
24th International Conference, TACAS 2018
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14–20, 2018, Proceedings, Part I

Tools and Algorithms 
for the Construction 
and Analysis of SystemsLN

CS
 1

08
05

AR
Co

SS
Dirk Beyer
Marieke Huisman (Eds.)



Lecture Notes in Computer Science 10805

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA



More information about this series at http://www.springer.com/series/7407



Dirk Beyer • Marieke Huisman (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems
24th International Conference, TACAS 2018
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14–20, 2018
Proceedings, Part I



Editors
Dirk Beyer
Ludwig-Maximilians-Universität München
Munich
Germany

Marieke Huisman
University of Twente
Enschede
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-89959-6 ISBN 978-3-319-89960-2 (eBook)
https://doi.org/10.1007/978-3-319-89960-2

Library of Congress Control Number: 2018940138

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-4832-7662


ETAPS Foreword

Welcome to the proceedings of ETAPS 2018! After a somewhat coldish ETAPS 2017
in Uppsala in the north, ETAPS this year took place in Thessaloniki, Greece. I am
happy to announce that this is the first ETAPS with gold open access proceedings. This
means that all papers are accessible by anyone for free.

ETAPS 2018 was the 21st instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program facilitates
participation in an exciting event, offering attendees the possibility to meet many
researchers working in different directions in the field, and to easily attend talks of
different conferences. Before and after the main conference, numerous satellite work-
shops take place and attract many researchers from all over the globe.

ETAPS 2018 received 479 submissions in total, 144 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all the authors for their interest in
ETAPS, all the reviewers for their peer reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2018 was enriched by the unifying invited speaker Martin Abadi (Google
Brain, USA) and the conference-specific invited speakers (FASE) Pamela Zave (AT & T
Labs, USA), (POST) Benjamin C. Pierce (University of Pennsylvania, USA), and
(ESOP) Derek Dreyer (Max Planck Institute for Software Systems, Germany). Invited
tutorials were provided by Armin Biere (Johannes Kepler University, Linz, Austria) on
modern SAT solving and Fabio Somenzi (University of Colorado, Boulder, USA) on
hardware verification. My sincere thanks to all these speakers for their inspiring and
interesting talks!

ETAPS 2018 took place in Thessaloniki, Greece, and was organised by the
Department of Informatics of the Aristotle University of Thessaloniki. The university
was founded in 1925 and currently has around 75000 students; it is the largest uni-
versity in Greece. ETAPS 2018 was further supported by the following associations
and societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Panagiotis Katsaros (general chair), Ioannis Stamelos,



Lefteris Angelis, George Rahonis, Nick Bassiliades, Alexander Chatzigeorgiou, Ezio
Bartocci, Simon Bliudze, Emmanouela Stachtiari, Kyriakos Georgiadis, and Petros
Stratis (EasyConferences).

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Wil van der Aalst (Aachen), Parosh Abdulla (Uppsala),
Amal Ahmed (Boston), Christel Baier (Dresden), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Mikolaj Bojanczyk (Warsaw), Luis Caires (Lisbon), Jurriaan Hage
(Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester), Marieke Huisman
(Twente), Panagiotis Katsaros (Thessaloniki), Ralf Küsters (Stuttgart), Ugo Dal Lago
(Bologna), Kim G. Larsen (Aalborg), Matteo Maffei (Vienna), Tiziana Margaria
(Limerick), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Andrew M. Pitts (Cambridge), Alessandra Russo (London), Dave Sands (Göteborg),
Don Sannella (Edinburgh), Andy Schürr (Darmstadt), Alex Simpson (Ljubljana),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas
Vojnar (Brno), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2018. Finally, a big thanks to Panagiotis and his local orga-
nization team for all their enormous efforts that led to a fantastic ETAPS in
Thessaloniki!

February 2018 Joost-Pieter Katoen
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Preface

TACAS 2018 is the 24th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series. TACAS
2018 is part of the 21st European Joint Conferences on Theory and Practice of Soft-
ware (ETAPS 2018). The conference is held in the hotel Makedonia Palace in Thes-
saloniki, Greece, during April 16–19, 2018.

Conference Description. TACAS is a forum for researchers, developers, and users
interested in rigorously based tools and algorithms for the construction and analysis of
systems. The conference aims to bridge the gaps between different communities with
this common interest and to support them in their quest to improve the utility, relia-
bility, flexibility, and efficiency of tools and algorithms for building systems. TACAS
solicits five types of submissions:

– Research papers, identifying and justifying a principled advance to the theoretical
foundations for the construction and analysis of systems, where applicable sup-
ported by experimental validation

– Case-study papers, reporting on case studies and providing information about the
system being studied, the goals of the study, the challenges the system poses to
automated analysis, research methodologies and approaches used, the degree to
which goals were attained, and how the results can be generalized to other problems
and domains

– Regular tool papers, presenting a new tool, a new tool component, or novel
extensions to an existing tool, with an emphasis on design and implementation
concerns, including software architecture and core data structures, practical appli-
cability, and experimental evaluations

– Tool-demonstration papers (6 pages), focusing on the usage aspects of tools
– Competition-contribution papers (4 pages), focusing on describing software-

verification systems that participated at the International Competition on Software
Verification (SV-COMP), which has been affiliated with our conference since
TACAS 2012

New Items in the Call for Papers. There were three new items in the call for papers,
which we briefly discuss.

– Focus on Replicability of Research Results. We consider that reproducibility of
results is of the utmost importance for the TACAS community. Therefore, we
encouraged all authors of submitted papers to include support for replicating the
results of their papers.

– Limit of 3 Submissions. A change of the TACAS bylaws requires that each indi-
vidual author is limited to a maximum of three submissions as an author or
co-author. Authors of co-authored submissions are jointly responsible for respecting
this policy. In case of violations, all submissions of this (co-)author would be
desk-rejected.



– Artifact Evaluation. For the first time, TACAS 2018 included an optional artifact
evaluation (AE) process for accepted papers. An artifact is any additional material
(software, data sets, machine-checkable proofs, etc.) that substantiates the claims
made in a paper and ideally makes them fully replicable. The evaluation and
archival of artifacts improves replicability and traceability for the benefit of future
research and the broader TACAS community.

Paper Selection. This year, 154 papers were submitted to TACAS, among which
115 were research papers, 6 case-study papers, 26 regular tool papers, and 7 were
tool-demonstration papers. After a rigorous review process, with each paper reviewed
by at least 3 program committee (PC) members, followed by an online discussion, the
PC accepted 35 research papers, 2 case-study papers, 6 regular tool papers, and 2
tool-demonstration papers (45 papers in total).

Competition on Software Verification (SV-COMP). TACAS 2018 also hosted the
7th International Competition on Software Verification (SV-COMP), chaired and
organized by Tomas Vojnar. The competition again had a high participation: 21 ver-
ification systems with developers from 11 countries were submitted for the systematic
comparative evaluation, including two submissions from industry. This volume
includes short papers describing 9 of the participating verification systems. These
papers were reviewed by a separate program committee (PC); each of the papers was
assessed by four reviewers. One session in the TACAS program was reserved for the
presentation of the results: the summary by the SV-COMP chair and the participating
tools by the developer teams.

Artifact-Evaluation Process. The authors of each of the 45 accepted papers were
invited to submit an artifact immediately after the acceptance notification. An artifact
evaluation committee (AEC), chaired by Arnd Hartmanns and Philipp Wendler,
reviewed these artifacts, with 2 reviewers assigned to each artifact. The AEC received
33 artifact submissions, of which 24 were successfully evaluated (73% acceptance rate)
and have been awarded the TACAS AEC badge, which is added to the title page of the
respective paper. The AEC used a two-phase reviewing process: Reviewers first per-
formed an initial check of whether the artifact was technically usable and whether the
accompanying instructions were consistent, followed by a full evaluation of the artifact.
In addition to the textual reviews, reviews also provided scores for consistency,
completeness, and documentation. The main criterion for artifact acceptance was
consistency with the paper, with completeness and documentation being handled in a
more lenient manner as long as the artifact was useful overall. Finally, TACAS pro-
vided authors of all submitted artifacts the possibility to publish and permanently
archive a “camera-ready” version of their artifact on https://springernature.figshare.
com/tacas, with the only requirement being an open license assigned to the artifact.
This possibility was used for 20 artifacts, while 2 more artifacts were archived inde-
pendently by the authors.

Acknowledgments. We would like to thank all the people who helped to make
TACAS 2018 successful. First, the chairs would like to thank the authors for sub-
mitting their papers to TACAS 2018. The reviewers did a great job in reviewing
papers: They contributed informed and detailed reports and took part in the discussions
during the virtual PC meeting. We also thank the steering committee for their advice.
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Special thanks go to the general chair, Panagiotis Katsaros, and his overall organization
team, to the chair of the ETAPS 2018 executive board, Joost-Pieter Katoen, who took
care of the overall organization of ETAPS, to the EasyConference team for the local
organization, and to the publication team at Springer for solving all the extra problems
that our introduction of the new artifact-evaluation process caused.

March 2018 Dirk Beyer
Marieke Huisman

(PC Chairs)
Goran Frehse
(Tools Chair)
Tomas Vojnar

(SV-COMP Chair)
Arnd Hartmanns
Philipp Wendler

(AEC Chairs)
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Abstract. We make a new contribution to the field by providing a new
method of using SMT solvers in saturation-based reasoning. We do this
by introducing two new inference rules for reasoning with non-ground
clauses. The first rule utilises theory constraint solving (an SMT solver)
to perform reasoning within a clause to find an instance where we can
remove one or more theory literals. This utilises the power of SMT solvers
for theory reasoning with non-ground clauses, reasoning which is cur-
rently achieved by the addition of often prolific theory axioms. The sec-
ond rule is unification with abstraction where the notion of unification is
extended to introduce constraints where theory terms may not otherwise
unify. This abstraction is performed lazily, as needed, to allow the super-
position theorem prover to make as much progress as possible without
the search space growing too quickly. Additionally, the first rule can be
used to discharge the constraints introduced by the second. These rules
were implemented within the Vampire theorem prover and experimental
results show that they are useful for solving a considerable number of
previously unsolved problems. The current implementation focuses on
complete theories, in particular various versions of arithmetic.

1 Introduction

Reasoning in quantifier-free first-order logic with theories, such as arithmetic, is
hard. Reasoning with quantifiers and first-order theories is very hard. It is unde-
cidable in general and Π1

1 -complete for many simple combinations, for example
linear (real or integer) arithmetic and uninterpreted functions [16]. At the same
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time such reasoning is essential to the future success of certain application areas,
such as program analysis and software verification, that rely on quantifiers to,
for example, express properties of objects, inductively defined data structures,
the heap and dynamic memory allocation. This paper presents a new approach
to theory reasoning with quantifiers that (1) uses an SMT solver to do local
theory reasoning within a clause, and (2) extends unification to avoid the need
to explicitly separate theory and non-theory parts of clauses.

There are two directions of research in the area of reasoning with problems
containing quantifiers and theories. The first is the extension of SMT solvers with
instantiation heuristics such as E-matching [9,12]. The second is the extension
of first-order reasoning approaches with support for theory reasoning (note that
the instantiation heuristics from SMT solvers are not appropriate in this context,
as discussed in [26]). There have been a number of varied attempts in this sec-
ond direction with some approaches extending various calculi [2,3,7,8,13,16,28]
or using an SMT solver to deal with the ground part of the problem [20]. This
second approach includes our previous work developing AVATAR modulo theo-
ries [21], which complements the approach presented in this paper as explained
later. A surprisingly effective approach to theory reasoning with first-order the-
orem provers is to add theory axioms (i.e. axioms from the theory of interest).
Whilst this has no hope of being complete, it can be used to prove a large num-
ber of problems of interest. However, theory axioms can be highly prolific in
saturation-based proof search and often swamp the search space with irrelevant
consequences of the theory [22]. This combinatorial explosion prevents theory
axioms from being useful in cases where deep theory reasoning is required. This
paper provides a solution that allows for a combination of these approaches i.e.
the integration with an SMT solver, the use of theory axioms, and the heuristic
extension of the underlying calculi.

Our paper contains two main ideas and we start with examples (which we
revisit later) to motivate and explain these ideas. The first idea is motivated
by the observation that the theory part of a first-order clause might already
be restricting the interesting instances of a clause, sometimes uniquely, and we
can use this to produce simpler instances that are useful for proof search. For
example, the first-order clause

14x �� x2 + 49 ∨ p(x)

has a single solution for x which makes the first literal false with respect to the
underlying theory of arithmetic, namely x = 7. Therefore, every instance of this
clause is a logical consequence of its single instance

p(7)

in the underlying theory. If we apply standard superposition rules to the original
clause and a sufficiently rich axiomatisation of arithmetic, we will most likely
end up with a very large number of logical consequences and never generate
p(7), or run out of space before generating it. For many clauses the solution will
not be unique but can still provide useful instances, for example by taking the
clause

7 ≤ x ∨ p(x)
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and using its instance
7 ≤ 0 ∨ p(0)

we can derive the clause
p(0).

This clause does not represent all solutions for 7 ≤ x, but it results in a clause
with fewer literals. Moreover, this clause is ground and can be passed to an SMT
solver (this is where this approach complements the work of AVATAR modulo
theories).

Finally, there are very simple cases where this kind of approach can imme-
diately find inconsistencies. For example, the clause

x ≤ 0 ∨ x ≤ y

has instances making it false, for example via the substitution {x �→ 1, y �→ 0}.
As explained in Sect. 3, these observations lead to an instantiation rule that

considers clauses to be in the form T → C, where T is the theory part, and
uses an SMT solver to find a substitution θ under which T is valid in the given
theory, thus producing the instance Cθ. Which, in the case where C = ⊥, can
find general inconsistencies.

The second rule is related to the use of abstraction. By an abstraction we
mean (variants of) the rule obtaining from a clase C[t], where t is a non-variable
term, a clause x �� t∨C[x], where x is a new variable. Abstraction is implemented
in several theorem provers, including the previous version of our theorem prover
Vampire [18] used for experiments described in this paper.

Take, for example, the formula

(∀x : int . p(2x)) → p(10)

which is ARI189=1 from the TPTP library [33]. When negated and clausified,
this formula gives two unit clauses

p(2x) and ¬p(10),

from which we can derive nothing without abstracting at least one of the clauses.
If we abstract p(10) into p(y) ∨ y �� 10 then a resolution step would give

us 2x �� 10 and simple evaluation would provide x �� 5, which is refutable by
equality resolution. However, the abstraction step is necessary. Some approaches
rely on full abstraction where theory and non-theory symbols are fully separated.
This is unattractive for a number of reasons which we enumerate here:

1. A fully abstracted clause tends to be much longer, especially if the original
clause contains deeply nested theory and non-theory symbols. Getting rid of
long clauses was one of the motivations of our previous AVATAR work on
clause splitting [34] (see this work for why long clauses are problematic for
resolution-based approaches). However, the long clauses produced by abstrac-
tion will share variables, reducing the impact of AVATAR.
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2. The AVATAR modulo theories approach [21] ensures that the first-order
solver is only exploring part of the search space that is theory-consistent
in its ground part (using a SMT solver to achieve this). This is effective but
relies on ground literals remaining ground, even those that mix theory and
non-theory symbols. Full abstraction destroys such ground literals.

3. As mentioned previously, the addition of theory axioms can be effective for
problems requiring shallow theory reasoning. Working with fully abstracted
clauses forces us to make first-order reasoning to treat the theory part of
a clause differently. This makes it difficult to take full advantage of theory
axiom reasoning.

The final reason we chose not to fully abstract clauses in our work is that the
main advantage of full abstraction for us would be that it deals with the above
problem, but we have a solution which we believe solves this issue in a more
satisfactory way, as confirmed by our experiments described in Sect. 5.

The second idea is to perform this abstraction lazily, i.e., only where it is
required to perform inference steps. As described in Sect. 4, this involves extend-
ing unifications to produce theory constraints under which two terms will unify.
As we will see, these theory constraints are exactly the kind of terms that can
be handled easily by the instantiation technique introduced in our first idea.

As explained above, the contributions of this paper are

1. a new instantiation rule that uses an SMT solver to provide instances consis-
tent with the underlying theory (Sect. 3),

2. an extension of unification that provides a mechanism to perform lazy abstrac-
tion, i.e., only abstracting as much as is needed, which results in clauses with
theory constraints that can be discharged by the previous instantiation tech-
nique (Sect. 4),

3. an implementation of these techniques in the Vampire theorem prover
(described in Sects. 3 and 4),

4. an experimental evaluation that demonstrate the effectiveness of these tech-
niques both individually and in combination with the rest of the powerful
techniques implemented within Vampire (Sect. 5).

An extended version of this paper [32] contains further examples and discussion.
We start our presentation by introducing the necessary background material.

2 Preliminaries and Related Work

First-Order Logic and Theories. We consider a many-sorted first-order logic
with equality. A signature is a pair Σ = (Ξ,Ω) where Ξ is a set of sorts and
Ω a set of predicate and function symbols with associated argument and return
sorts from Ξ. Terms are of the form c, x, or f(t1, . . . , tn) where f is a function
symbol of arity n ≥ 1, t1, . . . , tn are terms, c is a zero arity function symbol
(i.e. a constant) and x is a variable. We assume that all terms are well-sorted.
Atoms are of the form p(t1, . . . , tn), q or t1 �s t2 where p is a predicate symbol
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of arity n, t1, . . . , tn are terms, q is a zero arity predicate symbol and for each
sort s ∈ Ξ, �s is the equality symbol for the sort s. We write simply � when s is
known from the context or irrelevant. A literal is either an atom A, in which case
we call it positive, or a negation of an atom ¬A, in which case we call it negative.
When L is a negative literal ¬A and we write ¬L, we mean the positive literal
A. We write negated equalities as t1 �� t2. We write t[s]p and L[s]p to denote
that a term s occurs in a term t (in a literal L) at a position p.

A clause is a disjunction of literals L1 ∨ . . . ∨ Ln for n ≥ 0. We disregard
the order of literals and treat a clause as a multiset. When n = 0 we speak of
the empty clause, which is always false. When n = 1 a clause is called a unit
clause. Variables in clauses are considered to be universally quantified. Standard
methods exist to transform an arbitrary first-order formula into clausal form
(e.g. [19] and our recent work in [25]).

A substitution is any expression θ of the form {x1 �→ t1, . . . , xn �→ tn}, where
n ≥ 0. Eθ is the expression obtained from E by the simultaneous replacement of
each xi by ti. By an expression we mean a term, an atom, a literal, or a clause.
An expression is ground if it contains no variables. An instance of E is any
expression Eθ and a ground instance of E is any instance of E that is ground.
A unifier of two terms, atoms or literals E1 and E2 is a substitution θ such that
E1θ = E2θ. It is known that if two expressions have a unifier, then they have a
so-called most general unifier.

We assume a standard notion of a (first-order, many-sorted) interpretation
I, which assigns a non-empty domain Is to every sort s ∈ Ξ, and maps every
function symbol f to a function If and every predicate symbol p to a relation
Ip on these domains so that the mapping respects sorts. We call If the interpre-
tation of f in I, and similarly for Ip and Is. Interpretations are also sometimes
called first-order structures. A sentence is a closed formula, i.e., with no free
variables. We use the standard notions of validity and satisfiability of sentences
in such interpretations. An interpretation is a model for a set of clauses if (the
universal closure of) each of these clauses is true in the interpretation.

A theory T is identified by a class of interpretations. A sentence is satisfiable
in T if it is true in at least one of these interpretations and valid if it is true in
all of them. A function (or predicate) symbol f is called uninterpreted in T , if
for every interpretation I of T and every interpretation I ′ which agrees with I
on all symbols apart from f , I ′ is also an interpretation of T . A theory is called
complete if, for every sentence F of this theory, either F or ¬F is valid in this
theory. Evidently, every theory of a single interpretation is complete. We can
define satisfiability and validity of arbitrary formulas in an interpretation in a
standard way by treating free variables as new uninterpreted constants.

For example, the theory of integer arithmetic fixes the interpretation of a dis-
tinguished sort sint ∈ ΞIA to the set of mathematical integers Z and analogously
assigns the usual meanings to {+,−, <,>, ∗} ∈ ΩIA. We will mostly deal with
theories in which their restriction to interpreted symbols is a complete theory,
for example, integer or real linear arithmetic. In the sequel we assume that T is
an arbitrary but fixed theory and give definitions relative to this theory.
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Abstracted Clauses. Here we discuss how a clause can be separated into a
theory and non-theory part. To this end we need to divide symbols into theory
and non-theory symbols. When we deal with a combination of theories we con-
sider as theory symbols those symbols interpreted in at least one of the theories
and all other symbols as non-theory symbols. That is, non-theory symbols are
uninterpreted in all theories.

A non-equality literal is a theory literal if its predicate symbol is a theory
symbol. An equality literal t1 �s t2 is a theory literal, if the sort s is a theory
sort. A non-theory literal is any literal that is not a theory literal. A literal is
pure if it contains only theory symbols or only non-theory symbols. A clause is
fully abstracted, or simply abstracted, if it only contains pure literals. A clause
is partially abstracted if non-theory symbols do not appear in theory literals.
Note that in partially abstracted clauses theory symbols are allowed to appear
in non-theory literals.

A non-variable term t is called a theory term (respectively non-theory term)
if its top function symbol is a theory (respectively non-theory) symbol. When
we say that a term is a theory or a non-theory term, we assume that this term
is not a variable.

Given a non-abstracted clause L[t]∨C where L is a theory literal and t a non-
theory term (or the other way around), we can construct the equivalent clause
L[x] ∨ C ∨ x �� t for a fresh variable x. Repeated application of this process will
lead to an abstracted clause, and doing this only for theory literals will result in
a partially abstracted clause. In both cases, the results are unique (up to variable
renaming).

The above abstraction process will take a + a � 1, where a is a non-theory
symbol, and produce x+y � 1∨x �� a∨y �� a. There is a simpler equivalent fully
abstracted clause x + x � 1 ∨ x �� a, and we would like to avoid unnecessarily
long clauses. For this reason, we will assume that abstraction will abstract syn-
tactically equal subterms using the same fresh variable, as in the above example.
If we abstract larger terms first, the result of abstractions will be unique up to
variable renaming.

Superposition Calculus. Later we will show how our underlying calculus, the
superposition and resolution calculus, can be updated to use an updated notion
of unification. For space reasons we do not replicate this calculus here (but it is
given in our previous work [15]). We do, however, draw attention to the following
Equality Resolution rule

s �� t ∨ C

Cθ
θ is a most general unifier of s and t

as, without modification, this rule will directly undo any abstractions. This rule
will be used in Sect. 3 to justify ignoring certain literals when performing instan-
tiation.
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Saturation-Based Proof Search (and Theory Reasoning). We introduce
our new approach within the context of saturation-based proof search. The gen-
eral idea in saturation is to maintain two sets of Active and Passive clauses. A
saturation-loop then selects a clause C from Passive, places C in Active, applies
generating inferences between C and clauses in Active, and finally places newly
derived clauses in Passive after applying some retention tests. The retention tests
involve checking whether the new clause is itself redundant (i.e. a tautology) or
redundant with respect to existing clauses.

To perform theory reasoning within this context it is common to do two
things. Firstly, to evaluate new clauses to put them in a common form (e.g.
rewrite all inequalities in terms of <) and evaluate ground theory terms and
literals (e.g. 1 + 2 becomes 3 and 1 < 2 becomes false). Secondly, as previously
mentioned, relevant theory axioms can be added to the initial search space.
For example, if the input clauses use the + symbol one can add the axioms
x + y � y + x and x + 0 � x, among others.

3 Generating Simpler Instances

In the introduction, we showed how useful instances can be generated by finding
substitutions that make theory literals false. We provide further motivation for
the need for instances and then describe a new inference rule capturing this
approach.

There are some very simple problems that are difficult to solve by the addition
of theory axioms. Consider, for example, the following conjecture valid in the
theory of integer arithmetic:

(∃x)(x + x � 2),

which yields the following unit clause after being negated for refutation

x + x �� 2.

It takes Vampire almost 15 s to refute this clause using theory axioms (and
non-trivial search parameters) and involves the derivation of intermediate theory
consequences such as x+1 � y +1∨ y +1 ≤ x∨x+1 ≤ y. In contrast, applying
the substitution {x �→ 1} immediately leads to a refutation via evaluation.

The generation of instances in this way is not only useful where theory axiom
reasoning explodes, it can also significantly shorten proofs where theory axiom
reasoning succeeds. For example, there is a proof of the problem DAT101=1 from
the TPTP library using theory axioms that involves generating just over 230
thousand clauses. In contrast, instantiating an intermediate clause

inRange(x, cons(1, cons(5, cons(2, nil)))) ∨ x < 4 (1)

with {x �→ 4} solves the problem after generating just 171 clauses.
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Theory Instantiation. From the above discussion it is clear that generating
instances of theory literals may drastically improve performance of saturation-
based theorem provers. The problem is that the set of all such instances can be
infinite, so we should try to generate only those instances that are likely not to
degrade the performance.

There is a special case of instantiation that allows us to derive from a clause
C a clause with fewer literals than C. We can capture this in the following theory
instantiation inference rule where the notion of trivial literal has not yet been
defined.

P ∨ D
Dθ

(TheoryInst)

such that

1. P contains only pure theory literals;
2. ¬Pθ is valid in T (equivalently, Pθ is unsatisfiable in T ).
3. P contains no literals trivial in P ∨ D;

The second condition ensures that Pθ can be safely removed. This also avoids
making a theory literal valid in the theory (a theory tautology) after instanti-
ation. For example, if we had instantiated clause (1) with {x �→ 3} then the
clause would have been evaluated to true (because of 3 < 4) and thrown away
as a theory tautology.

The third condition avoids the potential problem of simply undoing abstrac-
tion. For example, consider the unit clause p(1, 5) which will be abstracted as

x �� 1 ∨ y �� 5 ∨ p(x, y). (2)

The substitution θ = {x �→ 1, y �→ 5} makes the formula x � 1 ∧ y � 5 valid. Its
application, followed by evaluation produces p(x, y)θ = p(1, 5), i.e. the original
clause.

More generally, a clause does not need to be abstracted to contain such
literals. For example, the clause

x �� 1 + y ∨ p(x, y)

might produce, after applying TheoryInst (without the third condition) and
evaluation, the instance p(1, 0), but it can also be used to produce the more
general clause p(y + 1, y) using equality resolution.

Based on the above discussion we define literals that we do not want to
use for applying TheoryInst since we can use a sequence of equality resolution
steps to solve them. Let C be a clause. The set of trivial literals in C is defined
recursively as follows. A literal L is trivial in C if

1. L is of the form x �� t such that x does not occur in t;
2. L is a pure theory literal;
3. every occurrence of x in C apart from its occurrence in x �� t is either in a

literal that is not a pure theory literal, or in a literal trivial in C.
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We call such literals trivial as they can be removed by a sequence of equality
resolution steps. For example, in clause (2) both x �� 1 and y �� 5 are trivial.
Consider another example: the clause

x �� y + 1 ∨ y �� z · z ∨ p(x, y, z).

The literal x �� y + 1 is trivial, because, apart from this literal, x occurs only
in the non-theory literal p(x, y, z). The literal y �� z · z is also trivial, because y
occurs only in non-theory literal p(x, y, z) and in a trivial literal x �� y + 1.

It is easy to argue that all pure theory literals introduced by abstraction are
trivial.

Implementation. To use TheoryInst , we apply the following steps to each
given clause C:

1. abstract relevant literals;
2. collect (all) non-trivial pure theory literals L1, . . . , Ln;
3. run an SMT solver on T = ¬L1 ∧ . . . ∧ ¬Ln;
4. if the SMT solver returns

– a model, we turn it into a substitution θ such that Tθ is valid in T ;
– unsatisfiable, then C is a theory tautology and can be removed.

Note that the abstraction step is not necessary for using TheoryInst , since it
will only introduce trivial literals. However, for each introduced theory literal
x �� t the variable x occurs in a non-theory literal and inferences applied to this
non-theory literal may instantiate x to a term s such that s �� t is non-trivial.
Let us now discuss the implementation of each step in further detail.

Selecting Pure Theory Literals. In the definition of TheoryInst we did not specify
that P contains all pure theory literals in the premise. The reason is that some
pure theory literals may be unhelpful. For example, consider

x � 0 ∨ p(x).

Here the SMT solver could select any value for x, apart from 0. In general, pos-
itive equalities are less helpful than negative equalities or interpreted predicates
as they restrict the instances less. We introduce three options to control this
selection:

– strong: Only select strong literals where a literal is strong if it is a negative
equality or an interpreted literal.

– overlap: Select all strong literals and additionally those theory literals whose
variables overlap with a strong literal.

– all: Select all non-trivial pure theory literals.

At this point there may not be any pure theory literals to select, in which case
the inference will not be applied.
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Interacting with the SMT solver. In this step, we replace variables in selected
pure theory literals by new constants and negate the literals. Once this has been
done, the translation of literals to the format understood by the SMT solver is
straightforward (and outlined in [21]). We use Z3 [11] in this work.

Additional care needs to be taken when translating partial functions, such as
division. In SMT solving, they are treated as total underspecified functions. For
example, when T is integer arithmetic with division, interpretations for T are
defined in such a way that for all integers a, b and interpretation I, the theory
also has the interpretation defined exactly as I apart from having a/0 = b. In a
way, division by 0 behaves as an uninterpreted function.

Due to this convention, Z3 may generate an arbitrary value for the result
in order to satisfy a given query. As a result, Z3 can produce a model that is
output as an ordinary solution except for the assumptions about division by 0.
For example solving 2/x = 1 can return x = 0. If we accept that x � 0 is a
solution, the theorem prover may become unsound. As an example, consider a
problem consisting of the following two clauses

1/x �� 0 ∨ p(x) 1/x � 0 ∨ ¬p(x).

The example is satisfiable as witnessed by an interpretation that assigns false to
p(z) for every real number z and interprets 1/0 as a non-zero real, e.g. 1. However,
the TheoryInst rule could produce conflicting instances p(0) and ¬p(0) of the
two clauses, internally assuming 1/0 = 0 for the first instances and 1/0 �= 0 for
the second.

To deal with this issue, we assert that s �� 0 whenever we translate a term of
the form t/s. This implies that we do not pass to the SMT solver terms of the
form t/0.

Instance Generation. The next step is to understand when and how we can turn
the model returned by the SMT solver into a substitution making T valid. Recall
that T can contain

1. interpreted symbols that have a fixed interpretation in T , such as 0 or +;
2. other interpreted symbols, such as division;
3. variables of T .

In general, there are no standards on how SMT solvers return models or solu-
tions. We assume that the model returned by the underlying SMT solver can be
turned into a conjunction S of literals such that

1. S is satisfiable in T ;
2. S → T is valid in T .

Note that checking that T is satisfiable and returning T as a model satisfies
both conditions, but does not give a substitution that can be used to apply the
TheoryInst rule.

To apply this rule, we need models of a special form defined below. A con-
junction S of literals is said to be in triangle form if S has the form

x1 � t1 ∧ . . . ∧ xn � tn (3)
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such that for all i = 1, . . . , n the variable xi does not occur in ti, . . . , tn. Any
model S in a triangle form can be converted into a substitution θ such that
xiθ = tiθ for all i = 1, . . . , n. Note that Sθ is then valid, hence (by validity of
S → T ), Tθ is valid too, so we can use θ to apply TheoryInst .

Practically, we must evaluate the introduced constants (i.e. those introduced
for each of the variables in the above step) in the given model. In some cases,
this evaluation fails to give a numeric value. For example, if the result falls out of
the range of values internally representable by Vampire or when the value is a
proper algebraic number, which currently also cannot be represented internally
by our prover. In this case, we cannot produce a substitution and the inference
fails.

Theory Tautology Deletion. As we pointed out above, if the SMT solver returns
unsatisfiable then C is a theory tautology and can be removed. We only do it
when we do not pass to the solver additional assumptions related to division
by 0.

4 Abstraction Through Unification

As shown earlier, there are cases where we cannot perform a necessary inference
step, because we are using a syntactic notion of equality rather than a semantic
one. We have introduced an inference rule (TheoryInst) able to derive p(7) from
the clause

14x �� x2 + 49 ∨ p(x),

but unable to deal with a pair of clauses such as

r(14y) ¬r(x2 + 49) ∨ p(x),

as it only performs theory reasoning inside a clause whereas this requires us to
reason between clauses. Semantically, the terms 14y and x2 + 49 can be made
equal when y = x = 7 so we would like to get the result p(7) here also.

Notice that if the clauses had been abstracted as follows:

r(u) ∨ u �� 14y ¬r(v) ∨ v �� x2 + 49 ∨ p(x),

then the resolution step would have been successful, producing

u �� 14y ∨ u �� x2 + 49 ∨ p(x)

which could be given to TheoryInst to produce p(7). One solution would be to
store clauses in abstracted form, but we argued earlier why this is not suitable
and later confirm this experimentally. Instead of abstracting fully we incorporate
the abstraction process into unification so that only abstractions necessary for
a particular inference are performed. This is a lazy approach, i.e., we delay
abstraction until it is needed.
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Algorithm 1. Unification algorithm with constraints
function mguAbs(l, r)

let E be a set of equations; E := {l = r}
let D be a set of disequalities; D := ∅
let θ be a substitution; θ := {}
loop

if E is empty then return (θ, D), where D is the disjunction of literals in D
Select an equation s = t in E and remove it from E
if s coincides with t then do nothing
else if s is a variable and s does not occur in t then

θ := θ ◦ {s �→ t}; E := E{s �→ t}
else if s is a variable and s occurs in t then fail
else if t is a variable then E := E ∪ {t = s}
else if s and t have different top-level symbols then

if canAbstract(s, t) then D := D ∪ {s �� t}
else fail

else if s = f(s1, . . . , sn) and t = f(t1, . . . , tn) for some f then
E := E ∪ {s1 = t1, . . . , sn = tn}

Unification with Abstraction. Here we define a partial function mguAbs on
pairs of terms and pairs of atoms such that mguAbs(t, s) is either undefined, in
which case we say that it fails on (s, t), or mguAbs(t, s) = (θ,D) such that

1. θ is a substitution and D is a (possibly empty) disjunction of disequalities;
2. (D ∨ t � s)θ is valid in the underlying theory (and even valid in predicate

logic).

Algorithm 1 gives a unification algorithm extended so that it implements
mguAbs. The algorithm is parameterised by a canAbstract predicate. The idea
here is that some abstractions are not useful. For example, consider the two
clauses

p(1) ¬p(2).

Allowing 1 and 2 to unify and produce 1 �� 2 is not useful in any context.
Therefore, canAbstract will always be false if the two terms are always non-
equal in the underlying theory, e.g. if they are distinct numbers in the theory of
arithmetic. Beyond this obvious requirement we also want to control how prolific
such unifications can be. Therefore, we include the following options here:

– interpreted only: only produce a constraint if the top-level symbol of both
terms is a theory symbol,

– one side interpreted: only produce a constraint if the top-level symbol of
at least one term is a theory symbol,

– one side constant: only produce a constraint if the top-level symbol of at
least one term is a theory symbol and the other is an uninterpreted constant,

– all: allow all terms of theory sort to unify and produce constraints.
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Updated Calculus. So far we have only considered resolution as a rule that
could use this new form of unification, but in principle it can be used wherever
we use unification. In the extended version of this paper [32] we describe how to
update the full superposition and resolution calculus to make use of unification
with abstraction. Here we give the rules for resolution and factoring:

A ∨ C1 ¬A′ ∨ C2

(D ∨ C1 ∨ C2)θ
Resolution-wA

A ∨ A′ ∨ C

(D ∨ A ∨ C)θ
Factoring-wA

where, for both inferences, (θ,D) = mguAbs(A,A′) and A is not an equality
literal.

Now given the problem from the introduction involving p(2x) and ¬p(10)
we can apply Resolution-wA to produce 2x �� 10 which can be resolved using
evaluation and equality resolution as before. We note at this point that a further
advantage of this updated calculus is that it directly resolves the issue of losing
proofs via eager evaluation, e.g. where p(1 + 3) is evaluated to p(4), missing the
chance to resolve with ¬p(x + 3).

Implementation. In Vampire, as in most modern theorem provers, infer-
ences involving unification are implemented via term indexing [30]. Therefore,
to update how unification is applied we need to update our implementation of
term indexing. As the field of term indexing is highly complex we only give a
sketch of the update here.

Term indices provide the ability to use a query term t to extract terms that
unify (or match, or generalise) with t along with the relevant substitutions. Like
many theorem provers, Vampire uses substitution trees [14] to index terms. The
idea behind substitution trees is to abstract a term into a series of substitutions
required to generate that term and store these substitutions in the nodes of the
tree. To search for unifying terms we perform a backtracking search over the
tree, composing substitutions from the nodes when descending down edges and
checking at each node whether the query term is consistent with the current
substitution. This involves unifying subterms of the query term against terms
at nodes and a backtrackable result substitution must be maintained to store
the results of these unifications. The result substitution must be backtracked as
appropriate i.e. when backtracking past the point of unification.

To update this process we do two things. Firstly, wherever previously a uni-
fication failed we will produce a set of constraints using Algorithm 1. Secondly,
alongside the backtrackable result substitution we maintain a backtrackable stack
of constraints so that whenever we backtrack past a point where we made a uni-
fication that produced some constraints we remove those constraints from the
stack.

5 Experimental Results

We present experimental results evaluating the effectiveness of the new tech-
niques. Our experiments were carried out on a cluster on which each node is
equipped with two quad core Intel processors running at 2.4 GHz and 24 GiB of
memory.
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Table 1. Evaluation of the 24 meaningful combination of the three tested options

Comparing New Options. We were interested in comparing how various
proof option values affect the performance of a theorem prover. We consider the
two new options referred to here by their short names: uwa (unification with
abstraction) and thi (theory instantiation). In addition, we consider the boolean
option fta (full theory abstraction), applying full abstract to input clauses as
implemented in previous versions of Vampire.

Making such a comparison is hard, since there is no obvious methodology
for doing so, especially considering that Vampire has over 60 options com-
monly used in experiments (see [24]). The majority of these options are Boolean,
some are finitely-valued, some integer-valued and some range over other infinite
domains. The method we used here was based on the following ideas, already
described in [17].

1. We use a subset of problems with quantifiers and theories from the SMTLIB
library [5] (version 2016-05-23) that (i) do not contain bit vectors, (ii) are not
trivially solvable, and (iii) are solvable by some approach.

2. We repeatedly select a random problem P in this set, a random strategy S
and run P on variants of S obtained by choosing possible values for the three
options using the same time limit.

We consider combinations of option values satisfying the following natural condi-
tions: either fta or uwa must be off, since it does not make sense to use unification
with abstraction when full abstraction is performed. This resulted in 24 possible
combinations of values. We ran approximately 100 000 tests with the time limit
of 30 s, which is about 4000 tests per a combination of options. The results are
shown in Table 1.

It may seem surprising that the overall best strategy has all the three options
turned off. This is due to what we have observed previously: many SMTLIB prob-
lems with quantifiers and theories require very little theory reasoning. Indeed,
Vampire solves a large number of problems (including problems unsolvable by
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Table 2. Results from finding solutions to previously unsolved problems.

SMT-LIB
Logic New solutions Uniquely solved
ALIA 1 0
LIA 14 0
LRA 4 0
UFDTLIA 5 0
UFLIA 28 14
UFNIA 13 4

TPTP
Category New solutions Uniquely solved
ARI 13 0
NUM 1 1
SWW 3 1

existing SMT solvers) just by adding theory axioms and then running super-
position with no theory-related rules. Such problems do not gain from the new
options, because new inference rules result only in more generated clauses. Due
to the portfolio approach of modern theorem provers, our focus is on cases where
new options are complementary to existing ones.

Let us summarise the behaviour of three options, obtained by a more detailed
analysis of our experimental results.

Full Theory Abstraction. Probably the most interesting observation from these
results is that the use of full abstraction (fta) results in an observable degradation
of performance. This confirms our intuition that unification with abstraction is
a good replacement for abstraction. As a result, we will remove the fta option
from Vampire.

Unification with Abstraction. This option turned out to be very useful. Many
problems had immediate solutions with uwa turned on and no solutions when it
was turned off. Further, the value all resulted in 12 unique solutions. We have
decided to keep the values all, interpreted only and off.

Theory Instantiation. This option turned out to be very useful too. Many prob-
lems had immediate solutions with thi turned on and no solutions when it was
turned off. We have decided to keep the values all, strong and off.

Contribution of New Options to Strategy Building. Since modern provers
normally run a portfolio of strategies to solve a problem (strategy scheduling),
there are two ways new strategies can be useful in such a portfolio:

1. by reducing the overall schedule time when problems are solved faster or when
a single strategy replaces one or more old strategies;

2. by solving previously unsolved problems.

While for decidable classes, such as propositional logic, the first way can be
more important, in first-order logic it is usually the second way that matters.
The reason is that, if a problem is solvable by a prover, it is usually solvable
with a short running time.
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We ran Vampire trying to solve, using the new options, problems previously
unsolved by Vampire. We took all such problems from the TPTP library [33]
and SMT-LIB [5] and Table 2 shows the results. In the table, new solutions are
meant with respect to what Vampire could previously solve and uniquely solved
stands for the number of new problems with respect to what can be solved by
other entrants into SMT-COMP1 and CASC2 where the main competitors are
SMT solvers such as Z3 [11] and CVC4 [4] and ATPs such as Beagle [6] and
Princess [28,29].

With the help of the new options Vampire solved 20 problems previously
unsolved by any other theorem prover or SMT solver.

6 Related Work

We review relevant related work. A more thorough review can be found in [32].

SMT Solving. SMT solvers such as Z3 [11] and CVC4 [4] implement
E-matching [9,12], model based quantifier instantiation [9,12] and conflict
instantiation [27] to handle quantifiers. Although complete on some fragments,
these instantiation techniques are generally heuristic and cannot be directly
applied in our setting (see [26]).

In DPLL(Γ ) [10] a superposition prover is combined with an SMT solver
such that ground literals implied by the SMT solver are used as hypotheses to
first-order clauses.

AVATAR Modulo Theories. Our previous work on AVATAR Modulo The-
ories [21] uses the AVATAR architecture [23,34] for clause splitting to integrate
an SMT solver with a superposition prover. The general idea is to abstract the
clause search space as a SMT problem and use a SMT solver to decide on at least
one literal per clause to have in the current search space of the superposition
prover. To abstract the clause search space, non-ground components (sub-clauses
sharing variables) are abstracted as propositional symbols whilst ground literals
are translated directly. The result is that the superposition prover only deals
with a set of clauses that is theory-consistent in its ground part.

Theory Resolution. Stickel’s Theory Resolution [31] is a generalisation of the
resolution inference rule whose aim is to exclude the often prolific theory axioms
from the explicit participation on reasoning about the uninterpreted part of a
given problem. In [32] we show that the theory resolution rule is a re-definition
of T -sound inferences. Given this, it is too abstract per se to bear practical
relevance to our approach.

1 http://smtcomp.sourceforge.net/.
2 http://www.cs.miami.edu/∼tptp/CASC/.

http://smtcomp.sourceforge.net/
http://www.cs.miami.edu/~tptp/CASC/
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Hierarchic Superposition. Hierarchic Superposition (HS) [3] is a generali-
sation of the superposition calculus for black-box style theory reasoning. The
approach uses full abstraction to separate theory and non-theory parts of the
problem and introduces a conceptual hierarchy between uninterpreted reasoning
(with the calculus) and theory reasoning (delegated to a theory solver) by mak-
ing pure theory terms smaller than everything else. HS guarantees refutational
completeness under certain conditions that can be rather restrictive, e.g., the
clauses p(x) and ¬p(f(c)) cannot be resolved if the return sort of function f
is a theory sort. The strategy of weak abstractions introduced by Baumgartner
and Waldmann [7] partially addresses the downsides of the original approach.
However, their approach requires some decisions to be made, for which there
currently does not seem to be a practical solution. See [32] for more details.

Other Theory Instantiation. SPASS+T [20] implements a theory instantia-
tion rule that is analogous to E-matching in the sense that it uses ground theory
terms from the search space to perform instantiations as a last resort. This is
not related to our approach.

Unification Modulo Theories. There is a large amount of work on unification
modulo various theories, such as AC. This work is not related since we are
not looking for the set of all or most general solutions to unification. Instead,
we postpone finding such solutions by creating constraints, which can then be
processed by the SMT solver.

7 Conclusion

We have introduced two new techniques for reasoning with problems containing
theories and quantifiers. The first technique allows us to utilise the power of
SMT solving to find useful instances of non-ground clauses. The second technique
presents a solution to the issue of full abstraction by lazily abstracting clauses
to allow them to unify under theory constraints. Our experimental results show
that these approaches can solve problems previously unsolvable by Vampire and
other solvers.

There are two directions for future research that we believe will further
increase the power of this technique. Firstly, to explore the relationship between
this approach and the AVATAR modulo theories work and, secondly, to relax
the restriction of theory instantiation to single concrete models.
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28. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 20
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Abstract. Auto2 is a recently introduced prover for the proof assis-
tant Isabelle. It is designed to be both highly customizable from within
Isabelle, and also have a powerful proof search mechanism. In this paper,
we apply auto2 to the verification of imperative programs. We describe
the setup of auto2 for both stages of the proof process: verification of a
functional version of the program, and refining to the imperative version
using separation logic. As examples, we verify several data structures,
including red-black trees, interval trees, priority queues, and union-find.
We also verify several algorithms making use of these data structures.
These examples show that our framework is able to verify complex algo-
rithms efficiently and in a modular manner.

1 Introduction

Verification of imperative programs has been a well-studied area. While work
on separation logic addressed the main theoretical issues, verification in practice
is still a tedious process. Even if we limit to the case of sequential programs
with relatively simple memory-allocation patterns, verification is still difficult
when a lot of mathematical reasoning is required to justify the underlying algo-
rithm. Such reasoning can quickly go beyond the ability of automatic theorem
provers. Proof assistants such as Isabelle and Coq provide an environment in
which human users can guide the computer through the proof. However, such
a process today often requires a lot of low-level reasoning with lists, sets, etc,
as well as dealing with details of separation logic. We believe much work can
still be done to provide more automation in this area, reducing the amount of
time and expertise needed to perform verifications, with the goal of eventually
making verification of complex algorithms a routine process.

The auto2 prover in Isabelle is introduced by the author in [28]. Its app-
roach to automation in proof assistants is significantly different from the two
main existing approaches: tactics and the use of external automatic theorem
provers (as represented by Sledgehammer in Isabelle). Compared to Sledgeham-
mer, auto2 is highly customizable: users can set up new reasoning rules and
procedures at any point in the development of a theory (for example, our entire
setup for separation logic is built outside the main auto2 program). It also works
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https://doi.org/10.1007/978-3-319-89960-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89960-2_2&domain=pdf


24 B. Zhan

directly with higher-order logic and types available in Isabelle. Compared to tac-
tics, auto2 uses a saturation-based search mechanism, that is closer to the kind
of search performed in automatic theorem provers, and from experience has been
more powerful and stable than the backtracking approach usual in the tactics
framework.

In this paper, we apply auto2 to the verification of imperative programs. We
limit ourselves to sequential programs with relatively simple memory-allocation
patterns. The algorithms underlying the programs, however, require substan-
tial reasoning to justify. The verification process can be roughly divided into
two stages: verifying a functional version of the program, and refining it to an
imperative version using separation logic.

The main contributions of this paper are as follows.1

– We discuss the setup of auto2 to provide automation for both stages of this
process. For the verification of functional programs, this means automatically
proving simple lemmas involving lists, sets, etc. For refining to the imperative
program, this means handling reasoning with separation logic.

– Using our setup, we verify several data structures including red-black trees,
interval trees, priority queues, and union-find. We also verify algorithms
including Dijkstra’s algorithm for shortest paths and a line-sweeping algo-
rithm for detecting rectangle intersection. These examples demonstrate that
using our approach, complex algorithms can be verified in a highly efficient
and modular manner.

We now give an outline for the rest of the paper. In Sect. 2, we give an
overview of the auto2 prover. In Sect. 3, we discuss our setup of auto2 for verifi-
cation of functional programs. In Sect. 4, we review the Imperative HOL frame-
work in Isabelle and its separation logic, which we use to describe and verify
the imperative programs. In Sect. 5, we discuss our setup of auto2 for reasoning
with separation logic. In Sect. 6, we briefly describe each of the case studies,
showing some statistics and comparison with existing verifications. Finally, we
review related work in Sect. 7, and conclude in Sect. 8.

2 Overview of the auto2 Prover

The auto2 prover is introduced in [28]. In [29], several additional features are
described, in an extended application to formalization of mathematics. In this
section, we summarize the important points relevant to this paper.

Auto2 uses a saturation-based proof search mechanism. At any point during
the search, the prover maintains a list of items, which may be derived facts,
terms that appeared in the proof, or some other information. At the beginning,
the statement to be proved is converted into contradiction form, and its assump-
tions form the initial state. The search ends successfully when a contradiction
is derived. In addition to the list of items, the prover also maintains several
additional tables, three of which will be described below.
1 Code available at https://github.com/bzhan/auto2.

https://github.com/bzhan/auto2
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2.1 Proof Steps

Proof steps are functions that produce new items from existing ones. During
the development of an Isabelle theory, proof steps can be added or removed at
any time. At each iteration of the proof search, auto2 applies the current list of
proof steps to generate new items. Each new item is given a score and inserted
into a priority queue. They are then added to the main list of items at future
iterations in increasing order of score. The score is by default computed from the
size of the proposition (smaller means higher priority), which can be overriden
for individual proof steps.

Adding new proof steps is the main way to set up new functionality for auto2.
Proof steps range from simple ones that apply a single theorem, to complex
functions that implement some proof procedure. Several proof steps can also
work together to implement some proof strategy, communicating through their
input and output items. We will see examples of all these in Sects. 3 and 5.

2.2 Rewrite Table

Among the tables maintained by auto2, the most important is the rewrite table.
The rewrite table keeps track of the list of currently known (ground) equalities.
It offers two main operations: deciding whether two terms are equivalent, and
matching up to known equalities (E-matching). The latter is the basic matching
function used in auto2: whenever we mention matching in the rest of the paper,
it is assumed to mean E-matching using the rewrite table.

We emphasize that when a new ground equality is derived, auto2 does not
use it to rewrite terms in the proof state. Instead, the equality is inserted into
the rewrite table, and incremental matching is performed on relevant items to
discover new matches.

2.3 Property and Well-Formedness Tables

We now discuss two other important tables maintained by auto2: the property
table and the well-formedness table.

Any predicate (constant of type ’a ⇒ bool) can be registered as a prop-
erty during the development of a theory. During the proof, the property table
maintains the list of properties satisfied by each term appearing in the proof.
Common examples of predicates that we register as properties include sortedness
on lists and invariants satisfied by binary search trees.

For any function, we may register certain conditions on its arguments as well-
formedness conditions of that function. Common examples include the condition
a ≥ b for the term (a - b)::nat , and i < length xs for the term xs ! i (i ’th
element of the list xs). We emphasize that registering well-formedness conditions
is for the automation only, and does not imply any modification to the logic.
During the proof, the well-formedness table maintains the list of well-formedness
conditions that are known for each term appearing in the proof.
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The property and well-formedness tables allow proof steps to quickly lookup
certain assumptions of a theorem. We call assumptions that can be looked-up in
this way side conditions. We will see examples of these in Sect. 3.1, and another
important application of the well-formedness table in Sect. 3.2.

2.4 Case Analysis

The need for case analysis introduces further complexities. New case analysis
is produced by proof steps, usually triggered by the appearance of certain facts
or terms in the proof. We follow a saturation-based approach to case analysis:
the list of cases (called boxes) is maintained as a part of the proof state, and
derivation in all boxes are performed in parallel. More precisely, every item (and
entry in the tables) is assigned to some box, according to the set of additional
assumptions needed to derive that item. When a contradiction is derived in a box
with additional assumption P , the fact ¬P is added to its parent box. The proof
finishes only if a contradiction is derived in the initial box (with no additional
assumptions).

2.5 Proof Scripts

Auto2 defines its own language of proof scripts, which is similar to, but inde-
pendent from the Isar proof language in Isabelle. The main differences between
auto2 and Isar are that auto2 scripts do not contain names of tactics (all sub-
goals are proved using auto2), labels for intermediate goals, or names of previous
theorems.

Examples of auto2 scripts are given in Sect. 3.4. We explain the basic com-
mands here (all commands in auto2 scripts begin with an @ sign, to distinguish
them from similar Isar commands).

– @have P : prove the intermediate goal P . Afterwards, make P available in the
remainder of the proof block.

– @case P : prove the current goal with additional assumption P . Afterwards,
make ¬P available in the remainder of the proof block.

– @obtain x where P(x) : here x must be a fresh variable. Prove the intermediate
goal ∃x. P (x). Afterwards, create variable x and make fact P (x) available in
the remainder of the proof block.

– @with ... @end : create a new proof block. That is, instead of proving the
subgoal in the previous command directly using auto2, prove it using the
commands between @with and @end .

– @induct , @prop induct , etc: commands for several types of induction. Each
type of induction has its own syntax, specifying which variable or proposition
to apply induction on. We omit the details here.

3 Verification of Functional Programs

Proofs of correctness of functional programs involve reasoning in many different
domains, such as arithmetic, lists, sets, maps, etc. The proof of a single lemma
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may require results from more than one of these domains. The design of auto2
allows automation for each of these domains to be specified separately, as a
collection of proof steps. During the proof, they work together by communicating
through the common list of items and other tables maintained by the prover.

In this section, we discuss our setup of auto2 for verification of functional
programs. It is impossible to describe the entire setup in detail. Instead, we will
give some examples, showing the range of functionality that can be supported
in auto2. At the end of the section, we give an example showing the strength of
the resulting automation.

We emphasize that the aim here is not to implement complete proof proce-
dures, or to compete with highly-optimized theory solvers for efficiency. Instead,
we simply aim for the prover to consistently solve tasks that humans consider
to be routine. Since we are in an interactive setting, we can always ask the user
to provide intermediate goals for more difficult proof tasks.

3.1 Simple Proof Steps

Most of the proof steps added to auto2 apply a single theorem. Such proof steps
can be added easily to auto2 (for example, a forward reasoning rule can be added
by setting the forward attribute to a theorem). We describe some basic examples
in this section.

Forward and Backward Reasoning. The most basic kind of proof steps
apply a theorem in the forward or backward direction. For example, the theorem

sorted (x # xs) =⇒ y ∈ set xs =⇒ x ≤ y

is added as a forward proof step. This proof step looks for pairs of facts in
the form sorted (x # xs) and y ∈ set xs (using E-matching, same below). For
every match, it outputs the fact x ≤ y as a new item (to be added to the main
list of items at a future iteration).

In contrast, the theorem

sorted xs =⇒ j < length xs =⇒ i ≤ j =⇒ xs ! i ≤ xs ! j.

should be added as a backward proof step. This proof step looks for facts of the
form ¬(xs ! i ≤ xs ! j) (equivalently, goal to prove xs ! i ≤ xs ! j). For
every match, it looks for the assumption sorted xs in the property table, and
j < length xs in the well-formedness table (it is the well-formedness condition
of the subterm xs ! j). If both side conditions are found, the proof step outputs
fact ¬(i ≤ j) (equivalently, goal to prove i ≤ j).

Another type of proof step adds a new fact for any term matching a certain
pattern. For example, for the theorem

n < length xs =⇒ xs ! n ∈ set xs,
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the corresponding proof step looks for terms of the form xs ! n . For every match,
it looks for the assumption n < length xs in the well-formedness table, and out-
put xs ! n ∈ set xs if the assumption is found. This particular setup is chosen
because assumptions of the form y ∈ set xs appears frequently in practice.

Rewrite Rules. Rewrite rules form another major class of proof steps. They
add new equalities to the rewrite table, usually after matching the left side of
the equality. As an example, consider the theorem for evaluation of list update:

i < length xs =⇒ xs[i := x] ! j = (if i = j then x else xs ! j).

The corresponding proof step looks for terms of the form xs[i := x] ! j . For
every match, it looks for the assumption i < length xs in the well-formedness
table (this is the well-formedness condition of xs[i := x]). If the assumption is
found, the proof step outputs the equality. When the equality is pulled from the
priority queue at a later iteration, it is added to the rewrite table.

For the theorem evaluating the length of list update:

length (xs[i := x]) = length xs

we add a slightly different proof step: it produces the equality whenever it finds
the term xs[i := x] , without waiting for length (xs[i := x]) to appear. This
can be justified by observing that it is useful to know the length of any list
appearing in the proof, as it is mentioned in the assumptions of many theorems.

Generating Case Analysis. Another class of proof steps generate case anal-
ysis on seeing certain terms or facts in the proof state. For example, there is a
proof step that looks for terms of the form if P then b else c , and creates case
analysis on P for every match.

Case analysis may also be created to check well-formedness conditions. Usu-
ally, when we register a well-formedness condition, auto2 will look for the con-
dition in the list of items during the proof. However, sometimes it is better to
be more proactive, and try to prove the condition whenever a term of the given
form appears. This is achieved by creating a case analysis with the condition as
the goal (or equivalently, with the negation of the condition as the assumption).

3.2 Normalization of Natural Number Expressions

In this section, we give an example of a more complex proof step. It compares
expressions on natural numbers by normalizing both sides with respect to addi-
tion and subtraction.

Mathematically, the expression a−b on natural numbers is undefined if a < b.
In Isabelle (and many other proof assistants), it is simply defined to be zero.
This means many equalities involving subtraction on natural numbers that look
obvious are in fact invalid. Examples include a − b + b = a, which in Isabelle is
false if a < b.



Efficient Verification of Imperative Programs Using Auto2 29

This substantially complicates normalization of expressions on natural num-
bers involving subtraction. In general, normalization of such an expression agrees
with intuition as long as the expression is well-formed, in the sense of Sect. 2.3.
Following the terminology in [29, Sect. 3.3], we say a well-formed term is a term
together with a list of theorems justifying its well-formedness conditions, and a
well-formed conversion is a function that, given a well-formed term, returns an
equality rewriting that term, together with theorems justifying well-formedness
conditions on the right side of the equality. Well-formed conversions can be com-
posed in the same way as regular conversions (rewriting procedures). In partic-
ular, we can implement normalization for expressions on natural numbers with
respect to addition and subtraction as a well-formed conversion.

This is in turn used to implement the following proof step. Given any two
terms s, t of type nat involving addition and subtraction, look for their well-
formedness conditions in the well-formedness table. If all well-formedness con-
ditions for subtraction are present, normalize s and t using the well-formed
conversion. If their normalizations are the same, output the equality s = t. Such
proof steps, when combined with proof scripts, allow the user to rapidly perform
arithmetic manipulations.

3.3 Difference Logic on Natural Numbers

Difference logic is concerned with propositions of the form a ≤ b + n, where n
is a constant. A collection of such inequalities can be represented as a directed
graph, where nodes are terms and weighted edges represent inequalities between
them. A collection of inequalities is contradictory if and only if the corresponding
graph contains a negative cycle, which can be determined using the Bellman-
Ford algorithm.

In auto2, we implement difference logic for natural numbers using special
items and proof steps. While less efficient than a graph-based implementation,
it is sufficient for our purposes, and also interacts better with other proof steps.
Each inequality on natural numbers is represented by an item of type NAT ORDER ,
which contains a triple <a,b,n> recording the terms on the two sides and the
difference. The transitivity proof step looks for pairs of items of the form <a,b,m>

and <b,c,n> , and produces the item <a,c,m+n> for each match. The resolve proof
step looks for items of the form <a,a,n> , where n is less than zero, and derives
a contradiction for each match.

3.4 Example

As an example, we show a snippet from the functional part of the verification
of the union-find data structure. Union-find is implemented on an array l , with
l ! i equal to i if i is the root of its component, and the parent of i if oth-
erwise. rep of i denotes the root of the component containing i . The compress
operation is defined as:

ufa compress l x = l[x := rep of l x]
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The main properties of ufa compress are stated and proved using auto2 as
follows:

lemma ufa compress invar:

"ufa invar l =⇒ x < length l =⇒ l’ = ufa compress l x =⇒ ufa invar

l’" @proof

@have "∀i<length l’. rep of dom (l’, i) ∧ l’ ! i < length l’" @with

@prop induct "ufa invar l ∧ i < length l"

@end

@qed

lemma ufa compress aux:

"ufa invar l =⇒ x < length l =⇒ l’ = ufa compress l x =⇒
i < length l’ =⇒ rep of l’ i = rep of l i"

@proof @prop induct "ufa invar l ∧ i < length l" @qed

lemma ufa compress correct:

"ufa invar l =⇒ x < length l =⇒ ufa α (ufa compress l x) = ufa α l"

by auto2

The only hints that needs to be provided by the human to prove these lemmas
are how to apply the induction (specified using the @prop induct command). By
comparison, in the AFP library [14], the corresponding proofs require 20 tactic
invocations in 42 lines of Isar text.

4 Imperative HOL and Its Separation Logic

In this section, we review some basic concepts from the Imperative HOL frame-
work in Isabelle and its separation logic. See [3,13,14] for details.

4.1 Heaps and Programs

In Imperative HOL, procedures are represented as Haskell-style monads. They
operate on a heap (type heap) consisting of a finite mapping from addresses
(natural numbers) to natural numbers, and a finite mapping from addresses to
lists of natural numbers (in order to support arrays). Values of any type ’a can
be stored in the heap as long as one can specify an injection from ’a to the
natural numbers. This means records with multiple fields, such as nodes of a
search tree, can be stored at a single address. Along with native support for
arrays, this eliminates any need for pointer arithmetic.

The type of a procedure returning a value of type ’a is given by

datatype ’a Heap = Heap "heap ⇒ (’a × heap) option"

The procedure takes as input a heap h, and outputs either None for failure, or
Some (r, h′), where r is the return value and h′ is the new heap. The bind function
for sequencing two procedures has type

’a Heap ⇒ (’a ⇒ ’b Heap) ⇒ ’b Heap.
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Imperative HOL does not have native support for while loops. Instead, basic
applications use recursion throughout, with properties of recursive procedures
proved by induction. We will follow this approach in our examples.

4.2 Assertions and Hoare Triples

The type partial heap is defined by pheap = heap × nat set . The partial heap
(h, as) represents the part of the heap h given by the set of addresses as.

An assertion (type assn) is a mapping from pheap to bool , that does not
depend on values of the heap outside the address set. The notation (h, as) � P
means “the assertion P holds on the partial heap (h, as)”.

Some basic examples of assertions are:

– true : holds for all valid partial heaps.
– emp : the partial heap is empty.
– ↑ (b): the partial heap is empty and b (a boolean value) holds.
– p �→r a: the partial heap contains a single address pointing to value a.
– p �→a xs: the partial heap contains a single address pointing to list xs.

The separating conjunction on two assertions is defined as follows:

P ∗ Q = λ(h, as).∃u v. u ∪ v = as ∧ u ∩ v = ∅ ∧ (h, u) � P ∧ (h, v) � Q.

This operation is associative and commutative, with unit emp . Existential quan-
tification on assertions is defined as:

∃Ax. P (x) = λ(h, as).∃x. (h, as) � P (x).

Assertions of the form ↑ (b) are called pure assertions. In [14], conjunction,
disjunction, and the magic wand operator on assertions are also defined, but we
will not use them here.

A Hoare triple is a predicate of type

assn ⇒ ’a Heap ⇒ (’a ⇒ assn) ⇒ bool,

defined as follows: <P> c <Q> holds if for any partial heap (h, as) satisfying P ,
the execution of c on (h, as) is successful with new heap h′ and return value r,
and the new partial heap (h′, as′) satisfies Q(r), where as′ is as together with
the newly allocated addresses.

From these definitions we can prove the Hoare triples for the basic commands,
as well as the frame rule

<P> c <Q> =⇒ <P ∗ R> c <λx. Q(x) ∗ R>.

In [14], there is further setup of a tactic sep auto implementing some level of
automation in separation logic. We do not make use of this tactic in our work.
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5 Automation for Separation Logic

In this section, we discuss our setup of auto2 for separation logic. The setup
consists of a collection of proof steps working with Hoare triples and entailments,
implemented in around 2,000 lines of ML code (including specialized matching
for assertions). While knowledge of auto2 is necessary to implement the setup,
we aim to provide an easy-to-understand interface, so that no knowledge of the
internals of auto2, or of details of separation logic, is needed to use it for concrete
applications.

5.1 Basic Approach

Our basic approach is to analyze an imperative program in the forward direction:
starting at the first command and finishing at the last, using existing Hoare
triples to analyze each line of the procedure. To simplify the discussion, suppose
the procedure to be verified consists of a sequence of commands c1; . . . ; cn. Let
P0 be the (spatial) precondition of the Hoare triple to be proved.

To reason about the procedure, we use existing Hoare triples for c1, . . . , cn
(these may include the induction hypothesis, if some of ci are recursive calls).
We write each Hoare triple in the following standard form:
<p1 * · · · * pm * ↑ (a1) * · · · * ↑ (ak)>

c

<λr. ∃Ax. q1 * · · · * qn * ↑ (b1) * · · · * ↑ (bl)>

Here p1 * · · · * pm is the spatial part of the precondition, specifying the shape
of the heap before the command, and ↑ (a1) * · · · * ↑ (ak) is the pure part of
the precondition, specifying additional constraints on the abstract values (we
assume that all variables appearing in ai also appear in pi or c). The assertions
q1 * · · · * qn and ↑ (b1) * · · · * ↑ (bl) (depending on the return value r and pos-
sibly new data-variables x) are the spatial and pure parts of the postcondition.
They provide information about the shape of the heap after the command, and
constraints on abstract values on that heap.

Applying the Hoare triple for c1 involves the following steps:
1. Match the pattern c with the command c1, instantiating some of the arbitrary

variables in the Hoare triple.
2. Match the spatial part of the precondition with P0. This is the frame-inference

step: the matching is up to the associative-commutative property of separat-
ing conjunction, and only a subset of factors in P0 need to be matched. Each
match should instantiate all remaining arbitrary variables in the Hoare triple.

3. Generate case analysis (discussed at the end of Sect. 3.1) to try to prove each
of the pure conditions ai.

4. After all pure conditions are proved, apply the Hoare triple. This creates new
variables for the return value r and possible data variables x. The procedure
is replaced by c2; . . . ; cn and the precondition is replaced by q1 * · · · * qn.
The pure assertions b1, . . . , bl in the postcondition are outputed as facts.

On reaching the end of the imperative program, the goal reduces to an entail-
ment, which is solved using similar matching schemes as above.
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5.2 Inductively-Defined Assertions

Certain assertions, such as those for linked lists and binary trees, are defined
inductively. For example, the assertion for binary trees (with a key-value pair at
each node) is defined as follows:

btree Tip p = ↑(p = None)

btree (tree.Node lt k v rt) (Some p) =

(∃Alp rp. p �→r Node lp k v rp * btree lt lp * btree rt rp)

btree (tree.Node lt k v rt) None = false

Here btree t p is an assertion stating that the memory location p contains
a functional data structure t. The term tree.Node lt k v rt represents a func-
tional binary tree, where lt and rt are subtrees, while the term Node lp k v rp

represents a record on the heap, where lp and rp are pointers. When working
with inductively-defined assertions like this, the heap can be divided into spatial
components in several ways. For example, a heap satisfying the assertion

p �→r Node lp k v rp * btree lt lp * btree rt rp (1)

also satisfies the assertion

btree (tree.Node lt k v rt) p. (2)

The former considers the heap as three components, while the latter considers
it as one component.

We follow the policy of always using assertions in the more expanded form
(that is, (1) instead of (2)). This means matching of assertions must also
take into account inductive definitions of assertions, so that the assertion (1)
will match the pattern btree ?t p * ?P as well as (for example) the pattern
btree ?t lp * ?P . This is realized by maintaining a list of inductive definitions
of assertions in the theory, and have the special matching function for assertions
refer to this list during matching.

5.3 Modularity

For any data structure, there are usually two levels at which we can define
assertions: the concrete level with definition by induction or in terms of simpler
data structures, and the abstract level describing what data the structure is
supposed to represent.

For example, in the case of binary trees, the concrete assertion btree is
defined in the previous section. At the abstract level, a binary tree represents a
mapping. The corresponding assertion btree map is defined by:

btree map M p = (∃At. btree t p * ↑(tree sorted t) * ↑(M = tree map t)),

where tree map t is the mapping corresponding to the binary tree t with key-
value pairs at each node. For each operation on binary trees, we first prove
a Hoare triple on the concrete assertion btree , then use it to derive a second
Hoare triple on the abstract assertion btree map . For example, for the insertion
operation, we first show:
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<btree t b> btree insert k v b <btree (tree insert k v t)>

where tree insert is the functional version of insertion on binary trees. Using
this Hoare triple, and the fact that tree insert preserves sortedness and behaves
correctly with respect to tree map , we prove

<btree map M b> btree insert k v b <btree map (M {k → v})>
Similarly, for tree search, the Hoare triple on the concrete assertion is:

<btree t b * ↑(tree sorted t)>

btree search x b

<λr. btree t b * ↑(r = tree search t x)>

This Hoare triple, along with properties of tree search , is used to prove the
Hoare triple on the abstract assertion:

<btree map M b> btree search x b <λr. btree map M b * ↑(r = M〈x〉)>"
After the Hoare triples for btree map are proved, the definition of btree map ,

as well as the Hoare triples for btree , can be hidden from auto2 by removing the
corresponding proof steps. This enforces modularity of proofs: auto2 will only
use Hoare triples for btree map from now on, without looking into the internal
implementation of the binary tree.

5.4 Example

With the above setup for separation logic, auto2 is able to prove the correctness
of the imperative version of compression in union-find after specifying how to
apply induction (using the @prop induct command):

uf compress i ci p = (

if i = ci then return ()

else do {
ni ← Array.nth p i;

uf compress ni ci p;

Array.upd i ci p;

return ()

})

lemma uf compress rule:

"ufa invar l =⇒ i < length l =⇒ ci = rep of l i =⇒
<p �→a l>

uf compress i ci p

<λ . ∃Al’. p �→a l’ * ↑(ufa invar l’ ∧ length l’ = length l ∧
(∀i<length l. rep of l’ i = rep of l i))>"

@proof @prop induct "ufa invar l ∧ i < length l" @qed

Note that the imperative procedure performs full compression along a path,
rather than a single compression for the functional version in Sect. 3.4. By
comparison, the corresponding proof in the AFP requires 13 tactic invocations
(including 4 invocations of sep auto) in 34 lines of Isar text.
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6 Case Studies

In this section, we describe the main case studies performed to validate our
framework. For each case study, we describe the data structure or algorithm
that is being verified, its main difficulties, and then give comparisons to existing
work. Statistics for the case studies are summarized in the following table. On a
laptop with two 2.0 GHz cores and 16 GB of RAM, it takes auto2 approximately
14 min to process all of the examples.

#Imp #Def #Thm #Step Ratio #LOC

Union-find 49 7 26 42 0.86 244

Red-black tree 270 27 83 173 0.64 998

Interval tree 84 17 50 83 0.99 520

Rectangle intersection 33 18 31 111 3.36 417

Indexed priority queue 83 10 53 84 1.01 477

Dijkstra’s algorithm 44 19 62 150 3.41 549

The meaning of the fields are as follows:

– #Imp is the number of lines of imperative code to be verified.
– #Def is the number of definitions made during the verification (not counting

definitions of imperative procedures).
– #Thm is the number of lemmas and theorems proved during the verification.
– #Step is the number of “steps” in the proof. Each definition, lemma, and

intermediate goal in the proof script counts as one step (so for example, a
lemma proved with one intermediate goal counts as two steps). We only count
steps where auto2 does some work, omitting for example variable definitions.

– Ratio: ratio between #Step and #Imp, serving as a measure of the overhead
of verification.

– #LOC: total number of lines of code in the theories (verification of functional
and imperative program). This can be used to make approximate comparisons
with other work.

6.1 Union-Find

Our verification follows closely that in the AFP [14]. As in the example in the
AFP, we do not verify that the array containing the size of components has
reasonable values (important only for performance analysis). Two snippets of
auto2 proofs are shown in previous sections. Overall, we reduced the number of
lines in the theory by roughly a half. In a further example, we applied union-find
to verify an algorithm for determining connectivity on undirected graphs (not
counted in the statistics).
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6.2 Red-Black Tree

We verified the functional red-black tree given by Okasaki ([21], for insertion)
and Kahrs ([18], for deletion). Both functional correctness and maintenance of
invariants are proved. We then verified an imperative version of the same algo-
rithm (imperative in the sense that no more memory is allocated than necessary).
This offers a stringent test for matching involving inductively defined assertions
(discussed in Sect. 5.2). For the functional part of the proof, we used the tech-
nique introduced by Nipkow [19] for proving sortedness and proper behavior on
the associated maps using the inorder traversal as an intermediary.

Functional red-black tree has been verified several times in proof assistants
[2,19]. The imperative version is a common test-case for verification using
automatic theorem provers [17,22–24]. It is also verified “auto-actively” in the
SPARK system [9], but apparently not in proof assistants such as Coq and
Isabelle.

6.3 Interval Tree and Rectangle Intersection

Interval tree is an augmented data structure, with some version of binary search
tree serving as the base. It represents a set of intervals S, and offers the operation
of determining whether a given interval i intersects any of the intervals in S. See
[8, Sect. 14.3] for details. For simplicity, we verified interval tree based on an
ordinary binary search tree.

As an application of interval trees, we verify an algorithm for detecting rect-
angle intersection (see [8, Exercise 14.3-7]). Given a collection S of rectangles
aligned to the x and y axes, one can determine whether there exists two rect-
angles in S that intersect each other using a line-sweeping algorithm as follows.
For each rectangle [a, b] × [c, d], we create two operations: adding the interval
[a, b] at time c, and removing it at time d. The operations for all rectangles are
sorted by time (breaking ties by putting insertion before deletion) and applied
to an initially empty interval tree. There is an intersection if and only if at some
point, we try to insert an interval which intersects an existing interval in the
tree. Formal verification of interval trees and the line-sweeping algorithm for
rectangle intersection appear to be new.

6.4 Indexed Priority Queue and Dijkstra’s Algorithm

The usual priority queue is implemented on one array. It supports insertion
and deleting the minimum. In order to support decreasing the value of a key
(necessary for Dijkstra’s algorithm), we need one more “index” array recording
locations of keys. Having two arrays produce additional difficulty in having to
verify that they stay in sync in all operations.

The indexed priority queue is applied to verify a basic version of Dijkstra’s
algorithm. We make several simplifying assumptions: the vertices of the graph
are natural numbers from 0 to n − 1, and there is exactly one directed edge
between each ordered pair of vertices, so that the weights of the graph can
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be represented as a matrix. Since the matrix is unchanged during the proof,
we also do not put it on the heap. Nevertheless, the verification, starting from
the definition of graphs and paths, contains all the essential ideas of Dijkstra’s
algorithm.

The indexed priority queue and Dijkstra’s algorithm are previously verified
using the refinement framework in [12,20]. It is difficult to make precise compar-
isons, since the approach used in the refinement framework is quite different, and
Dijkstra’s algorithm is verified there without the above simplifying assumptions.
By a pure line count, our formalization is about 2-3 times shorter.

7 Related Work

This paper is a continuation of the work in [28,29]. There is already some ver-
ification of imperative programs in [28]. However, they do not make use of sep-
aration logic, and the examples are quite basic. In this paper, we make full use
of separation logic and present more advanced examples.

The refinement framework, introduced by Lammich in [13], can also be used
to verify programs in Imperative-HOL. It applies refinement and data abstrac-
tion formally, verifying algorithms by step-wise refinement from specifications
to concrete implementations. It has been used to verify several advanced graph
algorithms [11,15,16]. Our work is independent from the refinement framework.
In particular, we use refinement and data abstraction only in an ad-hoc manner.

Outside Imperative-HOL, there are many other frameworks based on tactics
for automating separation logic in proof assistants. Examples include [1,4–7,14,
27]. As discussed in the introduction, our framework is implemented on top of the
auto2 prover, which follows a quite different approach to automation compared
to tactics.

Finally, there are many systems for program verification using automatic
theorem provers. The main examples include [10,25,26]. The basic approach
is to generate verification conditions from user-supplied annotations, and solve
them using SMT-based provers. Compared to such systems, we enjoy the usual
advantages of working in an interactive theorem prover, including a small trusted
kernel, better interaction when proving more difficult theorems, and having avail-
able a large library of mathematical results.

8 Conclusion

In this paper, we described the setup of the auto2 prover to provide automa-
tion for verification of imperative programs. This include both the verification
of a functional version of the program, and refining it to the imperative version
using separation logic. Using our framework, we verified several data structures
and algorithms, culminating in Dijkstra’s shortest paths algorithm and the line-
sweeping algorithm for detecting rectangle intersection. The case studies demon-
strate that auto2 is able to provide a great deal of automation in both stages of
the verification process, significantly reducing the length and complexity of the
proof scripts required.
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Abstract. Given separation logic formulae A and C, frame inference is
the problem of checking whether A entails C and simultaneously infer-
ring residual heaps. Existing approaches on frame inference do not sup-
port inductive proofs with general inductive predicates. In this work, we
present an automatic frame inference approach for an expressive frag-
ment of separation logic. We further show how to strengthen the inferred
frame through predicate normalization and arithmetic inference. We have
integrated our approach into an existing verification system. The exper-
imental results show that our approach helps to establish a number of
non-trivial inductive proofs which are beyond the capability of all exist-
ing tools.

1 Introduction

Separation logic (SL) [20,37] has been well established for reasoning about heap-
manipulating programs (like linked-lists and trees). Often, SL is used in combi-
nation with inductive predicates to precisely specify data structures manipulated
by a program. In the last decade, a large number of SL-based verification sys-
tems have been developed [1,3,6,8,13,18,19,24,29,33,36]. In these systems, SL
is typically used to express assertions about program states. The problem of
validating these assertions can be reduced to the entailment problem in SL, i.e.,
given two SL formulas Δa and Δc, to check whether Δa |= Δc holds. Moreover,
SL provides the frame rule [20], one prominent feature to enable compositional
(a.k.a. modular) reasoning in the presence of the heap:

{P}c{Q}
FRAME RULE

{P∗F}c{Q∗F}

where c is a program, P , Q and F are SL formulas, and ∗ is the separating
conjunction in SL. Intuitively, P∗F states that P and F hold in disjoint heaps.
This conjunction allows the frame rule to guarantee that F is unchanged under
the action of c. This feature of SL is essential for scalability [6,21,44] as it allows
the proof of a program to be decomposed (and reused) into smaller ones, e.g.,
proofs of procedures. To automate the application of the frame rule, SL-based
c© The Author(s) 2018
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proof systems rely on a generalized form of the entailment, which is referred to as
frame inference [1,8,12,33,39]. That is, given Δa and Δc, to check whether Δa

entails Δc and simultaneously generate the residual heap, which is a satisfiable
frame Δf capturing properties of the memory in Δa that is not covered by
Δc. This problem, especially if Δa and Δc are constituted by general inductive
predicates, is highly non-trivial as it may require inductive reasoning. Existing
approaches [1,33] are limited to specific predicates e.g., linked lists and trees.
The systems reported in [8,12,39] do not adequately support the frame inference
problem for inductive entailments in separation logic with predicate definitions
and arithmetic.

In this work, we propose a sound approach for frame inference which aims to
enhance modular verification in an expressive SL fragment with general inductive
predicates and Presburger arithmetic. Intuitively, given an entailment Δa |= Δc,
our goal is to infer a satisfiable frame axiom Δf such that Δa |= Δc ∗ Δf holds.
Our approach works as follows. We first augment the entailment checking with
an unknown second-order variable Uf(t̄) as a place-holder of the frame, where t̄ is
a set of pointer-typed variables common in Δa and Δc. That is, the entailment
checking becomes Δa |= Δc ∗ Uf(t̄). Afterwards, the following two steps are
conducted. Firstly, we invoke a novel proof system to derive a cyclic proof for
Δa |= Δc ∗ Uf(t̄) whilst inferring a predicate which Uf must satisfy so that the
entailment is valid. We show that the cyclic proof is valid if this predicate is
satisfiable. Secondly, we strengthen the inferred frame with shape normalization
and arithmetic inference.

For the first step, we design a new cyclic proof system (e.g., based on [2,3])
with an automated cut rule so as to effectively infer the predicate on Uf. A
cyclic proof is a derivation tree whose root is the given entailment checking and
whose edges are constructed by applying SL proof rules. A derivation tree of
a cyclic proof may contain virtual back-links, each of which links a (leaf) node
back to an ancestor. Intuitively, a back-link from a node l to an internal node
i means that the proof obligation at l is induced by that at i. Furthermore, to
avoid potentially unsound cycles (i.e., self-cycles), a global soundness condition
must be imposed upon these derivations to qualify them as genuine proofs. In
this work, we develop a sequent-based cyclic proof system with a cyclic cut rule
so as to form back-links effectively and check the soundness condition eagerly.
Furthermore, we show how to extract lemmas from the proven cyclic proofs
and reuse them through lemma application for an efficient proof system. These
synthesized lemmas work as dynamic cuts in the proposed proof system.

For the second step, we strengthen the inferred predicate on the frame Uf(t̄) so
that it becomes more powerful in establishing correctness of certain programs. In
particular, the inferred frame is strengthened with predicate normalization and
arithmetic inference. The normalization includes predicate split (i.e., to expose
the spatial separation of the inferred frame) and predicate equivalence (i.e., to
relate the inferred frame with user-supplied predicates). The arithmetic inference
discovers predicates on pure properties (size, sum, height, content and bag) to
support programs which require induction reasoning on both shape and data
properties.
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Lastly, we have implemented the proposal and integrated it into a modular
verification engine. Our experiments show that our approach infers strong frames
which enhances the verification of heap-manipulating programs.

2 Preliminaries

In this section, we present the fragment of SL which is used as the assertion
language in this work. This fragment, described in Fig. 1, is expressive enough for
specifying and verifying properties of a variety of data structures [24–26,35,41].
We use t̄ to denote a sequence of terms and occasionally use a sequence (i.e.,
t̄) to denote a set when there is no ambiguity. A formula Φ in our language is
a disjunction of multiple clauses Δ, each of which is a conjunction of a spatial
predicate κ and a pure (non-heap) constraint π. The spatial predicate κ captures
properties of the heap whereas π captures properties of the data. κ can be an
empty heap emp, or a points-to predicate r �→c(v̄) where c is a data structure,
or a user-defined predicate P(t̄) or a spatial conjunction κ1∗κ2. null is a special
heap location. A pure constraint π is in the form of (dis)equality α (on pointers)
and Presburger arithmetic φ. We write v1 �= v2 and v �= null for ¬(v1 = v2) and
¬(v = null), respectively. We often omit the pure part of a formula Φ when it
is true . For standardizing the notations, we use uppercase letters for unknown
(to-be-inferred) predicates, (e.g., P(t̄)) and lowercase letters (e.g., p(t̄)) for known
predicates.

Fig. 1. Syntax

A user-defined (inductive) predicate P(v̄) with parameters v̄ is defined in the
form of a disjunction, i.e., pred P(v̄)≡ Φ, where each disjunct in Φ is referred to as
a branch. In each branch, variables that are not in v̄ are implicitly existentially-
quantified. We use function unfold(P(t̄)) to replace an occurrence of inductive
predicates by the disjuncts in the definition of P with actual/formal parameters
renaming. For example, the following predicates lseg and lsegn are defined to
express list segments where every node contains the same value 1, given data
structure node{int val; node next; }.

pred lseg(root,l)≡emp∧root=l ∨ ∃ q·root�→node(1,q)∗lseg(q,l);
pred lsegn(root,l,n)≡emp∧root=l∧n=0 ∨ ∃ q· root�→node(1,q)∗lsegn(q,l,n−1);

where root is the head, l the end of the segment and n the length of the segment.
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In our framework, we may have lemmas to assist program verification. A
lemma ι of the form Δl → Δr, which means that the entailment Δl |= Δr

holds. We write A↔ B, a short form of A→ B and B →A, to denote a two-way
lemma. If A↔ B, A is semantically equivalent to B. We use E and F to denote
an entailment problem.

In the following, we discuss semantics of the SL fragment. Concrete heap
models assume a fixed finite collection Node, a fixed finite collection Fields, a
disjoint set Loc of locations (i.e., heap addresses), a set of non-address values Val
such that null∈Val and Val ∩ Loc = ∅. The semantics is given by a satisfaction
relation: s,h |= Φ that forces the stack s and heap h to satisfy the constraint Φ
where h ∈ Heaps, s∈Stacks, and Φ is a formula. Heaps and Stacks are defined
as follows.

Heaps def= Loc⇀fin(Node × Fields → Val ∪ Loc)
Stacks def= Var → Val ∪ Loc

The details of semantics of this SL fragment follow the one in [25].

Fig. 2. Code of append.

3 Illustrative Example

In the following, we first discuss the limitation of the existing entailment pro-
cedures [1,8] to the frame inference problem. Given an entailment, these proce-
dures deduce it until the following subgoal is obtained: Δa�emp ∧ true . Then,
they conclude that Δa is the residual frame. However, these approaches provide
limited support for proofs of induction. While [1] provides inference rules as a
sequence of inductive reasoning for hardwired lists and trees, our previous work
[8] supports inductive proofs via user-supplied lemmas [30]. Hence, it is very
hard for these procedures to automatically infer the frame for the entailments
which require proofs of induction.

We illustrate our approach via the verification of the append method shown
in Fig. 2, which appends a singly-linked list referred to by y to the end of the
singly-linked list referred to by x. It uses the auxiliary procedure last (lines 8–
12) to obtain the pointer referring to the last node in the list. Each node object
x has a data value x->data and a next pointer x->next. For simplicity, we assume
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that every node in the x list and the y list has data value 1. The correctness
of append and last is specified using our fragment of SL with a pre-condition
(requires) and a post-condition (ensures). The auxiliary variable res denotes
the return value of the procedure. Note that these specifications refer to the
user-provided predicates lln and ll last, which are defined as follows.

pred lln(root,n) ≡ emp∧root=null∧n=0 ∨ ∃ q·root�→node(1,q)∗lln(q,n−1);

pred ll last(root,l,n) ≡ l�→node(1,null)∧root=l∧n=1

∨ ∃q· root�→node(1,q)∗ll last(q,l,n−1);

Intuitively, the predicate lln(root,n) is satisfied if root points to a singly-
linked list with n nodes. The predicate ll last(t,p,n) is satisfied if t points to a
list segment with last element p and length n. In our framework, we provide a
library of commonly used inductive predicates (and the corresponding lemmas),
including for example the definitions for list segments lseg and lsegn introduced
earlier. Given these specifications, we automatically deduce predicates on the
intermediate program states (using existing approaches [8]), shown as comments
in Fig. 2, as well as the following three entailment checks that must be established
in order to verify the absence of memory errors and the correctness of the method
append.

E1:lln(x,i)∗lln(y,j)∧i>0 � ∃ n1·lln(x,n1)∧n1>0
E2:ll last(x,t,i)∗lln(y,j)∧i>0 � ∃ q,v·t �→node(v,q)
E3:lsegn(res,t,i−1)∗t �→node(1,y)∗lln(y,j)∧i>0 � lln(res,i+j)

E1 aims to establish a local specification at line 5 which we generate automati-
cally. E2 must be satisfied so that no null-dereference error would occur for the
assignment to t->next at line 6. E3 aims to establish that the postcondition is
met. Frame inference is necessary in order to verify the program. In particu-
lar, frame inference for E2 is crucial to construct a precise heap state after line
6, i.e., the state α in the figure, which is necessary to establish E3. Further-
more, the frame of E3 (which is inferred as emp) helps to show that this program
does not leak memory. As the entailment checks E2 and E3 require both induc-
tion reasoning and frame inference, they are challenging for existing SL proof
systems [3,8,9,12,15,31,36,40]. In what follows, we illustrate how our system
establishes a cyclic proof with frame inference for E2.

Frame Inference. Our frame inference starts with introducing an unknown predi-
cate (a second-order variable) U1(x,t,q,v,y)1 as the initial frame, which is a place-
holder for a heap predicate on variables x, t, q and y (i.e., variables referred to
in E2). That is, E2 is transformed to the following entailment checking problem:

F2: ll last(x,t,i)∗lln(y,j)∧i>0 �L0 ∃q,v·t �→node(v,q)∗U1(x,t,q,v,y)

where L0 is a set of induction hypotheses and sound lemmas. This set is accu-
mulated automatically during the proof search and used for constructing cyclic
1 In implementation, we add # annotation into instantiated variables and non-heap

variables to guide proof search which are not shown here.
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proofs and lemma application. If a hypothesis is proven, it becomes a lemma and
may be applied latter during the proof search. in this example, initially L0 = ∅.
The proposed proof system derives a cyclic proof for the entailment problem
and, at the same time, infers a set of constraints R for U1(x,t,q,v,y) such that
the proof is valid if the system R is satisfiable. Each constraint in R has the
form of logical implication i.e., Δb ⇒ U(v̄) where Δb is the body and U(v̄) is the
head (a second-order variable). For F2, the following two constraints are inferred,
denoted by σ1 and σ2.

σ1: lln(y,j)∧t=x∧q=null∧v=1 ⇒ U1(x,t,q,v,y)
σ2: x2 �→node(1,x)∗U1(x,t,q,v,y) ⇒ U1(x2,t,q,v,y)

We then use a decision procedure (e.g., S2SATSL [25,26] or [4]) to check
the satisfiability of σ1∧σ2. Note that we write a satisfiable definition of
(Δ1⇒U(v̄))∧(Δ2⇒U(v̄)) in the equivalent form of U(v̄)≡ Δ1∨Δ2. For instance,
the above constraints are written as:

U1(root,t,q,v,y) ≡ lln(y,j)∧root=t∧q=null∧v=1
∨ ∃q1·root�→node(1,q1)∗U1(q1,t,q,v,y);

Note that, in the above definition of U1, the separation of those heap-lets referred
to by root, y and q is not explicitly captured. Additionally, relations over the
sizes are also missing. Such information is necessary in order to establish the
left-hand side of E3. The successful verification of E3 in turn establishes the post-
condition of method append. In the following we show how to strengthen the
inferred frame.

Frame Strengthening. We strengthen U1 with spatial separation constraints on
the pointer variables root, y and q. To explicate the spatial separation among
these pointers, our system generates the following equivalent lemma and splits
U1 into two disjoint heap regions (with ∗ conjunction):

U1(root,t,q,v,y) ≡ U2(root,t)∗lln(y,j)∧q=null∧v=1

where U2 is a new auxiliary predicate with an inferred definition:

U2(root,t) ≡ emp∧root=t ∨ ∃ q1· root�→node(1,q1)∗U2(q1,t)
Next, our system detects that U2 is equivalent to the user-defined predicate
lseg, and generates the lemma: U2(root,t)↔lseg(root,t). Relating U2 to lseg

enhances the understanding of the inferred predicates. Furthermore, as shown in
[9], this relation helps to reduce the requirements of induction reasoning among
equivalent inductive predicates with different names. Substituting U2 with the
equivalent lseg, U1 becomes:

U1(root,t,q,v,y) ≡ lseg(root,t)∗lln(y,j)∧q=null∧v=1

This definition states that frame U1 holds in two disjoint heaps: one list segment
pointed to by root and a list pointed to by y. After substitution the entailment
F2 becomes

ll last(x,t,i)∗lln(y,j)∧i>0 �L0 t�→node(1,null)∗lseg(x,t)∗lln(y,j)
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Next, we further strengthen the frame with pure properties, which is neces-
sary to successfully establish the left hand side of E3. In particular, we generate
constraints to capture that the numbers of allocated heaps in the left hand
side and the right hand side of F2 are identical. Our system obtains these con-
straints through two phases. First, it automatically augments an argument for
each inductive predicate in F2 to capture its size property. Concretely, it detects
that while predicates ll last and lln have such size argument already, the shape-
based frame lseg has not. As so, it extends lseg(root,t) to obtain the predicate
lsegn(root,t,m) where the size property is captured by parameter m. Now, we
substitute the lsegn into F2 to obtain:

ll last(x,t,i)∗lln(y,j)∧i>0 �L0 ∃k·t �→node(1,null)∗lsegn(x,t,k)∗lln(y,j)

After that, we apply the same three steps of frame inference to generate the
size constraint: constructing unknown predicates, proving entailment and infer-
ring a set of constraints and checking satisfiability. For the first step, the above
entailment is enriched with one unknown (pure) predicate: P1(i,j,k) which is the
place-holder for arithmetical constraints among size variables i, j and k. The
augmented entailment checking is:

ll last(x,t,i)∗lln(y,j)∧i>0
�L0 ∃k·lsegn(x,t,k)∗t �→node(1,null)∗lln(y,j)∧P1(i,j,k)

Secondly, our system successfully derives a proof for the above entailment
under condition that the following disjunctive set of two constraints is satisfiable.

σ3: i=1∧k=0 ⇒ P1(i,j,k)
σ4: i1=i−1∧k1=k−1∧i>0∧P1(i1,j,k1) ⇒ P1(i,j,k)

Fig. 3. Basic inference rules for entailment procedure (where gsc is global soundness
condition)
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Lastly, to check whether the σ3∧σ4 is satisfiable, we automatically compute the
closure form for σ3∧σ4 as: P1(i,j,k) ≡ k=i−1∧i>0. This formula is satisfiable and
substituted into the frame as: lsegn(x,t,k)∗lln(y,j)∧q=null∧v=1∧k=i−1∧i>0.

4 Frame Inference

In this section, we present our approach for frame inference in detail. Given an
entailment Δa � Δc, where Δa is the antecedent (LHS) and Δc is the consequence
(RHS), our system attempts to infer a frame Δf such that when a frame is
successfully inferred, the validity of the entailment Δa � Δc∗Δf is established
at the same time.

Our approach has three main steps. Firstly, we enrich RHS with an unknown
predicate in the form of U(v̄) to form the entailment Δa �L Δc∗U(v̄) where v̄
includes all free pointer-typed variables of Δa and Δc and L is the union of
a set of user-supplied lemmas and a set of induction hypotheses (initially ∅).
Among these, the parameters are annotated with # following the principle that
instantiation (and subtraction) must be done before inference. The detail is as
follows: (i) all common variables of Δa and Δc are #-annotated; (ii) points-to
pointers of Δc are #-annotated; (iii) the remaining pointers are not #-annotated.
In the implementation, inference of frame predicates is performed incrementally
such that shape predicates are inferred prior to pure ones. Secondly, we construct
a proof of the entailment and infer a set of constraints R for U(v̄). Thirdly, we
check the satisfiability of R using the decision procedure in [25,26].

In the following, we present our entailment checking procedure with a set of
proof rules shown in Figs. 3 and 4. For each rule, the obligation is at the bottom
and its reduced form is on the top. In particular, the rules in Fig. 3 are used for
entailment proving (i.e., to establish a cyclic proof) and the rules in Fig. 4 are
used for predicate inference.

Fig. 4. Inference rules with predicate synthesis.

Given an entailment check in the form of Δa �L Δc, the rules shown in Fig. 3
are designed to subtract the heap (via the rules [M] and [PRED−M]) on both sides
until their heaps are empty. After that, it checks the validity for the implication
of two pure formulas by using an SMT solver, like Z3 [27], as shown in rule
[EMP]. Algorithmically, this entailment checking is performed as follows.



Frame Inference for Inductive Entailment Proofs in Separation Logic 49

– Matching. The rules [M] and [PRED−M] are used to match up identified heap
chains. Starting from identified root pointers, the procedure keeps matching
all their reachable heaps. It unifies corresponding fields of matched roots
by using the following auxiliary function freeEQ(ρ): freeEQ([ui/vi]ni=1) =∧n

i=1{ui = vi}.
– Unfolding. The rules [LU] and [RU] are used to derive alternative heap

chains. While rule [LU] presents the unfolding in the antecedent, [RU] in the
consequent.

– Applying Lemma. Rule [CCUT] derives yet other alternative heap chains.
For LHS which has at least one UD predicate, we attempt to apply a lemma
as an alternative search using [CCUT] rule. We notice that as we assume that
a lemma which is supplied by the user is valid, applying this lemma does not
requires the global condition.

Cyclic Proof. The proof rules in Fig. 3 are designed to establish cyclic proofs. In
the following, we briefly describe a cyclic proof technique enhancing the proposal
in [2].

Definition 1 (Pre-proof). A pre-proof of entailment E is a pair (Ti, L) where
Ti is a derivation tree and L is a back-link function such that: the root of Ti is
E; for every edge from Ei to Ej in Ti, Ei is a conclusion of an inference rule
with a premise Ej. There is a back-link between Ec and El if there exists L(El)
= Ec (i.e., Ec = El θ with some substitution θ) ; and for every leaf El, El is an
axiom rule (without conclusion).

If L(El) = Ec, El (resp. Ec) is referred as a bud (resp. companion).

Definition 2 (Trace). Let (Ti, L) be a pre-proof of Δa �L Δc; (Δai
�Li

Δci)i≥0

be a path of Ti. A trace following (Δai
�Li

Δci)i≥0 is a sequence (αi)i≥0 such that
each αi (for all i≥ 0) is an instance of the predicate P(t̄) in the formula Δai

,
and either:

– αi+1 is the subformula containing an instance of P(t̄) in Δai+1 ;
– or Δai

�Li
Δci is the conclusion of an unfolding rule, αi is an instance pred-

icate P(t̄) in Δai
and αi+1 is a subformula Δ[t̄/v̄] which is a definition rule

of the inductive predicate P(v̄). i is a progressing point of the trace.

To ensure that a pre-proof is sound, a global soundness condition must be
imposed to guarantee well-foundedness.

Definition 3 (Cyclic proof). A pre-proof (Ti, L) of Δa �L Δc is a cyclic proof
if, for every infinite path (Δai

�Li
Δci)i≥0 of Ti, there is a tail of the path

p=(Δai
�Li

Δci)i≥n such that there is a trace following p which has infinitely
progressing points.

Brotherston et al. proved [2] that Δa � Δc holds if there is a cyclic proof of
Δa �∅ Δc where Δa and Δc do not contain any unknown predicate.

In the following, we explain how cyclic proofs are constructed using the proof
rules shown in Fig. 3. [LU] and [CCUT] are the most important rules for forming
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back-links and then pre-proof construction. While rule [LU] accumulates possible
companions and stores them in historical sequents L, [CCUT] links a bud with
a companion using some substitutions as well as checks the global soundness
condition eagerly. Different to the original cyclic system [3], our linking back
function only considers companions selected in the set of historical sequents
L. Particularly, Δl→Δr ∈ L is used as an intelligent cut as follows. During
proof search, a subgoal (i.e., Δa1∗Δa2 �L Δc) may be matched with the above
historical sequent to form a cycle and close the proof branch using the following
principle. First, Δl � Δr is used as an induction hypothesis. As so, we have
Δlρ∗Δa2 |= Δrρ∗Δa2 where ρ are substitutions including those for avoiding
clashing of variables between Δr and Δa2 . If both Δa1∗Δa2 �L Δlρ∗Δa2 and
Δrρ∗Δa2 �L Δc are proven, then we have:

Δa1∗Δa2 =⇒ Δlρ∗Δa2 =⇒ Δrρ∗Δa2 =⇒ Δc.

Thus, the subgoal Δa1∗Δa2 �L Δc holds. We remark that if a hypothesis is
proven, it can be applied as a valid lemma subsequently.

In our system, often a lemma includes universally quantified variables. We
thus show a new mechanism to instantiate those lemmas that include universally
quantified variables. We denote constraints with universal variables as universal
guards ∀G. A universal guard ∀G is equivalent to an infinite conjunction

∧
ρ G[ρ].

Linking a leaf with universal guards is not straightforward. For illustration, let us
consider the following bud B0 and the universally quantified companion/lemma
C0 ∈ L.

B0:lsegn(root,null, n)∧n=10 �L ∃r·lsegn(root,r,3)∗lsegn(r,null, 7)
C0:∀a,b·lsegn(root,null, n)∧n=a+b∧a≥0∧b≥0

→ ∃r·lsegn(root,r,a)∗lsegn(r,null, b)

As shown in rule [CCUT], to link B0 back to C0, the LHS of these two entail-
ments must be implied through some substitution. To obtain that, we propose
lemma instantiation, a sound solution for universal lemma application. Based
on the constraints in the LHS of the bud, our technique instantiates a univer-
sally quantified guard (of the selected companion/lemma) before linking it back.
Concretely, we replace the universal guard by a finite set of its instances; an
instantiation of a formula ∀v̄G(t̄) is G(t̄)[w̄/v̄] for some vector of terms w̄. These
instances are introduced based on the instantiations in both LHS and RHS of
the corresponding bud e.g., n= 10 ∧ a= 3 ∧ b = 7 in B0.

Frame Inference. The two inference rules shown in Fig. 4 are designed specifically
to infer constraints for frame. In these rules, �(w̄, π) is an auxiliary function that
existentially quantifies free variables in π that are not in the set w̄. This function
extracts relevant arithmetic constraints to define data contents of the unknown
predicates. R(r,t̄) is either r �→c(t̄) or a known (defined) predicate P(r,t̄), or an
unknown predicate U′(r,t̄,w̄#). The # in the unknown predicates is used to guide
inference and proof search. We only infer on pointers without #-annotation.
Uf(w̄, t̄′) is another unknown predicate which is generated to infer the shape of
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pointers w̄. Inferred pointers are annotated with # to avoid double inference. A
new unknown predicate Uf is generated only if there exists at least one parameter
not to be annotated with # (i.e., w̄∪t̄′ �=∅). To avoid conflict between the inference
rules and the other rules (e.g., unfolding and matching), root pointers of a heap
formula must be annotated with # in unknown predicates. For example, in our
system while x�→c1(y)∗U1(x#,y) is legal, x�→c1(y)∗U1(x, y) is illegal. Our system
applies subtraction on the heap pointed to by x rather than inference for the
following check: x�→c1(null)�Lx�→c1(y)∗U1(x#,y).

Soundness. The soundness of the inference rules in Fig. 3 has been shown
in unfold-and-match systems for general inductive predicates [3,8]. In the
following, we present the soundness of the inference rules in Fig. 4. We
introduce the notation R(Γ ) to denote a set of predicate definitions
Γ = {U1(v̄1)≡ Φ1, ..Un(v̄n)≡ Φn} satisfying the set of constraints R. That is, for
all constraints Δl ⇒ Δr ∈ R, (i) Γ contains states (si, hi), a predicate defini-
tion for each unknown predicate appearing in Δl and Δr; (ii) by interpreting all
unknown predicates according to Γ , then it is provable that Δl implies Δr (i.e.,
there exists si ⊆ s, hi ⊆ h for i ∈ {1..n}, and s, h |= Δl implies s, h |= Δr),
written as Γ : Δl � Δr.

Lemma 1. Given the entailment judgement Δa �{} Δc � R, if there is Γ such
that R(Γ ), the entailment Γ :Δa�Δc holds.

The soundness of the predicate synthesis requires that if definitions generated
for unknown predicates are satisfiable, then the entailment is valid.

Theorem 1. Given the entailment judgement Δa �∅ Δc�R Δa(Γ )� Δc(Γ )
holds if there exists a solution Γ of R.

Theorem 1 follows from the soundness of the rules in Fig. 3 and Lemma 1.

5 Extensions

In this section, we present two ways to strengthen the inferred frame, by inferring
pure properties and by normalizing inductive predicates.

Pure Constraint Inference. The inferred frame is strengthened with pure con-
straints following two phases. We first enrich the shape-base frame with pure
properties such as size, height, sum, set of addresses/values, and their combi-
nations. After that, we apply the same three steps in Sect. 4 to infer relational
assumptions on the new pure properties. Lastly, we check satisfiability of these
assumptions using FixCalc [34].

In the following, we describe how to infer size properties given a set
of dependent predicates. We can similarly infer properties on height, set of
addresses and values properties. We first extend an inductive predicate with
a size function to capture size properties. That is, given an inductive predicate
P(v̄)≡

∨
Δi, we generate a new predicate Pn with a new size parameter n as:

Pn(v̄, n)≡
∨

(Δi∧n= sizeF (Δi)) where function sizeF is inductively defined as
follows.
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sizeF (r �→c(t̄))=1 sizeF (∃v̄· κ∧π)=sizeF (κ)
sizeF (emp)=0 sizeF (κ1∗κ2)=sizeF (κ1)+sizeF (κ2)
sizeF (P(t̄))=ts where ts∈t̄ and ts is a size parameter

To support pure properties, we extend the proposed cyclic proof system with
bi-abduction for pure constraints which was presented in [43]. In particular,
we adopt the abduction rules to generate relational assumptions over the pure
properties in LHS and RHS. These rules are applied exhaustively until no more
unknown predicates occur.

Normalization. We aim to relate the inferred frame to existing user-provided
predicates if possible as well as to explicate the heap separation (a.k.a. pointer
non-aliasing) which may be implicitly constrained through predicates. Partic-
ularly, we present a lemma synthesis mechanism to explore relations between
inductive predicates. Our system processes each inductive predicate in four
steps. First, it generates heap-only conjectures (with quantifiers). Secondly, it
enriches these conjectures with unknown predicates. Thirdly, it invokes the pro-
posed entailment procedure to prove these conjectures, infer definitions for the
unknown predicates and synthesize the lemmas. Last, it strengthens the inferred
lemma with pure inference.

In the following, we present two types of normalization. This first type is
to generate equivalence lemmas. This normalization equivalently matches a new
generated predicate to an existing predicate in a given predicate library. Under
the assumption that a library of predicates is provided together with advanced
knowledge (i.e., lemmas in [1]) to enhance completeness. This normalization
helps to reuse this knowledge for the new synthesized predicates, and poten-
tially enhance the completeness of the proof system. Intuitively, given a set S

of inductive predicates and another inductive predicate P (which is not in S),
we identify all predicates in S which are equivalent to P. Heap-only conjecture
is generated to explore the equivalent relation between two predicates, e.g., in
the case of P(x, v̄) and Q(x, w̄): ∀v̄·P(root, v̄)→∃w̄·Q(root, w̄). The shared root
parameter x has been identified by examining all permutations of root param-
eters of the two predicates. Moreover, our system synthesizes lemmas incre-
mentally for the combined domains of shape and pure properties. For exam-
ple, with lln and lsegn, our system generates the following lemma afterwards:
lsegn(root,null,n)↔lln(root,n).

The other type of normalization is to generate separating lemmas. This nor-
malization aims to expose hidden separation of heaps in inductive definitions.
This paragraph explores parallel or consequence separate relations over inductive
predicates parameters. Two parameters of a predicate are parallel separating if
they are both root parameters e.g., r1 and r2 of the predicate zip2 as follows.

zip2(r1,r2,n) ≡ emp∧r1=null∧r2=null∧n=0
∨ r1 �→c1(q1)∗r2 �→c1(q2)∗zip2(q1,q2,n−2);

Two arguments of a predicate are consequence separating if one is a root param-
eter and another is reachable from the root in all base formulas derived by
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unfolding the predicate (e.g., those of the predicate ll last). We generate these
separating lemmas to explicate separation globally. As a result, the separation of
actual parameters is externally visible to analyses. This visible separation enables
strong updates in a modular heap analysis or frame inference in modular ver-
ification. Suppose r1, r2 are consequence or parallel parameters in Q(r1, r2, w̄),
heap conjecture is generated as:

Q(r1, r2, w̄) → Q1(r1)∗Q2(r2)∗Q3(w̄)

This technique could be applied to synthesize spit/join lemmas to trans-
form predicates into the fragment of linearly compositional predicates [14,
15]. For example, our system splits the predicate zip2 into two separating
singly-lined lists through the following equivalent lemma: zip2(root,r2,n) ↔
lln(root,n)∗lln(r2,n).

6 Implementation and Experiments

We have implemented the proposed ideas into a procedure called S2ENT for entail-
ment checking and frame inference, based on the SLEEK [8]. S2ENT relies on the
SMT solver Z3 [27] to check satisfiability of arithmetical formulas. We have
also integrated S2ENT into the verifier S2 [24]. We have conducted two sets of
experiments to evaluate the effectiveness and efficiency of S2ENT. The first set
of experiments are conducted on a set of inductive entailment checking prob-
lems gathered from previous publications [1,5,9]. We compare S2ENT with the
state-of-the-art tools to see how many of these problems can be solved. In the
second set of experiments, we apply S2ENT to conduct modular verification of a
set of non-trivial programs. The experiments are conducted on a machine with
the Intel i3-M370 (2.4 GHz) processor and 3 GB of RAM.

Entailment Proving. In Table 1, we evaluate S2ENT on a set of 36 valid entailment
problems that require induction reasoning techniques. In particular, Ent 1–5
were taken from Smallfoot [1], Ent 6–19 from CyclicSL [3,5], Ent 20–28 from
[9], and Ent 29–36 were generated by us. We evaluate S2ENT against the existing
proof systems presented for user-defined predicates. While the tools reported
in [8,12,36] could handle a subset of these benchmarks if users provide auxiliary
lemmas/axioms, [15] was designed neither for those inductive predicates in Ent
6–28 nor frame problems in Ent 29–36. The only two tools which we can compare
S2ENT with are CyclicSL [3] and songbird [40].

The experimental results are presented in Table 1. The second column shows
the entailment problems. Column bl captures the number of back-links in cyclic
proofs generated by S2ENT. We observe that most of problems require only one
back-link in the cyclic proofs, except that Ent 4 requires two back-links and
Ent 13–15 of mutual inductive odd-even singly linked lists require three back-
links. The last three columns show the results of CyclicSL, songbird and S2ENT

respectively. Each cell shown in these columns is either CPU times (in seconds)
if the tool proves successfully, or TO if the tool runs longer than 30 s, or X if the
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Table 1. Inductive entailment checks

tool returns a false positive, or NA if the entailment is beyond the capability of
the tool. In summary, out of the 36 problems, CyclicSL solves 18 (with one TO
- Ent 4); songbird solves 25 (with two false positive - Ent 17 and 27 and one
TO - Ent 23); and S2ENT solves all 36 problems.

In Table 1, each entailment check in Ent 1–19 has emp as frame axioms (their
LHS and RHS have the same heaps). Hence, they may be handled by exist-
ing inductive proof systems like [3,9,15,40]. In particular, Ent 1–19 include
shape-only predicates. The results show that CyclicSL and songbird ran a
bit faster than S2ENT in most of the their successful cases. It is expected as
S2ENT requires additional steps for frame inference. Each entailment check in Ent
20–28 includes inductive predicates with pure properties (e.g., size and sorted-
ness). While CyclicSL can provide inductive reasoning for arithmetic and heap
domains separately [5], there is no system proposed for cyclic proofs in the com-
bined domain. Hence, these problems are beyond the capability of CyclicSL.
Ent 20 which requires mutual induction reasoning is the motivating example
of songbird (agumented with size property) [40]. In particular, sortll repre-
sents a sorted list with smallest value min, and tll is a binary tree whose nodes
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point to their parents and leaves are linked by a linked list [19,24]. S2ENT solves
each entailment incrementally: shape-based frame and then pure properties. The
results show that S2ENT was more effective and efficient than songbird.

Each entailment check in Ent 29–36 requires both inductive reasoning and
frame inference. These checks are beyond the capability of all existing entailment
procedures for SL. S2ENT generates frame axioms for inductive reasoning. The
experiments show that the proposed proof system can support efficient and effec-
tive reasoning on both shape and numeric domains as well as inductive proofs
and frame inference.

Modular Verification for Memory Safety. We enhance the existing program ver-
ifier S2 [24] with S2ENT to automatically verify a range of heap-manipulating
programs. We evaluate the enhanced S2 on the C library Glib open source [16]
which includes non-GUI code from the GTK+ toolkit and the GNOME desktop
environment. We conduct experiments on heap-manipulating files, i.e., singly-
linked lists (gslist.c), doubly-linked lists (glist.c), balanced binary trees (gtree.c)
and N-ary trees (gnode.c). These files contain fairly complex algorithms (e.g.,
sortedness) and the data structures used in gtree.c and gnode.c are very complex.

Table 2. Experiments on Glib library

LOC #Pr wo. w.
#

√
Sec. #syn #

√
Sec.

gslist.c 698 52 41 8.93 126 47 12.47
glist.c 784 51 39 19.41 132 46 30.01
gtree.c 1204 40 36 57.31 96 36 60.88
gnode.c 1128 65 52 37.78 174 53 53.40

Some procedures of gslist.c
and glist.c were evaluated
by tools presented in [9,
31,36] where the user had
to manually provide a large
number of lemmas to sup-
port the tool. Furthermore,
the verification in [9] is
semi-automatic, i.e., ver-
ification conditions were

manually generated. Besides the tool in [9], tools in [31,36] were no longer avail-
able for comparison.

In Table 2 we show, for each file the number of lines of code (excluding
comments) LOC and the number of procedures #Pr. We remark that these
procedures include tail-recursive procedures which are translated from loops.
The columns (#

√
) (and sec.) show the number of procedures (and time in

seconds) for which S2 can verify memory safety without (wo.) and with (w.)
S2ENT. Column #syn shows the number of synthesized lemmas that used the
technique in Sect. 5. With the lemma synthesis, the number of procedures that
can be successfully verified increases from 168 (81%) to 182 (88%) with a time
overhead of 28% (157 s/123 s).

A closer look shows that with S2ENT we are able to verify a number of chal-
lenging methods in gslist.c and glist.c. By generating separating lemmas, S2ENT
successfully infers shape specifications of methods manipulating the last ele-
ment of lists (i.e., g slist concat in gslist.c and g list append in glist.c). By
generating equivalence lemmas, matching a newly-inferred inductive predicate
with predefined predicates in S2 is now extended beyond the shape-only domain.
Moreover, the experimental results also show that the enhanced S2 were able to
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verify 41/52 procedures in gslist.c and 39/51 procedures in glist.c. In comparison,
while the tool in [9] could semi-automatically verify 11 procedures in gslist.c and
6 procedures in glist.c, with user-supplied lemmas the tool in [31] could verify
22 procedures in gslist.c and 10 procedures in glist.c.

7 Related Work and Conclusion

This work is related to three groups of work. The first group are those on entail-
ment procedures in SL. Initial proof systems in SL mainly focus on a decid-
able fragment combining linked lists (and trees) [1,7,11,13,14,17,22,29,32,33].
Recently, Iosif et al. extend the decidable fragment to restricted inductive predi-
cates [19]. Timos et al. [42] present a comprehensive summary on computational
complexity for entailments in SL with inductive predicates. Smallfoot [1] and
GRASShopper [33] provide systematic approaches for frame inference but with
limited support for (general) inductive predicates. Extending these approaches
to support general inductive predicates is non-trivial. GRASShopper is limited
to a GRASS-reducible class of inductive predicates. While Smallfoot system has
been designed to allow the use of general inductive predicates, the inference rules
in Smallfoot are hardwired for list predicates only and a set of new rules must be
developed for a proof system targeting general inductive predicates. SLEEK [8]
and jStar [12] support frame inference with a soundness guarantee for general
inductive predicates. However, they provide limited support for induction using
user-supplied lemmas [12,30]. Our work, like [8,36], targets an undecidable SL
fragment including (arbitrary) inductive predicates and numerical constraints;
we trade completeness for expressiveness. In addition to what are supported in
[8,36], we support frame inference with inductive reasoning in SL by providing
a system of cyclic proofs.

The second group is work on inductive reasoning. Lemmas are used to
enhance the inductive reasoning of heap-based programs [5,12,30]. They are
used as alternative unfoldings beyond predicates’ definitions [5,30], external
inference rules [12], or intelligent generalization to support inductive reason-
ing [3]. Unfortunately, the mechanisms in these systems require users to supply
those additional lemmas that might be needed during a proof. SPEN [15] syn-
thesizes lemmas to enhance inductive reasoning for some inductive predicates
with bags of values. However, it is designed to support some specific classes of
inductive predicates and it is difficult to extend it to cater for general induc-
tive predicates. For a solution to inductive reasoning in SL, Smallfoot [1,3,5]
presents subtraction rules that are consequent from a set of lemmas of lists and
trees. Brotherston et al. propose cyclic proof system for the entailment problem
[2,3]. Similarly, the circularity rule has been introduced in matching logic [38],
Constraint Logic Programming [9] and separation logic combined with predicate
definitions and arithmetic [40]. Furthermore, work in [39] supports frame infer-
ence based on an ad-hoc mechanism, using a simple unfolding and matching. Like
[3,9,40], our system also uses historical sequents at case split steps as induction
hypotheses. Beyond these systems [3,9,15,40], S2ENT infers frames for inductive
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proofs systematically; and thus it gives a better support for modular verification
of heap-manipulating programs. Moreover, we show how we can incrementally
support inductive reasoning for the combination of heap and pure domains. In
contrast, there are no formalized discussions in [5,9,40] about inductive reason-
ing for the combined domains; while [5] supports these domains separately, [9,40]
only demonstrates their support through experimental results.

The third group is on lemma synthesis. In inductive reasoning, auxiliary lem-
mas are generated to discover theorems (e.g. [10,23,28]). The key elements of
these techniques are heuristics used to generate equivalent lemmas for sets of
given functions, constants and datatypes. In our work, we introduce lemma syn-
thesis to strengthen the inductive constraints. To support theorem discovery, we
synthesize equivalent and separating lemmas. This mechanism can be extended
to other heuristics to enhance the completeness of modular verification.

Conclusion. We have presented a novel approach to frame inference for inductive
entailments in SL with inductive predicates and arithmetic. The core of our
proposal is the system of lemma synthesis through cyclic proofs in which back-
links are formed using the cut rule. Moreover, we have presented two extensions
to strengthen the inferred frames. Our evaluation indicates that our system is
able to infer frame axioms for inductive entailment checking that are beyond the
capability of the existing systems.
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Abstract. We have constructed a mechanically verified prototype
implementation of a model checker for timed automata, a popular for-
malism for modeling real-time systems. Our goal is two-fold: first, we
want to provide a reference implementation that is fast enough to check
other model checkers against it on reasonably sized benchmarks; second,
we strive for maximal feature compatibility with the state-of-the-art tool
Uppaal. The starting point of our work is an existing highly abstract
formalization of reachability checking of timed automata. We reduce
checking of Uppaal-style models to the problem of model checking a
single automaton in this abstract formalization, while retaining the abil-
ity to perform on the fly model-checking. Using the Isabelle Refinement
Framework, the abstract specification of the model checker is refined,
via multiple intermediate steps, to an actual imperative implementation
in Standard ML. The resulting tool is evaluated on a set of standard
benchmarks to demonstrate its practical usability.

1 Introduction

Timed automata [1] are a widely used formalism for modeling real-time systems,
which is employed in a class of successful model checkers such as Uppaal [2].
These tools can be understood as trust-multipliers: we trust their correctness to
deduce trust in the safety of systems checked by these tools. However, mistakes
have previously been made. This particularly concerns an approximation oper-
ation that is used by model-checking algorithms to obtain a finite search space.
The use of this operation induced a soundness problem in the tools employing it
[3], which was only discovered years after the first model checkers were devised.

Our ongoing work1 addresses this issue by constructing a fully verified model
checker for timed automata, using Isabelle/HOL [4]. Our tool is not intended
to replace existing model checkers, but to serve as a reference implementation
against which other implementations can be validated. Thus, it must provide
sufficient performance to check real world examples. To this end, we use the

1 https://github.com/wimmers/munta.
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Isabelle Refinement Framework (IRF) [5,6] to obtain efficient imperative imple-
mentations of the algorithms required for model checking.

Our work starts from an existing abstract formalization of reachability check-
ing of timed automata [7]. To close the gap to a practical model checker, we need
to address two types of issues: efficient implementation of abstract model check-
ing algorithms, and expressiveness of the offered modeling formalism. Two kinds
of algorithms deserve special attention here. The first are operations to manip-
ulate Difference Bound Matrices (DBMs) [2], which represent abstract states.
With the help of the IRF, we obtain efficient implementations of DBMs repre-
sented as arrays. The second are search algorithms that govern the search for
reachable states. These algorithms are interesting in their own right, since they
make use of subsumption: during the search process an abstract state can be
ignored if a larger abstract state was already explored. We provide a generalized
framework for different variants of search algorithms, including a version which
resembles Uppaal’s unified passed and waiting list [2].

We aim to offer a modeling formalism that is comparable in its expressiveness
to the one of Uppaal. To accomplish this goal while keeping the formalization
effort manageable, we opt to accept Uppaal bytecode as input. At the current
state of the project we have formalized the semantics of a subset of the bytecode
produced by Uppaal. We support the essential modeling features: networks of
automata with synchronization, and bounded integer state variables. We apply
a product construction to reduce models of this formalism to a single timed
automaton. As in real model checkers, the whole construction is computed on
the fly. However, not every bytecode input designates a valid automaton. To this
end, we employ a simple program analysis to accept a sufficiently large subset
of the valid inputs.

We conducted experiments on a small number of established benchmark mod-
els. The throughput of our model checker — the number of explored states per
time unit — is within an order of magnitude of a version of Uppaal running a
comparable algorithm.

1.1 Isabelle/HOL

Isabelle/HOL [4] is an interactive theorem prover based on Higher-Order Logic
(HOL). You can think of HOL as a combination of a functional programming
language with logic. Although Isabelle/HOL largely follows ordinary mathe-
matical notation, there are some operators and conventions that should be
explained. Like in functional programming, functions are mostly curried, i.e.
of type τ1 ⇒ τ2 ⇒ τ instead of τ1 × τ2 ⇒ τ . This means that function applica-
tion is usually written f a b instead of f(a, b). Lambda terms are written in the
standard syntax λx. t (the function that maps x to t) but can also have multiple
arguments λx y. t, paired arguments λ(x, y). t, or dummy arguments λ . t. Type
variables are written ′a, ′b, etc. Compound types are written in postfix syntax:
τ set is the type of sets of elements of type τ . In some places in the paper we
have simplified formulas or code marginally to avoid distraction by syntactic or
technical details, but in general we have stayed faithful to the sources.
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1.2 Related Work

The basis of the work presented in this paper is our existing formalization of
timed automata [7]. We are aware of one previous proof-assistant formalization
of timed automata using PVS [8,9]. This work has the basic decidability result
using regions and claims to make some attempt to extend the formalization
towards DBMs. Another line of work [10,11] aims at modeling the class of p-
automata [12] in Coq and proving properties of concrete p-automata within Coq.
A similar approach was pursued with the help of Isabelle/HOL in the CClair
project [13]. In contrast, our formalization [7] focuses on the foundations of
timed automata model checking. In particular, it encompasses a formalization
of the relevant DBM algorithms and the rather intricate developments towards
the correctness proof for the approximation operation.

We are not aware of any previous formalizations or verified implementations
of timed automata model checking. The first verification of a model checker we
are aware of is by Sprenger for the modal μ-calculus in Coq [14]. Our important
forerunner, however, is the CAVA project [15–17] by Esparza et al. It sets out for
similar goals as we do but for finite state LTL model checking. A significant part
of the refinement technology that we make use of was developed for this project,
and it was the first project to demonstrate that verification of model checking
can yield practical implementations. Compared to CAVA, our work offers sev-
eral novelties: we target model checking of timed automata, which have an infi-
nite state space; we use imperative data structures, which is crucial for efficient
DBMs; finally, we implemented complex search algorithms with subsumption.
Additionally, we operate on automata annotated with Uppaal bytecode, which
has interesting ramifications: for the product construction, and because we need
to ensure that the input actually defines a timed automaton.

2 Timed Automata and Model Checking

2.1 Transition Systems

We take a very simple view of transition systems: they are simply a relation →
of type ′a ⇒ ′a ⇒ bool. We model (finite) runs as inductive lists, and infinite
runs as coinductive streams. We write a → xs → b to denote the →-run from
a to b using the intermediate states in the list xs, and a →ys to denote the
infinite →-run starting in a and then continuing with states from the stream ys.
Additionally, we define:

a →+ b = (∃xs. a → xs → b) and a →∗ b = (a →+ b ∨ a = b).
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We define the five CTL properties that are supported by Uppaal, A♦,
A�, E♦, E�, and ���, as properties of infinite runs2 starting from a state.
For instance,

A♦ φ x = (∀xs. x →xs =⇒ ev (holds φ) (x · xs)),

and
φ ��� ψ = A� (λx. φ x =⇒ A♦ ψ x),

where ev specifies that a property on a stream eventually holds, and holds con-
strains ev to the current state instead of the remainder stream. It then is trivial
to prove identities such as E� φ x = (¬A♦ (Not ◦ φ) x).

2.2 Timed Automata

Compared to standard finite automata, timed automata introduce a notion of
clocks. Figure 1 depicts an example of a timed automaton. We will assume that
clocks are of type nat . A clock valuation u is a function of type nat ⇒ real .

Fig. 1. Example of a timed automaton with two clocks.

Locations and transitions are guarded by clock constraints, which have to
be fulfilled to stay in a location or to take a transition. Clock constraints are
conjunctions of constraints of the form c ∼ d for a clock c, an integer d, and
∼ ∈ {<,≤,=,≥, >}. We write u � cc if the clock constraint cc holds for the
clock valuation u. We define a timed automaton A as a pair (T , I) where I is
an assignment of clock constraints to locations (also named invariants); and T
is a set of transitions written as A � l −→g,a,r l′ where l and l′ are start and
successor location, g is the guard of the transition, a is an action label, and r is
a list of clocks that will be reset to zero when the transition is taken. States of
timed automata are pairs of a location and a clock valuation. The operational
semantics define two kinds of steps:

– Delay: (l, u) →d (l, u ⊕ d) if d ≥ 0 and u ⊕ d � I l;
– Action: (l, u) →a (l′, [r → 0]u)

if A � l −→g,a,r l′, u � g, and [r → 0]u � I l′;
2 This is fairly standard in the literature [2,3,12,18] but differs slightly from the

implementation in Uppaal.
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where u ⊕ d = (λc. u c + d) and [r → 0]u = (λc. if c ∈ r then 0 else u c). For any
(timed) automaton A, we consider the transition system

(l, u) →A (l′, u′) = (∃d ≥ 0. ∃a u′′. (l, u) →d (l, u′′) ∧ (l, u′′) →a (l′, u′)).

That is, each transition consists of a delay step that advances all clocks by some
amount of time, followed by an action step that takes a transition and resets
the clocks annotated to the transition. We write A, s0 |= φ if φ holds in state s0
w.r.t. →A. Note that it is crucial to combine the two types of steps in order to
reason about liveness. Consider the automaton from Fig. 1 and assume the two
kinds of steps could be taken independently. Then the automaton has a run on
which some predicate P holds everywhere if and only if P s1 holds.

2.3 Model Checking

Due to the use of clock valuations, the state space of timed automata is inher-
ently infinite. Thus, model checking algorithms for timed automata are based
on the idea of abstracting from concrete valuations to sets of clock valuations
of type (nat ⇒ real) set, often called zones. The initial decidability result [1]
partitioned the state space into a quotient of zones, the so-called regions, and
showed that these yield a sound and complete abstraction3. However, practi-
cal model checking algorithms rather explore the state space in an on-the-fly
manner, computing successors directly on zones, which are typically represented
symbolically as Difference Bound Matrices (DBMs). DBMs are simply a matrix-
form representation of clock constraints, which contain exactly one conjunct for
each pair of clocks. To represent constraints on single clocks, an artificial 0-clock
is added, which is assumed to be assigned 0 in any valuation.

The delicate part of this method is that the number of reachable zones could
still be infinite. Therefore, an over-approximation is applied to zones to obtain a
finite search space. We call the transition system of zones the zone graph, and the
version where over-approximations are applied the abstract zone graph [18]. The
soundness argument for this method (due to over-approximation completeness
is trivial), starts from the region construction and then introduces the notion of
the closure of a zone, which is defined to be the union of all regions intersecting
with a zone. It can be shown from the correctness of the region construction that
closures yield a sound over-approximation of zones. Finally, one shows that the
result of applying the over-approximation operator to zones is always contained
in the closure, thus inheriting soundness from the soundness of closures. We have
formalized this argument and all of the material summarized in this section in
previous work [7]. It only covers the case of reachability, but we will demonstrate
how to extend the soundness argument to liveness below.

3 We use the same notions as in [7]. Soundness: for every abstract run, there is a
concrete instantiation. Completeness: every concrete run can be abstracted.
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3 A First Glance at the Model Checker

This section provides a first overview of our model checker, its construction,
and the correctness theorem we proved. The input to our checker consists of a
model, i.e. a network of Timed Automata, and a formula to be checked against
the model. To achieve high compatibility with Uppaal, guards and updates
can be formulated in Uppaal bytecode4. This intermediate representation is
computed by Uppaal from the original C-style input before the actual model
checking process is started. Given such an input, our tool will first determine
whether the input is valid and lies in the supported fragment. This is achieved
by a simple program analysis. As input formulae, our model checker accepts the
same (T)CTL fragment that is supported by UPPAAL, but restricts formulae
to not contain clocks. While this is not a principal limitation of our work, it
reduced the complexity of our first prototype. If the input is invalid, our tool
answers with “invalid input”, else it determines whether

conv N, (init , s0, u0) �max steps φ

holds for the all-zero valuation u0 under the assumption that the automaton is
deadlock-free5, and answers with true/false. Here, N is the input automaton,
conv converts all integer constants to reals (as the semantics are specified on
reals), and φ is the input formula. The relation �max steps is a variant of �
lifted to networks of timed automata with shared state and Uppaal bytecode
annotations. It is indexed with the maximum number of steps that any execution
of a piece of Uppaal bytecode can use (i.e. max steps is the fuel available to
executions). The vector of start locations init, and the shared state s0 (part of
the input) describe the initial configuration.

The actual model checking proceeds in two steps. First, a product construc-
tion converts the network to a single timed automaton, expressed by HOL func-
tions for the transition relation and the invariant assignment. Second, according
to the formula, a model checking algorithm is run on the single automaton. We
need three algorithms: a reachability checker for E♦ and A�, a loop detection
algorithm for E� and A♦, and a combination of both to check ���-properties.
Note that the aforementioned HOL functions are simply functional programs
that construct the product automaton’s state and invariant assignments on-the-
fly. The final correctness theorem we proved can be stated as follows:

{emp}
precond mc p m k max steps I T prog formula bounds P s0

{λSome r ⇒ valid input p m max steps I T prog bounds P s0 na k ∧
(¬ deadlock (conv N) (init , s0, u0) =⇒

r = conv N, (init , s0, u0) �max steps formula)
| None ⇒ ¬ valid input p m max steps I T prog bounds P s0 na k}

4 For the time being, the bytecode needs to be pre-processed slightly, mainly to rename
textual identifiers to integers.

5 Adding a check for deadlocked states to our algorithms would be conceptually simple
but is left for future work.
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This Hoare triple states that the model checker terminates and produces the
result None if the input is invalid. If the input is valid and deadlock free, it
produces the result Some r, where r is the answer to the model checking problem.

4 Single Automaton Model Checking

In this section, we describe the route from the abstract semantics of timed
automata to the implementation of an actual model checker. The next section
will describe the construction of a single timed automaton from the Uppaal-
model.

4.1 Implementation Semantics

Although we have established that the DBM-based semantics from Sect. 2 can
only explore finitely many zones, it is still “too infinite”: the automaton and
DBMs are described by real constants, and operations on DBMs are performed
on infinitely many dimensions (i.e. clocks). Thus, we introduce an implementa-
tion semantics, in which automata are given by integer constants, and where the
number of clocks is fixed. We prove equivalence of the semantics in two steps:
first, we show that DBM operations need only be performed on the clocks that
actually occur in the automaton; second, we show that all computations can be
performed on integers, provided the initial state only contains integers.

For the former step, we simplify the operations under the assumptions that
they maintain canonicity of DBMs. A DBM is canonical if it stores the tightest
derivable constraint for each pair of clocks, i.e.

canonical M n = (∀i j k. i ≤ n ∧ j ≤ n ∧ k ≤ n → M i k ≤ M i j + M j k).

During model checking, the Floyd-Warshall algorithm is used to turn a DBM
into its canonical counterpart.

For the latter step, we use Isabelle’s integrated parametricity prover [19] to
semi-automatically transfer the operations from reals to integers.

As an example, Fig. 2 displays the refinement steps of the up operation, which
computes the time successor of a zone Z, i.e. the set {u ⊕ d | u ∈ Z ∧ d ≥ 0}.

Fig. 2. Refinement stages of the up operation for computing time successors.
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In the step from up to up1, the assumption that the input DBM is canonical
is introduced. In up2, which is the version used in the implementation semantics,
the operation is constrained to clocks 1 to n. Finally, in up3, the matrices are
implemented as arrays and the fold is implemented as a foreach loop.

At this point, a naive exploration of the transitive closure of the implemen-
tation semantics would already yield a simple but inefficient model checker. The
rest of this section outlines the derivation of a more elaborate implementation
that is close to what can be found in Uppaal.

4.2 Semantic Refinement of Successor Computation

We further refine the implementation semantics to add two optimizations to the
computation of successor DBMs: to canonicalize DBMs it is sometimes sufficient
to only “repair” single rows or columns instead of running the full Floyd-Warshall
algorithm; moreover, we can terminate the computation early whenever we dis-
cover a DBM that represents an empty zone (as it will remain empty). Both
arguments are again carried out on the semantic level.

4.3 Abstraction of Transition Systems with Closures

Recall that the correctness of the reachability analysis on the abstract zone
graph in Sect. 2 was obtained arguing that the region closure of zones forms
a sound over-approximation of zones, which in turn is larger than the abstract
zone graph. We want to reuse the same kind of argument to also argue that there
exists a cycle in the abstract zone graph if and only if there is a cycle in the
automaton’s transition system. This proof is carried out in a general abstract
framework for transition systems and their abstractions.

We consider a concrete step relation →C over type ′a and what is supposed
to be its simulation, a step relation →A1 over type ′a set. We say that →A1 is
post-stable [20] if S →A1 T implies

∀s′ ∈ T. ∃s ∈ S. s →C s′,

and that →A1 is pre-stable [20] if S →A1 T implies

∀s ∈ S. ∃s′ ∈ T. s →C s′.

In the timed automata setting, for instance, the simulation graph is post-stable
and the region graph is pre-stable.

Lemma 1. If →A1 is post-stable and we have a →A1 as →A1 a with a finite
and non-empty, then there exist xs and x ∈ a such that x →C xs →C x.
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Proof. Let x → y = (∃xs. x →C xs →C y). As →A1 is post-stable, every a has
an ingoing →-edge. Because a is finite we can thus find an →-cycle in a, and
obtain the claim.

Lemma 2. If →A1 is pre-stable and we have a →A1 as →A1 a and x ∈ a, then
there exist xs such that x →xs

C and xs passes through a infinitely often.

Proof. By coinduction. From pre-stability we can find x1 ∈ a such that x →+
C x1,

from x1 we find x2 ∈ a such that x1 →+
C x2, and so forth.

We can now consider doubly-layered abstractions as in the case for regions
and zones. That is, we add a second simulation →A2 and two predicates P1 and
P2 that designate valid states of the first and second simulation layer, respec-
tively. Then we define the closure C of a state of the second layer as

C a = {x | P1 x ∧ a ∩ x �= ∅} and a →C b = (∃x y. a = C x ∧ b = C y ∧ x →A2 y).

We assume that →A1 is pre-stable w.r.t. →C and that →C is post-stable w.r.t.
→A1 . Along with some side conditions on P1 and P2

6 we can prove:

Theorem 1. If a0 →A2 as →A2 a →A2 bs →A2 a and P2 a, then there exist
x ∈

⋃
(C a0) and xs such that x →xs

C and xs passes through
⋃

(C a) infinitely
often.

Proof. We first apply C to the second layer states and get a path of the form:
C a0 →C as′ →C C a →C bs′ →C C a for some as′ and bs′. From Lemma 1 and
post-stability, we obtain a path of the form a01 →A1 as1 →A1 a1 →A1 bs1 →A1

a1 with a01 ∈ C a0 and a1 ∈ C a. By applying Lemma 2 and pre-stability, we
obtain the desired result.

This is the main theorem that allows us to run cycle detection on the abstract
zone graph during model checking: the other direction is trivial, and the theorem
can be directly instantiated for regions and (abstracted) zones. There is a slight
subtlety here since we only guarantee x ∈

⋃
(C a0). However we typically have

C a0 = a0, as all clocks are initially set to zero.

4.4 Implementation of Search Algorithms

We first implement the three main model checking algorithms abstractly in the
nondeterminism monad provided by the IRF. On this abstraction level, we can
use such abstract notions as sets and specify the algorithm for an arbitrary
(finite) transition system →. We only showcase the implementation of our cyclic-
ity checker (used for A♦ and E�). The techniques used for the other algorithms
are similar. The code for our cyclicity checker is displayed in Listing 1.1.

6 P1 states are distinct and there are only finitely many of them. For every P2 state,
there is an overlapping P1 state.
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dfs P = do {
(P, ST, r) ← recT (λdfs (P, ST, v) .

do {
if ∃v′ ∈ set ST. v′ � v then return (P, ST,True)
else do {

if ∃v′ ∈ P. v � v′ then return (P, ST,False)
else do {

let ST = v · ST ;
(P, ST ′, r) ←

foreach {v′ | v → v′} (λ( , , b). ¬ b)
(λv′ (P, ST, ). dfs (P, ST, v′))
(P, ST,False) ;

assert (ST ′ = ST ) ;
return (insert v P, tl ST ′, r)

}
}

} ) (P, [ ], a0 ) ;
return (r, P )}

Listing 1.1. Cyclicity Checker

We claim that this closely resembles the pseudo-code found, e.g., in [21]. The
algorithm takes a passed set, and produces a new passed set in addition to
the answer. This can be used in the algorithm for checking ���-properties. The
crux of the algorithm is the use of the subsumption operator �, to check whether
smaller states are already subsumed by larger states that we may have discovered
earlier (for timed automata, this would correspond to set inclusion on zones).
We assume that � is a pre-order and monotone w.r.t. →. Then, using the IRF’s
verification condition generator, we prove:

dfs P ≤ SPEC (λ(r, P ′). (r =⇒ (∃x. a0 →∗ x ∧ x →+ x))
∧(¬ r =⇒ ¬ (∃x. a0 →∗ x ∧ x →+ x) ∧ liveness compatible P ′))

if liveness compatible P.

The invariant we maintain for the passed set P is encoded in the predicate
liveness compatible P . We say that a state x is covered by P if there exists
x′ ∈ P such that x � x′. Then, informally, liveness compatible P states that the
successors of every node that is covered by P are also covered, and that there is
no cycle through nodes that are covered by P . After specifying the correct loop
invariant (using liveness compatible as the main insight) and the termination
relation, together with some key lemmas about the invariant, the verification
conditions can be discharged nearly automatically.

In subsequent steps, we gradually refine this implementation to use more
efficient data structures. The final version uses a function to compute a list of
successors, and is able to index the passed set and the stack according to a key
function on states (this corresponds to the location part of states in the abstract
zone graph). The refinement theorem can be stated as:

dfs map P ≤ ⇓ (Id ×r map set rel) (dfs P ′) if (P, P ′) ∈ map set rel .
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That is, dfs map is a refinement of dfs, where the passed set is data-refined w.r.t.
the relation map set rel . This relation describes the implementation of passed
sets indexed by keys.

These refinement steps are conducted inside the nondeterminism monad of
the IRF. The final step leads into the heap-monad of Imperative HOL [22], which
supports imperative data structures. Here, the Sepref tool [6] replaces functional
by imperative data structures and generates a refinement theorem automatically.

Maps are implemented via hash tables, which poses a challenge for the imple-
mentation as the maps contain objects stored on the heap. This was not sup-
ported by the existing implementation in the Imperative Collections Framework,
due to sharing issues: when retrieving a value from the map, we cannot obtain
ownership of the value while the map also retains ownership. This is even true
if the value is read-only. One way to solve this problem would be to extend
the separation logic that underlies the IRF to fractional permissions or read-
only permissions. Our solution, however, is more ad-hoc: we simply restrict the
operations that we perform on the hash map to insertions and an extract oper-
ation, which deletes a key-value pair from the map and returns the value (i.e.
it combines lookup and delete). To define the map implementation, we use a
trick similar to Chargueraud’s ideas from [23]: we use a heap assertion that first
connects an abstract map m with an intermediate map mh of pointers to the
elements, and then implements the map of pointers by a regular hash map mi.
Formally, the assertion is defined as:

hms assn A m mi = (∃Amh. is map mh mi ∗ map assn A m mh).

Here is map is the assertion for an existing map implementation from the Imper-
ative Collections Framework (which cannot store heap objects, but supports
pointers), and map assn A m mh connects a map of abstract values with a map
of pointers, where the relation between abstract values and pointed-to objects
is defined by A.

Then, the final implementation is produced by proving that all map-related
operations in dfs map can be replaced by insert and extract operations, and
letting Sepref synthesize the imperative variant, making use of our new hash map
implementation. The key theorem on the final implementation is the following
Hoare triple:

{emp}
dfs map impl ′ succsi a0i Lei keyi copyi

{λr. r = (∃x. a0 →∗ x ∧ x →+ x)}
It is expressed in a locale (Isabelle’s module system) that assumes that a0i,
succsi , etc., are the correct imperative implementations of a0, the successor
function, and so forth. Versions of the search algorithm for concrete transition
systems are obtained by simply instantiating the locale with the operations of
the transition system and their implementations.
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4.5 Imperative Implementations of Model Checking Operations

Recall the refinement of the up operation (Fig. 2). It is crucial that up2 is
expressed as a fold-operation with explicit updates, as only then the IRF can
extract an efficient imperative version with destructive updates and a foreach
loop. The imperative implementation up3 is, again, synthesized by the Sepref
tool. As can be witnessed for up3, the pattern fold f [1 ..< n + 1] is turned into
a foreach loop. Technically, this is achieved by a set of rewrite rules that are
applied automatically by the Sepref tool at the end of the synthesis process.
The only hurdle for this kind of synthesis is that the dimension of DBMs needs
to become a parameter of the refinement relations. For n clocks, we define

mtx assn = asmtx assn (n + 1) id assn.

This specifies that our DBMs are implemented by square-arrays of dimension
n + 1, and their elements are refined by the identity relation.

The refinement theorem for up3 is proved automatically by the Sepref tool:

(up3, up2) ∈ [λ( , i). i ≤ n] mtx assnd ∗ nat assnk → mtx assn.

This theorem states that, if the specified dimension is in bounds, up3 refines up2.
The ·d annotation indicates that the operation is allowed to overwrite (destroy)
the input matrix on the heap. Symmetrically, the ·k annotation means that the
second parameter is not overwritten (kept).

4.6 Code Extraction

Finally, Isabelle/HOL’s code generator [24] is used to extract imperative Stan-
dard ML code from the Isabelle specifications generated by Sepref. Code gener-
ation involves some optimizations and rewritings that are carried out as refine-
ment steps and proved correct, followed by pretty printing from the functional
fragment of HOL and the heap monad to Standard ML.

5 From UPPAAL-Style Semantics to a Single Automaton

5.1 UPPAAL-Style Semantics

Due to the lack of documentation on the Uppaal intermediate format, we define
an approximation of this assembler-like language by reverse engineering. This is
sufficient to check typical benchmarks, and gives a clearly defined semantics to
the fragment that we cover. The language is defined as a simple data type instr.
A step function of type instr ⇒ state ⇒ state option computes the successor
state after executing an instruction, or fails. A state consists of an instruction
pointer, the stack, the state of the shared integer variables, the state of the
comparison flag, and a list of clocks that have been marked for reset. Using a
fuel parameter, we execute programs by repeatedly applying the step function
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until we either reach a halt instruction, fail, or run out of fuel, which we also
regard as a failed execution.

A special instruction CEXP is used to check whether an atomic clock con-
straint holds for a given valuation u. However, this instruction cannot simply be
executed during model checking as it would need to work on zones instead of val-
uations. Unconstrained use of the CEXP instruction would allow for disjunctions
of clock constraints on edges, which is not part of the standard timed automata
formalism. Thus, in the same way as Uppaal, we restrict the valid input pro-
grams to those that only yield conjunctions of clock constraints on edges. We then
replace every CEXP instruction by a special meta instruction that sets the com-
parison flag to true. This amounts to enforcing a program execution where the
clock constraint, which is expressed by a piece of bytecode, holds for a valua-
tion. Edges are annotated with the conjunction of the atomic clock constraints
encountered during execution. In the current version of our tool, we separate
concerns for locations by using a state predicate, which is not allowed to use
CEXP instructions, and a separate clock constraint. The two could be merged
by using the same approach as for edges.

5.2 Program Analysis

As stated in the last section, we need to ensure that successful program execu-
tions can only induce conjunctive clock constraints. That is, we need to ensure
that program executions can only be successful when all CEXP instructions that
are encountered during execution evaluate to true. To this end, we use a naive
analysis, which recognizes a subclass of these programs that is sufficiently large
to cover common timed automata benchmarks. This analysis tries to identify
what we call conjunction blocks. A conjunction block reaching from addresses
pcs to pct ends with a halt instruction at pct, starts with a CEXP instruction
at pcs and then is extended to pct by repeatedly using one of the following two
patterns:

– a copy instruction to push the flag on the stack, followed by CEXP and an
and instruction;

– a copy instruction, followed by a jump-on-zero instruction with pct as the
destination, followed by CEXP and an and instruction.

We simultaneously show the two key properties of conjunction blocks via induc-
tion: if there is a conjunction block from pcs to pct, then any successful execution
starting from pcs ends in pct, and every CEXP instruction that is encountered
has to evaluate to true. Given a start address pcs, the whole analysis works by
computing an approximation of the set of possible addresses that can be reached
from pcs, say S, and then checking whether

Min {pc | pc ∈ S ∧ (∃ac. Ppc = CEXP ac)} to Max S

is a conjunction block, where Ppc is the program instruction at address pc. A
major limitation of this analysis is that it cannot approximate the reachable
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Fig. 3. Outline of the product construction.

set for call and return instructions, so we are not able to handle inputs that
are compiled from Uppaal programs with sub-routines. However, as the main
objective of our work is not program analysis, we consider the current naive
analysis sufficient to demonstrate the general viability of our approach.

5.3 Product Construction

The general shape of our product construction is outlined in Fig. 3. The first stage
of the construction encodes the bytecode annotations as guards and updates on
the shared state. The subsequent stage constructs a network of automata for
each shared state by essentially filtering the transitions that are valid for a given
state. For a simple network, the product can be constructed in the obvious way.
However, this is only used in the correctness proof of the final step, which directly
constructs a single automaton by pairing the location vector and the state.

The result of this construction is a highly contrived description of the single
automaton. To obtain an efficiently executable version of this description, we
specify an alternative functional implementation and prove the equivalence of
the two.

6 Experimental Evaluation

We conducted experiments on some standard benchmark models for timed
automata: a variant of Fischer’s mutual-exclusion protocol, the FDDI token ring
protocol, and the CSMA/CD protocol used in Ethernet networks. We tested one
reachability and one liveness property for each model: E♦(c > 1) and P1.b ���
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P1.c for Fischer’s protocol; E♦(¬P1.idle ∧ ¬P2.idle) and true ��� z async1 for
FDDI; and E♦(P1.abort ∧P2.send), and collision ��� active for CSMA/CD. We
compare (c.f. Table 1) our tool against Uppaal configured with two different
approximation operators: difference (Uppaal1) and location-based (Uppaal2)
extrapolation. We give the computation time in seconds and the number of
explored states, as reported by our tool and Uppaal7. Since the number of
explored states differs significantly, we also calculated throughput, i.e. the num-
ber of explored states per second. The ratio of Uppaal’s throughput and our
tool’s throughput is given in the column TR. We specify the problem size as the
number of automata in the network.

Table 1. Experimental results on a set of standard benchmarks.

Model Prop SAT Size Our tool Uppaal1 Uppaal2

Time #States Time #States TR Time #States TR

Fischer R N 5 6,61 38578 0,31 12363 6,83 0,04 3739 16,02

L Y 5 7,52 42439 0,31 20340 11,8 0,04 8149 40,1

Y 6 485,9 697612 42,85 249295 4,1 1,53 67325 30,7

FDDI R N 8 16,04 6720 0,34 5416 37,6 0,31 5416 42,0

N 10 142,8 29759 6,63 24210 17,5 6,44 24120 18,0

L Y 6 2,58 2083 0,05 2439 61,7 0,04 2439 68,7

Y 7 6,50 3737 0,15 4944 57,0 0,14 4944 62,3

CSMA/CD R N 5 4,48 9959 0,03 2704 45,3 0,03 2769 40,6

N 6 71,70 81463 1,70 17613 9,2 1,79 17939 8,8

L Y 5 4,93 11526 0,04 3802 42,4 0,04 3867 42,4

Y 6 76,83 96207 1,78 23128 10,4 1,86 12603 10,1

The results indicate that our tool’s throughput is around one order of magni-
tude lower than Uppaal’s. Encouragingly, the gap seems to decrease for larger
models. However, for larger problem sizes of some models, we also start to run
out of memory because our tool is not tuned towards space consumption. We do
not have a convincing explanation for the difference in states explored by our
tool and Uppaal — particularly, because our tool already implements location-
based extrapolation. Nevertheless, we conclude that the performance offered by
our tool is reasonable for a reference implementation against which other tools
can be validated: we can check medium sized instances of common benchmark
models, which should be sufficient to scrutinize the functionality of a model
checker.

7 Uppaal comes with a note suggesting that these numbers might be wrong for liveness
properties.
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7 Conclusion

We have derived an efficiently executable and formally verified model checker
for timed automata. Starting from an abstract formalization of timed automata,
we first reduced the problem to model checking of a single automaton, and then
used stepwise refinement techniques to gradually replace abstract mathematical
notions by efficient algorithms and data structures. Some of the verified algo-
rithms and data structures, e.g. search with subsumption and Difference Bound
Matrices, are interesting in their own right. Our experiments demonstrate that
our tool’s performance is suitable for validating other model checkers against
it on medium sized instances of classic benchmark models. Using a simple pro-
gram analysis, we can cover a subset of the Uppaal bytecode that is sufficient
to accept common models as an input.

Following the construction we expounded above, our checker can be improved
on two different axes: advanced modeling feature such as broadcast channels or
committed locations can be enabled by elaborating the product construction;
using the refinement techniques that we demonstrated above, further improve-
ments of the model checking algorithms can achieve better performance.

An alternative approach to tackle performance problems is to resort to cer-
tification of model checking results. For the simple CTL properties that are
supported by our tool and Uppaal, passed sets could be used as the certificates
and the model checking algorithms could be reused for certificate checking. As
the model checking algorithms for timed automata make use of subsumption,
passed sets can contain significantly less states than the total number of states
explored during model checking. We plan on exploring this avenue in the future.

Data Availability Statement. The datasets generated during and analyzed during

the current study are available in the figshare repository [25]: https://doi.org/10.6084/

m9.figshare.5917363.v1.
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Abstract. Chain reduction enables reduced ordered binary decision dia-
grams (BDDs) and zero-suppressed binary decision diagrams (ZDDs)
to each take advantage of the others’ ability to symbolically represent
Boolean functions in compact form. For any Boolean function, its chain-
reduced ZDD (CZDD) representation will be no larger than its ZDD
representation, and at most twice the size of its BDD representation.
The chain-reduced BDD (CBDD) of a function will be no larger than its
BDD representation, and at most three times the size of its CZDD repre-
sentation. Extensions to the standard algorithms for operating on BDDs
and ZDDs enable them to operate on the chain-reduced versions. Experi-
mental evaluations on representative benchmarks for encoding word lists,
solving combinatorial problems, and operating on digital circuits indicate
that chain reduction can provide significant benefits in terms of both
memory and execution time.

1 Introduction

Decision diagrams (DDs) encode sets of values in compact forms, such that
operations on the sets can be performed on the encoded representation, without
expanding the sets into their individual elements. In this paper, we consider two
classes of decision diagrams: reduced ordered binary decision diagrams (BDDs)
[4] and zero-suppressed binary decision diagrams (ZDDs) [11,12]. These two
representations are closely related to each other, with each achieving more com-
pact representations for different classes of applications. We present extensions
to both representations, such that BDDs can take advantage of the source of
compaction provided by ZDDs, and vice-versa.

Both BDDs and ZDDs encode sets of binary sequences of some fixed length
n, defining a Boolean function over n variables. We can bound their relative sizes
as follows. Suppose for some function, we encode it according to the different
DD types. For function f , let T (f) indicate the number of nodes (including leaf
nodes) in the representation of type T . Let Rf (T1, T2) denote the relative sizes
when representing f using types T1 and T2:

Rf (T1, T2) = T1(f)
T2(f)

c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10805, pp. 81–98, 2018.
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Fig. 1. Size bound relations between different representations

Comparing BDDs and ZDDs, Knuth [9] has shown that for any function f :

Rf (BDD,ZDD) ≤ n/2 + o(n) (1)
Rf (ZDD,BDD) ≤ n/2 + o(n) (2)

As these bounds show, ZDDs may be significantly (a factor of n/2) more com-
pact than BDDs, or vice-versa. In practice, the comparative advantage of one
representation over the other can be very significant, given that the size of the
data structure is often the limiting factor in the use of DDs.

In this paper, we introduce two new representations: chain-reduced ordered
binary decision diagrams (CBDDs), and chain-reduced zero-suppressed binary
decision diagrams (CZDDs). The key idea is to associate two levels with each
node and to use such nodes to encode particular classes of linear chains found in
BDDs and ZDDs. Chain reduction can be defined in terms of a set of reduction
rules applied to BDDs and ZDDs, giving bounds for any function f

Rf (CBDD,BDD) ≤ 1 (3)
Rf (CZDD,ZDD) ≤ 1 (4)

We show bounds on the relative sizes of the representations as:

Rf (CBDD,CZDD) ≤ 3 (5)
Rf (CZDD,BDD) ≤ 2 (6)

These relations are summarized in the diagram of Fig. 1. In this figure, each arc
from type T1 to type T2 labeled by an expression E indicates that Rf (T1, T2) ≤
E+o(E). We also show these bounds are tight, by demonstrating parameterized
families of functions that achieve the bounding factors of (5) and (6).

These results indicate that the two compressed representations will always
be within a small constant factor (2 for CZDDs and 3 for CBDDs) of either a
BDD or a ZDD representation. While one representation may be more slightly
compact than the other, the relative advantage is bounded by a constant factor,
and hence choosing between them is less critical.
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Fig. 2. Reductions in BDDs and ZDDs. Each reduces the representation size with
edges between nonconsecutive levels.

This paper defines the two compressed representations, derives the bounds
indicated in (5) and (6) and presents extensions of the core BDD and ZDD
algorithms to their chained versions. It describes an implementation based on
modifications of the CUDD BDD package [14]. It presents some experimental
results and concludes with a discussion of the merits of chaining and possible
extensions.

2 Related Work

In independent work, van Dijk and his colleages devised a hybrid of BDDs and
ZDDs they call tagged BDDs [6]. Their representation augments BDDs by asso-
ciating a variable with each edge, in addition to the variable associated with
each node, enabling them to represent both BDD and ZDD reductions along
each edge. For any function, a tagged BDD is guaranteed to have no more nodes
than either its BDD or its ZDD representation. They avoid the constant factor in
node growth that CBDDs or CZDDs may require, at the cost of requiring storage
for three variables per node (one for the node, and one for each of the outgoing
edges) versus two. Choosing between their representation or ours depends on a
number of implementation factors. Both achieve the larger goal of exploiting the
reductions enabled by both BDDs and ZDDs.

3 BDDs and ZDDs

Both BDDs and ZDDs encode sets of binary sequences of length n as directed
acyclic graphs with two leaf nodes, labeled with values 0 and 1, which we refer
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to as “leaf 0” and “leaf 1,” respectively. Each nonleaf node v has an associated
level l, such that 1 ≤ l ≤ n, and two outgoing edges, labeled lo and hi to either
a leaf node or a nonleaf node. By convention, leaf nodes have level n + 1. An
edge from v to node u having level l′ must have l < l′.

Figure 2 shows three decision-diagram representations of the set S,
defined as:

S = {0001, 0011, 0101, 0111, 1000} (7)

The lo edge from each node is shown as a dashed line, and the hi edge is shown
as a solid line. As a shorthand, we omit leaf 0 and all branches to it.

Graph A represents S as a levelized binary decision diagram, where an edge
from a node with level l must connect to either leaf 0 or to a node with level
l+1. Each path from the root to leaf 1 encodes an element of set S. For a given
path, the represented sequence has value 0 at position l when the path follows
the lo edge from the node with level l and value 1 when the path follows the hi
edge.

Graph A has nodes forming two linear chains: a don’t-care chain, con-
sisting of nodes a and b, and an or chain, consisting of nodes d, e, and f . A
don’t-care chain is a series of don’t-care nodes, each having its two out-
going edges directed to the same next node. In terms of the set of represented
binary sequences, a don’t-care node with level l allows both values 0 and 1
at sequence position l. An or chain consists of a sequence where the outgoing
hi edges for the nodes all go the same node—in this case, leaf 0. An or chain
where all hi edges lead to leaf 0 has only a single path, assigning value 0 to the
corresponding positions in the represented sequence. We will refer to this special
class of or chain as a zero chain.

BDDs and ZDDs differ from each other in the interpretations they assign
to a level-skipping edge, when a node with level l has an edge to a node with
level l′ such that l + 1 < l′. For BDDs, such an edge is considered to encode a
don’t-care chain. Thus, graph B in Fig. 2 shows an BDD encoding set S. The
edge on the left from level 1 to level 4 is equivalent to the don’t-care chain
formed by nodes a and b of graph A. For ZDDs, a level skipping edge encodes
a zero chain. Thus, graph C shows a ZDD encoding set S. The edge on the
right from level 1 to the leaf encodes the zero chain formed by nodes d, e, and
f of graph A. Whether the set is encoded as a BDD or a ZDD, one type of
linear chains remains. Introducing chain reduction enables BDDs and ZDDs to
exploit both don’t-care and or (and therefore zero) chains to compress their
representations.

4 Chain Patterns and Reductions

Figure 3 shows the general form of or and don’t-care chains, as were illus-
trated in the examples of Fig. 2. These chains have levels ranging from t to b,
such that 1 ≤ t < b ≤ n. Each form consists of a linear chain of nodes followed
by two nodes f and g with levels greater than b. Nodes f and g are drawn as
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triangles to indicate that they are the roots of two subgraphs in the representa-
tion. In an or chain, the lo edge from each node is directed to the next node in
the chain, and the hi edge is directed to node g. The chains eliminated by ZDDs
are a special case where g = 0. In a don’t-care chain, both the lo and the hi
edges are directed toward the next node in the chain.

As was illustrated in Fig. 2, having edges that skip levels allows BDDs to
compactly represent don’t-care chains and ZDDs to eliminate or chains when
g = 0. The goal of chain reduction is to allow both forms to compactly represent
both types of chains. They do so by associating two levels with each node, as
indicated in Fig. 3(C). That is, every nonleaf node has an associated pair of levels
t : b, such that 1 ≤ t ≤ b ≤ n. In a chain-reduced ordered binary decision diagram
(CBDD), such a node encodes the or chain pattern shown in Fig. 3(A), while in
a chain-reduced zero-suppressed binary decision diagram (CZDD), such a node
encodes the don’t-care chain pattern shown in Fig. 3(B). A node with levels
t and b such that t = b encodes a standard node with respect to the indicated
variable.

(A) OR chain

t

f g

t+1

b

b

(B) DON’T-CARE chain

t

f g

t+1

b

b

(C) Compressed representation

f g

t : b

Fig. 3. Chain patterns. These patterns remain after BDD reduction (A), and ZDD
reduction (B), but can be represented in compressed form (C).

Figure 4 shows the effect of chain reduction, starting with the levelized graph
A. In the CBDD (B), a single node f ′ replaces the or chain consisting of nodes
d, e, and f . In the CZDD (C), the don’t-care chain consisting of nodes a and
b is incorporated into node c to form node c′. These new nodes are drawn in
elongated form to emphasize that they span a range of levels, but it should be
emphasized that all nodes in a chained representation have an associated pair
of levels.
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Fig. 4. Chain Reduction Examples. Each now reduces both chain types.

To generalize from these examples, let us denote a node of the form illustrated
in Fig. 3(C) with the modified if-then-else notation 〈t : b → g, f〉. That is, the
node has a range of levels from t to b, an outgoing hi edge to node g, and an
outgoing lo edge to node f .

A BDD representation of a function can be transformed into a CBDD as
follows. The process starts by labeling each node having level l in the BDD
with the pair t : b, such that t = b = l. Then, we repeatedly apply a reduc-
tion rule, replacing any pair of nodes u and v of the form u = 〈t : m → g, v〉
and v = 〈m + 1 : b → g, f〉 by the single node 〈t : b → g, f〉. A similar process
can transform any ZDD representation of a function into a CZDD, using the
reduction rule that a pair of nodes u and v of the form u = 〈t : m → v, v〉 and
v = 〈m + 1 : b → g, f〉 is replaced by the single node 〈t : b → g, f〉. In practice,
most algorithms for constructing decision diagrams operate from the bottom up.
The reduction rules are applied as nodes are created, and so unreduced nodes
are never actually generated.

5 Size Ratio Bounds

These reduction rules allows us to bound the relative sizes of the different rep-
resentations, as given by (5) and (6).

First, let us consider (5), bounding the relative sizes of the CBDD and CZDD
representations of a function. Consider a graph G representing function f as a
CZDD. We can generate a CBDD representation G′ as follows. G′ contains a
node v′ for each node v in G. However, if v has levels t : b, then v′ has levels
b : b, because any don’t-care chain encoded explicitly in the CZDD is encoded
implicitly in a CBDD.
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Fig. 5. Worst case example for effectiveness of CBDD compression. The
implicit zero chains in the ZDD (A) must be explicitly encoded in the CBDD (B),
increasing its size by a factor of 3.

Consider an edge from node u to node v in G, where the nodes have levels
tu : bu and tv : bv, respectively. If tv = bu + 1, then there can be an edge directly
from u′ to v′. If tv < bu+1, then we introduce a new node to encode the implicit
zero chain in G from u to v. This node has the form 〈bu + 1 : tv − 1 → 0, v′〉 and
has an edge from u′ to it.

The size of G′ is bounded by the number of nodes plus the number of edges
in G. Since each node in G has at most two outgoing edges, we can see that
G′ has at most three times the number of nodes as G. Graph G′ may not be
reduced, but it provides an upper bound on the size of a CBDD relative to that
of a CZDD.

This bound is tight—Fig. 5 illustrates the reduced representations for a family
of functions, parameterized by a value k (k = 3 in the example), such that the
function is defined over 3k + 2 variables. The ZDD and CZDD representations
are identical (A), having 2k + 3 nodes (including both leaf nodes.) The CBDD
representation has 6k+2 nodes (B). We can see in this example that the CBDD
requires nodes (shown in gray) to encode the zero chains that are implicit in
the ZDD.

Second, let us consider (6), bounding the relative sizes of the CZDD and
BDD representations of a function. Consider a graph G representing function f
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as a BDD. We can construct its representation G′ as a CZDD. Consider each
edge G from node u, having level lu to node v, having level lv. Let r = lo(v)
and s = hi(v). G′ has a node wuv of the form 〈lu + 1 : lv → wvs, wvr〉. That is,
wuv encodes any don’t-care chain between u and v, and it has edges to the
nodes generated to encode the edges between v and its two children. The size of
G′ is bounded by the number of edges in G, which is at most twice the number
of nodes.

Fig. 6. Worst case example for effectiveness of CZDD compression. The nodes
in the BDD (A) must be duplicated to encode the incoming don’t-care chains (B),
increasing the size by a factor of 2.

This bound is also tight—Fig. 6 illustrates the reduced representations for a
family of functions, parameterized by a value k (k = 3 in the example), such that
the function is defined over 2k + 1 variables. The BDD representations (A) has
2k + 3 nodes (including both leaf nodes). The CZDD representation has 4k + 3
nodes (B). We can see that most of the nodes in the BDD must be duplicated:
once with no incoming don’t-care chain, and once with a chain of length one.

As can be seen in Fig. 1, these bounds contain an asymmetry between BDDs
and ZDDs and their compressed forms. The bound of 3 holds between CBDDs
and CZDDs, and hence by transitivity between CBDDs and ZDDs, while the
bound of 2 holds only between CZDDs and BDDs. The general form of the or
chain (Fig. 3(A)), where g is something other than 0, cannot be directly encoded
with CZDD nodes.

6 Operating on CBDDs and CZDDs

The apply algorithms for decision diagrams operate by recursively expanding
a set of argument decision diagrams according to a Shannon expansion of the



Chain Reduction for BDDs and ZDDs 89

represented functions [4,5]. These algorithms allow functions to be combined
according to standard binary Boolean operations, as well as by the if-then-else
operation ITE.

As notation, consider a step that expands k argument nodes {vi|1 ≤ i ≤ k}
where vi = 〈ti : bi → gi, fi〉. For example, operations and, or, and xor use the
apply algorithm with k = 2, while ternary operations, such as ITE use k = 3.
A step can be summarized as follows:

1. If one of the terminal cases apply, then return the result.
2. If the computed cache contains an entry for this combination of operation

and arguments, then return the previously computed result.
3. Recursively compute the result:

(a) Choose splitting level(s) based on the levels of the arguments.
(b) Generate hi and lo cofactors for each argument.
(c) Recursively compute the hi and lo values of the result using the apply

algorithm with the hi cofactors and the lo cofactors, respectively.
(d) Determine the result node parameters based on the computed hi and lo

cofactors, the splitting level(s), and the reduction rules.
(e) Either reuse an existing node or create a new one with the desired level(s)

and hi and lo children.
4. Store an entry in the computed cache.
5. Return the computed value.

In generalizing from conventional BDDs and ZDDs to their chained versions, we
need only modify 3(a) (splitting), 3(b) (cofactoring), and 3(d) (combining) in
this sequence. In the following presentation, we first give formal definitions and
then provide brief explanations.

For CBDDs, we define the splitting levels t and b as:

t = min
1≤i≤k

ti (8)

b = min
1≤i≤k

⎧
⎨

⎩

bi, ti = t
ti, ti = n + 1
ti − 1, else

We then define the two cofactors for each argument node vi, denoted lo(vi, t : b)
and hi(vi, t : b), according to the following table:

Case Condition lo(vi, t : b) hi(vi, t : b)

1 b < ti vi vi

2 b = bi fi gi

3 ti ≤ b < bi 〈b + 1 : bi → gi, fi〉 gi
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These three cases can be explained as follows:

Case 1: Splitting spans levels less than the top level of vi. Since level-skipping
edges encode don’t-care chains, both cofactors equal the original node.

Case 2: Splitting spans the same levels as node vi. The cofactors are therefore
the nodes given by the outgoing edges.

Case 3: Splitting spans a subset of the levels covered by node vi. We construct
a new node spanning the remaining part of the encoded or chain for the lo
cofactor and have gi as the hi cofactor.

Recursive application of the apply operation on the cofactors generates a
pair of nodes u0 and u1. Using the variable levels t and b defined in (8), these
are combined to form a result node u, defined as follows:

u =

⎧
⎨

⎩

u0, u0 = u1 Case 1
〈t : b′ → u1, w0〉 , u0 = 〈b + 1, b′: → u1, w0〉 Case 2
〈t : b → u1, u0〉 , else Case 3

(9)

These three cases can be explained as follows:

Case 1: The hi and lo cofactors are identical, and so the don’t-care reduction
rule can be applied.

Case 2: Chain compression can be applied to create a node that absorbs the lo
cofactor.

Case 3: No special rules apply.

Similar rules hold for applying operations to CZDDs, although there are
important differences, due to the different interpretations of level-skipping edges.

We define the splitting levels t and b as:

t = min
1≤i≤k

ti (10)

b = min
1≤i≤k

⎧
⎨

⎩

bi, ti = t
n + 1, vi = 0
t, else

The cofactors for argument node vi are defined according to the following
table:

Case Condition lo(vi, t : b) hi(vi, t : b)

1 b < ti vi 0

2 b = bi fi gi

3 ti ≤ b < bi 〈b + 1 : bi → gi, fi〉 〈b + 1 : bi → gi, fi〉
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These three cases can be explained as follows:

Case 1: The splitting spans levels less than the top level of vi. Since level-
skipping edges encode zero chains, the lo cofactor equals the original node
and the hi cofactor equals leaf 0.

Case 2: The splitting spans the same levels as node vi. The cofactors are there-
fore the nodes given by the outgoing edges.

Case 3: The splitting spans a subset of the levels covered by node vi. We con-
struct a new node spanning the remaining part of the encoded don’t-care
chain for both cofactors.

Recursive application of the apply operation on the cofactors generates a
pair of nodes u0 and u1. Using the variable ranges t and b defined in (10), these
are combined to form a result node u, defined as follows:

u =

⎧
⎪⎪⎨

⎪⎪⎩

u0, u1 = 0 and t = b Case 1
〈t : b − 1 → u0, u0〉 , u1 = 0 and t < b Case 2
〈t : b′ → w1, w0〉 , u0 = u1 = 〈b + 1, b′: → w1, w0〉 Case 3
〈t : b → u1, u0〉 , else Case 4

(11)

These four cases can be explained as follows:

Case 1: The zero-suppression rule can be applied to return a direct pointer to
u0

Case 2: The zero-suppression rule can be applied, but we must construct a
node encoding the don’t-care chain between levels t and b − 1.

Case 3: Chain compression can be applied to create a node that absorbs the lo
cofactor.

Case 4: No special rule applies.

7 Experimental Results

We implemented both CBDDs and CZDDs by modifying version 3.0.0 of the
CUDD BDD package [14]. When compiled for 64-bit execution, CUDD stores
a 32-bit field index in each node, where this index is translated into a level
according to the variable ordering. For our implementation, we split this field into
two 16-bit fields index and bindex to (indirectly) encode the top and bottom
levels of the node. Thus, there was no storage penalty for the generalization to
a chained form.

CUDD uses complement edges when representing BDDs [2,13]. Complement
edges can potentially reduce the size of a BDD by a factor of two, invalidating
the size ratio bounds derived in (5) and (6). For our experimental results, we
therefore use a representation based on CUDD’s support for Algebraic Decision
Diagrams (ADDs) [1]. ADDs generalize BDDs by allowing arbitrary leaf val-
ues. Restricting the leaf values to 0 and 1 yields conventional BDDs without
complement edges.
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To evaluate the effectiveness of chain reduction, we chose three different
categories of benchmarks to compare the performance of BDDs, ZDDs, and
their chained versions. One set of benchmarks evaluated the ability of DDs to
represent information in compact form, a second to evaluate their ability to solve
combinatorial problems, and a third to represent typical digital logic functions.
All experiments were performed on a 4.2 GHz Intel Core i7 processor with 32 GB
of memory running the OS X operating system.

7.1 Encoding a Dictionary

As has been observed [9], a list of words can be encoded as a function mapping
strings in some alphabet to either 1 (included in list) or 0 (not included in list).
Strings can further be encoded as binary sequences by encoding each symbol
as a sequence of bits, allowing the list to be represented as a Boolean function.
We consider two possible encodings of the symbols, defining the radix r to be
the number of possible symbols. A one-hot encoding (also referred to as a “1-
of-N” encoding) requires r bits per symbol. Each symbol is assigned a unique
position, and the symbol is represented with a one in this position and zeros in
the rest. A binary encoding requires �log2 r� bits per symbol. Each symbol is
assigned a unique binary pattern, and the symbol is represented by this pattern.
Lists consisting of words with multiple lengths can be encoded by introducing a
special “null” symbol to terminate each word.

Eight benchmarks were derived from two word lists to allow comparisons
of different encoding techniques and representations. The first list is a set of
English words in the file /usr/share/dict/words found on Macintosh systems.
It contains 235,886 words with lengths ranging from one to 24 symbols, and
where the symbols consist of lower- and upper-case letters plus hyphen. We
consider two resulting symbol sets: a compact form, consisting of just the symbols
found in the words plus a null symbol (54 total), and an ASCII form, consisting
of all 128 ASCII characters plus a null symbol. The second word list is from
an online list of words employed by password crackers. It consists of 979,247
words ranging in length from one to 32 symbols, and where the symbols include
79 possible characters. Again, we consider both a compact form and an ASCII
form. The choice of one-hot vs. binary encoding has a major effect on the number
of Boolean variables required to encode the words. With a one-hot encoding, the
number of variables ranges between 1,296 and 4,128, while it ranges between 144
and 256 with a binary representation. To generate DD encodings of a word list,
we first constructed a trie representation the words and then generated Boolean
formulas via a depth-first traversal of the trie.

Figure 7 shows the number of nodes required to represent word lists as
Boolean functions, according to the different lists, encodings, and DD types.
The entry labeled “(C)ZDD” gives the node counts for both ZDDs and CZDDs.
These are identical, because there were no don’t-care chains for these func-
tions. The two columns on the right show the ratios between the different DD
types. Concentrating first on one-hot encodings, we see that the chain compres-
sion of CBDDs reduces the size compared to BDDs by large factors (15.50–34.03).
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One-hot Node counts Ratios
BDD CBDD (C)ZDD BDD:CBDD CBDD:CZDD

Compact word list 9,701,439 626,070 297,681 15.50 2.10
ASCII word list 23,161,501 626,071 297,681 37.00 2.10
Compact password list 49,231,085 2,321,572 1,130,729 21.21 2.05
ASCII password list 79,014,931 2,321,792 1,130,729 34.03 2.05

Binary Node counts Ratios
BDD CBDD (C)ZDD BDD:CBDD CBDD:CZDD

Compact word list 1,117,454 1,007,868 723,542 1.11 1.39
ASCII word list 1,464,773 1,277,640 851,580 1.15 1.50
Compact password list 4,422,292 3,597,474 2,506,088 1.23 1.44
ASCII password list 4,943,940 4,307,614 2,875,612 1.15 1.50

Fig. 7. Node counts and ratios of node counts for dictionary benchmarks

Compared to ZDDs, representing the lists by CBDDs incurs some penalty (2.05–
2.10), but less than the worst-case penalty of 3. Increasing the radix from a com-
pact form to the full ASCII character set causes a significant increase in BDD
size, but this effect is eliminated by using the zero suppression capabilities of
CBDDs, ZDDs, and CZDDs.

Using a binary encoding of the symbols reduces the variances between the dif-
ferent encodings and DD types. CBDDs provide only a small benefit (1.11–1.23)
over BDDs, and CBDDs are within a factor of 1.50 of ZDDs. Again, chaining of
ZDDs provides no benefit. Observe that for both lists, the most efficient represen-
tation is to use either ZDDs or CZDDs with a one-hot encoding. The next best
is to use CBDDs with a one-hot encoding, and all three of these are insensitive
to changes in radix. These cases demonstrate the ability of ZDDs (and CZDDs)
to use very large, sparse encodings of values. By using chaining, CBDDs can also
take advantage of this property.

Although the final node counts for the benchmarks indicate no advantage of
chaining for ZDDs, statistics characterizing the effort required to derive the func-
tions show a significant benefit. Figure 8 indicates the total number of operations
and the total time required for generating ZDD and CZDD representations of the
benchmarks. The operations are computed as the number of times the program
checks for an entry in the operation cache (step 2 in the description of the apply
algorithm). There are many operational factors that can affect the number of
operations, including the program’s policies for operation caching and garbage
collection. Nevertheless, it is some indication of the amount of activity required
to generate the DDs. We can see that chaining reduces the number of operations
by factors of 8.87–13.30. The time required depends on many attributes of the
DD package and the system hardware and software. Here we see that chaining
improves the execution time by factors of 1.35–15.26.

With unchained ZDDs, many of the intermediate functions have large don’t-
care chains. For example, the ZDD representation of the function x, for variable
x, requires n + 2 nodes—one for the variable, n − 1 for the don’t-care chains
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One-hot Operations Time (secs.)
ZDD CZDD Ratio ZDD CZDD Ratio

Compact word list 142,227,877 12,097,435 11.76 48.78 15.04 3.24
ASCII word list 375,195,184 28,574,814 13.13 173.56 21.84 7.95
Compact password list 806,017,001 62,785,274 12.84 713.15 46.73 15.26
ASCII password list 1,383,534,557 104,059,626 13.30 658.21 57.81 11.39

Binary Operations Time (secs.)
ZDD CZDD Ratio ZDD CZDD Ratio

Compact word list 15,701,738 1,826,171 8.60 13.11 9.70 1.35
ASCII word list 20,921,746 2,139,574 9.78 14.40 10.20 1.41
Compact password list 66,489,058 7,499,615 8.87 52.52 30.62 1.72
ASCII password list 75,556,080 7,936,321 9.52 50.77 30.33 1.67

Fig. 8. Impact of chaining on effort required to generate DD representations of word
lists.

before and after the variable, and two leaf nodes. With chaining, this function
reduces to just four nodes: the upper don’t-care chain is incorporated into the
node for the variable, and a second node encodes the lower chain. Our dictionary
benchmarks have over 4,000 variables, and so some of the intermediate DDs can
be more than 1,000 times more compact due to chaining.

7.2 The 15-Queens Problem

A second set of benchmarks involved representing all possible solutions to the
n-queens problem [12] as a Boolean function. This problem attempts to place n
queens on a n× n chessboard in such a way that no two queens can attack each
other. For our benchmark we chose n = 15 to stay within the memory limit of
the processor being used.

Once again, there are two choices for encoding the positions of queens on the
board. A one-hot encoding uses a Boolean variable for each square. A binary
encoding uses �log2 n� = 4 variables for each row, encoding the position of the
queen within the row.

Our most successful approach for encoding the constraints with Boolean oper-
ations worked from the bottom row to the top. At each level, it generated for-
mulas for each column and diagonal expressing whether it was occupied in the
rows at or below this one, based on the formulas for the level below and the
variables for the present row.

We considered two ways of ordering the variables for the different rows. The
top-down ordering listed the variables according to the row numbers 1 through
15. The center-first ordering listed variables according to the following row num-
ber sequence:

8, 9, 7, 10, 6, 11, 5, 12, 4, 13, 3, 14, 2, 15, 1.

Our hope was that ordering the center rows first would reduce the DD repre-
sentation size. This proved not to be the case, but the resulting node counts are
instructive.
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One-hot Node counts Ratios
Ordering Graph(s) BDD CBDD CZDD BDD:CBDD CBDD:CZDD

Top-down Final 51,889,029 10,529,738 4,796,504 4.93 2.20
Top-down Peak 165,977,497 39,591,936 18,625,659 4.19 2.13
Center-first Final 65,104,658 12,628,086 5,749,613 5.16 2.20
Center-first Peak 175,907,712 42,045,602 19,434,105 4.18 2.16

Binary Node counts Ratios
Ordering Graph(s) BDD CBDD CZDD BDD:CBDD CBDD:CZDD

Top-down Final 13,683,076 11,431,403 7,383,739 1.20 1.55
Top-down Peak 43,954,472 38,898,146 26,682,980 1.13 1.46
Center-first Final 17,121,947 14,185,276 9,054,115 1.21 1.57
Center-first Peak 46,618,943 41,362,659 28,195,596 1.13 1.47

Fig. 9. Node counts and ratios of node counts for 15-queens benchmarks

Figure 9 shows the node counts for the different benchmarks. It shows both
the size of the final function representing all solutions to the 15-queens prob-
lem, as well as the peak size, computed as the maximum across all rows of the
combined size of the functions that are maintained to express the constraints
imposed by the row and those below it. For both the top-down and the center-
first benchmarks, this maximum was reached after completing row 3. Typically
the peak size was around three times larger than the final size.

For a one-hot encoding, we can see that CBDDs achieve factors of 4.18–5.16
compaction over BDDs, and they come within a factor of 2.20 of CZDDs. For a
binary encoding, the levels of compaction are much less compelling (1.13–1.20),
as is the advantage of CZDDs over BDDs. It is worth noting that the combination
of a one-hot encoding and chaining gives lower peak and final sizes than BDDs
with a binary encoding.

One-hot Node counts Ratios
Ordering Graph(s) ZDD CZDD ZDD:CZDD

Top-down Final 4,796,504 4,796,504 1.00
Top-down Peak 18,632,019 18,625,659 1.00
Center-first Final 5,749,613 5,749,613 1.00
Center-first Peak 73,975,637 19,434,105 3.81

Binary Node counts Ratios
Ordering Graph(s) ZDD CZDD ZDD:CZDD

Top-down Final 7,383,739 7,383,739 1.00
Top-down Peak 26,684,315 26,682,980 1.00
Center-first Final 9,054,115 9,054,115 1.00
Center-first Peak 33,739,362 28,195,596 1.20

Fig. 10. Effect of chaining for ZDD representations of 15-queens benchmarks
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Node counts Ratios
Circuit BDD ZDD CZDD ZDD:BDD CZDD:BDD
c432 31,321 48,224 41,637 1.54 1.33
c499 49,061 49,983 48,878 1.02 1.00
c880 23,221 52,436 32,075 2.26 1.38
c1908 17,391 18,292 17,017 1.05 0.98
c2670 67,832 261,736 85,900 3.86 1.27
c3540 3,345,341 4,181,847 3,538,982 1.25 1.06
c5315 636,305 898,912 681,440 1.41 1.07
c6288 48,181,908 48,331,495 48,329,117 1.00 1.00
c7552 4,537 37,689 4,774 8.31 1.05

Fig. 11. Node counts and ratios of node counts for digital circuit benchmarks

Figure 10 compares the sizes of the ZDD and CZDD representations of the
15-queens functions. We can see that the final sizes are identical—there are no
don’t-care chains in the functions encoding problem solutions. For the top-
down ordering, CZDDs also offer only a small advantage for the peak require-
ment. For the center-first ordering, especially with a one-hot encoding, however,
we can see that CZDDs are significantly (3.81×) more compact. As the construc-
tion for row 3 completes, the variables that will encode the constraints for rows
2 and 5 remain unconstrained, yielding many don’t-care chains. Once again,
this phenomenon is much smaller with a binary encoding.

7.3 Digital Circuits

BDDs are commonly used in digital circuit design automation, for such tasks
as verification, test generation, and circuit synthesis. We selected the circuits in
the ISCAS ’85 benchmark suite [3]. These were originally developed as bench-
marks for test generation, but they have also been widely used as benchmarks
for BDDs [7,10]. We generated variable orderings for all but last two benchmarks
by traversing the circuit graphs, using the fanin heuristic of [10]. Circuit c6288
implements a 16 × 16 multiplier. For this circuit, the ordering of inputs listed in
the file provided a feasible variable ordering, while the one generated by travers-
ing the circuit exceeded the memory limits of our machine. For c7552, neither
the ordering in the file, nor that provided by traversing the graph, generated a
feasible order. Instead, we manually generated an ordering based on our analysis
of a reverse-engineered version of the circuit described in [8]

Figure 11 presents data on the sizes of the DDs to represent all of the circuit
outputs. We do not present any data for CBDDs, since these were all close in
size to BDDs. We can see that the ZDD representations for these circuits are
always larger than the BDD representations, by factors ranging up to 8.31. Using
CZDDs mitigates that effect, yielding a maximum size ratio of 1.38.
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8 Observations

Our experiments, while not comprehensive, demonstrate that chaining can allow
BDDs to make use of large, sparse encodings, one of the main strengths of ZDDs.
They also indicate that CZDDs may be the best choice overall. CZDDs have all
of the advantages of ZDDs, while avoiding the risk of intermediate functions
growing excessively large due to don’t-care chains. They are guaranteed to
stay within a factor of 2× of BDDs. Even for digital circuit functions, we found
this bound to be conservative—all of the benchmarks stayed within a factor of
1.4×.
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Abstract. SAT solvers are now widely used to solve a large variety of
problems, including formal verification of systems. SAT problems derived
from such applications often exhibit symmetry properties that could be
exploited to speed up their solving. Static symmetry breaking is so far
the most popular approach to take advantage of symmetries. It relies
on a symmetry preprocessor which augments the initial problem with
constraints that force the solver to consider only a few configurations
among the many symmetric ones.

This paper presents a new way to handle symmetries, that avoid the
main problem of the current static approaches: the prohibitive cost of the
preprocessing phase. Our proposal has been implemented in MiniSym.
Extensive experiments on the benchmarks of last six SAT competitions
show that our approach is competitive with the best state-of-the-art
static symmetry breaking solutions.

Keywords: Boolean satisfiability · Static symmetry breaking
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1 Introduction

Nowadays, Boolean satisfiability (SAT) is an active research area finding its
applications in many contexts such as planning decision [14], hardware and soft-
ware verification [3], cryptology [19], computational biology [17], etc. Hence, the
development of approaches that could treat increasingly challenging SAT prob-
lems has become a focus.

State-of-the-art complete solvers of SAT problems are based on the well-
known Conflict Driven Clauses Learning (CDCL) algorithm [18], itself inspired
from the Davis–Putnam–Logemann–Loveland algorithm [6]. These are complete
backtracking based search algorithms that welcome any heuristic/optimisation
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pruning of parts of the explored search tree. In this paper, we are interested in
exploiting the symmetry properties of SAT problems to perform such a pruning.

Symmetries in SAT Solving. SAT problems often exhibit symmetries1, and
not taking them into account forces solvers to needlessly explore isomorphic
parts of the search space.

For example, the “pigeonhole problem” (where n pigeons are put into n − 1
holes, with the constraint that each pigeon must be in a different hole) is a highly
symmetric problem. Indeed, all the pigeons (resp. holes) are swappable without
changing the initial problem. Trying to solve it with a standard SAT solver,
like MiniSAT [10], turns out to be very time consuming (and even impossible,
in reasonable time, for high values of n). Here, such a standard solver ignores
the symmetry property of the problem, and then potentially tries all variables
combinations; this eventually leads to a combinatorial explosion.

Symmetries of a SAT problem are classically obtained through a reduction
to an equivalent graph automorphism problem. Technically, the SAT problem
is converted to a colored graph, then it is passed to a tool, like saucy3 [13] or
bliss [12], to compute its automorphism group.

A common approach to exploit such symmetries is to pre-compute and enrich
the original SAT problem with symmetry breaking predicates (sbp). These added
predicates will prevent the solver from visiting equivalent (isomorphic) parts that
eventually yield the same results [1,5]. This technique, called static symmetry
breaking, has been implemented first in the state-of-the-art tool SHATTER [2]
and then improved in BREAKID [8]. However, while giving excellent results on
numerous symmetric problems, these approaches still fail to solve some classes
of symmetric problems.

Another class of approaches exists, known as dynamic symmetry breaking
techniques. They intervene directly during the search exploration. It concerns, to
mention but a few, the injection of symmetric versions of learned clauses [7,21],
particular classes of symmetries [20], or speeding up the search by inferring
symmetric facts [9]. These approaches succeeded in treating particular and hand
crafted problems but, to the best of our knowledge, none of them is competitive
face to the static symmetry breaking methods.

Drawbacks of the Static-Based Approaches. In the general case, the size of
the sbp can be exponential in the number of variables of the problem so that they
cannot be totally computed. Even in more favorable situations, the size of the
generated sbp is often too large to be effectively handled by a SAT solver [15].
On the other hand, if only a subset of the symmetries is considered then the
resulting search pruning will not be that interesting and its effectiveness depends
heavily on the heuristically chosen symmetries [4]. Besides, these approaches are
preprocessors, so their combination with other techniques, such as symmetry

1 Roughly speaking, a SAT problem exhibits symmetries when it is possible to swap
some variables while keeping the original problem unchanged.
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propagation [9], can be very hard. Also, tuning their parameters during the
solving turns out to be very difficult. For all these reasons, some classes of SAT
problems cannot be solved yet despite exhibiting symmetries.

Proposed Solution. To handle these issues, we propose a new approach that
reuses the principles of the static approaches, but operates dynamically: the
symmetries are broken during the search process without any pre-generation of
the sbp. To do so, we elaborate the notions of symmetry status tracking and
effective symmetric breaking predicates (esbp).

The approach is implemented using a couple of components: (1) a Con-
flict Driven Clauses Learning (CDCL) search engine; (2) a symmetry controller.
Roughly speaking, the first component performs the classical search activity on
the SAT problem, while the second observes the engine and maintains the status
of the symmetries. When the controller detects a situation where the engine is
starting to explore a redundant part2, it orders the engine to operate a back-
jump. The detection is performed thanks to symmetry status tracking and the
backjump order is given by a simple injection of an esbp computed on the fly.

The main advantage of such an approach is to cope with the heavy (and
potentially blocking) pre-generation phase of the static-based approaches, but
also offers opportunities to combine with other dynamic-based approaches, like
the symmetry propagation technique [9]. It also gives more flexibility for adjust-
ing some parameters on the fly. Moreover, the overhead for non symmetric for-
mulas is reduced to the computation time of the graph automorphism.

The extensive evaluation of our approach on the symmetric formulas of the
last six SAT contests shows that it outperforms the state-of-the-art techniques, in
particular on unsatisfiable instances, which are the hardest class of the problem.

Content of the Paper. The remainder of the paper is organized as follows.
Section 2 is dedicated to preliminaries and definitions. Section 3 discusses the
details of our CDCLSym algorithm. Section 4 highlights our tooling support and
evaluations. Section 5 concludes this work and gives directions for future work.

2 Preliminaries and Definitions

This section introduces some definitions. First, we define the problem of Boolean
satisfiability. Then, we introduce the notions of ordering and monotonicity that
provide a lexicographical order to assignments. These are central concepts to the
definition of a representative assignment.

Finally, we introduce two core notions that are required to define our new
algorithm: (i) Reducer, inactive and active permutation, and (ii) the effective
symmetry breaking predicates (esbp).

2 Isomorphic to a part that has been/will be explored.



102 H. Metin et al.

2.1 Basics on Boolean Satisfiability

A Boolean variable, or propositional variable, is a variable that has two possible
values: true or false (noted � or ⊥, respectively). A literal l is a propositional
variable or its negation. For a given variable x, the positive literal is represented
by x and the negative one by ¬x. A clause ω is a finite disjunction of literals
represented equivalently by ω =

∨k
i=1 li or the set of its literals ω = {li}i∈�1,k�.

A clause with a single literal is called unit clause. A conjunctive normal form
(CNF) formula ϕ is a finite conjunction of clauses. A CNF can be either noted
ϕ =

∧k
i=1 ωi or ϕ = {ωi}i∈�1,k�. We denote Vϕ (Lϕ) the set of variables (literals)

used in ϕ (the index in Vϕ and Lϕ is usually omitted when clear from context).
For a given formula ϕ, an assignment of the variables of ϕ is a function

α : V �→ {�,⊥}. As usual, α is total, or complete, when all elements of V have
an image by α, otherwise it is partial. By abuse of notation, an assignment is
often represented by the set of its true literals. The set of all (possibly partial)
assignments of V is noted Ass(V).

The assignment α satisfies the clause ω, denoted α |= ω, if α ∩ ω �= ∅.
Similarly, the assignment α satisfies the propositional formula ϕ, denoted α |= ϕ,
if α satisfies all the clauses of ϕ. Note that a formula may be satisfied by a
partial assignment. A formula is said to be satisfiable (sat) if there is at least
one assignment that satisfies it; otherwise the formula is unsatisfiable (unsat).

Example. Let ϕ = {{x1, x2, x3}, {x1,¬x2}, {¬x1,¬x2}} be a formula. ϕ is sat-
isfied under the assignment α = {x1,¬x2} (meaning α(x1) = � and α(x2) = ⊥})
and is reported to be sat. Note that the assignment α, making ϕ sat, does not
need to be complete because x3 is a don’t care variable with respect to α.

2.2 Ordering and Monotonicity

In order to exploit the symmetry properties of a SAT problem, we need to
introduce an ordering relation between the assignments.

Definition 1 (Assignments ordering). We assume a total order, ≺, on V.
Given two assignments (α, β) ∈ Ass(V)2, we say that α is strictly smaller than
β, noted α < β, if there exists a variable v ∈ V such that:

– for all v′ ≺ v, either v′ ∈ α ∩ β or ¬v′ ∈ α ∩ β.
– ¬v ∈ α and v ∈ β.3

Note that < coincides with the lexicographical order on complete assign-
ments. Furthermore, the < relation is monotonic as expressed in the following
proposition.

Proposition 1 (Monotonicity of assignments ordering). Let (α, α′, β, β′)
∈ Ass(V)4 be four assignments.

If α ⊆ α′ and β ⊆ β′, then α < β =⇒ α′ < β′

3 We could have chosen as well v ∈ α and ¬v ∈ β without loss of generality.
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Proof. The proposition follows on directly from Definition 1.

It is worth noting that this last proposition is the key property for the efficient
implementation of our algorithm.

2.3 Symmetry Group of a Formula

The group of permutations of V (i.e. bijections from V to V) is noted S(V). The
group S(V) naturally acts on the set of literals: for g ∈ S(V) and a literal � ∈ L,
g.� = g(�) if � is a positive literal, g.� = ¬g(¬�) if � is a negative literal. The
group S(V) also acts on (partial) assignments of V as follows: for g ∈ S(V),
α ∈ Ass(V), g.α = {g.� | � ∈ α}. Let ϕ be a formula, and g ∈ S(V). We say that
g ∈ S(V) is a symmetry of ϕ if for every complete assignment α, α |= ϕ if and
only if g.α |= ϕ. The set of symmetries of ϕ is noted S(ϕ) ⊆ S(V).

Let G be a subgroup of S(V). The orbit of α under G (or simply the orbit
of α when G is clear from the context) is the set [α]G = {g.α | g ∈ G}.
The lexicographic leader (lex-leader for short) of an orbit [α]G is defined by
min<([α]G). This lex-leader is unique because the lexicographic order is a total
order.

The optimal approach to solve a symmetric SAT problem would be to explore
only one assignment per orbit (for instance each lex-leader). However, finding
the lex-leader of an orbit is computationally hard [16].

What we propose here is a best effort approach that tries to eliminate, dynam-
ically, the non lex-leading assignments with a minimal computation effort. To
do so, we first introduce the notions of reducer, inactive and active permutation
with respect to an assignment α.

Definition 2 (Reducer, inactive and active permutation). A permutation
g is a reducer of an assignment α if g.α < α (hence α cannot be the lex-leader
of its orbit. g reduces it and all its extensions). g is inactive on α when α < g.α
(so, g cannot reduce α and all the extensions). A symmetry is said to be active
with respect to α when it is neither inactive nor a reducer of α.

Proposition 2 restates this definition in terms of variables and is the basis of
an efficient algorithm to keep track of the status of a permutation during the
solving. Let us, first, recall that the support, Vg, of a permutation g is the set
{v ∈ V | g(v) �= v}.

Proposition 2. Let α ∈ Ass(V) be an assignment, g ∈ S(V) a permutation
and Vg ⊆ V the support of g. We say that g is:

1. a reducer of α if there exists a variable v ∈ Vg such that:
– ∀ v′ ∈ Vg, s. t. v′ ≺ v, either {v′, g−1(v′)} ⊆ α or {¬v′,¬g−1(v′)} ⊆ α,
– {v,¬g−1(v)} ⊆ α;

2. inactive on α if there exists a variable v ∈ Vg such that:
– ∀ v′ ∈ Vg, s. t. v′ ≺ v, either {v′, g−1(v′)} ⊆ α or {¬v′,¬g−1(v′)} ⊆ α,
– {¬v, g−1(v)} ⊆ α;

3. active on α, otherwise.
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When g is a reducer of α we can define a predicate that contradicts α yet
preserves the satisfiability of the formula. Such a predicate will be used to discard
α, and all its extensions, from a further visit and hence pruning the search tree.

Definition 3 (Effective Symmetry Breaking Predicate). Let α ∈ Ass(V),
and g ∈ S(V). We say that the formula ψ is an effective symmetry breaking
predicate (esbp for short) for α under g if:

α �|= ψ and for all β ∈ Ass(V), β �|= ψ ⇒ g.β < β

The next definition gives a way to obtain such an effective symmetry-breaking
predicate from an assignment and a reducer.

Definition 4 (A construction of an esbp). Let ϕ be a formula. Let g be
a symmetry of ϕ that reduces an assignment α. Let v be the variable whose
existence is given by item 1. in Proposition 2. Let U = {v′,¬v′ | v′ ∈
Vg and v′ � v}. We define η(α, g) as (U ∪ g−1.U) \ α.

Example. Let us consider V = {x1, x2, x3, x4, x5}, g = (x1 x3)(x2 x4), and a
partial assignment α = {x1, x2, x3,¬x4}. Then, g.α = {x1,¬x2, x3, x4} and v =
x2. So, U = {x1,¬x1, x2,¬x2} and g−1.U = {x3,¬x3, x4,¬x4} and we can
deduce than η(α, g) = (U ∪ g−1.U) \ α = {¬x1,¬x2,¬x3, x4}.

Proposition 3. η(α, g) is an effective symmetry-breaking predicate.

Proof. It is immediate that α �|= η(α, g).
Let β ∈ Ass(V) such that β ∧ η(α, g) is unsat. We denote a α′ and β′ as the

restrictions of α and β to the variables in {v′ ∈ Vg | v′ � v}. Since β ∧ η(α, g)
is unsat, α′ = β′. But g.α′ < α′, and g.β′ < β′. By monotonicity of <, we thus
also have g.β < β.

It is important to observe that the notion of ebsp is a refinement of the classical
concept of sbp defined in [2]. In particular, like sbp, esbp preserve satisfiability.

Theorem 1 (Satisfiability preservation). Let ϕ be a formula and ψ an ebsp
for some assignment α under g ∈ S(ϕ). Then,

ϕ and ϕ ∧ ψ are equi-satisfiable.

Proof. If ϕ ∧ ψ is SAT then ϕ is trivially SAT. If ϕ is SAT, then there is some
assignment β that satisfies ϕ. Without loss of generality, β can be chosen to be
the lex-leader of its orbit under S(ϕ). Thus, g does not reduce β, which implies
that β |= ψ.

3 CDCLSym Algorithm

This section describes how to augment the state-of-the-art CDCL algorithm
with the aforementioned concepts to develop an efficient symmetry-guided SAT
solving algorithm. We first recall how the CDCL algorithm works. We then
explain how to extend it with a symmetry controller component which guides
the behavior of CDCL algorithm depending on the status of symmetries.



CDCLSym: Introducing Effective Symmetry Breaking in SAT Solving 105

3.1 Classical CDCL

A Conflict-Driven Clause Learning (CDCL) algorithm is depicted in Algorithm 1.
The parts in red (grey in B&W printings) should be ignored for the moment.

The algorithm walks a binary search tree. It first applies unit propagation to
the formula ϕ for the current assignment α (line 4). A conflict at level 0 indicates
that the formula is not satisfiable, and the algorithm reports it (lines 8–9). If a
conflict is detected, it is analyzed, which provides a conflict clause explaining
the reason for the conflict (line 11). This clause is learnt (line 14), as it does not
change the satisfiability of ϕ, and avoids encountering a conflict with the same
causes in the future. The analysis is completed by the computation of a backjump
point to which the algorithm backtracks (line 15). Finally, if no conflict appears,
the algorithm chooses a new decision literal (line 18–19). The above steps are
repeated until the satisfiability status of the formula is determined.

It is out of the scope of this paper to detail the existing variations for the
conflict analysis and for the decision heuristic.

1 function CDCLSym(ϕ: CNF formula, SymController: symmetry controller)
returns � if ϕ is sat and ⊥ otherwise

2 dl ← 0 ; // Current decision level

3 while not all variables are assigned do
4 isConflict ← unitPropagation();
5 SymController.updateAssign(currentAssignment());
6 isReduced ← SymController.isNotLexLeader(currentAssignment());
7 if isConflict || isReduced then
8 if dl == 0 then
9 return ⊥; // ϕ is unsat

10 if isConflict then
11 ω ← analyzeConflict();

12 else
13 ω ← SymController.generateEsbp(currentAssignment());

14 addLearntClause(ω);
15 dl ← backjumpAndRestartPolicies();
16 SymController.updateCancel(currentAssignment());

17 else
18 assignDecisionLiteral();
19 dl ← dl + 1;

20 return �; // ϕ is sat

Algorithm 1. The CDCLSym SAT Solving Algorithm.
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3.2 Symmetry-Guided Search

As explained earlier, the main problem of the static approaches is that they
generate many sbp that are not effective in the solving (size of the generated
formulas, overburden of the unit propagation procedure, etc.).

The idea we bring is to break symmetries on the fly : when the current partial
assignment can not be a prefix of a lex-leader (of an orbit), an esbp (see Defini-
tion 3) that prunes this forbidden assignment and all its extensions is generated.

We implement this approach using two components that communicate with
each other: the SAT-solving engine itself, and a symmetry controller. The sym-
metry controller is initially given a set of symmetries G4. It observes the behav-
ior of the SAT engine and updates its internal data according to the current
assignment, to keep track of the status of the symmetries. This observation is
incremental : whenever a literal is assigned or cancelled, the symmetry controller
updates the status of all the symmetries. This corresponds to lines 5 and 16 of
Algorithm 1. When the controller detects that the current assignment can not
be a lex-leader (line 6), it generates the corresponding esbp (line 13).

In the remainder of this section, we detail the functions composing the sym-
metry controller.

Symmetries Status Tracking. The updateAssign, updateCancel and
isNotLexLeader functions (see Algorithm 2) track the status of symmetries
based on Proposition 2; there, resides the core of our algorithm.

All these functions rely on the pt structure: a map of variables indexed by
permutations. Initially, pt[g] = min(Vg) for all g ∈ G and all permutations are
marked active.

For each permutation, g, the symmetry controller keeps track of the smallest
variable pt[g] in the support of g such that pt[g] and g−1(pt[g]) do not have the
same value in the current assignment. If one of the two variables is not assigned,
they are considered not to have the same value.

When new literals are assigned, only active symmetries need to have their
pt[g] updated (line 2). This update is done thanks to a while loop (lines 4–5).

When literals are cancelled, we need to update the status of symmetries for
which some variable v before pt[g], or g−1(v), becomes unassigned (lines 9–10).
Symmetries that were inactive may be reactivated (line 11).

The current assignment is not a lex-leader if some symmetry g is a reducer.
This is detected by comparing the value of pt[g] with the value of g−1(pt[g])
(line 16). The function isNotLexLeader also marks symmetries as inactive when
appropriate (lines 18–19).

Generation of the esbp. When the current assignment cannot be a lex-
leader, some symmetry g is a reducer. The function generateEsbp computes the

4 The generators of the group of symmetries.
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1 function updateAssign(α: assignment)
2 foreach active g ∈ G do
3 v ← pt[g];
4 while {v, g−1(v)} ⊆ α or {¬v, ¬g−1(v)} ⊆ α do
5 v ← next variable in Vg;

6 pt[g] ← v

7 function updateCancel(α: assignment)
8 foreach g ∈ G do
9 u ← min{v ∈ Vg | {v, ¬v} ∩ α = ∅ or {g−1(v), ¬g−1(v)} ∩ α = ∅};

10 if u 	 pt[g] then
11 mark g as active;
12 pt[g] ← u;

13 function isNotLexLeader(α: assignment)
14 foreach active g ∈ G do
15 v ← pt[g];
16 if {v, ¬g−1(v)} ⊆ α then
17 return �; // g is a reducer

18 if {¬v, g−1(v)} ⊆ α then
19 mark g as inactive ; // g can’t reduce α or its extentions

20 return ⊥
21 function generateEsbp(α: assignment) returns ω: generated esbp
22 ω ← {};
23 g ← the reducer of α detected in isNotLexLeader;
24 v ← min(Vg);
25 u ← pt[g];
26 while u 
= v do
27 if v ∈ α then ω ← ω ∪ {¬v} else ω ← ω ∪ {v};
28 if g−1(v) ∈ α then ω ← ω ∪ {¬g−1(v)} else ω ← ω ∪ {g−1(v)};
29 v ← next variable in Vg

30 ω ← ω ∪ {¬v, g−1(v)};
31 return ω

Algorithm 2. The functions keeping track of the status of the symmetries
and generating the esbp.

η(α, g) defined in Definition 4, which is an effective symmetry-breaking predi-
cate by Proposition 3. This will prevent the SAT engine to explore further the
current partial assignment.

3.3 Lex-leader Forcing

Our algorithm prevents as much as possible the solver from visiting non lex-
leaders assignments. To do so, we propose an additional heuristic that delays
the visit of non lex-leaders partial assignments.
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Let us consider a permutation g and an assignment α. Assume there exists a
variable v ∈ Vg, with, for all v′ ∈ Vg, such that v′ ≺ v, either {v′, g−1(v′)} ⊆ α
or {¬v′,¬g−1(v′)} ⊆ α and v ∈ α. Let α′ = α ∪ {¬g−1(v)}. Then g is a reducer
of α′, which would generate η(α′, g) (Proposition 2 and Definition 4).

A way to prevent α from becoming a non lex-leader is to force the literal
g−1(v) into α. This can be easily done by learning η(α′, g) when the current
assignment is α. The same reasoning holds when ¬g−1(v) ∈ α and v �∈ α.

3.4 Illustrative Example

Let us illustrate the previous concepts and algorithms on a simple example. Let
V = {v1 ≺ v2 ≺ v3 ≺ v4 ≺ v5 ≺ v6}, and a set of symmetries G = {g1 =
(v1v5v3)(v2v4), g2 = (v1v6)(v4v5)} (written in cycle notation). Their respective
supports are, Vg1 = {v1, v2, v3, v4, v5} and Vg2 = {v1, v4, v5, v6}.

On the assignment α = ∅, both permutations are active and pt[g1] = pt[g2] =
v1. When the solver updates the assignment to α = {v6}, both permutations
remain active and pt[g1] = pt[g2] = v1. On the assignment α = {v6, v1}, the
symmetry controller updates pt[g2] to v5, while pt[g1] remains unchanged. On
the assignment α = {v6, v1,¬v3}, g1.α = {v6, v5,¬v1}, which is smaller than
α (because v1 ∈ α and ¬v1 ∈ g.α): g1 is a reducer of α. The symmetry con-
troller then generates the corresponding esbp ω = {¬v1, v3}. Alternatively, when
lex-leader forcing is active, from the assignment α = {v6, v1}, the symmetry
controller could force the value of the variable v3, by learning the same esbp
ω = {¬v1, v3}.

4 Implementation and Evaluation

In this section, we first highlight some details on our implementation of the
symmetry controller. Then, we experimentally assess the performance of our
algorithm against three other state-of-the-art tools.

4.1 cosy: An Efficient Implementation of the Symmetry Controller

We have implemented our method in a C++ library called cosy (1630 LoC).
It implements a symmetry controller as described in the previous section, and
can be interfaced with virtually any CDCL SAT solver. cosy is released under
GPL v3 licence and is available at https://github.com/lip6/cosy.

Heuristics and Options. Let us recall that finding the optimal ordering of
variables (with respect to the exploitation of symmetries) is NP-hard [15], so the
choice for this ordering is heuristic. cosy offers several possibilities to define this
ordering:

– a naive ordering, where variables are ordered by the lexicographic order of
their names;

https://github.com/lip6/cosy
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– an ordering based on occurrences, where variables are sorted according to the
number of times they occur in the input formula. The lexicographic order of
variables names is used for those having the same number of occurrences;

– an ordering based on symmetries, where variables belonging to the same orbit
(under the given set of symmetries) are grouped together. Orbit are ordered
by their numbers of occurrences.

The ordering of assignments we use in this paper orders negative literals
before positive ones (thus, {¬v} < {v}), but using the converse ordering does
not change the overall method. However, it can impact the performance of the
solver on some instances, so that it is an option of the library.

All the symmetries we used for the presentation of our approach are permu-
tations of variables. Our method straightforwardly extends to permutations of
literals, also known as value permutations [4]. Another option allows to activate
the lex-leader forcing described in Sect. 3.3.

Integration in MiniSAT. We show how to integrate cosy to an existing solver,
through example of MiniSAT [10].

First, we need an adapter that allows the communication between the solver
and cosy (30 LoC). Then, we adapt Algorithm 1 to the different methods and
functions of MiniSAT. In particular, the function updateAssign is moved into
the uncheckEnqueue function of MiniSAT (2 LoC). The updateCancel function
is moved to the cancelUntil function of MiniSAT that performs the backjumps
(2 LoC). The isNotLexLeader and generateEsbp functions are integrated in the
propagate function of MiniSAT (30 LoC). This is to keep track of the assign-
ments as soon as they occur, then the esbp is produced as soon as an assignment
is identified as not being lex-leader. Initialization issues are located in the main
function of MiniSAT (15 LoC).

The integration of cosy increases MiniSAT code by 3%.

4.2 Evaluation

This section presents the evaluation of our approach. All experiments have been
performed with our modified MiniSAT called MiniSym. The symmetries of the
SAT problem instances have been computed by two different state-of-the-art
tools saucy3 [13] and bliss [12]. For a given group of symmetries, the first tool
generates less permutations to represent the group than the second one, but it
is slower than the other one.

We selected from the last six editions of the SAT contests [11], the CNF
instances for which bliss finds at least 2% of the variables are involved in some
symmetries that could be computed in at most 1000 s of CPU time. We obtained
a total of 1350 symmetric instances (discarding repetitions) out of 3700 instances
in total.

All experiments have been conducted using the following conditions: each
solver has been run once on each instance, with a time-out of 5000 s (including
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the execution time of the symmetries generation except for MiniSAT) and limited
to 8 GB of memory. Experiments were executed on a computer with an Intel
Xeon X7460 2.66 GHz featuring 24 cores and 128 GB of memory, running a Linux
4.4.13, along with g++ compiler version 6.3.

We compare MiniSym using the occurrence order, value symmetries, and with-
out lex-leader forcing, against:

– MiniSAT, as the reference solver without symmetry handling [10];
– Shatter, a symmetry breaking preprocessor described in [2], coupled with

the MiniSAT SAT engine;
– breakID, another symmetry breaking preprocessor, described in [8], also cou-

pled with the MiniSAT SAT engine.

Each sat solution was successfully checked against the initial CNF. For
unsat situations, there is no way to provide an unsat certificate in presence
of symmetries. Nevertheless, we checked our results were also computed by the
other measured tools. Unfortunately, out of the 1350 benchmarked formulas, we
have no proof or evidence for the 15 unsat formulas computed by MiniSym only.

Results are presented in Tables 1, 2, and 3. We report the number of instances
solved within the time and memory limits for each solver and category. We
separate the UNSAT instances (Table 1) from the SAT ones (Table 2). Besides
the reference with no symmetry (column MiniSAT), we have compared the per-
formance of the three tools when using symmetries computed by saucy3 (see
Tables 1a and 2b), and bliss (see Tables 1a and 2b). Rows correspond to groups
of instances: from each edition of the SAT contest, and when possible, we sep-
arated applicative instances (app〈x〉 where 〈x〉 indicates the year) from hard
combinatorial ones (hard〈x〉). This separation was not possible for the editions
2015 and 2017 (all2015 and all2017). The total number of instances for each
bench is indicated between parentheses. For each row, the cells corresponding to
the tools solving the most instances (within time and memory limits) are typeset
in bold and greyed out. Table 3 shows the cumulative and average PAR-2 times
of the evaluated tools.

Table 1. Comparison of different approaches on the unsat instances of the benchmarks
of the six last editions of the SAT competition.

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 18 19 20 17
app2014 (161) 23 23 22 24
app2013 (145) 6 8 8 10
app2012 (367) 115 115 120 120
hard2016 (128) 8 17 50 42
hard2014 (107) 9 24 30 29
hard2013 (121) 12 24 48 29
hard2012 (289) 86 84 88 93
all2017 (124) 8 14 15 14
all2015 (65) 9 8 8 10
TOTAL (no dup) 261 302 371 345

(a) With saucy3

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 18 21 18 19
app2014 (161) 23 21 20 24
app2013 (145) 6 7 10 11
app2012 (367) 115 106 114 123
hard2016 (128) 8 11 79 77
hard2014 (107) 9 45 40 53
hard2013 (121) 12 51 56 54
hard2012 (289) 86 69 90 93
all2017 (124) 8 14 15 15
all2015 (65) 9 7 8 8
TOTAL (no dup) 261 324 415 439

(b) With bliss
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Table 2. Comparison of different approaches on the sat instances of the benchmarks
of the six last editions of the SAT competition.

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 20 22 21 20
app2014 (161) 24 24 24 22
app2013 (145) 34 35 35 43
app2012 (367) 121 112 119 126
hard2016 (128) 0 0 0 0
hard2014 (107) 14 17 17 14
hard2013 (121) 23 23 24 22
hard2012 (289) 135 141 143 138
all2017 (124) 23 20 26 27
all2015 (65) 7 5 7 6
TOTAL (no dup) 325 323 337 335

(a) With saucy3

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 20 20 22 20
app2014 (161) 24 24 23 22
app2013 (145) 34 32 30 33
app2012 (367) 121 112 120 118
hard2016 (128) 0 0 0 0
hard2014 (107) 14 14 17 18
hard2013 (121) 23 24 26 25
hard2012 (289) 135 134 141 142
all2017 (124) 23 25 26 29
all2015 (65) 7 5 6 6
TOTAL (no dup) 325 316 334 336

(b) With bliss

Table 3. Comparison of PAR-2 times (in seconds) of the benchmarks on the six last
editions of the SAT competition.

Solver PAR-2 sum PAR-2 avg
MiniSAT 8 074 348 5 981
Shatter 7 770 434 5 756
BreakID 6 909 999 5 119
MiniSym 7 229 700 5 355

(a) With saucy3

Solver PAR-2 sum PAR-2 avg
MiniSAT 8 074 348 5 981
Shatter 7 517 556 5 569
BreakID 6 444 954 4 774
MiniSym 6 245 448 4 626

(b) With bliss

We observe that MiniSym with saucy3 solves the most instances in only half
of the unsat categories. However, with bliss, MiniSym solves the most instances
in all but four of the unsat categories; it then also solves the highest number
of instances among its competitors. This shows the interest of our approach for
unsat instances. Since symmetries are used to reduce the search space, we were
expecting that it will bring the most performance gain for unsat instances.

The situation for sat instances is more mitigated (Table 2), especially when
using saucy3. Again, this is not very surprising: our method may cut the explo-
ration of a satisfying assignment because it is not a lex-leader. This delays the
discovery of a satisfying assignment. The other tools suffer less from such a delay,
because they rely on symmetry breaking predicates generated in a pre-processing
step. Also, when seeing the global results of MiniSAT, we can globally state that
the use of symmetries in the case of satisfiable instances only offers a marginal
improvement.

We observe that performances our tool are better with bliss than with
saucy3 (see Fig. 1). We explain it as follows: saucy3 is known to compute fewer
generators for the group of symmetries than bliss. Since, the larger the symme-
tries set is, the earlier the detection of an evidence that an assignment is not a
lex-leader will be, we generate less symmetry-breaking predicates (only the effec-
tive ones). This is shown in Table 4; MiniSym generates an order of magnitude
fewer predicates than breakID.

We also conducted experiments on highly symmetrical instances (all vari-
ables are involved in symmetries), whose results are presented in Table 5.
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(a) with saucy3 (b) with bliss

Fig. 1. Cactus plot total number of instances

Table 4. Comparison of the number of generated SBPs each time breakID and MiniSym

both compute a verdict (number of verdicts between parentheses).

Number of SBPs BreakID MiniSym

unsat (316) 12 088 433 1 579 623
sat (312) 13 839 689 359 352

(a) With saucy3

Number of SBPs BreakID MiniSym

unsat (399) 2 576 349 913 339
sat (320) 12 179 513 457 452

(b) With bliss

Table 5. Comparison of the tools on 99 highly symmetric unsat problems.

Benchmark MiniSAT Shatter breakID MiniSym

battleship(6) 5 5 5 5
chnl(6) 4 6 6 6
clqcolor(10) 3 4 5 6
fpga(10) 6 10 10 10
hole(24) 10 12 23 11
hole shuffle(12) 1 2 12 3
urq(6) 1 2 6 2
xorchain(2) 1 1 2 2
TOTAL 31 42 69 45

(a) With saucy3

Benchmark MiniSAT Shatter breakID MiniSym

battleship(6) 5 5 5 6
chnl(6) 4 6 6 6
clqcolor(10) 3 5 8 10
fpga(10) 6 10 10 10
hole(24) 10 24 24 23
hole shuffle(12) 1 3 7 4
urq(6) 1 2 6 5
xorchain(2) 1 1 2 2
TOTAL 31 56 68 66

(b) With bliss

The performance of breakID on this benchmark is explained by a specific opti-
mization for the total symmetry groups that are found in these examples, that is
neither implemented in Shatter nor in MiniSym. However, the difference between
breakID and MiniSym is rather thin when using bliss. Our tool still outperforms
Shatter on this benchmark.

5 Conclusion

This paper presented an approach dealing with the symmetries when they appear
in SAT problems. It borrows from the state-of-the-art static-based approaches
their basic principle, i.e., the adding of symmetry breaking predicates to the
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original problem, but performed in an incremental and dynamic way. This is
possible thanks to the dynamic tracking of symmetries status and on-the-fly
generation of effective symmetry breaking predicates.

Our approach outperforms other state-of-the-art static methods, as shown
by an extensive evaluation on the symmetric problems gathered from the last
six SAT competitions.

This approach is implemented in the C++ library called cosy. It is an off-the-
shelf component that can be interfaced with virtually any CDCL SAT solver.
cosy is released under GPL licence and is available at https://github.com/lip6/
cosy.

We now plan to focus on combining our approach with symmetry propa-
gation [9]. It seems that such a combination could be implemented thanks to
minor changes on our algorithm. This would allow to integrate the acceleration
mechanisms provided by the symmetry propagation, therefore obtaining a better
pruning of the search three.

Another track for future work, is to evaluate the possibility of changing the
order of variables dynamically: for example, following the order used by the
solver when it chooses its decision variables.
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Abstract. Reasoning about commutativity between data-structure
operations is an important problem with applications including par-
allelizing compilers, optimistic parallelization and, more recently,
Ethereum smart contracts. There have been research results on auto-
matic generation of commutativity conditions, yet we are unaware of any
fully automated technique to generate conditions that are both sound
and effective.

We have designed such a technique, driven by an algorithm that iter-
atively refines a conservative approximation of the commutativity (and
non-commutativity) condition for a pair of methods into an increasingly
precise version. The algorithm terminates if/when the entire state space
has been considered, and can be aborted at any time to obtain a par-
tial yet sound commutativity condition. We have generalized our work
to left-/right-movers [27] and proved relative completeness. We describe
aspects of our technique that lead to useful commutativity conditions,
including how predicates are selected during refinement and heuristics
that impact the output shape of the condition.

We have implemented our technique in a prototype open-source tool
Servois. Our algorithm produces quantifier-free queries that are dis-
patched to a back-end SMT solver. We evaluate Servois through two
case studies: (i) We synthesize commutativity conditions for a range of
data structures including Set, HashTable, Accumulator, Counter, and
Stack. (ii) We consider an Ethereum smart contract called BlockKing, and
show that Servois can detect serious concurrency-related vulnerabilities
and guide developers to construct robust and efficient implementations.

1 Introduction

Reasoning about the conditions under which data-structure operations commute
is an important problem. The ability to derive sound yet effective commutativity
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conditions unlocks the potential of multicore architectures, including paralleliz-
ing compilers [30,34], speculative execution (e.g. transactional memory [19]),
peephole partial-order reduction [37], futures, etc. Another important applica-
tion domain that has emerged recently is Ethereum [1] smart contracts: efficient
execution of such contracts hinges on exploiting their commutativity [14] and
block-wise concurrency can lead to vulnerabilities [31]. Intuitively, commutativ-
ity is an important property because linearizable data-structure operations that
commute can be executed concurrently: their effects do not interfere with each
other in an observable way. When using a linearizable HashTable, for example,
knowledge that put(x,‘a’) commutes with get(y) provided that x �= y enables
significant parallelization opportunities. Indeed, it’s important for the commu-
tativity condition to be sufficiently granular so that parallelism can be exploited
effectively [12]. At the same time, to make safe use of a commutativity condition,
it must be sound [23,24]. Achieving both of these goals using manual reasoning
is burdensome and error prone.

In light of that, researchers have investigated ways of verifying user-provided
commutativity conditions [22] as well as synthesizing such conditions automat-
ically, e.g. based on random interpretation [6], profiling [33] or sampling [18].
None of these approaches, however, meet the goal of computing a commutativ-
ity condition that is both sound and granular in a fully automated manner.

In this paper, we present a refinement-based technique for synthesizing com-
mutativity conditions. Our technique builds on well-known descriptions and rep-
resentations of abstract data types (ADTs) in terms of logical (Prem,Postm)
specifications [10,16,17,20,26,28] for each method m. Our algorithm iteratively
relaxes under-approximations of the commutativity and non-commutativity con-
ditions of methods m and n, starting from false, into increasingly precise ver-
sions. At each step, we conjunctively subdivide the symbolic state space into
regions, searching for areas where m and n commute and where they don’t.
Counterexamples to both the positive side and the negative side are used in the
next symbolic subdivision. Throughout this recursive process, we accumulate the
commutativity condition as a growing disjunction of these regions. The output
of our procedure is a logical formula ϕn

m which specifies when method m com-
mutes with method n. We have proven that the algorithm is sound, and can also
be aborted at any time to obtain a partial, yet useful [19,33], commutativity
condition. We show that, under certain conditions, termination is guaranteed
(relative completeness).

We address several challenges that arise in using an iterative refinement app-
roach to generating precise and useful commutativity conditions. First, we show
how to pose the commutativity question in a way that does not introduce addi-
tional quantifiers. We also show how to generate the predicate vocabulary for
expressing the condition ϕn

m, as well as how to choose the predicates through-
out the refinement loop. A further question that we address is how predicate
selection impacts the conciseness and readability of the generated commutativity
conditions. Finally, we have generalized our algorithm to left-/right-movers [27],
a more precise version of commutativity.
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We have implemented our approach as the Servois tool, whose code and doc-
umentation are available online [2]. Servois is built on top of the CVC4 SMT
solver [11]. We evaluate Servois through two case studies. First, we generate
commutativity conditions for a collection of popular data structures, including
Set, HashTable, Accumulator, Counter, and Stack. The conditions typically com-
bine multiple theories, such as sets, integers, arrays, etc. We show the conditions
to be comparable in granularity to manually specified conditions [22]. Second,
we consider BlockKing [31], an Ethereum smart contract, with its known vulner-
ability. We demonstrate how a developer can be guided by Servois to create a
more robust implementation.

Contributions. In summary, this paper makes the following contributions:

– The first sound and precise technique to automatically generate commutativ-
ity conditions (Sect. 5).

– Proof of soundness and relative completeness (Sect. 5).
– An implementation that takes an abstract code specification and automati-

cally generates commutativity conditions using an SMT solver (Sect. 6).
– A novel technique for selecting refinement predicates that improves scalability

and the simplicity of the generated formulae (Sect. 6).
– Demonstrated efficacy for several key data structures as well as the BlockKing

Ethereum smart contract [31] (Sect. 7).

An extended version of this paper can be found in [8].

Related Work. The closest to our contribution in this paper is a technique
by Gehr et al. [18] for learning, or inference, of commutativity conditions based
on black-box sampling. They draw concrete arguments, extract relevant predi-
cates from the sampled set of examples, and then search for a formula over the
predicates. There are no soundness or completeness guarantees.

Both Aleen and Clark [6] and Tripp et al. [33] identify sequences of actions
that commute (via random interpretation and dynamic analysis, respectively).
However, neither technique yields an explicit commutativity condition. Kulkarni
et al. [25] point out that varying degrees of commutativity specification precision
are useful. Kim and Rinard [22] use Jahob to verify manually specified commu-
tativity conditions of several different linked data structures. Commutativity
specifications are also found in dynamic analysis techniques [15]. More distantly
related is work on synthesis of programs [32] and of synchronization [35,36].

2 Example

Specifying commutativity conditions is generally nontrivial and it is easy to miss
subtle corner cases. Additionally, it has to be done pairwise for all methods. For
ease of illustration, we will focus on the relatively simple Set ADT, whose state
consists of a single set S that stores an unordered collection of unique elements.
Let us consider one pair of operations: (i) contains(x)/bool, a side-effect-free
check whether the element x is in S; and (ii) add(y)/bool adds y to S if it is
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not already there and returns true, or otherwise returns false. add and contains
clearly commute if they refer to different elements in the set. There is another
case that is less obvious: add and contains commute if they refer to the same
element e, as long as in the pre-state e ∈ S. In this case, under both orders of
execution, add and contains leave the set unmodified and return false and true,
respectively. The algorithm we describe in this paper completes within a few
seconds, producing a precise logical formula ϕ that captures this commutativity
condition, i.e. the disjunction of the two cases above: ϕ ≡ x �= y∨(x = y∧x ∈ S).
The algorithm also generates the conditions under which the methods do not
commute: ϕ̃ ≡ x = y ∧ x /∈ S. These are precise, since ϕ is the negation of ϕ̃.

A more complicated commutativity condition is generated by our tool Servois
for Ethereum smart contract BlockKing. Method enter(val1, sendr1, bk1...) (Fig. 3,
Sect. 7) does not commute with itself enter(val2, sendr2, bk2...) iff :

∨

⎧
⎨

⎩

val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 �= sendr2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 = sendr2 ∧ val1 �= val2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 = sendr2 ∧ val1 = val2 ∧ bk1 �= bk2

This disjunction enumerates the non-commutativity cases and, as discussed in
Sect. 7, directly identifies a vulnerability.

Capturing precise conditions such as these by hand, and doing so for many
pairs of operations, is tedious and error prone. This paper instead presents a
way to automate this. Our algorithm recursively subdivides the state space via
predicates until, at the base case, regions are found that are either entirely com-
mutative or else entirely non-commutative. Returning to our Set example, the
conditions we incrementally generate are denoted ϕ and ϕ̃, respectively. The
following diagram illustrates how our algorithm proceeds to generate the com-
mutativity conditions for add and contains (abbreviated as m and n).

In this diagram, each subsequent panel depicts a partitioning of the state space
into regions of commutativity (ϕ) or non-commutativity (ϕ̃). The counterexam-
ples χc, χnc give values for the arguments x, y and the current state S.

We denote by H the logical formula that describes the current state space
at a given recursive call. We begin with H0 = true, ϕ = false, and ϕ̃ = false.
There are three cases for a given H: (i) H describes a precondition for m and n
in which they always commute; (ii) H describes a precondition for m and n in
which they never commute; or (iii) neither of the above. The latter case drives
the algorithm to subdivide the region by choosing a new predicate.
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We now detail the run of this refinement loop on our earlier Set example.
We elaborate on the other challenges that arise in later sections. At each step of
the algorithm, we determine which case we are in via carefully designed valid-
ity queries to an SMT solver (Sect. 4). For H0, it returns the commutativity
counterexample: χc = {x = 0, y = 0, S = ∅} as well as the non-commutativity
counterexample χnc = {x = 0, y = 1, S = {0}}. Since, therefore, H0 = true
is neither a commutativity nor a non-commutativity condition, we must refine
H0 into regions (or stronger conditions). In particular, we would like to perform
a useful subdivision: Divide H0 into an H1 that allows χc but disallows χnc,
and an H ′

1 that allows χnc but not χc. So we must choose a predicate p (from
a suitable set of predicates P, discussed later), such that H0 ∧ p ⇒ χc while
H0 ∧ ¬p ⇒ χnc (or vice versa). The predicate x = y satisfies this property. The
algorithm then makes the next two recursive calls, adding p as a conjunct to H, as
shown in the second column of the diagram above: one with H1 ≡ true ∧ x = y
and one with H ′

1 ≡ true ∧ x �= y. Taking the H ′
1 case, our algorithm makes

another SMT query and finds that x �= y implies that add always commutes
with contains. At this point, it can update the commutativity condition ϕ, let-
ting ϕ := ϕ∨H ′

1, adding this H ′
1 region to the growing disjunction. On the other

hand, H1 is neither a sufficient commutativity nor a sufficient non-commutativity
condition, and so our algorithm, again, produces the respective counterexamples:
χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case,
our algorithm selects the predicate x ∈ S, and makes two further recursive calls:
one with H2 ≡ x = y ∧ x ∈ S and another with H ′

2 ≡ x = y ∧ x /∈ S. In this
case, it finds that H2 is a sufficiently strong precondition for commutativity,
while H ′

2 is a strong enough precondition for non-commutativity. Consequently,
H2 is added as a new conjunct to ϕ, yielding ϕ ≡ x �= y ∨ (x = y ∧ x ∈ S).
Similarly, ϕ̃ is updated to be: ϕ̃ ≡ (x = y ∧ x /∈ S). No further recursive calls
are made so the algorithm terminates and we have obtained a precise (complete)
commutativity/non-commutativity specification: ϕ ∨ ϕ̃ is valid (Lemma 2).

Challenges and Outline. While the algorithm outlined so far is a relatively
standard refinement, the above generated conditions were not immediate. We
now discuss challenges involved in generating sound and useful conditions.

(Section 4) A first question is how to pose the underlying commutativity
queries for each subsequent H in a way that avoids the introduction of addi-
tional quantifiers, so that we can remain in fragments for which the solver has
complete decision procedures. Thus, if the data structure can be encoded using
theories that are decidable, then the queries we pose to the SMT solver are
guaranteed to be decidable as well. Prem/Postm specifications that are partial
would introduce quantifier alternation, but we show how this can be avoided by,
instead, transforming them into total specifications.

(Section 5) We have proved that our algorithm is sound even if aborted or if
the ADT description involves undecidable theories. We further show that termi-
nation implies completeness, and specify broad conditions that imply termina-
tion.
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(Section 6) Another challenge is to prioritize predicates during the refinement
loop. This choice impacts not only the algorithm’s performance, but also the
quality/conciseness of the resulting conditions. Our choice of next predicate p
is governed by two requirements. First, for progress, p/¬p must eliminate the
counterexamples to commutativity/non-commutativity due to the last iteration.
This may still leave multiple choices, and we propose two heuristics – called
simple and poke—with different trade-offs to break ties.

(Section 7) We conclude with an evaluation on a range of popular data struc-
tures and a case study on boosting the security of an Ethereum smart contract.

3 Preliminaries

States, Actions, Methods. We will work with a state space Σ, with decidable
equality and a set of actions A. For each α ∈ A, we have a transition function
(|α|) : Σ ⇁ Σ. We denote a single transition as σ

α−→ σ′. We assume that
each such action arc completes in finite time. Let T ≡ (Σ,A, (| • |)). We say
that two actions α1 and α2 commute [15], denoted α1 �	 α2, provided that
(|α1|) ◦ (|α2|) = (|α2|) ◦ (|α1|). Note that �	 is with respect to T = (Σ,A, (| • |)). Our
formalism, implementation, and evaluation all extend to a more fine-grained
notion of commutativity: an asymmetric version called left-movers and right-
movers [27], where a method commutes in one direction and not the other.
Details can be found in [8]. Also, in our evaluation (Sect. 7) we show left-/right-
mover conditions that were generated by our implementation.

An action α ∈ A is of the form m(x̄)/r̄, where m, x̄ and r̄ are called a
method, arguments and return values respectively. As a convention, for actions
corresponding to a method n, we use ȳ for arguments and s̄ for return values.
The set of methods will be finite, inducing a finite partitioning of A. We refer to
an action, say m(ā)/v̄, as corresponding to method m (where ā and v̄ are vectors
of values). The set of actions corresponding to a method m, denoted Am, might
be infinite as arguments and return values may be from an infinite domain.

Definition 1. Methods m and n commute, denoted m �	 n provided that
∀x̄ ȳ r̄ s̄. m(x̄)/r̄ �	 n(ȳ)/s̄.

The quantification ∀x̄r̄ above means ∀m(x̄)/r̄ ∈ Am, i.e., all vectors of arguments
and return values that constitute an action in Am.

Abstract Specifications. We symbolically describe the actions of a method
m as pre-condition Prem and post-condition Postm. Pre-conditions are logical
formulae over method arguments and the initial state: [[Prem]] : x̄ → Σ → B.
Post-conditions are over method arguments, and return values, initial state and
final state: [[Postm]] : x̄ → r̄ → Σ → Σ → B. Given (Prem,Postm) for every

method m, we define a transition system T = (Σ,A, (|• |)) such that σ
m(ā)/v̄−−−−−→ σ′

iff [[Prem]] ā σ and [[Postm]] ā v̄ σ σ′.
Since our approach works on deterministic transition systems, we have imple-

mented an SMT-based check (Sect. 7) that ensures the input transition system is
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deterministic. Deterministic specifications were sufficient in our examples. This is
unsurprising given the inherent difficulty of creating efficient concurrent imple-
mentations of nondeterministic operations, whose effects are hard to charac-
terize. Reducing nondeterministic data-structure methods to deterministic ones
through symbolic partial determinization [5,13] is left as future work.

Logical Commutativity Formulae. We will generate a commutativity con-
dition for methods m and n as logical formulae over initial states and the argu-
ments/return values of the methods. We denote a logical commutativity formula
as ϕ and assume a decidable interpretation of formulae: [[ϕ]] : (σ, x̄, ȳ, r̄, s̄) → B.
(We tuple the arguments for brevity.) The first argument is the initial state.
Commutativity post- and mid -conditions can also be written [22] but here, for
simplicity, we focus on commutativity pre-conditions. We may write [[ϕ]] as ϕ
when it is clear from context that ϕ is meant to be interpreted.

We say that ϕn
m is a sound commutativity condition, and ϕ̂n

m a sound non-
commutativity condition resp., for m and n provided that

∀σx̄ȳr̄s̄. [[ϕn
m]] σ x̄ ȳ r̄ s̄ ⇒ m(x̄)/r̄ �	 n(ȳ)/s̄, and

∀σx̄ȳr̄s̄. [[ϕ̂n
m]] σ x̄ ȳ r̄ s̄ ⇒ ¬(m(x̄)/r̄ �	 n(ȳ)/s̄), resp.

4 Commutativity Without Quantifier Alternation

Definition 1 requires showing equivalence between different compositions of poten-
tially partial functions. That is, (|α1|) ◦ (|α2|) = (|α2|) ◦ (|α1|) if and only if:

∀σ0 σ1 σ12. (|α1|)σ0 = σ1 ∧ (|α2|)σ1 = σ12 ⇒ ∃σ3. (|α2|)σ0 = σ3 ∧ (|α1|)σ3 = σ12

(and a symmetric case for the other direction)

Even when the transition relation can be expressed in a decidable theory, because
of ∀∃ quantifier alternation in the above encoding (which is undecidable in gen-
eral), any procedure requiring such a check would be incomplete. SMT solvers
are particularly poor at handling such constraints.

We observe that when the transition system is specified as Prem and Postm
conditions, and the Postm condition is consistent with Prem, then it is possible
to avoid quantifier alternation. By consistent we mean that whenever Prem

holds, there is always some state and return value for which Postm holds (i.e.
for which the procedure does not abort).

∀ā σ. Prem(ā, σ) = true ⇒ ∃σ′ r̄. Postm(ā, r̄, σ, σ′).

That is, the procedure terminates for every Prem, which holds in particular
for all of the specifications in the examples we considered (see Sect. 7). This
allows us to perform a simple transformation on transition systems to a lifted
domain, and enforce a definition of commutativity in the lifted domain m �̂	 n
that is equivalent to Definition 1. This new definition requires only universal
quantification, and as such, is better suited to SMT-backed algorithms (Sect. 5).
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Definition 2 (Lifted transition function). For T = (Σ,A, (| • |)), we lift T

to T̂ = (Σ̂, A, (|] • [|)) where Σ̂ = Σ ∪ {err}, err /∈ Σ, and (|]α[|) : Σ̂ → Σ̂, as:

(|]α[|)σ̂ ≡

⎧
⎪⎨

⎪⎩

err if σ̂ = err

(|α|)σ̂ if σ̂ ∈ dom((|α|))
err otherwise

Intuitively, (|]α[|) wraps (|α|) so that err loops back to err, and the (potentially
partial) (|α|) is made to be total by mapping elements to err when they are
undefined in (|α|). It is not necessary to lift the actions (or, indeed, the methods),
but only the states and transition function. Once lifted, for a given state σ̂0,
the question of some successor state becomes equivalent to all successor states
because there is exactly one successor state.

Abstraction. Pre-/post-conditions (Prem,Postm) are suitable for specifications
of potentially partial transition systems. One can translate these into a new
pair (P̂rem, P̂ostm) that induces a corresponding lifted transition system that
is total and remains deterministic. These lifted specifications have types over
lifted state spaces: [[P̂rem]] : x̄ → Σ̂ → B and [[P̂ostm]] : x̄ → r̄ → Σ̂ → Σ̂ → B.
Our implementation performs this lifting via a translation denoted Lift from
(Prem,Postm) to:

P̂rem(x̄, σ̂) ≡ true

P̂ostm(x̄, r̄, σ̂, σ̂′) ≡ ∨

⎧
⎪⎨

⎪⎩

σ̂ = err ∧ σ̂′ = err

σ̂ �= err ∧ Prem(x̄, σ̂) ∧ σ̂′ �= err ∧ Postm(x̄, r̄, σ̂, σ̂′)
σ̂ �= err ∧ ¬Prem(x̄, σ̂) ∧ σ̂′ = err

(We abuse notation, giving σ̂ as an argument to Prem, etc.) It is easy to see
that the lifted transition system induced by this translation (Σ̂, (|] • [|)) is of the
form given in Definition 2. In [8], we show how our tool transforms a counter
specification into an equivalent lifted version that is total.

We use the notation �̂	 to mean �	 but over lifted transition system T̂. Since
�̂	 is over total, determinsitic transition functions, α1 �̂	 α2 is equivalent to:

∀σ̂0. σ̂0 �= err ⇒ (|]α2[|) (|]α1[|) σ̂0 = (|]α1[|) (|]α2[|) σ̂0 (1)

The equivalence above is in terms of state equality. Importantly, this is a univer-
sally quantified formula that translates to a ground satisfiability check in an SMT
solver (modulo the theories used to model the data structure). In our refinement
algorithm (Sect. 5), we will use this format to check whether candidate logical
formulae describe commutative subregions.

Lemma 1. m �	 n if and only if m �̂	 n. (All proofs in [8].)

5 Iterative Refinement

We now present an iterative refinement strategy that, when given a lifted abstract
transition system, generates the commutativity and the non-commutativity



Automatic Generation of Precise and Useful Commutativity Conditions 123

conditions. We then discuss soundness and relative completeness and, in Sects. 6
and 7, challenges in generating precise and useful commutativity conditions.

The refinement algorithm symbolically searches the state space for regions
where the operations commute (or do not commute) in a conjunctive manner,
adding on one predicate at a time. We add each subregion H (described conjunc-
tively) in which commutativity always holds to a growing disjunctive description
of the commutativity condition ϕ, and each subregion H in which commutativ-
ity never holds to a growing disjunctive description of the non-commutativity
condition ϕ̃.

1 Refinemn (H,P) {
2 if valid(H ⇒ m �̂� n) then
3 ϕ := ϕ ∨ H;
4 else if valid(H ⇒ m \̂�� n) then
5 ϕ̃ := ϕ̃ ∨ H;
6 else
7 let (χc, χnc) = counterexs. to �̂� and \̂��
8 let p = Choose(H,P, χc, χnc) in
9 Refinemn (H ∧ p, P \ {p});

10 Refinemn (H ∧ ¬p, P \ {p});
11 }
12 main { ϕ := false; ϕ̃ := false;
13 try { Refinemn (true,P); }
14 catch (InterruptedExn e) { skip; }
15 return(ϕ, ϕ̃); }

Fig. 1. Algorithm for generating commutativity ϕ
and non-commutativity ϕ̃.

The algorithm in Fig. 1
begins by setting ϕ = false
and ϕ̃ = false. Refine begins
a symbolic binary search
through the state space H,
starting from the entire state:
H = true. It also may
use a collection of pred-
icates P (discussed later).
At each iteration, Refine
checks whether the current H
represents a region of space
for which m and n always
commute: H ⇒ m �̂	 n
(described below). If so, H
can be disjunctively added to
ϕ. It may, instead be the case
that H represents a region
of space for which m and n
never commute: H ⇒ m \̂�	 n.
If so, H can be disjunctively added to ϕ̃. If neither of these cases hold, we have
two counterexamples. χc is the counterexample to commutativity, returned if the
validity check on Line 2 fails. χnc is the counterexample to non-commutativity,
returned if the validity check on Line 4 fails.

We now need to subdivide H into two regions. This is accomplished by select-
ing a new predicate p via the Choose method. For now, let the method Choose
and the choice of predicate vocabulary P be parametric. Refine is sound regard-
less of the behavior of Choose. Below we give the conditions on Choose that
ensure relative completeness, and in Sect. 7 we discuss our particular strategy.
Regardless of what p is returned by Choose, two recursive calls are made to
Refine, one with argument H ∧ p, and the other with argument H ∧ ¬p. The
algorithm is exponential in the number of predicates. In Sect. 6 we discuss pri-
oritizing predicates.

The refinement algorithm generates commutativity conditions in disjunctive
normal form. Hence, any finite logical formula can be represented. This logical
language is more expressive than previous commutativity logics that, because
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they were designed for run-time purposes, were restricted to conjunctions of
inequalities [25] and boolean combinations of predicates over finite domains [15].
Checking a Candidate Hn

m. Our algorithm involves checking whether (Hn
m ⇒

m �̂	 n) or (Hn
m ⇒ m \̂�	 n). As shown in Sect. 4, we can check whether Hn

m

specifies conditions under which m �	 n via an SMT query that does not
introduce quantifier alternation. For brevity, we define:

valid(Hn
m ⇒ m �̂	 n) ≡ valid

(∀σ̂0 x̄ ȳ r̄ s̄. Hn
m(σ̂0, x̄, ȳ, r̄, s̄) ⇒

m(x̄)/r̄ n(ȳ)/s̄ σ̂0 = n(ȳ)/s̄ m(x̄)/r̄ σ̂0

)

Above we assume as a black box an SMT solver providing valid. Here we have
lifted the universal quantification within �̂	 outside the implication.

We can similarly check whether Hn
m is a condition under which m and n do

not commute. First, we define negative analogs of commutativity:

α1 \̂�	 α2 ≡ ∀σ̂0. σ̂0 �= err ⇒ (|]α2[|) (|]α1[|) σ̂0 �= (|]α1[|) (|]α2[|) σ̂0

m \̂�	 n ≡ ∀x̄ ȳ r̄ s̄. m(x̄)/r̄ \̂�	 n(ȳ)/s̄

We thus define a check for when ϕn
m is a non-commutativity condition with:

valid(Hn
m ⇒ m \̂�	 n) ≡ valid

(∀σ̂0 x̄ ȳ r̄ s̄. Hn
m(σ̂0, x̄, ȳ, r̄, s̄) ⇒ σ̂0 �= err ⇒

m(x̄)/r̄ n(ȳ)/s̄ σ̂0 �= n(ȳ)/s̄ m(x̄)/r̄ σ̂0

)

Theorem 1 (Soundness). For each Refinem
n iteration: ϕ ⇒ m �̂	 n, and

ϕ̃ ⇒ m \̂�	 n.

All proofs available in [8]. Soundness holds regardless of what Choose returns
and even when the theories used to model the underlying data-structure are
incomplete. Next we show termination implies completeness:

Lemma 2. If Refinem
n terminates, then ϕ ∨ ϕ̃.

Theorem 2 (Conditions for Termination). Refinem
n terminates if 1.

(expressiveness) the state space Σ is partitionable into a finite set of regions
Σ1, ..., ΣN , each described by a finite conjunction of predicates ψi, such that
either ψi ⇒ m �̂	 n or ψi ⇒ m \̂�	 n; and 2. (fairness) for every p ∈ P,
Choose eventually picks p (note that this does not imply that P is finite).

Note that while these conditions ensure termination, the bound on the number
of iterations depends on the predicate language and behavior of Choose.

6 The Servois Tool and Practical Considerations

Input. We use an input specification language building on YAML (which
has parser and printer support for all common programming languages) with
SMTLIB as the logical language. This can be automatically generated relatively
easily, thus enabling the integration with other tools [10,16,17,20,26,28]. In [8],
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we show the Counter ADT specification, which was derived from the Pre and
Post conditions used in earlier work [22]. The states of a transition system
describing an ADT are encoded as list of variables (each as a name/type pair),
and each method specification requires a list of argument types, return type, and
Pre/Post conditions. Again, the Counter example can be seen in [8].

Implementation. We have developed the open-source Servois tool [3], which
implements Refine, Lift, predicate generation, and a method for selecting pred-
icates (Choose) discussed below. Servois uses CVC4 [11] as a backend SMT
solver. Servois begins by performing some pre-processing on the input tran-
sition system. It checks that the transition system is deterministic. Next, in
case the transition system is partial, Servois performs the Lift transformation
(Sect. 4). An example of Lift applied to Counter is in [8].

Next, Servois automatically generates the predicate language (PGen) in
addition to user-provided hints. If the predicate vocabulary is not sufficiently
expressive, then the algorithm would not be able to converge on precise com-
mutativity and non-commutativity conditions (Sect. 5). We generate predicates
by using terms and operators that appear in the specification, and generating
well-typed atoms not trivially true or false. As we demonstrate in Sect. 7, this
strategy works well in practice. Intuitively, Pre and Post formulas suffice to
express the footprint of an operation. So, the atoms comprising them are an
effective vocabulary to express when operations do or do not interfere.
Predicate Selection (Choose). Even though the number of computed pred-
icates is relatively small, since our algorithm is exponential in number of predi-
cates it is essential to be able to identify relevant predicates for the algorithm.
To this end, in addition to filtering trivial predicates, we prioritize predicates
based on the two counterexamples generated by the validity checks in Refine.
Predicates that distinguish between the given counter examples are tried first
(call these distinguishing predicates). Choose must return a predicate such that
χc ⇒ H ∧ p and χnc ⇒ H ∧ ¬p. This guarantees progress on both recursive
calls. When combined with a heuristic to favor less complex atoms, this ensured
timely termination on our examples. We refer to this as the simple heuristic.

Though this produced precise conditions, they were not always very concise,
which is desirable for human understanding, and inspection purposes. We thus
introduced a new heuristic which significantly improves the qualitative aspect
of our algorithm. We found that doing a lookahead (recurse on each predicate
one level deep, or poke) and computing the number of distinguishing predicates
for the two branches as a good indicator of importance of the predicate. More
precisely, we pick the predicate with lowest sum of remaining number of distin-
guishing predicates by the two calls. As an aside, those familiar with decision tree
learning, might see a connection with the notion of entropy gain. This requires
more calls to the SMT solver at each call, but it cuts down the total number
of branches to be explored. Also, all individual queries were relatively simple
for CVC4. The heuristic converges much faster to the relevant predicates, and
produces smaller, concise conditions.
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7 Case Studies

Common Data-Structures. We applied Servois to Set, HashTable, Accu-
mulator, Counter, and Stack. The generated commutativity conditions for these
data structures typically combine multiple theories, such as sets, integers and
arrays. We used the quantifier-free integer theory in SMTLIB to encode the
abstract state and contracts for the Counter and Accumulator ADTs. For Set,
the theory of finite sets [9] for tracking elements along with integers to track size;
for HashTable, finite sets to track keys, and arrays for the HashMap itself. For
Stack, we observed that for the purpose of pairwise commutativity it is sufficient
to track the behavior of boundedly many top elements. Since two operations can
at most either pop the top two elements or push two elements, tracking four
elements is sufficient. All evaluation data is available on our website [2].

Depending on the pair of methods, the number of predicates generated by
PGen were (count after filtering in parentheses): Counter: 25–25 (12–12), Accu-
mulator: 1–20 (0–20), Set: 17–55 (17–34), HashTable: 18–36 (6–36), Stack: 41–61
(41–42). We did not provide any hints to the algorithm for this case study. On
all our examples, the simple heuristic terminated with precise commutativity
conditions. In Fig. 2, we give the number of solver queries and total time (in
paren.) consumed by this heuristic. The experiments were run on a 2.53 GHz
Intel Core 2 Duo machine with 8 GB RAM. The conditions in Fig. 2 are those
generated by the poke heuristic, and interested reader may compare them with
the simple heuristic in [7]. On the theoretical side, our Choose implementation
is fair (satisfies condition 2 of Theorem2, as Lines 9–10 of the algorithm remove
from P the predicate being tried). From our experiments we conclude that our
choice of predicates satisfies condition 1 of Theorem 2.

Although our algorithm is sound, we manually validated the implementation
of Servois by examining its output and comparing the generated commutativity
conditions with those reported by prior studies. In the case of Accumulator and
Counter, our commutativity conditions were identical to those given in [22]. For
the Set data structure, the work of [22] used a less precise Set abstraction, so we
instead validated against the conditions of [25]. As for HashTable, we validated
that our conditions match those by Dimitrov et al. [15].

The BlockKing Ethereum Smart Contract. We further validated our app-
roach by examining a real-world situation in which non-commutativity opens
the door for attacks that exploit interleavings. We examined “smart contracts”,
which are programs written in the Solidity programming language [4] and exe-
cuted on the Ethereum blockchain [1]. Eliding many details, smart contracts are
like objects, and blockchain participants can invoke methods on these objects.
Although the initial intuition is that smart contracts are executed sequentially,
practitioners and academics [31] are increasingly realizing that the blockchain
is a concurrent environment due to the fact the execution of one actor’s smart
contract can be split across multiple blocks, with other actors’ smart contracts
interleaved. Therefore, the execution model of the blockchain has been compared
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m(x̄) n(ȳ) Simple Poke ϕm
n (Using Poke)

Qs (time) Qs (time)

C
ou

n
te

r

decrement �� decrement 3 (0.1) 3 (0.1) true
increment � decrement 10 (0.3) 34 (0.9) ¬(0 = c)
decrement � increment 3 (0.1) 3 (0.1) true
decrement �� reset 2 (0.1) 2 (0.1) false
decrement �� zero 6 (0.1) 26 (0.6) ¬(1 = c)
increment �� increment 3 (0.1) 3 (0.1) true
increment �� reset 2 (0.0) 2 (0.1) false
increment �� zero 10 (0.3) 34 (0.8) ¬(0 = c)

reset �� reset 3 (0.1) 3 (0.1) true
reset �� zero 9 (0.2) 30 (0.6) 0 = c
zero �� zero 3 (0.1) 3 (0.1) true

A
cu

m
. increase �� increase 3 (0.1) 3 (0.1) true

increase �� read 13 (0.3) 28 (0.6) c + x1 = c
read �� read 3 (0.0) 3 (0.0) true

S
et

add �� add 10 (0.4) 140 (4.4) (y1 = x1 ∧ y1 ∈ S) ∨ ¬(y1 = x1)
add �� contains 10 (0.4) 122 (3.6) x1 ∈ S ∨ (¬(x1 ∈ S) ∧ ¬(y1 = x1))
add �� getsize 6 (0.2) 31 (0.9) x1 ∈ S
add �� remove 6 (0.2) 66 (2.2) ¬(y1 = x1)

contains �� contains 3 (0.1) 3 (0.1) true
contains �� getsize 3 (0.1) 3 (0.1) true
contains �� remove 17 (0.5) 160 (4.8) S \ {x1} = {y1} ∨ (... ∧ y1 ∈ {x1}) ∨ ...
getsize �� getsize 3 (0.1) 3 (0.1) true
getsize �� remove 13 (0.3) 37 (1.0) ¬(y1 ∈ S)
remove �� remove 21 (0.7) 192 (6.4) S \ {y1} = {x1} ∨ (... ∧ y1 ∈ {x1}) ∨ ...

H
as

h
T
ab

le

get �� get 3 (0.1) 3 (0.1) true
get �� haskey 3 (0.1) 3 (0.1) true
put � get 13 (0.4) 74 (2.3) (H[x1 ← x2] = H ∧ y1 ∈ keys)

∨(¬(H[x1 ← x2] = H) ∧ ¬(y1 = x1))
get � put 10 (0.3) 48 (1.5) [H[y1] = y2] ∨ [¬(H[y1] = y2) ∧ ¬(y1 = x1)]

remove � get 3 (0.1) 3 (0.1) true
get � remove 13 (0.4) 40 (1.2) ¬(y1 = x1)
get �� size 3 (0.1) 3 (0.1) true

haskey �� haskey 3 (0.1) 3 (0.1) true
haskey �� put 10 (0.3) 52 (1.6) [y1 ∈ keys] ∨ [¬(y1 ∈ keys) ∧ ¬(y1 = x1)]
haskey �� remove 17 (0.5) 44 (1.3) [x1 ∈ keys ∧ ¬(y1 = x1)] ∨ [¬(x1 ∈ keys)]
haskey �� size 3 (0.1) 3 (0.1) true

put �� put 24 (0.9) 357 (13.5) ... ∨ (¬(H[y1] = y2) ∧ ¬(y1 = x1))
put �� remove 6 (0.3) 33 (1.2) ¬(y1 = x1)
put �� size 6 (0.2) 23 (0.8) x1 ∈ keys

remove �� remove 21 (0.8) 192 (6.9) [keys \ {x1} = {y1}] ∨ [...]
remove �� size 13 (0.4) 37 (1.1) ¬(x1 ∈ keys)

size �� size 3 (0.1) 3 (0.1) true

S
ta

ck

clear �� clear 3 (0.1) 3 (0.1) true
clear �� pop 2 (0.1) 2 (0.1) false
clear �� push 2 (0.1) 2 (0.1) false

pop �� pop 6 (0.2) 20 (0.6) nextToTop = top
push � pop 72 (2.1) 115 (3.5) ¬(0 = size) ∧ top = x1

pop � push 34 (0.9) 76 (2.2) y1 = top
push �� push 13 (0.5) 20 (0.7) y1 = x1

Fig. 2. Automatically generated commutativity conditions (ϕm
n ). Right-moverness (�)

conditions identical for a pair of methods denoted by ��. Qs denotes number of SMT
queries. Running time in seconds. Longer conditions have been truncated, see [7].
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1 int warrior, warriorGold, warriorBlock, callback result, king, kingBlock;
2 void enter(int val, int sendr, int bk, int rnd) {
3 if (val < 50) { send(sendr,val); return; }
4 warrior = sendr; warriorGold = val; warriorBlock = bk // write global variables
5 rpc call(”random number generator”, callback,res);

6 // Another call to enter() can execute while waiting for RPC

7 function callback(int res RN) {
8 // Most recent writer to warrior now reaps benefit of every callback

9 if (modFun(warriorBlock) == res RN) {
10 king = warrior; kingBlock = warriorBlock; // winner } } }

Fig. 3. Simplified code for BlockKing in a C-like language.

to that of concurrent objects [31]. Unfortunately, many smart contracts are not
written with this in mind, and attackers can exploit interleavings to their benefit.

As an example, we study the BlockKing smart contract. Figure 3 provides a
simplification of its description, as discussed in [31]. This is a simple game in
which the players—each identified by an address sendr—participate by making
calls to BlockKing.enter(), sending money val to the contract. (The grey variables
are external input that we have lifted to be parameters. bk reflects the caller’s
current block number and rnd is the outcome of a random number generation,
described shortly.) The variables on Line 1 are globals, writable in any call to
enter. On Line 3 there is a trivial case when the caller hasn’t put enough value
into the game, and the money is simply returned. Otherwise, the caller stores
their address and value into the shared state. A random number is then generated
and, since this requires complex algorithms, it is done via a remote procedure
call to a third-party on Line 5, with a callback method provided on Line 7. If the
randomly generated number is equal to a modulus of the current block number,
then the caller is the winner, and warrior’s (caller’s) details are stored to king
and kingBlock on Line 10.

Since random number generation is done via an RPC, players’ invocations
of enter can be interleaved. Moreover, these calls all write sendr and val to
shared variables, so the RPC callback will always roll the dice for whomever
most recently wrote to warriorBlock. An attacker can use this to leverage other
players’ investments to increase his/her own chance to win.

We now explore how Servois can aid a programmer in developing a more
secure implementation. We observe that, as in traditional parallel programming
contexts, if smart contracts are commutative then these interleavings are not
problematic. Otherwise, there is cause for concern. To this end, we translated the
BlockKing game into Servois format (see [8]). Servois took 1.4 s (on machine
with 2.4 GHz Intel Core i5 processor and 8 GB RAM) and yielded the following
non-commutativity condition for two calls to enter:
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enter(val1, sendr1, bk1, rnd1) \̂�	 enter(val2, sendr2, bk2, rnd2) ⇔
∨

⎧
⎨

⎩

val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 �= sendr2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 = sendr2 ∧ val1 �= val2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 = sendr2 ∧ val1 = val2 ∧ bk1 �= bk2

This disjunction effectively enumerates cases under which they contract calls do
not commute. Of particular note is the first disjunct. From this first disjunct,
whenever sendr1 �= sendr2, the calls will not commute. Since in practice sendr1
will always be different from sendr2 (two different callers) and val1 ≥ 50∧ val2 ≥
50 is the non-trivial case, the operations will almost never commute. This should
be immediate cause for concern to the developer.

A commutative version of BlockKing would mean that there are no interleav-
ings to be concerned about. Indeed, a simple way to improve commutativity is
for each player to write their respective sendr and val to distinct shared state,
perhaps via a hashtable keyed on sendr. To this end, we created a new ver-
sion enter fixed (see [8]). Servois generated the following non-commutativity
condition after 3.5 s.

enter fixed(val1, sendr1, bk1, rnd1) \̂�� enter fixed(val2, sendr2, bk2, rnd2) iff

∨

⎧
⎨

⎩

val1 ≥ 50 ∧ val2 ≥ 50 ∧ val1 = val2 ∧ bk1 �= bk2 ∧ sendr1 = sendr2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ val1 �= val2 ∧ sendr1 = sendr2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ md(bk2) = rnd2 ∧ md(bk1) = rnd1 ∧ sendr1 �= sendr2

In the above non-commutativity condition, md is shorthand for modFun. In the
first two disjuncts above, sendr1 = sendr2 which is, again, a case that will not
occur in practice. All that remains is the third disjunct where md(bk2) = rnd2 and
md(bk1) = rnd1. This corresponds to the case where both players have won. In
this case, it is acceptable for the operations to not commute, because whomever
won more recently will store their address/block to the shared king/kingBlock.

In summary, if we assume that sendr1 �= sendr2, the non-commutativity of
the original version is val1 ≥ 50 ∨ val2 ≥ 50 (very strong). By contrast, the
non-commutativity of the fixed version is val1 ≥ 50 ∧ val2 ≥ 50 ∧ md(bk2) =
rnd2 ∧ md(bk1) = rnd1. We have thus demonstrated that the commutativity
(and non-commutativity) conditions generated by Servois can help developers
understand the model of interference between two concurrent calls.

8 Conclusions and Future Work

This paper demonstrates that it is possible to automatically generate sound and
effective commutativity conditions, a task that has so far been done manually
or without soundness. Our commutativity conditions are applicable in a variety
of contexts including transactional boosting [19], open nested transactions [29],
and other non-transactional concurrency paradigms such as race detection [15],
parallelizing compilers [30,34], and, as we show, robustness of Ethereum smart
contracts [31]. It has been shown that understanding the commutativity of data-
structure operations provides a key avenue to improved performance [12] or ease
of verification [23,24].
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This work opens several avenues of future research. For instance, leveraging
the internal state of the SMT solver (beyond counterexamples) in order to gener-
ate new predicates [21]; automatically building abstract representation or making
inferences such as one we made for the stack example; and exploring strategies
to compute commutativity conditions directly from the program’s code, without
the need for an intermediate abstract representation [34].
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Abstract. Approximate model counting for bit-vector SMT formulas
(generalizing #SAT) has many applications such as probabilistic infer-
ence and quantitative information-flow security, but it is computation-
ally difficult. Adding random parity constraints (XOR streamlining) and
then checking satisfiability is an effective approximation technique, but
it requires a prior hypothesis about the model count to produce use-
ful results. We propose an approach inspired by statistical estimation to
continually refine a probabilistic estimate of the model count for a for-
mula, so that each XOR-streamlined query yields as much information as
possible. We implement this approach, with an approximate probability
model, as a wrapper around an off-the-shelf SMT solver or SAT solver.
Experimental results show that the implementation is faster than the
most similar previous approaches which used simpler refinement strate-
gies. The technique also lets us model count formulas over floating-point
constraints, which we demonstrate with an application to a vulnerability
in differential privacy mechanisms.

Keywords: Model counting · Bit-vectors · Floating point · #SAT
Randomized algorithms

1 Introduction

Model counting is the task of determining the number of satisfying assignments
of a given formula. Model counting for Boolean formulas, #SAT, is a standard
model-counting problem, and it is a complete problem for the complexity class
#P in the same way that SAT is complete for NP. #P is believed to be a much
harder complexity class than NP, and exact #SAT solving is also practically
much less scalable than SAT solving. #SAT solving can be implemented as a
generalization of the DPLL algorithm [17]. and a number of systems such as
Relsat [4], CDP [6], Cachet [38], sharpSAT [41], DSHARP [35] and countAntom [9]
have demonstrated various optimization techniques. However, not surprisingly
given the problem’s theoretical hardness, such systems often perform poorly
when formulas are large and/or have complex constraints.

Since many applications do not depend on the model count being exact, it
is natural to consider approximation algorithms that can give an estimate of
c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10805, pp. 133–151, 2018.
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a model count with a probabilistic range and confidence. Some approximate
model counters include ApproxCount [43], SampleCount [24], MiniCount [31],
ApproxMC [12], ApproxMC-p [30] and ApproxMC2 [13]. In this paper we build
on the approximation technique of XOR streamlining [25], which reduces the
number of solutions of a formula by adding randomly-chosen XOR (parity) con-
straints. In expectation, adding one constraint reduces the model count by a
factor of 2, and k independent constraints reduce the model count by 2k. If a
formula with extra constraints has n > 0 solutions, the original formula likely had
about n · 2k. If the model count after constraints is small, it can be found with
a few satisfiability queries, so XOR streamlining reduces approximate model
counting to satisfiability. However to have an automated system, we need an
approach to choose a value of k when the model count is not known in advance.

One application of approximate model counting is measuring the amount of
information revealed by computer programs. For a deterministic computation,
we say that the influence [36] is the base-two log of the number of distinct out-
puts that can be produced by varying the inputs, a measure of the information
flow from inputs to outputs. Influence computation is related to model counting,
but formulas arising from software are more naturally expressed as SMT (satis-
fiability modulo theories) formulas over bit-vectors than as plain CNF, and one
wants to count values only of output variables instead of all variables. The theory
of arithmetic and other common operations on bounded-size bit-vectors has the
same theoretical expressiveness as SAT, since richer operations can be expanded
(“bit-blasted”) into circuits. But bit-vector SMT is much more convenient for
expressing the computations performed by software, and SMT solvers incorpo-
rate additional optimizations. We build a system for this generalized version of
the problem which takes as input an SMT formula with one bit-vector variable
designated as the output, and a specification of the desired precision.

Our algorithm takes a statistical estimation approach. It maintains a prob-
ability distribution that reflects an estimate of possible influence values, using
a particle filter consisting of weighted samples from the distribution. Intuitively
the mean of the distribution corresponds to our tool’s best estimate, while the
standard deviation becomes smaller as its confidence grows. At each step, we
refine this estimate by adding k XOR constraints to the input formula, and then
enumerating solutions under those constraints, up to a maximum of c solutions
(we call this enumeration process an exhaust-up-to-c query [36]). At a particular
step, we choose k and c based on our previous estimate (prior), and then use the
query result to update the estimate for the next step (posterior). The update
from the query reweights the particle filter points according to a probability
model of how many values are excluded by XOR constraints. We use a simple
binomial-distribution model which would be exact if each XOR constraint were
fully independent. Because this model is not exact, a technique based only on
it does not provide probabilistic soundness, even though it performs well prac-
tically. So we also give a variant of our technique which does produce a sound
bound, at the expense of requiring more queries to meet a given precision goal.
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We implement our algorithm in a tool SearchMC that wraps either a bit-
vector SMT solver compatible with the SMT-LIB 2 standard or a SAT solver,
and report experimental results. SearchMC can be used to count solutions with
respect to a subset of the variables in a formula, such as the outputs of a com-
putation, the capability that Klebanov et al. call projected model counting [30],
and Val et al. call subset model counting [42]. In our case the variables not
counted need not be of bit-vector type. For instance this makes SearchMC to
our knowledge the first tool that can be used to count models of constraints
over floating-point numbers (counting the floating-point bit patterns individu-
ally, as contrasted with computing the measure of a subset of R

n [7,15]). We
demonstrate the use of this capability with an application to a security problem
that arises in differential privacy mechanisms because of the limited precision of
floating-point values.

Compared to ApproxMC2 [13] and ApproxMC-p [30], concurrently-developed
approximate #SAT tools also based on XOR streamlining, our technique gives
results more quickly for the same requested confidence levels.

In summary, the key attributes of our approach are as follows:

– Our approximate counting approach gives a two-sided bound with user-
specified confidence.

– Our tool inherits the expressiveness and optimizations of SMT solvers.
– Our tool gives a probabilistically sound estimate if requested, or can give a

result more quickly if empirical precision is sufficient.

2 Background

XOR Streamlining. The main idea of XOR streamlining [25] is to add ran-
domly chosen XOR constraints to a given input formula and feed the augmented
formula to a satisfiability solver. One random XOR constraint will reduce the
expected number of solutions in half. Consequently, if the formula is still satis-
fiable after the addition of s XOR constraints, the original formula likely has at
least 2s models. If not, the formula likely has at most 2s models. Thus we can
obtain a lower bound or an upper bound with this approach. There are some
crucial parameters to determine the bounds and the probability of the bounds
and they need to be carefully chosen in order to obtain good bounds. However,
early systems [25] did not provide an algorithm to choose the parameters.

Influence. Newsome et al. [36] introduced the terminology of “influence” for
a specific application of model counting in quantitative information-flow mea-
surement. This idea can capture the control of input variables over an output
variable and distinguish true attacks and false positives in a scenario of mali-
cious input to a network service. The influence of input variables over an output
variable is the log2 of the number of possible output values.

Exhaust-up-to-c Query. Newsome et al. also introduced the terminology of an
“exhaust-up-to-c query”, which repeats a satisfiability query up to some number
c of solutions, or until there are no satisfying values left. This is a good approach
to find a model count if the number of solution is small.
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Particle Filter. A particle filter [19] is an approach to the statistical estimation
of a hidden state from noisy observations, in which a probability distribution over
the state is represented non-parametrically by a collection of weighted samples
referred to as particles. The weights evolve over time according to observations;
they tend to become unbalanced, which is corrected by a resampling process
which selects new particles with balanced weights. A particle filtering algorithm
with periodic resampling takes the following form:

1. Sample a number of particles from a prior distribution.
2. Evaluate the importance weights for each particle and normalize the weights.
3. Resample particles (with replacement) according to the weights.
4. The posterior distribution represented by the resampled particles becomes

the prior distribution to next round and go to step 2.

3 Design

This section describes the approach and algorithms used by SearchMC. It is
implemented as a wrapper around an off-the-self bit-vector satisfiability solver
that supports the SMT-LIB2 format [3]. It takes as input an SMT-LIB2 formula
in a quantifier-free theory that includes bit-vectors (QF BV, or an extension like
QF AUFBV or QF FPBV) in which one bit-vector is designated as the output,
i.e. the bits over which solutions should be counted. (For ease of comparison
with #SAT solvers, SearchMC also has a mode that takes a Boolean formula in
CNF, with a list of CNF variables designated as the output.) SearchMC repeat-
edly queries the SMT solver with variations of the supplied input which add
XOR constraints and/or “blocking” constraints that exclude previously-found
solutions; based on the results of these queries, it estimates the total number of
values of the output bit-vector for which the formula has a satisfying assignment.

SearchMC chooses fruitful queries by keeping a running estimate of possible
values of the model count. We model the influence (log2 of model count) as if it
were a continuous quantity, and represent the estimate as a probability distribu-
tion over possible influence values. In each iteration we use the current estimate
to choose a query, and then update the estimate based on the query’s results. (At
a given update, the most recent previous distribution is called the prior, and the
new updated one is called the posterior.) As the algorithm runs, the confidence
in the estimate goes up, and the best estimate changes less from query to query
as it converges on the correct result. Each counting query SearchMC makes is
parameterized by k, the number of random XOR constraints to add, and c, the
maximum number of solutions to count. The result of the query is a number
of satisfying assignments between 0 and c inclusive, where a result that stops
at c means the real total is at least c. Generally a low result leads to the next
estimate being lower than the current one and a high result leads to the estimate
increasing. We will describe the process of updating the probability distribution,
and then give the details of the algorithms that use it.

Updating Distribution and Confidence Interval. We here explain the idea
of how we compute a posterior distribution over influence, where both the prior
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and posterior are represented by particles. Suppose we have a formula f with
a known influence log2 N , and add k XOR random constraints to the formula.
If we simulate checking the satisfiability of this augmented formula fk for dif-
ferent XOR constraints, we can estimate a probability of sat/unsat on fk. We
expand this idea by applying exhaust-up-to-c approach to fk. We count the num-
ber of satisfying assignments n up to c and generate the distributions for each
number of satisfying assignments (where n = c means that the number of satis-
fying assignments is in fact c or more). Thus under an assumption on the true
influence of a formula, we can estimate the probabilities of each number of sat-
isfying assignments based on k. By collecting these probabilities across a range
of influence, we obtain a probability distribution over influence for an unknown
formula assumed to have less than a maximum bits of influence. Under the ide-
alized assumption that each XOR constraint is completely independent, adding
k XOR constraints will leave each satisfying assignment alive with probability
1/2k. For any particular set of n ≥ 0 satisfying assignments remaining out of
an original N , the probability that exactly those n solutions will remain is the
product of 1/2k for each n and 1− (1/2k) for each of the other N −n. Summing
the total number of such sets with a binomial coefficient, we can approximately
model the probability of exactly n solutions remaining as:

Pr=n(N, k) =
(

N

n

)
(

1
2k

)n(1 − 1
2k

)N−n (1)

For the case when the algorithm stops looking when there might still be
more solutions, we also want an expression for the probability that the number
of solutions is n or more. We compute this straightforwardly as one minus the
sum of the probabilities for smaller values:

Pr≥n(N, k) = 1 −
n−1∑
i=0

Pr=i(N, k) (2)

We use XOR constraints that contain each counted bit with probability one
half, and are negated with probability one half. (This is the same family of
constraints used in other recent systems [12,13,30]. Earlier work [25] suggested
using constraints over exactly half of the bits, which have the same expected size,
but less desirable independence properties.) Our binomial probability model is
not precise in general, because these XOR constraints are 3-independent, but
not r-independent for r ≥ 4. When N ≥ 4, some patterns among solutions (such
as a set of four bitvectors whose XOR is all zeros) lead to correlations in the
satisfiability of XOR constraints, and in turn to higher variance in the probability
distribution without changing the expectation. This effect is relatively small,
but we lack an analytic model of it, so we compensate by slightly increasing the
confidence level our tool targets compared to what the user originally requested.

This probability model lets us simulate the probability of various query
results as a function of the unknown formula influence. We use this model as a
weighting function for each particle and resample particles based on each par-
ticle’s weight value. Then, we estimate a posterior distribution from sampled
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particles that have all equal weights. For instance, given a prior distribution
over the influence sampled at 0.1 bit intervals, we can compute a sampled pos-
terior distribution by counting and re-normalizing just the probability weights
that correspond to a given query result value n. From the estimated posterior
distribution, the mean μ and the standard deviation σ are computed. Hence, the
μ is our best possible answer as our algorithm iterates and σ shows how much we
are close to the true answer. Sequentially, the posterior distribution will be the
next round’s prior distribution and for use in the very first step of the algorithm
we also implement a case of the prior distribution as uniform over influence.

Next we compute a confidence interval (lower bound and upper bound) sym-
metrically from the mean of the posterior distribution even though the distri-
bution is not likely to be symmetrical. There are several ways to compute the
confidence interval but the difference of the results is negligible as the posterior
distribution gets narrower. Therefore, we used a simple way to compute the con-
fidence interval: a half interval from the left side of the mean and another half
from the right side.

Algorithm. We present our main algorithm SearchMC that runs automatically
and always gives an answer with a given confidence interval. The pseudocode
for algorithm SearchMC is given as Algorithm 1. Our algorithm takes as input
a formula f , a desired confidence level CL (0 < CL < 1), a confidence level
adjustment α (0 ≤ α < 1), a desired range size thres and an initial prior distri-
bution InitDist. f contains a set of bit-vector variables and bit-vector operators.
We can obtain a confidence interval at a confidence level for a given mean and
standard deviation. A confidence level CL is a fraction parameter specifying the
probability with which the interval should contain the true answer, for example,
0.95 (95%) or 0.99 (99%). As we described above, the binomial probability model
does not exactly capture the full behavior of XOR constraints, which could lead
to our results being over-confident. We introduce a confidence level adjustment
factor α to internally target a higher confidence level than the user requested,
making it more likely that the requested confidence can be met. If α = 0, we
do not adjust the input confidence level. We have currently set the value for α
empirically from 1

2 to 1
4 . However this single factor may not ideally capture the

control of the confidence level. Further investigation of the confidence gap will be
future work. Our algorithm terminates when the length of our confidence interval
is less than or equal to a given non-negative parameter thres. This parameter
determines the amount of running time and there is a trade-off. If thres value
is small, it gives a narrow confidence interval, but the running time would be
longer. If the value is large, it gives a wide confidence interval, but a shorter
running time. Our tool can choose any initial prior distribution InitDist repre-
sented by particles. For example, a generic strategy is to start with a uniform
distribution over 0 to a number of output variables. If we have a better prior
bound on the true influence (for instance 64 bits), a uniform distribution from
0 to that bound will generally perform better.

Variables. There are several variables: prior, post, width, k, c, nSat, UB,
LB and δ. prior represents a prior distribution by sampled particles with
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Algorithm 1. SearchMC(f , thres, CL, α, InitDist)
1: CL ← CL + (1 − CL) × α � Confidence level adjustment
2: width ← getWidth(f) � The width of the output bit-vector of f
3: prior ← InitDist � Initial distribution
4: δ ← width
5: while δ > thres do
6: c, k ← ComputeCandK(prior, width)
7: nSat ← MBoundExhaustUpToC(f, width, k, c)
8: post, UB, LB ← Update(prior, c, k, nSat, CL)
9: δ ← UB − LB

10: if k == 0 then
11: output “Exact Count: ”, nSat
12: else
13: prior ← post
14: output “Lower: ”, LB, “Upper: ”, UB
15: end if
16: end while

Algorithm 2. ComputeCandK(prior, width)
1: μ, σ ←getMuSigma(prior)
2: c ← �((2σ + 1)/(2σ − 1))2�
3: k ← �μ − 1

2
log2 c�

4: if k ≤ 0 then
5: c ← 2width + 1 � In this case, c is effectively infinite
6: k ← 0 � No constraints
7: end if
8: return c, k

corresponding weights. In one iteration, we obtain the updated posterior dis-
tribution post with resampled particles based on our probabilistic model as
described above. The posterior becomes the prior distribution for the next
iteration. While our algorithm is in the loop, it keeps updating post. width
is the width of the output bit-vector of an input formula f , which is an ini-
tial upper bound for the influence since the influence cannot be more than the
width of the output bit-vector. k is a number of random XOR constraints and
c specifies the maximum number of solutions for the exhaust-up-to-c query. We
obtain c and k using the ComputeCandK function shown as Algorithm 2 and dis-
cussed below. nSat is a number of solutions from the exhaust-up-to-c query.
MBoundExhaustUpToC runs until it finds the model count exactly or c solutions
from formula f with k random XOR constraints. UB and LB are variables to
store an upper bound and a lower bound of the current model count approx-
imation with a given confidence level as we describe above. δ is the distance
between the upper bound and lower bound. This parameter determines whether
our algorithm terminates or not. If δ is less than or equal to our input value
thres, our algorithm terminates. If not, it runs again with updated post until δ
reaches the desired range size thres. An extreme case k = 0 denotes that our
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guess is equivalent to the true model count. In this case, we print out the exact
count and terminate the algorithm.

Functions. To motivate the definition of the function ComputeCandK, we view
an exhaust-up-to-c query as analogous to measuring influence with a bounded-
length “ruler.” Suppose that we reduce the expected value of the model count
by adding k XOR constraints to f . Then, we can use the “length-(log2 c) ruler”
to measure the influence starting at k and this measurement corresponds to
the result of an exhaust-up-to-c query: the length-(log2 c) ruler has c markings
spaced logarithmically as illustrated in Fig. 1. Each iteration of the algorithm
chooses a location (k) and length (c) for the ruler, and gets a noisy reading
on the influence as one mark on the ruler. Over time, we want to converge on
the true influence value, but we also wish to lengthen the rule so that the finer
marks give more precise readings. Based on this idea, we have the ComputeCandK
function to choose the length of and starting point of the ruler from a prior
distribution. Then, we run an exhaust-up-to-c query and call Update to update
the distribution based on the result of the query.

The pseudocode for algorithm update is described as Algorithm 3. A prior
distribution prior and a posterior distribution post are represented as a set
of sampled particles (influences). We sampled 500 particles for each update
function call. Once we have the updated distribution, we can find out the interval
of a given confidence level.

0 1 k w 

log2c 

Ruler (log2c)/2 

μ k+1 

Fig. 1. Ruler intuition

Since we observe that our running σ represents how much we are close to the
true answer, we use a rational function to satisfy the condition that c increases
as σ decreases (i.e., we get more accurate result as c increases).

The k value denotes where to put the ruler. We want to place the ruler where
the expected value of the prior distribution lies near the middle of the ruler hence
our expected value is in the range of the ruler with high probability. Therefore, we
subtract the half length of the ruler (12 log2 c) from the expected value μ and then
use the floor function to the value because k has to be an nonnegative integer
value. The expected value always lies in the right-half side of the ruler by using
the floor function. However, it is not essential which rounding function is used.
Note that there might be a case where k becomes negative. If this happens, we
set k = 0 and c = ∞, because our expected value is so small that we can run the
solver exhaustively to give the exact model count. The formula for c is motivated
by the intuition that the spacing between two marks near the middle of the ruler
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Algorithm 3. Update(prior, c, k, nSat, CL)
1: for t from 1 to nParticles do
2: xt ← priort � x is a list of sampled particles (influences)
3: if nSat < c then � Updating each weight of each particle
4: wt = Pr=nSat(2

xt , k)
5: else
6: wt = Pr≥nSat(2

xt , k)
7: end if
8: end for
9: w ← normalize() � Normalizing the weights

10: post ← sample(x, w, nParticles) � Resampling based on the weights
11: UB, LB ← getBounds(post, CL)
12: return post, UB, LB

should be proportional to the standard deviation of the probability distribution,
to ensure that a few different results of the query are possible with relatively
high probability; the spacing between the two marks closest to 1

2 log2 c = log2
√

c
will be about log2(

√
c + 1

2 ) − log2(
√

c − 1
2 ). Setting this equal to σ, solving for c,

and taking the ceiling gives line 3 of Algorithm2.

Probabilistic Sound Bounds. The binomial model performs well for choosing
a series of queries, and it yields an estimate of the remaining uncertainty in
the tool’s results, but because the binomial model differs in an hard-to-quantify
way from the true probability distributions, the bounds derived from it do not
have any associated formal guarantee. In this section we explain how to use our
tool’s same query results, together with a sound bounding formula, to compute
a probabilistically sound lower and upper bound on the true influence. As a
trade-off, these bounds are usually not as tight as our tool’s primary results.

The idea is based on Theorem 2 from Chakraborty et al.’s work [12], which
in turn is a variant on Theorem 5 by Schmidt et al. [39]. For convenience we
substitute our own terminology.

Lemma 1. Let nSat be the return value from MBoundExhaustUpToC. Then,

Pr
[
0 < nSat < c and k ≤ log2|f | and (1 + ε)−1|f | ≤ 2k|fh| ≤ (1 + ε)|f |] > 0.6

Chakraborty et al. use pivot for what we call c from an exhaust-up-to-c query
and pivot = 2�3e1/2(1+ 1

ε )2�. Since 0 < ε < 1, c (pivot) should be always greater
than 40 to make the lemma true with a probability of at least 0.6. (The constant
0.6 comes from (1 − e−3/2)2 ≈ 0.6035.)

In SearchMC’s iterations, given c and k, we can compute ε value to estimate
the bounds. Therefore, when c is greater than 40 from our tool’s iteration, we
can compute a lower and upper bound such that the true influence is within the
bounds with a probability of at least 0.6.
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4 Experimental Results

In this section, we present our experimental results. All our experiments were
performed on a machine with an Intel Core i7 3.40 Ghz CPU and 16 GB mem-
ory. Our main algorithm is implemented with a Perl script and Update function
is implemented in a C program called by the main script. Our algorithm can
be applied to both SMT formulas and CNF formulas. We have tested a variety
of SAT solvers and SMT solvers, and our current implementation specifically
supports Cryptominisat2 [40] for CNF formulas and Z3 [18] and MathSAT5 [16]
for SMT formulas. For pure bit-vector SMT formulas, our tool also supports
eagerly converting the formula to CNF first and then using CNF mode. (We
implement the conversion using the first phase of the STP solver [2,23] with
optimizations disabled and a patch to output the SMT-to-CNF variable map-
ping.) Performing CNF translation eagerly gives up the benefit of some (e.g.,
word-level) optimizations performed by SMT solvers, but it can sometimes be
profitable because it avoids repeating bit-blasting, and allows the tool to use a
specialized multiple-solutions mode of Cryptominisat.

We run our algorithm with a set of DQMR (Deterministic Quick Medical
Reference) benchmarks [1] and ISCAS89 benchmarks [8] converted to CNF files
by TG-Pro [14] and compare the results of the benchmarks with ApproxMC2 [13]
and ApproxMC-p [30]. ApproxMC2 and ApproxMC-p are state-of-the-art approxi-
mate #SAT solvers which we describe in more detail in Sect. 5. We used Cryp-
tominisat2 as the back-end solver with all the tools for fair comparison. For
the parameters for the tools, we set a 60% confidence level, a confidence level
adjustment α = 0.25 and a desired interval length of 1.7. As described above,
SearchMC-sound gives correct bounds with a probability of at least 0.6. Since
the desired confidence level for ApproxMC2 is 1 − δ, it can achieve a 60%
confidence level by setting a parameter δ = 0.4 which corresponds to our
parameter CL = 0.6. Using the same confidence level for ApproxMC-p avoids
an apparent mistake in the calculation of its base confidence pointed out by
Biondi et al. [5]. The length of the interval for ApproxMC2 is computed as
log2(|f | × (1 + ε)) − log2(|f | × (1/(1 + ε))) = 1.7 hence we can obtain the inter-
val length 1.7 by setting a parameter ε = 0.8, corresponding to our parameter
thres = 1.7. Computing the interval for ApproxMC-p is a little different. The
length of the interval for ApproxMC-p is log2(|f |×(1+ε))−log2(|f |×(1−ε)) = 1.7
hence we can obtain the interval length 1.7 by setting a parameter ε = 0.53. Note
that SearchMC increases the c value of an exhaust-up-to-c query as it iterates
while the corresponding ApproxMC2 and ApproxMC-p parameters are fixed as a
function of ε (72 and 46, respectively) in this experiment. Also, we set an initial
prior to be a uniform distribution over 0 to 64 bits for SearchMC. We tested 122
benchmarks (83 DQMRs and 39 ISCAS89s). All the tools were able to solve a
set of 106 benchmarks (83 DQMRs and 23 ISCAS89s) within 2 h.
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Figure 2a compares the quality of lower bounds and upper bounds computed
by SearchMC-sound, ApproxMC-p and ApproxMC2*1. Note that the benchmarks
are arranged in increasing order of the true influence in Fig. 2a and d. The influ-
ence bounds are the computed bounds minus the true influence. Filled markers
and empty markers represent reported lower bounds and upper bounds, respec-
tively. SearchMC-sound, ApproxMC-p and ApproxMC2* out-perform the requested
60% confidence level. The incorrect bounds are visible as empty markers below
the dotted line and filled markers above the line.

SearchMC-sound tends to give tighter bounds than the ApproxMC algorithms
since it stops when the interval length becomes less than thres, while the interval
lengths for the ApproxMCs are fixed by a parameter ε. We do not include the
result of SearchMC in this figure to limit clutter, but the full results are available
in the longer version of our paper [27]. In brief, SearchMC reported 65 correct
bounds out of 106 benchmarks, which is slightly higher than the requested 60%
confidence level.

Figure 2b shows another perspective on the trade-off between performance
and error. We selected a single benchmark and varied the parameter settings of
each algorithm, measuring the absolute difference between the returned answer
and the known exact result. We include results from running ApproxMC2* with
parameter settings outside the range of its soundness proofs (shown as “disal-
lowed” in the plot), since these settings are still empirically useful, and SearchMC
makes no such distinction. From this perspective the tools are complementary
depending on one’s desired performance-error trade-off. The results from all the
tools improve with configurations that use more queries, but SearchMC performs
best at getting more precise results from a small number of queries.

We also compare the running-time performance with ApproxMCs and show
the running-time performance comparison on our 106 benchmarks in Fig. 2c. In
this figure the benchmarks are sorted separately by running time for each tool,
which makes each curve non-decreasing; but points with the same x position are
not the same benchmark. Since ApproxMC-p refined the formulas of ApproxMC,
it used a smaller number of queries than ApproxMC2. SearchMC can solve all the
benchmarks faster than ApproxMCs with 60% confidence level. SearchMC-sound
performs faster than ApproxMC-p even SearchMC-sound computes its confidence
interval similarly to ApproxMC-p. The SearchMC’s and SearchMC-sound’s aver-
age running times are 24.59 and 108.24 s, compared to an average of 125.48
for ApproxMC-p. ApproxMC2* requires an average of 298.11 s just for the sub-
set of benchmarks all the tools can complete. We also compare the number of
SAT queries on the benchmarks for all the tools in Fig. 2d. For this figure the
benchmarks are sorted consistently by increasing true model count for all tools.

1 ApproxMC2* refers to our own re-implementation of the ApproxMC2 algorithm.
With the latest version of ApproxMC2 we encountered problems (which we are still
investigating) in which the SAT solver would sometimes fail to perform Gaussian
elimination, which unfairly hurt the tool’s performance. Our implementation also
makes it easy to control the random seed for experiment repeatability.
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Table 1. Results and performance of model counting (log2 shown) of naive Laplacian
noise in IEEE floating point

Problem size All noise Intersection

Expected SearchMC Time SearchMC Time

15e7, 28 7.994 [7.374, 8.069] 164 s 1.000 312 s

16e7, 29 8.997 [8.566, 9.073] 470 s 3.322 1585 s

16e8, 210 9.999 [10.076, 10.844] 279 s 4.754 5279 s

18e8, 210 9.999 [9.675, 10.099] 583 s 1.000 1137 s

19e8, 211 10.999 [10.825, 11.404] 757 s 3.585 9848 s

The average number of SAT queries for SearchMC, SearchMC-sound ApproxMC-p
and ApproxMC2* is about 14.7, 83.73, 1256.96 and 733.81 queries, respectively.

Floating Point/Differential Privacy Case Study. As an example of model
counting with floating point constraints, we measure the security of a mechanism
for differential privacy which can be undermined by unexpected floating-point
behavior. The Laplace mechanism achieves differential privacy [22] by adding
exponentially-distributed noise to a statistic to obscure its exact value. For
instance, suppose we wish to release a statistic counting the number of patients
in a population with a rare disease, without releasing information that con-
firms any single patient’s status. In the worst case, an adversary might know
the disease status of all patients other than the victim; for instance the attacker
might know that the true count is either 10 or 11. If we add random noise
from a Laplace distribution to the statistic before releasing it, we can leave the
adversary relatively unsure about whether the true count was 10 or 11, while
preserving the utility of an approximate result. A naive implementation of such a
simple differentially private mechanism using standard floating-point techniques
can be insecure because of a problem pointed out by Mironov [34]. For instance
if we generate noise by dividing a random number in [1, 231] by 231 and tak-
ing the logarithm, the relative probability of particular floating point results
will be quantized compared to the ideal probability, and many values will not
be possible at all. If a particular floating point number could have been gener-
ated as 10 + noise but not as 11 + noise in our scenario, its release completely
compromises the victim’s privacy.

To measure this danger using model counting, we translated the standard
approach for generating Laplacian noise, including an implementation of the
natural logarithm, into SMT-LIB 2 floating point and bit-vector constraints.
(We followed the log function originally by SunSoft taken from the musl C
library, which uses integer operations to reduce the argument to [

√
2/2,

√
2),

followed by a polynomial approximation.) A typical implementation might use
double-precision floats with an 11-bit exponent and 53-bit fraction, and 32 bits of
randomness, which we abbreviate “53e11, 232”, but we tried a range of increasing
sizes. We measured the total number of distinct values taken by 10 + noise as
well as the size of the intersection of this set with the 11 + noise set.



146 S. Kim and S. McCamant

The results and running time are shown in Table 1. (For space reasons we
omit results for some smaller formats, which can be found in the extended version
of the paper [27].) We ran SearchMC with a confidence level of 80%, a confidence
level adjustment of 0.5 and a threshold of 1.0; the SMT solver was MathSAT
5.3.13 with settings recommended for floating-point constraints by its authors.
We use one random bit to choose the sign of the noise, and the rest to choose
its magnitude. The sign is irrelevant when the magnitude is 0, so the expected
influence for n bits of randomness is log2(2n − 1). SearchMC’s 80% confidence
interval included the correct result in 4 out of 5 cases. The size of the intersections
is small enough that SearchMC usually reports an exact result (always here). The
size of the intersection is also always much less than the total set of noise values,
confirming that using this algorithm and parameter setting for privacy protection
would be ill-advised. The running time increases steeply as the problem size
increases, which matches the conventional wisdom that reasoning about floating-
point is challenging. But because floating-point SMT solving is a young area,
there is future solvers may significantly improve the technique’s performance.

Description of Archival Artifact. To facilitate reproduction of our experi-
ments and future research, we have created an artifact archive containing code
and data for performing the experiments described in this paper. This archive is
a zip file containing data, instructions, source code, and binaries pre-compiled
for Ubuntu 14.04 x86-64, which we have tested for compatibility with the virtual
machine used during the artifact evaluation process [26]. The archive includes
SearchMC itself and the modified version of STP it uses for bit-blasting, as well
as scripts specific to the differential-privacy experiment, and the benchmark
input files we used for performance evaluation. Information about accessing this
artifact is found at the end of the paper.

5 Related Work

Exact Model Counting. Some of the earliest Boolean model counters used
the DPLL algorithm [17] for counting the exact number of solutions. Birnbaum
et al. [6] formalized this idea and introduced an algorithm for counting models of
propositional formulas. Based on this idea, Relsat [4], Cachet [38] sharpSAT [43]
and DSHARP [35] showed improvements by using several optimizations. The
major contribution of countAntom [9] is techniques for parallelization, but it
provides state-of-the-art performance even in single-threaded mode.

Phan et al. [37] encode a full binary search for feasible outputs in a bounded
model checker. This approach is precise, but requires more than one call to the
underlying solver for each feasible output. Klebanov et al. [29] perform exact
model counting for quantitative information-flow measurement, with an app-
roach that converts C code to a CNF formula with bounded model checking and
then uses exact #SAT solving. Val et al. [42] integrate a symbolic execution tool
more closely with a SAT solver by using techniques from SAT solving to prune
the symbolic execution search space, and then perform exact model counting
restricted to an output variable.
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Randomized Approximate Model Counting. Randomized approximate
model counting techniques perform well on many kinds of a formula for which
finding single solutions is efficient. Wei and Selman [43] introduced ApproxCount
which uses near-uniform sampling to estimate the true model count but it can
significantly over-estimate or underestimate if the sampling is biased. Sample-
Count [24] improves this sampling idea and gives a lower bound with high prob-
ability by using a heuristic sampler. MiniCount [31] computes an upper bound
under statistical assumptions by counting branching decisions during SAT solv-
ing. MBound [25] is an approximate model counting tool that gives probabilistic
bounds on the model counts by adding randomly-chosen parity constraints as
XOR streamlining. Chakraborty et al. [12] introduced ApproxMC, an approx-
imate model counter for CNF formulas, which automated the choice of XOR
streamlining parameters. The ApproxMC algorithm, in our terminology, starts
by fixing c and a total number of iterations based on the desired precision and
confidence of the results. In each iteration ApproxMC searches for an appropriate
k value, adds k XOR random constraints, and then performs an exhaust-up-to-c
query on the streamlined formula and multiplies the result by 2k. It stores all the
individual estimates as a multiset and computes its final estimate as the median
of the values. The original ApproxMC sequentially increases k in each iteration
until it finds an appropriate k value. An improved algorithm ApproxMC2 [13] uses
galloping binary search and saves a starting k value between iterations to make
the selection of k more efficient. Other recent systems that build on ApproxMC
include SMTApproxMC [11] and ApproxMC-p [30]. ApproxMC-p implements pro-
jection (counting over only a subset of variables), which we also require.

ApproxMC2, whose initial development was concurrent with our first work on
SearchMC, is the system most similar to SearchMC: its binary search for k plays
a similar role to our converging μ value. However SearchMC also updates the c
parameter over the course of the search, leading to fewer total queries. ApproxMC,
ApproxMC2, and related systems choose the parameters of the search at the out-
set, and make each iteration either fully independent (ApproxMC) or dependent
in a very simple way (ApproxMC2) on previous ones. These choices make it easier
to prove the tool’s probabilistic results are sound, but they require a conserva-
tive choice of parameters. SearchMC’s approach of maintaining a probabilistic
estimate at runtime means that its iterations are not at all independent: instead
our approach is to extract the maximum guidance for future iterations from
previous ones, to allow the search to converge more aggressively.

The runtime performance of SearchMC, like that of ApproxMC(2), is highly
dependent on the behavior of SAT solvers on CNF-XOR formulas. Some roots
of the difficulty of this problem have been investigated by Dudek et al. [20,21].

Non-randomized Approximate Model Counting. Non-randomized approx-
imate model counting using techniques similar to static program analysis is gen-
erally faster than randomized approximate model counting techniques, and such
systems can give good approximations for some problem classes. However, they
cannot provide a precision guarantee for arbitrary problems, and it is not possi-
ble to give more effort to have more refined results.
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Castro et al. [10] compute an upper bound on the number of bits about an
input that are revealed by an error report. Meng and Smith [33] use two-bit-
pattern SMT entailment queries to calculate a propositional overapproximation
and count its instances with a model counter from the computer algebra sys-
tem Mathematica. Luu et al. [32] propose a model counting technique over an
expressive string constraint language.

Applications: Security and Privacy. Various applications of model counting
have been proposed for security and privacy purposes. Castro et al. [10] use
model counting and symbolic execution approaches to measure leaking private
information from bug reports. They compute an upper bound on the amount
of private information leaked by a bug report and allow users to decide on
whether to submit the report or not. Newsome et al. [36] show how an untrusted
input affects a program and introduce a family of techniques for measuring
influence which can be applicable to x86 binaries. Biondi et al. [5] use CBMC
and ApproxMC2 to quantify information flow on a set of benchmarks and evaluate
the leakage incurred by a small instance of the Heartbleed OpenSSL bug.

6 Future Work and Conclusion

Closing the gap between the performance of SearchMC and SearchMC-sound is
one natural direction for future research. On one hand, we would like to explore
techniques for asserting sound probabilistic bounds which can take advantage
of the results of all of SearchMC’s queries. At the same time, we would like
to find a model of the number of solutions remaining after XOR streamlining
that is more accurate than our current binomial model, which should improve
the performance of SearchMC. Another future direction made possible by the
particle filter implementation is to explore different prior distributions, including
unbounded ones. For instance, using a negative exponential distribution over
influence as a prior would avoid the any need to estimate a maximum influence
in advance, while still starting the search process with low-k queries which are
typically faster to solve.

In sum, we have presented a new model counting approach SearchMC using
XOR streamlining for SMT formulas with bit-vectors and other theories. We
demonstrate our algorithm that adaptively maintains a probabilistic model count
estimate based on the results of queries. Our tool computes a lower bound and an
upper bound with a requested confidence level, and yields results more quickly
than previous systems.
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Abstract. We study three different Hoare logics for reasoning
about time bounds of imperative programs and formalize them in
Isabelle/HOL: a classical Hoare like logic due to Nielson, a logic with
potentials due to Carbonneaux et al. and a separation logic following
work by Atkey, Chaguérand and Pottier. These logics are formally shown
to be sound and complete. Verification condition generators are devel-
oped and are shown sound and complete too. We also consider variants
of the systems where we abstract from multiplicative constants in the
running time bounds, thus supporting a big-O style of reasoning. Finally
we compare the expressive power of the three systems.

Keywords: Hoare logic · Algorithm analysis · Program verification

1 Introduction

This paper is about Hoare logics for proving upper bounds on running times and
about the formalized (in a theorem prover) study of their meta theory. The paper
is not about the automatic analysis of running times but about fundamental
questions like soundness and completeness of logics and of verification condition
generators (VCGs). The need for such a study becomes apparent when browsing
the related literature (e.g. [1,6,7]): (formalized) soundness results are of course
provided, but completeness of logics and VCGs is missing.

We study multiple different Hoare logics because we are interested in dif-
ferent aspects of the logics. One aspect is the difference between precise upper
bounds and order-of-magnitude upper bounds that abstract from multiplicative
constants. In the latter case we speak of “big-O style” logics.

A second aspect is modularity. We would like to combine verified results
about subprograms in order to show correctness and running time for larger
programs. Therefore we also study a separation logic for running time analysis.

Overall we study the meta theory of three different kinds of Hoare logics that
have emerged in the literature. Our main contributions are:
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• Based on the simple imperative language IMP (Sect. 2), we formalize three
logics for time bounds from the literature (Sect. 3); we show their sound-
ness and completeness w.r.t. IMP’s semantics, discuss specific weaknesses
and strengths and study their interrelations (Sect. 4).

• The first logic we study is a big-O style logic due to Nielson [23] (Sect. 3.1).
We improve, formalize and verify this logic and extend it with a VCG whose
soundness and completeness we also verify.

• In Sect. 3.2 we formalize a quantitative Hoare logic following ideas by Car-
bonneaux et al. [4,6] and extend their work as follows: we prove completeness
of the logic and design a sound and complete VCG. Additionally we extend
the logic to a big-O style logic.

• Following ideas of Atkey [1] and Charguéraud and Pottier [7] we formalize
a logic similar to separation logic (Sect. 3.3) for reasoning about concrete
running times. We formally prove soundness and completeness.

• All proofs have been formalized in Isabelle/HOL [18,19] and are available
online [9].

2 Basics

We consider the simple deterministic imperative language IMP. Its formalization
is standard and can be found elsewhere [18]. IMP’s commands are built up from
SKIP, assignment, sequential composition, conditional and While-loop. Program
states are functions from variables to values. By default c is a command and s
a state. Evaluation of a boolean or arithmetic expression e in state s is denoted
by [[e]]s.

We have defined a big-step semantics that counts the consumed time during
execution: SKIP, assignment and evaluation of boolean expressions require one
time unit. The precise definition of the semantics is routine. We write (c, s) t=⇒ s′

to mean that starting command c in state s terminates after time t in state s′.
Given a pair (c, s), ↓(c, s) means that the computation of c starting from s

terminates, ↓S(c, s) then denotes the final state, and ↓T (c, s) the execution time.

3 Hoare Logics for Time Bounds

In this section we study and extend three different Hoare logics: a classical one
based on [23], one using potentials [4] and one based on separation logic with
time credits [1].

3.1 Nielson Style

Riis Nielson and Nielson [23] present a Hoare logic to prove the “order of mag-
nitude of the execution time” of a program (which we call “big-O style”). They
reason about triples of the form {P}c{e ⇓ Q} where P and Q are assertions and
e is a time bound. The intuition is the following: if the execution of command c
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is started in a state satisfying P then it terminates in a state satisfying Q after
O(e) time units, i.e. the execution time has order of magnitude e. Note that e is
evaluated in the state before executing c.

Throughout the paper we rely on what is called a shallow embedding of asser-
tions and time bounds: there is no concrete syntactic representation of assertions
and time bounds but they are merely functions in HOL, our ambient logic. They
map states to truth values and natural numbers.

A complication in reasoning about execution time comes from the fact that
one needs to combine time bounds that refer to different points in the execution,
for example when adding time bounds in a sequential composition. This diffi-
culty can be overcome with logical variables that enable us to transport time
bounds from the prestate to the poststate of a command. We formalize logi-
cal variables by modelling assertions as functions of two states, the state of the
logical variables (typically l) and the state of the program variables (typically s).

The validity of Nielson’s triples is formally defined as follows:

|=1 {P}c{e ⇓ Q} ≡ (∃k.∀l s. P l s −→ (∃t s′. (c, s) t=⇒ s′ ∧ Q l s′ ∧ t ≤ k · e s))

The Hoare logic below needs to generate “fresh” logical variables. Thus we
need to express which logical variables are already used. This is called the support
of an assertion. Because assertions are merely functions, the support is defined
semantically:

support Q ≡ {x | ∃l1 l2 s. (∀y. y �= x −→ l1 y = l2 y) ∧ Q l1 s �= Q l2 s}

Our Hoare logic is shown in Fig. 1. It is largely a formalization of the sys-
tem in [23, Table 10.4] but with two important changes: we have simplified rule
While (details below) and we have replaced the consequence rule by conseqK ,
an adaptation of Kleymann’s stronger consequence rule [15]; rules conseq and
const are derived from it. Note that the latter two rules suffice for a sound and
complete Hoare logic, but our proof of completeness of the VCG needs conseqK .

Now we discuss the rules in Fig. 1. Rules Skip, Assign, If and conseq are
straightforward. Note that 1 is the time bound λs.1 and + is lifted to time
bounds pointwise. The notation s[a/x] is short for “s with x mapped to [[a]]s”.

Now consider rule Seq. Given {P}c1{e1 ⇓ Q} and {Q}c2{e2 ⇓ R} one may
want to conclude {P}c1; c2{e1 + e2 ⇓ R}. Unfortunately, e1 + e2 does not lead
to the correct result, as c1 could have altered variables e2 depends on. In order
to adapt e2 for the changes that occur in c1, we use a shifted time bound e′

2,
and leave as a proof goal to show that the value of e′

2 in the prestate is an upper
bound on e2 in the poststate of c1. Rule Seq relates e′

2 and e2 through a fresh
logical variable u that is equated with the value of e′

2 in the prestate of c1. The
time bound e in the conclusion must be an upper bound of e1 + e′

2.
In the const rule, the time bound can be reduced by a constant factor. Note

that we split up Nielson’s conse rule into conseq and const.
Our rule While is a simplification of the one in [23]. The latter is an extension

with time of the “standard” While-rule for total correctness where a variable
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Fig. 1. Hoare logic for reasoning about order of magnitude of execution time

decreases with each loop iteration. However, once you have time, you no longer
need that variable and we removed it. The key constraint in rule While is e ≥
1+e′ +e′′. It can be explained by unfolding the loop once. The time e to execute
the whole loop must be an upper bound for the time e′′ to execute the loop body
plus the time e′ to execute the remaining loop iteration; the 1+ accounts for
evaluation of b. The time e′ to execute the remaining loop iterations is obtained
from e by (intuitively) an application of rule Seq : in the first premise a fresh
logical variable u is used to pull e back over c, resulting in e′. The rest of rule
While is standard.

Soundness of the calculus can be shown by induction on the derivation of
1 {P}c{e ⇓ Q}:

Theorem 1 (Soundness of 1). 1 {P}c{e ⇓ Q} =⇒ |=1 {P}c{e ⇓ Q}
Our completeness proof follows the general pattern for Hoare logics: define

a weakest precondition operator wp and show that the triple {wp c Q}c{Q} is
derivable. In our setting wp is defined like this

wp c Q ≡ (λl s. ∃t s′. (c, s) t=⇒ s′ ∧ Q l s′)

and we show derivability of the following triple that also takes time into account:

Lemma 1. finite(support Q) =⇒ 1 {wp c Q}c{λs. ↓T (c, s) ⇓ Q}
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As we need fresh logical variables for rules Seq and While, we assume that the
set of logical variables Q depends on is finite.

It is instructive to observe that for this proof, only the Hoare rules Skip to
conseq are needed. Neither const nor conseqK are used. Lemma 1 thus expresses
that it always is possible to derive a triple with the precise execution time as a
time bound. Only as a last step an abstraction of multiplicative constants and
over-approximation of the time bound is necessary. This shows that for every
valid triple one can first deduce a correct upper bound for the running time,
only to get rid of a multiplicative constant in a final application of the const
rule one. In the end, Lemma 1 implies completeness:

Theorem 2 (Completeness of 1).
finite (support Q) =⇒ |=1 {P}c{e ⇓ Q} =⇒ 1 {P}c{e ⇓ Q}
In particular we can now apply the above observation about the shape of deriva-
tions of valid triples to provable ones, by soundness: in any derivation one can
pull out all applications of const and combine them into a single one at the very
root of the proof tree. We will observe the very same principle when studying
the quantitative Hoare logic in Sect. 3.2.

Verification Condition Generator. Showing validity of {P}c{e ⇓ Q} now
boils down to applying the correctly instantiated rules of the Hoare logic and
proving their side conditions. The former is a mechanical task, which is routinely
automated by a verification condition generator, while the latter is left to an
automatic or interactive theorem prover.

We design a VCG that collects the side conditions for an annotated program.
While for classical Hoare logic it suffices to annotate a loop with an invariant I,
for reasoning about execution time we introduce two more annotations for the
following reason.

Consider rule Seq in Fig. 1. When applying the rule to a proof goal 1

{P}c1; c2{e ⇓ R} we need to instantiate the variables P , Q, e1, e2, and e′
2.

As for classical Hoare logic, Q is chosen to be the weakest preconditions of c2
w.r.t. R, which can be calculated if the loops in c2 are annotated by invariants.
(Analogously for P being the weakest precondition of c1 w.r.t. Q). Similarly,
when annotating the loops in c1 and c2 with time bounds E, time bounds e1
and e2 can be constructed. Finally, e′

2 can be determined if the evolution of e2
through c1 is known. For straight line programs, this can be deduced, only for
loops a state transformer S has to be annotated. An annotated loop then has
the form {I, S,E} WHILE b DO C where I is the invariant and S and E are as
above.

For our completeness proof of the VCG we also need annotations that cor-
respond to applications of rule conseqK and record information that cannot be
inferred automatically. For that purpose we introduce a new annotated command
Conseq {P ′, Q, e′} C where P ′, Q and e′ are as in rule conseqK .

We use capital letters, e.g. C, to denote annotated commands and C is the
unannotated version of C stripped of all annotations.
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We use three auxiliary functions pre, post and time. Their definitions are
shown in Fig. 2.

Fig. 2. Functions pre, post and time

The VCG reduces proving a triple {P}C{e ⇓ Q} to checking that the anno-
tations really are invariants, upper bounds and correct state transformers. The
VCG traverses C and collects all the verification conditions for the loops into a
big conjunction. The most interesting case is the loop itself:

vc ({I, S,E} WHILE b DO C) Q = vc C I ∧
(∀l s. (I l s ∧ [[b]]s −→ pre C I l s

∧ E s ≥ 1 + E(post C s) + time C s

∧ S s = S(post C s))
∧ (I l s ∧ ¬[[b]]s −→ Q l s ∧ E s ≥ 1 ∧ S s = s))

First, verification conditions are recursively generated from the loop body C
and the invariant I as desired post condition. The invariant and the loop guard
must imply preservation of the invariant, the recurrence inequation for the time
bound and that the state transformer S obeys the fixpoint equation for loops.
When exiting the loop, the post condition must hold, E has to pay for the last
test of the loop guard, and S needs to be the identity.

The verification conditions for Conseq {P ′, Q, e′} C merely check the side
condition of rule conseqK :

vc (Conseq {P ′, Q, e′} C) Q′ = vc C Q ∧
∃k. ∀l s. P ′ l s −→ time C s ≤ k · e′ s

∧ ∀t.∃l′. pre C Q l′ s ∧ (Q l′ t −→ Q′ l t)
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The remaining equations for vc are straightforward:

vc SKIP Q = True

vc (x := a) Q = True

vc (C1;C2) Q = (vc C1 (pre C2 Q) ∧ vc C2 Q)
vc (IF b THEN C1 ELSE C2) Q = (vc C1 Q ∧ vc C2 Q)

Theorem 3 (Soundness of vc). Let C and Q involve only finitely many logical
variables. Then vc C Q together with ∃k.∀l s. P l s −→ pre C Q l s∧ time C s ≤
k · e s imply 1 {P} C{e ⇓ Q}.
That is, for proving 1 {P} C{e ⇓ Q} one has to show the verification conditions,
that P implies the weakest precondition (as computed by pre) and that the
running time (as computed by time) is in the order of magnitude of e.

Now we come to the raison d’être of the stronger consequence rule conseqK :
the completeness proof of our VCG. The other proofs in this section only require
the derived rules conseq and const. Our completeness proof of the VCG builds
annotated programs that contain a Conseq construct for every Seq and While
rule. The annotations of Conseq enable us to adapt the logical state; without
this adaptation we failed to generate true verification conditions.

Theorem 4 (Completeness of vc). If 1 {P} c{e ⇓ Q} then there is a C such
that C = c, vc C Q is true and ∃k.∀l s. P l s −→ pre C Q l s∧time C s ≤ k ·e s.

That is, if a triple 1 {P} c{e ⇓ Q} is provable then c can be annotated such
that the verification conditions are true, P implies the weakest precondition (as
computed by pre) and the running time (as computed by time) is in the order
of magnitude of e.

Annotating loops with a correct S is troublesome, as it captures the semantics
of the whole loop. Luckily S only needs to be correct for “interesting” variables,
i.e. variables that occur in time bounds that need to be pulled backward through
the loop body. Often these variables are not modified by a command. We imple-
mented an optimized VCG that keeps track of which variables are of interest
and requires S to be correct only on those; we also showed its soundness and
completeness. Further details can be found in the formalization.

3.2 Quantitative Hoare Logic

The main idea by Carbonneaux et al. [4] is to generalize predicates (state ⇒ B)
in Hoare triples to potentials (state ⇒ N∞). That is, Hoare triples are now of
the form {P}c{Q} where P and Q are potentials. The resulting logic does not
need logical variables. We prove soundness and completeness of that logic and
design a sound and complete VCG. Then we extend the logic and VCG to big-O
style reasoning.
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Validity of triples involving potentials is defined as follows and is a direct
generalization of validity for triples involving predicates:

|=2 {P}c{Q} ≡ ∀s. P s < ∞ −→ (∃t s′. (c, s) t=⇒ s′ ∧Q s′ < ∞∧P s ≥ t+Q s′)

One may interpret the refinement from B to N∞ as follows: infinite potentials are
“impossible” and thus correspond to False, while finite potentials correspond to
True. In that way “P s < ∞” corresponds to “P holds in state s”. Furthermore,
we interpret the difference of the prepotential P and postpotential Q as an
upper bound on the actual running time. Predicates can be lifted to potentials
by mapping True to 0 and False to ∞. We use the ↑ symbol for that lifting:
↑P s ≡ (if P s then 0 else ∞), and similarly for boolean expressions: ↑b s ≡
(if [[b]]s then 0 else ∞).

Fig. 3. Quantitative Hoare logic

The rules in Fig. 3 define the Hoare logic 2 corresponding to |=2. Note that
P ≥ Q is short for ∀s. P s ≥ Q s.

Rules Skip, Assign and If are straightforward; the 1 time unit added to the
prepotential pays for, respectively, SKIP, assignment and the evaluation of the
boolean expression. The conseq rule also looks familiar, only that −→ has been
replaced by ≥. You can think of a bigger potential implying a smaller one; also
remember that False corresponds to ∞.

For the While rule, assume one can derive that having the potential I and a
true guard b before the execution of c implies a postpotential one more than the
invariant I (the plus one is needed for the upcoming evaluation of the guard,
which incurs cost 1), then one can conclude that, starting the loop with potential
I+1 (again the plus one pays for the evaluation of the guard), the loop terminates
with a potential equal to I and the negation of the guard holds in the final state.
Although this rule resembles the While rule for partial correctness, the decreasing
potential actually also ensures termination.

Theorem 5 (Soundness of 2). 2 {P}c{Q} =⇒ |=2 {P}c{Q}
For proving completeness, we generalise the weakest precondition to the weak-

est prepotential :

wp c Q s ≡ (if ↓(c, s) then ↓T (c, s) + Q(↓S(c, s)) else ∞)
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In fact, wp is also a (weakest) prepotential w.r.t. provability:

Lemma 2. 2 {wp c Q}c{Q}
As usual, completeness follows easily from this lemma:

Theorem 6 (Completeness of 2). |=2 {P}c{Q} =⇒ 2 {P}c{Q}

Verification Condition Generator. The simpler Seq rule (compared to 1)
leads to a more compact VCG. Loops are simply annotated with invariants,
which now are potentials. No Conseq annotations are required.

Function pre C Q determines the weakest prepotential of an annotated pro-
gram C and postpotential Q. Its definition is by recursion on annotated com-
mands and refines our earlier pre on predicates.

The VCG recursively traverses the command and collects the verification
conditions at the loops (we omit the other cases of vc):

vc ({I}WHILE b DO C) Q =
I + ↑b ≥ pre C (I + 1) ∧ I + ↑(¬b) ≥ Q ∧ vc C (I + 1)

The two first conjuncts express invariant preservation and that the invariant
“implies” the postcondition when exiting the loop. Soundness of the VCG is
established by induction on the command.

Lemma 3 (Soundness of vc). If we can show the verification conditions
vc C Q and that we have at least as much potential as the needed prepoten-
tial (P ≥ pre C Q) then we can derive 2 {P}C{Q}.

Completeness of the VCG can be paraphrased like this: if we can derive
the Hoare Triple 2 {P}c{Q}, we can find an annotation for c such that the
verification conditions are true and P “implies” the prepotential.

Lemma 4 (Completeness of vc).
2 {P}c{Q} =⇒ ∃C. C = c ∧ vc C Q ∧ P ≥ pre C Q

Constant Factors. As for the Nielson system we can extend the quantita-
tive Hoare logic to reason about the order of magnitude of execution time. We
generalize our notion of validity from |=2 to |=2′ :

|=2′ {P}c{Q} ≡ ∃k > 0.∀s. P s < ∞ −→ ∃t s′.

{
(c, s) ⇒ t ⇓ s′ ∧ Q s′ < ∞ ∧
k · P s ≥ t + k · Q s′

For intuition, assume Q is zero: then the triple is valid iff the running time t is
bounded by k times the prepotential P . This amounts to O-notation.

Correspondingly we extend the set of Hoare rules 2 in Fig. 3 to 2′ by adding
the following rule:

2′ {λs. k · P s}c{λs. k · Q s} k > 0
2′ {P}c{Q} const
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For re-establishing soundness we can adapt the proof of Theorem 5 by cater-
ing for constants and adding one more case for rule const.

Theorem 7 (Soundness of 2′). 2′ {P}c{Q} =⇒ |=2′ {P}c{Q}
For the completeness proof, nothing changes. We reuse the same wp and the

proof of 2′ {wp c Q}c{Q} is identical to that of Lemma 2 because we extended
the Hoare rules, but not the command language. In particular this means that
the new const rule is not used in this proof. The same principle as in Sect. 3.1
applies: the const rule is only used once at the end when showing completeness
from 2′ {wp c Q}c{Q}:

Theorem 8 (Completeness of 2′). |=2′ {P}c{Q} =⇒ 2′ {P}c{Q}

VCG with Constants. For the VCG we add one more annotated command
Const {k} C (where k ∈ N, k > 0). It signals the application of a const rule. We
reuse the old definitions of pre and vc but add new equations for Const :

vc (Const {k} C) Q s = (vc C (λs. k · Q s) ∧ k > 0)
pre (Const {k} C) Q s = ediv (pre C (λs. k · Q s) s) k

The definition of vc (Const {k} C) Q expresses that the execution of C must
leave a potential of k ·Q instead of just Q. The definition of pre (Const {k} C) Q
expresses that we pull back a potential of k ·Q but that in the end we renormalize
the prepotential by dividing (function ediv) by k. More precisely, ediv is integer
division which rounds up for non integral results and is lifted to N∞.

The soundness and completeness proofs must only be adapted marginally,
only some algebraic lemmas about ediv are needed.

To summarize this section: we have shown how to generalize conditions to
potentials, thus obtaining a compositional Hoare logic; we have extended the
Hoare logic to big-O style reasoning and have adapted the calculus and proofs;
we also have established sound and complete VCGs for both logics.

One drawback of the quantitative Hoare logic is that it is not modular. Imag-
ine two independent programs c1 and c2 that are run one after the other. When
reasoning about a subprogram c1 we need to specify a postpotential that is then
used for the following program c2. If we change c2, resulting in a changed time
consumption, also the analysis for c1 has do be redone. What we actually would
like to do, is to reason about c1 and c2 locally and then combine them in a final
step. Separation logic addresses this issue.

3.3 Separation Logic with Time Credits

Our last logic follows the idea by Atkey [1] to use separation logic in order to
reason about the resource consumption of programs. This logic generalizes the
quantitative Hoare logic.

The principle of “local reasoning” is addressed by separation logic for disjoint
heap areas; Atkey [1] uses separation logic with time credits to reason about the
amortised execution time of (imperative) programs.
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In this section we follow his ideas and design a Hoare logic based on separation
logic. As IMP does not have a heap to reason about, but we want to compare the
logic to the two logics we already described, we treat the state of a program as a
kind of heap: a partial state ps is a map from variable names to values, dom ps
is the domain of ps, we call ps1 and ps2 disjoint (ps1⊥ps2) if their domains are,
and we can add two partial states to form their disjoint union (ps1 + ps2).

We adapt evaluation of arithmetic and boolean expressions, as well as the big-
step semantics (now denoted by ⇒p) to partial states. If all necessary variables
are in the domain of the partial state ps, these new constructs coincide with their
counterparts on (full) states. The new big-step semantics rule for assignment for
example has an additional premise. All other rules are similar.

vars a ∪ {x} ⊆ dom ps

(x := a, ps) 1=⇒p ps(x �→ [[a]]ps)
Assign

The new semantics admit a frame rule: we can always add disjoint partial states,
without affecting the computation.

Lemma 5.
(c, ps1)

t=⇒p ps′
1 ps1⊥ps2

(c, ps1 + ps2)
t=⇒p ps′

1 + ps2

In that way we treat the set of variables as resources, on which separation
logic can work. Additionally, as Atkey proposes, we add time credits as resources:
we consider configurations (ps, n) which are pairs of partial states and natural
numbers. Natural numbers, viewed as resources, are always disjoint and can be
added; thus they form a separation algebra [2]. A pair of separation algebras is
again a separation algebra. For predicates on configurations we thus have the ∗
operator from separation algebra

(P ∗ Q)(ps, n) ≡ ∃ps1 n1 ps2 n2.

{
ps = ps1 + ps2 ∧ n = n1 + n2 ∧ ps1⊥ps2 ∧
P (ps1, n1) ∧ Q(ps2, n2)

meaning that we can split up the configuration into two disjoint configurations;
one satisfying P and the other satisfying Q. Our formalization builds on an
existing Isabelle/HOL theory of separation algebras [14].

The validity of a Hoare triple is defined in the following way:

|=3 {P}c{Q} ≡ ∀ps n. P (ps, n) −→ ∃ps′ n′ t.

{
(c, ps) t=⇒p ps′ ∧
n = n′ + t ∧ Q(ps′, n′)

We can now state the Hoare rules for this logic, see Fig. 4. Note that $n
denotes the configuration of an empty partial state and n time resources, (b ↪→
B) ps is true, iff all variables in b are in the domain of ps and b evaluates to B
in ps. Updating the partial state ps with value v for x is denoted by ps(x �→ v).

Proving soundness and completeness follows the same lines as for the quan-
titative Hoare logic, only complicated by the reasoning about partial states.
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Fig. 4. Hoare logic with separation logic for reasoning about execution time

Theorem 9 (Soundness of 3). 3 {P}c{Q} =⇒ |=3 {P}c{Q}
This logic’s weakest precondition is again defined as the right-hand side of

the implication in the definition of validity:

wp c Q (ps, n) ≡ ∃ps′ n′ t. (c, s) t=⇒p ps′ ∧ n = n′ + t ∧ Q (ps′, n′)

For completeness we first show 3 {wp c Q}c{Q} by induction on the command
c, and then use the definition of validity and wp to finish the proof.

Theorem 10 (Completeness of 3). |=3 {P}c{Q} =⇒ 3 {P}c{Q}

Big-O style. Similar to last subsection’s system we extend the Hoare logic
based on Separation Logic to big-O style reasoning. We again generalize our
notion of validity (now |=3′) and add a similar const rule to obtain the Hoare
Logic 3′ . Proving soundness and completeness of this new Hoare logic follows
the same lines as in the subsection before. Similarly we come up with a simple
VCG: somewhat unorthodoxly for separation logic, we use a backwards style,
as well as we do not provide annotations for abstraction from multiplicative
constants, as one final abstraction at the outer most position suffices to ensure
completeness.

The approach inspired by Nielson to incorporate abstraction from multiplica-
tive constants directly into the Hoare Logic in order to reason about the order
of magnitude of the running time of programs shows weaknesses and seems to
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complicate matters. Our theoretical results show that it is always possible to
reason about the exact running time and abstract away multiplicative constants
in a last step.

4 Discussion

In this section we discuss the interrelations between the Hoare logics described
in the last section.

First we can compare the expressibility of the logics. Nielson logic |=1 and
the quantitative Hoare logic |=2′ , both big-O style logics, are equivalent in the
following sense:

Lemma 6. |=1 {�P �B}c{λs. �P s − Q(↓S(c, s))�N ⇓ �Q�B} =⇒ |=2′ {P}c{Q}
where �P �B s ≡ P s < ∞ and �.�N is the coercion from N∞ to N, assuming the
argument is finite.

Validity of a triple in the quantitative Hoare logic can be reduced to validity of
a transformed triple in Nielson’s logic. In the other direction this is only possible
for assertions P and Q that do not depend on the state of their logical variables:

Lemma 7. |=2′ {⇑P +e}c{⇑Q} =⇒ |=1 {P}c{e ⇓ Q} where ⇑P s ≡ (∀l.↑P l s)

The quantitative logics support amortised resource analysis. On the face of
it, Nielson’s logic does not, but Lemma 6 tells us that in theory it actually does.
However, automatic tools for resource analysis are mainly based on the potential
method, for example [5,12].

Furthermore, as the third system based on separation logic talks about partial
states, in general it cannot be simulated by any of the other systems. This can
only be done for assertions that act on complete states:

Lemma 8. |=2′ {�P �}c{�Q�} =⇒ |=3′ {P}c{Q}, when P is only true for com-
plete partial states, with �P �s ≡ infn∈N{P (�s�, n)} and �s� is the partial state
defined everywhere and returning the same results as the total state s.

On the other hand any triple in the quantitative Hoare logic |=2′ can be
embedded into the separation logic |=3′ :

Lemma 9. |=3′ {�P �}c{�Q�} =⇒ |=2′ {P}c{Q}, where �P �(ps, n) ≡ (∀s. n ≥
P �ps�s) and �ps�s is the extension of the partial state ps by the state s to a total
state.

Example. Let c be the IMP program that computes the discrete square root
by bisection:

l ::= 0 ;; r::= x + 1;; m ::= 0 ;;

(WHILE l + 1 < r DO

m ::= (l + r) / 2;;

(IF m * m < x THEN l ::= m ELSE r ::= m);;

m ::= 0)
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With the simplification that the intervals between l and r are always powers
of two, we can easily show the running time to be in the order of magnitude of
1 + log x. Note that we can get rid of multiplicative constants, but not additive
ones!

For showing 1 {λl s. (∃k.1 + s ′′x′′ = 2k)}c{λs. log(s ′′x′′) + 1 ⇓ λl s. T rue)
we provide the following annotations for the while loop: I1 = λl s. s ′′l′′ ≥
0 ∧ (∃k.s ′′r′′ − s ′′l′′ = 2k), E1 = λs. 1 + 5 · log(s ′′r′′ − s ′′l′′) and S1 = λs. s;
then we use our optimized VCG and prove the remaining proof obligations.

For showing 2′ {(λs. ↑ (∃k.1 + s ′′x′′ = 2k) + (log(s ′′x′′) + 1)}c{λ .0), we
annotate the while loop with the potential I2′ = λs. ↑ (s ′′l′′ ≥ 0 ∧ (∃k.s ′′r′′ −
s ′′l′′ = 2k)) + 5 · log(s ′′r′′ − s ′′l′′).

Let us now compare the VCGs. Our VCG for Nielson’s logic requires the
annotation of loops with invariants I, running time bounds E and the state
transformers S. In contrast, the annotations required for the VCG for the quan-
titative Hoare logic are uniformly potentials. In the above example, one can see
that this annotated potential I2′ exactly contains the same information as both
I1 and E1 in the Nielson approach. The additional 1+ in E1 is needed, as E1

describes the running time of the whole loop, where I2′ describes the running
time from after evaluating the loop guard. Only more practical experience can
tell if it is better to work with separate I, E and S or with a combined invariant
potential.

In addition our annotated commands for Nielson’s system may require anno-
tations of the form Conseq {P ′, Q, e′}, whereas for the quantitative Hoare logic
we managed to reduce this to Const {k} annotations. It would be desirable to
reduce the Conseq annotations similarly.

5 Related Work

Riis Nielson [21,22] was the first to study Hoare logics for running time analysis
of programs. She proved soundness and completeness of her systems (on paper)
which are based on a deep embedding of her assertion language. We base our
formalization on the system given in [23] where assertions are just predicates, i.e.
functions. However, our inference system differs from hers in several respects and
our mechanized proofs in Isabelle/HOL are completely independent. Moreover
we provide a VCG and prove it sound and complete.

Possibly the first example of a resource analysis logic based on potentials is
due to Hofmann and Jost [11]. The idea of generalising predicates to potentials in
order to form a “quantitative Hoare logic” we borrowed from [4]: Carbonneaux
et al. design a quantitative logic in order to reason about stack-space usage of
C programs. They also formally show soundness of their logic in Coq. They
employ their logic for reasoning about other resource bounds and use it as the
underlying logic for an automatic tool for resource bound analysis [5,6]. In a
draft version of his dissertation [3] Carbonneaux complements his tool-focused
work with a theoretical treatment of an “Invariant Logic”. The relation to our
logics of Sect. 3.2 should be studied in more detail.
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Atkey [1] proposed to use separation logic with time credits to reason about
the amortised running time of programs; he formalized his logic and its soundness
in Coq. Similar ideas were used by Hoffmann et al. [10] to prove lock-freedom
of concurrent programs, and by Charguéraud and Pottier [7] to verify the amor-
tised running time of the Union-Find data structure in Coq. Guéneau et al. [8]
recently extended their framework to also obtain O results for the running time
of programs. None of these works include verified VCGs.

There is also some related work that extends to probabilistic programs.
Kaminski et al. [13] reason about the expected running time of probabilistic
programs and show that their approach corresponds to Nielson’s logic when
restricted to deterministic algorithms. Ngo et al. [16] extend the idea of working
with potentials to reasoning about the expected running time of probabilistic
programs.

For formal treatment of program logics [17] is a good entry point. Basic
concepts as well as formalizations of Hoare logics that lay the ground for our
work can be found in [18].

6 Conclusion

In this paper we have studied three Hoare logics for reasoning about the run-
ning time of programs in a simple imperative language. We have formalized and
verified their meta theory in Isabelle/HOL.

Further investigation is required in order to simplify the VCG for Nielson’s
logic and avoid the Conseq construct while preserving completeness of the VCG.
Extending IMP with more language features is a natural next step. Adding
recursive procedures should be easy (following [17]) whereas probabilistic choice
(following [20]) is much more challenging and interesting. Not only is the meta
theory of probabilistic programs nontrivial but even very small programs can be
surprisingly hard to analyze. Although we view our work primarily as founda-
tional, we expect that it could become a viable basis for the verification of small
probabilistic programs.
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Raphaël Cauderlier and Mihaela Sighireanu(B)

IRIF, University Paris Diderot and CNRS, Paris, France
{raphael.cauderlier,mihaela.sighireanu}@irif.fr

Abstract. This paper contributes to the trend of providing fully veri-
fied container libraries. We consider an implementation of the bounded
doubly linked list container which manages the list in a fixed size, heap
allocated array. The container provides constant time methods to update
the list by adding, deleting, and changing elements, as well as cursors for
list traversal and access to elements. The library is implemented in C, but
we wrote the code and its specification by imitating the ones provided
by GNAT for the standard library of Ada 2012. The proof of functional
correctness is done using VeriFast, which provides an auto-active veri-
fication environment for Separation Logic extended with algebraic data
types. The specifications proved entail the contracts of the Ada library
and include new features. The verification method we used employs a
precise algebraic model of the data structure and we show that it facil-
itates the verification and captures entirely the library contracts. This
case study may be of interest for other verification platforms, thus we
highlight the intricate points of its proof.

1 Introduction

Standard libraries of programming languages provide efficient implementations
for common data containers. The details of these implementations are abstracted
away by generic interfaces which are specified in terms of well understood math-
ematical structures such as sets, multisets, sequences, and partial functions. The
intensive use of container libraries makes important their formal verification.

However, the functional correctness of these libraries is challenging to verify
for several reasons. Firstly, their implementation is highly optimized: it employs
complex data structures and manages the memory directly through pointers/ref-
erences or specific memory allocators. Secondly, the specification of containers is
rarely formal. Notable exceptions are, e.g., Eiffel [28] and SPARK [11]; recently,
[1] provided a specification of the Ada 2012 container library. The formal speci-
fications are very important when the library employs constructs that are out of
the scope of the underlying mathematical structure. A typical example of such
constructs are iterators. For example, Java iterators are generic and can exist
independently of the container; Ada 2012 iterators, called cursors, are part of
the container. Thirdly, the specification of the link between the low level imple-
mentation and the mathematical specification requires hybrid logics that are
c© The Author(s) 2018
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able to capture both low level and high level specifications of the container. For
verification purposes, these logics shall be supported by efficient solvers.

This work focuses on the functional verification of the bounded doubly linked
lists container, which is a GNAT implementation [12] of the doubly linked lists
container in the standard library of Ada 2012 [1]. This container is currently used
by client programs [2] written in SPARK [22], a subset of Ada targeted at safety-
and security-critical applications. The lists have bounded capacity, fixed at the
list creation, and thus avoid dynamic memory allocation during the container
use. This feature is required in critical code, where it is necessary to supply
formal guarantees on the maximal amount of memory used by the running code.

The container implementation is original compared with other implemen-
tations of linked lists inside arrays. It employs an array of fixed size in which
it manages (i) the occupied array cells inside a doubly linked list representing
the content of the container and (ii) a singly linked list of free array cells. The
operations provided are classic for lists. The amortized constant time complex-
ity is preserved by the implementation of insert and delete operations. The list
elements are designated using (bi-directional) cursors, also used to traverse the
list. In conclusion, the code of this container was designed to ensure efficiency of
operations and not its verification, and therefore it provides a realistic test for
the automated verification.

Thanks to the introduction of formal contracts in Ada 2012, the container has
been fully specified recently based on a previous specification in Why3 by Dross
et al. [11]. The specification given is “meant to facilitate the formal verification
of code using this container” [12], and it is presently used to prove the clients
written in SPARK. The container is specified in terms of a model representing
a functional implementation of bounded vectors, also written in Ada. This kind
of specification is a substitute for the algebraic data types, not supported by
Ada. It has the advantage of being executable, which enables the run-time veri-
fication of the implementation. An important feature of these contracts is their
completeness [27] with respect to the models considered for the container and
the cursors. This aspect is a challenge for the state of the art verification tools.
The formal verification of these contracts can not be done by GNATprove, the
deductive verification environment for SPARK, because the code employs lan-
guage constructs out of its scope.

The goal of our study is to apply on-the-shelf verification tools to prove
the full functional correctness and the memory safety for this implementation,
without simplifying the code or the specification. To open the case study to more
verification platforms, we choose to write this library in C, because C may capture
all the features of the container implementation, except the strong typing and the
generic types of Ada. The C implementation mimics the Ada code. The functional
specification of the C code translates the container contracts from Ada based on
(i) representation predicates that relate heap regions with algebraic models using
inductively defined predicates, (ii) algebraic lists and maps, and (iii) inductively
defined predicates and functions on the algebraic models. The logic including
these features is undecidable in general. Therefore, we have to help the prover to
obtain push button verification. The auto-active verification [20] environments
are helpful in such tasks.
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The invariant properties of the implementation and the features exhibited by
the specification guided us towards deductive verification platforms that support
Separation Logic [31] (SL) and algebraic data types. Consequently, we choose the
VeriFast [15] auto-active verification tool, which provides means for (a) the spec-
ification of representation predicates in the style introduced for SL by O’Hearn
et al. [25], (b) the definition of polymorphic algebraic data types, predicates and
functions, and (c) the definition of user lemmas to help verification. Using these
features, we employ a verification methodology based on the refinement of the
original specification. The refined specification not only captures accurately the
contracts, but also eases the deductive verification process, i.e., the writing of
lemmas. For example, we employ a style of writing representation predicates in
SL that leads to simpler lemmas for list segment composition.

To summarize, we verified the C implementation of a bounded doubly linked
list container against its functional specification. In addition, we verified the
safety of memory accesses using Separation Logic. For this, we annotated the
C code and we extended the library for algebraic polymorphic lists of VeriFast
with new predicates and lemmas. These logic development may be used in other
verification tools based on induction.

The paper begins by presenting the case study in Sect. 2. Then, we high-
light in Sect. 3 the main ingredients of the verification approach used and the
challenges we faced. Section 4 presents the experimental results. We compare
this work with other approaches for verification of containers and complex data
structures in Sect. 5.

2 Dynamic Bounded Doubly-Linked Lists

This section presents the container code and its functional specification.

2.1 Overview

Implementation: The code is written in a very simple fragment of C, which
may be easily translated to most imperative programming languages. It uses
records and pointers to records, dynamic memory allocation, classic accesses to
record fields and array elements, basic integer type and its operations. Like in the
original code, the container does not support concurrency and has been written
to obtain efficient operations and not to ease the verification. The container
elements are designated through cursors, which represent valid positions in the
list; they may be moved forward and backward in the list. The container interface
includes 30 operations including classic operations (creation, copy, size access,
clearing and deallocation, equality test, searching) and a rich set of utilities
(inserting or deleting bunches of elements at some position, searching from the
end, merging lists, swapping elements or links, reversing in place, sorting).
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Specification: The functional specification is model based [28]. Two mathematical
models are used: algebraic lists (i.e., finite sequences) to represent the content of
the list and finite partial maps to model the set of valid cursors (see Sect. 2.3 for
details). The contracts employ operations on these mathematical models that
are beyond their classic usage. For example, the test of inclusion between the set
of elements of two sequences, or the test that the domain of a partial mapping
has been truncated from a given value. For this reason, we enriched the library
of mathematical models provided by our prover with such operations and the
corresponding axiomatizations (see Sect. 3.2).

An important feature of our functional specification is the usage of a refined
abstraction for the list to ease the proof that the operations satisfy their con-
tracts. We introduce a precise model for the list, which is an algebraic list of
abstract cells, storing container values together with the links between the cells.
This precise model is mapped to the abstract model (sequence of values) using
a catamorphic mapping [35], called model. Moreover, the precise model is used
to compute the (abstract) model of cursors, based on a catamorphic mapping,
called positions. The use of the precise model facilitates the verification effort for
proving that implementations of operations satisfy their contracts (see Sect. 3.1).

The functional specification is complete in the sense given by [27]: the post-
condition of each operation uniquely defines its result and the side effect on the
model of the container and of its cursors. However, it does not check for memory
overflow at the container creation.

For the syntax of specifications, we employ in the following the specifica-
tion language of VeriFast, which extends the normalized specification language
for C, ACSL [3], with shorthand notations and operators for Separation Logic.
Therefore, we employ ‘?’ to introduce existentially quantified variables, ‘&*&’ for
both classic conjunction and the separating one, ‘|->’ for the points-to opera-
tor that defines the content (right operand) of an allocated memory cell (left
operand), and emp for the empty heap. Algebraic lists of VeriFast have type list

and are polymorphic; the operations on lists have classic names. The definition
of new logic types (and functions) is introduced by the keyword inductive (resp.
fixpoint).

2.2 List Container

List Elements: The data stored in the list container is typed by an abstract type
Element_Type, defined as an alias to the integer type in our code. This coding is
sound for the proof of the functional correctness of the container implementation
because the container assumes only that values of Element_Type may be compared
for equality.

List Cell: Also called node in the following, the list cell encapsulates the con-
tainer element together with links to the next and previous cell in the list. A
node is also an element of the array allocated for the container.

struct Node_Type { int prev; int next; Element_Type elem; };
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1 inductive pnode = pnode(int , int , Element_Type );
2 fixpoint int pprev(pnode pn) {switch(n) {case pnode(pp, pn , pe): return pp;}}
3 fixpoint int pnext(pnode pn) ...
4 fixpoint int pelem(pnode pn) ...
5

6 predicate node(struct Node_Type* n, int capacity; pnode pn) =
7 malloc_block_Node_Type(n) &*&
8 n->prev|->?iprev &*& n->next|->?inext &*&
9 n->elem|->?pelem &*&

10 inext >=0 &*& inext <= capacity &*&
11 pn== pnode(iprev , inext , pelem);
12

13 fixpoint bool is_free(pnode n) { return pprev(n)==-1; }
14 predicate free_node(struct Node_Type* n, int capacity; int inext) =
15 node(n, capacity , ?pn) &*&
16 is_free(pn)== true &*& inext== pnext(pn);
17

18 fixpoint bool is_occupied(pnode n) { return pprev(n)>=0; }
19 predicate occupied_node(struct Node_Type* n, int capacity; pnode pn) =
20 node(n, capacity , pn) &*& is_occupied(pn)== true;
21

22 predicate bdll(struct Node_Type * tab , int capacity ,
23 int iprev , int ifrom , int ilast , int ito; list <pnode > m) =
24 ifrom==ito ?
25 (iprev==ilast &*& values ==nil <pnode >)
26 : (occupied_node(tab+ifrom , capacity , ?p) &*&
27 pprev(p)== iprev &*&
28 bdll(tab , capacity , ifrom , pnext(p), ilast , ito , ?mtl) &*&
29 m==cons(p, mtl));
30

31 predicate uninit_free(struct Node_Type* tab , int capacity ,
32 int ifrom , int ito; list <int > model) =
33 ifrom==ito ? model ==nil
34 : (ifrom <ito &*& free_node(tab+ifrom , capacity , 0) &*&
35 uninit_free(tab , capacity , ifrom+1, ito , ?mtl) &*&
36 model==cons(ifrom , mtl));
37

38 predicate init_free(struct Node_Type* tab , int capacity ,
39 int ifrom , int ito; list <int > model) =
40 ifrom==ito ? model ==nil
41 : (ifrom >0 &*& free_node(tab+ifrom , capacity , ?inext) &*&
42 init_free(tab , capacity , inext , ito , ?mtl) &*&
43 model==cons(ifrom , mtl));
44

45 predicate free_nodes(struct Node_Type* tab , int cap ,
46 int free , int size; list <int > fmodel) =
47 free >=0 ? (init_free(tab , cap , free , 0, ?M) &*&
48 fmodel ==M &*& length(M)+size==cap)
49 : (uninit_free(tab , cap , abs(free), cap+1, ?M) &*&
50 fmodel ==M &*& length(M)+size==cap);
51

52 predicate list_inv(struct List* L;
53 struct Node_Type* tab , int cap ,
54 int free , list <int > free_model ,
55 int head , int last , list <pnode > m) =
56 malloc_block_List(L) &*&
57 L->nodes|->tab &*& L->capacity|->cap &*& cap > 0 &*&
58 malloc_block(tab , sizeof(struct Node_Type )*(cap +1)) &*&
59 node(tab , cap , pnode(-1,0,_)) &*&
60 L->first|->head &*& head >=0 &*& head <=cap &*&
61 L->last|->last &*& last >=0 &*&
62 bdll(tab ,cap ,0,head ,last ,0,m) &*& L->size|->length(vs) &*&
63 L->free|->free &*& free <=cap &*&
64 free_nodes(tab ,free ,length(m),cap ,free_model );

Fig. 1. Logic definitions for the BDLL container
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The values of the C type are abstracted by the ghost type pnode, defined at line
1 in Fig. 1, which records the values of node fields. The logic functions pprev,
pnext, and pelem to access first, second, resp. third component of a purenode

value.
The predicate node (line 6 in Fig. 1) relates a node n allocated in the heap

with its model pn. The allocation property is expressed by the predefined predi-
cate malloc_block_Node_Type. The values of the fields are bound to existentially
quantified variables and used to build the model of the node. The predicate node

constrains the fields prev and nxt to be indexes in an array starting at index 0
and ending at index capacity.

There are two kinds of nodes in the array managed by the container: nodes
occupied by list elements and nodes not yet used in the list, i.e., free. Free nodes
have the prev field at −1 and the elem field is irrelevant. They are specified by
the predicate free_node (line 14 in Fig. 1), which also constraints the parameter
inext to be equal to the value of the field next. Occupied nodes have the prev

field set to a non-negative integer and the elem field is relevant. The predicate
occupied_node (line 19 in Fig. 1) relates the node with its abstract model.

Acyclic Doubly Linked List: The container stores the doubly linked list (BDLL)
into an array of fixed capacity, which is given at the container creation. The
number of elements stored in the list can not exceed the container capacity. The
nodes of the BDLL are stored starting from the index 1; index 0 plays the role of
the null reference. The type of the list container is given by the following record:

struct List {

int capacity; struct Node_Type* nodes; int size;

int free; int first; int last;

};

The length of the list is given by the field size. The first and the last cells of the
lists are stored at indexes first resp. last. Field free denotes the start of the
list registering the free nodes. The operation creating the container allocates the
array nodes and sets at free all nodes in the array. The fields denoting the size
and the extreme cells of the doubly linked list are set to 0. The initialization of
the free field is detailed in the next paragraph.

The representation predicate of the BDLL formed by the occupied nodes,
bdll, is defined at line 22 in Fig. 1 as a doubly linked list segment starting by
the node at index ifrom, ending by the node at index ilast; the starting node
stores as previous node iprev, and the ending node stores as next node ito.
The predicate definition is classic in Separation Logic [24], except the bound
constraint on the node indexes (locations). If the source ifrom and target ilast

indexes are equal, the list is empty; otherwise an occupied node is present at
index ifrom and it is linked to the previous node and the remainder of the list.
Notice the use of pointer arithmetics to access the node at index ifrom. The
predicate bdll relates the heap specification with the mathematical model of the
list, i.e., the sequence of abstract nodes. We employ the polymorphic algebraic
type list available in VeriFast mathematical library and we instantiate it with
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Fig. 2. Two doubly linked lists of capacity 4 and length 2

the logic type pnode. This precise model of the list content is mapped by the
inductively defined ghost function model to the abstract model, sequence of values
of Element_type stored.

Acyclic List of Free Nodes: The free nodes are organized in a singly linked list,
called the free-list. The start of this list is given by the field free of the type
List. If free is negative, the list is built from all nodes stored between -free

and capacity included; this permits a fast initialization of the free-list at the
container creation. If free is positive, the free-list starts at index free, uses as
successor relation the next field, and ends at index 0. Figure 2 illustrates the two
kinds of free list. The representation predicate uninit_free (line 31 in Fig. 1) is
used when free is negative. It collects in the parameter model the sequence of the
indexes of free nodes. For the second case, we define the predicate init_free (line
38 in Fig. 1). The two kinds of free-list are combined in the predicate free_nodes

(line 45 of Fig. 1) that calls the correct predicate depending on the sign of free.
Notice that the constraints required by this predicates (the relation between
container capacity, BDLL and free-list sizes) are all present in the Ada 2012
specification [12].

Representation Predicate: The invariants of the container are collected in the
predicate list_inv (line 52 in Fig. 1) which mainly specifies that the container is
allocated in the heap (predefined malloc_block_List predicate), and its field tab

is also allocated as a block containing capacity +1 records of type Node_Type.
The first node of this array (at address tab) has its prev and next fields set to
−1 resp. 0. The set of remaining nodes is split between the lists specified by the
bdll and free_nodes predicates due to the separating conjunction. The size of
the BDLL is exactly the one of its model and stored in the field size.

Examples of Container Contracts: We illustrate the usage of representation pred-
icates defined above by presenting some contracts specifying container opera-
tions. For example, the contract of the constructor is:

struct List* List(int capacity );

//@ requires capacity > 0;

//@ ensures list_inv(result,?t,capacity,-1,_,0,0,?m) &*& length(model(m))=0;
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It states that the resulting container (denoted by the ghost variable result) is
a well formed but empty bounded doubly linked list (its abstract model is the
empty list) with capacity free nodes. As said before, the above contract (like in
Ada 2012 specification), does not consider the case of memory shortage.

The contract of is_equal illustrates how the catamorphism model is used to
obtain the abstract contract on the sequence of values from the precise models
(given by variables mL and mR for each list parameter):

bool is_equal(struct List* L, struct List* R);

/*@ requires list_inv(L, ?tL, ?cL, ?fL, ?fmL, ?hL, ?lL, ?mL) &*&

list_inv(R, ?tR, ?cR, ?fR, ?fmR, ?hR, ?lR, ?mR); @*/

/*@ ensures list_inv(L, tL, cL, fL, fmL, hL, lL, mL) &*&

list_inv(R, tR, cR, fR, fmR, hR, lR, mR) &*&

result == (model(mL) == model(mR)); @*/

The operation clear frees all occupied nodes. Its contract only constrains the
content of the doubly linked list and leaves unspecified the free list.

void clear(struct List* L);

//@ requires list_inv(L,?t,?c,?f,?fm,?h,?l,?m);

//@ ensures list_inv(L,t,c,?f1,?fm1,0,0,?m1) &*& length(model(m1))=0;

2.3 Cursors

Following the Ada 2012 semantics [1], “a cursor designates a particular node
within a list (...). A cursor keeps designating the same node (...) as long as the
node is part of the container, even if the node is moved in the container. [...] If [a
cursor] is not otherwise initialized, it is initialized to [...] No_Element.” Therefore,
a cursor is a record storing an array index. The special cursor No_Element is
defined as a global constant storing the index 0, indeed invalid for a list node
(recall that valid nodes are stored from index 1).

struct Cursor { int current; };

const struct Cursor No_Element = { 0 };

The logic type cursor abstracts the cursor implementation (line 1 in Fig. 3). The
representation predicate for cursors, valid_cursor_or_noelem (line 3 in Fig. 3),
checks that the cursor content, index, corresponds to an occupied node in the
list using the precise model m of the BDLL (see line 13). Moreover, the predicate
computes from m and first, the BDLL starting index, the segments before and
after, into which the cursor pc splits m.

Given a BDLL container, the model of valid cursors for this container is
defined (following Ada 2012 specification) as the finite bijection between the set
of abstract cursors and the positions (from 1 to the size) in the list. We encode
the mathematical type map by an association list, using the polymorphic type
provided in the libraries of VeriFast. The cursor model is computed by the logic
function positions (line 19 in Fig. 3) from the container model, the index of the
first node in the BDLL, and the first position in the list.
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1 inductive cursor = NoElem | Valid(int);
2

3 predicate valid_cursor_or_noelem(struct Cursor* C,
4 int index , int first , list <pnode > m;
5 cursor pc,
6 list <pnode > before , list <pnode > after) =
7 C->current|->index &*&
8 pre_valid_cursor_or_noelem(index ,first ,vs ,pc,before ,after);
9

10 predicate pre_valid_cursor_or_noelem(int index , int first , list <pnode > vs;
11 cursor pc, list <pnode > before , list <pnode > after) =
12 pc == (index == 0 ? NoElem : Valid(index)) &*&
13 index == first ?
14 (before == nil &*& after == vs) :
15 (vs != nil &*&
16 pre_valid_cursor_or_noelem(index ,pnext(head(vs)),tail(vs),pc ,?bef ,after) &*&
17 before == cons(head(vs),bef));
18

19 fixpoint list <pair <cursor , int > > positions (list <purenode > values ,
20 int index , int position) { ... }

Fig. 3. Logic definitions for cursors

Notice that this manner of specifying cursor model is coherent with the
sequence model of the container, because the access to the elements of a sequence
is based on positions. However, this specification choice does not combine well
with inductive reasoning and induces additional work for the proof (see Sect. 3).
We have to enrich the inductive list model with operations using positions. For
example, we define the operation M_Element(m,p) which returns the pth element
of the list m. We also defined operations P_Has_Key and P_Get on association lists
to test if an abstract cursor is in the domain of the map resp. to obtain the value
to which it is bound.

An example of a contract using cursors is the operation element, which
returns the value stored at the position in the list given by the cursor C:

Element_Type element(struct List* L, struct Cursor* C)

/*@ requires list_inv(L,?tab,?capacity,?free,?fm,?head,?last,?m) &*&

valid_cursor_or_noelem(C,?index,head,m,?pc,?bef,?aft) &*&

P_Has_Key(positions(m,head,1),pc)==true; @*/

/*@ ensures list_inv(L,tab,capacity,free,fm,head,last,m) &*&

valid_cursor_or_noelem(C,index,head,m,pc,bef,aft) &*&

result==M_Element(model(m),P_Get(positions(m,head,1),pc)); @*/

Contracts of functions changing the positions in the list (e.g., insert or delete)
are complete with respect to the model of cursors. For example, consider the
post-condition of operation delete_first given below, which deletes first Count

elements of the list. It uses a conditional expression (syntax like in C) to specify
two contract cases. The first case corresponds to an input container with size less
than Count. In the second case, the container preserved its content after position
Count (predicate M_Range_Shifted) and the positions of valid cursors in the new
container (of model nvs) are shifted by Count (predicate P_Positions_Shifted)
with respect to the old container.

void delete_first(struct List* L, int Count);

/*@ requires list_inv(L,?tab,?cap,?free,?fm,?head,?last,?m) &*&
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Count >= 0; @*/

/*@ ensures list_inv(L,tab,cap,?nfree,?nfm,?nhead,?nlast,?nm) &*&

length(m) <= Count ? length(nm) == 0

: length(nm) == length(m) - Count &*&

M_Range_Shifted(model(nm),model(m),1,length(nm),Count) &*&

P_Positions_Shifted(positions(nm,nhead,1),

positions(m,head,1),1,Count); @*/

3 Verification Approach

We employ an auto-active verification approach [20], supported by the tool Veri-
Fast [15]. The auto-active approach provides more automation of the verification
process based on the ability given to the user to help the prover by adding anno-
tations and lemmas and the efficient use of back-end solvers. This section high-
lights the methodology applied to conduct auto-active verification for this case
study. This methodology is independent of the specific tool used. We also com-
ment on the advantages and difficulties encountered with the tool used. Notice
that we did not have prior experience with VeriFast.

3.1 Model-Based Specification for Verification

The contracts provided for our container are in a first order logic over sequences
and maps, which employs recursive logic functions. This theory is undecidable
so we have to provide lemma to help the prover to tackle verification conditions.

Usage of a precise model is the solution we found to ease the writing of lemmas.
It consists in refining the abstract model used for the container specification
into a model that captures more details on the container organization. The
abstract model is obtained from the refined one using a catamorphic mapping.
This methodology is required by the gap between the abstract model and the
lower level implementation of the container.

Let us explain why this methodology leads to efficient verification in our case.
Consider the specification where (i) the model for the container is the sequence
of the values stored and (ii) the model for the cursors is the mapping of occupied
nodes to list positions. To capture these models with the representation predicate
for the heap, i.e., the predicate bdll defined at line 22 in Fig. 1, we have to
replace the model m by the sequence of values vs and the map of cursors mc. The
verification of iterative operations on the list requires to provide a lemma that
allows to compose “well linked” list segments into a new list segment, i.e.,

lemma void bdll_concat(struct Node_Type * t,

int p, int f, int l1, int n1, int l, int n)

requires bdll(t,?c,p,f,l1,n1 ,?vs1 ,?mc1) &*&

bdll(t,c,l1,n1,l,n,?vs2 ,?mc2) &*& node(t+n, c, ?pn);

ensures bdll(t,c,p,f,l,n,append(vs1 ,vs2),

append_maps(mc1 ,mc2)) &*& node(t+n, c, pn);

{ ... }
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This lemma employs an operation append_maps, that concatenates two models
of counters mc1 and mc2 such that the positions associated with counters in mc1

are shifted by the size of the domain of mc1. This operation is more difficult
to axiomatize than list concatenation. Moreover, all invariant proofs require to
keep together the two loosely related models (sequence and map) which leads to
less modular proofs. Our solution to this problem is to employ the precise model
of the list segment represented by the bdll predicate, as has been presented in
Sect. 2.2. The composition lemma for bdll predicate is simpler because it avoids
the reasoning on the model of cursors.

The catamorphism mappings used to obtain the abstract model of the con-
tainer and the model of valid cursors have good inductive definitions and enable
efficient decision procedures [35]. However, these decision procedures are not
available in our verification tool; this work may be a motivation to add them.

Specification of user types by representation predicates mapping them to induc-
tive types is classical in Separation Logic. We encode the invariant of the BDLL
data structure in the predicate list_inv. The adoption of C for the implementa-
tion keeps us away from the problems of verifying object-related properties, for
example. However, this choice leads to an overburden in annotations because we
have to specify that parameters of type ‘struct List*’ satisfy the invariant.

Additional annotation have been supplied to axiomatize global constants (like
the No_Element record in Fig. 1) and arrays of user-defined structures (like nodes

in List).

Contract cases are intensively used in the considered GNAT library. We got
around the absence of contract cases in VeriFast using conditional expressions
and logic predicate and functions that relate two models (old and new). We
do not observe any expressivity or performance problems with this method of
encoding contracts.

3.2 Support for Specification Types

Specification of model types is done based on the mathematical models sequence
(or inductive polymorphic list) and map (or inductive polymorphic association
list). The VeriFast libraries including these models (mainly list.*) contain 9
predicates and 20 lemmas, and are not enough for the operations on models
required in our specifications. We added tens of lemma and predicates. They
are useful not only for the container proof but also for the verification of client
programs with inductive back-end solvers. (Nowadays, these proofs are done by
GNATprove by calling SMT solvers with quantifiers support.)

More problematic was the lack of support for finite maps and automation of
inductive reasoning. VeriFast does not provide sets and finite maps as primitives.
The encoding of cursor models by association lists renders more complex the
lemmas needed on cursor models. For example, the map inclusion property is
defined as follows:
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1 predicate P_le <t>(list <pair <t,int > > Left , list <pair <t,int > > Right) =
2 switch(Left) {
3 case nil: return true;
4 case cons(p, m):
5 return P_Has_Key(Right , fst(p)) == true &*&
6 snd(p) == P_Get(Right , fst(p)) &*&
7 P_le(m, Right);
8 };

This definition is not as easy to reason about as we might expect. In partic-
ular, some properties of this definition of inclusion such as reflexivity are only
provable under the additional assumption that the keys are distinct.

We proved that the models of cursors fulfill the constraint distinct_keys

(defined also in VeriFast libraries) because keys are index positions in the array
used to denote separated cells.
1 lemma void positions_distinct_keys(int index , list <purenode > m, int pos)

2 requires bdll(?tab , ?cap , ?fst , index , ?last , ?z, m) &*& node(tab+z, cap , ?tab0);

3 ensures bdll(tab , cap , fst , index , last , z, m) &*& node(tab+z, cap , tab0) &*&

4 distinct_keys(positions(m, index , pos)) == true;

Notice that these proofs are not necessary for provers with support for finite
maps and sets. Although VeriFast supports as back-end solver Z3 [9], it does not
use it for such theories. The inductive theories are supported by other back-end
solvers, e.g., CVC4 [30] that are not connected to VeriFast.

3.3 Annotations Load

The annotations required by the proof of our library belong to two categories: (1)
mandatory annotations including function contracts and predicates employed by
these contracts and (2) auxiliary annotations including loop invariants, open/-
close of predicates, definitions and calls of lemmas.

The prover VeriFast includes all this annotation burden, since we can not
direct the prover in the usage of these annotations. VeriFast provides two mech-
anisms to limit the burden of the auxiliary annotations: (i) lemmas can be
marked as automated which means they will be given to the backend solver
on all problems, (ii) inductive predicate definitions can be automatically folded
and unfolded when used with computed parameters.

We introduce few automated lemmas and call them in order to lighten the
prover load. We don’t observe performance problems by including all these anno-
tations and despite the absence of modular proofs. The frame reasoning rule of
Separation Logic seems to play an important role in this good behavior.

We found useful the two ways of specifying inductive predicates in VeriFast:
by case on the model or by case over the aliasing of heap locations. We started
with the first style, but finally chose the second to bring advantages of automatic
folding and unfolding of computed predicates.
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3.4 Challenges Dealt

To resume, we faced the following challenges during the verification process:

– We considered a functional specification which is already in use in client
code. Therefore, we can not adapt this specification to ease the verification.
Instead, we propose a method based on a refined specification based on a
precise model of the container that eases the verification and allows to obtain
the initial specification with minimal cost.

– The specification we received is complete with respect to the model of con-
tainers and cursors. This requires to specify logic functions and predicates
that are more complex than the usual ones.

– The code has been designed to obtain efficient container implementation and
does not focus on verification. Therefore, the verification task has been more
difficult compared with previous work verifying functional specification of
container libraries [28,39] designed with verification in mind.

– Only specifications of contracts for public operations on the container were
provided. We had to annotate the code and the internal operations. This
implied an additional cost in annotations because some internal operations
break the data structure invariants.

– Having in mind the extension of this verification effort to other bounded
container libraries (for sets or maps), we propose reusable logic libraries and
suggest some improvements for the auto-active verification tool in use.

4 Verification Results

Bugs Found: We did not find spectacular bugs in the code, which is normal for
a library that has been used for years. We only detected a potential arithmetic
overflow in the computation of the memory to be allocated and a potential
memory shortage. The last problem is in fact dealt for the SPARK clients using
tools that measure the memory allocated by the program.

Complete Specifications: We also fix some minor completeness problems with
the original specifications. Our verification effort leads to a complete functional
specifications for all operations, including non public operations.

Table 1. Statistics on the proof

File #pred #fix-points #lemma lines

annot code

vflist.gh 2 8 9 234 –

vfseq.gh 14 10 34 482 –

vfmap.gh 13 9 64 1251 –

cfdlli.h 4 10 0 407 36

cfdlli.c 14 5 64 2684 506

Total 47 42 171 5058 542

Specification Load: We have coded,
specified, and verified 27 functions
out of the 39 provided by the
container library including equality
and emptiness tests, clear, assign
and copy, getting and setting one
element, manipulating the cursors,
inserting and deleting at some cur-
sor, finding an element before and
after a cursor. Most of the 12
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remaining functions deal with sorting. The size of our development is given
in Table 1. To obtain a specification close to the Ada 2012 one, we wrote two
files of logic definitions for models (vfseq.gh and vfmap.gh) extending the Ver-
iFast libraries. Additional fixpoint functions and lemmas required on VeriFast
lists are written in file vflist.gh. The rate between source code and annota-
tions is about 1 to 9. The required annotations (i.e., data structure invariant,
pre/post conditions, and logic predicate and function used directly in them) rep-
resent a quarter of all annotations (including also loop invariants and lemmas).
In Ada 2012 container, the rate between source code and contracts is already of
about 1 to 3.

Verification Performance: We run VeriFast on a machine with 16 GB RAM, Intel
core i5, and 2.70 GHz, installed with Linux. The back-end solver of VeriFast was
redux. The verification takes 1.3 s for the full container.

5 Related Work

The verification of individual data structures has received special attention. Gen-
eral safety properties (i.e., absence of out of array bounds accesses, null deref-
erences, division by zero, arithmetic overflow) may be verified automatically
with low load of annotations using static analysis methods, e.g. [13,17,19,21].
More complex properties like reachability of locations in the heap and shape of
the data structures could also be proved with static analysis methods based on
shape analysis, e.g., [4,6,10,32]. These automatic techniques have been applied
to linked lists coded in arrays [34]. These methods concern limited properties
and may be used in the early stages of the library development to infer internal
invariant properties. Extension of fully automatic techniques to cover functional
specification abstractions like sets or bags are based either on shape analysis, e.g.,
[7,14] or on logic fragments supported by SMT decision procedures [16,18,37,38].
These functional specifications capture essential mathematical properties of the
data structure but do not deal with properties of iterators over them.

At the opposite end of the spectrum of verification techniques, interactive
provers have been used to obtain detailed specifications about data structures
based on powerful theories, e.g., [8,23,29], but they require expertise and great
amount of proof scripting.

At the intermediate level of automation, functional verification tools have
been used to tackle the verification of specific data structures (e.g., Dafny [33],
GRASShoper [26], VeriFast [15], or Why3 [36]) but we are not aware of any
experiment on bounded lists.

The full functional correctness of container libraries has been considered
in [28,39]. They consider complex data structures in imperative and object ori-
ented languages that require to verify special properties and may benefit from
modular verification thanks to inheritance. In both cited works, a special effort
has been deployed to improve the prover to call solvers for different theories or to
generate verification conditions that may be dealt with efficiently. This efforts
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lead to a low annotation overhead, especially in [28]. We use an on-the-shelf
auto-active verification tool but improve its performances by employing a refine-
ment method which leads to more automation but a more important annotation
overhead. None of these works consider the container of bounded list.

6 Conclusion

We apply auto-active verification provided by the VeriFast tool to prove the
functional specifications of the bounded doubly linked list container. The imple-
mentation we consider is in C, but it mimics the GNAT library [12], which is used
in SPARK client programs. The functional specification is model-based and uses
sequence and map mathematical models in a specific way to model the content
of the list and its valid cursors. Our main contributions are (i) the improvement
of the logic libraries of VeriFast to deal with such specific models and (ii) the
use of a refinement based methodology to ease the proof automation.

This case study provides a motivation for the development of inductive solvers
and their connection with auto-active provers like VeriFast. This experiment
is another demonstration of the known fact (see [28]) that proving functional
specifications of real world containers is more difficult than proving functional
specification of data structures. The support for automation of these proofs is
of an utmost importance to scale the verification to a full library of containers.
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Abstract. Writing correct programs for weak memory models such as
the C11 memory model is challenging because of the weak consistency
guarantees these models provide. The first program logics for the veri-
fication of such programs have recently been proposed, but their usage
has been limited thus far to manual proofs. Automating proofs in these
logics via first-order solvers is non-trivial, due to features such as higher-
order assertions, modalities and rich permission resources.

In this paper, we provide the first encoding of a weak memory program
logic using existing deductive verification tools. Our work enables, for the
first time, the (unbounded) verification of C11 programs at the level of
abstraction provided by the program logics; the only necessary user inter-
action is in the form of specifications written in the program logic.

We tackle three recent program logics: Relaxed Separation Logic
and two forms of Fenced Separation Logic, and show how these can
be encoded using the Viper verification infrastructure. In doing so, we
illustrate several novel encoding techniques which could be employed
for other logics. Our work is implemented, and has been evaluated on
examples from existing papers as well as the Facebook open-source Folly
library.

1 Introduction

Reasoning about programs running on weak memory is challenging because weak
memory models admit executions that are not sequentially consistent, that is,
cannot be explained by a sequential interleaving of concurrent threads. Moreover,
weak-memory programs employ a range of operations to access memory, which
require dedicated reasoning techniques. These operations include fences as well
as read and write accesses with varying degrees of synchronisation.

Some of these challenges are addressed by the first program logics for weak-
memory programs, in particular, Relaxed Separation Logic (RSL) [38], GPS [36],
Fenced Separation Logic (FSL) [17], and FSL++ [18]. These logics apply to
interesting classes of C11 programs, but their tool support has been limited to
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Fig. 1. Syntax for memory accesses. na indicates a non-atomic operation; τ indicates
an atomic access mode (as defined in C11), discussed in later sections. ρ, and asser-
tions A and invariants Q are program annotations, needed as input for our encoding.
Expressions e include boolean and arithmetic operations, but no heap accesses. We
assume that source programs are type-checked.

embeddings in Coq. Verification based on these embeddings requires substantial
user interaction, which is an obstacle to applying and evaluating these logics.

In this paper, we present a novel approach to automating deductive verifica-
tion for weak memory programs. We encode large fractions of RSL, FSL, and
FSL++ (collectively referred to as the RSL logics) into the intermediate veri-
fication language Viper [27], and use the existing Viper verification backends
to reason automatically about the encoded programs. This encoding reduces all
concurrency and weak-memory features as well as logical features such as higher-
order assertions and custom modalities to a much simpler sequential logic.

Defining an encoding into Viper is much more lightweight than developing a
dedicated verifier from scratch, since we can reuse the existing automation for a
variety of advanced program reasoning features. Compared to an embedding into
an interactive theorem prover such as Coq, our approach leads to a significantly
higher degree of automation than that typically achieved through tactics. More-
over, it allows users to interact with the verifier on the abstraction level of source
code and annotations, without exposing the underlying formalism. Verification
in Coq can provide foundational guarantees, whereas in our approach, errors
in the encoding or bugs in the verifier could potentially invalidate verification
results. We mitigate the former risk by a soundness argument for our encoding
and the latter by the use of a mature verification system. We are convinced that
both approaches are necessary: foundational verification is ideal for meta-theory
development and application areas such as safety-critical systems, whereas our
approach is well-suited for prototyping and evaluating logics, and for making a
verification technique applicable by a wider user base.

The contributions of this paper are: (1) The first automated deductive veri-
fication approach for weak-memory logics. We demonstrate the effectiveness of
this approach on examples from the literature, which are available online [3].
(2) An encoding of large fractions of RSL, FSL, and FSL++ into Viper. Vari-
ous aspects of this encoding (such as the treatment of higher-order features and
modalities, as well as the overall proof search strategy) are generic and can be
reused to encode other advanced separation logics. (3) A prototype implementa-
tion, which is available online [4].

Related Work. The existing weak-memory logics RSL [38], GPS [36], FSL [17],
and FSL++ [18] have been formalized in Coq and used to verify small examples.
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Fig. 2. Assertion syntax of the RSL logics. The top row of constructs are standard for
separation logics; those in the second row are specific to the RSL logics, and explained
throughout the paper. Invariants Q are functions from values to assertions (cf. Sect. 3).

The proofs were constructed mostly manually, whereas our approach automates
most of the proof steps. As shown in our evaluation, our approach reduces the
overhead by more than an order of magnitude. The degree of automation in
Coq could be increased through logic-specific tactics (e.g. [13,32]), whereas our
approach benefits from Viper’s automation for the intermediate language, which
is independent of the encoded logic.

Jacobs [20] proposed a program logic for the TSO memory model that has
been encoded in VeriFast [21]. This encoding requires a substantial amount of
annotations, whereas our approach provides a higher degree of automation and
handles the more complex C11 memory model.

Weak-memory reasoning has been addressed using techniques based on
model-checking (e.g. [5,6,11]) and static analyses (e.g. [7,16]). These approaches
are fully automatic, but do not analyse code modularly, which is e.g. impor-
tant for verifying libraries independently from their clients. Deductive verifica-
tion enables compositional proofs by requiring specifications at function bound-
aries. Such specifications can express precise information about the (unbounded)
behaviour of a program’s constituent parts.

Automating logics via encodings into intermediate verification languages is a
proven approach, as witnessed by the many existing verifiers (e.g. [14,15,24,25])
which target Boogie [8] or Why3 [9]. Our work is the first that applies this app-
roach to logics for weak-memory concurrency. Our encoding benefits from Viper’s
native support for separation-logic-style reasoning and several advanced features
such as quantified permissions and permission introspection [26,27], which are
not available in other intermediate verification languages.

Outline. The next four sections present our encoding for the core features
of the C11 memory model: we discuss non-atomic locations in Sect. 2, release-
acquire accesses in Sect. 3, fences in Sect. 4, and compare-and-swap in Sect. 5.
We discuss soundness and completeness of our encoding in Sect. 6 and evaluate
our approach in Sect. 7. Section 8 concludes. Further details of our encoding and
examples are available in our accompanying technical report (hereafter, TR) [35].
A prototype implementation of our encoding (with all examples) is available as
an artifact [4].

2 Non-atomic Locations

We present our encoding for a small imperative programming language simi-
lar to the languages supported by the RSL logics. C11 supports non-atomic
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Fig. 3. Adapted RSL rules for non-atomics. Read access requires a non-zero permission.
Write access requires either write permission or that the location is uninitialised. The
underscore _ stands for an arbitrary value.

memory accesses and different forms of atomic accesses. The access operations
are summarised in Fig. 1. We adopt the common simplifying assumption [36,38]
that memory locations are partitioned into those accessed only via non-atomic
accesses (non-atomic locations), and those accessed only via C11 atomics (atomic
locations). Read and write statements are parameterised by a mode σ, which is
either na (non-atomic) or one of the atomic access modes τ . We focus on non-
atomic accesses in this section and discuss atomics in subsequent sections.

RSL Proof Rules. Non-atomic memory accesses come with no synchronisa-
tion guarantees; programmers need to ensure that all accesses to non-atomic
locations are data-race free. The RSL logics enforce this requirement using stan-
dard separation logic [28,31]. We show the syntax of assertions in Fig. 2, which
will be explained throughout the paper. A points-to assertion l

k�→ e denotes a
transferable resource, providing permission to access the location l, and express-
ing that l has been initialised and its current value is e. Here, k is a fraction
0 < k ≤ 1; k = 1 denotes the full (or exclusive) permission to read and write
location l, whereas 0 < k < 1 provides (non-exclusive) read access [12]. Points-
to resources can be split and recombined, but never duplicated or forged; when
transferring such a resource to another thread it is removed from the current
one, avoiding data races by construction. The RSL assertion Uninit(l) expresses
exclusive access to a location l that has been allocated, but not yet initialised;
l may be written to but not read from. The main proof rules for non-atomic
locations, adapted from RSL [38], are shown in Fig. 3.

Encoding. The Viper intermediate verification language [27] supports an asser-
tion language based on Implicit Dynamic Frames [33], a program logic related
to separation logic [29], but which separates permissions from value information.
Viper is object-based; the only memory locations are field locations e.f (in which
e is a reference, and f a field name). Permissions to access these heap locations
are described by accessibility predicates of the form , where k is a
fraction as for points-to predicates above (k defaults to 1). Assertions that do
not contain accessibility predicates are called pure. Unlike in separation logics,
heap locations may be read in pure assertions.

We model C-like memory locations l using a field val of a Viper reference l.
Consequently, a separation logic assertion l

k�→ e is represented in Viper as
We assume that memory locations have type int,
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Fig. 4. Viper encoding of the RSL assertions and the rules for non-atomic memory
accesses from Fig. 3.

but a generalisation is trivial. Viper’s conjunction && treats permissions like a
separating conjunction, requiring the sum of the permissions in each conjunct,
and acts as logical conjunction for pure assertions (just as ∗ in separation logic).

Viper provides two key statements for encoding proof rules: inhale A adds
the permissions denoted by the assertion A to the current state, and assumes
pure assertions in A. This can be used to model gaining new resources, e.g.,
acquiring a lock in the source program. Dually, exhale A checks that the cur-
rent state satisfies A (otherwise a verification error occurs), and removes the
permissions that A denotes; the values of any locations to which no permission
remains are havoced (assigned arbitrary values). For example, when forking a
new thread, its precondition is exhaled to transfer the necessary resources from
the forking thread. Inhale and exhale statements can be seen as the permission-
aware analogues of the assume and assert statements of first-order verification
languages [25].

The encoding of the rules for non-atomics from Fig. 3 is presented in Fig. 4.
��A�� � . . . denotes the encoding of an RSL assertion A as a Viper assertion,
and analogously [[s]] � . . . for source-level statements s.

The first two lines show background declarations. The assertion encodings
follow the explanations above. Allocation is modelled by obtaining a fresh refer-
ence (via new()) and inhaling permissions to its val and init fields; assuming

reflects that the location is not yet initialised. Viper implicitly checks the
necessary permissions for field accesses (verification fails otherwise). Hence, the
translation of a non-atomic read only needs to check that the read location is ini-
tialised before obtaining its value. Analogously, the translation of a non-atomic
write only stores the value and records that the location is now initialised.

Note that Viper’s implicit permission checks are both necessary and sufficient
to encode the RSL rules in Fig. 3. In particular, the assertions l

1�→ _ and Uninit(l)
both provide the permissions to write to location l. By including acc(l.val) in
the encoding of both assertions, we avoid the disjunction of the RSL rule.

Like the RSL logics, our approach requires programmers to annotate their
code with access modes for locations (as part of the alloc statement), and spec-
ifications such as pre and postconditions for methods and threads. Given these
inputs, Viper constructs the proof automatically. In particular, it automatically
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Fig. 5. An example illustrating “message passing” of non-atomic ownership, using
release acquire atomics (inspired by an example from [17]). Annotations are shown in
blue. This example corresponds to RelAcqDblMsgPassSplit in our evaluation (Sect. 7).

proves entailments, and splits and combines fractional permissions (hence, the
equivalence in Fig. 3 need not be encoded). Automation can be increased fur-
ther by inferring some of the required assertions, but this is orthogonal to the
encoding presented in this paper.

3 Release-Acquire Atomics

The simplest form of C11 atomic memory accesses are release write and acquire
read operations. They can be used to synchronise the transfer of ownership of
(and information about) other, non-atomic locations, using a message passing
idiom, illustrated by the example in Fig. 5. This program allocates two non-
atomic locations a and b, and an atomic location l (initialised to 0), which is
used to synchronise the three threads that are spawned afterwards. The middle
thread makes changes to the non-atomics a and b, and then signals completion
via a release write of 1 to l; conceptually, it gives up ownership of the non-atomic
locations via this signal. The other threads loop attempting to acquire-read a
non-zero value from l. Once they do, they each gain ownership of one non-atomic
location via the acquire read of 1 and access that location. The release write and
acquire reads of value 1 enforce ordering constraints on the non-atomic accesses,
preventing the left and right threads from racing with the middle one.

RSL Proof Rules. The RSL logics capture message-passing idioms by associ-
ating a location invariant Q with each atomic location. Such an invariant is a
function from values to assertions; we represent such functions as assertions with
a distinguished variable symbol V as parameter. Location invariants prescribe
the intended ownership that a thread obtains when performing an acquire read
of value V from the location, and that must correspondingly be given up by a
thread performing a release write. The main proof rules [38] are shown in Fig. 6.

When allocating an atomic location for release/acquire accesses (first proof
rule), a location invariant Q must be chosen (as an annotation on the alloca-
tion). The assertions Rel(l, Q) and Acq(l, Q) record the invariant to be used
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Fig. 6. Adapted RSL rules for release-acquire atomics.

with subsequent release writes and acquire reads. To perform a release write of
value e (second rule), a thread must hold the Rel(l, Q) assertion and give up the
assertion Q[e/V]. For example, the line [l]rel := 1 in Fig. 5 causes the middle
thread to give up ownership of both non-atomic locations a and b. The assertion
Init(l) represents that atomic location l is initialised; both Init(l) and Rel(l, Q)
are duplicable assertions; once obtained, they can be passed to multiple threads.

Multiple acquire reads might read the value written by a single release
write operation; RSL prevents ownership of the transferred resources from being
obtained (unsoundly) by multiple readers in two ways. First, Acq(l, Q) asser-
tions cannot be duplicated, only split by partitioning the invariant Q into dis-
joint parts. For example, in Fig. 5, Acq(l, Q1) is given to the left thread, and
Acq(l, Q2) to the right. Second, the rule for acquire reads adjusts the invariant
in the Acq assertion such that subsequent reads of the same value will not obtain
any ownership.

Encoding. A key challenge for encoding the above proof rules is that Rel
and Acq are parameterised by the invariant Q; higher-order assertions are not
directly supported in Viper. However, for a given program, only finitely many
such parameterisations will be required, which allows us to apply defunctionali-
sation [30], as follows. Given an annotated program, we assign a unique index to
each syntactically-occurring invariant Q (in particular, in allocation statements,
and as parameters to Rel and Acq assertions in specifications). Furthermore, we
assign unique indices to all immediate conjuncts of these invariants. We write
indices for the set of indices used. For each i in indices, we write inv(i) for the
invariant which i indexes. For an invariant Q, we write 〈Q〉 for its index, and
〈〈Q〉〉 for the set of indices assigned to its immediate conjuncts.

Our encoding of the RSL rules from Fig. 6 is summarised in Fig. 7. To encode
duplicable assertions such as Init(l), we make use of Viper’s wildcard permis-
sions [27], which represent unknown positive permission amounts. When exhaled,
these amounts are chosen such that the amount exhaled will be strictly smaller
than the amount held (verification fails if no permission is held) [19]. So after
inhaling an Init(l) assertion (that is, a wildcard permission), it is possible to
exhale two wildcard permissions, corresponding to two Init(l) assertions. Note
that for atomic locations, we only use the init field’s permissions, not its value.
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Fig. 7. Viper encoding of the RSL rules for release-acquire atomics from Fig. 6. The
operations in italics (e.g. foreach) are expanded statically in our encoding into con-
junctions or statement sequences. The value of the acq field will be explained in Sect. 5.

We represent a Rel(l, _) assertion for some invariant via a wildcard permis-
sion to a rel field; this is represented via the SomeRel(l) macro1, and is used as
the precondition for a release write (we must hold some Rel assertion, according
to Fig. 6). The specific invariant associated with the location l is represented by
storing its index as the value of the rel field; when encoding a release write, we
branch on this value to exhale the appropriate assertion.

Analogously to Rel, we represent an Acq assertion for some invariant using
a wildcard permission (the SomeAcq macro), which is the precondition for exe-
cuting an acquire read. However, to support splitting, we represent the invari-
ant in a more fine-grained way, by recording individual conjuncts separately.
Each conjunct i of the invariant is modelled as an abstract predicate instance

, which can be inhaled and exhaled individually. This encoding
handles the common case that invariants are split along top-level conjuncts, as

1 Viper macros can be defined for assertions or statements, and are syntactically
expanded (and their arguments substituted) on use.
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in Fig. 5. More complex splits can be supported through additional annotations:
see App. C of the TR [35].

A release write is encoded by checking that some Rel assertion is held, and
then exhaling the associated invariant for the value written. Moreover, it records
that the location is initialised. The RSL rule for acquire reads adjusts the Acq
invariant by obliterating the assertion for the value read. Instead of directly
representing the adjusted invariant (which would complicate our numbering
scheme), we track the set of values read as state in our encoding. We comple-
ment each AcqConjunct predicate instance with an (uninterpreted) Viper func-
tion , returning a set of indices2).

An acquire read checks that the location is initialised and that we have
some Acq assertion for the location. It assigns an unknown value to the lhs
variable x, which is subsequently constrained by the invariant associated with
the Acq assertion as follows: We check for each index whether we both currently
hold an AcqConjunct predicate for that index3, and if so, have not previously
read the value x from that conjunct of our invariant. If these checks succeed, we
inhale the indexed invariant for x, and then include x in the values read.

The encoding presented so far allows us to automatically verify annotated
C11 programs using release writes and acquire reads (e.g., the program of Fig. 5)
without any custom proof strategies [3]. In particular, we can support the higher-
order Acq and Rel assertions through defunctionalisation and enable the splitting
of invariants through a suitable representation.

4 Relaxed Memory Accesses and Fences

In contrast to release-acquire accesses, C11’s relaxed atomic accesses provide
no synchronisation: threads may observe reorderings of relaxed accesses and
other memory operations. Correspondingly, RSL’s proof rules for relaxed atom-
ics provide weak guarantees, and do not support ownership transfer. Memory
fence instructions can eliminate this problem. Intuitively, a release fence together
with a subsequent relaxed write allows a thread to transfer away ownership of
resources, similarly to a release write. Dually, an acquire fence together with a
prior relaxed read allows a thread to obtain ownership of resources, similarly to
an acquire read. This reasoning is justified by the ordering guarantees of the C11
model [17].

FSL Proof Rules. FSL and FSL++ provide proof rules for fences (see Fig. 8).
They use modalities 
 (“up”) and � (“down”) to represent resources that are
transferred through relaxed accesses and fences. An assertion 
A represents a
resource A which has been prepared, via a release fence, to be transferred by a
relaxed write operation; dually, �A represents resources A obtained via a relaxed

2 Viper’s heap-dependent functions are mathematical functions of their parameters
and the resources stated in their preconditions (here, ) [27,34].

3 A perm expression yields the permission fraction held for a field or predicate instance.
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Fig. 8. Adapted FSL rules for relaxed atomics and fences.

Fig. 9. A variant of the message-passing example of Fig. 5, combining relaxed memory
accesses and fences to achieve ownership transfer. The example is also a variant of
Fig. 2 of the FSL paper [17], which is included in our evaluation (FencesDblMsgPass)
in Sect. 7.

read, which may not be made use of until an acquire fence is encountered. The
proof rule for relaxed write is identical to that for a release write (cf. Fig. 6),
except that the assertion to be transferred away must be under the 
 modality;
this can be achieved by the rule for release fences. The rule for a relaxed read is
the same as that for acquire reads, except that the gained assertion is under the �
modality. The modality can be removed by a subsequent acquire fence. Finally,
assertions may be rewritten under modalities, and both modalities distribute
over all other logical connectives.

Figure 9 shows an example program, which is a variant of the message-passing
example from Fig. 5. Comparing the left-hand one of the three parallel threads,
a relaxed read is used in the spin loop; after the loop, this thread will hold the
assertion �a

1�→ 42. The subsequent fenceacq statement allows the modality
to be removed, allowing the non-atomic location a to be accessed. Dually, the
middle thread employs a fencerel statement to place the ownership of the non-
atomic locations under the 
 modality, in preparation for the relaxed write to l.

Encoding. The main challenge in encoding the FSL rules for fences is how
to represent the two new modalities. Since these modalities guard assertions
which cannot be currently used or combined with modality-free assertions, we
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Fig. 10. Viper encoding of the FSL rules for relaxed atomics and memory fences from
Fig. 8. We omit triggers for the quantifiers for simplicity, but see [3].

model them using two additional heaps to represent the assertions under each
modality. The program heap (along with associated permissions) is a built-
in notion in Viper, and so we cannot directly employ three heaps. There-
fore, we construct the additional “up” and “down” heaps, by axiomatising
bijective mappings up and down between a real program reference and its
counterparts in these heaps. That is, technically our encoding represents each
source location through three references in Viper’s heap (rather than one ref-
erence in three heaps). Assertions 
A are then represented by replacing all
references r in the encoded assertion A with their counterpart up(r). We
write �Aup for the transformation which performs this replacement. For exam-
ple, �acc(x.val) && x.val == 4up � acc(up(x).val) && up(x).val == 4. We
write �Adown for the analogous transformation for the down function.

The extension of our encoding is shown in Fig. 10. We employ a Viper domain
to introduce and axiomatise the mathematical functions for our up and down
mappings. By axiomatising inverses for these mappings, we guarantee bijectivity.
Bijectivity allows Viper to conclude that (dis)equalities and other information
is preserved under these mappings. Consequently, we do not have to explicitly
encode the last two rules of Fig. 8; they are reduced to standard assertion manip-
ulations in our encoding. An additional heap function labels references with an
integer identifying the heap to which they belong (0 for real references, -1 and
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1 for their “down” and “up” counterparts); this labelling provides the verifiers
with the (important) information that these notional heaps are disjoint.

Our handling of relaxed reads and writes is almost identical to that of acquire
reads and release writes in Fig. 7; this similarity comes from the proof rules, which
only require that the modalities be inserted for the invariant. Our encoding for
release fences requires an annotation in the source program to indicate which
assertion to prepare for release by placing it under the 
 modality.

Our encoding for acquire fences does not require any annotations. Any asser-
tion under the � modality can (and should) be converted to its corresponding
version without the modality because �A is strictly less-useful than A itself. To
encode this conversion, we find all permissions currently held in the down heap,
and transfer these permissions and the values of the corresponding locations over
to the real heap. These steps are encoded for each field and predicate separately;
Fig. 10 shows the steps for the val field. We first define a set rs to be precisely
the set of all references r to which some permission to down(r).val is currently
held, i.e., perm(down(r).val) > none. For each such reference, we inhale exactly
the same amount of permission to the corresponding r.val location, equate the
heap values, and then remove the permission to the down locations.

With our encoding based on multiple heaps, reasoning about assertions under
modalities inherits all of Viper’s native automation for permission and heap
reasoning. We will reuse this idea for a different purpose in the following section.

5 Compare and Swap

C11 includes atomic read-modify-write operations, commonly used to implement
high-level synchronisation primitives such as locks. FSL++ [18] provides proof
rules for compare-and-swap (CAS) operations. An atomic compare and swap
CASτ (l, e, e′) reads and returns the value of location l; if the value read is equal
to e, it also writes the value e′ (otherwise we say that the CAS fails).
FSL++ Proof Rules. FSL++ provides an assertion RMWAcq(l, Q), which is
similar to Acq(l, Q), but is used for CAS operations instead of acquire reads. A
successful CAS both obtains ownership of an assertion via its read operation and
gives up ownership of an assertion via its write operation.

FSL++ does not support general combinations of atomic reads and CAS
operations on the same location; the way of reading must be chosen at allocation
via the annotation ρ on the allocation statement (see Fig. 1). In contrast to the
Acq assertions used for atomic reads, RMWAcq assertions can be freely duplicated
and their invariants need not be adjusted for a successful CAS: when using only
CAS operations, each value read from a location corresponds to a different write.

Our presentation of the relevant proof rules is shown in Fig. 11. Allocating a
location with annotation RMW provides a Rel and a RMWAcq assertion, such that
the location can be used for release writes and CAS operations.

For the CAS operation, we present a single, general proof rule instead of four
rules for the different combinations of access modes in FSL++. The rule requires
that l is initialised (since its value is read), Rel and RMWAcq assertions, and an
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Fig. 11. Adapted FSL++ rules for compare and swap operations. FV yields the free
variables of an assertion.

(i) (ii)

Fig. 12. An illustration of (i) the proof rule for CAS operations and (ii) our Viper
encoding; the dashed regions denote the relevant heaps employed in the encoding.

assertion P ′ that provides the resources needed for a successful CAS. If the CAS
fails (that is, x �= e), its precondition is preserved.

If the CAS succeeds, it has read value e and written value e′. Assuming for
now that the access mode τ permits ownership transfer, the thread has acquired
Q[e/V] and released Q[e′/V]. As illustrated in Fig. 12(i), these assertions may
overlap. Let T denote the assertion characterising the overlap; then assertion A
denotes Q[e/V] without the overlap, and P denotes Q[e′/V] without the overlap.
The net effect of a successful CAS is then to acquire A and to release P , while
T remains with the location invariant across the CAS. Automating the choice of
T , A, and P is one of the main challenges of encoding this rule. Finally, if the
access mode τ does not permit ownership transfer (that is, fences are needed to
perform the transfer), A and P are put under the appropriate modalities.

Encoding. Our encoding of CAS operations uses several techniques presented
in earlier sections: see App. E of the TR [35] for details. We represent RMWAcq
assertions analogously to our encoding of Acq assertions (see Sect. 3). We use
the value of field acq (cf. Fig. 7) to distinguish holding some RMWAcq assertion
from some Acq assertion. Since RMWAcq assertions are duplicable (cf. Fig. 11),
we employ wildcard permissions for the corresponding AcqConjunct predicates.

Our encoding of the proof rule for CAS operations is somewhat involved; we
give a high-level description here, and relegate the details to App. E of the TR.
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We focus on the more-interesting case of a successful CAS here. The key chal-
lenge is how to select assertion T to satisfy the premises of the rule. Maximising
this overlap is desirable in practice since this reduces the resources to be trans-
ferred, and which must interact in some cases with the modalities. Our Viper
encoding indirectly computes this largest-possible T as follows (see Fig. 12(ii) for
an illustration).

We introduce yet another heap (“tmp”) in which we inhale the invariant
Q[e/V] for the value read. Now, we exhale the invariant Q[e′/V] for the value
written, but adapt the assertions as follows: for each permission in the invariant,
we take the maximum possible amount from our “tmp” heap; these permissions
correspond to T . Any remainder is taken from the current heap (either the real
or the “up” heap, depending on τ); these correspond to P . Any permissions
remaining in the “tmp” heap after this exhale correspond to the assertion A and
are moved (in a way similar to our fenceacq encoding in Fig. 10) to either the
real or “down” heap (depending on τ).

This combination of techniques results in an automatic support for the proof
rule for CAS statements. This completes the core of our Viper encoding, which
now handles the complete set of memory access constructs from Fig. 1.

6 Soundness and Completeness

We give a brief overview of the soundness argument for our encoding here, and
also discuss where it can be incomplete compared with a manual proof effort;
further details are included in App. F of the TR [35].

Soundness. Soundness means that if the Viper encoding of a program and
its specification verifies, then there exists a proof of the program and specifica-
tion using the RSL logics. We can show this property in two main steps. First,
we show that the states before and after each encoded statement in the Viper
program satisfy several invariants. For example, we never hold permissions to
a non-atomic reference’s val field but not its init field. Second, we reproduce
a Hoare-style proof outline in the RSL logics. For this purpose, we define a
mapping from states of the Viper program back to RSL assertions and show
two properties: (1) When we map the initial and final states of an encoded pro-
gram statement to RSL assertions, we obtain a provable Hoare triple. (2) Any
automatic entailment reasoning performed by Viper coincides with entailments
sound in the RSL logics. These two facts together imply that our technique will
only verify (encoded) properties for which a proof exists in the RSL logics; i.e.
our technique is sound.

Completeness. Completeness means that all programs provable in the RSL
logics can be verified via their encoding into Viper. By systematically analysing
each rule of these logics, we identify three sources of incompleteness of our encod-
ing: (1) It does not allow one to strengthen the invariant in a Rel assertion;
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strengthening the requirement on writing does not allow more programs to be
verified [37]. (2) For a fenceacq, our encoding removes all assertions from under
a � modality. As explained in Sect. 4, the ability to choose not to remove the
modality is not useful in practice. (3) The ghost state employed in FSL++ can
be defined over a custom permission structure (partial commutative monoid),
which is not possible in Viper. This is the only incompleteness of our encoding
arising in practice; we will discuss an example in Sect. 7.

7 Examples and Evaluation

We evaluated our work with a prototype front-end tool [4], and some additional
experiments directly at the Viper level [3]. Our front-end tool accepts a simple
input language for C11 programs, closely modelled on the syntax of the RSL
logics. It supports all features described in this paper, with the exception of
invariant rewriting (cf. App. C of the TR [35]) and ghost state (App. D of
the TR), which will be simple extensions. We encoded examples which require
these features, additional theories, or custom permission structures manually
into Viper, to simulate what an extended version of our prototype will be able
to achieve.

Our encoding supports several extra features which we used in our exper-
iments but mention only briefly here: (1) We support the FSL++ rules for
ghost state: see App. D of the TR. (2) Our encoding handles common spin loop
patterns without requiring loop invariant annotations. (3) We support fetch-
update instructions (e.g. atomic increments) natively, modelled as a CAS which
never fails.
Examples. We took examples from the RSL [38] and FSL [17] papers, along with
variants in which we seeded errors, to check that verification fails as expected
(and in comparable time). We also encoded the Rust reference-counting (ARC)
library [1], which is the main example from FSL++ [18]. The proof there employs
a custom permission structure, which is not yet supported by Viper. However,
following the suggestion of one of the authors [37], we were able to fully ver-
ify two variants of the example, in which some access modes are strengthened,
making the code slightly less efficient but enabling a proof using a simpler permis-
sion model. For these variants, we required counting permissions [10], which we
expressed with additional background definitions (see [3] for details, and App. B
of the TR [35] for the code). Finally, we tackled seven core functions of a reader-
writer-spinlock from the Facebook Folly library [2]. We were able to verify five
of them directly. The other two employ code idioms which seem to be beyond
the scope of the RSL logics, at least without sophisticated ghost state. For both
functions, we also wrote and verified alternative implementations. The Rust and
Facebook examples demonstrate a key advantage of building on top of Viper;
both require support for extra theories (counting permissions as well as modulo
and bitwise arithmetic), which we were able to encode easily.
Performance. We measured the verification times on an Intel Core i7-4770
CPU (3.40 GHz, 16 Gb RAM) running Windows 10 Pro and report the average
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Fig. 13. The results of our evaluation. Examples including _err are expected to gen-
erate errors; those with Stronger are variants of the original code with less-efficient
atomics and a correspondingly different proof. “Time” reports the verification time in
seconds, including the generation of the Viper code. Under “Size”, we measure lines of
code, number of distinct functions/threads, and number of loops. Under “Specs”, “PP”
stands for the necessary pairs of pre and post-conditions; “LI” stands for loop invari-
ants required. “Other Annot.” counts any other annotations needed. For examples that
have been verified in Coq, we report the number of manual proof steps (in addition to
pre-post pairs) and provide a reference to the proof.

of 5 runs. For those examples supported by our front-end, the times include
the generation of the Viper code. As shown in Fig. 13, verification times are
reasonable (generally around 10 s, and always under a 40 s).
Automation. Each function (and thread) must be annotated with an appropri-
ate pre and post-condition, as is standard for modular verification. In addition,
some of our examples require loop invariants and other annotations (e.g. on allo-
cation statements). Critically, the number of such annotations is very low. In
particular, our annotation overhead is between one and two orders of magnitude
lower than the overhead of existing mechanised proofs (using the Coq formali-
sations for [18,38] and a recent encoding [22] of RSL into Iris [23]). Such ratios
are consistent with other recent Coq-mechanised proofs based on separation
logic (e.g. [39]), which suggests that the strong soundness guarantees provided
by Coq have a high cost when applying the logics. By contrast, once the specifi-
cations are provided, our approach is almost entirely automatic.

8 Conclusions and Future Work

We have presented the first encoding of modern program logics for weak memory
models into an automated deductive program verifier. The encoding enables
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programs (with suitable annotations) to be verified automatically by existing
back-end tools. We have implemented a front-end verifier and demonstrated
that our encoding can be used to verify weak-memory programs efficiently and
with low annotation overhead. As future work, we plan to tackle other weak-
memory logics such as GPS [36]. Building practical tools that implement such
advanced formalisms will provide feedback that inspires further improvements
of the logics.
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Abstract. Most verification tools find it difficult to prove properties of
programs containing loops that process arrays of large or unknown size.
These methods either fail to abstract the array at the right granularity
and are therefore limited in precision or scalability, or they attempt to
synthesize an appropriate invariant that is quantified over the elements
of the array, a task known to be difficult. In this paper, we present a
different approach based on a notion called loop shrinkability, in which
an array processing loop is transformed to a loop of much smaller bound
that processes only a few non-deterministically chosen elements of the
array. The result is a finite state program with a drastically reduced state
space that can be analyzed by bounded model checkers. We show that the
proposed transformation is an over-approximation, i.e. if the transformed
program is correct, so is the original. In addition, when applicable, the
method is impervious to the size or existence of the bound of the array. As
an assessment of usefulness, we tested a tool based on our method on the
ArraysReach category of SV-COMP 2017 benchmarks. After excluding
programs with feature not handled by our tool, we could successfully
verify 87 of the 93 remaining programs.

1 Introduction

An array processing loop is a common occurrence in programs, and an assurance
of reliability often requires the program developer to prove properties that are
quantified over the elements of the array being processed. This is, in general,
difficult because such programs have huge, at times infinite state space. So while
static analysis techniques like array smashing and partitioning [4,5,11,14,16,
17] fail due to abstractions that are too coarse, attempts with bounded model
checkers or theorem provers that are equipped with array theories [3,8,9,15,18,
22,23] tend to fail for lack of scalability or their inability to synthesize the right
quantified invariants.

In certain situations, the decidability of property checking of finite state pro-
grams can be used to prove properties of infinite state space programs. Consider
a program P and a property ψ that can be transformed to an abstract finite
state program P ′ and a property ψ′, such that if the property ψ′ holds in P ′

c© The Author(s) 2018
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Fig. 1. Loop shrinking abstraction illustration

then the property ψ holds in P . Then P ′ can be analyzed for ψ′ to show that ψ
holds in P . In this paper we present such a transformation for programs which
process arrays in loops. The property ψ is usually a ∀ or a ∃ property over ele-
ments of the array, but can also be a property over scalar variables modified
in the loop. The transformation replaces the loop that manipulates an array of
possibly large or even unknown size with a smaller loop that operates only on a
few non-deterministically chosen elements of the array.

As an example, consider the program in Fig. 1(a). The loop in the program
purportedly computes in a variable m, the minimum element, denoted min, of
an array a. However, due to a programmer error at line 10 (a[i]-1 instead of
a[i]), the program actually computes the last value in the longest subsequence
a[i1], a[i2], . . . , a[ip] of the array, such that a[i1] = min, and for any two
consecutive elements a[ik] and a[ik+1] of the subsequence, a[ik+1] ≤ a[ik] +
1.1 Notice that for ease of exposition, we have used a ∀ to express universal
quantification; in reality, a loop will be used instead. The property holds for the
example because the longest subsequence of the array with the stated properties
is {2, 2, 2}, and the last element happens to be the same as min. However, the
assertion will fail if, for example, the last two elements of the array are changed
to 3 and 5, so that the longest subsequence is now {2, 3}.

Abstraction based verifiers as well as bounded model checkers fail to verify
this program when the array size is increased to 1000. For example, CBMC 5.8 [8]
reports “out of memory”, when run with an unwinding count of 20. Abstraction
based verifiers like SATABS 3.2 [9] and CPAchecker 1.6 [3] keep on iterating in
their abstraction refinement cycle in search of an appropriate loop invariant, until
they run out of memory. Therefore, it is worthwhile to look for an abstraction

1 There is a unique such subsequence for any array.
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of the property checking problem for array processing loops that can be verified
by a bounded model checker (BMC).

Observe that in this program, the assertion will hold if and only if, after
the last index containing the minimum value min, no other index in a contains
the value min + 1. This can be conservatively checked by examining for each
pair of array indices, say k and k + j, j > 0, whether a[k + j] = a[k] + 1. The
computation is effected by selecting a pair of indices non-deterministically and
executing in sequence the loop body with the loop index i first instantiated to k
and then to k + j. The resulting value of m can then be checked for the condition
m ≤ a[k] ∧ m ≤ a[k + j]. As we shall see later, it is helpful to think in terms of
iteration numbers instead of array indices; the correspondence between the two
for the present example is that the value at index i of the array is accessed at
iteration number i + 1.

In other words, we compute m for every pair of iterations of the loop, and check
if m satisfies the property for the chosen iterations. For example, the value of m
computed for the iterations numbered 2 and 3 of the loop is 4, and the property
restricted to these two iterations, m ≤ a[1] ∧ m ≤ a[2], is satisfied. On the other
hand, if we change the last two elements to 3 and 5 then the property fails for
the original program. However, we can now find a pair of iterations, namely 4
and 6, such that value of m calculated on the basis of just these two iterations will
be 3, and it will not satisfy the corresponding property m ≤ a[3]∧ m ≤ a[5], since
a[3] is 2. In summary, if executing the loop for every sequence of two iterations
[i1, i2], i2 > i1, establishes the property restricted to these iterations, then the
property will also hold for the entire loop. Read contrapositively, if the given
program does not satisfy the assertion, then there must be a sequence of two
iterations for which the property will not hold. This is true irrespective of the size
or the contents of the array in the program. Loops which exhibit this feature for
iteration sequences of length k (k is 2 in this example) will be called shrinkable
loops with a shrink-factor k.

We create a second program, shown in Fig. 1(b), that over-approximates
the behaviour of the original with respect to the property being checked. The
while loop is substituted with a loop that executes the non-deterministically
chosen iteration sequence stored in the two-element array it. The while
loop in the original program, schematically denoted as while (C) B, is
replaced by a for loop that is equivalent to the unrolled program frag-
ment i=it[0]-1;if(C){B;i=it[1]-1;if(C)B}. We call this for loop (or its
unrolled equivalent) the residual loop for the iteration sequence it. The break
statement ensures that the chosen iteration numbers do not result in an out-of-
bounds access of the array, and the assume statement ensures that exactly two
iterations are chosen. Similarly, the given property is also substituted by a residual
property quantified over array indexes corresponding to the same chosen iteration
sequence. CBMC is able to verify the property on this transformed program, as
the original loop, even with a changed bound of 1000, is now reduced to only two
iterations. We call this method property checking by loop shrinking. Needless to
say, the method can only be applied to a program if its shrinkability and shrink-
factor are known. We develop a method to determine both using a BMC.
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Thus the central idea, demonstrated in the rest of the paper, is that over-
approximation using shrinkability is an effective technique to verify properties
of programs that iterate over arrays of large or unknown size. Specifically, our
contributions are:

1. We introduce and formalize a concept called shrinkability for loops that pro-
cess arrays. We show formally that a shrinkable loop with shrink-factor k can
be over-approximated by a loop that executes only k non-deterministically
chosen iterations.

2. We provide an algorithm to find the shrink-factor k for which the loop is
shrinkable.

3. We describe an implementation of the proposed abstraction.
4. We report experimental results showing the effectiveness of the technique on

SV-COMP 2017 [2] benchmarks in the ArraysReach category.

2 Background

We shall present our ideas in the context of imperative programs that consist of
assignment statements, conditional statements, while loops, and function calls.
We assume that conditional expressions have no side effects. We restrict ourselves
to goto-less programs with single-entry single-exit loops. This makes for an easier
formal treatment of our method without losing expressibility.

Let Var be the set of variables in a program P and Val be the set of possible
values which the variables in Var can take. A program state is a valuation of the
variables in Var that is consistent with their declared types. It is represented by
a map σ : Var → Val . σ(v) denotes the value of v in the program state σ.

Property checking will be expressed in a formalism called a Hoare triple and
denoted as {ϕ}P{ψ}. Here ϕ and ψ are first order formulas representing sets
of states, and P is a program. A Hoare triple is said to be valid if and only if
starting from an initial state satisfying ϕ, the execution of P terminates in a
final state that satisfies ψ. In this paper we shall only consider programs that
are deterministic and guaranteed to terminate. A fact that we shall make use of
is that in the special case when ϕ represents a single program state σ. Since our
programs are deterministic, ψ also will be a unique single state. Therefore, the
invalidity of {σ}P{ψ} is equivalent to the validity of {σ}P{¬ψ}.

An iteration sequence is a strictly ascending sequence of numbers, repre-
senting iteration counts. Iterations of a loop are counted starting from 1. The
notation i :T will represent a sequence whose first element is i and the sequence
comprising the rest of the elements is T. Given sequences U and T, we shall
use U � T to mean that U is a strict subsequence of T. Further, we shall write
Pk(T) to denote the set of all k-sized subsequences of a sequence T. For example,
if T = [1, 2, 5] then P2(T) = {[1, 2], [2, 5], [1, 5]}.

Loop acceleration [19] is a commonly used technique for finding loop invari-
ants. It captures the effect of a loop through closed-form expressions that give
the value of variables at the beginning of an iteration in terms of the initial state
and the iteration count. Variables whose values can be expressed in this manner
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are called accelerable. For example, in the program of Fig. 1, the value of the
variable i in the beginning of an iteration j is expressible as j-1. We assume
that we have available tools [12] to identify accelerable variables and their cor-
responding accelerating expressions. While our approach does not require us to
identify all accelerable variables, the precision of the result does depend on the
identification of as many accelerable variables as possible.

Our technique makes good use of bounded model checkers (BMCs). Industrial
strength BMCs exist [8] and are widely used to detect property violations in
safety critical software. Given a program P and a property ψ, a BMC searches
for a counterexample to ψ in executions of P whose length is bounded by some
integer n. If it finds a counterexample to ψ within the bound, then it reports the
program as being unsafe. However, if it does not find a counter example within
the given bound, then the program cannot be regarded as either being safe or
unsafe. BMCs are, therefore, very effective in finding bugs but not in proving
properties.

3 Programs and Properties of Interest

We focus on programs that process arrays in loops that we assume always termi-
nate. The property to be checked is encoded in a fragment of code that follows
the array processing loop. If the property is expressed as a loop, we denote it
in our discussion as a universally or existentially quantified formula over the
elements of the array. As an illustration, the property checked in the motivating
example is ∀j.0 ≤ j < N =⇒ m ≤ a[j]. Similarly, the program min2 of Fig. 3
checks for the property ∃j.0 ≤ j < S ∧ min = a[j]. In particular, we consider
program fragments R ; Q ; ψ, in which R is a simple loop possibly manipu-
lating arrays, Q is a loop free (possibly empty) sequence of statements and ψ
is the property to be checked. We call R ; Q as an array processing loop. In
addition, we assume R has an upper bound on number of iterations which can
be computed through static analysis [10]. The property ψ is assumed to have
at most one quantifier. We assume that the array-processing loop and the loop
which checks the property have the same number of iterations. Finally, since
the quantified variable ranges over a finite domain (iteration counts of a finite
loop), it is useful to think of ψ as a set of quantifier-free formulas, connected by
conjunction in the case of ∀ and disjunction in the case of ∃.

Fig. 2. Residual loop for iteration sequence [2,4] for the program in Fig. 1
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3.1 Residual Loop and Residual Property

Consider a program P consisting of an array processing loop L ≡ while(C){B}Q
followed by code that checks the property ψ. Let T = [j1, j2, ..., jn] be an arbi-
trary iteration sequence of the loop. We define the residual loop for the iteration
sequence T, denoted as LT , as the statements {Sj1 ;Sj2 ; . . . Sjn ; loop exit:Q},
where each Sjr is {Ajr ; if(C){B} ; else goto loop exit; }. Here Ajr is the
sequence of statements assigning to each accelerable variable the correspond-
ing expression defining its value at the beginning of iteration jr. Obviously, for
T = j : T ′ with T ′ being nonempty, LT = Sj ;LT ′ . As an illustration, the code
fragment in Fig. 2 is the residual loop for the iteration sequence [2,4] for the pro-
gram in Fig. 1(a). If the loop iterates for a maximum of N times, then [1, 2, ..., N ]
will be called the complete iteration sequence of the loop. It is obvious that, the
residual loop L[1,2,...,N ] represents an unrolling of L and the two are semantically
equivalent. Similarly, for the iteration sequence T = [j1, j2, ..., jm] and the prop-
erty ψ, we define the residual property ψT as a conjunction or disjunction of a set
of clauses {ψj1 , ψj2 , . . . , ψjm}.

Let us represent the set of initial states at the beginning of the loop L as ϕ.
Then the set of states at the beginning of an iteration numbered i would be given
by sp(S1;S2; ...Si−1, ϕ), the strongest post-condition of S1;S2; ...Si−1 wrt ϕ. How-
ever, we sometimes have to estimate these set of states in the context of an arbi-
trary iteration sequence T that contains iteration i and in which the sequence of
iterations preceding i is not exactly known. Therefore, instead of the earlier exact
calculation, we over-approximate the set of states at the beginning of iteration i,
denoted ϕi, through the recurrences ϕ1 = ϕ, and ϕi = sp(Si−1, ϕi−1) ∪ ϕi−1.
The additional term ϕi−1 in the union accounts for the possibility that the itera-
tion i − 1 may not precede i in T, and therefore the set of states at the beginning
of i should also include the states at the beginning of i − 1.

Fig. 3. Examples showing property loops

4 Shrinkability of Loops

We now characterize the conditions under which the behaviour of an array-
processing loop L with respect to a property ψ can be over-approximated by
a residual loop LU with respect to the corresponding residual property ψU ,
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where the iteration sequence U consists of fewer (non-deterministically chosen)
iterations than the iterations in the original program, i.e. U � [1, 2, . . . , N ].

Definition 1. (Shrinkable loops) Consider a program consisting of a loop L and
a property ψ to be checked. Let T represent the complete sequence of iterations
of the loop. The loop is said to be shrinkable with respect to ψ and with a shrink-
factor k, 0 < k < |T|, if and only if, starting from any state σ ∈ ϕ, the loop L
satisfies ψ whenever the residual loops LU of each k-length subsequence U of T
satisfy the corresponding residual property ψU . Formally:

∀σ ∈ ϕ : ((∀U ∈ Pk(T) : {σ}LU{ψU}) =⇒ {σ}L{ψ}) (1)

It will often be useful to read the formal description above in a contrapositive
manner, i.e. starting from a state in ϕ, if the loop L fails to satisfy ψ, then the
failure is also witnessed by a k-length sequence U whose residual loop LU also
fails to satisfy the corresponding residual property ψU . Note that executions of
both L and LU begin with the same state in ϕ.

A shrinkable loop with a shrink-factor k will be called k-shrinkable. If we
know that a loop is k-shrinkable, we can construct an abstract program that
non-deterministically chooses an iteration sequence of size k, runs the residual
loop and then checks the corresponding residual property. If the residual prop-
erty holds, then shrinkability guarantees the correctness of the original program.
However, a counter-example in the abstract program does not necessarily imply
a violation of the property in the original program, except in situations described
below.

In the absence of loop-carried dependences [1], the values assigned to variables
that are not accelerable, in any iteration are independent of the values assigned
in any other iteration. In addition, consider the case when the array elements
accessed in ith iteration of the array-processing loop are also asserted in ψi. In
this situation, if the original program P violates the property ψ, in particular the
clause, say ψi, then the program consisting of the residual loop L[ i ], constructed
on the basis of the only iteration i, will also violate the residual clause ψ[ i ]. Thus
a loop without loop-carried dependences is 1-shrinkable. More significantly, if the
property being tested for such programs is universal, the converse is also true, i.e.
if the residual loop corresponding to a sequence consisting of a single iteration
violates its residual property, then the original program will also not satisfy its
specified property.

Note that according to Definition 1, if a program P satisfies its property
ψ, then the loop constituting the program is k-shrinkable for any shrink-factor
k > 0. Similarly, a loop with a bound of m iterations is trivially m-shrinkable.
Obviously, if the shrink-factor is small, then the abstract program with a smaller
length iteration sequence loads the verifier to a lesser extent and thus offers
greater chances of verifier returning with an answer. Therefore, we are interested
in finding shrink-factors that are much smaller than the loop bound.

However, finding out whether a loop is shrinkable is difficult as we illustrate
through an example. Consider the two programs min2 and lmin in Fig. 3 which
are similar in structure and in the nature of what they compute. The program
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min2 computes the minimum of the array and is correct with respect to the
asserted property. Thus the loop in the program is k-shrinkable for all k from
1 to S. The second program lmin is similar to our motivating example with a
property that asserts that the final value of m does not exceed any array element
by more than a value d. The reader can verify that this property does not hold
for d < S − 1.2 It turns out that the loop in lmin is shrinkable with a shrink-
factor k = d + 2. This illustrates the difficulty of analytically finding whether
a given loop is shrinkable, and based on the development in rest of this section,
we shall suggest an empirical method in Sect. 5.

4.1 Identifying Shrinkable Loops

While Definition 1 lays down the consequences of a loop being shrinkable, it does
not provide a convenient method to decide whether a loop is shrinkable and find
the shrink-factor. To get around this problem, we first extend the notion of
shrinkability from loops to arbitrary iteration sequences. We then identify the
conditions under which the shrinkability of smaller iteration sequences (that are
checked explicitly) would imply the shrinkability of larger iteration sequences
and eventually of the entire loop.

Definition 2. (Shrinkable iteration sequence) Consider a program consisting of
a loop L and a property ψ to be checked. Let T be an iteration sequence, and let
j be the first iteration in T. The sequence T is k-shrinkable with respect to ψ,
0 < k < |T|, if and only if, starting from every state σ ∈ ϕj, the residual loop LT

satisfies the residual property ψT whenever the residual loops LU of each k-length
subsequences U of T satisfy the corresponding residual property ψU . Formally:

∀σ ∈ ϕj : ((∀U ∈ Pk(T) : {σ}LU{ψU}) =⇒ {σ}LT{ψT}) (2)

The only difference between the notion of shrinkability of a loop and an
iteration sequence is the starting state σ, which, in this case, is from the set ϕj .
Recall that ϕj is an over-approximation of the set of states at the beginning of
iteration j in the residual loop of any iteration sequence that contains j. As in
the case of loops, by k-shrinkable sequence we shall mean a shrinkable sequence
with shrink-factor k. It is obvious that, if the sequence consisting of all iterations
of a loop is k-shrinkable then the loop itself is k-shrinkable.

As an illustration of an iteration sequence that is not shrinkable, consider the
program lmin in Fig. 3(b) with d = 0. Consider the array a with its initial two
elements as {0, 1} and the iteration sequence T = [1, 2]. The residual loop of T
computes m = 1 for which the residual property ψT does not hold (m > a[0]).
However, the residual loop for every 1-length sequence satisfies its residual prop-
erty, and thus T is not 1-shrinkable. Also notice that when d = 0, the program
is the same as the motivating example in Fig. 1 except for array initialisation.
Thus, from the observations in Sect. 1, every iteration sequence of length 3 is
2-shrinkable.
2 Observe that, starting with the second element of the array, if the value of each

element exceeds the value of the previous element by 1, then m will exceed the first
element by S− 1.



Property Checking Array Programs Using Loop Shrinking 221

4.2 Conditions Guaranteeing Shrinkability of Loops

We are interested in a method which guarantees that a loop is shrinkable by
examining iteration sequences up to a given length. More specifically, we are
interested in a pair of numbers n and a k, such that the k-shrinkability of all
sequences of length between k + 1 and n would imply the k-shrinkability of any
sequence longer than n—in particular, the complete sequence of iterations com-
prising the loop. If we can identify the conditions under which we can find such
a pair, then our strategy would be to establish the k-shrinkability of sequences
up to n empirically, and the k-shrinkability of all iteration sequences with lengths
greater than n will follow.

Since empirical verification of k-shrinkability for all subsequences of length
between k+1 and n would be costly, we shall consider the case where n = k+1,
i.e. we shall empirically find a k such that all k + 1 length iteration sequences
are k-shrinkable. The identified conditions will then ensure the k-shrinkability of
sequences larger than k + 1. Notice that the generalization from k + 1 to larger
sequences does not happen unconditionally. As an example, consider the program
lmin in Fig. 3(b). For d=2, all the iteration sequences of size 3 are 2-shrinkable
but not all sequences of size 4 are 2-shrinkable.

To derive the required conditions, let us examine what it takes to ensure
the k-shrinkability of a sequence of length k + 2, given the k-shrinkability of all
sequences of length k+1. For simplicity of exposition, we shall limit ourselves to
conjunctive properties. The treatment for disjunctive properties is very similar,
and we shall merely touch upon it later in this section.

Consider an iteration sequence T of size k + 2, represented as j : T ′. Obvi-
ously, T ′ being of size k +1, is k-shrinkable. Taking a contrapositive view of the
condition for shrinkability, assume that starting from σ, the residual property ψT

is violated for the program LT i.e. {σ}LT{¬ψT} is true. Given that all sequences
of length k+1 are k-shrinkable, it suffices to find a subsequence T ′′ � T of length
k+1 such that {σ}LT ′′{¬ψT ′′} is true. k-shrinkability will then ensure that there
is a k-length subsequence U � T ′′ � T such that {σ}LU{¬ψU}. Let the state
after the iteration j in the sequence be σ′. Clearly {σ′}LT ′{¬ψ[j] ∨ ¬ψT ′} is
true.

1. Consider the case when ψT ′ is violated. Since T ′ is k-shrinkable, it is possible
to find a k-length subsequence U within T ′ such that starting from σ′, ψU

would be violated after LU . Now consider the iteration sequence T ′′ = j : U.
Clearly, starting from σ, ψT ′′ would be violated after executing LT ′′ , and
thus the k + 1-length sequence that we want is T ′′.

2. Now suppose that ψT is violated only because the clause ψ[ j ] is violated.
There are two subcases to be considered. In the first, assume that the violation
of ψ[ j ] also shows up in the state after iteration k + 1. In this case the T ′′

that we want is the (k + 1)-length prefix of T.
3. The interesting case is when the violation of ψT is solely because of ψ[ j ], and

this violation of ψ[ j ] does not show up in the state after iteration k + 1. In
this case, the definition of shrinkability, in its current form, does not enable
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us to produce the required sequence T ′′. To remedy this, notice that for
the subsequence T ′, there is an iteration in the past, namely j, whose clause
ψ[ j ] has been violated. If we revise the definition of k-shrinkability of iteration
sequences (Definition 2) to ensure that this violation also shows up at the end
of some k-length subsequence U ′ of T ′, then we are done. The required k+1-
length subsequence T ′′ in this case would be j : U ′ for which {σ}LT ′′{¬ψT ′′}
would be satisfied.

We call the modification introduced above as past-preservation. The revised
definition of shrinkability that includes past-preservation is presented below.

Definition 3. (Shrinkable iteration sequence, revised) Consider a program con-
sisting of a loop L and a property ψ to be checked. Let T be an iteration sequence,
and let j be the first iteration in T. In addition, let i stand for any iteration before
j. The sequence T is k-shrinkable with respect to a property ψ, 0 < k < |T|, if and
only if, starting from every state σ ∈ ϕj the residual loop LT satisfies ψT ∧ ψ[ i ]

whenever the residual loops LU of each k-length subsequences U of T satisfy the
corresponding property ψU ∧ ψ[ i ]. In other words:

∀σ ∈ ϕj , ∀0 ≤ i < j : ((∀U ∈ Pk(T) : {σ}LU{ψU ∧ ψ[ i ]}) =⇒ {σ}LT{ψT ∧ ψ[ i ]}) (3)

A contrapositive reading of the revised condition for shrinkability of T says
that if an execution of LT with initial state σ results in a violation of its residual
property ψT or the clause ψ[ i ] corresponding to a past iteration i, then there
exists a k-length subsequence U of T such that execution of LU with the same
initial state also violates ψU or ψ[ i ]. Henceforth we will consider this to be the
definition of shrinkability of iteration sequences.

As a technical point, notice that we include 0 as a possible value of a past iter-
ation. Otherwise, any sequence that starts with iteration 1, would have an empty
set of past iterations and the condition of k-shrinkability would be vacuously true
for the sequence. We therefore include 0 as a past-iteration and define ψ[ 0 ] to
be true. A pleasing consequence of this is when the iteration sequence consists of
all the iterations of a loop, the revised definition that includes past-preservation
also coincides with the definition of shrinkability of loops (Definition 1).

Consider the example lmin in Fig. 3(b) with S = 5 and d = 1. Not all
sequences of length two are 1-shrinkable by the revised definition. To see this,
consider the case of an array a as {2, 1, 2, 3, 4}. Let T be [4,5] and take past
iteration i as 1. Let m be 2 in a state σ. Then ψ[ 1 ] = m ≤ a[0] + 1 ≡ m ≤ 3.
Clearly, starting from state σ, for the residual loops of size 1 subsequences U,
i.e. [4] and [5], the resulting m will be 3 and 2 respectively and ψ[ 1 ] ∧ ψU is
satisfied. But starting from the same state σ, the residual loop LT , will produce
m = 4, and therefore ψ[ 1 ] ∧ ψT is not satisfied. On the other hand, it is easy to
see that, for the same d, all the sequences of size 4 are 3-shrinkable.

We now formally prove the result that we have been working towards: For a
loop to be k-shrinkable, it is enough if every iteration sequence of size k + 1 is
k-shrinkable. Our method of determining shrinkable and the shrink-factor will
make use of this important result.
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Theorem 1. An array processing loop is k-shrinkable with respect to a property
ψ, if every iteration sequence of size k + 1 is k-shrinkable with respect to ψ.

Proof. To show that the loop is k-shrinkable, it is enough to show that the
complete iteration sequence of the loop is k-shrinkable according to Definition 3.
However, we shall show a stronger condition that all sequences of size greater
than k are k-shrinkable. The proof is by induction on the length n of an iteration
sequence T of the loop. For the base case n = k + 1, the k-shrinkability of T
is a given in the statement of the theorem. Now let n be greater than k + 1
and assume as the induction hypothesis that every sequence of length less than
n is k-shrinkable. Let T = j : T ′. As usual, we take a contrapositive view
of the shrinkability condition and assume that for some past iteration i of T,
starting from a state σ ∈ ϕj , the property ψ[ i ] ∧ ψT fails after executing LT i.e.
{σ}LT{¬ψ[ i ] ∨ ¬ψT} is true. We show that there exists a k-sized subsequence
U � T such that {σ}LU{¬ψ[ i ] ∨ ¬ψU} is true.

Since LT = Sj ;LT ′ and ψT = ψ[j] ∧ ψT ′ , we have {σ}Sj ;LT ′{¬ψ[ i ] ∨
¬ψ[j] ∨ ¬ψT ′}. Assume that starting with σ, the state reached after execut-
ing Sj , the loop body for the iteration j, is σ1, i.e. {σ}Sj{σ1}. We then have
{σ1}LT ′{¬ψ[ i ] ∨ ¬ψT ′}∨{σ1}LT ′{¬ψ[j] ∨ ¬ψT ′}. We show the existence of the
desired U by assuming that the first disjunct is true. Since i and j are both
past iterations for T ′, the proof in the case in which only the second disjunct is
true is similar. Assume that the first iteration of T ′ is j′. Obviously σ1 ∈ ϕj′ .
Since T ′ is k-shrinkable, we must have a k-sized subsequence U ′ � T ′ such that
{σ1}LU ′{¬ψ[i] ∨ ¬ψU ′} is true. It follows that {σ}Sj ;LU ′{¬ψ[i] ∨ ¬ψU ′} and
therefore {σ}Sj ;LU ′{¬ψ[i] ∨¬ψ[j] ∨¬ψU ′} are also true. Let T ′′ be j : U ′. Obvi-
ously, T ′′ � T. Since the size of T ′′ is k +1, T ′′ is k-shrinkable by the induction
hypothesis and therefore there exists a k-sized subsequence U � T ′′� T such
that {σ}LU{¬ψ[i] ∨ ¬ψU} holds. �

For a disjunctive property ψ, the definition (3) of sequence shrinkability,
changes as follows:

∀σ ∈ ϕj , ∀0 ≤ i < j : ((∃U ∈ Pk(T) : {σ}LU{ψU ∨ ψ[ i ]}) =⇒ {σ}LT{ψT ∨ ψ[ i ]}) (4)

Theorem 1 applies to disjunctive properties as well, and the proof is similar.

5 Determining Shrinkability and Property Checking

We now show how Theorem 1 can be used to empirically determine whether a
given loop is shrinkable and also find the corresponding shrink-factor. Starting
with 1, we repeatedly construct the program shown in Fig. 4 for successive values
of k, the candidate shrink-factor, and feed it to a bounded model checker for
verification. If the program is verified to be correct for some value of k, then
Theorem 1 guarantees that the loop in the given program is k-shrinkable. The
constructed program depends on k, the loop L and the property to be verified,
ψ. The process stops when we either find a k for which the loop is shrinkable
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(success), or we reach a predefined limit l that is dependent on the available
time and computing resources (failure). As we shall see in Sect. 6, the shrink-
factors for shrinkable loops are usually small. This is a favourable situation,
since programs with a smaller shrink-factors are relatively easier to verify than
programs with larger shrink-factors.

5.1 Checking Shrinkability of an Iteration Sequence

Recall that according to Theorem 1, a loop is k-shrinkable, if every iteration
sequence of length k + 1 is k shrinkable. In addition, with our assumption that
the loop has a statically computable upper bound of number of iterations, the
number of such iteration sequences will be finite. Given a candidate k, the pro-
cedure check loop in Fig. 4 non-deterministically chooses an iteration sequence
T of length k+1, and attempts to verify that T is k-shrinkable. This is done in
the procedure check iter seq, which encodes the criterion for sequence shrink-
ability, as given by Definition 3. The construction shown applies to conjunctive
properties; disjunctive properties can be handled in a similar manner.

Fig. 4. Program construction for determining shrinkability. Note that X and X initial

are vectors of variables, and nondet(), accordingly, generates a vector of values.

Assume that the given program consists of an array processing loop L of
the form while(C){B};Q followed by the assertion assert(ψ). Let X denote the
vector of variables which may be modified (by resolving dereferences, if any, using
a safe points-to-analysis) in the loop body B. Recall that the implication in the
criterion for shrinkability is required to hold for all states in ϕj , where j is the
head of sequence T. The states in ϕj are over-approximated by assigning non-
deterministic values to X (through X initial). Thus our process of determining
shrinkability is conservative and a future extension to this work would be a static
analysis to obtain a better approximation of ϕj .

The loop in lines 6–9 checks the antecedent (∀U ∈ Pk(T).{σ}LU{ψU ∧ψ[ i ]})
in the implication in the shrinkability condition (Definition 3), and stores the
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result in c. This loop executes a maximum of k + 1 times, the number of sub-
sequences of T of size k. Line 10 checks the consequent {σ}LT{ψT ∧ ψ[ i ]} of
the same implication, and stores it in r. Finally line 11 checks the condition for
shrinkability, given by the implication c ⇒ r itself. Observe that the residual
loop for each subsequence U and the residual loop for the sequence T are all
evaluated in the same state denoted by the values of the variables in X initial.
It is clear that the program shown in Fig. 4 can be automatically constructed
for any given k, L, and ψ.

The fact that shrinkable loops usually have a low shrink-factor has two conse-
quences for the procedure to determine shrinkability: (i) it allows us to keep the
number l till which a program is tested for shrinkability at a low value without
the fear of missing out many shrinkable programs, and (ii) since the for loop in
lines 6–9 has a bound of k + 1, and k is smaller than l, the shrinkability testing
procedure is fairly efficient.

5.2 Property Checking for Shrinkable Loops

Once we discover that the loop of a program is k-shrinkable, we construct an
abstract program that consists of a program fragment to non-deterministically
choose a k-sized iteration sequence T, a residual loop LT , and a residual property
ψT . The abstract program is submitted to a BMC for verification. The moti-
vating example of Fig. 1 illustrates the nature of the abstract program, and it is
easy to generalize and automate the process of abstraction to arbitrary programs
that are within the scope of our method.

Since the quantified property is also encoded as a loop, the residual property
can also be constructed as a residual of this loop. Consider a program with a loop
L for which the residual has to be constructed with respect to a k-length itera-
tion sequence. Assume that the maximum iteration count of the loop is m. Let
a[e] be an arbitrary expression involving an array a of size n. Also assume that
the index expression e is accelerable and is of the form f(i), where i ∈ [1..m]
represents a particular loop iteration, and f is the acceleration function. The
abstract program non-deterministically chooses a k-length iteration sequence,
whose elements are in the range [1..m]. The iteration sequence is concretely rep-
resented as an array. A loop iterates over all the values of the iteration sequence.
The expression a[e] in the loop body is replaced by the corresponding accelerable
expression a[f(i)].

To make this clearer, consider the example in Fig. 5(a). Assume that the size
p of the array is more than (n+1)/2. The loop initializes the array element a[t]
with the value 2*t. Assume that the loop is k-shrinkable for some property. The
maximum iteration count m for the loop is (n + 1)/2. The code in Fig. 5(b),
written in a C-like notation, is an abstract description of the residual loop. The
call to init initializes the array T with a non-deterministically chosen k-length
iteration sequence. The C-style comment indicates the constraints on the chosen
iteration sequence T. The conditions 1 ≤ T[l-1] < T[l] and 0 ≤ 2∗(T[l]-1) < n
together ensure that the iteration sequence consists of increasing values in the
range [1 . . . m], and the condition T[l]-1 < p ensures that the chosen values do
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not cause an out-of-bounds access of the array. The for loop covering lines 7 to
11 iterates over the elements in T. Inside the loop body, i and j are computed
through acceleration functions applied to the iteration numbers picked from T.

In practice, the constraints on the values in T would be enforced program-
matically, and this is shown in Fig. 5(c). Here an increasing sequence of values
are chosen, and the constraint that the chosen values are in the range [1..m] is
enforced through the the conditional break. Similarly, the constraint that the
index of a does not exceed its bound is enforced through the assume at line 8.
Finally, assume(l==k) ensures that the residual indeed iterates k times and does
not break out of the loop earlier.

Our method can also be used when the program consists of a cascaded series
of simple loops that can be coalesced into one simple loop. To elaborate, let the
program be {Q1;R1;Q2;R2;Q3;R3}, where the Qis are loop-free statements and
the Ris are simple loops of the form while (Ci) {Bi}. Our method can handle
such a program, if it can be transformed to a semantically equivalent program
Q; while (C) {B1;B2;B3} for some loop-free statements, Q, and condition C.
Even this simple strategy enabled us to verify 50 of the 81 programs with non-
nested multiple loops in the SV-COMP 2017 benchmark suite. However, our
method, in its present form, cannot handle nested loops.

Fig. 5. Example illustrating the residual of a shrinkable loop. Program in (b) is an
abstract description of the residual, presented for ease of explanation

6 Implementation and Measurements

The proposed abstraction has been implemented in a tool called VeriAbs [7].
Within the scope of our method, i.e. a single loop followed by the property to
be checked, the tool supports most C constructs including pointers, structure,
arrays, heaps and non-recursive function calls. It uses LABMC [12] to discover
index expressions that can be accelerated and CBMC 5.8 as the bounded model
checker to determine shrinkability of the loop and to check the residual property
on the abstracted program. If a loop is not found shrinkable within a candidate
shrink-factor of 5, we report the shrinkability of the loop to be unknown. Given a
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program with a shrinkable loop, if the verification of the corresponding abstract
program succeeds on the residual property, the tool declares the original program
to be correct with respect to the given property. On the other hand, if the
verification of the abstract program fails and the loop in the program has no loop-
carried dependencies, the original program is declared to be incorrect. Otherwise
the tool indicates its inability to decide on the correctness of the program.

6.1 Experiments

An early version of the tool VeriAbs competed in the SV-COMP 2017 verifica-
tion competition [2], where it ranked third amongst the 17 participating tools
in the ArraysReach category. We have re-run the current version on the same
benchmark. We ran the experiment on a machine with two i7-4600U cores @2.70
GHz and 8 GB RAM. ArraysReach consisted of 135 programs, of which 95 are
correct and the remaining 40 incorrect with respect to their properties. Table
(a) of Fig. 6 categorizes these programs. 42 of the 135 programs were beyond the
scope of VeriAbs because they either contained nested loops (12 programs) or
contained multiple loops which were not collapsible (30 programs). Out of the
remaining 93 programs, 89 programs were 1-shrinkable, 2 were 2-shrinkable, and
while our tool could not find the shrinkability of the remaining 2 programs, we
manually found those to be non-shrinkable.

Figure 6(b) gives the verification results of the 91 shrinkable programs. All
correct programs except one were verified successfully. Moreover, none of the 26
incorrect programs were declared to be correct, demonstrating the soundness of
our tool. 23 of these 26 incorrect programs also had no loop carried dependency,
and thus the tool could rightly declare these as being incorrect. For the remaining
3 programs our tool remained indecisive. The timing data shows the average
time taken in verifying each program. As expected, the bulk of time is taken in
determining shrinkability, as the BMC has to verify O(k2) residual programs to
determine that the shrink-factor is k, while property checking of the abstract
program involves a loop with just k iterations. Given the limits of the machine
configuration, the timings are reasonable.

Programs True False Total
With nested loops 5 7 12
With non-collapsible

24 6 30
multiple loops
Shrinkable 65 26 91
Shrinkability

1 1 2
unknown
Total 95 40 135

(a) Programs categories

Results on #Cases Average time per program
shrinkable programs (in seconds)

Checking Total
shrinkability

Property declared correct 64 30.60 39.68
Property declared incorrect 23 10.72 19.73
Unable to decide 4 227.26 236.06
Total 91 34.22 43.27

(b) Property verification results

Fig. 6. Experimental results for SV-COMP 2017 ArraysReach benchmarks
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An interesting property of Veriabs is that, while it is limited by its ability
to deal only with shrinkable loops, once a loop is discovered to be shrinkable,
the method is impervious to either the existence or the size of loop bounds—
increasing the loop bound does not cause an otherwise verifiable program to
timeout. Comparison with the two tools that fared better than VeriAbs in the
competition, namely ceagle [24] and smack [6], reveals interesting information.
We selected four correct programs, one from each of the following categories,
array copy, array initialisation, two index copying and finding minimum, of the
test suite, and increased the array size considerably (from 100000 to 10000000).
While both tools succeeded on the programs with the original array sizes, smack
started timing out after the increase and ceagle either crashed or declared the
programs to be incorrect. We surmise that the two tools are based on bounded
model checking without any abstraction. In this respect, our tool performs better
than these two tools that were placed ahead of ours in the competition.

7 Related Work

The various approaches to handle arrays have their roots in the types of static
analyses used for property verification, namely: abstract interpretation, predicate
abstraction, bounded model checking and theorem proving.

In abstract interpretation, arrays are handled using array smashing, array
expansion and array slicing. In array smashing, all elements of an array are
clubbed as a single anonymous element, with writes treated as weak updates. As
a result it is imprecise. It cannot be used, for example, to verify the motivating
example. In array expansion, array elements are explicated as a collection of
scalar variables, and the resulting programs have fewer number of weak updates
than array smashing. However, it works well only for small-sized arrays. A mix
of smashing and expansion has been used in [4,5] to prove that the program
does not perform executions with undefined behaviours such as out-of-bounds
array accesses. In array slicing, the idea is to track partitions of arrays based
upon some criteria inferred from programs [11,16,17]. Each partition is treated
as an independent smashed element. The approach is further refined in [14] to
introduce the notion of fluid updates, where a write operation may result in a
strong update of one partition of the array and weak update of other partitions.
In contrast to these approaches, our abstraction is based not only on the program
but also on the associated property. By declaring an array-processing loop as
k-shrinkable, we guarantee that an erroneous behaviour of the program with
respect to the property can indeed be replayed on some k elements of the array.

Methods based on predicate abstraction go through several rounds of coun-
terexample guided abstraction refinement (CEGAR). In each round a suitable
invariant is searched based on the counter-example using Craig interpolants [21].
Tools like SATABS [9] and CPAchecker [3] are based on this technique. To han-
dle arrays, the approach relies on finding appropriate quantified loop invariants.
However generating interpolants for scalar programs is by itself a hard problem.
With the inclusion of arrays, which require universally quantified interpolants,
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the problem becomes even harder [20,22]. Our method, in contrast, does not rely
on the ability to find invariants. Instead, we find a bound on the number of loop
iterations, and, in turn, the number of array elements that have to be accessed
in a run of abstract program.

Theorem proving based methods generate a set of constraints, typically Horn
clauses. The clauses relate invariants at various program points and the invari-
ants are predicates over arrays. The constraints are then fed to a solver in order
to find a model. However, these methods also face the same difficulty of synthe-
sizing quantified invariants over arrays. A technique, called k-distinguished cell
abstraction, addresses this problem by abstracting the array to only k elements. A
1-distinguished cell abstraction, for example, abstracts a predicate P (a) involv-
ing an array a by P ′(i, ai), where i and ai are scalars. The relation between the
two predicates is that P ′(i, ai) holds whenever P (a) holds and the value of a[i] is
ai. The resulting constraints are easier to solve using a back end solver such as
Z3 [13]. This technique and its variants appear in [22,23] and in [15], where the
term skolem constants is used instead of distinguished cells. We experimented
with VAPHOR, a tool based on [23]. By way of comparison, we present two exam-
ples, one with a ∃ property and the other with a ∀ property. The first program
computes the minimum of an array and asserts that the minimum is the same as
some element in the array. The second program copies all but 1 elements from
one large array to another. It then asserts that the copied elements are pairwise
equal. While our tool could verify both examples, VAPHOR declared the first pro-
gram to be incorrect with 1 and 2 distinguished cell abstraction and timed out
on the second program.

A method that is properly subsumed by our method is [18]. This uses only
one distinguished element called a witness element, and transforms a program to
a loop free scalar program. This program is model-checked using a BMC. This
approach works well on what authors call full array processing loops and such
loops are a proper subset of our 1-shrinkable loops.

8 Conclusion

We have proposed a fully automatic approach for property checking over array
processing programs using loop shrinking. The approach enables us to verify
properties over large or even unbounded loops by converting them to loops with
a small finite bound. Towards this, we have defined a notion called shrinkabil-
ity of a loop, and showed that arrays processed by k-shrinkable loops can be
abstracted using only k elements. The abstracted program can then be checked
using any bounded model checker as back-end. An important contribution of
our method is an automated method to find out the required bound k. Although
there are approaches that are based on abstracting an array by fewer elements,
none of these provide a way to find out the number of elements that are suffi-
cient to reason about the array. Our experiments have shown that the approach
is powerful enough to handle a variety of array processing programs. As future
work, we want to add a suitable refinement step to address false positives and
extend our method to support nested loops and multi-dimensional arrays.
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Abstract. We propose a framework for synthesizing inductive invari-
ants for incomplete verification engines, which soundly reduce logical
problems in undecidable theories to decidable theories. Our framework
is based on the counter-example guided inductive synthesis principle
(CEGIS) and allows verification engines to communicate non-provability
information to guide invariant synthesis. We show precisely how the ver-
ification engine can compute such non-provability information and how
to build effective learning algorithms when invariants are expressed as
Boolean combinations of a fixed set of predicates. Moreover, we evalu-
ate our framework in two verification settings, one in which verification
engines need to handle quantified formulas and one in which verification
engines have to reason about heap properties expressed in an expressive
but undecidable separation logic. Our experiments show that our invari-
ant synthesis framework based on non-provability information can both
effectively synthesize inductive invariants and adequately strengthen con-
tracts across a large suite of programs.

1 Introduction

The paradigm of deductive verification [15,22] combines manual annotations
and semi-automated theorem proving to prove programs correct. Programmers
annotate code they develop with contracts and inductive invariants, and use
high-level directives to an underlying, mostly-automated logic engine to verify
their programs correct. Several mature tools have emerged that support such
verification, in particular tools based on the intermediate verification language
Boogie [3] and the SMT solver Z3 [34] (e.g., Vcc [8] and Dafny [29]).

Viewed through the lens of deductive verification, the primary challenges
in automating verification are two-fold. First, even when strong annotations in
terms of contracts and inductive invariants are given, the validity problem for the
resulting verification conditions is often undecidable (e.g., in reasoning about the
heap, reasoning with quantified logics, and reasoning with non-linear arithmetic).
Second, the synthesis of loop invariants and strengthenings of contracts that
c© The Author(s) 2018
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prove a program correct needs to be automated so as to lift this burden currently
borne by the programmer.

A standard technique to solve the first problem (i.e., intractability of validity
checking of verifications conditions) is to build automated, sound but incomplete
verification engines for validating verification conditions, thus skirting the unde-
cidability barrier. Several such techniques exist; for instance, for reasoning with
quantified formulas, tactics such as model-based quantifier instantiation [19] are
effective in practice, and they are known to be complete in certain settings [30]. In
the realm of heap verification, the so-called natural proof method explicitly aims
to provide automated and sound but incomplete methods for checking validity
of verification conditions with specifications in separation logic [7,30,39,41].

Turning to the second problem of invariant generation, several techniques
have emerged that can synthesize invariants automatically when validation of
verification conditions fall in decidable classes. Prominent among these are inter-
polation [32] and IC3/PDR [4,12]. Moreover, a class of counter-example guided
inductive synthesis (CEGIS) methods have emerged recently, including the ICE
learning model [17] for which various instantiations exist [17,18,27,43]. The key
feature of the latter methods is a program-agnostic, data-driven learner that
learns invariants in tandem with a verification engine that provides concrete
program configurations as counterexamples to incorrect invariants.

Although classical invariant synthesis techniques, such as Houdini [14], are
sometimes used with incomplete verification engines, to the best of our knowl-
edge there is no fundamental argument as to why this should work in general.
In fact, we are not aware of any systematic technique for synthesizing invari-
ants when the underlying verification problem falls in an undecidable theory.
When verification is undecidable and the engine resorts to sound but incom-
plete heuristics to check validity of verification conditions, it is unclear how to
extend interpolation/IC3/PDR techniques to this setting. Data-driven learning
of invariants is also hard to extend since the verification engine typically can-
not generate a concrete model for the negation of verification conditions when
verification fails. Hence, it cannot produce the concrete configurations that the
learner needs.

The main contribution of this paper is a general, learning-based invariant syn-
thesis framework that learns invariants using non-provability information pro-
vided by verification engines. Intuitively, when a conjectured invariant results in
verification conditions that cannot be proven, the idea is that the verification
engine must return information that generalizes the reason for non-provability,
hence pruning the space of future conjectured invariants.

Our framework assumes a verification engine for an undecidable theory U
that reduces verification conditions to a decidable theory D (e.g., using heuristics
such as bounded quantifier instantiation to remove universal quantifiers, function
unfolding to remove recursive definitions, and so on) that permits producing
models for satisfiable formulas. The translation is assumed to be conservative
in the sense that if the translated formula in D is valid, then we are assured
that the original verification condition is U-valid. If the verification condition
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is found to be not D-valid (i.e., its negation is satisfiable), on the other hand,
our framework describes how to extract non-provability information from the D-
model. This information is encoded as conjunctions and disjunctions in a Boolean
theory B, called conjunctive/disjunctive non-provability information (CD-NPI),
and communicated back to the learner. To complete our framework, we show how
the formula-driven problem of learning expressions from CD-NPI constraints can
be reduced to the data-driven ICE model. This reduction allows us to use a host
of existing ICE learning algorithms and results in a robust invariant synthesis
framework that guarantees to synthesize a provable invariant if one exists.

However, our CD-NPI learning framework has non-trivial requirements on
the verification engine, and building or adapting appropriate engines is not
straightforward. To show that our framework is indeed applicable and effec-
tive in practice, our second contribution is an application of our technique to
the verification of dynamically manipulated data-structures against rich logics
that combine properties of structure, separation, arithmetic, and data. More pre-
cisely, we show how natural proof verification engines [30,39], which are sound
but incomplete verification engines that translate a powerful undecidable sep-
aration logic called Dryad to decidable logics, can be fit into our framework.
Moreover, we implement a prototype of such a verification engine on top of
the program verifer Boogie [3] and demonstrate that this prototype is able to
fully automatically verify a large suite of benchmarks, containing standard algo-
rithms for manipulating singly and doubly linked lists, sorted lists, as well as
balanced and sorted trees. Automatically synthesizing invariants for this suite
of heap-manipulating programs against an expressive separation logic is very
challenging, and we do not know of any other technique that can automatically
prove all of them. Thus, we have to leave a comparison to other approaches for
future work.

In addition to verifying heap properties, we successfully applied our frame-
work to the verification of programs against specifications with universal quan-
tification, which occur, for instance, when defining recursive properties. Details
can be found in an extended version of this paper [35], which also contains further
material (e.g., proofs) that had to be omitted due to space constraints.

To the best of our knowledge, our technique is the first to systematically
address the problem of invariant synthesis for incomplete verification engines
that work by soundly reducing undecidable logics to decidable ones. We believe
our experimental results provide the first evidence of the tractability of this
important problem.

Related Work

Techniques for invariant synthesis include abstract interpretation [10], interpo-
lation [32], IC3 [4], predicate abstraction [2], abductive inference [11], as well as
synthesis algorithms that rely on constraint solving [9,20,21]. Complementing
them are data-driven invariant synthesis techniques based on learning, such as
Daikon [13] that learn likely invariants, and Houdini [14] and ICE [17] that
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learn inductive invariants. The latter typically requires a teacher that can gen-
erate counter-examples if the conjectured invariant is not adequate or inductive.
Classically, this is possible only when the verification conditions of the program
fall in decidable logics. In this paper, we investigate data-driven invariant syn-
thesis for incomplete verification engines and show that the problem can be
reduced to ICE learning if the learning algorithm learns from non-provability
information and produces hypotheses in a class that is restricted to positive
Boolean formulas over a fixed set of predicates. Data-driven synthesis of invari-
ants has regained recent interest [16,17,27,37,38,43–47] and our work addresses
an important problem of synthesizing invariants for programs whose verification
conditions fall in undecidable fragments.

Our application to learning invariants for heap-manipulating programs builds
upon Dryad [39,41], and the natural proof technique line of work for heap ver-
ification developed by Qiu et al. Techniques, similar to Dryad, for automated
reasoning of dynamically manipulated data structure programs have also been
proposed in [6,7]. However, unlike our current work, none of these works syn-
thesize heap invariants. Given invariant annotations in their respective logics,
they provide procedures to validate if the verification conditions are valid. There
has also been a lot of work on synthesizing invariants for separation logic using
shape analysis [5,28,42]. However, most of them are tailored for memory safety
and shallow properties rather than rich properties that check full functional cor-
rectness of data structures. Interpolation has also been suggested recently to
synthesize invariants involving a combination of data and shape properties [1].
It is, however, not clear how the technique can be applied to a more compli-
cated heap structure, such as an AVL tree, where shape and data properties are
not cleanly separated but are intricately connected. Recent work also includes
synthesizing heap invariants in the logic from [23] by extending IC3 [24,25].

In this work, our learning algorithm synthesizes invariants over a fixed set
of predicates. When all programs belong to a specific class, such as the class
of programs manipulating data structures, these predicates can be uniformly
chosen using templates. Investigating automated ways for discovering candidate
predicates is a very interesting future direction. Related work in this direction
includes recent works [37,38].

2 An Invariant Synthesis Framework for Incomplete
Verification Engines

In this section, we develop our framework for synthesizing inductive invariants
for incomplete verification engines, using a counter-example guided inductive
synthesis approach. We do this in the setting where the hypothesis space consists
of formulas that are Boolean combinations of a fixed set of predicates P, which
need not be finite for the general framework—when developing concrete learning
algorithms later, we will assume P is a finite set of predicates. For the rest of this
section, let us fix a program P that is annotated with assertions (and possibly
with some partial annotations describing pre-conditions, post-conditions, and
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Fig. 1. A non-provability information (NPI) framework for invariant synthesis

assertions). Moreover, we refer to a formula α being weaker (or stronger) than
β in a logic L, and by this we mean that �L β ⇒ α (or �L α ⇒ β), respectively,
where �L ϕ means that ϕ is valid in L.

Figure 1 depicts our general framework of invariant synthesis when verifica-
tion is undecidable. We fix several parameters for our verification effort. First, let
us assume a uniform signature for logic, in terms of constant symbols, relation
symbols, functions, and types. We will, for simplicity of exposition, use the same
syntactic logic for the various logics U , D, B in our framework as well as for the
logic H used to express invariants.

Let us fix U as the underlying theory that is ideally needed for validating
the verification conditions that arise for the program; we presume validity of
formulas in U is undecidable. Since U is an undecidable theory, the engine will
resort to sound approximations (e.g., using bounded quantifier instantiations
using mechanisms such as triggers [33], bounded unfolding of recursive functions,
or natural proofs [30,39]) to reduce this logical task to a decidable theory D. This
reduction is assumed to be sound in the sense that if the resulting formulas in D
are valid, then the verification conditions are valid in U as well. If a formula is
found not valid in D, then we require that the logic solver for D returns a model
for the negation of the formula.1 Note that this model may not be a model for
the negation of the formula in U .

Moreover, we fix a hypothesis class H for invariants consisting of positive
Boolean combination of predicates in a fixed set of predicates P. Note that
restricting to positive formulas over P is not a restriction, as one can always
add negations of predicates to P, thus effectively synthesizing any Boolean com-
bination of predicates. The restriction to positive Boolean formulas is in fact
desirable, as it allows restricting invariants to not negate certain predicates,
1 Note that our framework requires model construction in the theory D. Hence, incom-

plete logic solvers for U that simply time out after some time threshold or search for
a proof of a particular kind and give up otherwise are not suitable candidates.
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which is useful when predicates have intuitionistic definitions (as several recur-
sive definitions of heap properties do).

The invariant synthesis proceeds in rounds, where in each round the syn-
thesizer proposes invariants in H. The verification engine generates verification
conditions in accordance to these invariants in the underlying theory U . It then
proceeds to translate them into the decidable theory D, and gives them to a solver
that decides validity in the theory D. If the verification conditions are found to
be D-valid, then by virtue of the fact that the verification engine reduced VCs
in a sound fashion to D, we are done proving the program P .

However, if the formula is found not to be D-valid, the solver returns a
D-model for the negation of the formula. The verification engine then extracts
from this model certain non-provability information (NPI), expressed as Boolean
formulas in a Boolean theory B, that captures more general reasons why the
verification failed (the rest of this section is devoted to developing this notion of
non-provability information). This non-provability information is communicated
to the synthesizer, which then proceeds to synthesize a new conjecture invariant
that satisfies the non-provability constraints provided in all previous rounds.

In order for the verification engine to extract meaningful non-provability
information, we make the following natural assumption, called normality, which
essentially states that the engine can do at least some minimal Boolean reasoning
(if a Hoare triple is not provable, then Boolean weakenings of the precondition
and Boolean strengthening of the post-condition must also be unprovable):

Definition 1. A verification engine is normal if it satisfies two properties:

1. if the engine cannot prove the validity of the Hoare triple {α}s{γ} and �B
δ ⇒ γ, then it cannot prove the validity of the Hoare triple {α}s{δ}; and

2. if the engine cannot prove the validity of the Hoare triple {γ}s{β} and �B
γ ⇒ δ, then it cannot prove the validity of the Hoare triple {δ}s{β}.
The remainder of this section is now structured as follows. In Sect. 2.1, we first

develop an appropriate language to communicate non-provability constraints,
which allow the learner to appropriately weaken or strengthen a future hypoth-
esis. It turns out that pure conjunctions and pure disjunctions over P, which we
term CD-NPI constraints (conjunctive/disjunctive non-provability information
constraints), are sufficient for this purpose. We also describe concretely how the
verification engine can extract this non-provability information from D-models
that witness that negations of VCs are satisfiable. Then, in Sect. 2.2, we show
how to build learners for CD-NPI constraints by reducing this learning problem
to another, well-studied learning framework for invariants called ICE learning.
Section 2.3 argues the soundness of our framework and guarantees of conver-
gence.

2.1 Conjunctive/Disjunctive Non-provability Information

We assume that the underlying decidable theory D is stronger than proposi-
tional theory B, meaning that every valid statement in B is valid in D as well.
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The reader may want to keep the following as a running example where D is the
decidable theory of uninterpreted functions and linear arithmetic, say. In this set-
ting, a formula is B-valid if, when treating atomic formulas as Boolean variables,
the formula is propositionally valid. For instance, f(x) = y ⇒ f(f(x)) = f(y)
will not be B-valid though it is D-valid, while f(x) = y ∨¬(f(x) = y) is B-valid.

To formally define CD-NPI constraints and their extraction from a failed veri-
fication attempt, let us first introduce the following notation. For any U-formula
ϕ, let approx (ϕ) denote the D-formula that the verification engine generates
such that the D-validity of approx (ϕ) implies the U-validity of ϕ. Moreover, for
any Hoare triple {α}s{β}, let V C({α}s{β}) denote the verification condition
corresponding to the Hoare triple that the verification engine generates.

Let us now assume, for the sake of a simpler exposition, that the program has
a single annotation hole A where we need to synthesize an inductive invariant
and prove the program correct. Further, suppose the learner conjectures an anno-
tation γ as an inductive invariant for the annotation hole A, and the verification
engine fails to prove the verification condition corresponding to a Hoare triple
{α}s{β}, where either α, β, or both could involve the synthesized annotation.
This means that the negation of approx (V C({α}s{γ})) is D-satisfiable and the
verification engine needs to extract non-provability information from a model of
it. To this end, we assume that every program snippet s has been augmented
with a set of ghost variables g1, . . . , gn that track the predicates p1, . . . , pn men-
tioned in the invariant (i.e., these ghost variables are assigned the values of the
predicates). The valuation v = 〈v1, . . . , vn〉 of the ghost variables in the model
before the execution of s and the valuation v ′ = 〈v′

1, . . . , v
′
n〉 after the execu-

tion of s can then be used to derive non-provability information, as we describe
shortly.

The type of non-provability information the verification engine extracts
depends on where the annotation appears in a Hoare triple {α}s{β}. More
specifically, the synthesized annotation might appear in α, in β, or in both.
We now handle all three cases individually.

– Assume the verification of a Hoare triple of the form {α}s{γ} fails (i.e.,
the verification engine cannot prove a verification condition where the pre-
condition α is a user-supplied annotation and the post-condition is the syn-
thesized annotation γ). Then, approx (V C({α}s{γ})) is not D-valid, and the
decision procedure for D would generate a model for its negation.
Since γ is a positive Boolean combination, the reason why v ′ does not satisfy
γ is due to the variables mapped to false by v ′, as any valuation extend-
ing this will not satisfy γ. Intuitively, this means that the D-solver is not
able to prove the predicates in Pfalse = {pi | v′

i = false}. In other words,
{α}s{∨ Pfalse} is unprovable (a witness to this fact is the model of the nega-
tion of approx (V C({α}s{γ})) from which the values v ′ are derived). Note
that any invariant γ′ that is stronger than

∨
Pfalse will result in an unprovable

VC due to the verification engine being normal. Consequently we can choose
χ =

∨
Pfalse as the weakening constraint, demanding that future invariants

should not be stronger than χ.
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The verification engine now communicates χ to the synthesizer, asking it
never to conjecture in future rounds invariants γ′′ that are stronger than χ
(i.e., such that ��B γ′′ ⇒ χ).

– The next case is when a Hoare triple of the form {γ}s{β} fails to be proven
(i.e., the verification engine cannot prove a verification condition where the
post-condition β is a user-supplied annotation and the pre-condition is the
synthesized annotation γ). Using similar arguments as above, the conjunction
η =

∧{pi | vi = true} of the predicates mapped to true by v in the corre-
sponding D-model gives a stronger precondition η such that {η}s{α} is not
provable. Hence, η is a valid strengthening constraint. The verification engine
now communicates η to the synthesizer, asking it never to conjecture in future
rounds invariants γ′′ that are weaker than η (i.e., such that ��B η ⇒ γ′′).

– Finally, consider the case when the Hoare triple is of the form {γ}s{γ} and
fails to be proven (i.e., the verification engine cannot prove a verification
condition where the pre- and post-condition is the synthesized annotation
γ). In this case, the verification engine can offer advice on how γ can be
strengthened or weakened to avoid this model. Analogous to the two cases
above, the verification engine extracts a pair of formulas (η, χ), called an
inductivity constraint, based on the variables mapped to true by v and to
false by v ′. The meaning of such a constraint is that the invariant synthesizer
must conjecture in future rounds invariants γ′′ such that either ��B η ⇒ γ′′

or ��B γ′′ ⇒ χ holds.

This leads to the following scheme, where γ denotes the conjectured invariant:

– When a Hoare triple of the form {α}s{γ} fails, the verification engine returns
the B-formula

∨
i|v′

i=false pi as a weakening constraint.
– When a Hoare triple of the form {γ}s{β} fails, the verification engine returns

the B-formula
∧

i|vi=true pi as a strengthening constraint.
– When a Hoare triple of the form {γ}s{γ} fails, the verification engine returns

the pair (
∧

i|vi=true pi,
∨

i|v′
i=false pi) of B-formulas as an inductivity con-

straint.

It is not hard to verify that the above formulas are proper strengthening and
weakening constraints, in the sense that any inductive invariant must satisfy
these constraints. This motivates the following form of non-provability informa-
tion.

Definition 2 (CD-NPI Samples). Let P be a set of predicates. A CD-NPI
sample (short for conjunction-disjunction-NPI sample) is a triple S = (W,S, I)
consisting of

– a finite set W of disjunctions over P (weakening constraints);
– a finite set S of conjunctions over P (strengthening constraints); and
– a finite set I of pairs, where the first element is a conjunction and the second

is a disjunction over P (inductivity constraints).
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An annotation γ is consistent with a CD-NPI sample S = (W,S, I) if ��B
γ ⇒ χ for each χ ∈ W , ��B η ⇒ γ for each η ∈ S, and ��B η ⇒ γ or ��B γ ⇒ χ
for each (η, χ) ∈ I.

A CD-NPI learner is an effective procedure that synthesizes, given an CD-
NPI sample, an annotation γ consistent with the sample. In our framework,
the process of proposing candidate annotations and checking them repeats until
the learner proposes a valid annotation or it detects that no valid annotation
exists (e.g., if the class of candidate annotations is finite and all annotations are
exhausted). We comment on using an CD-NPI learner in this iterative fashion
below.

2.2 Building CD-NPI Learners

Let us now turn to the problem of building efficient learning algorithms for CD-
NPI constraints. To this end, we assume that the set of predicates P is finite.

Roughly speaking, the CD-NPI learning problem is to synthesize annotations
that are positive Boolean combinations of predicates in P and that are consistent
with given CD-NPI samples. Though this is a learning problem where samples are
formulas, in this section we will reduce CD-NPI learning to a learning problem
from data. In particular, we will show that CD-NPI learning reduces to the
ICE learning framework for learning positive Boolean formulas. The latter is
a well-studied framework, and the reduction allows us to use efficient learning
algorithms developed for ICE learning in order to build CD-NPI learners.

We now first recap the ICE-learning framework and then reduce CD-NPI
learning to ICE learning. Finally, we briefly sketch how the popular Houdini
algorithm can be seen as an ICE learning algorithm, which, in turn, allows us
to use Houdini as an CD-NPI learning algorithm.

The ICE Learning Framework. Although the ICE learning framework [17]
is a general framework for learning inductive invariants, we consider here the
case of learning Boolean formulas. To this end, let us fix a set B of Boolean
variables, and let H be a subclass of positive Boolean formulas over B, called
the hypothesis class, which specifies the admissible solutions to the learning task.

The objective of the (passive) ICE learning algorithm is to learn a formula in
H from a sample of positive examples, negative examples, and implication exam-
ples. More formally, if V is the set of valuations v : B → {true, false} (mapping
variables in B to true or false), then an ICE sample is a triple S = (S+, S−, S⇒)
where S+ ⊆ V is a set of positive examples, S− ⊆ V is a set of negative examples,
and S⇒ ⊆ V × V is a set of implications. Note that positive and negative exam-
ples are concrete valuations of the variables B, and the implication examples are
pairs of such concrete valuations.

A formula ϕ is said to be consistent with an ICE sample S if it satisfies the
following three conditions:2 v |= ϕ for each v ∈ S+, v �|= ϕ for each v ∈ S−,
and v1 |= ϕ implies v2 |= ϕ, for each (v1, v2) ∈ S⇒.
2 In the following, |= denotes the usual satisfaction relation.



Invariant Synthesis for Incomplete Verification Engines 241

In algorithmic learning theory, one distinguishes between passive learning
and iterative learning. The former refers to a learning setting in which a learn-
ing algorithm is confronted with a finite set of data and has to learn a concept
that is consistent with this data. Using our terminology, the passive ICE learn-
ing problem for a hypothesis class H is then “given an ICE sample S, find a
formula in H that is consistent with S”. Recall that we here require the learner
to learn positive Boolean formulas, which is slightly stricter than the original
definition [17].

Iterative learning, on the other hand, is the iteration of passive learning where
new data is added to the sample from one iteration to the next. In a verifica-
tion context, this new data is generated by the verification engine in response
to incorrect annotations and used to guide the learning algorithm towards an
annotation that is adequate to prove the program. To reduce our learning frame-
work to ICE learning, it is therefore sufficient to reduce the (passive) CD-NPI
learning problem described above to the passive ICE learning problem.

Reduction of Passive CD-NPI Learning to Passive ICE Learning. Let
H be a subclass of positive Boolean formulas. We reduce the CD-NPI learning
problem for H to the ICE learning problem for H. The main idea is to (a) treat
each predicate p ∈ P as a Boolean variable for the purpose of ICE learning
and (b) to translate a CD-NPI sample G into an equi-consistent ICE sample
SS, meaning that a positive Boolean formula is consistent with S if and only
if it is consistent with SS. Then, learning a consistent formula in the CD-NPI
framework for the hypothesis class H reduces to learning consistent formulas in
H in the ICE learning framework.

The following lemma will help translate between the two frameworks. Its
proof is straightforward, and follows from the fact that for any positive formula
α, if a valuation v sets a larger subset of propositions to true than v′ does and
v′ |= α, then v |= α as well.

Lemma 1. Let v be a valuation of P and α be a positive Boolean formula over
P. Then, the following holds:

– v |= α if and only if �B (
∧

p|v(p)=true p) ⇒ α (and, therefore, v �|= α if
and only if ��B (

∧
p|v(p)=true p) ⇒ α).

– v |= α if and only if ��B α ⇒ (
∨

p|v(p)=false p).

This motivates our translation, which relies on two functions, d and c. The
function d translates a disjunction

∨
J , where J ⊆ P is a subset of proposi-

tions, into the valuation d
(∨

J
)

= v with v(p) = false if and only if p ∈ J .
The function c translates a conjunction

∧
J , where J ⊆ P, into the valuation

c
(∧

J
)

= v with v(p) = true if and only if p ∈ J . By substituting v in Lemma 1
with c(

∧
J) and d(

∨
J), respectively, one immediately obtains the following.

Lemma 2. Let J ⊆ P and α be a positive Boolean formula over P. Then,
the following holds:(a) c

(∧
J
) �|= α if and only if ��B

∧
J ⇒ α, and (b)

d
(∨

J
) |= α if and only if ��B α ⇒ ∨

J .
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Based on the functions c and d, the translation of a CD-NPI sample into an
equi-consistent ICE sample is as follows.

Definition 3. Given a CD-NPI sample S = (W,S, I), the ICE sample SS =
(S+, S−, S⇒) is defined by S+ =

{
d(

∨
J) | ∨

J ∈ W
}
, S− =

{
c(

∧
J) | ∧

J ∈
S

}
, and S⇒ =

{(
c(

∧
J1), d(

∨
J2)

) | (
∧

J1,
∨

J2) ∈ I
}
.

By virtue of the lemma above, we can now establish the correctness of the
reduction from the CD-NPI learning problem to the ICE learning problem (a
proof can be found in our extended paper [35]).

Theorem 1. Let S = (W,S, I) be a CD-NPI sample, SS = (S+, S−, S⇒) the
ICE sample as in Definition 3, γ a positive Boolean formula over P. Then, γ is
consistent with S if and only if γ is consistent with SS.

ICE Learners for Boolean Formulas. The reduction above allows us to use
any ICE learning algorithm in the literature that synthesizes positive Boolean
formulas. As we mentioned earlier, we can add the negations of predicates as
first-class predicates, and hence synthesize invariants over the class of all Boolean
combinations of a finite set of predicates as well.

The problem of passive ICE learning for one round, synthesizing a formula
that satisfies the ICE sample, can usually be achieved efficiently and in a variety
of ways. However, the crucial aspect is not the complexity of learning in one
round, but the number of rounds it takes to converge to an adequate invariant
that proves the program correct. When the set P of candidate predicates is
large (hundreds in our experiments), since the number of Boolean formulas over
P is doubly exponential in n = |P|, building an effective learner is not easy.
However, there is one class of formulas that are particularly amenable to efficient
ICE learning—learning conjunctions of predicates over P. In this case, there are
ICE learning algorithms that promise learning the invariant (provided one exists
expressible as a conjunct over P) in n + 1 rounds. Note that this learning is
essentially finding an invariant in a hypothesis class H of size 2n in n+1 rounds.

Houdini [14] is such a learning algorithm for conjunctive formulas. Though it
is typically seen as a particular way to synthesize invariants, it is a prime exam-
ple of an ICE learner for conjuncts, as described in the work by Garg et al. [17].
In fact, Houdini is similar to the classical PAC learning algorithm for conjunc-
tions [26], but extended to the ICE model. The time Houdini spends in each
round is polynomial and in an iterative setting, is guaranteed to converge in at
most n+1 rounds or report that no conjunctive invariant over P exists. We use
this ICE learner to build a CD-NPI learner for conjunctions.

2.3 Main Result

To state the main result of this paper, let us assume that the set P of predicates
is finite. We comment on the case of infinitely many predicates below.
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Theorem 2. Assume a normal verification engine for a program P to be given.
Moreover, let P be a finite set of predicates over the variables in P and H a
hypothesis class consisting of positive Boolean combinations of predicates in P.
If there exists an annotation in H that the verification engine can use to prove
P correct, then the CD-NPI framework described in Sect. 2.1 is guaranteed to
converge to such an annotation in finite time.

The proof of Theorem 2 can be found in our extended paper [35]. Under
certain realistic assumptions on the CD-NPI learning algorithm, Theorem 2
remains true even if the number of predicates is infinite. An example of such
an assumption is that the learning algorithm always conjectures a smallest con-
sistent annotation with respect to some fixed total order on H. In this case, one
can show that such a learner will at some point have proposed all inadequate
annotation up to the smallest annotation the verification engine can use to prove
the program correct. It will then conjecture this annotation in the next iteration.

3 Application: Learning Invariants that Aid Natural
Proofs for Heap Reasoning

We now develop an instantiation of our learning framework for verification
engines based on natural proofs for heap reasoning [39,41].

Background: Natural Proofs and Dryad Dryad [39,41] is a dialect of sep-
aration logic that allows expressing second order properties using recursive func-
tions and predicates. Dryad has a few restrictions, such as disallowing negations
inside recursive definitions and in sub-formulas connected by spatial conjunc-
tions (see [39]). Dryad is expressive enough to state a variety of data-structures
(singly and doubly linked lists, sorted lists, binary search trees, AVL trees, max-
heaps, treaps), recursive definitions over them that map to numbers (length,
height, etc.), as well as data stored within the heap (the multiset of keys stored
in lists, trees, etc.).

The technique of using natural proofs [39,41] is a sound but incomplete strat-
egy for deciding satisfiability of Dryad formulas. The first step the natural proof
verifier performs is to convert all predicates and functions in a Dryad-annotated
program to classical logic. This translation introduces heaplets (modeled as sets
of locations) explicitly in the logic. Furthermore, it introduces assertions that
demand that the accesses of each method are contained in the heaplet implicitly
defined by its precondition (taking into account newly allocated or freed nodes),
and that at the end of the program, the modified heaplet precisely matches the
implicit heaplet defined by the post-condition.

The second step the natural proof verifier does is to perform transformations
on the program and translate it to Boogie [14], an intermediate verification
language that handles proof obligations using automatic theorem provers (typi-
cally SMT solvers). VCDryad extends VCC [8] to perform several natural proof
transformations on heap-manipulating C programs that essentially perform three
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tasks: (a) abstract all recursive definitions on the heap using uninterpreted func-
tions but introduce finite-depth unfoldings of recursive definitions at every place
in the code where locations are dereferenced, (b) model heaplets and other sets
using a decidable theory of maps, (c) insert frame reasoning explicitly in the
code that allows the verifier to derive that certain properties continue to hold
across a heap update (or function call) using the heaplet that is modified.

The resulting program is a Boogie program with no recursive definitions,
where all verification conditions are in decidable logics, and where the logic
engine can return models when formulas are satisfiable. The program can be
verified if supplied with correct inductive loop-invariants and adequate pre/post
conditions. We refer the reader to [39,41] for more details.

Learning Heap Invariants. We have implemented a prototype3 that consists
of the entire VCDryad pipeline, which takes C programs annotated in Dryad
and converts them to Boogie programs via the natural proof transformations
described above. We then apply our transformation to the ICE learning frame-
work and pair Boogie with an invariant synthesis engine that learns invariants
over the space of conjuncts over a finite set of predicates; we describe below how
these predicates are generated. After these transformations, Boogie satisfies the
requirements on verification engines of our framework.

Given the Dryad definitions of data structures, we automatically generate a
set P of predicates, which serve as the basic building blocks of our invariants. The
predicates are generated from generic templates, which are instantiated using all
combinations of program variables that occur in the program being verified. We
refer the reader to our extended paper [35] for a full description.

The templates define a fairly exhaustive set of predicates. These predicates
include properties of the store (equality of pointer variables, equality and inequal-
ities between integer variables, etc.), shape properties (singly and doubly linked
lists and list segments, sorted lists, trees, BST, AVL, treaps, etc.), and recur-
sive definitions that map data structures to numbers (keys/data stored in a
structure, lengths of lists and list segments, height of trees) involving arith-
metic relationships and set relationships. In addition, there are also predicates
describing heaplets of various structures, involving set operations, disjointness,
and equalities. The structures and predicates are extensible, of course.

The predicates are grouped into three categories, roughly in increasing
complexity. Category 1 predicates involve shape-related properties, Category 2
involves properties related to the keys stored in the data-structure, and Cate-
gory 3 predicates involve size-predicates on datastructures (lengths of lists and
heights of trees). Given a program to verify and its annotations, we choose the
category of predicates depending on whether the specification refers to shape
only, shapes and keys, or shapes, keys, and sizes (choosing a category includes
the predicates of lower category as well). Then, predicates are automatically

3 This prototype as well as the benchmarks used to reproduce the results presented
below are publicly available on figshare [36].
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generated by instantiating the templates with all (combinations of) program
variables; this allows us to control the size of the set of predicates used.

Evaluation. We have evaluated our prototype on ten benchmark suits (82
routines in total) that contain standard algorithms on dynamic data struc-
tures, such as searching, inserting, or deleting items in lists and trees. These
benchmarks were taken from the following sources: (1) GNU C Library(glibc)
singly/sorted linked lists, (2) GNU C Library(glibc) doubly linked lists,
(3) OpenBSD SysQueue, (4) GRASShopper [40] singly linked lists, (5)
GRASShopper [40] doubly linked lists, (6) GRASShopper [40] sorted linked
lists, (7) VCDryad [39] sorted linked lists, (8) VCDryad [39] binary search
trees, AVL trees, and treaps, (9) AFWP [23] singly/sorted linked lists, and (10)
ExpressOS [31] MemoryRegion. The specifications for these programs are gen-
erally checks for their full functional correctness, such as preserving or altering
shapes of data structures, inserting or deleting keys, filtering or finding elements,
and sortedness of elements. The specifications hence involve separation logic with
arithmetic as well as recursive definitions that compute numbers (like lengths
and heights), data-aggregating recursive functions (such as multisets of keys
stored in data-structures), and complex combinations of these properties (e.g.,
to specify binary search trees, AVL trees and treaps). All programs are anno-
tated in Dryad, and checking validity of the resulting verification conditions is
undecidable.

From these benchmark suites, we first picked all programs that contained iter-
ative loops, erased the user-provided loop invariants, and used our framework to
synthesize an adequate inductive invariant. We also selected some programs that
were purely recursive, where the contract for the function had been strength-
ened to make the verification succeed. We weakened these contracts to only state
the specification (typically by removing formulas in the post-conditions of recur-
sively called functions) and introduced annotation holes instead. The goal was
to synthesize strengthenings of these contracts that allow proving the program
correct. We also chose five straight-line programs, deleted their post-conditions,
and evaluated whether we can learn post-conditions for them. Since our con-
junctive learner learns the strongest invariant expressible as a conjunct, we can
use our framework to synthesize post-conditions as well.

After removing annotations from the benchmarks, we automatically inserted
appropriate predicates over which to build invariants and contracts as described
above. For all benchmark suits, conjunctions of these predicates were sufficient
to prove the program correct.

Experimental Results. We performed all experiments in a virtual machine
running Ubuntu 16.04.1 on a single core of an Intel Core i7-7820 HK 2.9 GHz
CPU with 2 GB memory. The box plots in Fig. 2 summarize the results of
this empirical evaluation aggregated by benchmark suite, specifically the time
required to verify the programs, the number of automatically inserted base pred-
icates, and the number of iterations in the learning process (see our extended
paper [35] for full details). Each box in the diagrams shows the lower and upper
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Fig. 2. Experimental evaluation of our prototype. The numbers in italic brackets shows
the total number or programs in the suite (first number) and the maximum predicate
category used (second number).

quartile (left and right border of the box, respectively), the median (line within
the box), as well as the minimum and maximum (left and right whisker, respec-
tively).

Our prototype was successful in learning invariants and contracts for all 82
benchmarks. The fact that the median time for a great majority of benchmark
suits is less than 10 s shows that our technique is extremely effective in finding
inductive Dryad invariants. We observe that despite many examples having hun-
dreds of base predicates, which suggests a worst-case complexity of hundreds of
iterations, the learner was able to learn with much fewer iterations and the num-
ber of predicates in the final invariant is small. This shows that non-provability
information provides much more information than the worst-case suggests.

To the best of our knowledge, our prototype is the only tool currently able of
fully automatically verifying this challenging benchmark set. We must empha-
size, however, that there are subsets of our benchmarks that can be solved by
reformulating verification in decidable fragments of separation logic studied—
we refer the reader to the related work in Sect. 1 for a survey of such work. Our
goal in this evaluation, however, is not to compete with other, mature tools on
a subset of benchmarks, but to measure the efficacy of our proposed CD-NPI
based invariant synthesis framework on the whole benchmark set.

4 Conclusions and Future Work

We have presented a learning-based framework for invariant synthesis in the
presence of sound but incomplete verification engines. To prove that our tech-
nique is effective in practice, we have implemented a prototype, based on the
natural proofs verification engine, and demonstrated that this prototype can ver-
ify a large set of heap-manipulating programs against specifications expressed
in an expressive and undecidable dialect of separation logic. We are not aware
of any other technique that can handle this extremely challenging benchmark
suite.
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Several future research directions are interesting. First, the framework we
have developed is based on CEGIS where the invariant synthesizer synthesizes
invariants using non-provability information but does not directly work on the
program’s structure. It would be interesting to extend white-box invariant gen-
eration techniques such as interpolation/IC3/PDR, working using D (or B)
abstractions of the program directly in order to synthesize invariants for them.
Second, in the NPI learning framework we have put forth, it would be inter-
esting to change the underlying logic of communication B to a richer logic, say
the theory of arithmetic and uninterpreted functions; the challenge here would
be to extract non-provability information from the models to the richer theory,
and pairing them with synthesis engines that synthesize expressions against con-
straints in B. Finally, we think invariant learning should also include experience
gained in verifying other programs in the past, both manually and automatically.
A learning algorithm that combines logic-based synthesis with experience and
priors gained from repositories of verified programs can be more effective.

Data Availability Statement and Acknowledgments. The prototype developed
in this project as well as the benchmarks used to produce the results presented in this
work are available in the figshare repository at https://doi.org/10.6084/m9.figshare.
5928094.v1.

This material is based upon work supported by the National Science Foundation
under Grants #1138994, and #1527395.
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Abstract. We present a fast algorithm for syntax-guided synthesis
of inductive invariants which combines enumerative learning with
inductive-subset extraction, leverages counterexamples-to-induction and
interpolation-based bounded proofs. It is a variant of a recently proposed
probabilistic method, called FreqHorn, which is however less depen-
dent on heuristics than its predecessor. We present an evaluation of the
new algorithm on a large set of benchmarks and show that it exhibits
a more predictable behavior than its predecessor, and it is competitive
to the state-of-the-art invariant synthesizers based on Property Directed
Reachability.

1 Introduction

Syntax-guided techniques [1] recently earned significant success in the field of
synthesis of inductive invariants [13] for a given program and a given safety
specification. Invariants are needed to represent over-approximations of the set
of reachable program states, such that from their empty intersection with the
set of error states one could conclude that the program is safe. While searching
for invariants, it is intuitive to collect various statistics from the syntactical
constructions, which appear in the program’s source code, and use them as a
guidance.

This work continues the track of FreqHorn, a completely automatic app-
roach for (1) construction of the formal grammar based on the symbolic program
encoding, and (2) probabilistic search through the candidate formulas belonging
to that grammar. FreqHorn utilizes an SMT solver for checking inductiveness
of each generated formula and iteratively constructs a suitable invariant based
on the successful attempts (those formulas are called lemmas). Since based on a
finite number of expressions, the formal grammar is sufficiently small, and thus
the candidate formulas can be enumerated relatively quickly. We distinguish two
types of candidates: (1) formulas directly extracted from the program’s encod-
ing (called seeds) and (2) formulas which are syntactically close to seeds (called
mutants).

The conceptual novelty of FreqHorn is believed to be in the combined
use of seeds and mutants, but the original paper [13] is largely silent on the
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matter. Furthermore, it turns a blind eye to some algorithmic and practical
details which are required for making the approach actually efficient. Among the
downsides are (1) the treatment of all syntactic expressions equally and ignorance
to whether the candidates have any relevance to the given safety specification;
and (2) inability to predict a more-or-less appropriate order of candidates to be
sampled and checked.

Luckily, elements of the Property Directed Reachability (PDR) [4,10] can
be adapted in various stages of FreqHorn’s workflow and can mitigate the
downsides of the original algorithm. In particular, we propose to check candidates
in batches, and we show that in practice it helps discovering larger amounts
of lemmas. Additionally, we propose to keep a history of counterexamples-to-
induction (CTI) which blocked FreqHorn from learning a lemma. With some
periodicity, our new algorithm checks if there is a CTI which is invalidated by
the currently learned lemmas, and this triggers the re-check of that failed lemma.

Last but not least, we integrate our new algorithm with the classic techniques
based on Bounded Model Checking [3]. We propose to compute additional can-
didates by Craig interpolation [6] from proofs of bounded safety. We show that
it is often sufficient to obtain some fixed amount of candidates from interpolants
in the beginning of the synthesis process, and further to bootstrap the initial set
of learned lemmas by the inductive subset extracted from the combination of the
syntactic seeds and interpolants. In contrast to the entirely randomized workflow
of the original version of FreqHorn, the behavior of our revised implementation
at the bootstrapping is predictable. The randomized search is used by the new
algorithm only for discovering mutants; and in our experiments, it was required
in about one third of cases only.

To sum up, the paper contributes to the previous knowledge in the following
main respects:

– A new revision and a new implementation of the FreqHorn algorithm which
is split into the bootstrapping and the sampling stages. In the first stage, it
deterministically exploits seeds only. In the second stage, it keeps generating
and checking only mutants, and it is by design nondeterministic.

– In the bootstrapping stage, interpolation-based proofs of bounded safety that
replenish the set of seeds by the candidates that likely reflect the nature of the
error unreachability and consequently affect the grammar-based generation
of mutants.

– In the sampling stage, the routine to extract inductive subsets which mitigates
the effect of an unpredictably chosen sampling order.

– A more accurate strategy for the search space pruning and an efficient
counterexample-guided approach to give some failed candidates a second
chance.

The rest of the paper is structured as follows. In Sect. 2, we briefly formulate
the inductive synthesis problem, and in Sect. 3 we sketch the basic FreqHorn
algorithm that attempts to solve it. With the help of techniques from Sect. 4, in
Sect. 5 the FreqHorn algorithm gets augmented and reformulated. In Sect. 6,
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we show the experimental evidence that it indeed outperforms its predecessor
and is competitive to state-of-the-art. Finally, the related work, conclusion, and
acknowledgments complete the paper in Sects. 7 and 8.

2 Background and Notation

A first-order theory T consists of a signature Σ, which gathers variables, function
and predicate symbols, and a set Expr of Σ-formulas. Formula ϕ ∈ Expr is called
T -satisfiable if there exists an interpretation m of each element (i.e., a variable, a
function or a predicate symbol), under which ϕ evaluates to � (denoted m |= ϕ);
otherwise ϕ is called T -unsatisfiable (denoted ϕ =⇒ ⊥). The Satisfiability
Modulo Theory (SMT) problem [8] for a given theory T and a formula ϕ aims
at determining whether ϕ is T -satisfiable. In this work, we formulate the tasks
arising in program verification by encoding them to the SMT problems.

Definition 1. A transition system P is a tuple 〈V ∪V ′, Init ,Tr〉, where V ′ is a
primed copy of a set of variables V ; Init and Tr are T -encodings of respectively
the initial states and the transition relation.

We view programs as transition systems and throughout the paper use both
terms interchangeably. Verification task is a pair 〈P,Bad〉, where P = 〈V ∪
V ′, Init ,Tr〉 is a program, and Bad is a T -encoding the error states. A veri-
fication task has a solution if the set of error states is unreachable. A solution to
the verification task is represented by a safe inductive invariant, a formula that
covers every initial state, is closed under the transition relation, and does not
cover any of the error states.

Definition 2. Let P = 〈V ∪ V ′, Init ,Tr〉; a formula Inv is a safe inductive
invariant if the following conditions (respectively called an initiation, a consecu-
tion, and a safety) hold:

Init(V ) =⇒ Inv(V ) (1)
Inv(V ) ∧ Tr(V ,V ′) =⇒ Inv(V ′) (2)
Inv(V ) ∧ Bad(V ) =⇒ ⊥ (3)

To simplify reading, in the rest of the paper safe inductive invariants are
referred to as just invariants. We assume that an invariant Inv has the form of
conjunction, i.e., Inv = �0 ∧ . . . ∧ �n, and each �i is called a lemma.

The validity of each implication (1) and (2) is equivalent to the unsatisfi-
ability of the negation of the corresponding formula. Suppose, a formula Inv
makes (1) valid, but does not make (2) valid. Thus, there exists an interpre-
tation m satisfying Inv(V ) ∧ Tr(V ,V ′) ∧ ¬Inv(V ′), to which we refer to as a
counterexample-to-induction (CTI).

Example 1. The loop in program in Fig. 1a iterates N times, and in each iteration
it nondeterministically picks a value M, adds it to x (conditionally) and to c,
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int x, k, c = 0;

int N = NONDET();

while (c < N) {
int M = NONDET();

if (k mod 2 == 0)

x = x + M;

c = c + M;

k = x + c;

}
assert (x ≥ N);

(a)

x = 0

c = 0

k = 0

c < N

k mod 2 = 0

k = x + c

c ≥ N

x ≥ N

(b)

α ::= 1
∣
∣ − 1

β ::= 0
∣
∣ 2

γ ::= x
∣
∣ y

∣
∣ k

∣
∣ N

δ ::= α · γ + . . . + α · γ
∣
∣ γ mod β

cand ::= δ = β
∣
∣ δ > β

∣
∣ δ ≥ β

(c)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x = 0 ∧ k = 0 ∧ c = 0 =⇒ Inv(x, k, c, N)

Inv(x, k, c, N) ∧ c < N ∧ x′ = ite (k mod 2 = 0, x + M, x)∧
c′ = c + M ∧ k′ = x′ + c′ =⇒ Inv(x′, k′, c′, N)

Inv(x, k, c, N) ∧ c ≥ N ∧ ¬(x ≥ N) =⇒ ⊥

(d)

Fig. 1. Loopy program (a), its encoding (d), subexpressions extracted from the encod-
ing (b), and grammar that generalizes the subexpressions (c).

and assigns the sum of x and c to k. We wish to prove that after the loop
terminates, x ≥ N. An invariant for the program is defined non-uniquely, e.g.,
both the conjunction (k mod 2 = 0 ∧ x = c) and conjunction (k = x + c ∧ x ≥ c)
are the solutions for this verification task. ��

3 Syntax-Guided Invariant Synthesis

In this work, we aim at discovering invariants in an enumerative way, i.e., by
guessing a candidate formula, substituting it for conditions (1), (2), and (3),
and checking their validity. Here we present a moderately reformulated and sim-
plified view of an algorithm recently proposed in [13].1 The pseudocode of the
algorithm, called FreqHorn, is shown in Algorithm 1. The key insight behind
the algorithm is the automatic construction of a grammar G (line 2) based on a

1 The original description [13] focuses on the probabilistic routines. In the interest of
this work, we do not discuss them here but restrict our attention on describing and
exemplifying the pre-processing steps.
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Algorithm 1. FreqHorn: Sampling inductive invariants, cf. [13].
Input: 〈P,Bad〉: verification task, where P = 〈V ∪ V ′, Init ,Tr〉
Output: Lemmas ⊆ 2Expr

1 Seeds ← getSubExprs(Init ,Tr ,Bad);
2 G ← getGrammarAndDistributions(Seeds);
3 Lemmas ← ∅;

4 while Bad(V ) ∧ ∧

�∈Lemmas

�(V ) �=⇒ ⊥ do

5 cand ← sample(G);
6 res ← (

Init(V ) =⇒
cand(V )

) ∧ (
cand(V ) ∧ ∧

�∈Lemmas

�(V ) ∧ Tr(V ,V ′) =⇒ cand(V ′)
)
;

7 if res then
8 Lemmas ← Lemmas ∪ {cand};

9 G ← adjust(G, cand , res);

fixed set Seeds of expressions obtained by traversing parse trees of Init , Tr , and
Bad (line 1).

To create G from Seeds, we drop all expressions that contain variables from
both, V and V ′, and deprime all variables in the remaining expressions. Then,
we normalize elements of Seeds to have the form of equalities, inequalities, or
disjunctions of equalities and inequalities. Finally, formulas are rewritten, such
that all terms are moved to the left side, and the subtraction, <, and ≤ are
rewritten respectively as the addition, >, and ≥.

The algorithm uses G for generating the candidate formulas (line 5) and
populates the set of lemmas until their conjunction is an invariant. The algorithm
learns from each positive and negative attempt (line 9). That is, G gets adjusted,
such that the candidate (and some of its close relatives) is not going to be
sampled in any of the following iterations.

Example 2. The verification condition for the program in Fig. 1a is represented
by three implications in Fig. 1d. They are syntactically split into the set Seeds
of expressions over V , elements of which used to contain only primed or only
unprimed variables (shown in Fig. 1b). In particular, equalities x′ = x + M and
c′ = c + M are excluded from Seeds , and equality k′ = x′ + c′ is rewritten to
k = x + c. The grammar containing the normalized expressions from Seeds is
shown in Fig. 1c. It is easy to see that all lemmas consisting in both invariants
from Example 1, (k mod 2 = 0∧x = c) and (k = x+ c∧x ≥ c), can be generated
by applying the grammar’s production rules recursively. ��

Definition 3. Each formula contained in set Seeds, which is used for construct-
ing grammar G (in line 2), is called a seed. Formula cand produced by G is called
a mutant if cand �∈ Seeds.
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The main downside of Algorithm 1 is that it is hard to choose a sampling order
for each individual lemma at the final invariant. Suppose, cand = (x = c) is sam-
pled and checked in the first iteration of Algorithm 1. Consequently, condition (2)
is not fulfilled, and it is witnessed by the following CTI: [x ← 0; k ← 1; c ← 0;
N ← 10;x′ ← 0; k′ ← 7; c ← 7;M ← 7]. The grammar is then adjusted, such
that x = c (and some syntactically relevant, stronger or equivalent formulas, e.g.
−x = −c) do not belong to the grammar anymore.

Suppose, in the second iteration of Algorithm 1, cand = (k mod 2 = 0). It
passes checks (1) and (2), gets inserted to set Lemmas, and thus it is going
to be taken into account in the following iterations (see implications in lines 4
and 6). The grammar is then adjusted again, such that k mod 2 = 0 (and some
weaker or equivalent formulas, e.g. k mod 2 ≥ 0) do not belong to the grammar
anymore. Note that if in the third iteration cand = (x = c) was sampled again,
the algorithm would terminate. However, it is impossible since the sampling
grammar was adjusted after both negative and positive attempts.

The opposite sampling order (i.e., cand = (k mod 2 = 0) first, and
cand = (x = c) then) would lead to a faster convergence of the algorithm. Since
it is hard to decide which order to choose, the production rules are equipped
with probability distributions that allow both orders under certain probabilities.
In this paper, we propose to use a strategy which is less dependent on an order
– to check candidates in batches – and we describe it in Sect. 5 in more detail.

4 Old Friends Are Best

In this section, we rehash two ideas widely used in symbolic model checking that
can be adapted to accelerate syntax-guided invariant synthesis.

4.1 Interpolation-Based Proofs of Bounded Safety

Bounded Model Checking (BMC) [3] is a formal technique, primarily used for
bug finding. Given a transition system 〈V ∪V ′, Init ,Tr〉, set of error states Bad ,
and a non-negative integer number k, the BMC task is to check if there exists
a path of length k ending in an error state. The idea is to unroll Tr k times,
conjoin it with Init and with the negation of Bad , and to check the satisfiability
of the resulting formula (called a BMC formula):

Init(V ) ∧ Tr(V, V ′) ∧ Tr(V ′, V ′′) ∧. . .∧ Tr(V (k−1), V (k))
︸ ︷︷ ︸

k

∧Bad(V (k))
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Algorithm 2. bmcItp: Obtaining bounded proofs, cf. [24, 25].
Input: 〈P,Bad〉: verification task, where P = 〈V ∪ V ′, Init ,Tr〉, k: bound
Output: proof ⊆ 2Expr

1 unr ← �;
2 for (i ← k; i > 0; i ← i − 1) do

3 unr ← unr ∧ Tr(V (i−1),V (i));

4 if unr ∧ Bad(V (k)) =⇒ ⊥ then

5 proof ← getItp(unr ,Bad(V (k)));
6 return;

7 unr ← unr ∧ Bad(V (k));

8 if Init(V (0)) ∧ unr =⇒ ⊥ then

9 proof ← getItp(Init(V (0)), unr);

Here, each V (i) is a fresh copy of V . Each satisfying assignment to the BMC
formula represents a counterexample of length k. Otherwise, if the formula is
unsatisfiable, then no counterexample of length k exists.

Lemma 1. If a BMC formula for program P and some k is satisfiable then no
invariant exists.

A proof of bounded safety is an over-approximation I of the set of initial
states, such that any path of length k, that starts in a state satisfying I, does
not end in a state satisfying Bad . Extraction of proofs is typically done with the
help of Craig interpolation [6].

Definition 4. Given two formulas A and B, such that A ∧ B =⇒ ⊥, an
interpolant I is a formula satisfying three conditions: (1) A =⇒ I, (2) I∧B =⇒
⊥, and (3) I is expressed over the common alphabet to A and B.

For an invocation of a procedure of generating an interpolant I for A and
B and splitting it to a set of conjunction-free clauses (i.e., I = �0 ∧ · · · ∧ �n),
we write {�i} ← getItp(A,B). Algorithm 2 shows an algorithm to generate
interpolation-based proofs of bounded safety for BMC formulas. It iteratively
unrolls the transition relation and applies the interpolation to the entire BMC
formula. In addition, in spirit of Lazy Annotation [25], while decrementing i,
the algorithm applies a backward reasoning and checks if an error state is reach-
able by (k − i) steps from an empty state (line 4). It triggers the interpolation
to be applied to smaller formulas, and in some cases fastens the proof search
(line 5).

Example 3. Let the program in Fig. 1a is unrolled 0 times, then its BMC for-
mula is constructed as follows: x = 0 ∧ k = 0 ∧ c = 0

︸ ︷︷ ︸

Init

∧ c ≥ N ∧ ¬(x ≥ N)
︸ ︷︷ ︸

Bad

. It is

unsatisfiable, and since interpolants are not unique, function getItp(Init ,Bad)
could return proof 1 = {x ≥ 0, c ≤ 0}, proof 2 = {x = c}, or proof 3 = {x ≥ c}. ��
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Algorithm 3. Houdini: Calculating an inductive subset, cf. [14] and keep-
ing counterexamples-to-induction.
Input: P = 〈V ∪ V ′, Init ,Tr〉: program; Cands ⊆ 2Expr ;

CTI ⊆ 2V →R; CTImap: CTI → 2Expr

Output: inductive Cands ⊆ 2Expr ; updated CTI and CTImap

1 while
∧

cand′∈Cands

cand ′(V ) ∧ Tr(V ,V ′) �=⇒ ∧

cand′∈Cands

cand ′(V ′) do

2 for cand ∈ Cands do
3 if ∃π, s.t. π |= ( ∧

cand′∈Cands

cand ′(V ) ∧ Tr(V ,V ′) ∧ ¬cand(V ′)
)
then

4 Cands ← Cands \ {cand};
5 CTI ← CTI ∪ {π

∣
∣
V

};

6 CTImap(π
∣
∣
V

) ← CTImap(π
∣
∣
V

) ∪ cand ;

4.2 Inductive Subset Extraction

When checking the consecution of a set of candidate formulas “one-by-one” (i.e.,
like in Algorithm 1), the order of checks is crucial, and the chance to miss some
important lemma is high. It can be overcome by checking all candidate formulas
at once, identifying which ones brake the validity of implication (2), removing
them from the set, and repeating the “all-at-once” check. Algorithm 3 shows a
simple implementation of this iterative algorithm, which is extensively used in
PDR and also known as Houdini [14], Note that Houdini is only meaningful
for the candidate formulas which are already implied by the initial states.

Example 4. Conjunction of formulas from set Seeds in Fig. 1b is unsatisfiable, and
its minimal unsatisfiable core is c < N ∧ c ≥ N . Thus, Algorithm 3 would imme-
diately return the entire set Seeds . Let a set Cands be constructed from Seeds by
removing all elements, for which condition (1) does not hold. Conjunction of the
elements in Cands is satisfiable: {x = 0, c = 0, k = 0, k mod 2 = 0, k = x + c}.
Applying Algorithm 3 toCands gives the inductive subset {k mod 2 = 0, k = x+c}.

��

Note that we extended Algorithm 3 with a routine to extract a
counterexample-to-induction π for each element dropped from Cands (lines 3–6).
We restrict each π to only assignments to variables from V (denoted π

∣

∣

V
) and

group all non-inductive formulas from Cands by the particular π that killed
them. This routine is important for optimizing the syntax-guided invariant syn-
thesis algorithm, and it is discussed in more detail in Sect. 5.

5 Reconsidering Syntax-Guided Invariant Synthesis

The lesson we learned when running the FreqHorn algorithm is that the pro-
gram encoding gives many hints on how the shape of lemmas should look like.
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However, the encoding itself can barely give any information about the sam-
pling order. Our main idea to revise the FreqHorn algorithm is to treat seeds
and mutants separately. Indeed, as we have seen in Example 2, both seeds and
mutants are needed for constructing an invariant, but seeds do not actually
need to be re-sampled – these candidates are ready to be checked prior to any
sampling.

5.1 Overview

We present a new revision of the FreqHorn algorithm which is split into two
main stages, the bootstrapping and the sampling. In the first stage, it exploits
only seeds. The idea is to terminate this stage as quickly as possible and to
populate the set of lemmas with (preferably, the maximal) inductive subset of
seeds. If this subset is not enough for an invariant, the algorithm should pro-
ceed to the next stage, in which it should keep generating and checking only
mutants.

The pseudocode of the new FreqHorn’s revision is shown in Algorithm 4.
In the bootstrapping, the algorithm relies on Algorithm 2 to replenish the set
of seeds by semantically-meaningful candidates, and in the sampling stage, it
relies on Algorithm 3 to mitigate the effect of an unpredictably chosen sampling
order. Another algorithmic advantage against Algorithm 1 (to be explained in
Sect. 5.2) lies in a more accurate strategy for the search space pruning and the
efficient counterexample-guided method to give some failed candidates a second
chance.

The algorithm takes as input a verification task and values of important con-
figuration parameters N , M , and K (to be explained further). Like Algorithm 1,
it starts with obtaining a set of expressions Seeds from Init , Tr , and Bad (line 1).
Then, Seeds gets merged with sets of formulas obtained by Craig interpolation
from proofs of bounded safety for a range of bounds 0, . . . , N . Note that if there
is a counterexample of length k < N discoverable by the BMC engine then an
invariant does not exist (recall Lemma 1), and Algorithm 4 terminates (line 5).

The bootstrapping ends when the merged set Seeds is taken as input by
Algorithm 3, and it extracts an inductive subset (line 19). However, prior to it,
the algorithm checks the initiation condition for all elements of the merged set,
and the set is filtered accordingly (lines 15–18).
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Algorithm 4. FreqHorn-2: Sampling inductive invariants with Houdini,
bmcItp, and the second-chance candidates.
Input: 〈P,Bad〉: verification task, where P = 〈V ∪V ′, Init ,Tr〉; N, M, K: knobs
Output: Lemmas ⊆ 2Expr

1 Seeds ← getSubExprs(Init ,Tr ,Bad);
2 for (k ← 0; k < N ; k ← k + 1) do
3 proof ← bmcItp(〈P,Bad〉, k);
4 if proof = ∅ then
5 return;
6 else
7 Seeds ← Seeds ∪ proof ;

8 G ← getGrammarAndDistributions(Seeds);
9 CTI ,CTImap ← ∅;

10 #learned ← 0;
11 Cands ← Seeds;

12 while Bad(V ) ∧ ∧

�∈Lemmas

�(V ) �=⇒ ⊥ do

13 while |Cands| < M do
14 Cands ← Cands ∪ {sample(G)};

15 for cand ∈ Cands do
16 if Init(V ) �=⇒ cand(V ) then
17 G ← adjust(G, cand , false);
18 Cands ← Cands \ {cand};

19 〈Lemmas ′,CTI ,CTImap〉 ← Houdini(P,Cands ∪ Lemmas,CTI ,CTImap);

20 for �′ ∈ Lemmas ′ \ Lemmas do
21 G ← adjust(G, �′, true);

22 NewLemmas = {�′ | �′ ∈ Lemmas ′, s.t.
∧

�∈Lemmas

�=⇒ �′};

23 #learned ← #learned + |NewLemmas|;
24 Lemmas = Lemmas ∪ NewLemmas;
25 Cands ← ∅;

26 if #learned > K then
27 #learned ← 0;
28 for m ∈ CTI do
29 if m �|= ∧

�∈Lemmas

�(V ) then

30 CTI ← CTI \ m;
31 Cands ← Cands ∪ CTImap(m);

Example 5. Let set Seeds be as in Fig. 1b, and set Cands be constructed from
Seeds by removing all elements, for which condition (1) does not hold. Assume
that a proof of bounded safety for k = 0 is {x = c} (as one of the options in
Example 3). Applying Algorithm 3 to Cands ∪ {x = c}, we get the inductive
subset {k mod 2 = 0, k = x + c, x = c}. Since the conjunction of these lemmas is
an invariant, the algorithm terminates just after the bootstrapping. ��
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Checking the candidate formulas in batches is an important improvement
over Algorithm 1. This way, the algorithm becomes less dependent of the heuris-
tics for prioritizing the search-space traversal. The size of the batch M is confi-
gurable, and if the size of set Cands is less than M , then the set gets additional
mutants (lines 13–14). Mutants are sampled from the grammar, which is powe-
red by both, the program’s encoding (similar to Algorithm 1) and the proofs
of bounded safety (new in Algorithm 4). This enlarges the search space for the
further mutants.

If the initial batch of candidates still misses some lemmas necessary for
an invariant, then Algorithm 4 proceeds to a new iteration. In particular, the
extracted inductive subset gets merged with the set of lemmas (line 24), and the
assembly of a new batch of candidates starts from scratch (line 25).

Example 6. Assume that a proof of bounded safety is proof 1 = {x ≥ 0, c ≤ 0}
(as in Example 3). However, the initiation condition is fulfilled for none of the
elements of proof 1, so none of them contains in the set of formulas Cands taken
as input by Algorithm 3. Thus, proof 1 does not bring any additional value to
the set of seeds, and (contrary to the case in Example 5) the algorithm does
not terminate after the bootstrapping. Instead, it proceeds to sampling fresh
mutants. ��

Theorem 1. If Algorithm 4 terminates, then either an actual bug is found
(line 5), or an invariant is synthesized (after the while-loop).

5.2 Learning Strategy

A substantial distinction between the FreqHorn’s revisions is how they react
to the positive and negative attempts. In Algorithm 1, the search space gets
adjusted after each individual check (recall the example after Definition 3). The
grammar adjustments are performed by changing the probabilities assigned to
the production rules. In addition to zeroing the probability of sampling a candi-
date cand itself, after each positive check, Algorithm 1 zeroes the probabilities
of sampling some formulas which are weaker than cand , and after each negative
check – the probabilities of sampling some formulas which are stronger than
cand (see [13] for more details).

In contrast, Algorithm 4 reacts just to the failed candidates after the initia-
tion check (line 17) and to the successful candidates after the consecution check
(line 21). Otherwise, if the consecution check failed for a candidate cand (inside
Algorithm 3), Algorithm 4 does not disqualify cand from being checked again in
the future, and this is done by keeping cand locally and periodically seeking an
opportunity to give cand a second chance.

To efficiently exploit the second-chance candidates, we rely on the extension
of Algorithm 3 by the routine to extract counterexamples-to-induction. That is,
for each failed cand there exists m ∈ CTI that killed it. To maintain this infor-
mation, every application of Algorithm 3 updates the map CTImap from CTI
to failed candidates. In Algorithm 4, it remains to periodically check whether
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some m is eliminated (line 29), and it would increase chances of all candidates
killed by m (line 31) to succeed the consecution check in the next iteration. On
the other hand, if some m still models the conjunction of learned lemmas then
it is guaranteed that candidates in CTImap(m) will fail the consecution check
again.

Finally, to ensure that the CTI-check happens not too often, we run it only
when at least K new lemmas are learned. To make this happen, Algorithm 4
performs a redundancy check (line 22) for all lemmas � that have passed the
initiation and the consecution checks: � gets learned only when the conjunction
of all lemmas learned so far does not imply �. Obviously, when no new lemmas
(after the redundancy check) are added, it does not make sense to run the CTI-
check since all CTIs are still valid.

5.3 Optimizations

The following tricks are omitted from the algorithm’s pseudocode to simplify
reading, but they are important for the algorithm’s efficiency.

– As a consequence of calculating frequencies, in the original FreqHorn algo-
rithm, seeds were given priorities, but mutants were considered with a rela-
tively small probability. In contrast, the new FreqHorn’s revision forces
seeds to be checked in the bootstrapping. So while doing sampling, it gives
priorities to mutants, and for that it ignores frequencies.

– The initiation checks (lines 15–18) for proofs of bounded safety are omitted
since by definition of interpolant (Definition 4) they are already fulfilled. The
initiation checks for the second-chance candidates are omitted as well.

– In case a candidate fails the consecution check, and it is queued for a se-
cond chance, it is still possible that Algorithm 4 samples it again in the next
iterations. Re-sampling is avoided by additional adjustments to the probabili-
ties of the sampling grammar in line 6 of Algorithm 3.

– Algorithm 3 could be optimized if solved with assumptions. However, in our
experience, it may lead to dropping more candidates than needed. Ideas for
getting a maximal inductive subset from [23] could be applied here as well.

– For getting proofs of bounded safety for various bounds, an incremental SMT
solver could be used. That is, it could reuse parts of a BMC formula for bound
k to encode the BMC formula for bound k + 1. Potentially, other tricks (e.g.,
[5,30]) could also be applied here. Finally, interpolation could be replaced by
the weakest precondition computation.

6 Evaluation

We implemented FreqHorn-2 on top of our prior implementation FreqHorn2.
The tool takes as input a verification task in a form of linear constrained Horn
2 The source code and benchmarks are available at https://github.com/grigoryfed

yukovich/aeval/tree/rnd.

https://github.com/grigoryfedyukovich/aeval/tree/rnd
https://github.com/grigoryfedyukovich/aeval/tree/rnd
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clauses (CHC), automatically performs its unrolling, searches for counterexam-
ples, generates proofs of bounded safety, and performs the Houdini-style extrac-
tion of inductive subsets. All the symbolic reasoning is performed by the Z3 SMT
solver [7].

We evaluated FreqHorn-2 on various safe and buggy programs taken from
SVCOMP3 and literature (e.g., [9,15]). Since most of benchmarks, proposed
by [9], appeared to be solvable during the bootstrapping of FreqHorn-2 (more
details in Sect. 6.1) within (fractions of) seconds, we crafted additional harder
benchmarks by ourselves.

All the programs were encoded using the theories of linear (LIA) and non-
linear integer arithmetic (NIA). We did run FreqHorn-2 on unsafe instances
for the testing purposes only. It was able to detect a counterexample, but since
no invariant exists in these cases, we do not discuss this experience here.

6.1 The Bootstrapping Experiment

In total, we considered 171 safe programs. For 103 of them, the seeds, genera-
ted by breaking the symbolic encoding to pieces, did already contain all lem-
mas needed for invariants. However, when we checked the seeds one-by-one, we
revealed invariants for only 63, but using the inductive subset extraction helped
revealing all 103. Each set of seeds contained in average 9 formulas.

For our BMC implementation, we considered bounds 1, 2, and 3. Generated
interpolants already contained all lemmas for invariants for 70 programs.4 Each
set of bounded proofs contained in average 2 formulas. In all these cases, the
output of Algorithm 2 was taken as input by Algorithm 3, and the final safety
check was performed afterwards. Our most promising results were achieved while
running Algorithm 3 for the merged sets of seeds and proofs of bounded safety
(i.e., both sets as in the two prior runs together). The merged sets already
contained all lemmas for invariants for 114 programs.

This experiment lets us to conclude that the bootstrapping is exceptionally
important for accelerating syntax-guided invariant synthesis. In contrast toFreq-
Horn’s fully randomized workflow,FreqHorn-2’s behavior at the bootstrapping
is predictable.FreqHorn-2 uses the randomized search only to discover mutants,
and in our experiments, it was required only in 57 out of 171 cases.

6.2 Overall Statistics

Since technically FreqHorn-2 is a CHC-solver, we compared it against other
CHC-solvers, namely μZ [17,22] and Spacer3 [22]. All the tools were provided
with the same CHC-encodings of verification problems (and thus, the results
do not directly depend on a process of encoding a C-program to a CHC-file).
Both μZ and Spacer3 are PDR-based, and despite the latter is faster than the

3 Software Verification Competition, http://sv-comp.sosy-lab.org/, loop-* categories.
4 Currently interpolation in FreqHorn-2 is limited to LIA, so we had to skip inter-

polation for 17 benchmarks over NIA.

http://sv-comp.sosy-lab.org/
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Table 1. Exact timings.

Benchmark FreqHorn 2 FreqHorn μZ Spacer

abdu 01 ε 1.27 ε ε
abdu 04 ε 8.64 ε ε
bouncy three 6.87 6.76 ε ε
bouncy two 2.74 2.41 ∞ ∞
cegar1 ε 2.18 ε ε
cggmp iter 1 3.09 8.73 ε ε
cggmp iter 2 10.50 24.92 ε ε
cggmp iter 3 18.80 55.86 ε ε
const div 1 ε 2.61 ε ε
const div 2 ε 1.40 ε ε
const div 3 ∞ ∞ 21.31 ∞
const mod 3 ε ∞ ε ε
count by 2 modif 3.28 10.98 ∞ ∞
count by 2 2.80 1.62 ∞ ∞
countud 3.60 15.96 ∞ ε
css2003 ε 9.59 ε ε
dillig02 10.91 35.48 ε ε
dillig03 ε ε ∞ ∞
dillig05 4.74 2.04 ∞ ∞
dillig07 1.93 2.58 ε ε
dillig08 ε 1.26 ∞ ε
dillig10 2.28 2.72 ε ε
dillig13 1 ∞ ∞ ε ε
dillig13 ∞ ∞ ε ε
dillig14 1.90 6.98 ε ε
dillig15 3.28 3.61 ∞ ε
dillig16 20.14 15.35 ∞ ε
dillig20 1 ε 1.65 ε ε
dillig20 2 ε 4.97 ε ε
dillig20 3 34.51 4.53 ε ε
dillig21 ε 4.06 7.5 3.98
dillig22 2 ε 8.59 ε ε
dillig22 3 29.77 15.43 ε ε
dillig22 4 9.99 15.20 ε ε
dillig22 5 14.12 12.02 ε ε
dillig22 6 25.88 13.75 ∞ ε
dillig22 ε 7.25 ε ε
dillig37 1.48 1.67 ε ε
dillig41 ε 1.41 ∞ ∞
dillig42 1 23.88 ∞ ε ε
dillig42 52.13 ∞ ε ε
dillig44 1 ε ∞ ε ε
dillig44 ε ∞ ε ε
dillig46 6.20 4.86 ε ε
ex7 2.28 8.93 ε ε
exact iters 1 26.55 35.58 ε ε
exact iters 2 ∞ 22.76 ∞ ∞
exact iters 3 23.96 26.60 ∞ ∞
exact iters 4 ∞ 29.19 ε ε
fig3 ε 21.82 ε ε
formula22 ε 11.34 ε ε
formula25 ε 1.12 ε ε
formula27 ε 20.31 ε ε
gcd 2 2.15 1.84 ε ε
gcd 3 2.40 3.58 ε ε
gj2007 ∞ ∞ ∞ ε
half true modif ∞ 58.15 ε ε
half true orig 35.58 45.00 ε ε
hhk2008 6.60 28.46 ε ε
menlo park term simpl 1 ε 1.39 ∞ 15.84
menlo park term simpl 2 12.29 58.36 ∞ ∞
n c11 ε ∞ ε ε
nonlin div 26.00 ∞ ∞ ∞
nonlin factorial ε ∞ ∞ ∞
nonlin minus 1 ε 1.78 ∞ ∞

Benchmark FreqHorn 2 FreqHorn μZ Spacer

nonlin minus 2 ε 2.60 ∞ ∞
nonlin mod 1 5.78 16.13 ∞ ∞
nonlin mod 2 ∞ 18.46 ∞ ∞
nonlin mod mult ε ε ∞ ∞
nonlin mult 1 ε ε ∞ ∞
nonlin mult 2 ε 2.28 ∞ ∞
nonlin mult 3 ε 2.86 ∞ ∞
nonlin mult 4 ε 2.48 ∞ ∞
nonlin mult 5 ∞ 3.22 ∞ ∞
nonlin mult 6 ε 3.27 ∞ ∞
nonlin power ε ∞ ε ε
nonlin square ε ε ∞ ∞
nonterm 01 ε ε ∞ ε
phases1 ∞ 10.81 ∞ ∞
s disj ite 01 8.77 5.43 ε ε
s disj ite 02 3.98 5.98 ε ε
s disj ite 03 13.15 2.71 ε ∞
s disj ite 04 7.01 4.13 ε ε
s disj ite 05 4.64 ∞ 18.66 40.38
s disj ite 06 6.43 ∞ ε ε
s mutants 01 ε ε ∞ ∞
s mutants 02 ε 2.40 ∞ ∞
s mutants 03 ε ε ∞ ∞
s mutants 05 7.86 1.90 ∞ ∞
s mutants 06 ε ε ∞ ∞
s mutants 07 1.63 1.75 ε ε
s mutants 09 ε 3.41 ε ε
s mutants 11 ε 1.86 4.72 ε
s mutants 12 ε 4.09 ε ε
s mutants 13 ε 10.42 ε ε
s mutants 14 ε 11.47 ε ε
s mutants 15 ε 14.50 ε ε
s mutants 16 14.38 ∞ ∞ ∞
s mutants 17 14.56 5.83 ∞ ∞
s mutants 18 39.85 ∞ ε ε
s mutants 19 ε 1.31 1.44 ε
s mutants 20 41.15 36.47 ∞ ∞
s mutants 21 ∞ 24.68 ∞ ∞
s mutants 22 14.82 16.52 ∞ ∞
s mutants 23 1.61 1.11 ∞ ∞
s mutants 24 1.58 2.81 ∞ ε
s seeds 04 ε ∞ 20.49 ε
s seeds 05 ε ε ∞ ε
s seeds 06 ε 1.78 ε ∞
s seeds 10 ε ∞ ε ε
s triv 01 ε 1.33 ε ε
s triv 07 ε 1.15 ε ε
s triv 08 ε ∞ ε ε
s triv 09 ε ∞ ε ε
s triv 11 ε ∞ ε ε
s triv 12 ε ∞ ε ε
s triv 14 ε ε ∞ ε
s triv 16 ε ∞ ε ε
s triv 17 ε ∞ ε ε
sn 1024 6.14 14.64 24.83 7.12
sn 2048 25.91 26.11 ∞ 30.87
sn 4096 7.57 ∞ ∞ ∞
sn 8192 11.82 41.01 ∞ ∞
three dots moving 1 ε 58.48 10.28 ε
three dots moving 2 ε ∞ ε ε
three dots moving 3 ε ∞ ε ε
trex3 ε 8.23 ε ε
yz plus minus 4.35 ∞ ∞ ∞

100 101

100

101

100 101

100

101

100 101

100

101

Fig. 2. FreqHorn-2 vs respectively FreqHorn, Spacer3, and μZ.
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former and can solve more benchmarks, there are 26 instances, for which the
former outperforms the latter.

Table 1 shows the precise running times of FreqHorn-2, FreqHorn, μZ,
and Spacer3. To simplify reading, we removed non-representative “noise”-runs
which took less that 1 s or exceeded a timeout of 60 s by all tools. In the table, ε
denotes an insignificant amount of time (≤1 s), and ∞ denotes the timeout. The
numbers of FreqHorn and FreqHorn-2 are the means of three individual
runs. In total, the table contains 128 instances. Additionally, Fig. 2 shows three
scatter plots comparing running times of FreqHorn-2 vs FreqHorn, μZ, and
Spacer3 respectively. Each point in a plot represents a pair of the FreqHorn-2
run (x-axis) and the competing tool run (y-axis).

FreqHorn-2 outperformed its predecessor in 90 out of 128 cases. We wit-
nessed the speedup up to 233X, and in average FreqHorn-2 was four times
faster than FreqHorn. In 40 cases FreqHorn-2 outperformed Spacer3, and
in 38 cases Spacer3 outperformed FreqHorn-2. In 51 cases FreqHorn-2 out-
performed μZ, and in 34 cases μZ outperformed FreqHorn-2. Unfortunately,
FreqHorn-2 still has some performance anomalies, which we believe are con-
nected to the often blind grammar-construction mechanism, inability to genera-
te large disjunctions, and possible inefficiencies of the black-box interpolation
engine.

7 Related Work

In this work we exploit a range of techniques originated from symbolic model
checking, and in particular from IC3/PDR [4,10], e.g., the idea of keeping CTIs
and analyzing them to push previously considered lemmas [29]. Various strategies
could be applied for making the lemma pushing more or less eager, i.e., as soon
as a newly-added lemma invalidates some CTI. In some IC3 implementations
(e.g., [16]), eager pushing does not pay off, but avoiding to push certain lemmas
during the regular pushing stage of IC3 results in an improvement. Since we do
not have many lemmas, eager pushing also pays off.

The idea of applying Houdini to extract invariants from proofs of bounded
safety was fundamental for the first version of Spacer [23]. They, however, keep
obtaining proofs along the entire verification process. In contrast, we use proofs
mainly for the bootstrapping, while the remaining progress of the algorithm is
entirely dictated by the success of sampling.

Most of the successful verification tools today use various combinations of
different techniques. In particular, approaches [2,28] use invariants from abstract
interpretation to force convergence of k-induction. Recently, k-induction was
benefitted from lemmas obtained from PDR [21]. A promising idea to exploit
the data from traces [12,15] while creating and manipulating the candidates
for invariants could also be used in our syntax-guided approach: at least we
could add more constants to the grammar. However we are currently unaware
of a strategy to find meaningful constants and to avoid over-population of the
grammar by too many constants. Our preliminary experiments resulted so far
in the performance decrease.
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Techniques for automatic construction of grammars were applied outside of
formal verification, but in the domains of security analysis and dynamic test
generation [18,19]. Indeed, mutations of the input data for some program can in
fact be used as new input data and therefore can increase the testing coverage.

Finally, syntax-guided techniques [1] keep being used in program synthe-
sis more frequently than in the inductive invariant synthesis. For instance, in
applications [11,20,26,27] a formal grammar is additionally provided, and it is
considered a part of specification. In contrast, in our application, the verification
condition contains the encoding of the entire program and the safety specifica-
tion, which together are enough for construction of formal grammars completely
automatically. This is in fact the main driving idea behind FreqHorn, and
it leaves us a spacious room for its further adaptations, e.g., in proving and
disproving program termination, automated repair of software regressions, and
security analysis.

8 Conclusion

We have presented the new revision of the FreqHorn algorithm to synthe-
size safe inductive invariants based on syntactic features of the source code
and the proofs of bounded safety. The new algorithm contains the determini-
stic bootstrapping stage and the nondeterministic sampling stage, which make
it more predictable than its predecessor, allows converging more frequently and
in average four times faster. Similarly to most of the state-of-the-art verification
techniques, our approach enjoys a tight integration with well renowned formal
methods and should be treated as an example of successful interchange of ideas
across application domains.

Acknowledgments. It is hard to underestimate the value of discussions with
Alexander Ivrii, Arie Gurfinkel, Michael W. Whalen, and other attendees of the Inter-
national Conference on Formal Methods in Computer-Aided Design (FMCAD 2017)
which gave rise to many interesting ideas and inspired this work.
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Abstract. Automated techniques for analysis and optimization of
finite-precision computations have recently garnered significant interest.
Most of these were, however, developed independently. As a consequence,
reuse and combination of the techniques is challenging and much of
the underlying building blocks have been re-implemented several times,
including in our own tools. This paper presents a new framework, called
Daisy, which provides in a single tool the main building blocks for accu-
racy analysis of floating-point and fixed-point computations which have
emerged from recent related work. Together with its modular structure
and optimization methods, Daisy allows developers to easily recombine,
explore and develop new techniques. Daisy’s input language, a subset
of Scala, and its limited dependencies make it furthermore user-friendly
and portable.

1 Introduction

Floating-point or fixed-point computations are an integral part of many embed-
ded and scientific computing applications, as are the roundoff errors they intro-
duce. They expose an interesting tradeoff between efficiency and accuracy: the
more precision we choose, the closer the results will be to the ideal real arith-
metic, but the more costly the computation becomes. Unfortunately, the unintu-
itive and complex nature of finite-precision arithmetic makes manual optimiza-
tion infeasible such that automated tool support is indispensable.

This has been recognized previously and several tools for the analysis and
optimization of finite-precision computations have been developed. For instance,
the tools Fluctuat [22], Rosa [14], Gappa [17], FPTaylor [41], Real2Float [31]
and PRECiSA [34] automatically provide sound error bounds on floating-point
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(and some also on fixed-point) roundoff errors. Such a static error analysis is
a pre-requisite for any optimization technique providing rigorous results, such
as recent ones which choose a mixed-precision assignment [10] or an error-
minimizing rewriting of the non-associative finite-precision arithmetic [15,37].

Many of these techniques are complementary. The static analysis techniques
have different strengths, weaknesses, and accuracy/efficiency tradeoffs, and opti-
mization techniques should ideally be combined for best results [16]. How-
ever, today’s techniques are mostly developed independently, resulting in re-
implementations and making re-combination and re-use challenging and time-
consuming.

In this paper, we present the framework Daisy for the analysis and opti-
mization of finite-precision computations. In contrast to previous work, we have
developed Daisy from the ground up to be modular, and thus easily extensi-
ble. Daisy is being actively developed and currently already provides many of
today’s state-of-the-art techniques — all in one tool. In particular, it provides
dataflow- as well as optimization-based sound roundoff error analysis, support for
mixed-precision and transcendental functions, rewriting optimization, interfaces
to several SMT solvers and code generation in Scala and C. Daisy furthermore
supports both floating-point and fixed-point arithmetic (whenever the techniques
do), making it generally applicable to both scientific computing and embedded
applications.

Daisy is aimed at tool developers as well as non-expert users. To make it user-
friendly, we adopt the input format of Rosa, which is a real-valued functional
domain-specific language in Scala. Unlike other tools today, which have custom
input formats [41] or use prefix notation [12], Daisy’s input is easily human
readable1 and natural to use.

Daisy is itself written in the Scala programming language [35] and has lim-
ited and optional dependencies, making it portable and easy to install. Daisy’s
main design goals are code readability and extensibility, and not necessarily per-
formance. We demonstrate with our experiments that roundoff errors computed
by Daisy are nonetheless competitive with state-of-the-art tools with reasonable
running times.

Daisy has replaced Rosa for our own development, and we are happy to report
that simple extensions (e.g. adding support for fused multiply-add operations)
were integrated quickly by MSc students previously unfamiliar with the tool.

Contributions. We present the new tool Daisy which integrates several tech-
niques for sound analysis and optimization of finite-precision computations:

– static dataflow analysis for finite-precision roundoff errors [14] with mixed-
precision support and additional support for the dReal SMT solver [21],

– FPTaylor’s optimization-based absolute error analysis [41],
– transcendental function support, for dataflow analysis following [13],
– interval subdivision, used by Fluctuat [22] to obtain tighter error bounds,
– rewriting optimization based on genetic programming [15].
1 We realize a preference for prefix or infix notation is personal.
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We show in Sect. 5 that results computed by Daisy are competitive. The code is
available open-source at https://github.com/malyzajko/daisy.

We focus primarily on sound verification techniques. The goal of this effort
is not to develop the next even more accurate technique, rather to consolidate
existing ones and to provide a solid basis for further research. Other efforts
related to Daisy, which have been described elsewhere and which we do not
focus on here are the generation and checking of formal certificates [4], relative
error computation [26], and mixed-precision tuning [16].

2 User’s Guide: An Overview of Daisy

We first introduce Daisy’s functionality from a user’s perspective, before review-
ing background in roundoff error analysis (Sect. 3) and then describing the devel-
oper’s view and the internals of Daisy (Sect. 4).

Installation. Daisy is set up with the simple build tool (sbt) [30], which takes
care of installing all Scala-related dependencies fully automatically. This basic
setup was successfully tested on Linux, macOS and Windows. Some of Daisy’s
functionality requires additional libraries, which are also straight-forward to
install: the Z3 and dReal SMT-solvers [19,21], and the MPFR arbitrary-precision
library [20]. Z3 works on all platforms, we have tested MPFR on Linux and Mac,
and dReal on Linux.

Input Specification Language. The input to Daisy is a source program written in
a real-valued specification language; Fig. 1 shows an example nonlinear embed-
ded controller [15]. The specification language is not executable (as real-valued
computation is infeasible), but it is a proper subset of Scala. The Real data type
is implemented with Scala’s dedicated support for numerical types.

Each input program consists of a number of functions which are handled by
Daisy separately. In the function’s precondition (the require clause), the user

Fig. 1. Example input program

https://github.com/malyzajko/daisy
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provides the ranges of all input variables2. In addition, Daisy allows to specify
an initial error (beyond only roundoff) on input variables with the notation
x1 +/- 1e-5 as well as additional (non-interval) constraints, e.g. x1 * x2 <= 100.

The function body consists of a numerical expression with possibly local vari-
able declarations. Daisy supports arithmetic (+,−, ∗, /,

√), the standard tran-
scendental functions (sin, cos, tan, log, exp) as well as fused multiply-add (FMA).
Daisy currently does not support conditionals and loops; we discuss the chal-
lenges and possible future avenues in Sect. 6. The (optional) postcondition in
the ensuring clause specifies the result’s required accuracy in terms of worst-case
absolute roundoff error. For our controller, this information may be for instance
determined from the specification of the system’s sensors or the analysis of the
controller’s stability [32].

Main Functionality. The main mode of interaction with Daisy is through a
command-line interface. Here we review Daisy’s main features through the most
commonly used command-line options. Brackets denote a choice and curly braces
optional parameters. For more options and more fine-grained settings, run --help.

The main feature of Daisy is the analysis of finite-precision roundoff errors.
For this, Daisy provides several methods:

--analysis=[dataflow:opt:relative] {--subdiv}

Daisy supports forward dataflow analysis (as implemented in Rosa, Fluctuat
and Gappa) and an optimization-based analysis (as implemented in FPTaylor
and Real2Float). These methods compute absolute error bounds, and whenever
a relative error can be computed, it is also reported. Daisy also supports a
dedicated relative error computation [26] which is often more accurate, but also
more expensive. All methods can be combined with interval subdivision, which
can provide tighter error bounds at the expense of larger running times. We
explain these analyses in more detail in Sect. 3.

Accuracy and correspondingly cost of both dataflow and optimization-based
analysis can be adjusted by choosing the method which is used to bound ranges:

--rangeMethod=[interval:affine:smt] {--solver=[z3, dReal]}

With the smt option, the user can select between currently two SMT solvers,
which have to be installed separately. For dataflow analysis, one can also select
the method for bounding errors: --errorMethod=[interval, affine].

Daisy performs roundoff error analysis by default w.r.t. to uniform double
floating-point precision, but it also supports various other floating-point and
fixed-point precisions:

--precision=[Fixed8:Fixed16:Fixed32:Float16:Float32:Float64:Quad:QuadDouble]

2 The magnitude of roundoff errors depends on the magnitude of all intermediate
expressions; in general, with unbounded ranges, roundoff errors are also unbounded.
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Mixed-precision, i.e. choosing different precisions for different variables, is sup-
ported by providing a mapping from variables to precisions in a separate file
(--mixed-precision=file).

Finite-precision arithmetic is not associative, i.e. different rewritings, even
though they are equivalent under a real-valued semantics, will exhibit different
roundoff errors. The --rewrite optimization [15] uses genetic search to find a
rewriting for which it can show the smallest roundoff error.

Daisy prints the analysis result to the terminal. If a postcondition is spec-
ified, but the computed error does not satisfy it, Daisy also prints a warning.
Optionally, the user can also choose to generate executable code (--codegen) in
Scala or C, which is especially useful for fixed-point arithmetic, as Daisy’s code
generator includes all necessary bit shifts.

Static analysis computes a sound over-approximation of roundoff errors, but
an under-approximation can also be useful, e.g. to estimate how big the over-
approximation of static analysis is. This is provided by the --dynamic analysis
in Daisy which runs a program in the finite precision of interest and a higher-
precision version side-by-side. For this, the MPFR library is required.

Online Interface. We also provide an online interface for Daisy, which allows
one to quickly try it out, although it does not yet support all the options:
daisy.mpi-sws.org, see the screenshot in Fig. 2.

Fig. 2. Screenshot of Daisy’s online interface

3 Theoretical Foundations

Before describing the inner architecture of Daisy, we review necessary back-
ground on finite-precision arithmetic and static analysis of their roundoff errors.

http://www.daisy.mpi-sws.org
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Floating-Point Arithmetic. One of the most commonly used finite-
precision representations is floating-point arithmetic, which is standardized by
IEEE754 [24]. The standard defines several precisions as well as rounding oper-
ators; here we will consider the most commonly used ones, i.e. single and double
precision with operations in rounding-to-nearest mode. Then, arithmetic opera-
tions satisfy the following abstraction:

x ◦fl y = (x ◦ y)(1 + e) + d , |e| ≤ εm, |d| ≤ δm (1)

where ◦ ∈ +,−, ∗, / and ◦fl denotes the respective floating-point version. Square
root follows similarly, and unary minus does not introduce roundoff errors. The
machine epsilon εm bounds the maximum relative error for so-called normal
values. Roundoff errors of subnormal values, which provide gradual underflow,
are expressed as an absolute error, bounded by δm. εm = 2−24, δm = 2−150 and
εm = 2−53, δm = 2−1075 for single and double precision, respectively.

Higher precisions are usually implemented in software libraries on top of
standard double floating-point precision [2]. Daisy supports quad and quad-
double precision, where we assume εm = 2−113 and εm = 2−211, respectively.
Depending on the library, δm may or may not be defined, and Daisy can be
adjusted accordingly.

Static analyses usually use this abstraction of floating-point arithmetic, as
bit-precise reasoning does not scale, and furthermore is unsuitable for computing
roundoff errors w.r.t. continuous real-valued semantics (note that Eq. 1 is also
real-valued). The abstraction furthermore only holds in the absence of not-a-
number special values (NaN) and infinities. Daisy’s static analysis detects such
cases automatically and reports them as errors.

Fixed-Point Arithmetic. Floating-point arithmetic requires dedicated sup-
port, either in hardware or software, and depending on the application this
support may be too costly. An alternative is fixed-point arithmetic which can
be implemented with integers only, but which in return requires that the radix
point alignments are precomputed at compile time. While no standard exists,
fixed-point values are usually represented by bit vectors with an integer and a
fractional part, separated by an implicit radix point. At runtime, the alignments
are then performed by bit-shift operations. These shift operations can also be
handled by special language extensions for fixed-point arithmetic [25]. For more
details see [1], whose fixed-point semantics we follow. We use truncation as the
rounding mode for arithmetic operations. The absolute roundoff error at each
operation is determined by the fixed-point format, i.e. the (implicit) number
of fractional bits available, which in turn can be computed from the range of
possible values at that operation.

Range Arithmetic. The magnitude of floating-point and fixed-point roundoff
errors depends on the magnitudes of possible values. Thus, in order to accurately
bound roundoff errors, any static analysis first needs to be able to bound the
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ranges of all (intermediate) expressions accurately, i.e. tightly. Different range
arithmetics have been developed and each has a different accuracy/efficiency
tradeoff. Daisy supports interval [33] and affine arithmetic [18] as well as a
more accurate, but also more expensive, combination of interval arithmetic and
SMT [14].

Interval arithmetic (IA) [33] is an efficient choice for range estimation, which
computes a bounding interval for each basic operation ◦ ∈ {+,−, ∗, /} as

[x0, x1] ◦ [y0, y1] = [min(x ◦ y),max(x ◦ y)], where x ∈ [x0, x1], y ∈ [y0, y1]

and analogously for square root. Interval arithmetic cannot track correlations
between variables (e.g. x − x �= [0, 0]), and thus can introduce significant over-
approximations of the true ranges, especially when the computations are longer.

Affine arithmetic (AA) [18] tracks linear correlations by representing possible
values of variables as affine forms:

x̂ = x0 +
n∑

i=1

xiεi, where εi ∈ [−1, 1]

where x0 denotes the central value (of the represented interval) and each
noise term xiεi denotes a deviation from this central value. The range rep-
resented by an affine form is computed as [x̂] = [x0 − rad(x̂), x0 + rad(x̂)],
rad(x̂) =

∑n
i=1 |xi|. Linear operations are performed term-wise and are com-

puted exactly, whereas nonlinear ones need to be approximated and thus intro-
duce over-approximations. Overall, AA can produce tighter ranges in practice
(though not universally). In particular, AA is often beneficial when the individ-
ual noise terms (xi’s) are small, e.g. when they track roundoff errors.

The over-approximation due to nonlinear arithmetic can be mitigated [14]
by refining ranges computed by IA with a binary search in combination with a
SMT solver which supports nonlinear arithmetic such as Z3 [19] or dReal [21].

Static Analysis for Roundoff Error Estimation. The worst-case absolute
roundoff error that most static analyses approximate is:

max
x∈[a,b]

|f(x) − f̃(x̃)| (2)

where [a, b] is the range for x given in the precondition, and f and x are a
mathematical real-valued arithmetic expression and variable, respectively, and f̃
and x̃ their finite-precision counterparts. This definition extends to multivariate
f component-wise.

An automated and general estimation of relative errors ( |f(x)−f̃(x̃)|
|f(x)| ), though

it may be more desirable, presents a significant challenge today. For instance,
when the range of f(x) includes zero, relative errors are not well defined and
this is often the case in practice. For a more thorough discussion, we refer the
reader to [26]; the technique is also implemented within Daisy.

For bounding absolute errors, two main approaches exist today, which we
review in the following.
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Dataflow Analysis. One may think that just evaluating a program in interval
arithmetic and interpreting the width of the resulting interval as the error bound
would be sufficient. While this is certainly a sound approach, it computes too
pessimistic error bounds in general. This is especially true if we consider rela-
tively large ranges on inputs; we cannot distinguish which part of the interval
width is due to the input interval or due to accumulated roundoff errors.

Thus, dataflow analysis computes roundoff error bounds in two steps, recur-
sively over the abstract syntax tree (AST) of the arithmetic expression:

1. range analysis computes sound range bounds (for real semantics),
2. error analysis propagates errors from subexpressions and computes the new

worst-case roundoffs using the previously computed ranges.

In practice, these two steps can be performed in a single pass over the AST. A
side effect of this separation is that it provides us with a modular approach: we
can choose different range arithmetics with different accuracy/efficiency tradeoffs
for ranges and errors (and possibly for different parts of a program).

The main challenge of dataflow analysis is to minimize over-approximations
due to nonlinear arithmetic (linear arithmetic can be handled well with AA).
Previous tools chose different strategies. For instance, Rosa [14] employs the com-
bination of interval arithmetic with a non-linear SMT-solver, which we described
earlier. Fluctuat [22], which uses AA for both bounding the ranges as well as the
errors, uses interval subdivision. In Fluctuat, the user can designate up to two
variables whose input ranges will be subdivided into intervals of equal width.
The analysis is performed separately for each and the overall error is then the
maximum error over all subintervals. Interval subdivision increases the runtime
of the analysis, especially for multivariate functions, and the choice of which
variables to subdivide and by how much is usually not straight-forward.

Optimization-based Analysis. FPTaylor [41], Real2Float [31] and PRECiSA [34],
unlike Daisy, Rosa, Gappa and Fluctuat, formulate the roundoff error bounds
computation as an optimization problem, where the absolute error expression
from Eq. 2 is to be maximized, subject to interval constraints on its parameters.
Due to the discrete nature of floating-point arithmetic, FPTaylor optimizes the
continuous, real-valued abstraction from Eq. 1. However, this expression is still
too complex and features too many variables for optimization procedures in
practice.

FPTaylor introduces the Symbolic Taylor approach, where the objective func-
tion is simplified using a first order Taylor approximation with respect to e and
d (the variables representing roundoff errors at each arithmetic operation). To
solve the optimization problem, FPTaylor uses a rigorous branch-and-bound
procedure.

4 Developer’s Guide: Daisy’s Internals

This section provides more details on Daisy’s architecture and explains some
of our design decisions. Daisy is written in the Scala programming language
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which provides a strong type system as well as a large collection of (parallel)
libraries. While Scala supports both imperative and functional programming
styles, we have written Daisy functionally as much as possible, which we found
to be beneficial to ensuring correctness and readability of code.

4.1 Input Language and Frontend

Daisy’s input language is implemented as a domain-specific language in Scala,
and Daisy’s frontend calls the Scala compiler which performs parsing and type-
checking. While designing our own simple input format and parser would be
certainly more efficient in terms of Daisy’s running time (and could be done in
the future), we have deliberately chosen not to do this. An existing programming
language provides clear semantics and feels natural to users. Using the Scala
compiler furthermore helps to ensure that Daisy parses the program correctly,
for instance that it indeed conforms e.g. to Scala’s typing rules. Furthermore,
extending the input language is usually straight-forward.

The other major design decision was to make the input program real-valued.
This explicitly specifies the baseline against which roundoff errors should be
computed, but it also makes it easy for the user to explore different options.
For instance, changing the precision only requires changing a flag, whereas a
finite-precision input program (like FPTaylor’s or Fluctuat’s) requires editing
the source code.

Mixed-precision is also supported respecting Scala semantics and is thus
transparent. The user may annotate variables, including local ones, with different
precisions. To specify the precision of every individual operation, the program
can be transformed into three-address form (Daisy can do this automatically),
and then each arithmetic operation can be annotated via the corresponding
variable.

Daisy currently does not support data structures such as arrays or lists in its
input language, mainly because the static analysis of these is largely orthogonal
to the analysis of the actual computation and we believe that standard strategies
like unrolling computations over array elements or abstracting the array as a
single variable can be employed.

4.2 Modular Architecture

Daisy is built up in a modular way by implementing its functionality in phases,
which can be combined. See the overview in Fig. 3. Each phase takes as input and
returns as output a Program and a Context, and can modify both. For instance,
rewriting transforms the program and roundoff error analysis adds the analysis
information to the context. This information is then re-used by later phases,
for instance the analysis information is used to generate fixed-point arithmetic
programs in the code generation phase. This modularity allows, for instance,
the rewriting optimization phase to be combined with any other roundoff error
analysis.
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Frontend

{ Rewriting }

{ TACTransformer }

TaylorError RelativeDynamic

Info

CodeGeneration

// Roundo  analyses

Fig. 3. Overview of Daisy’s phases. Phases in curly braces are optional.

In addition to the modular architecture, Daisy’s main functionality is pro-
vided as a set of library tools, which allows for further reuse across different
phases. It could also be used as a separate library in other tools. Here we high-
light the main functionality provided:

– Rational provides an implementation of rational numbers based on Java’s
BigInteger library. Rationals are used throughout Daisy for computations in
order to avoid internal roundoff errors which could affect soundness.

– MPFRFloat is an interface to GNU’s MPFR arbitrary precision library [20].
– Interval and AffineForm provide implementations of interval and affine arith-

metic. Daisy uses no external libraries for these in order to facilitate extensions
and integration.

– SMTRange implements Rosa’s combination of interval arithmetic with an SMT
solver [14] for improved range bounds. Daisy uses the scala-smtlib library3

to interface with the Z3 and dReal SMT solvers. Other solvers can be added
with little effort, provided they support the SMT-LIB standard [3].

– RoundoffEvaluators implement dataflow roundoff error analysis. The analysis
is parametric in the range method used, and due to its implementation as a
library function can be easily used in different contexts.

– Taylor provides methods for computing and simplifying partial derivatives.
– GeneticSearch provides a generic implementation of a (simple) genetic search,

which is currently used for the rewriting optimization.

The fixed-point precision class in Daisy supports any bitlength (i.e. only
the frontend has a limited selection) and floating-point types can be straight-
forwardly added by specifying the corresponding machine epsilon and repre-
sentable range.

4.3 Implementation Details

Here we provide details about Daisy’s implementation of previous techniques.
The dataflow analysis approach, e.g. in Rosa, only considered arithmetic

3 https://github.com/regb/scala-smtlib.

https://github.com/regb/scala-smtlib
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operations without transcendental functions. Daisy extends this support by
implementing these operations in interval and affine arithmetic. The former is
straight-forward, whereas for AA Daisy computes sound linear approximations
of the functions, following [13] which used this approach in a dynamic analysis.
Following most libraries of mathematical functions, we assume that transcenden-
tal functions are rounded correctly to one unit in the last place. Since internal
computations are performed with rational types, the operations for transcen-
dental functions are approximated with the corresponding outward or upwards
rounding to ensure soundness. To support the combination of interval arith-
metic and SMT, we integrate the dReal solver in Daisy, which provides support
for transcendental functions. Although dReal is only δ-complete, this does not
affect Daisy’s soundness as the algorithm relies on UNSAT answers, which are
always sound in dReal.

Interval subdivision can be an effective tool to reduce overapproximations
in static analysis results, which is why Daisy offers it for all its analyses. Daisy
subdivides every input variable range into a fixed number of subintervals (the
number can be controlled by the user) and takes the cartesian product. The
analysis is then performed separately for each set of subintervals. This clearly
increases the running time, but is also trivially parallelizable.

Daisy also includes an initial implementation of FPTaylor’s optimization-
based static analysis. The major difference is that Daisy does not use a branch-
and-bound algorithm for solving the optimization problem, but relies on the
already existing range analyses. We would like to include a proper optimization
solver in the future; currently custom interfaces have been an obstacle.

5 Experimental Evaluation

We have experimentally evaluated Daisy’s roundoff error analysis on a number of
finite-precision verification benchmarks taken from related work [15,16,31,41].
Benchmarks marked with a superscript T contain transcendental functions. The
goal of this evaluation is twofold. First, Daisy should be able to compute reason-
ably tight error bounds in a reasonable amount of time to be useful. Secondly,
exploiting the fact that Daisy implements several different analysis methods
within a single tool allows us to provide a direct comparison of their tradeoffs.

We compare Daisy with FPTaylor, which has been shown previously to pro-
vide tight error bounds [41]. It furthermore implements the optimization-based
approach, which we re-implement in Daisy (in an albeit preliminary version). We
do not compare against tools which employ dataflow static analysis, as Daisy’s
analyses essentially subsume those.

Comparison with FPTaylor. We first compare roundoff errors computed by
Daisy with different methods against errors computed by FPTaylor (version from
20 Sept 2017) in Table 1. All errors are computed for uniform double floating-
point precision, assuming roundoff errors on inputs. We abbreviate the settings
used in Daisy by e.g. IA - AA, where IA and AA specify the methods used
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Table 2. Execution times of FPTaylor and Daisy for different settings

Benchmark FPTaylor Z3 - AA AA-AA (sub) opt - Z3

bspline 2 s 884 ms 4 s 450 ms 2 s 190 ms 3 s 320 ms
doppler 1 s 465 ms 3 s 221 ms 2 s 657 ms 2 s 939 ms
himmilbeau 660 ms 3 s 545 ms 1 s 975 ms 2 s 760 ms
invertedPend. 14 s 69 ms 3 s 109 ms 2 s 31 ms 2 s 570 ms
kepler 18 s 629 ms 40 s 627 ms 3 s 160 ms 21 s 893 ms
rigidBody 1 s 430 ms 6 s 31 ms 2 s 206 ms 4 s 118 ms
sine 1 s 580 ms 4 s 49 ms 2 s 179 ms 3 s 114 ms
sqrt 7 s 381 ms 4 s 92 ms 1 s 884 ms 2 s 988 ms
traincar 27 s 846 ms 22 s 670 ms 7s 452 ms 15 s 61 ms
turbine 2 s 452 ms 7 s 93 ms 3 s 951 ms 5 s 522 ms
jetEngine 1 s 434 ms 35 s 267 ms 3 s 583 ms 19 s 425 ms
transcendental 34 s 547 ms 2 s 770 ms 2s 959 ms 2 s 865 ms

for computing the ranges and errors, respectively. ‘sub’ means subdivision, ‘rw’
rewriting and ‘opt’ denotes the optimization-based approach. We underline the
lowest roundoff errors computed among the different Daisy settings (without
rewriting). The column marked ‘%’ denotes the factor by which the lowest error
computed by Daisy differs from FPTaylor’s computed error.

FPTaylor supports different backend solvers; we have performed experiments
with the internal branch-and-bound and the Gelpia solver, but observed only
minor differences. We thus report results for the Gelpia solver. We furthermore
chose the lowest verbosity level in both FPTaylor and Daisy to reduce the exe-
cution time. Table 1 also shows an underapproximation of roundoff errors com-
puted using Daisy’s dynamic analysis which provides an idea of the tightness of
roundoff errors.

Table 2 shows the corresponding execution times of the tools. Execution times
are average real time measured by the bash time command. We have performed
all experiments on a Linux desktop computer with an Intel Xeon 3.30GHz pro-
cessor and 32GB RAM, with Scala version 2.11.11.

The focus when implementing Daisy was to provide a solid framework with
modular and clear code, not to improve roundoff error bounds. Nonetheless,
Daisy’s roundoff error bounds are mostly competitive with FPTaylor’s, with the
notable exception of the jetEngine benchmark (additionally, interval arithmetic
fails to bound the divisor away from zero).

Overall we observe that using an SMT solver for tightening ranges is helpful,
but interval subdivision is preferable. Furthermore, using affine arithmetic for
bounding errors is preferable over interval arithmetic. Finally, rewriting can often
improve roundoff error bounds significantly.

Our optimization-based analysis is not yet quite as good as FPTaylor’s, but
acceptable for a first re-implementation. We suspect the difference is mainly due
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to the fact that Daisy does not use a dedicated optimization procedure, which
we hope to include in the future.

Execution times of FPTaylor and Daisy are comparable. It should be noted
that the times are end-to-end, and in particular for Daisy this includes the Scala
compiler frontend, which takes a constant 1.3 s (irrespective of input). Clearly,
with a hand-written parser this could be improved, but we do not consider this
as critical. Furthermore, Daisy performs overflow checks at every intermediate
subexpression; it is unclear whether FPTaylor does this as well.

Table 1 seems to suggest that one should use FPTaylor’s optimization-based
approach for bounding roundoff errors. We include dataflow analysis in Daisy
nonetheless for several reasons. First, dataflow analysis computes overflow checks
without extra cost. Secondly, the optimization-based approach is only applicable
when errors can be specified as relative errors, which is not the case for instance
for fixed-point arithmetic, which is important for many embedded applications.

Fixed-Point vs Floating-Point. In Table 3 we use Daisy to compare round-
off errors for 32-bit fixed-point and 32-bit floating-point arithmetic, with and
without rewriting. For this comparison, we use the dataflow analysis, as the
optimization-based approach is not applicable to fixed-point arithmetic. Not sur-
prisingly, the results confirm that (at least for our examples with limited ranges)
fixed-point arithmetic can provide better accuracy for the same bitlength, and
furthermore that rewriting can improve the error bounds further.

6 Related Work

We have already mentioned the directly related techniques and tools Gappa,
Fluctuat, Rosa, FPTaylor, Real2Float and PRECiSA throughout the paper.
Except for Fluctuat and Rosa, these tools also provide either a proof script
or a certificate for the correctness (of certain parts) of the analysis, which can be
independently checked in a theorem prover. Certificate generation and checking
for Daisy has been described in a separate paper [4].

Daisy currently handles straight-line arithmetic expressions, i.e. it does not
handle conditionals and loops. Abstract interpretation of floating-point programs
handles conditionals by joins, however, for roundoff error analysis this approach
is not sufficient. The real-valued and finite-precision computations can diverge
and a simple join does not capture this ‘discontinuity error’. Programs with
loops are challenging, because roundoff errors in general grow with each loop
iteration and thus a nontrivial fixpoint does not exist in general (loop unrolling
can however be applied). Widening operators compute non-trivial bounds only
for very special cases where roundoff errors decrease with each loop iteration.
These challenges have been (partially) addressed [16,23], and we plan to include
those techniques in Daisy in the future. Nonetheless, conditionals and loops
remain open problems.

Sound techniques have also been applied for both the range and the
error analysis for bitwidth optimization of fixed-point arithmetic, for instance
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Table 3. Roundoff errors for 32-bit floating-point and fixed-point arithmetic.

Z3 - AA Z3 - AA + rewriting
Benchmark float 32 fixed 32 float 32 fixed 32

bspline0 8.69e-8 2.28e-9 8.69e-8 2.28e-9
bspline1 3.77e-7 7.86e-9 2.58e-7 6.00e-9
doppler 2.25e-4 3.52e-6 9.26e-5 1.45e-6
himmilbeau 5.37e-4 8.84e-6 6.85e-4 1.13e-5
invertedPendulum 1.97e-5 3.54e-7 1.30e-5 2.03e-7
kepler0 4.87e-5 7.60e-7 3.06e-5 4.78e-7
kepler1 2.13e-4 3.33e-6 1.76e-4 2.76e-6
kepler2 1.21e-3 1.88e-5 8.85e-4 1.38e-5
rigidBody1 1.73e-4 3.12e-6 1.20e-4 2.30e-6
rigidBody2 1.96e-2 3.13e-4 1.56e-2 2.51e-4
sine 3.73e-7 7.14e-9 3.17e-7 6.68e-9
sineOrder3 6.58e-7 1.31e-8 6.54e-7 1.39e-8
sqroot 1.66e-4 8.00e-6 1.60e-4 7.68e-6
train4 out1 2.30e-1 4.14e-3 1.79e-1 3.34e-3
train4 state9 4.65e-6 1.45e-7 1.79e-6 1.03e-7
turbine1 4.76e-5 1.05e-6 4.66e-5 1.04e-6
turbine2 6.61e-5 1.19e-6 6.40e-5 1.16e-6
turbine3 3.37e-5 7.42e-7 3.21e-5 7.17e-7
jetEngine 6.22 1.00e-1 1.44e-1 2.46e-3

in [28,29,36,38] and Lee et. al. [29] provide a nice overview of static and dynamic
techniques.

Dynamic analysis can be used to find inputs which cause large roundoff
errors, e.g. running a higher-precision floating-point program alongside the orig-
inal one [5] or with a guided search to find inputs which maximize errors [11]. In
comparison, Daisy’s dynamic analysis is a straight-forward approach, and some
more advanced techniques could be integrated as well.

Optimization techniques targeting accuracy of floating-point computations,
like rewriting [37] or mixed-precision tuning [10] include some form of round-
off error analysis, and any of the above approaches, including Daisy’s, can be
potentially used as a building block.

More broadly related are abstract interpretation-based static analyses, which
are sound w.r.t. floating-point arithmetic [6,9,27]. These techniques can prove
the absence of runtime errors, such as division-by-zero, but cannot quantify
roundoff errors. Floating-point arithmetic has also been formalized in theorem
provers and entire numerical programs have been proven correct and accurate
within these [7,39]. Most of these formal verification efforts are, however, to
a large part manual. Floating-point arithmetic has also been formalized in an
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SMT-lib [40] theory and SMT solvers exist which include floating-point decision
procedures [8,19]. These are, however, not suitable for roundoff error quantifica-
tion, as a combination with the theory of reals would be necessary which does
not exist today.

7 Conclusion

We have presented the framework Daisy which integrates several state-of-the-
art techniques for the analysis and optimization of finite-precision programs. It
is actively being developed, improved and extended and we believe that it can
serve as a useful building block in future optimization techniques.
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Abstract. Parity games have important practical applications in formal
verification and synthesis, especially to solve the model-checking prob-
lem of the modal mu-calculus. They are also interesting from the theory
perspective, as they are widely believed to admit a polynomial solution,
but so far no such algorithm is known. In recent years, a number of
new algorithms and improvements to existing algorithms have been pro-
posed. We implement a new and easy to extend tool Oink, which is a
high-performance implementation of modern parity game algorithms. We
further present a comprehensive empirical evaluation of modern parity
game algorithms and solvers, both on real world benchmarks and ran-
domly generated games. Our experiments show that our new tool Oink
outperforms the current state-of-the-art.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players Odd
and Even play an infinite game by moving a token along the edges of the graph.
Each vertex is labeled with a natural number priority and the winner of the
game is determined by the parity of the highest priority that is encountered
infinitely often. Player Odd wins if this parity is odd; otherwise, player Even
wins.

Parity games are interesting both for their practical applications and for
complexity theoretic reasons. Their study has been motivated by their relation
to many problems in formal verification and synthesis that can be reduced to the
problem of solving parity games, as parity games capture the expressive power
of nested least and greatest fixpoint operators [17]. In particular, deciding the
winner of a parity game is polynomial-time equivalent to checking non-emptiness
of non-deterministic parity tree automata [33], and to the explicit model-checking
problem of the modal μ-calculus [14,15,23,32].

Parity games are interesting in complexity theory, as the problem of deter-
mining the winner of a parity game is known to lie in UP∩co-UP [26], as well as
in NP ∩ co-NP [15]. This problem is therefore unlikely to be NP-complete and
it is widely believed that a polynomial solution may exist. Despite much effort,
no such algorithm has yet been found.
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Motivated by recent publications with both novel approaches and improve-
ments to known algorithms, we implement a number of modern solvers in our
new tool Oink, which aims to provide a high-performance implementation of
parity game solvers. Oink is designed as a library that integrates with other
tools and can easily be extended. We use Oink to provide a modern empiri-
cal evaluation of parity game solvers based on both real world benchmarks and
randomly generated games.

In past publications new and improved algorithms are often tested against
the implementation of Zielonka’s algorithm in the PGSolver tool [19]. However,
various recent publications [1,34,40] suggest that much better performance can
be obtained. We combine a number of improvements from the literature [34,40,
41] and propose additional optimizations. We show that our implementation of
Zielonka’s algorithm outperforms PGSolver by several orders of magnitude.

We describe Oink in Sect. 3 and provide accessible descriptions of the imple-
mented state-of-the-art algorithms in Sects. 4–7. We implement the strategy
improvement algorithm (Sect. 4), both the small progress measures and the
recently proposed quasi-polynomial progress measures algorithms (Sect. 5), the
well-known Zielonka algorithm (Sect. 6) as well as a number of related algorithms
from the priority promotion family (Sect. 7). We also propose an alternative
multi-core implementation of strategy improvement.

2 Preliminaries

Parity games are two-player turn-based infinite-duration games over a finite
directed graph G = (V,E), where every vertex belongs to exactly one of two
players called player Even and player Odd, and where every vertex is assigned a
natural number called the priority. Starting from some initial vertex, a play of
both players is an infinite path in G where the owner of each vertex determines
the next move. The winner of such an infinite play is determined by the parity
of the highest priority that occurs infinitely often along the play.

More formally, a parity game � is a tuple (V , V ,E, pr) where V = V ∪ V
is a set of vertices partitioned into the sets V controlled by player Even and
V controlled by player Odd, and E ⊆ V × V is a total relation describing all
possible moves, i.e., every vertex has at least one successor. We also write E(u)
for all successors of u and u → v for v ∈ E(u). The function pr : V → {0, 1, . . . , d}
assigns to each vertex a priority, where d is the highest priority in the game.

We write pr(v) for the priority of a vertex v and pr(V ) for the highest priority
of a set of vertices V and pr(�) for the highest priority in the game �. Further-
more, we write pr−1(i) for all vertices with the priority i. A path π = v0v1 . . . is a
sequence of vertices consistent with E, i.e., vi → vi+1 for all successive vertices.
A play is an infinite path. We write pr(π) for the highest priority in π is π is
finite, or the highest priority that occurs infinitely often if π is infinite. Player
Even wins a play π if pr(π) is even; player Odd wins if pr(π) is odd.

A strategy σ : V → V is a partial function that assigns to each vertex in
its domain a single successor in E, i.e., σ ⊆ E. We typically refer to a strategy
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of player α to restrict σ to all vertices controlled by player α. A player wins a
vertex if they have a strategy such that all plays consistent with this strategy are
winning for the player. A fundamental result for parity games is that they are
memoryless determined [13], i.e., each vertex is winning for exactly one player,
and both players have a strategy for each of their winning vertices.

Algorithms for solving parity games frequently employ (variations of) attrac-
tor computation. Given a set of vertices A, the attractor of A for a player α
represents those vertices that α can force the play toward. We write Attr�

α(A)
to attract vertices in � to A as player α, i.e.,

μZ .A ∪ { v ∈ Vα | E(v) ∩ Z �= ∅ } ∪ { v ∈ Vα | E(v) ⊆ Z }
Informally, we compute the α-attractor of A by iteratively adding vertices to A
of α that have a successor in A and of α that have no successors outside A.

2.1 Solvers

We briefly introduce several approaches to solving parity games. These
approaches can be roughly divided into two categories.

First, several algorithms iteratively perform local updates to vertices until a
fixed point is reached. Each vertex is equipped with some measure which records
the best game either player knows that they can play from that vertex so far.
By updating measures based on the successors, they play the game backwards.
The final measures indicate the winning player of each vertex and typically a
winning strategy for one or both players. The strategy improvement algorithm
(Sect. 4) and the progress measures algorithms (Sect. 5) fall into this category.

Second, several algorithms employ attractor computation to partition the
game into regions that share a certain property. This partition is refined until
the winners of some or all vertices can be identified, as well as the strategy for the
winning player(s). The recursive Zielonka algorithm (Sect. 6) and the recently
proposed priority promotion algorithms (Sect. 7) fall into this category.

2.2 Empirical Evaluation

Our goal in the empirical study is three-fold. First, we aim to compare modern
algorithms and treat them fairly. We therefore need to establish that our imple-
mentation is competitive with existing work. Second, we compare the algorithms
that are implemented in Oink directly. Third, as two algorithms have a parallel
implementation, we also study the obtained parallel speedup and the parallel
overhead when going from a sequential to a multi-core implementation.

We use the parity game benchmarks from model checking and equivalence
checking proposed by Keiren [31] that are publicly available online. This is a
total of 313 model checking and 216 equivalence checking games. We also consider
different classes of random games, in part because the literature on parity games
tends to favor studying the behavior of algorithms on random games. We include
three classes of self-loop-free random games generated using PGSolver with a
fixed number of vertices:
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– low out-degree random games (randomgame N N 1 2 x)
N ∈ { 100, 200, 500, 1000, 2000, 5000, 10000, 20000 }

– fully random games (randomgame N N 1 N x)
N ∈ { 100, 500, 1000, 2000, 4000 }

– low-degree steady games (steadygame N 1 4 1 4)
N ∈ { 100, 200, 500, 1000, 2000, 5000, 10000, 20000 }

We generate 20 games for each parameter N , in total 420 random games. We
include low-degree games, since the solvers may behave differently on games
where all vertices have few edges.

We present the evaluation in two ways. We compare runtimes of algorithms
and penalize algorithms that do not finish on time (with a timeout of 15 min)
by a factor 2× (PAR2), i.e., we assume that their runtime is 2× the timeout.
This may still be quite optimistic. Compared to a timeout of 10 min, only few
more games could be solved in 15 min. We also generate so-called cactus plots
(often used to compare solvers in the SAT community) that show that a solver
solved X models within Y seconds individually.

All experimental scripts and log files are available online via http://www.
github.com/trolando/oink-experiments. The experiments were performed on a
cluster of Dell PowerEdge M610 servers with two Xeon E5520 processors and
24 GB internal memory each. The tools were compiled with gcc 5.4.0.

3 Oink

We study modern parity game algorithms using our research tool named Oink.
Oink is written in C++ and is publicly available under a permissive license via
https://www.github.com/trolando/oink. Oink is easy to extend, as new solvers
subclass the Solver class and only require a few extra lines in solvers.cpp.

Apart from implementing the full solvers described below, Oink also imple-
ments several preprocessors similar to other parity game solvers. We base our
choices mainly on the practical considerations and observations by Friedmann
and Lange [19] and by Verver [41]. We always reorder the vertices by priority and
renumber the priorities from 0 to eliminate gaps (not the same as compression).
The former is beneficial for the attractor-based algorithms in Sects. 6 and 7.
The latter may reduce the amount of memory required for the measures-based
algorithms in Sects. 4 and 5.

The following preprocessors are optional. Oink can perform priority inflation
and priority compression, as described in [19]. We implement self-loop solv-
ing and winner-controlled winning cycle detection, as proposed in [41]. Winner-
controlled winning cycle detection is a prerequisite for the strategy improvement
algorithm of Sect. 4 but is optional for the other algorithms. We trivially solve
games with only a single parity. Finally, we also implement SCC decomposition,
which repeatedly solves a bottom SCC of the game until the full game is solved.

The correctness of an algorithm does not imply that implementations are
correct. Although a formal proof of the implementations would be preferred, we
also implement a fast solution verifier and verify all obtained solutions.

http://www.github.com/trolando/oink-experiments
http://www.github.com/trolando/oink-experiments
https://www.github.com/trolando/oink
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4 Strategy Improvement

Strategy improvement is a technique where each player iteratively improves their
strategies until they are optimal. Strategy improvement algorithms were first
explored for parity games by Jurdziński and Vöge [42] and have been subse-
quently improved in [7,16,20,35,38]. Recently, parallel implementations have
been studied for the GPU [17,24,36]. Fearnley [17] also implements their paral-
lel algorithm for multi-core CPUs. Our treatment in this section is mostly based
on [17,35].

In the strategy improvement algorithm, player Even has a strategy σ and
player Odd has a strategy τ for all their vertices. They improve their strategies
until a fixed point is reached, at which point the game is solved. Instead of
choosing a successor, player Even may also end the play. In the specific algorithm
here, player Even delays selecting a strategy for a vertex until there is a favorable
continuation. As σ and τ cover all vertices, they induce a fixed path from each
vertex. This path is either infinite (a play) or ends at a vertex of player Even.
The strategy is evaluated by computing a valuation for each vertex based on the
current paths. Strategies are improved by choosing the most favorable successor.

The valuation used in e.g. [17,35] assigns to (infinite) plays the value 	 and
to (finite) paths a function L(p) that records for each priority p how often it
occurs in the path. To determine the best move for each player, a total order
� compares valuations as follows. For non-	 valuations L1 and L2, L1 � L2 iff
there exists a highest priority z that is different in L1 and L2, i.e., z = max { z |
L1(z) �= L2(z) }, and either L1(z) < L2(z) if z is even, or L1(z) > L2(z) if z is
odd. Furthermore, L � 	 for any L �= 	. If L1 � L2, then L2 is more favorable
for player Even and L1 is more favorable for player Odd.

Intuitively, player Even likes plays where higher even priorities occur more
often. Furthermore, player Even will end the play unless the highest priority in
the continuation is even. Thus infinite paths are won by player Even and the
valuation 	 represents this. Player Even will always play to 	 and player Odd
will always try to avoid 	. This assumes that no winner-controlled winning cycles
exist where player Odd wins, which can be guaranteed using a preprocessing step
that removes these cycles.

For every strategy σ of player Even, a so-called best response τ of player Odd
minimizes the valuation of each position. Player Even always plays against this
best response. In each iteration, after player Odd computes their best response,
player Even computes all switchable edges based on the current valuation L
and the current strategy σ. An edge (u, v) is switchable if Lv � Lσ(u). Not all
switchable edges need to be selected for the improved strategy, but as argued
in [17], the greedy all-switches rule that simply selects the best edge (maximal
in �) for every position performs well in practice.

There are different methods to compute the best response of player Odd. We
refer again to [17] for a more in-depth discussion. Player Odd can compute their
best response by repeatedly switching all Odd-switchable edges, i.e., edges (u, v)
s.t. Lv � Lτ(u) and Lv is minimal in � of all successors of u.
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1 def strategy-improvement:
2 σ ← (V0 �→ ⊥), τ ← random strategy for Odd
3 repeat
4 repeat
5 compute-valuations(V , σ ∪ τ , L)
6 τ ← τ [SOdd] where SOdd = AllOdd(�, τ, L)

7 until SOdd = ∅
8 mark-won({v ∈ V : Lv = 	})
9 σ ← σ[SEven] where SEven = AllEven(�, σ, L)

10 until SEven = ∅
11 return (W0, W1, σ, τ) where W0 ← {v ∈ V : Lv = 	}, W1 ← V \ W0

Algorithm 1. The strategy improvement algorithm.

1 def backwards-update(v, into, L):
2 for u ∈ into(v) :
3 Lu ← Lv[pr(u) �→ Lv(pr(u)) + 1]
4 spawn compute-valuation(u, σ, L)

5 sync all

6 def compute-valuations(V , σ, L):
7 parallel for v ∈ V : Lv ← 	 ; into(v) ← ∅
8 parallel for v ∈ V | σ(v) 
= ⊥ : add v to into(σ(v))
9 parallel for v ∈ V | σ(v) = ⊥ :

10 Lv ← 0 [pr(v) �→ 1]
11 backwards-update(v, into, L)

Algorithm 2. Computing valuations in parallel.

The players thus improve their strategies as in Algorithm 1, where AllOdd and
AllEven compute all switchable edges as described above. The initial strategy for
player Even is to always end the play. Player Odd computes their best response,
starting from a random τ initially. Player Even then improves their strategy once.
They improve their strategies until a fixed point is reached. Then all vertices with
valuation 	 are won by player Even with strategy σ and all other vertices are
won by player Odd with strategy τ [17]. We extend the algorithm given in [17]
at line 8 by marking vertices with valuation 	 after player Odd computes their
best response as “won”. We no longer need to consider them for AllOdd and
AllEven as player Odd was unable to break the infinite play and thus they are
won by Even.

The valuations can be computed in different ways. Fearnley implements a
parallel algorithm that uses list ranking in two steps. The first step computes an
Euler tour of the game restricted to chosen strategies σ and τ resulting in a list.
The second step uses a three-step parallel reduction algorithm to sum all values
of the list. The list is divided into sublists which are each summed independently
in the first sweep, all subresults are then propagated in the second sweep and
then the final values are computed in the third sweep. See further [17].
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We propose an alternative parallel algorithm to compute the valuation. We
start from each Even vertex where the path ends and perform updates along a
recursive backwards search, processing predecessors in parallel using task paral-
lelism. Any vertex that is not visited has valuation 	. See Algorithm 2. This algo-
rithm is implemented in Oink using the high-performance work-stealing frame-
work Lace [12]. When updating the valuations in L, we first sweep twice over
all vertices to initialize L for each vertex to 	 and to add all vertices to into(v)
that have their strategy to v. We also implement computing switchable edges in
parallel via a straight-forward binary reduction using Lace.

Table 1. Runtimes in sec. (PAR2) and number of timeouts (15 min) of the three
solvers PGSolver (pgsi), the solver by Fearnley [17] with sequential (parsi-seq) and
multi-core variants, and Oink with sequential (psi) and multi-core variants.

Model checking Equiv checking Random games Total

psi-8 694 0 1078 0 315 0 2087 0

psi 860 0 3262 0 480 0 4603 0

psi-1 1190 0 4090 0 487 0 5767 0

parsi-seq 1471 0 4199 0 1534 0 7204 0

parsi-8 2501 1 2908 0 56529 27 61938 28

parsi-1 4200 1 13867 6 71280 39 89347 46

pgsi 167596 88 95407 49 58839 27 321842 164

Empirical Evaluation. We compare the performance of Oink with the sequen-
tial and parallel solvers (1 or 8 threads) by Fearnley [17] and the “optstratim-
prov” solver in PGSolver. We disable optional preprocessing in all solvers. We
only consider games without winner-controlled winning cycles, which are 289
model checking, 182 equivalence checking and 279 random games, in total 750
games.

See Table 1. We observe that PGSolver is vastly outperformed by Oink and
the sequential solver of Fearnley. PGSolver timed out for 160 games, whereas
psi and parsi-seq only timed out for 1 and 5 models, respectively. We observe
similar parallel speedup for the parallel solvers, although Fearnley’s solver has
more overhead from sequential to parallel with 1 thread. This might be due
to the extra work to produce the Euler tour and to perform list ranking. The
speedup we obtain with Oink is not very impressive, but the vast majority of
the games are solved within 1 s already. Furthermore, psi and parsi-seq are
fairly close in performance. This is not a surprise, as their implementations are
similar; the main difference is that Fearnley uses a forward search and we use a
backward search. Hence, Oink is faster, but not by a large margin. Finally, we
remark that Fearnley reports excellent results for list ranking on GPUs, whereas
our algorithm is designed for a multi-core architecture.
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5 Progress Measures

Progress measures is a technique that assigns to each vertex a monotonically
increasing measure. The measure of each vertex is lifted based on the measures
of its successors. By lifting vertices, players Even and Odd essentially play the
game backwards. The measure represents a statistic of the most optimal play so
far from the vertex, without storing the plays explicitly.

While progress measures have been used elsewhere, they were introduced
for parity games by Jurdziński [27]. Several improvements to the original algo-
rithm are due to Verver [41] and Gazda and Willemse [22]. A number of parallel
implementations have been proposed for the Playstation 3 [6], for multi-core
architectures [25,37] and for GPUs [8,24]. Furthermore, Chatterjee et al. pro-
posed an implementation using BDDs [10]. Different types of progress measures
were introduced after the recent breakthrough of a quasi-polynomial time algo-
rithm due to Calude et al. [9], which resulted in the progress measures algorithms
by Jurdziński et al. [28] and by Fearnley et al. [18]. This section studies small
progress measures [27] and quasi-polynomial progress measures [18].

5.1 Small Progress Measures

The original small progress measures algorithm is due to Jurdziński [27]. We rely
on the operational interpretation by Gazda and Willemse [22] and propose the
cap-and-carryover mechanism to further understand the algorithm.

Progress measures record how favorable the game is for one of the players.
W.l.o.g. we assume even progress measures. Given the highest priority d, define
M� ⊆ Nd ∪ {	} to be the largest set containing 	 (	 /∈ Nd) and only those d-
tuples with 0 (denoted as ) on odd positions. An even progress measure m ∈ Nd

essentially records for a vertex v how often each even priority p is encountered
along the most optimal play (starting at v) so far, until a higher priority is
encountered, i.e., until p no longer dominates. Such a prefix of the play is called
a p-dominated stretch. Suppose that the sequence of priorities for a given play
π is 00102120232142656201, then m = { 2 3 1 2 }, since the play starts with a
0-dominated stretch containing two 0s, with a 2-dominated stretch containing
three 2s, with a 4-dominated stretch containing one 4, and with a 6-dominated
stretch containing two 6s. Furthermore, the special measure 	 represents that
the vertex can be won by player Even.

A total order � compares measures as follows. For non-	 measures m1 and
m2, m1 � m2 iff there exists a highest priority z = max { z | m1(z) �= m2(z) }
and m1(z) < m2(z). Furthermore, m � 	 for all m �= 	. We define a derived
ordering �p by restricting z to priorities ≥ p. Examples:

{1 1 1} �0 {0 0 2}
{3 2 1} �0 {0 3 1}
{1 2 1} �1 {0 2 1}
{3 3 1} �4 {0 0 1}
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To compute the progress measure for vertex v when playing to vertex w,
given current measures ρ : V → M�, we define Prog(ρ, v, w) as follows:

Prog(ρ, v, w) :=

{
min{m ∈ M� | m �pr(v) ρ(w) } pr(v) is even
min{m ∈ M� | m �pr(v) ρ(w) } pr(v) is odd

Prog computes the measure of the play obtained by playing from v to the
play recorded in ρ(w). By choosing the lowest measure m according to �pr(v),
we ensure that all m(p) for p < pr(v) are set to 0. The inequality is strict for
even priorities pr(v) to ensure that m(pr(v)) increases.

Player Even wants to achieve the highest measure, whereas player Odd wants
to achieve the lowest measure. We define Lift(ρ, v) as follows:

Lift(ρ, v) =

{
ρ [ v → max{ ρ(v),max{Prog(ρ, v, w) | v → w } } ] if v ∈ V

ρ [ v → max{ ρ(v),min{Prog(ρ, v, w) | v → w } } ] if v ∈ V

By definition, the Lift operation increases measures monotonically. For the
specific algorithm described here, we also observe that Prog(ρ, v, w) �pr(v) ρ(w)
and therefore Lift would even monotonically increase ρ without taking the maxi-
mum of the current measure and the best updated successor measure in a lifting
procedure that starts with ρ = V → 0.

If we iteratively lift vertices from ρ = V → 0 using Lift, eventually some
vertex may have a measure m such that m(p) for some p is higher than the
number of vertices with priority p, i.e., m(p) > |Vp|. In this case, we know that
m represents a play that visits at least one vertex with priority p twice and thus
contains a cycle dominated by p. Furthermore, player Odd cannot escape from
this cycle unless by playing to a higher losing priority. This follows from the
fact that if player Odd could escape from the cycle, then it would not lift to
this measure. The option to play to the higher losing priority is not considered
because a measure to a higher priority is � a measure that records a cycle.

We need a mechanism to let player Odd play to the next higher priority if
it is forced into a cycle. However, we cannot let just any vertex play to a higher
priority when its measure records a cycle, since some other vertex may escape
to a lower higher priority. Therefore we need a mechanism that finds the lowest
escape for player Odd. Small progress measures achieves this using a cap-and-
carryover mechanism. M� is restricted such that values for each even priority p
may not be higher than |Vp|. When this cap is reached, Prog will naturally find
a next higher m by increasing the value of higher priorities and eventually reach
	. For example, if we have two vertices of priority 2 and two vertices of priority
4 in a game and there is a self-loop of priority 2, measures increase as follows:
{0 2 0}, {0 0 1}, {0 1 1}, {0 2 1}, {0 0 2}, {0 1 2}, {0 2 2}, 	.

Thus all vertices involved in a cycle will find their measures slowly rising until
the measure of some vertex controlled by Odd becomes equal to the measure
when playing to a vertex that is not rising. This is the lowest escape. If no such
escape is found, then the measures rise until 	 and these vertices are won by
player Even. The slowly increasing measures no longer follow the operational
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interpretation described above, but can be understood as player Odd looking for
the lowest escape.

We refer to [27] for the proof that the fixed point of applying the above lifting
operation solves the parity game, such that vertices with measure 	 are won by
player Even and all other vertices are won by player Odd with a strategy that
chooses the successor for which Prog(ρ, v, w) is the lowest.

We implement three known improvements. Improvements 2 and 3 are also
implemented by PGSolver [19].

1. When a vertex with some even priority p is raised to 	, the cap of p may be
lowered. The reason is that if a play records priority p |Vp| times, it either
contains a vertex now won by player Even or a cycle of priority p [41].

2. Small progress measures only computes the strategy for player Odd accord-
ing to measures for player Even. We compute both even and odd measures
simultaneously to compute the strategy for both players.

3. In addition, we occasionally halt the lifting procedure to perform an attractor
computation for player Even to the set of even-liftable vertices. Any vertices
not in this set are won by player Odd. We can immediately lift these vertices to
	 in the odd measures. We perform this analysis also for odd -liftable measures
to potentially lift vertices to 	 in the even measures.

5.2 Quasi-polynomial Progress Measures

Different types of progress measures were introduced after the recent break-
through of a quasi-polynomial time algorithm due to Calude et al. [9], which
resulted in the progress measures algorithms by Jurdziński et al. [28] and by
Fearnley et al. [18]. We only briefly and informally describe the idea of [18].
(Even) measures are k-tuples M : (N∪{⊥})k∪{	}, which record that the optimal
play consists of consecutive stretches that are dominated by vertices with even
priority. For example, in the path 1213142321563212, all vertices are dominated
by each pair of underlined vertices of even priority. k is such that there are fewer
than 2k vertices with even priority in the game. An 8-tuple { 2 2 4 ⊥ 5 ⊥ 6 ⊥}
denotes a game with consecutive stretches of 1, 2, 4, 16 and 64 even vertices,
where the first dominating vertex has priority M(i) and may actually be odd
instead of even. If the first dominating vertex has an odd priority, then player
Even must reach a higher priority before continuing to build a play where they
have more dominating even vertices than are in the game. If player Even can
visit more dominating even vertices than are in the game, then at least one of
these is visited twice and therefore player Even knows that they can win and
lifts to 	.

5.3 Empirical Evaluation

We compare our implementation of small progress measures and quasi-
polynomial progress measures to the small progress measures implementation of
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Table 2. Runtimes in sec. (PAR2) and number of timeouts (15 min) of PGSolver
(pgspm), pbespgsolve (pbesspm) and the implementations spm and qpt in Oink.

Model checking Equiv checking Random games Total

spm 3637 1 7035 0 168271 93 178944 94

qpt 122549 64 65310 31 66303 35 254162 130

pbesspm 38397 20 52422 27 183742 101 274561 148

pgspm 88800 45 59885 30 320666 171 469351 246

pbespgsolve that comes with the mCRL2 model checker [11,41] and the imple-
mentation of small progress measures in PGSolver [19]. Unfortunately, the solver
used in [18] contains proprietary source code and cannot be compiled and com-
pared. For this comparison, we disabled optional preprocessing, i.e., removing
self-loops, winner-controlled winning cycles and solving single-parity games.

See Table 2. Although Fearnley et al. [18] say that the QPT solver is mainly
interesting for the theoretical result rather than practical performance, we
observe that qpt outperforms the other solvers for random games. Oink is faster
than PGSolver, especially for model checking and equivalence checking.

6 Zielonka’s Recursive Algorithm

The algorithm by Zielonka [43] is a recursive solver that despite its relatively bad
theoretical complexity is known to outperform other algorithms in practice [19].
Furthermore, tight bounds are known for various classes of games [21].

Zielonka’s recursive algorithm is based on attractor computation. At each
step, given current subgame �, the algorithm removes the attractor A :=
Attr�

α(pr−1(pr(�))), i.e., all vertices attracted to the current highest vertices of
priority p := pr(�) for player α = p mod 2, and recursively computes the win-
ning regions (W ,W ) of the remaining subgame � \ A. If the opponent α can
attract vertices in A to Wα, then α wins W ′

α := Attr�

α(Wα) and the solution for
the remainder � \ W ′

α is computed recursively. Otherwise, α wins A and no fur-
ther recursion is necessary. The strategies for both players are trivially obtained
during attractor computation and by assigning to winning p-vertices in A any
strategy to vertices in Wα ∪ A.

Zielonka’s original algorithm has been extended and improved over the years.
In his thesis, Verver [41] improves the partitioning of the game after computing
A by extending A with the attractors of the next highest vertices if they are
of the same parity. The original algorithm always recomputes the solution of
�\W ′

α if Wα is nonempty, even if no vertices are attracted to Wα. Liu et al. pro-
pose that this is not necessary [34]. See Algorithm 3 for the recursive algorithm
with these modifications. Other extensions that we do not consider here are the
subexponential algorithm [29] and the big steps algorithm [39] that have been
reported to perform slower than ordinary Zielonka [19]. Also, variations using
BDDs have been proposed [2,30].
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1 def zielonka(�):
2 if � = ∅ : return ∅, ∅
3 α ← pr(�) mod 2
4 A ← attr(�, α)
5 W , W ← zielonka(� \ A)

6 W ′
α ← Attr�

α(Wα)
7 if W ′

α = Wα :
8 Wα ← Wα ∪ A
9 else:

10 W , W ← zielonka(� \ W ′
α)

11 Wα ← Wα ∪ W ′
α

12 return W , W

13 def attr(�, α):
14 A ← ∅
15 while pr(� \ A) =2 α : A ← A ∪ Attr

�\A
α (pr−1(pr(� \ A))

16 return A

Algorithm 3. The recursive Zielonka algorithm.

Although the implementation of the recursive algorithm in PGsolver [19] is
typically used for comparisons in the literature, improved implementations have
been proposed by Verver [41], Di Stasio et al. [40], Liu et al. [34], and Arcucci
et al. [1]. Verver suggests to record the number of remaining “escaping” edges for
each vertex during attractor computation, to reduce the complexity of attractor
computation at the cost of an extra integer per vertex. Di Stasio et al. avoid cre-
ating copies of the game for recursive operations by recording which vertices are
removed in a special array. Recently, Arcucci et al. extended the implementation
in [40] with a multi-core implementation of attractor computation [1].

The implementation in Oink is based upon the ideas described above. Fur-
thermore, we improve the implementation using the following techniques.

– Instead of creating copies of the “removed” array [40] for each recursive step,
we use a single “region” array that stores for each vertex that it is attracted
by the rth call to attr. This value is initially ⊥ for all vertices and is reset to
⊥ for vertices in � \ W ′

α (line 10). We record the initial r at each depth and
thus derive that all vertices with a value ≥ r or ⊥ are part of the subgame.

– As a preprocessing step, we order all vertices by priority. We can then quickly
obtain the highest vertex of each subgame.

– We eliminate the recursion using a stack.
– We implement an alternative lock-free attractor, relying on the work-stealing

library Lace [12] that provides fine-grained load balancing.

In the interest of space, we cannot describe the multi-core attractor in-depth.
This implementation is fairly straightforward. We implement the attractor recur-
sively where the work-stealing framework runs the recursive operations in paral-
lel. Like typical lock-free algorithms, we rely on the compare-and-swap operation
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Table 3. Runtimes in sec. (PAR2) and number of timeouts (15 min) of the four solvers
PGSolver (pgzlk), SPGSolver (spg), pbespgsolve (pbeszlk) and Oink (sequential zlk,
multi-core zlk-1 and zlk-8, unoptimized uzlk).

Model checking Equiv checking Random games Total

zlk-8 94 0 415 0 11 0 521 0

zlk 88 0 472 0 6 0 566 0

zlk-1 97 0 512 0 7 0 616 0

uzlk 89 0 472 0 69 0 630 0

pbeszlk 64 0 513 0 338 0 915 0

spg-seq 58 0 198 0 694 0 950 0

spg-mc 389 0 1451 0 72608 37 74447 37

pgzlk 65905 33 68013 36 41629 14 175547 83

to implement safe communication between threads. The attractor uses this oper-
ation when manipulating the number of escaping edges and to “claim” a vertex
by setting its value in the region array from ⊥ to r.

Empirical Evaluation. We compare our implementation of Zielonka’s recur-
sive algorithm with and without the optimizations of Algorithm 3 to PGSolver,
to Verver’s implementation pbespgsolve [11,41] and to SPGSolver [1,40]. Unfor-
tunately, the Java version of SPGSolver (all three variations) suffers from severe
performance degradation for unknown reasons. They also provide a C++ imple-
mentation in their online repository, which we used instead. The multi-core ver-
sion of the SPGSolver tool relies on async tasks provided by C++11. Similar
to the previous sections, we disable the optional preprocessors that solve single
parity games, remove self-loops and solve winner-controlled winning cycles.

See Table 3. The results show that the implementation in Oink outperforms
PGSolver by several orders of magnitude on all benchmark types. PGSolver
timed out for 83 of all 949 games. The solvers spg-seq and pbeszlk are faster
than Oink on the model checking and equivalence checking games, but are sig-
nificantly outperformed on random games. We also observe severe performance
degradation for spg-mc on random games. It appears that our parallel imple-
mentation of Zielonka’s algorithm also does not scale well. Finally, there seems
to be no significant difference between the optimized and unoptimized versions
of Zielonka’s algorithm, except for random games.

7 Priority Promotion

In recent work, a new family of algorithms has been proposed based on priority
promotion [5]. Priority promotion starts with a similar decomposition of the
game as Zielonka’s recursive algorithm. Priority promotion is based on the insight
that a recursive decomposition based on attractor computation leads to regions
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Table 4. Runtimes in sec. (PAR2) and number of timeouts (15 min) of the five priority
promotion solvers in Oink.

Model checking Equiv checking Random games Total

ppp 81 0 382 0 12 0 475 0

pp 82 0 382 0 12 0 476 0

rr 81 0 385 0 12 0 477 0

dp 84 0 389 0 15 0 488 0

rrdp 83 0 394 0 14 0 491 0

with a specific property related to the highest priority in the region, called its
measure p. This property is that all plays that stay in the region are won by
the player who wins the highest priority p, denoted by player α. The other
player α has three options. They either lose the game by staying in the region,
or they can leave the region by playing to an α-region of higher measure, or
they can leave the region to a lower region of either player via a vertex with
priority p. The goal of α is to find “closed” α-regions, where α cannot escape
to lower regions. The result is a region where player α either loses, or leaves the
region to a higher α-region which may or may not be closed. The measure of the
closed α-region is then “promoted” to the measure of the lowest higher region
to which α can escape and the attractor-based decomposition is recomputed for
all lower regions. The promoted region may now attract from regions with a
measure between its original measure and its promoted measure, thus requiring
recomputing the decomposition. When player α cannot escape from an α-region
to a higher α-region, player α is the winner of all vertices in the region.

Priority promotion was proposed in [5] and improved in [3,4]. The original PP
algorithm [5] forgets all progress (“resets”) in lower regions after promotion. The
PP+ algorithm [3] only resets lower regions of player α. The RR algorithm [4]
only resets some lower regions of player α. The DP algorithm [3] uses a heuristic
to delay certain promotions to avoid resets. We implement all four algorithms and
also combine the DP algorithm, which is based on PP+, with the RR algorithm.

Empirical Evaluation. We compare our implementation of five variations of
priority promotion in Oink. As we do not compare with other solvers, we enable
the optional preprocessors that solve single parity games, remove self-loops and
solve winner-controlled winning cycles.

See Table 4. Overall, we see that the simplest solver pp performs just as
good as the more complex solvers. The motivation for the variations is based
on crafted families that require an exponential number of promotions. The pp
solver may be most vulnerable to these crafted families, but on practical games
and random games there is no significant difference.
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8 Conclusions

See Table 5 for a comparison of the five main sequential algorithms in Oink,
including the preprocessing that removes winner-controlled winning cycles, self-
loops and solves single parity games. The results show that the zlk and the
pp solvers have similar performance and outperform the other solvers. See also
Fig. 1 for a cactus plot of these five solvers.

Priority promotion is a powerful and attractive idea, as promoting closed
α-regions is similar to cap-and-carryover in small progress measures. Attractor
computation finds such regions directly whereas value iteration algorithms may
require many iterations. We confirm the observations in [5] that the algorithm
has a good performance but it is not faster than Zielonka’s algorithm.

In this work, we studied modern parity game algorithms using a new tool
named Oink. Oink is publicly available via https://www.github.com/trolando/
oink. We implemented a number of modern algorithms and provided a compre-
hensive description of these algorithms, introducing cap-and-carryover to under-
stand small progress measures. We proposed improvements to strategy improve-
ment and to Zielonka’s algorithm. We presented an empirical evaluation of Oink,
comparing its performance with state-of-the-art solvers, especially the popular
PGSolver tool. The results demonstrate that Oink is competitive with other

Table 5. Runtimes in sec. (PAR2) and number of timeouts (15min) of the sequential
implementations of the five solvers in Oink described in this paper.

Model checking Equiv checking Random games Total

pp 82 0 382 0 12 0 476 0

zlk 78 0 393 0 10 0 481 0

psi 231 0 2440 0 689 0 3359 0

spm 1007 0 3079 0 156885 87 160971 87

qpt 59559 31 60728 31 62104 33 182391 95

Fig. 1. A cactus plot of five sequential solvers implemented in Oink. The plot shows
how many games are (individually) solved within a certain amount of time.

https://www.github.com/trolando/oink
https://www.github.com/trolando/oink
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implementations and in fact outperforms PGSolver for all algorithms, especially
Zielonka’s recursive algorithm. This result is particularly interesting considering
that many publications compare the performance of novel ideas to Zielonka’s
algorithm in PGSolver.

Acknowledgements. We thank Tim Willemse and John Fearnley for their helpful
comments and Jaco van de Pol for the use of their computer cluster.
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Abstract. Modern system design often requires comparing several mod-
els over a large design space. Different models arise out of a need to
weigh different design choices, to check core capabilities of versions with
varying features, or to analyze a future version against previous ones.
Model checking can compare different models; however, applying model
checking off-the-shelf may not scale due to the large size of the design
space for today’s complex systems. We exploit relationships between dif-
ferent models of the same (or related) systems to optimize the model-
checking search. Our algorithm, D3, preprocesses the design space and
checks fewer model-checking instances, e.g., using nuXmv. It automat-
ically prunes the search space by reducing both the number of models
to check, and the number of LTL properties that need to be checked
for each model in order to provide the complete model-checking ver-
dict for every individual model-property pair. We formalize heuristics
that improve the performance of D3. We demonstrate the scalability of
D3 by extensive experimental evaluation, e.g., by checking 1,620 real-
life models for NASA’s NextGen air traffic control system. Compared to
checking each model-property pair individually, D3 is up to 9.4× faster.

1 Introduction

In the early phases of design, there are frequently many different models of the
system under development [2,23,29] constituting a design space. We may need
to evaluate different design choices, to check core capabilities of system versions
with varying feature-levels, or to analyze a future version against previous ones
in the product line. The models may differ in their assumptions, implementa-
tions, and configurations. We can use model checking to aid system development
via a thorough comparison of the set of system models against a set of prop-
erties representing requirements. Model checking, in combination with related
techniques like fault-tree analysis, can provide an effective comparative analysis
[23,29]. The classical approach checks each model one-by-one, as a set of indepen-
dent model-checking runs. For large and complex design spaces, performance can
be inefficient or even fail to scale to handle the combinatorial size of the design
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space. Nevertheless, the classical approach remains the most widely used method
in industry [3,23,25,29,30]. Algorithms for family-based model checking [11,13]
mitigate this problem but their efficiency and applicability still depends on the
use of custom model checkers to deal with model families.

We assume that each model in the design space can be parameterized over
a finite set of parametric inputs that enable/disable individual assumptions,
implementations, or behaviors. It might be the case that for any pair of models
the assumptions are dependent, their implementations contradict each other,
or they have the same behavior. Since the different models of the same system
are related, it is possible to exploit the known relationships between them, if
they exist, to optimize the model checking search. These relationships can exist
in two ways: relationships between the models, and relationships between the
properties checked for each model.

We present an algorithm that automatically prunes and dynamically orders
the model-checking search space by exploiting inter-model relationships. The
algorithm, Discover Design-Space Dependencies (D3), reduces both the number
of models to check, and the number of LTL properties that need to be checked
for each model. Rather than using a custom model checker, D3 works with any
off-the-shelf checker. This allows practitioners to use state-of-the-art, optimized
model-checking algorithms, and to choose their preferred model checker, which
enables adoption of our method by practitioners who already use model check-
ing with minimum change in their verification workflow. We reason about a
set of system models by introducing the notion of a Combinatorial Transition
System (CTS). Each individual model, or instance, can be derived from the
CTS by configuring it with a set of parameters. Each transition in the CTS is
enabled/disabled by the parameters. We model check each instance of the CTS
against sets of properties. We assume the properties are in Linear Temporal
Logic (LTL) and are independent of the choice of parameters, though not all
properties may apply to all instances. D3 preprocesses the CTS to find relation-
ships between parameters and minimizes the number of instances that need to be
checked to produce results for the whole set. It uses LTL satisfiability checking
[33] to determine the dependencies between pairs of LTL properties, then reduces
the number of properties that are checked for each instance. D3 returns results
for every model-property pair in the design space, aiming to compose these
results from a reduced series of model-checking runs compared to the classical
approach of checking every model-property pair. We demonstrate the industrial
scalability of D3 using a set of 1,620 real-life, publicly-available SMV-language
benchmark models with LTL specifications; these model NASA’s NextGen air
traffic control system [8,23,29]. We also evaluate the property-dependence anal-
ysis separately on real-life models of Boeing AIR 6110 Wheel Braking System
[3] to evaluate D3 in multi-property verification workflows.

Related Work. One striking contrast between D3 and related work is that
D3 is a preprocessing algorithm, does not require custom modeling, and works
with any off-the-shelf LTL model checker. Parameter synthesis [9] can generate
the many models in a design space that can be analyzed by D3; however existing
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parameter synthesis techniques require custom modeling of a system. We take
the easier path of reasoning over an already-restricted set of models of interest to
system designers. D3 efficiently compares any set of models rather than finding
all models that meet the requirements. Several parameter synthesis approaches
designed for parametric Markov models [15,16,24,31] use PRISM and compute
the region of parameters for which the model satisfies a given probabilistic
property (PCTL or PLTL); D3 is an LTL-based algorithm. Parameter synthe-
sis of a parametric Markov model with non-probabilistic transitions can gen-
erate the many models that D3 can analyze. In multi-objective model check-
ing [1,21,22,28], given a Markov decision process and a set of LTL properties,
the algorithms find a controller strategy such that the Markov process satisfies
all properties with some set probability. Differently from multi-objective model
checking, which generates “trade-off” Pareto curves, D3 gives a boolean result.
The parameterized model checking problem (PCMP) [20] deals with infinite
families of homogeneous processes in a system; in our case, the models are finite
and heterogeneous. Specialized model-set checking algorithms [18] can check the
reduced set of D3 processed models.

In multi-property model checking, multiple properties are checked on the
same system. Existing approaches simplify the task by algorithm modifications
[4,7], SAT-solver modifications [26,27], and property grouping [5,6]. The inter-
property dependence analysis of D3 can be used in multi-property checking. We
compare D3 against the affinity [6] based approach to property grouping.

Product line verification techniques, e.g., with Software Product Lines (SPL),
also verify parametric models describing large design spaces. We borrow the
notion of an instance, from SPL literature [32,34]. An extension to NuSMV in
[13] performs symbolic model checking of feature-oriented CTL. The symbolic
analysis is extended to the explicit case and support for feature-oriented LTL in
[11,12]. The work most closely related to ours is [17] where product line verifica-
tion is done without a family-based model checker. D3 outputs model-checking
results for every model-property pair in the design space (e.g. all parameter
configurations) without dependence on any feature whereas in SPL verification
using an off-the-shelf checker, if a property fails then it isn’t possible to know
which models do satisfy the property [14,17].

Contributions. The preprocessing algorithm presented is an important step-
ping stone to smarter algorithms for checking large design spaces. Our contribu-
tions are summarized as follows:

1. A fully automated, general, and scalable algorithm for checking design spaces;
it can be applied to LTL model checking problems without major modifica-
tions to the system designers’ verification workflow.

2. Modification to the general model-checking procedure of sequentially checking
properties against a model to a dynamic procedure; the next property to check
is chosen to maximize the number of yet-to-be-checked properties for which
the result can be determined from inter-property dependencies.

3. Comparison of our novel inter-property dependence analysis to existing work
in multi-property verification workflows [6].
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4. Extensive experimental analysis using real-life benchmarks; all reproducibility
artifacts and source code are publicly available.

2 Preliminaries

Definition 1. A labeled transition system (LTS) is a system model of the form
M = (Σ , S, s0, L, δ) where,

1. Σ is a finite alphabet, or set of atomic propositions,
2. S is a finite set of states,
3. s0 ∈ S is an initial state,
4. L : S → 2Σ is a labeling function that maps each state to the set of atomic

propositions that hold in it, and
5. δ : S → S is the transition function.

A computation path, or run of LTS M is a sequence of states π = s0→s1→ . . . →sn

over the word w = L(s0), L(s1), . . . , L(sn) such that si ∈ S for 0 ≤ i ≤ n, and
(si, si+1) ∈ δ for 0 ≤ i < n. Given a LTL property ϕ and a LTS M , M models ϕ,
denoted M |= ϕ, iff ϕ holds in all possible computation paths of M .

Definition 2. A parameter Pi is a variable with the following properties.

1. The domain of Pi, denoted �Pi�, is a finite set of possible assignments to Pi.
2. Parameter Pi is set by assigning a single value from �Pi�, i.e. Pi = dPi

∈ �Pi�.
A non-assigned parameter is considered unset.

3. Parameter setting is static, i.e., it does not change during a run of the system.

Let P be a finite set of parameters. |P | denotes the number of parameters.
For each Pi ∈ P , |Pi| denotes the size of the domain of Pi. Let Form(P )
denote the set of all Boolean formulas over P generated using the BNF grammar
ϕ ::= � | Pi == D and D ::= Pi1 | Pi2 | . . . | Pin ; for each Pi ∈ P , n = |Pi|,
and �Pi� = {Pi1 , Pi2 , . . . , Pin}. Therefore, Form(P ) contains � and equality
constraints over parameters in P .

Definition 3. A combinatorial transition system (CTS) is a combinatorial sys-
tem model MP = (Σ , S, s0, L, δ, P, LP ), such that (Σ , S, s0, L, δ) is a LTS and

1. P is a finite set of parameters to the system, and
2. LP : δ → Form(P ) is function labeling transitions with a guard condition.

We limit the guard condition over a transition to � or an equality constraint
over a single parameter for simpler expressiveness and formalization. However,
there can be multiple transitions between any two states with different guards.
A transition is enabled if its guard condition evaluates to true, otherwise, it
is disabled. A label of � implies the transition is always enabled. A possible
run of a CTS is a sequence of states πP = s0

ν1→s1
ν2→ . . .

νn→sn over the word
w = L(s0), L(s1), . . . , L(sn) such that si ∈ S for 0 ≤ i ≤ n, νi ∈ Form(P ) for
0 < i ≤ n, and (si, si+1) ∈ δ and (si, si+1, νi+1) ∈ LP for 0 ≤ i < n, i.e., there
is transition from si to si+1 with guard condition νi+1. A prefix α of a possible
run πP = α

νi→ . . .
νn→sn is also a possible run.
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Fig. 1. An example of a combinatorial
transition system MP with parameters
P = {P1, P2, P3}.

Example 1. A Boolean parameter has
domain {true, false}. Figure 1 shows
a CTS with Boolean parameters P =
{P1, P2, P3}. For brevity, guard condi-
tion Pi == true is written as Pi, while
Pi == false is written as ¬Pi. A tran-
sition with label P1 is enabled if P1 is
set to true. Similarly, a label of ¬P3

implies the transition is enabled if P3

is set to false.

Definition 4. A parameter configuration c for a set of parameters P is a k-
tuple (dP1 , dP2 , . . . , dPk

), for k = |P |, that sets each parameter in P , i.e., for
every 1 ≤ i ≤ k, Pi = dPi

and dPi
∈ �Pi� is a setting. The set of all possible

configurations C over P is equal to P1 ×P2 × . . .×Pk where × denotes the cross
product. The setting for Pi in configuration c is denoted by c(Pi).

A configured run of a CTS MP over a configuration c, or c-run, is a sequence
of states πP (c) = s0

ν1−→ s1
ν2−→ . . .

νn−→ sn such that πP (c) is a possible run, and
c � νi for 0 < i ≤ n, where � denotes propositional logic satisfaction of the guard
condition νi under parameter configuration c. Given a CTS MP and a parameter
configuration c, a state t is reachable iff there exists a c-run such that sn = t,
denoted s0

∗−→
c

t, i.e., t can be reached in zero or more transitions. A transition

with guard ν is reachable iff (sj , sj+1, ν) ∈ LP , (sj , sj+1) ∈ δ, and s0
∗−→
c

sj .

Definition 5. An instance of a CTS MP = (Σ, S, s0, L, δ, P, LP ) for parameter
configuration c is a LTS MP (c) = (Σ, S, s0, L, δ′) where δ′ = {t ∈ δ | c � LP (t)}.

Given a LTL property ϕ and a CTS MP = (Σ, S, s0, L, δ, P, LP ), the model
checking problem for MP is to find all parameter configurations c ∈ C over P
such that ϕ holds in all c-runs of MP , or all computation paths of LTS MP (c).

Definition 6. Given a CTS MP with parameters Pi, Pj , and a parameter con-
figuration c, Pj is dependent on Pi, denoted Pj �c Pi, iff

– In all possible runs with a transition guard over Pj , a transition with guard
over Pi appears before a transition with guard over Pj , and

– In all configured runs, the setting for Pi in c makes transitions with guard
conditions over Pj unreachable.

Example 1. In Fig. 1, if P1 is set to false, execution never reaches the transition
labeled ¬P3. Therefore, if configuration c = (false, true, true) then P3 �c P1.

Definition 7. A universal model U is a LTS that generates all possible compu-
tations paths over its atomic propositions.

Theorem 1 (LTL Satisfiability). [33] Given a LTL property ϕ and a uni-
versal model U , ϕ is satisfiable if and only if U �|= ¬ϕ.
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This theorem reduces LTL satisfiability checking to LTL model checking. There-
fore, ϕ is satisfiable when the model checker finds a counterexample.1

Modeling a Combinatorial Transition System. Efficient modeling of a CTS
requires language constructs to deal with parameters. Since our goal is to use an
existing model checker, language extensions are outside the scope of this work.
An alternative way to add parameters to any system description is by utilizing
the C preprocessor (cpp). Given a set of parameters P , and a combinatorial
model MP , each run of the preprocessor with a configuration c ∈ C generates
an instance MP (c). Figure 2 demonstrates generating a CTS from two related
SMV models. Model 1 and Model 2 differ in the initial configuration of the
parameter. The corresponding CTS replaces the parameter initiation with the
PARAMETER CONF preprocessor directive. The cpp is run on the CTS model with
#define PARAMETER CONF 0, and #define PARAMETER CONF 1 to generate the
two models.

Fig. 2. Model 1 and Model 2 written in the SMV language can be combined to form
a CTS model with the use of PARAMETER CONF preprocessor directive.

3 Discovering Design-Space Dependencies

In this section we describe D3. Our approach speeds up model checking of com-
binatorial transitions systems by preprocessing of the input instances; it there-
fore increases efficiency of both BDD-based and SAT-based model checkers. The
problem reduction is along two dimensions: number of instances, and number of
properties.

1This is why we do not consider CTL; CTL satisfiability is EXPTIME-complete and
cannot be accomplished via linear time CTL model checking.
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3.1 Reduction Along the Number of Instances

Given a set of parameters P , a combinatorial transition system MP , and a
property ϕ, MP is model checked by sending, for all parameter configuration
c ∈ C, instance MP (c) to the LTS model checker, along with the property ϕ.
The output is aggregated for |C| runs of the model checker, and all parameter
configurations c, such that MP (c) |= ϕ are returned. In principle, parameters can
be encoded as state variables, and the parametric model can be posed as one
big model-checking obligation, however there are caveats.

1. State space explosion before any useful results are obtained.
2. Counterexample generated from one run of the model checker gives a single

undesirable configuration.

Our goal is to make the classical approach of individual-model checking more
scalable as the design space grows by intelligently integrating possible depen-
dencies between parameter configurations.

Lemma 1. Given a CTS MP = (Σ, S, s0, L, δ, P, LP ) with parameters A,B ∈
P , if B �c A for some parameter configuration c, then there does not exist any
possible run of MP with prefix α = s0

∗→si
νB−→sj

∗→sk
νA→sl, where νA and νB are

guards over A and B, resp., and si, sj , sk, sl ∈ S, i.e., a transition with guard
over B does not appear before a transition with guard over A.

As a corollary to Lemma 1, there also do not exist possible runs with transi-
tion guards only over B (and no other Pi ∈ P ). Therefore, given a CTS MP with
states si, sj , sk, sl ∈ S and parameters A,B ∈ P , if B �c A for some parameter
configuration c, then all possible runs of MP have one of the following prefixes:

1. s0
∗→si

νA−→sj
∗→sk

νB−→sl (guard over A before guard over B)
2. s0

∗→si
νA−→sj

∗→sk
νA−→sl (guards only over A)

3. s0
∗→si

∗−→sj
∗→sk

∗−→sl (guards neither over A nor B)

Similarly, if A �c B for some parameter configuration c, then all possible
runs of MP have one of the following prefixes:

1. s0
∗→si

νB−→sj
∗→sk

νA−→sl (guard over B before guard over A)
2. s0

∗→si
νB−→sj

∗→sk
νB−→sl (guards only over B)

3. s0
∗→si

∗−→sj
∗→sk

∗−→sl (guards neither over A nor B)

Therefore, when A and B are not dependent, there is no possible run with
transition guards over both A and B. Note that for a CTS MP with A,B ∈ P ,
if A and B are dependent, then either A �c B or B �c A but not both for
any configuration c. We only show formalization for B �c A; A �c B follows
directly.

Theorem 2 (Redundant Instance). Given a CTS MP = (Σ, S, s0, L, δ,
P, LP ) with parameters A,B ∈ P such that B �c A for some configuration
c, and a LTL property ϕ, there exist configurations c1, c2, . . . ck ∈ C for k = |B|
such that



316 R. Dureja and K. Y. Rozier

Fig. 3. Algorithms for reduction along the number of instances

– ci(A) = c(A) for 0 < i ≤ k, and
– ci(B) = dBi

∈ �B� for 0 < i ≤ k and �B� = {dB1 , dB2 , . . . , dBk
}

For such configurations MP (c1) |= ϕ ≡ MP (c2) |= ϕ ≡ . . . ≡ MP (ck) |= ϕ.

Theorem 2 allows us to reduce the number of model checker runs by exploiting
redundancy between instances. The question that needs to be answered is how to
find dependent parameters? A partial parameter configuration, ĉ, is a parameter
configuration in which not all parameters have been set. Given a CTS MP =
(Σ, S, s0, L, δ, P, LP ), for a transition t ∈ δ, such that LP (t) = ν, the guard ν is

– defined, if its corresponding parameter is set in ĉ, and
– undefined, otherwise.

A defined guard evaluates to true when ĉ � LP (t), or false when ĉ �� LP (t). Algo-
rithm FindUP (Find Unset Parameters) in Fig. 3(a) solves the dual problem
of finding independent parameters. It takes as input a CTS MP and a par-
tial parameter configuration ĉ, and returns unset parameters for which guard
conditions are undefined and their corresponding transitions are reachable. It
traverses (depth-first) the CTS starting from a node for the initial state s0.
During traversal, an edge (transition) t = (si, sj) connects two nodes (states)
si, sj ∈ S if t ∈ δ and ĉ � LP (t). The edge is disconnected if t �∈ δ or ĉ �� LP (t).
Since MP is defined relationally in the annotated SMV language with prepro-
cessor directives (Sect. 2), in the worst case, FindUP takes polynomial time in
the number of symbolic states and transitions. From an implementation point of
view, FindUP invokes the cpp for parameter settings in ĉ on the input model,
and parses the output for unset parameters.

Lemma 2. FindUP returns unset parameters Pi ∈ P for all reachable transi-
tions t ∈ δ such that guard LP (t) is a guard over Pi, and is undefined.
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Algorithm GenPC (Generate Parameter Configurations) in Fig. 3(b) uses
FindUP as a subroutine to recursively find parameter configurations that need
to be checked. It takes as input a CTS MP , queue of unset parameters Pu,
and a partial parameter configuration ĉ. Initially, ĉ contains no set parameters
and Pu =FindUP(MP , ĉ). Upon termination of GenPC, Ĉ contains the set of
partial parameter configurations that need to be checked. On every iteration,
GenPC picks a parameter p from Pu, assigns it a value from its domain �p� in
ĉ, and uses FindUP to find unset parameters in CTS MP . If the returned unset
parameter queue is empty, ĉ added to Ĉ. Otherwise, GenPC is called again with
the new unset parameter queue.

Theorem 3 (GenPC is sound). Given a CTS MP with parameters A,B ∈
P , if there exists a partial configuration ĉ ∈ Ĉ with ĉ(A) = dAn

∈ �A� and B
unset, then there exist configurations c1, c2, . . . ck ∈ C for k = |B| such that

– ci(A) = ĉ(A) for 0 < i ≤ k, and
– ci(B) = dBi

∈ �B� for 0 < i ≤ k and �B� = {dB1 , dB2 , . . . , dBk
}

for which B �ci A.

Theorem 4 (GenPC is complete). Given a CTS MP with parameters
A,B ∈ P , if there exist configurations c1, c2, . . . ck ∈ C for k = |B| such that

– ci(A) = dAn
for 0 < i ≤ k and dAn

∈ �A�, and
– ci(B) = dBi

∈ �B� for 0 < i ≤ k and �B� = {dB1 , dB2 , . . . , dBk
}

for which B �ci A, then there exists a partial configuration ĉ ∈ Ĉ with ĉ(A) =
dAn

and B unset.

GenPC returns partial configurations ĉ ∈ Ĉ over parameters. A partial con-
figuration ĉ is converted to a parameter configuration c by setting the unset
parameters in ĉ to an arbitrary value from their domain. Note that this opera-
tion is safe since the arbitrarily set parameters are not reachable in the instance
MP (c). As a result of this operation, Ĉ contains configurations c that have all
parameters set to a value from their domain.

Theorem 5 (Minimality). The minimal set of parameter configurations is Ĉ.

3.2 Reduction Along the Number of Properties

In model checking, properties describe the intended behavior of the system.
Usually, properties are iteratively refined to express the designer’s intentions. For
small systems, it can be manually determined if two properties are dependent
on one another. However, practically determining property dependence for large
and complex systems requires automation. Given a set of properties P, and LTS
M , an off-the-shelf model checker is called N = |P| times.

In order to check all properties in P, a straightforward possibility is to gen-
erate a grouped property ϕg given by the conjunction of all properties ϕi ∈ P,
i.e., ϕg =

∧
i ϕi. However, the straightforward approach may not scale [6] due to
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1. State-space explosion due to orthogonal cone-of-influences of properties.
2. Need for additional analysis of individual properties one-by-one in order to

discriminate failed ones and generate individual counterexamples.
3. Computational cost of verifying grouped properties in one run can be signif-

icantly higher than verifying individual properties in a series of runs.

Our goal is to minimize the number of properties checked by intelligently using
dependencies between LTL properties. For two LTL properties ϕ1 and ϕ2 depen-
dence can be characterized in four ways: (ϕ1 → ϕ2), (ϕ1 → ¬ϕ2), (¬ϕ1 → ϕ2),
and (¬ϕ1 → ¬ϕ2). Theorem 6 allows us to find dependencies automatically.

Theorem 6 (Property Dependence). For two LTL properties ϕ1 and ϕ2

dependence can be established by model checking with universal model U .

The dependencies learned as a result of Theorem 6 have implications on the
verification workflow. For instance, if ϕ1 → ϕ2 is valid, then for a model M ,
if M |= ϕ1 then M |= ϕ2. Of particular interest are (ϕ1 → ϕ2), (¬ϕ1 → ϕ2),
and (¬ϕ1 → ¬ϕ2) because they allow use of previous counterexamples (for
(ϕ1 → ¬ϕ2), even if ϕ1 is true, there is no counterexample to prove that ϕ2

is false).

Fig. 4. Property table to store dependence between every LTL property pair in set
P. Each row entry in the table is a (key, value) pair. Multiple entries with the same
key have been merged in a single row. E.g., if ϕ1 → ϕ2, the table contains a row
(ϕ1 : T, ϕ2 : T ) implying that if ϕ1 holds for model M then ϕ2 also holds.

The pairwise property dependencies are stored in a property table as shown
in Fig. 4(a). Each row in the table is a (key, value) pair. For LTL properties
ϕ1, ϕ2, and ϕ3 in P, if (ϕ1 → ϕ2) is valid, then the table contains a row
(ϕ1 : T, ϕ2 : T ) implying that if ϕ1 holds for a model M then ϕ2 also holds.
Similarly, for (¬ϕ3 → ¬ϕ2) the table entry (ϕ3 : F,ϕ2 : F ) implies that if ϕ3

doesn’t hold for M then ϕ2 doesn’t hold. Algorithm CheckRP (Check Reduced
Properties) in Fig. 5 takes as input a LTS M , a set of LTL properties P, and
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a property table T over P. CheckRP selects an unchecked LTL property ϕ,
checks whether ϕ holds in M , and stores the outcome. Based on the outcome, it
uses the property table to determine checking results for all dependent properties
and stores them. For example, in Fig. 4(b), if M �|= ϕ1, then M �|= ϕ3, M �|= ϕ2,
and M |= ϕ6. The LTL property to check is selected using two heuristics.

Fig. 5. CheckRP algorithm to check
LTL properties against a model.

Fig. 6. Discovering design-space dependen-
cies (D3) algorithm.

H1: Maximum Dependence. The tabular layout of property dependencies is
used to calculate the number of dependencies for each property. The unchecked
LTL property with the most right-hand side entries is selected. If U ⊆ P are
unchecked properties in table D, the next LTL property to check is then

ϕ ∈ U : count(ϕ) = max({count(ψ) | ∀ψ ∈ U})

where count(x) = |D[x : T ] ∪ D[x : F ]| returns the number of dependencies for
a LTL property in table D, and max(S) returns the largest element from S.

H2: Property Grouping. Most model-checking techniques are computationally
sensitive to the cone-of-influence (COI) size. Grouping properties based on over-
lap between their COI can speed up checking. Property affinity [5,6] based on
Jaccard Index can compare the similarity between COI. For two LTL properties
ϕi and ϕj , let Vi and Vj , respectively, denote the variables in their COI with
respect to a model M . The affinity αij for ϕi and ϕj is given by

αij =
|Vi ∩ Vj |

|Vi| + |Vj | − |Vi ∩ Vj |



320 R. Dureja and K. Y. Rozier

If αij is larger than a given threshold, then properties ϕi and ϕj are grouped
together. The model M is then checked against ϕi ∧ϕj . If verification fails, then
ϕi and ϕj are checked individually against model M .

4 Experimental Analysis

Our revised model checking procedure D3 is shown in Fig. 6. D3 takes as input
a CTS MP and a set of LTL properties P. It uses GenPC to find the parameter
configurations that need to be checked. It then generates a property table to store
dependencies between LTL properties. Lastly, CheckRP checks each instance
against properties in P. Results are collated for every model-property pair.

4.1 Benchmarks

We evaluated D3 on two benchmarks derived from real-world case studies.

(1) Air Traffic Controller (ATC) Models: are a set of 1,620 real-world models
representing different possible designs for NASA’s NextGen air traffic con-
trol (ATC) system. In previous work, this set of models were generated from
a contract-based, parameterized nuXmv model; individual-model checking
enabled their comparative analysis with respect to a set of requirements
for the system [23]. In the formulation of [23], the checking problem for
each model is split in to five phases.2 In each phase, all 1,620 models are
checked. For our analysis and to gain better understanding of the experi-
mental results, we categories the phases based on the property verification
results (unsat if property holds for the model, and sat if it does not).
Each of the 1,620 models can be seen as instances of a CTS with seven
parameters. Each of the 1620 instances is checked against a total of 191
LTL properties. The original nuXmv code additionally uses OCRA [10] for
compositional modeling, though we do not rely on its features when using
the generated model-set.

(2) Boeing Wheel Braking System (WBS) Models: are a set of seven real-world
nuXmv models representing possible designs for the Boeing AIR 6110 wheel
braking system [3]. Each model in the set is checked against ∼200 LTL
properties. However, the seven models are not generated from a CTS. We
evaluate D3 against this benchmark to evaluate performance on multi-
property verification workflows, and compare with existing work on property
grouping [6].

4.2 Experiment Setup

D3 is implemented as a preprocessing script in ∼2,000 lines of Python code. We
model check using nuXmv 1.1.1 with the IC3-based back-end. All experiments

2For a detailed explanation we refer the reader to [23].
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Table 1. Timing results of 1,620 models for each phase using individual-model check-
ing, and D3. For individual-model checking, Time indicates model checking time,
whereas, for D3, Time indicates preprocessing time + model checking time.

Phase Property mix Properties Model checking
time (in hours)

Speedup Overall speedup

Total (median) Individual D3

I unsat 25 (24) 6.02 4.02 1.5× 4.5×
II unsat 29 (19) 12.76 5.17 2.5×
III unsat 29 (1) 139.79 14.80 9.4×
IV sat+unsat 54 (43) 24.81 14.25 1.7× 1.8×
V sat+unsat 54 (44) 31.15 16.03 1.9×
Total 191 214.53 54.27 4.0× -

were performed on Iowa State University’s Condo Cluster comprising of nodes
having two 2.6Ghz 8-core Intel E5-2640 processors, 128 GB memory, and running
Enterprise Linux 7.3. Each model checking run has dedicated access to a node,
which guarantees that no resource conflict with other jobs will occur.

4.3 Experimental Results

(1) Air Traffic Controller (ATC) Models. All possible models are generated by
running the C preprocessor (cpp) on the annotated composite SMV model rep-
resenting the CTS. Table 1 summarizes the results for complete verification of
the ATC design space: 191 LTL properties for each of 1,620 models.

Compared to individual model checking, wherein every model-property pair
is checked one-by-one, verification of the ATC design space using D3 is 4.0×
faster. It reduces the 1,620 models in the design space to 1,028 models. D3 takes
roughly three hours to find dependencies between LTL properties for all phases.
Dependencies established are local to each model-checking phase and are com-
puted only once per phase. The number of reduced LTL properties checked for
each model in a phase vary; we use CheckRP with the Maximum Dependence
heuristic (H1). Although the logical dependencies are global for each phase,
the property verification results vary for different models. In phases containing
unsat properties, speedup achieved by D3 varies between 1.5× to 9.4×; since
all properties are true for the model, only (ϕ1 : T → ϕ2 : T ) dependencies in the
property table are used. A median of one property is checked per model in phase
III. For phases IV and V, D3’s performance is consistent as shown in Fig. 7.

Interesting Observation. D3 requires a minimum number of models to be faster
than individual-model checking. When the design space is small, individually
checking the models is faster than verifying using D3. This is due to the fact
that D3 requires an initial set-up time. The number of models after which D3 is
faster is called the “crossover point”. For the benchmark, the crossover happens
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after ∼120 models. As the number of models, and the relationships between
them increase, the time speedup due to D3 also increases.

Overall. From the initial problem of checking 1,620 models against 191 LTL
properties, D3 checks 1,028 models with a median of 129 properties per model
(45% reduction of design space). Once D3 terminates, the model-checking results
for each model are compared using the data analysis technique of [23].

Fig. 7. Cumulative time for checking each model for all properties one-by-one (indi-
vidual), checking reduced instances for all properties (GenPC), checking all models
for reduced properties (CheckRP + H1), and checking reduced instances for reduced
properties (D3 + H1). D3 outperforms individual-model checking in all phases.

(2) Boeing Wheel Braking System (WBS) Models. LTL Properties for each of
the seven models are checked using four algorithms:

i. Single: properties are checked one-by-one against the model,
ii. CheckRP: properties are checked using inter-property dependencies,
iii. CheckRP + Maximum Dependence (H1): unchecked property with the

maximum dependent properties as per inter-property dependencies is
checked,

iv. CheckRP + Property Affinity (H2): properties are pairwise grouped and
the unchecked pair with the maximum dependent properties is checked.

Figure 8 summarizes the results. On every call to the model checker, a sin-
gle or grouped LTL property is checked. CheckRP is successful in reducing
the number of checker runs by using inter-property dependencies. The Maximal
Dependences (H1) and Property Grouping (H2) heuristics improve the perfor-
mance of CheckRP, the former more than the latter. The timing results for
each algorithm is shown in Table 2.

Analysis. For H2, we limited our experiments to pairwise groupings, however,
larger groupings may be possible (trade-off required between property inter-
dependencies and groupings). It took ∼50 min to establish dependence between
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properties for a model, which is much higher than checking them one-by-one
without using CheckRP. This brings us back to the question of estimating a
crossover point. However, as the number of models increase for the same set
of properties, CheckRP will start reaping benefits. Nevertheless, CheckRP is
suited for multi-property verification in large design spaces.
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Fig. 8. Number of calls made to the model checker to verify all properties in the set for a
model. Every call to the checker verifies one property: single or grouped. For CheckRP,
multiple property results are determined (based on inter-property dependencies) on
every checker run. Heuristics H1 and H2 improve performance of CheckRP.

Table 2. Timing results (in seconds) for performance of D3’s inter-property depen-
dence analysis. A property: single or grouped, is verified on each checker run. Overall
time indicates the total time to verify all properties for a model.

Model Single CheckRP CheckRP+H1 CheckRP+H2

Overall
time

Checker Overall
time

Checker
runs

Overall
time

Checker
runs

Overall
time

Checker
runs

1 17.81 179 2.92 23 1.28 10 2.05 11

2 64.37 236 9.35 23 3.94 11 5.67 13

3 54.22 234 7.11 20 3.40 11 4.97 14

4 53.18 227 9.71 25 3.41 11 5.89 12

5 61.02 227 6.86 16 4.01 11 5.58 12

6 68.24 248 8.34 21 3.93 11 5.34 14

7 58.40 248 7.74 21 3.39 11 5.98 15

5 Conclusions and Future Work

We present an algorithm, D3, to increase the efficiency of LTL model checking for
large design spaces. It is successful in reducing the number of models that need to
be verified, and also the properties verified for each model. In contrast to software
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product line model checking techniques using an off-the-shelf checker, D3 returns
the model-checking results for all models, and for all properties. D3 is general and
extensible; it can be combined with optimized checking algorithms implemented
in off-the-shelf model checkers. We demonstrate the practical scalability of D3

on a real-life benchmark models. We calculate a crossover point as a crucial
measure of when D3 can be used to speed up checking. D3 is fully automated
and requires no special input-language modifications; it can easily be introduced
in a verification work-flow with minimal effort. Heuristics for predicting the
cross-over point for other model sets are a promising topic for future work. We
plan to examine extending D3 to other logics besides LTL, and its applicability
to other types of transition systems, like families of Markov processes. We also
plan to investigate further reduction in the search space by extending D3 to
re-use intermediate model checking results across several models. In a nutshell,
D3 is a front-end preprocessing algorithm, and future work involves tying in an
improved model checking back-end and utilizing available information to reduce
the overall amortized performance. Finally, since checking families of models is
becoming commonplace, we plan to develop more industrial-sized SMV model
sets and make them publicly available as research benchmarks.

6 Supporting Artifact

The artifact for reproducibility of our experiments [19] is publicly available under
the MIT License, and supports all reported results of Sect. 4. It includes

1. Benchmarks: NASA’s NextGen Air Traffic Control System [23] and Boeing’s
Wheel Braking System [3] (Sect. 4.1).

2. Scripts: Python scripts to run D3 on the two benchmarks (Fig. 6).
3. Datasets: Ready-to-use datasets generated during our analysis (Sect. 4.3)

The artifact supports the following usage scenarios.

1. Verify the benchmarks using both individual-model checking and model
checking with D3, or run the complete experimental analysis to reproduce
the results reported in Tables 1 and 2.

2. Study and evaluate the benchmarks and source code for D3, sub-algorithms
(GenPC and CheckRP), and heuristics (H1 and H2).

3. Introduce extensions to D3 and experiment with new heuristics.

Please refer to the README files in the artifact for further information. Every
README inside a directory details the directory structure, usage of contained
files with respect to the evaluation, and step-by-step instructions on how to the
use the contained scripts to regenerate the experimental analysis.

Data Availability Statement. The benchmarks evaluated, source code,
and data-sets generated during our experimental analysis are available in the
Springer/ Figshare repository: https://doi.org/10.6084/m9.figshare.5913013.v1.
Theorem proofs and extended results are available on the paper’s accompanying
website: http://temporallogic.org/research/TACAS18/.

https://doi.org/10.6084/m9.figshare.5913013.v1
http://temporallogic.org/research/TACAS18/
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Abstract. An advantage of model checking is its ability to generate wit-
nesses or counterexamples.Approaches exist to generate small orminimum
witnesses for simple unnested formulas, but no existing method guarantees
minimality for general nested ones. Here, we give a definition of witness
size, use edge-valued decision diagrams to recursively compute the min-
imum witness size for each subformula, and describe a general approach
to build minimum tree-like witnesses for existential CTL. Experimental
results show that for some models, our approach is able to generate mini-
mum witnesses while the traditional approach is not.

1 Introduction

Model checking is an automated technique to rigorously establish the correct-
ness of a system by exploring its computation graph, explicitly or symbolically.
Instead of merely answering “yes” or “no”, model checkers may be able to return
a witness or counterexample to verify satisfaction or violation of a specification.
Since witnesses and counterexamples provide important debugging information
and may be inspected by engineers, smaller ones are always preferable.

Computation Tree Logic (CTL) is widely used to express temporal proper-
ties due to its simple yet expressive semantics. Although much work has been
published on witness or counterexample generation [8,11,14], to the best of our
knowledge, no existing method guarantees their minimality for a general CTL
formula with nested temporal quantifiers. Clarke et al. [7] showed that the gen-
eral form of a counterexample to a universal CTL formula is tree-like; of course,
for CTL, counterexample generation for a universal formula can be converted
to witness generation for an existential formula, thus we choose to limit our dis-
cussion to witness generation for the existential fragment of CTL. The use of
backward exploration to verify EX, EF, and EU properties inherently guarantees
minimality of their linear witnesses, while a minimum lasso-shaped EG witness
can be generated by computing transitive closures, for example using the satura-
tion algorithm [17]. However, these approaches do not extend to general tree-like
witnesses, i.e., local minimality does not imply global minimality.

By recursively computing local fixpoints, the saturation algorithm [3] has
clear advantages over traditional symbolic breadth-first approaches for state-
space generation. It has also been applied to the computation of minimum EF [4]
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and EG [17] witnesses. Here, we extend these ideas into a global approach to build
minimum witnesses for arbitrary existential CTL formulas.

Our paper is organized as follows. Section 2 summarizes background on CTL,
decision diagrams, and symbolic CTL model checking. Section 3 defines the wit-
ness size and formalizes the computation of its minimum. Section 4 proposes
saturation-based algorithms to symbolically encode minimum witness sizes for
each existential temporal operator, needed to obtain an overall minimum witness
size. Section 5 describes how to generate a witness from the computed witness
size functions. Section 6 presents experimental results, Sect. 7 comments on our
definition of witness size, and Sect. 8 concludes and outlines future work.

2 Background

We denote sets using calligraphic letters (e.g., A, B, C), except for the booleans
B = {0, 1}, the natural numbers N = {0, 1, 2...}, and N∞ = N ∪ {∞}.

2.1 Kripke Structures, CTL, and Witnesses

A Kripke structure is a tuple (S,Sinit,N ,A,L), where S is the state space,
Sinit ⊆ S are the initial states, N : S → 2S is the next-state function, A is a
set of atomic propositions, and L : S → 2A is a labeling that gives the atomic
propositions holding in each state (subject to true ∈ A holding in every state).

We assume S to be the product S1×· · ·×SL of L finite state spaces, i.e., each
global state i ∈ S is a tuple (i1, ..., iL), where ik ∈ Sk is the local state for the kth

submodel. We also assume N to be disjunctively partitioned according to a set
E of asynchronous events, i.e., N =

⋃
e∈E Ne and, for each e ∈ E , Ne : S → 2S .

Ne(i) contains the states that can be nondeterministically reached in one step
when event e occurs in state i. Correspondingly, we let N −1

e denote the previous-
state function, i.e., N −1

e (j) = {i : j ∈ Ne(i)}, the set of states that can reach j
in one step through the occurrence of event e, and we let N −1 =

⋃
e∈E N −1

e .
Let P(i) be the set of paths starting at i ∈ S, i.e., finite sequences (i0, i1, ..., in)

for n ≥ 0, or infinite sequences (i0, i1, ...), where i0 = i and im ∈ N (im−1) for all
applicable m. Let C(i) ⊆ P(i) be the set of cycles starting at i, i.e., finite paths
(i0, i1, ..., in) with n > 0 and i0 = in = i.

We consider ECTL, the existential fragment of the temporal logic CTL [6],
where formulas have syntax (φ and ρ are formulas, a is an atomic proposition):

φ ::= a | ¬a |φ ∧ ρ |φ ∨ ρ |EXφ |EφUρ |EGφ,

and the conditions for state i to satisfy formula φ, written i |= φ, are as follows:

i |= a ⇔ a ∈ L(i)
i |= ¬a ⇔ a �∈ L(i)
i |= φ∧ρ ⇔ i |= φ and i |= ρ
i |= φ∨ρ ⇔ i |= φ or i |= ρ
i |= EXφ ⇔ ∃(i0, i1) ∈ P(i), i1 |= φ
i |= EφUρ ⇔ ∃(i0, i1, ..., in) ∈ P(i), n ≥ 0, in |= ρ ∧ ∀m ∈ {0, ..., n − 1}, im |= φ
i |= EGφ ⇔ ∃(i0, i1, ...) ∈ P(i),∀m ≥ 0, im |= φ

(formula EFφ is just a shorthand for EtrueUφ, so we do not discuss it separately).
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Since the state space S is finite, all infinite paths contain a cycle. Thus, path
(i0, i1, ...) demonstrating i |= EGφ must have a finite prefix (i0, ..., im, ..., in), for
some m ≥ 0 and n > m, where im = in, that is, it is a “lasso” formed by merging
(on state im) a possibly empty “handle” (i0, ..., im) and a “cycle” (im, ..., in).

We focus on witness generation, i.e., the computation of “tree-like” sub-
graphs demonstrating how a state satisfies an ECTL formula. This also serves
to generate counterexamples for ACTL, the universal fragment of CTL, since a
counterexample to AXφ, AGφ, or A[φUρ] is a witness to EX(¬φ), EF(¬φ), or
E[¬ρU(¬φ ∧ ¬ρ)] ∨ EG(¬ρ), respectively (where the negation ¬ can be “pushed
down” to atomic propositions), i.e., the negation of an ACTL formula is an
ECTL formula.

2.2 Decision Diagrams

We encode sets and relations symbolically with (ordered) multiway decision dia-
grams (MDDs) [10]. An L-level MDD over S = S1×· · ·×SL is an acyclic directed
edge-labeled level graph with terminal nodes 0 and 1, at level 0, while each non-
terminal node p is at some level p.lvl = k ∈ {1, ..., L}, and, for ik ∈ Sk, has an
outgoing edge labeled with ik and pointing to a child p[ik] at level p[ik].lvl < k.

MDD node p at level k encodes function fp : S → B, recursively defined
by fp(i1, ..., iL) = fp[ik](i1, ..., iL), with base case fp(i1, ..., iL) = p when k = 0.
Interpreting fp as an indicator function, p encodes set Xp = {i : fp(i) = 1} ⊆ S.
To encode relations over S, we use 2L-level MDDs over (S1×S1)×· · ·×(SL×SL),
where the first set in each pair corresponds to a “from”, or “unprimed”, local
state and the second set corresponds to a “to”, or “primed”, local state.

We use instead (ordered) additive edge-valued MDDs, (EV+MDDs) [4] to
encode partial integer-valued functions. An EV+MDD is an acyclic directed edge-
labeled and edge-valued level graph with terminal node Ω, at level 0, while each
nonterminal node p is at some level p.lvl = k ∈ {1, ..., L}, and, for ik ∈ Sk, has
an outgoing edge with label ik, pointing to a child p[ik].c at a level p[ik].c.lvl < k,
and value p[ik].v ∈ N∞. We write p[ik] = 〈p[ik].v, p[ik].c〉.

EV+MDD node p at level k encodes function fp : S → N∞ recursively defined
by fp(i1, ..., iL) = p[ik].v + fp[ik].c(i1, ..., iL), with base case fΩ(i1, ..., iL) = 0.

For efficiency, we restrict ourselves to canonical forms of decision diagrams,
where each function that can be encoded by a given class of decision diagrams
has a unique representation in that class. All such forms forbid duplicate nodes:
if p.lvl = q.lvl = k > 0 and ∀ik ∈ Sk, p[ik] = q[ik], then p = q. For ease of
exposition, we only consider the quasi-reduced form in this paper, achieved by
forbidding skipped levels: all roots (nodes without parent nodes) are at level
L and, if p.lvl = k, then all p’s children are at level k − 1. For EV+MDDs, in
addition, we require normalized nodes: each nonterminal node must have at least
one edge with value 0 and all edges with value ∞ must point to Ω. This means
that the minimum value of the function encoded by any node is 0, but we can
encode any partial function g : S → N∞ with a “root edge” 〈σ, p〉, where σ is
the minimum value assumed by g, while p at level L satisfies fp = g − σ.
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Fig. 1. Algorithm to compute the element-wise minimum of two functions.

However, our algorithms are actually implemented using the more efficient
fully-identity-reduced form for 2L-level MDDs and EV+MDDs (indicated MDD2
and EV+MDD2 in our algorithms, respectively) [5]. This form allows us to exploit
independence of events from local states: given e ∈ E , let Top(e) = k if e affects
or depends on the kth local state but not the lth one, for any l > k. In the
following, we then define Nk =

⋃
e:Top(e)=k Ne.

Procedure Min in Fig. 1 shows the classic recursive manipulation of decision
diagrams. Given functions f, g : S → N∞, let Minf,g : S → N∞ be their element-
wise minimum: for i ∈ S, Minf,g(i) = min{f(i), g(i)}. Given two EV+MDDs
〈α, p〉 and 〈β, q〉 encoding f and g, procedure Min returns the EV+MDD encoding
Minf,g. As the EV+MDDs are quasi-reduced, p.lvl =q.lvl unless α=∞ or β=∞.

Procedure Normalize (line 8) normalizes a node u by subtracting the mini-
mum edge value μ from all its edge values, so that at least one is 0, stores the
normalized u in the unique table (if not already there), and returns 〈μ, u〉.

Throughout this paper, procedures XxxGet (line 4) or XxxPut (line 10) are
queries to or insertions into compute tables (or “caches”), commonly used in
decision diagrams operations to avoid re-computation. The structure of the hash
key and returned value may of course depend on the specific operation Xxx .

2.3 Symbolic CTL Algorithms

McMillan proposed symbolic CTL model checking based on binary decision dia-
grams (BDDs) [12]. Given the BDDs encoding the set of states satisfying φ and ρ,
algorithms to compute the BDD encoding the set of states satisfying EXφ, EφUρ,
and EGφ suffice, since all CTL formulas can be expressed using these three CTL
operators, plus the standard logical operations of negation, conjunction, and
disjunction. Using MDDs instead of BDDs is a relatively obvious extension.

Clarke et al. [8] proposed the first symbolic approach to CTL witness genera-
tion. Considering first unnested CTL formulas, a witness forEXa can be generated
by one image computation, and is by definition minimum since all witnesses have
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size two. Using a symbolic breadth-first search, witness generation for EaUb also
guarantees minimality, while minimality is more difficult to satisfy for EGa, where
a witness is a path from an initial state to a cycle, such that all states along that
path and on the cycle satisfy a. In other words, a state i satisfying EGa must have a
successor also satisfyingEGa; thus, we can incrementally build a path of states sat-
isfyingEGa, which must finally lead to a state already on the path, closing the cycle
and resulting in a witness. A witness generation algorithm for (weakly fair)EGwas
proposed in [8] based on this idea. Since imight have multiple successors satisfying
EGa, the algorithm is nondeterministic and the size of the witness depends on the
state chosen at each step. While the algorithm uses a symbolic encoding, the app-
roach is largely explicit, as it follows a single specific path. Decision diagrams help
by efficiently encoding all states satisfying EG, but offer no help at all when decid-
ing which of the states in N (i) satisfying EG should be chosen next, to continue
the path from i.

Witness generation for arbitrarily nested CTL formulas is much harder. Of
course, we cannot exhibit witnesses for universal formulas, only counterexamples,
thus the presence of both existential and universal (non-negated) quantifiers in a
CTL formula φ means that we can neither provide a witness (in case φ holds) nor
a counterexample (in case φ does not hold). The most general approach to date
is by Clarke et al. [7] for general (nested) ACTL formulas, which proposed algo-
rithms to generate tree-like counterexamples, or witnesses for general (nested)
ECTL formulas. However, their work did not address minimality.

3 Defining the Minimum Witness Size

We focus on the generation of minimum witnesses for general (nested) ECTL
formulas. As discussed by Clarke et al. [7], these witnesses are finite tree-like
Kripke structures and complete for ECTL. To discuss their size, we unfold these
witnesses, i.e., the same state may appear multiple times and each appearance
contributes to the count defining the size of the witness. For example, con-
sider the (portion of a) Kripke structure shown in Fig. 2(a), satisfying formula
E(EGa)Ub (state are identified by numbers and the atomic propositions holding
in each state are listed close to it). An unfolded tree-like witness for this formula
is shown in Fig. 2(b), where state 5’s self-loop is repeated three times, once for
each of the states 1, 2, and 3, since we need to show that each of them satisfies
EGa (for clarity, a cycle is represented as a linear path along which the first and
the last states are the same; dashed nodes represent the states closing cycles).
Another way to think of this witness is that the first states of paths [[1, 5, 5]],
[[2, 5, 5]], and [[3, 5, 5]], each satisfying the inner formula φ′ = EGa, are “glued”
onto the first three states of path [[1, 2, 3, 4]], satisfying the outermost formula
Eφ′Uφ′′, as is the first (and only) state of path [[4]], satisfying the (atomic) inner
formula φ′′ = b. We write 5 for the last state of the EG witnesses to stress that
state 5 does not need to have its witness repeated, since it is just closing the
cycle. We define the size of a witness as the number of nodes in the resulting
tree-like graph. Thus, a witness for a is path [[1]], of size 1, a witness for EXa
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Fig. 2. A Kripke structure satisfying E(EGa)Ub and its tree-like witness.

is path [[1, 2]], of size 2, a witness for EaUb is path [[1, 2, 3, 4]], of size 4, and a
witness to E(EGa)Ub is the three-like graph [[[[1, 5, 5]], [[2, 5, 5]], [[3, 5, 5]], 4]], of size
10. For conjunction, we need additional path notation: a witness for EXa∧EaUb
is a tree-like graph [[[[1, 5]]♦[[1, 2, 3, 4]]]], of size 5, where the separator ♦ indicates
that the tree-like graphs to its left and its right are to be merged on their root.

We recursively define function πφ : S → N∞ describing the minimum witness
size for an ECTL formula φ starting from a state i ∈ S as follows:

πa(i) = if i |= a: 1, else: ∞
π¬a(i) = if i |= a: ∞, else: 1

πφ∧ρ(i) = πφ(i) + πρ(i) − 1 (the “−1” avoids double-counting state i)

πφ∨ρ(i) = min{πφ(i), πρ(i)}
πEXφ(i) = min{πφ(j) : ∀j ∈ N (i)} + 1

πEφUρ(i) = if i |= EφUρ: min{πρ(i), πφ(i) + min{πEφUρ(j) : ∀j ∈ N (i)}}, else: ∞
πEGφ(i) = if i |= EGφ: min{χφ(i), πφ(i) + min{πEGφ(j) : ∀j ∈ N (i)}}, else: ∞
χφ(i) = if C(i) �= ∅: min{∑n

i=1 πφ(ii) : ∀(i0, i1, ..., in) ∈ C(i)} + 1, else: ∞
where C(i) is the set of cycles starting at i, and χφ(i) is the minimum witness
size among cycles satisfying EGφ and starting at i. In the sum for χφ(i), we
exclude πφ(i0) and add 1 because state i = i0 = in starting and ending the cycle
appears twice, but we should not count the witness for i |= φ twice.

4 Computing the Minimum Witness Size

The first and most complex step to generate a minimum tree-like witness for an
arbitrary ECTL formula φ∗ is to build: (1) for each subformula φ of φ∗, starting
from the innermost atomic propositions, an EV+MDD encoding the size πφ(i) of
a minimum witness for φ starting from each state i, and (2) for each subformula
EGφ of φ∗, an EV+MDD2 encoding the size, TCφ(i, j), of a minimum witness
for a path of states satisfying φ from each state i to each state j.

We present algorithms to compute the minimum witness size for EU and EG,
while we omit the simpler ones for logical operators, EX, and atomic propositions.
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EUSat(EV+MDD 〈αρ, pρ〉, EV+MDD 〈βφ, qφ〉)
1: 〈μ, u〉 ← ConsSat(〈αρ, pρ〉, 〈βφ, qφ〉)
2: return 〈μ, u〉

ConsSat(EV+MDD 〈α, p〉, EV+MDD 〈β, q〉)
1: if α = ∞ or β = ∞ then return 〈∞, Ω〉
2: k ← p.lvl � we assume quasi-reduced rule, thus p.lvl = q.lvl
3: if l = 0 then return 〈α, Ω〉
4: if ConsSatGet(p,〈β,q〉,〈γ,u〉) then return 〈α+γ,u〉 �ConsSat(〈0,p〉,〈β,q〉)=〈γ,u〉
5: u ← EVMDDNode(k)
6: for each i ∈ Sk do
7: if q[i].v = ∞ then u[i] ← p[i]
8: else u[i] ← ConsSat(p[i], 〈β + q[i].v, q[i].c〉)
9: repeat
10: for each i, j ∈ Sk do
11: 〈τ, t〉 ← ConsRelProdSat(〈α + u[i].v, u[i].c〉, 〈β + q[j].v, q[j].c〉, N −1

k [i][j])
12: u[j] ← Min(u[j], 〈τ, t〉)
13: until u does not change
14: 〈μ, u〉 ← Normalize(u)
15: ConsSatPut(p, 〈β, q〉, 〈μ − α, u〉) � memoize the result
16: return 〈μ, u〉
ConsRelProdSat(EV+MDD 〈α, p〉, EV+MDD 〈β, q〉, MDD2 r)
1: if α = ∞ or β = ∞ or r = 0 then return 〈∞, Ω〉
2: k ← p.lvl � we assume quasi-reduced rule, thus p.lvl = q.lvl
3: if l = 0 then return 〈α + β, Ω〉
4: if ConsRelProdSatGet(p, 〈β, q〉, r, 〈γ, u〉) then return 〈α + γ, u〉
5: u ← EVMDDNode(k)
6: for each i, j ∈ Sk do
7: 〈τ, t〉 ← ConsRelProdSat(〈α + p[i].v, p[i].c〉, 〈β + q[j].v, q[j].c〉, r[i][j])
8: u[j] ← Min(u[j], 〈τ, t〉)
9: 〈μ, u〉 ← Normalize(u)
10: 〈μ, u〉 ← ConsSat(〈μ, u〉, 〈β, q〉)
11: ConsRelProdSatPut(p, 〈β, q〉, r, 〈μ − α, u〉) � memoize the result
12: return 〈μ, u〉

Fig. 3. Algorithm to compute the minimum witness size for EU formulas.

4.1 Computing the Minimum Witness Size for EU Formulas

In [15], we introduced a “constrained” variant of saturation that restricts explo-
ration to states satisfying a given property. Instead of applying “after-the-fact”
intersections, this approach employs a “check-and-fire” policy, firing an event
only when the next states to be obtained satisfy the given property, through an
on-the-fly check. Now, we further extend this idea to take into account the sizes
of subwitnesses demonstrating the satisfaction of subformulas.
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EUSat in Fig. 3 is the top-level procedure to compute πEφUρ, given 〈αρ, pρ〉
encoding πρ and 〈βφ, qφ〉 encoding πφ (both obtained by computing the min-
imum witness size function of subformulas). ConsSat computes a fixpoint for
the subfunction encoded by 〈α, p〉, under constraint 〈β, q〉, w.r.t. events affect-
ing variables up to p’s level. ConsRelProdSat first recursively computes the
〈β, q〉-constrained relational product of 〈α, p〉 and r (specifically, it serves as
a constrained version of the pre-image operation since we use the previous-state
function), then it saturates the resulting node to ensure that it reaches a local
fixpoint.

When exploring the pre-image of state i, we compute, for each predecessor
j ∈ N (i), the sum of πρ(j) and the value currently associated to i (line 3 in
ConsRelProdSat), and use it to reduce the value associated to j, if smaller
(line 12 in ConsSat and line 8 in ConsRelProdSat). Upon reaching a fixpoint, we
have the size of the minimum tree-like EφUρ witness for each state i (∞ if
i �|= EφUρ).

The hash-key for the cache entries of ConsSat and ConsRelProdSat consists
of two nodes, p and q, plus the value β attached to the edge for q, representing
the constraint. Storing the difference α−β, as done for Min, would be incorrect
because saturation computes local fixpoints and thus may fire an event multiple
times in one call, and α just serves as an offset to all the values in the final
function, while, for each individual state, it does not affect whether the new
value obtained from one firing is smaller than the currently associated value.
In other words, if it is known that ConsSat(〈0, p〉, 〈β, q〉) = 〈γ, u〉, then we can
conclude that ConsSat(〈α, p〉, 〈β, q〉) = 〈α + γ, u〉, for any α > 0.

4.2 Computing the Minimum Witness Size for EG Formulas

A witness of EGp is a lasso-shaped infinite path consisting of a finite prefix
leading to a cycle [1]. Thus, two steps are needed to compute a minimum tree-
like witness for EGφ: (1) identify all states in cycles of states satisfying φ, and
their minimum witness size; (2) starting from these states, explore the model
backward to find all states satisfying EGp, and their minimum witness size. This
second step is essentially an EU computation, thus we focus on the first step.

Given a graph, the transitive closure (TC) describes the reachability between
any pair of nodes. Computing TCs was deemed infeasible for large models [13],
but recent attempts using saturation to compute TCs symbolically have been
successful [16,17]. We generalize this approach so that, for EGφ, the size of a
minimum φ witness for each state in a φ cycle contributes to the cycle size.

We compute function TCφ : S × S → N∞ s.t. TCφ(i, j) is the minimum size
of any path i, i1, · · · , j, computed as πφ(i1) + · · · + πφ(j), or ∞ if no such path
exists. We do not include πφ(i) because we compute TCφ to obtain the minimum
witness size of cycles, χφ(i) = TCφ(i, i)+1, and πφ(i) should not be added twice.

The procedure to compute TCφ is analogous to a symbolic implementation
of Dijkstra’s algorithm in a weighted graph. We initialize the function

λφ(i1, i2) =
{

πφ(i2) if i2 ∈ N (i1), i1 |= φ, and i2 |= φ
∞ otherwise
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and repeat the following computation until reaching a fixpoint:

λφ(i1, i2) = min{λφ(i1, i2),min{λφ(i1, i) + πφ(i2) : ∀i ∈ N −1(i2)}}.

This iteration never increases the value of λφ, thus it terminates, and when
it does the resulting fixpoint is TCφ. Procedures TCSat and TCRelProdSat
in Fig. 4 are similar to ConsSat and ConsRelProdSat in Fig. 3, except that
they apply saturation to an EV+MDD2. TCMin (line 14 in TCSat , line 11 in
TCRelProdSat) is an implementation of Min over pairs of states: for each i, j ∈ S,
TCMinf,g(i, j) = min{f(i, j), g(i, j)}.

Finally, we compute πEGφ with procedure EGSat, where 〈βφ, qφ〉 encodes πφ.
BuildLambda (line 1) builds an EV+MDD2 encoding function λφ, to initialize the
computation of TCφ. ExtractCycles (line 2) returns an EV+MDD encoding χφ(i)
by extracting elements TCφ(i, i) from TCφ, for i ∈ S, and adding 1 to them.

5 Generating a Minimum Tree-Like Witness

Recall that, if function f is encoded as an EV+MDD, one can retrieve MinVal(f),
the minimum value of f , in constant time (as the value labeling the edge pointing
to the root node) and MinState(f), a state achieving that minimum value, in
time proportional to the number of levels L (follow a path of 0-valued edges from
the root to Ω). Evaluating f(i) for a given state i also requires just L steps.

To obtain a minimum overall witness recursively, we start from an initial
state i∗ with a minimum witness for φ∗. This state can be found by building an
EV+MDD encoding the function finit : S → {0,∞} evaluating to 0 iff i ∈ Sinit,
and then the EV+MDD encoding πφ∗∧init , the elementwise maximum of finit and
πφ∗ (i.e., the restriction of the minimum witness size for φ∗ to the initial states).
If MinVal(πφ∗∧init) = ∞, no initial state satisfies φ∗, thus no witness exists.
Otherwise, there is a minimum witness of size MinVal(πφ∗∧init) starting from
an initial state i∗ = MinState(πφ∗∧init), and the call MinWit(i∗, φ∗, πφ∗(i∗)) (see
Fig. 5) will recursively generate one such minimum witness.

6 Experimental Results

We implemented both our EV+MDD-based approach to generate minimum tree-
like witnesses (MinWit) and the traditional MDD-aided BFS approach [7] to gen-
erate (not necessarily minimum) tree-like witnesses (Wit) in our model checker
SMART [2]. Then we ran them on a benchmark suite consisting of nine Petri net
models from the 2017 Model Checking Contest (https://mcc.lip6.fr/2017/). All
models have one or more scaling parameters affecting the number of states and
state-to-state transitions, thus the model size and complexity. To generate tree-
like witnesses, we define an ECTL formula that the model satisfies (the specific
formula is listed in the results presented in Table 1). The datasets we utilized are
available in the figshare repository [9].

https://mcc.lip6.fr/2017/
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EGSat(EV+MDD 〈βφ, qφ〉)
1: 〈τ, t〉 ← TCSat(BuildLambda(〈βφ, qφ〉), 〈βφ, qφ〉)
2: 〈μ, u〉 ← ConsSat(ExtractCycles(〈τ, t〉), 〈βφ, qφ〉)
3: return 〈μ, u〉

TCSat(EV+MDD2 〈α, p〉, EV+MDD 〈β, q〉)
1: if α = ∞ or β = ∞ then return 〈∞, Ω〉
2: k ← p.lvl � we assume quasi-reduced rule, thus p.lvl = q.lvl
3: if k = 0 then return 〈α, Ω〉
4: if TCSatGet(p,〈β,q〉,〈γ,u〉) then return 〈α+γ,u〉 � TCSat(〈0,p〉,〈β,q〉)=〈γ,u〉
5: u ← EVMDD2Node(k)
6: for each i, j ∈ Sk do
7: u[i].c[j] ← TCSat (〈α + p[i].v + p[i].c[j].v, p[i].c[j].c〉, 〈β + q[j].v, q[j].c〉)
8: for each i ∈ Sk do
9: w ← EVMDD2Node(prime(k))
10: repeat
11: for each j, j′ ∈ Sk do
12: 〈α′, u′〉 ← 〈α + u[i].v + u[i].c[j].v, u[i].c[j].c〉
13: 〈τ, t〉 ← TCRelProdSat(〈α′, u′〉, 〈β + q[j′].v, q[j′].c〉, Nk[j][j′])
14: w[j′] ← TCMin(w[j′], 〈τ, t〉)
15: until w does not change
16: u[i] ← Normalize(w)
17: 〈μ, u〉 ← Normalize(u)
18: TCSatPut(p, 〈β, q〉, 〈μ − α, u〉) � memoize the result
19: return 〈μ, u〉
TCRelProdSat(EV+MDD2 〈α, p〉, EV+MDD 〈β, q〉, MDD2 r)
1: if α = ∞ or β = ∞ or r = 0 then return 〈∞, Ω〉
2: k ← p.lvl � we assume quasi-reduced rule, thus p.lvl = q.lvl
3: if k = 0 then return 〈α + β, Ω〉
4: if TCRelProdSatGet(p, 〈β, q〉, r, 〈γ, u〉) then return 〈α + γ, u〉
5: u ← EVMDD2Node(k)
6: for each i ∈ Sk do
7: w ← EVMDD2Node(prime(k))
8: for each j, j′ ∈ Sk do
9: 〈α′, p′〉 ← 〈α + p[i].v + p[i].c[j].v, p[i].c[j].c〉
10: 〈τ, t〉 ← TCRelProdSat(〈α′, p′〉, 〈β + q[j′].v, q[j′].c〉, r[j][j′])
11: w[j′] ← TCMin(w[j′], 〈τ, t〉)
12: u[i] ← Normalize(w)
13: 〈μ, u〉 ← Normalize(u)
14: 〈μ, u〉 ← TCSat(〈μ, u〉, 〈β, q〉)
15: TCRelProdSatPut(p, 〈β, q〉, r, 〈μ − α, u〉) � memoize the result
16: return 〈μ, u〉

Fig. 4. Algorithm to compute the minimum witness size for EG formulas.



338 C. Jiang and G. Ciardo

MinWit(state i,ECTLformula φ, size n)
1: if φ ∈ A then return i � n = 1, φ is an atomic proposition
2: if φ = φ′ ∧ ρ′ then � n = πφ′(i) + πφ′(j) − 1
3: return [[MinWit(i, φ′, πφ′(i))]]♦[[MinWit(i, ρ′, πρ′(i))]]
4: if φ = φ′ ∨ ρ′ then � n = min{πφ′(i), πρ′(i)}
5: if n = πφ′(i) then return [[MinWit(i, φ′, πφ′(i))]]
6: else return [[MinWit(i, ρ′, πρ′(i))]]
7: if φ = EXφ′ then
8: choose j ∈ N (i) s.t. πφ′(j) = n − 1 � there exists at least one such j
9: return i, [[MinWit(j, φ′, n − 1)]]
10: if φ = Eφ′Uρ′ then
11: if πρ′(i) = n then � a minimum witness for i |= ρ′ works for i |= Eφ′Uρ′

12: return [[MinWit(i, ρ′, n)]]
13: else � no witness for i |= ρ′ is minimum for i |= Eφ′Uρ′

14: choose j ∈ N (i) s.t. πφ′(j) = n − πφ′(i) � there exists at least one such j
15: return [[MinWit(i, φ′, πφ′(i))]],MinWit(j, φ, n − πφ′(i))
16: if φ = EGφ′ then
17: if TCφ′(i,i)=n−1 then � a minimum cycle witness for i works for i |= EGφ′

18: return CloseCycle(i, i, φ′, n − 1)
19: else � i is on the handle of a lasso for a minimum witness for i |= EGφ′

20: choose j ∈ N (i) s.t. πφ(j) = n − πφ′(i) � there exists at least one such j
21: return [[MinWit(i, φ′, πφ′(i))]],MinWit(j, φ, n − πφ′(i))

CloseCycle(state j, state i,ECTLformula φ, size n)
1: if πφ(i) = n then � it must be that i ∈ N (j), close the cycle with i
2: return [[MinWit(j, φ, πφ(j))]], i
3: else
4: choose k ∈ N (j) s.t. TCφ(k, i) = n − πφ(k) � there exists at least one such k
5: return [[MinWit(j, φ, πφ(j))]],CloseCycle(k, i, φ, n − πφ(k))

Fig. 5. Algorithm to generate a minimum tree-like witness.

For MinWit, we run each model instance with a timeout of one hour, and
report the runtime, the peak memory consumption, and the size of the minimum
witness. For Wit, we run each instance 100 times and report the total runtime,
the peak memory consumption, and the minimum, average and maximum size
among the all the generated witnesses. The minimum witness size is in bold
when Wit did not manage to generate a minimum witness in any of the 100
runs. Obviously, the choice of R = 100 runs is arbitrary: the larger R is, the
more likely Wit is to generate smaller witnesses, possibly a minimum one, but,
on the other hand, the overall time Wit spends for witness generation is roughly
proportional to R. Fundamentally, however, we have no easy way to know if the
smallest witness generated by Wit is a minimum one, regardless of how large R
is, while MinWit guarantees minimality.

A few observations are in order. First, it is not surprising that MinWit is
sometimes orders of magnitude slower and requires more memory than Wit.
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Table 1. Performance comparison of MinWit and Wit.

Model (parms) #States #Trans Time (s) Memory (MB) Size

MinWit Wit MinWit Wit MinWit Wit

min avg max

EG(EF((Section 2 = 1) ∧ (Section 3 = 1)))

CircularTrain(12) 2.0 · 102 5.0 · 102 0.4 0.0 20.6 4.8 25 32 71 275

CircularTrain(24) 8.7 · 104 4.1 · 105 2244.9 4.6 2924.5 11.8 37 91 404 889

E(EF(ERKPP > 5)UEG(RKIPP RP > 5))

ERK(20) 1.7 · 106 1.6 · 107 93.9 3.8 591.0 6.5 129 258 313 391

ERK(22) 2.8 · 106 2.7 · 107 224.1 4.4 932.1 6.9 129 246 314 393

ERK(25) 5.7 · 106 5.4 · 107 793.4 5.0 1800.6 8.0 129 256 315 397

EF((P1 = 3) ∧ EG((P1 > P2) ∧ (P2 > P3)))

FMS(5) 2.9 · 106 3.2 · 107 0.6 2.7 21.0 7.6 13 13 48 193

FMS(8) 2.5 · 108 3.6 · 109 31.6 17.5 447.6 13.7 22 22 51 201

FMS(10) 2.5 · 109 4.1 · 1010 458.9 30.6 1510.1 23.5 28 28 54 217

EF((P1 < P2) ∧ EG(P1 = P4))

Kanban(20) 8.1 · 1011 1.1 · 1013 18.4 1530.3 269.6 289.0 10 10 10 11

Kanban(22) 2.1 · 1012 2.9 · 1013 28.6 2297.8 395.9 410.4 10 10 10 11

Kanban(25) 7.7 · 1012 1.1 · 1014 53.9 4224.4 691.6 707.9 10 10 10 11

E(EF(Phase1 < Phase2)U (Phase2 > Phase3))

MAPK(8) 6.1 · 106 7.9 · 107 14.0 2.0 353.0 6.1 70 126 126 126

MAPK(12) 3.2 · 108 5.0 · 109 1881.4 6.2 1764.2 8.7 109 204 204 204

EF((Think 1 = 0) ∧ EG(Eat 1 = 0))

Philosophers(20) 3.5 · 109 5.4 · 1010 1.3 2.1 52.4 9.2 5 5 8 22

Philosophers(50) 7.2 · 1023 2.8 · 1025 44.9 10.8 763.5 29.1 5 5 7 20

Philosophers(100) 5.2 · 1047 4.0 · 1049 timeout 52.1 − 94.0 − 5 7 28

E(EF(P client ack 1 = 1)U ((P server ack 1 = 1) ∧ (P server ack 2 = 1)))

SimpleLoadBal(2) 8.3 · 102 3.4 · 103 0.1 0.8 9.0 5.9 23 23 32 44

SimpleLoadBal(5) 1.2 · 105 7.5 · 105 37.6 19.2 1032.6 41.0 23 26 69 80

E(EF(TaskOnDisk < CPUUnit)U (CPUUnit < DiskControllerUnit))

SmallOS(64,32) 9.1 · 106 6.8 · 107 17.5 1987.7 374.6 401.6 662 694 1189 1552

SmallOS(128,64) 2.6 · 108 2.0 · 109 294.4 53522.2 3228.4 1850.0 2342 2430 4698 5920

EF(EG(Undress < InBath))

SwimmingPool(1) 9.0 · 104 4.5 · 105 109.7 4.7 1334.9 6.6 16 16 24 43

SwimmingPool(2) 3.4 · 106 2.0 · 107 timeout 39.1 − 22.3 − 16 24 53

Building EV+MDDs or EV+MDD2s encoding both states and size information
is much more expensive than the image computations on MDDs used to just run
the model checking phase, as Wit does. However, this is offset by a minimality
guarantee. Interestingly, there are cases where MinWit completes with a run-
time and memory consumption comparable to a single run of Wit (e.g., Kanban)
or even faster (e.g., SmallOS). We give credit to the saturation algorithm for its
efficient locality-exploiting exploration.

Second, for models where small, simple witnesses exist, Wit may be able
to generate a minimum witness. Since the backward exploration guarantees the
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local minimality of subwitnesses for EX, EF and EU segments, such greedy strat-
egy may result in a global minimum witness, determined by the structure of the
model. But this occurrence cannot be guaranteed, regardless of whether we use
100 runs or 10,000 runs, so that, even when Wit happens to generate a minimum
witness, users do not know that this is indeed the case.

Third, for models where only large, complex witnesses exist, generating a
minimum witness is almost impossible for Wit, while the witness from MinWit
can be only 40% as large as the smallest one generated by Wit (e.g., Circular-
Train with N = 24). Additionally, Wit’s greedy strategy may trap itself into a
local optimum. For example, the ECTL formula used for model MAPK does not
contain EG, and the minimum, average, and maximum witness sizes generated
by Wit are equal, implying that Wit is unaware of other possibilities when
it chooses branching states. Adopting a probabilistic non-optimal strategy like
simulated annealing may alleviate this problem, but it still would not provide
guarantees and would likely require many more runs.

The main limitation of MinWit is that, since computing the minimum wit-
ness size function is computationally intensive, long runtimes and large amounts
of memory are required as the model complexity scales up. However, engineers
usually debug models with small scaling parameters first, perhaps running model
checking tools overnight, thus, the resource requirement of MinWit may often
be acceptable in practice. In real-world applications, we believe that MinWit
and Wit can complement each other. Wit generates a large number of wit-
nesses in a short time, but if all the witnesses are complex, MinWit can be run
to find a smaller, easier-to-inspect one. Conversely, if MinWit fails to generate
a minimum witness due to time or memory limitation, Wit can be run to obtain
not-necessarily-minimum ones by running it repeatedly, as many times as one
can afford. The best approach, given enough resources and in the presence of
critical deadlines, may well be to run both methods in parallel, so that we can
be sure to have a minimum witness if MinWit completes, but we have at least
some witnesses from Wit, if MinWit fails to complete in time.

7 A Comment About Our Definition of Witness Size

In Sect. 3, we defined the witness size as “the number of appearances of states in
the unfolded tree-like witness”. An alternative definition could have been “the
number of distinct states in the unfolded tree-like witness”. However, a state
may appear multiple times for different purposes in a witness. For example, the
witness for EF(a ∧EGb) in Fig. 6 contains state 2 twice, one in [[3, 2, 3]] to verify
for the EG fragment, the other in [[1, 2, 3]] to verify the EF fragment. Considering
each appearance separately makes each subpath independently verifiable, while
merging states that appear multiple times and counting only distinct states loses
this information. Admittedly, our definition of witness size also enables our app-
roach to obtain minimum witnesses, while we do not know a practical algorithm
that can derive minimum witnesses according to a definition of size where com-
mon paths and states appearing multiple times are counted without repetition.
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Fig. 6. A witness for EF(a ∧ EGb).

Of course, after obtaining a minimum witness according to our definition, we
could attempt to merge shared portions among subpaths that demonstrate the
same property, but doing so would not generally result in minimum witnesses
according to this alternative view of witness size.

8 Conclusions

We presented a definition of witness size and an approach to compute minimum
tree-like witnesses for ECTL formulas, based on edge-valued decision diagrams
to capture a global view of witness size. Experimental results demonstrate that
our approach is able to generate minimum witnesses (with a guarantee that it
is doing so) for some models, while the traditional approach is not. While the
runtime and memory requirements of our approach tend to be higher, sometimes
they are comparable to that of the traditional approach.

There are several directions for future work to improve this approach itself or
extend its applicability. One interesting possibility is to selectively employ our
approach or the traditional approach for different subformulas; this would not
guarantee witness minimality, but could generate smaller witness than with the
traditional approach alone, while being faster than using our approach alone.
Especially for EG formulas, the traditional approach has no global view about
the size of witnesses it generates, while, for formulas where the minimum witness
size from each state varies widely, the EV+MDDs and EV+MDD2s built by our
method tend to be large and costly to compute. Thus, heuristics that consider
both the structure of the model and of the formula are needed.

Finally, our approach could be further extended by generalizing the concept
of “size” to “weight”. Specifically, by assigning a weight to each state, engineers
could convey their preference to model checkers, which would then tend to gener-
ate witnesses containing the desired states and subpaths, instead of just counting
the number of states in the witness. The algorithmic difference in doing so would
be negligible, the only additional cost could be a potential growth in the size of
the corresponding EV+MDDs and EV+MDD2s, as the functions being encoded
might have less sharing of nodes.
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Abstract. Specification decomposition is a theoretically interesting and
practically relevant problem for which two approaches were indepen-
dently developed by the control theory and verification communities:
natural projection and partial model checking. In this paper we show
that, under reasonable assumptions, natural projection reduces to partial
model checking and, when cast in a common setting, the two are equiv-
alent. Aside from their theoretical interest, our results build a bridge
whereby the control theory community can reuse algorithms and results
developed by the verification community. In addition, we present an algo-
rithm and a tool for the partial model checking of finite-state automata
that can be used as an alternative to natural projection.

1 Introduction

System verification requires comparing a system’s behavior against a specifi-
cation. When the system consists of several components, we can distinguish
between local and global specifications. A local specification applies to a single
component, whereas a global specification should hold for the entire system.
Since these specifications are needed to reason at different levels of abstraction,
both of them are often present.

Ideally, we would like to freely pass from local to global specifications and vice
versa. Most specification formalisms natively support specification composition.
Logical conjunction, set intersection, and the synchronous product of automata
are all examples of operators for composing specifications. Unfortunately, the
same does not hold for specification decomposition: obtaining local specifications
from a global one is, in general, extremely complex, as illustrated below.
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Example 1. Consider the classical submodule construction problem (SCP) [27]:
given a system and a global specification, find a submodule whose composition
with the system leads to a global behavior conformant to the global specification.
For instance, imagine that we aim to control the usage of a buffer of size n, where
two agents, A and B, can insert and remove items. Now assume that A’s behav-
ior is to “insert one item when the buffer is empty and delete one item when it
is full”, while B’s behavior is unknown. If we want to prevent buffer overflow
and underflow, some questions arise about B. For example, are there compat-
ible behaviors for B? Is there a most general one? How could we effectively
compute it? These questions require decomposing the buffer overflow/underflow
specification so that it only refers to B, while exploiting the known structure
of A. ��

Over the past decades, researchers have investigated methods for decompos-
ing specifications. Interestingly, different communities have tackled this prob-
lem independently, each considering specification formalisms and assumptions
appropriate for their application context. In particular, important results were
obtained in two distinct fields: control theory and formal verification.

In control theory, natural projection [33] is used for simplifying systems built
from multiple components, modeled as automata. It is often applied component-
wise to synthesize local controllers from a global specification of asynchronous
discrete-event system [9], namely the controller synthesis problem (CSP). Briefly,
local controllers guarantee that the global specification is not violated by inter-
acting only with a single component of a system. The local controllers can be
used to implement distributed control systems [34,35] by composing them in
parallel with other sub-systems.

In the formal verification community, partial model checking [1] was proposed
as a technique for mitigating the state explosion problem when verifying large
systems built from many parallel processes. Partial model checking tackles this
problem by decomposing a specification, given as a formula of the μ-calculus [22],
using a quotienting operator, thereby supporting the analysis of the individual
processes independently. Quotienting carries out a partial evaluation of a spec-
ification while preserving the model checking problem. Thus, a system built by
composing two modules satisfies a specification if and only if one of the modules

Table 1. Summary of existing results on natural projection and partial model checking.
Notice that the algorithm in [32] runs in PTIME on a specific class of discrete-event
systems.

Natural Projection Partial MC

Spec. Lang. FSA [19,31] μ-calculus [1,3]

Theory FSA [19,31] LTS [1,3]

Complexity EXPTIME [14,32] EXPTIME [1,3]

Tools TCT [13], IDES3 [30],
DESTool [28]

mCRL2 [18],
CADP [23], MuDiv [2]
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satisfies the specification after quotienting against the other [1]. This may reduce
the problem size, resulting in smaller models and hence faster verification.

Table 1 summarizes some relevant facts about the two approaches and we
refer the reader to Sect. 5 for a more detailed analysis. Since natural projection
and partial model checking apply to different formalisms, they cannot be directly
compared without defining a common framework (see below). For instance, a
relevant question is comparing how specifications grow under the two approaches.
Although it is known that both may lead to exponential growth (see [3,21,32]),
these results apply in one case to finite-state automata (FSAs) and in the other
case to μ-calculus formulae.

Over the past few years, there has been a substantial cross-fertilization
between the two research communities [12]. For instance, methods for synthe-
sizing controllers using partial model checking are given in [6,25]. The authors
of [15,17] propose similar techniques, but they use fragments of the μ-calculus
and CTL∗, respectively.

We follow here the suggestion of Ehlers et al. [12], who advocate formally
connecting these two approaches so as to make them interchangeable. In their
words:

“Such a formal bridge should be a source of inspiration for new lines
of investigation that will leverage the power of the synthesis techniques
that have been developed in these two areas. [...] It would be worthwhile
to develop case studies that would allow a detailed comparison of these
two frameworks in terms of plant and specification modeling, computa-
tional complexity of synthesis, and implementation of derived supervisor/
controller.”

As for the first remark, we show that, under reasonable assumptions, natural pro-
jection reduces to partial model checking and, when cast in a common setting,
they are equivalent. To this end, we first define a common theoretical framework
for both. In particular, we slightly extend both the notion of natural projec-
tion and the semantics of the μ-calculus in terms of the satisfying traces. These
extensions allow us to apply natural projection to the language denoted by a
specification. In addition, we extend the main property of the quotienting oper-
ator by showing that it corresponds to the natural projection of the language
denoted by the specification, and vice versa (Theorem 4).

We provide additional results that contribute to the detailed comparison
referred to in the second remark. Namely we define a new algorithm for partial
model checking directly on LTSs (rather than on the μ-calculus). We prove our
algorithm correct with respect to the traditional quotienting rules and we show
it runs in polynomial time, like the algorithms based on natural projection. We
have implemented this algorithm in a tool, which is available online [11]. Along
with the tool, we developed several case studies illustrating its application to
the synthesis of both submodules and local controllers.

Structure of the paper. Section 2 presents our unified theoretical framework
for natural projection and partial model checking. Section 3 contains our main
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theoretical results, in particular Theorem 4 on the equivalence of quotienting
and natural projection. In Sect. 4 we introduce a novel quotienting algorithm,
discuss its properties, and apply it to our running example. In Sect. 5 we briefly
survey the related literature and in Sect. 6 we draw conclusions. The formal
proofs together with the correctness and the complexity of our algorithm, and
our experimental results are available at https://github.com/SCPTeam/pests/
blob/master/proofs and experiments.pdf.

2 A General Framework

In this section we cast both natural projection and partial model checking in a
common framework. We start with a running example: a scenario inspired by
[10,33], which is an instance of Example 1.

Example 2 (Running example). A drone package delivery (DPD) system relies
on unmanned aerial vehicles (UAVs) to transport goods within a given area.
Drones interact with docking stations where they can pick up (action u) or
deposit (action d) an item. These actions are only observable to the docking
station. Additional interactions are represented by the two control actions s
(for synchronize) and t (for terminate). An action t takes place when UAVs are
requested to leave the station, e.g., due to a maintenance operation, while s is
used for the global synchronization of both the docking station and UAVs.

Figure 1 depicts a transition system that encodes the specification of an n-
position buffer P (n) handled by a docking station. Intuitively, UAVs cannot
perform d actions when the buffer is full (state pn) and u actions when the
buffer is empty (state p0). Since synchronization actions s and t are immaterial,
they label self-loops. ��

p0 p1 · · · pn

d

s, t

u

d

s, t

u

d

u

s, t

Fig. 1. An n-positions buffer specification P (n).

2.1 Language Semantics Versus State Semantics

Natural projection is commonly defined over (sets of) words [33]. Words are finite
sequences of actions, i.e., symbols labeling each transition between two states of
a finite-state automaton (FSA). The language of an FSA is the set of all words
that label a sequence of transitions from an initial state to some distinguished
state, like a final or marking state. We call the function L that maps each FSA
to the corresponding language semantics. Given a system T and a specification
S, both FSAs, then T is said to satisfy S whenever L(T ) ⊆ L(S).

https://github.com/SCPTeam/pests/blob/master/proofs_and_experiments.pdf
https://github.com/SCPTeam/pests/blob/master/proofs_and_experiments.pdf
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For partial model checking, the specification S is defined by a formula of the
μ-calculus. In this case, the standard interpretation is given by a state semantics,
i.e., a function that given a system T and a formula Φ returns the set of states
of T that satisfy Φ. Usually, T is given as a labeled transition system (LTS).
An LTS is similar to an FSA, but with a weaker notion of acceptance, where
all states are final. A set of evaluation rules formalizes whether a state satisfies
a formula or not. Given an LTS T and a μ-calculus formula Φ, we say that T
satisfies Φ whenever its initial state does.

The language semantics of temporal logics is strictly less expressive than the
state-based one [16]. A similar fact holds for FSA and regular expressions [5].
Here we use a semantics from which both the state-based and the language
semantics can be obtained.

2.2 Operational Model and Natural Projection

We now generalize slightly the existing approaches based on partial model check-
ing and on supervisory control theory used for locally verifying global properties
of discrete event systems. We then constructively prove that the two approaches
are equally expressive so that techniques from one can be transferred to the other.
To this end, we consider models expressed as (finite) labeled transition systems,
which describe the behavior of discrete systems. In particular, we restrict our-
selves here to deterministic transition systems.

Definition 1. A (deterministic) labeled transition system (LTS) is a tuple A =
(SA, ΣA,→A, ıA) where SA is a finite set of states (with ıA the initial state), ΣA

is a finite set of action labels, and →A: SA ×ΣA → SA is the transition function.
We write t = s

a−→ s′ to denote a transition, whenever →A (a, s) = s′, and we
call s the source state, a the action label, and s′ the destination state.

A trace σ ∈ T of an LTS A is either a single state s or a sequence of
transitions t1 · t2 · . . . such that for each ti, its destination is the source of ti+1

(if any). When unnecessary, we omit the source of ti+1, and write a trace as the
sequence σ = s0a1s1a2s2 . . . ansn, alternating elements of SA and ΣA (written
in boldface for readability). Finally, we denote by [[A, s]] the set of traces of A
starting from state s and we write [[A]] for [[A, ıA]], i.e., for those traces starting
from the initial state ıA. ��

Example 3. Consider again our running example. Figure 2 depicts the LTSs A
and B. A models an UAV that deposits (d) two items in the buffer and performs
a synchronization action (s). Optionally, A can also leave the docking station
(t). In contrast, B repeatedly picks an item and synchronizes. Both A and B
may also leave the docking station (t). Notice that the traces [[A]] starting from
the initial state of A are [[A]] = {q0, q0dq1, q0tq3, q0dq1dq2, q0dq1dq2sq0, . . .}. In
contrast, the traces starting from the initial state of B are

[[B]] = {r0, r0ur1, r0tr2, r0ur1sr0, r0ur1sr0ur1, . . .}. ��

Typically, a system, or plant in control theory terms, consists of multiple
interacting components running in parallel. Below we rephrase the synchronous
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product of [33]. Intuitively, when two LTSs are put in parallel, each proceeds asyn-
chronously, except on those actions they share, upon which they synchronize.

Definition 2. Given two LTSs A and B such that ΣA ∩ ΣB = Γ , the syn-
chronous product of A and B is A ‖ B = (SA × SB, ΣA ∪ ΣB ,→A‖B , 〈ıA, ıB〉),
where →A‖B is as follows:

〈sA, sB〉 a−→A‖B 〈s′
A, sB〉 if sA

a−→A s′
A and a ∈ ΣA \ Γ

〈sA, sB〉 b−→A‖B 〈sA, s′
B〉 if sB

b−→B s′
B and b ∈ ΣB \ Γ

〈sA, sB〉 γ−→A‖B 〈s′
A, s′

B〉 if sA
γ−→A s′

A, sB
γ−→A s′

B, and γ ∈ Γ. ��

Example 4. Consider again the LTSs A and B of Fig. 2. Their synchronous prod-
uct A ‖ B (with Γ = {s, t}) is depicted in Fig. 3. ��

q0q3 q1 q2
d d

s

t
r0 r1r2

u

t
s

Fig. 2. From left to right, two UAVs adding to (A) and removing from (B) the buffer.

〈q0, r0〉 〈q1, r0〉 〈q2, r0〉 〈q2, r1〉 〈q1, r1〉 〈q0, r1〉〈q3, r2〉 d

t

d

dd

s

u

u

u

Fig. 3. Synchronous product A ‖ B where bold transitions denote synchronous moves.

Next, we generalize the natural projection on languages, which is a kind of
inverse operation of the synchronous product of two LTSs. Given a computa-
tion of A ‖ B, the natural projection extracts the relevant trace of one of the
LTSs, including the synchronized transitions (see the second case below). Note
that, unlike the definition given, for example in [33], our definition returns a
sequence of transitions, including both states and actions. We also define the
inverse projection in the expected way.
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Definition 3. For LTSs A and B with Γ = ΣA ∩ ΣB, the natural projection
on A of a trace σ, in symbols PA(σ), is defined as follows:

PA(〈sA, sB〉) = sA

PA(〈sA, sB〉 a−→A‖B 〈s′
A, s′

B〉 · σ) = sA
a−→A s′

A · PA(σ) if a ∈ ΣA

PA(〈sA, sB〉 b−→A‖B 〈sA, s′
B〉 · σ) = PA(σ) if b ∈ ΣB \ Γ.

Natural projection on second component B is analogously defined. We extend the
natural projection to sets of traces in the usual way: PA(T ) = {PA(σ) | σ ∈ T}.

The inverse projection of a trace σ over an LTS A ‖ B, in symbols P−1
A (σ),

is defined as P−1
A (σ) = {σ′ | PA(σ′) = σ}. Its extension to sets is P−1

A (T ) =⋃

σ∈T

P−1
A (σ). ��

Example 5. Consider the two traces σ1 = 〈q0, r0〉d〈q1, r0〉u〈q1, r1〉d〈q2, r1〉s
〈q0, r0〉 and σ2 = 〈q0, r0〉u〈q0, r1〉d〈q1, r1〉d〈q2, r1〉s〈q0, r0〉. We have that
the projections PA(σ1) = PA(σ2) = q0dq1dq2sq0 ∈ [[A]], and σ1, σ2 ∈
P−1

B (q0dq1dq2sq0). Also notice that all the traces of the form (〈q0, r0〉d)∗σ1

belong to P−1
B (q0dq1dq2sq0). ��

Two classical properties [33] concerning the interplay between the syn-
chronous product and the natural projection hold, the proofs of which are trivial.

Fact 1. PA([[A ‖ B]]) ⊆ [[A]] and [[A ‖ B]] = P−1
B ([[A]]) ∩ P−1

A ([[B]]).

2.3 Equational µ-calculus and Partial Model Checking

Below, we recall the variant of μ-calculus commonly used in partial model check-
ing called modal equations [1]. A specification is given as a sequence of modal
equations, and one is typically interested in the value of the top variable that
is the simultaneous solution to all the equations. Equations have variables on
the left-hand side and assertions on the right-hand side. Assertions are built
from the boolean constants ff and tt , variables x, boolean operators ∧ and ∨,
and modalities for necessity [·] and possibility 〈·〉. Equations also have fix-
point operators (minimum μ and maximum ν) over variables x, and can be
organized in equation systems.

Definition 4 (Syntax of the μ-calculus). Given a set of variables x ∈ X
and an alphabet of actions a ∈ Σ, assertions ϕ,ϕ′ ∈ A are given by the syntax:

ϕ ::= ff | tt | x | ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | [a]ϕ | 〈a〉ϕ.

An equation is x =π ϕ, where π ∈ {μ, ν}, μ denotes a minimum fixed point
equation, and ν a maximum one. An equation system Φ is a possibly empty
sequence (ε) of equations, where each variable x occurs in the left-hand side of
at most a single equation. Thus Φ is given by

Φ ::= x =π ϕ;Φ | ε.

A top assertion Φ↓x projects the simultaneous solution of an equation system Φ
onto the top variable x. ��
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We define the semantics of modal equations in terms of the traces of an LTS
by extending the usual state semantics of [1] as follows. First, given an assertion
ϕ, its state semantics ‖ϕ‖ρ is given by the set of states of an LTS that satisfy ϕ
in the context ρ, where the function ρ assigns meaning to variables. The boolean
connectives are interpreted as intersection and union. The possibility modal-
ity ‖〈a〉ϕ‖ρ (respectively, the necessity modality ‖[a]ϕ‖ρ) denotes the states for
which some (respectively, all) of their outgoing transitions labeled by a lead to
states that satisfy ϕ. For more details on μ-calculus see [8,22].

Definition 5 (Semantics of the μ-calculus [1]). Let A be an LTS, and
ρ : X → 2SA be an environment that maps variables to sets of A’s states. Given
an assertion ϕ, the state semantics of ϕ is the mapping ‖·‖ : A → (X → 2SA) →
2SA inductively defined as follows.

‖ff ‖ρ = ∅ ‖tt‖ρ = SA ‖x‖ρ = ρ(x)

‖ϕ ∧ ϕ′‖ρ = ‖ϕ‖ρ ∩ ‖ϕ′‖ρ ‖[a]ϕ‖ρ = {s ∈ SA | ∀s′.s a−→A s′ ⇒ s′ ∈ ‖ϕ‖ρ}

‖ϕ ∨ ϕ′‖ρ = ‖ϕ‖ρ ∪ ‖ϕ′‖ρ ‖〈a〉ϕ‖ρ = {s ∈ SA | ∃s′.s a−→A s′ ∧ s′ ∈ ‖ϕ‖ρ}

We extend the state semantics from assertions to equation systems. First
we introduce some auxiliary notation. The empty mapping is represented by [ ],
[x �→ U ] is the environment where U is assigned to x, and ρ ◦ ρ′ is the mapping
obtained by composing ρ and ρ′. Given a function f(U) on the powerset of SA,
let πU.f(U) be the corresponding fixed-point. We now define the semantics of
equation systems by:

‖ε‖ρ = [ ]
‖x =π ϕ;Φ‖ρ = R(U∗) where U∗ = πU.‖ϕ‖ρ◦R(U)

and R(U) = [x �→ U ] ◦ ‖Φ‖ρ◦[x�→U ].

Finally, for top assertions, let ‖Φ ↓ x‖ be a shorthand for ‖Φ‖[ ](x). ��

Note that whenever we apply function composition ◦, its arguments have disjoint
domains. Next, we present the trace semantics: a trace starting from a state s
satisfies ϕ if s does.

Definition 6. Given an LTS A, an environment ρ, and a state s ∈ SA, the trace
semantics of an assertion ϕ is a function 〈〈·〉〉 : A → SA → (X → 2SA) → T ,
which we also extend to equation systems, defined as follows.

〈〈ϕ〉〉s
ρ =

{
[[A, s]] if s ∈ ‖ϕ‖ρ

∅ otherwise
〈〈Φ〉〉ρ = λx.

⋃

s∈‖Φ‖ρ(x)

[[A, s]].

We write 〈〈Φ↓x〉〉 in place of 〈〈Φ〉〉[ ](x). ��

Example 6. Consider Φ↓x where Φ = {x =μ [d]y ∧ 〈u〉tt ; y =ν 〈d〉x ∨ 〈s〉x} .
We compute ‖Φ↓x‖ with respect to A ‖ B. ‖Φ ↓ x‖ = U∗ = μU.F (U), where
F (U) = ‖[d]y ∧ 〈u〉tt‖[x�→U,y �→G(U)] and G(U) = νU ′.‖〈d〉x ∨ 〈s〉x‖[x�→U,y �→U ′] =
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‖〈d〉x ∨ 〈s〉x‖[x�→U ] (since y does not occur in the assertion). Following the
Knaster-Tarski theorem, we compute U∗ =

⋃n
Fn(∅):

1. G(∅) = ‖〈d〉x ∨ 〈s〉x‖[x�→∅] = ∅ and U1 = F (∅) = ‖[d]y ∧ 〈u〉tt‖[x�→∅,y �→∅] =
{〈q2, r0〉} (i.e., the only state that admits u but not d).

2. G({〈q2, r0〉}) = ‖〈d〉x ∨ 〈s〉x‖[x�→{〈q2,r0〉}] = {〈q1, r0〉} (since 〈q1, r0〉 d−→
〈q2, r0〉) and U2 = F ({〈q2, r0〉}) = ‖[d]y ∧ 〈u〉tt‖[x�→{〈q2,r0〉},y �→{〈q1,r0〉}] =
{〈q0, r0〉, 〈q2, r0〉}.

3. G(U2) = ‖〈d〉x ∨ 〈s〉x‖[x�→{〈q0,r0〉,〈q2,r0〉}] = {〈q1, r0〉, 〈q2, r1〉} and
U3 = F (U2) = ‖[d]y ∧ 〈u〉tt‖[x�→U2,y �→G(U2)] = {〈q0, r0〉, 〈q2, r0〉}.

Since U2 = U3, we have obtained the fixed point U∗. Finally, we can compute
〈〈Φ↓x〉〉, which amounts to [[A, 〈q0, r0〉]] ∪ [[A, 〈q2, r0〉]]. ��

We now define when an LTS satisfies an equation system. Recall that [[A]] stands
for [[A, ıA]].

Definition 7. An LTS A satisfies a top assertion Φ↓x, in symbols A |=s Φ↓x, if
and only if ıA ∈ ‖Φ↓x‖. Moreover, let A |=σ Φ↓x if and only if [[A]] ⊆ 〈〈Φ↓x〉〉. ��

The following fact relates the notion of satisfiability defined in terms of state
semantics (|=s) with the one based on trace semantics (|=σ); its proof is imme-
diate by Definition 6.

Fact 2. A |=s Φ↓x if and only if A |=σ Φ↓x.

As previously mentioned, partial model checking is based on the quotienting
operation //. Roughly, the idea is to specialize the specification of a composed
system on a particular component. Below, we define the quotienting operation [1]
on the LTS A ‖ B. Quotienting reduces A ‖ B |=s Φ to solving B |=s Φ↓x//BA.
Note that each equation of the system Φ gives rise to a system of equations,
one for each state si of A, all of the same kind, minimum or maximum (thus
forming a π-block [3]). This is done by introducing a fresh variable xsi

for each
state si. Intuitively, the equation xsi

=π ϕ//ΣB
si represents the requirements on

B when A is in state si. Since the occurrence of the variables on the right-hand
side depends on the A’s transitions, Φ↓x//BA embeds the behavior of A.

Definition 8. Given a top assertion Φ ↓ x, we define the quotienting of the
assertion on an LTS A with respect to an alphabet ΣB as follows.

Φ↓x//ΣB
A = (Φ//ΣB

A)↓xıA
, where

ε//ΣB
A = ε (x =π ϕ;Φ)//ΣB

A =

⎧
⎪⎨

⎪⎩

xs1 =π ϕ//ΣB
s1

...
xsn

=π ϕ//ΣB
sn

; Φ//ΣB
A (∀ si ∈ SA)

x//ΣB
s = xs tt//ΣB

s = tt ff //ΣB
s = ff
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ϕ ∨ ϕ′//ΣB s = ϕ//ΣB s ∨ ϕ′//ΣB s ϕ ∧ ϕ′//ΣB s = ϕ//ΣB s ∧ ϕ′//ΣB s

(〈a〉ϕ)//ΣB s =
∨

s
a−→s′

ϕ//ΣB s′ ([a]ϕ)//ΣB s =
∧

s
a−→s′

ϕ//ΣB s′ if a ∈ ΣA \ Γ

(〈b〉ϕ)//ΣB s = 〈b〉(ϕ//ΣB s) ([b]ϕ)//ΣB s = [b](ϕ//ΣB s) if b ∈ ΣB \ Γ

(〈γ〉ϕ)//ΣB s =
∨

s
γ−→s′

〈γ〉(ϕ//ΣB s′) ([γ]ϕ)//ΣB s =
∧

s
γ−→s′

[γ](ϕ//ΣB s′) if γ ∈ Γ.

��
Example 7. Consider the top assertion Φ ↓ x of Example 6 and the LTSs A and
B of Example 3. Quotienting Φ ↓ x against B, we obtain Φ//ΣA

B ↓ xr0 where

Φ//ΣAB =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xr0 =μ [d]yr0 ∧ tt
xr1 =μ [d]yr1 ∧ ff
xr2 =μ [d]yr2 ∧ ff
yr0 =ν 〈d〉xr0 ∨ ff
yr1 =ν 〈d〉xr1 ∨ 〈s〉xr0

yr2 =ν 〈d〉xr2 ∨ ff

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xr0 =μ [d]yr0

xr1 =μ ff
xr2 =μ ff
yr0 =ν 〈d〉xr0

yr1 =ν 〈d〉xr1 ∨ 〈s〉xr0

yr2 =ν 〈d〉xr2

=

{
xr0 =μ [d]yr0

yr0 =ν 〈d〉xr0 .

The leftmost equations are obtained by applying the rules of Definition 8. Then
we simplify on the right-hand sides. Finally we reduce the number of equations by
removing those unreachable from the top variable xr0 . For a detailed description
of our simplification strategies we refer the reader to [3]. By proceeding as in
Example 6, we obtain {q0, q2, q3} as the fixpoint. ��

3 Unifying the Logical and the Operational Approaches

In this section we prove the equivalence between natural projection and partial
model checking (Theorem 4). To start, we introduce an auxiliary definition that
roughly acts as a quotienting of an environment ρ. Below, we will write

⊕

i∈I

ρi

for the finite composition of functions ρi over the elements of an index set I.

Definition 9. Given a synchronous product A ‖ B, we define
ΔB(·) : (X → 2SA×SB ) → (XSA

→ 2SB ) as

ΔB(ρ) =
⊕

x∈Dom(ρ)

⊕

sA∈SA

[xsA 	→ Ux
B(sA)], where Ux

B(sA) = {sB | 〈sA, sB〉 ∈ ρ(x)}.

��

A technical lemma follows. Intuitively, quotienting an assertion (and an envi-
ronment) preserves the semantics, i.e., a state 〈sA, sB〉 satisfies ϕ if and only if sB

satisfies the quotient of ϕ on B. Indeed, the following statement can be rewritten
as ‖ϕ//ΣB

sA‖ΔB(ρ) = {sB | 〈sA, sB〉 ∈ ‖ϕ‖ρ}.

Lemma 1. For all A,B, ρ and ϕ on A ‖ B, 〈sA, sB〉 ∈ ‖ϕ‖ρ ⇐⇒ sB ∈
‖ϕ//ΣB

sA‖ΔB(ρ).

We next extend Lemma 1 to a system of equations, providing an alternative
view of quotienting an assertion on a component of a synchronous product.
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Lemma 2. For all A,B, ρ and Φ on A ‖ B, ΔB(‖Φ‖ρ) = ‖Φ//ΣB
A‖ΔB(ρ).

The following corollary is immediate (recall that xsA
is the variable corre-

sponding to the quotient of x on sA).

Corollary 1. For all A,B, ρ, x and Φ on A ‖ B,

〈sA, sB〉 ∈ ‖Φ‖ρ(x) ⇐⇒ sB ∈ ‖Φ//ΣB
A‖ΔB(ρ)(xsA

).

We next establish the correspondence between quotienting and natural
projection.

Theorem 3. For all A,B, x and Φ on A ‖ B, 〈〈Φ↓x//ΣB
A〉〉 = PB(〈〈Φ↓x〉〉).

The following theorem states that the synchronous product of two LTSs
satisfies a global equation system if and only if its components satisfy their
quotients, i.e., their local assertions.

Theorem 4. For all A,B, x and Φ on A ‖ B,

A ‖ B |=ς Φ↓x (ς ∈ {s, σ})

if and only if any of the following equivalent statements holds:
1. A |=ς Φ↓x//ΣA

B 2. B |=ς Φ↓x//ΣB
A

3. A |=σ PA(〈〈Φ↓x〉〉) 4. B |=σ PB(〈〈Φ↓x〉〉).

4 Quotienting Finite-State Systems

In this section we present an algorithm for quotienting a finite-state system
defined as an LTS. Afterwards, we prove its correctness with respect to the
standard quotienting operator and we study its complexity. Finally, we apply
it to our working example to address three problems: verification, submodule
construction, and controller synthesis.

4.1 Quotienting Algorithm

Our algorithm consists of two procedures that are applied sequentially. The
first, called quotient (Table 2), builds a non-deterministic transition system
from two LTSs, i.e., a specification P and an agent A. Moreover, it takes as an
argument the alphabet of actions of the new transition system. Non-deterministic
transition systems have a distinguished label λ, and serve as an intermediate
representation. The states of the resulting transition system include all the pairs
of states of P and A, except for those that denote a violation of P (line 1). The
transition relation (line 3) is defined using the quotienting rules from Sect. 2.
Also, note that the relation → is restricted to the states of S (denoted →S).

The second procedure, called unify (given in Table 3) translates a non-
deterministic transition system back to an LTS. Using closures over λ, unify
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groups states of the transition system. This process is similar to the standard
subset construction algorithm [19], except that we put an a ∈ ΣB \ Γ transition
between two groups Q and M only if (i) M is the intersection of the λ-closures
of the states reachable from Q with an a transition and (ii) all the states of
Q admit at least an a transition leading to a state of M (∧-move). Procedure
unify works as follows. Starting from the λ-closure of B’s initial state (line 1) it
repeats a partition generation cycle (lines 4–13). Each cycle removes an element
Q from the set S of the partitions to be processed. Then, for all the actions
in ΣB \ {λ}, a partition M is computed by ∧-move (line 7). If the partition
is nonempty, a new transition is added from Q to M (line 9). Also, if M is a
freshly generated partition, i.e., M �∈ R, it is added to both S and R (line 10).
The procedure terminates when no new partitions are generated.

Table 2. The quotienting algorithm.

Our quotienting algorithm is correct with respect to the quotienting oper-
ator and runs in PTIME. Intuitively, we avoid an exponential blow-up in our
contribution (in contrast to Table 1) since we only consider deterministic transi-
tion systems. Notice that a determinization step for non-deterministic transition
systems is exponential in the worst case.

4.2 Prototype and Application to the Running Example

We implemented the algorithm presented above as part of a tool suite for the
partial evaluation of finite state models called the partial evaluator of simple
transition systems (pests).1 We applied the prototype to some case studies,

1 The tools in our library work on FSA.
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Table 3. The unification algorithm.

including a real world one based on a flexible manufacturing system.2 For the
sake of presentation we only show here the application to the running example.
In particular, we leverage our algorithm to address three different problems: (i)
reducing the verification of a parallel composition to that of a single component,
(ii) synthesizing a submodule that respects a global specification (SCP), and
(iii) synthesizing a controller for a given component (CSP).

Verification. Here we want to check whether A ‖ B �|=s P (2). To do this we
follow the approach of [1], i.e., we start by quotienting the specification P (2)
against A (see Fig. 2). The result is a two-state specification P ′ having a single
transition labeled with t. Clearly B �|=s P ′ and a counterexample is the trace
σ = r0ur1sr0tr2, as σ ∈ [[B]] while σ �∈ [[P ′]]. As a consequence A ‖ B �|=s P .
Intuitively, this is because after the two d actions, A performs a single s, which
is insufficient to delimit a “safety zone” for actions u by B (which might occur
too late, e.g., after another d by A). Thus, P ′ does not allow an s that might
permit A to carry out the third d move before a u action.

Fixing the example. Given to the previous reasoning, we cannot synthesize mean-
ingful submodules and controllers starting from A. To fix our example, we there-
fore replace A with A′, as depicted in Fig. 4. A′ resembles A but has an extra
state q4 that enables a second s transition. Intuitively, it represents the “safety
zone” just described.

SCP. We now apply the quotienting algorithm to A′ in the case of buffer sizes 2
and 3 to construct the submodules that comply with P (2) and P (3), respectively.

2 FlexFact http://www.rt.eei.uni-erlangen.de/FGdes/productionline.html.

http://www.rt.eei.uni-erlangen.de/FGdes/productionline.html
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Fig. 4. Graphical representation of A′, B2 and B3 (from left to right).

Thus, we set ΣB = {u, s, t}. In this way, the quotienting algorithm generates a
component that not only synchronizes through actions s and t, but also performs
actions u autonomously. The resulting agents B2 and B3 appear in Fig. 4.

The agent B2 synchronizes on the first s transition of A′ to ensure that both
the d actions have been performed. Afterwards, the buffer must be cleared (two
u actions) before synchronizing again on s (thereby permitting A′ to cycle).
Synchronizing on t is also possible. In this case, no further modifications of the
buffer happen.

With a buffer of size 3, the agent B3 is more complex. Intuitively, A′ can
perform its two d actions only when the buffer contains at most one item. Thus,
B3 has two loops. The inner loop (passing through the states w0 w1 w2 w4) is
analogous to that of B2 (where two u actions are performed in sequence) and, if
completed, it empties the buffer. Moreover, the specification includes an external
loop (w2 w3 w6 w1) that removes two elements from the full buffer of size 3. As
expected, the two cycles can be combined. Finally, notice that the action t can
occur under two conditions: if the buffer contains no items (w0) or exactly 1
item (w3). In the second case, a final u action (w5) can occur.

〈q0, w0〉 〈q1, w0〉 〈q2, w0〉 〈q3, w1〉 〈q3, w2〉

〈q3, w4〉〈q4, w5〉〈q4, w7〉 〈q0, w3〉 〈q1, w3〉 〈q2, w3〉

〈q3, w6〉d

t

d s u

u
s

s

u
d

t

d

s

u

k0

k1

k2

s

t

Fig. 5. Graphical representation of A′ ‖ B3 and C (from left to right).

CSP. We consider now the problem of synthesizing a controller for A′ ‖ B3 (see
Fig. 5). In particular, we want a controller to enforce P (2) on it.3 To generate the
controller, we run the quotienting algorithm with ΣB = {s, t}, i.e., we force the

3 Notice that A′ ‖ B3 does not comply with P (2) as B3 was synthesized from P (3).
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algorithm to build a component that can only synchronize on the controllable
actions s and t. The resulting controller is depicted on the right of Fig. 5. Intu-
itively, the controller only admits two operations: either t or s. The first case is
when A′ and B3 terminate (state 〈q4, w7〉). Otherwise, only a single s action can
occur. In fact, after one s action, the target reaches 〈q3, w1〉 completely filling
in the stack with two d actions. The system can then reach both 〈q3, w2〉 and
〈q3, w4〉. Since an s action leads from 〈q3, w2〉 to 〈q0, w3〉, where the system can
perform other two d transitions, it is not allowed.

5 Related Work

Natural projection is mostly used by the community working on control the-
ory and discrete-event systems. In the 1980s, the seminal works by Wonham
et al. (e.g., [34,35]) exploited natural projection-based algorithms for synthe-
sizing both local and global controllers. Along this line of research, other
authors proposed extensions and refinements, relying on natural projection (e.g.,
see [13,14,24,32]).

Partial model checking has been successfully applied to the synthesis of con-
trollers. Given an automaton representing a plant and a μ-calculus formula, Basu
and Kumar [6] compute the quotient of the specification with respect to the
plant. The satisfiability of the resulting formula is checked using a tableau that
also returns a valid model yielding the controller. Their tableau works similarly
to our quotienting algorithm, but applies to a more specific setting, as they are
interested in generating controllers. In contrast, Martinelli and Matteucci [26]
use partial model checking to generate a control process for a partially unspec-
ified system in order to guarantee the compliance against a μ-calculus formula.
The generated controller takes the form of an edit automaton [7].

Some authors proposed techniques based on the formal verification of tempo-
ral logics for addressing CSP. Arnold et al. [4] were among the first to control a
deterministic plant with a μ-calculus specification. Also Ziller and Schneider [36]
and Riedwge and Pinchinat [29] reduce the problem of synthesizing a controller
to check the satisfiability of a formula of (a variant of) the μ-calculus. A simi-
lar approach was presented by Jiang and Kumar [20] and Gromyko et al. [17].
Similarly to [29,36], [20] puts forward an approach that reduces the problem of
synthesizing a controller to that of checking a CTL� formula’s satisfiability. In
contrast, [17] proposes a method based on symbolic model checking to synthesize
a controller. Their approach applies to a fragment of CTL.

6 Conclusion

Our work goes in the same direction of [12] and provides results that build a new
bridge between supervisory control theory and formal verification. In particular,
we have formally established the relationship between partial model checking
and natural projection by reducing natural projection to partial model checking
and proving them equivalent under common assumptions. This equivalence helps
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explain why some authors use partial model checking and others use natural
projection to synthesize controllers. We have also developed a working prototype
that we haven applied to our running example and to a realistic case study.

Besides establishing an interesting and novel connection, our work also opens
new directions for investigation. Since natural projection is related to language
theory in general, there could be other application fields where partial model
checking can be used as an alternative. The original formulation of partial model
checking applies to the μ-calculus, while our quotienting algorithm works on
LTSs. To the best of our knowledge, no quotienting algorithms exist for for-
malisms with a different expressive power, such as LTL or CTL.
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Abstract. We propose a method for automatically finding refinement
types of higher-order function programs. Our method is an extension of
the Ice framework of Garg et al. for finding invariants. In addition to the
usual positive and negative samples in machine learning, their Ice frame-
work uses implication constraints, which consist of pairs (x, y) such that
if x satisfies an invariant, so does y. From these constraints, Ice infers
inductive invariants effectively. We observe that the implication con-
straints in the original Ice framework are not suitable for finding invari-
ants of recursive functions with multiple function calls. We thus gener-
alize the implication constraints to those of the form ({x1, . . . , xk}, y),
which means that if all of x1, . . . , xk satisfy an invariant, so does y. We
extend their algorithms for inferring likely invariants from samples, veri-
fying the inferred invariants, and generating new samples. We have imple-
mented our method and confirmed its effectiveness through experiments.

1 Introduction

Higher-order functional program verification is an interesting but challenging
problem. Over the past two decades, several approaches have been proposed:
refinement types with manual annotations [10,31], liquid types [23], and reduc-
tion to higher-order recursion schemes [24]. These approaches face the same
problem found in imperative and synchronous data-flow program verification:
the need for predicates describing how loops and components behave for the
verification and/or abstraction method to work in practice [9,12,17]. This paper
proposes to address this issue by combining refinement types with the recent
machine-learning-based, invariant discovery framework Ice from [11,12].

Consider for instance a function f from integers to integers such that if its
input n is less than or equal to 101, then its output is 91, otherwise it is n− 10.
(This is the case of the mc 91 function on Fig. 1.) Then our objective is to
automatically discover, by using an adaptation of Ice, the refinement type

f : {n : int | true} → {r : int | (n > 101 ∧ r = n − 10) ∨ r = 91}.

c© The Author(s) 2018
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That is, function f accepts any integer n that satisfies true as input, and yields an
integer r equal to n−10 when n > 101, and equal to 91 otherwise. The traditional
Ice framework is not appropriate for our use-case. We briefly summarize it
below, and then discuss how this approach needs to be extended for the purpose
of functional program verification.

Brief Review of the Ice Framework. Let S be a transition system
〈 �s, I(�s), T (�s,�s′) 〉, with �s its vector of state variables, I(�s) its initial predi-
cate, and T (�s,�s′) the transition relation between consecutive states. Suppose we
wish to prove that P(�s) is an invariant, i.e., that a property P(�s) holds for any
state �s reachable from an initial state. Then it suffices to find a predicate Inv(�s)
that satisfies the following conditions.

I(�s) |= Inv(�s) (1)
Inv(�s) |= P(�s) (2)

Inv(�s) ∧ T (�s,�s′) |= Inv(�s′) (3)

The predicate Inv(�s) is an invariant that is inductive in that it is preserved
by the transition relation, as guaranteed by (3). We call such an Inv(�s) a
strengthening inductive invariant for P(�s). It serves as a certificate that P(�s)
is a (plain) invariant. Given a candidate for Inv(�s), the conditions (1)–(3) can
be checked by an SMT [3] solver. In the rest of this section, “invariant” will
always mean “strengthening inductive invariant”.

The Ice framework is a machine-learning-based method combining a learner
that incrementally produces candidate invariants, and a teacher that checks
whether the candidates are such that (1), (2) and (3) hold. If a given candidate
is not an invariant, the teacher produces learning data as follows, so that the
learner can produce a better candidate. Given a candidate Ck(�s), the teacher
checks whether (1) holds — using an SMT solver for instance. If it does not, a
concrete state �e is extracted and will be given to the learner as an example: the
next candidate Ck+1 should be such that Ck+1(�e) holds. Conversely, if (2) does
not hold, a concrete state �c is extracted and will be given as a counterexample:
the next candidate should be such that Ck+1(�c) does not hold.

Unlike traditional machine-learning approaches, in Ice the teacher also
extracts learning data from (3) when it does not hold. It takes the form of a pair
of (consecutive) concrete states (�i,�i′), and is called an implication constraint : the
next candidate should be such that Ck+1(�i) ⇒ Ck+1(�i′). Implication constraints
are crucial for the learner to discover inductive invariants, as they let it know
why its current candidate failed the induction check. The Ice framework does
not specify how the learner generates candidates, but this is typically done by
building a classifier consistent with the learning data, in the form of a decision
tree—discussed further in Sect. 3.

Refinement Type Inference as a Predicate Synthesis Problem. We now discuss
why the original Ice framework is ill-suited for functional program verification.
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Fig. 1. McCarthy’s 91 function.

Consider McCarthy’s 91 function from Fig. 1. To prove this program correct in
a refinement type setting, it is enough to find some refinement type

{n : int | ρ1(n)} → {r : int | ρ2(n, r)}

for mc 91, where ρ1 and ρ2 are such

ρ1(n) ∧ n > 100 ∧ r = n − 10 |= ρ2(n, r) (4)
ρ1(n) ∧ n ≤ 100 |= ρ1(n + 11) (5)

ρ1(n) ∧ n ≤ 100 ∧ ρ2(n + 11, tmp) |= ρ1(tmp) (6)
ρ1(n) ∧ n ≤ 100 ∧ ρ2(n + 11, tmp) ∧ ρ2(tmp, r) |= ρ2(n, r) (7)

true |= ρ1(m) (8)
m ≤ 101 ∧ ρ2(m, res) |= res = 91 (9)

We can observe some similarities between the Horn clauses above and
(1)–(3). The constraints (8) and (9) respectively correspond to the constraints (1)
and (2) on initial states and the property to be proved, whereas the constraints
(4)–(7) correspond to the induction constraint (3). This observation motivates
us to reuse the Ice framework for refinement type inference.

There are, however, two obstacles in adapting the Ice framework to refine-
ment type inference. First, we must infer not one but several mutually-dependent
predicates. Second, and more importantly, we need to generalize the notion of
implication constraint because of the nested recursive calls found in functional
programs. To illustrate, let us assume that we realized that mc 91’s precondition
is ρ1(n) = true. Then the third constraint from the else branch is

n ≤ 100 ∧ ρ2(n + 11, tmp) ∧ ρ2(tmp, r) |= ρ2(n, r).

Contrary to the ones found in the original Ice framework, this Horn clause is
non-linear : it has more than one application of the same predicate (ρ2, here) in its
antecedents. Now, assuming we have a candidate for which this constraint is falsi-
fiable, the implication constraint should have form ( {(n1, r1), (n2, r2)}, (n, r) ),
which means that the next candidate C should be such that C (n1, r1) ∧
C (n2, r2) ⇒ C (n, r). This is because there are two occurrences of ρ2 on the
left-hand side of the implication.

The need to infer more than one predicate and support non-linear Horn
clauses is not specific to higher-order functional program verification. After
all, McCarthy’s 91 function is first-order and is occasionally mentioned
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in first-order imperative program verification papers [5]. Sv-Comp [4],
the main (imperative) software verification competition features 3247 Horn
clause problems in its linear arithmetic track (https://github.com/sosy-lab/sv-
benchmarks/tree/master/clauses/LIA), 54 of which contain non-linear Horn
clauses. In our context of higher-order functional program verification the ratio
is much higher, with 63 of our 164 OCaml [20] programs yielding non-linear
Horn clauses.

The main contribution of this paper is to address the two issues aforemen-
tioned and propose a modified Ice framework suitable for higher-order program
verification in particular. While adapting machine-learning techniques to higher-
order program verification has been done before [34,35], transposing implication
constraints to this context is, to the best of our knowledge, new work. We have
implemented our approach as a program verifier for a subset of OCaml and
report on our experiments.

The rest of the paper is organized as follows. Section 2 introduces our target
language and describes verification condition generation and simplification. The
modified Ice framework is discussed in Sect. 3. We report on our implementation
and experiments of the approach in Sect. 4, and discuss related work in Sect. 5
before concluding in Sect. 6.

2 Target Language and Verification Conditions

In this section, we first introduce the target language of our refinement type
inference method. We then introduce a refinement type system and associated
verification conditions (i.e., sufficient conditions for the typability of a given
program).

2.1 Language

The target of the method is a simply-typed, call-by-value, higher-order functional
language with recursion. Its syntax is given by:

D (programs) ::={f1(z̃1) = e1, . . . , fn(z̃n) = en}
e (expressions) ::=n | x | ⊕{a1 ⇒ e1, . . . , an ⇒ en} | fail

| let x = ∗ in e | let x = a in e | let x = yz in e

a (arith. expressions) ::=n | x | op(a1, a2) v (values) ::=n | fi ṽ

τ (simple types) ::=int | τ1 → τ2

We use the meta-variables x, y, . . . , f, g, . . . for variables. We write ·̃ for a
sequence; for example, we write x̃ for a sequence of variables. For the sake of
simplicity, we consider only integers as base values. We represent booleans using
integers, and treat 0 as false and non-zero values as true. We sometimes write
true for 1 and false for 0.

We briefly explain programs and expressions; the formal semantics is given
in the longer version [7]. We use let-normal-form-style for simplicity. A program

https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA
https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA
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D is a set of mutually recursive function definitions f(z̃) = e. The expres-
sion ⊕{ai ⇒ ei}1≤i≤n evaluates ei non-deterministically if the value of ai is
non-zero, which can be also used to generate non-deterministic booleans/in-
tegers. We also write (a1 ⇒ e1) ⊕ · · · ⊕ (an ⇒ en) for ⊕{ai ⇒ ei}1≤i≤n,
and write if a then e1 else e2 for (a ⇒ e1) ⊕ (¬a ⇒ e2). The expression
let x = ∗ in e generates an integer, then binds x to it, and evaluates e. The
expression let x = a in e (let x = yz in e, resp.) binds x to the value of a
(yz, resp.), and then evaluates e. The expression fail aborts the program. An
assert expression assert(a) can be represented as if a then 0 else fail. In
the definition of values, function application fi ṽ must be partial, i.e., the length
|ṽ| of arguments ṽ must be smaller than |x̃i|, where (fi(x̃i) = ei) ∈ D.

We assume that a program is well-typed under the standard simple type
system. We also assume that every function in D has a non-zero arity, the body
of each function definition has the integer type, and D contains a distinguished
function symbol main ∈ {f1, . . . , fn} whose simple type is int → int.

The goal of our verification is to find an invariant (represented in the form
of refinement types) of the program that is sufficient to verify that, for every
integer n, main n does not fail (i.e., is not reduced to fail).

2.2 Refinement Type System

We present a refinement type system for the target language. The syntax of
refinement types is given by:

T (refinement types) ::={x : int | a} | (x : T1) → T2.

The refinement type {x : int | a} denotes the set of integers that satisfy a, i.e.,
the value of a is non-zero. For example, {x : int | x ≥ 0} represents natural
numbers. The type (x : T1) → T2 denotes the set of functions that take an
argument x of type T1 and return a value of type T2. Here, note that x may
occur in T2. We write int for {x : int | true}, and T1 → T2 for (x : T1) → T2

when x does not occur in T2. By abuse of notation, we sometimes (as in Sect. 1)
write {x : int | a} → T for (x : {x : int | a}) → T .

A judgment Γ  t : T means that term t has refinement type T under refine-
ment type environment Γ, which is a sequence of refinement type bindings and
guard predicates: Γ ::= ∅ | Γ, x :T | Γ, a. Here, x :T means that x has refinement
type T , and a means that a holds. Figure 2 shows the typing rules, which are
the standard ones.

The type system is sound in the sense that if  D : Γ holds for some Γ,
then main n does not fail for any integer n. We omit to prove this type system
sound as it is a rather standard system [23,28,29]. The type system is, however,
incomplete: there are programs that never fail but are not typable in the refine-
ment type system. Implicit parameters are required to make the type system
complete [30].
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Fig. 2. Typing rules of refinement type system

2.3 Verification Conditions

Our goal has now been reduced to finding Γ such that  D : Γ, if such Γ exists.
To this end, we first infer simple types for the target program by using the
Hindley-Milner type inference algorithm. From the simple types, we construct
the refinement type templates by adding predicate variables, and then gener-
ate the verification conditions, i.e., constraints on the predicate variables that
describe a sufficient condition for  D : Γ. The construction of the verification
conditions is also rather standard [23,28,29], hence we do not discuss it here—
see [7]. We note that the verification conditions can be normalized to a set of
Horn clauses [5].

Example 1. Consider the following program and its associated simple types:

let incr n = n + 1 in let twice f x = f (f x) in

let main m = assert (twice incr m > m)

main : int → int, incr : int → int, twice : (int → int) → int → int

By assigning a unique predicate variable to each integer type, we can obtain the
following refinement type templates.

main : int → int, incr : {n : int | ρ1(n
′)} → {k : int | ρ2(n, k)},

twice : ({y : int | ρ′
1(y)} → {z : int | ρ′

2(y, z)}) → {x : int | ρ′
3(x)} → {r : int | ρ′

4(x, r)}.

We then extract the following verification conditions from the body of the
program:

ρ1(n) |= ρ2(n, n + 1) ρ′
3(x) |= ρ′

1(x) ρ′
3(x) ∧ ρ′

2(x, z1) |= ρ′
1(z1)

ρ′
3(x) ∧ ρ′

2(x, z1) ∧ ρ′
2(z1, z2) |= ρ′

4(x, z2) ρ′
1(n) |= ρ1(n)

true |= ρ′
3(m) ρ′

4(m, r) |= r > m ρ′
1(y) ∧ ρ2(y, z) |= ρ′

2(y, z).
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2.4 Simplifying Verification Conditions

The number of unknown predicates to infer is critical to the efficiency of our
algorithm in Sect. 3, because the algorithm succeeds only when the learner comes
up with correct solutions for all the unknown predicates. We discuss here a couple
of techniques to reduce the number of unknown predicates.

The first one takes place at the level of Horn clauses and is not limited to
refinement type inference over functional programs. Suppose that some predi-
cate ρ occurs in the clauses ϕ |= ρ and C[ρ] |= ϕ′, where C[ρ] is a formula
having only positive occurrences of ρ, and ρ does not occur in ϕ, ϕ′, nor any
other clauses of the verification condition. Then, we can replace the two clauses
above with C[ϕ] |= ϕ′ and ρ ≡ ϕ. For example, recall the incr/twice from the
example above. The predicate ρ1 occurs only in the clauses ρ′

1(n) |= ρ1(n) and
ρ1(n) |= ρ2(n, n+1). Thus, we can replace them with ρ′

1(n) |= ρ2(n, n+1) and
ρ1(n) ≡ ρ′

1(n). In this manner we can reduce the number of unknown predicate
variables. This optimization itself is not specific to our context of functional pro-
gram verification; similar (and more sophisticated) techniques are also discussed
in [5]. We found this optimization particularly useful in our context, because the
standard verification condition generation for higher-order functional programs
introduces too many predicate variables.

The other optimization is specific to our context of refinement type inference.
Suppose that the simple type of a function f is int → int. Then, in general, we
prepare the refinement type template {x : int | ρ1(x)} → {r : int | ρ2(x, r)}. If
the evaluation of f(n) does not fail for any integer n, however, then the above
refinement type is equivalent to {x : int | true} → {r : int | ρ1(x) ⇒ ρ2(x, r)}.
Thus, the simpler template (x : int) → {r : int | ρ3(x, r)} suffices, with ρ3(x, r)
corresponding to ρ1(x) ⇒ ρ2(x, r). For instance, in the mc 91 example from
Sect. 1, it is obvious that mc 91(n) never fails as its body contains no assertions
and contains only calls to itself. Thus, we can actually set ρ1(n) to true.

In practice we use effect analysis [22] to check whether a function can fail. To

this end, we extend simple types to effect types defined by: σ ::= int | σ1
ξ→ σ2,

where ξ is either an empty effect ε, or a failure f. The type σ1
ξ→ σ2 describes

functions that take an argument of type σ1 and return a value of type σ2, but with
a possible side effect of ξ. We can infer these effect types using a standard effect
inference algorithm [22]. A function with effect type int ε→ σ takes an integer as
input and returns a value of σ without effect, i.e., without failure. For this type,
we then use the simpler refinement type template {x : int | true} → · · · instead
of {x : int | ρ(x)} → · · ·. For example, since mc 91 has effect type int

ε→ int,
we assign the template (x : int) → {r : int | ρ(x, r)} for the refinement type of
mc 91.

3 Modified Ice Framework

This section discusses our modified Ice framework tackling the predicate synthe-
sis problem extracted from the input functional program as detailed in Sect. 2.



372 A. Champion et al.

Algorithm 1. Teacher supervising the learning process.
Input: set of verification conditions VC over predicates ρ1, . . . , ρn from Sect. 2
Result: concrete predicates for ρ1, . . . , ρn for which

∧
VC is valid

1 (P, N , I) = (∅, ∅, ∅) ;
2 (P1, . . . , Pn) = learn(quals, P, N , I) ; (see Algorithm 2)
3 while

∧
VC (P1, . . . , Pn) is falsifiable do

4 (P ′, N ′, I′) = extract data(VC , P1, . . . , Pn) ; (discussed in Sect. 3.1)
5 (P, N , I) = (P ∪ P ′, N ∪ N ′, I ∪ I′) ;
6 (P1, . . . , Pn) = learn(quals, P, N , I) ; (see Algorithm 2)

7 (P1, . . . , Pn)

Algorithm 1 details how the teacher supervises the learning process. Following
the original Ice approach, teacher and learner only communicate by exchanging
guesses for the predicates (from the latter to the former) and positive (P), neg-
ative (N ) and implication (I) data—from the former to the latter. These three
sets of learning data are incrementally populated as long as the verification con-
ditions are falsifiable, as discussed below.

3.1 Teacher

We now describe our modified version of the Ice teacher that, given some can-
didate predicates for Π = {ρ1, . . . , ρn}, returns learning data if the verification
conditions instantiated on the candidates are falsifiable. Since there are several
predicates to discover, the positive, negative and implication learning data (con-
crete values) will always be annotated with the predicate(s) concerned.

Now, all the constraints from the verification condition set VC have one of
the following shapes, reminiscent of the original Ice’s (1)–(3) from Sect. 1:

α1 ∧ . . . ∧ αm ∧ C |= αm+1 (10)
α1 ∧ . . . ∧ αm ∧ C |= false m ≥ 1 (11)

where each α1, . . . , αm+1 is an application of one of the ρ1, . . . , ρn to variables
of the program, and C is a concrete formula ranging over the variables of the
program. In the following, we write ρ(αi) for the predicate αi is an application
of. To illustrate, recall constraint (7) of the example from Fig. 1:

ρ1(n)
︸ ︷︷ ︸

α1

∧ ρ2(n + 11, tmp)
︸ ︷︷ ︸

α2

∧ ρ2(tmp, r)
︸ ︷︷ ︸

α3

∧ n ≤ 100
︸ ︷︷ ︸

C

|= ρ2(n, r)
︸ ︷︷ ︸

α4

.

It has the same shape as (10), with ρ(α1) = ρ1 and ρ(α2) = ρ(α3) = ρ(α4) = ρ2.

Given some guesses P1, . . . , Pn for the predicates ρ1, . . . , ρn, the teacher can
check whether VC (P1, . . . , Pn) is falsifiable using an SMT solver. If it is, then
function extract data (Algorithm 1 line 4) extracts new learning data as follows.
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If a verification condition with shape (10) and m = 0 can be falsified, then we
extract some values x̃ from the model produced by the solver. This constitutes
a positive example (ρ(α1), x̃) since ρ(α1) should evaluate to true for x̃. From a
counterexample model for a verification condition of the form (11), we extract
a negative constraint

{

(ρ(α1), x̃1), . . . , (ρ(αm), x̃m)
}

. It means that at least
one of the (ρ(αi), x̃i) should be such that ρ(αi)(x̃i) evaluates to false. Last,
an implication constraint comes from a counterexample model for a verification
condition of shape (10) with m > 0 and is a pair

( {

(ρ(α1), x̃1), . . . , (ρ(αm), x̃m)
}

, (ρ(αm+1), x̃m+1)
)

.

Similarly to the original Ice implication constraints, this constraint means that
if ρ(α1)(x̃1)∧ . . .∧ρ(αm)(x̃m) evaluates to true, then so should ρ(αm+1)(x̃m+1).

Remark 1. Note that negative examples and implication constraints in the orig-
inal Ice framework are special cases of the negative constraints and implication
constraints above. A negative example of the original Ice is just a singleton
set {(ρ(α1), x̃1)}, and an implication constraint of Ice is a special case of the
implication constraint where m = 1. Due to the generalization of learning data,
negative constraints also contain unclassified data (unless they are singletons).

3.2 Learner

We now describe the learning part of our approach, which is an adaptation of the
decision tree construction procedure from the original Ice framework [12]. The
main difference is that the unclassified data can also contain values from negative
constraints, as explained in Remark 1. This impacts decision tree construction
as we now need to make sure the negative constraints are respected, in addition
to checking that the implication constraints hold. Also, we adapted the qualifier
selection heuristic (discussed in Sect. 3.3) to fit our context.

The learner first prepares a finite set of atomic formulas called qualifiers,
and then tries to find solutions for Horn clauses as Boolean combinations of
qualifiers, by running Algorithm 2. We first explain Algorithm 2; we discuss how
the qualifiers are obtained in Sect. 3.4.

Algorithm 2 first classifies data—pairs of the form (ρ, x̃) — to true, false, and
unknown. It then calls build tree (Algorithm 3) for each unknown predicate ρ,
to construct a decision tree that encodes a candidate solution for ρ. A tree T is
defined by T := Node(q, T+, T−) | Leaf (b) where b is a boolean. The formula it
corresponds to is given by function f , defined inductively by

f( Node(q, T+, T−) ) = ( q ∧ f(T+) ) ∨ ( ¬q ∧ f(T−) ) and f( Leaf (b) ) = b.

Algorithm 3 shows the decision tree construction process for a given ρ ∈ Π. It
chooses qualifiers splitting the learning data until there is no negative (positive)
data left and the unclassified data can be classified as positive (negative). The
main difference with the tree construction from the original Ice framework is
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Algorithm 2. learn( quals,P,global N ,global I )
Result: concrete predicates for {ρ1, . . . , ρn} = Π consistent with the learning data

1 global class = (
2 { (ρ, x̃) �→ true | ∃e ∈ P, (ρ, x̃) ∈ e } ∪ { (ρ, x̃) �→ false | {(ρ, x̃)} ∈ N }
3 );
4 foreach (ρ, x̃) appearing in the elements of I and N do
5 if class(ρ, x̃) is undefined then class(ρ, x̃) ← unknown

6 { ρ �→ build tree(
7 ρ, quals(ρ), {x̃ | class(ρ, x̃)}, {x̃ | ¬class(ρ, x̃)}, {x̃ | class(ρ, x̃) = unknown}
8 ) }

Algorithm 3. build tree( ρ,Q, P,N,U )
Input: Predicate variable ρ, qualifiers Q, positive (P ), negative (N) and unclassified (U)

projected learning data.

1 if N = ∅ ∧ can be pos(U, class) then
2 foreach u ∈ U do class(ρ, u) ← true ;
3 Leaf (true)

4 else if P = ∅ ∧ can be neg(U, class) then
5 foreach u ∈ U do class(ρ, u) ← false ;
6 Leaf (false)

7 else
8 choose q in Q that best divides the data
9 (P+, N+, U+) = data x̃ from (P, N, U) such that q(x̃) ;

10 (P−, N−, U−) = data x̃ from (P, N, U) such that ¬q(x̃) ;
11 T+ = build tree(ρ, Q \ q, P+, N+, U+, ) ;
12 T− = build tree(ρ, Q \ q, P−, N−, U−, ) ;
13 Node(q, T+, T−)

that the classification checks now take into account the negative constraints
introduced earlier. Qualifier selection is discussed separately in Sect. 3.3.

Function can be pos checks whether all the unclassified data can be clas-
sified as positive. This consists in making sure that negative and implication
constraints are verified or contain unclassified data—meaning future choices are
able to (and will) verify the constraints. Given unclassified data U , constraint
sets N and I, and classifier mapping class, can be pos checks that the following
conditions hold for every u ∈ U :

∀N ∈ N , (ρ, u) ∈ N ⇒ ∃(ρ′, n) ∈ N \ {(ρ, u′)|u′ ∈ U}, class(ρ′, n) � false

∀(LHS , rhs) ∈ I, (ρ, u) ∈ LHS ⇒

⎧
⎪⎨

⎪⎩

class(rhs) � true

∨ ∃(ρ′, l) ∈ LHS \ {(ρ, u′)|u′ ∈ U},

class(ρ′, l) � false

where class(n) � b means that class(n) is unknown or equal to b. Conversely,
function can be neg checks that all the unclassified data can be classified as
negative:

∀u ∈ U, ∀(LHS , rhs) ∈ I, (ρ, u) = rhs ⇒ ∃(ρ′, l) ∈ LHS , class(ρ′, l) � false.
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While we did not specify the order in which the trees are constructed
(Algorithm 2 line 8), it can impact performance greatly because the classifi-
cation choices influence later runs of build tree. Hence, it is better to treat
the elements of Π that have the least amount of unclassified data first. Doing
so directs the choices of the qualifier q (Algorithm 3 line 8, discussed below)
on as much classified data as possible. The data is then split (lines 9 and 10)
using q: more classified data thus means more informed splits, leading to more
relevant classifications of unclassified data in the terminal cases of the decision
tree construction.

3.3 Qualifier Selection in Algorithm 3

We now discuss how to choose qualifier q ∈ Q on line 8 in Algorithm 3. The
choice of the qualifier q used to split the learning data D = (P,N,U) in Dq =
(Pq, Nq, Uq) and D¬q = (P¬q, N¬q, U¬q) is crucial. In [12], the authors introduce
two heuristics based on the notion of Shannon Entropy ε:

ε(D) = − |P |
|P | + |N | log2

|P |
|P | + |N | − |N |

|P | + |N | log2

|N |
|P | + |N | (12)

which yields a value between 0 and 1. This entropy rates the ratio of positive
and negative examples: it gets close to 1 when |P | and |N | are close. A small
entropy is preferred as it indicates that the data contains significantly more of
one than the other. The information gain γ of a split is

γ(D, q) = ε(D) −
(

|Dq|ε(Dq)
�D� +

|D¬q|ε(D¬q)
�D�

)

(13)

where �D = (P,N,U)� = |P | + |N |. A high information gain means q sepa-
rates the positive examples from the negative ones. Note that the information
gain ignores unclassified data, a shortcoming the Ice framework [12] addresses
by proposing two qualifier selection heuristics. The first subtracts a penalty to
the information gain. It penalizes qualifiers separating data coming from the
same implication constraint—called cutting the implication. The second heuris-
tic changes the definition of entropy by introducing a function approximating
the probability that a non-classified example will eventually be classified as pos-
itive. We present here our adaptation of this second heuristic, as it is much more
natural to transfer to our use-case.

The idea is to create a function Pr that approximates the probability that
some values from the projected learning data D = (P,N,U) end up classified
as positive. More precisely, Pr(v) approximates the ratio between the number
of legal (constraint-abiding) classifications in which v is classified positively and
the number of all legal classifications. Computing this ratio for the whole data
is impractical: it falls in the counting problems class and it is #P -complete [2].
The approximation we propose uses the following notion of degree:

Degree(v) =
∑

(x̃,v)∈I

1
1 + |x̃| −

∑

(x̃,y)∈I,v∈x̃

1
1 + |x̃| −

∑

x̃∈N ,v∈x̃

1
|x̃|
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The three terms appearing in function Degree are based on the following remarks.
Let v be some value in the projected learning data. If (x̃, v) ∈ I, there is only
one classification for x̃ to force v to be true: the classification where all the
elements of x̃ are classified positively. More elements in x̃ generally mean more
legal classifications where one of them is false and v need not be true: Pr(v)
should be higher if x̃ has few elements. If v appears in the antecedents of a
constraint (x̃, y), then Pr(v) should be lower. Still, if x̃ has many elements it
means v is less constrained. There are statistically more classifications in which
v is true without triggering the implication, and thus more legal classifications
where v is true. Last, if v appears in a negative constraint x̃ then it is less
likely to be true. Again, a bigger x̃ means v is less constrained, since there are
statistically more legal classifications where v is true.

Our Pr function compresses the degree between 0 and 1, and we define a new
multi-predicate-friendly entropy function ε to compute the information gain:

Pr(D) =
∑

v∈D Pr(v)

|P |+|N |+|U | Pr(v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if v ∈ P
0 if v ∈ N
1
2

+
arctanDegree(v)

π
otherwise

ε(D) = −Pr(D) log2 Pr(D) − (1 − Pr(D)) log2(1 − Pr(D))

Note that it can happen that none of the qualifiers can split the data, i.e. there
is no qualifier left or they all have an information gain of 0. In this case we
synthesize qualifiers that we know will split the data as described in the next
subsection.

3.4 Mining and Synthesizing Qualifiers

We now discuss how to prepare the set Q of qualifiers used in Algorithm 3.
The learner in both the original Ice approach and our modified version spend
a lot of time evaluating qualifiers. Having too many of them slows down the
learning process considerably, while not considering enough of them reduces the
expressiveness of the candidates. The compromise we propose is to (i) mine for
(few) qualifiers from the clauses, and (ii) synthesize (possibly many) qualifiers
when needed, driven by the data we need to split.

To mine for qualifiers, for every clause C and for every predicate application
of the form ρ(ṽ) in C, we add every boolean atom a in C as a qualifier for ρ as
long as all the free variables of a are in ṽ. All the other qualifiers are synthesized
during the analysis.

Based on our experience, we have chosen the following synthesis strategy.
With v1, . . . , vn the formal inputs of ρ, for all (x1, . . . , xn) ∈ P ∪ N ∪ U , we
generate the set of new qualifiers

{ vi � xi | 1 ≤ i ≤ n, � ∈ {≤, ≥} }
∪ { vi + vj � xi + xj | 1 ≤ i < j ≤ n, � ∈ {≤, ≥} }
∪ { vi − vj � xi − xj | 1 ≤ i < j ≤ n, � ∈ {≤, ≥} }
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Adding these qualifiers allows to split the data on these (strict, when negated)
inequalities, and encode (dis)equalities by combining them in the decision tree.
Also, notice that when no qualifier can split the data we have in general small P ,
N and U sets, and the number of new qualifiers is quite tractable. The learning
process is an iterative one where relatively few new samples are added at each
step, compared to the set of all samples. Since we could split the samples from
the previous iteration, it is very often the case that P , N and U contain mostly
new samples. Last, our approach shares the limitation of the original Ice: it will
not succeed if a particular relation between the variables is needed to conclude,
but no qualifier of the right shape is ever mined for or synthesized.

4 Experimental Evaluation

Let us now briefly present our implementation before reporting on our experi-
mental evaluation. Our implementation consists of two parts. RType is a frontend
(written in OCaml) generating Horn clauses from programs written in a subset
of OCaml as discussed in Sect. 2. It relies on an external Horn clause solver for
actually solving the clauses, and post-processes the solution (if any) to yield
refinement types for the original program. HoIce1, written in Rust [1], is one
such Horn clause solver and implements the modified Ice framework presented
in this paper. All experiments in this section use RType v1.0 and HoIce v1.0.
Under the hood, HoIce relies on the Z32 SMT solver [21] for satisfiability checks.
In the following experiments, RType uses HoIce as the Horn clause solver.

Note that the input OCaml programs are not annotated: the Horn clauses
correspond to the verification conditions encoding the fact that the input pro-
gram cannot falsify its assertion(s). RType supports a subset of OCaml including
(mutually) recursive functions and integers, without algebraic data types. Our
benchmark suite of 162 programs3 includes the programs from [24,34] in the
fragment RType supports, along with programs automatically generated by the
termination verification tool from [18], and 10 new benchmarks written by our-
selves. We only considered programs that are safe since RType is not refutation-
sound. All the experiments presented in this section ran on a machine running
Ubuntu (Xeon E5-2680v3, 64 GB of RAM) with a timeout of 100 s. The num-
ber between parentheses in the keys of the graphs is the number of benchmarks
solved. We begin by evaluating the optimizations discussed in Sect. 2, followed by
a comparison against automated verification tools for OCaml programs. Last, we
evaluate our predicate synthesis engine against other Horn-clause-level solvers.

1 Hosted at https://github.com/hopv/r type and https://github.com/hopv/hoice.
2 The revision of Z3 in all the experiments is the latest at the time of writing: 5bc4c98.
3 Hosted at https://github.com/hopv/benchmarks.

https://github.com/hopv/r_type
https://github.com/hopv/hoice
https://github.com/Z3Prover/z3/commit/5bc4c9809e232d63f46018b200cb930bca993ce5
https://github.com/hopv/benchmarks
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4.1 Evaluation of the Optimizations

Figure 3a shows our evaluation of the effect analysis (EA) and clause reduction
(Red) simplifications discussed in Sect. 2. It is clear that both effect analysis and
Horn reduction speedup the learning process significantly. They work especially
well together and can reduce drastically the number of predicates on relatively
big synthesis problems, as shown on Fig. 3c.

The 11 programs that we fail to verify show inherent limitations of our app-
roach. Two of them require an invariant of the form x + y ≥ z. Our current
compromise for qualifier mining and synthesis (in Sect. 3.3) does not consider
such qualifiers unless they appear explicitly in the program. We are currently
investigating how to alter our qualifier synthesis approach to raise its expressive-
ness with a reasonable impact on performance. The remaining nine programs are
not typable with refinement types, meaning the verification conditions generated
by RType are actually unsatisfiable. An extension of the type system is required
to prove these programs correct [30].

Fig. 3. Evaluation: verification of OCaml programs.
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4.2 Comparison with Other OCaml Program Verifiers

The first tool we compare RType to is the higher-order program verifier MoCHi
from [24] (Fig. 3b). MoCHi infers intersection types, which makes it more expres-
sive than RType. The nine programs that MoCHi proves but RType cannot verify
are the (refinement-)untypable ones discussed above. While this shows a clear
advantage of intersection types over our approach in terms of expressiveness, the
rest of the experiments make it clear that, when applicable, RType outperforms
MoCHi on a significant part of our benchmarks.

We also evaluated our implementation against DOrder from [34,35]. This
comparison is interesting as DOrder also uses machine-learning to infer refine-
ment types, but does not support implication constraints. DOrder compensates
by conducting test runs of the program on random inputs to gather better posi-
tive data. It supports a different subset of OCaml than RType though, and after
removing the programs it does not support, 124 programs are left. The results
are on Fig. 3d, and show that RType overwhelmingly outperforms DOrder. This
is consistent with the results reported for the original Ice framework: the benefit
gained by considering implication constraints is huge.

These results show that, despite its limitations, our approach is competitive
and often outperforms other state-of-the-art automated verification tools for
OCaml programs.

4.3 Horn-Clause-Level Evaluation

Last, we compare our Horn clause solver HoIce to other solvers (Fig. 4):
Spacer [16], Duality [19], Z3’s PDR [13], and Eldarica [14]. The first three are
implemented in Z3 (C++) while Eldarica is implemented in Scala. The bench-
marks are the Horn clauses encoding the safety of the 162 programs aforemen-
tioned with additional two programs, omitted in the previous evaluation as they
are unsafe.

Fig. 4. Comparison with Horn clause solvers.
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HoIce solves the most benchmarks at 162.4 The fastest tool overall is Z3’s
Spacer which solves slightly fewer benchmarks. The two timeouts for HoIce come
from the programs discussed above for which HoIce does not have the appropri-
ate qualifiers to conclude. Because it mixes IC3 [6] with interpolation, Spacer
infers the right predicates quite quickly. Thus, in our use-case, our approach is
competitive with state-of-the-art Horn clause solvers in terms of speed, in addi-
tion to being more precise. We also include a comparison on the SV-COMP with
Spacer on Fig. 4b. HoIce is generally competitive, but timeouts on a significant
part of the benchmarks. Quite a few of them are unsatisfiable; the Ice framework
is not made to be efficient at proving unstatisfiability. The rest of the timeouts
require qualifiers we do not mine for nor synthesizes, showing that some more
work is needed on this aspect of the approach.

In our experience, it is often the case that HoIce’s models are significantly
simpler than those of Spacer’s and PDR’s (as illustrated in [7]). Note that simpler
models can be interesting if the Horn clause solver is placed inside a CEGAR
loop such as the one in MoCHi [24], which is a perspective we want to explore
in future work.

5 Related Work

There has been a lot of work on sampling-based approaches to program invari-
ant discoveries during the last decade [11,12,25–27,33–35]. Among others, most
closely related to this paper are Garg et al.’s Ice framework [11,12] (which
this paper extends) and Zhu et al.’s refinement type inference methods [33–
35]. To the best of our knowledge, Zhu et al. [33–35] were the first to apply a
sampling-based approach to refinement type inference for higher-order functional
programs. They did not, however, consider implication constraints. As discussed
in Sect. 4, their tool fails to verify some programs due to the lack of implication
constraints.

There are other automated/semi-automated methods for verification of
higher-order functional programs [15,23,28–30,32,34,35], based on some com-
binations of Horn clause solving, automated theorem proving, counterexample-
guided abstraction refinement, (higher-order) model checking, etc. As a repre-
sentative of such methods, we have chosen MoCHi and compared our tool with
it in Sect. 4. As the experimental results indicate, our tool often outperforms
MoCHi, although not always. Thus, we think that our learning-based approach
is complementary to the aforementioned ones; a good integration of our app-
roach with them is left for future work. Liquid types [23], another representative
approach, is semi-automated in that users have to provide qualifiers as hints. By
preparing a fixed, default set of qualifiers, Liquid types may also be used as an
automated method. From that viewpoint, the main advantage of our approach
is that we can infer arbitrary boolean combinations of qualifiers as refinement
predicates, whereas Liquid types can infer only conjunctions of qualifiers.
4 This is consistent with the OCaml results: 151 sat results, 9 unsat from programs

RType cannot verify, and 2 unsat from unsafe programs.
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6 Conclusion

In this paper we proposed an adaptation of the machine-learning-based, invariant
discovery framework Ice to refinement type inference. The main challenge was
that implication constraints and negative examples were ill-suited for solving
Horn clauses of the form ρ(x̃1) ∧ · · · ∧ ρ(x̃n) ∧ . . . |= ρ(x̃), which tend to appear
often in our context of functional program verification because of nested recursive
calls.

We addressed this issue by generalizing Ice’s notion of implication constraint.
For similar reasons, we also adapted negative examples by turning them into
negative constraints. This means that, unlike the original Ice framework, our
learner might have to make classification choices to respect the negative learning
data. We have introduced a modified version of the Ice framework accounting
for these adaptations, and have implemented it, along with optimizations based
on effect analysis. Our evaluation on a representative set of programs show that
it is competitive with state of the art OCaml model-checkers and Horn clause
solvers.
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feedback. This work was supported by JSPS KAKENHI Grant Number JP15H05706.

The benchmarks analyzed and the datasets generated during the current study are
available in the figshare repository:

https://doi.org/10.6084/m9.figshare.5902390.v1

This artifact [8] contains all the benchmarks and tools, as well as scripts allowing to

re-generate the data and plots discussed in Sect. 4. The only exception is DOrder, for

reasons discussed in the artifact. Consistently with the TACAS 2018 Artifact Evalua-

tion guidelines, all binaries are provided for Ubuntu 64 bits. Please refer to the README

in the artifact for more information.
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17. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using
a theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 470–485. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0 33

18. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination veri-
fication for higher-order functional programs. In: Shao, Z. (ed.) ESOP 2014. LNCS,
vol. 8410, pp. 392–411. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54833-8 21

19. McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpo-
lation. Technical report, January 2013

20. Minsky, Y.: OCaml for the masses. ACM Queue 9(9), 43 (2011)
21. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

22. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heiedelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

https://doi.org/10.1007/978-3-642-18275-4_7
http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/tacas18-long.pdf
http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/tacas18-long.pdf
https://doi.org/10.6084/m9.figshare.5902390.v1
https://doi.org/10.6084/m9.figshare.5902390.v1
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-32759-9_21
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-642-54833-8_21
https://doi.org/10.1007/978-3-642-54833-8_21
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-03811-6


Higher-Order Refinement Type Discovery 383

23. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of PLDI
2008, pp. 159–169. ACM (2008)

24. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Proceedings of PEPM 2013, pp. 53–62. ACM (2013)

25. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
88–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 6

26. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6 31

27. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 388–411. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38856-9 21

28. Terauchi, T.: Dependent types from counterexamples. In: Proceedings of POPL,
pp. 119–130. ACM (2010)

29. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Proceed-
ings of PPDP 2009, pp. 277–288. ACM (2009)

30. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification
of higher-order functional programs. In: Proceedings of POPL 2013, pp. 75–86.
ACM (2013)

31. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of POPL 1999, pp. 214–227. ACM (1999)

32. Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type inference
for ML. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 295–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 19

33. Zhu, H., Nori, A.V., Jagannathan, S.: Dependent array type inference from tests.
In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp.
412–430. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-
8 23

34. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: Proceedings
of ICFP 2015, pp. 400–411. ACM (2015)

35. Zhu, H., Petri, G., Jagannathan, S.: Automatically learning shape specifications.
In: Proceedings of PLDI 2016, pp. 491–507. ACM (2016)

https://doi.org/10.1007/978-3-319-08867-9_6
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-35873-9_19
https://doi.org/10.1007/978-3-642-35873-9_19
https://doi.org/10.1007/978-3-662-46081-8_23
https://doi.org/10.1007/978-3-662-46081-8_23


384 A. Champion et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Strategy Representation by Decision
Trees in Reactive Synthesis
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Abstract. Graph games played by two players over finite-state graphs
are central in many problems in computer science. In particular, graph
games with ω-regular winning conditions, specified as parity objectives,
which can express properties such as safety, liveness, fairness, are the
basic framework for verification and synthesis of reactive systems. The
decisions for a player at various states of the graph game are repre-
sented as strategies. While the algorithmic problem for solving graph
games with parity objectives has been widely studied, the most promi-
nent data-structure for strategy representation in graph games has been
binary decision diagrams (BDDs). However, due to the bit-level repre-
sentation, BDDs do not retain the inherent flavor of the decisions of
strategies, and are notoriously hard to minimize to obtain succinct rep-
resentation. In this work we propose decision trees for strategy repre-
sentation in graph games. Decision trees retain the flavor of decisions
of strategies and allow entropy-based minimization to obtain succinct
trees. However, decision trees work in settings (e.g., probabilistic mod-
els) where errors are allowed, and overfitting of data is typically avoided.
In contrast, for strategies in graph games no error is allowed, and the
decision tree must represent the entire strategy. We develop new tech-
niques to extend decision trees to overcome the above obstacles, while
retaining the entropy-based techniques to obtain succinct trees. We have
implemented our techniques to extend the existing decision tree solvers.
We present experimental results for problems in reactive synthesis to
show that decision trees provide a much more efficient data-structure for
strategy representation as compared to BDDs.

1 Introduction

Graph Games. We consider nonterminating two-player graph games played on
finite-state graphs. The vertices of the graph are partitioned into states controlled
by the two players, namely, player 1 and player 2, respectively. In each round
the state changes according to a transition chosen by the player controlling
the current state. Thus, the outcome of the game being played for an infinite
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number of rounds, is an infinite path through the graph, which is called a play.
An objective for a player specifies whether the resulting play is either winning
or losing. We consider zero-sum games where the objectives of the players are
complementary. A strategy for a player is a recipe to specify the choice of the
transitions for states controlled by the player. Given an objective, a winning
strategy for a player from a state ensures the objective irrespective of the strategy
of the opponent.

Games and Synthesis. These games play a central role in several areas of com-
puter science. One important application arises when the vertices and edges of a
graph represent the states and transitions of a reactive system, and the two play-
ers represent controllable versus uncontrollable decisions during the execution of
the system. The synthesis problem for reactive systems asks for the construction
of a winning strategy in the corresponding graph game. This problem was first
posed independently by Church [17] and Büchi [14], and has been extensively
studied [15,28,37,45]. Other than applications in synthesis of discrete-event and
reactive systems [43,46], game-theoretic formulations play a crucial role in mod-
eling [1,21], refinement [30], verification [3,20], testing [5], compatibility checking
[19], and many other applications. In all the above applications, the objectives
are ω-regular, and the ω-regular sets of infinite paths provide an important and
robust paradigm for reactive-system specifications [36,50].

Parity Games. Graph games with parity objectives are relevant in reactive syn-
thesis, since all common specifications for reactive systems are expressed as ω-
regular objectives that can be transformed to parity objectives. In particular, a
convenient specification formalism in reactive synthesis is LTL (linear-time tem-
poral logic). The LTL synthesis problem asks, given a specification over input and
output variables in LTL, whether there is a strategy for the output sequences to
ensure the specification irrespective of the behavior of the input sequences. The
conversion of LTL to non-deterministic Büchi automata, and non-deterministic
Büchi automata to deterministic parity automata, gives rise to a parity game to
solve the LTL synthesis problem. Formally, the algorithmic problem asks for a
given graph game with a parity objective and a starting state, whether player 1
has a winning strategy. This problem is central in verification and synthesis.
While it is a major open problem whether the problem can be solved in polyno-
mial time, it has been widely studied in the literature [16,48,52].

Strategy Representation. In graph games, the strategies are the most important
objects as they represent the witness to winning of a player. For example, winning
strategies represent controllers in the controller synthesis problem. Hence all
parity-games solvers produce the winning strategies as their output. While the
algorithmic problem of solving parity games has received huge attention, quite
surprisingly, data-structures for representation of strategies have received little
attention. While the data-structures for strategies could be relevant in particular
algorithms for parity games (e.g., strategy-iteration algorithm), our focus is very
different than improving such algorithms. Our main focus is the representation
of the strategies themselves, which are the main output of the parity-games
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solvers, and hence our strategy representation serves as post-processing of the
output of the solvers. The standard data-structure for representing strategies is
binary decision diagrams (BDDs) [2,13] and it is used as follows: a strategy is
interpreted as a lookup table of pairs that specifies for every controlled state of
the player the transition to choose, and then the lookup table is represented as
a binary decision diagram (BDD).

Strategies as BDDs. The desired properties of data-structures for strategies are as
follows: (a) succinctness, i.e., small strategies are desirable, since strategies cor-
respond to controllers, and smaller strategies represent efficient controllers that
are required in resource-constrained environments such as embedded systems;
(b) explanatory, i.e., the representation explains the decisions of the strategies.
In this work we consider different data-structure for representation of strategies
in graph games. The key drawbacks of BDDs to represent strategies in graph
games are as follows. First, the size of BDDs crucially depends on the variable
ordering. The variable ordering problem is notoriously difficult: the optimal vari-
able ordering problem is NP-complete, and for large dimensions no heuristics are
known to work well. Second, due to the fact that strategies have to be input to
the BDD construction as Boolean formulae, the representation though succinct,
does not retain the inherent important choice features of the decisions of the
strategies (for an illustration see Example 2).

Strategies as Decision Trees. In this work, we propose to use decision trees,
i.e. [38], for strategy representation in graph games. A decision tree is a structure
similar to a BDD, but with nodes labelled by various predicates over the system’s
variables. In the basic algorithm for decision trees, the tree is constructed using
an unfolding procedure where the branching for the decision making is done in
order to maximize the information gain at each step.

The key advantages of decision trees over BDDs are as follows:

– The first two advantages are conceptual. First, while in BDDs, a level corre-
sponds to one variable, in decision trees, a predicate can appear at different
levels and different predicates can appear at the same level. This allows for
more flexibility in the representation. Second, decision trees utilize various
predicates over the given features in order to make decisions, and ignore all
the unimportant features. Thus they retain the inherent flavor of the decisions
of the strategies.

– The other important advantage is algorithmic. Since the data-structure is
based on information gain, sophisticated algorithms based on entropy exist
for their construction. These algorithms result in a succinct representation,
whereas for BDDs there is no good algorithmic approach for variable reorder-
ing.

Key Challenges. While there are several advantages of decision trees, and decision
trees have been extensively studied in the machine learning community, there
are several key challenges and obstacles for representation of strategies in graph
games by decision trees.
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– First, decision trees have been mainly used in the probabilistic setting. In
such settings, research from the machine learning community has developed
techniques to show that decision trees can be effectively pruned to obtain suc-
cinct trees, while allowing small error probabilities. However, in the context
of graph games, no error is allowed in the strategic choices.

– Second, decision trees have been used in the machine learning community
in classification, where an important aspect is to ensure that there is no
overfitting of the training data. In contrast, in the context of graph games,
the decision tree must fit the entire representation of the strategies.

While for probabilistic models such as Markov decision processes (MDPs), deci-
sion trees can be used as a blackbox [9], in the setting of graph games their use
is much more challenging. In summary, in previous settings where decision trees
are used small error rates are allowed in favor of succinctness, and overfitting is
not permitted, whereas in our setting no error is allowed, and the complete fit-
ting of the tree has to be ensured. The basic algorithm for decision-tree learning
(called ID3 algorithm [38,44]) suffers from the curse of dimensionality, and the
error allowance is used to handle the dimensionality. Hence we need to develop
new techniques for strategy learning with decision trees in graph games.

Our Techniques. We present a new technique for learning strategies with decision
trees based on look-ahead. In the basic algorithm for decision trees, at each step
of the unfolding, the algorithm proceeds as long as there is any information gain.
However, suppose for no possible branching there is any information gain. This
represents the situation where the local (i.e., one-step based) decision making
fails to achieve information gain. We extend this process so that look-ahead is
allowed, i.e., we consider possible information gain with multiple steps. The look-
ahead along with complete unfolding ensure that there is no error in the strategy
representation. While the look-ahead approach provides a systematic principle
to obtain precise strategy representation, it is computationally expensive, and
we present heuristics used together with look-ahead for computational efficiency
and succinctness of strategy representation.

Implementation and Experimental Results. Since in our setting existing decision
tree solvers cannot be used as a blackbox, we extended the existing solvers with
our techniques mentioned above. We have then applied our implementation to
compare decision trees and BDDs for representation of strategies for problems in
reactive synthesis. First, we compared our approach against BDDs for two clas-
sical examples of reactive synthesis from SYNTCOMP benchmarks [32]. Second,
we considered randomly generated LTL formulae, and the graph games obtained
for the realizability of such formulae. In both the above experiments the deci-
sion trees represent the winning strategies much more efficiently as compared to
BDDs.

Related Work. Previous non-explicit representation of strategies for verification
or synthesis purposes typically used BDDs [51] or automata [39,41] and do not
explain the decisions by the current valuation of variables. Decision trees have
been used a lot in the area of machine learning as a classifier that naturally
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explains a decision [38]. They have also been considered for approximate repre-
sentation of values in states and thus implicitly for an approximate representa-
tion of strategies, for the model of Markov decision processes (MDPs) in [7,8].
Recently, in the context of verification, this approach has been modified to cap-
ture strategies guaranteed to be ε-optimal, for MDPs [9] and partially observable
MDPs [10]. Learning a compact decision tree representation of an MDP strategy
was also investigated in [35] for the case of body sensor networks. Besides, deci-
sion trees are becoming more popular in verification and programming languages
in general, for instance, they are used to capture program invariants [27,34]. To
the best of our knowledge, decision trees were only used in the context of (possi-
bly probabilistic) systems with only a single player. Our decision-tree approach
is thus the first in the game setting with two players that is required in reactive
synthesis.

Summary. To summarize, our main contributions are:

1. We propose decision trees as data-structure for strategy representation in
graph games.

2. The representation of strategies with decision trees poses many obstacles, as in
contrast to the probabilistic setting no error is allowed in games. We present
techniques that overcome these obstacles while still retaining the algorith-
mic advantages (such as entropy-based methods) of decision trees to obtain
succinct decision trees.

3. We extend existing decision tree solvers with our techniques and present
experimental results to demonstrate the effectiveness of our approach in reac-
tive synthesis.

Further details and proofs can be found in [12].

2 Graph Games and Strategies

Graph Games. A graph game consists of a tuple G = 〈S, S1, S2, A1, A2, δ〉,
where:

– S is a finite set of states partitioned into player 1 states S1 and player 2 states
S2;

– A1 (resp., A2) is the set of actions for player 1 (resp., player 2); and
– δ : (S1 × A1) ∪ (S2 × A2) → S is the transition function that given a player

1 state and a player 1 action, or a player 2 state and a player 2 action, gives
the successor state.

Plays. A play is an infinite sequence of state-action pairs 〈s0a0s1a1 . . .〉 such
that for all j ≥ 0 we have that if sj ∈ Si for i ∈ {1, 2}, then aj ∈ Ai and
δ(sj , aj) = sj+1. We denote by Plays(G) the set of all plays of a graph game G.

Strategies. A strategy is a recipe for a player to choose actions to extend finite
prefixes of plays. Formally, a strategy π for player 1 is a function π : S� · S1 → A1
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that given a finite sequence of visited states chooses the next action. The def-
initions for player 2 strategies γ are analogous. We denote by Π(G) and Γ (G)
the set of all strategies for player 1 and player 2 in graph game G, respectively.
Given strategies π ∈ Π(G) and γ ∈ Γ (G), and a starting state s in G, there is
a unique play 	(s, π, γ) = 〈s0a0s1a1 . . .〉 such that s0 = s and for all j ≥ 0 if
sj ∈ S1 (resp., sj ∈ S2) then aj = π(〈s0s1 . . . sj〉) (resp., aj = γ(〈s0s1 . . . sj〉)). A
memoryless strategy is a strategy that does not depend on the finite prefix of the
play but only on the current state, i.e., functions π : S1 → A1 and γ : S2 → A2.

Objectives. An objective for a graph game G is a set ϕ ⊆ Plays(G). We consider
the following objectives:

– Reachability and safety objectives. A reachability objective is defined by a set
T ⊆ S of target states, and the objective requires that a state in T is visited
at least once. Formally, Reach(F ) = {〈s0a0s1a1 . . .〉 ∈ Plays(G) | ∃i : si ∈ T}.
The dual of reachability objectives are safety objectives, defined by a set
F ⊆ S of safe states, and the objective requires that only states in F are
visited. Formally, Safe(F ) = {〈s0a0s1a1 . . .〉 ∈ Plays(G) | ∀i : si ∈ F}.

– Parity objectives. For an infinite play 	 we denote by Inf(	) the set of states
that occur infinitely often in 	. Let p : S → N be a priority function. The
parity objective Parity(p) = {	 ∈ Plays(G) | min{p(s) | s ∈ Inf(	)} is even }
requires that the minimum of the priorities of the states visited infinitely
often be even.

Winning Region and Strategies. Given a game graph G and an objective
ϕ, a winning strategy π from state s for player 1 is a strategy such that for all
strategies γ ∈ Γ (G) we have 	(s, π, γ) ∈ ϕ. Analogously, a winning strategy γ for
player 2 from s ensures that for all strategies π ∈ Π(G) we have 	(s, π, γ) �∈ ϕ.
The winning region W1(G,ϕ) (resp., W2(G,ϕ)) for player 1 (resp., player 2) is
the set of states such that player 1 (resp., player 2) has a winning strategy.
A fundamental result for graph games with parity objectives shows that the
winning regions form a partition of the state space, and if there is a winning
strategy for a player, then there is a memoryless winning strategy [25].

LTL Synthesis and Objectives. Reachability and safety objectives are the
most basic objectives to specify properties of reactive systems. Most properties
that arise in practice for analysis of reactive systems are ω-regular objectives.
A convenient logical framework to express ω-regular objectives is the LTL (linear-
time temporal logic) framework. The problem of synthesis from specifications,
in particular, LTL synthesis has received huge attention [18]. LTL objectives can
be translated to parity automata, and the synthesis problem reduces to solving
games with parity objectives.

In reactive synthesis it is natural to consider games where the state space is
defined by a set of variables, and the game is played by input and output player
who choose the respective input and output signals. We describe such games
below that easily correspond to graph games.
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I/O Games with Variables. Consider a finite set X = {x1, x2, . . . , xn} of
variables from a finite domain; for simplicity, we consider Boolean variables only.
A valuation is an assignment to each variable, in our case 2X denotes the set of
all valuations. Let X be partitioned into input signals, output signals, and state
variables, i.e., X = I � O � V . Consider the alphabet I = 2I (resp., O = 2O)
where each letter represents a subset of the input (resp., output) signals and
the alphabet V = 2V where each letter represents a subset of state variables.
The input/output choices affect the valuation of the variables, which is given by
the next-step valuation function Δ : V × I × O → V. Consider a game played
as follows: at every round the input player chooses a set of input signals (i.e.,
a letter from I), and given the input choice the output player chooses a set of
output signals (i.e., a letter from O). The above game can be represented as a
graph game 〈S, S1, S2, A1, A2, δ〉 as follows:

– S = V ∪ (V × I);
– player 1 represents the input player and S1 = V; player 2 represents the

output player and S2 = V × I;
– A1 = I and A2 = O; and
– given a valuation v ∈ V and a1 ∈ A1 we have δ(v, a1) = (v, a1), and for

a2 ∈ A2 we have δ((v, a1), a2) = Δ(v, a1, a2).

In this paper, we use decision trees to represent memoryless strategies in such
graph games, where states are represented as vectors of Boolean values. In Sect. 5
we show how such games arise from various sources (AIGER specifications [31],
LTL synthesis) and why it is sufficient to consider memoryless strategies only.

3 Decision Trees and Decision Tree Learning

In this section we recall decision trees and learning decision trees. A key appli-
cation domain of games on graphs is reactive synthesis (such as safety synthesis
from SYNTCOMP benchmarks as well as LTL synthesis) and our comparison
for strategy representation is against BDDs. BDDs are particularly suitable for
states and actions represented as bitvectors. Hence for a fair comparison against
BDDs, we consider a simple version of decision trees over bitvectors, though
decision trees and their corresponding methods can be naturally extended to
richer domains (such as vectors of integers as used in [9]).

Decision Trees. A decision tree over {0, 1}d is a tuple T = (T, ρ, θ) where T
is a finite rooted binary (ordered) tree with a set of inner nodes N and a set of
leaves L, ρ assigns to every inner node a number of {1, . . . , d}, and θ assigns to
every leaf a value YES or NO .

The language L(T ) ⊆ {0, 1}d of the tree is defined as follows. For a vector
x = (x1, . . . , xd) ∈ {0, 1}d, we find a path p from the root to a leaf such that
for each inner node n on the path, x(ρ(n)) = 0 iff the first child of n is on p.
Denote the leaf on this particular path by �. Then x is in the language L(T ) of
T iff θ(�) = YES .
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Example 1. Consider dimension d = 3. The language of the tree depicted in
Fig. 1 can be described by the following regular expression {0, 1}2 ·0+{0, 1}·1 ·1.
Intuitively, the root node represents the predicate of the third value, the other
inner node represents the predicate of the second value. For each inner node, the
first and second children correspond to the cases where the value at the position
specified by the predicate of the inner node is 0 and 1, respectively. We supply
the edge labels to depict the tree clearly. The leftmost leaf corresponds to the
subset of {0, 1}3 where the third value is 0, the rightmost leaf corresponds to
the subset of {0, 1}3 where the third value is 1 and the second value is 1.

3

2

YESNO

YES
=1=0

=1=0

Fig. 1. A decision tree over
{0, 1}3

Standard DT Learning. We describe the stan-
dard process of binary classification using deci-
sion trees (see Algorithm 1). Given a training set
Train ⊆ {0, 1}d, partitioned into two subsets Good
and Bad , the process of learning according to the
algorithm ID3 [38,44] computes a decision tree T
that assigns YES to all elements of Good and NO
to all elements of Bad . In the algorithm, a leaf
� ⊆ {0, 1}d is mixed if � has a non-empty intersec-
tion with both Good and Bad . To split a leaf � on
bit ∈ {1, . . . , d} means that � becomes an internal node with the two new leaves
�0 and �1 as its children. Then, the leaf �0 contains the samples of � where the
value in the position bit equals 0, and the leaf �1 contains the rest of the samples
of �, since these have the value in the position bit equal to 1. The entropy of a
node is defined as

H(�) = −|� ∩ Good |
|�| log2

|� ∩ Good |
|�| − |� ∩ Bad |

|�| log2
|� ∩ Bad |

|�|

An information gain of a given bit ∈ {1, . . . , d} (and thus also of the split into
�0 and �1) is defined by

H(�) − |�0|
|�| H(�0) − |�1|

|�| H(�1) (1)

where �0 is the set of all x = (x1, . . . , xd) ∈ � ⊆ {0, 1}d with xbit = 0 and
�1 = � � �0. Finally, given � ⊆ {0, 1}d we define

maxclass(�) =

{
YES |� ∩ Good | ≥ |� ∩ Bad |
NO otherwise.

Intuitively, the splitting on the component with the highest gain splits the
set so that it maximizes the portion of Good in one subset and the portion of
Bad in the other one.

Remark 1 (Optimizations). The basic ID3 algorithm for decision tree learning
suffers from the curse of dimensionality. However, decision trees are primarily
applied to machine learning problems where small errors are allowed to obtain
succinct trees. Hence the allowance of error is crucially used in existing solvers
(such as WEKA [29]) to combat dimensionality. In particular, the error rate is
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Algorithm 1. ID3 learning algorithm
Inputs: Train ⊆ {0, 1}d partitioned into subsets Good and Bad .
Outputs: A decision tree T such that L(T ) ∩ Train = Good .
/* train T on positive set Good and negative set Bad */

1: T ← ({Train}, ∅, {Train �→θ YES})
2: while a mixed leaf � exists do
3: bit ← an element of {1, . . . , d} that maximizes the information gain
4: split � on bit into two leaves �0 and �1, ρ(�) = bit
5: θ(�0) ← maxclass(�0) and θ(�1) ← maxclass(�1)

6: return T

exploited in the unfolding, where the unfolding proceeds only when the infor-
mation gain exceeds the error threshold. Further error is also introduced in the
pruning of the trees, which ensures that the overfitting of training data is avoided.

4 Learning Winning Strategies Efficiently

In this section we present our contributions. We first start with the representation
of strategies as training sets, and then present our strategy decision-tree learning
algorithm.

4.1 Strategies as Training Sets and Decision Trees

Strategies as Training Sets. Let us consider a game G = 〈S, S1, S2, A1, A2, δ〉.
We represent strategies of both players using the same method. So in what follows
we consider either of the players and denote by S∗ and A∗ the sets of states and
actions of the player, respectively. We fix σ̃ : S∗ → A∗, a memoryless strategy of
the player.

We assume that G is an I/O game with binary variables, which means S∗ ⊆
{0, 1}n and A∗ ⊆ {0, 1}a. A memoryless strategy is then a partial function
σ̃ : {0, 1}n → {0, 1}a. Furthermore, we fix an initial state s0, and let SR

∗ ⊆ {0, 1}n

be the set of all states reachable from s0 using σ against some strategy of the
other player. We consider all objectives only on plays starting in the initial state
s0. Therefore, the strategy can be seen as a function σ : SR

∗ → A∗ such that
σ = σ̃|SR∗ .

Now we define

– Good = {〈s, σ(s)〉 ∈ SR
∗ × A∗}

– Bad = {〈s, a〉 ∈ SR
∗ × A∗ | a �= σ(s)}

The set of all training examples is a disjunctive union Train = Good � Bad ⊆
{0, 1}n+a.

As we do not use any pruning or stopping rules, the ID3 algorithm returns a
decision tree T that fits the training set Train exactly. This means that for all
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s ∈ SR
∗ we have that 〈s, a〉 ∈ L(T ) iff σ(s) = a. Thus T represents the strategy

σ. Note that for any sample of {0, 1}n+a \ Train, the fact whether it belongs
to L(T ) or not is immaterial to us. Thus strategies are naturally represented as
decision trees, and we present an illustration below.

state1

state2 action

action action state2 state2

YES NO YESNO YESNO YES NO

=0 =1

=0 =1 =0 =1

=0 =1 =0 =1 =0 =1 =0 =1

Fig. 2. Tree representation of strategy σ

Example 2. Let the state binary variables be labeled as state1 , state2 , and
state3 , respectively, and let the action binary variable be labeled as action.
Consider a strategy σ such that σ(0, 0, 0) = 0, σ(0, 1, 0) = 1, σ(1, 0, 0) = 1,
σ(1, 1, 1) = 0. Then

– Good = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 1, 0)}
– Bad = {(0, 0, 0, 1), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 1)}
Figure 2 depicts a decision tree T representing the strategy σ.

Remark 2. The above example demonstrates the conceptual advantages of deci-
sion trees over BDDs. First, in decision trees, different predicates can appear at
the same level of the tree (e.g. predicates state2 and action appear at the second
level). At the same time, a predicate can appear at different levels of the tree
(e.g. predicate action appears once at the second level and twice at the third
level).

Second advantage is a bit technical, but very crucial. In the example there
is no pair of samples g ∈ Good and b ∈ Bad that differs only in the value of
state3. This suggests that the feature state3 is unimportant w.r.t. differentiating
between Good and Bad , and indeed the decision tree T in Fig. 2 contains no
predicate state3 while still representing σ. However, to construct a BDD that
ignores state3 is very difficult, since a Boolean formula is provided as the input
to the BDD construction, and this formula inevitably sets the value for every
sample. Therefore, it is impossible to declare “the samples of {0, 1}n+a \ Train
can be resolved either way”. One way to construct a BDD B would be B ≡∨

g∈Good g. But then B(0, 0, 0, 0) = 1 and B(0, 0, 1, 0) = 0, so state3 has to be
used in the representation of B. Another option could be B ≡

∧
b∈Bad ¬b, but

then B(0, 0, 0, 1) = 0 and B(0, 0, 1, 1) = 1, so state3 still has to be used in the
representation.

Example 3. Consider Good = {(0, 0, 0, 0, 1)} and Bad = {(0, 0, 0, 0, 0)}. Algo-
rithm 1 outputs a simple decision tree differentiating between Good and Bad
only according to the value of the last variable. On the other hand, a BDD
constructed as B ≡

∨
g∈Good g contains nodes for all five variables.
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4.2 Strategy-DT Learning

Challenges. In contrast to other machine learning domains, where errors are
allowed, since strategies in graph games must be represented precisely, several
challenges arise. Most importantly, the machine-learning philosophy of classifiers
is to generalize the experience, trying to achieve good predictions on any (not
just training) data. In order to do so, overfitting the training data must be
avoided. Indeed, specializing the classifier to cover the training data precisely
leads to classifiers reflecting the concrete instances of random noise instead of
generally useful predictors. Overfitting is prevented using a tolerance on learning
all details of the training data. Consequently, the training data are not learnt
exactly. Since in our case, the training set is exactly what we want to represent,
our approach must be entirely different. In particular, the optimizations in the
setting where errors are allowed (see Remark 1) are not applicable to handle
the curse of dimensionality. In particular, it may be necessary to unfold the
decision tree even in situations where none of the one-step unfolds induces any
information gain.

Solution: Look-Ahead. In the ID3 algorithm Algorithm 1, when none of the
splits has a positive information gain (see Formula (1)), the corresponding node
is split arbitrarily. This can result in very large decision trees. We propose a
better solution. Namely, we extend ID3 with a “look-ahead”: If no split results
in a positive information gain, one can pick a split so that next, when splitting
the children, the information gain is positive. If still no such split exists, one
can try and pick a split and splits of children so that afterwards there is a split
of grandchildren with positive information gain. And so on, possibly until a
constant depth k, yielding a k-look-ahead.

Before we define the look-ahead formally, we have a look at a simple example:

Example 4. Consider Good = {(0, 0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 0, 0, 0)} and Bad =
{(0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1)}, characterising x6 = x7. Splitting on any xi,
i ∈ {1, ..., 7} does not give a positive information gain. Standard DT learning
procedures would either stop here and not expand this leaf any more, or split
arbitrarily. With the look-ahead, one can see that using x6 and then x7, the
information gain is positive and we obtain a decision tree classifying the set
perfectly.

Here we could as well introduce more complex predicates such as x6 xor x7

instead of look-ahead. However, in general the look-ahead has the advantage that
each of the 0 and 1 branches may afterwards split on different bits (currently
best ones), whereas with x6 xor x7 we commit to using x7 in both branches.

The example illustrates the 2-look-ahead with the following formal definition.
(For explanatory reasons, the general case follows afterwards.) Consider a node
� ⊆ {0, 1}d. For every bit , bit0, bit1 ∈ {1, . . . , d}, consider splitting on bit and
subsequently the 0-child on bit0 and the 1-child on bit1. This results in a partition
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P (bit , bit0, bit1) = {�00, �01, �10, �11} of �. We assign to P (bit , bit0, bit1) its 2-
look-ahead information gain defined by

IG(bit ,bit0, bit1) =

H(�) − |�00|
|�| H(�00) − |�01|

|�| H(�01) − |�10|
|�| H(�10) − |�11|

|�| H(�11)

The 2-look-ahead information gain of bit ∈ {1, . . . , d} is defined as

IG(bit) = max
bit0,bit1

IG(bit , bit0, bit1)

We say that bit ∈ {1, . . . , d} maximizes the 2-look-ahead information gain if

bit ∈ arg max IG

In general, we define the k-step weighted entropy of a node � ⊆ {0, 1}d with
respect to a predicate bit ∈ {1, . . . , d} by

WE k (�, bit) = min
bit0,bit1

WE k−1 ({x ∈ � | xbit = 0}, bit0 )

+WE k−1 ({x ∈ � | xbit = 1}, bit1 )
and

WE0 (�, bit) = |�| · H(�)

Then we say that b̂it ∈ {1, . . . , d} maximizes the k-look-ahead information gain
in � if

b̂it ∈ arg max
bit∈{1,...,d}

(
H(�) − WE k (�, bit)/|�|

)
= arg minWE k (�, ·)

Note that 1-look-ahead coincides with the choice of split by ID3. For a fixed
k, if the information gain for each i-look-ahead, i ≤ k is zero, we split based on a
heuristic on Line 8 of Algorithm 2. This heuristic is detailed on in the following
subsection. Note that Algorithm 2 is correct-by-construction since we enforce
representation of the entire input training set. We present a formal correctness
proof in [12, Appendix B].

Remark 3 (Properties of look-ahead algorithm). We now highlight some desirable
properties of the look-ahead algorithm.

– Incrementality. First, the algorithm presents an incremental approach: com-
putation of the k-look-ahead can be done by further refining the results of
the (k − 1)-look-ahead analysis due to the recursive nature of our definition.
Thus the algorithm can start with k = 2 and increase k only when required.

– Entropy-based minimization. Second, the look-ahead approach naturally
extends the predicate choice of ID3, and thus the entropy-based minimization
for decision trees is still applicable.

– Reduction of dimensionality. Finally, Algorithm 2 uses the look-ahead method
in an incremental fashion, thus only considering more complex “combina-
tions” when necessary. Consequently, we do not produce all these combina-
tions of predicates in advance, and avoid the problem of too high dimension-
ality and only experience local blowups.
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Algorithm 2. k-look-ahead ID3
Inputs: Train ⊆ {0, 1}d partitioned into subsets Good and Bad .
Outputs: A decision tree T such that L(T ) ∩ Train = Good .
/* train T on positive set Good and negative set Bad */

1: T ← ({Train}, ∅, {Train �→θ YES})
2: while a mixed leaf � exists do
3: if ∃bit ∈ {1, . . . , d} with a positive 1-look-ahead information gain then

4: bit ← an element of {1, . . . , d} that maximizes the 1-look-ahead information gain
� maximum information gain is positive

..

.

5: else if ∃bit ∈ {1, . . . , d} with a positive k-look-ahead information gain then
6: bit ← an element of {1, . . . , d} that maximizes the k-look-ahead information gain

� maximum k-look-ahead information gain is positive

7: else
8: bit←argmaxi∈{1,..,d} max

{|�[i=0]∩Bad|
|�[i=0]| +

|�[i=1]∩Good|
|�[i=1]| ,

|�[i=0]∩Good|
|�[i=0]| +

|�[i=1]∩Bad|
�[i=1]|

}

9: split � on bit into two leaves �0 and �1, ρ(�) = bit
10: θ(�0) ← maxclass(�0) and θ(�1) ← maxclass(�1)

11: return T

In general, k-look-ahead clearly requires resources exponential in k. However, in
our benchmarks, it was typically sufficient to apply the look-ahead for k equal
to two, which is computationally feasible.

A different look-ahead-based technique was considered in order to dampen the
greedy nature of decision tree construction [24], examining the predicates yield-
ing the highest information gains. In contrast, our technique retains the greedy
approach but focuses on the case where none of the predicates provides any
information gain itself at all and thus ID3-based techniques fail to advance. The
main goal of our technique is to capture strong dependence between the features
of the training set, in order to solve a different problem than the one treated
by [24]. Moreover, the look-ahead description in [24] is very informal, which pre-
vents us from implementing their solution and comparing the two approaches
experimentally.

4.3 Heuristics

Statistical Split-Decision. The look-ahead mentioned above provides a very
systematic principle on how to resolve splitting decisions. However, the com-
putation can be demanding in terms of computational resources. Therefore we
present a very simple statistical heuristic that gives us one more option to decide
a split. The precise formula is bit =

arg max
i∈{1,..,d}

max

{
|�[i = 0] ∩ Bad |

|�[i = 0]| +
|�[i = 1] ∩ Good |

|�[i = 1]| ,
|�[i = 0] ∩ Good |

|�[i = 0]| +
|�[i = 1] ∩ Bad |

�[i = 1]|

}

Intuitively, we choose a bit that maximizes the portion of good samples in one
subset and the portion of bad samples in the other subset, which mimics the
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entropy-based method, and at the same time is very fast to compute. One can
consider using this heuristic exclusively every time the basic ID3-based split-
ting technique fails. However, in our experiments, using 2-look-ahead and then
(once needed) proceeding with the heuristic yields better results, and is still
computationally undemanding.

Chain Disjunction. The entropy-based approach favors the splits where one
of the branches contains a completely resolved data set (�∗ ⊆Good or �∗ ⊆Bad),
as this provides notable information gain. Therefore, as the algorithm proceeds,
it often happens that at some point multiple splits provide a resolved data set in
one of the branches. We consider a heuristic that chains all such splits together
and computes the information gain of the resulting disjunction. More specifically,
when considering each bit as a split candidate (line 3 of Algorithm 2), we also
consider (a) the disjunction of all bits that contain a subset of Good in either
of the branches, and (b) the disjunction of bits containing a subset of Bad in
a branch. Then we choose the candidate that maximizes the information gain.
These two extra checks are very fast to compute, and can improve succinctness
and readability of the decision trees substantially, while maintaining the fact
that a decision tree fits its training set exactly. [12, Appendix D] provides two
examples where the decision tree obtained without this heuristic is presented,
and then the decision tree obtained when using the heuristic is presented.

5 Experimental Results

In our experiments we use two sources of problems reducible to the representation
of memoryless strategies in I/O games with binary variables: AIGER specifica-
tions [31] and LTL specifications [42]. Given a game, we use an explicit solver to
obtain a strategy in the form of a list of played and non-played actions for each
state, which can be directly used as a training set. Throughout our experiments,
we compare succinctness of representation (expressed as the number of inner
nodes) using decision trees and BDDs.

We implemented our method in the programming language Java. We used
the external library CuDD [49] for the manipulation of BDDs. We used the
Algorithm 2 with k = 2 to compute the decision trees. We obtained all the
results on a single machine with Intel(R) Core(TM) i5-6200U CPU (2.40 GHz)
with the heap size limited to 8 GB.

5.1 AIGER Specifications

SYNTCOMP [32] is the most important competition of synthesis tools, running
yearly since 2014. Most of the benchmarks have the form of AIGER specifica-
tions [31], describing safety specifications using circuits with input, output, and
latch variables. This reduces directly to the I/O games with variables since the
latches describe the current configuration of the circuit, corresponding to the
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state variables of the game. Since the objectives here are safety/reachability, the
winning strategies can be computed and guaranteed to be memoryless.

We consider two benchmarks: scheduling of washing cycles in a washing sys-
tem and a simple bit shifter model (the latter presented only in [12, Appendix D]
due to space constraints), introduced in SYNTCOMP 2015 [32] and SYNT-
COMP 2014, respectively.

Scheduling of Washing Cycles. The goal is to design a centralized controller
for a washing system, composed of several tanks running in parallel [32]. The
model of the system is parametrized by the number of tanks, the maximum
allowed reaction delay before filling a tank with water, the delay after which the
tank has to be emptied again, and the number of tanks that share a water pipe.
The controller should satisfy a safety objective, that is, avoid reaching an error
state, which means that the objective of the other player is reachability. In total,
we obtain 406 graph games with safety/reachability objectives. In 394 cases we
represent a winning strategy of the safety player, in the remaining 12 cases a
winning strategy of the reachability player. The number of states of the graph
games ranges from 30 to 43203, the size of training example sets ranges from 40
to 3359232.

Fig. 3. Washing cycles – safety

The left plot in Fig. 3 displays the size of our decision tree representation of
the controller winning safety strategies versus the size of their BDD representa-
tions. The decision tree is smaller than the corresponding BDD in all 394 cases.
The arithmetic average ratio of decision tree size and BDD size is ∼24%, the
geometric average is ∼22%, and the harmonic average is ∼21%.

In these experiments, we obtain the BDD representation as follows: we con-
sider 1000 randomly chosen variable orderings and for each construct a corre-
sponding BDD, in the end we consider the BDD with the minimal size. As a
different set of experiments, we compare against BDDs obtained using several
algorithms for variable reordering, namely, Sift [47], Window4 [26], simulated-
annealing-based algorithm [6], and a genetic algorithm [22]. The results with
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these algorithms are very similar and provided in [12, Appendix C]. Furthermore,
the information about execution time is also provided in [12, Appendix C].

Moreover, in the experiments described above, we do not use the chain heuris-
tic described in Sect. 4.3, in order to provide a fair comparison of decision trees
and BDDs. The right plot in Fig. 3 displays the difference in decision tree size
once the chain heuristic is enabled. Each dot represents the ratio of decision tree
size with and without it.

The decision trees also allow us to get some insight into the winning strate-
gies. Namely, for a fixed number of water tanks and a fixed empty delay, we
obtain a solution that is affected by different values of the fill delay in a mini-
mal way, and is easily generalizable for all the values of the parameter. This fact
becomes more apparent once the chain heuristic described in Sect. 4.3 is enabled.
This phenomenon is not present in the case of BDDs as they differ significantly,
even in size, for different values of the parameter (see [12, Appendix C]). For two
tanks and empty delay of one, the solution is small enough to be humanly read-
able and understandable, see Fig. 4 (where the fill delay is set to 7). Additional
examples of the parametric solutions can be found in [12, Appendix C]. This
example suggests that decision tree representation might be useful in solving
parametrized synthesis (and verification) problems.

Fig. 4. A solution for two tanks and empty delay of one, illustration for fill delay of 7.
Solution for other values p are the same except for replacing values p and p − 1 for 7
and 6, respectively. Thus a parametric solution could be obtained by a simple syntactic
analysis of the difference of any two instance solutions.
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Name |S| |I| |O| |Train| |BDD| |DT | |DT+|
wash 3 1 1 3 102 3 7 40 45 3 1
wash 4 1 1 3 466 4 9 144 76 4 1
wash 4 1 1 4 346 4 9 96 78 4 1
wash 4 2 1 4 958 4 9 432 157 4 1
wash 4 2 2 4 3310 4 9 432 301 4 1
wash 5 1 1 3 1862 5 11 416 127 5 1
wash 5 1 1 4 1630 5 11 352 121 5 1
wash 5 2 1 4 5365 5 11 2368 255 5 1
wash 5 2 2 4 27919 5 11 2368 554 5 1
wash 6 1 1 3 6962 6 13 1088 193 6 1
wash 6 1 1 4 6622 6 13 1024 172 6 1
wash 6 2 1 4 27412 6 13 10432 419 6 1

Fig. 5. Washing cycles – reachability

The table in Fig. 5 summarizes the results for the cases where the controller
cannot be synthesized and we synthesize a counterexample winning reachability
strategy of the environment. The benchmark parameters specify the total num-
ber of tanks, the fill delay, the empty delay, and the number of tanks sharing a
pipe, respectively. In all of these cases, the size of the decision tree is substan-
tially smaller compared to its BDD counterpart. The decision trees also provide
some structural insight that may easily be used in debugging. Namely, the trees
have a simple repeating structure where the number of repetitions depends just
on the number of tanks. This is even easier to see once the chain heuristic of
Sect. 4.3 is used. Figure 5 shows the tree solution for the case of three and six
tanks, respectively. The structural phenomenon is not apparent from the BDDs
at all.

5.2 Random LTL

In reactive synthesis, the objectives are often specified as LTL (linear-time tem-
poral logic) formulae over input/output letters. In our experiments, we use
formulae randomly generated using SPOT [23]1. LTL formulae can be trans-
lated into deterministic parity automata; for this translation we use the tool
Rabinizer [33]. Finally, given a parity automaton, we consider various partitions
of the atomic propositions into input/output letters, which gives rise to graph
games with parity objectives. See [12, Appendix F] for more details on the trans-
lation. We retain all formulae that result in games with at most three priorities.

Consequently, we use two ways of encoding states of the graph games as
binary vectors. First, naive encoding, allowed by the fact that the output of
tools such as [23,33] in HOA format [4] always assigns an id to each state.

1 First, we run randltl from the Spot tool-set randltl -n10000 5--tree-size=20..

25 seed=0 --simplify=3 -p --ltl-priorities ap=3,false=1,true=1,not=1,

F=1,G=1,X=1,equiv=1,implies=1,xor=0,R=0,U=1, W=0,M=0,and=1,or=1 |

ltlfilt -- unabbreviate="eiMRW" to obtain the formulae. Then we run Rabinizer
to obtain the respective automata and we retain those with at least 100 states.
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As this id is an integer, we may use its binary encoding. Second, we use a
more sophisticated Rabinizer encoding obtained by using internal structure of
states produced by Rabinizer [33]. Here the states are of the form “formula,
set of formulae, permutation, priority”. We propose a very simple, yet efficient
procedure of encoding the state structure information into bitvectors. Although
the resulting bitvectors are longer than in the naive encoding, some structural
information of the game is preserved, which can be utilized by decision trees to
provide a more succinct representation. BDDs perform a lot better on the naive
encoding than on the Rabinizer encoding, since they are unable to exploit the
preserved state information. As a result, we consider the naive encoding with
BDDs and both, the naive and the Rabinizer encodings, with decision trees.

We consider 976 examples where the goal of the player, whose strategy is
being represented, is that the least priority occurring an infinite number of times
is odd.

Figure 6 plots the size ratios when we compare BDDs and decision trees (note
that the y-axis scales logarithmically). For each case, we consider 1000 random
variable orderings and choose the BDD that is minimal in size, and after that we
construct a decision tree (without the chain heuristic of Sect. 4.3). For BDDs,
we also consider all the ordering algorithms mentioned in the previous set of
experiments, however, they provide no improvement compared to the random
orderings.

In 925 out of 976 cases, the resulting decision tree is smaller than the cor-
responding BDD (in 3 cases they are of a same size and in 48 cases the BDD
is smaller). The arithmetic average ratio of decision tree size and BDD size is
∼46%, the geometric average is ∼38%, and the harmonic average is ∼28%.

Fig. 6. BDDs vs DTrees Fig. 7. DTrees improvement with
Rabinizer enc.

Figure 7 demonstrates how decision tree representation improves once the
features of the game-structural information can be utilized. Each dot corresponds
to a ratio of the decision tree size once the Rabinizer encoding is used, and once
the naive encoding is used. In 638 cases the Rabinizer encoding is superior, in
309 cases there is no difference, and in 29 cases the naive encoding is superior.
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All three types of the average ratio are around 80%. In [12, Appendix E] we
present the further improvement of decision trees once we use the chain heuristic
of Sect. 4.3.

6 Conclusion

In this work we propose decision trees for strategy representation in graph games.
While decision trees have been used in probabilistic settings where errors are
allowed and overfitting of data is avoided, for graph games, strategies must be
entirely represented without errors. Hence optimization techniques for existing
decision-tree solvers do not apply, and we develop new techniques and present
experimental results to demonstrate the effectiveness of our approach. Moreover,
decision trees have several other advantages: First, in decision trees the nodes
represent predicates, and in richer domains, e.g., where variables represent inte-
gers, the internal nodes of the tree can represent predicates in the corresponding
domain, e.g., comparison between the integer variables and a constant. Hence
richer domains can be directly represented as decision trees without conversion to
bitvectors as required by BDDs. However, we restricted ourselves to the boolean
domain to show that even in such domains that BDDs are designed for the
decision trees improve over BDDs. Second, as illustrated in our examples, deci-
sion trees can often provide similar and scalable solution when some parameters
vary. This is quite attractive in reactive synthesis where certain parameters vary,
however they affect the strategy in a minimal way. Our examples show decision
trees exploit this much better than BDDs, and can be useful in parametrized
synthesis. Our work opens up many interesting directions of future work. For
instance, richer versions of decision trees that are still well-readable could be
used instead, such as decision trees with more complex expressions in leaves
[40]. The applications of decision trees in other applications related to reactive
synthesis is an interesting direction of future work. Another interesting direction
is the application of the look-ahead technique in the probabilistic settings.
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Appendix

A Artifact Description

We provide instructions to replicate the experimental results presented in this
paper, using our artifact that is openly available at [11]. All the results can be
obtained with the heap size limited to 8 GB.

Results for Scheduling of Washing Cycles (Sect. 5.1). Running this batch
takes roughly 30 h and generates 7.1 GB of training data. Note that we did not
include around 30 most resource-demanding benchmarks of this batch in the
artifact. (i) in folder art, execute ./run.sh wTOTAL, (ii) observe the results at
art/results/reports/reprWash{2,3,4,reach}.txt, (iii) in folder art/results, execute
python plotsWash.py and observe the plots that correspond to Fig. 3. Alterna-
tively, to run a subset of this batch that takes only 30 min to run and generates
only 265MB of training data, in (i) execute ./run.sh wPART. To additionaly
generate dot representation of DTs/BDDs, in (i) execute either ./run.sh wTO-
TALdot or ./run.sh wPARTdot.

Results for Scheduling of Washing Cycles BDD Reordering ([12,
Appendix C]). Running this batch takes roughly 30 min. (i) make sure you have
the training data obtained by running the batch above, (ii) in folder art/results,
execute ./runBDDreorder.sh, (iii) observe the results at art/results/reports/B-
DDreorder.txt.

Results for Random LTL (Sect. 5.2). Running this batch takes roughly
2 h and generates 84 MB of training data. (i) in folder art, execute
./run.sh rTOTAL, (ii) observe the results at art/results/reports/reprRan-
domLTL{naive,encoded}.txt, (iii) in folder art/results, execute python plotsRan-
domLTL.py and observe the plots that correspond to Figs. 6 and 7.

Results for Bit Shifter ([12, Appendix D]). Running this experiment batch
takes roughly 5 min. Note that we did not include two benchmarks in the artifact
since they take considerable execution time. (i) in folder art, execute ./run.sh
aTOTAL, (ii) observe the results at art/results/reports/reprAiger.txt.
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Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The second reactive
synthesis competition (SYNTCOMP 2015). In: SYNT, pp. 27–57 (2015)
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Abstract. Despite the improved accuracy of deep neural networks, the
discovery of adversarial examples has raised serious safety concerns. Most
existing approaches for crafting adversarial examples necessitate some
knowledge (architecture, parameters, etc) of the network at hand. In this
paper, we focus on image classifiers and propose a feature-guided black-
box approach to test the safety of deep neural networks that requires no
such knowledge. Our algorithm employs object detection techniques such
as SIFT (Scale Invariant Feature Transform) to extract features from an
image. These features are converted into a mutable saliency distribution,
where high probability is assigned to pixels that affect the composition
of the image with respect to the human visual system. We formulate
the crafting of adversarial examples as a two-player turn-based stochas-
tic game, where the first player’s objective is to minimise the distance
to an adversarial example by manipulating the features, and the sec-
ond player can be cooperative, adversarial, or random. We show that,
theoretically, the two-player game can converge to the optimal strategy,
and that the optimal strategy represents a globally minimal adversarial
image. For Lipschitz networks, we also identify conditions that provide
safety guarantees that no adversarial examples exist. Using Monte Carlo
tree search we gradually explore the game state space to search for adver-
sarial examples. Our experiments show that, despite the black-box set-
ting, manipulations guided by a perception-based saliency distribution
are competitive with state-of-the-art methods that rely on white-box
saliency matrices or sophisticated optimization procedures. Finally, we
show how our method can be used to evaluate robustness of neural net-
works in safety-critical applications such as traffic sign recognition in
self-driving cars.

1 Introduction

Deep neural networks (DNNs or networks, for simplicity) have been developed
for a variety of tasks, including malware detection [11], abnormal network activ-
ity detection [31], and self-driving cars [5,6,32]. A classification network N can
c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10805, pp. 408–426, 2018.
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be used as a decision-making algorithm: given an input α, it suggests a decision
N(α) among a set of possible decisions. While the accuracy of neural networks
has greatly improved, matching the cognitive ability of humans [17], they are
susceptible to adversarial examples [4,33]. An adversarial example is an input
which, though initially classified correctly, is misclassified after a minor, per-
haps imperceptible, perturbation. Adversarial examples pose challenges for self-
driving cars, where neural network solutions have been proposed for tasks such
as end-to-end steering [6], road segmentation [5], and traffic sign classification
[32]. In the context of steering and road segmentation, an adversarial example
may cause a car to steer off the road or drive into barriers, and misclassifying
traffic signs may cause a vehicle to drive into oncoming traffic. Figure 1 shows an
image of a traffic light correctly classified by a state-of-the-art network which is
then misclassified after only a few pixels have been changed. Though somewhat
artificial, since in practice the controller would rely on additional sensor input
when making a decision, such cases strongly suggest that, before deployment
in safety-critical tasks, DNNs resilience (or robustness) to adversarial examples
must be strengthened.

Fig. 1. An adversarial example for the YOLO
object recognition network.

A number of approaches have
been proposed to search for
adversarial examples (see Related
Work). They are based on com-
puting the gradients [12], along
which a heuristic search moves;
computing a Jacobian-based
saliency map [27], based on which
pixels are selected to be changed;
transforming the existence of
adversarial examples into an opti-
misation problem [8], on which
an optimisation algorithm can be
applied; transforming the existence of adversarial examples into a constraint
solving problem [15], on which a constraint solver can be applied; or discretising
the neighbourhood of a point and searching it exhaustively in a layer-by-layer
manner [14]. All these approaches assume some knowledge about the network,
e.g., the architecture or the parameters, which can vary as the network continu-
ously learns and adapts to new data, and, with a few exceptions [26] that access
the penultimate layer, do not explore the feature maps of the networks.

In this paper, we propose a feature-guided approach to test the resilience
of image classifier networks against adversarial examples. While convolutional
neural networks (CNN) have been successful in classification tasks, their feature
extraction capability is not well understood [37]. The discovery of adversar-
ial examples has called into question CNN’s ability to robustly handle input
with diverse structural and compositional elements. On the other hand, state-
of-the-art feature extraction methods are able to deterministically and effi-
ciently extract structural elements of an image regardless of scale, rotation or



410 M. Wicker et al.

transformation. A key observation of this paper is that feature extraction meth-
ods enable us to identify elements of an image which are most vulnerable to a
visual system such as a CNN.

Leveraging knowledge of the human perception system, existing object detec-
tion techniques detect instances of semantic objects of a certain class (such as
animals, buildings, or cars) in digital images and videos by identifying their fea-
tures. We use the scale-invariant feature transform approach, or SIFT [20], to
detect features, which is achieved with no knowledge of the network in a black-
box manner. Using the SIFT features, whose number is much smaller than the
number of pixels, we represent the image as a two-dimensional Gaussian mix-
ture model. This reduction in dimensionality allows us to efficiently target the
exploration at salient features, similarly to human perception. We formulate the
process of crafting adversarial examples as a two-player turn-based stochastic
game, where player I selects features and player II then selects pixels within
the selected features and a manipulation instruction. After both players have
made their choices, the image is modified according to the manipulation instruc-
tion, and the game continues. While player I aims to minimise the distance to an
adversarial example, player II can be cooperative, adversarial, or nature who
samples the pixels according to the Gaussian mixture model. We show that,
theoretically, the two-player game can converge to the optimal strategy, and
that the optimal strategy represents a globally minimal adversarial image. We
also consider safety guarantees for Lipschitz networks and identify conditions to
ensure that no adversarial examples exist.

We implement a software package1, in which a Monte Carlo tree search
(MCTS) algorithm is employed to find asymptotically optimal strategies for
both players, with player II being a cooperator. The algorithm is anytime,
meaning that it can be terminated with time-out bounds provided by the user
and, when terminated, it returns the best strategies it has for both players. The
experiments on networks trained on benchmark datasets such as MNIST [18]
and CIFAR10 [1] show that, even without the knowledge of the network and
using relatively little time (1 min for every image), the algorithm can already
achieve competitive performance against existing adversarial example crafting
algorithms. We also experiment on several state-of-the-art networks, including
the winner of the Nexar traffic light challenge [25], a real-time object detection
system YOLO, and VGG16 [3] for ImageNet competition, where, surprisingly,
we show that the algorithm can return adversarial examples even with very lim-
ited resources (e.g., running time of less than a second), including that in Fig. 1
from YOLO. Further, since the SIFT method is scale and rotation invariant, we
can counter claims in the recent paper [21] that adversarial examples are not
invariant to changes in scale or angle in the physical domain.

Our software package is well suited to safety testing and decision support
for DNNs in safety-critical applications. First, the MCTS algorithm can be used
offline to evaluate the network’s robustness against adversarial examples on

1 The software package and all high-resolution figures used in the paper are available
from https://github.com/matthewwicker/SafeCV.

https://github.com/matthewwicker/SafeCV


Feature-Guided Black-Box Safety Testing of Deep Neural Networks 411

a given set of images. The asymptotic optimal strategy achievable by MCTS
algorithm enables a theoretical guarantee of safety, i.e., the network is safe when
the algorithm cannot find adversarial examples. The algorithm is guaranteed to
terminate, but this may be impractical, so we provide an alternative termination
criterion. Second, the MCTS algorithm, in view of its time efficiency, has the
potential to be deployed on-board for real-time decision support.

An extended version of the paper, which includes more additional explana-
tions and experimental results, is available from [36].

2 Preliminaries

Let N be a network with a set C of classes. Given an input α and a class c ∈ C, we
use N(α, c) to denote the confidence (expressed as a probability value obtained
from normalising the score) of N believing that α is in class c. Moreover, we
write N(α) = arg maxc∈C N(α, c) for the class into which N classifies α. For
our discussion of image classification networks, the input domain D is a vector
space, which in most cases can be represented as IRw×h×ch

[0,255] , where w, h, ch are
the width, height, and number of channels of an image, respectively, and we let
P0 = w × h × ch be the set of input dimensions. In the following, we may refer
to an element in w × h as a pixel and an element in P0 as a dimension. We
remark that dimensions are normalised as real values in [0, 1]. Image classifiers
employ a distance function to compare images. Ideally, such a distance should
reflect perceptual similarity between images, comparable to human perception.
However, in practice Lk distances are used instead, typically L0, L1 (Manhattan
distance), L2 (Euclidean distance), and L∞ (Chebyshev distance). We also work
with Lk distances but emphasise that our method can be adapted to other
distances. In the following, we write ||α1 − α2||k with k ≥ 0 for the distance
between two images α1 and α2 with respect to the Lk measurement.

Given an image α, a distance measure Lk, and a distance d, we define
η(α, k, d) = {α′ | ||α′ − α||k ≤ d} as the set of points whose distance to α
is no greater than d with respect to Lk. Next we define adversarial examples, as
well as what we mean by targeted and non-targeted safety.

Definition 1. Given an input α ∈ D, a distance measure Lk for some
k ≥ 0, and a distance d, an adversarial example α′ of class c �= N(α)
is such that α′ ∈ η(α, k, d), N(α) �= N(α′), and N(α′) = c. Moreover,
we write advN,k,d(α, c) for the set of adversarial examples of class c and let
advN,k,d(α) =

⋃
c∈C,c �=N(α) advN,k,d(α, c). A targeted safety of class c is defined

as advN,k,d(α, c) = ∅, and a non-targeted safety is defined as advN,k,d(α) = ∅.

Feature Extraction. The Scale Invariant Feature Transform (SIFT) algorithm
[20], a reliable technique for exhuming features from an image, makes object
localization and tracking possible without the use of neural networks. Generally,
the SIFT algorithm proceeds through the following steps: scale-space extrema
detection (detecting relatively darker or lighter areas in the image), keypoint
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localization (determining the exact position of these areas), and keypoint descrip-
tor assignment (understanding the context of the image w.r.t its local area).
Human perception of an image or an object can be reasonably represented as a
set of features (referred to as keypoints in SIFT) of different sizes and response
strengths, see [35] and Appendix of [36] for more detail. Let Λ(α) be a set of fea-
tures of the image α such that each feature λ ∈ Λ(α) is a tuple (λx, λy, λs, λr),
where (λx, λy) is the coordinate of the feature in the image, λs is the size of
the feature, and λr is the response strength of the feature. The SIFT procedures
implemented in standard libraries such as OpenCV may return more information
which we do not use.

Fig. 2. Illustration of the transformation of an image into a saliency distribution. (a)
The original image α, provided by ImageNet. (b) The image marked with relevant
keypoints Λ(α). (c) The heatmap of the Gaussian mixture model G(Λ(α)).

On their own, keypoints are not guaranteed to involve every pixel in the
image, and in order to ensure a comprehensive and flexible safety analysis, we
utilize these keypoints as a basis for a Gaussian mixture model. Figure 2 shows
the original image (a) and this image annotated with keypoints (b).

Gaussian Mixture Model. Given an image α and its set Λ(α) of keypoints,
we define for λi ∈ Λ(α) a two-dimensional Gaussian distribution Gi such that,
for pixel (px, py), we have

Gi,x =
1

√
2πλ2

i,s

exp
(−(px − λi,x)2

2λ2
i,s

) Gi,y =
1

√
2πλ2

i,s

exp
(−(py − λi,y)2

2λ2
i,s

)
(1)

where the variance is the size λi,s of the keypoint and the mean is its location
(λi,x, λi,y). To complete the model, we define a set of weights Φ = {φi}i∈{1,2,...,k}
such that k = |Λ(α)| and φi = λi,r/

∑k
j=0 λj,r. Then, we can construct a Gaus-

sian mixture model G by combining the distribution components with the weights
as coefficients, i.e., Gx =

∏k
i=1 φi × Gi,x and Gy =

∏k
i=1 φi × Gi,y. The two-

dimensional distributions are discrete and separable and therefore their realiza-
tion is tractable and independent, which improves efficiency of computation. Let
G(Λ(α)) be the obtained Gaussian mixture model from Λ(α), and G be the set of
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Gaussian mixture models. In Fig. 2 we illustrate the transformation of an image
into a saliency distribution.

Pixel Manipulation. We now define the operations that we consider for manip-
ulating images. We write α(x, y, z) for the value of the z-channel (typically
RGB or grey-scale values) of the pixel positioned at (x, y) on the image α. Let
I = {+,−} be a set of manipulation instructions and τ be a positive real number
representing the manipulation magnitude, then we can define pixel manipula-
tions δX,i : D → D for X a subset of input pixels and i ∈ I:

δX,i(α)(x, y, z) =

⎧
⎨

⎩

α(x, y, z) + τ, if (x, y) ∈ X and i = +
α(x, y, z) − τ, if (x, y) ∈ X and i = −
α(x, y, z) otherwise

for all pixels (x, y) and channels z ∈ {1, 2, 3}. Note that if the values are bounded,
e.g., [0, 1], δX,i(α)(x, y, z) needs to be restricted to be within the bounds. For sim-
plicity, in our experiments and comparisons we allow a manipulation to choose
either the upper bound or the lower bound with respect to the instruction i. For
example, in Fig. 1, the actual manipulation considered is to make the manipu-
lated dimensions choose value 1.

3 Safety Against Manipulations

Recall that every image represents a point in the input vector space D. Most
existing investigations of the safety (or robustness) of DNNs focus on opti-
mising the movement of a point along the gradient direction of some function
obtained from the network (see Related Work for more detail). Therefore, these
approaches rely on the knowledge about the DNN. Arguably, this reliance holds
also for the black-box approach proposed in [26], which uses a new surrogate net-
work trained on the data sampled from the original network. Furthermore, the
current understanding about the transferability of adversarial examples (i.e., an
adversarial example found for a network can also serve as an adversarial exam-
ple for another network, trained on different data) are all based on empirical
experiments [26]. The conflict between the understanding of transferability and
existing approaches to crafting adversarial examples can be gleaned from an
observation made in [19] that gradient directions of different models are orthog-
onal to each other. A reasonable interpretation is that transferable adversarial
examples, if they exist, do not rely on the gradient direction suggested by a
network but instead may be specific to the input.

In this paper, we propose a feature-guided approach which, instead of using
the gradient direction as the guide for optimisation, relies on searching fro adver-
sarial examples by targeting and manipulating image features as recognised by
human perception capability. We extract features using SIFT, which is a reason-
able proxy for human perception and enables dimensionality reduction through
the Gaussian mixture representation (see [29]). Our method needs neither the
knowledge about the network nor the necessity to massively sample the network
for data to train a new network, and is therefore a black-box approach.
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Game-Based Approach. We formulate the search for adversarial examples as a
two-player turn-based stochastic game, where player I selects features and player
II then selects pixels within the selected features and a manipulation instruction.
While player I aims to minimise the distance to an adversarial example, player
II can be cooperative, adversarial, or nature who samples the pixels according to
the Gaussian mixture model. To give more intuition for feature-guided search, in
Appendix of [36] we demonstrate how the distribution of the Gaussian mixture
model representation evolves for different adversarial examples.

We define the objective function in terms of the Lk distance and view the
distance to an adversarial example as a measure of its severity. Note that the
sets advN,k,d(α, c) and advN,k,d(α) of adversarial examples can be infinite.

Definition 2. Among all adversarial examples in the set advN,k,d(α, c) (or
advN,k,d(α)), find α′ with the minimum distance to the original image α:

arg min
α′

{sevα(α′) | α′ ∈ advN,k,d(α, c)(or advN,k,d(α))} (2)

where sevα(α′) = ||α−α′||k is the severity of the adversarial example α′ against
the original image α.

We remark that the choice of Lk will affect perceptual similarity, see Appendix
of [36].

Crafting Adversarial Examples as a Two-Player Turn-Based Game.
Assume two players I and II. Let M(α, k, d) = (S ∪ (S × Λ(α)), s0,
{Ta}a∈{I,II}, L) be a game model, where S is a set of game states belong-
ing to player I such that each state represents an image in η(α, k, d), and
S × Λ(α) is a set of game states belonging to player II where Λ(α) is a set
of features (keypoints) of image α. We write α(s) for the image associated to
the state s ∈ S. s0 ∈ S is the initial game state such that α(s0) is the origi-
nal image α. The transition relation TI : S × Λ(α) → S × Λ(α) is defined as
TI(s, λ) = (s, λ), and transition relation TII : (S × Λ(α)) × P(P0) × I → S
is defined as TII((s, λ),X, i) = δX,i(α(s)), where δX,i is a pixel manipulation
defined in Sect. 2. Intuitively, on every game state s ∈ S, player I will choose a
keypoint λ, and, in response to this, player II will choose a pair (X, i), where
X is a set of input dimensions and i is a manipulation instruction. The labelling
function L : S ∪ (S × Λ(α)) → C × G assigns to each state s or (s, λ) a class
N(α(s)) and a two-dimensional Gaussian mixture model G(Λ(α(s))).

A path (or game play) of the game model is a sequence s1u1s2u2... of game
states such that, for all k ≥ 1, we have uk = TI(sk, λk) for some feature λk and
sk+1 = TII((sk, λk),Xk, ik) for some (Xk, ik). Let last(ρ) be the last state of
a finite path ρ and PathF

a be the set of finite paths such that last(ρ) belongs
to player a ∈ {I, II}. A stochastic strategy σI : PathF

I → D(Λ(α)) of player
I maps each finite paths to a distribution over the next actions, and similarly
for σII : PathF

II → D(P(P0) × I) for player II. We call σ = (σI, σII) a strategy
profile. In this section, we only discuss targeted safety for a given target class c
(see Definition 1). All the notations and results can be easily adapted to work
with non-targeted safety.
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In the following, we define a reward R(σ, ρ) for a given strategy profile σ =
(σI, σII) and a finite path ρ ∈ ⋃

a∈{I,II} PathF
a . The idea of the reward is to

accumulate a measure of severity of the adversarial example found over a path.
Note that, given σ, the game becomes a fully probabilistic system. Let α′

ρ =
α(last(ρ)) be the image associated with the last state of the path ρ. We write
t(ρ) for the expression N(α′

ρ) = c ∨ ||α′
ρ − α||k > d, representing that the path

has reached a state whose associated image either is in the target class c or
lies outside the region η(α, k, d). The path ρ can be terminated whenever t(ρ)
is satisfiable. It is not hard to see that, due to the constraints in Definition 1,
every infinite path has a finite prefix which can be terminated. Then we define
the reward function R(σ, ρ) =
⎧
⎨

⎩

1/sevα(α′
ρ) if t(ρ) and ρ ∈ PathF

I∑
λ∈Λ(α) σI(ρ)(λ) · R(σ, ρTI(last(ρ), λ)) if ¬t(ρ) and ρ ∈ PathF

I∑
(X,i)∈P(P0)×I σII(ρ)(X, i) · R(σ, ρTII(last(ρ),X, i)) if ρ ∈ PathF

II

where σI(ρ)(λ) is the probability of selecting λ on ρ by player I, and σII(ρ)(X, i)
is the probability of selecting (X, i) based on ρ by player II. We note that a path
only terminates on player I states.

Intuitively, if an adversarial example is found then the reward assigned is the
inverse of severity (minimal distance), and otherwise it is the weighted summa-
tion of the rewards if its children. Thus, a strategy σI to maximise the reward
will need to minimise the severity sevα(α′

ρ), the objective of the problem defined
in Definition 2.

Definition 3. The goal of the game is for player I to choose a strategy σI to
maximise the reward R((σI, σII), s0) of the initial state s0, based on the strategy
σII of the player II, i.e.,

arg max
σI

optσII
R((σI, σII), s0). (3)

where option optσII
can be maxσII

, minσII
, or natσII

, according to which player
II acts as a cooperator, an adversary, or nature who samples the distribution
G(Λ(α)) for pixels and randomly chooses the manipulation instruction.

A strategy σ is called deterministic if σ(ρ) is a Dirac distribution, and is called
memoryless if σ(ρ) = σ(last(ρ)) for all finite paths ρ. We have the following
result.

Theorem 1. Deterministic and memoryless strategies suffice for player I, when
optσII

∈ {maxσII
,minσII

, natσII
}.

Complexity of the Problem. As a by-product of Theorem 1, the theoretical
complexity of the problem (i.e., determining whether advN,k,d(α, c) = ∅) is in
PTIME, with respect to the size of the game model M(α, k, d). However, even
if we only consider finite paths (and therefore a finite system), the number of
states (and therefore the size of the system) is O(|P0|h) for h the length of the
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longest finite path of the system without a terminating state. While the precise
size of O(|P0|h) is dependent on the problem (including the image α and the
difficulty of crafting an adversarial example), it is roughly O(50000100) for the
images used in the ImageNet competition and O(100020) for smaller images such
as CIFAR10 and MNIST. This is beyond the capability of existing approaches
for exact or ε-approximate computation of probability (e.g., reduction to linear
programming, value iteration, and policy iteration, etc) that are used in proba-
bilistic verification.

4 Monte Carlo Tree Search for Asymptotically Optimal
Strategy

In this section, we present an approach based on Monte Carlo tree search
(MCTS) [9] to find an optimal strategy asymptotically. We also we show that
the optimal strategy, if achieved, represents the best adversarial example with
respect to the objective in Definition 2, under some conditions.

We first consider the case of optσII
= maxσII

. An MCTS algorithm, whose
pseudo-code is presented in Algorithm 1, gradually expands a partial game tree
by sampling the strategy space of the model M(α, k, d). With the upper confi-
dence bound (UCB) [16] as the exploration-exploitation tradeoff, MCTS has a
theoretical guarantee that it converges to optimal solution when the game tree
is fully explored. The algorithm mainly follows the standard MCTS procedure,
with a few adaptations. We use two termination conditions tc1 and tc2 to control
the pace of the algorithm. More specifically, tc1 controls whether the entire pro-
cedure should be terminated, and tc2 controls when a move should be made. The
terminating conditions can be, e.g., bounds on the number of iterations, etc. On
the partial tree, every node maintains a pair (r, n), which represents the accumu-
lated reward r and the number of visits n, respectively. The selection procedure
travels from the root to a leaf according to an exploration-exploitation balance,
i.e., UCB [16]. After expanding the leaf node to have its children added to the
partial tree, we call Simulation to run simulation on every child node. A simula-
tion on a new node is a play of the game from node until it terminates. Players
act randomly during the simulation. Every simulation terminates when reaching
a terminated node α′, on which a reward 1/sevα(α′) can be computed. This
reward is then backpropagated from the new child node through its ancestors
until reaching the root. Every time a new reward v is backpropogated through a
node, we update its associated pair to (r+v, n+1). The bestChild(root) returns
the child of root which has the highest value of r/n. The other two cases are sim-
ilar except for the choice of the next move (i.e., Line 12). Instead of choosing the
best child, a child is chosen by sampling G(Λ(α)) for the case of optσII

= natσII
,

and the worst child is chosen for the case of optσII
= minσII

. We remark the
game is not zero-sum when optσII

∈ {natσII
,maxσII

}.

Severity Interval from the Game. Assume that we have fixed termination
conditions tc1 and tc2 and target class c. Given an option optσII

for player
II, we have an MCTS algorithm to compute an adversarial example α′. Let
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Algorithm 1. Monte Carlo Tree Search for optσII
= maxσII

1: Input: A game model M(α, k, d), two termination conditions tc1 and tc2, a target
class c

2: Output: An adversarial example α′

3: procedure MCTS(M(α, k, d), tc1, tc2, c)
4: root ← s0
5: While(¬tc1):
6: While(¬tc2):
7: leaf ← selection(root)
8: newnodes ← expansion(M(α, k, d), leaf)
9: for node in newnodes:

10: v ← Simulation(M(α, k, d), node, c)
11: backPropogation(node, v)
12: root ← bestChild(root)
13: return root

sev(M(α, k, d), optσII
) be sevα(α′), where α′ is the returned adversarial example

by running Algorithm 1 over the inputs M(α, k, d), tc1, tc2, c for a certain
optσII

. Then there exists a severity interval SI(α, k, d) with respect to the role
of player II:

[sev(M(α, k, d),max
σII

), sev(M(α, k, d),min
σII

)]. (4)

Moreover, we have that sev(M(α, k, d), natσII
) ∈ SI(α, k, d).

Safety Guarantee via Optimal Strategy. Recall that τ , a positive real
number, is the manipulation magnitude used in pixel manipulations. An image
α′ ∈ η(α, k, d) is a τ -grid image if for all dimensions p ∈ P0 we have
|α′(p)−α(p)| = n ∗ τ for some n ≥ 0. Let G(α, k, d) be the set of τ -grid images
in η(α, k, d). First of all, we have the following conclusion for the case when
player II is cooperative.

Theorem 2. Let α′ ∈ η(α, k, d) be any τ -grid image such that α′ ∈
advN,k,d(α, c), where c is the targeted class. Then we have that sevα(α′) ≥
sev(M(α, k, d),maxσII

).

Intuitively, the theorem says that the algorithm can find the optimal adver-
sarial example from the set of τ -grid images. The idea of the proof is to show
that every τ -grid image can be reached by some game play. In the following, we
show that, if the network is Lipschitz continuous, we need only consider τ -grid
images when τ is small enough. Then, together with the above theorem, we can
conclude that our algorithm is both sound and complete.

Further, we say that an image α1 ∈ η(α, k, d) is a misclassification aggregator
with respect to a number β > 0 if, for any α2 ∈ η(α1, 1, β), we have that N(α2) �=
N(α) implies N(α1) �= N(α). Intuitively, if a misclassification aggregator α1 with
respect to β is classified correctly then all input images in η(α1, 1, β) are classified
correctly. We remark that the region η(α1, 1, β) is defined with respect to the L1
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metric, but can also be defined using Lk′ , some k′, without affecting the results
if η(α, k, d) ⊆ ⋃

α1∈G(α,k,d) η(α1, k
′, τ/2). Then we have the following theorem.

Theorem 3. If all τ -grid images are misclassification aggregators with respect
to τ/2, and sev(M(α, k, d),maxσII

) > d, then advN,k,d(α, c) = ∅.
Note that sev(M(α, k, d),maxσII

) > d means that none of the τ -images
in η(α, k, d) is an adversarial example. The theorem suggests that, to achieve
a complete safety verification, one may gradually decrease τ until either
sev(M(α, k, d),maxσII

) ≤ d, in which case we claim the network is unsafe, or the
condition that all τ -grid images are misclassification aggregators with respect to
τ/2 is satisfiable, in which case we claim the network is safe. In the following, we
discuss how to decide the largest τ for a Lipschitz network, in order to satisfy
that condition and therefore achieve a complete verification using our approach.

Definition 4. Network N is a Lipschitz network with respect to the distance Lk

and a constant � > 0 if, for all α, α′ ∈ D, we have |N(α′, N(α))−N(α,N(α))| <
� · ||α′ − α||k.

Note that all networks whose inputs are bounded, including all image clas-
sification networks we studied, are Lipschitz networks. Specifically, it is shown
in [30] that most known types of layers, including fully-connected, convolutional,
ReLU, maxpooling, sigmoid, softmax, etc., are Lipschitz continuous. Moreover,
we let � be the minimum confidence gap for a class change, i.e.,

� = min{|N(α′, N(α)) − N(α,N(α))| | α, α′ ∈ D, N(α′) �= N(α)}.

The value of � is in [0, 1], dependent on the network, and can be estimated by
examining all input examples α′ in the training and test data sets, or computed
with provable guarantees by reachability analysis [30]. The following theorem
can be seen as an instantiation of Theorem 3 by using Lipschitz continuity with
τ ≤ 2�

�
to implement the misclassification aggregator.

Theorem 4. Let N be a Lipschitz network with respect to L1 and a con-
stant �. Then, when τ ≤ 2�

�
and sev(M(α, k, d),maxσII

) > d, we have that
advN,k,d(α, c) = ∅.

1/ε-convergence Because we are working with a finite game, MCTS is guaran-
teed to converge when the game tree is fully expanded. In the worst case, it may
take a very long time to converge. In practice, we can work with 1/ε-convergence
by letting the program terminate when the current best adversarial example has
not been improved by finding a less severe one for �1/ε iterations, where ε > 0
is a small real number.

5 Experimental Results

For our experiments, we let player II be a cooperator, and its move (X, i) is
such that for all (x1, y1, z1), (x2, y2, z2) ∈ X we have x1 = x2 and y1 = y2,
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i.e., one pixel (including 3 dimensions for color images or 1 dimension for grey-
scale images) is changed for every move. When running simulations (Line 10
of Algorithm 1), we let σI(λ) = λr/

∑
λ∈Λ(α) λr for all keypoints λ ∈ Λ(α)

and optσII
= natσII

. That is, player I follows a stochastic strategy to choose
a keypoint according to its response strength and player II is nature. In this
section, we compare our method with existing approaches, show convergence of
the MCTS algorithm on limited runs, evaluate safety-critical networks trained on
traffic light images, and counter-claim a recent statement regarding adversarial
examples in physical domains.

Comparison with Existing Approaches. We compare our approach to two
state-of-the-art methods on two image classification networks, trained on the well
known benchmark datasets MNIST and CIFAR10. The MNIST image dataset
contains images of size 28 × 28 and one channel and the network is trained
with the source code given in [2]. The trained network is of medium size with
600,810 real-valued parameters, and achieves state-of-the-art accuracy, exceeding
99%. It has 12 layers, within which there are 2 convolutional layers, as well as
layers such as ReLU, dropout, fully-connected layers and a softmax layer. The
CIFAR10 dataset contains small images, 32 × 32, with three channels, and the
network is trained with the source code from [1] for more than 12 hours. The
trained network has 1,250,858 real-valued parameters and includes convolutional
layers, ReLU layers, max-pooling layers, dropout layers, fully-connected layers,
and a softmax layer. For both networks, the images are preprocessed to make
the value of each dimension lie within the bound [0, 1]. We randomly select 1000
images {αi}i∈{1..1000} from both datasets for non-targeted safety testing. The
numbers in Table 1 are average distances defined as 1

1000 · ∑1000
i=1 ||αi − α′

i||0,
where α′

i is the adversarial image of αi returned by the algorithm. Table 1 gives
a comparison with the other two approaches (CW [8] and JSMA [27]). The
numbers for CW and JSMA are taken from [8]2, where additional optimisations
have been conducted over the original JSMA. According to [27], the original
JSMA has an average distance of 40 for MNIST.

Table 1. CW vs. Game (this paper) vs. JSMA

L0 CW (L0 algorithm) Game (timeout = 1 m) JSMA-F JSMA-Z

MNIST 8.5 14.1 17 20

CIFAR10 5.8 9 25 20

Our experiments are conducted by setting the termination conditions tc1 =
20 s and tc2 = 60 s for every image. Note that JSMA needs several minutes to
2 For CW, the L0 distance in [8] counts the number of changed pixels, while for the

others the L0 distance counts the number of changed dimensions. Therefore, the
number 5.8 in Table 1 is not precise, and should be between 5.8 and 17.4, because
colour images have three channels.
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handle an image, and CW is 10 times slower than JSMA [8]. From the table,
we can see that, already in a limited computation time, our game-based app-
roach can achieve a significant margin over optimised JSMA, which is based
on saliency distributions, although it is not able to beat the optimisation-based
approach CW. We also mention that, in [14], the un-optimised JSMA produces
adversarial examples with smaller average L2 distance than FGSM [12] and DLV
on its single-path algorithm [14]. Appendix of [36] provide illustrative examples
exhibiting the manipulations that the three algorithms performed on the images.

Convergence in Limited Runs. To demonstrate convergence of our algo-
rithm, we plot the evolution of three variables related to the adversarial severity
sevα(α′) against the number of iterations. The variable best (in blue color) is the
smallest severity found so far. The variable current (in orange) is the severity
returned in the current iteration. The variable window (in green) is the average
severity returned in the past 10 iterations. The blue and orange plots may over-
lap because we let the algorithm return the best example when it fails to find
an adversarial example in some iteration. The experiments are terminated with
1/ε-convergence of different ε value such as 0.1 or 0.05. The green plot getting
closer to the other two provides empirical evidence of convergence. In Fig. 3 we
show that two MNIST images converge over fewer than 50 iterations on manipu-
lations of 2 pixels, and we have confirmed that they represent optimal strategies
of the players. We also work with other state-of-the-art networks such as the
VGG16 network [3] from the ImageNet competition. Examples of convergence
are provided in Appendix of [36].

Fig. 3. (a) Image of a two classified as a seven with 70% confidence and (b) the demon-
stration of convergence. (c) Image of a six classified as a five with 50% confidence and
(d) the demonstration of convergence. (Color figure online)

Evaluating Safety-Critical Networks. We explore the possibility of applying
our game-based approach to support real-time decision making and testing, for
which the algorithm needs to be highly efficient, requiring only seconds to execute
a task.

We apply our method to a network used for classifying traffic light images
collected from dashboard cameras. The Nexar traffic light challenge [25] made
over eighteen thousand dashboard camera images publicly available. Each image
is labeled either green, if the traffic light appearing in the image is green, or
red, if the traffic light appearing in the image is red, or null if there is no traf-
fic light appearing in the image. We test the winner of the challenge which
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scored an accuracy above 90% [7]. Despite each input being 37632-dimensional
(112× 112× 3), our algorithm reports that the manipulation of an average of
4.85 dimensions changes the network classification. Each image was processed
by the algorithm in 0.303 s (which includes time to read and write images), i.e.,
304 s are taken to test all 1000 images. We illustrate the results of our analysis
of the network in Fig. 4. Though the images are easy for humans to classify, only
one pixel change causes the network to make potentially disastrous decisions,
particularly for the case of red light misclassified as green. To explore this par-
ticular situation in greater depth, we use a targeted safety MCTS procedure on
the same 1000 images, aiming to manipulate images into green. We do not con-
sider images which are already classified as green. Of the remaining 500 images,
our algorithm is able to change all image classifications to green with worryingly
low severities, namely an average L0 of 3.23. On average, this targeted procedure
returns an adversarial example in 0.21 s per image. Appendix of [36] provides
some other examples.

Fig. 4. Adversarial examples generated on Nexar data demonstrate a lack of robust-
ness. (a) Green light classified as red with confidence 56% after one pixel change. (b)
Green light classified as red with confidence 76% after one pixel change. (c) Red light
classified as green with 90% confidence after one pixel change. (Color figure online)

Counter-Claim to Statements in [21]. A recent paper [21] argued that, under
specific circumstances, there is no need to worry about adversarial examples
because they are not invariant to changes in scale or angle in the physical domain.
Our SIFT-based approach, which is inherently scale and rotationally invariant,
can easily counter-claim such statements. To demonstrate this, we conducted
similar tests to [21]. We set up the YOLO network, took pictures of a few traffic
lights in Oxford, United Kingdom, and generated adversarial examples on these
images. For the adversarial example shown in Fig. 1, we print and photograph
it at several different angles and scales to test whether it remains misclassified.
The results are shown in Fig. 5. In [21] it is suggested that realistic camera
movements – those which change the angle and distance of the viewer – reduce
the phenomenon of adversarial examples to a curiosity rather than a safety
concern. Here, we show that our adversarial examples, which are predicated on
scale and rotationally invariant methods, defeat these claims.
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Fig. 5. (Left) Adversarial examples in physical domain remain adversarial at multiple
angles. Top images classified correctly as traffic lights, bottom images classified incor-
rectly as either ovens, TV screens, or microwaves. (Right) Adversarial examples in the
physical domain remain adversarial at multiple scales. Top images correctly classified
as traffic lights, bottom images classified incorrectly as ovens or microwaves (with the
center light being misclassified as a pizza in the bottom right instance).

6 Related Works

We review works concerning the safety (and robustness) of deep neural networks.
Instead of trying to be complete, we aim to only cover those directly related.

White-Box Heuristic Approaches. In [34], Szegedy et. al. find a targeted
adversarial example by running the L-BFGS algorithm, which minimises the
L2 distance between the images while maintaining the misclassification. Fast
Gradient Sign Method (FGSM) [12], a refinement of L-BFGS, takes as inputs
the parameters θ of the model, the input α to the model, and the target label
y, and computes a linearized version of the cost function with respect to θ to
obtain a manipulation direction. After the manipulation direction is fixed, a
small constant value τ is taken as the magnitude of the manipulation. Carlini
and Wagner [8] adapt the optimisation problem proposed in [34] to obtain a
set of optimisation problems for L0, L2, and L∞ attacks. They claim better
performance than FGSM and Jacobian-based Saliency Map Attack (JSMA) with
their L2 attack, in which for every pixel xi a new real-valued variable wi is
introduced and then the optimisation is conducted by letting xi move along
the gradient direction of tanh(wi). Different from the optimisation approaches,
the JSMA [27] uses a loss function to create a “saliency map” of the image
which indicates the importance of each pixel on the network’s decision. A greedy
algorithm is used to gradually modify the most important pixels. In [23], an
iterative application of an optimisation approach (such as [34]) is conducted on
a set of images one by one to get an accumulated manipulation, which is expected
to make a number of inputs misclassified. [22] replaces the softmax layer in a
deep network with a multiclass SVM and then finds adversarial examples by
performing a gradient computation.
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White-Box Verification Approaches. Compared with heuristic search
approaches, the verification approaches aim to provide guarantees on the safety
of DNNs. An early verification approach [28] encodes the entire network as
a set of constraints. The constraints can then be solved with a SAT solver.
[15] improves on [28] by handling the ReLU activation functions. The Simplex
method for linear programming is extended to work with the piecewise linear
ReLU functions that cannot be expressed using linear programming. The app-
roach can scale up to networks with 300 ReLU nodes. In recent work [13] the
input vector space is partitioned using clustering and then the method of [15]
is used to check the individual partitions. DLV [14] uses multi-path search and
layer-by-layer refinement to exhaustively explore a finite region of the vector
spaces associated with the input layer or the hidden layers, and scales to work
with state-of-the-art networks such as VGG16.

Black-Box Algorithms. The methods in [26] evaluate a network by generat-
ing a synthetic data set, training a surrogate model, and then applying white
box detection techniques on the model. [24] randomly searches the vector space
around the input image for changes which will cause a misclassification. It shows
that in some instances this method is efficient and able to indicate where salient
areas of the image exist.

7 Conclusion

In this paper we present a novel feature-guided black-box algorithm for evalu-
ating the resilience of deep neural networks against adversarial examples. Our
algorithm employs the SIFT method for feature extraction, provides a theoreti-
cal safety guarantee under certain restrictions, and is very efficient, opening up
the possibility of deployment in real-time decision support. We develop a soft-
ware package and demonstrate its applicability on a variety of state-of-the-art
networks and benchmarks. While we have detected many instabilities in state-
of-the-art networks, we have not yet found a network that is safe. Future works
include comparison with the Bayesian inference method for identifying adver-
sarial examples [10].
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