used, fn can be evaluated using the value of the parameters P for this
particular usage.

Another possible use of parameters is to model uncertainty of values. In the
example of Fig. 4, we may not know exactly the value of parameter p, but only
know that it is above 0.8. In this case, one may be interested of synthesizing
the largest (resp. smallest) moment of order n which is smaller (resp. larger)
than the moment of any system realizing the parametric system, that is where
p is replaced by any value above 0.8. This will be particularly interesting in the
next section discussing bounds. To do so, one can use the rational function fn

to compute its minimal and maximal values (e.g. deriving it and looking for 0
with Euler’s method). In this way, we also obtain the best/worst value for p.

32

4

1

5

1

1

1
4

1
2

1
2

p 1− p

1
4

1
4

Fig. 4. Example of a parametric system with set of parameters {p}

414 H. Bazille et al.

4.3 Uniqueness of the Distribution

Last, we use the symbolic expression of moments obtained in Sect. 3 in order to
prove the uniqueness of the distribution having moments of first passage times
of (continuous-time) Markov chains. Thus this distribution is the distribution of
response times of the system considered.

Notice that in general, there may be several distributions that correspond to a
given sequence of moments (μn)n∈N. This would compromise approximating the
distribution using moments, as there would not be a unique such distribution.

Example 3. Let us consider a distribution δ on R
+. If δ has the sequence of

moments {μn = n! | n ∈ N}, then δ is the exponential distribution with parameter
1. Similarly, the sequence of moments {μn = (2n)! | n ∈ N} for a distribution on
R

+ is characteristic of the square of the exponential distribution of parameter 1.
Now, consider the cube of the exponential distribution of parameter 1. Its

sequence of moments is {μn = (3n!) | n ∈ N}. However, there exist an infinite
number of distributions with this sequence of moments [18].

We now prove answer positively to the Stieljes moment problem for the
case of the distribution of response time in a (continuous-time) Markov chain,
that is its sequence of moments respects the Carleman’s condition from year
1922, that guarantees the uniqueness of the distribution. The condition is that∑

n∈N
μn(δ)− 1

2n = ∞.

Theorem 4. Let A be a probabilistic automaton or a CTMC. For all n ∈ N, let
μn be the moment of order n of the times of first passage in a set of state R of
A. Then there exists a unique distribution δ such that μn(δ) = μn for all n ∈ N.

Sketch of Proof: We first consider CTMC where all states have the same
sojourn time λ. Then, a path that uses i transitions to answer a query will follow
the gamma distribution with parameters (i, λ). We have a symbolic expression
for moments of this distribution thanks to Sect. 3. This can be used to minimize∑∞

n=0 μn(δ)− 1
2n by a diverging sum.

For general CTMCs, we use the fact that E(Γ(i, λ1)n) ≤ E((E(λ1) + · · · +
E(λi))n) iff λ1 = min(λj)i

j=1. It allows us to minimize the Carleman’s sum of
the CTMC considered by the Carleman’s sum of the CTMC where all sojourn
times are replaced by the smallest sojourn time λ, hence the divergence.

The case of probabilistic automaton is simpler. ��
We show how this theorem allows to approximate distribution δ in the next

subsection.

4.4 A Sequence of Distributions Converging Towards δ

Since we have unicity of the distribution corresponding to the sequence of
moments of the distribution of response time of a probabilistic automaton, we
obtain the following convergence in law:

Symbolically Quantifying Response Time in Stochastic Models 415

Proposition 5 ([17]). Let δ be the distribution of response times of a probabilis-
tic automaton. Let (δi)i∈N be a sequence of distributions on R

+ such that for all
n, lim

i→∞
μn(δi) = μn(δ). Then, if Ci is the cumulative distribution function of δi

and C the cumulative distribution function of δ, then for all x lim
i→∞

Ci(x) = C(x).

Thus, C can be approximated by taking a sequence (δn)n∈N of distribution
such that for all i ≤ n, μi(δn) = μi(δ). A reasonable choice for δn is to consider
the distribution of maximal entropy corresponding to the moments μ1, . . . , μn,
as presented in [11]. The distribution of maximal entropy can be understood
as the distribution that assume the least information. It can be approximated
as close as desired, for instance 1

n close to the distribution of maximal entropy
having moments (μ1(δ), . . . , μn(δ)). Applying Proposition 5, we thus obtain that
the cumulative distribution function associated with δi converges towards the
cumulative distribution function associated with δ.

5 Bounding the Response Time

We now explain how to use moments in order to obtain optimal bounds on
the response time. First, notice that as soon as there exists a loop between a
query and a response (as in Fig. 1), then there will be runs with arbitrarily
long response times, although there might be probability 1 to eventually answer
every query (which is the case for Fig. 1). We thus turn to a more quantitative
evaluation of the response time.

Let 0 < p < 1. We are interested in a bound T on the delay between a query
and a response such that more than 1−p of the queries are answered before this
bound. For a distribution δ : R+ → R

+ of response times, we denote by B(δ, p)
the lowest T such that the probability to have a response time above T is lower
than p. Equivalently, we look for the highest T such that the probability of a
response time above T is at least p.

We place ourselves in the general setting of continuous distributions, where
Dirac delta functions are allowed for simplicity. Discrete distributions form a spe-
cial case, with delta functions at integer values. One could get rid of Dirac delta
functions by ε-approximating them without changing the moments, obtaining
the same bounds as we prove here.

5.1 Tchebychev Bounds Associated with One Moment

Let i ∈ N and μi > 0. We let Δi,μi
be the set of distributions of response time

which have μi as moment of order i. We are interested in bounding B(δ, p) for
all δ ∈ Δi,μi

, that is for all distributions with μi as moment of order i. Such a
bound is provided by Tchebychev inequality, and it is optimal:

Proposition 6. Let i ∈ N and μi. Let αi(μi, p) = i

√
μi

p . Then for all δ ∈ Δi,μi
,

we have B(δ, p) ≤ αi(μi, p). Further, ∃δ ∈ Δi,μi
such that B(δ, p) = αi(μi, p).

416 H. Bazille et al.

Proof. It suffices to remark that μi > pbi for b the bound we want to reach.
Further, this bound is trivially optimal: it suffices to consider a distribution
with a Dirac of mass (1 − p) at 0 and a Dirac of mass p at αi(μi, p). ��

Given a probabilistic automaton, let δ be its associated distribution of
response time. We can compute its associated moments μi using Algorithm 1,
described in the previous section. We thus know that δ ∈ Δi,μi

. Given different
values of i, one can compute the different moments and apply for each of the
Tchebychev bound and use the minimal bound obtained.

Understanding the relationship between the αi is thus important. For i < j,
one can use Jensen’s inequality for the convex function f : x → x

j
i over R+, and

obtain: (μi)j ≤ (μj)i. For instance, μ2
1 < μ2.

For p = 1, this gives αi(p = 1) < αj(p = 1). On the other hand, for p
sufficiently close to 0, we have αj(p) < αi(p). That is, when p is very small,
moments of high orders will give better bounds than moments of lower order.
On the other hand, if p is not that small, moments of small order will suffice.

5.2 Optimal Bounds for a Pair of Moments

We now explain how to extend Tchebychev bounds to pairs of moments: We
consider the set of distributions where two moments are fixed. Let i < j be two
orders of moments and μi, μj > 0. We denote by Δ

j,μj

i,μi
the set of distributions

with μi, μj as moments of order i, j respectively. As Δ
j,μj

i,μi
is strictly included into

Δi,μi
and in Δj,μj

, min(αi(p), αj(p)) is a bound for any δ ∈ Δ
j,μj

i,μi
. However, it

may be the case that min(αi(p), αj(p)) is not optimal. We now provide optimal
bounds αj

i (p) for any pair i < j of order of moments and probability p:

Theorem 5. Let i < j be natural integers, p ∈ (0, 1), and let μi, μj > 0. Let
αi = (μi

p)
1
i and αj = (μj

p)
1
j . We define αj

i (p) to be:

– αi if αi ≤ αj,
– (μj−M

p)
1
j otherwise, where 0 ≤ M ≤ μj is the smallest positive real root of:

μi = (1 − p)
j−i
j M

i
j + p

j−i
j (μj − M)

i
j .

For all δ ∈ Δ
j,μj

i,μi
, we have B(δ, p) ≤ αj

i , and ∃δ ∈ Δ
j,μj

i,μi
with B(δ, p) = αj

i

To obtain a value for M , one can use for instance Newton’s method. For
i = 1, j = 2, we can compute explicitly M and obtain:

α2
1 = μ1 +

√
(1 − p)

p
(μ2 − μ2

1).

Example 4. Consider the distribution associated with the system of Fig. 1.
We obtain the following bounds αi(p), αi−1

i (p) considering different values of
p and i:

Symbolically Quantifying Response Time in Stochastic Models 417

i μi αi(0.1) αi−1
i (0.1) αi(0.01) αi−1

i (0.01)

1 10 100 100 1000 1000

2 190 43.6 38.5 137.8 104.9

3 5410 37.8 36.8 81.5 73.9

4 205390 37.9 37.8 67.4 63.8

5 9747010 39.6 37.9 64.2 61.43

6 555066190 42.1 39.6 62.8 61.47

For p = 0.1, it is not useful to consider moments of order higher than 3.
For p = 0.01, moment of order 5 provides better bounds than moment of lower
orders.

For hierarchical systems, one can compute moments in an efficient way using
Theorem 3, and then use Theorem 5 to obtain the associated optimal bounds.
In order to handle parametric systems, we use the following result which allows
to underapproximate the value of M , and thus overapproximate the optimal
bound, by iterating the following operator f from x = 0:

f : x �→ (μi − [μj − x]
i
j p

j−i
j)

j
i

(1 − p)
j−i
i

Lemma 1. (fn(0))n∈N is strictly increasing and converges towards M .

We show how to ε-approximate the optimal bound B of a parametric proba-
bilistic automaton A with set of parameters P , that is such that for all val ∈ V P ,
the probabilistic automaton A with valuation val for parameter values has a
bound b(val) ≤ B and there exists a val ∈ V P such that b(val) = B. First,
we obtain the moments as symbolic functions of the parameters using Sect. 4.2.
Then, we compute M1 = f(0) as a function of the parameters, using Lemma 1
and replacing μi, μj by their expression. One can then compute the minimum
m1 of function M1 over all the parameters. We then proceed with M2 = f(m1),
and so on till obtaining a value m. This allows to obtain a lower bound m over
values of M for all parameter values. Computing the largest μj over all parame-
ters allows to obtain an upper bound Bup: B ≤ Bup = (μj−m

p)
1
j . A lower bound

Blw is easily obtained by considering the value ≥ m of M for the parameters
maximizing μj . If the distance between Bup and Blw is larger than ε, one can
partition the space of parameter values in zones and proceed in the same way on
each zone, forgetting zones for which Bup is lower than the Blw of another zone,
till the distance between max(Blw) and max(Bup) over zones is smaller than ε.

6 Conclusion

In this paper, we have shown how to compute moments symbolically for proba-
bilistic automata and CTMCs, using adequately defined semirings. This method

418 H. Bazille et al.

has the same complexity as the efficient numerical methods already known [13].
The proof of this symbolic computation allows proving that there is a unique
distribution of response time corresponding to a probabilistic automaton or a
CTMC. This allows obtaining simple approximated distributions scheme con-
verging in law towards the distribution of response time. The symbolic com-
putation of moments also allows computing moments in compact (hierarchical)
models faster, as well as finding lowest/highest value of moments in parametric
systems.

We also provide optimal bounds on the delay after which very few queries stay
unanswered. It is optimal when considering distribution displaying a given pair
of moments, and we showed on a simple example how this improves Tchebychev
bounds. This can be used efficiently to obtain bounds for compact (hierarchical)
models or to compute an optimal bound which fulfills the response of almost all
queries even for systems where some parameter values are not known exactly.

References

1. Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. In: Infor-
mation and Computation, vol. 241, pp. 142–176. Elsevier (2015)

2. Angrish, R., Chakraborty, S.: Probabilistic timing analysis of asynchronous systems
with moments of delay. In: ASYNC 2002. IEEE (2002)

3. Alur, R.: Formal analysis of hierarchical state machines. In: Verification: Theory
and Practice, pp. 42–66 (2002)

4. Backenköhler, M., Bortolussi, L., Wolf, V.: Generalized method of moments for
stochastic reaction networks in equilibrium. In: Bartocci, E., Lio, P., Paoletti, N.
(eds.) CMSB 2016. LNCS, vol. 9859, pp. 15–29. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45177-0 2

5. Bazille, H., Fabre, E., Genest, B.; Symbolically quantifying response time in
stochastic models using moments and semirings. https://perso.crans.org/∼genest/
BFG18.pdf

6. Bradley, J., Dingle, N., Harder, U., Harrison, P., Knottenbelt, W.: Response time
densities and quantiles in large Markov and semi-Markov Models. In: Performance
Evaluation of Parallel, Distributed and Emergent Systems, vol. 1 (2006)

7. Bogomolov, S., Henzinger, T.A., Podelski, A., Ruess, J., Schilling, C.: Adaptive
moment closure for parameter inference of biochemical reaction networks. In: Roux,
O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 77–89. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23401-4 8

8. Chatterjee, K., Henzinger, T.A., Horn, F.: The complexity of request-response
games. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS,
vol. 6638, pp. 227–237. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21254-3 17

9. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
Boston (2007). https://doi.org/10.1007/978-0-387-68612-7

10. Cortes, C., Mohri, M., Rastogi, A., Riley, M.: On the computation of the relative
entropy of probabilistic automata. Int. J. Found. Comput. Sci. (IJFCS) 19(1),
219–242 (2006)

11. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (2006)

https://doi.org/10.1007/978-3-319-45177-0_2
https://doi.org/10.1007/978-3-319-45177-0_2
https://perso.crans.org/~genest/BFG18.pdf
https://perso.crans.org/~genest/BFG18.pdf
https://doi.org/10.1007/978-3-319-23401-4_8
https://doi.org/10.1007/978-3-642-21254-3_17
https://doi.org/10.1007/978-3-642-21254-3_17
https://doi.org/10.1007/978-0-387-68612-7

Symbolically Quantifying Response Time in Stochastic Models 419

12. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

13. Dayar, T., Akar, N.: Computing moments of first passage times to a subset of
states in Markov chains. SIAM J. Matrix Anal. Appl. 27(2), 396–412 (2005)

14. Gonzalez, A.M., Uhlendorf, J., Schaul, J., Cinquemani, E., Batt, G., Ferrari-
Trecate, G.: Identification of biological models from single-cell data: a comparison
between mixed-effects and moment-based inference. In: ECC 2013, pp. 3652–3657.
IEEE (2013)

15. Horn, F., Thomas, W., Wallmeier, N., Zimmerman, M.: Optimal strategy synthesis
for request-response games. RAIRO 49(3), 179–203 (2015)

16. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P.,
Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G.,
Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10696-0 31

17. Prohorov, Y., Rozanov, Y.: Probability Theory, Basic Concepts · Limit Theorems
Random Processes. Springer, Heidelberg (1969). Translated from Russian

18. Stoyanov, J.: Determinacy of distributions by their moments. In: ICMSM 2006
(2006)

19. Tari, Á: Moments based bounds in stochastic models, Ph.D. Thesis. Budapesti
Műszaki és Gazdaságtudományi Egyetem (2005)

20. Telek, M., Horvéth, G.: A minimal representation of Markov arrival processes and
a moments matching method. Perform. Eval. 64(9–12), 1153–1168 (2007)

21. Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis of finite-state con-
trollers for Request-Response specifications. In: CIAA 2003 (2003)

22. Yao, D.: First-passage-time moments of Markov processes. J. Appl. Probab. 22(4),
939–945 (1985)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-10696-0_31
http://creativecommons.org/licenses/by/4.0/

Comparator Automata in Quantitative
Verification

Suguman Bansal(B), Swarat Chaudhuri(B), and Moshe Y. Vardi(B)

Rice University, Houston, TX 77005, USA
{suguman,swarat}@rice.edu, vardi@cs.rice.edu

Abstract. The notion of comparison between system runs is fundamen-
tal in formal verification. This concept is implicitly present in the verifi-
cation of qualitative systems, and is more pronounced in the verification
of quantitative systems. In this work, we identify a novel mode of com-
parison in quantitative systems: the online comparison of the aggregate
values of two sequences of quantitative weights. This notion is embodied
by comparator automata (comparators, in short), a new class of automata
that read two infinite sequences of weights synchronously and relate their
aggregate values.

We show that comparators that are finite-state and accept by the
Büchi condition lead to generic algorithms for a number of well-studied
problems, including the quantitative inclusion and winning strategies in
quantitative graph games with incomplete information, as well as related
non-decision problems, such as obtaining a finite representation of all
counterexamples in the quantitative inclusion problem.

We study comparators for two aggregate functions: discounted-sum
and limit-average. We prove that the discounted-sum comparator is ω-
regular for all integral discount factors. Not every aggregate function,
however, has an ω-regular comparator. Specifically, we show that the
language of sequence-pairs for which limit-average aggregates exist is
neither ω-regular nor ω-context-free. Given this result, we introduce the
notion of prefix-average as a relaxation of limit-average aggregation, and
show that it admits ω-context-free comparators.

1 Introduction

Many classic questions in formal methods can be seen as involving comparisons
between different system runs or inputs. Consider the problem of verifying if a
system S satisfies a linear-time temporal property P . Traditionally, this problem
is phrased language-theoretically: S and P are interpreted as sets of (infinite)
words, and S is determined to satisfy P if S ⊆ P . The problem, however, can
also be framed in terms of a comparison between words in S and P . Suppose
a word w is assigned a weight of 1 if it belongs to the language of the system

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-89366-2 23) contains supplementary material, which is
available to authorized users.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 420–437, 2018.
https://doi.org/10.1007/978-3-319-89366-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_23&domain=pdf
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.1007/978-3-319-89366-2_23

Comparator Automata in Quantitative Verification 421

or property, and 0 otherwise. Then determining if S ⊆ P amounts to checking
whether the weight of every word in S is less than or equal to its weight in P [5].

The need for such a formulation is clearer in quantitative systems, in which
every run of a word is associated with a sequence of (rational-valued) weights.
The weight of a run is given by aggregate function f : Qω → R, which returns the
real-valued aggregate value of the run’s weight sequence. The weight of a word
is given by the supremum or infimum of the weight of all its runs. Common
examples of aggregate functions include discounted-sum and limit-average.

In a well-studied class of problems involving quantitative systems, the objec-
tive is to check if the aggregate value of words of a system exceed a constant
threshold value [14–16]. This is a natural generalization of emptiness problems
in qualitative systems. Known solutions to the problem involve arithmetic rea-
soning via linear programming and graph algorithms such as negative-weight
cycle detection, computation of maximum weight of cycles etc. [4,18].

A more general notion of comparison relates aggregate values of two weight
sequences. Such a notion arises in the quantitative inclusion problem for weighted
automata [1], where the goal is to determine whether the weight of words in one
weighted automaton is less than that in another. Here it is necessary to compare
the aggregate value along runs between the two automata. Approaches based
on arithmetic reasoning do not, however, generalize to solving such problems.
In fact, the known solution to discounted-sum inclusion with integer discount-
factor combines linear programming with a specialized subset-construction-based
determinization step, rendering an EXPTIME algorithm [4,6]. Yet, this approach
does not match the PSPACE lower bound for discounted-sum inclusion.

In this paper, we present an automata-theoretic formulation of this form of
comparison between weighted sequences. Specifically, we introduce comparator
automata (comparators, in short), a class of automata that read pairs of infinite
weight sequences synchronously, and compare their aggregate values in an online
manner. While comparisons between weight sequences happen implicitly in prior
approaches to quantitative systems, comparator automata make these compar-
isons explicit. We show that this has many benefits, including generic algorithms
for a large class of quantitative reasoning problems, as well as a direct solution
to the problem of discounted-sum inclusion that also closes its complexity gap.

A comparator for aggregate function f is an automaton that accepts a pair
(A,B) of sequences of bounded rational numbers iff f(A) R f(B), where R is an
inequality relation (>, <, ≥, ≤) or the equality relation. A comparator could be
finite-state or (pushdown) infinite-state. This paper studies such comparators.

A comparator is ω-regular if it is finite-state and accepts by the Büchi con-
dition. We show that ω-regular comparators lead to generic algorithms for a
number of well-studied problems including the quantitative inclusion problem,
and in showing existence of winning strategies in incomplete-information quanti-
tative games. Our algorithm yields PSPACE-completeness of quantitative inclu-
sion when the ω-regular comparator is provided. The same algorithm extends to
obtaining finite-state representations of counterexample words in inclusion.

422 S. Bansal et al.

Next, we show that the discounted-sum aggregation function admits an ω-
regular comparator when the discount-factor d > 1 is an integer. Using proper-
ties of ω-regular comparators, we conclude that the discounted-sum inclusion is
PSPACE-complete, hence resolving the complexity gap. Furthermore, we prove
that the discounted-sum comparator for 1 < d < 2 cannot be ω-regular. We
suspect this result extends to non-integer discount-factors as well.

Finally, we investigate the limit-average comparator. Since limit-average is
only defined for sequences in which the average of prefixes converge, limit-average
comparison is not well-defined. We show that even a Büchi pushdown automaton
cannot separate sequences for which limit-average exists from those for which
it does not. Hence, we introduce the novel notion of prefix-average comparison
as a relaxation of limit-average comparison. We show that the prefix-average
comparator admits a comparator that is ω-context-free, i.e., given by a Büchi
pushdown automaton, and we discuss the utility of this characterization.

This paper is organized as follows: Preliminaries are given in Sect. 2. Com-
parator automata is formally defined in Sect. 3. Generic algorithms for ω-regular
comparators are discussed in Sects. 3.1 and 3.2. The construction and properties
of discounted-sum comparator, and limit-average and prefix-average comparator
are given in Sects. 4 and 5, respectively. We conclude with future directions in
Sect. 6.

Related Work. The notion of comparison has been widely studied in quanti-
tative settings. Here we mention only a few of them. Such aggregate-function
based notions appear in weighted automata [1,17], quantitative games including
mean-payoff and energy games [16], discounted-payoff games [3,4], in systems
regulating cost, memory consumption, power consumption, verification of quan-
titative temporal properties [14,15], and others. Common solution approaches
include graph algorithms such as weight of cycles or presence of cycle [18], linear-
programming-based approaches, fixed-point-based approaches [8], and the like.
The choice of approach for a problem typically depends on the underlying aggre-
gate function. In contrast, in this work we present an automata-theoretic app-
roach that unifies solution approaches to problems on different aggregate func-
tions. We identify a class of aggregate functions, ones that have an ω-regular
comparator, and present generic algorithms for some of these problems.

While work on finite-representations of counterexamples and witnesses in the
qualitative setting is known [5], we are not aware of such work in the quanti-
tative verification domain. This work can be interpreted as automata-theoretic
arithmetic, which has been explored in regular real analysis [12].

2 Preliminaries

Definition 1 (Büchi automata [21]). A (finite-state) Büchi automaton is a
tuple A = (S , Σ, δ, Init ,F), where S is a finite set of states, Σ is a finite input
alphabet, δ ⊆ (S ×Σ ×S) is the transition relation, Init ⊆ S is the set of initial
states, and F ⊆ S is the set of accepting states.

Comparator Automata in Quantitative Verification 423

A Büchi automaton is deterministic if for all states s and inputs a, |{s′|(s, a, s′) ∈
δ for some s′}| ≤ 1 and |Init | = 1. Otherwise, it is nondeterministic. For a word
w = w0w1 · · · ∈ Σω, a run ρ of w is a sequence of states s0s1 . . . s.t. s0 ∈ Init ,
and τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote the set of states that occur
infinitely often in run ρ. A run ρ is an accepting run if inf (ρ) ∩ F �= ∅. A word
w is an accepting word if it has an accepting run. Büchi automata are known
to be closed under set-theoretic union, intersection, and complementation [21].
Languages accepted by these automata are called ω-regular languages.

Definition 2 (Weighted ω-automaton [10,20]). A weighted ω-automaton
over infinite words is a tuple A = (M, γ), where M = (S , Σ, δ, Init ,S) is a
Büchi automaton, and γ : δ → Q is a weight function.

Words and runs in weighted ω-automata are defined as they are in Büchi
automata. Note that all states are accepting states in this definition. The weight
sequence of run ρ = s0s1 . . . of word w = w0w1 . . . is given by wtρ = n0n1n2 . . .
where ni = γ(si, wi, si+1) for all i. The weight of a run ρ is given by f(wtρ),
where f : Qω → R is an aggregate function. We use f(ρ) to denote f(wtρ).

Here the weight of a word w ∈ Σω in weighted ω-automata is defined as
wtA(w) = sup{f(ρ)|ρ is a run of w in A}. It can also be defined as the infimum
of the weight of all its runs. By convention, if word w /∈ A, wtA(w) = 0 [10].

Definition 3 (Quantitative inclusion). Given two weighted ω-automata P
and Q with aggregate function f , the quantitative-inclusion problem, denoted by
P ⊆f Q, asks whether for all words w ∈ Σω, wtP (w) ≤ wtQ(w).

Quantitative inclusion is PSPACE-complete for limsup and liminf [10], and unde-
cidable for limit-average [16]. For discounted-sum with integer discount-factor it
is in EXPTIME [6,10], and decidability is unknown for rational discount-factors

Definition 4 (Incomplete-information quantitative games). An
incomplete-information quantitative game is a tuple G = (S, sI ,O , Σ, δ, γ, f),
where S, O, Σ are sets of states, observations, and actions, respectively, sI ∈ S
is the initial state, δ ⊆ S × Σ × S is the transition relation, γ : S → N × N is
the weight function, and f : Nω → R is the aggregate function.

The transition relation δ is complete, i.e., for all states p and actions a, there
exists a state q s.t. (p, a, q) ∈ δ. A play ρ is a sequence s0a0s1a1 . . . , where
τi = (si, ai, si+1) ∈ δ. The observation of state s is denoted by O(s) ∈ O . The
observed play oρ of ρ is the sequence o0a0o1aa1 . . . , where oi = O(si). Player P0

has incomplete information about the game G; it only perceives the observation
play oρ. Player P1 receives full information and witnesses play ρ. Plays begin in
the initial state s0 = sI . For i ≥ 0, Player P0 selects action ai. Next, player P1

selects the state si+1, such that (si, ai, si+1) ∈ δ. The weight of state s is the pair
of payoffs γ(s) = (γ(s)0, γ(s)1). The weight sequence wti of player Pi along ρ is
given by γ(s0)iγ(s1)i . . . , and its payoff from ρ is given by f(wti) for aggregate

424 S. Bansal et al.

function f , denoted by f(ρi), for simplicity. A play on which a player receives a
greater payoff is said to be a winning play for the player. A strategy for player
P0 is given by a function α : O∗ → Σ since it only sees observations. Player
P0 follows strategy α if for all i, ai = α(o0 . . . oi). A strategy α is said to be a
winning strategy for player P0 if all plays following α are winning plays for P0.

Definition 5 (Büchi pushdown automata [13]). A Büchi pushdown
automaton (Büchi PDA) is a tuple A = (S , Σ, Γ, δ, Init , Z0,F), where S, Σ, Γ ,
and F are finite sets of states, input alphabet, pushdown alphabet and accept-
ing states, respectively. δ ⊆ (S ×Γ ×(Σ ∪{ε})×S ×Γ) is the transition relation,
Init ⊆ S is a set of initial states, Z0 ∈ Γ is the start symbol.

A run ρ on a word w = w0w1 · · · ∈ Σω of a Büchi PDA A is a sequence of
configurations (s0, γ0), (s1, γ1) . . . satisfying (1) s0 ∈ Init , γ0 = Z0, and (2)
(si, γi, wi, si+1, γi+1) ∈ δ for all i. Büchi PDA consists of a stack, elements of
which are the tokens Γ , and initial element Z0. Transitions push or pop token(s)
to/from the top of the stack. Let inf (ρ) be the set of states that occur infinitely
often in state sequence s0s1 . . . of run ρ. A run ρ is an accepting run in Büchi
PDA if inf (ρ)∩F �= ∅. A word w is an accepting word if it has an accepting run.
Languages accepted by Büchi PDA are called ω-context-free languages (ω-CFL).

We introduce some notation. For an infinite sequence A = (a0, a1, . . .), A[i]
denotes its i-th element. Abusing notation, we write w ∈ A and ρ ∈ A if w and
ρ are an accepting word and an accepting run of A respectively.

For missing proofs and constructions, refer to the supplementary material.

3 Comparator Automata

Comparator automata (often abbreviated as comparators) are a class of automata
that can read pairs of weight sequences synchronously and establish an equality
or inequality relationship between these sequences. Formally, we define:

Definition 6 (Comparator automata). Let Σ be a finite set of rational num-
bers, and f : Qω → R denote an aggregate function. A comparator automaton
for aggregate function f is an automaton over the alphabet Σ × Σ that accepts
a pair (A,B) of (infinite) weight sequences iff f(A) R f(B), where R is an
inequality or the equality relation.

From now on, unless mentioned otherwise, we assume that all weight sequences
are bounded, natural number sequences. The boundedness assumption is justified
since the set of weights forming the alphabet of a comparator is bounded. For all
aggregate functions considered in this paper, the result of comparison of weight
sequences is preserved by a uniform linear transformation that converts rational-
valued weights into natural numbers; justifying the natural number assumption.

Comparator Automata in Quantitative Verification 425

sstart fk sk

(∗, ∗)

(k,≤ k)

(k,≤ k)

(≤ k − 1,≤ k)

(≤ k − 1,≤ k)

(k,≤ k)

Fig. 1. State fk is an accepting state. Automaton Ak

accepts (A, B) iff LimSup(A) = k, LimSup(B) ≤ k. ∗
denotes {0, 1 . . . μ}, ≤ m denotes {0, 1 . . . , m}

We explain compara-
tors through an exam-
ple. The limit supremum
(limsup, in short) of a
bounded, integer sequence
A, denoted by LimSup(A),
is the largest integer that
appears infinitely often in
A. The limsup comparator
is a Büchi automaton that
accepts the pair (A,B) of sequences iff LimSup(A) ≥ LimSup(B).

The working of the limsup comparator is based on non-deterministically
guessing the limsup of sequences A and B, and then verifying that LimSup(A) ≥
LimSup(B). Büchi automaton Ak (Fig. 1) illustrates the basic building block of
the limsup comparator. Automaton Ak accepts pair (A,B) of number sequences
iff LimSup(A) = k, and LimSup(B) ≤ k, for integer k. To see why this is true, first
note that all incoming edges to accepting state fk occur on alphabet (k,≤ k)
while all transitions between states fk and sk occur on alphabet (≤ k,≤ k),
where ≤ k denotes the set {0, 1, . . . k}. So, the integer k must appear infinitely
often in A and all elements occurring infinitely often in A and B are less than or
equal to k. Together these ensure that LimSup(A) = k, and LimSup(B) ≤ k. The
union of such automata Ak for k ∈ {0, 1, . . . μ} for upper bound μ, results in the
limsup comparator. The limit infimum (liminf, in short) of an integer sequence is
the smallest integer that appears infinitely often in it; its comparator is similar.

When the comparator for an aggregate function is a Büchi automaton, we
call it an ω-regular comparator. Likewise, when the comparator for an aggregate
function is a Büchi pushdown automaton, we call it an ω-context-free comparator.
As seen here, the limsup and liminf comparators are ω-regular. Later, we see that
discounted-sum comparator and prefix-average comparator are ω-regular and ω-
context-free respectively (Sects. 4 and 5). We call an aggregate function ω-regular
when it has an ω-regular comparator for at least one inequality relation. Due to
closure properties of Büchi automata, comparators for all inequality and equality
relations of an ω-regular aggregate function are also ω-regular.

Init(q1) q2q3
a, 3

a, 2

a, 0

b, 1

a, 2

b, 0

Fig. 2. Weighted automaton P

Init(q1) q2q3

a, 1

a, 2

a, 0

a, 1

b, 2

a, 2

b, 0

Fig. 3. Weighted automaton Q

Motivating Example. Let weighted ω-automata P and Q be as illustrated in
Figs. 2 and 3. The word w = a(ab)ω has two runs ρP

1 = q1(q2)ω, ρP
2 = q1(q3)ω

426 S. Bansal et al.

Algorithm 1. InclusionReg(P,Q,Af), Is P ⊆f Q?
1: Input: Weighted automata P , Q, and ω-regular comparator Af (Inequality ≤)
2: Output: True if P ⊆f Q, False otherwise
3: P̂ ← AugmentWtAndLabel(P)
4: Q̂ ← AugmentWtAndLabel(Q)
5: P̂ × Q̂ ← MakeProduct(P̂ , Q̂)
6: DimProof ← Intersect(P̂ × Q̂, A�)
7: Dim ← FirstProject(DimProof)
8: return P̂ ≡ Dim

in P , and four runs ρQ
1 = q1(q2)ω, ρQ

2 = q1(q3)ω, ρQ
3 = q1q1(q2)ω ρQ

4 = q1q1(q3)ω

in Q. Their weight-sequences are wtP1 = 3, (0, 1)ω, wtP2 = 2, (2, 0)ω in P , and
wtQ1 = (2, 1)ω, wtQ2 = (0, 2)ω, wtQ3 = 1, 2, (2, 1)ω, wtQ4 = 1, 0, (0, 2)ω in Q.

To determine if w has greater weight in P or in Q, compare aggregate value
of weight-sequences of runs in P and Q. Take the comparator for aggregate
function f that accepts a pair (A,B) of weight-sequence iff f(A) ≤ f(B). For
wtP (w) ≤ wtQ(w), for every run ρP

i in P , there exists a run ρQ
j in Q s.t. (ρP

i , ρQ
j)

is accepted by the comparator. This forms the basis for quantitative inclusion.

3.1 Quantitative Inclusion

InclusionReg (Algorithm 1) is an algorithm for quantitative inclusion for ω-regular
aggregate functions. For weighted ω-automata P , Q, and ω-regular comparator
Af , InclusionReg returns True iff P ⊆f Q. We assume P ⊆ Q (qualitative inclu-
sion) to avoid trivial corner cases.

Key Ideas. P ⊆f Q holds if for every run ρP in P on word w, there exists a
run ρQ in Q on the same word w such that f(ρP) ≤ f(ρQ). We refer to such
runs of P by diminished run. Hence, P ⊆f Q iff all runs of P are diminished.

InclusionReg constructs Büchi automaton Dim that consists of exactly the
diminished runs of P . It returns True iff Dim contains all runs of P . To obtain
Dim, it constructs Büchi automaton DimProof that accepts word (ρP , ρQ) iff ρP

and ρQ are runs of the same word in P and Q respectively, and f(ρP) ≤ f(ρQ).
The ω-regular comparator for inequality ≤ for function f ensures f(ρP) ≤ f(ρQ).
The projection of DimProof on runs of P results in Dim.

Algorithm Details. InclusionReg has three steps: (a). UniqueId (Lines 3–4):
Enables unique identification of runs in P and Q through labels. (b). Compare
(Lines 5–7): Compares weight of runs in P with weight of runs in Q, and con-
structs Dim. (c). DimEnsure (Line 8): Ensures if all runs of P are diminished.

1. UniqueId: AugmentWtAndLabel transforms weighted ω-automaton A into
Büchi automaton Â by converting transition τ = (s, a, t) with weight γ(τ) in
A to transition τ̂ = (s, (a, γ(τ), l), t) in Â, where l is a unique label assigned
to transition τ . The word ρ̂ = (a0, n0, l0)(a1, n1, l1) · · · ∈ Â iff run ρ ∈ A on
word a0a1 . . . with weight sequence n0n1 Labels ensure bijection between

Comparator Automata in Quantitative Verification 427

runs in A and words in Â. Words of Â have a single run in Â.
Hence, transformation of weighted ω-automata P and Q to Büchi automata
P̂ and Q̂ enables disambiguation between runs of P and Q (Line 3–4).

2. Compare: The output of this step is the Büchi automaton Dim, that contains
the word ρ̂ ∈ P̂ iff ρ is a diminished run in P (Lines 5–7).
MakeProduct(P̂ , Q̂) constructs P̂ × Q̂ s.t. word (ρ̂P , ρ̂Q) ∈ P̂ × Q̂ iff ρP and
ρQ are runs of the same word in P and Q respectively (Line 5). Concretely,
for transition τ̂A = (sA, (a, nA, lA), tA) in automaton A, where A ∈ {P̂ , Q̂},
transition τ̂P × τ̂Q = ((sP , sQ), (a, nP , lP , nQ, lQ), (tP , tQ)) is in P̂ × Q̂.
Intersect intersects the weight components of P̂ × Q̂ with comparator Af

(Line 6). The resulting automaton DimProof accepts word (ρ̂P , ρ̂Q) iff
f(ρP) ≤ f(ρQ), and ρP and ρQ are runs on the same word in P and Q

respectively. The projection of DimProof on the words of P̂ returns Dim
which contains the word ρ̂P iff ρP is a diminished run in P (Line 7).

3. DimEnsure: P ⊆f Q iff P̂ ≡ Dim (qualitative equivalence) since P̂ consists of
all runs of P and Dim consists of all diminished runs of P (Line 8).

Lemma 1. Given weighted ω-automata P and Q with an ω-regular aggregate
function f . InclusionReg(P,Q,Af) returns True iff P ⊆f Q.

Further, InclusionReg is adapted for quantitative strict-inclusion P ⊂f Q i.e. for
all words w, wtP (w) < wtQ(w) by taking the ω-regular comparator Af that
accepts (A,B) iff f(A) < f(B). Similarly for quantitative equivalence P ≡f Q.

Complexity Analysis. All operations in InclusionReg until Line 7 are polytime
operations in the size of weighted ω-automata P , Q and comparator Af . Hence,
Dim is polynomial in size of P , Q and Af . Line 8 solves a PSPACE-complete
problem. Therefore, the quantitative inclusion for ω-regular aggregate function
f is in PSPACE in size of the inputs P , Q, and Af .

The PSPACE-hardness of the quantitative inclusion is established via reduc-
tion from the qualitative inclusion problem, which is PSPACE-complete. The
formal reduction is as follows: Let P and Q be Büchi automata (with all states
as accepting states). Reduce P , Q to weighted automata P , Q by assigning a
weight of 1 to each transition. Since all runs in P , Q have the same weight
sequence, weight of all words in P and Q is the same for any function f . It is
easy to see P ⊆ Q (qualitative inclusion) iff P ⊆f Q (quantitative inclusion).

Theorem 1. Let P and Q be weighted ω-automata and Af be an ω-regular com-
parator. The complexity of the quantitative inclusion problem, quantitative strict-
inclusion problem, and quantitative equivalence problem for ω-regular aggregate
function f is PSPACE-complete.

Theorem 1 extends to weighted ω-automata when weight of words is the infimum
of weight of runs. The key idea for P ⊆f Q here is to ensure that for every run
ρQ in Q there exists a run on the same word in ρP in P s.t. f(ρP) ≤ f(ρQ).

Representation of Counterexamples. When P �f Q, there exists word(s)
w ∈ Σ∗ s.t wtP (w) > wtQ(w). Such a word w is said to be a counterexample

428 S. Bansal et al.

word. Previously, finite-state representations of counterexamples have been use-
ful in verification and synthesis in qualitative systems [5], and could be useful in
quantitative settings as well. However, we are not aware of procedures for such
representations in the quantitative settings. Here we show that a trivial extension
of InclusionReg yields Büchi automata-representations for all counterexamples of
the quantitative inclusion problem for ω-regular functions.

For word w to be a counterexample, it must contain a run in P that is not
diminished. Clearly, all non-diminished runs of P are members of P̂ \ Dim. The
counterexamples words can be obtained from P̂ \Dim by modifying its alphabet
to the alphabet of P by dropping transition weights and their unique labels.

Theorem 2. All counterexamples of the quantitative inclusion problem for an
ω-regular aggregate function can be expressed by a Büchi automaton.

3.2 Incomplete-Information Quantitative Games

Given an incomplete-information quantitative game G = (S, sI ,O , Σ, δ, γ, f),
our objective is to determine if player P0 has a winning strategy α : O∗ →
Σ for ω-regular aggregate function f . We assume we are given the ω-regular
comparator Af for function f . Note that a function A∗ → B can be treated like
a B-labeled A-tree, and vice-versa. Hence, we proceed by finding a Σ-labeled
O-tree – the winning strategy tree. Every branch of a winning strategy-tree is an
observed play oρ of G for which every actual play ρ is a winning play for P0.

We first consider all game trees of G by interpreting G as a tree-automaton
over Σ-labeled S-trees. Nodes n ∈ S∗ of the game-tree correspond to states
in S and labeled by actions in Σ taken by player P0. Thus, the root node ε
corresponds to sI , and a node si0 , . . . , sik corresponds to the state sik reached
via sI , si0 , . . . , sik−1 . Consider now a node x corresponding to state s and labeled
by an action σ. Then x has children xs1, . . . xsn, for every si ∈ S. If si ∈ δ(s, σ),
then we call xsi a valid child, otherwise we call it an invalid child. Branches
that contain invalid children correspond to invalid plays.

A game-tree τ is a winning tree for player P0 if every branch of τ is either a
winning play for P0 or an invalid play of G. One can check, using an automata,
if a play is invalid by the presence of invalid children. Furthermore, the winning
condition for P0 can be expressed by the ω-regular comparator Af that accepts
(A,B) iff f(A) > f(B). To use the comparator Af , it is determinized to parity
automaton Df . Thus, a product of game G with Df is a deterministic parity
tree-automaton accepting precisely winning-trees for player P0.

Winning trees for player P0 are Σ-labeled S-trees. We need to convert them
to Σ-labeled O-trees. Recall that every state has a unique observation. We can
simulate these Σ-labeled S-trees on strategy trees using the technique of thinning
states S to observations O [19]. The resulting alternating parity tree automaton
M will accept a Σ-labeled O-tree τo iff for all actual game-tree τ of τo, τ is a
winning-tree for P0 with respect to the strategy τo. The problem of existence of
winning-strategy for P0 is then reduced to non-emptiness checking of M.

Comparator Automata in Quantitative Verification 429

Theorem 3. Given an incomplete-information quantitative game G and ω-
regular comparator Af for the aggregate function f , the complexity of deter-
mining whether P0 has a winning strategy is exponential in |G| · |Df |, where
|Df | = |Af |O(|Af |).

Since, Df is the deterministic parity automaton equivalent to Af , |Df | =
|Af |O(|Af |). The thinning operation is linear in size of |G × Df |, therefore
|M| = |G| · |Df |. Non-emptiness checking of alternating parity tree automata
is exponential. Therefore, our procedure is doubly exponential in size of the
comparator and exponential in size of the game. The question of tighter bounds
is open.

4 Discounted-Sum Comparator

The discounted-sum of an infinite sequence A with discount-factor d > 1, denoted
by DS (A, d), is defined as Σ∞

i=0A[i]/di. The discounted-sum comparator (DS-
comparator, in short) for discount-factor d, denoted by A�DS(d) , accepts a pair
(A,B) of weight sequences iff DS (A, d) < DS (B, d). We investigate properties
of the DS-comparator, and show that the DS-comparator is ω-regular for all
integral discount-factors d, and cannot be ω-regular when 1 < d < 2.

Theorem 4. DS-comparator for rational discount-factor 1 < d < 2 is not ω-
regular.

For discounted-sum automaton A with discount factor d, the cut-point language
of A w.r.t. r ∈ R is defined as L≥r = {w ∈ L(A)|DS(w, d) ≥ r}. It is known that
the cut-point language L≥1 with discount-factor 1 < d < 2 is not ω-regular [9].
One can show that if DS-comparator for discount-factor 1 < d < 2 were ω-
regular, then cut-point language L≥1 is also ω-regular; thus proving Theorem4.

We provide the construction of DS-comparator with integer discount-factor.

Key Ideas. The core intuition is that sequences bounded by μ can be converted
to their value in base d via a finite-state transducer. Lexicographic comparison
of the resulting sequences renders the desired result. Conversion of sequences
to base d requires a certain amount of book-keeping by the transducer. Here we
describe a direct method for book-keeping and lexicographic comparison.

For natural-number sequence A and integer discount-factor d > 1, DS (A, d)
can be interpreted as a value in base d i.e. DS (A, d) = A[0] + A[1]

d + A[2]
d2 +

· · · = (A[0].A[1]A[2] . . .)d [12]. Unlike comparison of numbers in base d, the
lexicographically larger sequence may not be larger in value. This occurs because
(i) The elements of weight sequences may be larger in value than base d, and
(ii) Every value has multiple infinite-sequence representations.

To overcome these challenges, we resort to arithmetic techniques in base
d. Note that DS (B, d) > DS (A, d) iff there exists a sequence C such that
DS (B, d) = DS (A, d) + DS (C, d), and DS (C, d) > 0. Therefore, to compare
the discounted-sum of A and B, we obtain a sequence C. Arithmetic in base d
also results in sequence X of carry elements. Then, we see:

430 S. Bansal et al.

Lemma 2. Let A,B,C,X be number sequences, d > 1 be a positive integer such
that following equations holds true:

1. When i = 0, A[0] + C[0] + X[0] = B[0]
2. When i ≥ 1, A[i] + C[i] + X[i] = B[i] + d · X[i − 1]

Then DS (B, d) = DS (A, d) + DS (C, d).

Hence, to determine DS (B, d)−DS (A, d), systematically guess sequences C and
X using the equations, element-by-element beginning with the 0-th index and
moving rightwards. There are two crucial observations here: (i) Computation of
i-th element of C and X only depends on i-th and (i − 1)-th elements of A and
B. Therefore guessing C[i] and X[i] requires finite memory only. (ii) C refers
to a representation of value DS (B, d) − DS (A, d) in base d, and X is the carry-
sequence. Hence if A and B are bounded-integer sequences, not only are X and
C bounded sequences, they can be constructed from a fixed finite set of integers:

Lemma 3. Let d > 1 be an integer discount-factor. Let A and B be nonnegative
integer sequences bounded by μ s.t. DS (A, d) < DS (B, d). Let C and X be as
constructed in Lemma 2. There exists at least one pair of integer-sequences C
and X that satisfy the following two equations

1. For all i ≥ 0, 0 ≤ C[i] ≤ μ · d
d−1 . and

2. For all i ≥ 0, 0 ≤ |X[i]| ≤ 1 + μ
d−1

In Büchi automaton A�DS(d) (i) states are represented by (x, c) where x and
c range over all possible elements of X and C, which are finite, (ii) a special
start state s, (iii) transitions from the start state (s, (a, b), (x, c)) satisfy a + c +
x = b to replicate Eq. 1 (Lemma 2) at the 0-th index, (iv) all other transitions
((x1, c1), (a, b), (x2, c2)) satisfy a+c2+x2 = b+d·x1 to replicate Eq. 2 (Lemma 2)
at indexes i > 0, and (v) all (x, c) states are accepting. Lemma 2 ensures that
A�DS(d) accepts (A,B) iff DS (B, d) = DS (A, d) + DS (C, d).

However, A�DS(d) is yet to guarantee DS (C, d) > 0. For this, we include
non-accepting states (x,⊥), where x ranges over all possible (finite) elements of
X. Transitions into and out of states (x,⊥) satisfy Eqs. 1 or 2 (depending on
whether transition is from start state s) where ⊥ is treated as c = 0. Transition
from (x,⊥)-states to (x, c)-states occurs only if c > 0. Hence, any valid execution
of (A,B) will be an accepting run only if the execution witnesses a non-zero value
of c. Since C is a non-negative sequence, this ensures DS (C, d) > 0.

Construction. Let μC = μ· d
d−1 and μX = 1+ μ

d−1 . A�DS(d) = (S , Σ, δd, Init ,F)

– S = Init ∪ F ∪ S⊥ where
Init = {s}, F = {(x, c)||x| ≤ μX , 0 ≤ c ≤ μC}, and
S⊥ = {(x,⊥)||x| ≤ μX} where ⊥ is a special character, and c ∈ N, x ∈ Z.

– Σ = {(a, b) : 0 ≤ a, b ≤ μ} where a and b are integers.
– δd ⊂ S × Σ × S is defined as follows:

1. Transitions from start state s:
i (s, (a, b), (x, c)) for all (x, c) ∈ F s.t. a + x + c = b and c �= 0

Comparator Automata in Quantitative Verification 431

ii (s, (a, b), (x,⊥)) for all (x,⊥) ∈ S⊥ s.t. a + x = b
2. Transitions within S⊥: ((x,⊥), (a, b), (x′,⊥)) for all (x,⊥), (x′,⊥) ∈ S⊥,

if a + x′ = b + d · x
3. Transitions within F : ((x, c), (a, b), (x′, c′)) for all (x, c), (x′, c′) ∈ F where

c′ < d, if a + x′ + c′ = b + d · x
4. Transition between S⊥ and F : ((x,⊥), (a, b), (x′, c′)) for all (x,⊥) ∈ S⊥,

(x′, c′) ∈ F where 0 < c′ < d, if a + x′ + c′ = b + d · x

Theorem 5. The DS-comparator with maximum bound μ, is ω-regular for inte-
ger discount-factors d > 1. Size of the discounted-sum comparator is O(μ2

d).

DS-comparator with non-strict inequality ≤ and equality = follow similarly.
Consequently, properties of ω-regular comparators hold for DS-comparator with
integer discount-factor. Specifically, DS-inclusion is PSPACE-complete in size of
the input weighted automata and DS-comparator. Since, size of DS-comparator
is polynomial w.r.t. to upper bound μ (in unary), DS-inclusion is PSPACE in size
of input weighted automata and μ. Not only does this bound improve upon the
previously known upper bound of EXPTIME but it also closes the gap between
upper and lower bounds for DS-inclusion.

Corollary 1. Given weighted automata P and Q, maximum weight on their
transitions μ in unary form and integer discount-factor d > 1, the DS-inclusion,
DS-strict-inclusion, and DS-equivalence problems are PSPACE-complete.

As mentioned earlier, the known upper bound for discounted-sum inclusion with
integer discount-factor is exponential [6,10]. This bound is based on an expo-
nential determinization construction (subset construction) combined with arith-
metical reasoning. We observe that the determinization construction can be per-
formed on-the-fly in PSPACE. To perform, however, the arithmetical reasoning
on-the-fly in PSPACE would require essentially using the same bit-level ((x, c)-
state) techniques that we have used to construct DS-comparator automata.

5 Limit-Average Comparator

The limit-average of an infinite sequence M is the point of convergence of the
average of prefixes of M . Let Sum(M [0, n − 1]) denote the sum of the n-length
prefix of sequence M . The limit-average infimum, denoted by LimInfAvg(M), is
defined as lim infn→∞ 1

n ·Sum(M [0, n−1]). Similarly, the limit-average supremum,
denoted by LimSupAvg(M), is defined as lim supn→∞

1
n · Sum(M [0, n − 1]). The

limit-average of sequence M , denoted by LimAvg(M), is defined only if the limit-
average infimum and limit-average supremum coincide, and then LimAvg(M) =
LimInfAvg(M) (= LimSupAvg(M)). Note that while limit-average infimum and
supremum exist for all bounded sequences, the limit-average may not.

In existing work, limit-average is defined as the limit-average infimum (or
limit-average supremum) to ensure that limit-average exists for all sequences
[7,10,11,22]. While this definition is justified in context of the application, it
may lead to a misleading comparison in some cases. For example, consider

432 S. Bansal et al.

sequence A s.t. LimSupAvg(A) = 2 and LimInfAvg(A) = 0, and sequence
B s.t. LimAvg(B) = 1. Clearly, limit-average of A does not exist. Suppose,
LimAvg(A) = LimInfAvg(A) = 0, then LimAvg(A) < LimAvg(B), deluding that
average of prefixes of A are always less than those of B in the limit. This is
untrue since LimSupAvg(A) = 2.

Such inaccuracies in limit-average comparison may occur when the limit-
average of at least one sequence does not exist. However, it is not easy to distin-
guish sequences for which limit-average exists from those for which it doesn’t.

We define prefix-average comparison as a relaxation of limit-average compar-
ison. Prefix-average comparison coincides with limit-average comparison when
limit-average exists for both sequences. Otherwise, it determines whether even-
tually the average of prefixes of one sequence are greater than those of the other.
This comparison does not require the limit-average to exist to return intuitive
results. Further, we show that the prefix-average comparator is ω-context-free.

5.1 Limit-Average Language and Comparison

Let Σ = {0, 1, . . . , μ} be a finite alphabet with μ > 0. The limit-average language
LLA contains the sequence (word) A ∈ Σω iff its limit-average exists. Suppose
LLA were ω-regular, then LLA =

⋃n
i=0 Ui · V ω

i , where Ui, Vi ⊆ Σ∗ are regular
languages over finite words. The limit-average of sequences is determined by its
behavior in the limit, so limit-average of sequences in V ω

i exists. Additionally,
the average of all (finite) words in Vi must be the same. If this were not the
case, then two words in Vi with unequal averages l1 and l2, can generate a word
w ∈ V ω

i s.t the average of its prefixes oscillates between l1 and l2. This cannot
occur, since limit-average of w exists. Let the average of sequences in Vi be ai,
then limit-average of sequences in V ω

i and Ui ·V ω
i is also ai. This is contradictory

since there are sequences with limit-average different from the ai (see appendix).
Similarly, since every ω-CFL is represented by

⋃n
i=1 Ui ·V ω

i for CFLs Ui, Vi over
finite words [13], a similar argument proves that LLA is not ω-context-free.

Quantifiers ∃∞i and ∃f i denote the existence of infinitely many and only
finitely many indices i, respectively.

Theorem 6. LLA is neither an ω-regular nor an ω-context-free language.

In the next section, we will define prefix-average comparison as a relaxation
of limit-average comparison. To show how prefix-average comparison relates to
limit-average comparison, we will require the following two lemmas:

Lemma 4. Let A and B be sequences s.t. their limit average exists. If
∃∞i,Sum(A[0, i − 1]) ≥ Sum(B[0, i − 1]) then LimAvg(A) ≥ LimAvg(B).

Lemma 5. Let A, B be sequences s.t their limit-average exists. If LimAvg(A) >
LimAvg(B) then ∃f i,Sum(B[0, i − 1]) ≥ Sum(A[0, i − 1]) and ∃∞i,Sum(A[0, i −
1]) > Sum(B[0, i − 1]).

Comparator Automata in Quantitative Verification 433

5.2 Prefix-Average Comparison and Comparator

The previous section relates limit-average comparison with the sums of equal
length prefixes of the sequences (Lemmas 4 and 5). The comparison criteria is
based on the number of times sum of prefix of one sequence is greater than
the other, which does not rely on the existence of limit-average. Unfortunately,
this criteria cannot be used for limit-average comparison since it is incomplete
(Lemma 5). Specifically, for sequences A and B with equal limit-average it is
possible that ∃∞i,Sum(A[0, n − 1]) > Sum(B[0, n − 1]) and ∃∞i,Sum(B[0, n −
1]) > Sum(A[0, n − 1]). Instead, we use this criteria to define prefix-average
comparison. In this section, we define prefix-average comparison and explain
how it relaxes limit-average comparison. Lastly, we construct the prefix-average
comparator, and prove that it is not ω-regular but is ω-context-free.

Definition 7 (Prefix-average comparison). Let A and B be number
sequences. We say PrefixAvg(A) ≥ PrefixAvg(B) if ∃f i,Sum(B[0, i − 1]) ≥
Sum(A[0, i − 1]) and ∃∞i,Sum(A[0, i − 1]) > Sum(B[0, i − 1]).

Intuitively, prefix-average comparison states that PrefixAvg(A) ≥ PrefixAvg(B) if
eventually the sum of prefixes of A are always greater than those of B. We use ≥
since the average of prefixes may be equal when the difference between the sum
is small. It coincides with limit-average comparison when the limit-average exists
for both sequences. Definition 7 and Lemmas 4, 5 relate limit-average comparison
and prefix-average comparison:

Corollary 2. When limit-average of A and B exists, then

– PrefixAvg(A) ≥ PrefixAvg(B) =⇒ LimAvg(A) ≥ LimAvg(B).
– LimAvg(A) > LimAvg(B) =⇒ PrefixAvg(A) ≥ PrefixAvg(B).

Therefore, limit-average comparison and prefix-average comparison return the
same result on sequences for which limit-average exists. In addition, prefix-
average returns intuitive results when even when limit-average may not exist.
For example, suppose limit-average of A and B do not exist, but LimInfAvg(A) >
LimSupAvg(B), then PrefixAvg(A) ≥ PrefixAvg(B). Therefore, prefix-average
comparison relaxes limit-average comparison.

The rest of this section describes prefix-average comparator A
PA(·) , an
automaton that accepts the pair (A,B) of sequences iff PrefixAvg(A) ≥
PrefixAvg(B).

Lemma 6 (Pumping Lemma for ω-regular language [2]). Let L be an ω-
regular language. There exists p ∈ N such that, for each w = u1w1u2w2 · · · ∈ L
such that |wi| ≥ p for all i, there are sequences of finite words (xi)i∈N, (yi)i∈N,
(zi)i∈N s.t., for all i, wi = xiyizi, |xiyi| ≤ p and |yi| > 0 and for every sequence
of pumping factors (ji)i∈N ∈ N, the pumped word u1x1y

j1
1 z1u2x2y

j2
2 z2 · · · ∈ L.

Theorem 7. The prefix-average comparator is not ω-regular.

434 S. Bansal et al.

Proof (Proof Sketch). We use Lemma 6 to prove that A
PA(·) is not ω-regular.
Suppose A
PA(·) were ω-regular. For p > 0 ∈ N, let w = (A,B) =
((0, 1)p(1, 0)2p)ω. The segment (0, 1)∗ can be pumped s.t the resulting word
is no longer in L
PA(·) .

Concretely, A = (0p12p)ω, B = (1p02p)ω, LimAvg(A) = 2
3 , LimAvg(B) = 1

3 .
So, w = (A,B) ∈ A
PA(·) . Select as factor wi (from Lemma 6) the sequence
(0, 1)p. Pump each yi enough times so that the resulting word is ŵ = (Â, B̂) =
((0, 1)mi(1, 0)2p)ω where mi > 4p. It is easy to show that ŵ = (Â, B̂) /∈ L
PA(·) .

We discuss key ideas and sketch the construction of the prefix average compara-
tor. The term prefix-sum difference at i indicates Sum(A[0, i−1])−Sum(B[0, i−
1]), i.e. the difference between sum of i-length prefix of A and B.

Key Ideas. For sequences A and B to satisfy PrefixAvg(A) ≥ PrefixAvg(B),
∃f i,Sum(B[0, i−1]) ≥ Sum(A[0, i−1]) and ∃∞i,Sum(A[0, i−1]) > Sum(B[0, i−
1]). This occurs iff there exists an index N s.t. for all indices i > N , Sum(A[0, i−
1]) − Sum(B[0, i − 1]) > 0. While reading a word, the prefix-sum difference is
maintained by states and the stack of ω-PDA: states maintain whether it is
negative or positive, while number of tokens in the stack equals its absolute
value. The automaton non-deterministically guesses the aforementioned index N ,
beyond which the automaton ensure that prefix-sum difference remains positive.

Construction Sketch. The push-down comparator A
PA(·) consists of three
states: (i) State sP and (ii) State sN that indicate that the prefix-sum difference
is greater than zero and or not respectively, (iii) accepting state sF . An execution
of (A,B) begins in state sN with an empty stack. On reading letter (a, b), the
stack pops or pushes |(a − b)| tokens from the stack depending on the current
state of the execution. From state sP , the stack pushes tokens if (a − b) > 0,
and pops otherwise. The opposite occurs in state sN . State transition between
sN and sP occurs only if the stack action is to pop but the stack consists of
k < |a − b| tokens. In this case, stack is emptied, state transition is performed
and |a − b| − k tokens are pushed into the stack. For an execution of (A,B) to
be an accepting run, the automaton non-deterministically transitions into state
sF . State sF acts similar to state sP except that execution is terminated if there
aren’t enough tokens to pop out of the stack. A
PA(·) accepts by accepting state.

To see why the construction is correct, it is sufficient to prove that at each
index i, the number of tokens in the stack is equal to |Sum(A[0, i − 1]) −
Sum(B[0, i−1])|. Furthermore, in state sN , Sum(A[0, i−1])−Sum(B[0, i−1]) ≤ 0,
and in state sP and sF , Sum(A[0, i−1])−Sum(B[0, i−1]) > 0. Next, the index at
which the automaton transitions to the accepting state sF coincides with index
N . The execution is accepted if it has an infinite execution in state sF , which
allows transitions only if Sum(A[0, i − 1]) − Sum(B[0, i − 1]) > 0.

Theorem 8. The prefix-average comparator is an ω-CFL.

While ω-CFL can be easily expressed, they do not possess closure properties,
and problems on ω-CFL are easily undecidable. Hence, the application of ω-
context-free comparator will require further investigation.

Comparator Automata in Quantitative Verification 435

6 Conclusion

In this paper, we identified a novel mode for comparison in quantitative sys-
tems: the online comparison of aggregate values of sequences of quantitative
weights. This notion is embodied by comparators automata that read two
infinite sequences of weights synchronously and relate their aggregate values.
We showed that ω-regular comparators not only yield generic algorithms for
problems including quantitative inclusion and winning strategies in incomplete-
information quantitative games, they also result in algorithmic advances. We
show that the discounted-sum inclusion problem is PSAPCE-complete for integer
discount-factor, hence closing a complexity gap. We also studied the discounted-
sum and prefix-average comparator, which are ω-regular and ω-context-free,
respectively.

We believe comparators, especially ω-regular comparators, can be of signif-
icant utility in verification and synthesis of quantitative systems, as demon-
strated by the existence of finite-representation of counterexamples of the quan-
titative inclusion problem. Another potential application is computing equilibria
in quantitative games. Applications of the prefix-average comparator, in general
ω-context-free comparators, is open to further investigation. Another direction
to pursue is to study aggregate functions in more detail, and develop a clearer
understanding of when aggregate functions are ω-regular.

Acknowledgements. We thank the anonymous reviewers for their comments. We
thank K. Chatterjee, L. Doyen, G. A. Perez and J. F. Raskin for corrections to earlier
drafts, and their contributions to this paper. We thank P. Ganty and R. Majumdar
for preliminary discussions on the limit-average comparator. This work was partially
supported by NSF Grant No. 1704883, “Formal Analysis and Synthesis of Multiagent
Systems with Incentives”.

References

1. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted
automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp.
482–491. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-
1 37

2. Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-
payoff conditions. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp.
333–347. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-
1 24

3. Andersen, G., Conitzer, V.: Fast equilibrium computation for infinitely repeated
games. In: Proceedings of AAAI, pp. 53–59 (2013)

4. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI
Student Session, pp. 91–98 (2006)

5. Baier, C., Katoen, J.-P., et al.: Principles of Model Checking. MIT Press,
Cambridge (2008)

6. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. LMCS 10(1) (2014)

7. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms
for mean-payoff games. Formal Methods Syst. Des. 38(2), 97–118 (2011)

https://doi.org/10.1007/978-3-642-24372-1_37
https://doi.org/10.1007/978-3-642-24372-1_37
https://doi.org/10.1007/978-3-642-00596-1_24
https://doi.org/10.1007/978-3-642-00596-1_24

436 S. Bansal et al.

8. Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II.
LNCS, vol. 6199, pp. 599–610. Springer,Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14162-1 50

9. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. In: Proceedings of LICS, pp. 199–208. IEEE (2009)

10. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. Trans. Com-
put. Log. 11(4), 23 (2010)

11. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In:
Proceedings of LICS, pp. 178–187. IEEE (2005)

12. Chaudhuri, S., Sankaranarayanan, S., Vardi, M.Y.: Regular real analysis. In: Pro-
ceedings of LICS, pp. 509–518 (2013)

13. Cohen, R.S., Gold, A.Y.: Theory of ω-languages: characterizations of ω-context-
free languages. J. Comput. Syst. Sci. 15(2), 169–184 (1977)

14. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model
checking discounted temporal properties. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 77–92. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24730-2 6

15. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantita-
tive transition systems. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27836-8 11

16. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and
mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15205-4 22

17. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

18. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discret.
Math. 23(3), 309–311 (1978)

19. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Barringer,
H., Fisher, M., Gabbay, D., Gough, G. (eds.) Advances in Temporal Logic, pp. 109–
127. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-015-9586-5 6

20. Mohri, M.: Weighted automata algorithms. In: Mohri, M. (ed.) Handbook of
Weighted Automata, pp. 213–254. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01492-5 6

21. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

22. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor.
Comput. Sci. 158(1), 343–359 (1996)

https://doi.org/10.1007/978-3-642-14162-1_50
https://doi.org/10.1007/978-3-642-14162-1_50
https://doi.org/10.1007/978-3-540-24730-2_6
https://doi.org/10.1007/978-3-540-24730-2_6
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-94-015-9586-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4

Comparator Automata in Quantitative Verification 437

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Logics and Equational Theories

Modular Tableaux Calculi for Separation
Theories

Simon Docherty1(B) and David Pym1,2

1 University College London, London, UK
{simon.docherty.14,d.pym}@ucl.ac.uk
2 The Alan Turing Institute, London, UK

Abstract. In recent years, the key principles behind Separation Logic
have been generalized to generate formalisms for a number of verification
tasks in program analysis via the formulation of ‘non-standard’ mod-
els utilizing notions of separation distinct from heap disjointness. These
models can typically be characterized by a separation theory, a collection
of first-order axioms in the signature of the model’s underlying ordered
monoid. While all separation theories are interpreted by models that
instantiate a common mathematical structure, many are undefinable in
Separation Logic and determine different classes of valid formulae, lead-
ing to incompleteness for existing proof systems. Generalizing systems
utilized in the proof theory of bunched logics, we propose a framework of
tableaux calculi that are generically extendable by rules that correspond
to separation theories axiomatized by coherent formulas. This class cov-
ers all separation theories in the literature—for both classical and intu-
itionistic Separation Logic—as well as axioms for a number of related
formalisms appropriate for reasoning about complex systems, security,
and concurrency. Parametric soundness and completeness of the frame-
work is proved by a novel representation of tableaux systems as coherent
theories, suggesting a strategy for implementation and a tentative first
step towards a new logical framework for non-classical logics.

Keywords: Bunched logic · Coherent logic · Kripke semantics
Proof theory · Separation logic · Separation theories
Substructural logic · Tableaux

1 Introduction

Separation Logic [39], introduced by Ishtiaq and O’Hearn [32], Reynolds [44],
Yang and O’Hearn [50], is a Hoare-style program logic suitable for reasoning
about programs that mutate data structures. In its original formulation, the
assertion language of Separation Logic is based on a model of O’Hearn and
Pym’s logic of bunched implications [40] formulated by considering heaps as
possible worlds with internal structure that allows their decomposition into sep-
arate pieces of memory. This decomposition is witnessed in the logic by the

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 441–458, 2018.
https://doi.org/10.1007/978-3-319-89366-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_24&domain=pdf

442 S. Docherty and D. Pym

separating conjunction ∗, with φ ∗ ψ informally read as ‘the heap can be split
into separate parts; one satisfying φ and the other satisfying ψ’.

Calcagno et al. [13] abstract the details of the heap model to a structure called
a separation algebra, a partial-deterministic and cancellative monoid model of
the Boolean logic of bunched implications (BBI), which can be used to generate
bespoke separation logics suitable for program analysis tasks beyond that of the
original formalism. Conflicting definitions of separation algebra have since been
given by adding/removing first-order properties or strengthening/weakening the
monoid properties [10,14,21,24]. These mutually exclusive definitions can be
encompassed in a framework of separation theories [10], collections of first-order
axioms (separation properties) common to separation logic models which the
definition of (B)BI model can be extended by. All separation logics in the lit-
erature can be seen to be models of separation theories, while the frameworks
Views [21] and Iris [33] explicitly implement the idea of generating program
logics parametrically by separation theory.

Recent work has revealed an expressivity gap between the logic of bunched
implications and common separation theories in the literature, however. Broth-
erston and Villard [10], Larchey-Wendling and Galmiche [36] show that separa-
tion properties like indivisibility of units and partial deterministic composition
determine distinct sets of valid BBI formulae, leading to the incompleteness of
standard proof systems with respect to typical classes of memory models. To
make matters worse, Brotherston and Villard additionally show that many sep-
aration properties (among them partial determinism) are undefinable in BBI,
and thus cannot be axiomatized by the logic. These results also hold for BI,
the intuitionistic logic of bunched implications. This is an increasingly relevant
issue given the growing number of intuitionistic separation logics, most promi-
nent amongst them Iris, a framework that utilizes a ‘later’ modality [37] that
can only be nontrivially defined in intuitionistic systems.

This expressivity gap is a significant problem for Separation Logic. A theorem
prover for deriving assertions satisfied by the underlying model is a necessary
component of any implementation of a separation logic, with the deployable
proof theory of the standard formalism crucial for its scalability to large code
bases [12,50]. Standard implementations are model-specific, however, and only
suitable for the heap model. In order to account for the large numbers of bespoke
separation logics, as well as Views/Iris-style frameworks, we require tools that
support parametrization by separation theory.

Technical Approach. The present work generalizes methods pioneered on
tableaux systems for a range of logics including and related to BI and BBI
[20,22,28,34] to specify modular tableaux calculi for the breadth of separation
theories in the literature, proved sound and complete uniformly and parametri-
cally in choice of separation theory. While previous systems implicitly implement
a systematic method for constructing tableaux proof theory for bunched logics,
subtle but significant changes must be made to additionally capture separation
theories. Past systems can be formulated as particular instances of our frame-
work, thus making the systematic method explicit.

Modular Tableaux Calculi for Separation Theories 443

First, we specify tableaux proof systems for BI and BBI, the propositional
basis for Separation Logic. The key difference between our calculi and tableaux
systems previously given in the literature is that we do not outsource any part
of the derivation of proofs to an algebra of labels or auxilliary proof system
for constraints. Instead, we utilize frame expansion rules that are of the same
form as the standard logical expansion rules of the system. These rules capture
the same structural properties (and more) but can also be added/removed in
a modular fashion. Crucially, this ensures separation properties—for example,
partial determinism—are not hard-coded into the basic systems via the structure
of labels, and facilitates the parametricity of our completeness theorem.

We extend these systems with a rule schema for separation properties that are
axiomatized by coherent formulae; a subset of first-order formulae with a special
syntactic form. This set contains every separation property that can be found
in the literature and is expressive enough to include virtually any axiom that
might be utilized in future. The strength of this statement can be justified by a
folklore result recently reconstructed by Dyckhoff and Negri [25] that shows that
every first-order axiom can be reconstructed as an equivalent system of coherent
formulae. We thus obtain a modular framework of (B)BI +Σ-tableaux systems,
where Σ is an arbitrary collection of coherent axioms.

In order to prove soundness and completeness of the system, we utilize a novel
representation of labelled tableaux systems as theories of coherent logic. The key
insight here is that the translation of coherent formulae into tableaux rules is
not one way: tableaux rules can naturally be seen as coherent formulae in a
signature augmented with special predicate symbols. The parametric soundness
and completeness of the framework can then be reduced to proving the soundness
and completeness of Tarskian truth for coherent logic with respect to a meta-
tableaux method, a problem positively resolved by Bezem and Coquand [4]. To
our knowledge, the application of this technique to labelled tableaux is new,
although, in the aforementioned work, Bezem and Coquand show how to encode
the tableaux method for first-order classical logic as a coherent theory, and trace
the idea of abbreviating formulae with predicate symbols to Skolem [47].

Contributions. We identify three principal contributions.

1. A sound and complete proof theory for the full breadth of separation theories
in the literature. Notably, this includes the first proof theoretic treatment of
separation theories for intuitionistic Separation Logic.

2. A new technique for constructing proof systems for essentially any logic inter-
preted on Kripke structures that are axiomatized by coherent theories.

3. The identification of tableaux systems with theories of coherent logic.

On points 2 and 3, we believe many tableaux systems in the literature are sub-
sumed by this method, with their respective ‘Hintikka set’ completeness proofs
actually localized instances of the parametric completeness theorem given here.
This suggests the possibility of a logical framework for non-classical logics via the
representation of tableaux systems as coherent theories. This may be related to
Schmitt and Tishkovsky’s [45] technique for automatically synthesising tableaux

444 S. Docherty and D. Pym

calculi for logics that can be presented as first-order theories in a particular form.
We believe the “rule refinement” post-processing their tableau rules undergo
after synthesis can be made redundant by instead synthesising from coherent
theories, but we defer such an investigation to another occasion.

Related Work. While much work has been done on the proof theory of BI
and BBI [9,28,29,41], as well as proof systems for the concrete heap model
of Separation Logic [5,27,30], very little exists for separation theories. A key
exception to this is Hóu et al.’s [31] labelled sequent calculi for propositional
abstract separation logic. There, a labelled sequent calculus for BBI is extended
with rules corresponding to the most common separation properties – partial
determinism, cancellativity, indivisible unit and disjointness – and completeness
and cut elimination is proved. In Hóu’s PhD dissertation [29] the properties
cross-split and splittability are additionally handled, although completeness for
these new rules requires ‘non-trivial changes’ to the previous proofs.

The classes of model captured by our systems strictly extend those of Hóu
et al. [31]—in particular, by additionally considering classes of BI models that
are appropriate for intuitionistic separation logics—and our calculi are proved
complete uniformly. Our systems are also generically extendable according to
a rule schema, meaning the framework should be suitable for new separation
theories devised in the future. A deficiency of our approach with respect to Hóu
et al.’s is a lack of implementation, though we note that the representation of our
systems as theories of coherent logic suggests off-the-shelf coherent logic provers
(cf. [43]) could be used to give naive implementations of our framework.

Brotherston and Villard [10] deal with the undefinability of separation the-
ories by defining a conservative extension of BBI called HyBBI, extending the
syntax with nominals, satisfaction operators and binders. This extra expressiv-
ity leads to the axiomatizability of the undefinable separation properties. This
work is not specifically concerned with proof theory, giving only a Hilbert-style
system for HyBBI, and has the defect of requiring modifications to the syntax
of Separation Logic. In addition, a significant theoretical reformulation would
be required to capture intuitionistic separation theories this way. In contrast, in
our work the necessary machinery is internalized within the proof system and
both Boolean and intuitionistic cases are taken care of uniformly.

Finally, we connect our work to a line of research in proof theory investigating
the generation of proof rules from coherent theories. Simpson [46] and Braüner
[8] have used this technique to produce natural deduction rules, while Negri
[38] has extensively developed it to generate (systems of) labelled sequent rules
from frame conditions axiomatized by (generalized) coherent formulae. To our
knowledge the present work is the first application of these ideas to the tableaux
method. In addition, we believe the encoding of the proof systems themselves as
coherent theories is novel.

Modular Tableaux Calculi for Separation Theories 445

2 Preliminaries

The Logics of Bunched Implications. We first recall O’Hearn and Pym’s
logics of bunched implications BI and BBI [40], the propositional basis of Separa-
tion Logic’s assertion language. BI and BBI are archetypal examples of bunched
logics; systems given by combining the standard additives of classical or intution-
istic propositional logic with the multiplicatives of a substructural logic. This idea
has been developed to give logics for reasoning about concurrency [23] and the
layering structure of complex systems [17,18,22], Hennessey-Milner-style pro-
cess logics for reasoning about security and systems modelling [1,19] and modal
and epistemic systems for reasoning about reachability/knowledge subject to the
availability of resources [20,26].

Let Prop be a set of atomic propositions, ranged over by p. The set of all
formulae of (B)BI is generated by the following grammar:

φ ::= p | � | ⊥ | I | φ ∧ φ | φ ∨ φ | φ → φ | φ ∗ φ | φ −∗ φ.

For BI, the standard connectives are interpreted intuitionistically; in BBI, clas-
sically. Negation is defined by ¬φ := φ → ⊥. Figure 1 gives Hilbert rules for the
multiplicative fragment of the logics.

ξ � φ η � ψ

ξ ∗ η � φ ∗ ψ

η ∗ φ � ψ

η � φ −∗ ψ

ξ � φ −∗ ψ η � φ

ξ ∗ η � ψ

(φ ∗ ψ) ∗ ξ � φ ∗ (ψ ∗ ξ) φ ∗ ψ � ψ ∗ φ φ ∗ I �� φ

Fig. 1. Rules for the multiplicative fragment of (B)BI.

A BI frame is given by a tuple X = (X,≤, ◦, E), where (X,≤) is a partial
order, ◦ : X2 → P(X) a binary composition (where P(X) denotes the power set
of X) and E ⊆ X a set of units for ◦. This structure must satisfy the following
axioms, where the outermost universal quantification is left implicit:

(Comm) z ∈ x ◦ y → z ∈ y ◦ x (Up) e ∈ E ∧ e ≤ e′ → e′ ∈ E
(Unit 1) ∃e ∈ E(x ∈ x ◦ e) (Unit 2) x ∈ y ◦ e ∧ e ∈ E → y ≤ x
(Assoc) t′ ≥ t ∈ x ◦ y ∧ w ∈ t′ ◦ z → ∃s, s′, w′(s′ ≥ s ∈ y ◦ z ∧ w ≥ w′ ∈ x ◦ s′).

The axioms formalize intuitive ideas about the composition of generic resources;
for example, that the composition satisfies a generalized associativity that is com-
patible with the comparison order. This analysis is known as resource semantics.

A sound interpretation of BI is given by extending the standard poset seman-
tics for propositional intuitionistic logic. This requires a persistent valuation: a
map V : Prop → P(X) such that x ∈ V(p) and x ≤ y entail y ∈ V(p). We
call a BI frame X together with a persistent valuation V a Kripke BI model.
The satisfaction relation �V is given in Fig. 2. As is standard for intuitionistic
logics, persistence extends to all formulae of BI. Kripke BBI models and their

446 S. Docherty and D. Pym

r � p iff r ∈ V(p) r � � r �� ⊥
r � φ ∧ ψ iff r � φ and r � rψ � φ ∨ ψ iff r � φ or r � ψ

r � φ → ψ iff for all r′ ≥ r, r′ � φ implies r′ � ψ; r � I iff r ∈ E

r � φ ∗ ψ iff there exists r′, s, t such that r ≥ r′ ∈ s ◦ t, s � φ and t � ψ

r � φ −∗ ψ iff for all r′, s, t: r ≤ r′, t ∈ r′ ◦ s and s � φ implies t � ψ

Fig. 2. Satisfaction for (B)BI. BBI is the case where ≤ is substituted with =.

associated semantics are given by the special case of the definitions for BI when
the partial order ≤ is equality.

Coherent Logic. Coherent logic is the fragment of first-order logic consisting
of formulae of the form A1(⇀x)∧· · ·∧An(⇀x) → ∃⇀y1B1(⇀x, ⇀y1)∨· · ·∨∃⇀ymBm(⇀x,⇀ym),
for n,m ≥ 0, where each Ai is an atomic formula involving only variables from
the vector ⇀x, and each Bi is the conjunction of atomic formulae involving only
variables from the vectors ⇀x and ⇀yi. In a coherent formula, the variables ⇀x are
implicitly universally quantified (with scope the whole formula) and both ⇀x and
⇀yi may be empty. The case n = 0 is a consequent that is always true—� →
∃⇀y1B1(⇀x, ⇀y1) ∨ · · · ∨ ∃⇀ymBm(⇀x,⇀ym)—similarly, the case m = 0 is an antecedent
that is always false: A1(⇀x) ∧ · · · ∧ An(⇀x) → ⊥.

This fragment of first-order logic is sometimes referred to as geometric logic;
however, we reserve this name for the generalization of the definition given here
that permits the consequent to be an infinite disjunction. In turn, coherent logic
generalizes—via the case m = 1 with empty ⇀y1—the Horn clause fragment of
first-order logic utilized in logic programming and first-order theorem provers
based on the resolution method.

We call a set of coherent formulae Φ a coherent theory. Models of coherent
theories are given in a way standard for first-order logic: a Tarskian model of Φ
is a non-empty set X together with an interpretation I, which assigns to every n-
ary relation symbol R in the signature a set RI ⊆ Xn such that for each coherent
formulae in Φ, for all ⇀x ∈ X, the consequent ∃⇀y1 ∈ X(BI(⇀x, ⇀y1)) ∨ · · · ∨ ∃⇀ym ∈
X(BI(⇀x,⇀ym)) is true whenever the antecedent AI

1 (⇀x) ∧ · · · ∧ AI
n(⇀x) is true.

Many common mathematical structures are axiomatized by coherent theo-
ries. For example, algebraic structures like groups, rings, lattices, and fields, as
well as total, partial, and linear orders. Further examples are found in the the-
ory of confluence for term rewriting systems [4,48]. Of interest for our purposes,
(B)BI frames are axiomatized by coherent theories. As we will see, every known
separation property is given directly as a coherent axiom, with the exception of
Splittability, which can be rewritten as a coherent theory.

3 Modular Tableaux Calculi for Separation Theories

The Base Tableaux Systems. We begin with tableaux systems designed for
the semantics of (B)BI as outlined in Sect. 2. As is standard for tableaux systems,

Modular Tableaux Calculi for Separation Theories 447

Logical expansion rules

〈T∧〉 Tφ ∧ ψ : x ∈ F
〈{Tφ : x,Tψ : x}, ∅〉 〈F∧〉 Fφ ∧ ψ : x ∈ F

〈{Fφ : x}, ∅〉 | 〈{Fψ : x}, ∅〉

〈T∨〉 Tφ ∨ ψ : x ∈ F
〈{Tφ : x}, ∅〉 | 〈{Tψ : x}, ∅〉 〈F∨〉 Fφ ∨ ψ : x ∈ F

〈{Fφ : x,Fψ : x}, ∅〉

〈TI〉 TI : x ∈ F
〈∅, {Ex}〉

Frame expansion rules

〈Ref〉 Expr(x) ∈ C ∪ F
〈∅, {x ∼ x}〉 〈Trans〉 x ∼ y, y ∼ z ∈ C

〈∅, {x ∼ z}〉

〈Cong〉 x ∼ y, y ∼ x, Expr(x) ∈ C
〈∅, {Expr(y/x)}〉 〈Comm〉 R∗xyz ∈ C

〈∅, {R∗yxz}〉

〈Unit 1〉 Expr(x) ∈ F ∪ C
〈∅, {Eci, R∗xcix}〉 〈Unit 2〉 R∗xyz, Ey ∈ C

〈∅, {x ∼ z}〉

with ci a fresh label and Expr(x) any expression in which x occurs.

Fig. 3. Shared rules for the tableaux systems.

derivations in our calculi are implicit attempts to construct a countermodel for
the formula φ to be proved. This is done via the derivation of syntactic expres-
sions that give partial specifications of a (B)BI model that can be realized as a
real model if the formula is invalid. If every possible countermodel construction
(i.e., every branch of a tableau) results in a contradiction, then we may conclude
that no countermodel exists and call such a tableau a proof of φ.

The calculi work with two types of syntactic expression. First we have labelled
formulae Sφ : x, given by a sign S ∈ {T,F} together with a (B)BI formula φ
and a label x ∈ {ci | i ∈ N}. A labelled formula states that a (B)BI formula φ
is true (T) or false (F) at the state represented by the label x. The other type
are called constraints, and encode a partial specification of the structure of a
(B)BI frame. For labels x, y, z ∈ {ci | i ∈ N}, a constraint is an expression of the
form x ∼ y, R∗xyz or Ex, corresponding to the state represented by x being ≤
that represented by y, the state represented by z being a composition of those
represented by x and y, or the state represented by x being a unit, respectively.

Unlike other bunched logic tableaux systems, we only utilize atomic labels,
as opposed to a monoidal algebra of labels that encodes properties of the multi-
plicative connectives. New constraints are derived only by frame expansion rules
(which directly reflect the axioms that define (B)BI frames and equality), rather
than through the properties of a label algebra and a separate proof system for
constraints. A constrained set of statements (CSS) is a pair 〈F , C〉, where F is a
set of labelled formulae and C is a set of constraints. It is finite if F and C are.

Informally, tableaux are trees annotated with finite CSSs. Each branch deter-
mines a CSS 〈F , C〉 where F (respectively C) is the union of the formula (con-
straint) sets that occur on the branch. Figures 3 and 4 give rules dictating the
expansion of tableaux: Fig. 3 gives rules shared by both the BI and BBI systems,
while Fig. 4 gives rules exclusive to each system. While ci, cj , ck denote concrete

448 S. Docherty and D. Pym

fresh labels, x, y, z etc. are label variables. An instance of a rule is triggered for
a branch CSS when a concrete substitution instance of the premiss holds of it,
and the same label substitutions carry through to the (branching) CSS(s) that
the conclusion dictates are added to the tree. We now define (B)BI tableaux
formally, with ⊕ giving concatenation of lists.

Logical expansion rules for BI

〈T →〉 Tφ → ψ : x ∈ F and x ∼ y ∈ C
〈{Fφ : y}, ∅〉 | 〈{Tψ : y}, ∅〉 〈F →〉 Fφ → ψ : x ∈ F

〈{Tφ : ci,Fψ : ci}, {x ∼ ci}〉

〈T∗〉 Tφ ∗ ψ : x ∈ F
〈{Tφ : ci,Tψ : cj}, {R∗cicjck, ck ∼ x}〉 〈F∗〉 Fφ ∗ ψ : x ∈ F and R∗yzw, w ∼ x ∈ C

〈{Fφ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

〈T−∗〉 Tφ −∗ ψ : x ∈ F and x ∼ w, R∗wyz ∈ C
〈{Fφ : y}, ∅〉 | 〈{Tψ : z}, ∅〉 〈F−∗〉 Fφ −∗ ψ : x ∈ F

〈{Tφ : cj ,Fψ : ck}, {x ∼ ci, R∗cicjck}〉

Frame expansion rules for BI

〈Assoc〉 t ∼ t′, R∗xyt, R∗t′zw ∈ C
〈∅, {ci ∼ cj , ck ∼ w, R∗yzci, R∗xcjck}〉 〈Up〉 Ex, x ∼ y ∈ C

〈∅, {Ey}〉

Logical expansion rules for BBI

〈T¬〉 T¬φ : x ∈ F
〈{Fφ : x}, ∅〉 〈F¬〉 F¬φ : x ∈ F

〈{Tφ : x}, ∅〉

〈T →〉 Tφ → ψ : x ∈ F
〈{Fφ : x}, ∅〉 | 〈{Tψ : x}, ∅〉 〈F →〉 Fφ → ψ : x ∈ F

〈{Tφ : x,Fψ : x}, ∅〉

〈T∗〉 Tφ ∗ ψ : x ∈ F
〈{Tφ : ci,Tψ : cj}, {R∗cicjx}〉 〈F∗〉 Fφ ∗ ψ : x ∈ F and R∗yzx ∈ C

〈{Fφ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

〈T−∗〉 Tφ −∗ ψ : x ∈ F and R∗xyz ∈ C
〈{Fφ : y}, ∅〉 | 〈{Tψ : z}, ∅〉 〈F−∗〉 Fφ −∗ ψ : x ∈ F

〈{Tφ : ci,Fψ : cj}, {R∗xcicj}〉

Frame expansion rules for BBI

〈Assoc〉 R∗xyt, R∗tzw ∈ C
〈∅, {R∗yzci, R∗xciw}〉 〈Sym〉 x ∼ y ∈ C

〈∅, {y ∼ x}〉

with ci, cj , ck fresh labels, Expr(x) any expression in which x occurs.

Fig. 4. Tableaux rules for (B)BI

Definition 1 (Tableau). A (B)BI tableau for a finite CSS 〈F0, C0〉 is a list of
CSSs, called branches, built inductively according to the following rules:

1. The one branch list [〈F0, C0〉] is a tableau for 〈F0, C0〉;
2. If the list Tm ⊕ [〈F , C〉] ⊕ Tn is a tableau for 〈F0, C0〉 and

Premiss
〈F1, C1〉 | . . . | 〈Fk, Ck〉

is a (B)BI expansion rule from Figs. 3 or 4 for which a concrete instance of
Premiss is fulfilled by 〈F , C〉, then the list Tm ⊕ [〈F ∪ F1, C ∪ C1〉; . . . ; 〈F ∪
Fk, C ∪ Ck〉] ⊕ Tn is a tableau for 〈F0, C0〉.

A (B)BI tableau for φ is a (B)BI tableau for 〈{Fφ : c0}, ∅〉. ��

Modular Tableaux Calculi for Separation Theories 449

Partial Determinism z ∈ x ◦ y ∧ z′ ∈ x ◦ y → z = z′

Total ∃z(z ∈ x ◦ y)
Cancellativity z ∈ x ◦ y ∧ z ∈ x ◦ y′ → y = y′

Single Unit x ∈ E ∧ x′ ∈ E → x = x′

Indivisible Units x ∈ y ◦ z ∧ x ∈ E → y ∈ E

Disjointness x ∈ y ◦ y → y ∈ E

Splittability x ∈ E ∧ x ∈ E → ⊥, x ∈ E ∨ x ∈ E, x ∈ E → ∃y, z(y ∈ E ∧ z ∈ E ∧ x ∈ y ◦ z)
Cross-Split x ∈ t ◦ u ∧ x ∈ v ◦ w → ∃a, b, c, d(t ∈ a ◦ b ∧ u ∈ c ◦ d ∧ v ∈ a ◦ c ∧ w ∈ b ◦ d)
Upwards-Closed z ∈ x ◦ y ∧ z ≤ z′ → ∃x′, y′(z′ ∈ x′ ◦ y′ ∧ x ≤ x′ ∧ y ≤ y′)
Downwards-Closed z ∈ x ◦ y ∧ x′ ≤ x ∧ y′ ≤ y → ∃z′(z′ ∈ x′ ◦ y′ ∧ z′ ≤ z)
Non-Branching x ≤ y ∧ x ≤ y′ → y ≤ y′ ∨ y′ ≤ y

Always-Joins x ≤ y ∧ x ≤ y′ → ∃z(y ≤ z ∧ y′ ≤ z)
Increasing z ∈ x ◦ y → y ≤ z

Unit Self Joining Ex → x ∈ x ◦ x

Normal Increasing z ∈ x ◦ y ∧ Ez → x ≤ z

Fig. 5. Separation properties.

Definition 2 (Closed Tableau/Proof). A CSS 〈F , C〉 is closed if one of the
following closure conditions holds: (1) Tφ : x ∈ F , Fφ : y ∈ F and x ∼ y ∈ C;
(2) F� : x ∈ F ; (3) T⊥ : x ∈ F ; (4) FI : x ∈ F and Ex ∈ C. A CSS is open iff
it is not closed. A tableau is closed iff all its branches are closed. A proof for a
formula φ is a closed tableau for φ. ��

We note that we could simply add 〈T¬〉, 〈F¬〉, and 〈Sym〉 to the BI system
and obtain one for BBI. However, this causes a significant amount of redundancy
in the production of labels and constraints while requiring many more derivation
steps in proofs, something that does not arise with the BBI rules given.

Extension with Separation Theories. A separation property is a first-order
axiom in the language of (B)BI Kripke frames. Figure 5 gives separation prop-
erties taken from across the Separation Logic literature [10,13,14,24], presented
as coherent formulae. A separation theory is thus a collection Σ of axioms from
Fig. 5. The syntactic form of coherent formulae enables a uniform translation of
separation properties into tableaux expansion rules and closure conditions. First,
each first-order atomic formula is translated into constraints: Tr(z ∈ x ◦ y) =
R∗xyz, Tr(x ∈ E) = Ex, Tr(x ≤ y) = x ∼ y and Tr(x = x′) = x ∼ x′, x′ ∼ x.
Given A1(⇀x) ∧ · · · ∧ An(⇀x) → ∃⇀y1B1(⇀x, ⇀y1) ∨ · · · ∨ ∃⇀ymBm(⇀x,⇀ym) with n,m �= 0,
we obtain the frame expansion rule

Tr(A1(⇀x)), . . . , T r(An(⇀x)) ∈ C
〈∅, C1〉 | . . . | 〈∅, Cm〉

,

where each Ci is the set of constraints translated from the conjuncts of Bi, using
fresh labels ⇀ci in place of the previously quantified ⇀yi. For example, the separation
properties Cross-Split and Non-Branching are translated to the rules

R∗tux, R∗vwx ∈ C
〈∅, {R∗cicjt, R∗ckclu, R∗cickv, R∗cjclw}〉 and

x ∼ y, x ∼ y′ ∈ C
〈∅, {y ∼ y′}〉 | 〈∅, {y′ ∼ y}〉 ,

450 S. Docherty and D. Pym

where ci, cj , ck, cl are fresh labels. The special case n = 0 gives a rule with premiss
Expr1(x1), . . . , Exprp(xp) ∈ F ∪ C, where each Expri(xi) is any expression
in which xi occurs and the xi are the universally quantified variables in the
original formula. The case m = 0 gives a new closure condition consisting of the
conjunction of constraints translated from the antecedent of the original formula.

Note that the property Splittability is defined by a system of coherent axioms.
These axioms force the new predicate E to be interpreted as the complement of
E. When translated into tableaux rules, x ∈ E gives a new constraint Ex.

Given a separation theory Σ, a (B)BI + Σ-tableau/proof is defined in the
same way as Definitions 1 and 2, except that a tableau can also be expanded by
translated Σ-rules, and any new closure properties obtained from Σ can factor
into the closure of a tableau and thus into proofs.

We give an example of a tableau proof in Fig. 6. The formula (¬I −∗ ⊥) → I
is valid in BBI models satisfying Total, but not in all BBI models [35], and
Fig. 6—written, for clarity, using the traditional representation of tableaux and
using ⊗ to denote closed branches—shows that the tableaux system for BBI +
Total proves it. The left-hand branch is closed because both FI : c0, TI : c0 and
c0 ∼ c0 occur, while the right is closed because T⊥ : c1 occurs.

4 Applications to Separation Logics

A separation logic can be determined by an assertion logic to describe machine
state—a theory of (B)BI generated by validity in a concrete model of (B)BI +
Σ for some separation theory Σ—and a specification logic to describe changes
to machine state following program execution—typically a logic of Hoare triples
{φ}C{ψ}, where φ and ψ are formulas of the assertion language and C is a
program in some programming language. Soundness of the frame rule,

{φ }C {ψ }
{φ ∗ χ }C {ψ ∗ χ } ,

where χ does not include any free variables modified by the program C, witnesses
the coherence of these different aspects, and facilitates Separation Logic’s char-
acteristic ‘local reasoning’, which allows conclusions about a program’s effect on
the global state to be derived from reasoning on just the resource it accesses.

(1)
(2)
(3)

(4)
(5)
(6)

〈{F(¬I −∗ ⊥) → I : c0}, ∅〉
〈{T¬I −∗ ⊥ : c0, FI : c0},∅〉

〈∅, {R∗c0c0c1}〉

〈{F¬I : c0}, ∅〉
〈{TI : c0}, ∅〉
〈∅, {c0 ∼ c0}〉

⊗

〈{T⊥ : c1}, ∅〉
⊗

Premiss
〈F →〉, from (1)
Total, from (1)

〈T−∗〉, from (2), (3)
〈F¬〉, from (4)
〈Ref〉, from (5)

Fig. 6. Tableau proof of (¬I −∗ ⊥) → I in the BBI + Total system.

Modular Tableaux Calculi for Separation Theories 451

To demonstrate the wide applicability of our framework we now give a num-
ber of separation logics that are models of separation theories. We note that our
systems can be incomplete with respect to a given concrete model, but this is
as expected for any proof system: the benefit versus a standard (B)BI system—
which will be incomplete with respect to the class of models of a given separation
theory—is the capability to make inferences based on the additional structure the
model carries. Because of space constraints this selection is demonstrative rather
than exhaustive. Other examples include Petri nets [13]; step-indexed models for
storable locks [11] and the Iris framework [33]; separation logics incorporating
named [42] and fractional [7] permissions; and separation logics designed for
message passing [49] and amortized resource analysis [3].

Heaps. Our first example is given by the standard memory models of Separation
Logic [32]. A heap is a partial function h : N → Z, representing an allocation
of memory addresses to values. Given heaps h, h′, h#h′ denotes that dom(h) ∩
dom(h′) = ∅; h · h′ denotes the union of functions with disjoint domains, which
is defined iff h#h′. The empty heap, [], is defined nowhere.

Let H denote the set of all heaps. Then HeapBBI = (H, ·, {[]}) is a BBI
frame. Letting h � h′ denote that h′ extends h, HeapBI = (H,�, ·,H) defines a
BI frame. These frames generate the standard classical and intuitionistic mod-
els of Separation Logic. HeapBBI satisfies Partial Determinism, Cancellativity,
Single Unit, Indivisible Units, Cross-Split and Unit Self Joining; HeapBI addi-
tionally satisfies Splittability, Upwards-Closed, Downwards-Closed, Increasing
and Normal Increasing while dropping Single Unit and Unit Self Joining.

One property distinguishing the standard memory models is that ∗-
elimination—φ∗ψ → ψ, useful for reasoning about garbage-collected languages—
is valid in the intuitionistic heap model but not the classical. Cao et al. [14] show
that this corresponds to the separation property Increasing. Figure 7—written
with a traditional tableau presentation—shows a single branch tableaux proof
of φ ∗ ψ → ψ for BI + Increasing, closed because Tψ : c4, Fψ : c1 and c4 ∼ c1

occur.

Permissions. Permissions are incorporated into variants of separation logics
that are designed to reason about certain kinds of concurrent algorithms and
more fine-grained notions of memory disjointness: for example, disjointness mod-
ulo shared read permission. Hóu [29] reports a schema of Clouston that encom-
passes many such models: we recall it, with two concrete instances.

Let V be a set of values and � : V 2 → V an associative and commutative
partial function. Denote by HV the set of V-valued heaps h : N → V . Then
HeapV = (HV , ◦�, {[]}) is a BBI frame, where ◦� is defined by

h1 ◦� h2(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h1(n) � h2(n) if n ∈ dom(h1) ∩ dom(h2) and h1(n) � h2(n) ↓
h1(n) if n ∈ dom(h1) \ dom(h2)
h2(n) if n ∈ dom(h2) \ dom(h1)
undefined otherwise.

452 S. Docherty and D. Pym

(1)
(2)
(3)
(4)
(5)

〈{Fφ ∗ ψ → ψ : c0}, ∅〉
〈{Tφ ∗ ψ : c1, Fψ : c1},{c0 ∼ c1}〉

〈{Tφ : c3, Tψ : c4}, {R∗c3c4c2, c2 ∼ c1}〉
〈∅, {c4 ∼ c2}〉
〈∅, {c4 ∼ c1}〉

⊗

Premiss
〈F →〉, from (1)
〈T∗〉, from (2)
Increasing, from (3)
〈Trans〉, from (2), (3)

Fig. 7. Tableau proof of φ ∗ ψ → ψ in the BI + Increasing system.

Hóu defines Bornat et al.’s [6] counting permissions model with V = Z
2 and

(x, i) � (y, j) =

⎧
⎪⎨

⎪⎩

(x, i + j) if x = y, i < 0 and j < 0
(x, i + j) if x = y, i + j ≥ 0 and (i < 0 or j < 0)
undefined otherwise.

This frame satisfies Partial Determinism, Cancellativity, Indivisible Units, Single
Unit, Cross-Split and Unit Self Joining.

Hóu defines Dockins et al.’s [24] binary tree model by considering the set T
of non-empty binary trees with leaves labelled � or ⊥ that are quotiented by the
smallest congruence that identifies any subtree in which all leaves have the same
label with a single leaf carrying that label. Then V = Z × T , and � is defined,
where ∨ (∧) denotes pointwise disjunction (conjunction) of equivalent trees, by

(x, [t]) � (y, [t′]) =

{
(x, [t ∨ t′]) if x = y and [t ∧ t′] = [⊥]
undefined otherwise.

This frame satisfies Partial Determinism, Cancellativity, Single Unit, Indivisible
Units, Disjointness, Splittability, Cross-Split and Unit Self Joining.

Crash Hoare Logic. Chen et al. [16] use a separation logic to verify that the
FSCQ file system meets its specification and secures its data under any sequence
of crashes. Cao et. al. [14] give the underlying model as the following BI frame.
Let V + be the set of non-empty lists over a set V and ε the empty list. Buffer
heaps are defined to be heaps h : N → V +. Let Hbuff be the set of all buffer
heaps. Then Heapbuff = (Hbuff ,≤, ·, {[]}) is a BI frame, where · is the usual heap
composition, and h1 ≤ h2 iff dom(h1) = dom(h2) and ∀x ∈ N, ∃l ∈ V +∪{ε} such
that h1(x) = l ⊕ h2(x). This frame satisfies Partial Determinism, Cancellativity,
Single Unit, Indivisible Units, Cross-Split, Upwards-Closed, Downwards-Closed,
Always-Joins, Non-Branching, Unit Self Joining, and Normal Increasing.

Typed Heaps. Cao et al. [14] give an example derived from the handling of
multibyte locks in Appel’s [2] Verified System Toolchain separation logic for
CompCert C. Let a typed heap be a partial map h : N → {char, short1, short2}
such that h(n) = short1 implies h(n+1) = short2. Let Htyp denote the set of all
typed heaps. Then HeapTyp = (Htyp,≤, ◦,Htyp) is a BI frame, where h1 ≤ h2

iff, for all n ∈ dom(h1) either n ∈ dom(h2) and h1(n) = h2(n) or h1(n) = char,
and h ∈ h1 ◦h2 iff h1 ·h2 ≤ h. This frame satisfies Indivisible Units, Disjointness,

Modular Tableaux Calculi for Separation Theories 453

Splittability, Cross-Split, Upwards-Closed, Downwards-Closed, Non-Branching,
Increasing, and Normal Increasing.

5 Metatheory

Tableaux Systems as Coherent Theories. Just as coherent formulae yield
tableaux rules, tableaux rules yield coherent formulae, allowing a complete spec-
ification of our calculi as coherent theories. Our framework determines a first-
order signature: for each formula φ of (B)BI, we have unary relation symbols Tφ
and Fφ, together with the unary relation symbol E, the binary relation symbol
∼ and the ternary relation symbol R∗.

Given a rule premiss ‘Sφ : x ∈ F and A1x
1
1 . . . x1

k1
, . . . , Amxm

1 . . . xm
km

∈ C’ we
obtain the coherent antecedent C(⇀x) ≡ Sφ(x) ∧

∧
i Aix

i
1 . . . xi

ki
. For the j − th

conclusion 〈Fj , Cj〉 of the rule we obtain ∃⇀yjCj(⇀x, ⇀yj), where Cj is the conjunction
of atomic formulae translated from the constraints in Fj ∪ Cj , with any fresh
labels ⇀c that occurred substituted with ⇀yj . The translated rule is thus C(⇀x) →
∃⇀y1C1(⇀x, ⇀y1)∨ · · · ∨∃⇀ynCn(⇀x,⇀yn). For example, the instance of the BI rule 〈F−∗〉
for φ−∗ψ becomes Fφ−∗ψ(x) → ∃y1, y2, y3(Tφ(y2)∧Fψ(y3)∧x∼y1 ∧R∗y1y2y3).

There are some special cases to pay attention to. For tableaux rules with
premiss Expr(x) ∈ F ∪ C the antecedent of the translated coherent formula
is �. This is not the case for rules with premiss Expr(x) ∈ C: these must be
translated into a separate rule for each of the finitely many ways x can occur
in each constraint. Finally, each closure condition ‘S1φ1 : x1, . . . ,Snφn : xn,
A1y

1
1 . . . y1

k1
, . . ., and Amym

1 . . . ym
km

’ gives
∧

i Siφi(xi) ∧
∧

i Aiy
i
1 . . . yi

ki
→ ⊥.

Given a (B)BI formula φ, the finite coherent theory Φ
(B)BI+Σ
φ is given by the

translated (B)BI + Σ-frame expansion rules, the translated closure conditions
and the instances of translated logical expansion rules for subformulae of φ. We
note that we could specify the whole tableaux system for (B)BI + Σ as an infinite
coherent theory (similar to the axiomatization of a Hintikka set in standard
tableaux completeness proofs), but finiteness is required for our argument.

Soundness and Completeness. We now prove soundness and completeness
of the tableaux method via an analogous result for the Tarskian semantics of
coherent logic. First, we show that the existence of a Kripke (B)BI + Σ-model
with a state that doesn’t satisfy φ is equivalent to the existence of a Tarskian
model of Φ

(B)BI+Σ
φ ∪ {∃x.Fφ(x)}.

Definition 3 (Induced Kripke Model of M). Given a Tarskian model M
of Φ

(B)BI+Σ
φ , define [a] = {b | a ∼I b, b ∼I a} and XM = {[a] | a ∈ X}.

Then [a] ≤M [b] iff a ∼I b, [c] ∈ [a] ◦M [b] iff RI
∗ abc, and EM = {[a] | EIa}.

VM(p) = {[a] | ∃b(b ∼I a and TpI(b))}.

1. If M is a model of ΦBI+Σ
φ , the induced Kripke frame is given by XM =

(XM,≤M, ◦M, EM); the induced Kripke model is given by (XM,VM).
2. If M is a model of ΦBBI+Σ

φ , the induced Kripke frame is given by XM =
(XM, ◦M, EM); the induced Kripke model is given by (XM,VM).

454 S. Docherty and D. Pym

The induced Kripke frame is a well-defined structure because of the frame
tableaux rules, with [−] forming equivalence classes and ≤M, ◦M, and EM
independent from the choice of representatives due to 〈Cong〉. The (B)BI + Σ-
frame properties for the induced frame follow from their correspondent rules in
the tableaux and the valuation VM is independent of choice of representative
and persistent for induced Kripke BI + Σ-models.

Lemma 1. Given a Tarskian model M of Φ
(B)BI+Σ
φ , the induced Kripke model

XM is a Kripke (B)BI + Σ-model. ��

The significance of this model is that satisfiability of subformulae ψ of φ
is determined by the interpretation of the relation symbols Sψ in the original
Tarskian model. A simple proof by induction yields the next lemma.

Lemma 2. Let M be a Tarskian model of the coherent theory Φ
(B)BI+Σ
φ , ψ a

subformula of φ and a ∈ X. 1. If TψI(a) holds in M, then [a] �VM ψ; 2. If
FψI(a) holds in M, then [a] ��VM ψ. ��

We can also induce Tarskian models from Kripke models. Let (X ,V) be a
Kripke (B)BI + Σ-model. We define the induced Tarskian model by taking X
to be the carrier, and defining the interpretation I by ∼I = ≤, RI

∗ = {(a, b, c) |
c ∈ a ◦ b}, EI = E, TψI = {x | x �V ψ} and FψI = {x | x ��V ψ}.

Lemma 3. Every Kripke (B)BI+Σ-model (X ,V) with a state x (not) satisfying
φ induces a model of Φ

(B)BI+Σ
φ ∪ {∃x.Tφ(x)} (Φ(B)BI+Σ

φ ∪ {∃x.Fφ(x)}). ��

We now connect the existence of a closed tableaux to Bezem and Coquand’s
[4] breadth-first forward reasoning proof system for coherent logic. In their sys-
tem, judgments of the form X �Φ D are derived, where X is a set of atomic
first-order sentences, Φ a finite coherent theory and D a closed coherent disjunc-
tion; a first-order sentence with the same syntactic shape as the consequent of a
coherent formula. The derivation of the judgment X �Φ D is defined inductively:

1. (Base): X �Φ D holds if for one of the disjuncts ∃⇀y.C of D, there are constants
⇀a such that all conjuncts of C[⇀y := ⇀a] occur in X;

2. (Inductive Step): Consider all closed instances Ci → Di of Φ-axioms such
that the conjuncts of Ci occur in X but the conjuncts of no disjunct Ci,j

of Di do. There exist finitely many, with their consequents thus enumerated
D0, . . . , Dn. Let ∃⇀yi,j .Ci,j denote the j-th of the mi disjuncts of Di, and
denote by Ci,j the substitution of ⇀yi,j with fresh constants. Infer X �Φ D
from ∀j0 ∈ {1, . . . , m0}, . . . ,∀jn ∈ {1, . . . , mn}(X,C0,j0 , . . . , Cn,jn

�Φ D).
Importantly, if a Di is ⊥, then mi = 0, and X �Φ D is trivially inferred.

A derivation can be seen as a kind of tableau, branching at each stage by
adding every possible consequence of Φ obtainable from the atomic first-order
sentences at the current node. A semi-decidable procedure is given to systemat-
ically search for a derivation of X �Φ D. First check the base case. If it doesn’t
hold, apply the inductive step to any Φ-axioms fireable from X. If there are

Modular Tableaux Calculi for Separation Theories 455

none, X forms an Herbrand countermodel of Φ against D. If the inductive step
can be applied, apply the search procedure recursively to all premisses. Bezem
and Coquand show that successful termination corresponds to Tarskian truth.

Theorem 1 ([4]). X �Φ D is derivable iff the search procedure successfully
terminates for X �Φ D iff D is true in all Tarskian models of X ∪ Φ. ��

It is straightforward that the search procedure for {Fφ(a)} �Φ
(B)BI+Σ
φ ⊥

corresponds precisely to an exhaustive search for a closed tableau for φ.

Lemma 4. There exists a closed (B)BI + Σ-tableaux for φ iff the search pro-

cedure for {Fφ(a)} �Φ
(B)BI+Σ
φ ⊥ successfully terminates. ��

Hence if a closed (B)BI + Σ-tableaux does not exist for φ, there exists a
Tarskian model M of Φ

(B)BI+Σ
φ ∪{∃x.Fφ(x)}. By Lemma 2, the induced Kripke

model XM has a state [a] such that [a] ��VM φ, establishing that φ fails to be
valid for Kripke (B)BI + Σ-models. Conversely, if a closed tableaux does exist,
then there is no Tarskian model of M of Φ

(B)BI+Σ
φ ∪ {∃x.Fφ(x)}. By Lemma 3,

φ is valid in Kripke (B)BI + Σ-models, as otherwise any countermodel would
generate a Tarskian model M of Φ

(B)BI+Σ
φ ∪ {∃x.Fφ(x)}, a contradiction.

Theorem 2 (Soundness and Completeness for (B)BI+Σ-Tableaux). φ
is valid in Kripke (B)BI +Σ-models iff φ is provable in the (B)BI +Σ-tableaux
system. ��

6 Conclusions and Further Work

We have given a framework of tableaux systems that exhaustively captures the
breadth of separation theories in the literature. Our framework is proven sound
and complete parametrically by a novel representation of tableaux systems as
coherent theories that allows us to apply existing theory from coherent logic.
This resolves the expressivity gap between the logics of bunched implications
and the separation logics defined upon them, and provides proof theory for the
assertion languages of a wide array of program logics.

The completeness of tableaux systems is usually proved by defining a notion
of a Hintikka set : a saturated set of (labelled) formulae (and possibly constraints)
that specifies a term model of the logic. The existence of a Hintikka set is then
shown to follow from non-existence of a tableau proof. Our method is a gener-
alization of this idea, implemented parametrically by choice of tableaux system.
While we have focused on Separation Logic, this technique is adaptable to vir-
tually any logic interpreted on relational structures, including the breadth of
bunched and modal logics. This suggests the significance of the coherent logic
fragment extends beyond the generation of proof rules for frame conditions.

The implementation of our systems is of principal importance for future
work. Our tableaux representation suggests existing coherent logic provers (see
[43] for a survey) may already be suitable, though tactics designed specifically

456 S. Docherty and D. Pym

for tableaux coherent theories may have to be developed to make this efficient.
A closely related goal is the development of parametric Separation Logic imple-
mentations that utilize our systems as assertion language provers. Finally, our
results suggest interesting theoretical work. Coherent logic has close connections
to topos theory, and Caramello [15] has developed techniques to transfer results
between mathematical fields via bridges between the classifying topoi of coher-
ent theories. We wish to investigate if any results of logical interest can be found
in this way by utilizing the representation of tableaux as coherent theories.

References

1. Anderson, G., Pym, D.: A calculus and logic of bunched resources and processes.
Theoret. Comput. Sci. 614, 63–96 (2016)

2. Appel, A.W.: Program Logics for Certified Compilers. CUP (2014)
3. Atkey, R.: Amortised resource analysis with separation logic. Log. Methods Com-

put. Sci. 2(17), 1–33 (2011)
4. Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov,

A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg
(2005). https://doi.org/10.1007/11591191 18

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 6

6. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of POPL 2005, pp. 259–270. ACM (2005)

7. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

8. Braüner, T.: Hybrid Logic and Its Proof-Theory. Applied Logic Series, vol. 37.
Springer, Dordrecht (2011)

9. Brotherston, J.: Bunched logics displayed. Stud. Logica. 100(6), 1223–1254 (2012)
10. Brotherston, J., Villard, J.: Parametric completeness for separation theories. In:

Proceedings of POPL 2014, pp. 453–464. ACM (2014)
11. Buisse, A., Birkedal, L., Støvring, K.: A step-indexed Kripke model of separation

logic for storable locks. In: Proceedings of MFPS XXVII, ENTCS, vol. 276, pp.
121–143 (2011)

12. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. J. ACM 58(6), 26 (2011). https://doi.org/10.1145/
2049697.2049700

13. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic.
In: Proceedings of LICS 2007, pp. 366–378. IEEE (2007)

14. Cao, Q., Cuellar, S., Appel, A.W.: Bringing order to the separation logic jungle.
In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 190–211. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71237-6 10

15. Caramello, O.: Theories, Sites, Toposes: Relating and Studying Mathematical The-
ories Through Topos-Theoretic ‘Bridges’. OUP, Oxford (2017)

16. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the FSCQ file system. In: Proceedings of
SOSP 2015, pp. 18–37. ACM (2015)

https://doi.org/10.1007/11591191_18
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-319-71237-6_10

Modular Tableaux Calculi for Separation Theories 457

17. Collinson, M., McDonald, K., Pym, D.: A substructural logic for layered graphs.
J. Log. Comput. 24(4), 953–988 (2014)

18. Collinson, M., McDonald, K., Pym, D.: Layered graph logic as an assertion lan-
guage for access control policy models. J. Log. Comput. 27(1), 41–80 (2017)

19. Collinson, M., Pym, D.: Algebra and logic for resource-based systems modelling.
Math. Struct. Comput. Sci. 19, 959–1027 (2009)

20. Courtault, J.-R., Galmiche, D., Pym, D.: A logic of separating modalities. Theoret.
Comput. Sci. 637, 30–58 (2016)

21. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: Proceedings of POPL 2013,
pp. 287–300 (2013)

22. Docherty, S., Pym, D.: Intuitionistic layered graph logic. In: Olivetti, N., Tiwari, A.
(eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 469–486. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 32

23. Docherty, S., Pym, D.: Stone-Type Dualities for Separation Logics (Submitted)
24. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share

accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10672-9 13

25. Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symb. Log. 21(2),
123–163 (2015)

26. Galmiche, D., Kimmel, P., Pym, D.: A substructural epistemic resource logic. In:
Ghosh, S., Prasad, S. (eds.) ICLA 2017. LNCS, vol. 10119, pp. 106–122. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54069-5 9

27. Galmiche, D., Méry, D.: Tableaux and resource graphs for separation logic. J. Log.
Comput. 20(1), 189–231 (2007)

28. Galmiche, D., Méry, D., Pym, D.: The semantics of BI and resource tableaux.
Math. Struct. Comput. Sci. 15, 1033–1088 (2005)

29. Hóu, Z.: Labelled sequent calculi and automated reasoning for assertions in sepa-
ration logic. Ph.D. thesis, The Australian National University (2015)

30. Hóu, Z., Goré, R., Tiu, A.: Automated theorem proving for assertions in separation
logic with all connectives. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS
(LNAI), vol. 9195, pp. 501–516. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21401-6 34

31. Hóu, Z., Clouston, R., Tiu, A., Goré, R.: Proof search for propositional abstract
separation logics via labelled sequents. In: Proceedings of POPL 2014, pp. 465–476.
ACM (2014)

32. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: Proceedings of POPL 2001, 14–26. ACM (2001)

33. Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic (2017). Under consideration for publication in Journal of Functional Pro-
gramming

34. Larchey-Wendling, D.: The formal strong completeness of partial monoidal Boolean
BI. J. Log. Comput. 26(2), 605–640 (2016)

35. Larchey-Wendling, D., Galmiche, D.: The undecidability of Boolean BI through
phase semantics. In: Proceedings of LICS 2010, pp. 140–149. IEEE Computer Soci-
ety Press (2010)

36. Larchey-Wendling, D., Galmiche, D.: Looking at separation algebras with Boolean
BI-eyes. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp.
326–340. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-
7 25

https://doi.org/10.1007/978-3-319-40229-1_32
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1007/978-3-662-54069-5_9
https://doi.org/10.1007/978-3-319-21401-6_34
https://doi.org/10.1007/978-3-319-21401-6_34
https://doi.org/10.1007/978-3-662-44602-7_25
https://doi.org/10.1007/978-3-662-44602-7_25

458 S. Docherty and D. Pym

37. Nakano, H.: A modality for recursion. In: Proceedings of LICS 2000, pp. 255–266.
IEEE (2000)

38. Negri, S.: Proof analysis beyond geometric theories: from rule systems to systems
of rules. J. Log. Comput. 26(2), 513–537 (2016)

39. O’Hearn, P.: A Primer on Separation Logic. Software Safety and Security. NATO
Science for Peace and Security Series, vol. 33, pp. 286–318 (2012)

40. O’Hearn, P., Pym, D.: The logic of bunched implications. Bull. Symb. Log. 5(2),
215–244 (1999)

41. Park, J., Seo, J., Park, S.: A theorem prover for BBI. In: Proceedings of POPL
2013, pp. 219–232. ACM (2013)

42. Parkinson, M.: Local reasoning for Java. Ph.D. thesis, University of Cambridge
(2005)

43. Polonsky, A.: Proofs, Types and Lambda Calculus. Ph.D. thesis, University of
Bergen (2012)

44. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings of LICS 2002, pp. 55–74. IEEE Computer Society Press (2002)

45. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 310–324.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1 23

46. Simpson, A.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh (1994)

47. Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und
Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen,
Skrifter I, vol. 4, pp. 1–36. Det Norske Videnskaps-Akademi, (1920)

48. Terese: Term Rewriting Systems. Cambridge University Press (2003)
49. Villard, J., Lozes, É., Calcagno, C.: Proving copyless message passing. In: Hu, Z.

(ed.) APLAS 2009. LNCS, vol. 5904, pp. 194–209. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10672-9 15

50. Yang, H., O’Hearn, P.: A semantic basis for local reasoning. In: Nielsen, M., Eng-
berg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 402–416. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45931-6 28

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-02716-1_23
https://doi.org/10.1007/978-3-642-10672-9_15
https://doi.org/10.1007/3-540-45931-6_28
http://creativecommons.org/licenses/by/4.0/

Differential Calculus with Imprecise
Input and Its Logical Framework

Abbas Edalat1 and Mehrdad Maleki2(B)

1 Department of Computing, Imperial College London, London SW7 2RH, UK
a.edalat@imperial.ac.uk

2 Institute for Research in Fundamental Sciences (IPM), Niavaran, Tehran, Iran
m.maleki@ipm.ir

Abstract. We develop a domain-theoretic Differential Calculus for
locally Lipschitz functions on finite dimensional real spaces with impre-
cise input/output. The inputs to these functions are hyper-rectangles
and the outputs are compact real intervals. This extends the domain
of application of Interval Analysis and exact arithmetic to the deriva-
tive. A new notion of a tie for these functions is introduced, which in
one dimension represents a modification of the notion previously used
in the one-dimensional framework. A Scott continuous sub-differential
for these functions is then constructed, which satisfies a weaker form of
calculus compared to that of the Clarke sub-gradient. We then adopt a
Program Logic viewpoint using the equivalence of the category of stably
locally compact spaces with that of semi-strong proximity lattices. We
show that given a localic approximable mapping representing a locally
Lipschitz map with imprecise input/output, a localic approximable map-
ping for its sub-differential can be constructed, which provides a logical
formulation of the sub-differential operator.

Keywords: Imprecise input/output · Interval analysis
Exact computation · Lipschitz maps · Clarke gradient
Domain theory · Stone duality

1 Introduction

A well-known hurdle in numerical computation is caused by accumulation of
round-off errors in floating point arithmetic, which can create havoc and lead
to catastrophic errors in compound calculations. In safety and critical systems,
where reliability of numerical computation is of utmost importance, one way to
avoid the pitfalls of floating point arithmetic is to use interval analysis or exact
arithmetic. In both interval analysis and exact arithmetic as well as in com-
putable analysis, a real number is represented by a nested shrinking sequence
of compact intervals whose intersections is the real number. Similarly, a real n-
vector can be represented by a nested sequence of hyper-rectangles in Rn. This

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 459–475, 2018.
https://doi.org/10.1007/978-3-319-89366-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_25&domain=pdf

460 A. Edalat and M. Maleki

leads to a framework in numerical computation and a framework for compu-
tational geometry where the inputs of algorithms or programmes are imprecise
real numbers or real n-vectors; see for example [3,5,6,9,10,14,15,17,21–23,27].

All frameworks for interval analysis and exact real computation are based
on functions whose input and output are real intervals. When we compose two
such functions, the output of the first function serves as the input to the second
function. An implementation of these frameworks in a functional programming
language follows this same pattern; see for example the lazy Haskell implemen-
tation of IC-Reals for Exact Real Computation [1], which uses linear fractional
transformations as developed in [14,22].

An important feature of working with a calculus consisting of functions with
interval or imprecise input/output is that even when we deal with elementary
functions such as polynomials we cannot restrict ourselves to their canonical
(maximal) extensions to intervals [21]. These canonical extensions take a com-
pact interval to its forward image under the function. In fact, these extensions
are not closed under, for example, multiplication. Thus, the real-valued map of a
real variable x �→ x2 when implemented with interval input by x �→ x × x, using
multiplication of two copies of the input interval, is not the canonical extension
of the quadratic map of real numbers: it evaluates for example [−1, 1]2 to [−1, 1]
rather than [0, 1], which is what the canonical extension of the quadratic map
evaluates to. In general, we need to work with any Scott continuous map of type
IR → IR or, in higher dimension, of type IRn → IR, where IRn denotes the
domain of hyper-rectangles of Rn.

In the past 60 years, interval analysis has grown as a distinct interdisciplinary
subject to impact on nearly all areas of mathematical and numerical analy-
sis including computer arithmetic, linear algebra, integration, solution of initial
value problems and partial differential equations to correct solutions in mathe-
matical optimisation and robotics; see [20]. It is natural to ask if the domain of
application of interval analysis and exact computation can be extended to the
derivative of functions, i.e., whether one can take a kind of derivative of a map
which takes a compact interval or a compact hyper-rectangle as input.

In [11], the notion of a domain-theoretic sub-differentiation of maps which
have non-empty and compact intervals as inputs and outputs was introduced.
The restriction of these maps to real numbers turns out to be locally Lipschitz
maps of type R → R and the sub-differential restricted to real numbers has been
shown to be the same as the Clarke sub-gradient [8]. A major problem, however,
is that the framework in [11], which only deals with one-dimensional maps of
type IR → IR is not accompanied with a Stone duality framework and thus,
even in dimension one, cannot be used in order to handle program logic and
predicate transformers.

In [7], a typed lambda calculus in the framework of an extension of Real
PCF [6,17,22] was introduced in which in particular continuously differentiable
and more generally Lipschitz functions can be defined. Given an expression rep-
resenting a real-valued function of a real variable in this language, one is able
to evaluate the expression on an argument, representing an interval, but also

Differential Calculus with Imprecise Input and Its Logical Framework 461

evaluate the generalised derivative, i.e., the L-derivative, equivalently the Clarke
gradient, of the expression on an interval. The operational semantics of the lan-
guage, which is equipped with min and a weighed average, enjoys adequacy and
a definability result proving that any computable Lipschitz map is definable in
it. The denotational semantics is based on domain theory which in principle
allows a program logic formulation of the computation, although this challenge
has not been taken up yet.

In [13], a point free framework for sub-differentiation of real-valued locally
Lipschitz functions on finite dimensional Euclidean spaces has been developed
which provides a Stone duality for the Clarke gradient and thus enables a pro-
gram logic view of differentiation. However, the induced logical framework cannot
be employed for the class of functions with imprecise input/output used in exact
computation since, as already pointed out, this class necessarily contains general
extensions of real-valued locally Lipschitz maps of finite dimensional Euclidean
spaces.

In this paper, we formulate a new notion of a tie of functions with impre-
cise input/output, which, in one dimension, represents a modification of the
corresponding notion in [12]. This allows us to develop a Scott continuous sub-
differential for functions with hyper-rectangles in Rn as inputs and compact
intervals in R as output, which are used in exact computation. We show that
a weaker calculus compared to that for the Clarke sub-gradient is satisfied in
this interval framework. In addition we construct a logical framework for sub-
differentiation of locally Lipschitz maps of type IRn → IR. The basic Stone
duality results developed in [13] are then extended to sub-differentiation of such
interval maps.

1.1 Background

We assume the reader is familiar with basic elements of topology and domain
theory. Following the definition in [18], by a domain we mean a continuous
dcpo (directed complete partial order). All the domains we use in this paper are
bounded complete as well. By C(Rn), we denote the domain of non-empty convex
and compact subsets of Rn ordered with reverse inclusion and augmented with
⊥ = Rn as the bottom element. If C1, C2 ∈ C(Rn) then the way-below relation
is given by C1 � C2 iff C◦

1 ⊃ C2, where S◦ is the interior of the set S. By IRn,
we denote the sub-domain of non-empty compact hyper-rectangles with faces
parallel to coordinate hyper-planes of Rn. The Euclidean norm of x ∈ Rn is
denoted by ‖x‖.

The lattice of open subsets of a topological space X is denoted by Ω(X).
The Scott topology of a domain D is, however, written as σD. The closure of
S ⊂ X is denoted by S. The upper topology, equivalently the Scott-topology, of
C(Rn) has a basis of the form

�O = {C ∈ C(Rn) : C ⊂ O},

where O belongs to a basis of open and convex subsets of Rn.

462 A. Edalat and M. Maleki

Given an open set a ⊂ X of a topological space and an element b ∈ D of
a domain D, the single-step function bχa : X → D is defined by bχa(x) = b
if x ∈ a and ⊥ otherwise. A non-empty compact real interval x is written as
x = [x−, x+]. For a map f : X → Y of topological spaces, f [S] denotes the
image of the set S ⊂ X.

The three operations of addition of two vectors, scalar multiplication of a
vector and a real number, and the inner product of two vectors can be extended
to C(Rn) to obtain the following three Scott continuous maps:

(i) − + − : C(Rn) × C(Rn) → C(Rn) with A + B = {a + b : a ∈ A, b ∈ B},
(ii) − × − : R × C(Rn) → C(Rn) with rA = {rx : x ∈ A}, and,
(iii) − · − : C(Rn) × C(Rn) → IR with A · B = {a · b : a ∈ A, b ∈ B}.

These three operations have well-defined restrictions to IRn. In addition, in this
paper, we will consider their higher order extension to sets of sets. For example,
if a1, a2 ∈ Ω(R) are open subsets, then �a1,�a2 ∈ σC(Rn) and we have:

(�a1) · (�a2) := {x1 · x2 : x1 ∈ �a1, x2 ∈ �a2}

Moreover:

Proposition 1. (i) The modal operator � : Ω(Rn) → σC(Rn) preserves meets,
i.e., �O1 ∧ �O2 = �(O1 ∧ O2) for all O1, O2 ∈ Ω(Rn).

(ii) The way-below relation satisfies O1 � O2 if and only if �O1 � �O2 for
all O1, O2 ∈ Ω(Rn).

(iii) If O1, O2 ⊂ Rn are open hyper-rectangles, then �(O1 + O2) = �O1 + �O2.
(iv) If O ⊂ Rn is a convex open set and a ⊂ Rn is a hyper-rectangle, then

�(O · a) = (�O) · (�a).

Next, we present the notion of Clarke’s sub-gradient [4]. Recall that a map
f : U ⊂ Rn → R, where U is an open set, is locally Lipschitz if all points
in U have an open neighbourhood O ⊂ U with a constant k ≥ 0 such that
|f(x) − f(y)| ≤ k‖x − y‖ for all x, y ∈ O. The generalized directional derivative
of a locally Lipschitz f at x in the direction of v is defined as follow:

f◦(x; v) = lim sup
y→x t→0+

f(y + tv) − f(y)
t

The Clarke subgradient of f at x, denoted by ∂f(x) is a convex and compact
subset of Rn and is defined by:

∂f(x) = {w ∈ Rn : f◦(x; v) ≥ w · v for all v ∈ Rn} (1)

The sub-gradient function ∂f : U ⊂ Rn → C(Rn) is upper continuous, equiva-
lently Scott continuous. Moreover, the Clarke sub-gradient satisfies a weak cal-
culus. For locally Lipschitz maps f, g : U ⊆ Rn → R,

(i) Sum: ∂f(x) + ∂g(x) ⊇ ∂(f + g)(x).
(ii) Product: (∂f(x))g(x) + f(x)(∂g(x)) ⊇ ∂(f · g)(x)

Differential Calculus with Imprecise Input and Its Logical Framework 463

(iii) Chain rule: For f, g : R → R, ∂f(g(x)) · ∂g(x) ⊇ ∂(f ◦ g)(x).

The notion of the L-derivative, equivalent to the Clarke sub-gradient, for
real-valued functions on finite dimensional Euclidean spaces has the following
ingredients [8]. A function f : U ⊂ Rn → R has a non-empty generalized
Lipschitz constant b ∈ C(Rn) in a non-empty convex open set a ⊂ Rn if for
all x, y ∈ a we have f(x) − f(y) ∈ b · (x − y). The collection of all functions
that have generalized Lipschitz constant b in a is denoted by δ(a, b), called the
tie of a with b. The collection of all single-step functions bχa with a ⊂ U and
f ∈ δ(a, b) is bounded in (U → C(Rn)) and thus the L-derivative of f defined
as

Lf = sup{bχa : f ∈ δ(a, b)}
is Scott-continuous function. Moreover, we have Lf = ∂f .

1.2 Stably Locally Compact Space and Semi-strong Proximity
Lattice

We recall that in geometric logic one uses the open sets of a topological space as
propositions or semi-decidable properties [25,26]. If X is a topological space and
Ω(X) its lattice of open sets, a propositional geometric theory is constructed as
follows: For every open set a ∈ Ω(X), define a proposition Pa, i.e., every open
set of X provides a property or predicate. For open sets a and b with a ⊆ b
stipulate: (i) Pa � Pb. For a family of open sets S, stipulate: (ii) P∪S �

∨
a∈S Pa.

For a finite family of open sets S, stipulate: (iii)
∧

a∈S Pa � P∩S . The converses
of (ii) and (iii) follow from (i). The nullary disjunction in (ii) is interpreted as
false and the nullary conjunction in the converse of (iii) is interpreted as truth,
i.e., P∅ � false and PX � truth.

We regard x ∈ X as a model of the theory in which Pa is interpreted as true
iff x ∈ a, i.e., x |= a iff x ∈ a, or, a point is a model of a proposition if it is in the
open set representing the proposition. It is possible that different points give rise
to the same model, i.e., satisfy the same open sets, and it is also possible that
a model does not arise by points in X in this way. For so-called sober spaces,
as we will define below, we do have a one-to-one correspondence between points
and models.

A topological space X is called stably locally compact [2,18] if it is sober,
locally compact and if the intersection of two compact saturated sets is compact.
Recall that X is sober if its points are in bijection with the completely prime
filters of its lattice of open sets. (A set is saturated if it is the intersection of its
open neighbourhoods.) Equivalently, X is stably locally compact if and only if its
lattice of open sets is a distributive continuous lattice which is also arithmetic,
i.e., its way-below relation satisfies:

O � O1, O2 ⇒ O � O1 ∧ O2

The spaces Rn, IRn and C(Rn) are all stably locally compact spaces. The way-
below relation for Ω(Rn) is given by O1 � O2 iff O1 is compact and O1 ⊂ O2,

464 A. Edalat and M. Maleki

whereas the way-below relation in C(Rn), and thus IRn, is given by Proposi-
tion 1. We can obtain a finitary representation of these spaces by a sub-lattice
of open sets as we will now describe.

A semi-strong proximity lattice [13] consists of a tuple (B;∨,∧, 0, 1;≺) in
which (B;∨,∧, 0, 1) is a distributive lattice such that ≺ is a binary relation on
B with ≺=≺ ◦ ≺ satisfying:

1. ∀a ∈ B M ⊂f B.M ≺ a ⇔
∨

M ≺ a.
2. ∀a ∈ B. a �= 1 ⇒ a ≺ 1.
3. ∀a, a1, a2 ∈ B. a ≺ a1, a2 ⇔ a ≺ a1 ∧ a2.
4. ∀a, x, y ∈ B. a ≺ x ∨ y ⇒

∃x′, y′ ∈ B. x′ ≺ x& y′ ≺ y & a ≺ x′ ∨ y′.

Here, M ⊂f B means that M is a finite (possibly empty) subset of B, and
M ≺ a means that ∀m ∈ M.m ≺ a.

The relation R ⊆ B1 × B2, between two semi-strong proximity lattice, is a
localic approximable mapping if it satisfies:

1. R ◦ ≺2= R
2. ≺1 ◦R = R.
3. ∀M ⊂f B1∀b ∈ B2.M R b ⇐⇒

∨
M R b.

4. ∀a ∈ B1. a �= 1 ⇒ aR 1.
5. ∀a ∈ B1∀a1, a2 ∈ B2. aR a1 & aR a2 ⇔ aR a1 ∧ a2.
6. ∀a ∈ B1∀M ⊂f B2. aR

∨
M ⇒

∃N ⊂f B1. a ≺1

∨
N &∀n ∈ N∃m ∈ M.nR m.

The identity approximable mapping on B is ≺B and composition of approx-
imable mappings is the usual composition of the relations in the same order as
for functions.

Let SL-Compact denote the category of all stably locally compact spaces
and continuous functions and let Semi-Strong PL denote the category of semi-
strong proximity lattice and approximable mappings. The following functors
between these categories establish an equivalence between them [13,19].

A : SL-Compact → Semi-Strong PL

G : Semi-Strong PL → SL-Compact

Given a stably locally compact space X, fix a basis B of its topology which
is closed under finite intersections and let A(X) be the semi-strong proximity
lattice based on B. Given a continuous function f : X1 → X2 between two stably
locally compact spaces, we have a localic approximable mapping Af : A(X1) →
A(X2) given by aAf b iff a � f−1(b).

Given a semi-strong proximity lattice B, the spectrum spec(B) of B is the
set of all prime filters of B. For x ∈ B let Ox = {F ∈ spec(B) : x ∈ F}. The
collection of Ox’s, x ∈ B, is a base of a topology over spec(B). Put,

G(B) = spec(B)

Differential Calculus with Imprecise Input and Its Logical Framework 465

Given a localic approximable mapping R : B1 → B2 define,

GR : spec(B1) → spec(B2)

by GR(F) = {b2 ∈ B2 : ∃b1 ∈ F.b1 R b2}. We have, AGR
= R and GAf

= f .
Thus, the category of semi-strong proximity lattice with approximable mappings
is equivalent to the category of stably locally compact spaces and continuous
functions [13].

We now construct some canonical bases of C(Rn) and IRn, which provide
us with the semi-strong proximity lattices these spaces can be represented by.
Let B0

Rn , respectively B0
U , for U ⊂ Rn, be any basis of Rn, respectively U , that

consists of bounded convex open sets and is closed under finite intersections. We
let BRn , respectively BU , denote the semi-strong proximity lattice generated by
B0

R
, respectively B0

U . This means that every element of BR, respectively BU , is
a finite join of elements of B0

Rn , respectively B0
U [13].

It now follows, by Proposition 1, that B0
C(Rn) = {�a : a ∈ B0

Rn} is a basis of
the Scott topology σC(Rn), which is closed under finite intersections. Let BC(Rn)

be the semi-strong proximity lattice generated by B0
C(Rn). Thus, each element of

the semi-strong proximity lattice BC(Rn) is the finite join of elements of B0
C(Rn).

Finally, let T (U) be a basis of U ⊂ Rn consisting of open hyper-rectangles
in U with faces parallel to the coordinate planes and let T := T (Rn). Then
B0

IRn = {�a : a ∈ T } is a basis for σIRn . By using T (U), we similarly obtain
a basis B0

IU for IU ⊂ IRn. Again by Proposition 1(i) these bases are closed
under finite intersections. We let BIRn , respectively, BIU be the semi-strong
proximity lattices generated by B0

IRn , respectively, B0
IU . Thus, each element of

BIRn , respectively, BIU , is the finite join of elements of B0
IRn , respectively, B0

IU .
The functors A and G thus provide a bijection between the two hom-sets:

(IU → IR)
G
�
A

(BIU → BIR)

and between the two hom-sets:

(IU → C(Rn))
G

�
A

(BIU → BC(Rn))

These bijections are used later to deduce our Stone duality results.

1.3 Related Work

Differentiation in logical form for functions of type U ⊆ Rn → R was introduced
in [13]. These maps were represented by localic approximable mappings of type
BU → BR, and the localic approximable mapping of the L-derivative of these
functions have the type BU → BC(Rn). The strong tie of a with b, denoted by
δs(a, b), was defined as the collection of all functions f : a ⊆ U → R such that
there exists a′ ∈ B0

R
and b′ ∈ C(Rn) with a � a′, b � b′ and f ∈ δ(a′, b′).

466 A. Edalat and M. Maleki

The approximable mappings R : BU → BR has Lipschitz constant O ∈
BC(Rn) in a ∈ BU , denoted by R ∈ Δ(a,O), if we have:

∀a1, a2 ≺ a, (a1, a2) ∈ Sep,∃a′
1, a

′
2 ∈ BR.

a1 R a′
1, a2 R a′

2, a
′
1 − a′

2 ≺ O · (a1 − a2)

where the separation predicate Sep ⊂ BU × BU means (a1, a2) ∈ Sep if there
exists a′

1, a
′
2 such that a1 ≺ a′

1, a2 ≺ a′
2 and a′

1∧a′
2 = 0. The strong knot Δs(a,O)

is defined as the set of approximable mappings R : BU → BR such that there
exists a′ ∈ BU , O′ ∈ BC(Rn) with a ≺ a′, O′ ≺ O and R ∈ Δ(a′, O′).

The strong ties and strong knots are dual to each others, i.e., R ∈ Δs(a,O)
iff GR ∈ δs(a,O). The Lipschitzian derivative of R : BU → BR is defined as the
approximable mapping

L(R) = sup{AOχa
: R ∈ Δs(a,O)}

It turns out that L(R) = ALGR
and we have a weak calculus which matches that

for the Clarke sub-gradient stated after Eq. (1), i.e., L(R1)+L(R2) ⊆ L(R1+R2)
and R1 · L(R2) + R2 · L(R1) ⊆ L(R1 · R2), and if at least one of R1 and R2 is a
continuously differentiable approximable mapping then equality holds. A weak
form of the chain rule also holds for composition of approximable mappings
corresponding to that for the Clarke sub-gradient.

2 L-derivative with Imprecise Inputs

We start by defining a notion of tie for Scott continuous map of type f : IU → IR,
for an open convex subset U ⊂ Rn. From now on, in the rest of the paper, we
assume f : IU → IR is Scott-continuous.

Definition 1. Let f : IU ⊆ IRn → IR where U ⊂ Rn is an open set, be Scott
continuous and a ∈ T (U), an open hyper-rectangle in U , and b ∈ C(Rn). We
say f has a generalized Lipschitz constant b in �a and write δ(�a, b) if we have:

∀x, y ∈ �a, x ∩ y = ∅. f(x) − f(y) ⊆ b · (x − y)

In the one dimensional case, this new notion is a modification of that in [12]
as we in Definition 1, require the hyper-rectangles x and y to be disjoint, i.e.,
inconsistent in IU . Thus, the condition for membership of a tie is weaker. We
will need this weaker condition in order to develop the Stone duality result later
in the paper.

We show that despite this weaker notion, if f ∈ δ(�a, b) with b �= ⊥, then
f preserves maximal elements and its restriction to maximal elements gives a
Lipschitz map. In other words f is the extension of a classical Lipschitz function
in Ia.

Differential Calculus with Imprecise Input and Its Logical Framework 467

Proposition 2. Let f ∈ δ(�a, b), where a ⊂ Rn is a open hyper-rectangle and
b ∈ C(Rn) \ {⊥}, then for each x ∈ a, f({x}) ∈ IR is maximal and the induced
function f̂ : a ⊂ Rn → R is Lipschitz and satisfies:

∀x1, x2 ∈ a. (b · (x1 − x2))− ≤ f̂(x1) − f̂(x2) ≤ (b · (x1 − x2))+ (2)

∀x1, x2 ∈ a. |f̂(x1) − f̂(x2)| ≤ ‖b‖‖x1 − x2‖, (3)

where ‖b‖ = max{‖L‖|L ∈ b}.

Corollary 1. If f ∈ δ(�a, b) then f̂ ∈ δ(a, b).

Definition 2. We say a Scott continuous function of type IU ⊂ IRn → IR is
locally Lipschitz in �a, for a ∈ T (U), if it belongs to a tie δ(�a, b) with b �= ⊥.

Given a continuous function f : U ⊆ Rn → R, its maximal extension to a
Scott continuous function IU ⊆ IRn → IR is denoted by If with If(x) = f [x]
for x ∈ IU when x �= ⊥ and If(⊥) = ⊥.

Corollary 2. f ∈ δ(a, b) iff If ∈ δ(�a, b).

If (A,�) is a dcpo then the consistency predicate Con(A,
) and Con(A,�) for
a finite subset {ai : i ∈ I} with respect to � and � are defined as follow:

Con(A,
){ai : i ∈ I} ⇐⇒ ∃a ∈ A,∀i ∈ I. ai � a

and
Con(A,�){ai : i ∈ I} ⇐⇒ ∃a ∈ A,∀i ∈ I. ai � a

For the collection (biχai
)i∈I or (biχ�ai

)i∈I for finite indexing set I where ai ∈
Ω(Rn) are open hyper-rectangles and bi ∈ (D,�), the function space consistency
predicate ConRn→D or ConIRn→D is defined as follows:

ConRn→D(biχai)i∈I ⇐⇒ ∀J ⊆ I. [Con(Ω(Rn),�){ai : i ∈ J} ⇒ Con(D,�){bi : i ∈ J}]

ConIRn→D(biχ�ai
)i∈I ⇐⇒ ∀J ⊆ I. [Con(Ω(IRn),�){�ai : i ∈ J} ⇒ Con(D,�){bi : i ∈ J}].

It follows that the supremum supi∈I biχai
exists iff ConRn→D(biχai

)i∈I and
supi∈I biχ�ai

exists iff ConIRn→D(biχ�ai
)i∈I .

Proposition 3. For any indexing set J the family of step functions (bjχ�aj
)j∈J

is consistent if
⋂

j∈J δ(�aj , bj) �= ∅.

Proof. Suppose f ∈
⋂

j∈J δ(�aj , bj) then f̂ ∈
⋂

j∈J δ(aj , bj), and hence
(bjχaj

)j∈J is consistent, which implies (bjχ�aj
)j∈J is consistent. �

Recall that a crescent in Rn is the intersection of a closed and an open set. Given
two points p, q ∈ Rn, we denote the closed, respectively open, line segment
between them by [p, q] = {λp + (1 − λ)q : 0 ≤ λ ≤ 1}, respectively (p, q) =
{λp + (1 − λ)q : 0 < λ < 1}.

468 A. Edalat and M. Maleki

Proposition 4. We have δ(�a, b) ⊇
⋂

j∈J δ(�aj , bj) if bχ�a � supj∈J bjχ�aj
.

Proof. Let g := supj∈J bjχ�aj
. Suppose bχ�a � supj∈J bjχ�aj

, then �a ⊂⋃
j∈J �aj and thus a ⊂

⋃
j∈J aj . In addition, by considering the restriction of g

to the maximal elements of IRn, we find that a is partitioned by the open sets
aj , j ∈ J , into a finite number of disjoint crescents ci, i ∈ I, with

g({r}) = sup
ci⊂aj

bj � b

for r ∈ ci. Let f ∈
⋂

j∈J δ(�aj , bj). We show that f ∈ δ(�a, b). Suppose we have
two hyper-rectangles x, y ∈ �a with x ∩ y = ∅. Let the points p ∈ x and q ∈ y
be such that ‖p − q‖ is the minimum distance between x and y. Then [p, q] is
partitioned by the crescents ci, i ∈ I, into a finite number of one-dimensional
intervals such that the one-dimensional interior of each is contained in ci for
some i ∈ I. Let r0, r1, . . . , rk ∈ Rn be the boundary points of these intervals
ordered from p to q. Then, using the continuity of f̂ , we have:

f({rt}) − f({rt+1}) ⊆ sup
(rt,rt+1)⊆cj

bj · ({rt} − {rt+1}) ⊆ b · ({rt} − {rt+1})

for 0 ≤ t ≤ n − 1. Since x ∈ �a, there exists j ∈ J with x ∈ �aj . Moreover,
x ⊆ aj iff r0 ∈ aj . Similarly, y ⊆ aj iff rk ∈ aj . From these relations, we obtain:

f(x) − f({r0}) ⊆ sup
x⊂aj

bj · (x − {r0}), f({rk}) − f(y) ⊆ sup
y⊂aj

bj · ({rk} − y)

Thus,

f(x)−f(y) = f(x) − f({r0}) + f({r0}) − · · · − f({rk}) + f({rk}) − f(y)

⊆ b · (x −
(

k−1∑

t=0

f({rt}) − f({rt})

)

− y) = b · (x − y)�

Definition 3. The derivative of a Scott continuous map f : IU ⊂ IRn → IR is
the map:

Lf = sup
f∈δ(�a,b)

bχ�a : IU → C(Rn)

where U is a convex open subset of Rn.

Theorem 1. (i) Lf is well-defined and Scott continuous.
(ii) f ∈ δ(�a, b) iff bχ�a � Lf .

Proof. (i) Let the indexing set J be defined by j ∈ J ⇐⇒ f ∈ δ(�aj , bj),
then f ∈

⋂
j∈J δ(�aj , bj). Thus, by Proposition 3 (bjχ�aj

)j∈J is consistent
therefore, Lf = supf∈δ(�a,b) bχ�a exists and is Scott continuous.

(ii) If f ∈ δ(�a, b) then clearly bχ�a � Lf . Now take a′ � a and b′ � b.
Then b′χ�a′ � bχ�a � Lf and there exists a finite indexing set J such that
b′χ�a′ � supj∈J bjχ�aj

and f ∈ δ(�aj , bj) for j ∈ J . Now by Proposition
4, we have

⋂
j∈J δ(�aj , bj) ⊆ δ(�a′, b′), and thus, f ∈ δ(�a′, b′). From this,

it follows that f ∈ δ(�a, b). �

Differential Calculus with Imprecise Input and Its Logical Framework 469

If f : U ⊆ Rn → R is a locally Lipschitz map, then the Clarke sub-gradient
Lf : U → C(Rn) extends, by Scott’s extension theory for densely injective
spaces [24], to a Scott continuous map I(Lf) : IU → C(Rn). We then have:

Proposition 5.
L(If) = I(Lf)

Proof. This follows from the relation:

f ∈ δ(a, b) ⇐⇒ If ∈ δ(�a, b),

for all a ∈ Ω(U) and b ∈ C(Rn). �

The following example shows that in the context of the L-derivative of interval
functions, Clarke’s weak calculus no longer holds for Sum.

Example 1. Let f, g : IR → IR defined by f(x) = x and g(x) = −x, then
Lf(x) = {1} and Lg(x) = {−1} and thus Lf(x) + Lg(x) = {0}. On the other
hand, (f + g)(x) = f(x) + g(x) = x − x and it follows that f + g /∈ δ(�a, {0}),
for any open set a ⊂ R, and consequently L(f + g) �= {0}. Hence, L(f + g)(x) �

Lf(x) + Lg(x).

We say an interval [r−, r+] is positive , respectively negative, if r− > 0, respec-
tively r+ < 0. The above counter-example is the consequence of the fact that
in interval arithmetic, while the relation (u + v)w ⊆ uw + vw always holds for
u, v, w ∈ IR, the converse relation (u + v)w ⊇ uw + vw may fail. However, if u
and v are both positive or both negative then the converse also holds [21, p. 13].

We can obtain a weak calculus for sum and product of two functions f and g if
we first use an operation that is routinely performed in interval analysis, namely
to approximate the values Lf(x) and Lg(x) with the smallest axes aligned hyper-
rectangle containing it, and then assume that the two induced hyper-rectangles
have the same sign in each of their components. We now formalise this procedure.

Let H : C(Rn) → IRn be the map that takes every convex compact set
to the smallest axes aligned hyper-rectangle containing it. Then, it is easy to
check that H is Scott continuous. Let πi : Rn → R be the projection of the ith
coordinate and extend it pointwise to its maximal extension Iπi : IRn → IR.
Define the predicate Sgn ⊂ (IRn)2 by (x, y) ∈ Sgn if for each i = 1, . . . , n the
two intervals Iπi(x) and Iπi(y) are either both positive or both negative.

Suppose x, y, z ∈ IRn and (y, z) ∈ Sgn, then the interval Iπi(y)Iπi(z) is
positive for each i = 1 . . . , n and we have x(y + z) = xy + xz. In fact,

Iπi(x)(Iπi(y) + Iπi(z)) = Iπi(x)Iπi(y) + Iπi(x)Iπi(z),

and hence:

x(y + z) =
n∑

i=1

Iπi(x)(Iπi(y) + Iπi(z)) =
n∑

i=1

Iπi(x)Iπi(y) + Iπi(x)Iπi(z)

=
n∑

i=1

Iπi(x)Iπi(y) +
n∑

i=1

Iπi(x)Iπi(z) = xy + xz

470 A. Edalat and M. Maleki

Proposition 6. Suppose f, g : IU ⊆ IRn → IR are locally Lipschitz functions
and x ∈ IU is such that (H(Lf(x)),H(Lg(x))) ∈ Sgn. Then:

1.
H(Lf(x)) + H(Lg(x)) ⊇ H(L(f + g)(x))

2. If, in addition, (f(x), g(x)) ∈ Sgn, then we also have:

f(x)H(Lg(x)) + g(x)H(Lf(x)) ⊇ H(L(fg)(x))

We will provide the proof for a weak form of the chain rule, which is more involved
compared to sum and product. First consider the extended scalar multiplication
M : C(Rn) × IR+ → C(Rn), where R+ is the set of non-negative reals, with
M(b, x) = {ur : u ∈ b, r ∈ x}. Then, M is well-defined and Scott continuous.
For ease of presentation, we write M(b, x) = bx.

Proposition 7. If g : IU1 ⊆ IRn → IR and f : IU2 ⊆ IR → IR and Im(g) ⊂
IU2 with (Lf)(g(x)) ∈ IR+, are Scott-continuous, then:

((Lf) ◦ g)(x)Lg(x) ⊇ L(f ◦ g)(x)

3 Lipschitzian Approximable Mapping

Recall that, since IRn, C(Rn) and Rn are stably locally compact space and
the category of stably locally compact spaces with continuous functions and
the category of semi-strong proximity lattice with approximable mappings are
equivalent, any continuous function f : IU ⊂ IRn → IR defines an approximable
mapping Af : BIU → BIR by �aAf�a′ ⇐⇒ �a � f−1(�a′). On the other hand
any approximable mapping with type R : BIRn → BD, where D is either IR or
IRn or C(Rn), gives us a continuous function GR : IRn → D.

Lemma 1. Let f : IU ⊂ IRn → IR be a Scott continuous function such that
f({x}) is singleton for all x ∈ U . Suppose a1 is an open hyper-rectangle in U

and a2 is an open interval. If f̂ : U ⊂ Rn → R is the induced function with
f({x}) = {f̂(x)} then:

�a1 � f−1(�a2) ⇒ a1 � f̂−1(a2) �a1 Af �a2 ⇒ a1 Af̂ a2

Recall the definition of the predicate Sep ⊂ BR × BR from Subsect. 1.3.

Definition 4. We say an approximable mapping R : BIU → BIR, where U ⊂ Rn

is a convex open set, has Lipschitzian constant O in �a, with O ∈ B0
Rn and

a ∈ T (U), if:

∀ a1, a2 ∈ T (U). a1, a2 ≺ a& (a1, a2) ∈ Sep ∃ a′
1, a

′
2 ∈ BR.

�a1 R �a′
1,�a2 R �a′

2 & a′
1 − a′

2 ≺ O · (a1 − a2),

and we say R is Lipschitzian in �a. The set of all approximable mappings with
the above property is denoted by Δ(�a,O), called the knot of �a and O.

Differential Calculus with Imprecise Input and Its Logical Framework 471

Note that, by Proposition 1, the last formula in Definition 4 is equivalent to
�a′

1 − �a′
2 ≺ �O · (�a1 − �a2). Given this equivalence, it is simpler to use the

formula without the modal operator � as we have done in this definition. By
Proposition 1 and Stone duality, we have:

Proposition 8. Suppose f : IU → IR is a Scott continuous function such that
f({x}) is singleton for every x ∈ U . Then we have: Af̂ ∈ Δ(a,O) if Af ∈
Δ(�a,O).

From Δ(�a,O), a Lipschitz property of GR can be deduced as follows.

Proposition 9. If R : BIU → BIR is an approximable mapping such that R ∈
Δ(�a,O) then:

∀x, y ∈ �a. x ∩ y = ∅ ⇒ GR(x) − GR(y) ⊆ O · (x − y)

Proof. Let x, y ∈ �a and x ∩ y = ∅, then consider a1, a2 ∈ T (U) such that
(a1, a2) ∈ Sep and x ∈ �a1, y ∈ �a2. Hence, there exist a′

1, a
′
2 ∈ BR such that

�ai R �a′
i, i = 1, 2 and:

a′
1 − a′

2 ≺ O · (a1 − a2)

By Stone duality we have R = RGR
. Hence �ai ≺ G−1

R (�a′
i), i = 1, 2, and thus:,

GR(x) − GR(y) ⊆ O · (a1 − a2).

Since this holds for all sufficiently small a1 and a2 that contain x and y respec-
tively, we obtain: GR(x) − GR(y) ⊆ O · (x − y). �

Corollary 3. If R ∈ Δ(�a,O) then GR ∈ δ(�a,O).

Thus, if Af is a Lipschitzian approximable mapping of type BIU → BIR then
f is a Lipschitz function of type IU → IR and hence f({x}) is a singleton for
every x ∈ U and the induced function f̂ : U → R is also Lipschitz.

Now we are in a position to obtain duality results similar to those in [13] for
functions of type IU ⊆ IRn → IR.

Proposition 10. Let f ∈ δ(�a, b) then for every a0 ∈ T such that a0 ≺ a and
every O ∈ B0

Rn such that b ⊂ O we have Af ∈ Δ(�a0, O).

Proof. Suppose a0 ≺ a. Let a1, a2 ∈ T (U) with (a1, a2) ∈ Sep and a1, a2 ≺ a0.
Then, since a1, a2 ∈ IU , from definition of the tie δ(�a, b), we have,

f(a1) − f(a2) ⊆ b · (a1 − a2)
⊆ O · (a1 − a2).

Since f(a1), f(a2) ∈ IR are compact, there exist open hyper-rectangles a′
1, a

′
2 ∈

BR such that f(ai) ⊆ a′
i, i = 1, 2, and a′

1 − a′
2 ≺ O · (a1 − a2). This implies

Af ∈ Δ(�a0, O). �

472 A. Edalat and M. Maleki

Example 2. Let f : IR → IR be given by:

f([x1, x2]) = [x1 − δ(x2 − x1), x2 + δ(x2 − x1)]

for δ > 0. The restriction f̂ of f to the maximal elements of IR is the identity
function of type f̂ = Id : R → R. Since IId �= f , the map f is not the maximal
extension of the identity map Id. On the other hand, Af : BIR → BIR satisfies
Af ∈ Δ(�R, O) iff (1 − δ, 1 + δ) ⊆ O. However, Af̂ ∈ Δ(R, O) iff 1 ∈ O.

The following two propositions represent a domain isomorphism between
the function space (IU → C(Rn)) and the domain of approximable mappings
(BIU → BC(Rn)) ordered by inclusion.

Proposition 11. 1. For f1, f2 : IU → C(Rn) we have:

f1 � f2 ⇐⇒ Af1 ⊆ Af2

2. For R1, R2 : BIU → BC(Rn) we have:

R1 ⊆ R2 ⇐⇒ GR1 � GR2

Proposition 12. 1. If (fi)i∈I is a directed set in IU → C(Rn), with supremum
f = supi∈I fi, then

⋃
i∈I Afi

= Af in App(BIU , BC(Rn)).
2. If (Ri)i∈I is a directed set in App(BIU , BC(Rn)) then supi∈I GRi

= GR in
(IU → C(Rn)) where R = supi∈I Ri.

Definition 5. If a is an open hyper-rectangle and O is a basic convex open
set then the single-step approximable mapping η(�a,O) is defined as η(�a,O) =
AOχ�a

: BIU → BC(Rn).

For defining the Lipschitzian derivative of an approximable mapping we first
need to define the notions of a strong tie and a strong knot.

Definition 6. We say f : IU → IR has a strong set-valued Lipschitz constant
b ∈ C(Rn) in �a, for a ∈ T (U), denoted by f ∈ δs(�a, b), if there exist a′ ≺ a
and b′ ∈ C(Rn) with b �C(Rn) b′ such that f ∈ δ(�a′, b′). We call δs(�a, b) the
strong single-tie of �a with b.

From general results about single-step functions, [16] we know that if bχ�a �
Lf , then for every x ∈ �a we have b � Lf(x), and hence, Lf(x) ∈ �b. This means
Lf(�a) ⊆ � b. Moreover �a � (Lf)−1(� b).

Similar to Proposition VII.3 in [13] and its corollary, we have:

Proposition 13. If f : IU → IR is locally Lipschitz, then:

f ∈ δs(�a, b) ⇐⇒ bχ�a � Lf

Lf = sup{bχ�a : bχ�a � Lf} = sup{bχ�a : f ∈ δs(�a, b)}

Differential Calculus with Imprecise Input and Its Logical Framework 473

Definition 7. We say an approximable mapping R : BIU → BIR has strong
Lipschitz constant O in �a, for O ∈ B0

Rn and a ∈ T (U), denoted by R ∈
Δs(�a,O), if there exist a′ ∈ T (U) with a ≺ a′ and O′ ∈ B0

Rn with O′ ≺ O such
that R ∈ Δ(�a′, O′).

Proposition 14. 1. If f ∈ δs(�a, b) then for all O ∈ B0
Rn with b ⊂ O we have

Af ∈ Δs(�a,O).
2. If Af ∈ Δs(�a,O) then there exists b ⊂ O such that f ∈ δs(�a, b).

Proof. 1. Let f ∈ δs(�a, b) and b ⊂ O, then there exists a′ ∈ T (U) with a ≺ a′

and b′ with b � b′ such that f ∈ δ(�a′, b′). By the interpolation property of
≺ there exists a0 with a ≺ a0 ≺ a′ and O0 with b ⊂ O0 ≺ O. By Proposition
10 we have Af ∈ Δ(�a0, O0) and thus Af ∈ Δs(�a,O).

2. Let Af ∈ Δs(�a,O) then by the definition of strong knot there exists a′ with
a ≺ a′ and O′ with O′ ≺ O such that Af ∈ Δ(�a′, O′). By Corollary 3, f ∈
δ(�a′, O′). By the interpolation property, there exists O′′ with, O′ ≺ O′′ ≺ O.
Let b′ = O′ and b = O′′ then b ≺ b′ and f ∈ δ(�a′, b′). Hence, f ∈ δs(�a, b).
�

Finally, we obtain the duality between strong ties and strong knots extending
the main result in [13] to functions with interval input and output.

Corollary 4. We have R ∈ Δs(�a,O) iff GR ∈ δs(�a,O). Dually, we have
f ∈ δs(�a, b) iff Af ∈ Δs(�a, b◦).

Definition 8. Let R : BIU → BIR be a Lipschitzian approximable mapping. The
Lipschitzian derivative of R is defied as:

L(R) = sup{η(�a,O) : R ∈ Δs(�a,O)}

which is of type BIU → BC(Rn).

The following theorem extends Theorem VII.12 in [13] to functions with
interval input and output.

Theorem 2. The Lipschitzian derivative of a Lipschitzian approximable map-
ping R : BIU → BIR is an approximable mapping and we have: L(R) = ALGR

.

4 Conclusion

We have developed a notion of sub-differentiation for Scott continuous maps
which take hyper-rectangles in a finite dimensional Euclidean spaces to compact
real intervals and is itself a Scott continuous map. This extends the domain of
application of Interval Analysis to the classical derivative. It also extends Clarke’s
theory and that of the L-derivative to functions with imprecise input/output as
one encounters in interval analysis and exact real number computation. The
classical Clarke operator commutes with the extension operator that extends a
non-empty convex and compact valued map of a finite dimensional Euclidean

474 A. Edalat and M. Maleki

spaces to the space of the hyper-rectangles of the Euclidean space. We have
derived a calculus for sub-differentiation of interval maps which is weaker than
the corresponding Clarkes calculus for point maps. A Stone duality framework
for sub-differentiation of interval maps is also constructed which allows for a pro-
gram logic view of sub-differentiation. We envisage several areas for immediate
further work, namely an implementation of this work in Haskell, an implemen-
tation in a theorem prover such as Coq and a derivation of a weak calculus for
constructors of approximable mappings which would match the calculus for the
interval functions.

References

1. Haskell Implementation of IC-Reals for Exact Real Computation. Imperial College
London. http://www.doc.ic.ac.uk/exact-computation/Haskell

2. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3. Clarendon,
Oxford (1994)

3. Bauer, A., Escardó, M.H., Simpson, A.: Comparing functional paradigms for exact
real-number computation. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 488–500.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 42

4. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
5. Di Gianantonio, P.: A functional approach to real number computation. Ph.D.

thesis, University of Pisa (1993)
6. Di Gianantonio, P.: Real number computability and domain theory. Inf. Comput.

127(1), 11–25 (1996)
7. Di Gianantonio, P., Edalat, A.: A language for differentiable functions. In: Pro-

ceedings of the 16th International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS) (2013)

8. Edalat, A.: A continuous derivative for real-valued functions. In: Cooper, S.B.,
Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 248–257. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73001-9 26

9. Edalat, A., Escardó, M.: Integration in real PCF. In: Eleventh Annual IEEE Sym-
posium on Logic in Computer Science (LICS). IEEE (1996)

10. Edalat, A., Heckmann, R.: Computing with real numbers. In: Barthe, G., Dybjer,
P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 193–267.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45699-6 5

11. Edalat, A., Lieutier, A.: Domain theory and differential calculus (functions of one
variable). In: LICS. IEEE (2002). www.doc.ic.ac.uk/∼ae/papers/diffcal.ps. Full
paper to appear in MSCS

12. Edalat, A., Lieutier, A.: Foundation of a computable solid modelling. Theoret.
Comput. Sci. 284(2), 319–345 (2002)

13. Edalat, A., Maleki, M.: Differentiation in logical form. In: Proceedings of 32th
ACM/IEEE Symposium on Logic in Computer Science (LICS 2017). ACM/IEEE
(2017)

14. Edalat, A., Potts, P.J.: A new representation for exact real numbers. In: Pro-
ceedings of Mathematical Foundations of Programming Semantics 13, Electronic
Notes in Theoretical Computer Science, vol. 6. Elsevier Science B.V. (1997). www.
elsevier.nl/locate/entcs/volume6.html

http://www.doc.ic.ac.uk/exact-computation/Haskell
https://doi.org/10.1007/3-540-45465-9_42
https://doi.org/10.1007/978-3-540-73001-9_26
https://doi.org/10.1007/3-540-45699-6_5
www.doc.ic.ac.uk/~ae/papers/diffcal.ps
www.elsevier.nl/locate/entcs/volume6.html
www.elsevier.nl/locate/entcs/volume6.html

Differential Calculus with Imprecise Input and Its Logical Framework 475

15. Edalat, A., Potts, P.J., Sünderhauf, P.: Lazy computation with exact real num-
bers. In: Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming, pp. 185–194. ACM (1998)

16. Erker, T., Escardó, M., Keimel, K.: The way-below relation of function spaces over
semantic domains. Topol. Appl. 89(1–2), 61–74 (1998)

17. Escardó, M.H.: PCF extended with real numbers. Theor. Comput. Sci. 162(1),
79–115 (1996)

18. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.:
Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

19. Jung, A., Sünderhauf, P.: On the duality of compact vs. open. Ann. New York
Acad. Sci. 806(1), 214–230 (1996)

20. Moore, R., Kearfott, R., Cloud, M.: Introduction to Interval Analysis. Society for
Industrial and Applied Mathematics, Philadelphia (2009)

21. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
22. Potts, P.J., Edalat, A., Escardó, M.: Semantics of exact real arithmetic. In: Twelfth

Annual IEEE Symposium on Logic in Computer Science. IEEE (1997)
23. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer,

New York (1988)
24. Scott, D.S.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geom-

etry and Logic. LNM, vol. 274, pp. 97–136. Springer, Heidelberg (1972). https://
doi.org/10.1007/BFb0073967

25. Smyth, M.B.: Effectively given domains. Theor. Comput. Sci. 5, 257–274 (1977)
26. Vickers, S.J.: Geometric logic in computer science. In: Burn, G.L., Gay, S.J., Ryan,

M.D. (eds.) Theory and Formal Methods, pp. 37–54. Springer, Heidelberg (1993).
https://doi.org/10.1007/978-1-4471-3503-6 4

27. Weihrauch, K.: Computable Analysis (An Introduction). Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-642-56999-9

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BFb0073967
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1007/978-1-4471-3503-6_4
https://doi.org/10.1007/978-3-642-56999-9
http://creativecommons.org/licenses/by/4.0/

The Effects of Adding Reachability
Predicates in Propositional

Separation Logic

Stéphane Demri1, Étienne Lozes2, and Alessio Mansutti1(B)

1 LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
alessio.mansutti@lsv.fr

2 I3S, Université Côte d’Azur, Nice, France

Abstract. The list segment predicate ls used in separation logic for
verifying programs with pointers is well-suited to express properties on
singly-linked lists. We study the effects of adding ls to the full proposi-
tional separation logic with the separating conjunction and implication,
which is motivated by the recent design of new fragments in which all
these ingredients are used indifferently and verification tools start to
handle the magic wand connective. This is a very natural extension that
has not been studied so far. We show that the restriction without the
separating implication can be solved in polynomial space by using an
appropriate abstraction for memory states whereas the full extension is
shown undecidable by reduction from first-order separation logic. Many
variants of the logic and fragments are also investigated from the com-
putational point of view when ls is added, providing numerous results
about adding reachability predicates to propositional separation logic.

1 Introduction

Separation logic [20,25,28] is a well-known assertion logic for reasoning about
programs with dynamic data structures. Since the implementation of Small-
foot and the evidence that the method is scalable [3,33], many tools supporting
separation logic as an assertion language have been developed [3,8,9,16,17,33].
Even though the first tools could handle relatively limited fragments of sep-
aration logic, like symbolic heaps, there is a growing interest and demand to
consider extensions with richer expressive power. We can point out three partic-
ular extensions of symbolic heaps (without list predicates) that have been proved
decidable.

– Symbolic heaps with generalised inductive predicates, adding a fixpoint com-
binator to the language, is a convenient logic for specifying data structures
that are more advanced than lists or trees. The entailment problem is known
to be decidable by means of tree automata techniques for the bounded tree-
width fragment [1,19], whereas satisfiability is ExpTime-complete [6]. Other
related results can be found in [21].

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 476–493, 2018.
https://doi.org/10.1007/978-3-319-89366-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_26&domain=pdf

The Effects of Adding Reachability Predicates 477

– List-free symbolic heaps with all classical Boolean connectives ∧ and ¬ (and
with the separating conjunction ∗), called herein SL(∗), is a convenient exten-
sion when combinations of results of various analysis need to be expressed,
or when the analysis requires a complementation. This extension already is
PSpace-complete [11].

– Propositional separation logic with separating implication, a.k.a. magic wand
(−∗), is a convenient fragment (called herein SL(∗,−∗)) in which can be solved
two problems of frame inference and abduction, that play an important role
in static analysers and provers built on top of separation logic. SL(∗,−∗) can
be decided in PSpace thanks to a small model property [32].

A natural question is how to combine these extensions, and which separa-
tion logic fragment that allows Boolean connectives, magic wand and generalised
recursive predicates can be decided with some adequate restrictions. As already
advocated in [7,18,24,29,31], dealing with the separating implication −∗ is a
desirable feature for program verification and several semi-automated or auto-
mated verification tools support it in some way, see e.g. [18,24,29,31].

Our Contribution. In this paper, we address the question of combining magic
wand and inductive predicates in the extremely limited case where the only
inductive predicate is the gentle list segment predicate ls. So the starting point
of this work is this puzzling question: what is the complexity/decidability sta-
tus of propositional separation logic SL(∗,−∗) enriched with the list segment
predicate ls (herein called SL(∗,−∗, ls))? More precisely, we study the decidabil-
ity/complexity status of extensions of propositional separation logic SL(∗,−∗) by
adding one of the reachability predicates among ls (precise predicate as usual
in separation logic), reach (existence of a path, possibly empty) and reach+

(existence of a non-empty path).
First, we establish that the satisfiability problem for the propositional sep-

aration logic SL(∗,−∗, ls) is undecidable. Our proof is by reduction from the
undecidability of first-order separation logic [5,14], using an encoding of the
variables as heap cells (see Theorem 1). As a consequence, we also establish
that SL(∗,−∗, ls) is not finitely axiomatisable. Moreover, our reduction requires
a rather limited expressive power of the list segment predicate, and we can
strengthen our undecidability results to some fragments of SL(∗,−∗, ls). For
instance, surprisingly, the extension of SL(∗,−∗) with the atomic formulae of the
form reach(x, y) = 2 and reach(x, y) = 3 (existence of a path between x and
y of respective length 2 or 3) is already undecidable, whereas the satisfiability
problem for SL(∗,−∗, reach(x, y) = 2) is known to be in PSpace [15].

Second, we show that the satisfiability problem for SL(∗, reach+) is PSpace-
complete, extending the well-known result on SL(∗). The PSpace upper bound
relies on a small heap property based on the techniques of test formulae, see
e.g. [4,15,22,23], and the PSpace-hardness of SL(∗) is inherited from [11]. The
PSpace upper bound can be extended to the fragment of SL(∗,−∗, reach+)
made of Boolean combinations of formulae from SL(∗, reach+) ∪ SL(∗,−∗)
(see the developments in Sect. 4). Even better, we show that the fragment of

478 S. Demri et al.

SL(∗,−∗, reach+) in which reach+ is not in the scope of −∗ is decidable. As far
as we know, this is the largest fragment including full Boolean expressivity, −∗
and ls for which decidability is established.

2 Preliminaries

Let PVAR = {x, y, . . .} be a countably infinite set of program variables and
LOC = {�0, �1, �2, . . .} be a countable infinite set of locations. A memory state
is a pair (s, h) such that s : PVAR → LOC is a variable valuation (known as the
store) and h : LOC →fin LOC is a partial function with finite domain, known as
the heap. We write dom(h) to denote its domain and ran(h) to denote its range.
Given a heap h with dom(h) = {�1, . . . , �n}, we also write {�1 �→ h(�1), . . . , �n �→
h(�n)} to denote h. Each �i �→ h(�i) is understood as a memory cell of h.

As usual, the heaps h1 and h2 are said to be disjoint , written h1 ⊥ h2,
if dom(h1) ∩ dom(h2) = ∅; when this holds, we write h1 + h2 to denote the
heap corresponding to the disjoint union of the graphs of h1 and h2, hence
dom(h1 + h2) = dom(h1)
 dom(h2). When the domains of h1 and h2 are not
disjoint, the composition h1 + h2 is not defined. Moreover, we write h′ � h
to denote that dom(h′) ⊆ dom(h) and for all locations � ∈ dom(h′), we have
h′(�) = h(�). The formulae ϕ of the separation logic SL(∗,−∗, ls) and its atomic
formulae π are built from π ::= x = y | x ↪→ y | ls(x, y) | emp | � and
ϕ ::= π | ¬ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ | ϕ −∗ ϕ, where x, y ∈ PVAR (⇒, ⇔ and ∨
are defined as usually). Models of the logic SL(∗,−∗, ls) are memory states and
the satisfaction relation |= is defined as follows (omitting standard clauses for
¬,∧):

(s, h) |= x = y ⇐⇒ s(x) = s(y)
(s, h) |= emp ⇐⇒ dom(h) = ∅
(s, h) |= x ↪→ y ⇐⇒ s(x) ∈ dom(h) and h(s(x)) = s(y)
(s, h) |= ls(x, y) ⇐⇒ either (dom(h) = ∅ and s(x) = s(y)) or

h = {�0 �→ �1, �1 �→ �2, . . . , �n−1 �→ �n} with n ≥ 1,
�0 = s(x), �n = s(y) and for all i �= j ∈ [0, n], �i �= �j

(s, h) |= ϕ1 ∗ ϕ2 ⇐⇒ there are h1 and h2 such that (h1⊥h2, (h1 + h2) = h,
(s, h1) |= ϕ1 and (s, h2) |= ϕ2)

(s, h) |= ϕ1 −∗ ϕ2 ⇐⇒ ∀h1 if (h1⊥h and (s, h1) |= ϕ1) then (s, h + h1) |= ϕ2.

Note that the semantics for ∗, −∗, ↪→, ls and for all other ingredients is the
usual one in separation logic and ls is the precise list segment predicate. In
the sequel, we use the following abbreviations: size ≥ 0 def= � and for all β ≥ 0,
size ≥ β+1 def= (size ≥ β)∗¬emp, size ≤ β

def= ¬(size ≥ β+1) and size = β
def=

(size ≤ β) ∧ (size ≥ β). Moreover, ϕ1 −� ϕ2
def= ¬(ϕ1 −∗ ¬ϕ2) (septraction

connective), alloc(x) def= (x ↪→ x)−∗ ⊥ and x �→ y
def= (x ↪→ y) ∧ size = 1.

W.l.o.g., we can assume that LOC = N since none of the developments depend on
the elements of LOC as the only predicate involving locations is the equality. We
write SL(∗,−∗) to denote the restriction of SL(∗,−∗, ls) without ls. Similarly, we

The Effects of Adding Reachability Predicates 479

write SL(∗) to denote the restriction of SL(∗,−∗) without −∗. Given two formulae
ϕ,ϕ′ (possibly from different logical languages), we write ϕ ≡ ϕ′ whenever for
all (s, h), we have (s, h) |= ϕ iff (s, h) |= ϕ′. When ϕ ≡ ϕ′, the formulae ϕ and
ϕ′ are said to be equivalent .

Variants with Other Reachability Predicates. We use two additional reachabil-
ity predicates reach(x, y) and reach+(x, y) and we write SL(∗,−∗, reach) (resp.
SL(∗,−∗, reach+)) to denote the variant of SL(∗,−∗, ls) in which ls is replaced
by reach (resp. by reach+). The relation |= is extended as follows: (s, h) |=
reach(x, y) holds when there is i ≥ 0 such that hi(s(x)) = s(y) (i functional com-
position(s) of h is denoted by hi) and (s, h) |= reach+(x, y) holds when there is
i ≥ 1 such that hi(s(x)) = s(y). As ls(x, y) ≡ reach(x, y)∧¬(¬emp∗reach(x, y))
and reach(x, y) ≡ �∗ls(x, y), the logics SL(∗,−∗, reach) and SL(∗,−∗, ls) have
identical decidability status. As far as computational complexity is concerned,
a similar analysis can be done as soon as ∗, ¬, ∧ and emp are parts of the
fragments (the details are omitted here). Similarly, we have the equivalences:
reach(x, y) ≡ x = y∨reach+(x, y) and ls(x, y) ≡ (x = y∧emp)∨(reach+(x, y)∧
¬(¬emp∗reach+(x, y))). So clearly, SL(∗, reach) and SL(∗, ls) can be viewed as
fragments of SL(∗, reach+) and, SL(∗,−∗, ls) as a fragment of SL(∗,−∗, reach+).
It is therefore stronger to establish decidability or complexity upper bounds with
reach+ and to show undecidability or complexity lower bounds with ls or reach.
Herein, we provide the optimal results.

Decision Problems. Let L be a logic defined above. As usual, the satisfiability
problem for L takes as input a formula ϕ from L and asks whether there is
(s, h) such that (s, h) |= ϕ. The validity problem is also defined as usual. The
model-checking problem for L takes as input a formula ϕ from L, (s, h) and
asks whether (s, h) |= ϕ (s is restricted to the variables occurring in ϕ and h
is encoded as a finite and functional graph). Unless otherwise specified, the size
of a formula ϕ is understood as its tree size, i.e. approximately its number of
symbols.

The main purpose of this paper is to study the decidability/complexity status
of SL(∗,−∗, ls) and its fragments.

3 Undecidability of SL(∗,−∗, ls)
In this section, we show that SL(∗,−∗, ls) has an undecidable satisfiability prob-
lem even though it does not admit first-order quantification.

Let SL(∀,−∗) be the first-order extension of SL(−∗) obtained by adding the
universal quantifier ∀. The formulae ϕ of SL(∀,−∗) are built from π ::= x = y |
x ↪→ y and ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | ϕ −∗ ϕ | ∀x ϕ, where x, y ∈ PVAR. Note
that emp can be easily defined by ∀ x, x′ ¬(x ↪→ x′). Models of the logic SL(∀,−∗)
are memory states and the satisfaction relation |= is defined as for SL(−∗) with
the additional clause:

(s, h) |= ∀x ϕ ⇐⇒ for all � ∈ LOC, we have (s[x ← �], h) |= ϕ.

480 S. Demri et al.

Without any loss of generality, we can assume that the satisfiability [resp. valid-
ity] problem for SL(∀,−∗) is defined by taking as inputs closed formulae (i.e.
without free occurrences of the variables).

Proposition 1. [5,14] The satisfiability problem for SL(∀,−∗) is undecidable
and the set of valid formulae for SL(∀,−∗) is not recursively enumerable.

In a nutshell, we establish the undecidability of SL(∗,−∗, ls) by reduction from
the satisfiability problem for SL(∀,−∗). The reduction is nicely decomposed in
two intermediate steps: (1) the undecidability of SL(∗,−∗) extended with a few
atomic predicates, to be defined soon, and (2) a tour de force resulting in the
encoding of these atomic predicates in SL(∗,−∗, ls).

3.1 Encoding Quantified Variables as Cells in the Heap

In this section, we assume for a moment that we can express three atomic pred-
icates alloc−1(x), n(x) = n(y) and n(x) ↪→ n(y), that will be used in the
translation and have the following semantics:

– (s, h) |= alloc−1(x) holds whenever s(x) ∈ ran(h),
– (s, h) |= n(x) = n(y) holds iff {s(x), s(y)} ⊆ dom(h) and h(s(x)) = h(s(y)),
– (s, h) |= n(x) ↪→n(y) holds iff {s(x), s(y)} ⊆ dom(h) and h2(s(x)) = h(s(y)).

Let us first intuitively explain how the two last predicates will help encoding
SL(∀,−∗). By definition, the satisfaction of the quantified formula ∀x ψ from
SL(∀,−∗) requires the satisfaction of the formula ψ for all the values in LOC
assigned to x. The principle of the encoding is to use a set L of locations initially
not in the domain or range of the heap to mimic the store by modifying how
they are allocated. In this way, a variable will be interpreted by a location in the
heap and, instead of checking whenever x ↪→ y (or x = y) holds, we will check
if n(x) ↪→ n(y) (or n(x) = n(y)) holds, where x and y correspond, after the
translation, to the locations in L that mimic the store for those variables. Let X
be the set of variables needed for the translation. In order to properly encode the
store, each location in L only mimics exactly one variable, i.e. there is a bijection
between X and L, and cannot be reached by any location. As such, the formula
∀x ψ will be encoded by the formula (alloc(x)∧size = 1)−∗ (OK(X) ⇒ T(ψ)),
where OK(X) (formally defined below) checks whenever the locations in L still
satisfy the auxiliary conditions just described, whereas T(ψ) is the translation
of ψ.

Unfortunately, the formula ψ1−∗ψ2 cannot simply be translated into T(ψ1)−∗
(OK(X) ⇒ T(ψ2)) because the evaluation of T(ψ1) in a disjoint heap may need
the values of free variables occurring in ψ1 but our encoding of the variable
valuations via the heap does not allow to preserve these values through disjoint
heaps. In order to solve this problem, for each variable x in the formula, X will
contain an auxiliary variable x, or alternatively we define on X an involution (.).
If the translated formula has q variables then the set X of variables needed for
the translation will have cardinality 2q. In the translation of a formula whose

The Effects of Adding Reachability Predicates 481

outermost connective is the magic wand, the locations corresponding to variables
of the form x will be allocated on the left side of the magic wand, and checked
to be equal to their non-bar versions on the right side of the magic wand. As
such, the left side of the magic wand will be translated into

((
∧

z∈Z

alloc(z)) ∧ (
∧

z∈X\Z

¬alloc(z)) ∧ OK(Z) ∧ T(ψ1)[z ← z | z ∈ X]),

where Z is the set of free variables in ψ1, whereas the right side will be

(((
∧

z∈Z

n(z) = n(z)) ∧ OK(X)) ⇒ ((
∧

z∈Z

alloc(z) ∧ size = card(Z)) ∗ T(ψ2))).

The use of the separating conjunction before the formula T(ψ2) separates the
memory cells corresponding to x from the rest of the heap. By doing this, we
can reuse x whenever a magic wand appears in T(ψ2).

For technical convenience, we consider a slight alternative for the semantics
of the logics SL(∀,−∗) and SL(∗,−∗, ls), which does not modify the notion of
satisfiability/validity and such that the set of formulae and the definition of the
satisfaction relation |= remain unchanged. So far, the memory states are pairs
of the form (s, h) with s : PVAR → LOC and h : LOC →fin LOC for a fixed
countably infinite set of locations LOC, say LOC = N. Alternatively, the models
for SL(∀,−∗) and SL(∗,−∗, ls) can be defined as triples (LOC1, s1, h1) such that
LOC1 is a countable infinite set, s1 : PVAR → LOC1 and h1 : LOC1 →fin

LOC1. As shown below, this does not change the notion of satisfiability and
validity, but this generalisation will be handy in a few places. Most of the time,
a generalised memory state (LOC1, s1, h1) shall be written (s1, h1) when no
confusion is possible.

Given a bijection f : LOC1 → LOC2 and a heap h1 : LOC1 →fin LOC1

equal to {�1 �→ h1(�1), . . . , �n �→ h1(�n)}, we write f(h1) to denote the heap
h2 : LOC2 →fin LOC2 with h2 = {f(�1) �→ f(h1(�1)), . . . , f(�n) �→ f(h1(�n))}.

Definition 1. Let (LOC1, s1, h1) and (LOC2, s2, h2) be generalised memory
states and X ⊆ PVAR. A partial isomorphism with respect to X from
(LOC1, s1, h1) to (LOC2, s2, h2) is a bijection f : LOC1 → LOC2 such that
h2 = f(h1) and for all x ∈ X, f(s1(x)) = s2(x) (we write (LOC1, s1, h1) ≈X

(LOC2, s2, h2)).

A folklore result states that isomorphic memory states satisfy the same formulae
since the logics SL(∀,−∗), SL(∗,−∗, ls) can only perform equality tests.

Lemma 1. Let (LOC1, s1, h1) and (LOC2, s2, h2) be two generalised memory
states such that (LOC1, s1, h1) ≈X (LOC2, s2, h2), for some X ⊆ PVAR.
(I) For all formulae ϕ in SL(∀,−∗) whose free variables are among X, we
have (LOC1, s1, h1) |= ϕ iff (LOC2, s2, h2) |= ϕ. (II) For all formulae ϕ
in SL(∗,−∗, ls) built on variables among X, we have (LOC1, s1, h1) |= ϕ iff
(LOC2, s2, h2) |= ϕ.

482 S. Demri et al.

As a direct consequence, satisfiability in SL(∗,−∗, ls) as defined in Sect. 2, is
equivalent to satisfiability with generalised memory states, the same holds for
SL(∀,−∗). Next, we define the encoding of a generalised memory state. This can
be seen as the semantical counterpart of the syntactical translation process and,
as such, formalise the intuition of using part of a heap to mimic the store.

Definition 2. Let X = {x1, . . . , x2q}, Y ⊆ {x1, . . . , xq} and, (LOC1, s1, h1) and
(LOC2, s2, h2) be two (generalised) memory states. We say that (LOC1, s1, h1) is
encoded by (LOC2, s2, h2) w.r.t. X,Y , written (LOC1, s1, h1) �Y

q (LOC2, s2, h2),
if the following conditions hold:

– LOC1 = LOC2 \ {s2(x) | x ∈ X},
– for all x �= y ∈ X, s2(x) �= s2(y),
– h2 = h1 + {s2(x) �→ s1(x) | x ∈ Y }.

Notice that h2 is equal to h1 plus the heap {s2(x) �→ s1(x) | x ∈ Y } that
encodes the store s1. The picture below presents a memory state (left) and its
encoding (right), where Y = {xi, xj , xk}. From the encoding, we can retrieve
the initial heap by removing the memory cells corresponding to xi, xj and xk.
By way of example, the memory state on the left satisfies the formulae xi = xj ,
xi ↪→ xk and xk ↪→ xk whereas its encoding satisfies the formulae n(xi) = n(xj),
n(xi) ↪→ n(xk) and n(xk) ↪→ n(xk).

xi=xj

xk

xj

xi

xk

3.2 The Translation

We are now ready to define the translation of a first-order formula in propo-
sitional separation logic extended with the three predicates introduced at the
beginning of the section. Let ϕ be a closed formula of SL(∀,−∗) with quanti-
fied variables {x1, . . . , xq}. W.l.o.g., we can assume that distinct quantifications
involve distinct variables. Moreover, let X = {x1, . . . , x2q} and (.) be the invo-
lution on X such that for all i ∈ [1, q] xi

def= xi+q.
We write OK(X) to denote the formula (

∧
i�=j xi �= xj) ∧ (

∧
i ¬alloc−1(xi)).

The translation function T has two arguments: the formula in SL(∀,−∗) to be
recursively translated and the total set of variables potentially appearing in the
target formula (useful to check that OK(X) holds on every heap involved in the
satisfaction of the translated formula). Let us come back to the definition of
T(ψ,X) (homomorphic for Boolean connectives) with the assumption that the
variables in ψ are among x1, . . . , xq.

The Effects of Adding Reachability Predicates 483

T(xi = xj ,X) def= n(xi) = n(xj)

T(xi ↪→ xj ,X) def= n(xi) ↪→ n(xj)

T(∀xi ψ,X) def= (alloc(xi) ∧ size = 1) −∗ (OK(X) ⇒ T(ψ,X))

Lastly, the translation T(ψ1 −∗ ψ2,X) is defined as

((
∧

z∈Z

alloc(z)) ∧ (
∧

z∈X\Z

¬alloc(z̄)) ∧ OK(X) ∧ T(ψ1,X)[x ← x̄])−∗

(((
∧

z∈Z

n(z) = n(z̄)) ∧ OK(X)) ⇒ ((
∧

z∈Z

alloc(z̄) ∧ size = card(Z)) ∗ T(ψ2,X))),

where Z ⊆ {x1, . . . , xq} is the set of free variables in ψ1.
Here is the main result of this section, which is essential for the correctness

of TSAT(ϕ), defined below.

Lemma 2. Let X = {x1, . . . , x2q}, Y ⊆ {x1, . . . , xq}, ψ be a formula in
SL(∀,−∗) with free variables among Y that does not contain any bound vari-
able of ψ and (LOC1, s1, h1) �Y

q (LOC2, s2, h2). We have (s1, h1) |= ψ iff
(s2, h2) |= T(ψ,X).

We define the translation TSAT(ϕ) in SL(∗,−∗, ls) where T(ϕ,X) is defined
recursively.

TSAT(ϕ) def= (
∧

i∈[1,2q]

¬alloc(xi)) ∧ OK(X) ∧ T(ϕ,X).

The first two conjuncts specify initial conditions, namely each variable y in X is
interpreted by a location that is unallocated, it is not in the heap range and it is
distinct from the interpretation of all other variables; in other words, the value
for y is isolated. Similarly, let TVAL(ϕ) be the formula in SL(∗,−∗, ls) defined
by ((

∧
i∈[1,2q] ¬alloc(xi)) ∧ OK(X)) ⇒ T(ϕ,X). As a consequence of Lemma 2,

ϕ and TSAT(ϕ) are shown equisatisfiable, whereas ϕ and TVAL(ϕ) are shown
equivalid.

Corollary 1. Let ϕ be a closed formula in SL(∀,−∗) using quantified variables
among {x1, . . . , xq}. (I) ϕ and TSAT(ϕ) are equisatisfiable. (II) ϕ and TVAL(ϕ)
are equivalid.

3.3 Expressing the Auxiliary Atomic Predicates

To complete the reduction, we briefly explain how to express the formulae
alloc−1(x), n(x) = n(y) and n(x) ↪→ n(y) within SL(∗,−∗, ls). Let us intro-
duce a few macros that shall be helpful.

484 S. Demri et al.

– Given ϕ in SL(∗,−∗, reach+) and γ ≥ 0, we write [ϕ]γ to denote the for-
mula (size = γ ∧ ϕ) ∗ �. It is easy to show that for any memory state (s, h),
(s, h) |= [ϕ]γ iff there is h′ � h such that card(dom(h′)) = γ and (s, h′) |= ϕ.

– We write reach(x, y) = γ to denote the formula [ls(x, y)]γ , which is sat-
isfied in any memory state (s, h) where hγ(s(x)) = s(y). Lastly, we write
reach(x, y) ≤ γ to denote the formula

∨
0≤γ′≤γ reach(x, y) = γ′.

In order to define the existence of a predecessor (i.e. alloc−1(x)) in SL(∗,−∗, ls),
we need to take advantage of an auxiliary variable y whose value is different from
the one for x. Let alloc−1

y (x) be the formula

x ↪→ x ∨ y ↪→ x ∨ [(alloc(y) ∧ ¬(y ↪→ x) ∧ size = 1) −� reach(y, x) = 2]1

Lemma 3. Let x, y ∈ PVAR. (I) For all memory states (s, h) such that s(x) �=
s(y), we have (s, h) |= alloc−1

y (x) iff s(x) ∈ ran(h). (II) In the translation,
alloc−1(x) can be replaced with alloc−1

x (x).

As stated in Lemma 3(II), we can exploit the fact that in the translation of
a formula with variables in {x1, . . . , xq}, we use 2q variables that correspond
to 2q distinguished locations in the heap in order to retain the soundness of
the translation while using alloc−1

x (x) as alloc−1(x). Moreover, alloc−1
y (x)

allows to express in SL(∗,−∗, ls) whenever a location corresponding to a program
variable reaches itself in exactly two steps (we use this property in the definition
of n(x) ↪→ n(y)). We write x ↪→2

y x to denote the formula ¬(x ↪→ x) ∧ (x ↪→ y ⇔
y ↪→ x) ∧ [alloc(x) ∧ alloc−1

y (x) ∧ (� −∗ ¬reach(x, y) = 2)]2. For any memory
state (s, h) such that s(x) �= s(y), we have (s, h) |= x ↪→2

y x if and only if
h2(s(x)) = s(x) and h(s(x)) �= s(x).

The predicate n(x) = n(y) can be defined in SL(∗,−∗, ls) as

(x �= y ⇒ [alloc(x) ∧ alloc(y) ∧ ((x ↪→ y ∧ y ↪→ y) ∨ (y ↪→ x ∧ x ↪→ x)∨
((

∧

z,z′∈{x,y}
¬(z ↪→ z′)) ∧ (� −∗ ¬(reach(x, y) = 2 ∧ reach(y, x) = 2))))]2) ∧ alloc(x)

Lemma 4. Let x, y ∈ PVAR. For all memory states (s, h), we have (s, h) |=
n(x) = n(y) iff h(s(x)) = h(s(y)).

Similarly to alloc−1(x), we can show that n(x) ↪→ n(y) is definable in
SL(∗,−∗, ls) by using one additional variable z whose value is different from both
x and y. Let ϕ↪→(x, y, z) be (n(x) = n(y)∧ϕ=

↪→(x, y, z))∨(n(x) �= n(y)∧ϕ�=
↪→(x, y))

where ϕ=
↪→(x, y, z) is defined as

(x ↪→ x ∧ y ↪→ x) ∨ (y ↪→ y ∧ x ↪→ y) ∨ (x ↪→ z ∧ z ↪→ z)
∨ [alloc(x) ∧ ¬alloc−1

z (x) ∧ (� −∗ ¬reach(x, z) ≤ 3)]2

The Effects of Adding Reachability Predicates 485

whereas ϕ �=
↪→(x, y) is defined as

(x ↪→ y ∧ alloc(y)) ∨ (y ↪→ y ∧ reach(x, y) = 2) ∨ (y ↪→ x ∧ x ↪→2
y x)∨

[alloc(x) ∧ alloc(y) ∧ (
∧

z,z′∈{x,y} ¬z ↪→ z′) ∧ ¬reach(x, y) ≤ 3

∧ ((size = 1 ∧ alloc−1
x (y)) −� (reach(x, y) = 3 ∧ y ↪→2

x y))]3

Lemma 5. Let x, y, z ∈ PVAR. (I) For all memory states (s, h) such that
s(x) �= s(z) and s(y) �= s(z), we have (s, h) |= ϕ↪→(x, y, z) iff {s(x), s(y)} ⊆
dom(h) and h(h(s(x))) = h(s(y)); (II) In the translation, n(x) ↪→ n(y) can be
replaced by ϕ↪→(x, y, x).

As for alloc−1
y (x), the properties of the translation imply the equivalence

between n(x) ↪→ n(y) and ϕ↪→(x, y, x) (as stated in Lemma 5(II)). By look-
ing at the formulae herein defined, the predicate reach only appears bounded,
i.e. in the form of reach(x, y) = 2 and reach(x, y) = 3. The three new pred-
icates can therefore be defined in SL(∗,−∗) enriched with reach(x, y) = 2 and
reach(x, y) = 3.

3.4 Undecidability Results and Non-finite Axiomatization

It is time to collect the fruits of all our efforts and to conclude this part about
undecidability. As a direct consequence of Corollary 1 and the undecidability of
SL(∀,−∗), here is one of the main results of the paper.

Theorem 1. The satisfiability problem for SL(∗,−∗, ls) is undecidable.

As a by-product, the set of valid formulae for SL(∗,−∗, ls) is not recursively
enumerable. Indeed, suppose that the set of valid formulae for SL(∗,−∗, ls) were
r.e., then one can enumerate the valid formulae of the form TVAL(ϕ) as it is
decidable in PTime whether ψ in SL(∗,−∗, ls) is syntactically equal to TVAL(ϕ)
for some SL(∀,−∗) formula ϕ. This leads to a contradiction since this would allow
the enumeration of valid formulae in SL(∀,−∗).

The essential ingredients to establish the undecidability of SL(∗,−∗, ls) are
the fact that the following properties n(x) = n(y), n(x) ↪→ n(y) and alloc−1(x)
are expressible in the logic.

Corollary 2. SL(∗,−∗) augmented with built-in formulae of the form n(x) =
n(y), n(x) ↪→ n(y) and alloc−1(x) (resp. of the form reach(x, y) = 2 and
reach(x, y) = 3) admits an undecidable satisfiability problem.

This is the addition of reach(x, y) = 3 that is crucial for undecidability since the
satisfiability problem for SL(∗,−∗, reach(x, y) = 2) is in PSpace [15]. Following
a similar analysis, let SL1(∀, ∗,−∗) be the restriction of SL(∀, ∗,−∗) (i.e. SL(∀,−∗)
plus ∗) to formulae of the form ∃x1 · · · ∃xq ϕ, where q ≥ 1, the variables in ϕ are
among {x1, . . . , xq+1} and the only quantified variable in ϕ is xq+1. The satisfia-
bility problem for SL1(∀, ∗,−∗) is PSpace-complete [15]. Note that SL1(∀, ∗,−∗)

486 S. Demri et al.

can easily express n(x) = n(y) and alloc−1(x). The distance between the decid-
ability for SL1(∀, ∗,−∗) and the undecidability for SL(∗,−∗, ls), is best witnessed
by the corollary below, which solves an open problem [15, Sect. 6].

Corollary 3. SL1(∀, ∗,−∗) augmented with n(x) ↪→ n(y) (resp. SL1(∀, ∗,−∗)
augmented with ls) admits an undecidable satisfiability problem.

4 SL(∗, reach+) and Other PSPACE Variants

As already seen in Sect. 2, SL(∗, ls) can be understood as a fragment of
SL(∗, reach+). Below, we show that the satisfiability problem for SL(∗, reach+)
can be solved in polynomial space. Refining the arguments used in our proof, we
also show the decidability of the fragment of SL(∗,−∗, reach+) where reach+ is
constrained not to occur in the scope of −∗, i.e. ϕ belongs to that fragment iff
for any subformula ψ of ϕ of the form ψ1 −∗ ψ2, reach+ does not occur in ψ1

and in ψ2.
The proof relies on a small heap property: a formula ϕ is satisfiable if and only

if it admits a model with a polynomial amount of memory cells. The PSpace
upper bound then follows by establishing that the model-checking problem for
SL(∗, reach+) is in PSpace too. To establish the small heap property, an equiv-
alence relation on memory states with finite index is designed, following the
standard approach in [10,32] and using test formulae as in [4,15,22,23].

4.1 Introduction to Test Formulae

Before presenting the test formulae for SL(∗, reach+), let us recall the standard
result for SL(∗,−∗) (that will be also used at some point later on).

Proposition 2. [22,32] Any formula ϕ in SL(∗,−∗) built over variables in x1,
. . . ,xq is logically equivalent to a Boolean combination of formulae among xi =xj,
alloc(xi), xi ↪→ xj and size ≥ β (i, j ∈ {1, . . . , q}, β ∈ N).

By way of example,
(
¬emp ∗

(
(x1 ↪→ x2)−∗ ⊥

))
is equivalent to size ≥ 2 ∧

alloc(x1). As a corollary of the proof of Proposition 2, in size ≥ β we can
enforce that β ≤ 2 × |ϕ| (rough upper bound) where |ϕ| is the size of ϕ. Similar
results will be shown for SL(∗, reach+) and for some of its extensions.

In order to define a set of test formulae that captures the expressive power of
SL(∗, reach+), we need to study which basic properties on memory states can be
expressed by SL(∗, reach+) formulae. For example, consider the memory states
from Fig. 1.
The fragment memory states (s1, h1) and (s2, h2) can be distinguished by the
formula � ∗ (reach(xi, xj) ∧ reach(xj , xk) ∧ ¬reach(xk, xi)). Indeed, (s1, h1)
satisfies this formula by considering a subheap that does not contain a path
from s(xk) to s(xi), whereas it is impossible to find a subheap for (s2, h2) that
retains the path from s(xi) to s(xj), the one from s(xj) to s(xk) but where the
path from s(xk) to s(xi) is lost. This suggests that SL(∗, reach+) can express

The Effects of Adding Reachability Predicates 487

xi

xk

xj

xi

xk

xj

xjxi

� �′

xk

xjxi

� �′

xk

Fig. 1. Memory states (s1, h1), . . . , (s4, h4) (from left to right)

whether, for example, any path from s(xi) to s(xj) also contains s(xk). We will
introduce the test formula seesq(xi, xj) ≥ β to capture this property.

Similarly, the memory states (s3, h3) and (s4, h4) can be distinguished by
the formula (size = 1) ∗

(
reach(xj , xk) ∧ ¬reach(xi, xk) ∧ ¬reach+(xk, xk)

)
.

The memory state (s3, h3) satisfies this formula by separating {� �→ �′} from the
rest of the heap, whereas the formula is not satisfied by (s4, h4). Indeed, there
is no way to break the loop from s(xk) to itself by removing just one location
from the heap while retaining the path from s(xj) to s(xk) and loosing the path
from s(xi) to s(xk). This suggests that the two locations � and �′ are particularly
interesting since they are reachable from several locations corresponding to pro-
gram variables. Therefore by separating them from the rest of the heap, several
paths are lost. In order to capture this, we introduce the notion of meet-points.

Let Termsq be the set {x1, . . . , xq}∪{mq(xi, xj) | i, j ∈ [1, q]} understood as
the set of terms that are either variables or expressions denoting a meet-point.
We write [[xi]]

q
s,h to denote s(xi) and [[mq(xi, xj)]]

q
s,h to denote (if it exists) the

first location reachable from s(xi) that is also reachable from s(xj). Moreover we
require that this location can reach another location corresponding to a program
variable. Formally, [[mq(xi, xj)]]

q
s,h is defined as the unique location � such that

– there are L1, L2 ≥ 0 such that hL1(s(xi)) = hL2(s(xj)) = �, and
– for all L′

1 < L1 and for all L′
2 ≥ 0, hL′

1
(
s(xi)

)
�= hL′

2
(
s(xj)

)
, and

– there exist k ∈ [1, q] and L ≥ 0 such that hL(�) = s(xk).

These conditions hold for at most one location �. One can easily show that the
notion [[mq(xi, xj)]]

q
s,h is well-defined. The picture below provides a taxonomy of

meet-points, where arrows labelled by ‘+’ represent paths of non-zero length and
zig-zag arrows any path (possibly of zero length). Symmetrical cases, obtained
by swapping xi and xj , are omitted.

xi

mq(xi,xj)
mq(xj ,xi)

xj

xk

xk not inside a loop

xi

mq(xi,xj)
mq(xj ,xi)

xj

xk

+

xi

mq(xi,xj)

mq(xj ,xi)

xj

xk

+

+

xi

mq(xi,xj)

mq(xj ,xi)
xk

xj

+
+

488 S. Demri et al.

Notice how the asymmetrical definition of meet-points is captured in the two
rightmost heaps. Consider the memory states from Fig. 1, (s3, h3) and (s4, h4)
can be seen as an instance of the third case of the taxonomy and, as such, it
holds that [[mq(xi, xj)]]

q
s3,h3

= � and [[mq(xj , xi)]]
q
s3,h3

= �′.
Given q, α ≥ 1, we write Test(q, α) to denote the following set of atomic

formulae (also called test formulae):

v = v′ v ↪→ v′ alloc(v) seesq(v, v′) ≥ β + 1 sizeRq ≥ β,

where v, v′ ∈ Termsq and β ∈ [1, α]. It is worth noting that the alloc(v)’s are
not needed for the logic SL(∗, reach+) but it is required for extensions.

We identify as special locations the s(xi)’s and the meet-points of the form
[[mq(xi, xj)]]

q
s,h when it exists (i, j ∈ [1, q]). We call such locations, labelled loca-

tions, and the set of labelled locations is written Labelsq
s,h. The formal semantics

of the test formulae is provided below:

(s, h) |= v = v′ ⇐⇒ [[v]]qs,h, [[v′]]qs,h are defined, [[v]]qs,h = [[v′]]qs,h

(s, h) |= alloc(v) ⇐⇒ [[v]]qs,h is defined and belongs to dom(h)
(s, h) |= v ↪→ v′ ⇐⇒ h([[v]]qs,h) = [[v′]]qs,h

(s, h) |= seesq(v, v′) ≥ β + 1 ⇐⇒ ∃L ≥ β + 1, hL([[v]]qs,h) = [[v′]]qs,h and
∀ 0 < L′ < L, hL′

([[v]]qs,h) �∈ Labelsq
s,h

(s, h) |= sizeRq ≥ β ⇐⇒ card(Remq
s,h) ≥ β

where Remq
s,h is the set of locations that neither belong to a path between

two locations interpreted by program variables nor are equal to program vari-
able interpretations, i.e. Remq

s,h
def= {� ∈ dom(h) | ∀i ∈ [1, q], s(xi) �= �

and ∀j ∈ [1, q] �L,L′ ≥ 1, hL(s(xi)) = � and hL′
(�) = s(xj)}. There is no need

for test formulae of the form seesq(v, v′) ≥ 1 since they are equivalent to v ↪→
v′ ∨ seesq(v, v′) ≥ 2. One can check whether [[mq(xi, xj)]]

q
s,h is defined thanks to

the formula mq(xi, xj) = mq(xi, xj). By contrast, sizeRq ≥ β states that the
cardinality of the set Remq

s,h is at least β. Furthermore, seesq(v, v′) ≥ β + 1
states that there is a minimal path between v and v′ of length at least β + 1
and strictly between v and v′, there are no labelled locations. The satisfaction
of seesq(v, v′) ≥ β + 1 entails the exclusion of labelled locations in the wit-

ness path, which is reminiscent to T
h\T ′′
−−→ T ′ in the logic GRASS [26]. So, the

test formulae are quite expressive since they capture the atomic formulae from
SL(∗, reach+) and the test formulae for SL(∗,−∗).

Lemma 6. Given α, q ≥ 1, i, j ∈ [1, q], for any atomic formula among
ls(xi, xj), reach(xi, xj), reach+(xi, xj), emp and size ≥ β with β ≤ α, there is
a Boolean combination of test formulae from Test(q, α) logically equivalent to it.

4.2 Expressive Power and Small Model Property

The sets of test formulae Test(q, α) are sufficient to capture the expressive
power of SL(∗, reach+) (as shown below, Theorem 2) and deduce the small heap

The Effects of Adding Reachability Predicates 489

property of this logic (Theorem 3). We introduce an indistinguishability rela-
tion between memory states based on test formulae, see analogous relations
in [13,15,22].

Definition 3. Given q, α ≥ 1, we write (s, h) ≈q
α (s′, h′) def⇔ for all ψ ∈

Test(q, α), we have (s, h) |= ψ iff (s′, h′) |= ψ.

Theorem 2(I) states that if (s, h) ≈q
α (s′, h′), then the two memory states

cannot be distinguished by formulae whose syntactic resources are bounded in
some way by q and α (details will follow, see the definition for msize(ϕ)).

Below, we state the key intermediate result of the section that can be viewed
as a distributivity lemma. The expressive power of the test formulae allows us
to mimic the separation between two equivalent memory states with respect to
the relation ≈q

α, which is essential in the proof of Theorem 2(I).

Lemma 7. Let q, α, α1, α2 ≥ 1 with α = α1 +α2 and (s, h), (s′, h′) be such that
(s, h) ≈q

α (s′, h′). For all heaps h1, h2 such that h = h1 + h2 there are heaps h′
1,

h′
2 such that h = h′

1 + h′
2, (s, h1) ≈q

α1
(s′, h′

1) and (s, h2) ≈q
α2

(s′, h′
2).

For each formula ϕ in SL(∗, reach+), we define its memory size msize(ϕ)
following the clauses below (see also [32]).

msize(π) def= 1 for any atomic formula π

msize(ψ ∗ ψ′) def= msize(ψ) + msize(ψ′)

msize(ψ ∧ ψ′) def= max(msize(ψ), msize(ψ′))

msize(¬ψ) def= msize(ψ).

We have 1 ≤ msize(ϕ) ≤ |ϕ|. Theorem 2 below establishes the properties that
formulae in SL(∗, reach+) can express.

Theorem 2. Let ϕ be in SL(∗, reach+) built over the variables in x1, . . . , xq.
(I) For all α ≥ 1 such that msize(ϕ) ≤ α and for all memory states (s, h), (s′, h′)
such that (s, h) ≈q

α (s′, h′), we have (s, h) |= ϕ iff (s′, h′) |= ϕ. (II) ϕ is logically
equivalent to a Boolean combination of test formulae from Test(q, msize(ϕ)).

The proof of Theorem 2(I) is by structural induction on ϕ. The basic cases for
atomic formulae follow from Lemma 6 whereas the inductive cases for Boolean
connectives are immediate. For the separating conjunction, suppose (s, h) |=
ϕ1∗ϕ2 and msize(ϕ1∗ϕ2) ≤ α. There are heaps h1 and h2 such that h = h1+h2,
(s, h1) |= ψ1 and (s, h2) |= ψ2. As α ≥ msize(ψ1 ∗ψ2) = msize(ψ1)+msize(ψ2),
there exist α1 and α2 such that α = α1 + α2, α1 ≥ msize(ψ1) and α2 ≥
msize(ψ2). By Lemma 7, there exist heaps h′

1 and h′
2 such that h′ = h′

1 + h′
2,

(s, h1) ≈q
α1

(s′, h′
1) and (s, h2) ≈q

α2
(s′, h′

2). By the induction hypothesis, we get
(s′, h′

1) |= ψ1 and (s′, h′
2) |= ψ2. Consequently, we obtain (s′, h′) |= ψ1 ∗ ψ2.

As an example, we can apply this result to the memory states from Fig. 1.
We have already shown how we can distinguish (s1, h1) from (s2, h2) using a

490 S. Demri et al.

formula with only one separating conjunction. Theorem2 ensures that these two
memory states do not satisfy the same set of test formulae for α ≥ 2. Indeed, only
(s1, h1) satisfies seesq(xi, xj) ≥ 2. The same argument can be used with (s3, h3)
and (s4, h4): only (s3, h3) satisfies the test formula mq(xi, xj) ↪→ mq(xj , xi).
Clearly, Theorem 2(II) relates separation logic with classical logic as advocated
also in the works [10,23]. Now, it is possible to establish a small heap property.

Theorem 3. Let ϕ be a satisfiable SL(∗, reach+) formula built over x1, . . . , xq.
There is (s, h) such that (s, h) |= ϕ and card(dom(h)) ≤ (q2 + q) · (|ϕ|+1)+ |ϕ|.

The small heap property for SL(∗, reach+) is inherited from the small heap
property for the Boolean combinations of test formulae, which is analogous to
the small model property for other theories of singly linked lists, see e.g. [13,27].

4.3 Complexity Upper Bounds

Let us draw some consequences of Theorem 3. First, for the logic SL(∗, reach+),
we get a PSpace upper, which matches the lower bound for SL(∗) [11].

Theorem 4. The satisfiability problem for SL(∗, reach+) is PSpace-complete.

Besides, we may consider restricting the usage of Boolean connectives. We
note Bool(SHF) for the Boolean combinations of formulae from the symbolic heap
fragment [2]. A PTime upper bound for the entailment/satisfiability problem
for the symbolic heap fragment is successfully solved in [12,17], whereas the
satisfiability problem for a slight variant of Bool(SHF) is shown in NP in [26,
Theorem 4]. Theorem 3 allows us to conclude this NP upper bound result as a
by-product (we conjecture that our quadratic upper bound on the number of
cells could be improved to a linear one in that case).

Corollary 4. The satisfiability problem for Bool(SHF) is NP-complete.

It is possible to push further the PSpace upper bound by allowing occur-
rences of −∗ in a controlled way. Let SL(∗, reach+,

⋃
q,α Test(q, α)) be the exten-

sion of SL(∗, reach+) augmented with the test formulae. The memory size func-
tion is also extended: msize(v ↪→ v′) def= 1, msize(seesq(v, v′) ≥ β + 1) def= β + 1,
msize(sizeR ≥ β) def= β and msize(alloc(v)) def= 1. When formulae are encoded
as trees, we have 1 ≤ msize(ϕ) ≤ |ϕ|αϕ where αϕ is the maximal constant
in ϕ. Theorem 2(I) admits a counterpart for SL(∗, reach+,

⋃
q,α Test(q, α)) and

consequently, any formula built over x1, . . . , xq can be shown equivalent to a
Boolean combination of test formulae from Test(q, |ϕ|αϕ). By Theorem 3, any
satisfiable formula has therefore a model with card(dom(h)) ≤ (q2 +q) · (|ϕ|αϕ +
1) + |ϕ|αϕ. Hence, the satisfiability problem for SL(∗, reach+,

⋃
q,α Test(q, α))

is in PSpace when the constants are encoded in unary. Now, we can state
the new PSpace upper bound for Boolean combinations of formulae from
SL(∗,−∗) ∪ SL(∗, reach+).

Theorem 5. The satisfiability problem for Boolean combinations of formulae
from SL(∗,−∗) ∪ SL(∗, reach+) is PSpace-complete.

The Effects of Adding Reachability Predicates 491

To conclude, let us introduce the largest fragment including −∗ and ls for which
decidability can be established so far.

Theorem 6. The satisfiability problem for the fragment of SL(∗,−∗, reach+) in
which reach+ is not in the scope of −∗ is decidable.

5 Conclusion

We studied the effects of adding ls to SL(∗,−∗) and variants. SL(∗,−∗, ls) is
shown undecidable (Theorem 1) and non-finitely axiomatisable, which remains
quite unexpected since there are no first-order quantifications. This result is
strengthened to even weaker extensions of SL(∗,−∗) such as the one augmented
with n(x) = n(y), n(x) ↪→ n(y) and alloc−1(x), or the one augmented with
reach(x, y) = 2 and reach(x, y) = 3. If the magic wand is discarded, we have
established that the satisfiability problem for SL(∗, ls) is PSpace-complete
by introducing a class of test formulae that captures the expressive power of
SL(∗, ls) and that leads to a small heap property. Such a logic contains the
Boolean combinations of symbolic heaps and our proof technique allows us to
get an NP upper bound for such formulae. Moreover, we show that the satis-
fiability problem for SL(∗,−∗, reach+) restricted to formulae in which reach+

is not in the scope of −∗ is decidable, leading to the largest known decidable
fragment for which −∗ and reach+ (or ls) cohabit. So, we have provided proof
techniques to establish undecidability when ∗, −∗ and ls are present and to
establish decidability based on test formulae. This paves the way to investi-
gate the decidability status of SL(−∗, ls) as well as of the positive fragment of
SL(∗,−�, ls) from [30,31].

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411–425. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 27

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30538-5 9

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 6

4. Brochenin, R., Demri, S., Lozes, E.: Reasoning about sequences of memory states.
APAL 161(3), 305–323 (2009)

5. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. IC 211, 106–137 (2012)
6. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Perez, J.: A decision procedure

for satisfiability in separation logic with inductive predicates. In: CSL-LICS 2014
(2014)

https://doi.org/10.1007/978-3-642-54830-7_27
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/11804192_6

492 S. Demri et al.

7. Brotherston, J., Villard, J.: Parametric completeness for separation theories. In:
POPL 2014, pp. 453–464. ACM (2014)

8. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

9. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. JACM 58(6), 26:1–26:66 (2011)

10. Calcagno, C., Gardner, P., Hague, M.: From separation logic to first-order logic.
In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 395–409. Springer, Hei-
delberg (2005). https://doi.org/10.1007/978-3-540-31982-5 25

11. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results
for a spatial assertion language for data structures. In: Hariharan, R., Vinay,
V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45294-X 10

12. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23217-6 16

13. David, C., Kroening, D., Lewis, M.: Propositional reasoning about safety and ter-
mination of heap-manipulating programs. In: Vitek, J. (ed.) ESOP 2015. LNCS,
vol. 9032, pp. 661–684. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46669-8 27

14. Demri, S., Deters, M.: Expressive completeness of separation logic with two vari-
ables and no separating conjunction. ACM ToCL 17(2), 12 (2016)

15. Demri, S., Galmiche, D., Larchey-Wendling, D., Mery, D.: Separation logic with
one quantified variable. Theory Comput. Syst. 61, 371–461 (2017)

16. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 19

17. Haase, C., Ishtiaq, S., Ouaknine, J., Parkinson, M.J.: SeLoger: a tool for graph-
based reasoning in separation logic. In: Sharygina, N., Veith, H. (eds.) CAV 2013.
LNCS, vol. 8044, pp. 790–795. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39799-8 55

18. Hóu, Z., Goré, R., Tiu, A.: Automated theorem proving for assertions in separation
logic with all connectives. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS
(LNAI), vol. 9195, pp. 501–516. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21401-6 34

19. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38574-2 2

20. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: POPL 2001, pp. 14–26. ACM (2001)

21. Le, Q.L., Tatsuta, M., Sun, J., Chin, W.-N.: A decidable fragment in separation
logic with inductive predicates and arithmetic. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10427, pp. 495–517. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63390-9 26

22. Lozes, E.: Expressivité des Logiques Spatiales. Ph.D. thesis, ENS Lyon (2004)
23. Lozes, E.: Separation logic preserves the expressive power of classical logic. In:

SPACE 2004 (2004)

https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-540-31982-5_25
https://doi.org/10.1007/3-540-45294-X_10
https://doi.org/10.1007/978-3-642-23217-6_16
https://doi.org/10.1007/978-3-642-23217-6_16
https://doi.org/10.1007/978-3-662-46669-8_27
https://doi.org/10.1007/978-3-662-46669-8_27
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/978-3-642-39799-8_55
https://doi.org/10.1007/978-3-642-39799-8_55
https://doi.org/10.1007/978-3-319-21401-6_34
https://doi.org/10.1007/978-3-319-21401-6_34
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-319-63390-9_26
https://doi.org/10.1007/978-3-319-63390-9_26

The Effects of Adding Reachability Predicates 493

24. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

25. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

26. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 54

27. Ranise, S., Zarba, C.: A theory of singly-linked lists and its extensible decision
procedure. In: SEFM 2006, pp. 206–215. IEEE (2006)

28. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS
2002, pp. 55–74. IEEE (2002)

29. Schwerhoff, M., Summers, A.: Lightweight support for magic wands in an automatic
verifier. In: ECOOP 2015, pp. 999–1023. Leibniz-Zentrum für Informatik, LIPICS
(2015)

30. Thakur, A.: Symbolic Abstraction: Algorithms and Applications. Ph.D. thesis,
University of Wisconsin-Madison (2014)

31. Thakur, A., Breck, J., Reps, T.: Satisfiability modulo abstraction for separation
logic with linkedlists. In: SPIN 2014, pp. 58–67. ACM (2014)

32. Yang, H.: Local Reasoning for Stateful Programs. Ph.D. thesis, University of
Illinois, Urbana-Champaign (2001)

33. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70545-1 36

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/978-3-540-70545-1_36
https://doi.org/10.1007/978-3-540-70545-1_36
http://creativecommons.org/licenses/by/4.0/

The Equational Theory of the Natural
Join and Inner Union is Decidable

Luigi Santocanale(B)

LIS, CNRS UMR 7020, Aix-Marseille Université, Marseille, France
luigi.santocanale@lis-lab.fr

Abstract. The natural join and the inner union operations combine
relations of a database. Tropashko and Spight [25] realized that these
two operations are the meet and join operations in a class of lattices,
known by now as the relational lattices. They proposed then lattice the-
ory as an algebraic approach to the theory of databases, alternative to
the relational algebra.

Previous works [17,23] proved that the quasiequational theory of these
lattices—that is, the set of definite Horn sentences valid in all the rela-
tional lattices—is undecidable, even when the signature is restricted to
the pure lattice signature.

We prove here that the equational theory of relational lattices is decid-
able. That, is we provide an algorithm to decide if two lattice theoretic
terms t, s are made equal under all interpretations in some relational
lattice. We achieve this goal by showing that if an inclusion t ≤ s fails
in any of these lattices, then it fails in a relational lattice whose size is
bound by a triple exponential function of the sizes of t and s.

1 Introduction

The natural join and the inner union operations combine relations (i.e. tables)
of a database. SQL-like languages construct queries by making repeated use of
the natural join and of the union. The inner union is a mathematically well
behaved variant of the union—for example, it does not introduce empty cells.
Tropashko and Spight realized [25,26] that these two operations are the meet
and join operations in a class of lattices, known by now as the class of relational
lattices. They proposed then lattice theory as an algebraic approach, alternative
to Codd’s relational algebra [4], to the theory of databases.

Roughly speaking, elements of the relational lattice R(D,A) are tables of a
database, where A is a set of columns’ names and D is the set of possible cells’
values. Let us illustrate the two operations with examples. The natural join takes
two tables and constructs a new one whose columns are indexed by the union of
the headers, and whose rows are glueings of the rows along identical values in
common columns:

Supported by the Project TICAMORE ANR-16-CE91-0002-01.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 494–510, 2018.
https://doi.org/10.1007/978-3-319-89366-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_27&domain=pdf
http://orcid.org/0000-0002-4237-7856

The Equational Theory of the Natural Join and Inner Union 495

Author Area

Santocanale Logic

Santocanale CS

��
Area Reviewer

CS Turing

Logic Gödel

=
Author Area Reviewer

Santocanale Logic Gödel

Santocanale CS Turing

The inner union restricts two tables to the common columns and lists all
the rows of the two tables. The following example suggests how to construct,
using this operation, a table of users given two (or more) tables of people having
different roles.

Author

Name Surname Conf

Luigi Santocanale FOSSACS

∪
Reviewer

Name Surname Area

Alan Turing CS

Kurt Gödel Logic

=

User

Name Surname

Luigi Santocanale

Alan Turing

Kurt Gödel

Since we shall focus on lattice-theoretic considerations, we shall use the sym-
bols ∧ and ∨, in place of the symbols �� for ∪ used by database theorists.

A first important attempt to axiomatize these lattices was done by Litak
et al. [17]. They proposed an axiomatization, comprising equations and
quasiequations, in a signature that extends the pure lattice signature with a
constant, the header constant. A main result of that paper is that the quasiequa-
tional theory of relational lattices is undecidable in this extended signature. Their
proof mimics Maddux’s proof that the equational theory of cylindric algebras of
dimension n ≥ 3 is undecidable [18].

Their result was further refined by us in [23]: the quasiequational theory
of relational lattices is undecidable even when the signature considered is the
least one, comprising only the meet (natural join) and the join operations (inner
union). Our proof relied on a deeper algebraic insight: we proved that it is unde-
cidable whether a finite subdirectly irreducible lattice can be embedded into a
relational lattice—from this kind of result, undecidability of the quasiequational
theory immediately follows. We proved the above statement by reducing to it
an undecidable problem in modal logic, the coverability problem of a frame by a
universal S53-product frame [12]. In turn, this problem was shown to be unde-
cidable by reducing it to the representability problem of finite simple relation
algebras [11].

We prove here that the equational theory of relational lattices is decidable.
That is, we prove that it is decidable whether two lattice terms t and s are such
that �t�v = �s�v, for any valuation v : X −→ R(D,A) of variables in a relational
lattice R(D,A). We achieve this goal by showing that this theory has a kind of
finite model property of bounded size. Out main result, Theorem 25, sounds as
follows: if an inclusion t ≤ s fails in a relational lattice R(D,A), then such
inclusion fails in a finite lattice R(E,B), such that B is bound by an exponential
function in the size of t and s, and E is linear in the size of t. It follows that
the size of R(E,B) can be bound by a triple exponential function in the size of
t and s. In algebraic terms, our finite model theorem can be stated by saying
that the variety generated by the relational lattices is actually generated by its
finite generators, the relational lattices that are finite.

496 L. Santocanale

In our opinion, our results are significant in two respects. Firstly, the alge-
bra of the natural join and of the inner union has a direct connection to the
widespread SQL-like languages, see e.g. [17]. We dare to say that most of pro-
grammers that use a database—more or less explicitly, for example within server-
side web programs—are using these operations. In view of the widespread use of
these languages, the decidability status of this algebraic system deserved being
settled. Moreover, we believe that the mathematical insights contained in our
decidability proof shall contribute to understand further the algebraic system.
For example, it is not known yet whether a complete finite axiomatic basis exists
for relational lattices; finding it could eventually yield applications, e.g. on the
side of automated optimization of queries.

Secondly, our work exhibits the equational theory of relational lattices as a
decidable one within a long list of undecidable logical theories [11,12,17,18,23]
that are used to model the constructions of relational algebra. We are exploring
limits of decidability, a research direction widely explored in automata theoretic
settings starting from [3]. We do this, within logic and with plenty of potential
applications, coming from the undecidable side and crossing the border: after
the quasiequational theory, undecidable, the next natural theory on the list, the
equational theory of relational lattices, is decidable.

On the technical side, our work relies on [22] where the duality theory for
finite lattices developed in [21] was used to investigate equational axiomatiza-
tions of relational lattices. A key insight from [22] is that relational lattices
are, in some sense, duals of generalized ultrametric spaces over a powerset alge-
bra. It is this perspective that made it possible to uncover the strong similarity
between the lattice-theoretic methods and tools from modal logic—in particular
the theory of combination of modal logics, see e.g. [15]. We exploit here this
similarity to adapt filtrations techniques from modal logic [8] to lattice theory.
Also, the notion of generalized ultrametric spaces over a powerset algebra and
the characterization of injective objects in the category of these spaces have been
fundamental tools to prove the undecidability of the quasiequational theory [23]
as well as, in the present case, the decidability of the equational theory.

The paper is organised as follows. We recall in Sect. 2 some definitions and
facts about lattices. The relational lattices R(D,A) are introduced in Sect. 3.
In Sect. 4 we show how to construct a lattice L(X, δ) from a generalized ultra-
metric space (X, δ). This construction generalizes the construction of the lattice
R(D,A): if X = DA is the set of all functions from A to D and δ is as a sort
of Hamming distance, then L(X, δ) = R(D,A). We use the functorial properties
of L to argue that when a finite space (X, δ) has the property of being pairwise-
complete, then L(X, δ) belongs to the variety generated by the relational lattices.
In Sect. 5 we show that if an inclusion t ≤ s fails in a lattice R(D,A), then we
can construct a finite subset T (f, t) ⊆ DA, a “tableau” witnessing the failure,
such that if T (f, t) ⊆ T and T is finite, then t ≤ s fails in a finite lattice of the
form L(T, δB), where the distance δB takes values in a finite powerset algebra
P (B). In Sect. 6, we show how to extend T (f, t) to a finite bigger set G, so that
(G, δB) as a space over the powerset algebra P (B) is pairwise-complete. This

The Equational Theory of the Natural Join and Inner Union 497

lattice L(G, δB) fails the inclusion t ≤ s; out of it, we build a lattice of the form
R(E,B), which fails the same inclusion; the sizes of E and B can be bound
by functions of the sizes of the terms t and s. Perspectives for future research
directions appear in the last Sect. 7.

2 Elementary Notions on Orders and Lattices

We assume some basic knowledge of order and lattice theory as presented in
standard monographs [5,9]. Most of the lattice theoretic tools we use originate
from the monograph [7].

A lattice is a poset L such that every finite non-empty subset X ⊆ L admits
a smallest upper bound

∨
X and a greatest lower bound

∧
X. A lattice can also

be understood as a structure A for the functional signature (∨,∧), such that the
interpretations of these two binary function symbols both give A the structure
of an idempotent commutative semigroup, the two semigroup structures being
connected by the absorption laws x ∧ (y ∨ x) = x and x ∨ (y ∧ x) = x. Once
a lattice is presented as such structure, the order is recovered by stating that
x ≤ y holds if and only if x ∧ y = x.

A lattice L is complete if any subset X ⊆ L admits a smallest upper bound∨
X. It can be shown that this condition implies that any subset X ⊆ L admits

a greatest lower bound
∧

X. A lattice is bounded if it has a least element ⊥
and a greatest element
. A complete lattice (in particular, a finite lattice) is
bounded, since

∨ ∅ and
∧ ∅ are, respectively, the least and greatest elements of

the lattice.
If P and Q are partially ordered sets, then a function f : P −→ Q is order-

preserving (or monotone) if p ≤ p′ implies f(p) ≤ f(p′). If L and M are lattices,
then a function f : L −→ M is a lattice morphism if it preserves the lattice
operations ∨ and ∧. A lattice morphism is always order-preserving. A lattice
morphism f : L −→ M between bounded lattices L and M is bound-preserving if
f(⊥) = ⊥ and f(
) =
. A function f : P −→ Q is said to be left adjoint to an
order-preserving g : Q −→ P if f(p) ≤ q holds if and only if p ≤ g(q) holds, for
every p ∈ P and q ∈ Q; such a left adjoint, when it exists, is unique. Dually, a
function g : Q −→ P is said to be right adjoint to an order-preserving f : P −→ Q
if f(p) ≤ q holds if and only if p ≤ g(q) holds; clearly, f is left adjoint to g if
and only if g is right adjoint to f , so we say that f and g form an adjoint pair. If
P and Q are complete lattices, the property of being a left adjoint (resp., right
adjoint) to some g (resp., to some f) is equivalent to preserving all (possibly
infinite) joins (resp., all meets).

A Moore family on P (U) is a collection F of subsets of U which is closed under
arbitrary intersections. Given a Moore family F on P (U), the correspondence
sending Z ⊆ U to Z :=

⋂{Y ∈ F | Z ⊆ Y } is a closure operator on P (U),
that is, an order-preserving inflationary and idempotent endofunction of P (U).
The subsets in F , called the closed sets, are exactly the fixpoints of this closure
operator. A Moore family F has the structure of a complete lattice where

∧
X :=

⋂
X ,

∨
X :=

⋃
X . (1)

498 L. Santocanale

The notion of Moore family can also be defined for an arbitrary complete
lattice L. Moore families on L turns out to be in bijection with closure operators
on L. We shall actually consider the dual notion: a dual Moore family on a com-
plete lattice L is a subset F ⊆ L that is closed under arbitrary joins. Such an F
determines an interior operator (an order-preserving decreasing and idempotent
endofunction on L) by the formula x◦ =

∨{ y ∈ F | y ≤ x } and has the struc-
ture of a complete lattice, where

∨
F X :=

∨
L X and

∧
F X := (

∧
L X)◦. Dual

Moore families on L are in bijection with interior operators on L. Finally, let us
mention that closure (resp., interior) operators arise from adjoint pairs f and g
(with f left adjoint to g) by the formula x = g(f(x)) (resp., x◦ = f(g(x)));

3 The Relational Lattices R(D, A)

Throughout this paper we use the Y X for the set of functions of domain Y and
codomain X.

Let A be a collection of attributes (or column names) and let D be a set of
cell values. A relation on A and D is a pair (α, T) where α ⊆ A and T ⊆ Dα.
Elements of the relational lattice1 R(D,A) are relations on A and D. Informally,
a relation (α, T) represents a table of a relational database, with α being the
header, i.e. the collection of names of columns, while T is the collection of rows.

Before we define the natural join, the inner union operations, and the order
on R(D,A), let us recall some key operations. If α ⊆ β ⊆ A and f ∈ Dβ , then
we shall use f�α ∈ Dα for the restriction of f to α; if T ⊆ Dβ , then T ��α

shall denote projection to α, that is, the direct image of T along restriction,
T��α:= { f�α | f ∈ T }; if T ⊆ Dα, then iβ(T) shall denote cylindrification to β,
that is, the inverse image of restriction, iβ(T) := { f ∈ Dβ | f�α ∈ T }. Recall
that iβ is right adjoint to ��α. With this in mind, the natural join and the inner
union of relations are respectively described by the following formulas:

(α1, T1) ∧ (α2, T2) := (α1 ∪ α2, T)
where T = { f | f�αi

∈ Ti, i = 1, 2 }
= iα1∪α2(T1) ∩ iα1∪α2(T2) ,

(α1, T1) ∨ (α2, T2) := (α1 ∩ α2, T)
where T = { f | ∃i ∈ { 1, 2 },∃g ∈ Ti s.t. g �α1∩α2 = f }

= T1��α1∩α2 ∪T2��α1∩α2 .

The order is then given by (α1, T1) ≤ (α2, T2) iff α2 ⊆ α1 and T1��α2⊆ T2.
A convenient way of describing these lattices was introduced in [17, Lemma

2.1]. The authors showed that the relational lattices R(D,A) are isomorphic to
the lattices of closed subsets of A ∪ DA, where Z ⊆ A ∪ DA is said to be closed
if it is a fixed-point of the closure operator (−) defined as

Z := Z ∪ { f ∈ DA | A \ Z ⊆ Eq(f, g), for some g ∈ Z } ,

1 In [17] such a lattice is called full relational lattice. The wording “class of relational
lattices” is used there for the class of lattices that have an embedding into some
lattice of the form R(D,A).

The Equational Theory of the Natural Join and Inner Union 499

where in the formula above Eq(f, g) is the equalizer of f and g. Letting δ(f, g) :=
{x ∈ A | f(x) �= g(x) }, the above definition of the closure operator is obviously
equivalent to the following one:

Z := α ∪ { f ∈ DA | δ(f, g) ⊆ α, for some g ∈ Z ∩ DA }, with α = Z ∩ A.

From now on, we rely on this representation of relational lattices.

4 Lattices from Metric Spaces

Generalized ultrametric spaces over a Boolean algebra P (A) turn out to be a
convenient tool for studying relational lattices [17,22]. Metrics are well known
tools from graph theory, see e.g. [10]. Generalized ultrametric spaces over a
Boolean algebra P (A) were introduced in [20] to study equivalence relations.

Definition 1. An ultrametric space over P (A) (briefly, a space) is a pair
(X, δ), with δ : X × X −→ P (A) such that, for every f, g, h ∈ X,

δ(f, f) ⊆ ∅ , δ(f, g) ⊆ δ(f, h) ∪ δ(h, g) , (2)
δ(f, g) = ∅ implies f = g , δ(f, g) = δ(g, f) . (3)

That is, we have defined an ultrametric space over P (A) as a category (with a
small set of objects) enriched over (P (A)op, ∅,∪) (equation (2), see [16]) which
moreover is reduced and symmetric (conditions (3)) .

A morphism of spaces2 ψ : (X, δX) −→ (Y, δY) is a function ψ : X −→ Y such
that δY (ψ(f), ψ(g)) ≤ δX(f, g), for each f, g ∈ X. Obviously, spaces and their
morphisms form a category. If δY (ψ(f), ψ(g)) = δX(f, g), for each f, g ∈ X, then
ψ is said to be an isometry. A space (X, δ) is said to be pairwise-complete, see
[2], or convex, see [19], if, for each f, g ∈ X and α, β ⊆ A,

δ(f, g) ⊆ α ∪ β implies δ(f, h) ⊆ α and δ(h, g) ⊆ β , for some h ∈ X.

Proposition 2 (see [2,20]). If A is finite, then a space is injective in the cat-
egory of spaces if and only if it is pairwise-complete.

If (X, δX) is a space and Y ⊆ X, then the restriction of δX to Y induces
a space (Y, δX); we say then that (Y, δX) is a subspace of X. Notice that the
inclusion of Y into X yields an isometry of spaces.

Our main example of space over P (A) is (DA, δ), with DA the set of functions
from A to D and the distance defined by

δ(f, g) := { a ∈ A | f(a) �= g(a) } . (4)

A second example is a slight generalization of the previous one. Given a surjective
function π : D −→ A, let Secπ denote the set of all the functions f : A −→ D such
2 As P (A) is not totally ordered, we avoid calling a morphism “non-expanding map”

as it is often done in the literature.

500 L. Santocanale

that π ◦ f = idA. Then Secπ ⊆ DA, so Secπ with the distance inherited from
(DA, δ) can be made into a space. Considering the first projection π1 : A×D −→
A, we see that (DA, δ) is isomorphic to the space Secπ1 . By identifying f ∈ Secπ

with a vector 〈f(a) ∈ π−1(a) | a ∈ A〉, we see that

Secπ =
∏

a∈A

Da , where Da := π−1(a). (5)

That is, the spaces of the form Secπ are naturally related to Hamming graphs
in combinatorics [13], dependent function types in type theory [6,14], universal
S5A-product frames in modal logic [12].

Theorem 3 (see [23]). Spaces of the form Secπ are, up to isomorphism, exactly
the injective objects in the category of spaces.

4.1 The Lattice of a Space

The construction of the lattice R(D,A) can be carried out from any space.
Namely, for a space (X, δ) over P (A), say that Z ⊆ X is α-closed if g ∈ Z
and δ(f, g) ⊆ α implies f ∈ Z. Clearly, α-closed subsets of X form a Moore fam-
ily so, for Z ⊆ X, we denote by Z

α
the least α-closed subset of X containing Z.

Observe that f ∈ Z
α

if and only if δ(f, g) ⊆ α for some g ∈ Z. Next and in the
rest of the paper, we shall exploit the obvious isomorphism between P (A)×P (X)
and P (A ∪ X) (where we suppose A and X disjoint) and notationally identify a
pair (α,Z) ∈ P (A) × P (X) with its image α ∪ X ∈ P (A ∪ X). Let us say then
that (α,Z) is closed if Z is α-closed. Closed subsets of P (A ∪ X) form a Moore
family, whence a complete lattice where the order is subset inclusion.

Definition 4. For a space (X, δ), the lattice L(X, δ) is the lattice of closed sub-
sets of P (A ∪ X).

Clearly, for the space (DA, δ), we have L(DA, δ) = R(D,A). Let us mention that
meets and joins L(X, δ) are computed using the formulas in (1). In particular,
for joins,

(α, Y) ∨ (β, Z) = (α ∪ β, Y ∪ Z
α∪β

) .

The above formula yields that, for any f ∈ X, f ∈ (α, Y) ∨ (β, Z) if and only if
δ(f, g) ⊆ α ∪ β, for some g ∈ Y ∪ Z.

We argue next that the above construction is functorial. Below, for a function
ψ : X −→ Y , ψ−1 : P (Y) −→ P (X) is the inverse image of ψ, defined by ψ−1(Z) :=
{x ∈ X | ψ(x) ∈ Z }.

Proposition 5. If ψ : (X, δX) −→ (Y, δY) is a space morphism and (α,Z) ∈
L(Y, δY), then (α,ψ−1(Z)) ∈ L(X, δX). Therefore, by defining L(ψ)(α,Z) :=
(α,ψ−1(Z)), the construction L lifts to a contravariant functor from the category
of spaces to the category of complete meet-semilattices.

The Equational Theory of the Natural Join and Inner Union 501

Proof. Let f ∈ X be such that, for some g ∈ ψ−1(Z) (i.e. ψ(g) ∈ Z), we
have δX(f, g) ⊆ α. Then δY (ψ(f), ψ(g)) ⊆ δX(f, g) ⊆ α, so ψ(f) ∈ Z, since
Z is α-closed, and f ∈ ψ−1(Z). In order to see that L(ψ) preserves arbitrary
intersections, recall that ψ−1 does. ��
Notice that L(ψ) might not preserve arbitrary joins.

Proposition 6. The lattices L(Secπ) generate the same lattice variety of the
lattices R(D,A).

That is, a lattice equation holds in all the lattices L(Secπ) if and only if it holds
in all the relation lattices R(D,A).

Proof. Clearly, each lattice R(D,A) is of the form L(Secπ). Thus we only need
to argue that every lattice of the form L(Secπ) belongs to the lattice variety gen-
erated by the R(D,A), that is, the least class of lattices containing the lattices
R(D,A) and closed under products, sublattices, and homomorphic images. We
argue as follows.

As every space Secπ embeds into a space (DA, δ) and a space Secπ is injective,
we have maps ι : Secπ −→ (DA, δ) and ψ : (DA, δ) −→ Secπ such that ψ ◦ ι =
idSecπ

. By functoriality, L(ι) ◦ L(ψ) = idL(Secπ). Since L(ι) preserves all meets,
it has a left adjoint
 : L(Secπ) −→ L(DA, δ) = R(D,A). It is easy to see that
(
, L(ψ)) is an EA-duet in the sense of [24, Definition 9.1] and therefore L(Secπ)
is a homomorphic image of a sublattice of R(D,A), by [24, Lemma 9.7]. ��
Remark 7. For the statement of [24, Lemma 9.7] to hold, additional conditions
are necessary on the domain and the codomain of an EA-duet. Yet the implica-
tion that derives being a homomorphic image of a sublattice from the existence
of an EA-duet is still valid under the hypothesis that the two arrows of the
EA-duet preserve one all joins and, the other, all meets.

4.2 Extension from a Boolean Subalgebra

We suppose that P (B) is a Boolean subalgebra of P (A) via an inclusion i :
P (B) −→ P (A). If (X, δB) is a space over P (B), then we can transform it into
a space (X, δA) over P (A) by setting δA(f, g) = i(δB(f, g)). We have therefore
two lattices L(X, δB) and L(X, δA).

Proposition 8. Let β ⊆ B and Y ⊆ X. Then Y is β-closed if and only if it is
i(β)-closed. Consequently the map i∗, sending (β, Y) ∈ L(X, δB) to i∗(β, Y) :=
(i(β), Y) ∈ L(X, δA), is a lattice embedding.

Proof. Observe that δB(f, g) ⊆ β if and only if δA(f, g) = i(δB(f, g)) ⊆ i(β).
This immediately implies the first statement of the Lemma, but also that, for
Y ⊆ X, Y

β
= Y

i(β)
. Using the fact that meets are computed as intersections

502 L. Santocanale

and that i preserves intersections, it is easily seen that i∗ preserves meets. For
joins let us compute as follows:

i∗(β1, Y1) ∨ i∗(β2, Y2) = (i(β1) ∪ i(β2), Y1 ∪ Y2
i(β1)∪i(β2))

= (i(β1 ∪ β2), Y1 ∪ Y2
i(β1∪β2)) = (i(β1 ∪ β2), Y1 ∪ Y2

β1∪β2)

= i∗(β1 ∪ β2, Y1 ∪ Y2
β1∪β2) = i∗((β1, Y1) ∨ (β2, Y2)). ��

5 Failures from Big to Small Lattices

The set of lattice terms is generated by the following grammar:

t := x |
 | t ∧ t | ⊥ | t ∨ t ,

where x belongs to a set of variables X. For lattice terms t1, . . . , tn, we use
V ars(t1, . . . , tn) to denote the set of variables (which is finite) occurring in any
of these terms. The size of a term t is the number of nodes in the representation
of t as a tree. If v : X −→ L is a valuation of variables into a lattice L, the value
of a term t w.r.t. the valuation v is defined by induction in the obvious way; here
we shall use �t�v for it.

For t, s two lattice terms, the inclusion t ≤ s is the equation t ∨ s = s. Any
lattice-theoretic equation is equivalent to a pair of inclusions, so the problem of
deciding the equational theory of a class of lattices reduces to the problem of
decing inclusions. An inclusion t ≤ s is valid in a class of lattices K if, for any
valuation v : X −→ L with L ∈ K, �v�v ≤ �s�v; it fails in K if for some L ∈ K and
v : X −→ L we have �t�v �≤ �s�v.

From now on, our goal shall be proving that if an inclusion t ≤ s fails in a
lattice R(D,A), then it fails in a lattice L(Secπ), where Secπ is a finite space
over some finite Boolean algebra P (B). The size of B and of the space Secπ,
shall be inferred from of the sizes of t and s.

From now on, we us fix terms t and s, a lattice R(D,A), and a valuation
v : X −→ R(D,A) such that �t�v �⊆ �s�v.

Lemma 9. If, for some a ∈ A, a ∈ �t�v \ �s�v, then the inclusion t ≤ s fails in
the lattice R(E,B) with B = ∅ and E a singleton.

Proof. The map sending (α,X) ∈ R(D,A) to α ∈ P (A) is lattice morphism.
Therefore if t ≤ s fails because of a ∈ A, then it already fails in the Boolean
lattice P (A). Since P (A) is distributive, t ≤ s fails in the two elements lattice.
Now, when B = ∅ and E is a singleton R(E,B) is (isomorphic to) the 2 elements
lattice, so the same equation fails in R(E,B). ��
Because of the Lemma, we shall focus on functions f ∈ DA such that f ∈
�t�v \ �s�v. In this case we shall say that f witnesses the failure of t ≤ s (in
R(D,A), w.r.t. the valuation v).

The Equational Theory of the Natural Join and Inner Union 503

5.1 The Lattices R(D, A)T

Let T be a subset of DA and consider the subspace (T, δ) of DA induced by the
inclusion iT : T ⊆ DA. According to Proposition 5, the inclusion iT induces
a complete meet-semilattice homomorphism L(iT) : R(D,A) = L(DA, δ) −→
L(T, δ). Such a map has a right adjoint jT : L(T, δ) −→ L(DA, δ), which is a
complete join-semilattice homomorphism; moreover jT is injective, since L(iT)
is surjective.

Proposition 10. For a subset T ⊆ DA and (α,X) ∈ R(D,A), (α,X ∩ T
α
) =

jT (L(iT (α,X)). The set of elements of the form (α,X ∩ T
α
), for α ⊆ A and

X ⊆ DA, is a complete sub-join-semilattice of R(D,A).

Proof. It is easily seen that L(iT)(α,X) = (α,X ∩ T) and that, for (β, Y) ∈
L(T, δ), (β, Y) ⊆ (α,X∩T) if and only if (β, Y

β
) ⊆ (α,X), so jT (β, Y) = (β, Y

β
).

It follows that the elements of the form (α,X ∩ T
α
), where (α,X) ∈ R(D,A),

form a sub-complete join-semilattice of R(D,A): indeed, they are the image of
lattice L(T, δ) under the complete join-semilattice homomorphism jT . We argue
next that, for any pair (α,X) (we do not require that X is α-closed) there is a
Z ⊆ DA which is α-closed and such that X ∩ T

α
= Z ∩ T

α
. Indeed, the equality

X ∩ T
α

= X ∩ T
α ∩ T

α

is easily verified, so we can let Z = X ∩ T
α
. ��

Therefore, the set of pairs of the form (α,X ∩ T
α
) is a dual Moore family

and a complete lattice, where joins are computed as in R(D,A), and where meets
are computed in a way that we shall make explicit. For the moment, let us fix
the notation.

Definition 11. R(D,A)T is the lattice of elements of the form (α,X ∩ T
α
).

By the proof of Proposition 10, the lattice R(D,A)T is isomorphic to the latttice
L(T, δ). We shall use the symbol

∧∧
for meets in R(D,A)T ; these are computed

by the formula

∧∧
i∈I(αi,Xi) = (

⋂

i∈I

αi,
⋂

i∈I

Xi)
◦
,

where, for each (α,X) ∈ R(D,A), (α,X)◦ is the greatest pair in R(D,A)T that
is below (α,X). Standard theory on adjoints yields

(α,X)◦ = (jT ◦ L(iT))(α,X) = (α,X ∩ T
α
) .

We obtain in this way the explicit formula for the binary meet in R(D,A)T :

(α,X ∩ T
α
)∧∧ (β, Y ∩ T

β
) = (α ∩ β,X ∩ T

α ∩ Y ∩ T
β ∩ T

α∩β

) .

504 L. Santocanale

Remark that we have

(α,X)∧∧ (β, Y) ⊆ (α,X) ∩ (β, Y)

whenever (α,X) and (β, Y) are in R(D,A)T .

Lemma 12. Let (α,X), (β, Y) ∈ R(D,A)T and let f ∈ T . If f ∈ (α,X)∩(β, Y),
then f ∈ (α,X)∧∧ (β, Y).

Proof. This is immediate from the fact that

X ∩ T
α ∩ Y ∩ T

β ∩ T ⊆ X ∩ T
α ∩ Y ∩ T

β ∩ T
α∩β

. ��

5.2 Preservation of the Failure in the Lattices R(D, A)T

Recall that v : X −→ R(D,A) is the valuation that we have fixed.

Definition 13. For a susbset T of DA, the valuation vT : X −→ R(D,A)T is
defined by the formula vT (x) = v(x)◦, for each x ∈ X.

More explicitley, we have

vT (x) := (α, T ∩ X
α
) , where (α,X) = v(x) .

The valuation vT takes values in R(D,A)T , while v takes value in R(D,A). It
is possible then to evaluate a lattice term t in R(D,A)T using vT and to evaluate
it in R(D,A) using v. To improve readability, we shall use the notation �t�T for
the result of evaluating the term in R(D,A)T , and the notation �t� for the result
of evaluating it in R(D,A). Since both �t� and �t�T are subsets of P (A ∪ X), it
is possible to compare them using inclusion.

Lemma 14. The relation �s�T ⊆ �s� holds, for each T ⊆ DA and each lattice
term s.

Proof. The proof of the Lemma is a straightforward induction, considering that
vT (x) ⊆ v(x) for all x ∈ X. For example, using �si�T ⊆ �si�, for i = 1, 2,

�s1 ∧ s2�T = �s1�T ∧∧ �s2�T ⊆ �s1�T ∩ �s2�T ⊆ �s1� ∩ �s2� = �s1 ∧ s2� . ��
A straightforward induction also yields:

Lemma 15. Let T ⊆ DA be a finite subset, let t be a lattice term and suppose
that �t� = (β, Y). Then �t�T is of the form (β, Y ′) for some Y ′ ⊆ DA.

Definition 16. Let us define, for each term t and f ∈ DA such that f ∈ �t�, a
finite set T (f, t) ⊆ DA as follows:

The Equational Theory of the Natural Join and Inner Union 505

– If t is the variable x, then we let T (f, t) := { f }.
– If t = s1 ∧ s2, then f ∈ �s1�∩ �s2�, so we define T (f, t) := T (f, s1)∪T (f, s2).
– If t = s1 ∨ s2 and �si� = (αi,Xi) for i = 1, 2, then f ∈ �s1 ∨ s2� gives that,

for some i ∈ { 1, 2 } there exists g ∈ Xi such that δ(f, g) ⊆ α1 ∪ α2. We set
then T (f, t) := { f } ∪ T (g, si).

Obviously, we have:

Lemma 17. For each lattice term t and f ∈ DA such that f ∈ �t�, f ∈ T (f, t).

Proposition 18. For each lattice term t and f ∈ DA such that f ∈ �t�, if
T (f, t) ⊆ T , then f ∈ �t�T .

Proof. We prove the statement by induction on t.

– If t is the variable x and f ∈ �x� = v(x) = (β, Y), then f ∈ Y . We have
T (f, x) = { f }. Obviously, f ∈ Y ∩ { f } = Y ∩ T (f, t) ⊆ Y ∩ T , so f ∈
(β, Y ∩ T

β
) = vT (x) = �t�T .

– Suppose t = s1 ∧ s2 so f ∈ �s1 ∧ s2� yields f ∈ �s1� and f ∈ �s2�. We have
defined T (f, t) = T (f, s1) ∪ T (f, s2) ⊆ T and so, using T (f, si) ⊆ T and the
induction hypothesis, f ∈ �si�T for i = 1, 2. By Lemma 17 f ∈ T , so we can
use Lemma 12 asserting that

f ∈ �s1�T ∧∧ �s2�T = �s1 ∧ s2�T .

– Suppose t = s1 ∨ s2 and f ∈ �s1 ∨ s2�; let also (βi, Yi) := �si� for i = 1, 2.
We have defined T (f, t) := { f } ∪ T (g, si) for some i ∈ { 1, 2 } and for some
g ∈ �si� such that δ(f, g) ⊆ β1 ∪ β2. Now g ∈ T (g, si) ⊆ T (f, t) ⊆ T so,
by the induction hypothesis, g ∈ �si�T . According to Lemma 15, for each
i = 1, 2 �si�T is of the form (βi, Y

′
i), for some subset Y ′

i ⊆ DA. Therefore
δ(f, g) ⊆ β1 ∪ β2 and g ∈ �si�T implies

f ∈ �s1�T ∨ �s2�T = �s1 ∨ s2�T . ��
Proposition 19. Suppose f witnesses the failure of the inclusion t ≤ s in
R(D,A) w.r.t. the valuation v. Then, for each subset T ⊆ DA such T (f, t) ⊆ T ,
f witnesses the failure of the inclusion t ≤ s in the lattice R(D,A)T and w.r.t.
valuation vT .

Proof. As f witnesses t �≤ s in R(D,A), f ∈ �t� and f �∈ �s�. By Lemma 18 f ∈
�t�T . If f ∈ �s�T , then �s�T ⊆ �s� (Lemma 14) implies f ∈ �s�, a contradicition.
Therefore f �∈ �s�T , so f witnesses t �≤ s in R(D,A)T . ��

5.3 Preservation of the Failure in a Finite Lattice L(X, δ)

From now on, we suppose that T ⊆ DA is finite and T (f, t) ⊆ T with f witnessing
the failure of t ≤ s. Consider the sub-Boolean-algebra of P (A) generated by the
sets

{ δ(f, g) | f, g ∈ T } ∪ {A ∩ v(x) | x ∈ V ars(t, s) } . (6)

506 L. Santocanale

Let us call B this Boolean algebra (yet, notice the dependency of this definition
on T , as well as on t, s and v). It is well known that a Boolean algebra generated
by a finite set is finite.

Remark 20. If n = card(T) and m = card(V ars(t, s)), then B can have at most
2

n(n−1)
2 +m atoms. If we let k be the maximum of the sizes of t and s, then,

for T = T (f, t), both n ≤ k and m ≤ 2k. We obtain in this case the over-

approximation 2
k2+3k

2 on the number of atoms of B.

Let us also recall that B is isomorphic to the powerset P (at(B)), where at(B) is
the set of atoms of B. Let i : P (at(B)) −→ P (A) be an injectve homomorphism
of Boolean algebras whose image is B. Since δ(f, g) ∈ B for every f, g ∈ T , we
can transform the metric space (T, δ) induced from (DA, δ) into a metric space
(T, δat(B)) whose distance takes values in the powerset algebra P (at(B)):

δat(B)(f, g) = β if and only if δ(f, g) = i(β) .

Recall from Proposition 8 that there is a lattice embedding i∗ : L(T, δat(B)) −→
L(T, δ), defined in the obvious way: i∗(α, Y) = (i(β), Y).

Proposition 21. If f witnesses the failure of the inclusion t ≤ s in R(D,A)
w.r.t. the valuation v, then the same inclusion fails in all the lattices L(T, δat(B)),
where T is a finite set and T (f, t) ⊆ T .

Proof. By Proposition 19 the inclusion t ≤ s fails in the lattice R(D,A)T . This
lattice is isomorphic to the lattice L(T, δ) via the map sending (α,X) ∈ R(D,A)T

to (α,X ∩ T). Up to this isomorphism, it is seen that the (restriction to the
variables in t and s of) the valuation vT takes values in the image of the lattice
L(T, δat(B)) via i∗, so �t�T , �s�T belong to this sublattice and the inclusion fails
in this lattice, and therefore also in L(T, δat(B)). ��

6 Preservation of the Failure in a Finite Lattice L(Secπ)

We have seen up to now that if t ≤ s fails in R(D,A), then it fails in many
lattices of the form L(T, δat(B)). Yet it is not obvious a priori that any of these
lattices belongs to the variety generated by the relational lattices. We show in
this section that we can extend any T to a finite set G while keeping B fixed, so
that (G, δat(B)) is a pairwise-complete space over P (at(B)). Thus, the inclusion
t ≤ s fails in the finite lattice L(G, δat(B)). Since (G, δat(B)) is isomorphic to a
space of the form Secπ with π : E −→ at(B), the inclusion t ≤ s fails in a lattice
L(Secπ) which we have seen belongs to the variety generated by the relational
lattices. This also leads to construct a finite relational lattice R(at(B), E) in
which the equation t ≤ s fails. By following the chain of constructions, the sizes
of at(B) and E can also be estimated, leading to decidability of the equational
theory of relational lattices.

The Equational Theory of the Natural Join and Inner Union 507

Definition 22. A glue of T and B is a function g ∈ DA such that, for all
α ∈ at(B), there exists f ∈ T with f�α = g. We denote by G the set of all
functions that are glues of T and B.

Observe that T ⊆ G and that G is finite, with

card(G) ≤ card(T)card(at(B)) . (7)

In order to prove the following Lemma, let, for each α ∈ at(B) and g ∈ G,
f(g, α) ∈ T be such that g�α = f(g, α)�α.

Lemma 23. If g1, g2 ∈ G, then δ(g1, g2) ∈ B.

Proof.

δ(g1, g2) =
⋃

α∈at(B)

(α ∩ δ(g1, g2)) =
⋃

α∈at(B)

(α ∩ δ(f(g1, α), f(g2, α))) .

Since δ(f(g1, α), f(g2, α)) ∈ B and α is an atom of B, each expression of the form
α ∩ δ(f(g1, α), f(g2, α)) is either ∅ or α. It follows that δ(g1, g2) ∈ B. ��

For a Boolean subalgebra B of P (A), we say that a subset T of DA is pairwise-
complete relative to B if, for each f, g ∈ T ,

1. δ(f, g) ∈ B,
2. δ(f, g) ⊆ β ∪ γ, implies δ(f, h) ⊆ β and δ(h, g) ⊆ γ for some h ∈ T , for each

β, γ ∈ B.

Lemma 24. The set G is pairwise-complete relative to the Boolean algebra B.

Proof. Let f, g ∈ G be such that δ(f, g) ⊆ β ∪ γ. Let h ∈ DA be defined so that,
for each α ∈ at(B), h�α = f�α if α �⊆ β and h�α = g�α, otherwise. Obviously,
h ∈ G.

Observe that α �⊆ β if and only if α ⊆ βc, for each α ∈ at(B), since β ∈ B.
We deduce therefore h�α = f�α if α ∈ at(B) and α ⊆ βc, so f(a) = h(a) for
each a ∈ βc. Consequently βc ⊆ Eq(f, h) and δ(f, h) ⊆ β.

We also have h�α = g�α if α ∈ at(B) and α ⊆ γc. As before, this implies
δ(h, g) ⊆ γ. Indeed, this is the case if α ⊆ β, by definition of h. Suppose now
that α �⊆ β, so α ⊆ βc ∩ γc = (β ∪ γ)c. Since δ(f, g) ⊆ β ∪ γ, then α ⊆ δ(f, g)c =
Eq(f, g), i.e. f�α = g�α. Together with h�α = f�α (by definition of h) we obtain
h�α = f�α. ��

We can finally bring together the observations developed so far and state our
main results.

Theorem 25. If an inclusion t ≤ s fails in all the lattices R(D,A), then
it fails in a finite lattice R(E,A′), where card(A′) ≤ 2p(k) with k =

max(size(t), size(s)), p(k) = 2k2
+3k
2 , and card(E) ≤ size(t).

508 L. Santocanale

Proof. By Proposition 19 the inclusion t ≤ s fails in all the lattices R(D,A)T

where T (f, t) ⊆ T . Once defined B as the Boolean subalgebra of P (A) generated
by the sets as in the display (6) (with T = T (f, T)) and G as the set of glues of
T (f, t) and B as in Definition 22, the inclusion fails in R(D,A)G, since T (f, T) ⊆
G, and then in L(G, δat(B)) by Proposition 21. The condition that G is pairwise-
complete relative to B is equivalent to saying that the space (G, δat(B)) is pairwise-
complete. This space is therefore isomorphic to a space of the form Secπ for some
surjective π : F −→ at(B), and t ≤ s fails in L(Secπ).

Equation (7) shows that, for each α ∈ at(B), Fα = π−1(α) has cardinality at
most card(T (f, t)) and the size of t is an upper bound for card(T (f, t)). We can
therefore embed the space Secπ into a space of the form (Eat(B), δ) with the size
of t an upper bound for card(E). The proof of Proposition 6 exhibits L(Secπ) as
a homomorphic image of a sublattice of L(Eat(B), δ) and therefore the inclusion
t ≤ s also fails within L(Eat(B), δ) = R(E, at(B)). The upper bound on the size
of at(B) has been extimated in Remark 20. ��
Remark 26. In the statement of the previous Theorem, the size of the lattice
R(E,A′) can be estimated out of the sizes of E and A′ considering that

P (EA′
) ⊆ R(E,A′) ⊆ P (A′ ∪ EA′

) .

An upper bound for card(R(E,A′)) is therefore 2p(k)+k2p(k)

where p(k) is the
polynomial of degree 2 as in the statement of the Theorem and k is the maximum
of size(t), size(s).

A standard argument yields now:

Corollary 27. The equational theory of the relational lattices is decidable.

7 Conclusions

We argued that the equational theory of relational lattices is decidable. We
achieved this goal by giving a finite (counter)model construction of bounded
size.

Our result leaves open other questions that we might ask on relational lat-
tices. We mentioned in the introduction the quest for a complete axiomatic
base for this theory or, anyway, the need of a complete deductive system—so
to develop automatic reasoning for the algebra of relational lattices. As part
of future researches it is tempting to contribute achieving this goal using the
mathematical insights contained in the decidability proof.

Our result also opens new research directions, in primis, the investigation
of the complexity of deciding lattice-theoretic equations/inclusions on relational
lattices. Of course, the obvious decision procedure arising from the finite model
construction is not optimal; few algebraic considerations already suggest how
the decision procedure can be improved.

The Equational Theory of the Natural Join and Inner Union 509

Also, it would be desirable next to investigate decidability of equational the-
ories in signatures extending of the pure lattice signature; many such extensions
are proposed in [17]. It is not difficult to adapt the present decidability proof so
to add to the signature the header constant.

A further interesting question is how this result translates back to the field
of multidimensional modal logic [15]. We pointed out in [22] how the algebra
of relational lattices can be encoded into multimodal framework; we conjecture
that our decidability result yields the decidability of some positive fragments of
well known undecidable logics, such as the products S5n with n ≥ 3. Moreover
connections need to be established with other existing decidability results in
modal logic and in database theory [1].

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level,
1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. Ackerman, N.: Completeness in generalized ultrametric spaces. p-Adic Numbers
Ultrametric Anal. Appl. 5(2), 89–105 (2013)

3. Caucal, D.: On infinite transition graphs having a decidable monadic theory. The-
oret. Comput. Sci. 290(1), 79–115 (2003)

4. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press, New York (2002)

6. Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback
complements. J. Pure Appl. Algebra 49(1–2), 103–116 (1987)

7. Freese, R., Ježek, J., Nation, J.: Free Lattices. American Mathematical Society,
Providence (1995)

8. Gabbay, D.M.: Selective filtration in modal logic I. Semantic tableaux method.
Theoria 36, 323–330 (1970)

9. Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel (1998). New appen-
dices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P.
Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung and
R. Wille

10. Hammack, R., Imrich, W., Klavzar, S.: Handbook of Product Graphs, 2nd edn.
CRC Press Inc., Boca Raton (2011)

11. Hirsch, R., Hodkinson, I.: Representability is not decidable for finite relation alge-
bras. Trans. Amer. Math. Soc. 353, 1403–1425 (2001)

12. Hirsch, R., Hodkinson, I., Kurucz, A.: On modal logics between K × K × K and
S5 × S5 × S5. J. Symbolic Log. 67(3), 221–234 (2002)

13. Imrich, W., Klavar, S.: Product Graphs. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience, New York (2000). Structure
and recognition, With a foreword by Peter Winkler

14. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North-Holland Publishing Co., Amsterdam (1999)

15. Kurucz, A.: Combining modal logics. In: Patrick Blackburn, J.V.B., Wolter, F.
(eds.) Handbook of Modal Logic, vol. 3 (Studies in Logic and Practical Reasoning),
pp. 869–924. Elsevier (2007)

510 L. Santocanale

16. Lawvere, F.W.: Metric spaces, generalized logic and closed categories. Rendiconti
del Seminario Matematico e Fisico di Milano XLIII, pp. 135–166 (1973)

17. Litak, T., Mikulás, S., Hidders, J.: Relational lattices: from databases to universal
algebra. J. Logic. Algebraic Methods Program. 85(4), 540–573 (2016)

18. Maddux, R.: The equational theory of CA3 is undecidable. J. Symbolic Logic 45(2),
311–316 (1980)

19. Pouzet, M.: Une approche métrique de la rétraction dans les ensembles ordonnés et
les graphes. In: Proceedings of the Conference on Infinitistic Mathematics (Lyon,
1984), pp. 59–89. Publ. Dp. Math. Nouvelle Sér. B, 85–2, Univ. Claude-Bernard,
Lyon (1985)

20. Priess-Crampe, S., Ribemboim, P.: Equivalence relations and spherically complete
ultrametric spaces. C. R. Acad. Sci. Paris 320(1), 1187–1192 (1995)

21. Santocanale, L.: A duality for finite lattices, September 2009. http://hal.archives-
ouvertes.fr/hal-00432113

22. Santocanale, L.: Relational lattices via duality. In: Hasuo, I. (ed.) CMCS 2016.
LNCS, vol. 9608, pp. 195–215. Springer, Cham (2016)

23. Santocanale, L.: Embeddability into relational lattices is undecidable. In: Höfner,
P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 258–273.
Springer, Cham (2017). https://hal.archives-ouvertes.fr/hal-01474822

24. Santocanale, L., Wehrung, F.: The equational theory of the weak order on finite
symmetric groups, P. 41, September 2014

25. Spight, M., Tropashko, V.: Relational lattice axioms (2008). http://arxiv.org/abs/
0807.3795

26. Tropashko, V.: Relational algebra as non-distributive lattice (2006). http://arxiv.
org/abs/cs/0501053

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://hal.archives-ouvertes.fr/hal-00432113
http://hal.archives-ouvertes.fr/hal-00432113
https://hal.archives-ouvertes.fr/hal-01474822
http://arxiv.org/abs/0807.3795
http://arxiv.org/abs/0807.3795
http://arxiv.org/abs/cs/0501053
http://arxiv.org/abs/cs/0501053
http://creativecommons.org/licenses/by/4.0/

Graphs and Automata

Minimization of Graph Weighted Models
over Circular Strings

Guillaume Rabusseau(B)

Reasoning and Learning Lab, School of Computer Science,
McGill University, Montreal, Canada
guillaume.rabusseau@mcgill.ca

Abstract. Graph weighted models (GWMs) have recently been pro-
posed as a natural generalization of weighted automata over strings, trees
and 2-dimensional words to arbitrary families of labeled graphs (and
hypergraphs). In this paper, we propose polynomial time algorithms
for minimizing and deciding the equivalence of GWMs defined over the
family of circular strings on a finite alphabet (GWMcs). The study of
GWMcs is particularly relevant since circular strings can be seen as
the simplest family of graphs with cycles. Despite the simplicity of this
family and of the corresponding computational model, the minimization
problem is considerably more challenging than in the case of weighted
automata over strings and trees: while linear algebra tools are over-
all sufficient to tackle the minimization problem for classical weighted
automata (defined over a field), the minimization of GWMcs involves
fundamental notions from the theory of finite dimensional algebra. We
posit that the properties of GWMcs unraveled in this paper willprove
useful for the study of GWMs defined over richer families of graphs.

1 Introduction

Functions defined over syntactical structures such as strings, trees and graphs are
ubiquitous in computer science. Automata models allow one to succinctly repre-
sent such functions. In particular, weighted automata can efficiently model func-
tions mapping structured objects to values in a semi-ring. Weighted automata
have been defined to handle functions whose domain are e.g. strings [9,26],
trees [8,16] and 2-dimensional words [11]. More recently, Bailly et al. [2] proposed
a computational model for functions mapping labeled graphs (or hypergraphs)
to values in a field (see also [22, Chap. 2]): Graph Weighted Models (GWMs).
GWMs extend the notion of linear representation of a function defined over
strings and trees to functions defined over graphs labeled by symbols in a ranked
alphabet: loosely speaking, while string weighted automata can be defined by
associating each symbol in a finite alphabet to a linear map and tree weighted
automata by associating each symbol in a ranked alphabet to a multilinear map,
GWMs are defined by associating each arity k symbol from a ranked alphabet
to a kth order tensor. The computation of a GWM boils down to mapping each
vertex in a graph to the tensor associated to its label and performing contrac-
tions directed by the edges of the input graph to obtain a value in the supporting
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 513–529, 2018.
https://doi.org/10.1007/978-3-319-89366-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_28&domain=pdf

514 G. Rabusseau

field. When restricted to the families of strings, trees or 2-dimensional words,
GWMs are expressively equivalent to the classical notions of weighted automata
over these structures.

Weighted automata have recently received interest from the machine learn-
ing community due to their ability to represent functions defined over struc-
tured objects. Efficient (and often consistent) learning algorithms have been
developed for such computational models defined over sequences [3,6,10,19] and
trees [1,4,14]. Motivated by the relevance of learning functions defined over richer
families of labeled graphs, our long term objective is to design efficient learning
algorithms for GWMs. This is however a challenging task. Given the close rela-
tionship between minimization and learning for classical weighted automata (see
e.g. [7,21,27]), we take a first step in this direction by tackling the problem of
minimizing GWMs defined over the simple family of circular strings.

Circular strings are strings whose last symbol is connected to the first. A
circular string can be seen as a directed graph where each vertex is labeled by
a symbol from a finite alphabet and is connected to his unique successor (i.e.
a labeled graph composed of a unique cycle). Circular strings are relevant in
biology (see e.g. [20] and references therein) and have been studied from a for-
mal language perspective in the non-quantitative setting in [24]. The study of
GWMs defined over such graphs is particularly relevant since circular strings are
in some sense the simplest family of graphs with cycles (and cycles can be seen
as the key obstacle for going from strings and trees to general graphs). More-
over, GWMs defined over the family of circular strings—which we henceforth
denote by GWMcs to avoid confusions—take a simple form making them easily
amenable to theoretical study: a GWMc is given by a set of matrices Aσ for
each symbol σ in a finite alphabet, and maps any circular string σ1σ2 · · · σk to the
trace of the products of the matrices associated with the letters in the string1.
Despite the simplicity of this computational model and its strong connection
with string weighted automata, the minimization problem is considerably more
challenging than in the case of string or tree weighted automata. More precisely,
while the minimization problem can easily be handled using notions from lin-
ear algebra for e.g. real-valued string weighted automata (see e.g. [7]), we show
in this paper that the minimization of GWMcs requires fundamental concepts
from the theory of finite-dimensional algebras (such as the ones of radical and
semi-simplicity).

Contributions. Throughout the paper, we only consider automata defined over
a field of characteristic 0. After introducing notions on weighted automata,
GWMcs and finite-dimensional algebras in Sect. 2, we first tackle the problem of
deciding the equivalence of GWMcs in Sect. 3. The study of the equivalence prob-
lem is motivated by the simple observation that two minimal GWMs computing

1 Note that this is a not a definition per se but rather a consequence of the definition
of general GWMs (as introduced in [2,22]): when restricted to the family of circular
strings, a GWM is given by a set of matrices and its computation can be succinctly
expressed using the trace operator (whereas a general GWM is given by a set of
tensors and its computation relies on partial traces).

Minimization of Graph Weighted Models over Circular Strings 515

the same function are not necessarily related by a change of basis, which is in con-
trast with a classical result stating that two minimal string weighted automata
are equivalent if and only if they are related by a change of basis. Building
from this observation, we unravel the fundamental notion of semi-simple GWMc

and we show that any function recognizable by a GWM c can be computed by a
semi-simple GWMc (Corollary 1) and that two semi-simple GWM cs of equal
dimensions computing the same function are necessarily related by a change of
basis (Corollary 2). These two results naturally give rise to a polynomial time
algorithm to decide whether two GWM cs are equivalent. We then move on to the
minimization problem in Sect. 4, where we give a polynomial time minimization
algorithm for GWM cs which fundamentally relies on the notion of semi-simple
GWMc (Corollary 3). While the problem of minimizing a GWM defined over
the simple family of circular strings is central to this paper, we see it as a test
bed for developing the theory of general GWMs: beyond the minimization and
equivalence algorithms we propose, we believe that one of our main contributions
is to illustrate how the theory of GWMs will rely on advanced concepts from
algebra theory and to unravel fundamental properties that will surely be central
to the study of GWMs defined over more general families of graphs (such as the
one of semi-simple GWMc).

1.1 Notations

For any integer n we let [n] = {1, 2, · · · , n}. We denote the set of integers by N

and the fields of real and rational numbers by R and Q respectively. Let F be a
field of characteristic 0, we denote by Mn(F) = F

n×n the set of all n×n matrices
over F. We use lower case bold letters for vectors (e.g. v ∈ F

d1) and upper case
bold letters for matrices (e.g. M ∈ F

d1×d2). We denote by In the n × n identity
matrix (or simply I if the dimension is clear from context). Given a matrix M ∈
F

d1×d2 , we denote its entries by Mi,j and we use vec(M) ∈ F
d1d2 to denote the

column vector obtained by concatenating the columns of M. We use ker(A) to
denote the kernel (or null space) of a matrix A. Given two matrices A ∈ Mm(F)
and B ∈ Mn(F) we denote their Kronecker product by A ⊗ B ∈ Mmn(F) and
their direct sum by A ⊕ B ∈ Mm+n(F): A ⊗ B is the block matrix with blocks
(Ai,jB)i,j and A⊕B is the block diagonal matrix with A in the upper diagonal
block and B in the lower one. We denote by Σ∗ the set of strings on a finite
alphabet Σ and the empty string by λ. We denote by Σ+ the set of non-empty
strings and by Σk the set of all strings of length k.

2 Preliminaries

We first present notions on weighted automata, graph weighted models and finite
dimensional algebras. The reader is referred to [9,16,25] for more details on
weighted automata theory, to [2] and [22, Chap. 2] for an introduction to graph
weighted models, and to [13,17] for a thorough introduction to finite dimensional
algebras.

516 G. Rabusseau

2.1 Weighted Automata and GWMs over Circular Strings

Let Σ be a finite alphabet. A weighted finite automaton (WFA) over a field F

with n states is a tuple M = (α, {Mσ}σ∈Σ ,ω) where α,ω ∈ F
n are the initial

and final weight vectors respectively, and Mσ ∈ Mn(F) is the transition matrix
for each symbol σ ∈ Σ. A WFA computes a function fM : Σ∗ → F defined for
each word x = x1x2 · · · xk ∈ Σ∗ by

fM (x) = α�Mx1Mx2 · · ·Mxkω.

We will often use the shorthand notation Mx = Mx1Mx2 · · ·Mxk for any word
x = x1x2 · · · xk ∈ Σ∗. A WFA M with n states is minimal if its number of
states is minimal, i.e. any WFA M ′ such that fM = fM ′ has at least n states.
We say that a function f : Σ∗ → R is WFA-recognizable if there exists a WFA
computing it.

Graph weighted models (GWMs) have been introduced as a computational
model over arbitrary labeled graphs and hypergraphs in [2]. In this paper, we
focus on the simple model of GWMs defined over the family of circular strings.
A circular string is a string without a beginning or an end, one can think of it
as a string closed onto itself (see Fig. 1).

α a b b a ω a

b

b

a

Fig. 1. (left) Graph representation of the string abba where the special vertices labeled
with α and ω denote the beginning and end of the string respectively. (right) In contrast,
the circular string abba has no beginning and no end, it is thus the same object as e.g.
the circular string baab.

A d-dimensional GWM A over circular strings (GWMc) on Σ is given by a set
of matrices {Aσ}σ∈Σ ⊂ Md(F). It computes a function fA : Σ+ → F defined2

for each word x = x1x2 · · · xk ∈ Σ+ by

fA(x) = Tr(Ax1Ax2 · · ·Axk) = Tr(Ax).

By invariance of the trace under cyclic permutation, we have fA(x1x2 · · · xk) =
fA(x2x3 · · · xkx1) = fA(x3x4 · · · xkx1x2) = · · · . This is in accordance with the

2 Observe that we exclude the empty string from the domain of fA. This is on purpose
since fA(λ) would be the dimension of A (using the convention Aλ = I): given two
GWMcs of different dimensions computing the same function on Σ+, we want to con-
sider them as equivalent even though they disagree on λ.

Minimization of Graph Weighted Models over Circular Strings 517

definition of a circular string: for any stringx′ obtained by cyclic permutation of the
letters of a string x, both x and x′ correspond to the same circular string. Similarly
to WFAs, a GWMc is minimal if its dimension is minimal and a function f : Σ+ →
F is GWM c-recognizable if it can be computed by a GWMc.

It is immediate to see that there exist WFA-recognizable functions that are
not GWMc-recognizable, this is the case of any WFA-recognizable function that
is not invariant under cyclic permutation of letters in a word3. In contrast, one
can easily show that any GWMc-recognizable function is WFA-recognizable.
More precisely, we have the following result.

Proposition 1. For any d-dimensional GWMcA = {Aσ}σ∈Σ on Σ, the WFA
M with d2 states (α, {Mσ}σ∈Σ ,ω) where α = ω = vec(Id) and Mσ = Id ⊗ Aσ

for each σ ∈ Σ, is such that fM (x) = fA(x) for all x ∈ Σ∗.

Proof. For any w = w1 · · · wn ∈ Σ∗ we have fA(w) = Tr(Aw) =
∑

i∈[d] A
w
i,i =

∑
i∈[d] e

�
i Awei where ei is the i-th vector of the canonical basis of F

d. Since
α = ω = (e�

1 , · · · , e�
d)� and Mσ = I ⊗ Aσ is the block-diagonal matrix with

Aσ repeated d times on the diagonal, one can check that fM (w) = α�Mwω =∑
i∈[d] e

�
i Awei = fA(w). ��

It follows from this proposition that the learning and equivalence problems for
GWMcs could be handled by using the corresponding algorithms for WFAs.
We will nonetheless study the equivalence problem in the next section4 without
falling back onto the theory of WFAs, which will allow us to unravel fundamental
properties of GWMs that will be particularly relevant to further studies (more-
over, the minimization problem obviously cannot be handled in such a way).

2.2 Finite-Dimensional Algebras

An algebra A over a field F (or F-algebra) is a vector space over the field F

equipped with a bilinear operation (called multiplication or product). An algebra
is associative if its product is associative and it is finite-dimensional if it is of
finite dimension as a vector space over F. In this paper, we will only consider
finite-dimensional associative algebras. A sub-algebra B of an algebra A is a
linear subspace of A which is closed under product (i.e. B equipped with the
operations of A is an algebra itself).

A classical example of finite-dimensional algebra is the set L(V) of linear
operators on some finite-dimensional vector space V (where the product is com-
position). In this particular example, the algebra L(V) is isomorphic to the full
matrix algebra Md(F), where d is the dimension of V ; we will mainly focus on
matrix algebras in this paper, i.e. sub-algebras of the full matrix algebra Md(F)
for some d (an example of such an algebra is the set of d × d upper triangular
matrices). In particular, we will often consider the algebra generated by a finite

3 Note that this is not a necessary condition: the function f defined on {a, b}∗ by
f(x) = 1 if x = a and 0 otherwise is WFA-recognizable but not GWMc-recognizable.

4 The learning problem has been previously considered in [5,22].

518 G. Rabusseau

set of matrices {Aσ}σ∈Σ ⊂ Md(F) for some finite alphabet Σ, that is the set of
all finite linear combinations of matrices of the form Ax = Ax1Ax2 · · ·Axk for
x = x1x2 · · · xk ∈ Σ∗. More formally, if we denote by A this algebra, we have

A =

{
n∑

i=1

αiAwi : n ∈ N, α1, · · · , αn ∈ F, w1, · · · , wn ∈ Σ∗
}

.

Let A be a finite-dimensional algebra over F. A sub-algebra X of A is called
an ideal of A if both xa ∈ X and ax ∈ X for any x ∈ X , a ∈ A (i.e. X is
both left and right A-invariant), which we will denote by AX = XA = A. A
sub-algebra X of A is nilpotent if there exists some integer k such that X k =
{x1x2 · · · xk : xi ∈ X , i ∈ [k]} = {0}. The factor algebra A/X of an algebra A
by an ideal X is the algebra consisting of all cosets a + X for a ∈ A, in other
words A/X is the quotient of A by the equivalence relation (a ∼ b if and only
if a − b ∈ X). The radical5 of A is the maximal nilpotent ideal of A and will be
denoted by Rad(A) (the existence of Rad(A) follows from the fact that A is of
finite dimension). An algebra A is semi-simple if its radical is {0}.

Let us illustrate these definitions with a very simple example. Let G ⊂ M2(R)

be the algebra generated by the matrix G =
[
1 1
0 1

]

. One can easily check that

G =
{[

α β
0 α

]

: α, β ∈ R

}

and is thus of dimension 2. Consequently, both

G1 =
{[

α 0
0 α

]

: α ∈ R

}

and G2 =
{[

0 β
0 0

]

: β ∈ R

}

(1)

are sub-algebras of G. Moreover, G2 is a nilpotent ideal and one can check that
it is maximal, i.e. Rad(G) = G2 and hence G is not semi-simple.

Intuitively, the radical of an algebra A contains its bad elements (in the sense
that these elements annihilate all simple A-modules). In our previous example,
this bad property translates into the fact that the non-zero elements of G2 cannot
be diagonalized. We will use two fundamental results from the theory of finite
dimensional algebra. The first one is the Wedderburn-Malcev theorem which
states that (under some conditions on the ground field F) the elements of the
radical can be filtered out from the algebra, i.e. one can find a sub-algebra of A
that is isomorphic to A/Rad(A) (see e.g. [17, Theorem 6.2.3]).

Theorem 1 (Wedderburn-Malcev Theorem). Let A be a finite-dimensional
algebra over a field of characteristic0. There exists a semi-simple subalgebra Ã of
A which is isomorphic to A/Rad(A) and such that A = Ã ⊕ Rad(A) (direct sum
of vector spaces).

Going back to the example of the algebra G described above, we showed that it is
not semi-simple, however one can easily check that G/Rad(G) is isomorphic to the
algebra G1 in Eq. (1) which is semi-simple, and furthermore that G = G1⊕Rad(G).
5 Note that this definition is specific to the finite-dimensional case; for general rings,

there exist distinct non-equivalent definitions of radicals, which all agree with the
one given here in the case of finite-dimensional algebras.

Minimization of Graph Weighted Models over Circular Strings 519

The second fundamental result we will need is related to the notion of repre-
sentation of an algebra. A representation of an F-algebra A is a homomorphism
of A into the algebra L(V) of the linear operators on some vector space V (over
F). Two representations ρ : A → L(V) and τ : A → L(W) are similar if there
exists an isomorphism φ : V → W such that ρ(a) = φ−1τ(a)φ for all a ∈ A.
For semi-simple algebras, the notion of similar representations is fundamentally
related to the trace operator, which will be particularly relevant to the present
study. Formally, we have the following theorem (see e.g. [17, Corollary 2.6.3]).

Theorem 2. Let ρ and τ be two representations of a semi-simple algebra A
over a field of characteristic 0. These representations are similar if and only if
Tr(ρ(a)) = Tr(τ(a)) for all a ∈ A.

3 Semi-Simple GWMs and the Equivalence Problem

In this section, we study the equivalence problem: given two GWMs over circular
strings, how can we decide whether they compute the same function? In light of
Proposition 1, one could solve this problem by simply converting the two GWMcs
into WFAs and checking whether these two WFAs compute the same function;
indeed the equivalence problem for WFAs defined over a field is decidable in
polynomial time [9]. Nonetheless, we will tackle this problem without relying
on this proposition and, by doing so, we will unravel the notion of semi-simple
GWM c which will be relevant to the study of the minimization problem in the
next section (and which should also be central to the study of GWMs defined
over more general families of graphs).

3.1 Semi-Simplicity, Nilpotent Matrices and Traces

Let A be a finite dimensional matrix algebra. Recall that the radical of A is
its maximal nilpotent ideal. A useful characterization of the elements of the
radical relies on the notion of strongly nilpotent elements: A ∈ A is strongly
nilpotent if AX is nilpotent for any X ∈ A. It turns out that the radical of A
is exactly the set of its strongly nilpotent elements [17, Corollary 3.1.10]. Since
the computation of a GWMc boils down to applying the trace operator, we
will leverage this property to relate the notions of radical and semi-simplicity to
simple properties of the elements of A with respect to the trace operator. We
start with a simple lemma relating nilpotency and trace.

Lemma 1. Let F be a field of characteristic 0 and let A ∈ Md(F). Then A is
nilpotent if and only if Tr(An) = 0 for all n ≥ 1.

Proof. Let A be a nilpotent matrix and let k be such that Ak = 0. Suppose
Av = γv for some v �= 0 (where γ could belong to an algebraically closed field
extension of F). Then Akv = γkv = 0 hence γ = 0 since F is of characteristic 0,
thus A has only 0 eigenvalues and Tr(An) = 0 for all n ≥ 1.

Conversely, suppose that Tr(An) = 0 for all n ≥ 1. Then, we have
Tr(P (A)) = 0 for any polynomial P with constant term 0. Suppose that A

520 G. Rabusseau

has a non-zero eigenvalue γ and let m > 0 be its multiplicity. Choose a polyno-
mial P such that P (γ) = 1, P (0) = 0 and P (μ) = 0 for any eigenvalue μ of A
distinct from γ. We then have 0 = Tr(P (A)) = m, a contradiction. Hence A has
only zero eigenvalues and is nilpotent. ��
One can use the previous lemma to show that an element A ∈ A is strongly
nilpotent if and only if Tr(AX) = 0 for all X ∈ A, which leads to the following
useful characterization of the semi-simplicity of an algebra.

Proposition 2. Let A ⊂ Md(F) be a matrix algebra. We have

Rad(A) = {A ∈ A : Tr(AX) = 0 for all X ∈ A} .

Consequently, A is semi-simple if and only if for all A ∈ A different from 0
there exists X ∈ A such that Tr(AX) �= 0.

Proof. We will show that A ∈ A is strongly nilpotent if and only if Tr(AX) = 0
for all X ∈ A. The proposition will then directly follows from the fact that
Rad(A) is the set of strongly nilpotent elements of A and from the fact that A
is semi-simple if and only if Rad(A) = {0}.

Let A ∈ A be such that Tr(AX) = 0 for all X ∈ A. Since X(AX)n−1 ∈ A
for all n ≥ 1 and all X ∈ A we have Tr((AX)n) = 0 for all n ≥ 1 and all X ∈ A,
hence AX is nilpotent for all X ∈ A by Lemma 1, i.e. A is strongly nilpotent.
Conversely, let A be a strongly nilpotent element of A. By Lemma 1 we have
Tr((AX)n) = 0 for all X ∈ A and all n ≥ 1, in particular Tr(AX) = 0. ��

3.2 Equivalence of GWMs

We now consider the problem of deciding whether two GWMcs are equivalent.
Let us first briefly show how one can decide whether two real-valued WFAs com-
pute the same function. One way to address this problem relies on the following
result: two minimal real-valued WFAs computing the same function are related
by a change of basis. Note that it is easy to check that WFAs are invariant under
a change of basis of their weight vectors and transition matrices. The following
proposition show that such a change of basis is actually the only way for two
minimal WFAs to compute the same function [26] (see also [6, Corollary 4.2]).

Proposition 3. If two WFAs A = (α, {Aσ}σ∈Σ ,ω) and Ã = (α̃, {Ãσ}σ∈Σ , ω̃)
with d states taking their values in R are minimal and compute the same func-
tion, i.e. fA = fÃ, then there exists an invertible matrix P ∈ Md(R) such that

α� = α̃�P, ω = P−1ω̃ and Aσ = P−1ÃσP for each σ ∈ Σ.

Hence, to decide whether two WFAs compute the same function one can simply
minimize them and check whether the weight vectors and transition matrices
obtained after minimization are related by a change of basis (which can both
be done in polynomial time). In contrast, one can easily find an example of two
minimal GWM cs whose matrices are not related by a change of basis. Consider

Minimization of Graph Weighted Models over Circular Strings 521

the constant function f(x) = 2 for all x ∈ Σ+. One can check that the two
GWMcs G and G̃ with 2 states defined by the matrices

G =
[
1 1
0 1

]

and G̃ =
[
1 0
0 1

]

respectively are minimal and compute f , however G and G̃ are not similar.
Let us now introduce the notion of semi-simpleGWM c. We say that a GWMc

A defined by a set of matrices {Aσ}σ∈Σ ⊂ Md(F) is semi-simple if the algebra A
generated by the matrices {Aσ}σ∈Σ is semi-simple. It follows from the example
presented in Sect. 2.2 that G is not semi-simple while G̃ is a semi-simple GWM c

computing the GWM c-recognizablefunction f . We will now show that this
simple example can be generalized:any GWM c-recognizable function can be
computed by a semi-simple GWM c. This non-trivial result relies on the following
theorem which is a direct consequence of the Wedderburn-Malcev theorem.

Theorem 3. Let A ⊂ Md(F) be a matrix algebra over a field of characteristic
0. Then there exist a semi-simple sub-algebra Ã of A and a surjective homomor-
phism π : A → Ã such that Tr(A) = Tr(π(A)) for all A ∈ A.

Proof. By Theorem 1 there exists a semi-simple sub-algebra Ã of A which is
isomorphic to A/Rad(A) and such that A = Ã ⊕ Rad(A) (direct sum of vector
spaces). Let π : A → Ã be the projection associated with this direct sum. Then
for any A ∈ A we have

Tr(A) = Tr(π(A) + (1 − π)(A)) = Tr(π(A)) + Tr((1 − π)(A)) = Tr(π(A)).

Indeed, since (1 − π)(A) ∈ Rad(A), it is nilpotent, hence its trace is zero. ��
Using the notations from Theorem 3, it follows that for any d-dimensional GWMc

A given by a set of matrices {Aσ}σ∈Σ ⊂ Md(F) generating the algebra A, the d-
dimensional Ã given by the matrices {Ãσ = π(Aσ)}σ∈Σ is a semi-simple GWMc

computing the function fA, hence the following corollary.

Corollary 1. Any function that can be computed by a GWMc can be computed
by a semi-simple GWMc of the same dimension.

Given a finite dimensional algebra A, one can compute the surjective homo-
morphism π from Theorem 3 in polynomial time when F allows efficient arith-
metic computations (e.g. F = Q) [12,15]. The algorithm takes as input a basis
a1, · · · , an of A (as a vector space) and the structure coefficients of the alge-
bra (which are the scalars ck

i,j ∈ F satisfying aiaj =
∑

k ck
i,jak). Since one can

easily compute a basis and the structure coefficients of a matrix algebra A given
a set of generators {Aσ}σ∈Σ in polynomial time, it follows that any GWMc

can be transformed in polynomial time into a semi-simple GWM c (of the same
dimension) computing the same function.

We now show that a result similar to Proposition 3 holds for semi-simple
GWMcs: two semi-simple d-dimensional GWM cs are equivalent if and only if
they are related by a change of basis. This result relies on the following theorem.

522 G. Rabusseau

Theorem 4. Let Σ be a finite alphabet and let A,B ⊂ Md(F) be the algebras
generated by the sets of matrices {Aσ}σ∈Σ and {Bσ}σ∈Σ respectively.

If A and B are semi-simple and Tr(Aw) = Tr(Bw) for all w ∈ Σ∗ then A
is isomorphic to B. Moreover, the mapping φ̃ : A → B defined by extending the
mapping

φ : Ax �→ Bx for all x ∈ Σ∗

by linearity is well-defined and is an isomorphism.

Proof. The mapping φ is by construction a trace-preserving surjective semi-
group homomorphism. We first show6 that φ can be extended to a homomor-
phism φ̃ : A → B. By definition, any A ∈ A can be written as A =

∑n
i=1 αiAxi

for some n ∈ N, α1, · · · , αn ∈ F, x1, · · · , xn ∈ Σ∗. We will show that the mapping

φ̃ :
n∑

i=1

αiAxi �−→
n∑

i=1

αiφ(Axi)

is well-defined. By construction of φ̃, it suffices to show that if
∑n

i=1 αiAxi = 0
for some αi ∈ F, xi ∈ Σ∗, then φ̃(

∑n
i=1 αiAxi) = 0. Suppose

∑n
i=1 αiAxi = 0,

then
∑n

i=1 αiAxiAx = 0 for any x ∈ Σ∗. By linearity of the trace and since φ is
a trace-preserving morphism, it follows that

0 =
n∑

i=1

αiTr [AxiAx] =
n∑

i=1

αiTr [φ(AxiAx)] =
n∑

i=1

αiTr [φ(Axi)φ(Ax)]

= Tr

[(
n∑

i=1

αiφ(Axi)

)

φ(Ax)

]

= Tr

[

φ̃

(
n∑

i=1

αiAxi

)

φ(Ax)

]

for all x ∈ Σ∗. By linearity of the trace and since φ is surjective, we thus have
Tr

[
φ̃ (

∑n
i=1 αiAxi)B

]
= 0 for any B ∈ B, hence φ̃ (

∑n
i=1 αiAxi) belongs to

Rad(B) by Proposition 2 and must be 0 since B is semi-simple.
One can easily check that φ̃ is trace-preserving, is surjective and is a homo-

morphism. It remains to show that φ̃ is injective. Let A ∈ A be such that
φ̃(A) = 0. Since φ̃ is a homomorphism we have φ̃(AX) = 0 for any X ∈ A,
and thus 0 = Tr(φ̃(AX)) = Tr(AX) for all X ∈ A. Hence A ∈ Rad(A) by
Proposition 2 and must be 0 since A is semi-simple. ��
The previous theorem can be leveraged to show that if two semi-simple GWMcs
of the same dimension compute the same function, then they are related by
a change of basis (note that the converse of this statement is immediate since
the trace is a basis independent operator). Let A and B be two d-dimensional
semi-simple GWMcs computing the same function and let A,B ⊂ Md be the
algebras generated by their respective sets of matrices {Aσ}σ∈Σ and {Bσ}σ∈Σ .
First observe that the identity mapping ρ : A → L(Fd) defined by ρ(A) = A for
all A ∈ A is (trivially) a representation of the algebra A. Now, since A and B

6 This part of the proof is adapted from the proof of Proposition 3.1 in [18].

Minimization of Graph Weighted Models over Circular Strings 523

compute the same function and are semi-simple, we have Tr(Aw) = Tr(Bw) for
all w ∈ Σ∗ and it follows from Theorem 4 that A is isomorphic to B; let φ̃ : A → B
be the isomorphism defined in this theorem. Then, the mapping τ : A → L(Fd)
defined by τ(A) = φ̃(A) for all A ∈ A is also a representation of A, and since
A is semi-simple it follows from Theorem 2 that ρ and τ are similar. That is,
there exists an invertible matrix P ∈ Md(F) such that ρ(A) = P−1τ(A)P for
all A ∈ A. In particular we have

Aσ = ρ(Aσ) = P−1τ(Aσ)P = P−1φ̃(Aσ)P = P−1BσP

for all σ ∈ Σ, hence the following corollary.

Corollary 2. Two d-dimensional semi-simple GWMcs A and B compute the
same function if and only if they are related by a change of basis, i.e. there
exists an invertible matrix P ∈ Md(F) such that Aσ = P−1BσP for all σ ∈ Σ.

In the case where F allows for efficient arithmetic computations (e.g. F = Q),
it follows that the equivalence of GWMcs can be decided in polynomial time.
Indeed, given two GWMcs A and B of the same dimension defined by the matri-
ces {Aσ}σ∈Σ and {Bσ}σ∈Σ respectively, one can first transform them into semi-
simple GWMcs using Theorem 3 and the algorithm in [12,15], and then check
whether the resulting matrices are related by a change of basis. The case where
the two GWMcs are not of the same dimension can be easily handled. Without
loss of generality, suppose that A and B are semi-simple GWMcs of dimension
d and d′ respectively with d′ < d. One can construct a d-dimensional GWMc B̃
computing the same function as B by considering the block-diagonal matrices
B̃σ = Bσ ⊕ 0 for each σ ∈ Σ (where 0 is the (d − d′) × (d − d′) matrix with all
entries equal to 0). It is easy to check that B̃ is semi-simple if B is semi-simple,
hence one can decide if A is equivalent to B by checking whether the matrices
Aσ and B̃σ are related by a change of basis.

4 Minimization of GWMs over Circular Strings

We now consider the minimization problem: given a GWMc A, can we find a
minimal GWMc computing fA? We will show that the answer is in the positive
and that such a minimal GWMc can be computed in polynomial time. We start
with a technical lemma that generalizes the classical result stating that for any
d × d matrix A, the kernel of Ad is equal to the kernel of Ad+k for any k ≥ 0.

Lemma 2. Let {Aσ}σ∈Σ ⊂ Md(F) be a finite set of matrices. Then for all
k ≥ 0 we have ⋂

x∈Σd

ker(Ax) =
⋂

y∈Σd+k

ker(Ay).

Proof. For any integer i, let Ei =
⋂

x∈Σi ker(Ax). We start by showing that
if Ei = Ei+1 for some i then Ei+1 = Ei+2. The inclusion Ei+1 ⊆ Ei+2 is
immediate. Suppose Ei = Ei+1 for some integer i. If v ∈ Ei+2 then Aσv ∈

524 G. Rabusseau

ker(Ax) for all x ∈ Σi+1 and all σ ∈ Σ, i.e. Aσv ∈ Ei+1 = Ei for all σ ∈ Σ,
which implies Aσv ∈ ker(Ay) for all y ∈ Σi and all σ ∈ Σ from which v ∈ Ei+1

follows directly. To conclude, since each Ei is a linear subspace of F
d, Ei � Ei+1

implies dim Ei < dim Ei+1, hence there must exist an i for which Ei = Ei+1 and
this i cannot be greater than d. ��
We show in the following theorem that the linear space E =

⋂
x∈Σd ker(Ax)

is not relevant to the computation of a GWMc A with matrices {Aσ}σ∈Σ , i.e.
one can project each matrix Ax onto the orthogonal complement of E without
changing the function computed by A.

Theorem 5. Let A be a GWMc given by the set of matrices {Aσ}σ∈Σ ⊂
Md(F). Consider the linear space

E =
⋂

x∈Σd

ker(Ax) = {v ∈ F
d : Axv = 0 for all x ∈ Σd}

and let Π ∈ F
d×d be the matrix of the orthogonal projection onto E.

Then, the GWMc Â given by the matrices Âσ = Aσ(I − Π) for each σ ∈ Σ
is such that fA = fÂ.

Proof. Let A be the algebra generated by the matrices {Aσ}σ∈Σ . Let us first
observe that E is A-invariant, which follows from Lemma 2. Indeed, if v ∈ E and
y ∈ Σ∗ we have AxAyv = 0 for any x ∈ Σd (since |xy| ≥ d), hence Ayv ∈ E;
the extension to an arbitrary element of A is immediate by linearity. This implies
that for any A ∈ A, we have

ΠAΠ = AΠ and (I − Π)AΠ = 0. (2)

Now, let k ≥ 1, let x = x1x2 · · · xk ∈ Σk and let P1 = Π and P2 = I − Π.
We can decompose Ax into

Ax =
k∏

i=1

Axi =
k∏

i=1

Axi(P1 + P2) =
∑

j1,··· ,jk∈{1,2}
Ax1Pj1A

x2Pj2 · · ·AxkPjk

= Âx + Ax1ΠAx2Π · · ·AxkΠ +
∑

j1,··· ,jk∈{1,2} s.t.
∃r,r′:jr �=j

r′

Ax1Pj1A
x2Pj2 · · ·AxkPjk .

We will show that the traces of all the summands in this last expres-
sion, except for the first one, are equal to 0. First, using Eq. (2) we have
Ax1ΠAx2Π · · ·AxkΠ = AxΠ. Moreover, for any integer s such that sk ≥ d
we have (AxΠ)s = Axs

Π = 0 by definition of E and by Lemma 2, thus
AxΠ is nilpotent and its trace is 0 by Lemma 1. For the remaining terms,
let j1, · · · , jk ∈ {1, 2} not all equal. Let l ∈ [k] be an index such that jl = 2 and
jl+1 = 1 where l + 1 = l +1 if l < k and 1 otherwise. Using the invariance of the
trace under cyclic permutations of a matrix product, we obtain

Tr(Ax1Pj1A
x2Pj2 · · ·AxkPjk) = Tr(AxlPjlA

x ¯l+1Pjl+1
· · ·)

= Tr(Axl(I − Π)Axl+1Π · · ·) = 0

Minimization of Graph Weighted Models over Circular Strings 525

where we used Eq. 2 again for the last equality. To conclude, we have shown that
Tr(Ax) = Tr(Âx) for all x ∈ Σ∗, hence A and Â compute the same function on
circular strings. ��
Moreover, we now show that the subspace E from the previous theorem can be
used to obtain a characterization of the minimality of a GWMc.

Theorem 6. Let A be a GWMc given by the set of matrices {Aσ}σ∈Σ ⊂
Md(F). Then, A is minimal if and only if the linear space

E =
⋂

x∈Σd

ker(Ax) = {v ∈ F
d : Axv = 0 for all x ∈ Σd}

is trivial, i.e. E = {0}.
Proof. Suppose that E is not trivial and let Π be the matrix of the orthogonal
projection onto E. Then, the rank R of I − Π is strictly less than d and there
exists an orthogonal matrix U ∈ R

d×R such that I−Π = UU�. It follows from
the previous proposition that, for any non-empty word x = x1 · · · xk, we have

Tr(Ax) = Tr(Ax1(I − Π)Ax2(I − Π) · · ·Axk(I − Π))

= Tr(Ax1UU�Ax2UU� · · ·AxkUU�) = Tr((U�Ax1U)(U�Ax2U) · · · (U�AxkU)).

Hence, the R-dimensional GWMc given by the matrices Âσ = U�AσU com-
putes the same function as A, showing that A is not minimal.

Suppose now that A is not minimal. Let B be a GWMc of dimension d′ < d,
given by the matrices {Bσ}σ∈Σ , such that fB = fA. Let A (resp. B) be the
algebra generated by the matrices {Aσ}σ∈Σ (resp. {Bσ}σ∈Σ). By Corollary 1,
we can assume that both A and B are semi-simple GWMcs, i.e. that the algebras
A and B are semi-simple. For each σ ∈ Σ, let B̂σ = Bσ ⊕0 ∈ R

d×d be the block
diagonal matrix having Bσ in the upper diagonal block and 0’s elsewhere. Let B̂
be the algebras generated by the matrices {B̂σ}σ∈Σ ⊂ Md(F). It is easy to check
that the GWMc B̂ computes the same function as A and B and that the algebra
B̂ is semi-simple (it is indeed isomorphic to the semi-simple algebra B). It then
follows from Corollary 2 that there exists an invertible matrix P ∈ Md(F) such
that Aσ = PB̂σP−1 for all σ ∈ Σ. Let ed be the dth vector of the canonical basis
of F

d, by definition of B̂σ we have B̂σed = 0 for any σ ∈ Σ, and consequently
AσPed = 0 for any symbol σ, showing that Ped ∈ E and E �= {0}. ��
It follows from the two previous theorems that by restricting the linear opera-
tors Aσ of a GWMc A to the subspace E⊥, one can obtain a minimal GWMc

computing fA. We formally state this result in the following corollary.

Corollary 3. Let A be a GWMc given by the matrices {Aσ}σ∈Σ ⊂ Md(F)
and let Π be the matrix of the orthogonal projection onto the space E =⋂

x∈Σd ker(Ax). For any orthogonal matrix U ∈ F
d×R such that I − Π =

UU� (where R is the dimension of E⊥), the R-dimensional GWMc Â given
by the matrices Âσ = U�AσU is a minimal GWMc computing fA.

526 G. Rabusseau

Proof. Using the invariance of the trace under cyclic permutations of a matrix
product, it directly follows from Theorem 5 that fÂ = fA. Moreover, one can
check that Ê =

⋂
x∈Σd ker(Âx) = {0} by construction of the matrices Âσ, hence

Â is minimal by Theorem 6. ��
We showed that a GWMc can be minimized by restricting its matrices to the sub-
space E⊥. In order to do so, one needs to compute a basis of E =

⋂
x∈Σd ker(Ax).

This can naively be done by first computing ker(Ax) for each x ∈ Σd and then
computing a basis for the intersection of these linear subspaces, however the
complexity of this approach is exponential in the dimension d. We show in the
following proposition that for semi-simple GWMcs, one simply needs to compute
a basis of the space

⋂
σ∈Σ ker(Aσ), which can be done in polynomial time (pro-

vided that the field F admits efficient symbolic arithmetic, e.g. F = Q).

Proposition 4. Let A ⊂ Md(F) be the finite dimensional algebra generated by
the set of matrices {Aσ}σ∈Σ. Then if A is semi-simple we have

⋂

x∈Σd

ker(Ax) =
⋂

σ∈Σ

ker(Aσ).

Proof. For any integer i ≥ 1, let Ei =
⋂

x∈Σi ker(Ax). Recall from the proof
of Lemma 2 that Ei ⊂ Ei+1 for all i and that Ei = Ei+1 implies Ei = Ei+k

for any integer k ≥ 0, hence it will be sufficient to show that E1 = E2. One
can check that each Ei is A-invariant, i.e. each Ei is an A-module. Since A is
semi-simple, any A-module is semi-simple [17, Theorem 2.6.2], which implies
that if M is an A-module, every submodule U of M has a complement [17,
Proposition 2.2.1], i.e. there exists an A-module V such that M = U ⊕ V . Now
since E1 is a submodule of the A-module E2, E1 has a complement U in E2,
i.e. U is A-invariant and E2 = E1 ⊕ U . Let v ∈ U . We show v = 0. Since
v ∈ E2, we have Aσ1Aσ2v = 0 for all σ1, σ2 ∈ Σ, hence Aσv ∈ E1 for all σ ∈ Σ.
Moreover, we have Aσv ∈ U for all σ ∈ Σ since U is A-invariant. It follows that
Aσv ∈ E1 ∩U = {0} and Aσv = 0 for all σ ∈ Σ, hence v ∈ E1 and since v ∈ U
we have v = 0. To conclude, we have U = {0}, hence E1 = E2. ��
Since a GWMc can be transformed into an equivalent semi-simple GWMc

in polynomial time (see Corollary 1 and the following discussion), the mini-
mization of a GWMc defined over circular strings can be achieved in polyno-
mial time by first converting it to a semi-simple GWMc and then applying
Corollary 3 with Proposition 4. The overall minimization algorithm is summa-
rized in Algorithm 1.

Minimization of Graph Weighted Models over Circular Strings 527

Algorithm 1. Minimization of a GWM defined over circular strings
Input: A d-dimensional GWMc A given by a set of matrices {Aσ}σ∈Σ ⊂ Md(F).
Output: A minimal GWMc Â computing fA.
1: Let A be the algebra generated by the matrices {Aσ}σ∈Σ .
2: Compute a basis (A1, · · · ,An) of A (as an F-vector space) and the structure coef-

ficients ck
i,j ∈ F for i, j, k ∈ [n] satisfying AiAj =

∑n
k=1 ck

i,jAk.

3: Compute the sub-algebra Ã and the corresponding surjective homomorphism
π : A → Ã satisfying A = Rad(A) ⊕ Ã and Ã ∼= A/Rad(A) (using the algorithm
from [15], see Theorem 3).

4: Let Ã be the semi-simple GWM given by the set of matrices {Ãσ = π(Aσ)}σ∈Σ .
5: Compute a basis of E1 = {v ∈ F

d : Ãσv = 0 for all σ ∈ Σ} =
⋂

σ∈Σ ker(Ãσ).

6: Let Π ∈ F
d×d be the matrix of the orthogonal projection onto E1.

7: Let R be the rank of I − Π and let U ∈ F
d×R be an orthogonal matrix such that

I − Π = UU�.
8: return The R-dimensional GWMc given by the matrices {Âσ = U�ÃσU}σ∈Σ .

5 Conclusion

We proposed polynomial time algorithms to handle both the minimization and
the equivalence problems for GWMs defined over circular strings. By doing so,
we unraveled fundamental notions from algebra theory that will be central to the
study of GWMs. In particular, the notion of semi-simple GWMc was paramount
to our analysis. Intuitively, semi-simplicity can be thought of as a weak form of
minimality: components from the radical do not contribute to the final compu-
tation of a GWMc (semi-simplification thus corresponds to annihilating these
irrelevant components from the algebra, i.e. from the GWMc’s dynamics).

The next step is of course to try to extend the results obtained in this paper to
GWMs defined over more general families of graphs. One promising direction we
are currently investigating relies on extending the central notion of semi-simple
GWMc to GWMs defined over arbitrary families of labeled graphs: by opening
any edge e in a graph G one obtains a graph Ge with two free ports (i.e. edges
having one end that is not connected to any vertex) which would be mapped by
a d-dimensional GWM A to a matrix AGe ∈ Md(F) (indeed, a GWM naturally
maps any graph with k free ports to a kth order tensor; see [22, Sect. 2.2.3]
for more details). For circular strings, opening an edge corresponds to choosing
a particular position in the circular string leading to an actual string x ∈ Σ∗

which is mapped to Ax by the GWM. For arbitrary labeled graphs, we have
fA(G) = Tr(AGe) similarly to the case of circular strings. One can then consider
the algebra A generated by the matrices AGe for any graph G in some family
of graphs and any edge e in G, and define a semi-simple GWM as a GWM for
which this algebra A is semi-simple (note that one exactly recovers the notion of
semi-simple GWM introduced here in the special case of circular strings). Hence,
the fundamental results from algebra theory we leveraged in this paper should be
directly relevant to the study of general GWMs. Beyond minimization, we intend
to study the problem of approximate minimization (such as the ones considered

528 G. Rabusseau

in [7,23] for string and tree weighted automata) along with the closely related
problem of learning GWMs defined over richer families of graphs than the one
of circular strings.

Acknowledgements. The author acknowledges support of an IVADO postdoctoral
fellowship and would like to thank the reviewers for their helpful comments as well
as Philip Amortila, François Denis, Clara Lacroce, Prakash Panangaden and Joelle
Pineau for fruitful discussions.

References

1. Bailly, R., Carreras Pérez, X., Luque, F.M., Quattoni, A.J.: Unsupervised spectral
learning of WCFG as low-rank matrix completion. In: Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pp. 624–635.
ACL (2013)

2. Bailly, R., Denis, F., Rabusseau, G.: Recognizable series on hypergraphs. In: Pro-
ceedings of the 9th International Conference on Language and Automata Theory
and Applications, pp. 639–651 (2015)

3. Bailly, R., Denis, F., Ralaivola, L.: Grammatical inference as a principal component
analysis problem. In: Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 33–40. ACM (2009)

4. Bailly, R., Habrard, A., Denis, F.: A spectral approach for probabilistic gram-
matical inference on trees. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T.
(eds.) ALT 2010. LNCS (LNAI), vol. 6331, pp. 74–88. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16108-7 10

5. Bailly, R., Rabusseau, G., Denis, F.: Recognizable series on graphs and hyper-
graphs. J. Comput. Syst. Sci. (2017, in press)

6. Balle, B., Carreras, X., Luque, F.M., Quattoni, A.: Spectral learning of weighted
automata. Mach. Learn. 96(1–2), 33–63 (2014)

7. Balle, B., Panangaden, P., Precup, D.: A canonical form for weighted automata
and applications to approximate minimization. In: 30th Annual Symposium on
Logic in Computer Science, pp. 701–712. IEEE (2015)

8. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Com-
put. Sci. 18(2), 115–148 (1982)

9. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Hei-
delberg (1988)

10. Boots, B., Siddiqi, S.M., Gordon, G.J.: Closing the learning-planning loop with
predictive state representations. Int. J. Robot. Res. 30(7), 954–966 (2011)

11. Bozapalidis, S., Grammatikopoulou, A.: Recognizable picture series. J. Automata
Lang. Comb. 10(2/3), 159–183 (2005)

12. Bremner, M.R.: How to compute the Wedderburn decomposition of a finite-
dimensional associative algebra. Groups Complex. Cryptol. 3(1), 47–66 (2011)

13. Brešar, M.: Introduction to Noncommutative Algebra. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08693-4

14. Cohen, S.B., Stratos, K., Collins, M., Foster, D.P., Ungar, L.H.: Spectral learning
of latent-variable PCFGs: algorithms and sample complexity. J. Mach. Learn. Res.
15(1), 2399–2449 (2014)

15. de Graaf, W.A., Ivanyos, G., Küronya, K., Rónyai, L.: Computing Levi decom-
positions in lie algebras. Appl. Algebra Eng. Commun. Comput. 8(4), 291–303
(1997)

https://doi.org/10.1007/978-3-642-16108-7_10
https://doi.org/10.1007/978-3-319-08693-4

Minimization of Graph Weighted Models over Circular Strings 529

16. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
Springer Science & Business Media, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01492-5

17. Drozd, Y.A., Kirichenko, V.V.: Finite Dimensional Algebras. Springer Science &
Business Media, Heidelberg (2012). https://doi.org/10.1007/978-3-642-76244-4

18. Hladnik, M., Omladic, M., Radjavi, H.: Trace-preserving homomorphisms of semi-
groups. J. Funct. Anal. 204(2), 269–292 (2003)

19. Hsu, D.J., Kakade, S.M., Zhang, T.: A spectral algorithm for learning Hidden
Markov Models. In: Proceedings of the Conference on Learning Theory (2009)

20. Lee, T., Na, J.C., Park, H., Park, K., Sim, J.S.: Finding consensus and optimal
alignment of circular strings. Theoret. Comput. Sci. 468, 92–101 (2013)

21. Marusic, I., Worrell, J.: Complexity of equivalence and learning for multiplicity
tree automata. J. Mach. Learn. Res. 16, 2465–2500 (2015)

22. Rabusseau, G.: A Tensor Perspective on Weighted Automata, Low-Rank Regres-
sion and Algebraic Mixtures. PhD thesis, Aix-Marseille Université (2016)

23. Rabusseau, G., Balle, B., Cohen, S.: Low-rank approximation of weighted tree
automata. In: Proceedings of the 19th International Conference on Artificial Intel-
ligence and Statistics, pp. 839–847 (2016)

24. Rittaud, B., Vivier, L.: Circular words and applications. In: WORDS, pp. 31–36
(2011)

25. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009)

26. Tzeng, W.-G.: On the definition of a family of automata. Inf. Control 4(2–3),
245–270 (1961)

27. Tzeng, W.-G.: A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput. 21(2), 216–227 (1992)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-76244-4
http://creativecommons.org/licenses/by/4.0/

Games on Graphs with a Public Signal
Monitoring

Patricia Bouyer(B)

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
bouyer@lsv.fr

Abstract. We study pure Nash equilibria in games on graphs with an
imperfect monitoring based on a public signal. In such games, devia-
tions and players responsible for those deviations can be hard to detect
and track. We propose a generic epistemic game abstraction, which con-
veniently allows to represent the knowledge of the players about these
deviations, and give a characterization of Nash equilibria in terms of
winning strategies in the abstraction. We then use the abstraction to
develop algorithms for some payoff functions.

1 Introduction

Multiplayer concurrent games over graphs allow to model rich interactions
between players. Those games are played as follows. In a state, each player
chooses privately and independently an action, defining globally a move (one
action per player); the next state of the game is then defined as the successor
(on the graph) of the current state using that move; players continue playing
from that new state, and form (an infinite) play. Each player then gets a reward
given by a payoff function (one function per player). In particular, objectives
of the players may not be contradictory: those games are non-zero-sum games,
contrary to two-player games used for controller or reactive synthesis [23,30].

The problem of distributed synthesis [25] can be formulated using multiplayer
concurrent games. In this setting, there is a global objective Φ, and one particular
player called Nature. The question then is whether the so-called grand coalition
(all players except Nature) can enforce Φ, whatever Nature does. While the
players (except Nature) cooperate (and can initially coordinate), their choice of
actions (or strategy) can only depend on what they see from the play so far.
When modelling distributed synthesis as concurrent games, information players
receive is given via a partial observation function of the states of the game. When
the players have perfect monitoring of the play, the distributed synthesis problem
reduces to a standard two-player zero-sum game. Distributed synthesis is a fairly
hot topic, both using the formalization via concurrent games we have already
described and using the formalization via an architecture of processes [26]. The
most general decidability results in the concurrent game setting are under the

This work has been supported by ERC project EQualIS (FP7-308087).

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 530–547, 2018.
https://doi.org/10.1007/978-3-319-89366-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_29&domain=pdf
http://orcid.org/0000-0002-2823-0911

Games on Graphs with a Public Signal Monitoring 531

assumption of hierarchical observation [6,36] (information received by the players
is ordered) or more recently under recurring common knowledge [5].

While distributed synthesis involves several players, this remains nevertheless
a zero-sum question. Using solution concepts borrowed from game theory, one
can go a bit further in describing the interactions between the players, and in
particular in describing rational behaviours of selfish players. One of the most
basic solution concepts is that of Nash equilibria [24]. A Nash equilibrium is a
strategy profile where no player can improve her payoff by unilaterally changing
her strategy. The outcome of a Nash equilibrium can therefore be seen as a
rational behaviour of the system. While very much studied by game theoretists
(e.g. over matrix games), such a concept (and variants thereof) has been only
rather recently studied over games on graphs. Probably the first works in that
direction are [15,17,32,33]. Several series of works have followed. To roughly
give an idea of the existing results, pure Nash equilibria always exist in turn-
based games for ω-regular objectives [35] but not in concurrent games; they can
nevertheless be computed for large classes of objectives [9,11,35]. The problem
becomes harder with mixed (that is, stochastic) Nash equilibria, for which we
often cannot decide the existence [10,34].

Computing Nash equilibria requires to (i) find a good behaviour of the sys-
tem; (ii) detect deviations from that behaviour, and identify deviating players
(called deviators); (iii) punish them. This simple characterization of Nash equi-
libria is made explicit in [18]. Variants of Nash equilibria require slightly different
ingredients, but they are mostly of a similar vein.

In (almost) all these works though, perfect monitoring is implicitly assumed:
in all cases, players get full information on the states which are visited; a slight
imperfect monitoring is assumed in some works on concurrent games (like [9]),
where actions which have been selected are not made available to all the players
(we speak of hidden actions). This can yield some uncertainties for detecting
deviators but not on states the game can be in, which is rather limited and can
actually be handled.

In this work, we integrate imperfect monitoring into the problem of deciding
the existence of pure Nash equilibria and computing witnesses. We choose to
model imperfect monitoring via the notion of signal, which, given a joint deci-
sion of the players together with the next state the play will be in, gives some
information to the players. To take further decisions, players get information
from the signals they received, and have perfect recall about the past (their own
actions and the signals they received). We believe this is a meaningful frame-
work. Let us give an example of a wireless network in which several devices
try to send data: each device can modulate its transmission power, in order to
maximise its bandwidth and reduce energy consumption as much as possible.
However there might be a degradation of the bandwidth due to other devices,
and the satisfaction of each device is measured as a compromise between energy
consumption and allocated bandwidth, and is given by a quantitative payoff

532 P. Bouyer

function.1 In such a problem, it is natural to assume that a device only gets
a global information about the load of the network, and not about each other
device which is connected to the network. This can be expressed using imperfect
monitoring via public signals.

Following [31] in the framework of repeated matrix games, we put forward a
notion of public signal (inspired by [31]). A signal will be said public whenever
it is common to all players. That is, after each move, all the players get the same
information (their own action remains of course private). We will also distinguish
several kinds of payoff functions, depending on whether they are publicly visible
(they only depend on the public signal), or privately visible (they depend on the
public signal and on private actions: the corresponding player knows his payoff!),
or invisible (players may not even be sure of their payoff).

The payoff functions we will focus on in this paper are Boolean ω-regular
payoff functions and mean payoff functions. Some of the decidability results can
be extended in various directions, which we will mention along the way.

As initial contributions of the paper, we show some undecidability results, and
in particular that the hypothesis of public signal solely is not sufficient to enjoy
all nice decidability results: for mean payoff functions, which are privately visible,
one cannot decide the constrained existence of a Nash equilibrium. Constrained
existence of a Nash equilibrium asks for the existence of a Nash equilibrium
whose payoff satisfies some given constraint.

The main contribution of the paper is the construction of a so-called epistemic
game abstraction. This abstraction is a two-player turn-based game in which we
show that winning strategies of one of the players (Eve) actually correspond
to Nash equilibria in the original game. The winning condition for Eve is rather
complex, but can be simplified in the case of publicly visible payoff functions. The
epistemic game abstraction is inspired by both the epistemic unfolding of [4] used
for distributed synthesis, and the suspect game abstraction of [9] used to compute
Nash equilibria in concurrent games with hidden actions. In our abstraction,
we nevertheless not fully formalize epistemic unfoldings, and concentrate on
the structure of the knowledge which is useful under the assumption of public
signals; we show that several subset constructions (as done initially in [27], and
since then used in various occasions, see e.g. [14,19,20,22]) made in parallel, are
sufficient to represent the knowledge of all the players. The framework of [9]
happens to be a special case of the public signal monitoring framework of the
current paper. This construction can therefore be seen as an extension of the
suspect game abstraction.

This generic construction can be applied to several frameworks with publicly
visible payoff functions. We give two such applications, one with Boolean ω-
regular payoff functions and one with mean payoff functions.

1 This can be expressed by payoffplayer i = R
poweri

(
1 − e−0.5γi

)L

where γi is the signal-

to-interference-and-noise ratio for player i, R is the rate at which the wireless system
transmits the information and L is the size of the packets [29].

Games on Graphs with a Public Signal Monitoring 533

Further Related Works. We have already discussed several kinds of related works.
Let us give some final remarks on related works.

We have mentioned earlier that one of the problems for computing Nash
equilibria is to detect deviations and players who deviated. Somehow, the epis-
temic game abstraction tracks the potential deviators, and even though players
might not know who exactly is responsible for the deviation (there might be
several suspects), they can try to punish all potential suspects. And that what
we do here. Very recently, [7] discusses the detection of deviators, and give some
conditions for them to become common knowledge of the other players. In our
framework, even though deviators may not become fully common knowledge, we
can design mechanisms to punish the relevant ones.

Recently imperfect information has also been introduced in the setting of
multi-agent temporal logics [2,3,20,21], and the main decidability results assume
hierarchical information. However, while those logics allow to express rich inter-
actions, it can somehow only consider qualitative properties. Furthermore, no
tight complexity bounds are provided.

In [11], a deviator game abstraction is proposed. It twists the suspect game
abstraction [9] to allow for more general solution concepts (so-called robust equi-
libria), but it assumes visibility of actions (hence remove any kind of uncertain-
ties). Relying on results of [13], this deviator game abstraction allows to compute
equilibria with mean payoff functions. Our algorithms for mean payoff functions
will also rely on the polyhedron problem of [13].

A full version of this paper will all proofs is available as [8]. In this extended
abstract, we made the choice to focus on the construction of the epistemic game
abstraction and to be more sketchy on algorithms to compute Nash equilibria.
We indeed believe the structure of the knowledge represented by the abstraction
is the most important contribution, and that algorithms are more standard.
However we believe it is important to be able to apply the abstract construction
for algorithmics purpose.

2 Definitions

Throughout the paper, if S ⊆ R, we write S for S ∪ {−∞,+∞}.

2.1 Concurrent Multiplayer Games with Signals

We consider the model of concurrent multi-player games, based on the two-player
model of [1]. This model of games was used for instance in [9]. We equip games
with signals, which will give information to the players.

Definition 1. A concurrent game with signals is a tuple

G = 〈V, vinit, P ,Act, Σ,Allow,Tab, (�A)A∈P , (payoffA)A∈P 〉
where V is a finite set of vertices, vinit ∈ V is the initial vertex, P is a finite set
of players, Act is a finite set of actions, Σ is a finite alphabet, Allow : V × P →

534 P. Bouyer

2Act \ {∅} is a mapping indicating the actions available to a given player in a
given vertex, Tab : V × ActP → V associates, with a given vertex and a given
action tuple the target vertex, for every A ∈ P , �A :

(
ActP × V

) → Σ is a signal,
and payoffA : V · (

ActP · V
)ω → D is a payoff function with values in a domain

D ⊆ R. We say that the game has public signal if there is � :
(
ActP × V

) → Σ
such that for every A ∈ P , �A = �.

The signals will help the players monitor the game: for taking decisions, a player
will have the information given by her signal and the action she played earlier. A
public signal will be a common information given to all the players. Our notion
of public signal is inspired by [31] and encompasses the model of [9] where only
action names were hidden to the players. Note that monitoring by public signal
does not mean that all the players have the same information: they have private
information implied by their own actions.

An element of ActP is called a move. When an explicit order is given on
the set of players P = {A1, . . . , A|P |}, we will write a move m = (mA)A∈P as
〈mA1 , . . . ,mA|P|〉. If m ∈ ActP and A ∈ P , we write m(A) for the A-component
of m and m(−A) for all but the A components of m. In particular, we write
m(−A) = m′(−A) whenever m(B) = m′(B) for every B ∈ P \ {A}.

A full history h in G is a finite sequence

v0 · m0 · v1 · m1 . . . mk−1 · vk ∈ V · (ActP · V
)∗

such that for every 0 ≤ i < k, mi ∈ Allow(vi) and vi+1 = Tab(vi,mi). For
readability we will also write h as v0

m0−−→ v1
m1−−→ . . .

mk−1−−−→ vk.
We write last(h) for the last vertex of h (i.e., vk). If i ≤ k, we also write h≤i

for the prefix v0 ·m0 · v1 ·m1 . . . mi−1 · vi. We write HistG(v0) (or simply Hist(v0)
if G is clear in the context) for the set of full histories in G that start at v0.

Let A ∈ P . The projection of h for A is denoted πA(h) and is defined as:

v0 · (m0(A), �A(m0, v1)) . . . (mk−1(A), �A(mk−1, vk)) ∈ V · (Act × Σ)∗

This will be the information available to player A: it contains both the actions
she played so far and the signal she received. Note that we assume perfect recall,
that is, while playing, A will remember all her past knowledge, that is, all of
πA(h) if h has been played so far. We define the undistinguishability relation ∼A

as the equivalence relation over full histories induced by πA: for two histories h
and h′, h ∼A h′ iff πA(h) = πA(h′). While playing, if h ∼A h′, A will not be
able to know whether h or h′ has been played. We also define the A-label of h
as �A(h) = �A(m0, v1) · �A(m1, v2) . . . �A(mk−1, vk).

We extend all the above notions to infinite sequences in a straightforward
way and to the notion of full play. We write PlaysG(v0) (or simply Plays(v0) if G
is clear in the context) for the set of full plays in G that start at v0.

We will say that the game G has publicly (resp. privately) visible payoffs if for
every A ∈ P , for every v0 ∈ V , for every ρ, ρ′ ∈ Plays(v0), �A(ρ) = �A(ρ′) (resp.
ρ ∼A ρ′) implies payoffA(ρ) = payoffA(ρ′). Otherwise they are said invisible.

Games on Graphs with a Public Signal Monitoring 535

Private visibility of payoffs, while not always assumed (see for instance [3,19]),
are reasonable assumptions: using only her knowledge, a player knows her payoff.
Public visibility is more restrictive, but will be required for some of the results.

Let A ∈ P be a player. A strategy for player A from v0 is a map-
ping σA : Hist(v0) → Act such that for every history h ∈ Hist(v0), σ(h) ∈
Allow(last(h)). It is said �A-compatible whenever furthermore, for all histories
h, h′ ∈ Hist(v0), h ∼A h′ implies σA(h) = σA(h′). An outcome of σA is a(n
infinite) play ρ = v0 ·m0 · v1 ·m1 . . . such that for every i ≥ 0, σA(ρ≤i) = mi(A).
We write out(σA, v0) for the set of outcomes of σA from v0.

A strategy profile is a tuple σP = (σA)A∈P , where, for every player A ∈ P , σA

is a strategy for player A. The strategy profile is said info-compatible whenever
each σA is �A-compatible. We write out(σP , v0) for the unique full play from v0,
which is an outcome of all strategies part of σP .

When σP is a strategy profile and σ′
A a player-A strategy, we write σP [A/σ′

A]
for the profile where A plays according to σ′

A, and each other player B plays
according to σB. The strategy σ′

A is a deviation of player A, or an A-deviation.

Definition 2. A Nash equilibrium from v0 is an info-compatible strategy profile
σ such that for every A ∈ P , for every player-A �A-compatible strategy σ′

A,

payoffA

(
out(σ, v0)

)
≥ payoffA

(
out(σ[A/σ′

A], v0)
)
.

In this definition, deviation σ′
A needs not be �A-compatible, since the only mean-

ingful part of σ′
A is along out(σ[A/σ′

A], v0), where there are no ∼A-equivalent
histories: any deviation can be made �A-compatible without affecting the prof-
itability of the resulting outcome. Note also that there might be an A-deviation
σ′

A which is not observable by another player B (out(σ, v0) ∼B out(σ[A/σ′
A], v0)),

and there might be two deviations σ′
B (by player B) and σ′

C (by player C) that
cannot be distinguished by player A (out(σ[B/σ′

B], v0) ∼A out(σ[C/σ′
C], v0)).

Tracking such deviations will be the core of the abstraction we will develop.

Payoff Functions. In the following we will consider various payoff functions. Let
Φ be an ω-regular property over some alphabet Γ . The function payΦ : Γω →
{0, 1} is defined by, for every a ∈ Γω, payΦ(a) = 1 if and only if a |= Φ. A publicly
(resp. privately) visible payoff function payoffA for player A is said associated
with Φ over Σ (resp. Act×Σ) whenever it is defined by payoffA(ρ) = payΦ(�A(ρ))
(resp. payoffA(ρ) = payΦ(πA(ρ)−v0), where πA(ρ)−v0 crops the first v0). Such a
payoff function is called a Boolean ω-regular payoff function.

Let Γ be a finite alphabet and w : Γ → Z be a weight assigning a
value to every letter of that alphabet. We define two payoff functions over
Γω by, for every a = (ai)i≥1 ∈ Γω, payMPw

(a) = lim infn→∞ 1
n

∑n
i=1 w(ai)

and payMPw
(a) = lim supn→∞

1
n

∑n
i=1 w(ai). A publicly visible payoff func-

tion payoffA for player A is said associated with the liminf (resp. limsup)
mean payoff of w whenener it is defined by payoffA(ρ) = payMPw

(�A(ρ)) (resp.
payMPw

(�A(ρ))). A privately visible payoff function payoffA for player A is said
associated with the liminf (resp. limsup) mean payoff of w whenener it is defined
by payoffA(ρ) = payMPw

(πA(ρ)−v0) (resp. payMPw
(πA(ρ)−v0)).

536 P. Bouyer

yellow green

v0

v1 v2 v3 v4 v5

2,0,0 1,1,0 0,1,0 3,3,3 2,0,0 0,0,0 1,0,0 0,0,1

〈a,a,a〉

〈a,b,a〉

〈
b
,a

,a〉

〈b,b,a〉

〈∗,∗,b〉

〈a
,∗,

∗〉 〈
b
,∗

,∗〉〈b
,∗
,∗

〉 〈a
,∗
,∗〉

〈∗
,a
,a

〉,〈
∗.
b,
b〉

〈∗
,a

,b〉,〈∗
,b
,a〉

〈
a
,a

,a〉

〈b,a
,∗〉

Fig. 1. An example of a concurrent game with public signal (yellow and green: public
signal). Edges in red and bold are part of the strategy profile. Dashed edges are the
possible deviations. One can notice that none of the deviations is profitable to the
deviator, hence the strategy profile is a Nash equilibrium. Convention in the drawing:
edges with no label are for complementary labels (for instance the edge from v5 to
0, 0, 0 is labelled by all 〈a1, a2, a3〉 not in the set {〈a, a, a〉, 〈b, a, a〉, 〈b, a, b〉} (Color
figure online))

Example 1. We now illustrate most notions on the game of Fig. 1. This is a game
with three players A1, A2 and A3, and which is played basically in two steps,
starting at v0. Graphically an edge labelled 〈a1, a2, a3〉 between two vertices v
and v′ represents the fact that ai ∈ Allow(v,Ai) for every i ∈ {1, 2, 3} and
that v′ = Tab(v, 〈a1, a2, a3〉). As a convention, ∗ stands for both a and b. For
readability, bottom vertices explicitly indicate the payoffs of the three players
(same order as for actions) if the game ends in that vertex.

After the first step of the game, signal yellow or green is sent to all the
players. Histories v0 · 〈a, b, a〉 ·v2 and v0 · 〈a, a, a〉 ·v1 are undistinguishable by A1

and A3 (same action, same signal), but they can be distinguished by A2 because
of different actions (even if the same signal is observed).

In bold red, we have depicted a strategy profile, which is actually a Nash
equilibrium. We analyze the possible deviations in this game to argue for this.

– First there is an A2-deviation to v1. This deviation is invisible to both players
A1 and A3. For this reason, the strategy out of v1 for A1 is to play a (same
as out of v2). On the other hand, even though this would be profitable to her,
A1 cannot deviate from v1, since we are in a branch where A2 has already
deviated, and at most one player is allowed to deviate at a time (and anyway
A1 does not know that they are in state v1).

– There is an A1-deviation from v2 to 0, 1, 0, which is not profitable to A1.
– On the other hand, there is no possible deviation to v3, since this would

require two players to change their actions simultaneously (A1 and A2).
– Then, there is an A1-deviation to v4 and another A3-deviation to v5; both

activate the green signal. A2 knows there has been a deviation (because of
the green signal), but she doesn’t know who has deviated and whether the

Games on Graphs with a Public Signal Monitoring 537

game proceeds to v4 or v5 (but she knows that if A1 has deviated, then we
are in v4, and if A3 has deviated, we are in v5). Then, A2 has to find a way
to punish both players, to be safe. On the other hand, both players A1 and
A3 precisely know what has happened: in case she didn’t deviate herself, she
knows the other one deviated! And she knows in which state the game is
in. Hence in state v4, A3 can help player A2 punishing A1, whereas in state
v5, A1 can help player A2 punishing A3. Examples of punishing moves are
therefore those depicted in red and bold; and they are part of the global
strategy profile. Note that the action of A2 out of v5 has to be the same as
the one out of v4: this is required given the imperfect knowledge of A2. On the
other hand, the action of A3 can be different out of v4 and out of v5 (which
is the case in the given example profile).

Two-Player Turn-Based Game Structures. They are specific cases of the previous
model, where at each vertex, at most one player has more than one action in her
set of allowed actions. But for convenience, we will give a simplified definition,
with only objects that will be useful. A two-player turn-based game structure
is a tuple G = 〈S, SEve, SAdam, sinit, A,Allow,Tab〉, where S = SEve � SAdam is a
finite set of states (states in SEve belong to player Eve whereas states in SAdam

belong to player Adam), sinit ∈ S is the initial state, A is a finite alphabet,
Allow : S → 2A \ {∅} gives the set of available actions, and Tab : S × A → S is
the next-state function. If s ∈ SEve (resp. SAdam), Allow(s) is the set of actions
allowed to Eve (resp. Adam) in state s.

In this context, strategies will see sequences of states and actions, with full
information. Note that we do not include any winning condition or payoff func-
tion in the tuple, hence the name structure.

2.2 The Problem

We are interested in the constrained existence of a Nash equilibrium. For sim-
plicity, we define constraints using non-strict thresholds constraints, but could
well impose more involved constraints.

Problem 1 (Constrained existence problem). Given a game with signals
G = 〈V, vinit, P ,Act, Σ,Allow,Tab, (�A)A∈P , (payoffA)A∈P 〉 and threshold vectors
(νA)A∈P , (ν′

A)A∈P ∈ Q
P
, can we decide whether there exists a Nash equilibrium

σP from vinit such that for every A ∈ P , νA ≤ payoffA(out(σP , vinit)) ≤ ν′
A? If so,

compute one. If the constraints on the payoff are trivial (that is, νA = −∞ and
ν′

A = +∞ for every A ∈ P), we simply speak of the existence problem.

2.3 First Undecidability Results

In this section we state two preliminary undecidability results.

Theorem 1. – The existence problem in games with signals is undecidable with
three players and publicly visible Boolean ω-regular payoff functions.

538 P. Bouyer

– The constrained existence problem in games with a public signal is undecidable
with two players and privately visible mean payoff functions.

Proofs of these results rely on the distributed synthesis problem [26] for the
first one, and on blind two-player mean-payoff games [19] for the second one.
While there is no real surprise in the first result since we know that arbitrary
partial information yields intrinsic difficulties, the second one suggests restric-
tions both to public signals and to publicly visible payoff functions.

In the following we will focus on public signals and develop an epistemic
game abstraction, which will record and track possible deviations in the game.
This will then be applied to get decidability results in two frameworks assuming
publicly visible payoff functions.

3 The Epistemic Game Abstraction

Building over [4,9], we construct an epistemic game, which will record pos-
sible behaviours of the system, together with possible unilateral deviations.
In [4], notions of epistemic Kripke structures are used to really track the precise
knowledge of the players. These are mostly useful since undistinguishable states
(expressed using signals here) are assumed arbitrary (no hierarchical structure).
We could do the same here, but we think that would be overly complex and hide
the real structure of knowledge in the framework of public signals. We therefore
prefer to stick to simpler subset constructions, which are more commonly used
(see e.g. [27] or later [14,19,22]), though it has to be a bit more involved here
since also deviations have to be tracked.

Let G = 〈V, vinit, P ,Act, Σ,Allow,Tab, �, (payoffA)A∈P 〉 be a concurrent game
with public signal. We will first define the epistemic abstraction as a two-player
game structure EG = 〈SEve, SAdam, sinit, Σ

′,Allow′,Tab′〉, and then state the cor-
respondence between G and EG . The epistemic abstraction will later be used
for decidability and algorithmics purposes. For clarity, we use the terminology
“vertices” in G and “states” (or “epistemic states”) in EG .

3.1 Construction of the Game Structure EG

The game EG will be played between two players, Eve and Adam. The aim of
Eve is to build a suitable Nash equilibrium, whereas the aim of Adam is to prove
that it is not an equilibrium; in particular, Adam will try to find a profitable
deviation (to disprove the claim of Eve that she is building a Nash equilibrium).
Choices available to Eve and Adam in the abstract game have to reflect partial
knowledge of the players in the original game G. States in the abstract game will
therefore store information, which will be sufficient to infer the undistinguisha-
bility relation of all the players in the original game. Thanks to the public signal
assumption, this information will be simple enough to have a simple structure.

In the following, we set P⊥ = P ∪ {⊥}, where ⊥ is a fresh symbol. For
convenience, if m ∈ ActP , we extend the notation m(−A) when A ∈ P to P⊥ by
setting m(−⊥) = m. We now describe all the components of EG .

Games on Graphs with a Public Signal Monitoring 539

A state of Eve will store a set of vertices of the original game one can be
in, together with possible deviators. More precisely, states of Eve are defined as
SEve = {s : P⊥ → 2V | |s(⊥)| ≤ 1}. Let s ∈ SEve. If A ∈ P , vertices of s(A) are
those where the game can be in, assuming one has followed the suggestions of
Eve so far, up to an A-deviation; on the other hand, if s(⊥) �= ∅, the single vertex
v ∈ s(⊥) is the one the game is in, assuming one has followed all suggestions by
Eve so far (in particular, if Eve is building a Nash equilibrium, then this vertex
belongs to the main outcome of the equilibrium). We define sit(s) = {(v,A) ∈
V × P⊥ | v ∈ s(A)} for the set of situations the game can be in at s:

(a) (v,⊥) ∈ sit(s) is the situation where the game has proceeded to vertex v
without any deviation;

(b) (v,A) ∈ sit(s) with A ∈ P is the situation where the game has proceeded to
vertex v benefitting, from an A-deviation.

Structure of state s will allow to infer the undistinguishability relation of all
the players in game G: basically (and we will formalize this later), if she is not
responsible for a deviation, player A ∈ P will not know in which of the situations
of sit(s) \ V × {A} the game has proceeded; if she is responsible for a deviation,
player A will know exactly in which vertex v ∈ s(A) the game has proceeded.

Let s ∈ SEve. From state s, Eve will suggest a tuple of moves M , one for each
possible situation (v,A) ∈ sit(s). This tuple of moves has to satisfy the undis-
tinguishability relation: if a player does not distinguish between two situations,
her action should be the same in these two situations:

Allow′(s) =
{

M ∈
∏

(v,A)∈sit(s)

Allow(v) | ∀(vB , B), (vC , C) ∈ sit(s),

∀A ∈ P \ {B,C}, M(vB , B)(A) = M(vC , C)(A)
}

In the above set, the constraint M(vB , B)(A) = M(vC , C)(A) expresses the fact
that player A should play the same action in the two situations (vB , B) and
(vC , C), since she does not distinguish between them. Obviously, we assume Σ′

contains all elements of Allow′(s) above.
States of Adam are then copies of states of Eve with suggestions given by

Eve, that is: SAdam = {(s,M) | s ∈ SEve × Allow′(s)}. And naturally, we define
Tab′(s,M) = (s,M) if M ∈ Allow′(s).

Let (s,M) ∈ SAdam. From state (s,M), Adam will choose a signal value which
can be activated from some situation allowed in s, after no deviation or a single-
player deviation w.r.t. M . From a situation (v,A) ∈ sit(s) with A ∈ P , only
A-deviations can be allowed (since we look for unilateral deviations), hence any
signal activated by an A-deviation (w.r.t. M(v,A)) from v should be allowed.
From the situation (v,⊥) ∈ sit(s) (if there is one), one can continue without any
deviation, or any kind of single-player deviation should be allowed, hence the
signal activated by M(v,⊥) from v should be allowed, and any signal activated
by some A-deviation (w.r.t. M(v,⊥)) from v should be allowed as well. Formally:

540 P. Bouyer

Allow′(s,M) =

⎧
⎨

⎩
β ∈ Σ

|||||

∃A ∈ P
∃v ∈ s(A)
∃m ∈ ActP

s.t.
(i) m(−A) = M(v,A)(−A)
(ii) �(m,Tab(v,m)) = β

⎫
⎬

⎭

∪
⎧
⎨

⎩
β ∈ Σ

|||||

∃v ∈ s(⊥)
∃m ∈ ActP

∃A ∈ P
s.t.

(i) m(−A) = M(v,⊥)(−A)
(ii) �(m,Tab(v,m)) = β

⎫
⎬

⎭

Note that we implicitly assume that Σ′ contains Σ.
It remains to explain how one can compute the next state of some (s,M) ∈

SAdam after some signal value β ∈ Allow′(s,M). The new state has to repre-
sent the new knowledge of the players in the original game when they have
seen signal β; this has to take into account all possible deviations that we
have already discussed which activate the signal value β. The new state is the
result of several simultaneous subset constructions, which we formalize as fol-
lows: s′ = Tab′((s,M), β), where for every A ∈ P⊥, v′ ∈ s′(A) if and only if
there is m ∈ ActP such that β = �(m, v′), and

1. either there is v ∈ s(A) such that m(−A) = M(v,A)(−A) and v′ = Tab(v,m);
2. or there is v ∈ s(⊥) such that m(−A) = M(v,⊥)(−A) and v′ = Tab(v,m).

Note that in case A = ⊥, the two above cases are redundant.
Before stating properties of EG , we illustrate the construction.

Example 2. We consider again the example of Fig. 1, and we assume that the
public signal when reaching the leaves of the game is uniformly orange. We depict
(part of) the epistemic game abstraction of the game on Fig. 2. One can notice
that from Eve-states s1 and s2, moves are multi-dimensional, in the sense that
there is one move per vertex appearing in the state. There are nevertheless com-
patibility conditions which should be satisfied (expressed in condition Allow′);
for instance, from s2, player A2 does not distinguish between the two options (i)
A1 has deviated and the game is in v4, and (ii) A3 has deviated and the game
is in v5, hence the action of player A2 should be the same in the two moves (a
in the depicted example, written in red).

3.2 Interpretation of this Abstraction

While we gave an intuitive meaning to the (epistemic) states of EG , we now need
to formalize this. And to do that, we need to explain how full histories and plays
in EG can be interpreted as full histories and plays in G.

Let v0 ∈ V , and define s0 : P⊥ → 2V ∈ SEve such that s0(⊥) = {v0}
and s0(A) = ∅ for every A ∈ P . In the following, when M ∈ Allow′(s)
for some s ∈ SEve, if we speak of some M(v,A), we implicitly assume that

(v,A) ∈ sit(s). Given a full history H = s0
M0−−→ (s0,M0)

β0−→ s1
M1−−→ (s1,M1)

β1−→
s2 . . . (sk−1,Mk−1)

βk−1−−−→ sk in EG , we write concrete(H) for the set of full his-
tories in the original game, which correspond to H, up to a single deviation,
that is: v0

m0−−→ v1
m1−−→ v2 . . . vk−1

mk−1−−−→ vk ∈ concrete(H) whenever for every
0 ≤ i ≤ k − 1, vi+1 = Tab(vi,mi) and βi = �(mi, vi+1), and:

Games on Graphs with a Public Signal Monitoring 541

Fig. 2. Part of the epistemic game corresponding to the game of Fig. 1. For clarity,
symbol − is for any choice a or b (the precise choice is meaningless). (Color figure
online)

(a) either mi = Mi(vi,⊥) for every 0 ≤ i ≤ k − 1;
(b) or there exist A ∈ P and 0 ≤ i0 ≤ k − 1 such that

(i) for every 0 ≤ i < i0, mi = Mi(vi,⊥);
(ii) mi0 �= Mi0(vi0 ,⊥), but mi0(−A) = Mi0(vi0 ,⊥)(−A);
(iii) for every i0 < i ≤ k − 1, mi(−A) = Mi(vi, A)(−A).

Case (a) corresponds to a concrete history with no deviation (all moves suggested
by Eve have been followed). Case (b) corresponds to a deviation by player A,
and i0 is the position at which player A has started deviating.

We write concrete⊥(H) for the set of histories of type (a); there is at most
one such history, which is the real concrete history suggested by Eve. And we
write concreteA(H) for the set of histories of the type (b) with deviator A. The
correctness of the approach is obtained thanks to the following characterization
of the undistinguishability relations along H: for every A ∈ P , for every h1 �=
h2 ∈ concrete(H),

h1 ∼A h2 iff h1, h2 /∈ concreteA(H).

In particular, a player may not distinguish between deviations by other players,
or between a deviation by another player and the real concrete history suggested
by Eve. But of course, in any case, a player will know that she has deviated!

We extend all these notions to full plays. A full play visiting only Eve-states
s such that s(⊥) �= ∅ is called a ⊥-play.

542 P. Bouyer

3.3 Winning Condition of Eve

A zero-sum game will be played on the game structure EG , and the winning
condition of Eve will be given on the branching structure of the set of outcomes
of a strategy for Eve, and not individually on each outcome, as standardly in
two-player zero-sum games. We write sinit for the state of Eve such that sinit(⊥) =
{vinit} and sinit(A) = ∅ for every A ∈ P . Let p = (pA)A∈P ∈ R

P
, and σEve be a

strategy for Eve in EG ; it is said winning for p from sinit whenever payoff(ρ) = p,
where ρ is the unique element of concrete⊥(out⊥(σEve, sinit)) (where we write
out⊥(σEve, sinit) for the unique outcome of σEve from sinit which is a ⊥-play),
and for every R ∈ out(σEve, sinit), for every A ∈ P , for every ρ ∈ concreteA(R),
payoffA(ρ) ≤ pA.

For every epistemic state s ∈ SEve, we define the set of suspect players
susp(s) = {A ∈ P | s(A) �= ∅} (this is the set of players that may have deviated).

By extension, if R = s0
M0−−→ (s0,M0)

β0−→ s1 . . . sk
Mk−−→ (sk,Mk)

βk−→ sk+1 . . .,
we define susp(R) = limk→∞ susp(sk). Note that the sequence (susp(sk))k is
non-increasing, hence it stabilizes.

Assuming public visibility of the payoff functions in G, we can define when R
is a full play in EG , and A ∈ P , payoff′

A(R) = payoffA(ρ), where ρ ∈ concrete(R).
It is easy to show that payoff′

A is well-defined for every A ∈ P . Under this assump-
tion, the winning condition of Eve can be rewritten as: σEve is winning for p from
sinit whenever payoff′(out⊥(σEve, sinit)) = p, and for every R ∈ out(σEve, sinit), for
every A ∈ susp(R), payoff′

A(R) ≤ pA.

3.4 Correction of the Epistemic Abstraction

The epistemic abstraction tracks everything that is required to detect Nash
equilibria in the original game, which we make explicit in the next result. Note
that this theorem does not require public visibility of the payoff functions.

Theorem 2. Let G be a concurrent game with public signal, and p ∈ R
P
. There

is a Nash equilibrium in G with payoff p from vinit if and only if Eve has a
winning strategy for p in EG from sinit.

The proof of this theorem highlights a correspondence between Nash equilib-
ria in G and winning strategies of Eve in EG . In this correspondence, the main
outcome of the equilibrium in G is the unique ⊥-concretisation of the unique
⊥-play generated by the winning strategy of Eve.

3.5 Remarks on the Construction

We did not formalize the epistemic unfolding as it is made in [4]. We believe we
do not really learn anything for public signal using it. And the above extended
subset construction can much better be understood.

One could argue that this epistemic game gives more information to the
players, since Eve explicitely gives to everyone the move that should be played.

Games on Graphs with a Public Signal Monitoring 543

But in the real game, the players also have that information, which is obtained
by an initial coordination of the players (this is required to achieve equilibria).

Finally, notice that the espitemic game constructed here generalizes the sus-
pect game construction of [9], where all players have perfect information on the
states of the game, but cannot see the actions that are precisely played. Some-
how, games in [9] have a public signal telling the state the game is in (that is,
�(m, v) = v). So, in the suspect game of [9], the sole uncertainty is in the players
that may have deviated, not in the set of states that are visited.

Remark 1. Let us analyze the size of the epistemic game abstraction. The size of
the alphabet is bounded by |Σ|+ |Act||P |·|V |·(1+|P |). Furthermore, |Σ| is bounded
by |V | · |Act||P |. The number of states is therefore in O(2|P |·|V | · |Act||P |2·|V |). The
epistemic game is therefore of exponential size w.r.t. the initial game. Note that
we could reduce the bounds by using tricks like those in [9, Proposition 4.8], but
this would not avoid an exponential blowup.

4 Two Applications with Publicly Visible Payoffs

While the construction of the epistemic game has transformed the computation
of Nash equilibria in a concurrent game with public signal to the computa-
tion of winning strategies in a two-player zero-sum turn-based game, we can-
not apply standard algorithms out-of-the-box, because the winning condition is
rather complex. In the following, we present two applications of that approach
in the context of publicly visible payoffs, one with Boolean payoff functions, and
another with mean payoff functions. Remember that in the latter case, public
visibility is required to have decidability (Theorem 1).

The epistemic game has a specific structure, which can be used for algorith-
mics purpose. The main outcome of a potential Nash equilibrium is given by a
⊥-play, that is, a play visiting only epistemic states s with s(⊥) �= ∅. There are
now two types of deviations:

(i) those that are invisible to all players (except the deviator): they are tracked
along the main ⊥-play. Assuming public visibility of the payoff functions,
such a deviation cannot be profitable to any of the players (the payoff of
all concrete plays along that ⊥-play coincides with the payoff of the main
outcome), hence no specific punishing strategy has to be played.

(ii) those that leave the main ⊥-play at some point, and visit only epistemic
states s such that s(⊥) = ∅ from that point on: those are the deviations that
need to be punished. Note nevertheless that the deviator may not precisely
be known by all the players, hence punishing strategies need to take this into
account. However, the set of potential deviators along a deviating play is
non-increasing, and we can solve subgames with specific subsets of potential
deviators separately (e.g. in a bottom-up approach). The winning objectives
in those subgames will depend on the payoff functions (and will mostly be
conjunctions of constraints on those functions), and also on the value of
those payoff functions along the main outcome.

544 P. Bouyer

Using such an approach and results of [16] on generalized parity games, we
obtain the following result for Boolean ω-regular payoff functions:

Theorem 3. The constrained existence problem is in EXPSPACE and
EXPTIME-hard for concurrent games with public signal and publicly visible
Boolean payoff functions associated with parity conditions. The lower bound holds
even for Büchi conditions and two players.

The same approach could be used for the ordered objectives of [9], which
are finite preference relations over sets of ω-regular properties. Also, we believe
we can enrich the epistemic game construction and provide an algorithm to
decide the constrained existence problem for Boolean ω-regular invisible payoff
functions.

We have also investigated publicly visible mean payoff functions. While we
could have used the same bottom-up approach as above and applied results
from [12,13], we adopt an approach similar to that of [11], which consists in
transforming the winning condition of Eve in EG into a so-called polyhedron
query in a multi-dimensional mean-payoff game. Given such a game, a polyhe-
dron query asks whether there exists a strategy for Eve which achieves a payoff
belonging to some given polyhedron. Using this approach, we get the following
result:

Theorem 4. The constrained existence problem is in NPNEXPTIME (hence in
EXPSPACE) and EXPTIME-hard for concurrent games with public signal and
publicly visible mean payoff functions.

5 Conclusion

In this paper, we have studied concurrent games with imperfect monitoring mod-
elled using signals. We have given some undecidability results, even in the case of
public signals, when the payoff functions are not publicly visible. We have then
proposed a construction to capture single-player deviations in games with public
signals, and reduced the search of Nash equilibria to the synthesis of winning
strategies in a two-player turn-based games (with a rather complex winning con-
dition though). We have applied this general framework to two classes of payoff
functions, and obtained decidability results.

As further work we wish to understand better if there could be richer com-
munication patterns which would allow representable knowledge structures for
Nash equilibria and thereby the synthesis of Nash equilibria under imperfect
monitoring. A source of inspiration for further work will be [28].

Games on Graphs with a Public Signal Monitoring 545

References

1. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM
49, 672–713 (2002)

2. Berthon, R., Maubert, B., Murano, A.: Decidability results for ATL∗ with imper-
fect information and perfect recall. In: Proceedings of 16th Conference Autonomous
Agents and Multiagent Systems (AAMAS 2017), pp. 1250–1258. ACM (2017)

3. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic
with imperfect information. In: Proceedings of 32nd Annual Symposium Logic in
Computer Science (LICS 2017), pp. 1–12. IEEE Computer Society Press (2017)

4. Berwanger, D., Kaiser, �L., Puchala, B.: Perfect-information construction for coor-
dination in games. In: Proceedings of 30th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2011), LIPIcs, vol. 13,
pp. 387–398. LZI (2011)

5. Berwanger, D., Mathew, A.B.: Infinite games with finite knowledge gaps. Inf. Com-
put. 254, 217–237 (2017)

6. Berwanger, D., Mathew, A.B., Van den Bogaard, M.: Hierarchical information
and the synthesis of distributed strategies. Acta Informatica, 1–33. Springer,
Heidelberg (2017). https://doi.org/10.1007/s00236-017-0306-5

7. Berwanger, D., Ramanujam, R.: Deviator detection under imperfect monitoring.
In: Proceedings of 5th International Workshop Strategic Reasoning (SR 2017)
(2017)

8. Bouyer, P.: Games on graphs with a public signal monitoring. Research report,
arXiv https://arxiv.org/abs/1710.07163 (2017)

9. Bouyer, P., Brenguier, R., Markey, N., Ummels, M.: Pure Nash equilibria in con-
current games. Log. Methods Comput.. Sci. 11(2:9) (2015). https://doi.org/10.
2168/LMCS-11(2:9)2015

10. Bouyer, P., Markey, N., Stan, D.: Mixed Nash equilibria in concurrent games.
In: Proceedings of 33rd Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2014), LIPIcs, vol. 29, pp. 351–363. LZI
(2014)

11. Brenguier, R.: Robust equilibria in mean-payoff games. In: Jacobs, B., Löding, C.
(eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 217–233. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49630-5 13

12. Brenguier, R., Raskin, J.-F.: Optimal values of multidimensional mean-payoff
games. Research report hal-00977352, Université Libre de Bruxelles, Belgium
(2014). https://hal.archives-ouvertes.fr/hal-00977352

13. Brenguier, R., Raskin, J.-F.: Pareto curves of multidimensional mean-payoff games.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015, Part II. LNCS, vol. 9207, pp.
251–267. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 15

14. Chatterjee, K., Doyen, L., Henzinger, T., Raskin, J.-F.: Algorithms for ω-regular
games with imperfect information. Log. Methods Comput. Sci. 3(3) (2007).
https://doi.org/10.2168/LMCS-3(3:4)2007

15. Chatterjee, K., Henzinger, T., Jurdziński, M.: Games with secure equilibria. Theor.
Comput. Sci. 365(1–2), 67–82 (2006)

16. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl,
H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71389-0 12

17. Chatterjee, K., Majumdar, R., Jurdziński, M.: On Nash equilibria in stochastic
games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
26–40. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30124-0 6

https://doi.org/10.1007/s00236-017-0306-5
https://arxiv.org/abs/1710.07163
https://doi.org/10.2168/LMCS-11(2:9)2015
https://doi.org/10.2168/LMCS-11(2:9)2015
https://doi.org/10.1007/978-3-662-49630-5_13
https://hal.archives-ouvertes.fr/hal-00977352
https://doi.org/10.1007/978-3-319-21668-3_15
https://doi.org/10.2168/LMCS-3(3:4)2007
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.1007/978-3-540-30124-0_6

546 P. Bouyer

18. Condurache, R., Filiot, E., Gentilini, R., Raskin, J.-F.: The complexity of ratio-
nal synthesis. In: Proceedings of 43rd International Colloquium on Automata,
Languages and Programming (ICALP 2016), LIPIcs, vol. 55, pp. 121:1–121:15.
Leibniz-Zentrum für Informatik (2016)

19. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and
mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15205-4 22

20. Dima, C., Enea, C., Guelev, D.P.: Model-checking an alternating-time temporal
logic with knowledge, imperfect information, perfect recall and communicating
coalitions. In: Proceedings of 1st International Symposium Games, Automata, Log-
ics and Formal Verification (GandALF 2010), Electronic Proceedings in Theoretical
Computer Science, vol. 25, pp. 103–117 (2010)

21. Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and per-
fect recall semantics is undecidable. Research report arXiV, http://arxiv.org/abs/
1102.4225 (2011)

22. Doyen, L., Raskin, J.-F.: Games with imperfect information: theory and algo-
rithms. Lectures in Game Theory for Computer Scientists, pp. 185–212. Cambridge
University Press (2011)

23. Henzinger, T.: Games in system design and verification. In: Proceedings of 10th
Conference Theoretical Aspects of Rationality and Knowledge (TARK 2005), pp.
1–4 (2005)

24. Nash, J.F.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. U.S.A.
36(1), 48–49 (1950)

25. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proceedings of 20th
Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 348–
363. IEEE Computer Society Press (1979)

26. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Pro-
ceedings of 31st Annual Symposium on Foundations of Computer Science (FOCS
1990), pp. 746–757. IEEE Computer Society Press (1990)

27. Reif, J.H.: The complexity of two-player games of incomplete information. J. Com-
put. System Sciences 29(2), 274–301 (1984)

28. Renault, J., Tomala, T.: Repeated proximity games. Int. J. Game Theory 27(4),
539–559 (1998)

29. Saraydar, C.U., Mandayam, N.B., Goodman, D.J.: Pareto efficiency of pricing-
based power control in wireless data networks. In: Proceedings of IEEE Wireless
Comm. and Networking Conference (WCNC 1999), pp. 231–235. IEEE Computer
Society Press (1999)

30. Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 58–65. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45657-0 5

31. Tomala, T.: Pure equilibria of repeated games with public observation. Int. J.
Game Theory 27(1), 93–109 (1998)

32. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer
games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
212–223. Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 21

33. Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games. In:
Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 20–34. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78499-9 3

https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4_22
http://arxiv.org/abs/1102.4225
http://arxiv.org/abs/1102.4225
https://doi.org/10.1007/3-540-45657-0_5
https://doi.org/10.1007/3-540-45657-0_5
https://doi.org/10.1007/11944836_21
https://doi.org/10.1007/978-3-540-78499-9_3

Games on Graphs with a Public Signal Monitoring 547

34. Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in limit-average
games. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-
6 32

35. Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in stochastic mul-
tiplayer games. Log. Methods Comput. Sci. 7(3) (2011). https://doi.org/10.2168/
LMCS-7(3:20)2011

36. van der Meyden, R., Wilke, T.: Synthesis of distributed systems from knowledge-
based specifications. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS,
vol. 3653, pp. 562–576. Springer, Heidelberg (2005). https://doi.org/10.1007/
11539452 42

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-23217-6_32
https://doi.org/10.1007/978-3-642-23217-6_32
https://doi.org/10.2168/LMCS-7(3:20)2011
https://doi.org/10.2168/LMCS-7(3:20)2011
https://doi.org/10.1007/11539452_42
https://doi.org/10.1007/11539452_42
http://creativecommons.org/licenses/by/4.0/

WQO Dichotomy for 3-Graphs

S�lawomir Lasota(B) and Rados�law Piórkowski

Institute of Informatics, University of Warsaw, Warsaw, Poland
sl@mimuw.edu.pl

Abstract. We investigate data-enriched models, like Petri nets with
data, where executability of a transition is conditioned by a relation
between data values involved. Decidability status of various decision
problems in such models may depend on the structure of data domain.
According to the WQO Dichotomy Conjecture, if a data domain is homo-
geneous then it either exhibits a well quasi-order (in which case decid-
ability follows by standard arguments), or essentially all the decision
problems are undecidable for Petri nets over that data domain.

We confirm the conjecture for data domains being 3-graphs (graphs
with 2-colored edges). On the technical level, this results is a significant
step beyond known classification results for homogeneous structures.

1 Introduction

In Petri nets with data, tokens carry values from some data domain, and exe-
cutability of transitions is conditioned by a relation between data values involved.
One can consider unordered data, like in [25], i.e., an infinite data domain with
the equality as the only relation; or ordered data, like in [21], i.e., an infinite
densely totally ordered data domain; or timed data, like in timed Petri nets [1]
and timed-arc Petri nets [15]. In [19] an abstract setting of Petri nets with an
arbitrary fixed data domain A has been introduced, parametric in a relational
structure A. The setting uniformly subsumes unordered, ordered and timed data
(represented by A = (N,=), A = (Q,≤) and A = (Q,≤,+1), respectively).

Following [19], in order to enable finite presentation of Petri nets with data,
and in particular to consider such models as input to algorithms, we restrict
to relational structures A that are homogeneous [23] and effective (the formal
definitions are given in Sect. 2). Certain standard decision problems (like the
termination problem, the boundedness problem, or the coverability problem,
jointly called from now on standard problems) are all decidable for Petri nets with
ordered data [21] (and in consequence also for Petri nets with unordered data),
as the model fits into the framework of well-structured transition systems of [11].

S. Lasota—Partially supported by the European Research Council (ERC) project
Lipa under the EU Horizon 2020 research and innovation programme (grant agree-
ment No. 683080).
R. Piórkowski—Partially supported by the Polish NCN grant 2016/21/B/ST6/
01505.

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 548–564, 2018.
https://doi.org/10.1007/978-3-319-89366-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_30&domain=pdf

WQO Dichotomy for 3-Graphs 549

Most importantly, the structure A = (Q,≤) of ordered data admits well quasi-
order (wqo) in the following sense: for any wqo X, the set of finite induced
substructures of (Q,≤) (i.e., finite total orders) labeled by elements of X, ordered
naturally by embedding, is a wqo (this is exactly Higman’s lemma). Moreover,
essentially the same argument can be used for any other homogeneous effective
data domain which admits wqo (see [19] for details). On the other hand, for
certain homogeneous effective data domains A the standard problems become
all undecidable. In the quest for understanding the decidability borderline, the
following hypothesis has been formulated in [19]:

Conjecture 1 (Wqo Dichotomy Coinjecture [19]). For an effective homogeneous
structure A, either A admits wqo (in which case the standard problems are
decidable for Petri nets with data A), or all the standard problems are undecid-
able for Petri nets with data A.

According to [19], the conjecture could have been equivalently stated for another
data-enriched models, e.g., for finite automata with one register [2]. In this
paper we consider, for the sake of presentation, only Petri nets with data.
Wqo Dichotomy Conjecture holds in special cases when data domains A are
undirected or directed graphs, due to the known classifications of homogeneous
graphs [6,18].

Contributions. We confirm the Wqo Dichotomy Conjecture for data domains
A being strongly1 homogeneous 3-graphs. A 3-graph is a logical structure with
three irreflexive symmetric binary relations such that every pair of elements of
A belongs to exactly one of the relations (essentially, a clique with 3-colored
edges).

Our main technical contribution is a complex analysis of possible shapes of
strongly homogeneous 3-graphs, constituting the heart of the proof. We believe
that this is a significant step towards full classification of homogeneous 3-graphs.
The classification of homogeneous structures is a well-known challenge in model
theory, and has been only solved in some cases by now: for undirected graphs [18],
directed graphs (the proof of Cherlin spans a book [6]), multi-partite graphs [16],
and few others (the survey [23] is an excellent overview of homogeneous struc-
tures). Although the full classification of homogeneous 3-graphs was not our
primary objective, we believe that our analysis significantly improves our under-
standing of these structures and can be helpful for classification.

Our result does not fully settle the status of the Wqo Dichotomy Conjecture.
Dropping the (mild) strong homogeneity assumption, as well as extending the
proof to arbitrarily many symmetric binary relations, is left for future work.

Related Research. Netmodels similar toPetri netswith data have been continu-
ously proposed since the 80s, including, among the others, high-level Petri nets [13],
colored Petri nets [17], unordered and ordered data nets [21], ν-Petri nets [25],
1 Strong homogeneity is a mild strengthening of homogeneity.

550 S. Lasota and R. Piórkowski

and constraint multiset rewriting [5,8,9]. Petri nets with data can be also con-
sidered as a reinterpretation of the classical definition of Petri nets in sets with
atoms [3,4], where one allows for orbit-finite sets of places and transitions instead
of just finite ones. The decidability and complexity of standard problems for Petri
nets over various data domains has attracted a lot of attention recently, see for
instance [14,21,22,24,25].

Wqos are important for their wide applicability in many areas. Studies of
wqos similar to ours, in case of graphs, have been conducted by Ding [10] and
Cherlin [7]; their framework is different though, as they concentrate on subgraph
ordering while we investigate induced subgraph (or substructure) ordering.

2 Petri Nets with Homogeneous Data

In this section we provide all necessary preliminaries. Our setting follows [19]
and is parametric in the underlying logical structure A, which constitutes a data
domain. Here are some example data domains:

– Equality data domain: natural numbers with equality A= = (N,=). Note that
any other countably infinite set could be used instead of natural numbers, as
the only available relation is equality.

– Total order data domain: rational numbers with the standard order A≤ =
(Q,≤). Again, any other countably infinite dense total order without extremal
elements could be used instead.

– Nested equality data domain: A1 = (N2,=1,=) where =1 is equality on the
first component: (n,m) =1 (n′,m′) if n = n′ and m �= m′. Essentially, A is an
equivalence relation with infinitely many infinite equivalence classes.

Note that two latter structures essentially extend the first one: in each case the
equality is either present explicitly, or is definable. From now on, we always
assume a fixed countably infinite relational structure A with equality over a
finite vocabulary (signature) Σ.

Petri Nets with Data. Petri nets with data are exactly like classical
place/transition Petri nets, except that tokens carry data values and these data
values must satisfy a prescribed constraint when a transition is executed. For-
mally, a Petri net with data A consists of two disjoint finite sets P (places) and
T (transitions), the arcs A ⊆ P×T ∪ T×P , and two labelings:

– arcs are labelled by pairwise disjoint finite nonempty sets of variables;
– transitions are labelled by first-order formulas over the vocabulary Σ of A,

such that free variables of the formula labeling a transition t belong to the
union of labels of the arcs incident to t.

Example 1. For illustration consider a Petri net with equality data A=, with two
places p1, p2 and two transitions t1, t2 depicted on Fig. 1. Transition t1 outputs
two tokens with arbitrary but distinct data values onto place p1. Transition t2

WQO Dichotomy for 3-Graphs 551

Fig. 1. A Petri net with equality data, with places P = {p1, p2} and transitions T =
{t1, t2}. In the shown configuration, t2 can be fired: consume two tokens carrying 3,
and put, e.g., token carrying 4 on p1 and tokens carrying 4, 6 on p2.

inputs two tokens with the same data value, say a, one from p1 and one from
p2, and outputs 3 tokens: two tokens with arbitrary but equal data values, say
b, one onto p1 and the other onto p2; and one token with a data value c �= a
onto p2. Note that the transition t2 does not specify whether b = a, or b = c,
or b �= a, c, and therefore all three options are allowed. Variables y1, y2 can be
considered as input variables of t2, while variables z1, z2, z3 can be considered as
output ones; analogously, t1 has no input variables, and two output ones x1, x2.

The formal semantics of Petri nets with data is given by translation to multi-
set rewriting. Given a set X, finite or infinite, a finite multiset over X is a finite
(possibly empty) partial function from X to positive integers. In the sequel let
M(X) stand for the set of all finite multisets over X. A multiset rewriting system
(P, T) consists of a set P together with a set of rewriting rules:

T ⊆ M(P) × M(P).

Configurations C ∈ M(P) are finite multisets over P, and the step relation
−→ between configurations is defined as follows: for every (I,O) ∈ T and every
M ∈ M(P), there is the step (+ stands for multiset union)

M + I −→ M + O.

For instance, a classical Petri net induces a multiset rewriting system where P is
the set of places, and T is essentially the set of transitions, both P and T being
finite. Configurations correspond to markings.

A Petri net with data A induces a multiset rewriting system (P, T), where
P = P × A and thus is infinite. Configurations are finite multisets over P × A

(cf. a configuration depicted in Fig. 1). The rewriting rules T are defined as

T =
⋃

t∈T

Tt,

where the relation Tt ⊆ M(P) × M(P) is defined as follows: Let φ denote the
formula labeling the transition t, and let Xi, Xo be the sets of input and output

552 S. Lasota and R. Piórkowski

variables of t. Every valuation vi : Xi → A gives rise to a multiset Mvi
over

P, where Mvi
(p, a) is the (positive) number of variables x labeling the arc (p, t)

with vi(x) = a. Likewise for valuations vo : Xo → A. Then let

Tt = { (Mvi
,Mvo

) | vi : Xi → A, vo : Xo → A, vi, vo � φ } .

Like P, the set of rewriting rules T is infinite in general.
As usual, for a net N and its configuration C, a run of (N,C) is a maximal,

finite or infinite, sequence of steps starting in C.

Remark 1. As for classical Petri nets, an essentially equivalent definition can be
given in terms of vector addition systems (such a variant has been used in [14] for
equality data). Petri nets with equality data are equivalent to (even if defined
differently than) unordered data Petri nets of [21], and Petri nets with total
ordered data are equivalent to ordered data Petri nets of [21].

Effective Homogeneous Structures. For two relational Σ-structures A and
B we say that A embeds in B, written A � B, if A is isomorphic to an induced
substructure of B, i.e., to a structure obtained by restricting B to a subset of its
domain. This is witnessed by an injective function2 h : A → B, which we call
embedding. We write Age(A) = { A a finite structure | A � A } for the class of
all finite structures that embed into A, and call it the age ofA.

Homogeneous structures are defined through their automorphisms: A is
homogeneous if every isomorphism of two its finite induced substructures extends
to an automorphism of A. In the sequel we will also need an equivalent defini-
tion using amalgamation. An amalgamation instance consists of three structures
A,B1,B2 ∈ Age(A) and two embeddings h1 : A → B1 and h2 : A → B2. A solu-
tion of such instance is a structure C ∈ Age(A) and two embeddings g1 : B1 → C
and g2 : B2 → C such that g1 ◦h1 = g2 ◦h2 (we refer the reader to [12] for further
details). Intuitively, C represents ‘gluing’ of B1 and B2 along the partial bijection
h2 ◦ (h1

−1). In this paper we will restrict ourselves to singleton amalgamation
instances, where only one element of B1 is outside of h1(A), and likewise for B2.

An example singleton amalgamation instance is shown on
the right, where the graph A consists of the single edge con-
necting two middle black nodes, B1 is the left triangle, and B2

the right one. The dashed line represents an edge that may
(but does not have to) appear in a solution. A is homogeneous if, and only if
every amalgamation instance has a solution; in such case we say that Age(A)
has the amalgamation property. See [23] for further details.

A solution C necessarily satisfies g1(h1(A)) = g2(h2(A)) ⊆ g1(B1) ∩ g2(B2);
a solution is strong if g1(h1(A)) = g1(B1)∩ g2(B2). Intuitively, this forbids addi-
tional gluing of B1 and B2 not specified by the partial bijection h2 ◦ (h1

−1). If
every amalgamation instance has a strong solution we call A strongly homoge-
neous. This is a mild restriction, as homogeneous structures are typically strongly
homogeneous.
2 We deliberately do not distinguish a structure A from its domain set.

WQO Dichotomy for 3-Graphs 553

The equality, nested equality, and total order data domains are strongly
homogeneous structures. For instance, in the latter case finite induced substruc-
tures are just finite total orders, which satisfy the strong amalgamation property.
Many other natural classes of structures have the amalgamation property: finite
graphs, finite directed graphs, finite partial orders, finite tournaments, etc. Each
of these classes is the age of a strongly homogeneous relational structure, namely
the universal graph (called also random graph), the universal directed graph,
the universal partial order, the universal tournament, respectively. Examples of
homogeneous structures abound [23].

Homogeneous structures admit quantifier elimination: every first-order for-
mula is equivalent to (i.e., defines the same set as) a quantifier-free one [23].
Thus it is safe to assume that formulas labeling transitions are quantifier-free.

Admitting wqo. A well quasi-order (wqo) is a well-founded quasi-order with
no infinite antichains. For instance, finite multisets M(P) over a finite set P ,
ordered by multiset inclusion
, are a wqo. Another example is the embedding
quasi-order � in Age(A≤) (= all finite total orders) isomorphic to the ordering
of natural numbers. Finally, the embedding quasi-order in Age(A) can be lifted
from finite structures to finite structures labeled by elements of some ordered set
(X,≤): for two such labeled structures a : A → X and b : B → X we define
a�X b if some embedding h : A → B satisfies a(x) ≤ b(h(x)) for every x ∈ A. We
say that A admits wqo when for every wqo (X,≤), the lifted embedding order
�X is a wqo too. For instance, A≤ admits wqo by Higman’s lemma. The Wqo
Dichotomy Conjecture for homogeneous undirected (and also directed) graphs
is easily shown by inspection of the classifications thereof [6,18]:

Theorem 1. A homogeneous graph A either admits wqo, or all standard prob-
lems are undecidable for Petri nets with data A.

Note the natural correspondence between configurations of a Petri net with data
A, and structures A ∈ Age(A) labeled by finite multisets over the set P of places:

M(P × A) ≡ { m : A → M(P) | A ∈ Age(A) } .

Thus the lifted embedding quasi-order �M(P) is an order on configurations.

Standard Decision Problems. A Petri net with data N can be finitely repre-
sented by finite sets P, T,A and appropriate labelings with variables and formu-
las. Due to the homogeneity of A, a configuration C can be represented (up to
automorphism of A) by a structure A ∈ Age(A) labeled by M(P). We can thus
consider the classical decision problems that input Petri nets with data A, like
the termination problem: does a given (N,C) have only finite runs? The data
domain is considered as a parameter, and hence itself does not constitute part
of input. Another classical problem is the place non-emptiness problem (mark-
ability): given (N,C) and a place p of N , does (N,C) admit a run that puts
at least one token on place p? One can also define the appropriate variants

554 S. Lasota and R. Piórkowski

of the coverability problem (equivalent to the place non-emptiness problem),
the boundedness problem, the evitability problem, etc. (see [19] for details). All
the decision problems mentioned above we jointly call standard problems.

A Σ-structure A is called effective if the following age problem for A is decid-
able: given a finite Σ-structure A, decide whether A�A. If A admits wqo then
application of the framework of well-structured transition systems [11] to the
lifted embedding order �M(P) yields:

Theorem 2 ([19]). If an effective homogeneous structure A admits wqo then
all the standard problems are decidable for Petri nets with data A.

3 Results

A 3-graph G = (V,C1, C2, C3) consists of a set V and three irreflexive symmetric
binary relations C1, C2, C3 ⊆ V 2 such that every pair of distinct elements of V
belongs to exactly one of the three relations. In the sequel we treat a 3-graph as
a clique with 3-colored edges. Any graph, including A= and A1, can be seen as a
3-graph. Our main result confirms the Wqo Dichotomy Conjecture for strongly
homogeneous 3-graphs:

Theorem 3. An effective strongly homogeneous 3-graph G either admits wqo,
or all standard problems are undecidable for Petri nets with data G.

The core technical result of the paper is Theorem 4 below. A path is a finite
graph with nodes {v1, . . . , vn} whose only edges are pairs {vi, vi+1}. The nodes
v1, vn are ends of the path, and n is its length.

Theorem 4. A strongly homogeneous 3-graph G either admits wqo, or for
some i, j ∈ {1, 2, 3} (not necessarily distinct) the graph (V,Ci ∪ Cj) contains
arbitrarily long paths as induced subgraphs.

In the rest of the paper we concentrate solely on (parts of) the proof of Theo-
rem 4. The omitted parts, and well as the proof that Theorem 4 implies Theo-
rem 3, are to be found in the full version of this paper [20].

Example 2. For a quasi-order (X,≤), the multiset inclusion is defined as follows
for m,m′ ∈ M(X): m′ is included in m if m′ is obtained from m by a sequence of
operations, where each operation either removes some element, or replaces some
element by a smaller one wrt. ≤. The structure A= = (N,=) admits wqo. Indeed,
Age(A=) contains just finite pure sets, thus �X is quasi-order-isomorphic to the
multiset inclusion on M(X), and is therefore a wqo whenever the underlying
quasi-order (X,≤) is. Similarly, A1 = (N2,=1,=) also admits wqo, as �X is
quasi-order-isomorphic to the multiset inclusion on M(M(X)).

WQO Dichotomy for 3-Graphs 555

...

. . .

...

. . .

...

. . .

...
. . .

On the other hand, consider a 3-graph (N2,=1,=2,
�=12) where =2 is symmetric to =1 and (n,m) �=12

(n′,m′) if n �= n′ and m �= m′. It refines A1 and does
not admit wqo. Indeed, in agreement with Theorem 4,
the graph (N2,=1 ∪ =2) contains arbitrarily long
paths of the shape presented on the right, where the
two colors depict =1 and =2, respectively, and lack of
color corresponds to �=12. Note that (N2,=1,=2, �=12)
is homogeneous but not strongly so.

4 Proof of Theorem 4

From now on we consider a fixed 3-graph G = (V,C1, C2, C3) as data domain,
assuming G to be countably infinite and strongly homogeneous. We treat
G as a clique with 3-colored edges: we call C1, C2 and C3 colors and put
Colors = {C1, C2, C3} ⊂ P(V × V). To denote individual colors from this set,
we will use variables a,b, c and x,y, z. A path in the graph (V,a ∪ b) we call
ab-path (ab ∈ Colors); for simplicity, we will write a-path instead of aa-path.
Likewise we speak of ab-cliques, a-cliques, ab-cycles, etc. A triangle abc is a
3-clique with edges colored by a,b, c. (Note that abc = bca = cba).

Sketch of the Proof. The Lemma 1 below states that any 3-graph G has to meet
one of the four listed cases. It splits the proof into four separate paths:

We present in detail only one of the three nontrivial paths – one corresponding to
case (C). Cases (A) and (B) are treated in the full version [20]. Case (A) consti-
tutes the most difficult part of the proof and involves a complex and delicate anal-
ysis of consequences of the amalgamation property. It consists of four step that
deduce extension of the assumed induced substructures by individual vertices,
individual edges, paths of length 2, resp., culminating in derivation of arbitrarily
long paths. Thus in case (A) only the second condition of Theorem 4 is possible,
while in the other two cases both conditions of Theorem 4 may hold true.

Lemma 1. Every homogeneous 3-graph G = (V,C1, C2, C3) satisfies one of the
following conditions:

(A) for some color c ∈ Colors, G contains the following induced substructures:

556 S. Lasota and R. Piórkowski

(B) for some colors x �= y, (V,x ∪ y) is a union of disjoint cliques,
(C) for some color x, (V,x) is a union of finitely many disjoint infinite cliques,
(D) for some colors x �= y, (V,x ∪ y) contains arbitrarily long paths.
Proof. By Ramsey theorem, G contains an arbitrarily large monochromatic
cliques. Let us state a bit stronger requirement:

Condition ♠: For some a, c ∈ Colors, G contains arbitrarily large c-cliques
and a triangle acc with exactly two c-edges (a �= c).
Consider two cases, depending on whether the condition ♠ is satisfied or not.

Case 1◦. Assume that G contains both arbitrarily large c-cliques and a triangle
acc for some a, c ∈ Colors. Let b be the third, remaining color. Our goal will
be to show that either (A) or (B) holds.

If the graph (V,a∪b) is a disjoint sum of cliques, we immediately obtain (B).
Suppose the contrary. We get that G has to contain one of the three possible
counterexamples for transitivity of relation a ∪ b:

If it contains the triangle aac or abc, case (A) holds.
Suppose we got bbc. Let us check this time whether colors a and c form

a union of disjoint cliques. Again, if it is so, we easily get (B), so we assume the
contrary. Similarly, we necessarily obtain one of the following triangles:

This time case (A) also holds for two out of the three triangles above:

– for acb, because together with subgraphs resulting from assumption ♠ (i.e.
with triangle acc and the c-cliques) we get all graphs required by (A).

– for ccb paired with the triangle bbc we just obtained, using color b
appearing in those triangles in place of a in condition (A).

It only remains to consider the situation when we got aab. We use it together
with previously obtained triangle bbc to build the following instance of sin-
gleton amalgamation:

WQO Dichotomy for 3-Graphs 557

Depending on the color of the dashed edge, in the solution we get one of the
following triangles:

and each one alone completes the requirements of (A). This closes case 1◦.

Case 2◦. Suppose condition ♠ is false. Remind that G contains arbitrarily large
c-cliques for some c ∈ G. Since ♠ does not hold, the graph does not contain
a triangle cca – in other words, the color c appears only within cliques. We
conclude that (V, c) is a union of disjoint cliques. Clearly at least one of such
cliques has to be infinite. By homogeneity we get that all the cliques in (V, c)
have to be infinite. Now our target is to show that either (C) or (D) holds.

The case (C) is fulfilled when there are only finitely many c-cliques. Let us
assume the contrary. In each of the c-cliques we chose one vertex. Edges between
the chosen vertices form an infinite ab-clique K. Using Ramsey theorem again,
we conclude that in K one of the colors a,b forms arbitrarily large monochro-
matic cliques. W.l.o.g. suppose that this is color b.

If the graph G contained ybb for some y �= b, then the assumptions of ♠
would be met, leading to a contradiction. Therefore we conclude that (V,b) is a
union of disjoint infinite b-cliques.

When there are only finitely many b-cliques, condition (C) is fulfilled. Oth-
erwise we know that G is a union of infinitely many x-cliques for both x = c and
x = b. Using homogenity, it is easy to show that then every pair of differently
colored cliques has exactly one common vertex, so the graph G takes the form as
depicted in Example 2. A graph of such form contains arbitrarily long bc-path,
so the requirements of (D) are met. ��

4.1 Case (C)

Let c be the color that satisfies condition (C), and a, b — the remaining two
colors. In this section we often treat G as the k-partite graph (V,a ∪ b) (for
some k ∈ N): k cliques of color c allow to distinguish k groups of vertices
V1 ∪ V2 ∪ · · · ∪ Vk = V (from now on we will refer to them as layers). The
remaining two colors can be interpreted as existence (a) and nonexistence (b)
of edges between these groups.

Remark �: We observe that the special color c between vertices within each layer
Vi ensures that the automorphisms of G will not ‘mix’ those layers: when two
vertices u, v belong to a common layer Vi, then their images f(u), f(v) will also
belong to some common layer Vj , no matter what automorphism f ∈ Aut(G) we
choose. Obviously, the automorphisms can switch positions of whole layers, e.g.
move all vertices from Vi to some Vj and vice versa—in this respect the layers
are undistinguishable.

558 S. Lasota and R. Piórkowski

...

... ...

. . .
remaining

(k − 3) layers

V1 V2

V3

G2,3
Lemma 2. For every i, j ∈ {1, 2, . . . , k}
and a ∈ Colors (a �= c) the bipartite graph
Gi,j = (Vi∪Vj ,a∩(Vi∪Vj)2, Vi, Vj) (with two
distinguishable sides Vi, Vj) is homogeneous.

The vertex sets Vi and Vj are used here as
unary relations that allow to tell the two lay-
ers of Gi,j (sides of Gi,j) apart. An example
is shown on the right, with three layers V1, V2

and V3, and three bipartite graphs G1,2, G2,3

and G1,3.

Proof. Fix Gi,j a bipartite graph. To prove its homogeneity we have to show that
each isomorphism of two of its finite induced subgraphs may be extended to some
automorphism of Gi,j . Let us then take some given automorphism f : G1 → G2

for some finite induced subgraphs G1, G2 of Gi,j . It is easy to extend it to a full
automorphism when it ‘touches’ both layers of Gi,j , i.e.:

V (G1) ∩ Vi �= ∅ ∧ V (G1) ∩ Vj �= ∅

where V (G1) is the set of vertices of G1. In this case, by homogeneity of G, we
construct a full automorphism f ′ : G → G, which extends f . It is easy to see
that in this case f ′ has to fix the layers Vi and Vj , and hence f ′ restricted to the
graph Gi,j is a correct automorphism of this graph.

Things get more complicated when f operates only on some single layer
of Gi,j . W.l.o.g. suppose that it ‘touches’ only Vi, so V (G1) ∩ Vj = ∅. Now
the above construction will not work out of the box—if we were unlucky, the
automorphism of G we get by homogeneity moves the whole layer Vj to some
Vn located ‘outside’ the graph Gi,j (n /∈ {i, j}).

It will be handy to make the following observation: when f ‘touches’ only Vi

we may assume that V (G1) ∩ V (G2) = ∅. Indeed, every function g : G1 → G2

that violates this condition may be decomposed as g = f2 ◦ f1 for some f1, f2:

G1
f1−→ H

f2−→ G2

such that H is disjoint both with G1 and with G2.
Now, let N = |V (G1)| = |V (G2)| be the size of the domain of isomorphism f .

Let us take an arbitrary infinite family (Sn)n∈N of subgraphs of G with disjoint
vertex sets, such that the following conditions are met:

– |V (Sn) ∩ Vm| = 1 for m �= i (and this single vertex will be denoted as v
(n)
m),

– |V (Sn) ∩ Vi| = N (denote these vertices as s
(n)
1 , s

(n)
2 , s

(n)
3 , . . . , s

(n)
N).

We define a connection type of a layer Vi with Vm in the graph Sn as the N -
element sequence of colors of edges from the list bellow:

({s
(n)
1 , v(n)

m }, {s
(n)
2 , v(n)

m }, . . . , {s
(n)
N , v(n)

m })

WQO Dichotomy for 3-Graphs 559

E.g. in the graph bellow, the connection type of layer Vi = V3 with V1 is abba,
and with V2 — aaba (remembering that b is treated as lack of an edge):

Furthermore, we define the type of graph Sn to be the sequence of types
arising between Vi and other layers plus the list of edge-colors between all pairs
of vertices v

(n)
• (enumerated in some consistent way). As there are only finitely

many such types, by pigeonhole principle there exists a pair of graphs Sa and
Sb with the same type.

Let us fix some order on vertices of G1: V (G1) = {g1, g2, . . . , gN}. Let h be
the partial isomorphism that moves the vertices as follows:

s
(a)
1 → g1 s

(b)
1 → f(g1)

.

s
(a)
N → gN s

(b)
N → f(gN)

By homogeneity, it has to extend to a full automorphism h′ ∈ Aut(G). In par-
ticular, in the neighbourhood of G1 and G2 there will be images of all vertices
v
(α)
• of graphs Sa and Sb:

h′
(
v
(α)
1

)
, h′

(
v
(α)
2

)
, . . . , h′

(
v
(α)
i−1

)
, h′

(
v
(α)
i+1

)
, . . . , h′

(
v
(α)
k

)

(for α in {a, b}). What follows is that G1 with added vertices h′(v(a)
•) has the

same type as G2 with h′(v(b)
•) respectively (that type may differ from the type

of Sa and Sb though!). It is best illustrated on a picture:

560 S. Lasota and R. Piórkowski

Above, the colored triangles represent the types of connections. The order
of those types may get permuted when applying h′, but still—in line with the
remark � — for each β ∈ {1, 2, . . . , k} \ {i} the vertex h′

(
v
(a)
β

)
must stay in

the same layer as h′
(
v
(b)
β

)
, furthermore their type of connection with layer Vi is

preserved.
Extending the isomorphism f in a natural way (thanks to the compatibility

of types) on those newly obtained vertices:

h′
(
v
(a)
•

)
f−−−−−−→ h′

(
v
(b)
•

)

we get an isomorphism that this time ‘operates’ on all layers V•. If we now
extend it to an automorphism of the whole G, we will get a function that fixes
all layers V•. This function may be safely restricted to Vi ∪ Vj , staying a correct
automorphism of our initial bipartite graph Gi,j , which completes the proof. ��

We are going to apply to graphs Gi,j the following classification result:

Theorem 5 ([16]). A countably infinite homogeneous bipartite graph (with dis-
tinguishable sides) is either empty, or full, or a perfect matching, or the comple-
ment of a perfect matching, or a universal graph.

From our point of view, all we need to know about the universal graph is that it
contains arbitrarily long paths which – translated to our notation – would mean
that Gi,j contains arbitrarily long a-paths. Therefore in our further consider-
ations we assume that Gi,j is not universal which, in our notation, leaves two
types of Gi,j :

1. all edges of Gi,j have the same color x ∈ {a,b}, i.e. Gi,j is a full or empty
bipartite graph,

2. one of the colors x ∈ {a,b} forms a perfect matching in Gi,j , the second one
(y �= x) is then the complement of this matching.

Graphs of type 2. may be seen as bijections between their sets of vertices
(layers). Lemma 3 states that those bijections have to agree with each other.

Lemma 3. Let Vi, Vj , Vk be some arbitrary pairwise different layers, such that
Gi,j is of type 2 and ψ : Vi → Vj is the bijection it determines. Then ψ takes
a ∩ (Vi ∪ Vk) to a ∩ (Vj ∪ Vk), or to its complement. Formally:

⎛

⎜⎝ ∀
u∈Vi

∀
v∈Vk

u a v︸ ︷︷ ︸
♣

⇔ ψ(u) a v︸ ︷︷ ︸
♠

⎞

⎟⎠ ∨

⎛

⎜⎝ ∀
u∈Vi

∀
v∈Vk

¬u a v︸ ︷︷ ︸
♥

⇔ ψ(u) a v︸ ︷︷ ︸
♦

⎞

⎟⎠

Proof. We head towards a contradiction. Negating the claim we get:
(

∃
u∈Vi

∃
v∈Vk

¬♣ ∧ ♠ ∨ ♣ ∧ ¬♠
)

∧
(

∃
u∈Vi

∃
v∈Vk

¬♥ ∧ ♦ ∨ ♥ ∧ ¬♦
)

WQO Dichotomy for 3-Graphs 561

which leads to four cases with similar proofs. We will consider one of them
(corresponding to ¬♥ ∧ ♦ and ♣ ∧ ¬♠) and omit the other. Let us then assume
that there exist x, x′ ∈ Vi and y, y′ ∈ Vk such that:

x a y ∧ x′ a y′ ∧ ψ(x) a y ∧ ¬ψ(x′) a y′.

Let g be a partial isomorphism of the form g = {x → x′, y → y′}. By homogene-
ity of G, there is some full automorphism g′ ∈ Aut(G) extending g. If additionally
we were able to force g to fix the layer Vj , we would be almost done. Let us try
to achieve that property.

For that purpose, in Vj we choose a vertex v such that:

I. v /∈ ψ({x, x′}),
II. if Gj,k is a graph of type 2. defining a bijection φ : Vk → Vj , then also

v /∈ φ({y, y′}).

Clearly such vertex must exist – two above conditions exclude at most 4 different
vertices from the infinite set of candidates. The function g extended with v

g−→ v
stays a correct isomorphism, because:

– in Gi,j by definition of isomorphism we need the edges {x, v} and {g(x), g(v)}
to be equally colored, and, in fact, they are. We get this thanks to the condition
I.: x is connected with all vertices from Vj \ {ψ(x)} by x-edges, x ∈ {a,b}.
We similarly handle x′.

– in turn in Gj,k — if it is a graph of type 1, the needed equality of colors of
edges {y, v} and {g(y), g(v)} trivially holds. If it is a graph of type 2, the
equality of colors is derived similarly as in Gi,j , using the condition II.

Presence of the vertex v ensures that layer Vj is preserved by the full automor-
phism g′ ∈ Aut(G) we get by homogeneity.

Since Gi,j is of type 2, the vertex ψ(x′) is the only possible choice for the
image of ψ(x) under g′ — this is the only vertex x′ is connected to by an
appropriately colored edge. Because g′ is an automorphism, we get that ψ(x′) a
y′, which leads us to the contradiction. ��

From the lemma we have just proved one easily derives the following corollary:

Corollary 1. The following relation ≡ on layers is transitive:

Vi ≡ Vj ⇔ the graph Gi,j is of type 2.

Furthermore, if Vi ≡ Vj and Vj ≡ Vk then fj,k ◦ fi,j = fi,k, where fi,j , fi,k, fj,k

are the bijections determined by graphs Gi,j ,Gi,k and Gj,k.

In Lemma 5 below, which is the last step of the proof of case (C), we will apply
the following fact:

Lemma 4. Consider a homogeneous 3-graph G and a partition of its vertex set
V =

⋃
n∈N

Un into sets U• of equal finite cardinality. Suppose further that for
every n ∈ N, there is an automorphism πn of G that swaps U0 with Un and is
identity elsewhere. Then G admits wqo.

562 S. Lasota and R. Piórkowski

Proof. Let G = (V,a,b, c) be a 3-graph. Define for u ∈ U0 the sets Vu ⊆ V ,
which we call layers:

Vu = { πn(u) |n ∈ N } .

We will prove that the structure G
′ = (V,a,b, c, (Vu)u∈U0) admits wqo. This

will imply that G admits wqo as well; indeed, compared to G, structure G
′ is

equipped with additional unary relations V•, which only makes the order � in
Age(G′) finer than the analogous order in Age(G).

Let Gn denote the induced substructure of G
′ on vertex set Un. By the

assumptions, for every n,m ∈ N there is a swap of Un and Um that, extended
with identity elsewhere, is an automorphism of G′. In consequence, all structures
G• are isomorphic, and the embedding order � of induced substructures of G′ is
isomorphic to finite multisets over Age(G0), ordered by multiset inclusion. Thus
(Age(G′),�) is isomorphic to the multiset inclusion in M(Age(G0)), which is a
wqo as U0 is finite. For any wqo (X,≤), analogous isomorphism holds between
the lifted embedding order (Age(G′),�X) and the multiset inclusion in multisets
over induced substructures of G0 labeled by elements of X, and again the latter
order is a wqo. Thus G

′ admits wqo. ��

Lemma 5. The 3-graph G admits wqo.

Proof. We are going to prepare the ground for the use of Lemma 4. By Corollary 1.
the vertex set V partitions into V =

⋃
n∈N

Un so that

(a) every layer Vi shares with every set Un exactly one vertex: Un ∩Vi = {v
(n)
i },

(b) if fi,j is the bijection determined by Gi,j (a graph of type 2.), then
fi,j(v

(n)
i) ∈ Un, so all the bijections preserve every set U•.

Intuitively, G can by cut into thin ‘slices’ perpendicular to the layers V•. By thin
we mean that the slices have exactly one vertex in each layer. The cut is made
along the bijections dictated by the graphs of type 2. as in the picture bellow:

U1 U2 U3 U4 U5 U6 U7 U8 . . .

. . .
. . .

. . .
. . .

V1

V2

V3

V4

We observe that for every n, the bijection hn : V → V that swaps U1 and Un

along the only bijection U1 → Un that preserves layers, and is identity elsewhere,
is an automorphism of G. Indeed, for any three slices Ua, Ub, Uc we have that:

v
(a)
i a v

(c)
j ⇔ v

(b)
i a v

(c)
j

so the edges
{

v
(a)
i , v

(c)
j

}
and

{
v
(b)
i , v

(c)
j

}
are colored the same way. The above

equivalence is obvious in case when Gi,j is a graph of type 1. In the case of

WQO Dichotomy for 3-Graphs 563

graph of type 2, the vertex v
(c)
i is connected with all vertices from Vj but one

by x-edges for some x ∈ {a,b}. However, the special vertex fi,j(v
(c)
i) that is not

connected by a x-edge, by the condition (b), also belongs to Uc, so it does not
interfere with above equivalence.

By Lemma 4 we deduce that G admits wqo, which completes the proof. ��

References

1. Abdulla, P.A., Nylén, A.: Timed Petri nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45740-2 5

2. Bojańczyk, M., Braud, L., Klin, B., Lasota, S.: Towards nominal computation.
Proc. POPL 2012, 401–412 (2012)

3. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical
Methods Comput. Sci. 10(3:4) (2014). Paper 4

4. Bojańczyk, M., Klin, B., Lasota, S., Toruńczyk, S.: Turing machines with atoms.
LICS 2013, 183–192 (2013)

5. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-
notation for protocol analysis. In: Proceedings of CSFW 1999, pp. 55–69 (1999)

6. Cherlin, G.: The classification of countable homogeneous directed graphs and
countable homogeneous n-tournaments. Mem. Am. Math. Soc. 131(621), xiv+161
(1998)

7. Cherlin, G.: Forbidden substructures and combinatorial dichotomies: WQO and
universality. Discrete Math. 311(15), 1543–1584 (2011)

8. Delzanno, G.: An overview of MSR(C): a CLP-based framework for the symbolic
verification of parameterized concurrent systems. Electr. Notes Theor. Comput.
Sci. 76, 65–82 (2002)

9. Delzanno, G.: Constraint multiset rewriting. Technical report DISI-TR-05-08,
DISI, Universitá di Genova (2005)

10. Ding, G.: Subgraphs and well-quasi-ordering. J. Graph Theor. 16(5), 489–502
(1992)

11. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

12. Fräıssé, R.: Theory of Relations. North-Holland, Amsterdam (1953)
13. Genrich, H.J., Lautenbach, K.: System modelling with high-level Petri nets. Theor.

Comput. Sci. 13, 109–136 (1981)
14. Hofman, P., Lasota, S., Lazić, R., Leroux, J., Schmitz, S., Totzke, P.: Coverability

trees for Petri nets with unordered data. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 445–461. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49630-5 26

15. Jacobsen, L., Jacobsen, M., Møller, M.H., Srba, J.: Verification of timed-arc Petri
nets. In: vCerná, I., Gyimóthy, T., Hromkovivc, J., Jefferey, K., Králović, R.,
Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 46–72. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18381-2 4

16. Jenkinson, T., Truss, J.K., Seidel, D.: Countable homogeneous multipartite graphs.
Eur. J. Comb. 33(1), 82–109 (2012)

17. Jensen, K.: Coloured Petri nets and the invariant-method. Theor. Comput. Sci.
14, 317–336 (1981)

https://doi.org/10.1007/3-540-45740-2_5
https://doi.org/10.1007/978-3-662-49630-5_26
https://doi.org/10.1007/978-3-662-49630-5_26
https://doi.org/10.1007/978-3-642-18381-2_4

564 S. Lasota and R. Piórkowski

18. Lachlan, A.H., Woodrow, R.E.: Countable ultrahomogeneous undirected graphs.
Trans. Amer. Math. Soc. 262(1), 51–94 (1980)

19. Lasota, S.: Decidability border for Petri nets with data: WQO dichotomy conjec-
ture. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp.
20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4 3

20. Lasota, S., Piórkowski, R.: WQO dichotomy for 3-graphs. CoRR, arXiv:1802.07612
(2018)

21. Lazić, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens
which carry data. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol.
4546, pp. 301–320. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73094-1 19

22. Lazic, R., Schmitz, S.: The complexity of coverability in ν-Petri nets. In: Proceed-
ings of LICS 2016, pp. 467–476 (2016)

23. Macpherson, D.: A survey of homogeneous structures. Discrete Math. 311(15),
1599–1634 (2011)

24. Rosa-Velardo, F.: Ordinal recursive complexity of unordered data nets. Inf. Com-
put. 254, 41–58 (2017)

25. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-39086-4_3
http://arxiv.org/abs/1802.07612
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19
http://creativecommons.org/licenses/by/4.0/

Verifying Higher-Order Functions
with Tree Automata

Thomas Genet, Timothée Haudebourg(B), and Thomas Jensen

Univ. Rennes, Inria, IRISA, Rennes, France
timothee.haudebourg@irisa.fr

Abstract. This paper describes a fully automatic technique for verify-
ing safety properties of higher-order functional programs. Tree automata
are used to represent sets of reachable states and functional programs
are modeled using term rewriting systems. From a tree automaton rep-
resenting the initial state, a completion algorithm iteratively computes
an automaton which over-approximates the output set of the program
to verify. We identify a subclass of higher-order functional programs for
which the completion is guaranteed to terminate. Precision and termi-
nation are obtained conjointly by a careful choice of equations between
terms. The verification objective can be used to generate sets of equations
automatically. Our experiments show that tree automata are sufficiently
expressive to prove intricate safety properties and sufficiently simple for
the verification result to be certified in Coq.

1 Introduction

Higher-order functions are an integral feature of modern programming languages
such as Java, Scala or JavaScript, not to mention Haskell and Caml. Higher-order
functions are useful for program structuring but pose a challenge when it comes
to reasoning about the correctness of programs that employ them. To this end,
the correctness-minded software engineer can opt for proving properties interac-
tively with the help of a proof assistant such as Coq [13] or Isabelle/HOL [30], or
write a specification in a formalism such as Liquid Types [31] or Bounded Refine-
ment Types [33,34] and ask an SMT solver whether it can prove the verification
conditions generated from this specification. This approach requires expertise of
the formal method used, and both the proof construction and the annotation
phase can be time consuming.

Another approach is based on fully automated verification tools, where the
proof is carried out automatically without annotations or intermediate lemmas.
This approach is accessible to a larger class of programmers but applies to a more
restricted class of program properties. The flow analysis of higher-order functions
was studied by Jones [21] who proposed to model higher-order functions as term
rewriting systems and use regular grammars to approximate the result. More
recently, the breakthrough results of Ong [29] and Kobayashi [23,24,26] show
that combining abstraction with model checking techniques can be used with

c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 565–582, 2018.
https://doi.org/10.1007/978-3-319-89366-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_31&domain=pdf

566 T. Genet et al.

success to analyse higher-order functions automatically. Their approach relies
on abstraction for computing over-approximations of the set of reachable states,
on which safety properties can then be verified.

In this paper, we pursue the goals of higher-order functional verification using
an approach based on the original term rewriting models of Jones. We present a
formal verification technique based on Tree Automata Completion (TAC) [20],
capable of checking a class of properties, called regular properties, of higher-order
programs in a fully automatic manner. In our approach, a program is represented
as a term rewriting system R and the set of (possibly infinite) inputs to this
program as a tree automaton A. The TAC algorithm computes a new automaton
A∗, by completing A with all terms reachable from A by R-rewriting. This
automaton representation of the reachable terms contains all intermediate states
as well as the final output of the program. Checking correctness properties of
the program is then reduced to checking properties of the computed automaton.
Moreover, our completion-based approach permits to certify automatically A∗

in Coq [6], i.e. given A, R and A∗, obtain the formal proof that A∗ recognizes
all terms reachable from A by R-rewriting.

Example 1. The following term rewriting system R defines the filter function
along with the two predicates even and odd on Peano’s natural numbers.

@(@(filter , p), cons(x, l)) → if @(p, x) then cons(x,@(@(filter , p), l))

else @(@(filter , p), l)

@(@(filter , p),nil) → nil

@(even, 0) → true @(even, s(x)) → @(odd , x)
@(odd , 0) → false @(odd , s(x)) → @(even, x)

This function returns the input list where all elements not satisfying the
input boolean function p are filtered out. Variables are underlined and the special
symbol @ denotes function application where @(f, x) means “x applied to f”.

We want to check that for all lists l of natural numbers, @(@(filter , odd), l)
filters out all even numbers. One way to do this is to write a higher-order predi-
cate, exists, and check that there exists no even number in the resulting list, i.e.
that @(@(exists, even),@(@(filter , odd), l)) always rewrites to false. Let A be the
tree automaton recognising terms of form @(@(exists, even),@(@(filter , odd), l))
where l is any list of natural numbers. The completion algorithm computes an
automaton A∗ recognising every term reachable from L(A) (the set of terms
recognised by A) using R with the definition of the exists function. Formally,

L(A∗) = R∗(L(A)) = {t | ∃s ∈ L(A), s →∗
R t}

To prove the expected property, it suffices to check that true is not reachable, i.e.
true does not belong to the regular set L(A∗). We denote by regular properties
the family of properties characterised by a regular set. In particular, regular

Verifying Higher-Order Functions with Tree Automata 567

properties do not count symbols in terms, nor relate subterm heights (a property
comparing the length of the list before and after filter is not regular)

Termination of the tree automata completion algorithm is not ensured in
general [19]. For instance, if R∗(L(A)) is not regular, it cannot be represented
as a tree automaton. In this case, the user can provide a set of equations that will
force termination by introducing an approximation based on equational abstrac-
tion [27]: L(A∗) ⊇ R∗(L(A)). Equations make TAC powerful enough to ver-
ify first-order functional programs [19]. However, state-of-the-art TAC has two
short-comings. (i) Equations must be given by the user, which goes against full
automation, and (ii) even with equations, termination is not guaranteed in the
case of higher-order programs. In this paper we propose a solution to these short-
comings with the following contributions:

– We state and prove a general termination theorem for the Tree Automata
Completion algorithm (Sect. 3);

– From the conditions of the theorem we characterise a class of higher-order
functional programs for which the completion algorithm terminates (Sect. 4).
This class covers common usage of higher-order features in functional pro-
gramming languages.

– We define an algorithm that is able to automatically generate equations for
enforcing convergence, thus avoiding any user intervention (Sect. 5).

All proofs missing in this paper can be found in the accompanying technical
report [17]. The paper is organised as follow: We describe the completion algo-
rithm and how to use equations to ensure termination in Sect. 2.1. The technical
contributions as described above are developed in Sects. 3 to 5. In Sect. 6, we
present a series of experiments validating our verification technique, and discuss
the certification of results in Coq. We present related work in Sect. 7. Section 8
concludes the paper.

2 Background

This section introduces basic concepts used throughout the paper. We recall the
usual definitions of term rewriting systems and tree automata, and present the
completion algorithm which forms the basis of our verification technique.

2.1 Term Rewriting and Tree Automata

Terms. An alphabet F is a finite set of symbols, with an arity function ar :
F → N. Symbols represent constructors such as nil or cons, or functions such
as filter , etc. For simplicity, we also write f ∈ Fn when f ∈ F and ar(f) = n.
For instance, cons ∈ F2 and nil ∈ F0. An alphabet F and finite set of variables
X induces a set of terms T (F ,X) such that:

x ∈ T (F ,X) ⇐ x ∈ X
f(t1, . . . , tn) ∈ T (F ,X) ⇐ f ∈ Fn and t1, . . . , tn ∈ T (F ,X)

568 T. Genet et al.

A language is a set of terms. A term t is linear if the multiplicity of each variable
in t is at most 1, and closed if it contains no variables. The set of closed terms is
written T (F). A position in a term t is a word over N pointing to a subterm of
t. Pos(t) is the set of positions in t, one for each subterm of t. It is defined by:

Pos(x) = {λ}
Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n ∧ p ∈ Pos(ti)}

where λ is the empty word and “.” in i.p is the concatenation operator. For
p ∈ Pos(t), we write t|p for the subterm of t at position p, and t[s]p for the
term t where the subterm at position p has been replaced by s. We write s � t
if t is a subterm of s and s � t if it is a subterm and s
= t. If L ⊆ T (F),
we write L� for the language L and all its subterms. A substitution σ is an
application of X �→ T (F ,X), mapping variables to terms. We tacitly extend
it to the endomorphism σ : T (F ,X) �→ T (F ,X) where tσ is the result of the
application of the term t to the substitution σ.

Term Rewriting Systems. [1] provide a flexible way of defining functional
programs and their semantics. A rewriting system is a pair 〈F ,R〉, where F
is an alphabet and R a set of rewriting rules of the form l → r, where l, r ∈
T (F ,X), l
∈ X and Var(r) ⊆ Var(l). A TRS can be seen as a set of rules, each
of them defining one step of computation. We write R a rewriting system 〈F ,R〉
if there is no ambiguity on F . A rewriting rule l → r is said to be left-linear if
the term l is linear. Example 1 shows a TRS representing a functional program,
where each rule is left-linear. In that case we say that the TRS R is left-linear.

A rewriting system R induces a rewriting relation →R where for alls s, t ∈
T (F ,X), s →R t if it exists a rule l → r ∈ R, a position p ∈ Pos(s) and a
substitution σ such that lσ = s|p and t = s[rσ]p. The reflexive-transitive closure
of →R is written →∗

R. The rewriting system introduced in the previous example
also derives a rewriting relation →R where

@(@(filter, odd), cons(0, cons(s(0), nil))) →∗
R cons(s(0), nil)

The term cons(s(0), nil) is irreducible (no rule applies to it) and hence the result
of the function call. We write IRR(R) for the set of irreducible terms of R.

Tree Automata. [12] are a convenient way to represent regular sets of terms. A
tree automaton is a quadruple 〈F ,Q,Qf ,Δ〉 where F is an alphabet, Q a finite
set of states, Qf the set of final states, and Δ a rewriting system on F ∪Q. Rules
in Δ, called transitions, are of the form l → q where q ∈ Q and l is either a state
(∈ Q), or a configuration of the form f(q1, . . . , qn) with f ∈ F , q1 . . . qn ∈ Q. A
term t is recognised by a state q ∈ Q if t →∗

Δ q, which we also write t →∗
A q. We

write L(A, q) for the language of all terms recognised by q. A term t is recognised
by A if there exists q ∈ Qf s.t. t ∈ L(A, q). In that case we write t ∈ L(A). E.g.,
the tree automaton A = 〈F ,Q,Qf ,Δ〉 with F = {0 : 0, s : 1}, Qf = {qpair} and
Δ = {0 → qpair, s(qodd) → qpair, s(qpair) → qodd, nil → qlist, cons(qpair, qlist) →
qlist} recognises all lists of even natural numbers.

Verifying Higher-Order Functions with Tree Automata 569

An ε-transition is a transition q → q′ where q ∈ Q. A tree automaton A is
ε-free if it contains no ε-transitions. A is deterministic if for all terms t there is
at most one state q such that t →∗

Δ q. A is reduced if for all q there is at least
one term t such that t →∗

Δ q.

2.2 Tree Automata Completion Algorithm

The verification algorithm is based on tree automata completion. Given a
program represented as a rewriting system R, and its input represented as a tree
automaton A0, the tree automata completion algorithm computes a new tree
automaton A∗ recognising the set of all reachable terms starting from a term in
L(A). For a given R, we write this set R∗(L(A)) = {t | ∃s ∈ L(A), s →∗

R t}.
It includes all intermediate computations and, in particular, the output of the
functional program. The algorithm proceeds by computing iteratively A1,A2, . . .
such that Ai+1 = CR(Ai) until it reaches a fix-point, A∗. Here, CR(Ai) represents
one step of completion and is performed by searching and completing the critical
pairs of Ai.

lσ R
��

∗Ai

��

rσ

q

⇒

lσ R
��

Ai+1 ∗
��

rσ

Ai+1

∗��q

Definition 1 (Critical pair). A critical pair is a triple 〈l → r, σ, q〉 where
l → r ∈ R, σ is a substitution, and q ∈ Q such that lσ →∗

Ai q and rσ
→∗
Ai q.

Completing a critical pair consists in adding the necessary transitions in Ai+1

to have rσ →∗
Ai+1 q, and hence rσ ∈ L(Ai+1, q).

Example 2. Let A0 be the previously defined tree automaton recognising all
lists of even natural numbers. Let R = {s(s(x)) → s(x)}. A0 has a critical pair
〈s(s(x)) → s(x), σ, qpair〉 with σ(x) = qpair. To complete the automaton, we need
to add transition such that s(qpair) →∗

A1 qpair. Since we already have the state
qodd recognising s(qpair), we only add the transition qodd → qpair. The formal
definition of the completion step, including the procedure of choosing which new
transition to introduce, can be found in [17].

Every completion step has the following property:

L(Ai) ⊆ L(Ai+1) and

s ∈ L(Ai) ⇒ s →R t ⇒ t ∈ L(Ai+1)

It implies that, if a fix-point A∗ then it recognises every term of R∗(L(A)).
However it is in general impossible to compute a tree automaton recognising
R∗(L(A)) exactly, and this may cause the completion algorithm to diverge.
Instead we shall over-approximate it by an automaton A∗ such that L(A∗) ⊇

570 T. Genet et al.

R∗(L(A)). The approximation is performed by introducing a set E of equations
of the form l = r where l, r ∈ T (F ,X). From E we derive the relation =E , the
smallest congruence such that for all equation l = r and substitution σ we have
lσ =E rσ. In this paper we also write �E for the TRS {l → r | l = r ∈ E}. At
each completion step, the algorithm simplifies the automaton by merging states
together according to E.

Definition 2 (Simplification Relation). Let A = 〈F ,Q,Qf ,Δ〉 be a tree
automaton and E be a set of equations. If s = t ∈ E, σ : X �→ Q, q, q′ ∈ Q such
that sσ →∗

A q, tσ →∗
A q′ and q
= q′ then A can be simplified into A′ = A{q′ �→ q}

(where q′ has been substitued by q), denoted by A �E A′.

We write SE(A) for the unique automaton (up to renaming) A′ such that
A �∗

E A′ and A′ is irreducible by �E . One completion step is now defined by
Ai+1 = SE(CR(Ai)).

sσ
E

Ai ∗
��

tσ

Ai ∗
��

q q′
⇒

sσ
E

Ai+1 ∗
��

tσ

Ai+1

∗��q

Example 3. This example shows how using equations can lead to approximations
in tree automata. Let A be the tree automaton defined by the set of transitions
Δ = {0 → q0, s(q0) → q1}. This automaton recognises the two terms 0 in q0 and
s(0) (also known as 1) in q1. Let E = {s(x) = x} containing the equation that
equates a number and its successor. For σ = {x �→ 0} we have s(x)σ →A q1,
xσ →A q0 and s(x)σ =E xσ. Then in SE(A), q0 and q1 are merged. The resulting
automaton has transitions {0 → q0, s(q0) → q0}, which recognises N in q0.

The idea behind the simplification is to overapproximate R∗(L(A)) when it is
not regular. It has been shown in [19] that it is possible to tune the precision
of the approximation. For a given TRS R, initial state automaton A and set
of equations E, the termination of the completion algorithm is undecidable in
general, even with the use of equations. Our contribution in this paper consists
in finding a class of TRS/programs and equations E for which the completion
algorithm with equations terminates.

3 Termination of Tree Automata Completion

In this section, we show that termination of the completion algorithm with a
set of equations E is ensured under the following conditions: if (i) Ak is reduced
ε-free and deterministic (written REFD in the rest of the paper) for all k;
(ii) every term of Ak can be rewritten into a term of a given language L ⊆
T (F) using R (for instance if R is terminating); (iii) L has a finite number
of equivalence classes w.r.t E. Completion is known to preserve
 ε-reduceness

Verifying Higher-Order Functions with Tree Automata 571

and
 ε-determinism if E ⊇ Er ∪ ER [19] where ER = {s = t | s → t ∈ R}
and Er = {f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈ Fn}. Condition (i) is ensured
by showing that, in our verification setting, completion preserve REFD. The
last condition is ensured by having E ⊇ Ec

L where Ec
L is a set of contracting

equations.

Definition 3 (Contracting Equations). Let L ⊆ T (F). A set of equations is
contracting for L, denoted by Ec

L, if all equations of Ec
L are of the form u = u|p

with u a linear term of T (F ,X), p
= λ and if the set of normal forms of L w.r.t
the TRS �Ec

L = {u → u|p | u = u|p ∈ Ec
L} is finite.

Example 4. Assume that F = {0 : 0, s : 1}. The set Ec
L = {s(x) = x} is

contracting for L = T (F) because the set of normal forms of T (F) with respect
to �Ec

L = {s(x) → x} is the (finite) set {0}. The set Ec
L = {s(s(x)) = x} is

contracting because the normal forms of {s(s(x)) → x} are {0, s(0)}.

The contracting equations ensure that the completion algorithm will merge
enough states during the simplification steps to terminate. Note that Ec

L cannot
be empty, unless L is finite. To prove termination of completion, we first prove
that it is possible to bound the number of states needed in A∗ to recognise a
language L by the number of normal forms of L with respect to �Ec

L. In our
case L will be the set of output terms of the program. Since A∗ does not only
recognises the output terms, we need additional states to recognise intermediate
computation terms. In the proof of Theorem 1 we show that with ER, the sim-
plification steps will merge the states recognising the intermediate computation
with the states recognising the outputs. If the latter set of states is finite then
we can show that A∗ is finite.

Theorem 1. Let A be an REFD tree automaton, R a left-linear TRS, E a set
of equations and L a language closed by subterms such that for all k ∈ N and
for all s ∈ L�(Ak), there exists t ∈ L s.t. s →∗

R t. If E ⊇ Er ∪ Ec
L ∪ ER then

the completion of A by R and E terminates with a REFD A∗.

4 A Class of Analysable Programs

The next step is to identify a class of functional programs and a language L
for which Theorem 1 applies. By choosing L = T (F) and providing a set of
contracting equations Ec

T (F), the termination theorem above proves that the
completion algorithm terminates on any functional program R. If this works in
theory, in practice we want to avoid introducing equations over the application
symbol (such as @(x, y) = y). Contracting equations on applications makes
sense in certain cases, e.g., with idempotent functions (@(sort,@(sort, x)) =
@(sort, x)), but in most cases, such equations dramatically lower the precision
of the completion algorithm. Hence, we want to identify a language L with no
contracting equations over @ in Ec

L. Since such a language L still has to have a
finite number of normal forms w.r.t. �Ec

L (Theorem 1), it cannot include terms

572 T. Genet et al.

containing an un-bounded stack of applications. For instance, L cannot contain
all the terms of the form @(f, x),@(f,@(f, x)),@(f,@(f,@(f, x))), etc. The @
stack must be bounded, even if the applications symbols are interleaved with
other symbols (e.g. @(f, s(@(f, s(@(f, s(x))))))). To do that we (i) define a set
Bd of all terms where such stack size is bounded by d ∈ N; (ii) define a set Kn

and a class of TRS called K-TRS such that for any TRS R in this class, Kn is
closed by R and Kn ∩ IRR(R) ⊆ Bφ(n) for some function φ. This is done by first
introducing a type system over the terms; (iii) finally define L = Bφ(n)∩IRR(R)
that can be used to instantiate Theorem 1.

Definition 4. For a given alphabet F = C ∪ {@}, Bd is the set of terms where
every application depth is bounded by d. It is the smallest set defined by:

f ∈ B0 ⇐ f ∈ C0

f(t1, . . . , tn) ∈ Bi ⇐ f ∈ Cn ∧ t1 . . . tn ∈ Bi

@(t1, t2) ∈ Bi+1 ⇐ t1, t2 ∈ Bi

t ∈ Bi+1 ⇐ t ∈ Bi

In Sect. 5, we show how to produce Ec such that Bd ∩ IRR(R) has a finite
number of normal forms w.r.t. �Ec with no equations on @. However we don’t
have for all k, for all term t ∈ L�(Ak) a term s ∈ Bd ∩ IRR(R) s.t. t →∗

R s
in general. Theorem 1 cannot be instantiated with L = Bd ∩ IRR(R). Instead
we define (i) a set Kn ⊆ T (F) and φ such that Kn ∩ IRR(R) ⊆ Bφ(d) and
(ii) a class of TRS, called K-TRS for which L�(Ak) ⊆ Kn�. In K-TRS, the
right hand sides of TRS rules are contained in a set K whose purpose is to
forbid the construction of unbounded partial applications during rewriting. If
the initial automaton satisfies L�(A) ⊆ Kn� then we can instantiate Theorem 1
with L = Kn� ∩ IRR(R) and prove termination.

4.1 Types

In order to define K and Kn we require the TRS to be well-typed. Our definition
of types is inspired by [1]. Let A be a non-empty set of algebraic types. The set
of types T is inductively defined as the least set containing A and all function
types, i.e. A → B ∈ T ⇐ A,B ∈ T . The function type constructor → is
assumed to be right-associative. The arity of a type A is inductively defined on
the structure of A by:

ar(A) = 0 ⇐ A ∈ A

ar(A → B) = 1 + ar(B) ⇐ A → B ∈ T

Instead of using alphabets, in a typed terms environment we use signatures
F = C ∪{@} where C is a set of constructor symbols associated to a unique type
and @ the application symbol (with no type). We also assign a type to every
variable. We write f : A if the symbol f has type A and t : A a term t ∈ T (F ,X)

Verifying Higher-Order Functions with Tree Automata 573

of type A. We write W(F ,X) for the set of all well typed terms using the usual
definition. We extend the definition of term rewriting systems to typed TRS. A
TRS is well typed if all rules are of the form l : A → r : A (type is preserved).
In the same way, an equation s = t is well typed if both s and t have the same
type. In the rest of this paper we only consider well typed equations and TRSs.

Definition 5 (Functional TRS). A higher-order functional TRS is composed
of rules of the form

@(. . . @(f, t1 : A1) . . . , tn : An) : A → r : A

where f : A1 → . . . → An → A ∈ Cn, t1 . . . tn ∈ W(C,X) and r ∈ W(F ,X). A
functional TRS is complete if for all term t = @(t1, t2) : A such that ar(A) = 0,
it is possible to rewrite t using R. In other words, all defined functions are total.

Types provides information about how a term can be rewritten. For instance
we expect the term @(f : A → B, x : A) : B to be rewritten by every complete
(no partial function) TRS R if ar(A → B) = 1. Furthermore, for certain types,
we can guarantee the absence of partial applications in the result of a compu-
tation using the type’s order. For a given signature F , the order of a type A,
written ord(A), is inductively defined on the structure of A by:

ord(A) = max{ord(f) | f : . . . → A ∈ Cn}
ord(A → B) = max{ord(A) + 1, ord(B)}

where ord(f : A1 → . . . → An → A) = max{ord(A1), . . . , ord(An)} (with, for
Ai = A, ord(Ai) = 0). For instance ord(int) = 0 and ord(int → int) = 1.

Example 5. Define two different types of lists list and list′. The first defines
lists of int with the constructor consA : int → list → list ∈ C, while the second
defines lists of functions with the constructor consB : (int → int) → list′ →
list′ ∈ C. The importance of order becomes manifest here: in the first case a
fully reduced term of type list cannot contain any @ whereas in the second case
it can. ord(list) = 0 and ord(list′) = 1.

Lemma 1. If R is a complete functional TRS and A a type such that ord(A) =
0, then all closed terms t of type A are rewritten into an irreducible term with
no partial application:

∀s ∈ IRR(R), t →∗
R s ⇒ s ∈ B0.

4.2 The Class K-TRS

Recall that we want to define (i) a set Kn ⊆ T (F) and φ such that Kn� ∩
IRR(R) ⊆ Bφ(n) and (ii) a class of TRS K-TRS for which L�(Ak) ⊆ Kn�.
Assuming that L�(A) ⊆ Kn� we instantiate Theorem 1 with L = Kn� ∩ IRR(R)
and prove termination.

574 T. Genet et al.

Definition 6 (K-TRS). A TRS R is part of K-TRS if for all rules l → r ∈ R,
r ∈ K where K is inductively defined by:

x : A ∈ K ⇐ x : A ∈ X
f(t1, . . . , tn) : A ∈ K ⇐ f ∈ Cn ∧ t1, . . . , tn ∈ K

@(t1 : A → B, t2 : A) : B ∈ K ⇐ t1 ∈ Z, t2 ∈ K ∧ B ∈ A (1)
@(t1 : A → B, t2 : A) : B ∈ K ⇐ t1, t2 ∈ K ∧ ord(A) = 0 (2)

with Z defined by:

t ∈ Z ⇐ t ∈ K
@(t1, t2) ∈ Z ⇐ t1 ∈ Z, t2 ∈ K

By constraining the form of the right hand side of each rule of R, K defines a
set of TRS that cannot construct unbounded partial applications during rewrit-
ing. The definition of K takes advantage of the type structure and Lemma 1.
The rules (1) and (2) ensure that an application @(t1, t2) is either: (1) a total
application, and the whole term can be rewritten; or (2) a partial application
where t2 can be rewritten into a term of B0 (Lemma 1). In (1), Z allows partial
applications inside the total application of a multi-parameter function.

Example 6. Consider the classical map function. A typical call to this function
is @(@(map, f), l) of type list, where f is a mapping function, and l a list.
The whole term belongs to K because of rule (1): list is an algebraic type and
its subterm @(map, f) : list → list belongs to Z. This subterm is a partial
application, but there is no risk of stacking partial applications as it is part of a
complete call (to the map function).

Example 7. Consider the function stack defined by:

@(@(stack, x), 0) → x

@(@(stack, x), S(n)) → @(@(stack,@(g, x)), n)

Here g is a function of type (A → A) → A → A. The stack function returns a
stack of partial applications whose height is equal to the input parameter:

@(@(stack, f), S(S(S . . . S
︸ ︷︷ ︸

k

(0) . . .))) →∗
R @(g,@(g,@(g, . . . @(g

︸ ︷︷ ︸

k

, f) . . .)))

The depth of partial applications stacks in the output language is not bounded.
With no equations on the @ symbol, the completion algorithm may not termi-
nate. Notice that x is a function and @(g, x) a partial application. Hence the
term @(@(stack,@(g, x)), n) is not in K, so the TRS does not belong to the
K-TRS class.

We define Kn as {tσ | t ∈ K, σ : X �→ Bn ∩ IRR(R)} and claim that if
for all rule l → r of the functional TRS R, r ∈ K and if L(A) ⊆ Kn then with
Theorem 1 we can prove that the completion of A with R terminates. The idea
is the following:

Verifying Higher-Order Functions with Tree Automata 575

– Prove that if A recognises terms of Kn�, then it is preserved by completion
using the notion of Kn-coherence of A.

– Prove that Kn� ∩ IRR(R) ⊆ Bn+2B ∩ IRR(R) where B ∈ N is a fixed upper
bound of the arity of all the types of the program.

– Prove that there is a finite number of normal form of Bn+2B ∩ IRR(R) w.r.t
�Ec
L.

– Finally, we use those three properties combined, and instantiate Theorem 1
with L = Bn+2B ∩ IRR(R) to prove Theorem 2, defined as follows.

Theorem 2. Let A be a Kn-coherent REFD tree automaton, R a terminating
functional TRS such that for all rule l → r ∈ R, r ∈ K and E a set of equations.
Let L = Bn+2B ∩ IRR(R). If E = Er ∪ Ec

L ∪ ER then the completion of A by R
and E terminates.

To prove that after each step of completion, the recognised language stays in
Kn, we require the considered automaton to be Kn-coherent.

Definition 7 (Kn-coherence). Let L ⊆ W(F) and n ∈ N. L is Kn-coherent if

L ⊆ Kn ∨ L ⊆ Zn \ Kn

By extension we say that a tree-automaton A = 〈F ,Q,Qf ,Δ〉 is Kn-coherent if
the language recognised by all states q ∈ Q is Kn-coherent.

If Kn-coherence is not preserved during completion, then some states in the
completed automaton may recognise terms outside of Kn�. Our goal is to show
that it is preserved by CR(·) (Lemma 2) then by SE(·) (Lemma 3).

Lemma 2 (CR(A) preserves Kn-coherence). Let A be a REFD tree automa-
ton. If A is Kn-coherent, then CR(A) is Kn-coherent.

Lemma 3 (SE(A) preserves Kn-coherence). Let A be a REFD tree automa-
ton, R a functional TRS and E a set of equations such that E = Er ∪ Ec

L ∪ ER
with L = Bn+2B ∩ IRR(R). If A is Kn-coherent then SE(A) is Kn-coherent.

By using Lemmas 2 and 3, we can prove that the completion algorithm, which
is a composition of CR(A) and SE(A), preserves Kn-coherence. The proofs of
these two lemmas are based on a detailed analysis of the completion algorithm
itself. The complete proofs are provided in [17].

Lemma 4 (Completion preserves Kn-coherence). Let A = 〈F ,Q,Qf ,Δ〉
be a tree automaton, R a functional TRS and E a set of equations. If E =
Er ∪ Ec

L ∪ ER with L = Bn+2B ∩ IRR(R) and A is Kn-coherent then for all
k ∈ N, Ak is Kn-coherent. In particular, A∗ is Kn-coherent.

By construction we can prove that the depth of irreducible Kn� terms is bounded,
which correspond to the following lemma.

Lemma 5. For all t : T ∈ Kn�, t : T ∈ IRR(R) ⇒ t : T ∈ Bn+2B−arity(T).

576 T. Genet et al.

4.3 Proof of Theorem 2

Proof. According to Lemma 4, for all k ∈ N, the completed automaton Ak

is Kn-coherent. By definition this implies that L�(Ak) ⊆ Kn�. Moreover, we
know that IRR(R) ∩ Kn� ⊆ Bn+2B (Lemma 5). Let L = Bn+2B ∩ IRR(R). R is
terminating, so for every term s ∈ L�(Ak) there exists t ∈ L such that s →∗

R t.
Since the number of normal form of L is finite w.r.t �E, Theorem 1 implies that
the completion of A by R and E terminates.

5 Equation Generation

Theorem 2 states a number of hypotheses that must be satisfied in order to
guarantee termination of the completion algorithm:

– The initial automaton A must be Kn-coherent and REFD.
– R must be terminating.
– All left-hand sides of rules of R are in the set of terms K. This is a straight-

forward syntactic check. If it is not verified, we can reject the TRS before
starting the completion.

– The set of equations E must be of the form Er∪Ec
L∪ER. The equation sets Er

and ER are determined directly from the syntactic structure of R. However,
there is no unique suitable set of contracting equations Ec

L. This set must
be generated carefully, because a bad choice of contracting equations (i.e.,
equations that equate too many terms) will have a severe negative impact on
the precision of the analysis result.

In this section, we describe a method for generating all possible sets of contract-
ing equations Ec

L. To simplify the presentation, we only present the case where
L = W(C) and IRR(R) ⊆ W(C) (i.e., all results are first-order terms). Our app-
roach looks for contracting equations for the set of closed terms W(C) instead
of the set Bn+2B mentioned in Theorem 2. More precisely, we generate the set
of equations iteratively, as a series of equation sets E

k
c where the equations only

equate terms of depth at most k. Recall that a contracting equation is of the
form u = u|p with p
= λ, i.e., it equates a term with a strict subterm of the
same type. A set of contracting equations over the set W(C) is then generated
as follows: (i) generate the set of left-hand side of equations as a covering set
of terms [25], so that for each term t ∈ W(C) there exists a left-hand side u of
an equation and a substitution σ such that t = uσ. (ii) for each left-hand side,
generate all possible equations of the form u = u|p, satisfying that both sides
have the same type. (iii) from all those equations, we build all possible Ec

L (with
L = W(C)) such that the set of normal forms of W(C) w.r.t. �Ec

L is finite. Since
�Ec
L is left-linear and L = W(C), this can be decided efficiently [11].

Example 8. Assume that C = {0 : 0, s : 1}. For k = 1, the covering set is {s(x), 0}
and E

1
c = {{s(x) = x}}. For depth 2, the covering set is {s(s(x)), s(0), 0} and

E
2
c = E

1
c ∪ {{s(s(x)) = x}, {s(s(x)) = s(x)}, {s(0) = 0}, {s(0) = 0, s(s(x)) =

x}, {s(0) = 0, s(s(x)) = s(x)}}. All equation sets of E1
c and E

2
c satisfy Definition 3

and lead to different approximations.

Verifying Higher-Order Functions with Tree Automata 577

To verify a property ϕ on a program, we use completion and equation gener-
ation as follows. The program is represented by a TRS R and function calls are
represented by an initial tree automaton A. Both have to respect the hypothesis
of Theorem 2. The algorithm searches for a set of contracting equations Ec such
that verification succeeds, i.e. L(A∗) satisfy ϕ. Starting from k = 1, we apply
the following algorithm:

1. We first complete the tree automaton Ak recognising the finite subset of L(A)
of terms of maximum depth k. Since L(Ak) is finite and R is terminating,
the set of reachable terms is finite, completion terminates without equations
and computes an automaton A∗

k recognising exactly the set R∗(L(Ak)) [20].
2. If L(A∗

k) does not satisfy ϕ then verification fails: a counterexample is found.
3. Otherwise, we search for a suitable set Ec. All Ec of E

k
c that introduce a

counterexample in the completion of Ak with R and Ec are filtered out.
4. Then for all remaining Ec, we try to complete A with R and E = Er∪ER∪Ec

and check ϕ on the completed automaton. If ϕ is true on A∗ then verification
succeeds. Otherwise, we try the next Ec.

5. If there remain no Ec, we start again with k = k + 1.

If there exists a set of equations Ec able to verify the program, this algorithm
will find it eventually, or find a counter example. However if there is no set of
equations that can verify the program, this algorithm does not terminate.

6 Experiments

The verification technique described above has been integrated in the Timbuk
library [16]. We implemented the naive equation generation where all possible
equation sets Ec are enumerated. Despite the evident scalability issues of this
simple version of the verification algorithm, we have been able to verify a series of
properties of several classical higher-order functions: map, filter , exists, forall ,
foldRight , foldLeft as well as higher-order sorting functions parameterised by
an ordering function. Most examples are taken from or inspired by [26,28] and
have corresponding TRSs in the K set defined above. The property ϕ consists in
checking that a finite set of forbidden terms is not reachable (Patterns section
of Timbuk specifications).

Given A, R and A∗, the correctness of the verification, i.e. the fact that
L(A∗) ⊇ R∗(L(A)), can be checked in a proof assistant embedding a formalisa-
tion of rewriting and tree automata. It is enough to prove that (a) L(A∗) ⊇ L(A)
and that (b) for all critical pairs 〈l → r, σ, q〉 of A∗ we have rσ →∗

A∗ q. Prop-
erty (a) can be checked using standard algorithms on tree automata. Property (b)
can be checked by enumerating all critical pairs of A∗ (there are finitely many)
and by proving that all of them satisfy rσ →∗

A∗ q. Since there exists algo-
rithms for checking properties (a) and (b), the complete proof of correctness
can automatically be built in the proof assistant. For instance, the automa-
ton A∗ can be used as a certificate to build the correctness proof in Coq [6]
and in Isabelle/HOL [14]. It is also used to build unreachability proofs in

578 T. Genet et al.

Isabelle/HOL [14]. Besides, since verifying (a) and (b) is automatic, the cor-
rectness proof may be run outside of the proof assistant (in a more efficient
way) using a formally verified external checker extracted from the formalisa-
tion. All our (successful) completion attempts output a comp.res file, containing
A, R and A∗, which has been certified automatically using the external certi-
fied checker of [6]. Timbuk’s site http://people.irisa.fr/Thomas.Genet/timbuk/
funExperiments/ lists those verification experiments. Nine of them are auto-
matically proven. Two other examples show that correct counter-examples are
generated when the property is not provable. On one example equation gener-
ation times out due to our näıve enumeration of equations. For this last case,
by providing the right set of equations in mapTree2NoGen the verification of the
function succeeds.

7 Related Work

When it comes to verifying first-order imperative programs, there exist sev-
eral successful tools based on abstract interpretation such as ASTREE [3] and
SLAM [2]. The use of abstract interpretation for verifying higher-order func-
tional programs has comparatively received less attention. The tree automaton
completion technique is one analysis technique able to verify first-order Java
programs [4]. Until now, the completion algorithm was guaranteed to terminate
only in the case of first-order functional programs [19].

Liquid Types [31], followed by Bounded Refinement Types [33,34], and also
Set-Theoretic Types [8,9], are all attempts to enrich the type system of functional
languages to prove non-trivial properties on higher-order programs. However,
these methods are not automatic. The user has to express the property he wants
to prove using the type system, which can be tedious and/or difficult. In some
cases, the user even has to specify straightforward intermediate lemmas to help
the type checker.

The first attempt in verifying regular properties came with Jones [21]
and Jones and Andersen [22]. Their technique computes a grammar over-
approximating the set of states reachable by a rewriting systems. However, their
approximation is fixed and too rough to prove programs like Example 1 (filter
odd). Our program and property models are close to those of Jones and Andersen.
However, the approximation in our analysis is not fixed and can be automatically
adapted to the verification objective.

Ong et al. proposes one way of addressing the precision issue of Jones and
Andersen’s approach using a model checking technique on Pattern Matching
Recursion Schemes [28] (PMRS). This technique improves the precision but is
still not able to verify functions such as Example 1 (see [32] page 85). As shown
in our experiments, our technique handles this example.

Kobayashi et al. developed a tree automata-based technique [26] (but not
relying on TRS and completion), able to verify regular properties (including
safety properties on Example 1). We have verified a selection of examples coming
from [26] and observed that we can verify the same regular properties as they can.

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/

Verifying Higher-Order Functions with Tree Automata 579

Our prototype implementation is inferior in terms of execution time, due to the
slow generation of equations. A strength of our approach is that our verifica-
tion results are certifiable and that they can be used as certificates to build
unreachability proofs in proof assistants (see Sect. 6).

Our verification framework is based on regular abstractions and uses a sim-
ple abstraction mechanism based on equations. Regular abstractions are less
expressive than Higher-Order Recursion Schemes [23,29] or Collapsible Push-
down Automata [7], and equation-based abstractions are a particular case of
predicate abstraction [24]. However, the two restrictions imposed in this par-
ticular framework result in two strong benefits. First, the precision of the
approximation is formally defined and precisely controlled using equations:
L(A∗) ⊆ (R/E)∗(L(A)) [20]. This precision property permits us to prove intri-
cate properties with simple (regular) abstractions. Second, using tree automata-
based models facilitates the certification of the verification results in a proof
assistant. This significantly increases the confidence in the verification result
compared e.g., to verdicts obtained by complex CEGAR-based model-checkers.

8 Conclusion and Future Work

This paper shows that tree automata completion is a simple yet powerful, fully
automatic verification technique for higher-order functional programs, expressed
as term rewriting systems. We have proved that the completion algorithm ter-
minates on a subset of TRS encompassing common functional programs, and
provided experimental evidence of the viability of the approach by verifying
properties on fundamental higher-order functions including filtering and sorting.

One remaining question is whether this approach is complete: if there exists
a regular approximation of the reachable terms of a functional program, can we
build it using equations? We can already answered this question in the positive
when L = W(C), i.e., all results are first order terms [15]. Extending this result
to all kind of results, including higher-order ones, is a promising research topic.

The generation of the approximating equations is automatic but simple-
minded, and too simple to turn the prototype into a full verification tool. Further
work will look into how sets of contracting equations can be generated in a more
efficient manner, notably by taking the structure of the TRS into account and
using a CEGAR approach.

The present verification technique is agnostic to the evaluation strategy. An
interesting research track would be to experiment completion-based verification
techniques with different term rewriting semantics of functional programs such
as outlined by Clemente et al. [10]. This would permit us to take a particular
evaluation strategy into account, and in certain cases, improve the precision of
the verification. We already experimented with this in [18]. This is in line with
our long-term research goal of providing a light-weight verification tool to assist
the working OCaml programmer.

Our work focuses on verifying regular properties represented by tree
automata. Dealing with non-regular over-approximations of reachable terms

580 T. Genet et al.

would allow us to verify relational properties like comparing the length of the
list before and after filter. This is one of the objective of techniques like [24].
Building non-regular over-approximations of reachable terms for TRS, using a
form of completion, is possible [5]. However, up to now, adapting automatically
the precision of such approximations to a given verification goal is not possible.
Extending their approach with equations may provide a powerful verification
tool worth pursuing.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

2. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Portland, OR, USA, 16–18 Jan-
uary 2002, pp. 1–3 (2002)

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation 2003, San Diego, California, USA, 9–11 June 2003, pp. 196–207
(2003)

4. Boichut, Y., Genet, T., Jensen, T., Le Roux, L.: Rewriting approximations for fast
prototyping of static analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533,
pp. 48–62. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-
9 6

5. Boichut, Y., Chabin, J., Réty, P.: Towards more precise rewriting approximations.
In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015.
LNCS, vol. 8977, pp. 652–663. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15579-1 51

6. Boyer, B., Genet, T., Jensen, T.: Certifying a tree automata completion checker.
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 523–538. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71070-7 43

7. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: C-shore: a collapsible approach
to higher-order verification. In: ICFP 2013. ACM (2013)

8. Castagna, G., Nguyen, K., Xu, Z., Abate, P.: Polymorphic functions with set-
theoretic types: part 2: local type inference and type reconstruction. In: POPL
2015. ACM (2015)

9. Castagna, G., Nguyen, K., Xu, Z., Im, H., Lenglet, S., Padovani, L.: Polymorphic
functions with set-theoretic types: part 1: syntax, semantics, and evaluation. In:
POPL 2014. ACM (2014)

10. Clemente, L., Parys, P., Salvati, S., Walukiewicz, I.: Ordered tree-pushdown sys-
tems. In: FSTTCS 2015. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, vol. 45, pp. 163–177 (2015)

11. Comon, H.: Sequentiality, monadic second-order logic and tree automata. Inf. Com-
put. 157(1–2), 25–51 (2000)

12. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2008).
http://tata.gforge.inria.fr

https://doi.org/10.1007/978-3-540-73449-9_6
https://doi.org/10.1007/978-3-540-73449-9_6
https://doi.org/10.1007/978-3-319-15579-1_51
https://doi.org/10.1007/978-3-319-15579-1_51
https://doi.org/10.1007/978-3-540-71070-7_43
https://doi.org/10.1007/978-3-540-71070-7_43
http://tata.gforge.inria.fr

Verifying Higher-Order Functions with Tree Automata 581

13. Coq: The Coq proof assistant reference manual: version 8.6 (2016)
14. Felgenhauer, B., Thiemann, R.: Reachability, confluence, and termination analysis

with state-compatible automata. Inf. Comput. 253, 467–483 (2017)
15. Genet, T.: Automata completion and regularity preservation. Technical report,

Inria (2017). https://hal.inria.fr/hal-01501744
16. Genet, T., Boichut, Y., Boyer, B., Murat, V., Salmon, Y.: Reachability Analysis

and Tree Automata Calculations. IRISA/Université de Rennes 1. http://people.
irisa.fr/Thomas.Genet/timbuk/

17. Genet, T., Haudebourg, T., Jensen, T.: Verifying Higher-Order Functional Pro-
grams With Tree Automata: Extended Version (2017). https://hal.inria.fr/hal-
01614380

18. Genet, T., Salmon, Y.: Reachability analysis of innermost rewriting – extended
version. Log. Methods Comput. Sci. 13(1), 1–35 (2017)

19. Genet, T.: Termination criteria for tree automata completion. J. Log. Algebr.
Methods Program. 85(1), 3–33 (2016)

20. Genet, T., Rusu, V.: Equational approximations for tree automata completion. J.
Symb. Comput. 45(5), 574–597 (2010)

21. Jones, N.D.: Flow analysis of lazy higher-order functional programs. In: Abramsky,
S., Hankin, C. (eds.) Abstract Interpretation of Declarative Languages, pp. 103–
122. Ellis Horwood, Chichester (1987)

22. Jones, N.D., Andersen, N.: Flow analysis of lazy higher-order functional programs.
Theor. Comput. Sci. 375(1–3), 120–136 (2007)

23. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, 21–23
January 2009, pp. 416–428 (2009)

24. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, 4–8 June 2011, pp. 222–233 (2011)

25. Kounalis, E.: Testing for the ground (co-)reducibility property in term-rewriting
systems. Theor. Comput. Sci. 106(1), 87–117 (1992)

26. Matsumoto, Y., Kobayashi, N., Unno, H.: Automata-based abstraction for auto-
mated verification of higher-order tree-processing programs. In: Feng, X., Park,
S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 295–312. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26529-2 16

27. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. TCS 403(2–
3), 239–264 (2008)

28. Ong, C.L., Ramsay, S.J.: Verifying higher-order functional programs with pattern-
matching algebraic data types. In: Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, 26–28 January 2011, pp. 587–598 (2011)

29. Ong, C.H.: On model-checking trees generated by higher-order recursion schemes.
In: 21st Annual IEEE Symposium on Logic in Computer Science (LICS 2006), pp.
81–90. IEEE (2006)

30. Paulson, L.C., et al.: The Isabelle reference manual. Technical report, University
of Cambridge, Computer Laboratory (1993)

31. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementa-
tion, Tucson, AZ, USA, 7–13 June 2008, pp. 159–169 (2008)

https://hal.inria.fr/hal-01501744
http://people.irisa.fr/Thomas.Genet/timbuk/
http://people.irisa.fr/Thomas.Genet/timbuk/
https://hal.inria.fr/hal-01614380
https://hal.inria.fr/hal-01614380
https://doi.org/10.1007/978-3-319-26529-2_16

582 T. Genet et al.

32. Salmon, Y.: Analyse d’atteignabilité pour les programmes fonctionnels avec
stratégie d’évaluation en profondeur. Ph.D. thesis, University of Rennes 1 (2015)

33. Vazou, N., Bakst, A., Jhala, R.: Bounded refinement types. In: Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, Vancouver, BC, Canada, 1–3 September 2015, pp. 48–61 (2015)

34. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37036-6 13

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-37036-6_13
http://creativecommons.org/licenses/by/4.0/

Author Index

Aceto, Luca 203
Achilleos, Antonis 203
Ahmed, Amal 146
Altenkirch, Thorsten 293

Baldan, Paolo 165
Bansal, Suguman 420
Bazille, Hugo 403
Bouyer, Patricia 530

Capriotti, Paolo 293
Castellan, Simon 3
Chaudhuri, Swarat 420
Clairambault, Pierre 3
Clouston, Ranald 258

D’Argenio, Pedro R. 384
Dardha, Ornela 91
Demri, Stéphane 476
Devesas Campos, Marco 71
Dijkstra, Gabe 293
Docherty, Simon 441

Edalat, Abbas 459

Fabre, Eric 403
Francalanza, Adrian 203

Gay, Simon J. 91
Genest, Blaise 403
Genet, Thomas 565
Gerhold, Marcus 384
Goncharov, Sergey 313

Hartmanns, Arnd 384
Haudebourg, Timothée 565
Hayman, Jonathan 3
Herbelin, Hugo 276

Ingólfsdóttir, Anna 203

Jaber, Guilhem 20
Jacq, Clément 39
Jensen, Thomas 565

Katsumata, Shin-ya 110
Kesner, Delia 241
Kraus, Nicolai 293

Lasota, Sławomir 548
Le Roux, Stéphane 367
Levy, Paul Blain 71
Liu, Xinxin 221
Lozes, Étienne 476

Maleki, Mehrdad 459
Mansutti, Alessio 476
Melliès, Paul-André 39
Miquey, Étienne 276

New, Max 146
Nordvall Forsberg, Fredrik 293

Padoan, Tommaso 165
Pérez, Guillermo A. 367
Piórkowski, Radosław 548
Pym, David 441

Rabusseau, Guillaume 513
Ríos, Alejandro 241
Rioux, Nick 146

Sabry, Amr 348
Santocanale, Luigi 494
Scherer, Gabriel 146
Schröder, Lutz 313
Sedwards, Sean 384
Sokolova, Ana 331

Toninho, Bernardo 128
Tzevelekos, Nikos 20

Valiron, Benoît 348
van Glabbeek, Rob 183
Vardi, Moshe Y. 420
Viso, Andrés 241
Vizzotto, Juliana Kaizer 348

Winskel, Glynn 3
Woracek, Harald 331

Yoshida, Nobuko 128
Yu, Tingting 221

Zhang, Wenhui 221

	ETAPS Foreword
	Preface
	Organization
	Contents
	Semantics
	Non-angelic Concurrent Game Semantics
	1 Introduction
	2 Three Interpretations of Affine Nondeterministic PCF
	2.1 Syntax of APCF+
	2.2 Game Semantics and Event Structures
	2.3 Interpretations of APCF+ with Event Structures

	3 Uncovered Strategies up to Weak Bisimulation
	3.1 Preliminaries on Event Structures
	3.2 Definition of Uncovered Pre-strategies
	3.3 A Compact-Closed Category of Uncovered Strategies
	3.4 Interpretation of Affine Nondeterministic PCF

	4 Essential Events
	4.1 Definition of Essential Events
	4.2 Essential Strategies
	4.3 Interpretation of APCF+

	5 Conclusion
	References

	A Trace Semantics for System F Parametric Polymorphism
	1 Introduction
	2 Definition of System F and Parametricity
	3 A Nominal Trace Semantics for System F
	3.1 Trace Semantics Preview
	3.2 Definition of the LTS

	4 Parametricity in the Trace Model, and Proof of Theorem 5
	4.1 From Strachey to Trace Equivalence
	4.2 Composite LTS
	4.3 Proof of Theorem 5

	5 Related and Future Work
	References

	Categorical Combinatorics for Non Deterministic Strategies on Simple Games
	1 Introduction
	2 Non-deterministic P-strategies as P-cartesian Transductions
	3 P-cartesian Transductions as Deterministic Strategies
	4 The Pseudofunctor P
	5 The Slender-Functional Factorisation Theorem
	6 The Bicategory S of Simple Games and Non-deterministic Strategies
	7 The Exponentional Modality on the Category G
	8 The Exponential Modality on the Bicategory S
	9 Conclusion
	A The Category G of Simple Games and Deterministic Strategies
	B The Tensor Product in the Category G
	C The Exponential Modality on the Category G
	D Some Bicategorical Definitions
	E Proof of Proposition2
	F Proof that P is a pseudofunctor
	G Proof of Proposition6
	H Proof of Theorem3
	I Proof of Proposition9
	J Proof of Theorem4
	K Proof that ! Is a Pseudocomonad
	References

	A Syntactic View of Computational Adequacy
	1 Introduction
	2 PCF
	2.1 A Rationally Continuous Theory of PCF
	2.2 Adequacy

	3 PCF with Sums
	3.1 Adequacy

	4 Call-by-Push-Value
	4.1 Theory
	4.2 Adequacy

	5 Polymorphic Call-by-Push-Value
	5.1 Adequacy

	6 Concluding Remarks
	References

	Linearity
	A New Linear Logic for Deadlock-Free Session-Typed Processes
	1 Introduction
	2 PCP: Classical Processes with Mix and Cycle
	3 Operational Semantics of PCP
	4 Results for PLL and PCP
	4.1 Cycle-Elimination for PLL
	4.2 Deadlock-Freedom for PCP

	5 Related Work and Conclusion
	References

	A Double Category Theoretic Analysis of Graded Linear Exponential Comonads
	1 Introduction
	2 Related Work
	3 Graded Linear Exponential Comonad
	3.1 Graded Linear Exponential Comonad

	4 A Double-Category Theoretic Reformulation of Graded Linear Exponential Comonad
	5 Multicategory of Symmetric Lax Monoidal Multifunctors
	6 Graded Linear Exponential Comonads as Vertical Monoid Homomorphisms
	7 From Monoid Actions to Graded Comonoid-Coalgebras
	8 Conclusion
	References

	Depending on Session-Typed Processes
	1 Introduction
	2 A Dependent Type Theory of Processes
	2.1 Syntax
	2.2 A Dependent Typing System
	2.3 Example – Reasoning About Processes Using Dependent Types
	2.4 Type Soundness of the Framework

	3 Embedding the Functional Layer in the Process Layer
	3.1 The Embedding
	3.2 Properties of the Embedding

	4 Related and Future Work
	References

	FabblueUredLous Interoperability for ML and a Linear Language
	1 Introduction
	2 The blueU and redL Languages
	2.1 The Core of redL
	2.2 Linear Memory in redL
	2.3 Internal redL Syntax and Typing
	2.4 Reduction of Internal Terms

	3 Multi-language Semantics
	3.1 Lump Type and Language Boundaries
	3.2 Interoperability: Static Semantics
	3.3 Interoperability: Dynamic Semantics
	3.4 Full Abstraction from blueU into blueUredL

	4 Conclusion and Related Work
	References

	Concurrency
	Automata for True Concurrency Properties
	1 Introduction
	2 Event Structures and True Concurrent Logic
	2.1 Prime Event Structures and Regularity
	2.2 True Concurrent Logic

	3 Automata-Based Model Checker
	3.1 Infinite Parity Tree Automata
	3.2 Infinite NPAs for Model Checking
	3.3 Quotienting the Automaton

	4 Model Checking Petri Nets
	4.1 Petri Nets and Their Event Structure Semantics
	4.2 Automata Model Checking for Petri Nets
	4.3 A Prototype Tool

	5 Conclusions
	References

	A Theory of Encodings and Expressiveness (Extended Abstract)
	1 Introduction
	2 Languages, Valid Translations, and Expressiveness
	3 Correct = Valid + Congruence
	4 A Hierarchy of Expressiveness Preorders
	5 Closed-Term Languages
	6 Translating a Synchronous into an Asynchronous
	7 Congruence Closure
	8 A Congruence Closure Property for Valid Translations
	9 Integrating Language Features Through Translations
	10 A Unique Decomposition of Terms
	11 Invariance of Meaning Under -conversion
	12 Compositionality
	13 Related Work
	References

	A Framework for Parameterized Monitorability
	1 Introduction
	2 Background
	3 Monitors that Detect Conditions
	4 Instantiations
	4.1 The Inability to Perform an Action
	4.2 Depth-Bounded Static Analysis

	5 Extending External Monitorability
	5.1 External Monitoring with Conditions
	5.2 Instantiating External Monitors with Conditions

	6 Conclusions
	References

	Logics for Bisimulation and Divergence
	1 Introduction
	2 Bisimulations and Divergence
	3 Modal Characterization
	4 Divergence in Finite State Systems
	5 Conclusion
	References

	Lambda-Calculi and Types
	Call-by-Need, Neededness and All That
	1 Introduction
	2 Preliminaries
	2.1 The Call-by-Name Lambda-Calculus
	2.2 Head, Weak-Head and Leftmost Reductions

	3 Towards Neededness
	3.1 Residuals
	3.2 Notions of Normal Form
	3.3 Notions of Needed Reduction

	4 The Type System V
	5 Substitution and Reduction on Derivations
	6 Weak-Head Neededness and Typed Occurrences
	6.1 Weak-Head Needed Redexes Are Typed
	6.2 Principally Typed Redexes Are Weak-Head Needed

	7 Characterising Weak-Head Needed Normalisation
	8 The Call-by-Need Lambda-Calculus
	9 Observational Equivalence
	10 Conclusion
	References

	Fitch-Style Modal Lambda Calculi
	1 Introduction
	2 Intuitionistic K
	2.1 Type System
	2.2 Computation
	2.3 Categorical Semantics

	3 Left Adjoints and Categorical Completeness
	3.1 Type System and Computation
	3.2 Categorical Semantics

	4 Intuitionistic S4 for Idempotent Comonads
	4.1 Type System and Computation
	4.2 Categorical Semantics
	4.3 Coherence
	4.4 Left Adjoints and Categorical Completeness

	5 Intuitionistic R
	6 Related and Further Work
	References

	Realizability Interpretation and Normalization of Typed Call-by-Need -calculus with Control
	1 Introduction
	1.1 Realizability-Based Normalization
	1.2 Contributions of the Paper

	2 The [lv]-calculus
	2.1 The Call-by-Need Evaluation Strategy
	2.2 Explicit Environments
	2.3 Syntax and Reduction Rules
	2.4 A Type System for the [lv]-calculus

	3 Normalization of the [lv]-calculus
	3.1 Normalization by Realizability
	3.2 Realizability Interpretation for the [lv]-calculus
	3.3 Extension to 2nd-Order Type Systems

	4 Conclusion and Further Work
	References

	Quotient Inductive-Inductive Types
	1 Introduction
	2 Sorts
	3 Algebras
	3.1 Relative Continuity and Constructor Specifications
	3.2 Point Constructors
	3.3 Reindexing Target Functors
	3.4 Path Constructors
	3.5 Categories of Algebras are Complete

	4 Elimination Principles
	4.1 The Section Induction Principle
	4.2 Initiality, and its Relation to the Section Induction Principle

	5 Conclusions and Further Work
	References

	Category Theory and Quantum Control
	Guarded Traced Categories
	1 Introduction
	2 Preliminaries
	3 Guarded Categories
	4 Guardedness via Guarded Ideals
	5 Guarded Traces
	6 Vacuous Guardedness and Nuclear Ideals
	7 Conclusions and Further Work
	References

	Proper Semirings and Proper Convex Functors
	1 Introduction
	2 Proper Functors
	3 Properness of Cubic Functors
	4 A Subcubic Convex Functor
	5 An Extension Theorem for F"0362F-coalgebras
	6 Properness of F"0362F
	References

	From Symmetric Pattern-Matching to Quantum Control
	1 Introduction
	2 Pattern-Matching Isomorphisms
	2.1 An Example
	2.2 Terms and Types
	2.3 Semantics

	3 Second-Order Functions, Lists, and Recursion
	3.1 Terms and Types
	3.2 Semantics

	4 Examples
	5 From Reversible Isos to Quantum Control
	5.1 Extending the Language to Linear Combinations of Terms
	5.2 Modeling Types as Hilbert Spaces
	5.3 Modeling Isos as Bounded Linear Maps
	5.4 Modeling Isos as Unitary Maps

	6 Conclusion
	References

	Quantitative Models
	The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes
	1 Introduction
	2 Preliminaries
	2.1 Stochastic Models
	2.2 Reachability Games Against Nature

	3 The Never-Worse Relation
	3.1 The Usefulness of the NWR
	3.2 Known Efficiently-Computable Special Cases

	4 Graph-Based Characterization of the NWR
	5 Intractability of the NWR
	6 Efficiently Under-Approximating the NWR
	7 Conclusions
	References

	A Hierarchy of Scheduler Classes for Stochastic Automata
	1 Introduction
	2 Preliminaries
	3 Classes of Schedulers
	3.1 Classic Schedulers
	3.2 Non-prophetic Schedulers

	4 The Power of Schedulers
	4.1 The Classic Hierarchy
	4.2 The Non-prophetic Hierarchy

	5 Experiments
	6 Conclusion
	References

	Symbolically Quantifying Response Time in Stochastic Models Using Moments and Semirings
	1 Introduction
	2 Probabilistic Automata
	3 Symbolically Computing Moments Using Semirings
	3.1 Semirings Associated with Moments
	3.2 Computations in a Semiring
	3.3 A Symbolic Algorithm
	3.4 Extension to Continuous Time

	4 Uniqueness of Distribution, Parameters and Hierarchy
	4.1 Hierarchical Probabilistic Automata
	4.2 Parametric Systems
	4.3 Uniqueness of the Distribution
	4.4 A Sequence of Distributions Converging Towards

	5 Bounding the Response Time
	5.1 Tchebychev Bounds Associated with One Moment
	5.2 Optimal Bounds for a Pair of Moments

	6 Conclusion
	References

	Comparator Automata in Quantitative Verification
	1 Introduction
	2 Preliminaries
	3 Comparator Automata
	3.1 Quantitative Inclusion
	3.2 Incomplete-Information Quantitative Games

	4 Discounted-Sum Comparator
	5 Limit-Average Comparator
	5.1 Limit-Average Language and Comparison
	5.2 Prefix-Average Comparison and Comparator

	6 Conclusion
	References

	Logics and Equational Theories
	Modular Tableaux Calculi for Separation Theories
	1 Introduction
	2 Preliminaries
	3 Modular Tableaux Calculi for Separation Theories
	4 Applications to Separation Logics
	5 Metatheory
	6 Conclusions and Further Work
	References

	Differential Calculus with Imprecise Input and Its Logical Framework
	1 Introduction
	1.1 Background
	1.2 Stably Locally Compact Space and Semi-strong Proximity Lattice
	1.3 Related Work

	2 L-derivative with Imprecise Inputs
	3 Lipschitzian Approximable Mapping
	4 Conclusion
	References

	The Effects of Adding Reachability Predicates in Propositional Separation Logic
	1 Introduction
	2 Preliminaries
	3 Undecidability of SL(, –6mu*, ls)
	3.1 Encoding Quantified Variables as Cells in the Heap
	3.2 The Translation
	3.3 Expressing the Auxiliary Atomic Predicates
	3.4 Undecidability Results and Non-finite Axiomatization

	4 SL(, reach+) and Other PSPACE Variants
	4.1 Introduction to Test Formulae
	4.2 Expressive Power and Small Model Property
	4.3 Complexity Upper Bounds

	5 Conclusion
	References

	The Equational Theory of the Natural Join and Inner Union is Decidable
	1 Introduction
	2 Elementary Notions on Orders and Lattices
	3 The Relational Lattices R(D,A)
	4 Lattices from Metric Spaces
	4.1 The Lattice of a Space
	4.2 Extension from a Boolean Subalgebra

	5 Failures from Big to Small Lattices
	5.1 The Lattices R(D,A)T
	5.2 Preservation of the Failure in the Lattices R(D,A)T
	5.3 Preservation of the Failure in a Finite Lattice L(X,)

	6 Preservation of the Failure in a Finite Lattice L(Sec)
	7 Conclusions
	References

	Graphs and Automata
	Minimization of Graph Weighted Models over Circular Strings
	1 Introduction
	1.1 Notations

	2 Preliminaries
	2.1 Weighted Automata and GWMs over Circular Strings
	2.2 Finite-Dimensional Algebras

	3 Semi-Simple GWMs and the Equivalence Problem
	3.1 Semi-Simplicity, Nilpotent Matrices and Traces
	3.2 Equivalence of GWMs

	4 Minimization of GWMs over Circular Strings
	5 Conclusion
	References

	Games on Graphs with a Public Signal Monitoring
	1 Introduction
	2 Definitions
	2.1 Concurrent Multiplayer Games with Signals
	2.2 The Problem
	2.3 First Undecidability Results

	3 The Epistemic Game Abstraction
	3.1 Construction of the Game Structure EG
	3.2 Interpretation of this Abstraction
	3.3 Winning Condition of Eve
	3.4 Correction of the Epistemic Abstraction
	3.5 Remarks on the Construction

	4 Two Applications with Publicly Visible Payoffs
	5 Conclusion
	References

	WQO Dichotomy for 3-Graphs
	1 Introduction
	2 Petri Nets with Homogeneous Data
	3 Results
	4 Proof of Theorem 4
	4.1 Case (C)

	References

	Verifying Higher-Order Functions with Tree Automata
	1 Introduction
	2 Background
	2.1 Term Rewriting and Tree Automata
	2.2 Tree Automata Completion Algorithm

	3 Termination of Tree Automata Completion
	4 A Class of Analysable Programs
	4.1 Types
	4.2 The Class K-TRS
	4.3 Proof of Theorem 2

	5 Equation Generation
	6 Experiments
	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

