
The SELinux Notebook - The Foundations

The SELinux
Notebook

The
Foundations

(3rd Edition)

Page 1

The SELinux Notebook - The Foundations

0. Notebook Information

0.1 Copyright Information
Copyright © 2012 Richard Haines.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts.

A copy of the license is included in the section entitled “GNUFree Documentation
License”.

The scripts and source code in this Notebook are covered by the GNU General Public
License. The scripts and code are free source: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version.

These are distributed in the hope that they will be useful in researching SELinux, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
scripts and source code. If not, see <http://www.gnu.org/licenses/>.

0.2 Revision History
Edition Date Changes

1.0 20th Nov ‘09 First released.

2.0 8th May '10 Second release.

3.0 2nd September '12 Third release. Many minor updates and new sections
on SELinux userspace libraries and implementing
SELinux-aware applications and object managers plus
SEAndroid. Volume 2 has been discontinued as the
Notebook source tarball contains enough information
to experiment with the example policy modules and
code.

0.3 Acknowledgements
Logo designed by Máirín Duffy

0.4 Abbreviations
Term Definition
apol Policy analysis tool
AV Access Vector

Page 2

mailto:richard_c_haines@btinternet.com
http://pookstar.deviantart.com/
http://www.gnu.org/licenses/

The SELinux Notebook - The Foundations

Term Definition
AVC Access Vector Cache
BLP Bell-La Padula
CC Common Criteria
CIL Common Intermediate Language
CMW Compartmented Mode Workstation
DAC Discretionary Access Control
F-17 Fedora 17
FLASK Flux Advanced Security Kernel - A security-enhanced version of the

Fluke kernel and OS developed by the Utah Flux team and the US
Department of Defence.

Fluke Flux µ-kernel Environment - A specification and implementation of a
micro kernel and operating system architecture.

Flux The Flux Research Group (http://www.cs.utah.edu/flux/)
ID Identification
LSM Linux Security Module
LAPP Linux, Apache, PostgreSQL, PHP / Perl / Python
LSPP Labeled Security Protection Profile
MAC Mandatory Access Control
MCS Multi-Category Security
MLS Multi-Level Security
NSA National Security Agency
OM Object Manager
OTA over the air
PAM Pluggable Authentication Module
RBAC Role-based Access Control
rpm Red Hat Package Manager
SELinux Security Enhanced Linux
SID Security Identifier
SL Security Level
SLIDE SELinux Integrated Development Environment
SMACK Simplified Mandatory Access Control Kernel
SUID Super-user Identifier
TE Type Enforcement
UID User Identifier
XACE X (windows) Access Control Extension

Page 3

http://www.schaufler-ca.com/
http://www.cs.utah.edu/flux/
http://www.commoncriteriaportal.org/

The SELinux Notebook - The Foundations

0.5 Index
0. NOTEBOOK INFORMATION .. 2

0.1 COPYRIGHT INFORMATION .. 2
0.2 REVISION HISTORY ... 2
0.3 ACKNOWLEDGEMENTS .. 2
0.4 ABBREVIATIONS .. 2
0.5 INDEX ... 4

1. THE SELINUX NOTEBOOK .. 12
1.1 INTRODUCTION .. 12
1.2 THE FOUNDATIONS OVERVIEW ... 12

1.2.1 Notebook Source Overview ... 13
2. SELINUX OVERVIEW .. 14

2.1 INTRODUCTION .. 14
2.1.1 Is SELinux useful ... 14

2.2 CORE SELINUX COMPONENTS .. 16
2.3 MANDATORY ACCESS CONTROL (MAC) ... 19
2.4 SELINUX USERS .. 20
2.5 ROLE-BASED ACCESS CONTROL (RBAC) .. 21
2.6 TYPE ENFORCEMENT (TE) ... 21

2.6.1 Constraints .. 22
2.7 SECURITY CONTEXT .. 23
2.8 SUBJECTS ... 25
2.9 OBJECTS .. 25

2.9.1 Object Classes and Permissions ... 25
2.9.2 Allowing a Process Access to Resources .. 26
2.9.3 Labeling Objects ... 27

2.9.3.1 Labeling Extended Attribute Filesystems .. 28
2.9.3.1.1 Copying and Moving Files .. 29

2.9.3.2 Labeling Subjects ... 30
2.9.4 Object Reuse ... 30

2.10 COMPUTING SECURITY CONTEXTS ... 30
2.10.1 avc_compute_create and security_compute_create 31
2.10.2 avc_compute_member and security_compute_member 32
2.10.3 security_compute_relabel .. 34

2.11 DOMAIN AND OBJECT TRANSITIONS ... 35
2.11.1 Domain Transition .. 35

2.11.1.1 Type Enforcement Rules .. 37
2.11.2 Object Transition .. 39

2.12 MULTI-LEVEL SECURITY AND MULTI-CATEGORY SECURITY 40
2.12.1 Security Levels .. 41

2.12.1.1 MLS / MCS Range Format .. 42
2.12.1.2 Translating Levels .. 43

2.12.2 Managing Security Levels via Dominance Rules 43
2.12.3 MLS Labeled Network and Database Support .. 45
2.12.4 Common Criteria Certification ... 45

2.13 TYPES OF SELINUX POLICY ... 46
2.13.1 Example Policy ... 46

Page 4

The SELinux Notebook - The Foundations

2.13.2 Reference Policy ... 46
2.13.3 Policy Functionality Based on Name or Type .. 47
2.13.4 Custom Policy ... 47
2.13.5 Monolithic Policy .. 48
2.13.6 Loadable Module Policy ... 48

2.13.6.1 Optional Policy ... 48
2.13.7 Conditional Policy .. 48
2.13.8 Binary Policy .. 49
2.13.9 Policy Versions ... 49

2.14 SELINUX PERMISSIVE AND ENFORCING MODES .. 51
2.15 AUDITING SELINUX EVENTS ... 52

2.15.1 AVC Audit Events .. 52
2.15.2 General SELinux Audit Events .. 55

2.16 POLYINSTANTIATION .. 57
2.16.1 Polyinstantiated Objects .. 58
2.16.2 Polyinstantiation support in PAM .. 58

2.16.2.1 namespace.conf Configuration File .. 59
2.16.2.2 Example Configurations ... 60

2.16.3 Polyinstantiation support in X-Windows .. 61
2.16.4 Polyinstantiation support in the Reference Policy 61

2.17 PAM LOGIN PROCESS .. 61
2.18 LINUX SECURITY MODULE AND SELINUX ... 63

2.18.1 The LSM Module ... 64
2.18.2 The SELinux Module ... 66

2.18.2.1 Fork System Call Walk-thorough .. 67
2.18.2.2 Process Transition Walk-thorough ... 70
2.18.2.3 SELinux Filesystem ... 75

2.19 LIBSELINUX LIBRARY ... 80
2.20 SELINUX NETWORKING SUPPORT ... 82

2.20.1 compat_net Controls ... 82
2.20.2 SECMARK ... 83
2.20.3 NetLabel - Fallback Peer Labeling ... 84
2.20.4 NetLabel - CIPSO ... 85
2.20.5 Labeled IPSec ... 86

2.20.5.1 Configuration Example .. 87
2.21 SELINUX VIRTUAL MACHINE SUPPORT ... 88

2.21.1 KVM / QEMU Support .. 89
2.21.2 libvirt Support ... 89
2.21.3 VM Image Labeling ... 90

2.21.3.1 Dynamic Labeling .. 90
2.21.3.2 Static Labeling .. 91
2.21.3.3 Share Image .. 94
2.21.3.4 Readonly Image .. 96

2.21.4 Xen Support ... 97
2.22 X-WINDOWS SELINUX SUPPORT ... 98

2.22.1 Notebook Examples ... 98
2.22.2 Infrastructure Overview .. 99

2.22.2.1 Polyinstantiation ... 101
2.22.3 Configuration Information .. 102

2.22.3.1 Enable/Disable the OM from Policy Decisions 102

Page 5

The SELinux Notebook - The Foundations

2.22.3.2 Determine OM X-extension Opcode .. 102
2.22.3.3 Configure OM Enforcement Mode .. 103
2.22.3.4 The x_contexts File .. 103

2.22.4 SELinux Extension Functions ... 105
2.23 SANDBOX SERVICES .. 107
2.24 SE-POSTGRESQL .. 108

2.24.1 Notebook Examples ... 109
2.24.2 sepgsql Overview .. 109
2.24.3 Installing SE-PostgreSQL ... 111
2.24.4 SECURITY LABEL SQL Command .. 113
2.24.5 Additional SQL Functions ... 113
2.24.6 Additional postgresql.conf Entries .. 114
2.24.7 Logging Security Events ... 115
2.24.8 Internal Tables .. 115

2.25 APACHE SELINUX SUPPORT .. 116
2.25.1 mod_selinux Overview ... 116
2.25.2 Bounds Overview .. 117

2.25.2.1 Notebook Examples ... 118

3. SELINUX CONFIGURATION FILES .. 119
3.1 INTRODUCTION .. 119
3.2 GLOBAL CONFIGURATION FILES .. 120

3.2.1 /etc/selinux/config File .. 120
3.2.2 /etc/selinux/semanage.conf File .. 121
3.2.3 /etc/selinux/restorecond.conf and restorecond-user.conf Files 124
3.2.4 /etc/selinux/newrole_pam.conf .. 125
3.2.5 /etc/sestatus.conf File .. 125
3.2.6 /etc/security/sepermit.conf File ... 126

3.3 POLICY STORE CONFIGURATION FILES ... 127
3.3.1 modules/ Files ... 127
3.3.2 modules/active/base.pp File .. 127
3.3.3 modules/active/base.linked File .. 128
3.3.4 modules/active/commit_num File ... 128
3.3.5 modules/active/file_contexts.template File ... 128
3.3.6 modules/active/file_contexts File .. 131
3.3.7 modules/active/homedir_template File ... 132
3.3.8 modules/active/file_contexts.homedirs File .. 133
3.3.9 modules/active/netfilter_contexts & netfilter.local File 133
3.3.10 modules/active/policy.kern File .. 134
3.3.11 modules/active/seusers.final and seusers Files 134
3.3.12 modules/active/users_extra, users_extra.local and users.local Files 136
3.3.13 modules/active/booleans.local File ... 138
3.3.14 modules/active/file_contexts.local File ... 138
3.3.15 modules/active/interfaces.local File ... 139
3.3.16 modules/active/nodes.local File .. 139
3.3.17 modules/active/ports.local File ... 139
3.3.18 modules/active/modules Directory Contents .. 139

3.4 POLICY CONFIGURATION FILES ... 140
3.4.1 seusers File .. 140
3.4.2 booleans and booleans.local File ... 141

Page 6

The SELinux Notebook - The Foundations

3.4.3 booleans.subs File ... 142
3.4.4 setrans.conf File .. 143
3.4.5 secolor.conf File ... 145
3.4.6 policy/policy.<ver> File ... 146
3.4.7 contexts/customizable_types File .. 147
3.4.8 contexts/default_contexts File .. 147
3.4.9 contexts/dbus_contexts File .. 149
3.4.10 contexts/default_type File ... 150
3.4.11 contexts/failsafe_context File .. 150
3.4.12 contexts/initrc_context File ... 151
3.4.13 contexts/netfilter_contexts File ... 152
3.4.14 contexts/removable_context File .. 152
3.4.15 contexts/securetty_types File .. 152
3.4.16 contexts/sepgsql_contexts File .. 153
3.4.17 contexts/userhelper_context File ... 154
3.4.18 contexts/virtual_domain_context File ... 154
3.4.19 contexts/virtual_image_context File ... 155
3.4.20 contexts/x_contexts File ... 155
3.4.21 contexts/files/file_contexts File ... 157
3.4.22 contexts/files/file_contexts.local File .. 158
3.4.23 contexts/files/file_contexts.homedirs File ... 158
3.4.24 contexts/files/file_contexts.subs & file_contexts.subs_dist File 158
3.4.25 contexts/files/media File .. 159
3.4.26 contexts/users/[seuser_id] File ... 159
3.4.27 logins/<linuxuser_id> File ... 160
3.4.28 users/local.users File .. 161

4. SELINUX POLICY LANGUAGE ... 162
4.1 INTRODUCTION .. 162

4.1.1 CIL Overview .. 162
4.1.2 Notebook Example Policy ... 165

4.2 POLICY STATEMENTS AND RULES .. 165
4.2.1 Policy Source Files ... 165
4.2.2 Conditional, Optional and Require Statement Rules 167
4.2.3 MLS Statements and Optional MLS Components 167
4.2.4 General Statement Information ... 168
4.2.5 Section Contents .. 171

4.3 TYPE AND ATTRIBUTE STATEMENTS .. 171
4.3.1 type Statement ... 172
4.3.2 attribute Statement .. 173
4.3.3 typeattribute Statement ... 174
4.3.4 typealias Statement ... 175

4.4 DEFAULT RULES ... 176
4.4.1 default_user Rule .. 176
4.4.2 default_role Rule ... 177
4.4.3 default_type Rule .. 178
4.4.4 default_range Rule .. 179

4.5 TYPE ENFORCEMENT RULES ... 180
4.5.1 type_transition Rule .. 180
4.5.2 type_change Rule .. 182

Page 7

The SELinux Notebook - The Foundations

4.5.3 type_member Rule ... 183
4.6 BOUNDS STATEMENTS .. 184

4.6.1 typebounds Rule .. 184
4.7 ACCESS VECTOR RULES .. 185

4.7.1 allow Rule ... 186
4.7.2 dontaudit Rule ... 187
4.7.3 auditallow Rule ... 187
4.7.4 neverallow Rule .. 188

4.8 USER STATEMENT ... 188
4.8.1 user Statement ... 188

4.9 ROLE STATEMENTS ... 190
4.9.1 role Statement ... 190
4.9.2 attribute_role Statement .. 192
4.9.3 roleattribute Statement .. 192

4.10 ROLE RULES .. 193
4.10.1 Role allow Rule ... 193
4.10.2 role_transition Rule .. 194
4.10.3 Role dominance Rule .. 195

4.11 CONDITIONAL POLICY STATEMENTS ... 196
4.11.1 bool Statement ... 197
4.11.2 if Statement .. 198

4.12 CONSTRAINT STATEMENTS ... 200
4.12.1 constrain Statement ... 200
4.12.2 validatetrans Statement ... 202

4.13 FILE SYSTEM LABELING STATEMENTS .. 203
4.13.1 fs_use_xattr Statements ... 204
4.13.2 fs_use_task Statement ... 204
4.13.3 fs_use_trans Statement .. 205
4.13.4 genfscon Statements .. 206

4.14 NETWORK LABELING STATEMENTS .. 208
4.14.1 IP Address Formats .. 208

4.14.1.1 IPv4 Address Format .. 208
4.14.1.2 IPv6 Address Formats .. 208

4.14.2 netifcon Statement ... 209
4.14.3 nodecon Statement .. 210
4.14.4 portcon Statement ... 211

4.15 MLS STATEMENTS ... 213
4.15.1 sensitivity Statement .. 213
4.15.2 MLS dominance Statement .. 214
4.15.3 category Statement .. 215
4.15.4 level Statement .. 216
4.15.5 range_transition Statement ... 217

4.15.5.1 MLS range Definition .. 218
4.15.6 mlsconstrain Statement ... 219
4.15.7 mlsvalidatetrans Statement ... 220

4.16 POLICY SUPPORT STATEMENTS ... 222
4.16.1 module Statement .. 222
4.16.2 require Statement .. 223
4.16.3 optional Statement .. 224
4.16.4 policycap Statement .. 226

Page 8

The SELinux Notebook - The Foundations

4.16.5 permissive Statement ... 226
4.17 OBJECT CLASS AND PERMISSION STATEMENTS .. 228

4.17.1 Object Classes ... 228
4.17.2 Permissions ... 228

4.17.2.1 Defining common Permissions .. 230
4.18 SECURITY ID (SID) STATEMENT .. 230

4.18.1 sid Statement ... 230
4.18.2 sid context Statement ... 231

4.19 XEN STATEMENTS ... 232
4.19.1 iomemcon Statement ... 232
4.19.2 ioportcon Statement .. 233
4.19.3 pcidevicecon Statement ... 233
4.19.4 pirqcon Statement ... 234

5. THE REFERENCE POLICY ... 235
5.1 INTRODUCTION .. 235

5.1.1 Notebook Reference Policy Information ... 235
5.2 REFERENCE POLICY OVERVIEW ... 236

5.2.1 Distributing Policies ... 236
5.2.2 Policy Functionality .. 237
5.2.3 Reference Policy Module Files ... 238
5.2.4 Reference Policy Documentation .. 240

5.3 REFERENCE POLICY SOURCE .. 241
5.3.1 Source Layout ... 241
5.3.2 Reference Policy Files and Directories .. 244
5.3.3 Source Configuration Files ... 246

5.3.3.1 Reference Policy Build Options - build.conf 246
5.3.3.2 Reference Policy Build Options – policy/modules.conf 248

5.3.3.2.1 Building the modules.conf File ... 250
5.3.4 Source Installation and Build Make Options .. 251
5.3.5 Booleans, Global Booleans and Tunable Booleans 252
5.3.6 Modular Policy Build Structure .. 253
5.3.7 Creating Additional Layers ... 255

5.4 INSTALLING AND BUILDING THE REFERENCE POLICY SOURCE 255
5.4.1 Installation and Configuration ... 256
5.4.2 Building the targeted Policy Type ... 258
5.4.3 Checking the Build .. 259
5.4.4 Running with the new Policy ... 260

5.5 REFERENCE POLICY HEADERS ... 260
5.5.1 Building and Installing the Header Files .. 260
5.5.2 Using the Standard Ref Policy Headers ... 261
5.5.3 Using F-16 Supplied Headers ... 262

5.6 REFERENCE POLICY SUPPORT MACROS .. 263
5.6.1 Loadable Policy Macros ... 264

5.6.1.1 policy_module Macro .. 264
5.6.1.2 gen_require Macro ... 265
5.6.1.3 optional_policy Macro ... 266
5.6.1.4 gen_tunable Macro ... 268
5.6.1.5 tunable_policy Macro ... 269
5.6.1.6 interface Macro .. 270

Page 9

The SELinux Notebook - The Foundations

5.6.1.7 template Macro ... 271
5.6.2 Miscellaneous Macros .. 274

5.6.2.1 gen_context Macro ... 274
5.6.2.2 gen_user Macro .. 275
5.6.2.3 gen_bool Macro .. 276

5.6.3 MLS and MCS Macros .. 278
5.6.3.1 gen_cats Macro .. 278
5.6.3.2 gen_sens Macro .. 278
5.6.3.3 gen_levels Macro ... 279
5.6.3.4 System High/Low Parameters .. 280

5.6.4 ifdef / ifndef Parameters .. 281
5.6.4.1 hide_broken_symptoms .. 281
5.6.4.2 enable_mls and enable_mcs .. 281
5.6.4.3 enable_ubac ... 281
5.6.4.4 direct_sysadm_daemon ... 282

5.7 MODULE EXPANSION PROCESS ... 282
5.7.1 Module Expansion .. 284
5.7.2 File Context Expansion ... 292

6. IMPLEMENTING SELINUX-AWARE APPLICATIONS 293
6.1 INTRODUCTION .. 293
6.2 TYPES OF OBJECT MANAGER .. 293

6.2.1 Implementing SELinux-aware Applications ... 294
6.2.2 Implementing Object Managers .. 295
6.2.3 Reference Policy Changes .. 296
6.2.4 Adding New Object Classes and Permissions .. 297

7. SEANDROID .. 299
7.1.1 Overview ... 299
7.1.2 SEAndroid Project Updates .. 300

7.1.2.1 Kernels ... 302
7.1.2.2 Devices ... 302

7.2 POLICY CONFIGURATION FILES ... 303
7.2.1 seapps_context File ... 304

7.2.1.1 selinux_android_setcontext ... 304
7.2.1.2 selinux_android_setfilecon .. 307

7.2.2 property_context File .. 309
7.2.3 mac_permissions.xml File ... 310

7.3 SEANDROID CLASSES & PERMISSIONS .. 312

8. APPENDIX A - OBJECT CLASSES AND PERMISSIONS 314
8.1 INTRODUCTION .. 314
8.2 DEFINING OBJECT CLASSES AND PERMISSIONS .. 314
8.3 COMMON PERMISSIONS .. 315

8.3.1 Common File Permissions .. 315
8.3.2 Common Socket Permissions .. 315
8.3.3 Common IPC Permissions .. 316
8.3.4 Common Database Permissions ... 317
8.3.5 Common X_Device Permissions ... 317

8.4 FILE OBJECT CLASSES ... 318

Page 10

The SELinux Notebook - The Foundations

8.5 NETWORK OBJECT CLASSES ... 319
8.5.1 IPSec Network Object Classes .. 322
8.5.2 Netlink Object Classes .. 323
8.5.3 Miscellaneous Network Object Classes .. 325

8.6 IPC OBJECT CLASSES ... 326
8.7 PROCESS OBJECT CLASS .. 326
8.8 SECURITY OBJECT CLASS ... 327
8.9 SYSTEM OPERATION OBJECT CLASS .. 328
8.10 KERNEL SERVICE OBJECT CLASS .. 328
8.11 CAPABILITY OBJECT CLASSES ... 328
8.12 X WINDOWS OBJECT CLASSES ... 330
8.13 DATABASE OBJECT CLASSES .. 334
8.14 MISCELLANEOUS OBJECT CLASSES .. 337

9. APPENDIX B - LIBSELINUX LIBRARY FUNCTIONS 339
9.1 SOURCE CODE EXAMPLES .. 339
9.2 API SUMMARY FOR LIBSELINUX 2.1.11 .. 346

10. APPENDIX C – SELINUX COMMANDS .. 361
11. APPENDIX D – DOCUMENT REFERENCES .. 362
12. APPENDIX E - GNU FREE DOCUMENTATION LICENSE 363

Page 11

The SELinux Notebook - The Foundations

1. The SELinux Notebook

1.1 Introduction
This Notebook should help with explaining:

a) SELinux and its purpose in life.

b) The LSM / SELinux architecture, its supporting services and how they are
implemented within GNU / Linux.

c) SELinux Networking, Virtual Machine, X-Windows, PostgreSQL and
Apache/SELinux-Plus SELinux-aware capabilities.

d) The core SELinux policy language and how basic policy modules can be
constructed for instructional purposes.

e) The core SELinux policy management tools with examples of usage.

f) The Reference Policy architecture, its supporting services and how it is
implemented.

g) The integration of SELinux within Android - SEAndroid.

Note that this Notebook will not explain how the SELinux implementations are
managed for each GNU / Linux distribution as they have their own supporting
documentation.

Most sections of this Notebook have been added to the SELinux Project web site as
part of the SELinux documentation project.

While the majority of this Notebook is based on Fedora 16 and 17, all additional
developments as seen on the SELinux mail list (selinux@tycho.nsa.gov) up to August
'12 have been added (e.g. new policy language statements: default_user
default_role ..., support for ptrace_child and SEAndroid updates ...).

1.2 The Foundations Overview
This volume has the following major sections:

SELinux Overview - Gives a description of SELinux and its major components
to provide Mandatory Access Control services for GNU / Linux. Hopefully it will
show how all the SELinux components link together and how SELinux-aware
applications / object manager have been implemented (such as Networking, X-
Windows, PostgreSQL and virtual machines).

SELinux Configuration Files - Describes all the known SELinux configuration
file with samples. Also lists any specific SELinux commands or libselinux
APIs used to manage them.

SELinux Policy Language - Gives a brief description of each policy language
statement, with supporting examples taken from the Reference Policy source. Also
an introduction to the new CIL language (Common Intermediate Language).

The Reference Policy - Describes the Reference Policy and its supporting
macros.

SEAndroid - A brief overview of the SELinux services used to support Android.

Page 12

mailto:selinux@tycho.nsa.gov
http://selinuxpproject.org/

The SELinux Notebook - The Foundations

Object Classes and Permissions - Describes the SELinux object classes and
permissions.

libselinux Functions - Describes the SELinux library functions and a list of
example sources available in the Notebook tarball.

1.2.1 Notebook Source Overview
To demonstrate some of the SELinux capabilities a supporting Notebook source
tarball is available (notebook-source-3.0.tar.gz). The tarball contains
directories and READMEs covering the following:

Building a Basic Policy - Describes how to build monolithic, base and loadable
policy modules using core policy language statements and SELinux commands.
Note that these policies should not to be used in a live environment, they are
examples to show simple policy construction. Then using the basic policy with
additional module:

Build Message Filter Loadable Modules - Describes how to build a simple
network and file handling application with policy using SECMARK and
NetLabel services.

NetLabel Module Support for network_peer_controls - This builds
on the modules developed in the “Building the Message Filter” section to
implement an enhanced module to support the network peer controls.

Labeled IPSec Module Example - This builds on the modules developed in
the Building the Message Filter section to implement Labeled IPSec.

Example libselinux applications - This contains over 100 samples that use
all libselinux 2.1.6 functions. To save typing long context strings it makes
use of a configuration file. There are also some supporting policy modules for the
F-16 / F-17 targeted policy to show how the functions work.

Experimenting with X-Windows - Builds a sample selection manager
application to demonstrate polyinstantiated selections. Also has a simple test
application for the XSELinux extension Get/Set functions (this also uses
python-xcb that is not distributed with Fedora).

Experimenting with PostgreSQL 9.1 using sepgsql - This shows how to create a
simple database that uses SELinux functionality. This is then expanded to
demonstrate adding additional functions to support libselinux. There are also
demos using Apache with threads (mod_selinux), PHP, Labeled IPSec and
NetLabel. The policy modules supplied have been tested using F-16 / F-17
targeted policy.

Page 13

The SELinux Notebook - The Foundations

2. SELinux Overview

2.1 Introduction
SELinux is the primary Mandatory Access Control (MAC) mechanism built into a
number of GNU / Linux distributions. SELinux originally started as the Flux
Advanced Security Kernel (FLASK) development by the Utah university Flux team
and the US Department of Defence. The development was enhanced by the NSA and
released as open source software. The history of SELinux can be found at the Flux
and NSA websites.

Each of the sections that follow will describe a component of SELinux, and hopefully
they are is some form of logical order.

Note: When SELinux is installed, there are three well defined directory locations
referenced. Two of these will change with the old and new locations as follows:

Description Old Location New Location

The SELinux filesystem that
interfaces with the kernel based
security server.

/selinux /sys/fs/selinux

The SELinux configuration
directory that holds the sub-
system configuration files and
policies.

/etc/selinux No change

The SELinux policy store that
holds policy modules and
configuration details

/etc/selinux /var/lib/selinux

2.1.1 Is SELinux useful
There are many views on the usefulness of SELinux on Linux based systems, this
section gives a brief view of what SELinux is good at and what it is not (because its
not designed to do it).

SELinux is not just for military or high security systems where Multi-Level Security
(MLS) is required (for functionality such as 'no read up' and 'no write down'), as using
the 'type enforcement' (TE) functionality applications can be confined (or contained)
within domains and limited to the mimimum privileges required to do their job, so in
a 'nutshell':

1. If SELinux is enabled, the policy defines what access to resources and
operations on them (e.g. read, write) are allowed (i.e. SELinux stops all access
unless allowed by policy). This is why SELinux is called a 'mandatory access
control' (MAC) system.

2. The policy design, implementation and testing against a defined security
policy or requirements is important, otherwise there could be 'a false sense of
security'.

Page 14

http://www.nsa.gov/selinux/
http://www.cs.utah.edu/flux/

The SELinux Notebook - The Foundations

3. SELinux can confine an application within its own 'domain' and allow it to
have the minimum priviledges required to do its job. Should the application
require access to networks or other applications (or their data), then (as part of
the security policy design), this access would need to be granted (so at least it
is known what interactions are allowed and what are not - a good security
goal).

4. Should an application 'do something' it is not allowed by policy (intentional or
otherwise), then SELinux would stop these actions.

5. Should an application 'do something' it is allowed by policy, then SELinux
may contain any damage that maybe done intentional or otherwise. For
example if an application is allowed to delete all of its data files or database
entries, and the bug, virus or malicious user gains these priviledges then it
would be able to do the same, however the good news is that if the policy
'confined' the application and data, all your other data should still be there.

6. User login sessions can be confined to their own domains. This allows clients
they run to be given only the priviledges they need (e.g. admin users, sales
staff users, HR staff users etc.). This again will confine/limit any damage or
leakage of data.

7. Some applications (X-Windows for example) are difficult to confine as they
are generally designed to have total access to all resources. SELinux can
generally overcome these issues by providing sandboxing services.

8. SELinux will not stop memory leaks or buffer over-runs (because its not
designed to do this), however it may contain the damage that maybe done.

9. SELinux will not stop all viruses/malware getting into the system (as there are
many ways they could be introduced (including by legitimate users), however
it should limit the damage or leaks they cause.

10. SELinux will not stop kernel vulnerabilities, however it may limit their
effects.

11. It is very easy to add new rules to an SELinux policy using tools such as
audit2allow(1) if a user has the relevant permissions, however be aware
that this may start opening holes, so check what rules are really required.

12. Finally, SELinux cannot stop anything allowed by the security policy, so good
design is important.

The following maybe useful in providing a practial view of SELinux:

1. A discussion regarding Apache servers and SELinux that may look negative at
first but highlights the containment points above. This is the initial study:
http://blog.ptsecurity.com/2012/08/selinux-in-practice-dvwa-test.html, and
this is a response to the study: http://danwalsh.livejournal.com/56760.html.

However with careful design and known security goals the SELinux 'Apache /
SELinux Plus' services could be used to build a more secure web service (also
see http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus).

2. SELinux services have been added to Andriod, producing SEAndroid. The
presentation "The Case for Security Enhanced (SE)Android" gives use-cases

Page 15

http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus
http://danwalsh.livejournal.com/56760.html
http://blog.ptsecurity.com/2012/08/selinux-in-practice-dvwa-test.html

The SELinux Notebook - The Foundations

and types of Android exploits that SELinux could have overcome. The
presentation is available at:

https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf

2.2 Core SELinux Components
Figure 2.1 shows a high level diagram of the SELinux core components that manage
enforcement of the policy and comprise of the following:

1. A subject that must be present to cause an action to be taken by an object
(such as read a file as information only flows when a subject is involved).

2. An Object Manager that knows the actions required of the particular resource
(such as a file) and can enforce those actions (i.e. allow it to write to a file if
permitted by the policy).

3. A Security Server that makes decisions regarding the subjects rights to
perform the requested action on the object, based on the security policy rules.

4. A Security Policy that describes the rules using the SELinux policy language.

5. An Access Vector Cache (AVC) that improves system performance by
caching security server decisions.

Figure 2.1: High Level Core SELinux Components - Decisions by the Security
Server are cached in the AVC to enhance performance of future requests.

Figure 2.2 shows a more complex diagram of kernel and userspace with a number of
supporting services that are used to manage the SELinux environment. This diagram
will be referenced a number of times to explain areas of SELinux, therefore starting
from the bottom:

a) In the current implementation of SELinux the security server is embedded in
the kernel with the policy being loaded from userspace via a series of
functions contained in the libselinux library (see SELinux Userspace
Libraries for details).

The object managers (OM) and access vector cache (AVC) can reside in:

Page 16

Object Manager

Knows what objects it
manages, so queries if the
action is allowed and then

enforces the security
policy decision.

Access Vector
Cache

Stores decisions
made by the

Security Server.

Q uery
permissions

Answer from
C ache

If answer not
in cache , ask

security server

Add answer
to cache

Security Server

Makes decisions
based on the

security policy.

Security Policy

Subject
Requests access.

https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf

The SELinux Notebook - The Foundations

Figure 2.2: High Level SELinux Architecture – Showing the major supporting services

Page 17

Reference Policy
Headers

Or
Reference Policy

Source
Or

Custom Policy
Source

Security
Server

SELinux
Kernel

Services

libselinux (supports security policy, xat t r file at t ribute and process APIs)

Policy Object
Files

checkmodule
Compiles the policy

source into
intermediate format .

semodule
Manages the policy store by installing, loading, updating
and removing modules and their supporting configuration

files. Also builds the binary policy file.

semanage
Configures elements of
the policy such as login,

users, and ports.

SELinux Policy
---- Policy Store -----
/var/lib/selinux/<SELINUXTYPE>/
modules:
semanage.read.LOCK
semanage.trans.LOCK
modules/active:
base.pp
commit_num
file_contexts
file_contexts.homedirs
file_contexts.template
homedir_template
netfilter_contexts
seusers.final
users_extra
modules/active/modules:
amavis.pp
amtu.pp
...
zabbix.pp

---- Active Policy ----
/etc/selinux/<SELINUXTYPE>/
setrans.conf
policy:
policy.24
contexts:
dbus_contexts
netfilter_contexts
contexts/files:
file_contexts
file_contexts.homedirs

SELinux Configuration Files
/etc/selinux/config
/etc/selinux/semanage.conf
/etc/selinux/restorecond.conf
/etc/sestatus

SELinux User
Space Services

semodule_package
Package the policy modules
with opt ional configurat ion

files.

File Labeling Utilities
Utilities that initialise or update

file security contexts, such as
setfiles and restorecon.

/selinux or /sys/fs/selinux (selinuxfs)
Audit Log

Labeled File
Systems
(xattr)

L
S
M

 H
o
o
k
s

Linux Kernel
Services

policycoreutils
SElinux utilities, such as secon,
audit2allow and system-

config-selinux.

Linux commands
Linux commands modified to
support SELinux, such as ls,

ps, pam.

SELinux-aware Applications
Userspace Object Managers

T hese can use the
libselinux AVC
services (as nscd) or

use their own (as
SE-Postgresql).

Access
Vector
C ache

Access
Vector Cache Loaded

Policy

l
i
b
s
e
p
o
l

/

l
i
b
s
e
m
a
n
a
g
e

Policy FilesOptional
Configuration

Files

libselinux
T hese libraries
are linked into
SELinux aware
applicat ions as

required.

Network, USB etc.
Connectivity

/proc/self/task/
<tid>/attr/<attr>

Audit
Services

T hese libraries
are linked into
SELinux aware
applicat ions as

required.

The SELinux Notebook - The Foundations

kernel space – These object manages are for the kernel services such as
files, directory, socket, IPC etc. and are provided by hooks into the
SELinux sub-system via the Linux Security Module (LSM) framework
(shown as LSM Hooks in Figure 2.2) that is discussed in the LSM section.
The SELinux kernel AVC service is used to cache the security servers
response to the kernel based object managers thus speeding up access
decisions should the same request be asked in future.

userspace – These object managers are provided with the application or
service that requires support for MAC and are known as ‘SELinux-aware’
applications or services. Examples of these are: X-Windows, D-bus
messaging (used by the Gnome desktop), PostgreSQL database, Name
Service Cache Daemon (nscd), and the GNU / Linux passwd command.
Generally, these OMs use the AVC services built into the SELinux library
(libselinux), however they could, if required supply their own AVC
or not use an AVC at all (see Implementing SELinux-aware Applications
for details).

b) The SELinux security policy (right hand side of Figure 2.2) and its supporting
configuration files are contained in the /etc/selinux directory. This
directory contains the main SELinux configuration file (config) that has the
name of the policy to be loaded (via the SELINUXTYPE entry) and the initial
enforcement mode1 of the policy at load time (via the SELINUX entry). The
/etc/selinux/<SELINUXTYPE> directories contain policies that can be
activated along with their configuration files (e.g.
‘SELINUXTYPE=targeted’ will have its policy and associated
configuration files located at /etc/selinux/targeted). All known
configuration files for are shown in the SELinux Configuration Files section.

c) SELinux supports a ‘modular policy’, this means that a policy does not have
to be one large source policy but can be built from modules. A modular policy
consists of a base policy that contains the mandatory information (such as
object classes, permissions etc.), and zero or more policy modules where
generally each supports a particular application or service. These modules are
compiled, linked, and held in a ‘policy store’ where they can be built into a
binary format that is then loaded into the security server (in the diagram the
binary policy is located at
/etc/selinux/targeted/policy/policy.26). The types of policy
and their construction are covered in the Types of SELinux Policy section.

d) To be able to build the policy in the first place, policy source is required (top
left hand side of Figure 2.2). This can be supplied in two basic ways (and soon
a third when the CIL (Common Intermediate Language) development is
complete):

i) as source code written using the SELinux Policy Language. This is
how the simple policies have been written to support the examples in

1 When SELinux is enabled, the policy can be running in ‘permissive mode’
(SELINUX=permissive), where all accesses are allowed. The policy can also be run in
‘enforcing mode’ (SELINUX=enforcing), where any access that is not defined in the policy is
denied and an entry placed in the audit log. SELinux can also be disabled (at boot time only) by
setting SELINUX=disabled.

Page 18

The SELinux Notebook - The Foundations

this Notebook, however it is not recommended for real-world policy
development.

ii) using the Reference Policy that uses high level macros to define policy
rules. This is the standard way policies are now built for SELinux
distributions such as Red Hat and Debian and is discussed in the
Reference Policy section.

e) To be able to compile and link the source code then load it into the security
server requires a number of tools (top of Figure 2.2). These are used to build
the sample policy modules where their use is described.

f) To enable system administrators to manage the policy, the SELinux
environment and label file systems requires tools and modified GNU / Linux
commands. These are mentioned throughout the Notebook as needed and
summarised in Appendix B – SELinux Commands. Note that there are many
other applications to manage policy, however this Notebook only concentrates
on the core services.

g) To ensure security events are logged, GNU / Linux has an audit service that
captures policy violations. The Auditing SELinux Events section describes the
format of these security events.

h) SELinux supports network services that are described in the SELinux
Networking Support section.

The Linux Security Module and SELinux section goes into greater detail of the LSM /
SELinux modules with a walk through of a fork and exec process.

2.3 Mandatory Access Control (MAC)
Mandatory Access Control (MAC) is a type of access control in which the operating
system is used to constrain a user or process (the subject) from accessing or
performing an operation on an object (such as a file, disk, memory etc.).

Each of the subjects and objects have a set of security attributes that can be
interrogated by the operating system to check if the requested operation can be
performed or not. For SELinux the:

• subjects are processes.

• objects are system resources such as files, sockets, etc.

• security attributes are the security context.

• Security Server within the Linux kernel authorizes access (or not) using the
security policy (or policy) that describes rules that must be enforced.

Note that the subject (and therefore the user) cannot decide to bypass the policy rules
being enforced by the MAC policy with SELinux enabled. Contrast this to standard
Linux Discretionary Access Control (DAC), which also governs the ability of subjects
to access objects, however it allows users to make policy decisions. The steps in the
decision making chain for DAC and MAC are shown in Figure 2.3.

Page 19

The SELinux Notebook - The Foundations

Figure 2.3: Processing a System Call – The DAC checks are carried out first, if they
pass then the Security Server is consulted for a decision.

SELinux supports two forms of MAC:

Type Enforcement – Where processes run in domains and the actions on objects
are controlled by the policy. This is the implementation used for general purpose
MAC within SELinux. The Type Enforcement section covers this in more detail.

Multi-Level Security – This is an implementation based on the Bell-La Padula
(BLP) model, and used by organizations where different levels of access are
required so that restricted information (for example in some defence /
Government systems) is separated from classified information to maintain
confidentiality. This allows enforcement rules such as ‘no write down’ and ‘no
read up’ to be implemented in a policy by extending the security context to
include security levels. The MLS section covers this in more detail along with a
variant of MLS called Multi-Category Security (MCS).

2.4 SELinux Users
Users in GNU / Linux are generally associated to human users (such as Alice and
Bob) or operator/system functions (such as admin), while this can be implemented in
SELinux, SELinux user names are generally groups or classes of user. For example
all the standard system users could be assigned an SELinux user name of user_u
and administration staff under staff_u.

There is one special SELinux user defined that must never be associated to a GNU /
Linux user as it a special identity for system processes and objects, this user is
system_u.

Page 20

User-space Process makes a System Call

Service System Call

Linux
Security
Module

Check for Errors

DAC Checks

LSM Hook

Return from System
Call

SELinux Security
Server, AVC and

Policy

Allow or Deny

Access

AllowedDeniedFailed

Kernel Space

User Space

The SELinux Notebook - The Foundations

The SELinux user name is the first component of a 'security context' and by
convention SELinux user names end in '_u', however this is not enforced by any
SELinux service (i.e. it is only to identify the user component).

2.5 Role-Based Access Control (RBAC)
To further control access to TE domains SELinux makes use of role-based access
control (RBAC). This feature allows SELinux users to be associated to one or more
roles, where each role is then associated to one or more domain types as shown in
Figure 2.4.

The SELinux role name is the second component of a 'security context' and by
convention SELinux roles end in '_r', however this is not enforced by any SELinux
service (i.e. it is only used to identify the role component).

Figure 2.4: Role Based Access Control – Showing how SELinux controls access via
user, role and domain type association.

2.6 Type Enforcement (TE)
SELinux makes use of a specific style of type enforcement2 (TE) to enforce
mandatory access control. For SELinux it means that all subjects and objects have a
type identifier associated to them that can then be used to enforce rules laid down in a
policy.

The SELinux type identifier is a simple variable-length string that is defined in the
policy and then associated to a security context. It is also used in the majority of
SELinux language statements and rules used to build a policy that will, when loaded
into the security server, enforce the policy.

Because the type identifier (or just ‘type’) is associated to all subjects and objects, it
can sometimes be difficult to distinguish what the type is actually associated with (it’s
not helped by the fact that by convention, type identifiers all end in ‘_t’). In the end

2 There are various ‘type enforcement’ technologies.

Page 21

SELinux User
unconfined_u

TE Domain
unconfined_t

This domain includes most
processes started at boot

time and logins.

Role
unconfined_r

TE Domain
ext_gateway_t

TE Domain
int_gateway_t

TE Domain
move_file_t

Role
message_filter_r

These domains are entered from the unconfined_t domain by
performing domain transitions using SELinux facilities. This can be done
because unconfined_u is associated to roles unconfined_r and

message_filter_r within the policy.

In the basic policy, the SELinux
user unconfined_u is
associated to all GNU / Linux users
by default.

The SELinux Notebook - The Foundations

it comes down to understanding how they are allocated in the policy itself and how
they are used by SELinux services.

Basically if the type identifier is used to reference a subject it is referring to a Linux
process or collection of processes (a domain or domain type). If the type identifier is
used to reference an object then it is specifying its object type (i.e. file type).

While SELinux refers to a subject as being an active process that is associated to a
domain type, the scope of an SELinux type enforcement domain can vary widely. For
example in the simple policy built in the basic-selinux-policy directory of
the source tarball, all the processes on the system run in the unconfined_t
domain, therefore every process is ‘of type unconfined_t’ (that means it can do
whatever it likes within the limits of the standard Linux DAC policy).

It is only when additional policy statements are added to the simple policy, that areas
start to be confined. For example, an external gateway is run in its own isolated
domain (ext_gateway_t) that cannot be ‘interfered’ with by any of the
unconfined_t processes (except to run or transition the gateway process into its
own domain). This scenario is similar to the ‘targeted’ policy delivered as standard in
Red Hat Fedora where the majority of user space processes run under the
unconfined_t domain (although don’t think the simple policies implemented in
source tarball are equivalent to the Reference Policy, they are not - so do not use them
as live implementations).

The SELinux type is the third component of a 'security context' and by convention
SELinux types end in '_t', however this is not enforced by any SELinux service (i.e.
it is only used to identify the type component).

2.6.1 Constraints
Within a TE environment, the way that subjects are allowed to access an object is via
an allow rule , for example:

allow unconfined_t ext_gateway_t : process transition;

This states that a process running in the unconfined_t domain has permission to
transition a process to the ext_gateway_t domain. However it could be that the
policy writer wants to constrain this further and state that this can only happen if the
role of the source domain is the same as the role of the target domain. To achieve this
a constraint can be imposed using a constrain statement:

constrain process transition (r1 == r2);

This states that a process transition can only occur if the source role is the same as the
target role, therefore a constraint is a condition that must be satisfied in order for one
or more permissions to be granted (i.e. a constraint imposes additional restrictions on
TE rules).

There are a number of different constraint statements within the policy language to
support areas such as MLS (see the Constraint Statements and MLS Statements
sections).

Page 22

The SELinux Notebook - The Foundations

2.7 Security Context
SELinux requires a security context to be associated with every process (or subject)
and object that are used by the security server to decide whether access is allowed or
not as defined by the policy.

The security context is also known as a ‘security label’ or just label that can cause
confusion as there are many types of label depending on the context (another
context!!).

Within SELinux, a security context is represented as variable-length strings that
define the SELinux user3, their role, a type identifier and an optional MCS / MLS
security range or level as follows:

user:role:type[:range]

Where:
user The SELinux user identity. This can be associated to one or more

roles that the SELinux user is allowed to use.
role The SELinux role. This can be associated to one or more types the

SELinux user is allowed to access.
type When a type is associated with a process, it defines what processes

(or domains) the SELinux user (the subject) can access.
When a type is associated with an object, it defines what access
permissions the SELinux user has to that object.

range This field can also be know as a level and is only present if the
policy supports MCS or MLS. The entry can consist of:

• A single security level that contains a sensitivity level and
zero or more categories (e.g. s0, s1:c0, s7:c10.c15).

• A range that consists of two security levels (a low and
high) separated by a hyphen (e.g. s0 - s15:c0.c1023).

These components are discussed in the Security Levels section.

However note that:

1. Access decisions regarding a subject make use of all the components of the
security context.

2. Access decisions regarding an object make use of the components as follows:

a) the user is either set to a special user called system_u or it is set to
the SELinux user id of the creating process (as it serves no real
purpose other than it can be used for audit purposes within logs).

b) the role is generally set to a special SELinux internal role of
object_r, although policy version 26 with kernel 2.6.39 and above
do support role transitions on any object class.

3 An SELinux user id is not the same as the GNU / Linux user id. The GNU / Linux user id is
mapped to the SELinux user id by configuration files.

Page 23

The SELinux Notebook - The Foundations

Therefore for an object the role, type and level/range are the only relevant
security fields that are used in access decisions.

Examples of using system_u and object_r can be seen in the file system
after relabeling and running the ls –Z command on various directories.

The Computing Security Contexts section decribes how SELinux computes the
security context components based on a source context, target context and an object
class.

The examples below show security contexts for processes, directories and files (note
that the policy did not support MCS or MLS, therefore no level field):

Example Process Security Context:

These are process security contexts taken from a ps –Z command
(edited for clarity) that show four processes:

LABEL PID TTY CMD
unconfined_u:unconfined_r:unconfined_t 2539 pts/0 bash
unconfined_u:message_filter_r:ext_gateway_t 3134 pts/0 secure_server
unconfined_u:message_filter_r:int_gateway_t 3138 pts/0 secure_server
unconfined_u:unconfined_r:unconfined_t 3146 pts/0 ps

Note the bash and ps processes are running under the
unconfined_t domain, however the secure_server has two instances
running under two different domains (ext_gateway_t and
int_gateway_t). Also note that they are using the
message_filter_r role whereas bash and ps use unconfined_r.
#
These results were obtained by running the system in permissive
mode (as in enforcing mode the gateway processes would not
be shown).

Example Object Security Context:

These are the message queue directory object security contexts
taken from an ls –Zd command (edited for clarity):

system_u:object_r:in_queue_t /usr/message_queue/in_queue
system_u:object_r:out_queue_t /usr/message_queue/out_queue

Note that they are instantiated with system_u and object_r

These are the message queue file object security contexts
taken from an ls –Z command (edited for clarity):

/usr/message_queue/in_queue:
unconfined_u:object_r:in_file_t Message-1
unconfined_u:object_r:in_file_t Message-2

/usr/message_queue/out_queue:
unconfined_u:object_r:out_file_t Message-10
unconfined_u:object_r:out_file_t Message-11

Note that they are instantiated with unconfined_u as that was
the SELinux user id of the process that created the files

Page 24

The SELinux Notebook - The Foundations

(see the process example above). The role remained as
object_r.

2.8 Subjects
A subject is an active entity generally in the form of a person, process, or device that
causes information to flow among objects or changes the system state.

Within SELinux a subject is generally an active process and has a security context
associated with it, however a process can also be referred to as an object depending on
the context in which it is being taken, for example:

1. A running process (i.e. an active entity) is a subject because it causes
information to flow among objects or can change the system state.

2. The process can also be referred to as an object because each process has an
associated object class4 called ‘process’. This process ‘object’, defines what
permissions the policy is allowed to grant or deny on the active process.

An example is given of the above scenarios in the Allowing a Process Access to an
Object section.

In SELinux subjects can be:

Trusted – Generally these are commands, applications etc. that have been written
or modified to support specific SELinux functionality to enforce the security
policy (e.g. the kernel, init, pam, xinetd and login). However, it can also cover any
application that the organisation is willing to trust as a part of the overall system.
Although (depending on your paranoia level), the best policy is to trust nothing
until it has been verified that it conforms to the security policy. Generally these
trusted applications would run in either their own domain (e.g. the audit daemon
could run under auditd_t) or grouped together (e.g. the semanage(8) and
semodule(8) commands could be grouped under semanage_t).

Untrusted – Everything else.

2.9 Objects
Within SELinux an object is a resource such as files, sockets, pipes or network
interfaces that are accessed via processes (also known as subjects). These objects are
classified according to the resource they provide with access permissions relevant to
their purpose (e.g. read, receive and write), and assigned a security context as
described in the following sections.

2.9.1 Object Classes and Permissions
Each object consists of a class identifier that defines its purpose (e.g. file, socket)
along with a set of permissions5 that describe what services the object can handle
(read, write, send etc.). When an object is instantiated it will be allocated a name
(e.g. a file could be called config or a socket my_connection) and a security

4 The object class and its associated permissions are explained in the Process Object Class section.
5 Also known in SELinux as Access Vectors (AV).

Page 25

The SELinux Notebook - The Foundations

context (e.g. system_u:object_r:selinux_config_t) as shown in Figure
2.5.

Figure 2.5: Object Class = ‘file’ and permissions – the policy rules would define
those permissions allowed for each process that needs access to the

/etc/selinux/config file.

The objective of the policy is to enable the user of the object (the subject) access to
the minimum permissions needed to complete the task (i.e. do not allow write
permission if only reading information).

These object classes and their associated permissions are built into the GNU / Linux
kernel and user space object managers by developers and are therefore not generally
updated by policy writers.

The object classes consist of kernel object classes (for handling files, sockets etc.)
plus userspace object classes for userspace object managers (for services such as X-
Windows or dbus). The number of object classes and their permissions can vary
depending on the features configured in the GNU / Linux release. All the known
object classes and permissions are described in Appendix A - Object Classes and
Permissions.

2.9.2 Allowing a Process Access to Resources
This is a simple example that attempts to explain two points:

1. How a process is given permission to use an objects resource.

2. By using the ‘process’ object class, show that a process can be described as a
process or object.

An SELinux policy contains many rules and statements, the majority of which are
allow rules that (simply) allows processes to be given access permissions to an
objects resources.

The following allow rule and Figure 2.6 illustrates ‘a process can also be an object’
as it allows processes running in the unconfined_t domain, permission to
‘transition’ the external gateway application to the ext_gateway_t domain
once it has been executed:

Page 26

File name:
/etc/selinux/config

Security Context:
system_u:object_r:selinux_config_t

Object – of the ‘file’ object class

read

write

append

etc.

Perm
issions

The SELinux Notebook - The Foundations

allow Rule | source_domain | target_type : class | permission
-----------▼---------------▼------------------------▼------------
allow unconfined_t ext_gateway_t : process transition;

Where:
allow The SELinux language allow rule.

unconfined_t The source domain (or subject) identifier – in this case the
shell that wants to exec the gateway application.

ext_gateway_t The target object identifier – the object instance of the
gateway application process.

process The target object class - the ‘process’ object class.
transition The permission granted to the source domain on the

targets object – in this case the unconfined_t domain
has transition permission on the ext_gateway_t
‘process’ object.

Figure 2.6: The allow rule – Showing that the subject (the processes running
in the unconfined_t domain) has been given the transition permission on the

ext_gateway_t ‘process’ object.

It should be noted that there is more to a domain transition than described above, for a
more detailed explanation, see the Domain Transition section.

2.9.3 Labeling Objects
Within a running SELinux enabled GNU / Linux system the labeling of objects is
managed by the system and generally unseen by the users (until labeling goes
wrong !!). As processes and objects are created and destroyed, they either:

1. Inherit their labels from the parent process or object.

2. The policy type, role and range transition statements allow a different label to
be assigned as discussed in the Domain and Object Transitions section.

3. SELinux-aware applications can enforce a new label (with the policies
approval of course) using the libselinux API functions.

Page 27

ext_gateway_tunconfined_t

Subject – the
process Object Instance – of the

‘process’ object class

transition
(Permission)

The SELinux Notebook - The Foundations

4. An object manager (OM) can enforce a default label that can either be built
into the OM or obtained via a configuration file (such as X-Windows,
NetLabel Labeled IPSec, and SECMARK (iptables).

5. Use an ‘initial security identifier’ (or initial SID). These are defined in all base
and monolithic policies and are used to either set an initial context during the
boot process, or if an object requires a default (i.e. the object does not already
have a valid context).

The SELinux policy language supports object labeling statements for file and network
services that are defined in the File System Labeling Statements and Network
Labeling Statements sections.

An overview of the process required for labeling file systems that use extended
attributes (such as ext3 and ext4) is discussed in the Labeling Extended Attribute
Filesystems section.

2.9.3.1 Labeling Extended Attribute Filesystems

The labeling of file systems that implement extended attributes6 is supported by
SELinux using:

1. The fs_use_xattr statement within the policy to identify what file
systems use extended attributes. This statement is used to inform the security
server how the file system is labeled.

2. A ‘file contexts’ file that defines what the initial contexts should be for each
file and directory within the file system. The format of this file is described in
the modules/active/file_contexts.template file 7 section.

3. A method to initialise the filesystem with these extended attributes. This is
achieved by SELinux utilities such as fixfiles(8) and setfiles(8).
There are also commands such as chcon(1), restorecon(8) and
restorecond(8)that can be used to relabel files.

Extended attributes containing the SELinux context of a file can be viewed by the ls
–Z or getfattr(1) commands as follows:

ls –Z myfile
-rw-r--r-- root root unconfined_u:object_r:admin_home_t:s0
myfile

getfattr –n security.selinux <file_name>

#file_name: rpmbuild
security.selinux=”unconfined_u:object_r:admin_home_t:s0\000”

Where –n security.selinux is the name of the attribute and
rpmbuild is the file name.
The security context (or label) for the file is:

6 These file systems store the security context in an attribute associated with the file.
7 Note that this file contains the contexts of all files in all extended attribute filesystems for the

policy. However within a modular policy each module describes its own file context information,
that is then used to build this file.

Page 28

The SELinux Notebook - The Foundations

system_u:object_r:admin_home_t:s0

2.9.3.1.1 Copying and Moving Files
Assuming that the correct permissions have been granted by the policy, the effects on
the security context of a file when copied or moved differ as follows:

• copy a file – takes on label of new directory unless the –Z option is used.

• move a file – retains the label of the file.

However, if the restorecond daemon is running and the restorecond.conf
file is correctly configured, then other security contexts can be associated to the file as
it is moved or copied (provided it is a valid context and specified in the
file_contexts file).

The examples below show the effects of copying and moving files:

These are the test files in the /root directory and their current security
context:
#
-rw-r--r-- root root unconfined_u:object_r:unconfined_t copied-file
-rw-r--r-- root root unconfined_u:object_r:unconfined_t moved-file

These are the commands used to copy / move the files:
#
Standard copy file:
cp copied-file /usr/message_queue/in_queue

Copy using –Z to set the files context:
cp -Z unconfined_u:object_r:unconfined_t copied-file \
/usr/message_queue/in_queue/copied-file-with-Z

Standard move file:
mv moved-file /usr/message_queue/in_queue

The target directory (/usr/message_queue/in_queue) is label “in_queue_t”.
The results of “ls –Z” on target the directory are:
#
-rw-r--r-- root root unconfined_u:object_r:in_queue_t copied-file
-rw-r--r-- root root unconfined_u:object_r:unconfined_t copied-file-with-Z
-rw-r--r-- root root unconfined_u:object_r:unconfined_t moved-file

However, if the restorecond daemon is running:

If the restorecond daemon is running with a restorecond.conf file entry of:
#
/usr/message_queue/in_queue/*

AND the file_context file has an entry of:
#
/usr/message_queue/in_queue(/.*)? -- system_u:object_r:in_file_t

Then all the entries would be set as follows when the daemon detects the files
creation:
#
-rw-r--r-- root root unconfined_u:object_r:in_file_t copied-file
-rw-r--r-- root root unconfined_u:object_r:in_file_t copied-file-with-Z
-rw-r--r-- root root unconfined_u:object_r:in_file_t moved-file

This is because the restorecond process will set the contexts defined in
the file_contexts file to the context specified as it is created in the
new directory.

Page 29

The SELinux Notebook - The Foundations

This is because the restorecond process will set the contexts defined in the
file_contexts file to the context specified as it is created in the new directory.

2.9.3.2 Labeling Subjects

On a running GNU / Linux system, processes inherit the security context of the parent
process. If the new process being spawned has permission to change its context, then
a ‘type transition’ is allowed that is discussed in the Domain Transition section.

The Initial Boot - Loading the Policy section discusses how GNU / Linux is initialised
and the processes labeled for the login process.

The policy language supports a number of statements to either assign label
components or labels to processes such as:

user, role and type statements.

and manage their scope:

role allow and constrain
and manage their transition:

type _transition , role_transition and range_transition

2.9.4 Object Reuse
As GNU / Linux runs, it creates instances of objects and manages the information
they contain (read, write, modify etc.) under the control of processes, and at some
stage these objects may be deleted or released allowing the resource (such as memory
blocks and disk space) to be available for reuse.

GNU / Linux handles object reuse by ensuring that when a resource is re-allocated, it
is cleared. This means that when a process releases an object instance (e.g. release
allocated memory back to the pool, delete a directory entry or file), there may be
information left behind that could prove useful if harvested. If this should be an issue,
then the process itself should clear or shred the information before releasing the object
(which can be difficult in some cases unless the source code is available).

2.10 Computing Security Contexts
SELinux uses a number of policy language statements and libselinux functions to
compute a security context via the kernel security server.

When security contexts are computed, the different kernel, userspace tools and policy
versions can influence the outcome. This is because patches have been applied over
the years that give greater flexiblity in computing contexts. For example a 2.6.39
kernel with SELinux userspace services supporting policy version 26 can influence
the computed role.

The security context is computed for an object using the following components: a
source context, a target context and an object class.

The libselinux userspace functions used to compute a security context are:

avc_compute_create(3) and security_compute_create(3)

Page 30

The SELinux Notebook - The Foundations

avc_compute_member(3) and security_compute_member(3)
security_compute_relabel(3)

Note that the kernel has equivalent functions in the security server, however they are
not covered here.

The policy language statements that influence a computed security context are:

type_transition, role_transition, range_transition,
type_member and type_change and also their corresponding CIL language
statements: typetransition / filetransition, roletransition,
rangetransition, typemember and typechange. There are also the
default_user, default_role, default_type and default_range
statements that will be available in later releases.

The sections that follow explain how security contexts are computed when using the
libselinux functions and the policy statements that influence the outcome (note
that the equivalent kernel services behave exactly the same).

2.10.1 avc_compute_create and security_compute_create
The table below8 shows how the components from the source context scon, target
context tcon and class tclass are used to compute the new context newcon
(referenced by SIDs for avc_compute_create(3). The following notes also
apply:

a) Any valid policy role_transition, type_transition and
range_transition enforcement rules will influence the final outcome as
shown.

b) For kernels less than 2.6.39 the context generated will depend on whether the
class is process or any other class.

c) For kernels 2.6.39 and above the following also applies:

i. Those classes suffixed by socket will also be included in the
process class outcome.

ii. If a valid role_transition rule for tclass, then use that instead
of the default object_r. Also requires policy version 26 or greater -
see security_policyvers(3).

iii. If the type_transition rule is classed as the 'file name transition
rule' (i.e. it has an object_name parameter), then provided the
object name in the rule matches the last component of the objects name
(in this case a file or directory name), then use the rules
default_type (note CIL uses the filetransition rule). Also
requires policy version 25 or greater.

d) For kernels 3.5 and above with policy version 27 or greater, the
default_user, default_role, default_range statements will
influence the user, role and range of the computed context for the
specified class tclass. With policy version 28 or greater the

8 The table only contains the kernel version, the text gives the policy version also required.

Page 31

The SELinux Notebook - The Foundations

default_type statement can also influence the type in the computed
context.

user role type range
If kernel >= 3.5 with a

default_user tclass
source rule then use scon

user
OR

If kernel >= 3.5 with a
default_user tclass
target rule then use tcon

user
ELSE

Use scon user

If kernel >=2.6.39, and
there is a valid

role_transition
 rule then use the rules

new_role
OR

If kernel >= 3.5 with
default_role tclass
source rule then use scon

role
OR

If kernel >= 3.5 with
default_role tclass
target rule then use tcon

role
OR

If kernel >= 2.6.39 and
tclass is process or
*socket, then use scon

role
OR

If kernel <= 2.6.38 and
tclass is process, then

use scon role
ELSE

Use object_r

If there is a valid
type_transition
rule then use the rules
default_type

OR
If kernel >= 3.5 with

default_type tclass
source rule then use scon

type
OR

If kernel >= 3.5 with
default_type tclass
target rule then use tcon

type
OR

If kernel >= 2.6.39 and
tclass is process or
*socket, then use scon

type
OR

If kernel <= 2.6.38 and
tclass is process, then

use scon type
ELSE

Use tcon type

 If there is a valid
range_transition

 rule then use the rules new_range
OR

If kernel >= 3.5 with
default_range tclass
source low rule then use

scon low
OR

If kernel >= 3.5 with
default_range tclass
source high rule then use

scon high
OR

If kernel >= 3.5 with
default_range tclass
source low_high rule then

use scon range
OR

If kernel >= 3.5 with
default_range tclass
target low rule then use

tcon low
OR

If kernel >= 3.5 with
default_range tclass
target high rule then use

tcon high
OR

If kernel >= 3.5 with
default_range tclass
target low_high rule then

use tcon range
OR

If kernel >= 2.6.39 and tclass
is process or *socket, then

use scon range
OR

If kernel <= 2.6.38 and tclass
is process, then use scon

range
ELSE

Use scon low

2.10.2 avc_compute_member and security_compute_member
The table below9 shows how the components from the source context, scon target
context, tcon and class, tclass are used to compute the new context newcon
(referenced by SIDs for avc_compute_member(3). The following notes also
apply:

9 The table only contains the kernel version, the text gives the policy version also required.

Page 32

The SELinux Notebook - The Foundations

a) Any valid policy type_member enforcement rules will influence the final
outcome as shown.

b) For kernels less than 2.6.39 the context generated will depend on whether the
class is process or any other class.

c) For kernels 2.6.39 and above, those classes suffixed by socket are also
included in the process class outcome.

d) For kernels 3.5 and above with policy version 28 or greater, the
default_user, default_role, default_range statements will
influence the user, role and range of the computed context for the
specified class tclass. With policy version 28 or greater the
default_type statement can also influence the type in the computed
context.

user role type range
If kernel >= 3.5 with a

default_user tclass
source rule then use scon

user
OR

If kernel >= 3.5 with a
default_user tclass
target rule then use tcon

user
ELSE

Use tcon user

If kernel >= 3.5 with
default_role tclass
source rule then use scon

role
OR

If kernel >= 3.5 with
default_role tclass
target rule then use tcon

role
OR

If kernel >= 2.6.39 and
tclass is process or
*socket, then use scon

role
OR

If kernel <= 2.6.38 and
tclass is process, then

use scon role
ELSE

Use object_r

If there is a valid
type_member

rule then use the rules
member _type

OR
If kernel >= 3.5 with

default_type tclass
source rule then use scon

type
OR

If kernel >= 3.5 with
default_type tclass
target rule then use tcon

type
OR

If kernel >= 2.6.39 and
tclass is process or
*socket, then use scon

type
OR

If kernel <= 2.6.38 and
tclass is process, then

use scon type
ELSE

Use tcon type

If kernel >= 3.5 with
default_range tclass
source low rule then use

scon low
OR

If kernel >= 3.5 with
default_range tclass
source high rule then use

scon high
OR

If kernel >= 3.5 with
default_range tclass
source low_high rule then

use scon range
OR

If kernel >= 3.5 with
default_range tclass
target low rule then use

tcon low
OR

If kernel >= 3.5 with
default_range tclass
target high rule then use

tcon high
OR

If kernel >= 3.5 with
default_range tclass
target low_high rule then

use tcon range
OR

If kernel >= 2.6.39 and tclass
is process or *socket, then

use scon range
OR

If kernel <= 2.6.38 and tclass
is process, then use scon

range
ELSE

Use scon low

Page 33

The SELinux Notebook - The Foundations

2.10.3 security_compute_relabel
The table below10 shows how the components from the source context, scon target
context, tcon and class, tclass are used to compute the new context newcon for
security_compute_relabel(3). The following notes also apply:

a) Any valid policy type_change enforcement rules will influence the final
outcome shown in the table.

b) For kernels less than 2.6.39 the context generated will depend on whether the
class is process or any other class.

c) For kernels 2.6.39 and above, those classes suffixed by socket are also
included in the process class outcome.

d) For kernels 3.5 and above with policy version 28 or greater, the
default_user, default_role, default_range statements will
influence the user, role and range of the computed context for the
specified class tclass. With policy version 28 or greater the
default_type statement can also influence the type in the computed
context.

10 The table only contains the kernel version, the text gives the policy version also required.

Page 34

The SELinux Notebook - The Foundations

user role type range
If kernel >= 3.5 with a

default_user tclass
source rule then use scon

user
OR

If kernel >= 3.5 with a
default_user tclass
target rule then use tcon

user
ELSE

Use scon user

If kernel >= 3.5 with
default_role tclass
source rule then use scon

role
OR

If kernel >= 3.5 with
default_role tclass
target rule then use tcon

role
OR

If kernel >= 2.6.39 and
tclass is process or
*socket, then use scon

role
OR

If kernel <= 2.6.38 and
tclass is process, then

use scon role
ELSE

Use object_r

If there is a valid
type_change

rule then use the rules
change _type

OR
If kernel >= 3.5 with

default_type tclass
source rule then use scon

type
OR

If kernel >= 3.5 with
default_type tclass
target rule then use tcon

type
OR

If kernel >= 2.6.39 and
tclass is process or
*socket, then use scon

type
OR

If kernel <= 2.6.38 and
tclass is process, then

use scon type
ELSE

Use tcon type

If kernel >= 3.5 with
default_range tclass
source low rule then use

scon low
OR

If kernel >= 3.5 with
default_range tclass
source high rule then use

scon high
OR

If kernel >= 3.5 with
default_range tclass
source low_high rule then

use scon range
OR

If kernel >= 3.5 with
default_range tclass
target low rule then use

tcon low
OR

If kernel >= 3.5 with
default_range tclass
target high rule then use

tcon high
OR

If kernel >= 3.5 with
default_range tclass
target low_high rule then

use tcon range
OR

If kernel >= 2.6.39 and tclass
is process or *socket, then

use scon range
OR

If kernel <= 2.6.38 and tclass
is process, then use scon

range
ELSE

Use scon low

2.11 Domain and Object Transitions
This section discusses the type_transition statement that is used to:

1. Transition a process from one domain to another (a domain transition).

2. Transition an object from one type to another (an object transition).

These transitions can also be achieved using the libselinux API functions for
SELinux-aware applications.

2.11.1 Domain Transition
A domain transition is where a process in one domain starts a new process in another
domain under a different security context. There are two ways a process can define a
domain transition:

Page 35

The SELinux Notebook - The Foundations

1. Using a type_transition statement, where the exec system call will
automatically perform a domain transition for programs that are not
themselves SELinux-aware. This is the most common method and would be in
the form of the following statement:

type_transition unconfined_t secure_services_exec_t : process ext_gateway_t;

2. SELinux-aware applications can specify the domain of the new process using
the libselinux API call setexeccon(3). To achieve this the SELinux-
aware application must also have the setexec permission, for example:

allow crond_t self : process setexec;

However, before any domain transition can take place the policy must specify that:

1. The source domain has permission to transition into the target domain.

2. The application binary file needs to be executable in the source domain.

3. The application binary file needs an entry point into the target domain.

The following is a type_transition statement taken from the example loadable
module message filter ext_gateway.conf (described in the source tarball) that
will be used to explain the transition process11:

type_transition | source_domain | target_type : class | target_domain;
----------------▼---------------▼---------------------------------▼----------------
type_transition unconfined_t secure_services_exec_t : process ext_gateway_t;

This type_transition statement states that when a process running in the
unconfined_t domain (the source domain) executes a file labeled
secure_services_exec_t, the process should be changed to ext_gateway_t (the target
domain) if allowed by the policy (i.e. transition from the unconfined_t domain to the
ext_gateway_t domain).

However, as stated above to be able to transition to the ext_gateway_t domain, the
following minimum permissions must be granted in the policy using allow rules ,
where (note that the bullet numbers correspond to the numbers shown in Figure 2.7):

1. The domain needs permission to transition into the ext_gateway_t (target)
domain:

allow unconfined_t ext_gateway_t : process transition;

2. The executable file needs to be executable in the unconfined_t (source)
domain, and therefore also requires that the file is readable:

allow unconfined_t secure_services_exec_t : file { execute read getattr };

3. The executable file needs an entry point into the ext_gateway_t (target)
domain:

11 For reference, the external gateway uses a server application called secure_server that is
transitioned to the ext_gateway_t domain from the unconfined_t domain. The
secure_server executable is labeled secure_services_exec_t.

Page 36

The SELinux Notebook - The Foundations

allow ext_gateway_t secure_services_exec_t : file entrypoint;

These are shown in Figure 2.7 where unconfined_t forks a child process, that
then exec’s the new program into a new domain called ext_gateway_t. Note that
because the type_transition statement is being used, the transition is
automatically carried out by the SELinux enabled kernel.

Figure 2.7: Domain Transition – Where the secure_server is executed within the
unconfined_t domain and then transitioned to the ext_gateway_t domain.

2.11.1.1 Type Enforcement Rules

When building the ext_gateway.conf and int_gateway.conf modules the
intention was to have both of these transition to their respective domains via
type_transition statements. The ext_gateway_t statement would be:

type_transition unconfined_t secure_services_exec_t : process ext_gateway_t;

and the int_gateway_t statement would be:

type_transition unconfined_t secure_services_exec_t : process int_gateway_t;

However, when linking these two loadable modules into the policy, the following
error was given:

Page 37

 allow unconfined_t secure_services_exec_t : file

type_transition unconfined_t
 secure_services_exec_t : process ext_gateway_t;

unconfined_t
Parent Process

allow unconfined_t ext_gateway_t : process

ext_gateway_t
New program
(secure_server)

unconfined_t
C hild Process

execve ()

fork ()

system_u:system_r:ext_gateway_t

system_u:system_r:unconfined_t
Process

transition

execute
read

getattr
 allow ext_gateway_t secure_services_exec_t : file entrypoint

1

2

3

system_u:system_r:unconfined_t

The SELinux Notebook - The Foundations

semodule -v -s modular-test -i int_gateway.pp -i ext_gateway.pp
Attempting to install module 'int_gateway.pp':
Ok: return value of 0.
Attempting to install module 'ext_gateway.pp':
Ok: return value of 0.
Committing changes:
libsepol.expand_terule_helper: conflicting TE rule for (unconfined_t,
secure_services_exec_t:process): old was ext_gateway_t, new is int_gateway_t
libsepol.expand_module: Error during expand
libsemanage.semanage_expand_sandbox: Expand module failed
semodule: Failed!

This happened because the type enforcement rules will only allow a single ‘default’
type for a given source and target (see the Type Enforcement Rules section). In the
above case there were two type_transition statements with the same source
and target, but different default domains. The ext_gateway.conf module had the
following statements:

Allow the client/server to transition for the gateways:
allow unconfined_t ext_gateway_t : process { transition };
allow unconfined_t secure_services_exec_t : file { read execute getattr };
allow ext_gateway_t secure_services_exec_t : file { entrypoint };
type_transition unconfined_t secure_services_exec_t : process ext_gateway_t;

And the int_gateway.conf module had the following statements:

Allow the client/server to transition for the gateways:
allow unconfined_t int_gateway_t : process { transition };
allow unconfined_t secure_services_exec_t : file { read execute getattr };
allow int_gateway_t secure_services_exec_t : file { entrypoint };
type_transition unconfined_t secure_services_exec_t : process int_gateway_t;

While the allow rules are valid to enable the transitions to proceed, the two
type_transition statements had different ‘default’ types (or target domains),
that break the type enforcement rule.

It was decided to resolve this by:

1. Keeping the type_transition rule for the ‘default’ type of
ext_gateway_t and allow the secure server process to be exec’ed from
unconfined_t as shown in Figure 2.7, by simply running the command
from the prompt as follows:

Run the external gateway ‘secure server’ application on port 9999 and
let the policy transition the process to the ext_gateway_t domain:

secure_server 99999

2. Use the SELinux runcon(1) command to ensure that the internal gateway
runs in the correct domain by running runcon from the prompt as follows:

Run the internal gateway ‘secure server’ application on port 1111 and
use runcon to transition the process to the int_gateway_t domain:

runcon -t int_gateway_t -r message_filter_r secure_server 1111

Note – The role is required as a role transition that is defined in the
policy.

The runcon command makes use of a number of libselinux API functions to
check the current context and set up the new context (for example getfilecon(3)

Page 38

The SELinux Notebook - The Foundations

is used to get the executable files context and setexeccon(3) is used to set the
new process context). If the all contexts are correct, then the execvp(2) system call
is executed that exec’s the secure_server application with the argument of
‘1111’ into the int_gateway_t domain with the message_filter_r role.
The runcon source can be found in the coreutils package.

Other ways to resolve this issue are:

1. Use the runcon command for both gateways to transition to their respective
domains. The type_transition statements are therefore not required.

2. Use different names for the secure server executable files and ensure they have
a different type (i.e. instead of secure_service_exec_t label the
external gateway ext_gateway_exec_t and the internal gateway
int_gateway_exec_t. This would involve making a copy of the
application binary (which has already been done as part of the module testing
by calling the server ‘server’ and labeling it unconfined_t and then
making a copy called secure_server and labeling it
secure_services_exec_t).

3. Implement the policy using the Reference Policy utilising the template
interface principles discussed in the template Macro section.

It was decided to use runcon as it demonstrates the command usage better than
reading the man pages.

2.11.2 Object Transition
An object transition is where a new object requires a different label to that of its
parent. For example a file is being created that requires a different label to that of its
parent directory. This can be achieved automatically using a type_transition
statement as follows:

type_transition ext_gateway_t in_queue_t:file in_file_t;

The following details an object transition used in the ext_gateway.conf loadable
module (see the source tarball) where by default, files would be labeled
in_queue_t when created by the gateway application as this is the label attached to
the parent directory as shown:

ls –Za /usr/message_queue/in_queue
drwxr-xr-x root root unconfined_u:object_r:in_queue_t .
drwxr-xr-x root root system_u:object_r:unconfined_t ..

However the requirement is that files in the in_queue directory must be labeled
in_file_t. To achieve this the files created must be relabeled to in_file_t by
using a type_transition rule as follows:

type_transition | source_domain | target_type : object | default_type;
------------------▼---------------▼-----------------------▼---------------
 type_transition ext_gateway_t in_queue_t : file in_file_t;

Page 39

The SELinux Notebook - The Foundations

This type_transition statement states that when a process running in the
ext_gateway_t domain (the source domain) wants to create a file object in the
directory that is labeled in_queue_t, the file should be relabeled in_file_t if allowed by
the policy (i.e. label the file in_file_t).
However, as stated above to be able to create the file, the following minimum
permissions need to be granted in the policy using allow rules , where:

1. The source domain needs permission to add file entries into the directory:

allow ext_gateway_t in_queue_t : dir { write search add_name };

2. The source domain needs permission to create file entries:

allow ext_gateway_t in_file_t : file { write create getattr };

3. The policy can then ensure (via the SELinux kernel services) that files created
in the in_queue are relabeled:

type_transition ext_gateway_t in_queue_t : file in_file_t;

An example output from a directory listing shows the resulting file labels:

ls -Za /usr/message_queue/in_queue
drwxr-xr-x root root unconfined_u:object_r:in_queue_t .
drwxr-xr-x root root system_u:object_r:unconfined_t ..
-rw-r--r-- root root unconfined_u:object_r:in_file_t Message-1
-rw-r--r-- root root unconfined_u:object_r:in_file_t Message-2

2.12 Multi-Level Security and Multi-Category Security
As stated in the Mandatory Access Control (MAC) section as well as supporting Type
Enforcement (TE), SELinux also supports MLS and MCS by adding an optional
level or range entry to the security context. This section gives a brief introduction
to MLS and MCS.

Figure 2.8 shows a simple diagram where security levels represent the classification
of files within a file server. The security levels are strictly hierarchical and conform to
the Bell-La Padula model (BLP) in that (in the case of SELinux) a process (running at
the ‘Confidential’ level) can read / write at their current level but only read down
levels or write up levels (the assumption here is that the process is authorised).

This ensures confidentiality as the process can copy a file up to the secret level, but
can never re-read that content unless the process ‘steps up to that level’, also the
process cannot write files to the lower levels as confidential information would then
drift downwards.

Page 40

http://en.wikipedia.org/wiki/Bell-LaPadula_model

The SELinux Notebook - The Foundations

Figure 2.8: Security Levels and Data Flows – This shows how the process can only
‘Read Down’ and ‘Write Up’ within an MLS enabled system.

To achieve this level of control, the MLS extensions to SELinux make use of
constraints similar to those described in the type enforcement Constraints section,
except that the statement is called mlsconstrain.

However, as always life is not so simple as:

1. Processes and objects can be given a range that represents the low and high
security levels.

2. The security level can be more complex, in that it is a hierarchical sensitivity
and zero or more non-hierarchical categories.

3. Allowing a process access to an object is managed by ‘dominance’ rules
applied to the security levels.

4. Trusted processes can be given privileges that will allow them to bypass the
BLP rules and basically do anything (that the security policy allowed of
course).

5. Some objects do not support separate read / write functions as they need to
read / respond in cases such as networks.

The sections that follow discuss the format of a security level and range, and how
these are managed by the constraints mechanism within SELinux using the
‘dominance’ rules.

2.12.1 Security Levels
Table 1 shows the components that make up a security level and how two security
levels form a range for the fourth and optional [:range] of the security context
within an MLS / MCS environment.

The table also adds terminology in general use as other terms can be used that have
the same meanings.

Page 41

Security
Levels

Secret

Restricted

Confidential

Unclassified

Write only

File B
Label = Confidential

File C
Label = Restricted

File D
Label = Unclassified

Files
(each with a different label)

Data Flows

Process
Label = Confidential

Process

Read and Write

Read only

Read only

File A
Label = Secret

No
Write
Down

X

No
Read
Up

X

The SELinux Notebook - The Foundations

Security Level (or Level)
Consisting of a sensitivity and zero or

more category entries:

Note that SELinux uses level, sensitivity and
category in the language statements (see the MLS
Language Statements section), however when
discussing these the following terms can also be used:
labels, classifications, and compartments.sensitivity [: category, ...]

also known as:

Sensitivity Label
Consisting of a classification and

compartment.

 Range 

Low High

sensitivity [: category, ...] - sensitivity [: category, ...]

For a process or subject this is the
current level or sensitivity

For a process or subject this is the
Clearance

For an object this is the current level or
sensitivity

For an object this is the maximum range

SystemLow SystemHigh

This is the lowest level or classification for
the system (for SELinux this is generally
‘s0’, note that there are no categories).

This is the highest level or classification for
the system (for SELinux this is generally

‘s15:c0,c255’, although note that they
will be the highest set by the policy).

Table 1: Level, Label, Category or Compartment – this table shows the meanings
depending on the context being discussed.

The format used in the policy language statements is fully described in the MLS
Statements section, however a brief overview follows.

2.12.1.1 MLS / MCS Range Format

The following components (shown in bold) are used to define the MLS / MCS
security levels within the security context:

user:role:type:sensitivity[:category,...] - sensitivity [:category,...]
---------------▼------------------------▼-----▼-------------------------▼
 | level | - | level |
 | |
 | range |

Where:
sensitivity Sensitivity levels are hierarchical with (traditionally) s0

being the lowest. These values are defined using the
sensitivity language statement. To define their
hierarchy, the dominance statement is used.

Page 42

The SELinux Notebook - The Foundations

For MLS systems the highest sensitivity is the last one
defined in the dominance statement (low to high).
Traditionally the maximum for MLS systems is s15
(although the maximum value for the Reference Policy is a
compile time option).

For MCS systems there is only one sensitivity defined, and
that is s0.

category Categories are optional (i.e. there can be zero or more
categories) and they form unordered and unrelated lists of
‘compartments’. These values are defined using the
category statement, where for example c0.c3 represents
a range (c0 c1 c3) and c0, c3, c7 represent an unordered
list. Traditionally the values are between c0 and c255
(although the maximum value for the Reference Policy is a
compile time option).

level The level is a combination of the sensitivity and
category values that form the actual security level. These
values are defined using the level statement.

2.12.1.2 Translating Levels

When writing policy for MLS / MCS security level components it is usual to use an
abbreviated form such as s0, s1 etc. to represent sensitivities and c0, c1 etc. to
represent categories. This is done simply to conserve space as they are held on files as
extended attributes and also in memory. So that these labels can be represented in
human readable form, a translation service is provided via the setrans.conf
configuration file that is used by the mcstransd(8) daemon. For example s0 =
Unclassified, s15 = Top Secret and c0 = Finance, c100 = Spy Stories. The
semanage(8) command can be used to set up this translation and is shown in the
setrans.conf configuration file section.

2.12.2 Managing Security Levels via Dominance Rules
As stated earlier, allowing a process access to an object is managed by ‘dominance’
rules applied to the security levels. These rules are as follows:

Security Level 1 dominates Security Level 2 - If the sensitivity of Security
Level 1 is equal to or higher than the sensitivity of Security Level 2 and the
categories of Security Level 1 are the same or a superset of the categories of
Security Level 2.

Security Level 1 is dominated by Security Level 2 - If the sensitivity of
Security Level 1 is equal to or lower than the sensitivity of Security Level 2 and
the categories of Security Level 1 are a subset of the categories of Security Level
2.

Security Level 1 equals Security Level 2 - If the sensitivity of Security Level 1
is equal to Security Level 2 and the categories of Security Level 1 and Security
Level 2 are the same set (sometimes expressed as: both Security Levels dominate
each other).

Page 43

The SELinux Notebook - The Foundations

Security Level 1 is incomparable to Security Level 2 - If the categories of
Security Level 1 and Security Level 2 cannot be compared (i.e. neither Security
Level dominates the other).

To illustrate the usage of these rules, Table 2 lists the security level attributes in a
table to show example files (or documents) that have been allocated labels such as
s3:c0. The process that accesses these files (e.g. an editor) is running with a range
of s0 – s3:c1.c5 and has access to the files highlighted within the grey box area.

As the MLS dominance statement is used to enforce the sensitivity hierarchy, the
security levels now follow that sequence (lowest = s0 to highest = s3) with the
categories being unordered lists of ‘compartments’. To allow the process access to
files within its scope and within the dominance rules, the process will be constrained
by using the mlsconstrain statement as illustrated in Figure 2.9.

Category  c0 c1 c2 c3 c4 c5 c6 c7
s3 Secret s3:c0 s3:c

5
s3:c
6

s2 Confidential s2:c
1

s2:c
2

s2:c3 s2:c4 s2:c7

s1 Restricted s1:c0 s1:c
1

s1:c7

s0 Unclassified s0:c0 s0:c3 s0:c7


Sensitivity


Security Level
(sensitivity:category)

aka: classification

 File Labels 
A process running with a range of s0 – s3:c1.c5 has access to the files

within the grey boxed area.

Table 2: MLS Security Levels – Showing the scope of a process running at a
security range of s0 – s3:c1.c5.

Figure 2.9: Showing the mlsconstrain Statements controlling Read Down &
Write Up – This ties in with Table 2 that shows a process running with a security

range of s0 – s3:c1.c5.

Page 44

s3:c5 Incomparable

s2:c1, c2, c3, c4 Dominates

s1:c1 Dominated By

s0:c3 Dominated By

mlsconstrain file write (l1 domby l2); # Write Up

mlsconstrain file read (l1 dom l2); # Read Down

The SELinux Notebook - The Foundations

Using Figure 2.9:

1. To allow write-up, the source level (l1) must be dominated by the target
level (l2):

Source level = s0:c3 or s1:c1
Target level = s2:c1.c4

As can be seen, either of the source levels are dominated by the target level.

2. To allow read-down, the source level (l1) must dominate the target level
(l2):

Source level = s2:c1.c4
Target level = s0:c3

As can be seen, the source level does dominate the target level.

However in the real world the SELinux MLS Reference Policy does not allow the
write-up unless the process has a special privilege (by having the domain type added
to an attribute), although it does allow the read-down. The default is to use l1 eq
l2 (i.e. the levels are equal). The reference policy MLS source file (policy/mls)
shows these mlsconstrain statements.

2.12.3 MLS Labeled Network and Database Support
Networking for MLS is supported via the NetLabel CIPSO (commercial IP security
option) service as discussed in the SELinux Networking Support section.

PostgreSQL supports labeling for MLS database services as discussed in the SE-
PostgreSQL section.

2.12.4 Common Criteria Certification
While the Common Criteria certification process is beyond the scope of this
Notebook, it is worth highlighting that specific Red Hat GNU / Linux versions of
software, running on specific hardware platforms with SELinux / MLS policy
enabled, have passed the Common Criteria evaluation process. Note, for the
evaluation (and deployment) the software and hardware are tied together, therefore
whenever an update is carried out, an updated certificate should be obtained.

The Red Hat evaluation process cover the:

• Labeled Security Protection Profile (LSPP) – This describes how systems that
implement security labels (i.e. MLS) should function.

• Controlled Access Protection Profile (CAPP) – This describes how systems
that implement DAC should function.

An interesting point:

• Both Red Hat Linux 5.1 and Microsoft Server 2003 (with XP) have both been
certified to EAL4+ , however while the evaluation levels may be the same the
Protection Profiles that they were evaluated under were: Microsoft CAPP

Page 45

http://www.commoncriteriaportal.org/files/ppfiles/capp.pdf
http://www.commoncriteriaportal.org/files/ppfiles/lspp.pdf
http://www.commoncriteriaportal.org/

The SELinux Notebook - The Foundations

only, Red Hat CAPP and LSPP. Therefore always look at the protection
profiles as they define what was actually evaluated.

2.13 Types of SELinux Policy
This section describes the different type of policy descriptions and versions that can
be found within SELinux.

The types of SELinux policy can described in a number of ways:

1. Source code – These can be described as: Example, Reference Policy or
Custom

2. The source code descriptions or builds can also be sub-classified as:
Monolithic, Base Module or Loadable Module.

3. Policies can also be described by the type of policy functionality they provide
such as: targeted, mls, mcs, standard, strict or minimum.

4. Classified using language statements – These can be described as Modular,
Optional or Conditional.

5. Binary policy (or kernel policy) – These can be described as Monolithic,
Kernel Policy or Binary file.

6. Classification can also be on the ‘policy version’ used (examples are version
22, 23 and 24).

As can be seen the description of a policy can vary depending on the context.

2.13.1 Example Policy
The Example policy is the name used to describe the original SELinux policy source
used to build a monolithic12 policy produced by the NSA and is now superseded by
the Reference Policy.

2.13.2 Reference Policy
Note that this section only gives an introduction to the reference policy, the
installation, configuration and building of a policy using the source code is contained
in The Reference Policy section.

The Reference Policy is now the standard policy source used to build SELinux
policies, and its main aim is to provide a single source tree with supporting
documentation that can be used to build policies for different purposes such as:
confining important daemons, supporting MLS / MCS and locking down systems so
that all processes are under SELinux control.

The Reference Policy is now used by all major distributions of SELinux, however
each distribution makes its own specific changes to support their ‘version of the
Reference Policy’. For example, the F-17 distribution is based on a specific build of
the standard Reference Policy that is then modified and distributed by Red Hat as an
RPM.

12 The term ‘monolithic’ generally means a single policy source is used to create the binary policy
file that is then loaded as the ‘policy’ using the checkpolicy(8) command. However the term
is sometimes used to refer to the binary policy file (as it is one file that describes the policy).

Page 46

The SELinux Notebook - The Foundations

2.13.3 Policy Functionality Based on Name or Type
Generally a policy is installed with a given name such as targeted, mls,
refpolicy or minimum that attempts to describes its functionality. This name then
becomes the entry in:

1. The directory pointing to the policy location (e.g. if the name is targeted,
then the policy will be installed in /etc/selinux/targeted).

2. The SELINUXTYPE entry in the /etc/selinux/config file when it is
the active policy (e.g. if the name is targeted, then a
SELINUXTYPE=targeted entry would be in the
/etc/selinux/config file).

This is how the reference policies distributed with F-17 are named, where:

minimum – supports a minimal set of confined daemons within their own
domains. The remainder run in the unconfined_t space. Red Hat pre-
configure MCS support within this policy.

targeted – supports a greater number of confined daemons and can also
confine other areas and users. Red Hat pre-configure MCS support within this
policy.

mls – supports server based MLS systems.

The Reference Policy also has a TYPE description that describes the type of policy
being built by the build process, these are:

standard – supports confined daemons and can also confine other areas and
users (this is an amalgamated version of the older ‘targeted’ and ‘strict’ versions).

mcs – As standard but supports MCS labels.

mls – supports MLS labels as discussed in the Multi-Level Security and Multi-
Category Security section.

The NAME and TYPE entries are defined in the reference policy build.conf file
that is described in the Source Configuration Files section.

Note that at some stage in the future the Reference Policy may be replaced by the
Common Intermediate Language (CIL) service that is under development (see
http://userspace.selinuxproject.org/trac/wiki/CilDesign).

2.13.4 Custom Policy
This generally refers to a policy source that is either:

1. A customised version of the Example policy.

2. A customised version of the Reference Policy (i.e. not the standard
distribution version).

3. A policy that has been built using policy language statements to build a
specific policy such as the basic policy built in the Notebook source tarball.

Page 47

http://userspace.selinuxproject.org/trac/wiki/CilDesign

The SELinux Notebook - The Foundations

2.13.5 Monolithic Policy
A Monolithic policy is an SELinux policy that is compiled from one source file called
(by convention) policy.conf (i.e. it does not use the Loadable Module Policy
statements and infrastructure which therefore makes it suitable for embedded systems
as there is no policy store overhead).

An example monolithic policy is the NSAs original Example Policy. A simple
monolithic policy is shown in the Building the Monolithic Policy section and Table
14 shows the order of language statements that can be in a source file.

Monolithic policies are compiled using the checkpolicy (8) SELinux command.

The Reference Policy supports the building of monolithic policies.

In some cases the policy binary file (see the Binary Policy section) is also called a
monolithic policy.

2.13.6 Loadable Module Policy
The loadable module infrastructure allows policy to be managed on a modular basis,
in that there is a base policy module that contains all the core components of the
policy (i.e. the policy that should always be present), and zero or more modules that
can be loaded and unloaded as required (for example if there is a module to enforce
policy for ftp, but ftp is not used, then that module could be unloaded).

There are number of parts that form the infrastructure:

1. Policy source code that is constructed for a modular policy with a base module
and optional loadable modules.

2. Utilities to compile and link modules and place them into a ‘policy store’.

3. Utilities to manage the modules and associated configuration files within the
‘policy store’.

igure 2.2 shows these components along the top of the diagram. The files contained in
the policy store are detailed in the Policy Store Configuration Files section.

The policy language was extended to handle loadable modules as detailed in the
Policy Support Statements section. For a detailed overview on how the modular
policy is built into the final binary policy for loading into the kernel, see “SELinux
Policy Module Primer” [Ref. 4].

2.13.6.1 Optional Policy

The loadable module policy infrastructure supports an optional policy statement that
allows policy rules to be defined but only enabled in the binary policy once the
conditions have been satisfied.

Example loadable modules with optional statements are used in the message filter
example contained in the Notebook source tarball.

2.13.7 Conditional Policy
Conditional policies can be implemented in monolithic or loadable module policies
and allow parts of the policy to be enabled or not depending on the state of a boolean

Page 48

http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/
http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/

The SELinux Notebook - The Foundations

flag. This is often used to enable or disable features within the policy (i.e. change the
policy enforcement rules).

The boolean flag status is held in kernel and can be changed using the
setsebool(8) command either persistently across system re-boots or temporarily
(i.e. only valid until a re-boot). The following example shows a persistent conditional
policy change:

setsebool –P ext_gateway_audit false

The conditional policy language statements are the bool Statement that defines the
boolean flag identifier and its initial status, and the if Statement that allows certain
rules to be executed depending on the state of the boolean value or values.

2.13.8 Binary Policy
The binary policy is the policy file that is loaded into the kernel and is always located
at /etc/selinux/<SELINUXTYPE>/policy/policy.<version>. Where
<SELINUXTYPE> is the policy name specified in the SELinux configuration file
/etc/selinux/config and <version> is the SELinux policy version.

The binary policy can be built from source files supplied by the Example Policy, the
Reference Policy or custom built source files as described in the in the "Sample
Policy Source" Notebook.

An example /etc/selinux/config file is shown below where the
SELINUXTYPE=targeted entry identifies the policy name that will be used to
locate and load the active policy:

SELINUX=permissive

SELINUXTYPE=targeted

From the above example, the actual binary policy file would be located at
/etc/selinux/targeted/policy and be called policy.26 (as version 26
is supported by F-16):

/etc/selinux/targeted/policy/policy.26

2.13.9 Policy Versions
SELinux has a policy database (defined the libsepol library) that describes the
format of data held within a binary policy, however, if any new features are added to
SELinux (generally language extensions) this can result in a change to the policy
database. Whenever the policy database is updated, the policy version is incremented.

The sestatus(8) command will show the maximum policy version number
supported by the kernel in its output as follows:

SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
Current mode: enforcing

Page 49

The SELinux Notebook - The Foundations

Mode from config file: permissive
Policy version: 26
Policy from config file: modular-test

The F-16 kernel policy version is ‘26’ with Table 3 describing the different versions.
There is also another version that applies to the modular policy, however the main
policy database version is the one that is generally quoted (some SELinux utilities
give both version numbers).
policy db
Version

modular db
Version Description

15 4 The base version when SELinux was merged into the
kernel.

16 - Added Conditional Policy support (the bool feature).
17 - Added support for IPv6.
18 - Added Netlink support.
19 5 Added MLS support, plus the validatetrans

Statement.
20 - Reduced the size of the access vector table.
21 6 Added support for the MLS range_transition

Statement.
22 7 Added policy capabilities that allows various kernel options

to be enabled as described in the SELinux Filesystem
section.

23 8 Added support for the permissive statement . This
allows a domain to run in permissive mode while the others
are still confined (instead of the all or nothing set by the
SELINUX entry in the /etc/selinux/config file).

24 9 / 10 Add support for the typebounds statement. This was
added to support a hierarchical relationship between two
domains in multi-threaded web servers as described in “A
secure web application platform powered by SELinux”
[Ref. 20].

25 11 Add support for file name transition in the
type_transition rule. Requires kernel 2.6.39
minimum.

26 12/13 Add support for a class parameter in the
role_transition rule.
Add support for the attribute_role and
roleattribute statements.
These require kernel 2.6.39 minimum.

- 14 Separate tunables.
27 15 Support setting object defaults for the user, role and range

components when computing a new context. Requires
kernel 3.5 minimum.

Page 50

http://sepgsql.googlecode.com/files/LCA20090120-lapp-selinux.pdf
http://sepgsql.googlecode.com/files/LCA20090120-lapp-selinux.pdf

The SELinux Notebook - The Foundations

policy db
Version

modular db
Version

Description

28 16 Support setting object defaults for the type component
when computing a new context. Requires kernel 3.5
minimum.

29 16 Adds an IP address to the SELinux port statement via a
SELinux node label. Note that the kernel and userspace
versions containing this feature is not yet known.

Table 3: Policy version descriptions

2.14 SELinux Permissive and Enforcing Modes
SELinux has three major modes of operation:

Enforcing – SELinux is enforcing the loaded policy.

Permissive – SELinux has loaded the policy, however it is not enforcing the
policy. This is generally used for testing as the audit log will contain the AVC
denied messages as defined in the Auditing SELinux Events section. The SELinux
utilities such as audit2allow(1) and audit2why(8) can then be used to
determine the cause and possible resolution by generating the appropriate allow
rules.

Disabled – The SELinux infrastructure is not enabled, therefore no policy can be
loaded.

These flags are set in the /etc/selinux/config file as described in the Global
Configuration Files section.

There is another method for running specific domains in permissive mode using the
permissive statement . This can be used directly in a user written loadable module
or semanage(8) will generate the appropriate module and load it using the
following example command:

This example will add a new module in
/etc/selinux/<SELINUXTYPE>/modules/active/modules/permissive_unconfined_t.pp
and then reload the policy:

semanage permissive –a unconfined_t

It is also possible to set permissive mode on a userspace object manager using
libselinux functions such as avc_open(3).

The sestatus(8) command will show the current SELinux enforcement mode in
its output as follows:

SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
Current mode: permissive
Mode from config file: enforcing
Policy version: 26
Policy from config file: modular-test

Page 51

The SELinux Notebook - The Foundations

2.15 Auditing SELinux Events
For SELinux there are two main types of audit event:

1. AVC Audit Events – These are generated by the AVC subsystem as a result of
access denials, or where specific events have requested an audit message (i.e.
where an auditallow rule has been used in the policy).

2. SELinux-aware Application Events – These are generated by the SELinux
kernel services and SELinux-aware applications for events such as system
errors, initialisation, policy load, changing boolean states, setting of
enforcing / permissive mode, relabeling etc.

The audit and event messages are generally stored in one of the following logs (in F-
17 anyway):

1. The SELinux kernel boot events are logged in the /var/log/dmesg log.

2. The system log /var/log/messages contains messages generated by
SELinux before the audit daemon has been loaded, although some kernel
messages continue to be logged here as well13.

3. The audit log /var/log/audit/audit.log contains events that take
place after the audit daemon has been loaded. The AVC audit messages of
interest are described in the AVC Audit Events section with others described
in the General SELinux Audit Events section. F-17 uses the audit framework
auditd(8) as standard.

Notes:

a) It is not mandatory for SELinux-aware applications to audit events or even log
them in the audit log. The decision is made by the application designer.

b) The format of audit messages do not need to conform to any format, however
where possible applications should use the
audit_log_user_avc_message(3) function with a suitably formatted
message if using auditd(8). The type of audit events possible are defined
in the include/libaudit.h and include/linux/audit.h files.

c) Those libselinux library functions that output messages do so to stderr by
default, however this can be changed by calling
selinux_set_callback(3) and specifying an alternative log handler
(the notebook-source-3.0.tar.gz tarball
libselinux/avc_has_perm_callbacks_example.c shows a
worked example).

2.15.1 AVC Audit Events
Table 4 describes the general format of AVC audit messages in the audit.log
when access has been denied or an audit event has been specifically requested. Other
types of events are shown in the section that follows.

13 For example if the iptables are loaded and there are SECMARK security contexts present, but the
contexts are invalid (i.e. not in the policy), then the event is logged in the messages log and
nothing will appear in the audit log.

Page 52

The SELinux Notebook - The Foundations

Keyword Description
type For SELinux AVC events this can be:

type=AVC - for kernel events

type=USER_AVC - for user-space object manager events

Note that once the AVC event has been logged, another event with
type=SYSCALL may follow that contains further information
regarding the event.

The AVC event can always be tied to the relevant SYSCALL event
as they have the same serial_number in the
msg=audit(time:serial_number) field as shown in the
following example:

type=AVC msg=audit(1243332701.744:101): avc: denied { getattr }
for pid=2714 comm="ls" path="/usr/lib/locale/locale-archive"
dev=dm-0 ino=353593 scontext=system_u:object_r:unlabeled_t:s0
tcontext=system_u:object_r:locale_t:s0 tclass=file

type=SYSCALL msg=audit(1243332701.744:101): arch=40000003
syscall=197 success=yes exit=0 a0=3 a1=553ac0 a2=552ff4
a3=bfc5eab0 items=0 ppid=2671 pid=2714 auid=0 uid=0 gid=0 euid=0
suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts1 ses=1 comm="ls"
exe="/bin/ls" subj=system_u:object_r:unlabeled_t:s0 key=(null)

msg This will contain the audit keyword with a reference number (e.g.
msg=audit(1243332701.744:101))

avc This will be either denied when access has been denied or
granted when the auditallow rule has been executed by the
AVC system.

The entries that follow the avc= field depend on what type of event
is being audited. Those shown below are generated by the kernel
AVC audit function, however the user space AVC audit function
will return fields relevant to the application being managed by their
Object Manager.

pid If a task, then log the process id (pid) and the name of the
executable file (comm).comm

key If an IPC event then log the identifier.
capabilit
y

If a Capability event then log the identifier.

path If a File System event then log the relevant information. Note that
the name field may not always be present.name

dev
ino
laddr If a Socket event then log the Source / Destination addresses and

ports for IP4 or IP6 sockets (AF_INET).lport
faddr

Page 53

The SELinux Notebook - The Foundations

Keyword Description
fport
path If a File Socket event then log the path (AF_UNIX).

saddr If a Network event then log the Source / Destination addresses and
ports with the network interface for IP4 or IP6 networks
(AF_INET).

src
daddr
dest
netif
sauid IPSec security association identifiers
hostname
addr
terminal
resid X-Windows resource ID and type.
restype
scontext The security context of the source or subject.
tcontext The security context of the target or object.
tclass The object class of the target or object.

Table 4: AVC Audit Message Description – The keywords in bold are in all AVC
audit messages, the others depend on the type of event being audited.

Example audit.log denied and granted events are shown in the following
examples:

This is an example denied message - note that there are two
type=AVC calls, but only one corresponding type=SYSCALL entry.
type=AVC msg=audit(1242575005.122:101): avc: denied { rename } for pid=2508
comm="canberra-gtk-pl" name="c73a516004b572d8c845c74c49b2511d:runtime.tmp"
dev=dm-0 ino=188999 scontext=test_u:staff_r:oddjob_mkhomedir_t:s0
tcontext=test_u:object_r:gnome_home_t:s0 tclass=lnk_file

type=AVC msg=audit(1242575005.122:101): avc: denied { unlink } for pid=2508
comm="canberra-gtk-pl" name="c73a516004b572d8c845c74c49b2511d:runtime" dev=dm-0
ino=188578 scontext=test_u:staff_r:oddjob_mkhomedir_t:s0
tcontext=system_u:object_r:gnome_home_t:s0 tclass=lnk_file

type=SYSCALL msg=audit(1242575005.122:101): arch=40000003 syscall=38 success=yes
exit=0 a0=82d2760 a1=82d2850 a2=da6660 a3=82cb550 items=0 ppid=2179 pid=2508
auid=500 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500
tty=(none) ses=1 comm="canberra-gtk-pl" exe="/usr/bin/canberra-gtk-play"
subj=test_u:staff_r:oddjob_mkhomedir_t:s0 key=(null)

These are example X-Windows object manager audit message:
type=USER_AVC msg=audit(1267534171.023:18): user pid=1169 uid=0 auid=4294967295
ses=4294967295 subj=system_u:unconfined_r:unconfined_t msg='avc: denied
{ getfocus } for request=X11:GetInputFocus comm=X-setest xdevice="Virtual core
keyboard" scontext=unconfined_u:unconfined_r:x_select_paste_t
tcontext=system_u:unconfined_r:unconfined_t tclass=x_keyboard :
exe="/usr/bin/Xorg" sauid=0 hostname=? addr=? terminal=?'

Page 54

The SELinux Notebook - The Foundations

type=USER_AVC msg=audit(1267534395.930:19): user pid=1169 uid=0 auid=4294967295
ses=4294967295 subj=system_u:unconfined_r:unconfined_t msg='avc: denied { read
} for request=SELinux:SELinuxGetClientContext comm=X-setest resid=3c00001
restype=<unknown> scontext=unconfined_u:unconfined_r:x_select_paste_t
tcontext=unconfined_u:unconfined_r:unconfined_t tclass=x_resource :
exe="/usr/bin/Xorg" sauid=0 hostname=? addr=? terminal=?'

This is an example granted audit message:
type=AVC msg=audit(1239116352.727:311): avc: granted { transition } for
pid=7687 comm="bash" path="/usr/move_file/move_file_c" dev=dm-0 ino=402139
scontext=unconfined_u:unconfined_r:unconfined_t
tcontext=unconfined_u:unconfined_r:move_file_t tclass=process

type=SYSCALL msg=audit(1239116352.727:311): arch=40000003 syscall=11 success=yes
exit=0 a0=8a6ea98 a1=8a56fa8 a2=8a578e8 a3=0 items=0 ppid=2660 pid=7687 auid=0
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=1
comm="move_file_c" exe="/usr/move_file/move_file_c"
subj=unconfined_u:unconfined_r:move_file_t key=(null)

2.15.2 General SELinux Audit Events
This section shows a selection of non-AVC SELinux-aware services audit events
taken from the audit.log. For a list of valid type= entries, the following include
files should be consulted: include/libaudit.h and
include/linux/audit.h.

Note that there can be what appears to be multiple events being generated for the
same event. For example the kernel security server will generate a
MAC_POLICY_LOAD event to indicate that the policy has been reloaded, but then
each userspace object manager could then generate a USER_MAC_POLICY_LOAD
event to indicate that it had also processed the event.

Policy reload - MAC_POLICY_LOAD, USER_MAC_POLICY_LOAD - These events
were generated when the policy was reloaded.

type=MAC_POLICY_LOAD msg=audit(1336662937.117:394): policy loaded auid=0 ses=2
type=SYSCALL msg=audit(1336662937.117:394): arch=c000003e syscall=1 success=yes
exit=4345108 a0=4 a1=7f0a0c547000 a2=424d14 a3=7fffe3450f20 items=0 ppid=3845
pid=3848 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2
ses=2 comm="load_policy" exe="/sbin/load_policy"
subj=unconfined_u:unconfined_r:load_policy_t:s0-s0:c0.c1023 key=(null)

type=USER_MAC_POLICY_LOAD msg=audit(1336662938.535:395): pid=0 uid=0
auid=4294967295 ses=4294967295 subj=system_u:system_r:xserver_t:s0-s0:c0.c1023
msg='avc: received policyload notice (seqno=2) : exe="/usr/bin/Xorg" sauid=0
hostname=? addr=? terminal=?'

Change enforcement mode - MAC_STATUS - This was generated when the SELinux
enforcement mode was changed:

type=MAC_STATUS msg=audit(1336836093.835:406): enforcing=1 old_enforcing=0
auid=0 ses=2
type=SYSCALL msg=audit(1336836093.835:406): arch=c000003e syscall=1 success=yes
exit=1 a0=3 a1=7fffe743f9e0 a2=1 a3=0 items=0 ppid=2047 pid=5591 auid=0 uid=0
gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=2
comm="setenforce" exe="/usr/sbin/setenforce"
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)

Page 55

The SELinux Notebook - The Foundations

Change boolean value - MAC_CONFIG_CHANGE - This event was generated when
setsebool(8) was run to change a boolean. Note that the bolean name plus new
and old values are shown in the MAC_CONFIG_CHANGE type event with the
SYSCALL event showing what process executed the change.

type=MAC_CONFIG_CHANGE msg=audit(1336665376.629:423):
bool=domain_paste_after_confirm_allowed val=0 old_val=1 auid=0 ses=2
type=SYSCALL msg=audit(1336665376.629:423): arch=c000003e syscall=1 success=yes
exit=2 a0=3 a1=7fff42803200 a2=2 a3=7fff42803f80 items=0 ppid=2015 pid=4664
auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=2
comm="setsebool" exe="/usr/sbin/setsebool"
subj=unconfined_u:unconfined_r:setsebool_t:s0-s0:c0.c1023 key=(null)

NetLabel - MAC_UNLBL_STCADD - Generated when adding a static non-mapped
label. There are many other NetLabel events possible, such as: MAC_MAP_DEL,
MAC_CIPSOV4_DEL ...

type=MAC_UNLBL_STCADD msg=audit(1336664587.640:413): netlabel: auid=0 ses=2
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 netif=lo
src=127.0.0.1 sec_obj=system_u:object_r:unconfined_t:s0-s0:c0,c100 res=1
type=SYSCALL msg=audit(1336664587.640:413): arch=c000003e syscall=46 success=yes
exit=96 a0=3 a1=7fffde77f160 a2=0 a3=666e6f636e753a72 items=0 ppid=2015 pid=4316
auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=2
comm="netlabelctl" exe="/sbin/netlabelctl"
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)

Labeled IPSec - MAC_IPSEC_EVENT - Generated when running setkey(8) to
load IPSec configuration:

type=MAC_IPSEC_EVENT msg=audit(1336664781.473:414): op=SAD-add auid=0 ses=2
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 sec_alg=1 sec_doi=1
sec_obj=system_u:system_r:postgresql_t:s0-s0:c0,c200 src=127.0.0.1 dst=127.0.0.1
spi=592(0x250) res=1
type=SYSCALL msg=audit(1336664781.473:414): arch=c000003e syscall=44 success=yes
exit=176 a0=4 a1=7fff079d5100 a2=b0 a3=0 items=0 ppid=2015 pid=4356 auid=0 uid=0
gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=2 comm="setkey"
exe="/sbin/setkey" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key=(null)

SELinux kernel errors - SELINUX_ERR - These example events were generated by
the kernel security server. These were generated by the kernel security server because
anon_webapp_t has been give privileges that are greater than that given to the
process that started the new thread (this is not allowed).

type=SELINUX_ERR msg=audit(1311948547.151:138): op=security_compute_av
reason=bounds scontext=system_u:system_r:anon_webapp_t:s0-s0:c0,c100,c200
tcontext=system_u:object_r:security_t:s0 tclass=dir perms=ioctl,read,lock

type=SELINUX_ERR msg=audit(1311948547.151:138): op=security_compute_av
reason=bounds scontext=system_u:system_r:anon_webapp_t:s0-s0:c0,c100,c200
tcontext=system_u:object_r:security_t:s0 tclass=file
perms=ioctl,read,write,getattr,lock,append,open

These were generated by the kernel security server when an SELinux-aware
application was trying to use setcon(3) to create a new thread. To fix this a
typebounds statement is required in the policy.

Page 56

The SELinux Notebook - The Foundations

type=SELINUX_ERR msg=audit(1311947138.440:126): op=security_bounded_transition
result=denied oldcontext=system_u:system_r:httpd_t:s0-s0:c0.c300
newcontext=system_u:system_r:anon_webapp_t:s0-s0:c0,c100,c200

type=SYSCALL msg=audit(1311947138.440:126): arch=c000003e syscall=1 success=no
exit=-1 a0=b a1=7f1954000a10 a2=33 a3=6e65727275632f72 items=0 ppid=3295
pid=3473 auid=4294967295 uid=48 gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48
fsgid=48 tty=(none) ses=4294967295 comm="httpd" exe="/usr/sbin/httpd"
subj=system_u:system_r:httpd_t:s0-s0:c0.c300 key=(null)

Role changes - USER_ROLE_CHANGE - Used newrole(1) to set a new role that
was not valid.

type=USER_ROLE_CHANGE msg=audit(1336837198.928:429): pid=0 uid=0 auid=0 ses=2
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 msg='newrole: old-
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 new-context=?:
exe="/usr/bin/newrole" hostname=? addr=? terminal=/dev/pts/0 res=failed'

These events were generated by the X-Windows Selection Manager demo that is in
the Notebook source tarball. Note that the event type=TRUSTED_APP, with the
actual event embedded as additional text in the message (using
audit_log_user_avc_message(3)).

type=TRUSTED_APP msg=audit(1336317006.208:327): pid=0 uid=0 auid=0 ses=2
subj=unconfined_u:unconfined_r:selmgr_t:s0-s0:c0.c1023 msg='X-Selection Manager:
The requested paste from scontext 'unconfined_u:unconfined_r:text_test1_t:s0-
s0:c20.c29' to tcontext 'unconfined_u:unconfined_r:text_test1_t:s0-s0:c20.c29'
has been accepted : exe="/usr/local/bin/selmgr" sauid=0 hostname=? addr=?
terminal=pts/0'

type=TRUSTED_APP msg=audit(1336317010.417:328): pid=0 uid=0 auid=0 ses=2
subj=unconfined_u:unconfined_r:selmgr_t:s0-s0:c0.c1023 msg='X-Selection Manager:
The requested paste from scontext 'unconfined_u:unconfined_r:unconfined_t:s0-
s0:c0.c1023' to tcontext 'unconfined_u:unconfined_r:text_test1_t:s0-s0:c20.c29'
has been denied : exe="/usr/local/bin/selmgr" sauid=0 hostname=? addr=?
terminal=pts/0'

type=TRUSTED_APP msg=audit(1336662938.523:393): pid=0 uid=0 auid=0 ses=2
subj=unconfined_u:unconfined_r:selmgr_t:s0-s0:c0.c1023 msg='X-Selection Manager:
Received policy reload notice (seqno = 2). Resetting context information :
exe="/usr/local/bin/selmgr" sauid=0 hostname=? addr=? terminal=pts/0'

type=TRUSTED_APP msg=audit(1336836093.837:407): pid=0 uid=0 auid=0 ses=2
subj=unconfined_u:unconfined_r:selmgr_t:s0-s0:c0.c1023 msg='X-Selection Manager:
Received setenforce notice. SELinux set to ENFORCING mode :
exe="/usr/local/bin/selmgr" sauid=0 hostname=? addr=? terminal=pts/2'

2.16 Polyinstantiation
GNU / Linux supports the polyinstantiation of directories that can be utilised by
SELinux via the Pluggable Authentication Module (PAM) that is explained in the
next section. The “Polyinstantiation of directories in an SELinux system” [Ref. 5]
also gives a more detailed overview of the subject.

Polyinstantiation of objects is also supported for X-windows selections and properties
that are discussed in the X-windows section. Note that sockets are not yet supported.

Page 57

http://www.coker.com.au/selinux/talks/sage-2006/PolyInstantiatedDirectories.html

The SELinux Notebook - The Foundations

To clarify polyinstantiation support:

1. SELinux has libselinux functions and a policy rule to support
polyinstantiation.

2. The polyinstantiation of directories is a function of GNU / Linux not SELinux
(as more correctly, the GNU / Linux services such as PAM have been
modified to support polyinstantiation of directories and have also been made
SELinux-aware. Therefore their services can be controlled via policy).

3. The polyinstantiation of X-windows selections and properties is a function of
the XSELinux Object Manager and the supporting XACE service.

2.16.1 Polyinstantiated Objects
Determining a polyinstantiated context for an object is supported by SELinux using
the policy language type_member Statement and the
avc_compute_member(3) and security_compute_member(3)
libselinux API functions. These are not limited to specific object classes,
however only dir, x_selection and x_property objects are currently
supported.

2.16.2 Polyinstantiation support in PAM
PAM supports polyinstantiation of directories at login time using the Shared
Subtree / Namespace services available within GNU / Linux (the
namespace.conf(5) man page is a good reference). Note that PAM and
Namespace services are SELinux-aware.

The default installation of F-17 does not enable polyinstantiated directories, therefore
this section will show the configuration required to enable the feature and some
examples.

To implement polyinstantiated directories PAM requires the following files to be
configured:

1. A pam_namespace module entry added to the appropriate /etc/pam.d/
login configuration file (e.g. login, sshd, gdm etc.). F-17 already has these
entries configured, with an example /etc/pam.d/gdm file being:

#%PAM-1.0
auth [success=done ignore=ignore default=bad]
pam_selinux_permit.so
auth required pam_succeed_if.so user != root quiet
auth required pam_env.so
auth substack system-auth
auth optional pam_gnome_keyring.so
account required pam_nologin.so
account include system-auth
password include system-auth
session required pam_selinux.so close
session required pam_loginuid.so
session optional pam_console.so
session required pam_selinux.so open
session optional pam_keyinit.so force revoke
session required pam_namespace.so
session optional pam_gnome_keyring.so auto_start
session include system-auth

Page 58

The SELinux Notebook - The Foundations

2. Entries added to the /etc/security/namespace.conf file that defines
the directories to be polyinstantiated by PAM (and other services that may
need to use the namespace service). The entries are explained in the
namespace.conf Configuration File section, with the default entries in F-
17 being (note that the entries are commented out in the distribution):

#polydir instance-prefix method list_of_uids
/tmp /tmp-inst/ level root,adm
/var/tmp /var/tmp/tmp-inst/ level root,adm
$HOME $HOME/$USER.inst/ level

Once these files have been configured and a user logs in (although not root or adm
in the above example), the PAM pam_namespace module would unshare the
current namespace from the parent and mount namespaces according to the rules
defined in the namespace.conf file. The F-17 configuration also includes an
/etc/security/namespace.init script that is used to initialise the
namespace every time a new directory instance is set up. This script receives four
parameters: the polyinstantiated directory path, the instance directory path, a flag to
indicate if a new instance, and the user name. If a new instance is being set up, the
directory permissions are set and the restorecon(8) command is run to set the
correct file contexts.

2.16.2.1 namespace.conf Configuration File

Each line in the namespace.conf file is formatted as follows:

polydir instance_prefix method list_of_uids

Where:
polydir The absolute path name of the directory to

polyinstantiate. The optional strings $USER and $HOME
will be replaced by the user name and home directory
respectively.

instance_prefix A string prefix used to build the pathname for the
polyinstantiated directory. The optional strings $USER
and $HOME will be replaced by the user name and home
directory respectively.

method This is used to determine the method of
polyinstantiation with valid entries being:

user - Polyinstantiation is based on user name.

level - Polyinstantiation is based on the user name
and MLS level.

context - Polyinstantiation is based on the user
name and security context.

Note that level and context are only valid for
SELinux enabled systems.

Page 59

The SELinux Notebook - The Foundations

list_of_uids A comma separated list of user names that will not have
polyinstantiated directories. If blank, then all users are
polyinstantiated. If the list is preceded with an ‘~’
character, then only the users in the list will have
polyinstantiated directories.

There are a number of optional flags available that are
described in the namespace.conf(5) man page.

2.16.2.2 Example Configurations

This section shows two sample namespace.conf configurations, the first uses the
method=user and the second method=context. It should be noted that while
polyinstantiation is enabled, the full path names will not be visible, it is only when
polyinstantiation is disabled that the directories become visible.

Example 1 - method=user:

1. Set the /etc/security/namespace.conf entries as follows:

#polydir instance-prefix method list_of_uids
/tmp /tmp-inst/ user root,adm
/var/tmp /var/tmp/tmp-inst/ user root,adm
$HOME $HOME/$USER.inst/ user

2. Login as a normal user (rch in this example) and the PAM / Namespace
process will build the following polyinstantiated directories:

The directories will contain the user name as a part of
the polyinstantiated directory name as follows:

/tmp
/tmp/tmp-inst/rch

/var/tmp:
/var/tmp/tmp-inst/rch

$HOME
/home/rch/rch.inst/rch

Example 2 - method=context:

1. Set the /etc/security/namespace.conf entries as follows:

#polydir instance-prefix method list_of_uids
/tmp /tmp-inst/ context root,adm
/var/tmp /var/tmp/tmp-inst/ context root,adm
$HOME $HOME/$USER.inst/ context

2. Login as a normal user (rch in this example) and the PAM / Namespace
process will build the following polyinstantiated directories:

The directories will contain the security context and

Page 60

The SELinux Notebook - The Foundations

user name as a part of the polyinstantiated directory
name as follows:

/tmp
/tmp/tmp-inst/unconfined_u:unconfined_r:unconfined_t_rch

/var/tmp:
/var/tmp/tmp-inst/unconfined_u:unconfined_r:unconfined_t_rch

$HOME
/home/rch/rch.inst/unconfined_u:unconfined_r:unconfined_t_rch

2.16.3 Polyinstantiation support in X-Windows
The X-Windows SELinux object manager and XACE (X Access Control Extension)
supports x_selection and x_property polyinstantiated objects as discussed in
the SELinux X-windows Support section.

2.16.4 Polyinstantiation support in the Reference Policy
The reference policy files.te and files.if modules (in the kernel layer)
support polyinstantiated directories. There is also a global tunable (a boolean called
allow_polyinstantiation) that can be used to set this functionality on or off
during login. By default this boolean is set false (off).

The polyinstantiation of X-Windows objects (x_selection and x_property)
are not currently supported by the reference policy, however there is a selection
manager example in the Notebook source tarball.

2.17 PAM Login Process
Applications used to provide login services (such as gdm and ssh) in F-17 use the
PAM (Pluggable Authentication Modules) infrastructure to provide the following
services:

Account Management – This manages services such as password expiry, service
entitlement (i.e. what services the login process is allowed to access).

Authentication Management – Authenticate the user or subject and set up the
credentials. PAM can handle a variety of devices including smart-cards and
biometric devices.

Password Management – Manages password updates as needed by the specific
authentication mechanism being used and the password policy.

Session Management – Manages any services that must be invoked before the
login process completes and / or when the login process terminates. For SELinux
this is where hooks are used to manage the domains the subject may enter.

The pam and pam.conf man pages describe the services and configuration in detail
and only a summary is provided here covering the SELinux services.

The PAM configuration for F-17 is managed by a number of files located in the
/etc/pam.d directory which has configuration files for login services such as:

Page 61

The SELinux Notebook - The Foundations

gdm, gdm-autologin, login, remote and sshd, and at various points in this
Notebook the gdm configuration file has been modified to allow root login and the
pam_namespace.so module used to manage polyinstantiated directories for users.

There are also a number of PAM related configuration files in /etc/security,
although only one is directly related to SELinux that is described in the
/etc/security/sepermit.conf file section.

The main login service related PAM configuration files (e.g. gdm) consist of multiple
lines of information that are formatted as follows:

service type control module-path arguments

Where:

service The service name such as gdm and login reflecting the
login application. If there is a /etc/pam.d directory, then
this is the name of a configuration file name under this
directory. Alternatively, a configuration file called
/etc/pam.conf can be used. F-17 uses the /etc/pam.d
configuration.

type These are the management groups used by PAM with valid
entries being: account, auth, password and session
that correspond to the descriptions given above. Where there
are multiple entries of the same ‘type’, the order they appear
could be significant.

control This entry states how the module should behave when the
requested task fails. There can be two formats: a single
keyword such as required, optional, and include; or
multiple space separated entries enclosed in square brackets
consisting of :
 [value1=action1 value2=action2 ..]
Both formats are shown in the example file below, however
see the pam.conf man pages for the gory details.

module-path Either the full path name of the module or its location relative
to /lib/security (but does depend on the system
architecture).

arguments A space separated list of the arguments that are defined for
the module.

An example PAM configuration file is as follows, although note that the ‘service’
parameter is actually the file name because F-17 uses the /etc/pam.d directory
configuration (in this case gdm for the Gnome login service).

/etc/pam.d/gdm configuration rule entry.
SERVICE = file name (gdm)
TYPE CONTROL PATH ARGUMENTS

Page 62

The SELinux Notebook - The Foundations

#%PAM-1.0
auth [success=done ignore=ignore default=bad] pam_selinux_permit.so
auth required pam_succeed_if.so user != root quiet
auth required pam_env.so
auth substack system-auth
auth optional pam_gnome_keyring.so
account required pam_nologin.so
account include system-auth
password include system-auth
session required pam_selinux.so close
session required pam_loginuid.so
session optional pam_console.so
session required pam_selinux.so open
session optional pam_keyinit.so force revoke
session required pam_namespace.so
session optional pam_gnome_keyring.so auto_start
session include system-auth

The core services are provided by PAM, however other library modules can be
written to manage specific services such as support for SELinux. The SELinux PAM
modules use the libselinux API to obtain its configuration information and the
three SELinux PAM entries highlighted in the above configuration file perform the
following functions:

pam_selinux_permit.so - Allows pre-defined users the ability to logon
without a password provided that SELinux is in enforcing mode (see the
/etc/security/sepermit.conf file section).

pam_selinux.so open - Allows a security context to be set up for the user at
initial logon (as all programs exec’ed from here will use this context). How the
context is retrieved is described in the seusers configuration file section.

pam_selinux.so close - This will reset the login programs context to the
context defined in the policy.

2.18 Linux Security Module and SELinux
This section gives a high level overview of the LSM and SELinux internal kernel
structure and workings as enabled in kernel 3.3.2. A more detailed view can be found
in the “Implementing SELinux as a Linux Security Module” [Ref. 6] that was used
extensively to develop this section (and also using the SELinux kernel source code).
The major areas covered are:

1. How the LSM and SELinux modules work together.

2. The major SELinux internal services.

3. The fork and exec system calls are followed through as an example to tie in
with the transition process covered in the Domain Transition section.

4. The SELinux filesystem /sys/fs/selinux.

5. The /proc filesystem area most applicable to SELinux.

6. The boot sequences that are relevant to SELinux.

Page 63

http://www.nsa.gov/selinux/papers/module/t1.html

The SELinux Notebook - The Foundations

2.18.1 The LSM Module
The LSM is the Linux security framework that allows 3rd party access control
mechanisms to be linked into the GNU / Linux kernel. Currently there are five 3rd

party services that utilise the LSM:

1. SELinux - the subject of this Notebook.

2. AppArmor is a MAC service based on pathnames and does not require
labelling or relabelling of filesystems. See http://wiki.apparmor.net for details.

3. Simplified Mandatory Access Control Kernel (SMACK). See
http://www.schaufler-ca.com/ for details.

4. The Trusted Computing Group runtime Integrity Measurement Architecture
(IMA). This maintains lists of hash values for sensitive system files at runtime.
See
http://domino.research.ibm.com/comm/research_people.nsf/pages/sailer.ima.html for
details.

5. Tomoyo that is a name based MAC and details can be found at
http://sourceforge.jp/projects/tomoyo/docs.

6. Yama extends the DAC support (currently) for ptrace. See
Documentation/security/Yama.txt for further details.

The basic idea behind LSM is to:

• Insert security function hooks and security data structures in the various kernel
services to allow access control to be applied over and above that already
implemented via DAC. The type of service that have hooks inserted are shown
in Table 5 with an example task and program execution shown in the Fork
Walk-thorough and Process Transition Walk-thorough sections.

• Allow registration and initialisation services for the 3rd party security modules.

• Allow process security attributes to be available to userspace services by
extending the /proc filesystem with a security namespace as shown in Table
6. These are located at:

/proc/<self | pid>/attr/<attr>
/proc/<self | pid>/task/<tid>/attr/<attr>

Where <pid> is the process id, <tid> is the thread id and <attr> is the
entry described in Table 6.

• Support filesystems that use extended attributes (SELinux uses
security.selinux as explained in the Labeling Extended Attribute
Filesystems section).

• Consolidate the Linux capabilities into an optional module.

It should be noted that the LSM does not provide any security services itself, only the
hooks and structures for supporting 3rd party modules. If no 3rd party module is
loaded, the capabilities module becomes the default module thus allowing standard
DAC access control.

Page 64

http://sourceforge.jp/projects/tomoyo/docs
http://domino.research.ibm.com/comm/research_people.nsf/pages/sailer.ima.html
http://www.schaufler-ca.com/
http://wiki.apparmor.net/

The SELinux Notebook - The Foundations

Program execution Filesystem operations Inode operations

File operations Task operations Netlink messaging

Unix domain networking Socket operations XFRM operations

Key Management operations IPC operations Memory Segments

Semaphores Capability Sysctl

Syslog Audit

Table 5: LSM Hooks - These are the kernel services that LSM has inserted security
hooks and structures to allow access control to be managed by 3rd party modules (see

./linux-3.3/include/linux/security.h).

/proc/self/attr/
File Name

Permissions Function

current -rw-rw-rw- Contains the current process security context.

exec -rw-rw-rw- Used to set the security context for the next exec call.

fscreate -rw-rw-rw- Used to set the security context of a newly created file.

keycreate -rw-rw-rw- Used to set the security context for keys that are cached in the
kernel.

prev -r--r--r-- Contains the previous process security context.

sockcreate -rw-rw-rw- Used to set the security context of a newly created socket.

Table 6: /proc Filesystem attribute files - These files are used by the kernel services
and libselinux (for userspace) to manage setting and reading of security contexts

within the LSM defined data structures.
The major kernel source files (relative to ./linux-3.3/security) that form the
LSM are shown in Table 7. However there is one major header file
(include/linux/security.h) that describes all the LSM security hooks and
structures.

Name Function

capability.c Some capability functions were in various kernel modules have been
consolidated into these source files. These are now (from Kernel 2.6.27)
always linked into the kernel. This means the dummy.c security module
(mentioned in [Ref. 6]) is no longer required.

commoncap.c
device_cgroup.c
inode.c This allows the 3rd party security module to initialise a security filesystem.

In the case of SELinux this would be /sys/fs/selinux that is defined
in the selinux/selinuxfs.c source file.

security.c Contains the LSM framework initialisation services that will set up the
hooks described in security.h and those in the capability source files.
It also provides functions to initialise 3rd party modules.

lsm_audit.c Contains common LSM audit functions.

min_addr.c Minimum VM address protection from userspace for DAC and LSM.

Table 7: The core LSM source modules.

Page 65

The SELinux Notebook - The Foundations

2.18.2 The SELinux Module
This section does not go into detail of all the SELinux module functionality as [Ref 6]
does this, however it attempts to highlight the way some areas work by using the fork
and transition process example described in the Domain Transition section and also
by describing the boot process.

The major kernel SELinux source files (relative to ./linux-
3.3/security/selinux) that form the SELinux security module are shown
inTable 8. The diagrams shown in Figure 2.2 and Figure 2.12 can be used to see how
some of these kernel source modules fit together.

Name Function

avc.c Access Vector Cache functions and structures. The function calls are for
the kernel services, however they have been ported to form the
libselinux userspace library.

exports.c Exported SELinux services for SECMARK (as there is SELinux specific
code in the netfilter source tree).

hooks.c Contains all the SELinux functions that are called by the kernel resources
via the security_ops function table (they form the kernel resource
object managers). There are also support functions for managing process
exec’s, managing SID allocation and removal, interfacing into the AVC
and Security Server.

netif.c These manage the mapping between labels and SIDs for the net*
language statements when they are declared in the active policy.netnode.c

netport.c
netlabel.c The interface between NetLabel services and SELinux.

netlink.c Manages the notification of policy updates to resources including
userspace applications via libselinux.nlmsgtab.c

selinuxfs.c The selinuxfs pseudo filesystem (/sys/fs/selinux) that
imports/exports security policy information to/from userspace services.
The services exported are shown in the SELinux Filesystem section.

xfrm.c Contains the IPSec XFRM (transform) hooks for SELinux.

include/classmap.h classmap.h contains all the kernel security classes and permissions.
initial_sid_to_string.h contains the initial SID contexts.
These are used to build the flask.h and av_permissions.h
kernel configuration files when the kernel is being built (using the
genheaders script defined in the selinux/Makefile).
These files are built this way now to support the new security class
mapping structure to remove the need for fixed class to SID mapping.

include/initial_si
d_to_string.h

ss/avtab.c AVC table functions for inserting / deleting entries.

ss/conditional.c Support boolean statement functions and implements a conditional AV
table to hold entries.

ss/ebitmap.c Bitmaps to represent sets of values, such as types, roles, categories, and
classes.

ss/hashtab.c Hash table.

ss/mls.c Functions to support MLS.

Page 66

The SELinux Notebook - The Foundations

Name Function

ss/policydb.c Defines the structure of the policy database. See the “SELinux Policy
Module Primer” [Ref. 4] article for details on the structure.

ss/services.c This contains the supporting services for kernel hooks defined in
hooks.c, the AVC and the Security Server.
For example the security_transition_sid that computes the
SID for a new subject / object shown in Figure 2.12.

ss/sidtab.c The SID table contains the security context indexed by its SID value.

ss/status.c Interface for selinuxfs/status. Used by the libselinux
selinux_status_*(3) functions.

ss/symtab.c Maintains associations between symbol strings and their values.

Table 8: The core SELinux source modules - The .h files and those in the
include directory have a number of useful comments.

2.18.2.1 Fork System Call Walk-thorough

This section walks through the the fork system call shown in Figure 2.7 starting at
the kernel hooks that link to the SELinux services. The way the SELinux hooks are
initialised into the LSM security_ops and secondary_ops function tables are
also described.

Using Figure 2.10, the major steps to check whether the unconfined_t process
has permission to use the fork permission are:

1. The kernel/fork.c has a hook that links it to the LSM function
security_task_create() that is called to check access permissions.

2. Because the SELinux module has been initialised as the security module, the
security_ops table has been set to point to the SELinux
selinux_task_create() function in hooks.c.

3. The selinux_task_create() function will first call the capabilities
code in capability.c via the secondary_ops function table to check
the DAC permission.

4. This is simply a return 0;, therefore no error would be generated.

5. The selinux_task_create() function will then check whether the task
has permission via the task_has_perm(current_process,
current_process, PROCESS__FORK) function.

6. This will result in a call to the AVC via the avc_has_perm() function in
avc.c that checks whether the permission has been granted or not. First (via
avc_has_perm_noaudit()) the cache is checked to for an entry.
Assuming that there is no entry in the AVC, then the
security_compute_av() function in services.c is called.

7. The security_compute_av() function will search the SID table for
source and target entries, and if found will then call the
context_struct_compute_av() function.

Page 67

http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/
http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/

The SELinux Notebook - The Foundations

The context_struct_compute_av() function carries out many check
to validate whether access is allowed. The steps are (assuming the access is
valid):

a) Initialise the AV structure so that it is clear.

b) Check the object class and permissions are correct. It also checks the
status of the allow_unknown flag (see the SELinux Filesystem,
/etc/selinux/semanage.conf file and Reference Policy
Build Options - build.conf - UNK_PERMS sections).

c) Checks if there are any type enforcement rules (ALLOW,
AUDIT_ALLOW, AUDIT_DENY).

d) Check whether any conditional statements are involved via the
cond_compute_av() function in conditional.c.

e) Remove permissions that are defined in any constraint via the
constraint_expr_eval() function call (in services.c).
This function will also check any MLS constraints.

f) context_struct_compute_av() checks if a process transition
is being requested (it is not). If it were, then the TRANSITION and
DYNTRANSITION permissions are checked and whether the role is
changing.

g) Finally check whether there are any constraints applied via the
typebounds rule.

8. Once the result has been computed it is returned to the kernel/fork.c
system call via the initial selinux_task_create() function. In this case
the fork call is allowed.

9. The End.

Page 68

The SELinux Notebook - The Foundations

Figure 2.10: Hooks for the fork system call - This describes the steps required to
check access permissions for Object Class ‘process’ and permission ‘fork’.

Page 69

4

3

7

6
5

2

1

8

selinux/avc.c
T his contains the AVC funct ions.
T he call to avc_has_perm will result in a
call to avc_has_perm_noaudit that
will actually check the AVC. If not in cache,
there will be a call to the security server
funct ion security_compute_av that
will check and return the decision. T he AVC
code will then insert the decision into the
cache and return the result to the calling
funct ion.

kernel/fork.c
/*
 * This creates a new process as a copy of the old one, but does not actually
 * start it yet. It copies the registers, and all the appropriate parts of the
 * process environment (as per the clone flags). The actual kick-off is left to
 * the caller.
 */
static struct task_struct *copy_process(unsigned long clone_flags, ...)
{

int retval;
struct task_struct *p;
int cgroup_callbacks_done = 0;

if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
.....
.....

retval = security_task_create(clone_flags);
if (retval)

goto fork_out;

security_ops function pointer structure
T his contains a pointer to the SELinux funct ion in hooks.c that was built when the
SELinux module was init ialised:

security_task_create->selinux_task_create

selinux/hooks.c
T his contains the SELinux funct ions. Note that the task_create
funct ion also calls a funct ion in the secondary_ops funct ion table.

static int selinux_task_create(unsigned long clone_flags)
{

int rc;
rc = secondary_ops->task_create(clone_flags);
if (rc) */ If secondary gives error, then return */

return rc;
return task_has_perm(current, current, PROCESS__FORK);

}
....
....
static int task_has_perm(struct task_struct *tsk1,

 struct task_struct *tsk2,
 u32 perms)

{
struct task_security_struct *tsec1, *tsec2;

tsec1 = tsk1->security;
tsec2 = tsk2->security;
return avc_has_perm(tsec1->sid, tsec2->sid,

 SECCLASS_PROCESS, perms, NULL);
}

capability.c
static int cap_task_create (unsigned long clone_flags)
{

return 0;
}

secondary_ops function pointer structure
T his contains a pointer to the task_create funct ion in capability.c:

security_task_create->cap_task_create

selinux/ss/services.c
T his contains the Security Server funct ions.
T he call to security_compute_av will
result in the security server checking whether
the requested access is allowed or not and
return the result to the calling funct ion.

The SELinux Notebook - The Foundations

2.18.2.2 Process Transition Walk-thorough

This section walks through the execve() and checking whether a process transition
to the ext_gateway_t domain is allowed, and if so obtain a new SID for the
context (unconfined_u:message_filter_r:ext_gateway_t) as shown
in Figure 2.7.

The process starts with the Linux operating system issuing a do_execve()14 call
from the CPU specific architecture code to execute a new program (for example, from
arch/ia64/kernel/process.c). The do_execve() function is located in
the fs/exec.c source code module and does the loading and final exec as
described below.

do_execve() has a number of calls to security_bprm_* functions that are a
part of the LSM (see security.h), and are hooked by SELinux during the
initialisation process (in hooks.c). Table 9 briefly describes these
security_bprm functions that are hooks for validating program loading and
execution (although see security.h or [Ref. 6] for greater detail).

LSM / SElinux Function Name Description
security_bprm_alloc->
selinux_bprm_alloc_security

Allocates memory for the bprm structure.

security_bprm_free->
selinux_bprm_free_security

Frees memory from the bprm structure.

security_bprm_apply_creds->
selinux_bprm_apply_creds

Sets task lock and new security attributes for a transformed
process on execve. Seems to be used for libraries, scripts
etc. Called from various Linux OS areas via
compute_creds() located in fs/exec.c.

security_bprm_post_apply_creds->
selinux_bprm_post_apply_creds

Supports the security_bprm_apply_creds function
for areas that must not be locked.

security_bprm_secureexec->
selinux_bprm_secureexec

Called after the selinux_bprm_post_apply_creds function
to check AT_SECURE flag for glibc secure mode support.

security_bprm_set->
selinux_bprm_set_security

Carries out the major checks to validate whether the process
can transition to the target context, and obtain a new SID if
required.

security_bprm_check->
selinux_bprm_check_security

This hook is not used by SELinux.

Table 9: The LSM / SELinux Program Loading Hooks
Therefore starting at the do_execve() function and using Figure 2.11, the
following major steps will be carried out to check whether the unconfined_t
process has permission to transition the secure_server executable to the
ext_gateway_t domain:

1. The executable file is opened, a call issued to the sched_exec() function
and the bprm structure is initialised with the file parameters (name,
environment and arguments).

14 This function call will pass over the file name to be run and its environment + arguments. Note
that for loading shared libraries the exec_mmap function is used.

Page 70

The SELinux Notebook - The Foundations

The security_bprm_alloc()->selinux_bprm_alloc_security()
function is then called (in hooks.c) where SELinux will allocate memory
for the bprm security structure and set the bsec->set flag to 0 indicating
this is the first time through this process for this exec request.

2. Via the prepare_binprm() function call the UID and GIDs are checked
and a call issued to security_bprm_set() that will carry out the
following:

a) The selinux_bprm_set_security() function will call the
secondary_ops->bprm_set_security function in
capability.c, that is effectively a no-op.

b) The bsec->set flag will be checked and if 1 will return as this
function can be called multiple times during the exec process.

c) The target SID is checked to see whether a transition is required (in
this case it is), therefore a call will be made to the
security_transition_sid() function in services.c. This
function will compute the SID for a new subject or object (subject in
this case) via the security_compute_sid() function that will
(assuming there are no errors):

i. Search the SID table for the source and target SIDs.

ii. Sets the SELinux user identity.

iii. Set the source role and type.

iv. Checks that a type_transition rule exists in the AV table
and / or the conditional AV table (see Figure 2.12).

v. If a type_transition, then also check for a
role_transition (there is a role change in the
ext_gateway.conf policy module), set the role.

vi. Check if any MLS attributes by calling
mls_compute_sid() in mls.c. It also checks whether
MLS is enabled or not, if so sets up MLS contexts.

vii. Check whether the contexts are valid by calling
compute_sid_handle_invalid_context() that will
also log an audit message if the context is invalid.

viii. Finally obtains a SID for the new context by calling
sidtab_context_to_sid() in sidtab.c that will
search the SID table (see Figure 2.12) and insert a new entry if
okay or log a kernel event if invalid.

d) The selinux_bprm_set_security() function will then
continue by checking via the avc_has_perm() function (in
avc.c) whether the file_execute_no_trans is set (in this case
it is not), therefore the process_transition and
file_entrypoint permissions are checked (in this case they are),
therefore the new SID is set, the bsec->set flag is set to 1 so that

Page 71

The SELinux Notebook - The Foundations

this part of the function is not executed again for this exec, finally
control is passed back to the do_execve function.

3. Various strings are copied (args etc.) and a check is made to see if the exec
succeeded or not (in this case it did), therefore the
security_bprm_free() function is called to free the bprm security
structure.

4. The End.

Page 72

The SELinux Notebook - The Foundations

Figure 2.11: Process Transition - This shows the major steps required to check if a
transition is allowed from the unconfined_t domain to the ext_gateway_t domain.

Page 73

2d

fs/exec.c
int do_execve(filename,argv,envp,regs)
{

...
bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
...
file = open_exec(filename);
...
sched_exec();
...
retval = security_bprm_alloc(bprm);
...
retval = prepare_binprm(bprm);
...
...
retval = copy_strings(bprm->envc, envp, bprm);
...
current->flags &= ~PF_KTHREAD;
retval = search_binary_handler(bprm,regs);
if (retval >= 0) {

/* execve success */
security_bprm_free(bprm);
.....
if (displaced)

put_files_struct(displaced);
return retval;

}
...
return retval;

}

int prepare_binprm(struct linux_binprm *bprm)
{

...
if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {

/* Set-uid? */
if (mode & S_ISUID) {
 current->personality &= ~PER_CLEAR_ON_SETID;

bprm->e_uid = inode->i_uid;
}
/* Set-gid? */
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))

{
current->personality &=

~PER_CLEAR_ON_SETID;
bprm->e_gid = inode->i_gid;

}
}
retval = security_bprm_set(bprm);
if (retval)

return retval;
memset(bprm->buf,0,BINPRM_BUF_SIZE);
return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);

}

security_ops function pointer structure
Contains a pointer to the SELinux funct ion in hooks.c:
security_bprm_alloc->selinux_bprm_alloc_security
static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
{

struct bprm_security_struct *bsec;
bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
if (!bsec)

return -ENOMEM;
bsec->sid = SECINITSID_UNLABELED;
bsec->set = 0;
bprm->security = bsec;
return 0;

}

security_ops function pointer structure
Contains a pointer to the SELinux funct ion in hooks.c:
security_bprm_free->selinux_bprm_free_security
static void selinux_bprm_free_security(struct linux_binprm *bprm)
{

kfree(bprm->security);
bprm->security = NULL;

}

security_ops function pointer structure
Contains a pointer to the SELinux funct ion in hooks.c :
security_bprm_set->selinux_bprm_set_security
static int selinux_bprm_set_security(struct linux_binprm *bprm)
{

...
rc = secondary_ops->bprm_set_security(bprm);
...
if (bsec->set)

return 0;
...
if (tsec->exec_sid) {

newsid = tsec->exec_sid;
tsec->exec_sid = 0;

} else {
/* Check for a default transition on this program. */
rc = security_transition_sid(tsec->sid, isec->sid,

 SECCLASS_PROCESS, &newsid);
if (rc)

return rc;
}
AVC_AUDIT_DATA_INIT(&ad, FS);
...
if (tsec->sid == newsid) {

rc = avc_has_perm(tsec->sid, isec->sid,
SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);

if (rc)
return rc;

} else {
/* Check permissions for the transition. */
rc = avc_has_perm(tsec->sid, newsid,

SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
if (rc)

return rc;
rc = avc_has_perm(newsid, isec->sid,

 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
if (rc)

return rc;
...
}
bsec->set = 1;
return 0;

}

avc.c
avc_has_perms()

Check that the transition and entrypoint permissions are
valid. Add decision to cache if not already present .

ss/services.c
security_transition_sid()

Check if t ransit ion required
security_compute_sid()

Compute the new SID
ss/mls.c
mls_compute_sid()

Check if MLS if so add MLS context
ss/sidtab.c
sidtab_context_to_sid()

Add new SID to table

2c

1

3

2
2a

2b

The SELinux Notebook - The Foundations

Figure 2.12: The Main LSM / SELinux Modules – The fork and exec functions link to Figure 2.7 where the transition process is described.

Page 74

avc_has_perms

Kernel Services
These are the
Linux kernel
resources such as
files, sockets,
memory
management that
need access
decisions made.

fork.c

load new
program

exec.c

execute new
program

/proc /sys/fs/selinux (selinuxfs.c)

libselinux

include/
linux/
security.h

security.c

services.c

SELinux Security Module
(selinux/hooks.c)

This module is the main interface
between the kernel resources for
managing SELinux access
decisions. Acts as the resource
Object Manager.

selinux_task_create

selinux_bprm_alloc_security
selinux_bprm_set_security
selinux_bprm_apply_creds
selinux_bprm_secureexec
selinux_bprm_free_security

selinux_inode_permission

Access Vector
Cache

(selinux/avc.c)

Manages the
permissions granted
or denied in a cache
to speed decisions

Security Services
(selinux/ss/services.c)

The SELinux Security Server authorises (or not) access
decisions.

policydb.h
permissions
class
role
role_transit ion
role_allow
type
user
boolean
level
category
range_transit ion

NetLink Services
(selinux/net link.c)

Informs of policy reloads

security_compute_av

security_transit ion_sid

avc_insert

security_task_create (clone_flags)

do_execve (...)

capabilities.c

Linux Security Module Framework

Conditional AV table
Expression
State
IF list
(linked to AV T able)
ELSE list
(linked to AV T able)

AV table
allow Rules:
source_type, target_type, class, permissions;
--
type_transit ion Rules:
source_type, target_type, class, default_type;

Constraints Table
Expression T ype
Constraint Attribute
Constraint Operator
 (linked to AV T able)

LinkedSID & Context Tables
SID=1:system_u:system_r:kernel_t
SID=2:system_u:object_r:security_t
.....
SID=n+1:user_u:message_filter_r:ext_gateway_t

The SELinux Notebook - The Foundations

2.18.2.3 SELinux Filesystem

Table 10 shows the information contained in the SELinux filesystem (selinuxfs) /sys/fs/selinux (or /selinux on older systems)
where the SELinux kernel exports information regarding its configuration and active policy. selinuxfs is a read/write interface used by
SELinux library functions such as the libselinux library for userspace SELinux-aware applications and object managers. Note while it is
possible for userspace applications to read/write to this interface, it is not recommended - use the libselinux library.

selinuxfs Directory and File Names Permissions Comments
/sys/fs/selinux Directory This is the root directory where the SELinux kernel exports relevant information regarding its

configuration and active policy for use by the libselinux library.
access -rw-rw-rw- Compute access decision interface that is used by the security_compute_av(3),

security_compute_av_flags(3), avc_has_perm(3)and
avc_has_perm_noaudit(3) functions.
The kernel security server (see services.c) converts the contexts to SIDs and then calls the
security_compute_av_user function to compute the new SID that is then converted to
a context string.
Requires security {compute_av} permission.

checkreqprot -rw-r--r-- 0 = Check requested protection applied by kernel.
1 = Check protection requested by application. This is the default.
These apply to the mmap and mprotect kernel calls. Default value can be changed at boot
time via the checkreqprot= parameter.
Requires security {setcheckreqprot} permission.

commit_pending_bools --w------- Commit new boolean values to the kernel policy.
Requires security {setbool} permission.

context -rw-rw-rw- Validate context interface used by the security_check_context(3) function.
Requires security {check_context} permission.

Page 75

The SELinux Notebook - The Foundations

selinuxfs Directory and File Names Permissions Comments
create -rw-rw-rw- Compute create labeling decision interface that is used by the

security_compute_create(3) and avc_compute_create(3) functions.
The kernel security server (see services.c) converts the contexts to SIDs and then calls the
security_transition_sid_user function to compute the new SID that is then
converted to a context string.
Requires security {compute_create} permission.

deny_unknown -r--r--r-- These two files export deny_unknown (read by security_deny_unknown(3)
function) and reject_unknown status to user space.
These are taken from the handle-unknown parameter set15 in the
/etc/selinux/semanage.conf file when policy is being built and are set as follows:
deny:reject
 0:0 = Allow unknown object class / permissions. This will set the returned AV with all

1's.
 1:0 = Deny unknown object class / permissions (the default). This will set the returned

AV with all 0's.
 1:1 = Reject loading the policy if it does not contain all the object classes / permissions.

reject_unknown -r--r--r--

disable --w------- Disable SELinux until next reboot.
enforce -rw-r--r-- Get or set enforcing status.

Requires security {setenforce} permission.
load -rw------- Load policy interface.

Requires security {load_policy} permission.
member -rw-rw-rw- Compute polyinstantiation membership decision interface that is used by the

security_compute_member(3) and avc_compute_member(3) functions.
The kernel security server (see services.c) converts the contexts to SIDs and then calls the
security_member_sid function to compute the new SID that is then converted to a
context string.
Requires security {compute_member} permission.

mls -r--r--r-- Returns 1 if MLS policy is enabled or 0 if not.

15 This is also set in the UNK_PERMS entry of the Reference Policy build.conf file. The entry in semanage.conf will over-ride the build.conf entry.

Page 76

The SELinux Notebook - The Foundations

selinuxfs Directory and File Names Permissions Comments
null crw-rw-rw- The SELinux equivalent of /dev/null for file descriptors that have been redirected by

SELinux.
policyvers -r--r--r-- Returns supported policy version for kernel. Read by security_policyvers(3)

function.
relabel -rw-rw-rw- Compute relabeling decision interface that is used by the

security_compute_relabel(3) function.
The kernel security server (see services.c) converts the contexts to SIDs and then calls the
security_change_sid function to compute the new SID that is then converted to a
context string.
Requires security {compute_relabel} permission.

status -r--r--r-- This can be used to obtain enforcing mode and policy load changes with much less over-head
than using the libselinux netlink / call backs. This was added for Object Managers that
have high volumes of AVC requests so they can quickly check whether to invalidate their
cache or not.
The status structure indicates the following:
version - Version number of the status structure. This will increase as other entries are
added.
sequence - This is incremented for each event with an even number meaning that the
events are stable. An odd number indicates that one of the events is changing and therefore
the userspace application should wait before reading the status of any event.
enforcing - 0 = Permissive mode, 1 = enforcing mode.
policyload - This contains the policy load sequence number and should be read and
stored, then compared to detect a policy reload.
deny_unknown - 0 = Allow and 1 = Deny unknown object classes / permissions. This is
the same as the deny_unknown entry above.

user -rw-rw-rw- Compute reachable user contexts interface that is used by the
security_compute_user(3) function.
The kernel security server (see services.c) converts the contexts to SIDs and then calls the
security_get_user_sids function to compute the user SIDs that are then converted to
context strings.
Requires security {compute_user} permission.

Page 77

The SELinux Notebook - The Foundations

selinuxfs Directory and File Names Permissions Comments
/sys/fs/selinux/avc Directory This directory contains information regarding the kernel AVC that can be displayed by the

avcstat command.
cache_stats -r--r--r-- Shows the kernel AVC lookups, hits, misses etc.

cache_threshold -rw-r--r-- The default value is 512, however caching can be turned off (but performance suffers) by:
echo 0 > /selinux/avc/cache_threshold

Requires security {setsecparam} permission.
hash_stats -r--r--r-- Shows the number of kernel AVC entries, longest chain etc.

/sys/fs/selinux/booleans Directory This directory contains one file for each boolean defined in the active policy.
secmark_audit

......

......

-rw-r--r-- Each file contains the current and pending status of the boolean (0 = false or 1 = true). The
getsebool(8), setsebool(8) and sestatus -b commands use this interface via the
libselinux library functions.

/sys/fs/selinux/initial_contexts Directory This directory contains one file for each initial SID defined in the active policy.
any_socket

devnull
.....

-r--r--r-- Each file contains the initial context of the initial SID as defined in the active policy (e.g.
any_socket was assigned system_u:object_r:unconfined_t).

/sys/fs/selinux/policy_capabilities Directory This directory contains the policy capabilities that have been configured by default in the
kernel via the policycap Statement in the active policy. These are generally new features that
can be enabled for testing by using the policycap Statement in policy.

network_peer_controls -r--r--r-- For the F-17 Reference Policy this file contains ‘1’ (true) which means that the following
network_peer_controls are enabled by default:

node: sendto recvfrom
netif: ingress egress
peer: recv

open_perms -r--r--r-- For the F-17 Reference Policy this file contains ‘1’ (true) which means that open permissions
are enabled by default on the following objects: dir, file, fifo_file, chr_file,
blk_file.

ptrace_child -r--r--r-- This will be enabled kernel 3.4 to allow finer control of ptrace. Requires policy support and the
security class permission ptrace_child.

Page 78

The SELinux Notebook - The Foundations

selinuxfs Directory and File Names Permissions Comments
/sys/fs/selinux/class Directory This directory contains a list of classes and their permissions as defined within the policy.
/sys/fs/selinux/class/appletalk_socket Directory Each class has its own directory where each one is named using the appropriate class statement

from the policy (i.e. class appletalk_socket). Each directory contains the following:
index -r--r--r-- This file contains the allocated class number (e.g. appletalk_socket is ‘56’ in

flask.h).
/sys/fs/selinux/class/appletalk_socket/perms Directory This directory contains one file for each permission defined in the policy.

accept
append
bind
....

-r--r--r-- Each file is named by the permission assigned in the policy and contains a number that
represents its position in the list (e.g. accept is the 14th permission listed in
av_permission.h for appletalk_socket and therefore contains '14'.

Table 10: /selinux File and Directory Information

Notes:

1. Kernel SIDs are not passed to userspace only the context strings.

2. The /proc filesystem exports the process security context string to userspace via /proc/<self|pid>/attr and /proc/<self|
pid>/task/<tid>/attr/<attr> interfaces.

Page 79

The SELinux Notebook - The Foundations

2.19 libselinux Library
libselinux contains all the SELinux functions necessary to build userspace
SELinux-aware applications and object managers using 'C', Python, Ruby and PHP
languages.

The library hides the low level functionality of (but not limited to):

• The SELinux filesystem that interfaces to the SELinux kernel security server.

• The proc filesystem that maintains process state information and security
contexts - see proc(5).

• Extended attribute services that manage the extended attributes associated to
files, sockets etc. - see attr(5).

• The SELinux policy and its associated configuration files.

The general category of functions available in libselinux are shown in Table 11,
with Appendix B giving a complete list of functions and source code examples
available in the Notebook tarball.

Function Category Description

Access Vector Cache Services Allow access decisions to be cached and
audited.

Boolean Services Manage booleans.

Class and Permission Management Class / permission string conversion and
mapping.

Compute Access Decisions Determine if access is allowed or denied.

Compute Labeling Compute labels to be applied to new
instances of on object.

Default File Labeling Obtain default contexts for file operations.

File Creation Labeling Get and set file creation contexts.

File Labeling Get and set file and file descriptor extended
attributes.

General Context Management Check contexts are valid, get and set context
components.

Key Creation Labeling Get and set kernel key creation contexts.

Label Translation Management Translate to/from, raw/readable contexts.

Netlink Services Used to detect policy reloads and
enforcement changes.

Process Labeling Get and set process contexts.

SELinux Management Services Load policy, set enforcement mode, obtain
SELinux configuration information.

SELinux-aware Application Labeling Retrieve default contexts for applications
such as database and X-Windows.

Page 80

The SELinux Notebook - The Foundations

Socket Creation Labeling Get and set socket creation contexts.

User Session Management Retrieve default contexts for user sessions.

Table 11: libselinux function types

Other SELinux userspace libraries are:

libsepol - To build and manipulate the contents of SELinux binary policy
files.

libsemanage - To manage the policy infrastructure.

Details of the libraries, core SELinux utilities and commands with source code are
available at:

http://userspace.selinuxproject.org/trac

The versions of kernel and SELinux tools and libraries influence the features
available, therefore it is important to establish what level of functionality is required
for the application. The Policy Versions section shows the policy versions and the
additional features they support.

Writing kernel based object managers is a more specialised subject and is not covered
within this man page.

The libselinux functions make use of a number of files within the SELinux sub-
system:

1. The SELinux configuration file config that is described in in the
/etc/selinux/config File section.

2. The SELinux filesystem that is the interface between userspace and the kernel.
This is generally mounted as /selinux or /sys/fs/selinux and
described in the SELinux Filesystem section.

3. The proc filesystem that maintains process state information and security
contexts - see proc(5).

4. The extended attribute services that manage the extended attributes associated
to files, sockets etc. - see attr(5).

5. The SELinux binary policy that describes the enforcement policy.

6. A number of libselinux functions have their own configuration files that
in conjunction with the policy, allow additional levels of configuration. These
are described in the Policy Configuration Files section and also in the
following man pages:

booleans(5), customizable_types(5),
default_contexts(5), default_type(5),
failsafe_context(5), file_contexts(5),
local.users(5), media(5), removable_context(5),
securetty_type(5), selabel_db(5), selabel_file(5),
selabel_media(5), selabel_x(5), sepgsql_contexts(5),
service_seusers(5), seusers(5), user_contexts(5),
virtual_domain_context(5),
virtual_image_context(5), x_contexts(5)

Page 81

http://userspace.selinuxproject.org/trac

The SELinux Notebook - The Foundations

2.20 SELinux Networking Support
SELinux supports the following types of network labeling:

Internal labeling – This is where network objects are labeled and managed
internally within a single machine (i.e. their labels are not transmitted as part of
the session with remote systems). There are three types supported: those known as
‘compat_net’ controls that label nodes, interfaces and ports; SECMARK that
labels packets; and fallback peer labeling.

Labeled Networking – This is where labels are passed to/from remote systems
where they can be interpreted and a MAC policy enforced on each system. This is
also known as ‘peer labeling’. There are two types supported: Labeled IPSec and
CIPSO (Commercial IP Security Option).

To support peer labeling and CIPSO the NetLabel tools need to be installed and to
support Labeled IPSec the IPSec tools need to be installed:

yum install netlabel_tools

yum install ipsec-tools

2.20.1 compat_net Controls
These labeling services make use of the Network Labeling Statements to label
network object nodes, interfaces and ports with a security context that are then used to
enforce controls. The Network Labeling Statements section defines each of the
statements with examples of their usage.

Figure 2.13 shows how these network statements are used and the type of allow rules
that would be required.

Figure 2.13: compat_net Controls – Showing the policy statements and rules
required to allow communications.

Page 82

Interface
netifcon eth0 system_u:object_r:ext_interface_t
system_u:object_r:ext_interface_t

tcp_socket
Policy:
allow ext_gateway_t ext_interface_t:netif { tcp_send tcp_recv };
allow ext_gateway_t ext_node_t:node { tcp_send tcp_recv };
allow ext_gateway_t ext_gateway_port_t:tcp_socket { write listen
node_bind name_bind accept bind read name_connect connect getopt };

Node – IP Address
nodecon 172.16.96.30 255.255.255.0 system_u:object_r:ext_node_t

Port
portcon tcp 9999 system_u:object_r:ext_gateway_port_t

The SELinux Notebook - The Foundations

The current SELinux port definition does not include an IP address which makes it
difficult to restrict connect() and bind() operations using SELinux. Policy
version 29 solves this problem by adding an IP address to the SELinux port definition
via a SELinux node label (however, note that the kernel and userspace versions
containing this feature are not yet known).

2.20.2 SECMARK
SECMARK makes use of the standard kernel NetFilter framework that underpins the
GNU / Linux IP networking sub-system. NetFilter automatically inspects all incoming
and outgoing packets and can place controls on interfaces, IP addresses (nodes) and
ports with the added advantage of connection tracking. The SECMARK and
CONNSECMARK are security extensions to the Netfilter iptables that allow
security contexts to be added to packets (SECMARK) or sessions
(CONNSECMARK) such as those used by ftp (as some applications within a single
session can use a number of different ports, some fixed and others dynamically
allocated).

The NetFilter framework is used to inspect and tag packets with labels as defined
within the iptables and then use the security framework (e.g. SELinux) to enforce
the policy rules. Therefore SECMARK services are not SELinux specific as other
security modules that use the LSM infrastructure could also implement the same
services (e.g. SMACK).

While the implementation of iptables / NetFilter is beyond the scope of this
Notebook, there are tutorials available16. Figure 2.14 shows the basic structure with
the process working as follows:

• A table called the ‘security table’ is used to define the parameters that identify
and ‘mark’ packets that can then be tracked as the packet travels through the
networking sub-system. These ‘marks’ are called SECMARK and
CONNSECMARK.

• A SECMARK is placed against a packet if it matches an entry in the security
table. This marker is used to apply a security context (a label) that can then
enforce policy on the packet.

• The CONNSECMARK ‘marks’ all packets within a session17 with the
appropriate label that can then be used to enforce policy.

16 There is a very good tutorial at http://www.frozentux.net/documents/iptables-tutorial/ [Ref.7],
however it does not cover the security table that was introduced by:
http://lwn.net/Articles/267140/. It is still possible to use the ‘mangle table’ to hold security labels
as described in [Ref. 7].

17 For example, an ftp session where the server is listening on a specific port (the destination port)
but the client will be assigned a random source port. The CONNSECMARK will ensure that all
packets for the ftp session are marked with the same label.

Page 83

http://lwn.net/Articles/267140/
http://www.frozentux.net/documents/iptables-tutorial/

The SELinux Notebook - The Foundations

Figure 2.14: SECMARK Processing – Received packets are processed by the
INPUT chain where labels are added to the appropriate packets that will either be
accepted or dropped by the SECMARK process. Packets being sent are treated the

same way.
An example iptables18 ‘security table’ entry is as follows:

Flush the security table first:
iptables -t security -F

#-------------- INPUT IP Stream --------------------#
This INPUT rule sets all packets to default_secmark_packet_t
iptables -t security -A INPUT -i lo -p tcp -d 127.0.0.0/8 -j SECMARK
--selctx system_u:object_r:default_secmark_packet_t

#-------------- OUTPUT IP Stream --------------------#
This OUTPUT rule sets all packets to default_secmark_packet_t
iptables -t security -A OUTPUT -o lo -p tcp -d 127.0.0.0/8 -j SECMARK
--selctx system_u:object_r:default_secmark_packet_t

An example loadable module that makes use of SECMARK services is described in
the Notebook source tarball. There are also articles “Transitioning to Secmark” [Ref.
9] and “New secmark-based network controls for SELinux” [Ref. 8] that explain the
transition and services.

2.20.3 NetLabel - Fallback Peer Labeling
Fallback labeling can optionally be implemented on a system if the Labeled IPSec or
CIPSO is not being used (hence ‘fallback labeling’). If either Labeled IPSec or CIPSO
are being used, then these take priority. There is an article “Fallback Label
Configuration Example” [Ref. 10] that explains their usage, the netlabelctl(8)
man page is also a useful reference.

18 The tables will not load correctly if the policy does not allow the iptables domain to relabel the
security table entries unless permissive mode is enabled (i.e. iptables must have the relabel
permission for each entry in the table).

Page 84

Policy:
allow ext_gateway_t ext_gateway_packet_t:packet { send recv };

Route

Network Interface

INPUT

OUTPUT

Forward

security table entries:
iptables -t security -A INPUT -p tcp --dport 9999 -j
SECMARK --selctx
system_u:object_r:ext_gateway_packet_t

iptables -t security -A OUTPUT -p tcp --dport 9999 -j
SECMARK --selctx
system_u:object_r:ext_gateway_packet_t

Client or Server ApplicationReceive Send

As packets are sent, they
are marked and either

ACCEPT’ed or
DROP’ed As packets are received,

they are marked and
either ACCEPT’ed or

DROP’ed

http://paulmoore.livejournal.com/1758.html
http://paulmoore.livejournal.com/1758.html
http://james-morris.livejournal.com/11010.html
http://paulmoore.livejournal.com/4281.html

The SELinux Notebook - The Foundations

The example message filter has an optional module that makes use of fallback labels
and can be found in the Notebook source tarball, where there are also examples
shown for SE-PostgreSQL.

The network peer controls have been extended to support an additional object class of
‘peer’ that is enabled by default in the F-17 policy as the
network_peer_controls in
/sys/fs/selinux/policy_capabilities is set to '1'. Figure 2.15 shows
the differences between the policy capability network_peer_controls being set
to 0 and 1.

Figure 2.15: Fallback Labeling – Showing the differences between the policy
capability network_peer_controls set to 0 and 1.

2.20.4 NetLabel - CIPSO
To allow security levels to be passed over a network between MLS systems19, the
CIPSO protocol is used that is defined in the CIPSO Internet Draft document (this is
an obsolete document, however the protocol is still in use). The protocol defines how
security levels are encoded in the IP packet header.

The protocol is implemented by the NetLabel service (see the netlabelctl(8)
man page) and can be used by other security modules that use the LSM infrastructure.
The NetLabel implementation supports:

1. Tag Type 1 bit mapped format that allows a maximum of 256 sensitivity
levels and 240 categories to be mapped.

2. A non-translation option where labels are passed to / from systems unchanged
(for host to host communications as show in Figure 2.16).

Figure 2.16: MLS Systems on the same network
3. A translation option where both the sensitivity and category components can

be mapped for systems that have either different definitions for labels or
information can be exchanged over different networks (for example using an
SELinux enabled gateway as a guard as shown in Figure 2.17).

19 Note only the security levels are passed over as the SELinux security context is not part of a
standard MLS system (as SELinux supports two MAC services: Type Enforcement and MLS).

Page 85

NetLabel Command:
netlabelctl unlbl add interface:lo address:127.0.0.1 \
 label:system_u:object_r:netlabel_peer_t

 0 network_peer_control 1

tcp_socket:
allow ext_gateway_t netlabel_peer_t:
 tcp_socket recvfrom;

peer:
allow ext_gateway_t netlabel_peer_t:
 peer recv;

MLS Host 1 MLS Host 2

http://tools.ietf.org/html/draft-ietf-cipso-ipsecurity-01

The SELinux Notebook - The Foundations

Figure 2.17: MLS Systems on different networks communicating via a gateway

4. Support for full SELinux labels over loopback as discussed in the article at
http://paulmoore.livejournal.com/7234.html.

2.20.5 Labeled IPSec
Labeled IPSec has been built into the standard GNU / Linux IPSec services as
described in the “Leveraging IPSec for Distributed Authorization” [Ref. 11]
document. Figure 2.18 shows the basic components that form the IPSec service where
it is generally used to set up either an encrypted tunnel between two machines20 or an
encrypted transport session. The extensions defined in [Ref. 11] describe how the
security context is used and negotiated between the two systems (called security
associations (SAs) in IPSec terminology).

Figure 2.18: IPSec communications – The SPD contains information regarding the
security contexts to be used. These are exchanged between the two systems as part of

the channel set-up.
Basically what happens is as follows21:

1. The security policy database (SPD) defines the security communications
characteristics to be used between the two systems. This is populated using the
setkey(8) utility with an example shown in the Configuration Example
section.

2. The SAs have their configuration parameters such as protocols used for
securing packets, encryption algorithms and how long the keys are valid held
in the Security Association database (SAD). For Labeled IPSec the security
context (or labels) is also defined within the SAD. SAs can be negotiated

20 Also known as a virtual private network (VPN).
21 There is an “IPSec HOWTO” [Ref. 12] at http://www.ipsec-howto.org that gives the gory details,

however it does not cover Labeled IPSec.

Page 86

Security Policy
Database (SPD)

Security
Association

Database (SAD)

IPSec packet management services

setkey
Manages

configuration

racoon
Manages key

exchange

C lient
Application

Security Policy
Database (SPD)

Security
Association

Database (SAD)

IPSec packet management services

setkey
Manages

configuration

racoon
Manages key

exchange

Server
Application

Internet Key
Exchange (IKE)

Negotiates the SAs

Encrypted
communications

channel

MLS Host 1
MLS Gateway

(Guard) MLS Host 2

http://www.ipsec-howto.org/
http://nsrc.cse.psu.edu/tech_report/NAS-TR-0037-2006.pdf
http://paulmoore.livejournal.com/7234.html

The SELinux Notebook - The Foundations

between the two systems using either racoon(8)22 that will automatically
populate the SAD or manually by the setkey utility (see the example
below).

3. Once the SAs have been negotiated and agreed, the link should be active.

A point to note is that SAs are one way only, therefore if two systems are
communicating then (using the above example), one system will have an SA, SAout
for processing outbound packets and another SA, SAin, for processing the inbound
packets. The other system will also create two SAs for processing its packets.

Each SA will share the same cryptographic parameters such as keys and protocol23

(e.g. ESP (encapsulated security payload) and AH (authentication header)).

The object class used for the association of an SA is association and the
permissions available are as follows:

polmatch Match the SPD context (-ctx) entry to an SELinux domain
(that is contained in the SAD –ctx entry)

recvfrom Receive from an IPSec association.
sendto Send to an IPSec association.
setcontext Set the context of an IPSec association on creation (e.g.

when running setkey, the process will require this
permission to set the context in the SAD and SPD, also
racoon will need this permission to build the SAD).

There are worked examples of Labeled IPSec sessions showing manual and
racoon24 configuration in the Notebook source tarball.

There is a further example in the “Secure Networking with SELinux” [Ref. 13]
article.

2.20.5.1 Configuration Example

setkey –f configuration file entries
#
Flush the SAD and SPD
flush;
spdflush;

Security Association Database entries.
1) There would be another SAD entry on the other system (the
client), where the IP addresses would be reversed.
2) The security context must be that of the running application.

add 172.16.96.30 172.16.96.31 esp 0x201
-ctx 1 1 "unconfined_u:message_filter_r:ext_gateway_t"
-E 3des-cbc 0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831;

Security Policy Database entries.
1) there would be another SPD entry on the other system (the
client), where the IP addresses would be reversed.
2) The security context must be valid (i.e. defined in the active policy as

22 This is the Internet Key Exchange (IKE) daemon that exchanges encryption keys securely and also
supports Labeled IPSec parameter exchanges.

23 The GNU / Linux version supports a number of secure protocols, see the setkey man page for
details.

24 Unfortunately racoon core dumps when using non MCS/MLS policies.

Page 87

http://securityblog.org/brindle/2007/05/28/secure-networking-with-selinux/

The SELinux Notebook - The Foundations

it will be used by the polmatch permission process to find a matching
domain. (note only the ‘type’ field is used unlike the SAD, where
the context is the active process).

SAin
spdadd 172.16.96.30 172.16.96.31 any
-ctx 1 1 “system_u:object_r:ext_gateway_t”
-P in ipsec esp/transport//require;
SAout
spdadd 172.16.96.31 172.16.96.30 any
-ctx 1 1 “system_u:object_r:ext_gateway_t”
-P out ipsec esp/transport//require;

To manually load the above configuration file that populates the SPD and SAD25 the
following command would be used:

setkey –f <SPD_configuration_file>

2.21 SELinux Virtual Machine Support
SELinux support is available in the KVM/QEMU and Xen virtual machine (VM)
technologies26 that are discussed in the sections that follow, however the package
documentation should be read for how these products actually work and how they are
configured.

Currently the main SELinux support for virtualisation is via libvirt that is an
open-source virtualisation API used to dynamically load guest VMs. Security
extensions were added as a part of the Svirt project and the SELinux implementation
for the KVM/QEMU package (qemu-kvm and libvirt rpms) is discussed using
some examples. The Xen product has Flask/TE services that can be built as an
optional service, although it can also use the security enhanced libvirt services as
well.

The sections that follow give an introduction to KVM/QEMU, then libvirt
support with some examples using the Virtual Machine Manager (the sections assume
two VM images have been generated: VM1 & VM227) to configure VMs, then an
overview of the Xen implementation follows.

The examples shown were tested using F-16 with the following major packages:

libvirt-0.9.6-4.fc16.x86_64
qemu-0.15.1-3.fc16.x86_64
qemu-system-x86-0.15.1-3.fc16.x86_64
virt-manager-0.9.0-7.fc16.noarch

25 If using racoon, the SAs would be negotiated using information from the SPD on each machine,
with the SAD then being populated by racoon calling the setkey services.

26 KVM (Kernel-based Virtual Machine) and Xen are classed as 'bare metal' hypervisors and they
rely on other services to manage the overall VM environment. QEMU (Quick Emulator) is an
emulator that emulates the BIOS and I/O device functionality and can be used standalone or with
KVM and Xen.

27 These can be generated using the VVM by selecting the 'Create a new virtual machine' menu item.
A simple Linux kernel was used to generate these and is available at: http://wiki.qemu.org/Testing
(the linux-0.2.img.bz2 disk image). This image was renamed to reflect each test, for
example 'Dynamic_VM1.img'.

Page 88

http://wiki.qemu.org/Testing
http://selinuxproject.org/page/SVirt

The SELinux Notebook - The Foundations

selinux-policy-targeted-3.10.0-84.fc16.noarch

To ensure all dependencies are installed run:

yum install libvirt
yum install qemu
yum install virt-manager

2.21.1 KVM / QEMU Support
KVM is a kernel loadable module that uses the Linux kernel as a hypervisor and
makes use of a modified QEMU emulator to support the hardware I/O emulation. The
“Kernel-based Virtual Machine” [Ref. 21] document gives a good overview of how
KVM and QEMU are implemented. It also provides an introduction to virtualisation
in general. Note that KVM requires virtulisation support in the CPU (Intel-VT or
AMD-V extensions).

The SELinux support for VMs is implemented by the libvirt sub-system that is
used to manage the VM images using a Virtual Machine Manager, and as KVM is
based on Linux it has SELinux support by default. There are also Reference Policy
modules to support the overall infrastructure (KVM support is in various kernel and
system modules with a virt module supporting the libvirt services). Figure 2.19
shows a high level overview with two VMs running in their own domains. The
libvirt Support section shows how to configure these and their VM image files.

2.21.2 libvirt Support
The Svirt project added security hooks into the libvirt library that is used by the
libvirtd daemon. This daemon is used by a number of VM products (such as
KVM, QEMU and Xen) to start their VMs running as guest operating systems.

The VM supplier can implement any security mechanism they require using a product
specific libvirt driver that will load and manage the images. The SELinux
implementation supports four methods of labeling VM images, processes and their

Page 89

Figure 2.19: KVM Environment - KVM provides the hypervisor while
QEMU provides the hardware emulation services for the guest

operating systems. Note that KVM requires CPU virtualisation support.

Hardware

KVM Hypervisor (Linux kernel)

Virtual Machine
Manager

Manages the
images, assigns

security labels, start
and stop VMs etc.

libvirtd

QEMU
libvirt
Driver

VM Guest 1
svirt_t:s0:c1,c2

Linux Guest
operating system

QEMU

VM Guest 2
svirt_t:s0:c7,c8

Windows Guest
operating system

QEMU

http://libvirt.org/drvqemu.html
http://www.redhat.com/f/pdf/rhev/DOC-KVM.pdf

The SELinux Notebook - The Foundations

resources with support from the Reference Policy modules/services/virt.*
loadable module28. To support this labeling, libvirt requires an MCS or MLS
enabled policy as the level entry of the security context is used
(user:role:type:level) .

The link http://libvirt.org/drvqemu.html#securityselinux has details regarding the
QEMU driver and the SELinux confinement modes it supports.

2.21.3 VM Image Labeling

2.21.3.1 Dynamic Labeling

The default mode is where each VM is run under its own dynamically configured
domain and image file therefore isolating the VMs from each other (i.e. every time the
VM is run a different and unique MCS label will be generated to confine each VM to
its own domain). This mode is implemented as follows:

a) An initial context for the process is obtained from the
/etc/selinux/<SELINUXTYPE>/contexts/virtual_domain_context file
(the default is system_u:system_r:svirt_t:s0).

b) An initial context for the image file label is obtained from the
/etc/selinux/<SELINUXTYPE>/contexts/virtual_image_context file.
The default is system_u:system_r:svirt_image_t:s0 that allows
read/write of image files.

c) When the image is used to start the VM, a random MCS level is generated
and added to the process context and the image file context. The process and
image files are then transitioned to the context by the libselinux API
calls setfilecon and setexeccon respectively (see
security_selinux.c in the libvirt source). The following example
shows two running VM sessions each having different labels:

VM Name Object Dynamically assigned security context
Dynamic_VM1 Process system_u:system_r:svirt_t:s0:c585,c813

File system_u:system_r:svirt_image_t:s0:c585,c813
Dynamic_VM2 Process system_u:system_r:svirt_t:s0:c535,c601

File system_u:system_r:svirt_image_t:s0:c535,c601

The running image ls -Z and ps -eZ are as follows, and for completeness
an ls -Z is shown when both VMs have been stopped:

Both VMs running:
ls -Z /var/lib/libvirt/images
system_u:object_r:svirt_image_t:s0:c585,c813 Dynamic_VM1.img
system_u:object_r:svirt_image_t:s0:c535,c601 Dynamic_VM2.img

ps -eZ | grep qemu
system_u:system_r:svirt_t:s0:c585,c813 8707 ? 00:00:44 qemu-system-x86
system_u:system_r:svirt_t:s0:cc535,c601 8796 ? 00:00:37 qemu-system-x86

28 The various images would have been labeled by the virt module installation process (see the
virt.fc module file or the policy file_contexts file libvirt entries). If not, then need to
ensure it is relabeled by the most appropriate SELinux tool.

Page 90

http://libvirt.org/drvqemu.html#securityselinux

The SELinux Notebook - The Foundations

Both VMs stopped (note that the categories are now missing AND
the type has changed from svirt_image_t to virt_image_t):
ls -Z /var/lib/libvirt/images
system_u:object_r:virt_image_t:s0 Dynamic_VM1.img
system_u:object_r:virt_image_t:s0 Dynamic_VM2.img

2.21.3.2 Static Labeling

It is possible to set static labels on each image file, however a consequence of this is
that the image cannot be cloned using the VMM, therefore an image for each VM will
be required. This is the method used to configure VMs on MLS systems as there is a
known label that would define the security level. With this method it is also possible
to configure two or more VMs with the same security context so that they can share
resources.

If using the Virtual Machine Manager GUI, then by default it will start each VM
running as they are built, therefore they need to be stopped and then configured for
static labels, the image file will also need to be relabeled. An example VM
configuration follows where the VM has been created as Static_VM1 using the F-
17 targeted policy in enforcing mode (just so all errors are flagged during the
build):

a) Once the VM has been built, it will need to be stopped from the
Static_VM1 Virtual Machine screen. Display the Security menu
and select selinux as the Model and check the Static check box. The
required security context can then be set; for this example svirt_t has been
chosen as it is a valid context (however it will not run as explained in the text):

Page 91

The SELinux Notebook - The Foundations

This context will be written to the Static_VM1.xml file in the
/etc/libvirt/qemu directory as follows:

<seclabel type='static' model='selinux' relabel='no'>
 <label>system_u:system_r:svirt_t:s0:c1022,c1023</label>
</seclabel>

b) If the VM is now started an error will be shown as follows:

This is because the image file label is incorrect as by default it is labeled
virt_image_t when the VM image is built (and svirt_t does not have
read/write permission for this label):

Page 92

Figure 2.20: Static Configuration

Figure 2.21: Image Start Error

The SELinux Notebook - The Foundations

The default label of the image at build time:
system_u:object_r:virt_image_t:s0 Static_VM1.img

There are a number of ways to fix this, such as adding an allow rule or
changing the image file label. In this example the image file label will be
changed using chcon as follows:

This command is executed from /var/lib/libvirt/images
#
This sets the correct type:
chcon -t svirt_image_t Static_VM1.img

Optionally, the image can also be relabeled so that the [level] is the same
as the process using chcon as follows:

This command is executed from /var/lib/libvirt/images
#
Set the MCS label to match the process (optional step):
chcon -l s0:c1022,c1023 Static_VM1.img

c) Now that the image has been relabeled, the VM can now be started.

The following example shows two static VMs (one is configured for
unconfined_t that is allowed to run under the targeted policy):

VM Name Object Static security context

Static_VM1 Process system_u:system_r:svirt_t:s0:c1022,c1023
File system_u:system_r:svirt_image_t:s0:c1022,c1023

Static_VM2 Process system_u:system_r:unconfined_t:s0:c11,c22
File system_u:system_r:virt_image_t:s0

The running image ls -Z and ps -eZ are as follows, and for completeness an ls
-Z is shown when both VMs have been stopped:

Both VMs running (Note that Static_VM2 did not have file level reset):
ls -Z /var/lib/libvirt/images
system_u:object_r:svirt_image_t:s0:c1022,c1023 Static_VM1.img
system_u:object_r:virt_image_t:s0 Static_VM2.img

ps -eZ | grep qemu
system_u:system_r:svirt_t:s0:c585,c813 6707 ? 00:00:45 qemu-system-x86
system_u:system_r:unconfined_t:s0:c11,c22 6796 ? 00:00:26 qemu-system-x86

Both VMs stopped (note that Static_VM1.img was relabeled svirt_image_t
to enable it to run, however Static_VM2.img is still labeled
virt_image_t and runs okay. This is because the process is run as
unconfined_t that is allowed to use virt_image_t):
system_u:object_r:svirt_image_t:s0:c1022,c1023 Static_VM1.img
system_u:object_r:virt_image_t:s0 Static_VM2.img

Page 93

The SELinux Notebook - The Foundations

2.21.3.3 Share Image

If the disk image has been set to shared, then a dynamically allocated level will be
generated for each VM process instance, however there will be a single instance of
the disk image.

The Virtual Machine Manager can be used to set the image as shareable by checking
the Shareable box as shown in Figure 2.22.

This will set the image (Shareable_VM.xml) resource XML configuration file
located in the /etc/libvirt/qemu directory <disk> contents as follows:

/etc/libvirt/qemu/Shareable_VM.xml:
<disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/var/lib/libvirt/images/Shareable_VM.img'/>
 <target dev='hda' bus='ide'/>
 <shareable/>
 <address type='drive' controller='0' bus='0' unit='0'/>
</disk>

As the two VMs will share the same image, the Shareable_VM service needs to be
cloned and the VM resource name selected was Shareable_VM-clone.

Page 94

Figure 2.22: Setting the Virtual Disk as Shareable

The SELinux Notebook - The Foundations

The resource XML file <disk> contents generated are shown - note that it has the
same source file name as the Shareable_VM.xml above.

/etc/libvirt/qemu/Shareable_VM-clone.xml:
<disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/var/lib/libvirt/images/Shareable_VM.img'/>
 <target dev='hda' bus='ide'/>
 <shareable/>
 <address type='drive' controller='0' bus='0' unit='0'/>
</disk>

With the targeted policy on F-16 the shareable option gave a error when the VMs
were run as follows:

Could not allocate dynamic translator buffer
The audit log contained the following AVC message:

type=AVC msg=audit(1326028680.405:367): avc: denied
{ execmem } for pid=5404 comm="qemu-system-x86"
scontext=system_u:system_r:svirt_t:s0:c121,c746
tcontext=system_u:system_r:svirt_t:s0:c121,c746 tclass=process

To overcome this error, the following module was created and installed by:

cat /var/log/audit/audit.log | audit2allow -M qemu_execmem >
qemu_execmem.te

Once generated, the module needs to be activated by:
semodule -i qemu_execmem.pp

For reference, the module generated by audit2allow is as follows:

module qemu_execmem 1.0;

require {
type svirt_t;
class process execmem;

Page 95

The SELinux Notebook - The Foundations

}
allow svirt_t self:process execmem;

Now that the image has been configured as shareable, the following initialisation
process will take place:

a) An initial context for the process is obtained from the
/etc/selinux/<SELINUXTYPE>/contexts/virtual_domain_context file
(the default is system_u:system_r:svirt_t:s0).

b) An initial context for the image file label is obtained from the
/etc/selinux/<SELINUXTYPE>/contexts/virtual_image_context file.
The default is system_u:system_r:svirt_image_t:s0 that allows
read/write of image files.

c) When the image is used to start the VM a random MCS level is generated and
added to the process context (but not the image file). The process is then
transitioned to the appropriate context by the libselinux API calls
setfilecon and setexeccon respectively. The following example
shows each VM having the same file label but different process labels:

VM Name Object Security context

Shareable_VM Process system_u:system_r:svirt_t:s0:c231,c245
Shareable_VM
-clone

Process system_u:system_r:svirt_t:s0:c695,c894

File system_u:system_r:svirt_image_t:s0

The running image ls -Z and ps -eZ are as follows and for completeness
an ls -Z is shown when both VMs have been stopped:

Both VMs running and sharing same image:
ls -Z /var/lib/libvirt/images
system_u:object_r:svirt_image_t:s0 Shareable_VM.img

but with separate processes:
ps -eZ | grep qemu
system_u:system_r:svirt_t:s0:c231,c254 6748 ? 00:01:17 qemu-system-x86
system_u:system_r:svirt_t:s0:c695,c894 7664 ? 00:00:03 qemu-system-x86

Both VMs stopped (note that the type has remained as svirt_image_t)
ls -Z /var/lib/libvirt/images
system_u:object_r:svirt_image_t:s0 Shareable_VM.img

2.21.3.4 Readonly Image

Changes to qemu means that the readonly option on IDE drives has been dropped
(see http://lists.gnu.org/archive/html/qemu-devel/2011-08/msg00799.html). The
consequences of this is that while the Virtual Machine Manager will allow it to be set,
when running the image a message is generated stating "Can't use a read-only device".
A bug report has been generated asking that libvirt be changed to allow the
security service (i.e. SELinux) to still manage the read-only option and not pass the
readonly=on flag, if set to qemu (see https://bugzilla.redhat.com/show_bug.cgi?
id=732461).

Page 96

https://bugzilla.redhat.com/show_bug.cgi?id=732461
https://bugzilla.redhat.com/show_bug.cgi?id=732461
http://lists.gnu.org/archive/html/qemu-devel/2011-08/msg00799.html

The SELinux Notebook - The Foundations

For reference, the readonly configuration sequence is similar to the shared
option shown above with a dynamically allocated level generated for each VM
process instance. The major differences are that the disk image will be read only by
virtue of the policy setting the image context to virt_content_t (that enforces
read only - see the virt.if module interface file -
read_blk_files_pattern) instead of svirt_image_t (that allows
read/write - rw_blk_files_pattern).

This section will be updated should libvirt be changed.

2.21.4 Xen Support
This is not supported by SELinux in the usual way as it is built into the actual Xen
software as a 'Flask/TE' extension29 for the XSM (Xen Security Module). Also the
Xen implementation has its own built-in policy (xen.te) and supporting definitions
for access vectors, security classes and initial SIDs for the policy. These Flask/TE
components run in Domain 0 as part of the domain management and control
supporting the Virtual Machine Monitor (VMM) as shown in Figure 2.23.

The “How Does Xen Work” [Ref. 22] document describes the basic operation of Xen,
the “Xen Security Modules” [Ref. 23] describes the XSM/Flask implementation, and
the xsm-flask.txt file in the Xen source package describes how SELinux and its
supporting policy is implemented.

However (just to confuse the issue), there is another Xen policy module (also called
xen.te) in the Reference Policy to support the management of images etc. via the
Xen console.

For reference, the Xen policy supports additional policy language statements:
iomemcon, ioportcon, pcidevicecon and pirqcon that are discussed in the
Xen section of SELinux Policy Language.

29 This is a version of the SELinux security server, avc etc. that has been specifically ported for the
Xen implementation.

Page 97

Figure 2.23: Xen Hypervisor - Using XSM and Flask/TE to enforce
policy on the physical I/O resources.

Hardware

Xen Virtual Machine Manager (Hypervisor)

Domain 0
Modified Linux

Kernel to control
Domain U Guests

Flask/TE
Module

Xen Security
Module

Domain U

Guest
Linux

(with SELinux
Enforcement if

required)

Domain U

Guest
Windows

http://www.xen.org/files/xensummit_4/xsm-summit-041707_Coker.pdf
http://www.xen.org/files/Marketing/HowDoesXenWork.pdf

The SELinux Notebook - The Foundations

2.22 X-Windows SELinux Support
The SELinux X-Windows (XSELinux) implementation provides fine grained access
control over the majority of the X-server objects (known as resources) using an X-
Windows extention acting as the object manager (OM). The extension name is
"SELinux".

This Notebook will only give a high level description of the infrastructure based on
Figure 2.24, however the “Application of the Flask Architecture to the X Window
System Server” [Ref. 18] paper has a good overview of how the object manager has
been implemented, although it does not cover areas such as polyinstantiation.

The X-Windows object classes and permissions are listed in the X Windows Object
Classes section.

The XSELinux object manager source can be found in the xorg-x11-server-
1.12.2-2.fc17.src.rpm. in the Xext directory. The Reference Policy
modules have also been updated to enforce policy using the XSELinux object
manager.

Note that if using Fedora 17 with xorg-x11-server-1.12.2-2, the X-server
will not load due the following bug: https://bugs.freedesktop.org/show_bug.cgi?
id=50641 (that also contains a patch to fix the problem).

On Fedora XSELinux is disabled in the targeted policy but enabled on the MLS
policy. This is because Red Hat prefers to use sandboxing with the Xephyr server to
isolate windows, see the Sandbox Services section for details.

2.22.1 Notebook Examples
There are three sample X-widows applications in the source code tarball in the x-
windows directory that use the XSELinux features:

1. A test tool to set and retrieve context information using the XSELinux
functions that form part of the object manager (these are listed in Table 12).
This tool will also allow properties to be created and display window IDs. The
following screen shot shows all the options available:

Page 98

https://bugs.freedesktop.org/show_bug.cgi?id=50641
https://bugs.freedesktop.org/show_bug.cgi?id=50641
http://www.nsa.gov/research/_files/selinux/papers/xorg07-paper.pdf
http://www.nsa.gov/research/_files/selinux/papers/xorg07-paper.pdf

The SELinux Notebook - The Foundations

There is another version of this tool in the ../python-xcb directory that
uses the Python XCB bindings. As these are not distributed by Red Hat there
is a README with instructions on how to build and install xpyb.

2. A simple application to retrieve all the x_context information (there is also
another in libselinux/examples/selabel_x_example.c that is interactive).

3. A sample selection manager for polyinstantiated "PRIMARY" selections with a
demo application and policy module suitable for the F-16 or F-17 targeted
environment. This uses many of the functions listed in Table 12.

2.22.2 Infrastructure Overview
It is important to note that the X-Windows OM operates on the low level window
objects of the X-server. A windows manager (such as Gnome or twm) would then sit
above this, however they (the windows manager or even the lower level Xlib) would
not be aware of the policy being enforced by SELinux. Therefore there can be
situations where X-Windows applications get bitter & twisted at the denial of a
service. This can result in either opening the policy more than desired, or just letting
the application keep aborting, or modifying the application.

Page 99

The SELinux Notebook - The Foundations

Figure 2.24: X-Server and XSELinux Object Manager – Showing the supporting services. The kernel space services are discussed in the
Linux Security Module and SELinux section.

Page 100

Access Vector
Cache (AVC)

X-Client

Xlib

X-Client

Xlib

X-Server
Device Independent Layer (DIX)

--
Device Dependent Layer (DDX)

--
Graphics, Keyboard and Pointer

Hardware

XACE Interface

XACE interfaces
and tables such as:

Function Dispatch
Table and

Resource Table

X-Protocol over
TCP/IP or Streams

XSELinux Object
Manager

(X-Extension)

Initialise extension + Atoms:
_SELINUX_CONTEXT and
_SELINUX_CLIENT_CONTEXT.

Load x_contexts file.

Manage X Object classes,
permissions and SID
allocation.

XSELinuxGet/Set. Functions.

Manage interfaces between the
X-Server, XACE and the
libselinux API.

x_contexts
File

libselinux
Library

Policy
User-space

AVC

Kernel-space

User-space

SELinux
Security
Server

Netlink Linux Security
Module (LSM)

Kernel Resources
and supporting

Object Managers

The SELinux Notebook - The Foundations

Using Figure 2.24, the major components that form the overall XSELinux OM are
(top left to right):

The Policy - The Reference Policy has been updated, however in Fedora the OM
is enabled for mls and disabled for targeted policies via the xserver-
object-manager boolean. Enabling this boolean also initialises the XSELinux
OM extension. Important note - The boolean must be present in any policy and be
set to true, otherwise the object manager will be disabled as the code
specifically checks for the boolean.

libselinux - This library provides the necessary interfaces between the OM,
the SELinux userspace services (e.g. reading configuration information and
providing the AVC), and kernel services (e.g. security server for access decisions
and policy update notification).

x_contexts File - This contains default context configuration information that
is required by the OM for labeling certain objects. The OM reads its contents
using the selabel_lookup(3) function.

XSELinux Object Manager - This is an X-extension for the X-server process
that mediates all access decisions between the the X-server (via the XACE
interface) and the SELinux security server (via libselinux). The OM is
initialised before any X-clients connect to the X-server.

The OM has also added XSELinux functions that are described in Table 12 to
allow contexts to be retrieved and set by userspace SELinux-aware applications.

XACE Interface - This is an 'X Access Control Extension' (XACE) that can be
used by other access control security extensions, not only SELinux. Note that if
other security extensions are linked at the same time, then the X-function will only
succeed if allowed by all the security extensions in the chain.

This interface is defined in the “X Access Control Extension Specification” [Ref.
19]. The specification also defines the hooks available to OMs and how they
should be used. The provision of polyinstantiation services for properties and
selections is also discussed. The XACE interface is a similar service to the LSM
that supports the kernel OMs.

X-server - This is the core X-Windows server process that handles all request and
responses to/from X-clients using the X-protocol. The XSELinux OM is
intercepting these request/responses via XACE and enforcing policy decisions.

X-clients - These connect to the X-server are are typically windows managers
such as Gnome, twm or KDE.

Kernel-Space Services - These are discussed in the Linux Security Module and
SELinux section.

2.22.2.1 Polyinstantiation

The OM / XACE services support polyinstantiation of properties and selections
allowing these to be grouped into different membership areas so that one group does
not know of the exsistance of the others. To implement polyinstantiation the poly_
keyword is used in the x_contexts file for the required selections and properties,
there would then be a corresponding type_member rule in the policy to enforce the

Page 101

http://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.pdf

The SELinux Notebook - The Foundations

separation by computing a new context with either
security_compute_member(3) or avc_compute_member(3).

The source tarball has a simple 'Selection Manager' to show polyinstantiation using
the X-Windows selection30 mechanism.

Note that the current Reference Policy does not implement polyinstantiation, instead
the MLS policy uses mlsconstrain rules to limit the scope of properties and
selections.

2.22.3 Configuration Information
This section covers:

• How to enable/disable the OM X-extension.
• How to determine the OM X-extension opcode.
• How to configure the OM in a specific SELinux enforcement mode.
• The x-contexts configuration file.

2.22.3.1 Enable/Disable the OM from Policy Decisions

The Reference Policy has a xserver_object_manager boolean that
enables/disables the X-server policy module and also stop the object manager
extension from initialising when X-Windows is started. The following command will
enable the boolean, however it will be necessary to reload X-Windows to initialise the
extension (i.e. run the init 3 and then init 5 commands):

setsebool -P xserver_object_manager true

If the boolean is set to false, the x-server log will indicate that "SELinux: Disabled
by boolean". Important note - If the boolean is not present in a policy then the object
manager will always be enabled (therefore if not required then either do not include
the object manager in the X-server build or add the boolean to the policy and set it to
false).

2.22.3.2 Determine OM X-extension Opcode

The object manager is treated as an X-server extension and its major opcode can be
queried using Xlib XQueryExtension function as follows:

/* Get the SELinux Extension opcode */
if (!XQueryExtension (dpy, "SELinux", &opcode, &event, &error)) {

perror ("XSELinux extension not available");
exit (1);

}
else

printf ("XQueryExtension for XSELinux Extension - Opcode: %d
Events: %d Error: %d \n", opcode, event, error);

/* Have XSELinux Object Manager */

30 That uses InterClient Communication (ICC) allowing X-clients to communicate
and exchange information.

Page 102

The SELinux Notebook - The Foundations

2.22.3.3 Configure OM Enforcement Mode

If the X-server object manager needs to be run in a specific SELinux enforcement
mode, then the option may be added to the xorg.conf file (normally in
/etc/X11/xorg.conf.d). The option entries are as follows:

“SELinux mode disabled”
“SELinux mode permissive”
“SELinux mode enforcing”

Note that the entry must be exact otherwise it will be ignored. An example entry is:

Section “Module”
SubSection “extmod”

Option “SELinux mode enforcing”
EndSubSection

EndSection

If there is no entry, the object manager will follow the current SELinux enforcement
mode.

2.22.3.4 The x_contexts File

The x_contexts file contains default context information that is required by the
OM to initialise the service and then label objects as they are created. The policy will
also need to be aware of the context information being used as it will use this to
enforce policy or transition new objects. A typical entry is as follows:

object_type object_name context
selection PRIMARY system_u:object_r:clipboard_xselection_t:s0

or for polyinstantiation support:

object_type object_name context
poly_selection PRIMARY system_u:object_r:clipboard_xselection_t:s0

The object_name can contain '*' for 'any' or '?' for 'substitute'.

The OM uses the selabel functions (such as selabel_lookup(3)) that are a
part of libselinux to fetch the relevant information from the x_contexts file.

The valid object_type entries are client, property, poly_property,
extension, selection, poly_selection and events.

The object_name entries can be any valid X-server resource name that is defined
in the X-server source code and can typically be found in the protocol.txt and
BuiltInAtoms source files (in the dix directory of the xorg-server source
package), or user generated via the Xlib libraries (e.g. XInternAtom).

Notes:

1. The way the XSELinux extension code works (see xselinux_label.c -
SELinuxAtomToSIDLookup) is that non-poly entries are searched for
first, if an entry is not found then it searches for a matching poly entry.

Page 103

The SELinux Notebook - The Foundations

The reason for this behavior is that when operating in a secure environment all
objects would be polyinstantiated unless there are specific exemptions made
for individual objects to make them non-polyinstantiated. There would then be
a 'poly_selection *' or 'poly_property *' at the end of the section.

2. For systems using the Reference Policy all X-clients connecting remotely will
be allocated a security context from the x_contexts file of:

object_type object_name context
client * system_u:object_r:remote_t:s0

A full description of the x_contexts file format is given in the x_contexts File
section.

Page 104

The SELinux Notebook - The Foundations

2.22.4 SELinux Extension Functions
Function Name Minor

Opcode
Parameters Comments

XSELinuxQueryVersion 0 None Returns the XSELinux version. F-17 returns 1.1

XSELinuxSetDeviceCreateContext 1 Context+Len Sets the context for creating a device object (x_device).

XSELinuxGetDeviceCreateContext 2 None Retrieves the context set by XSELinuxSetDeviceCreateContext.

XSELinuxSetDeviceContext 3 DeviceID + Context+Len Sets the context for creating the specified DeviceID object.
XSELinuxGetDeviceContext 4 DeviceID Retrieves the context set by XSELinuxSetDeviceContext.

XSELinuxSetWindowCreateContext 5 Context+Len Set the context for creating a window object (x_window).

XSELinuxGetWindowCreateContext 6 None Retrieves the context set by XSELinuxSetWindowCreateContext.

XSELinuxGetWindowContext 7 WindowID Retrieves the specified WindowID context.

XSELinuxSetPropertyCreateContext 8 Context + Len Sets the context for creating a property object (x_property).

XSELinuxGetPropertyCreateContext 9 None Retrieves the context set by XSELinuxSetPropertyCreateContext.

XSELinuxSetPropertyUseContext 10 Context + Len Sets the context of the property object to be retrieved when polyinstantiation is
being used.

XSELinuxGetPropertyUseContext 11 None Retrieves the property object context set by SELinuxSetPropertyUseContext.

XSELinuxGetPropertyContext 12 WindowID + AtomID Retrieves the context of the property atom object.
XSELinuxGetPropertyDataContext 13 WindowID + AtomID Retrieves the context of the property atom data.
XSELinuxListProperties 14 WindowID Lists the object and data contexts of properties associated with the selected

WindowID.

XSELinuxSetSelectionCreateContext 15 Context+Len Sets the context to be used for creating a selection object.
XSELinuxGetSelectionCreateContext 16 None Retrieves the context set by SELinuxSetSelectionCreateContext.

XSELinuxSetSelectionUseContext 17 Context+Len Sets the context of the selection object to be retrieved when polyinstantiation is
being used. See the XSELinuxListSelections function for an example.

XSELinuxGetSelectionUseContext 18 None Retrieves the selection object context set by SELinuxSetSelectionUseContext.

Page 105

The SELinux Notebook - The Foundations

Function Name Minor
Opcode

Parameters Comments

XSELinuxGetSelectionContext 19 AtomID Retrieves the context of the specified selection atom object.
XSELinuxGetSelectionDataContext 20 AtomID Retrieves the context of the selection data from the current selection owner

(x_application_data object).

XSELinuxListSelections 21 None Lists the selection atom object and data contexts associated with this display. The
main difference in the listings is that when (for example) the PRIMARY selection
atom is polyinstantiated, multiple entries can returned. One has the context of the
atom itself, and one entry for each process (or x-client) that has an active
polyinstantiated entry, for example:

Atom: PRIMARY - label defined in the x_contexts file (this is also for non-poly listing):
Object Context: system_u:object_r:primary_xselection_t
Data Context: system_u:object_r:primary_xselection_t

Atom: PRIMARY - Labels for client 1:
Object Context: system_u:object_r:x_select_paste1_t
Data Context: system_u:object_r:x_select_paste1_t

Atom: PRIMARY - Labels for client 2:
Object Context: system_u:object_r:x_select_paste2_t
Data Context: system_u:object_r:x_select_paste2_t

XSELinuxGetClientContext 22 ResourceID Retrieves the client context of the specified ResourceID.

Table 12: The XSELinux Extension Functions - Supported by the object manager as X-protocol extensions. Note that some functions will
return the default contexts, while others (2, 6, 9, 11, 16, 18) will not return a value unless one has been set the the appropriate function (1, 5, 8,

10, 15, 17) by an SELinux-aware application.

Page 106

The SELinux Notebook - The Foundations

2.23 Sandbox Services
Fedora has support for three types of sandbox services in F-17:

1. Non-GUI sandboxing (sandbox - see
http://danwalsh.livejournal.com/28545.html).

There is also a good use-case with solutions at:
http://opensource.com/education/12/8/harvard-goes-paas-selinux-sandbox that
involves uploading information to web servers and access by staff and
students.

2. GUI sandboxing using the Xephyr (sandbox-X - see
http://danwalsh.livejournal.com/31146.html).

This will allow isolation of X applications via nested Xephyr servers. For
example running:

sandbox -t sandbox_web_t -i /path/to/user/home/dir/.mozilla -W metacity -X firefox

will load firefox in an isolated X sandbox. The -i parameter stops firefox
displaying the 'welcome to Firefox' page at start-up as it will use a copy of the
users current .mozilla directory.

Red Hat use sandbox-X as the preferred alternative to XSELinux when
using the targeted policy, this is because X-clients that get a permission
denied will probably abort as they expect full access to the X-server.

Both of these sandbox services are defined in the sandbox(3) man page and
are available in the policycoreutils package. They make use of
seunshare(8) that allows commands to be run in an alternate home directory,
temp directory or security context. The sandbox.conf(5) file allows the
sandbox name, cpu and memory usage to be configured. There is also a
sandbox.init service that can be run at boot time to set up /var/tmp and
/tmp as private (mount --make-private).

Note that the sandbox services require MCS policy support as a minimum as
categories are used to isolate multiple sandboxes. Issuing the following command
will show this usage:

sandbox id -Z
unconfined_u:unconfined_r:sandbox_t:s0:c421,c945

3. Virtulisation sandboxing of applications using either KVM/qemu or LXC31
(Linux Containers) (virt-sandbox - see
http://people.redhat.com/berrange/fosdem-2012/libvirt-sandbox-fosdem-
2012.pdf that contains a good overview).

This service is available in the libvirt-sandbox package and provides an
API and command line services to start sessions. There is currently limited

31 Linux Containers do not provide a virtual machine, but a virtual environment that has its own
process and network space.

Page 107

http://people.redhat.com/berrange/fosdem-2012/libvirt-sandbox-fosdem-2012.pdf
http://people.redhat.com/berrange/fosdem-2012/libvirt-sandbox-fosdem-2012.pdf
http://danwalsh.livejournal.com/31146.html
http://opensource.com/education/12/8/harvard-goes-paas-selinux-sandbox
http://danwalsh.livejournal.com/28545.html

The SELinux Notebook - The Foundations

policy support for virt-sandbox as it primary aim is for developers to
build services and provide the appropriate policy.

The package is built on Svirt that provides the virtulisation with SELinux
enforcement and KVM/qemu or LXC to provide the virtulisation environment.
If KVM support is not available on the machine (as it requires virtulisation
support in the CPU (Intel-VT or AMD-V extensions)), then LXC is the
alternative to use.

An LXC example:

virt-sandbox -c lxc:/// /bin/sh

To run in enforcing mode, the following policy module was added for the
targeted policy:

module lxc_example 1.0.0;

require {
 type svirt_t, virtd_lxc_t, root_t, bin_t, proc_net_t;
 type cache_home_t, user_home_t, boot_t, user_tmp_t;

 class unix_stream_socket { connectto };
 class chr_file { open read write ioctl getattr setattr };
 class file { read write open getattr entrypoint };
 class process { transition sigchld execmem };
 class filesystem getattr;
}

allow virtd_lxc_t root_t : chr_file { open read write ioctl setattr };
allow virtd_lxc_t root_t : file { write open };
allow virtd_lxc_t svirt_t : process { transition };
allow svirt_t bin_t : file { entrypoint };
allow svirt_t proc_net_t : file { read };
allow svirt_t virtd_lxc_t : unix_stream_socket { connectto };
allow svirt_t virtd_lxc_t : process { sigchld };
allow svirt_t cache_home_t : file { read getattr open };
allow svirt_t proc_net_t : file { getattr open };
allow svirt_t root_t : chr_file { read write ioctl open getattr };
allow svirt_t root_t : filesystem { getattr };
allow svirt_t user_home_t : file { read open };

that was built and installed as follows:

checkmodule -M -m lxc_example.conf -o lxc_example.mod
semodule_package -o lxc_example.pp -m lxc_example.mod
semodule -v -i lxc_example.pp

2.24 SE-PostgreSQL
This section gives an overview of PostgreSQL version 9.1 with the sepgsql
extension to support SELinux labeling. It assumes some basic knowledge of
PostgreSQL that can be found at: http://wiki.postgresql.org/wiki/Main_Page

It is important to note that PostgreSQL from version 9.1 has the necessary
infrastructure to support labeling of database objects via external 'providers'. The
sepgsql extension has been added as the SELinux labeling provider. This is not
installed by default but as an option as outlined in the sections that follow. Because of
these changes the original version 9.0 patches are no longer supported (i.e. the SE-
PostgreSQL database engine is replaced by PostgreSQL database engine 9.1 plus the

Page 108

http://wiki.postgresql.org/wiki/Main_Page
http://selinuxproject.org/page/SVirt

The SELinux Notebook - The Foundations

sepgsql extension). A consequence of this change is that row level labeling is no
longer supported.

The features of sepgsql 9.1 and its setup are covered in the following document:

http://www.postgresql.org/docs/devel/static/sepgsql.html

or if PostgreSQL is already installed:

file:///usr/share/doc/postgresql-9.1.4/html/sepgsql.html

2.24.1 Notebook Examples
The Notebook source tarball contains a number of examples using PostgreSQL /
sepgsql (a.k.a. SE-PostgreSQL). These are located in the sepgsql-9.1 directory
and covers the following:

a) Installing and initialising a simple database that has SELinux security labels
attached to various objects.

b) Selecting data from columns with different labels locally and remotely (using
NetLabel (fallback mode) and Labeled IPSec).

c) Using Apache with thread bounding (mod_selinux) and PostgreSQL
authentication to select data from columns with different labels locally and
remotely (using NetLabel).

d) Building additional sepgsql SELinux functions using libselinux. These
are also tested when using the Apache/PHP web services.

2.24.2 sepgsql Overview
SE-PostgreSQL adds SELinux mandatory access controls (MAC) to database objects
such as tables, columns, views, functions, schemas and sequences. Figure 2.25 shows
a simple database with one table, two columns and three rows, each with their object
class and associated security context (the Internal Tables section shows these entries
for the testdb database from the Notebook tarball example). The database object
classes and permissions are described in Appendix A - Object Classes and
Permissions.

Page 109

file:///usr/share/doc/postgresql-9.1.4/html/sepgsql.html
http://www.postgresql.org/docs/devel/static/sepgsql.html

The SELinux Notebook - The Foundations

database
context = 'unconfined_u:object_r:postgresql_db_t:s0'

This context is inherited from the database directory label - ls -Z /var/lib/pgsql/data

schema (db_schema)
security_label = 'unconfined_u:object_r:sepgsql_schema_t:s10'

table (db_table)
security_label = 'unconfined_u:object_r:sepgsql_table_t:s0:c20'

column 1 (db_column)
security_label =

'unconfined_u:object_r:sep
gsql_table_t:s0:c30'

column 2 (db_column)
security_label =

'unconfined_u:object_r:se
pgsql_table_t:s0:c40'

row 1 (db_tuple)
security_label =

'unconfined_u:object_r:sepg
sql_table_t:s0:c100'

r1:c1 data r1:c2 data

row 2 (db_tuple)
security_label =

'unconfined_u:object_r:sepg
sql_table_t:s0:c110'

r2:c1 data r2:c2 data

row 3 (db_tuple)
security_label =

'unconfined_u:object_r:sepg
sql_table_t:s0:c120'

r3:c1 data r3:c2 data

Figure 2.25: Database Security Context Information - Showing the security
contexts that can be associated to a schema, table and columns. Note that the row

level labeling has been removed from version 9.1.
To use SE-PostgreSQL each GNU / Linux user must have a valid PostgreSQL
database role (not to be confused with an SELinux role). The default installation
automatically adds a user called pgsql with a suitable database role.

If a client is connecting remotely and labeled networking is required, then it is
possible to use IPSec or NetLabel as discussed in the SELinux Networking Support
section (the “Security-Enhanced PostgreSQL Security Wiki” [Ref. 3] also covers
these methods of connectivity with examples).

Using Figure 2.26, the database client application (that could be provided by an API
for Perl/PHP or some other programming language) connects to a database and
executes SQL commands. As the SQL commands are processed by PostgreSQL, each
operation performed on an object is checked by the object manager (OM) to see if the
opration is allowed by the security policy or not.

Page 110

http://wiki.postgresql.org/wiki/SEPostgreSQL_Development

The SELinux Notebook - The Foundations

SE-PostgreSQL supports SELinux services via the libselinux library with AVC
audits being logged into the standard PostgreSQL file as described in the Logging
Security Events section.

2.24.3 Installing SE-PostgreSQL
The http://www.postgresql.org/docs/devel/static/sepgsql.html page contains all the
information required to install PostgreSQL and the sepgsql extension, however this
section will give a short version of the installation on F-16 or F-17 from the Notebook
tarball sepgsql-9.1/README file.

1. Install the following packages:
postgresql
postgresql-libs
postgresql-server
postgresql-contrib - Contains the sepgsql extension.

postgresql-devel - Only required to build the additional functions.

The default policy modules for SE-PostgreSQL are automatically installed
with the targeted policy.

2. As root initialise PostgreSQL:
postgresql-setup initdb

Page 111

Figure 2.26: SE-PostgreSQL Services - The Object Manager checks access
permissions for all objects under its control.

SE-PostgreSQL
Object Manager

(sepgsql extension)

libselinux

Kernel AVC

Database
(filestore) SQL Engine

Security
Server

SELinux
PolicyLSMKernel

Resources

Database Client
(e.g. psql)

Check
Permissions

SQL Query /
Results

http://www.postgresql.org/docs/devel/static/sepgsql.html

The SELinux Notebook - The Foundations

If an error states that the 'Data directory is not empty!' then you have already
built a database service (/var/lib/pgsql/data exists).

3. To automatically load the SELinux sepgsql extension module, the
postgresql.conf file needs to be updated as follows:

vi /var/lib/pgsql/data/postgresql.conf
and change the:

#shared_preload_libraries = ''
entry to read:

shared_preload_libraries = 'sepgsql'
4. Start the PostgreSQL database by:

service postgresql start
5. su to the postgres user and create roles for any database users giving them

superuser rights:
su - postgres
createuser root
createuser

6. Create a testdb database:
createdb testdb

7. Now Crtl\D to exit the postgres user and as root stop the db:
service postgresql stop

8. The database now needs to be initialised to support labeling. This involves
running an SQL script that is supplied in the postgresql-contrib
package (note: user must not be root):

su - postgres
Paste the following in to the terminal session:

for testdb in template0 template1 postgres; do
postgres --single -F -c exit_on_error=true testdb \
</usr/share/pgsql/contrib/sepgsql.sql
done

The /usr/share/pgsql/contrib/sepgsql.sql script adds
sepgsql functions and then runs sepgsql_restorecon(NULL); to
label the database objects.

9. Now Crtl\D to exit the postgres user and as root start the db:
service postgresql start

The testdb database should now be labeled using default contexts from the
/etc/selinux/targeted/contexts/sepgsql_contexts file. The
README file gives further information on initialising the database and reading
columns according the labels set on them.

Page 112

The SELinux Notebook - The Foundations

2.24.4 SECURITY LABEL SQL Command
The 'SECURITY LABEL' SQL command has been added to PostgreSQL to allow
security providers to label or change a label on database objects. The command
format is:

SECURITY LABEL [FOR provider] ON
{
 TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE agg_name (agg_type [, ...]) |
 DATABASE object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN TABLE object_name
 FUNCTION function_name ([[argmode] [argname] argtype
[, ...]]) |
 LARGE OBJECT large_object_oid |
 [PROCEDURAL] LANGUAGE object_name |
 ROLE object_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 TABLESPACE object_name |
 TYPE object_name |
 VIEW object_name
} IS 'label'

The full syntax is defined at http://www.postgresql.org/docs/devel/static/sql-security-
label.html and also in the security_label(7) man page. Some examples taken
from the Notebook tarball are:

--- These set the security label on objects (default provider
--- is SELinux):
SECURITY LABEL ON SCHEMA test_ns IS
'unconfined_u:object_r:sepgsql_schema_t:s0:c10';
SECURITY LABEL ON TABLE test_ns.info IS
'unconfined_u:object_r:sepgsql_table_t:s0:c20';
SECURITY LABEL ON COLUMN test_ns.info.user_name IS
'unconfined_u:object_r:sepgsql_table_t:s0:c30';
SECURITY LABEL ON COLUMN test_ns.info.email_addr IS
'unconfined_u:object_r:sepgsql_table_t:s0:c40';

2.24.5 Additional SQL Functions
The following functions have been added:

sepgsql_getcon() Returns the client security context.

sepgsql_mcstrans_in(text
con)

Translates the readable range of the
context into raw format provided the
mcstransd daemon is running.

sepgsql_mcstrans_out(text
con)

Translates the raw range of the context
into readable format provided the
mcstransd daemon is running.

Page 113

http://www.postgresql.org/docs/devel/static/sql-security-label.html
http://www.postgresql.org/docs/devel/static/sql-security-label.html

The SELinux Notebook - The Foundations

sepgsql_restorecon(text
specfile)

Sets security contexts on all database
objects (must be superuser) according to
the specfile. This is normally used for
initialisation of the database by the
sepgsql.sql script. If the parameter is
NULL, then the default
sepgsql_contexts file is used. See
selabel_db(5) details.

The Notebook tarball contains additional SQL functions for supporting
libselinux functions (e.g. sepgsql_compute_av).

2.24.6 Additional postgresql.conf Entries
The postgresql.conf file supports the following additional entries to enable and
manage SE-PostgreSQL:

1. This entry is mandatory to enable the sepgsql extention to be loaded:

shared_preload_libraries = ‘sepgsql’

2. These entries are optional and default to 'off'. The
'custom_variable_classes' entry must contain 'sepgsql' to enable
these to be configured.

This entry allows sepgsql customised entries:
custom_variable_classes = ‘sepgsql’

These are the possible entries:
This enables sepgsql to always run in permissive mode:
sepgsql.permissive = on

This enables printing of audit messages regardless of
the policy setting:
sepgsql.debug_audit = on

To view these settings the SHOW SQL statement can be used (psql output
shown):

SHOW sepgsql.permissive;
 sepgsql.permissive

 on
 (1 row)

SHOW sepgsql.debug_audit;
 sepgsql.debug_audit

 on
 (1 row)

Page 114

The SELinux Notebook - The Foundations

2.24.7 Logging Security Events
SE-PostgreSQL manages its own AVC audit entries in the standard PostgreSQL log
normally located within the /var/lib/pgsql/data/pg_log directory and by
default only errors are logged (Note that there are no SE-PostgreSQL AVC entries
added to the standard audit.log). The 'sepgsql.debug_audit = on' can be
set to log all audit events.

2.24.8 Internal Tables
To support the overall database operation PostgreSQL has internal tables in the
system catalog that hold information relating to user databases, tables etc. This section
will only highlight the pg_seclabel table that holds the security label and other
references. The pg_seclabel is described in Table 13 that has been taken from
http://www.postgresql.org/docs/9.1/static/catalog-pg-seclabel.html.

Name Type References Comment

objoid oid any OID column The OID of the object this security label pertains to.

classoid oid pg_class.oid The OID of the system catalog this object appears in.

objsubid int4 For a security label on a table column, this is the column
number (the objoid and classoid refer to the table
itself). For all other objects this column is zero.

provider text The label provider associated with this label. Currently
only SELinux is supported.

label text The security label applied to this object.

Table 13: pg_seclabel Table Columns

These are entries taken from a 'SELECT * FROM pg_seclabel;' command that
refer to the example testdb database built using the Notebook tarball samples:

 objoid | classoid | objsubid | provider | label
--------+----------+----------+----------+--
 16390 | 2615 | 0 | selinux | unconfined_u:object_r:sepgsql_schema_t:s0:c10
 16391 | 1259 | 0 | selinux | unconfined_u:object_r:sepgsql_table_t:s0:c20
 16391 | 1259 | 1 | selinux | unconfined_u:object_r:sepgsql_table_t:s0:c30
 16391 | 1259 | 2 | selinux | unconfined_u:object_r:sepgsql_table_t:s0:c40

The first entry is the schema, the second entry is the table itself, and the third and
fourth entries are columns 1 and 2.

There is also a built-in 'view' to show additional detail regarding security labels called
'pg_seclabels'. Using 'SELECT * FROM pg_seclabels;' command, the
entries shown above become:

objoid | classoid | objsubid | objtype | objnamespace | objname | provider | label
-------+----------+----------+-----------+--------------+------------------------+----------+--
 16390 | 2615 | 0 | schema | 16390 | test_ns | selinux | unconfined_u:object_r:sepgsql_schema_t:s0:c10
 16391 | 1259 | 0 | table | 16390 | test_ns.info | selinux | unconfined_u:object_r:sepgsql_table_t:s0:c20
 16391 | 1259 | 1 | column | 16390 | test_ns.info.user_name | selinux | unconfined_u:object_r:sepgsql_table_t:s0:c30
 16391 | 1259 | 2 | column | 16390 | test_ns.info.email_addr| selinux | unconfined_u:object_r:sepgsql_table_t:s0:c40

Page 115

http://www.postgresql.org/docs/9.1/static/catalog-pg-class.html
http://www.postgresql.org/docs/9.1/static/catalog-pg-seclabel.html

The SELinux Notebook - The Foundations

2.25 Apache SELinux Support
Apache web servers are supported by SELinux using the Apache policy modules from
the Reference Policy (httpd modules), however there is no specific Apache object
manger. There is though an SELinux-aware shared library and policy that will allow
finer grained access control when using Apache with threads. The additional Apache
module is called mod_selinux.so and has a supporting policy module called
mod_selinux.pp.

The mod_selinux policy module makes use of the typebounds Statement that
was introduced into version 24 of the policy (requires a minimum kernel of 2.6.28).
mod_selinux allows threads in a multi-threaded application (such as Apache) to be
bound within a defined set of permissions in that the child domain cannot have greater
permissions than the parent domain.

These components are known as 'Apache / SELinux Plus' and are described in the
sections that follow, however a full description including configuration details is
available from:

http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus

The objective of these Apache add-on services is to achieve a fully SELinux-aware
web stack (although not there yet). For example, currently the LAPP32 (Linux,
Apache, PostgreSQL, PHP / Perl / Python) stack has the following support:

L Linux has SELinux support.

A Apache has partial SELinux support using the 'Apache
SELinux Plus' module.

P PostgreSQL has SELinux support using SE-PostgreSQL.

P PHP / Perl / Python are not currently SELinux-aware,
however PHP and Python do have support for libselinux
functions in packages: PHP - with the php-pecl-
selinux package, Python - with the libselinux-
python package.

The “A secure web application platform powered by SELinux” [Ref. 20] document
gives a good overview of the LAPP architecture.

2.25.1 mod_selinux Overview
What the mod_selinux module achieves is to allow a web application (or a 'request
handler') to be launched by Apache with a security context based on policy rather than
that of the web server process itself, for example:

1. A user sends an HTTP request to Apache that requires the services of a web
application (Apache may or may not apply HTTP authentication).

2. Apache receives the request and launches the web application instance to
perform the task:

32 This is similar to the LAMP (Linux, Apache, MySQL, PHP/Perl/Python) stack, however MySQL
is not SELinux-aware.

Page 116

http://sepgsql.googlecode.com/files/LCA20090120-lapp-selinux.pdf
http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus

The SELinux Notebook - The Foundations

a) Without mod_selinux enabled the web applications security context
is identical to the Apache web server process, it is therefore not
possible to restrict it privileges.

b) With mod_selinux enabled, the web application is launched with
the security context defined in the mod_selinux.conf file
(selinuxDomainVal <security_context> entry33). It is also
possible to restrict its privileges as described in the Bounds Overview
section.

3. The web application exits, handing control back to the web server that replies
with the HTTP response.

2.25.2 Bounds Overview
Because multiple threads share the same memory segment, SELinux was unable to
check the information flows between these different threads when using setcon(3)
in pre 2.6.28 kernels. This meant that if a thread (the parent) should launch another
thread (a child) with a different security context, SELinux could not enforce the
different permissions.

To resolve this issue the typebounds statement was introduced with kernel support
in 2.6.28 that stops a child thread (the 'bounded domain') having greater privileges
than the parent thread (the 'bounding domain') i.e. the child thread must have equal or
less permissions than the parent.

For example the following typebounds statement and allow rules:

parent | child
domain | domain
typebounds httpd_t httpd_child_t;

allow httpd_t etc_t : file { getattr read };
allow httpd_child_t etc_t : file { read write };

State that the parent domain (httpd_t) has file : { getattr read }
permissions. However the child domain (httpd_child_t) has been given
file : { read write }. At run-time, this would not be allowed by the kernel
because the parent does not have write permission, thus ensuring the child domain
will always have equal or less privileges than the parent.

When setcon(3) is used to set a different context on a new thread without an
associated typebounds policy statement, then the call will return 'Operation not
permitted' and an SELINUX_ERR entry will be added to the audit log stating
'op=security_bounded_transition result=denied' with the old and
new context strings.

Should there be a valid typebounds policy statement and the child domain
exercises a privilege greater that that of the parent domain, the operation will be
denied and an SELINUX_ERR entry will be added to the audit log stating

33 It is also possible to obtain the domain from a PostgreSQL table (this is how the demo in the
Notebook tarball obtains the context).

Page 117

The SELinux Notebook - The Foundations

'op=security_compute_av reason=bounds' with the context strings and
the denied class and permissions.

2.25.2.1 Notebook Examples

The Notebook source tarball contains two demonstrations using setcon(3) with
threads and how the typebounds statement is used to allow a thread to be executed.
These are located in the libselinux/examples directory and are:

a) setcon_thread1_example.c - this example calls setcon in the main
process loop but also starts a thread. If the setcon_example.conf policy
module has been been loaded and a context of
"unconfined_u:unconfined_r:user_t:s0" selected, then an error message
should be displayed as follows:

setcon_raw - ERROR: Operation not permitted
This is because the setcon function cannot be run in a threaded environment
without a typebounds statement. Now load the
setcon_thread_example.conf policy module and then re-run the
example, it should now complete without error.

b) setcon_thread2_example.c - this functions as example 1, however it
calls setcon from a thread.

Page 118

The SELinux Notebook - The Foundations

3. SELinux Configuration Files

3.1 Introduction
This section explains each SELinux configuration file with its format, example
content and where applicable, any supporting SELinux commands or libselinux
library API function names.

Where configuration files have specific man pages, these are noted by adding the man
page section (e.g. semanage.config(5)).

This Notebook classifies the types of configuration file used in SELinux as follows:

1. Global Configuration files that affect the active policy and their supporting
SELinux-aware applications, utilities or commands. These can be located in
/etc/selinux or other places depending on the application. This
Notebook will only refer to the commonly used configuration files.

2. Files specific to a named policy configuration. These are located at
/etc/selinux/<SELINUXTYPE> for the run time configuration and
/var/lib/selinux/<SELINUXTYPE> for the run time policy store
(although on some systems the policy store files may still be located at
/etc/selinux/<SELINUXTYPE>/modules).

These two areas are described as follows:

a. The Policy Store Configuration files are ‘private’34 and managed by
the semanage(8) and semodule(8) commands35. These are used
to build the majority of the Policy Configuration files.

b. The Policy Configuration files that are used when the policy is
activated.

However note that there can be multiple named policy configuration areas on a
system.

3. SELinux Kernel Configuration files located under the /sys/fs/selinux
directory and reflect the current configuration of SELinux and the active
policy. This area is used extensively by the libselinux library for
userspace object managers and other SELinux-aware applications. These files
and directories should not be updated by users (the majority are read only
anyway), however they can be read to check various configuration parameters.

When these configuration files are used to configure a security context with a policy
that supports MCS / MLS, then the appropriate level or range should be added
(generally an object like a file has a single level, and process (a subject) has a
single level or a range, although directories can have a range if they support
polyinstantiation).

34 They should NOT be edited as together they describe the ‘policy’.
35 The system-config-selinux GUI (supplied in the polycoreutils-gui rpm) can also

be used to manage users, booleans and the general configuration of SELinux as it calls
semanage(8), however it does not manage all that the semanage command can (it also gets
bitter & twisted if there are no MCS/MLS labels on some operations).

Page 119

The SELinux Notebook - The Foundations

3.2 Global Configuration Files
Listed in the sections that follow are the common configuration files used by SELinux
and are therefore not policy specific.

3.2.1 /etc/selinux/config File
If this file is missing or corrupt no SELinux policy will be loaded (i.e. SELinux is
disabled). The file has a man page called selinux_config(5), this is because
‘config’ has already been taken. The config file controls the state of SELinux using
the following parameters:

SELINUX=enforcing|permissive|disabled
SELINUXTYPE=policy_name
SETLOCALDEFS=0|1
REQUIREUSERS=0|1
AUTORELABEL=0|1

Where:
SELINUX This entry can contain one of three values:

enforcing
SELinux security policy is enforced.

permissive
SELinux logs warnings (see the Auditing
SELinux Events section) instead of enforcing the
policy (i.e. the action is allowed to proceed).

disabled
No SELinux policy is loaded.

SELINUXTYPE The policy_name is used as the directory name
where the active policy and its configuration files will
be located. The system will then use this information to
locate and load the policy contained within this
directory structure.

The policy directory must be located at:
/etc/selinux/<policy_name>/

SETLOCALDEFS This optional field should be set to 0 (or the entry
removed) as the policy store management
infrastructure (semanage(8) / semodule(8)) is
now used.

If set to 1, then init(8) and load_policy(8)
will read the local customisation for booleans and
users.

Page 120

The SELinux Notebook - The Foundations

REQUIRESEUSERS This optional field can be used to fail a login if there is
no matching or default entry in the seusers file or if
the file is missing.

It is checked by the libselinux function
getseuserbyname(3) that is used by SELinux-
aware login applications such as PAM(8).

If it is set to 0 or the entry missing:

getseuserbyname(3) will return the GNU /
Linux user name as the SELinux user.

If it is set to 1:

getseuserbyname(3) will fail.
AUTORELABEL This is an optional field. If set to ‘0’ and there is a file

called .autorelabel in the root directory, then on a
reboot, the loader will drop to a shell where a root
logon is required. An administrator can then manually
relabel the file system.

If set to ‘1’ or the parameter name is not used (the
default) there is no login for manual relabeling,
however should the /.autorelabel file exist, then
the file system will be automatically relabeled using
fixfiles -F restore.

In both cases the /.autorelabel file will be
removed so the relabel is not done again.

Example config file contents are:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
#
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

3.2.2 /etc/selinux/semanage.conf File
The semanage.config(5) file controls the configuration and actions of the
semanage(8) and semodule(8) set of commands using the following
parameters:

module-store = method
policy-version = policy_version
expand-check = 0|1

Page 121

The SELinux Notebook - The Foundations

file-mode = mode
save-previous = true|false
save-linked = true|false
disable-genhomedircon = true|false
handle-unknown = allow|deny|reject
bzip-blocksize = 0|1..9
bzip-small true|false
usepasswd = true|false
ignoredirs dir [;dir] ...
target-platform = selinux | xen
mls = true|false

[verify kernel]
path = <application_to_run>
args = <arguments>
[end]

Where:
module-store The method can be one of four options:

direct libsemanage will write
directly to a module store. This
is the default value.

source libsemanage manipulates a
source SELinux policy.

/foo/bar Write via a policy management
server, whose named socket is
at /foo/bar. The path must
begin with a ‘/’.

foo.com:4242 Establish a TCP connection to a
remote policy management
server at foo.com. If there is a
colon then the remainder is
interpreted as a port number;
otherwise default to port 4242.

policy-version This optional entry can contain a policy version
number, however it is normally commented out as it
then defaults to that supported by the system.

expand-check This optional entry controls whether hierarchy
checking on module expansion is enabled (1) or
disabled (0). The default is 0.

It is also required to detect the presence of policy
rules that are to be excluded with neverallow
rules.

file-mode This optional entry allows the file permissions to be
set on runtime policy files. The format is the same as
the mode parameter of the chmod command and

Page 122

The SELinux Notebook - The Foundations

defaults to 0644 if not present.
save-previous This optional entry controls whether the previous

module directory is saved (TRUE) after a successful
commit to the policy store. The default is to delete the
previous version (FALSE).

save-linked This optional entry controls whether the previously
linked module is saved (TRUE) after a successful
commit to the policy store. Note that this option will
create a base.linked file in the module policy
store.

The default is to delete the previous module (FALSE).
disable-
genhomedircon

This optional entry controls whether the embedded
genhomedircon function is run when using the
semanage(8) command. The default is FALSE.

handle-unknown This optional entry controls the kernel behaviour for
handling permissions defined in the kernel but
missing from the policy (that are declared at the start
of the base.conf (loadable policy) or
policy.conf (monolithic policy)).

The options are: allow the permission, reject by
not loading the policy or deny the permission. The
default is deny. See the SELinux Filesystem section
for how these are reported in /selinux.

Note: to activate any change, the base policy needs to
be rebuilt with the semodule –B command.

bzip-blocksize This optional entry determines whether the modules
are compressed or not with bzip. If the entry is 0, then
no compression will be used (this is required with
tools such as sechecker and apol). This can also
be set to a value between 1 and 9 that will set the
block size used for compression (bzip will multiply
this by 100,000, so '9' is faster but uses more
memory).

bzip-small When this optional entry is set to TRUE the memory
usage is reduced for compression and decompression
(the bzip -s or --small option). If FALSE or no
entry present, then does not try to reduce memory
requirements.

usepasswd When this optional entry is set to TRUE semanage
will scan all password records for home directories
and set up their labels correctly.

If set to FALSE (the default if no entry present), then
only the /home directory will be automatically re-

Page 123

The SELinux Notebook - The Foundations

labeled.
ignoredirs With a list of directories to ignore (separated by ';')

when setting up users home directories. This is used
by some distributions to stop labeling /root as a
home directory.

target-platform Build a platform for SELinux (selinux) or XEN
(xen), as XEN has additional policy statements. The
default is selinux. This was added for the CIL
compiler.

mls Build policy as MLS/MCS (true) or non-MLS
(false). The default is false. This was added for
the CIL compiler.

[verify kernel] This starts an additional set of entries that can be used
to validate a policy with an external application
during the build process. The validation process takes
place before the policy is allowed to be inserted into
the store with the SELinux Project web site showing a
worked example at:

http://selinuxproject.org/page/PolicyValidate

The entries required for this option are as follows:

[verify kernel]
path = <application_to_run>
args = <arguments>
[end]

Example semanage.config file contents are:

/etc/selinux/semanage.conf
module-store = direct
expand-check = 0

[verify kernel]
path = /usr/local/bin/validate
args = $@
[end]

3.2.3 /etc/selinux/restorecond.conf and restorecond-
user.conf Files
The restorecond.conf file contains a list of files that may be created by
applications with an incorrect security context. The restorecond(8) daemon will
then watch for their creation and automatically correct their security context to that

Page 124

http://selinuxproject.org/page/PolicyValidate

The SELinux Notebook - The Foundations

specified by the active policy file context configuration files36 (located in the
/etc/selinux/<policy_name>/contexts/files directory).

Each line of the file contains the full path of a file or directory. Entries that start with
a tilde (~) will be expanded to watch for files in users home directories (e.g.
~/public_html would cause the daemon to listen for changes to public_html
in all logged on users home directories).

Note that it is possible to run restorecond in a user session using the -u option
(see restorecond(8)). This requires a restorecond-user.conf file to be
installed as shown in the examples below.

Example restorecond.conf file contents are:

/etc/selinux/restorecond.conf
/etc/services
/etc/resolv.conf
/etc/samba/secrets.tdb
/etc/mtab
/var/run/utmp
/var/log/wtmp

Example restorecond-user.conf file contents are:

/etc/selinux/restorecond-user.conf
This entry expands to listen for all files created for all
logged in users within their home directories:
~/*
~/public_html/*

3.2.4 /etc/selinux/newrole_pam.conf
The optional newrole_pam.conf file is used by newrole(1) and maps
applications or commands to PAM(8) configuration files. Each line contains the
executable file name followed by the name of a pam configuration file that exists in
/etc/pam.d.

3.2.5 /etc/sestatus.conf File
The sestatus.conf(5) file is used by the sestatus(8) command to list files
and processes whose security context should be displayed when the –v flag is used
(sestatus –v).

The file has the following parameters:

[files]
List of files to display context

[process]

36 The daemon uses functions in libselinux such as matchpathcon(3) to manage the context
updates.

Page 125

The SELinux Notebook - The Foundations

 List of processes to display context

Example sestatus.conf file contents are:

/etc/sestatus.conf
[files]
/etc/passwd
/etc/shadow
/bin/bash
/bin/login
/bin/sh
/sbin/agetty
/sbin/init
/sbin/mingetty
/usr/sbin/sshd
/lib/libc.so.6
/lib/ld-linux.so.2
/lib/ld.so.1

[process]
/sbin/mingetty
/sbin/agetty
/usr/sbin/sshd

3.2.6 /etc/security/sepermit.conf File
The sepermit.conf(5) file is used by the pam_sepermit.so module to
allow or deny a user login depending on whether SELinux is enforcing the policy or
not. An example use of this facility is the Red Hat kiosk policy where a terminal can
be set up with a guest user that does not require a password, but can only log in if
SELinux is in enforcing mode.

The entry is added to the appropriate /etc/pam.d configuration file, with the
example shown being the /etc/pam.d/gdm file (the PAM Login Process section
describes PAM in more detail):

#%PAM-1.0
auth [success=done ignore=ignore default=bad] pam_selinux_permit.so
auth required pam_succeed_if.so user != root quiet
auth required pam_env.so
auth substack system-auth
auth optional pam_gnome_keyring.so
account required pam_nologin.so
account include system-auth
password include system-auth
session required pam_selinux.so close
session required pam_loginuid.so
session optional pam_console.so
session required pam_selinux.so open
session optional pam_keyinit.so force revoke
session required pam_namespace.so
session optional pam_gnome_keyring.so auto_start
session include system-auth

The usage is described in pam_sepermit(5), with the following example that
describes the configuration:

Page 126

The SELinux Notebook - The Foundations

/etc/security/sepermit.conf
#
Each line contains either:
- an user name
- a group name, with @group syntax
- a SELinux user name, with %seuser syntax

Each line can contain optional arguments separated by :
The possible arguments are:
exclusive - only single login session will be allowed for
the user and the user's processes will be killed on logout
#
ignore - The module will never return PAM_SUCCESS status
for the user.

An example entry for ‘kiosk mode’:
xguest:exclusive

3.3 Policy Store Configuration Files
Because there can be multiple policy stores on a system, each file discussed in this
section is relative to the policy name as follows:

/var/lib/selinux/<policy_name>
The Policy Store files in the /var/lib/selinux/<policy_name>/modules
area are either installed, updated or built by the semodule(8) and semanage(8)
commands, and as a part of the process, relevant files are copied to the Policy
Configuration files area.

The files present in each <policy_name> policy store will vary from policy to
policy as different items could be configured for each one.

Generally if a file has the extension ‘.local’, then it has been generated by
semanage and used to update the binary policy located at
/etc/selinux/<policy_name>/policy.

All files can have comments inserted where each line must have the ‘#’ symbol to
indicate the start of a comment.

3.3.1 modules/ Files
The policy store has two lock files that are used by libsemanage for managing the
store. Their format is not relevant to policy construction:

semanage.read.LOCK
semanage.trans.LOCK

3.3.2 modules/active/base.pp File
This is the packaged base policy that contains the mandatory modules and policy
components such as object classes, permission declarations and initial SIDs.

Page 127

The SELinux Notebook - The Foundations

3.3.3 modules/active/base.linked File
This is only present if the save-linked is set to TRUE as described in the
/etc/selinux/semanage.conf section. It contains the modules that have been
linked using the semodule_link(8) command.

3.3.4 modules/active/commit_num File
This is a binary file used by libsemanage for managing updates to the store. The
format is not relevant to policy construction.

3.3.5 modules/active/file_contexts.template File
This contains a copy all the modules ‘Labeling Policy File’ entries (e.g. the
<module_name>.fc files) that have been extracted from the base.pp and the
loadable modules in the modules/active/modules directory.

The entries in the file_contexts.template file are then used to build the
following files:

1. homedir_template file that will be used to produce the
file_contexts.homedirs file which will then become the policies
./contexts/files/file_contexts.homedirs file.

2. file_contexts file that will become the policies
./contexts/files/file_contexts file.

The way these two files are built is as follows (and shown in Figure 3.1):

homedir_template - Any line in the file_contexts.template file
that has the keywords HOME_ROOT or HOME_DIR are extracted and added to the
homedir_template file. This is because these keywords are used to identify
entries that are associated to a users home directory area. These lines can also
have the ROLE keyword declared.

The homedir_template file will then be used by genhomedircon(8)37 to
generate individual SELinux user entries in the file_contexts.homedirs
file as discussed in the ./modules/active/file_contexts.homedirs
section.

file_contexts - All other lines are extracted and added to the
file_contexts file as they are files not associated to a users home directory.

37 The genhomedircon command has now been built into the libsemanage library as a
function to build the file_contexts.homedirs file via semanage(8).

Page 128

The SELinux Notebook - The Foundations

Figure 3.1: File Context Configuration Files - The two files copied to the policy
area will be used by the file labeling utilities to relabel files.

The format of the file_contexts.template file is as follows:

Each line within the file consists of either type of entry:

pathname_regexp opt_security_context

Or

pathname_regexp file_type opt_security_context

Where:
pathname_regexp An entry that defines the pathname that may be

in the form of a regular expression.

The metacharacters ‘^’ (match beginning of line)
and ‘$’ (match end of line) are automatically
added to the expression by the routines that
process this file, however they can be over-
ridden by using ‘.*’ at either the beginning or
end of the expression (see the example
file_contexts files below).

There are also keywords of HOME_ROOT,
HOME_DIR, ROLE and USER that are used by
file labeling commands (see the keyword
definitions below and the
./modules/active/homedir_template
file section for their usage).

file_type The file_type options are:

Page 129

Policy .fc files from
Modules and Base

Are used to build the file:
file_contexts.template

Whose contents are used
to build the file:

file_contexts

Whose contents are used
to build the file:

homedir_template

Whose contents are used to build
the file:

file_contexts.homedirs

genhomedircon

file_contexts

file_contexts.
homedirs

/etc/selinux/
<policy_name>/
contexts/files
T hese files are used by

file labeling ut ilit ies
(setfiles,
fixfiles &
restorecon)

/etc/selinux/
<policy_name>/
modules/active

These files are used by the
semanage and semodule

command set.

The SELinux Notebook - The Foundations

‘-b’ - Block Device ‘-c’ - Character Device

‘-d’ - Directory ‘-p’ - Named Pipe

‘-l’ - Symbolic Link ‘-s’ - Socket

‘--’ - Ordinary file

opt_security_context This entry can be either:

a. The security context, including the MLS /
MCS level or range if applicable that
will be assigned to the file.

b. A value of <<none>> can be used to
indicate that the matching files should not
be re-labeled.

Keywords that can be in the file_contexts.template file are:

HOME_ROOT This keyword is replaced by the GNU / Linux users root home
directory, normally ‘/home’ is the default.

HOME_DIR This keyword is replaced by the GNU / Linux users home
directory, normally ‘/home/’ is the default.

ROLE This keyword is replaced by the ‘prefix’ entry from the
users_extra configuration file that corresponds to the
SELinux users user id. Example users_extra configuration
file entries are:

user user_u prefix user;
user staff_u prefix staff;
user group1_u prefix group1;

It is used for files and directories within the users home directory
area when relabeling takes place to allow the domain context to be
based on a specific role (or any identifier !!) to allow easier
identification in log files.

It can be added by the semanage user command as follows:

Add prefix for SELinux user:
semanage user –a –R staff_r –P group1 group1_u

Add login user:
semanage login –a –s group1_u rch

The usage is similar to the Reference Policy
‘per_role_template’ (<param name="userdomain_prefix">) that
is an optional component of the external interface file (see the
ftp.if or ssh.if files in the Reference Policy source).

USER This keyword will be replaced by the users GNU / Linux user id.

Page 130

The SELinux Notebook - The Foundations

Example file_contexts.template contents:

./modules/active/file_contexts.template - These sample entries
have been taken from the Reference Policy and show the
HOME_DIR, HOME_ROOT keywords whose lines will be extracted and
added to the homedir_template file that is used to manage
user home directory entries. The USER keyword will be replaced
by the file labeling utilities with the corresponding GNU /
Linux user id. The ROLE keyword will be replaced by the prefix
assigned to the SELinux seuser_id taken from the users_extra
file.

/.* system_u:object_r:default_t
/a?quota\.(user|group) -- system_u:object_r:quota_db_t
/xen(/.*)? system_u:object_r:xen_image_t
/dev/mcdx? -b system_u:object_r:removable_device_t
HOME_DIR/.+ system_u:object_r:user_home_t
/var/log/.* system_u:object_r:var_log_t
/tmp/gconfd-USER/.* -- system_u:object_r:gconf_tmp_t
/var/log/sxid\.log.* -- system_u:object_r:sxid_log_t
/var/log/messages[^/]* system_u:object_r:var_log_t
/var/run/wnn-unix(/.*) system_u:object_r:canna_var_run_t
HOME_DIR/\.ircmotd -- system_u:object_r:ROLE_irc_home_t
HOME_ROOT/lost\+found/.* <<none>>
HOME_DIR/\.config/gtk-.* system_u:object_r:gnome_home_t

3.3.6 modules/active/file_contexts File
This file becomes the policies ./contexts/files/file_contexts file and is
built from entries in the ./modules/active/file_contexts.template
file as explained above and shown in Figure 3.1. It is then used by the file labeling
utilities to ensure that files and directories are labeled according to the policy.

The format of the file_contexts file is the same as the
./modules/active/file_contexts.template file.

The USER keyword is replaced by the users GNU / Linux user id when the file
labeling utilities are run.

Example file_contexts contents:

./modules/active/file_contexts - These sample entries have
been taken from the Reference Policy and show the USER keyword
that will be replaced by the users GNU / Linux user id when
the file labeling utilities are run.
The other keywords HOME_DIR, HOME_ROOT and ROLE have been
extracted and put in the homedir_template file.

/.* system_u:object_r:default_t
/a?quota\.(user|group) -- system_u:object_r:quota_db_t
/xen(/.*)? system_u:object_r:xen_image_t
/dev/mcdx? -b system_u:object_r:removable_device_t
/var/log/.* system_u:object_r:var_log_t
/tmp/gconfd-USER/.* -- system_u:object_r:gconf_tmp_t
/var/log/sxid\.log.* -- system_u:object_r:sxid_log_t
/var/log/messages[^/]* system_u:object_r:var_log_t
/var/run/wnn-unix(/.*) system_u:object_r:canna_var_run_t

Page 131

The SELinux Notebook - The Foundations

./contexts/files/file_contexts – Sample entries taken from the
MLS reference policy.

Notes:
1) The fixed_disk_device_t is labeled SystemHigh (s15:c0.c255)
as it needs to be trusted. Also some logs and configuration
files are labeled SystemHigh as they contain sensitive
information used by trusted applications.
#
2) Some directories (e.g. /tmp) are labeled
SystemLow-SystemHigh (s0-s15:c0.c255) as they will
support polyinstantiated directories.
/.* system_u:object_r:default_t:s0
/a?quota\.(user|group) -- system_u:object_r:quota_db_t:s0
/mnt(/[^/]*) -l system_u:object_r:mnt_t:s0
/mnt/[^/]*/.* <<none>>
/dev/.*mouse.* -c system_u:object_r:mouse_device_t:s0
/dev/.*tty[^/]* -c system_u:object_r:tty_device_t:s0
/dev/[shmx]d[^/]* -b system_u:object_r:fixed_disk_device_t:s15:c0.c255
/var/[xgk]dm(/.*)? system_u:object_r:xserver_log_t:s0
/dev/(raw/)?rawctl -c system_u:object_r:fixed_disk_device_t:s15:c0.c255
/tmp -d system_u:object_r:tmp_t:s0-s15:c0.c255
/dev/pts -d system_u:object_r:devpts_t:s0-s15:c0.c255
/var/log -d system_u:object_r:var_log_t:s0-s15:c0.c255
/var/tmp -d system_u:object_r:tmp_t:s0-s15:c0.c255
/var/run -d system_u:object_r:var_run_t:s0-s15:c0.c255
/usr/tmp -d system_u:object_r:tmp_t:s0-s15:c0.c255

3.3.7 modules/active/homedir_template File
This file is built from entries in the file_contexts.template file (as shown in
Figure 3.1) and explained in the
./modules/active/file_contexts.template section.

The file is used by genhomedircon, semanage login or semanage user to
generate individual user entries in the file_contexts.homedirs file.

The homedir_template file has the same per line format as the
./modules/active/file_contexts.template file.

Example file contents:

./modules/active/homedir_template - These sample entries have
been taken from the Reference Policy and show the
HOME_DIR, HOME_ROOT and ROLE keywords that are used to manage
users home directories:

HOME_DIR/.+ system_u:object_r:user_home_t
HOME_DIR/\.ircmotd -- system_u:object_r:ROLE_irc_home_t
HOME_ROOT/lost\+found/.* <<none>>
HOME_DIR/\.config/gtk-.* system_u:object_r:gnome_home_t

Page 132

The SELinux Notebook - The Foundations

3.3.8 modules/active/file_contexts.homedirs File
This file becomes the policies
./contexts/files/file_contexts.homedirs file when building policy
as shown in Figure 3.1. It is then used by the file labeling utilities to ensure that users
home directory areas are labeled according to the policy.

The file can be built by the genhomedircon command (that just calls
/usr/sin/semodule –Bn) or if using semanage with user or login options
to manage users, where it is called automatically as it is now a libsepol library
function.

The file_contexts.homedirs file has the same per line format as the
./modules/active/file_contexts.template file, however the
HOME_DIR, ROOT_DIR and ROLE keywords will be replaced as explained in the
keyword definitions section above. Note that the ROLE keyword will only be replaced
for those valid types within the policy (for example if staff_irc_home_t cannot
be found in the policy it will be silently dropped from the
file_context.homedirs when being built True?.

Example file_contexts.homedirs contents:

./modules/active/file_contexts.homedirs - These sample entries
have been taken from the Reference Policy and show that
the HOME_DIR, HOME_ROOT and ROLE keywords have been replaced
by entries as explained above.
#
User-specific file contexts, generated via libsemanage
use semanage command to manage system users to change the file_context
#
Home Context for user user_u
/home/.+ system_u:object_r:user_home_t
/home/\.ircmotd -- system_u:object_r:user_irc_home_t
/home/lost\+found/.* <<none>>
/home/\.config/gtk-.* system_u:object_r:gnome_home_t

Home Context for user root
/root/.+ system_u:object_r:user_home_t
/root/\.ircmotd -- system_u:object_r:user_irc_home_t
/root/lost\+found/.* <<none>>
/root/\.config/gtk-.* system_u:object_r:gnome_home_t

3.3.9 modules/active/netfilter_contexts &
netfilter.local File
These files are not used at present. There is code to produce a
netfilter_contexts file for use by the GNU/Linux iptables service38 in the
Reference Policy that would generate a file similar to the example below, however
there seems much debate on how they should be managed (see bug 201573 – Secmark
iptables integration for details).

38 This uses SECMARK labeling that has been utilised by SELinux as described in the SELinux
Networking Support section.

Page 133

https://bugzilla.redhat.com/show_bug.cgi?id=201573
https://bugzilla.redhat.com/show_bug.cgi?id=201573

The SELinux Notebook - The Foundations

3.3.10 modules/active/policy.kern File
This is the binary policy file built by either the semanage(8) or semodule(8)
commands (depending on the configuration action), that is then becomes the
./policy/policy.[ver] binary policy that will be loaded into the kernel.

3.3.11 modules/active/seusers.final and seusers Files
The seusers.final file maps GNU / Linux users to SELinux users and becomes
the policies seusers39 file as discussed in the ./seusers section. The
seusers.final file is built or modified when:

1. Building a policy where an optional seusers file has been included in the
base package via the semodule_package(8) command (signified by the
–s flag) as follows40:

 semodule_package -o base.pp -m base.mod –s seusers ...

The seusers file would be extracted by the subsequent semodule
command when building the policy to produce the seusers.final file.

2. The semanage login command is used to map GNU / Linux users to
SELinux users as follows:

semanage login -a –s staff_u rch

This action will update the seusers file that would then be used to produce
the seusers.final file with both policy and locally defined user mapping.

It is also possible to associate a GNU / Linux group of users to an SELinux
user as follows:

semanage login -a –s staff_u %staff_group

The format of the seusers.final & seusers files are as follows:

[%]user_id:seuser_id[:range]

Where:
user_id Where user_id is the GNU / Linux user identity. If this is

a GNU / Linux group_id then it will be preceded with the
'%' sign as shown in the example below.

seuser_id The SELinux user identity.
range The optional level or range.

39 Many seusers make confusion: The ./modules/active/seusers file is used to hold
initial seusers entries, the ./modules/active/seusers.final file holds the complete
entries that then becomes the policy ./seusers file.

40 The Reference Policy Makefile ‘Rules.modular’ script uses this method to install the initial
seusers file.

Page 134

The SELinux Notebook - The Foundations

Example seusers.final file contents:

./modules/active/seusers.final
system_u:system_u
root:root
__default__:user_u

Example semanage login command to add a GNU / Linux user mapping:

This command will add the rch:user_u entry in the seusers
file:

semanage login –a –s user_u rch

The resulting seusers file would be:

./modules/active/seusers
rch:user_u

The seusers.final file that will become the ./<policy_name>/seusers
file is as follows:

./modules/active/seusers.final
system_u:system_u
root:root
__default__:user_u
rch:user_u

Example semanage login command to add a GNU / Linux group mapping:

This command will add the %user_group:user_u entry in the
seusers file:

semanage login –a –s user_u %user_group

The resulting seusers file would be:

./modules/active/seusers
rch:user_u
%user_group:user_u

The seusers.final file that will become the ./<policy_name>/seusers
file is as follows:

./modules/active/seusers.final
system_u:system_u
root:root
__default__:user_u
rch:user_u

Page 135

The SELinux Notebook - The Foundations

%user_group:user_u

3.3.12 modules/active/users_extra, users_extra.local
and users.local Files
These three files work together to describe SELinux user information as follows:

1. The users_extra and users_extra.local files are used to map a
prefix to users home directories as discussed in the
./modules/active/file_contexts.template file section, where
it is used to replace the ROLE keyword. The prefix is linked to an SELinux
user id and should reflect the users role. The semanage user command
will allow a prefix to be added via the –P flag.

The users_extra file contains all the policy prefix entries, and the
users_extra.local file contains those generated by the semanage
user command.

The users_extra file can optionally be included in the base package via
the semodule_package(8) command (signified by the –u flag) as
follows41:

semodule_package -o base.pp -m base.mod –u users_extra ...

The users_extra file would then be extracted by a subsequent
semodule command when building the policy.

2. The users.local file is used to add new SELinux users to the policy
without editing the policy source itself (with each line in the file following a
policy language user Statement). This is useful when only the Reference
Policy headers are installed and additional users need to added. The
semanage user command will allow a new SELinux user to be added that
would generate the user.local file and if a –P flag has been specified,
then a users_extra.local file is also generated (note: if this is a new
SELinux user and a prefix is not specified a default prefix of user is
generated).

The sections that follow will:

• Define the format and show example users_extra and
users_extra.local files.

• Execute an semanage user command that will add a new SELinux user
and associated prefix, and show the resulting users_extra,
users_extra.local and users.local files.

Note that each line of the users.local file contains a user statement that
is defined in the policy language user Statement section, and will be built
into the policy via the semanage command.

41 The Reference Policy Makefile ‘Rules.modular’ script uses this method to install the initial
users_extra file.

Page 136

The SELinux Notebook - The Foundations

The format of the users_extra & users_extra.local files are as follows:

user seuser_id prefix prefix_id;

Where:
user The user keyword.

seuser_id The SELinux user identity.
prefix The prefix keyword.

prefix_id An identifier that will be used to replace the ROLE keyword
within the ./modules/active/homedir_template
file when building the
./modules/active/file_contexts.homedirs
file for the relabeling utilities to set the security context on
users home directories.

Example users_extra file contents:

./modules/active/users_extra entries, note that the
users_extra.local file contents are similar and generated by
the semanage user command.

user user_u prefix user;
user staff_u prefix user;
user sysadm_u prefix user;
user root prefix user;

Example semanage user command to add a new SELinux user:

This command will add the user test_u prefix staff entry in
the users_extra.local file:

semanage user –a –R staff_r –P staff test_u

The resulting users_extra.local file is as follows:

./modules/active/users_extra.local
user test_u prefix staff;

The resulting users_extra file is as follows:

./modules/active/users_extra
user user_u prefix user;
user staff_u prefix user;
user sysadm_u prefix user;
user root prefix user;
user test_u prefix staff;

Page 137

The SELinux Notebook - The Foundations

The resulting users.local file is as follows:

./modules/active/users.local file entry:
user test_u roles { staff_r } level s0 range s0;

3.3.13 modules/active/booleans.local File
This file is created and updated by the semanage boolean command and holds
boolean value as requested. It should be noted that instead of using this file, the
command allows a different file to be specified (see semanage(8)).

Example semanage boolean command to modify a boolean value:

This command will add an entry in the booleans.local
file and set the boolean value to 'off':

semanage boolean –m -0 ext_gateway_audit

The resulting booleans.local file would be:

./modules/active/booleans.local
ext_gateway_audit=0

3.3.14 modules/active/file_contexts.local File
This file is created and updated by the semanage fcontext command. It is used
to hold file context information on files and directories that were not delivered by the
core policy (i.e. they are not defined in any of the *.fc files delivered in the base and
loadable modules).

The semanage command will add the information to the policy stores
file_contexts.local file and then copy this file to the
./contexts/files/file_contexts.local file, where it will be used when
the file context utilities are run.

The format of the file_contexts.local file is the same as the
./modules/active/file_contexts.template file.

Example semanage fcontext command to add a new entry:

This command will add an entry in the file_contexts.local
file:

semanage fcontext –a –t user_t /usr/move_file

Note that the type (-t flag) must exist in the policy
otherwise the command will fail.

The resulting file_contexts.local file would be:

Page 138

The SELinux Notebook - The Foundations

./modules/active/file_contexts.local
/usr/move_file system_u:object_r:user_t

3.3.15 modules/active/interfaces.local File
This file is created and updated by the semanage interface command to hold
network interface information that was not delivered by the core policy (i.e. they are
not defined in base.conf file). The new interface information is then built into the
policy by the semanage(8) command.

Each line of the file contains a netifcon statement that is defined along with
examples in the netifcon Statement section.

3.3.16 modules/active/nodes.local File
This file is created and updated by the semanage node command to hold network
address information that was not delivered by the core policy (i.e. they are not defined
in base.conf file). The new node information is then built into the policy by the
semanage(8) command.

Each line of the file contains a nodecon statement that is defined along with
examples in the policy language nodecon Statement section.

3.3.17 modules/active/ports.local File
This file is created and updated by the semanage port command to hold network
port information that was not delivered by the core policy (i.e. they are not defined in
base.conf file). The new port information is then built into the policy by the
semanage(8) command.

Each line of the file contains a portcon statement that is defined along with
examples in the policy language portcon Statement section.

3.3.18 modules/active/modules Directory Contents
This directory contains the loadable modules (<module_name>.pp or when
disabled <module_name>.pp.disabled) that have been packaged by the
semodule_package command and placed in the store by the semodule
command as shown in the following example:

Package the module move_file_c:

semodule_package -o move_file_c.pp -m move_file_c.mod -f
move_file.fc

Then to install it in the store (at /etc/selinux/modular-test/
modules/active/modules/move_file_c.pp) and build the binary
policy file, run the semodule command:

semodule -v -s modular-test -i move_file_c.pp

Page 139

The SELinux Notebook - The Foundations

The modules within the policy store can be listed using the semanage -l command
as shown below. Note that this will also list the modules that have been disabled by
the semanage -d <module_name> command.

semanage -l
ext_gateway 1.1.0
int_gateway 1.1.0
move_file 1.1.0
netlabel 1.0.0 Disabled

3.4 Policy Configuration Files
Each file discussed in this section is relative to the policy name as follows:

/etc/selinux/<policy_name>
The majority of files are installed by the Reference Policy, semanage(8) or
semanage(8) commands. It is possible to build custom monolithic policies that
only use the files installed in this area (i.e. do not use semanage or semodule).
For example the simple monolithic policy described in the Notebook source tarball
could run at init 3 (i.e. no X-Windows) and only require the following
configuration files:

./policy/policy.26 – The binary policy loaded into the kernel.

./context/files/file_contexts – To allow the filesystem to be
relabeled.

If the simple policy is to run at init 5, (i.e. with X-Windows) then an additional
two files are required:

./context/dbus_contexts – To allow the dbus messaging service to run
under SELinux.

./context/x_contexts – To allow the X-Windows service to run under
SELinux.

3.4.1 seusers File
The seusers(5) file is used by login programs (normally via the libselinux
library) and maps GNU / Linux users (as defined in the user / passwd files) to
SELinux users (defined in the policy). A typical login sequence would be:

• Using the GNU / Linux user_id, lookup the seuser_id from this file. If
an entry cannot be found, then use the __default__ entry.

• To determine the remaining context to be used as the security context, read the
./contexts/users/[seuser_id] file. If this file is not present, then:

• Check for a default context in the
./contexts/default_contexts file. If no default context is
found, then:

• Read the ./contexts/failsafe_context file to allow
a fail safe context to be set.

Page 140

The SELinux Notebook - The Foundations

Note: The system_u user is defined in this file, however there must be no
system_u GNU / Linux user configured on the system.

The format of the seusers file is the same as the files described in the
./modules/active/seusers.final and seusers section, where an
example semanage user command is also shown.

Example seusers file contents:

./seusers file for non-MCS/MLS systems.
system_u:system_u
root:root
fred:user_u
__default__:user_u

./seusers file for an MLS system. Note that the system_u user
has access to all security levels and therefore should not be
configured as a valid GNU / Linux user.

system_u:system_u:s0-s15:c0.c255
root:root:s0-s15:c0.c255
fred:user_u:s0
__default__:user_u:s0

Supporting libselinux API functions are:

getseuser
getseuserbyname

3.4.2 booleans and booleans.local File
Generally these booleans(5) files are not present if semanage(8) is being used
to manage booleans (see the modules/active/booleans.local File section). However if
semanage is not being used or there is an SELinux-aware application that uses the
libselinux functions listed below, then these files may be present (they could also
be present in older Reference or Example policies):

security_set_boolean_list - Writes a boolean.local file if flag
permanent = '1'.

security_load_booleans - Will look for a booleans or
booleans.local file here unless a specific path is specified.

Both files have the same format and contain one or more boolean names. The format
is:

boolean_name value

Where:
boolean_name The name of the boolean.
value The default setting for the boolean that can be

Page 141

The SELinux Notebook - The Foundations

one of the following:
true | false | 1 | 0

Note that if SETLOCALDEFS is set in the SELinux config file, then
selinux_mkload_policy(3) will check for a booleans.local file in the
selinux_booleans_path(3), and also a local.users file in the
selinux_users_path(3).

3.4.3 booleans.subs File
The booleans.subs file (if present) will allow new boolean names to be allocated
to those in the active policy. This file was added because many older booleans began
with 'allow' that made it difficult to determine what they did. For example the boolean
allow_console_login becomes more descriptive as
login_console_enabled. If the booleans.subs file is present, then either
name maybe used. selinux_booleans_subs_path(3) will return the active
policy path to this file.

Each line within the substitution file booleans.subs is:

policy_bool_name new_name

Where:
policy_bool_name

The policy boolean name.
new_name

The new boolean name.

Example:

./booleans.subs

policy_boll_name new_name
allow_auditadm_exec_content auditadm_exec_content
allow_console_login login_console_enabled
allow_cvs_read_shadow cvs_read_shadow
allow_daemons_dump_core daemons_dump_core

When security_get_boolean_names(3) or
security_set_boolean(3) is called with a boolean name and the subs file is
present, the name will be looked up and if using the new_name, then the
policy_bool_name will be used (as that is what is defined in the active policy).

Supporting libselinux API functions are:

selinux_booleans_subs_path
security_get_boolean_names
security_set_boolean

Page 142

The SELinux Notebook - The Foundations

3.4.4 setrans.conf File
The setrans.conf(8) file is used by the mcstransd(8) daemon (available in
the mcstrans rpm). The daemon enables SELinux-aware applications to translate
the MCS / MLS internal policy levels into user friendly labels.

There are a number of sample configuration files within the mcstrans package that
describe the configuration options in detail that are located at
/usr/share/mcstrans/examples.

The daemon will not load unless a valid MCS or MLS policy is active.

The translations can be disabled by added the following line to the file:

disable = 1

The semanage(8) command can be used to update this file.

This file will also support the display of information in colour. The configuration file
that controls this is called secolor.conf and is described in the secolor.conf
File section.

The file format is described in setrans.conf(8) with the following giving an
overview:

Syntax

A domain is a self consistent domain of translation (English, German,
Paragraph Markings ...)
Domain=NAME1

Within a domain are a number of fixed translations
format is raw_range=trans_range
s3:c200.c511=Confidential
repeat as required...

Within a domain are variable translations that are a Base + ModifierGroup +
ModifierGroup
Base=Sensitivity Levels
raw_range=name
s1=Unclassified
Aliases have the same name but a different translation.
The first one is used to compute translations
s1=U
inverse bits should appear in the base of any level that uses inverse bits
s2:c200.c511=Restricted
repeat as required...

Modifier Groups should be in the order of appearance in the translated range.
ModifierGroup=GROUP1
Allowed white space can be defined
Whitespace=- ,/
Join defines the character between multiple members of this group
Join=/
A Prefix can be defined per group
Prefix=Releasable to
Inverse categories (releasabilities) should always be set as Default
categories in every ModifierGroup
Default=c200.c511
format is raw_categories=name
~ turns off inverse bits
~c200.c511=EVERYBODY

Aruba - bit 201
~c200,~c201=ABW
~c200,~c201=AA
Afghanistan - bit 202

Page 143

The SELinux Notebook - The Foundations

~c200,~c202=AFG
~c200,~c202=AF
repeat as required...

Another Modifier Group
ModifierGroup=GROUP2
With different white space
Whitespace=
And different Join
Join=,
A Suffix can be defined per group
Suffix=Eyes only
Default categories need to be consistent
Default=c200.c511

New domain
Domain=NAME2

any text can be put in a separate file
Include=PATH
Include=PATH

Example file contents:

./setrans.conf - Taken from the reference policy.
#
Multi-Level Security translation table for SELinux

Uncomment the following to disable translation library
disable=1
#
SystemLow and SystemHigh
s0=SystemLow
s15:c0.c1023=SystemHigh
s0-s15:c0.c1023=SystemLow-SystemHigh

Unclassified level
s1=Unclassified

Secret level with compartments
s2=Secret
s2:c0=A
s2:c1=B

ranges for Unclassified
s0-s1=SystemLow-Unclassified
s1-s2=Unclassified-Secret
s1-s15:c0.c1023=Unclassified-SystemHigh

ranges for Secret with compartments
s0-s2=SystemLow-Secret
s2:c1-s15:c0.c1023=Secret:B-SystemHigh
s2:c0,c1-s15:c0.c1023=Secret:AB-SystemHigh

 Example semanage command:

Add a new entry to the file. Note that the -T flag component
(the user friendly name for the level) must not have spaces.

semanage translation –a –T Top-Level s15:c1023

Page 144

The SELinux Notebook - The Foundations

List the setrans.conf file contents

semanage translation –l

...
s15:c1023=Top-Level

Supporting libselinux API functions are:

selinux_translations_path
selinux_raw_to_trans_context
selinux_trans_to_raw_context

3.4.5 secolor.conf File
The secolor.conf(5) file controls the colour to be associated to the components
of a context when information is displayed by an SELinux colour-aware application
(currently none, although there are two examples in the Notebook source tarball under
the libselinux/examples directory). The file format is as follows:

color color_name = #color_mask

context_component string fg_color_name bg_color_name

Where:
color The color keyword.
color_name A descriptive name for the colour (e.g. red).

color_mask A colour mask starting with a hash (#) that
describes the RGB colours with black being
#000000 and white being #ffffff.

context_component The colour translation supports different colours on
the context string components (user, role, type
and range). Each component is on a separate line.

string This is the context_component string that
will be matched with the raw context component
passed by
selinux_raw_context_to_color(3)
A wildcard '*' may be used to match any undefined
string for the user, role and type
context_component entries only

A wildcard '*' may be used to match any undefined
string for the user, role and type
context_component entries only.

fg_color_name The color_name string that will be used as the

Page 145

The SELinux Notebook - The Foundations

foreground colour.

A color_mask may also be used.
bg_color_name The color_name string that will be used as the

background colour.

A color_mask may also be used.

Example file contents:

color black = #000000
color green = #008000
color yellow = #ffff00
color blue = #0000ff
color white = #ffffff
color red = #ff0000
color orange = #ffa500
color tan = #D2B48C

user * = black white
role * = white black
type * = tan orange
range s0-s0:c0.c1023 = black green
range s1-s1:c0.c1023 = white green
range s3-s3:c0.c1023 = black tan
range s5-s5:c0.c1023 = white blue
range s7-s7:c0.c1023 = black red
range s9-s9:c0.c1023 = black orange
range s15:c0.c1023 = black yellow

Supporting libselinux API functions are:

selinux_colors_path
selinux_raw_context_to_color - this call returns the foreground
and background colours of the context string as the specified
RGB 'color' hex digits as follows:
 user : role : type : range
#000000 #ffffff #ffffff #000000 #d2b48c #ffa500 #000000 #008000
 black white white black tan orange black green

3.4.6 policy/policy.<ver> File
This is the binary policy file that is loaded into the kernel to enforce policy and is
built by either checkpolicy or semodule. Life is too short to describe the format
but the libsepol source could be used as a reference or for an overview the
“SELinux Policy Module Primer” [Ref. 4] notes.

The file name extension is the policy database version supported by the GNU / Linux
release and can be found by executing the following command:

cat /selinux/policyvers
26

 The different versions are discussed in the Policy Versions section.

Page 146

http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/

The SELinux Notebook - The Foundations

3.4.7 contexts/customizable_types File
The customizable_types(5) file contains a list of types that will not be
relabeled by the setfiles(8) or restorecon(8) commands. The commands
check this file before relabeling and excludes those in the list unless the –F flag is
used (see the man pages).

The file format is as follows:

type

Where:
type The type defined in the policy that needs to excluded from

relabeling. An example is when a file has been purposely
relabeled with a different type to allow an application to
work.

Example file contents:

./contexts/customizable_types - Taken from the reference
policy.

mount_loopback_t
public_content_rw_t
public_content_t
swapfile_t
sysadm_untrusted_content_t
sysadm_untrusted_content_tmp_t

Supporting libselinux API functions are:

is_context_customizable
selinux_customizable_types_path
selinux_context_path

3.4.8 contexts/default_contexts File
The default_contexts(5) file is used by SELinux-aware applications that need
to set a security context for user processes (generally the login applications) where:

1. The GNU / Linux user identity should be known by the application.

2. If a login application, then the SELinux user (seuser), would have been
determined as described in the seusers file section.

3. The login applications will check the ./contexts/users/
[seuser_id] file first and if no valid entry, will then look in the
[seuser_id] file for a default context to use.

The file format is as follows:

role:type role:type ...

Page 147

The SELinux Notebook - The Foundations

Or:

role:type:range role:type:range ...

Where:
role:type The file contains one or more lines that consist of

role:type pairs.

The entry at the start of a new line corresponds to the partial
role:type context of (generally) the login application.

The other role:type entries on that line represent an
ordered list of valid contexts that could be used to set the
users context.

range The range as defined in the MLS range definition section.

Example file contents:

./contexts/default_contexts – Taken from the reference
policy. The highlighted entry at the start of each line
corresponds to the login applications role:type context.
system_r:crond_t user_r:user_crond_t staff_r:staff_crond_t
sysadm_r:sysadm_crond_t system_r:system_crond_t unconfined_r:unconfined_crond_t
#
system_r:local_login_t user_r:user_t staff_r:staff_t sysadm_r:sysadm_t
unconfined_r:unconfined_t
#
system_r:remote_login_t user_r:user_t staff_r:staff_t unconfined_r:unconfined_t
#
system_r:sshd_t user_r:user_t staff_r:staff_t sysadm_r:sysadm_t
unconfined_r:unconfined_t

./contexts/default_contexts – Taken from the MLS
reference policy.

system_r:crond_t:s0 system_r:system_crond_t:s0
system_r:local_login_t:s0 user_r:user_t:s0
system_r:remote_login_t:s0 user_r:user_t:s0
system_r:sshd_t:s0 user_r:user_t:s0
system_r:sulogin_t:s0 sysadm_r:sysadm_t:s0
system_r:xdm_t:s0 user_r:user_t:s0

Supporting libselinux API functions are:

Note that the ./contexts/users/[seuser_id] file is also read
by some of these functions.

selinux_contexts_path
selinux_default_context_path
get_default_context
get_ordered_context_list
get_ordered_context_list_with_level
get_default_context_with_level
get_default_context_with_role

Page 148

The SELinux Notebook - The Foundations

get_default_context_with_rolelevel
query_user_context
manual_user_enter_context

An example use in this Notebook (to get over a small feature) is that when the initial
basic policy was built, no default_contexts file entries were required as only
one role:type of unconfined_r:unconfined_t had been defined,
therefore the login process did not need to decide anything (as the only user context
was unconfined_u:unconfined_r:unconfined_t).

However when adding the loadable module that used another type
(ext_gateway_t) but with the same role and user (e.g.
unconfined_u:unconfined_r:ext_gateway_t), then it was found that the
login process would always set the logged in user context to
unconfined_u:unconfined_r:ext_gateway_t (i.e. the login application
now had a choice and choose the wrong one, probably because the types are sorted
and ‘e’ comes before ‘u’).

The end result was that as soon as enforcing mode was set, the system got bitter and
twisted. To resolve this the default_contexts file entries were set to:

unconfined_r:unconfined_t unconfined_r:unconfined_t

The login process could now set the context correctly to
unconfined_r:unconfined_t. Note that adding the same entry to the
contexts/users/unconfined_u configuration file instead could also have
achieved this.

3.4.9 contexts/dbus_contexts File
This file is for the dbus messaging service daemon (a form of IPC) that is used by a
number of GNU / Linux applications such as GNOME and KDE desktops. If
SELinux is enabled, then this file needs to exist in order for these applications to
work. The dbus-daemon(1) man page details the contents and the Free Desktop
web site has detailed information at:

http://dbus.freedesktop.org

Example file contents:

./contexts/dbus_contexts - Taken from the reference policy.
<!DOCTYPE busconfig PUBLIC "-//freedesktop//DTD D-BUS Bus
Configuration 1.0//EN"
"http://www.freedesktop.org/standards/dbus/
1.0/busconfig.dtd">
<busconfig>
 <selinux>
 </selinux>
</busconfig>

Supporting libselinux API function is:

Page 149

http://dbus.freedesktop.org/

The SELinux Notebook - The Foundations

selinux_context_path

3.4.10 contexts/default_type File
The default_type(5) file allows SELinux-aware applications such as
newrole(1) to select a default type for a role if one is not supplied.

The file format is as follows:

role:type

Where:
role:type The file contains one or more lines that consist of

role:type entries. There should be one line for each role
defined within the policy.

Example file contents:

./contexts/default_type - Taken from the reference policy.
auditadm_r:auditadm_t
secadm_r:secadm_t
sysadm_r:sysadm_t
staff_r:staff_t
unconfined_r:unconfined_t
user_r:user_t

Supporting libselinux API functions are:

selinux_default_type_path
get_default_type

3.4.11 contexts/failsafe_context File
The failsafe_context(5) is used when a login process cannot determine a
default context to use. The file contents will then be used to allow an administrator
access to the system.

The file format is as follows:

role:type[:range]

Where:
role:type[:range] A single line that has a valid context to allow an

administrator access to the system.

Example file contents:

./contexts/failsafe_context - Taken from the standard

Page 150

The SELinux Notebook - The Foundations

reference policy.

sysadm_r:sysadm_t

./contexts/failsafe_context - Taken from the MLS/MCS reference
policy.

sysadm_r:sysadm_t:s0

Supporting libselinux API functions are:

selinux_context_path
selinux_failsafe_context_path
get_default_context
get_default_context_with_role
get_default_context_with_level
get_default_context_with_rolelevel
get_ordered_context_list
get_ordered_context_list_with_level

3.4.12 contexts/initrc_context File
This is used by the run_init(8) command to allow system services to be started
in the same security context as init. This file could also be used by other SELinux-
aware applications for the same purpose.

The file format is as follows:

security_context

Where:
security_context The file contains one line that consists of a full

security context, including the MLS / MCS level or
range if applicable.

Example file contents:

./contexts/initrc_context - Taken from the standard reference
policy.

system_u:system_r:initrc_t

./contexts/initrc_context - Taken from the MLS reference
policy. Note that the init process has full access via the
range s0-s15:c0.c255.

system_u:system_r:initrc_t:s0-s15:c0.c255

Supporting libselinux API functions are:

Page 151

The SELinux Notebook - The Foundations

selinux_context_path

3.4.13 contexts/netfilter_contexts File
This file will support the Secmark labeling for Netfilter / iptable rule matching of
network packets, however it is currently unused (see the
./modules/active/netfilter_contexts & netfilter.local file
section for further information).

Supporting libselinux API functions are:

selinux_context_path
selinux_netfilter_context_path

3.4.14 contexts/removable_context File
The removable_context(5) file contains a single default label that should be
used for removable devices that are not defined in the contexts/files/media
file.

The file format is as follows:

security_context

Where:
security_context The file contains one line that consists of a full

security context, including the MLS / MCS level or
range if applicable.

Example file contents:

./contexts/removable_contexts - Taken from the standard
reference policy.

system_u:object_r:removable_t

./contexts/removable_contexts - Taken from the MLS/MCS
reference policy.

system_u:object_r:removable_t:s0

Supporting libselinux API functions are:

selinux_removable_context_path

3.4.15 contexts/securetty_types File
The securetty_types(5) file is used by the newrole(1) command to find
the type to use with tty devices when changing roles or levels.

Page 152

The SELinux Notebook - The Foundations

The file format is as follows:

type

Where:
type Zero or more type entries that are defined in the policy for

tty devices.

Example file contents:

./contexts/securetty_types - Taken from the standard reference
policy.

sysadm_tty_device_t
user_tty_device_t
staff_tty_device_t

./contexts/securetty_types - Taken from the MLS/MCS reference
policy.

sysadm_tty_device_t
user_tty_device_t
staff_tty_device_t
auditadm_tty_device_t
secureadm_tty_device_t

Supporting libselinux API functions are:

selinux_securetty_types_path

3.4.16 contexts/sepgsql_contexts File
This file contains the default security contexts for SE-PostgreSQL database objects
and is descibed in selabel_db(5).

The file format is as follows:
Each line within the database contexts file is as follows:

object_type object_name context

Where:

object_type This is the string representation of the object type.

object_name These are the object names of the specific database objects.

The entry can contain '*' for wildcard matching or '?' for
substitution. Note that if the '*' is used, then be aware that
the order of entries in the file is important. The '*' on its own
is used to ensure a default fallback context is assigned and

Page 153

The SELinux Notebook - The Foundations

should be the last entry in the object_type block.

context The security context that will be applied to the object.

Example file contents:

./contexts/sepgsql_contexts file
object_type object_name context
db_database my_database system_u:object_r:my_sepgsql_db_t:s0
db_database * system_u:object_r:sepgsql_db_t:s0
db_schema *.* system_u:object_r:sepgsql_schema_t:s0

3.4.17 contexts/userhelper_context File
This file contains the default security context used by the system-config-*
applications when running from root.

The file format is as follows:

security_context

Where:
security_context The file contains one line that consists of a full

security context, including the MLS / MCS level or
range if applicable.

Example file contents:

./contexts/userhelper_context - Taken from the standard
reference policy.

system_u:sysadm_r:sysadm_t

./contexts/userhelper_context - Taken from the MLS/MCS
reference policy.

system_u:sysadm_r:sysadm_t:s0

Supporting libselinux API functions are:

selinux_context_path

3.4.18 contexts/virtual_domain_context File
The virtual_domain_context(5) file is used by the virtulization API
(libvirt) and provides the domain contexts available in the policy.

Example file contents:

Page 154

The SELinux Notebook - The Foundations

./contexts/virtual_domain_context - Taken from the standard
reference policy.

system_u:system_r:svirt_t

./contexts/virtual_domain_context - Taken from the MLS/MCS
reference policy.

system_u:system_r:svirt_t:s0

Supporting libselinux API functions are:

selinux_virtual_domain_context_path

3.4.19 contexts/virtual_image_context File
The virtual_image_context(5) file is used by the virtulization API
(libvirt) and provides the image contexts that are available in the policy..

Example file contents:

./contexts/virtual_image_context - Taken from the MLS/MCS
reference policy.

system_u:system_r:svirt_image_t:s0
system_u:system_r:svirtcontent_t:s0

Supporting libselinux API functions are:

selinux_virtual_image_context_path

3.4.20 contexts/x_contexts File
The x_contexts(5) file provides the default security contexts for the X-Windows
SELinux security extension. The usage is discussed in the X-windows SELinux
Support section and examples of how to add additional entries is shown in the X-
Windows section of the Notebook source tarball. The MCS / MLS version of the file
has the appropriate level or range information added.

 A typical entry is as follows:

object_type object_name context
selection PRIMARY system_u:object_r:clipboard_xselection_t

Where:

object_type These are types of object supported and valid entries are:
client, property, poly_property, extension,
selection, poly_selection and events.

Page 155

The SELinux Notebook - The Foundations

object_name These are the object names of the specific X-server resource
such as PRIMARY, CUT_BUFFER0 etc. They are generally
defined in the X-server source code (protocol.txt and
BuiltInAtoms in the dix directory of the xorg-
server source package).

This can contain '*' for 'any' or '?' for 'substitute' (see the
CUT_BUFFER? entry where the '?' would be substituted for
a number between 0 and 7 that represents the number of
these buffers).

context This is the security context that will be applied to the object.
For MLS/MCS systems there would be the additional MLS
label.

Example file contents:

#
Config file for XSELinux extension
#

Rules for X Clients
The default client rule defines a context to be used for all clients
connecting to the server from a remote host.
#
client * system_u:object_r:remote_t

#
Rules for X Properties
Property rules map a property name to a context. A default property
rule indicated by an asterisk should follow all other property rules.
#
Properties that normal clients may only read
property _SELINUX_* system_u:object_r:seclabel_xproperty_t

Clipboard and selection properties
property CUT_BUFFER? system_u:object_r:clipboard_xproperty_t

Default fallback type
property * system_u:object_r:xproperty_t

#
Rules for X Extensions
Extension rules map an extension name to a context. A default extension
rule indicated by an asterisk should follow all other extension rules.
#
Restricted extensions
extension SELinux system_u:object_r:security_xextension_t

Standard extensions
extension * system_u:object_r:xextension_t

#
Rules for X Selections
Selection rules map a selection name to a context. A default selection
rule indicated by an asterisk should follow all other selection rules.
#
Standard selections
selection PRIMARY system_u:object_r:clipboard_xselection_t
selection CLIPBOARD system_u:object_r:clipboard_xselection_t

Default fallback type
selection * system_u:object_r:xselection_t

#
Rules for X Events

Page 156

The SELinux Notebook - The Foundations

Event rules map an event protocol name to a context. A default event
rule indicated by an asterisk should follow all other event rules.
#
Input events
event X11:KeyPress system_u:object_r:input_xevent_t
event X11:KeyRelease system_u:object_r:input_xevent_t
event X11:ButtonPress system_u:object_r:input_xevent_t
event X11:ButtonRelease system_u:object_r:input_xevent_t
event X11:MotionNotify system_u:object_r:input_xevent_t
event XInputExtension:DeviceKeyPress system_u:object_r:input_xevent_t
event XInputExtension:DeviceKeyRelease system_u:object_r:input_xevent_t
event XInputExtension:DeviceButtonPress system_u:object_r:input_xevent_t
event XInputExtension:DeviceButtonRelease system_u:object_r:input_xevent_t
event XInputExtension:DeviceMotionNotify system_u:object_r:input_xevent_t
event XInputExtension:DeviceValuator system_u:object_r:input_xevent_t
event XInputExtension:ProximityIn system_u:object_r:input_xevent_t
event XInputExtension:ProximityOut system_u:object_r:input_xevent_t

Client message events
event X11:ClientMessage system_u:object_r:client_xevent_t
event X11:SelectionNotify system_u:object_r:client_xevent_t
event X11:UnmapNotify system_u:object_r:client_xevent_t
event X11:ConfigureNotify system_u:object_r:client_xevent_t

Default fallback type
event * system_u:object_r:xevent_t

Supporting libselinux API functions are:

selinux_x_context_path
selabel_open
selabel_close
selabel_lookup
selabel_stats

3.4.21 contexts/files/file_contexts File
The file_contexts(5) file is managed by the semodule(8) and
semanage(8) commands42 as the policy is updated (adding or removing modules or
updating the base), and therefore should not be edited.

The file is used by a number of SELinux-aware commands (setfiles(8),
fixfiles(8), matchpathcon(8), restorecon(8)) to relabel either part or
all of the file system.

Note that users home directory file contexts are not present in this file as they are
managed by the file_contexts.homedirs file as explained below.

The format of the file_contexts file is the same as the files described in the
./modules/active/file_contexts file section.

Supporting libselinux API functions are:

selinux_file_context_path

42 As each module would have its own file_contexts component that is either added or
removed from the policies overall /etc/selinux/[policy_name]/contexts/
files/file_contexts file.

Page 157

The SELinux Notebook - The Foundations

3.4.22 contexts/files/file_contexts.local File
This file is added by the semanage fcontext command as described in the
./modules/active/file_contexts.local file section to allow locally
defined files to be labeled correctly. The file_contexts(5) man page also
decribes this file.

Supporting libselinux API functions are:

selinux_file_context_local_path

3.4.23 contexts/files/file_contexts.homedirs File
This file is managed by the semodule(8) and semanage(8) commands as the
policy is updated (adding or removing users and modules or updating the base), and
therefore should not be edited.

It is generated by the genhomedircon(8) command (in fact by semodule –Bn
that rebuilds the policy) and used to set the correct contexts on the users home
directory and files.

It is fully described in the ./modules/active/file_contexts.homedirs
file section. The file_contexts(5) man page also decribes this file.

Supporting libselinux API functions are:

selinux_file_context_homedir_path
selinux_homedir_context_path

3.4.24 contexts/files/file_contexts.subs &
file_contexts.subs_dist File
These files allow substitution of file names (.subs for local use and .subs_dist
for GNU / Linux distributions use) for the libselinux functions
matchpatchcon(3) and selabel_lookup(3). The file_contexts(5)
man page also decribes this file.

The subs files contain a list of space separated path names such as:

/myweb /var/www
/myspool /var/spool/mail

Then (for example), when matchpatchcon(3) or selabel_lookup(3) is
passed a path /myweb/index.html the functions will substitute the /myweb
component with /var/www, with the final result being:

/var/www/index.html

Supporting libselinux API functions are:

Page 158

The SELinux Notebook - The Foundations

selinux_file_context_subs_path
selinux_file_context_subs_dist_path
selabel_lookup
matchpathcon
matchpathcon_index

3.4.25 contexts/files/media File
The media(5) file is used to map media types to a file context. If the media_id
cannot be found in this file, then the default context in the
./contexts/removable_contexts is used instead.

The file format is as follows:

media_id file_context

Where:
media_id The media identifier (those known are: cdrom,

floppy, disk and usb).
file_context The context to be used for the device. Note that it does

not have the MLS / MCS level).

Example file contents:

contexts/files/media - Taken from the reference policy
(note that the same file is generated for all types of
policy).

cdrom system_u:object_r:removable_device_t
floppy system_u:object_r:removable_device_t
disk system_u:object_r:fixed_disk_device_t

Supporting libselinux API functions are:

selinux_media_context_path

3.4.26 contexts/users/[seuser_id] File
These optional files are named after the SELinux user they represent (e.g.
seuser_id = user_u). Each file has the same format as the
contexts/default_contexts file and is used to assign the correct context to
the SELinux user (generally during login). The user_contexts(5) man page
also decribes these entries.

Example file contents:

./contexts/users/user_u - Taken from the standard reference
policy.

Page 159

The SELinux Notebook - The Foundations

system_r:local_login_t user_r:user_t
system_r:remote_login_t user_r:user_t
system_r:sshd_t user_r:user_t
system_r:crond_t user_r:user_t

./contexts/users/user_u - Taken from the MLS/MCS reference
policy.

system_r:local_login_t:s0 user_r:user_t:s0
system_r:remote_login_t:s0 user_r:user_t:s0
system_r:sshd_t:s0 user_r:user_t:s0
system_r:crond_t:s0 user_r:user_t:s0
system_r:xdm_t:s0 user_r:user_t:s0
user_r:user_su_t:s0 user_r:user_t:s0
user_r:user_sudo_t:s0 user_r:user_t:s0

Supporting libselinux API functions are:

selinux_user_contexts_path
selinux_users_path
selinux_usersconf_path
get_default_context
get_default_context_with_role
get_default_context_with_level
get_default_context_with_rolelevel
get_ordered_context_list
get_ordered_context_list_with_level

3.4.27 logins/<linuxuser_id> File
These optional files are used by SELinux-aware login applications such as PAM
(using the pam_selinux module) to obtain an SELinux user name and level based
on the GNU / Linux login id and service name. It has been implemented for SELinux-
aware applications such as FreeIPA (Identity, Policy Audit - see
http://freeipa.org/page/Main_Page for details). The service_seusers(5) man
page also decribes these entries.

The file name is based on the GNU/Linux user that is used at log in time (e.g. ipa).

If getseuser(3) fails to find an entry, then the seusers file is used to retrieve
default information.

The file format is as follows:

service_name:seuser_id:level

Where:
service_name The name of the service.
seuser_id The SELinux user name.
level The run level

Page 160

http://freeipa.org/page/Main_Page)for

The SELinux Notebook - The Foundations

Example file contents:

./logins/ipa example entries
ipa_service:user_u:s0
another_service:unconfined_u:s0

Supporting libselinux API functions are:

getseuser

3.4.28 users/local.users File
Generally the local.users(5) file is not present if semanage(8) is being used
to manage users, however if semanage is not being used then this file may be
present (it could also be present in older Reference or Example policies).

The file would contain local user definitions in the form of user statements as
defined in the modules/active/users.local section.

Note that if SETLOCALDEFS is set in the SELinux config file, then
selinux_mkload_policy(3) will check for a local.users file in the
selinux_users_path(3), and a booleans.local file in the
selinux_booleans_path(3).

Page 161

The SELinux Notebook - The Foundations

4. SELinux Policy Language

4.1 Introduction
This section is intended as a reference to give a basic understanding of the policy
language statements and rules with supporting examples taken from the Reference
Policy sources43 (where possible). Also all of the language updates to Policy DB
version 28 should have been captured. For a more detailed explanation of the policy
language the “SELinux by Example” [Ref. 14] book is recommended.

There is currently a project underway called the Common Intermediate Language
(CIL) project that will define a new policy definition language that could eventually
replace the current policy language described in this section. Reference to CIL can be
found at: http://userspace.selinuxproject.org/trac/wiki/CilDesign, however it is not yet
complete although a simple compiler is available by:

git clone http://oss.tresys.com/git/cil.git

The Notebook tarball contains CIL language examples that will compile as explained
in the Notebook Example Policy section.

4.1.1 CIL Overview
While the CIL design web pages give the main objectives of CIL, from a language
perspective it will:

a) Apply consistancy to the current language statements. For example the
type_transition statement has been extended to allow an additional
parameter to support object names. With CIL this becomes two separate
statements typetransition and nametypetransition.

Examples:

CIL Current

allow allow
roleallow allow (role)

dominance dominance
roledominance dominance (role)

roletransition role_transition

b) Additional CIL statements have been defined to allow clarity, for example:
typeattributeset
classpermissionset
classmap
classmapping

43 From the resulting base.conf and loadable module sources in the ./tmp directory after a
make load had been executed for a reference policy ‘standard’ build and where applicable an
‘mls’ build.

Page 162

http://userspace.selinuxproject.org/trac/wiki/CilDesign

The SELinux Notebook - The Foundations

c) Allow named an anonymous context definitions to be defined. This example
shows the both context declarations and the supporting statements required to
build them:

; Declare range info:
(category c0)
(categoryorder (c0))
(sensitivity s0)
(dominance (s0))
(sensitivitycategory s0 (c0))
(levelrange default ((s0 (c0)) (s0 (c0))))
(level low (s0 (c0)))

; Declare type info:
(type unconfined_t)

; Declare role info
(role unconfined_r)
(roletype unconfined_r unconfined_t)
(role object_r)
(roletype object_r unconfined_t)

; Declare user info:
(user unconfined_u)
(userrole unconfined_u unconfined_r)
(userrange unconfined_u (low low))
(userlevel unconfined_u low)

(user system_u)
(userrole system_u unconfined_r)
(userrole system_u object_r)
(userrange system_u (low low))
(userlevel system_u low)

; Declare sids:
(sid kernel)
(sid security)
(sid unlabeled)

; Declare context ids (named) and info:
(context default_context (unconfined_u unconfined_r unconfined_t default))
(context system_context (system_u unconfined_r unconfined_t default))
(context object_context (system_u object_r unconfined_t default))

; Use context ids in various statements:
(sidcontext kernel system_context)
(sidcontext security object_context)
(sidcontext unlabeled object_context)

(fsuse xattr ext2 object_context)
(fsuse task eventpollfs object_context)
(fsuse trans mqueue object_context)
(genfscon selinuxfs / object_context)

(filecon "/" "" any object_context)

; Declare this as an anonymous context:
(filecon "/" ".*" any (unconfined_u unconfined_r unconfined_t (s0 (c0)) (s0 (c0))))

d) Support namespace features allowing policy modules to be defined within
blocks with inheritance and template features. An example with blocks and
inheritance:

; blockinherit.cil
;
; Need to include the cil-base.cil module when building this example to declare
; the user, role, type and range.
;
; This example defines three nested blocks each declaring a different class
; with two permissions and an allow rule. Three new namespaces are then created
; and the respective levels (1, 2, 3) are then inherited by each new namespace.
;
; Using APOL, sedispol or sesearch 9 allow rules will be found:

Page 163

The SELinux Notebook - The Foundations

; Three allow rules from the three nested blocks:
; allow level1.level1_t level1.level1_t : level1.file { open execute } ;
; allow level1.level2.level2_t level1.level2.level2_t : level1.level2.socket { recv_msg send_msg } ;
; allow level1.level2.level3.level3_t level1.level2.level3.level3_t : level1.level2.level3.ipc { create destroy } ;

; Three allow rules from the new_namespace1 that inherited the three nested blocks:
; allow new_namespace1.level1_t new_namespace1.level1_t : new_namespace1.file { open execute } ;
; allow new_namespace1.level2.level2_t new_namespace1.level2.level2_t : new_namespace1.level2.socket { recv_msg send_msg }
;
; allow new_namespace1.level2.level3.level3_t new_namespace1.level2.level3.level3_t : new_namespace1.level2.level3.ipc
{ create destroy } ;

; Two allow rules from the new_namespace2 that inherited the two lower nested blocks:
; allow new_namespace2.level2_t new_namespace2.level2_t : new_namespace2.socket { recv_msg send_msg } ;
; allow new_namespace2.level3.level3_t new_namespace2.level3.level3_t : new_namespace2.level3.ipc { create destroy } ;

; One allow rule from the new_namespace3 that inherited the last nested block:
; allow new_namespace3.level3_t new_namespace3.level3_t : new_namespace3.ipc { create destroy } ;

(block level1
(type level1_t)
(class file (open execute))
(allow level1_t self (file (open execute)))

(block level2
(type level2_t)
(class socket (recv_msg send_msg))
(allow level2_t self (socket (recv_msg send_msg)))

(block level3
(type level3_t)
(class ipc (create destroy))
(allow level3_t self (ipc (create destroy)))

) ; End level3 block
) ; End level2 block

) ; End level1 block

(block new_namespace1
(blockinherit level1)

) ; End new_namespace1 namespace

(block new_namespace2
(blockinherit level1.level2)

) ; End new_namespace2 namespace

(block new_namespace3
(blockinherit level1.level2.level3)

) ; End new_namespace3 namespace

e) Remove the order dependancy in that policy statements can be anywhere
within the source (i.e. remove dependancy of class, sid etc. being within a base
module).

f) Able to define macros and calls that will remove any dependancy on M4
macro support. This is a block that calls two different macros:

; SEAndroid dbus daemon - dbusd.cil
(block dbusd
 (type dbusd)
 (typeattributeset domain dbusd)

 (type dbusd_exec)
 (typeattributeset exec_type dbusd_exec)
 (typeattributeset file_type dbusd_exec)

 (call init_daemon_domain (dbusd dbusd_exec))
 ; Reads /proc/pid/cmdline of clients
 (call r_dir_file (dbusd system.system))
 (call r_dir_file (dbusd bluetoothd.bluetoothd))
)

These are the macros that are called:

;
; SEAndroid macros - te_macros.cil
;
; Macros are instantiated within the namespace that has the 'call'
; statement.
; These macros defined in the global namespace:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Page 164

The SELinux Notebook - The Foundations

; r_dir_file(domain, type)
; Allow the specified domain to read directories, files
; and symbolic links of the specified type.
(macro r_dir_file ((type type_id1) (type type_id2))

(allow type_id1 type_id2 (kernel.dir r_dir_perms))
(allow type_id1 type_id2 (kernel.file r_file_perms))
(allow type_id1 type_id2 (kernel.lnk_file r_file_perms))

)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; init_daemon_domain(domain)
; Set up a transition from init to the daemon domain
; upon executing its binary.
(macro init_daemon_domain ((type type_id1) (type type_id2))
 (call domain_auto_trans (init.init type_id2 type_id1))
 (call tmpfs_domain (type_id1))
)

g) Directly generate the binary policy file and other configuration files - currently
the file_contexts file.

h) Support transformation services such as delete, transform and inherit with
except.

4.1.2 Notebook Example Policy
The Notebook tarball has a number of simple policies in the basic-selinux-
policy directory. The sub-directories enable a monolithic and modular policy to be
built, also the modular policy can be extended to build a simple message filter (this
also has a CIL equivalent version in the CIL directory). The CIL version should build
with the compiler from the git repository (although there is a 64 bit binary version
with debug enabled included). There is a Python script that will build a simple base
policy module in either CIL or the standard policy language using the Reference
Policy security_classes, access_vectors and initial_sids files (see
notebook-tools/build-policy.py).

4.2 Policy Statements and Rules

4.2.1 Policy Source Files
There are three basic types of policy source file44 that can contain language statements
and rules (examples of these can be found in the Building a Basic Policy section of
the Notebook source tarball). The three types of policy source file45 are:

Monolithic Policy – This is a single policy source file that contains all statements.
By convention this file is called policy.conf and is compiled using the
checkpolicy(8) command that produces the binary policy file.

Base Policy – This is the mandatory base policy source file that supports the
loadable module infrastructure. The whole system policy could be fully contained

44 It is important to note that the Reference Policy, builds policy using makefiles and support macros
within its own source file structure. However, the end result of the make process is that there can
be three possible types of source file built (depending on the MONOLITHIC=Y/N build option).
These files contain the policy language statements and rules that are finally complied into a binary
policy.

45 This does not include the ‘file_contexts’ file as it does not contain policy statements, only
default security contexts (labels) that will be used by files and directories.

Page 165

The SELinux Notebook - The Foundations

within this file, however it is more usual for the base policy to hold the mandatory
components of a policy, with the optional components contained in loadable
module source files. By convention this file is called base.conf and is
compiled using the checkpolicy(8) or checkmodule(8) command.

Module (or Non-base) Policy – These are optional policy source files that when
compiled, can be dynamically loaded or unloaded within the policy store. By
convention these files are named after the module or application they represent,
with the compiled binary having a ‘.pp’ extension. These files are compiled
using the checkmodule command.

Table 14 shows the order in which the statements should appear in source files with
the minimum (and therefore mandatory) statements that must be defined.

Base Entries M/O Module Entries M/O
Security Classes (class) m module Statement o
Initial SIDs m
Access Vectors
(permissions)

m require Statement o

MLS sensitivity, category
and level Statements

o

MLS Constraints o
Policy Capability
Statements

o

Attributes o Attributes o
Booleans o Booleans o
Default user, role, type,
range rules

o

Type / Type Alias m Type / Type Alias o
Roles m Roles o
Policy Rules o Policy Rules o
Users m Users o
Constraints o
Default SID labeling m
fs_use_xattr
Statements

o

fs_use_task and
fs_use_trans
Statements

o

genfscon Statements o
portcon, netifcon and
nodecon Statements

o

Table 14: Base and Module Policy Statements – A Monolithic source file would
contain the same statements as the Base Module. The Mandatory policy entries are

noted (the type, role and user require at least one entry each).
The language grammar defines what statements and rules can be used within the
different types of source file. To highlight these rules, the following table is included
in each statement and rule section to show what circumstances each one is valid
within a policy source file:

Page 166

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes/No Yes/No Yes/No

Where:
Monolithic Policy Whether the statement is allowed within a monolithic

policy source file or not.

Base Policy Whether the statement is allowed within a base (for
loadable module support) policy source file or not.

Module Policy Whether the statement is allowed within the optional
loadable module policy source file or not.

Table 16 shows a cross reference matrix of statements and rules allowed in each type
of policy source file.

4.2.2 Conditional, Optional and Require Statement Rules
The language grammar specifies what statements and rules can be included within
Conditional Policy, Optional Policy statements and the require statement . To
highlight these rules the following table is included in each statement and rule section
to show what circumstances each one is valid within a policy source file:

Conditional Policy (if) Statement optional Statement require Statement
Yes/No Yes/No Yes/No

Where:
Conditional Policy
(if) Statement

Whether the statement is allowed within a conditional
statement (IF / ELSE construct) as described in the
if Statement section. Conditional statements can be
in all types of policy source file.

optional Statement Whether the statement is allowed within the
optional { rule_list } construct as
described in the optional Statement section.

require Statement Whether the statement keyword is allowed within the
require { rule_list } construct as
described in the require Statement section.

Table 16 shows a cross reference matrix of statements and rules allowed in each of
the above policy statements.

4.2.3 MLS Statements and Optional MLS Components
The MLS Statements section defines statements specifically for MLS support.
However when MLS is enabled, there are other statements that require the MLS
Security Context component as an argument, therefore these statements show an
example taken from the Reference Policy MLS build.

Page 167

The SELinux Notebook - The Foundations

4.2.4 General Statement Information
1. Identifiers can generally be any length but should be restricted to the following

characters: a-z, A-Z, 0-9 and _ (underscore).

2. A ‘#’ indicates the start of a comment in policy source files.

3. Statements that were defined in the older NSA documentation have been updated
to capture changes such as to prohibit the use of * and ~ in type and role sets
(other than in the neverallow statement). Note that some of these changes are
not captured by the language grammar, but are managed within the
policy_parse.y source code).

4. When multiple source and target entries are shown in a single statement or rule,
the compiler (checkpolicy(8) or checkmodule(8)) will expand these to
individual statements or rules as shown in the following example:

This allow rule has two target entries console_device_t and
tty_device_t:
allow apm_t { console_device_t tty_device_t }:chr_file

{ getattr read write append ioctl lock };

The compiler will expand this to become:
allow apm_t console_device_t:chr_file { getattr read write

append ioctl lock };
and:
allow apm_t tty_device_t:chr_file { getattr read write append

ioctl lock };

Therefore when comparing the actual source code with a compiled binary using
(for example) apol(8), sedispol or sedismod, the results will differ
(however the resulting policy rules will be the same).

5. Some statements can be added to a policy (via the policy store) using the
semanage(8) command. Examples of these are shown where applicable,
however the semanage man page should be consulted for all the possible
command line options.

6. Table 15 lists words reserved for the SELinux policy language.

alias allow and
attribute attribute_role auditallow
auditdeny bool category
cfalse class clone
common constrain ctrue
dom domby dominance
dontaudit else equals
false filename filesystem
fscon fs_use_task fs_use_trans
fs_use_xattr genfscon h1
h2 identifier if
incomp inherits iomemcon

Page 168

The SELinux Notebook - The Foundations

ioportcon ipv4_addr ipv6_addr
l1 l2 level
mlsconstrain mlsvalidatetrans module
netifcon neverallow nodecon
not notequal number
object_r optional or
path pcidevicecon permissive
pirqcon policycap portcon
r1 r2 r3
range range_transition require
role roleattribute roles
role_transition sameuser sensitivity
sid source t1
t2 t3 target
true type typealias
typeattribute typebounds type_change
type_member types type_transition
u1 u2 u3
user validatetrans version_identifier
xor default_user default_role
default_type default_range low
high low_high

Table 15: Policy language reserved words.
7. Table 16 shows what policy language statements and rules are allowed within

each type of policy source file, and whether the statement is valid within an if /
else construct, optional {rule_list}, or require {rule_list}
statement.

Statement / Rule Monolithic
Policy

Base
Policy

Module
Policy

Conditional
Statements

optional
Statement

require
Statement46

allow Yes Yes Yes Yes Yes No
allow - Role Yes Yes Yes No Yes No
attribute Yes Yes Yes No Yes Yes
attribute_role Yes Yes Yes No Yes Yes
auditallow Yes Yes Yes Yes Yes No
auditdeny
(Deprecated)

Yes Yes Yes Yes Yes No

bool Yes Yes Yes No Yes Yes
category Yes Yes No No No Yes
class Yes Yes No No No Yes
common Yes Yes No No No No
constrain Yes Yes No No No No

46 Only the statement keyword is allowed.

Page 169

The SELinux Notebook - The Foundations

Statement / Rule Monolithic
Policy

Base
Policy

Module
Policy

Conditional
Statements

optional
Statement

require
Statement

default_user Yes Yes No No No No
default_role Yes Yes No No No No
default_type Yes Yes No No No No
default_range Yes Yes No No No No
dominance - MLS Yes Yes No No No No
dominance - Role
(Deprecated)

Yes Yes Yes No Yes No

dontaudit Yes Yes Yes Yes Yes No
fs_use_task Yes Yes No No No No
fs_use_trans Yes Yes No No No No
fs_use_xattr Yes Yes No No No No
genfscon Yes Yes No No No No
if Yes Yes Yes No Yes No
level Yes Yes No No No No
mlsconstrain Yes Yes No No No No
mlsvalidatetrans Yes Yes No No No No
module No No Yes No No No
netifcon Yes Yes No No No No
neverallow Yes Yes Yes47 No Yes No
nodecon Yes Yes No No No No
optional No Yes Yes Yes Yes Yes
permissive Yes Yes Yes Yes Yes No
policycap Yes Yes No No No No
portcon Yes Yes No No No No
range_transition Yes Yes Yes No Yes No
require No Yes48 Yes Yes49 Yes No
role Yes Yes Yes No Yes Yes
roleattribute Yes Yes Yes No Yes No
role_transition Yes Yes Yes No Yes No
sensitivity Yes Yes No No No Yes
sid Yes Yes No No No No
type Yes Yes Yes No No Yes
type_change Yes Yes Yes Yes Yes No
type_member Yes Yes Yes Yes Yes No
type_transition Yes Yes Yes Yes50 Yes No
typealias Yes Yes Yes No Yes No
typeattribute Yes Yes Yes No Yes No

47 neverallow statements are allowed in modules, however to detect these the semanage.conf
file must have the expand-check=1 entry present.

48 Only if preceded by the optional statement.
49 Only if preceded by the optional statement.
50 Excluding the 'file name transition' rule.

Page 170

The SELinux Notebook - The Foundations

Statement / Rule Monolithic
Policy

Base
Policy

Module
Policy

Conditional
Statements

optional
Statement

require
Statement

typebounds Yes Yes Yes No Yes No
user Yes Yes Yes No Yes Yes
validatetrans Yes Yes No No No No

Table 16: The policy language statements and rules that are allowed within each
type of policy source file - The left hand side of the table shows what Policy

Language Statements and Rules are allowed within each type of policy source file.
The right hand side of the table shows whether the statement is valid within the

if / else construct, optional {rule_list}, or require
{rule_list} statement.

4.2.5 Section Contents
The policy language statement and rule sections are as follows:

a) Type and Attribute Statements

b) Default Rules

c) Type Enforcement Rules

d) Access Vector Rules

e) User Statement

f) Role Statement

g) Role Rules

h) Conditional Policy Statements

i) Constraint Statements

j) File System Labeling Statements

k) Network Labeling Statements

l) MLS Statements

m) Policy Support Statements

n) Object Class and Permission Statements

o) Security ID (SID) Statement

4.3 Type and Attribute Statements
These statements share the same namespace, therefore the general convention is to
use ‘_t’ as the final two characters of a type identifier to differentiate it from an
attribute identifier as shown in the following examples:

StatementIdentifier Comment
#---
type bin_t; # A type identifier ends with _t
attribute file_type; # An attribute identifier ends with

anything else

Page 171

The SELinux Notebook - The Foundations

4.3.1 type Statement
The type statement declares the type identifier and any optional associated alias
or attribute identifiers. Type identifiers are a component of the Security Context.

The statement definition is:

type type_id;

Or

type type_id, attribute_id;

Or

type type_id alias alias_id;

Or

type type_id alias alias_id, attribute_id;

Where:
type The type keyword.
type_id The type identifier.

alias Optional alias keyword that signifies alternate
identifiers for the type_id that are declared in the
alias_id list.

alias_id One or more alias identifiers that have been
previously declared by the typealias Statement .
Multiple entries consist of a space separated list
enclosed in braces ({}).

attribute_id One or more optional attribute identifiers that
have been previously declared by the attribute
Statement. Multiple entries consist of a comma (,)
separated list, also note the lead comma.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No No Yes

Examples:

Page 172

The SELinux Notebook - The Foundations

Using the type statement to declare a type of shell_exec_t,
where exec_t is used to identify a file as an executable type.

type shell_exec_t;

Using the type statement to declare a type of bin_t, where
bin_t is used to identify a file as an ordinary program type.

type bin_t;

Using the type statement to declare a type of bin_t with two
alias names. The sbin_t is used to identify the file as a
system admin program type.

type bin_t alias { ls_exec_t sbin_t };

Using the type statement to declare a type of boolean_t that
also associates it to a previously declared attribute
booleans_type (see the attribute Statement).

attribute booleans_type; # declare the attribute

type boolean_t, booleans_type; # and associate with the type

Using the type statement to declare a type of setfiles_t that
also has an alias of restorecon_t and one previously declared
attribute of can_relabelto_binary_policy associated with it.

attribute can_relabelto_binary_policy;

type setfiles_t alias restorecon_t, can_relabelto_binary_policy;

Using the type statement to declare a type of
ssh_server_packet_t that also associates it to two previously
declared attributes packet_type and server_packet_type.

attribute packet_type; # declare attribute 1
attribute server_packet_type;# declare attribute 2

Associate the type identifier with the two attributes:

type ssh_server_packet_t, packet_type, server_packet_type;

4.3.2 attribute Statement
An attribute statement declares an identifier that can then be used to refer to a
group of type identifiers.

The statement definition is:

attribute attribute_id;

Where:

Page 173

The SELinux Notebook - The Foundations

attribute The attribute keyword.
attribute_id The attribute identifier.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes Yes

Examples:

Using the attribute statement to declare attributes domain,
daemon, file_type and non_security_file_type:

attribute domain;
attribute daemon;
attribute file_type;
attribute non_security_file_type;

4.3.3 typeattribute Statement
The typeattribute statement allows the association of previously declared
types to one or more previously declared attributes.

The statement definition is:

typeattribute type_id attribute_id [,attribute_id];

Where:
typeattribute The typeattribute keyword.
type_id The identifier of a previously declared type.

attribute_id One or more previously declared attribute
identifiers. Multiple entries consist of a comma (,)
separated list.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Examples:

Using the typeattribute statement to associate a previously

Page 174

The SELinux Notebook - The Foundations

declared type of setroubleshootd_t to a previously declared
domain attribute.

The previously declared attribute:
attribute domain;

The previously declared type:
type setroubleshootd_t;

The association using the typeattribute statement:
typeattribute setroubleshootd_t domain;

Using the typeattribute statement to associate a type of
setroubleshootd_exec_t to two attributes file_type and
non_security_file_type.

These are the previously declared attributes:
attribute file_type;
attribute non_security_file_type;

The previously declared type:
type setroubleshootd_exec_t;

These are the associations using the typeattribute statement:
typeattribute setroubleshootd_exec_t file_type, non_security_file_type;

4.3.4 typealias Statement
The typealias statement allows the association of a previously declared type to
one or more alias identifiers (an alternative way is to use the type Statement).

The statement definition is:

typealias type_id alias alias_id;

Where:
typealias The typealias keyword.
type_id The identifier of a previously declared type.

alias The alias keyword.
alias_id One or more alias identifiers. Multiple entries

consist of a space separated list enclosed in braces
({}).

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Page 175

The SELinux Notebook - The Foundations

Examples:

Using the typealias statement to associate the previously
declared type mount_t with an alias of mount_ntfs_t.

Declare the type:
type mount_t;

Then alias the identifier:
typealias mount_t alias mount_ntfs_t;

Using the typealias statement to associate the previously
declared type netif_t with two alias, lo_netif_t and
netif_lo_t.

Declare the type:
type netif_t;

Then assign two alias identifiers lo_netif_t and netif_lo_t:
typealias netif_t alias { lo_netif_t netif_lo_t };

4.4 Default Rules
These rules allow a default user, role, type and/or range to be used when computing a
context for a new object. These require policy version 27 or 28 with kernels 3.5 or
greater.

4.4.1 default_user Rule
Allows the default user to be taken from the source or target context when computing
a new context for an object of the defined class. Requires policy version 27.

The statement definition is:

default_user class default;

Where:
default_user The default_user rule keyword.
class One or more class identifiers. Multiple entries

consist of a space separated list enclosed in braces
({}).

Entries can be excluded from the list by using the
negative operator (-).

default A single keyword consisting of either source or
target that will state whether the default user
should be obtained from the source or target
context.

The statement is valid in:

Page 176

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

When computing the context for a new file object, the user
will be obtained from the target context.
default_user file target;

When computing the context for a new x_selection or x_property
object, the user will be obtained from the source context.
default_user { x_selection x_property } source;

4.4.2 default_role Rule
Allows the default role to be taken from the source or target context when computing
a new context for an object of the defined class. Requires policy version 27.

The statement definition is:

default_role class default;

Where:
default_role The default_role rule keyword.

class One or more class identifiers. Multiple entries
consist of a space separated list enclosed in braces
({}).

Entries can be excluded from the list by using the
negative operator (-).

default A single keyword consisting of either source or
target that will state whether the default role
should be obtained from the source or target
context.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Page 177

The SELinux Notebook - The Foundations

Example:

When computing the context for a new file object, the role
will be obtained from the target context.
default_role file target;

When computing the context for a new x_selection or x_property
object, the role will be obtained from the source context.
default_role { x_selection x_property } source;

4.4.3 default_type Rule
Allows the default type to be taken from the source or target context when computing
a new context for an object of the defined class. Requires policy version 28.

The statement definition is:

default_type class default;

Where:
default_type The default_type rule keyword.
class One or more class identifiers. Multiple entries

consist of a space separated list enclosed in braces
({}).

Entries can be excluded from the list by using the
negative operator (-).

default A single keyword consisting of either source or
target that will state whether the default type
should be obtained from the source or target
context.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

When computing the context for a new file object, the type
will be obtained from the target context.
default_type file target;

When computing the context for a new x_selection or x_property
object, the type will be obtained from the source context.
default_type { x_selection x_property } source;

Page 178

The SELinux Notebook - The Foundations

4.4.4 default_range Rule
Allows the default range or level to be taken from the source or target context when
computing a new context for an object of the defined class. Requires policy version
27.

The statement definition is:

default_range class default entry;

Where:
default_range The default_range rule keyword.

class One or more class identifiers. Multiple entries
consist of a space separated list enclosed in braces
({}).

Entries can be excluded from the list by using the
negative operator (-).

default A single keyword consisting of either source or
target that will state whether the default level or
range should be obtained from the source or target
context.

entry A single keyword consisting of either: low, high
or low_high that will state whether the default
level or range should be obtained from the source
or target context.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

When computing the context for a new file object, the lower
level will be taken from the target context range.
default_range file target low;

When computing the context for a new x_selection or x_property
object, the range will be obtained from the source context.
default_type { x_selection x_property } source low_high;

Page 179

The SELinux Notebook - The Foundations

4.5 Type Enforcement Rules
There are three types of enforcement rule: type_transition, type_change,
and type_member that are explained below.

Important note: type enforcement rules only specify the rule and labeling required, it
is the allow rules that will finally determine if the enforcement rule is actually
allowed (or not).

4.5.1 type_transition Rule
The type_transition rule specifies the labeling and object creation allowed
between the source_type and target_type when a Domain Transition is
requested. Kernels from 2.6.39 with Policy versions from 25 also support the 'name
transition rule' extension.

The statement definition is:

type_transition source_type target_type : class default_type;

Policy versions 25 and above also support a 'name transition' rule, however, this is not
allowed inside conditionals and currently only supports the file class:

type_transition source_type target_type : class default_type object_name;

Where:
type_transition The type_transition rule keyword.
source_type
target_type

One or more source / target type or attribute
identifiers. Multiple entries consist of a space
separated list enclosed in braces ({}).

Entries can be excluded from the list by using the
negative operator (-).

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({}).

default_type A single type identifier that will become the
default process type for a domain transition or the
type for object transitions (but see
object_name).

object_name For the 'name transition' rule this is matched against
the objects name (i.e. the last component of a path).
If object_name exactly matches the object
name, then use default_type for the type.

The statement is valid in:

Page 180

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
Yes (except the 'file name

transition' rule)
Yes No

Example – Domain Transition:

Using the type_transition statement to show a domain
transition (as the statement has the process object class
in the class).

The rule states that when a process of type initrc_t executes
a file of type acct_exec_t, the process type should be changed
to acct_t if allowed by the policy (i.e. Transition from the
initrc_t domain to the acc_t domain).

type_transition initrc_t acct_exec_t:process acct_t;

Note that to be able to transition to the acc_t domain the
following minimum permissions need to be granted in the policy
using allow rules (as shown in the allow Rule section).

File needs to be executable in the initrc_t domain:
allow initrc_t acct_exec_t:file execute;

The executable file needs an entry point into the acct_t
domain:
allow acct_t acct_exec_t:file entrypoint;

Process needs permission to transition into the acct_t domain:
allow initrc_t acct_t:process transition;

Example – Object Transition:

Using the type_transition statement to show an object
transition (as it has other than process in the class).

The rule states that when a process of type acct_t creates a
file in the directory of type var_log_t, by default it should
have the type wtmp_t if allowed by the policy.

type_transition acct_t var_log_t:file wtmp_t;

Page 181

The SELinux Notebook - The Foundations

Note that to be able to create the new file object with the
wtmp_t type, the following minimum permissions need to be
granted in the policy using allow rules (as shown in the
allow Rule section).

A minimum of: add_name, write and search on the var_log_t
directory. The actual policy has:
#
allow acct_t var_log_t:dir { read getattr lock search ioctl

add_name remove_name write };

A minimum of: create and write on the wtmp_t file. The actual
policy has:
#
allow acct_t wtmp_t:file { create open getattr setattr read

write append rename link unlink ioctl lock };

Example – Name Transition:

type_transition to allow using the last path component as
part of the information in making labeling decisions for
new objects. An example rule:
#
type_transition unconfined_t etc_t : file system_conf_t eric;

This rule says if unconfined_t creates a file in a directory
labeled etc_t and the last path component is "eric" (must be
an exact strcmp) it should be labeled system_conf_t.
Note: This rule in not supported in conditionals.

4.5.2 type_change Rule
The type_change rule is used to define a different label of an object for userspace
SELinux-aware applications. These applications would use
security_compute_relabel(3) and type_change rules in the policy to
determine the new context to be applied.

The statement definition is:

type_change source_type target_type : class change_type;

Where:
type_change The type_change rule keyword.

source_type
target_type

One or more source / target type or attribute
identifiers. Multiple entries consist of a space
separated list enclosed in braces ({}).

Entries can be excluded from the list by using the
negative operator (-).

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({}).

Page 182

The SELinux Notebook - The Foundations

change_type A single type identifier that will become the new
type.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
Yes Yes No

Examples:

Using the type_change statement to show that when relabeling a
character file with type sysadm_devpts_t on behalf of
auditadm_t, the type auditadm_devpts_t should be used:

type_change auditadm_t sysadm_devpts_t:chr_file auditadm_devpts_t;

Using the type_change statement to show that when relabeling a
character file with any type associated to the attribute
server_ptynode on behalf of staff_t, the type staff_devpts_t
should be used:

type_change staff_t server_ptynode:chr_file staff_devpts_t;

4.5.3 type_member Rule
The type_member rule is used to define a new polyinstantiated label of an object
for SELinux-aware applications. These applications would use
avc_compute_member(3) or security_compute_member(3) with the
type_member rules in the policy to determine the context to be applied. The
application would then manage any required polyinstantiation.

The statement definition is:

member_type source_type target_type : class member_type;

Where:
type_member The type_member rule keyword.
source_type
target_type

One or more source / target type or attribute
identifiers. Multiple entries consist of a space
separated list enclosed in braces ({}).

Entries can be excluded from the list by using the
negative operator (-).

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({}).

Page 183

The SELinux Notebook - The Foundations

member_type A single type identifier that will become the
polyinstantiated type.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
Yes Yes No

Example:

Using the type_member statement to show that if the source
type is sysadm_t, and the target type is user_home_dir_t,
then use user_home_dir_t as the type on the newly created
directory object.

type_member sysadm_t user_home_dir_t:dir user_home_dir_t;

4.6 bounds Statements

4.6.1 typebounds Rule
The typebounds rule was added in version 24 of the policy. This defines a
hierarchical relationship between domains where the bounded domain cannot have
more permissions than its bounding domain (the parent). It requires kernel 2.6.28 and
above to control the security context associated to threads in multi-threaded
applications.

The statement definition is:

typebounds bounding_domain bounded_domain, [bounded_domain] ...;

Where:
typebounds The typebounds keyword.

bounding_domain The type identifier of the parent domain.
bounded_domain One or more type identifiers of the child domains.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Page 184

The SELinux Notebook - The Foundations

Example:

This example has been taken from [Ref. 20] and states that:
The httpd_child_t cannot have file:{write} due to lack of
permissions on httpd_t which is the parent. It means the
child domains will always have equal or less privileges
than the parent.

The typebounds statement:
typebounds httpd_t httpd_child_t;

The parent is allowed file 'getattr' and 'read':
allow httpd_t etc_t : file { getattr read };

However the child process has been given 'write' access that
will not be allowed by the kernel SELinux security server.
allow httpd_child_t etc_t : file { read write };

4.7 Access Vector Rules
The AV rules define what access control privileges are allowed for processes. There
are four types of AV rule: allow, dontaudit, auditallow, and neverallow
as explained in the sections that follow with a number of examples to cover all the
scenarios. There is also an auditdeny rule, however it is no longer used in the
Reference Policy and has been replaced by the dontaudit rule.

The general format of an AV rule is that the source_type is the identifier of a
process that is attempting to access an object identifier target_type, that has an
object class of class, and perm_set defines the access permissions
source_type is allowed.

The common format of the Access Vector Rule is:

rule_name source_type target_type : class perm_set;

Where:
rule_name The applicable allow, dontaudit,

auditallow, and neverallow rule keyword.
source_type
target_type

One or more source / target type or attribute
identifiers. Multiple entries consist of a space
separated list enclosed in braces ({}). Entries can be
excluded from the list by using the negative operator
(-).

The target_type can have the self keyword
instead of type or attribute identifiers. This
means that the target_type is the same as the
source_type.

The neverallow rule also supports the wildcard
operator (*) to specify that all types are to be
included and the complement operator (~) to specify

Page 185

The SELinux Notebook - The Foundations

all types are to be included except those explicitly
listed.

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({}).

perm_set The access permissions the source is allowed to
access for the target object (also known as the Access
Vector). Multiple entries consist of a space separated
list enclosed in braces ({}).

The optional wildcard operator (*) specifies that all
permissions for the object class can be used.

The complement operator (~) is used to specify all
permissions except those explicitly listed (although
the compiler issues a warning if the dontaudit
rule has ‘~’).

The statements are valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
allow = Yes
auditallow = Yes
dontaudit = Yes
neverallow = No

allow = Yes
auditallow = Yes
dontaudit = Yes
neverallow = Yes

allow = No
auditallow = No
dontaudit = No
neverallow = No

4.7.1 allow Rule
The allow rule checks whether the operations between the source_type and
target_type are allowed for the class and permissions defined. It is the most
common statement that many of the Reference Policy helper macros and interface
definitions expand into multiple allow rules.

Examples:

Using the allow rule to show that initrc_t is allowed access
to files of type acct_exec_t that have the getattr, read and
execute file permissions:

allow initrc_t acct_exec_t:file { getattr read execute };

This rule includes an attribute filesystem_type and states
that kernel_t is allowed mount permissions on the filesystem
object for all types associated to the filesystem_type
attribute:

allow kernel_t filesystem_type:filesystem mount;

This rule includes the self keyword in the target_type that

Page 186

The SELinux Notebook - The Foundations

states that staff_t is allowed setgid, chown and fowner
permissions on the capability object:

allow staff_t self:capability { setgid chown fowner };

This would be the same as the above:
allow staff_t staff_t:capability { setgid chown fowner };

This rule includes the wildcard operator (*) on the perm_set
and states that bootloader_t is allowed to use all permissions
available on the dbus object that are type system_dbusd_t:

allow bootloader_t system_dbusd_t:dbus *;

This would be the same as the above:
allow bootloader_t system_dbusd_t:dbus { acquire_svc send_msg };

This rule includes the complement operator (~) on the perm_set
and two class entries file and chr_file.
#
The allow rule states that all types associated with the
attribute files_unconfined_type are allowed to use all
permissions available on the file and chr_file objects except
the execmod permission when they are associated to the types
listed within the attribute file_type:

allow files_unconfined_type file_type:{ file chr_file }
~execmod;

4.7.2 dontaudit Rule
The dontaudit rule stops the auditing of denial messages as it is known that this
event always happens and does not cause any real issues. This also helps to manage
the audit log by excluding known events.

Example:

Using the dontaudit rule to stop auditing events that are
known to happen. The rule states that when the traceroute_t
process is denied access to the name_bind permission on a
tcp_socket for all types associated to the port_type
attribute (except port_t), then do not audit the event:
dontaudit traceroute_t { port_type -port_t }:tcp_socket
name_bind;

4.7.3 auditallow Rule
Audit the event as a record as it is useful for auditing purposes. Note that this rule
only audits the event, it still requires the allow rule to grant permission.

Example:

Using the auditallow rule to force an audit event to be

Page 187

The SELinux Notebook - The Foundations

logged. The rule states that when the ada_t process has
permission to execstack, then that event must be audited:

auditallow ada_t self:process execstack;

4.7.4 neverallow Rule
This rule specifies that an allow Rule must not be generated for the operation, even
if it has been previously allowed. The neverallow statement is a compiler enforced
action, where the checkpolicy or checkmodule51 compiler checks if any
allow rules have been generated in the policy source, if so it will issue a warning
and stop.

Examples:

Using the neverallow rule to state that no allow rule may ever
grant any file read access to type shadow_t except those
associated with the can_read_shadow_passwords attribute:

neverallow ~can_read_shadow_passwords shadow_t:file read;

Using the neverallow rule to state that no allow rule may ever
grant mmap_zero permissions any type associated to the domain
attribute except those associated to the mmap_low_domain_type
attribute (as these have been excluded by the negative
operator (-)):

neverallow { domain -mmap_low_domain_type } self:memprotect
mmap_zero;

4.8 User Statement

4.8.1 user Statement
The user statement declares an SELinux user identifier within the policy and
associates it to one or more roles. The statement also allows an optional MLS level
and range to control a users security level. It is also possible to add SELinux user
id’s outside the policy using the ‘semanage user’ command that will associate the
user with roles previously declared within the policy.

The statement definition is:

user seuser_id roles role_id;

Or for MCS/MLS Policy:

user seuser_id roles role_id level mls_level range mls_range;

Where:

51 neverallow statements are allowed in modules, however to detect these the semanage.conf
file must have the expand-check=1 entry present.

Page 188

The SELinux Notebook - The Foundations

user The user keyword.
seuser_id The SELinux user identifier.

roles The roles keyword.
role_id One or more previously declared role identifiers.

Multiple role identifiers consist of a space
separated list enclosed in braces ({}).

level If MLS is configured, the MLS level keyword.
mls_level The users default MLS security level that has

been previously declared with a level Statement .

Note that the compiler only accepts the
sensitivity component of the level (e.g.
s0).

range If MLS is configured, the MLS range keyword.
mls_range The range of security levels that the user can run.

The format is described in the MLS range
Definition section.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes Yes

Example:

Using the user statement to define an SELinux user user_u that
has been assigned the role of user_r. The SELinux user_u is a
generic user identity for Linux users who have no specific
SELinux user identity defined.
#
user user_u roles { user_r };

MLS Examples:

Using the user statement to define an MLS SELinux user user_u
that has been assigned the role of user_r and has a default
login security level of s0 assigned, and is only allowed
access to the s0 range of security levels (See the
MLS Statements section for details):

user user_u roles { user_r } level s0 range s0;

Using the user statement to define an MLS SELinux user
sysadm_u that has been assigned the role of sysadm_r and has
a default login security level of s0 assigned, and is

Page 189

The SELinux Notebook - The Foundations

allowed access to the range of security levels (low – high)
between s0 and s15:c0.c255 (See the MLS Statements section
for details):

user sysadm_u roles { sysadm_r } level s0 range s0-s15:c0.c255;

semanage(8) Command example:

Add user mque_u to SELinux and associate to the unconfined_r
role:
semanage user –a –R unconfined_r mque_u

This command will produce the following files in the default <policy_name>
policy store and then activate the policy:

/etc/selinux/<policy_name>/modules/active/users.local:

This file is auto-generated by libsemanage
Do not edit directly.

user mque_u roles { unconfined_r } ;

/etc/selinux/<policy_name>/modules/active/users_extra:

This file is auto-generated by libsemanage
Do not edit directly.

user mque_u prefix user;

/etc/selinux/<policy_name>/modules/active/users_extra.local:

This file is auto-generated by libsemanage
Do not edit directly.

user mque_u prefix user;

4.9 Role Statements
Policy version 26 introduced two new role statements aimed at replacing the role
dominance rule by making role relationships easier to understand. These new
statements: attribute_role and roleattribute, are similar in operation to
the attribute and typeattribute statements used for types and are defined
in this section with examples.

4.9.1 role Statement
The role statement either declares a role identifier or associates a role identifier to
one or more types (i.e. authorise the role to access the domain or domains). Where
there are multiple role statements declaring the same role, the compiler will
associate the additional types with the role.

The statement definition to declare a role is:

Page 190

The SELinux Notebook - The Foundations

role role_id;

The statement definition to associate a role to one or more types is:

role role_id types type_id;

Where:
role The role keyword.
role_id The identifier of the role being declared. The same

role identifier can be declared more than once in a
policy, in which case the type_id entries will be
amalgamated by the compiler.

types The optional types keyword.
type_id When used with the types keyword, one or more

type or attribute identifiers associated with
the role_id. Multiple entries consist of a space
separated list enclosed in braces ({}). Entries can be
excluded from the list by using the negative operator
(-).

For role statements, only type or attribute
identifiers associated to domains have any meaning
within SELinux.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes Yes

Examples:

Using the role statement to define standard roles in the
Reference Policy.

role system_r;
role sysadm_r;
role staff_r;
role user_r;
role secadm_r;
role auditadm_r;

Within the policy the roles are then associated to the
required types with this example showing the user_r role
being associated to two domains:

role user_r types user_t;
role user_r types chfn_t;

Page 191

The SELinux Notebook - The Foundations

4.9.2 attribute_role Statement
The attribute_role statement declares a role attribute identifier that can then be
used to refer to a group of roles.

The statement definition is:

attribute_role attribute_id;

Where:
attribute_role The attribute_role keyword.

attribute_id The attribute identifier.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes Yes

Examples:

Using the attribute_role statement to declare attributes that
can then refers to a list of roles. Note that there are no
roles associated with them yet.

attribute_role role_list_1;
attribute_role srole_list_2;

4.9.3 roleattribute Statement
The roleattribute statement allows the association of previously declared
roles to one or more previously declared attribute_roles.

The statement definition is:

roleattribute role_id attribute_id [,attribute_id];

Where:

Page 192

The SELinux Notebook - The Foundations

roleattribute The roleattribute keyword.
role_id The identifier of a previously declared role.

attribute_id One or more previously declared
attribute_role identifiers. Multiple entries
consist of a comma (,) separated list.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Examples:

Using the roleattribute statement to associate a previously
declared role of service_r to a previously declared
role_list_1 attribute_role.

attribute_role role_list_1;
role service_r;

The association using the roleattribute statement:
roleattribute service_r role_list_1;

4.10 Role Rules

4.10.1 Role allow Rule
The role allow rule checks whether a request to change roles is allowed, if it is, then
there may be a further request for a role_transition so that the process runs
with the new role or role set.

Note that the role allow rule has the same keyword as the allow AV rule.

The statement definition is:

allow from_role_id to_role_id;

Where:
allow The role allow rule keyword.

from_role_id One or more role identifiers that identify the
current role. Multiple entries consist of a space
separated list enclosed in braces ({}).

to_role_id One or more role identifiers that identify the
new role to be granted on the transition. Multiple
entries consist of a space separated list enclosed

Page 193

The SELinux Notebook - The Foundations

in braces ({}).

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Example:

Using the role allow rule to define authorised role
transitions in the Reference Policy. The current role
sysadm_r is granted permission to transition to the secadm_r
role in the MLS policy.

allow sysadm_r secadm_r;

4.10.2 role_transition Rule
The role_transition rule specifies that a role transition is required, and if
allowed, the process will run under the new role. From policy version 25, the class
can now be defined.

The statement definition is:

role_transition current_role_id type_id new_role_id;

Or from Policy version 25:

role_transition current_role_id type_id : class new_role_id;

Where:
role_transition The role_transition keyword.

current_role_id One or more role identifiers that identify the
current role. Multiple entries consist of a space
separated list enclosed in braces ({}).

type_id One or more type or attribute identifiers.
Multiple entries consist of a space separated list
enclosed in braces ({}). Entries can be excluded
from the list by using the negative operator (-).

class For policy versions > 24, an object class that applies
to the role transition. If omitted, defaults to the
process object class as used by policy versions =<
24.

new_role_id The new role to be granted on transition.

Page 194

The SELinux Notebook - The Foundations

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Example:

This is a role_transition used in the ext_gateway.conf
loadable module to allow the secure client / server process to
run under the message_filter_r role. The role needs to be
declared, allowed to transition from its current role of
unconfined_r and it then transitions when the process
transitions via the type_transition statement (not shown).
Note that the role needs to be associated to a user by either:
1) An embedded user statement in the policy. This is not
recommended as it makes the policy fixed to either
standard, MCS or MLS.
2) Using the semanage(8) command to add the role. This will
allow the module to be used by MCS/MLS policies as well.
#

The secure client / server will run in this domain:
type ext_gateway_t;
The binaries will be labeled:
type secure_services_exec_t;

Use message_filter_r role and then transition
role message_filter_r types ext_gatway_t;
allow unconfined_r message_filter_r;
role_transition unconfined_r secure_services_exec_t message_filter_r;

4.10.3 Role dominance Rule
This rule has been deprecated and therefore should not be used. The role
dominance rule allows the dom_role_id to dominate the role_id (consisting
of one or more roles). The dominant role will automatically inherit all the type
associations of the other roles.

Notes:

1. There is another dominance rule for MLS (see the MLS dominance
Statement).

2. The role dominance rule is not used by the Reference Policy as the policy
manages role dominance using the constrain Statement .

3. Note the usage of braces ‘{}’ and the ‘;’ in the statement.

The statement definition is:

dominance { role dom_role_id { role role_id; } }

Where:

Page 195

The SELinux Notebook - The Foundations

dominance The dominance keyword.
role The role keyword.

dom_role_id The dominant role identifier.
role_id For the simple case each { role role_id; }

pair defines the role_id that will be dominated by
the dom_role_id. More complex rules can be
defined the statement is deprecated.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Example:

This shows the dominance role rule, note however that it
has been deprecated and should not be used.

dominance { role message_filter_r { role unconfined_r };}

4.11 Conditional Policy Statements
Conditional policies consist of a bool statement that defines a condition as true or
false, with a supporting if / else construct that specifies what rules are valid
under the condition as shown in the example below:

bool allow_daemons_use_tty true;
if (allow_daemons_use_tty) {

 # Rules if condition is true;
} else {
 # Rules if condition is false;
}

Table 16 shows what policy statements or rules are valid within the if / else
construct under the “Conditional Statements” column.

The bool statement default value can be changed when a policy is active by using
the setsebool command as follows:

This command will set the allow_daemons_use_tty bool to false,
however it will only remain false until the next system
re-boot where it will then revert back to its default state
(in the above case, this would be true).

setsebool allow_daemons_use_tty false

Page 196

The SELinux Notebook - The Foundations

This command will set the allow_daemons_use_tty bool to false,
and because the –P option is used (for persistent), the value
will remain across system re-boots. Note however that all
other pending bool values will become persistent across
re-boots as well (see the setsebool(8) man page).
setsebool –P allow_daemons_use_tty false

The getsebool command can be used to query the current bool statement value
as follows:

This command will list all bool values in the active policy:

getsebool –a

This command will show the current allow_daemons_use_tty bool
value in the active policy:

getsebool allow_daemons_use_tty

4.11.1 bool Statement
The bool statement is used to specify a boolean identifier and its initial state (true
or false) that can then be used with the if Statement to form a ‘conditional policy’
as described in the Conditional Policy section.

The statement definition is:

bool bool_id default_value;

Where:
bool The bool keyword.

bool_id The boolean identifier.
default_value Either true or false.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes Yes

Examples:

Using the bool statement to allow unconfined executables to
make their memory heap executable or not. As the value is
false, then by default they cannot make their heap executable.

bool allow_execheap false;

Page 197

The SELinux Notebook - The Foundations

Using the bool statement to allow unconfined executables to
make their stack executable or not. As the value is true,
then by default their stacks are executable.

bool allow_execstack true;

4.11.2 if Statement
The if statement is used to form a ‘conditional block’ of statements and rules that are
enforced depending on whether one or more boolean identifiers (defined by the bool
Statement) evaluate to TRUE or FALSE. An if / else construct is also supported.

The only statements and rules allowed within the if / else construct are:

allow, auditallow, auditdeny, dontaudit, type_member,
type_transition (except 'file_name_transition'), type_change and
require.

The statement definition is:

if (conditional_expression) { true_list } [else
{ false_list }]

Where:
if The if keyword.

conditional_expression One or more bool_name identifiers that
have been previously defined by the bool
Statement. Multiple identifiers must be
separated by the following logical operators:
&&, ¦¦, ^, !, ==, !=.

The conditional_expression is
enclosed in brackets ().

true_list A list of rules enclosed within braces ‘{}’ that
will be executed when the
conditional_expression is ‘true’.

Valid statements and rules are highlighted
within each language definition statement.

else Optional else keyword.
false_list A list of rules enclosed within braces ‘{}’ that

will be executed when the optional ‘else’
keyword is present and the
conditional_expression is ‘false’.

Valid statements and rules are highlighted
within each language definition statement.

Page 198

The SELinux Notebook - The Foundations

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No – As this is a Conditional

Statement and cannot be nested.
Yes No

Examples:

An example showing a boolean and supporting if statement.

bool allow_execmem false;

The bool allow_execmem is FALSE therefore the allow statement
is not executed:

if (allow_execmem) {
allow sysadm_t self:process execmem;

}

An example showing two booleans and a supporting if statement.

bool allow_execmem false;
bool allow_execstack true;

The bool allow_execmem is FALSE and allow_execstack is TRUE
therefore the allow statement is not executed:

if (allow_execmem && allow_execstack) {
allow sysadm_t self:process execstack;

}

An example of an IF - ELSE statement where the bool statement
is FALSE, therefore the ELSE statements will be executed.
#
bool read_untrusted_content false;

if (read_untrusted_content) {
allow sysadm_t { sysadm_untrusted_content_t
 sysadm_untrusted_content_tmp_t }:dir { getattr search

read lock ioctl };
.....

} else {
dontaudit sysadm_t { sysadm_untrusted_content_t
 sysadm_untrusted_content_tmp_t }:dir { getattr search

read lock ioctl };
...

}

Page 199

The SELinux Notebook - The Foundations

4.12 Constraint Statements

4.12.1 constrain Statement
The constrain statement allows further restriction on permissions for the specified
object classes by using boolean expressions covering: source and target types, roles
and users as described in the examples.

The statement definition is:

constrain class perm_set expression;

Where:
constrain The constrain keyword.

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({}).

perm_set One or more permissions. Multiple entries consist of
a space separated list enclosed in braces ({}).

expression The boolean expression of the constraint that is
defined as follows:

 (expression : expression)
| not expression
| expression and expression
| expression or expression
| u1 op u2
| r1 role_op r2
| t1 op t2
| u1 op names
| u2 op names
| r1 op names
| r2 op names
| t1 op names
| t2 op names

Where:
u1, r1, t1 = Source user, role, type
u2, r2, t2 = Target user, role, type

and:
op : == | !=
role_op : == | != | eq | dom | domby | incomp
names : name | { name_list }
name_list : name | name_list name

The statement is valid in:

Page 200

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:
These examples have been taken from the Reference Policy source
./policy/constraints file.

This constrain statement is the “SELinux process identity
change constraint” taken from the Reference Policy source and
contains multiple expressions.
#
The overall constraint is on the process object class with the
transition permission, and is stating that a domain transition
is being constrained by the rules listed (u1 == u2 etc.),
however only the first two expressions are explained.
#
The first expression u1 == u2 states that the source (u1) and
target (u2) user identifiers must be equal for a process
transition to be allowed.
#
However note that there are a number of or operators that can
override this first constraint.
#
The second expression:
(t1 == can_change_process_identity and t2 == process_user_target)

states that if the source type (t1) is equal to any type
associated to the can_change_process_identity attribute, and
the target type (t2) is equal to any type associated to the
process_user_target attribute, then a process transition is
allowed.

What this expression means in the ‘standard’ build Reference
Policy is that if the source domain is either cron_t,
firstboot_t, local_login_t, su_login_t, sshd_t or xdm_t (as
the can_change_process_identity attribute has these types
associated to it) and the target domain is sysadm_t (as that
is the only type associated to the can_change_process_identity
attribute), then a domain transition is allowed.
#
SELinux process identity change constraint:
constrain process transition (

u1 == u2
or

(t1 == can_change_process_identity and t2 == process_user_target)
or

(t1 == cron_source_domain and (t2 == cron_job_domain or u2 == system_u))
or

(t1 == can_system_change and u2 == system_u)
or

(t1 == process_uncond_exempt));

This constrain statement is the “SELinux file related object

Page 201

The SELinux Notebook - The Foundations

identity change constraint” taken from the Reference Policy
source and contains two expressions.
#
The overall constraint is on the listed file related object
classes (dir, file etc.), covering the create, relabelto, and
relabelfrom permissions. It is stating that when any of the
object class listed are being created or relabeled, then they
are subject to the constraint rules listed (u1 == u2 etc.).
#
The first expression u1 == u2 states that the source (u1) and
target (u2) user identifiers (within the security context)
must be equal when creating or relabeling any of the file
related objects listed.
#
The second expression:
or t1 == can_change_object_identity

states or if the source type (t1) is equal to any type
associated to the can_change_object_identity attribute, then
any of the object class listed can be created or relabeled.
#
What this expression means in the ‘standard’ build
Reference Policy is that if the source domain (t1) matches a
type entry in the can_change_object_identity attribute, then
any of the object class listed can be created or relabeled.
#
SELinux file related object identity change constraint:
constrain { dir file lnk_file sock_file fifo_file chr_file

blk_file } { create relabelto relabelfrom }
(

u1 == u2
or t1 == can_change_object_identity

);

4.12.2 validatetrans Statement
Only file related object classes are currently supported by this statement and it is used
to control the ability to change the objects security context.

Note there are no validatetrans statements specified within the Reference
Policy source.

The statement definition is:

validatetrans class expression;

Where:
validatetrans The validatetrans keyword.
class One or more file related object classes. Multiple

entries consist of a space separated list enclosed
in braces ({}).

expression The boolean expression of the constraint that
is defined as follows:

Page 202

The SELinux Notebook - The Foundations

(expression : expression)
| not expression
| expression and expression
| expression or expression
| u1 op u2
| r1 role_op r2
| t1 op t2
| u1 op names
| u2 op names
| r1 op names
| r2 op names
| t1 op names
| t2 op names
| u3 op names
| r3 op names
| t3 op names

Where:
u1, r1, t1 = Old user, role, type
u2, r2, t2 = New user, role, type
u3, r3, t3 = Process user, role, type

and:
op : == | !=
role_op : == | != | eq | dom | domby | incomp
names : name | { name_list }
name_list : name | name_list name

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:

4.13 File System Labeling Statements
There are four types of file labeling statements: fs_use_xattr, fs_use_task,
fs_use_trans and genfscon that are explained below.

The filesystem identifiers (fs_name) used by these statements are defined by the
SELinux teams who are responsible for their development, the policy writer then uses
those needed to be supported by the policy.

A security context is defined by these filesystem labeling statements, therefore if the
policy supports MCS / MLS, then an mls_range is required as described in the
MLS range Definition section.

Page 203

The SELinux Notebook - The Foundations

4.13.1 fs_use_xattr Statements
The fs_use_xattr statement is used to allocate a security context to filesystems
that support the extended attribute security.selinux. The labeling is persistent
for filesystems that support these extended attributes, and the security context is
added to these files (and directories) by the SELinux commands such as setfiles
as explained in the Labeling Extended Attribute Filesystems section.

The statement definition is:

fs_use_xattr fs_name fs_context;

Where:
fs_use_xattr The fs_use_xattr keyword.

fs_name The filesystem name that supports extended
attributes. The known valid names are: encfs,
ext2, ext3, ext4, ext4dev, gfs, gfs2,
jffs2, jfs, lustre and xfs.

fs_context The security context allocated to the filesystem.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

These statements define file systems that support extended
attributes (security.selinux).

fs_use_xattr encfs system_u:object_r:fs_t;
fs_use_xattr ext2 system_u:object_r:fs_t;
fs_use_xattr ext3 system_u:object_r:fs_t;

MLS Examples:

These statements define file systems that support extended
attributes (security.selinux).

fs_use_xattr encfs system_u:object_r:fs_t:s0;
fs_use_xattr ext2 system_u:object_r:fs_t:s0;
fs_use_xattr ext3 system_u:object_r:fs_t:s0;

4.13.2 fs_use_task Statement
The fs_use_task statement is used to allocate a security context to pseudo
filesystems that support task related services such as pipes and sockets.

Page 204

The SELinux Notebook - The Foundations

The statement definition is:

fs_use_task fs_name fs_context;

Where:
fs_use_task The fs_use_task keyword.

fs_name Filesystem name that supports task related services.
The known valid names are: eventpollfs,
pipefs and sockfs.

fs_context The security context allocated to the task based
filesystem.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

These statements define the file systems that support pseudo
filesystems that represent objects like pipes and sockets, so
that these objects are labeled with the same type as the
creating task.

fs_use_task eventpollfs system_u:object_r:fs_t;
fs_use_task pipefs system_u:object_r:fs_t;
fs_use_task sockfs system_u:object_r:fs_t;

MLS Example:

These statements define the file systems that support pseudo
filesystems that represent objects like pipes and sockets, so
that these objects are labeled with the same type as the
creating task.

fs_use_task eventpollfs system_u:object_r:fs_t:s0;
fs_use_task pipefs system_u:object_r:fs_t:s0;
fs_use_task sockfs system_u:object_r:fs_t:s0;

4.13.3 fs_use_trans Statement
The fs_use_trans statement is used to allocate a security context to pseudo
filesystems such as pseudo terminals and temporary objects. The assigned context is
derived from the creating process and that of the filesystem type based on transition
rules.

The statement definition is:

Page 205

The SELinux Notebook - The Foundations

fs_use_trans fs_name fs_context;

Where:
fs_use_trans The fs_use_trans keyword.

fs_name Filesystem name that supports transition rules. The
known valid names are: mqueue, shm, tmpfs
and devpts.

fs_context The security context allocated to the transition
based on that of the filesystem.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

These statements define pseudo filesystems such as devpts
and tmpfs where objects are labeled with a derived context.
#
fs_use_trans mqueue system_u:object_r:tmpfs_t;
fs_use_trans shm system_u:object_r:tmpfs_t;
fs_use_trans tmpfs system_u:object_r:tmpfs_t;
fs_use_trans devpts system_u:object_r:devpts_t;

MLS Example:

These statements define pseudo filesystems such as devpts
and tmpfs where objects are labeled with a derived context.
#
fs_use_trans mqueue system_u:object_r:tmpfs_t:s0;
fs_use_trans shm system_u:object_r:tmpfs_t:s0;
fs_use_trans tmpfs system_u:object_r:tmpfs_t:s0;
fs_use_trans devpts system_u:object_r:devpts_t:s0;

4.13.4 genfscon Statements
The genfscon statement is used to allocate a security context to filesystems that
cannot support any of the other file labeling statements (fs_use_xattr,
fs_use_task or fs_use_trans). Generally a filesystem would have a single
default security context assigned by genfscon from the root (/) that would then be
inherited by all files and directories on that filesystem. The exception to this is the
/proc filesystem, where directories can be labeled with a specific security context
(as shown in the examples). Note that there is no terminating semi-colon (;) on this
statement.

The statement definition is:

Page 206

The SELinux Notebook - The Foundations

genfscon fs_name partial_path fs_context

Where:
genfscon The genfscon keyword.

fs_name The filesystem name.
partial_path If fs_name is proc, then the partial path (see the

examples). For all other types, this must be ‘/’.

fs_context The security context allocated to the filesystem

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:

The following examples show those filesystems that only
support a single security context across the filesystem.

genfscon msdos / system_u:object_r:dosfs_t
genfscon iso9660 / system_u:object_r:iso9660_t
genfscon usbfs / system_u:object_r:usbfs_t
genfscon selinuxfs / system_u:object_r:security_t

The following show some example /proc entries that can have
directories added to the path.

genfscon proc / system_u:object_r:proc_t
genfscon proc /sysvipc system_u:object_r:proc_t
genfscon proc /fs/openafs system_u:object_r:proc_afs_t
genfscon proc /kmsg system_u:object_r:proc_kmsg_t

MLS Examples:

The following examples show those filesystems that only
support a single security context across the filesystem
with the MLS levels added.

genfscon msdos / system_u:object_r:dosfs_t:s0
genfscon iso9660 / system_u:object_r:iso9660_t:s0
genfscon usbfs / system_u:object_r:usbfs_t:s0
genfscon selinuxfs / system_u:object_r:security_t:s0

The following show some example /proc entries. Note that the
/kmsg has the highest sensitivity level assigned (s15) because
it is a trusted process.

genfscon proc / system_u:object_r:proc_t:s0
genfscon proc /sysvipc system_u:object_r:proc_t:s0

Page 207

The SELinux Notebook - The Foundations

genfscon proc /fs/openafs system_u:object_r:proc_afs_t:s0
genfscon proc /kmsg system_u:object_r:proc_kmsg_t:s15:c0.c255

4.14 Network Labeling Statements
The network labeling statements are used to label the following objects:

Network interfaces – This covers those interfaces managed by the
ifconfig(8) command.

Network nodes – These are generally used to specify host systems using either
IPv4 or IPv6 addresses.

Network ports – These can be either udp or tcp port numbers.

A security context is defined by these network labeling statements, therefore if the
policy supports MCS / MLS, then an mls_range is required as described in the
MLS range Definition section. Note that there are no terminating semi-colons (;)
on these statements.

If any of the network objects do not have a specific security context assigned by the
policy, then the value given in the policies initial SID is used (netif, node or port
respectively), as shown below:

Network Initial SIDs from the Standard Reference Policy:
sid netif system_u:object_r:netif_t
sid node system_u:object_r:node_t
sid port system_u:object_r:port_t

Network Initial SIDs from the MLS Reference Policy:
sid netif system_u:object_r:netif_t:s0 - s15:c0.c255
sid node system_u:object_r:node_t:s0 - s15:c0.c255
sid port system_u:object_r:port_t:s0

4.14.1 IP Address Formats

4.14.1.1 IPv4 Address Format

IPv4 addresses are represented in dotted-decimal notation (four numbers, each
ranging from 0 to 255, separated by dots as shown:

192.77.188.166

4.14.1.2 IPv6 Address Formats

IPv6 addresses are written as eight groups of four hexadecimal digits, where each
group is separated by a colon (:) as follows:

2001:0db8:85a3:0000:0000:8a2e:0370:7334

To shorten the writing and presentation of addresses, the following rules apply:

a) Any leading zeros in a group may be replaced with a single ‘0’ as shown:

Page 208

The SELinux Notebook - The Foundations

2001:db8:85a3:0:0:8a2e:370:7334

b) Any leading zeros in a group may be omitted and be replaced with two colons
(::), however this is only allowed once in an address as follows:

2001:db8:85a3::8a2e:370:7334

c) The localhost (loopback) address can be written as:

0000:0000:0000:0000:0000:0000:0000:0001
Or

::1

d) An undetermined IPv6 address i.e. all bits are zero is written as:

 ::

4.14.2 netifcon Statement
The netifcon statement is used to label network interface objects (e.g. eth0).

It is also possible to use the ‘semanage interface’ command to associate the
interface to a security context.

The statement definition is:

netifcon netif_id netif_context packet_context

Where:
netifcon The netifcon keyword.
netif_id The network interface name (e.g. eth0).

netif_context The security context allocated to the network
interface.

packet_context The security context allocated packets. Note that
these are defined but currently unused.

The iptable SECMARK services should be used to
label packets.

The statement is valid in:

Page 209

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:

The following netifcon statement has been taken from the
MLS policy that shows an interface name of lo with the same
security context assigned to both the interface and packets.

netifcon lo system_u:object_r:lo_netif_t:s0 - s15:c0.c255
system_u:object_r:unlabeled_t:s0 - s15:c0.c255

semanage(8) Command example:

semanage interface –a –t unconfined_t eth0

This command will produce the following file in the default <policy_name>
policy store and then activate the policy:

/etc/selinux/<policy_name>/modules/active/interfaces.local:

This file is auto-generated by libsemanage
Do not edit directly.
netifcon eth0 system_u:object_r:unconfined_t system_u:object_r:unconfined_t

4.14.3 nodecon Statement
The nodecon statement is used to label network address objects that represent IPv4
or IPv6 IP addresses and network masks.

It is also possible to add SELinux these outside the policy using the ‘semanage
node’ command that will associate the node to a security context.

The statement definition is:

nodecon subnet netmask node_context

Where:
nodecon The nodecon keyword.

subnet The subnet or specific IP address in IPv4 or IPv6
format.

Note that the subnet and netmask values are
used to ensure that the node_context is
assigned to all IP addresses within the subnet
range.

netmask The subnet mask in IPv4 or IPv6 format.

Page 210

The SELinux Notebook - The Foundations

node_context The security context for the node.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:

The Standard Reference Policy nodecon statement for the IPv4
Local Host:
nodecon 127.0.0.1 255.255.255.255 system_u:object_r:lo_node_t

The equivalent MLS Reference Policy nodecon statement for the
IPv4 Local Host:
nodecon 127.0.0.1 255.255.255.255 system_u:object_r:lo_node_t:

s0 - s15:c0.c255

The Standard Reference Policy nodecon statement for the IPv4
multicast address:
nodecon 127.0.0.1 255.255.255.255 system_u:object_r:lo_node_t:

s0 - s15:c0.c255

The equivalent MLS Reference Policy nodecon statement for the
multicast address, however using an IPv6 address:
nodecon ff00:: ff00:: system_u:object_r:multicast_node_t:

s0 - s15:c0.c255

semanage(8) Command example:

semanage node -a -t unconfined_t -p ipv4 -M 255.255.255.255 127.0.0.2

This command will produce the following file in the default <policy_name>
policy store and then activate the policy:

/etc/selinux/<policy_name>/modules/active/nodes.local:

This file is auto-generated by libsemanage
Do not edit directly.

nodecon ipv4 127.0.0.2 255.255.255.255 system_u:object_r:unconfined_t

4.14.4 portcon Statement
The portcon statement is used to label udp or tcp ports.

It is also possible to add a security context to ports outside the policy using the
‘semanage port’ command that will associate the port (or range of ports) to a
security context.

Page 211

The SELinux Notebook - The Foundations

The statement definition is:

portcon protocol port_number port_context

Where:
portcon The portcon keyword.

protocol The protocol type. Valid entries are udp or tcp.
port_number The port number or range of ports. The ranges are

separated by a hyphen (-).

port_context The security context for the port or range of ports.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:

The Standard Reference Policy portcon statements:
portcon tcp 20 system_u:object_r:ftp_data_port_t
portcon tcp 21 system_u:object_r:ftp_port_t
portcon tcp 600-1023 system_u:object_r:hi_reserved_port_t
portcon udp 600-1023 system_u:object_r:hi_reserved_port_t
portcon tcp 1-599 system_u:object_r:reserved_port_t
portcon udp 1-599 system_u:object_r:reserved_port_t

The equivalent MLS Reference Policy portcon statements:
portcon tcp 20 system_u:object_r:ftp_data_port_t:s0
portcon tcp 21 system_u:object_r:ftp_port_t:s0
portcon tcp 600-1023 system_u:object_r:hi_reserved_port_t:s0
portcon udp 600-1023 system_u:object_r:hi_reserved_port_t:s0
portcon tcp 1-599 system_u:object_r:reserved_port_t:s0
portcon udp 1-599 system_u:object_r:reserved_port_t:s0

semanage(8) Command example:

semanage port –a –t unconfined_t –p udp 1234

This command will produce the following file in the default <policy_name>
policy store and then activate the policy:

/etc/selinux/<policy_name>/modules/active/ports.local:

This file is auto-generated by libsemanage
Do not edit directly.

portcon udp 1234 system_u:object_r:unconfined_t

Page 212

The SELinux Notebook - The Foundations

4.15 MLS Statements
The optional MLS policy extension adds an additional security context component
that consists of the following highlighted entries:

user:role:type:sensitivity[:category,...]- sensitivity [:category,...]

These consist of a mandatory hierarchical sensitivity and optional non-
hierarchical category’s. The combination of the two comprise a level or security
level as shown in Table 17. Depending on the circumstances, there can be one level
defined or a range as shown in Table 17.

Security Level (or Level)
Consisting of a sensitivity and zero or

more category entries:

Note that SELinux uses level, sensitivity and
category in the language statements, however when
discussing these the following terms can also be used:
labels, classifications, and compartments.

sensitivity [: category, ...]

 Range 

Low High

sensitivity [: category, ...] - sensitivity [: category, ...]

For a process or subject this is the
current level or sensitivity

For a process or subject this is the
Clearance

For an object this is the current level or
sensitivity

For an object this is the maximum range

SystemLow SystemHigh

This is the lowest level or classification for
the system (for SELinux this is generally
‘s0’, note that there are no categories).

This is the highest level or classification for
the system (for SELinux this is generally

‘s15:c0,c255’, although note that they
will be the highest set by the policy).

Table 17: Sensitivity and Category = Security Level – this table shows the
meanings depending on the context being discussed.

To make the security levels more meaningful, it is possible to use the setransd
daemon to translate these to human readable formats. The semanage(8) command
will allow this mapping to be defined as discussed in the ./setrans.conf file
section.

4.15.1 sensitivity Statement
The sensitivity statement defines the MLS policy sensitivity identifies and
optional alias identifiers.

The statement definition is:

Page 213

The SELinux Notebook - The Foundations

sensitivity identifier;

Or

sensitivity sens_id alias alias_id [alias_id];

Where:
sensitivity The sensitivity keyword.
sens_id The sensitivity identifier.

alias The optional alias keyword.
alias_id One or more alias identifiers in a space separated

list.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No Yes

Examples:

The MLS Reference Policy default is to assign 16 sensitivity
identifiers (s0 to s15):
sensitivity s0;
....
sensitivity s15;

The policy does not specify any alias entries, however a valid
example would be:
sensitivity s0 alias secret wellmaybe ornot;

4.15.2 MLS dominance Statement
When more than one sensitivity Statement is defined within a policy, then a
dominance statement is required to define the actual hierarchy between all
sensitivities.

The statement definition is:

dominance { sens_id ... }

Where:
dominance The dominance keyword.
sens_id A space separated list of previously declared

sensitivity identifiers (or alias) in the order
lowest to highest. They are enclosed in braces

Page 214

The SELinux Notebook - The Foundations

({}), and note that there is no terminating semi-
colon (;).

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

The MLS Reference Policy dominance statement defines s0 as the
lowest and s15 as the highest sensitivity level:

dominance { s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 }

4.15.3 category Statement
The category statement defines the MLS policy category identifiers52 and optional
alias identifiers.

The statement definition is:

category cat_id;

Or

category cat_id alias alias_id;

Where:
category The category keyword.
cat_id The category identifier.

alias The optional alias keyword.
alias_id One or more alias identifiers in a space separated

list.

The statement is valid in:

52 SELinux use the term ‘category’ or ‘categories’ while some MLS systems and documentation use
the term ‘compartment’ or ‘compartments’, however they have the same meaning.

Page 215

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No Yes

Examples:

The MLS Reference Policy default is to assign 256 category
identifiers (c0 to c255):
category c0;
...
category c255;

The policy does not specify any alias entries, however a valid
example would be:
category c0 alias planning development benefits;

4.15.4 level Statement
The level statement enables the previously declared sensitivity and category
identifiers to be combined into a Security Level.

Note there must only be one level statement for each sensitivity Statement .

The statement definition is:

level sens_id [:category_id];

Where:
level The level keyword.

sens_id A previously declared sensitivity identifier.
category_id An optional set of zero or more previously

declared category identifiers that are preceded
by a colon (:), that can be written as follows:

• The stop sign (.) separating two
category identifiers means an
inclusive set (e.g. c0.c16).

• The comma (,) separating two
category identifiers means a non-
contiguous list (e.g. c21,c36,c45).

• Both separators may be used (e.g.
c0.c16, c21,c36,c45).

The statement is valid in:

Page 216

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:

The MLS Reference Policy default is to assign each Security
Level with the complete set of categories (i.e. the inclusive
set from c0 to c255):

level s0:c0.c255;
...
level s15:c0.c255;

4.15.5 range_transition Statement
The range_transition statement is primarily used by the init process or
administration commands to ensure processes run with their correct MLS range (for
example init would run at SystemHigh and needs to initialise / run other
processes at their correct MLS range). The statement was enhanced in Policy version
21 to accept other object classes.

The statement definition is (for pre-policy version 21):

range_transition source_type target_type new_range;

or (for policy version 21 and greater):

range_transition source_type target_type : class new_range;

Where:
range_transition The range_transition keyword.
source_type
target_type

One or more source / target type or attribute
identifiers. Multiple entries consist of a space
separated list enclosed in braces ({}).

Entries can be excluded from the list by using the
negative operator (-).

class The optional object class keyword (this allows
policy versions 21 and greater to specify a class
other than the default of process).

new_range The new MLS range for the object class. The
format of this field is described in the MLS range
Definition section.

The statement is valid in:

Page 217

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Examples:

A range_transition statement from the MLS Reference Policy
showing that a process anaconda_t can transition between
systemLow and systemHigh depending on calling applications
level.

range_transition anaconda_t init_script_file_type:process s0 -
s15:c0.c255;

Two range_transition statements from the MLS Reference Policy
showing that init will transition the audit and cups daemon
to systemHigh (that is the lowest level they can run at).

range_transition initrc_t auditd_exec_t:process s15:c0.c255;
range_transition initrc_t cupsd_exec_t:process s15:c0.c255;

4.15.5.1 MLS range Definition

The MLS range is appended to a number of statements and defines the lowest and
highest security levels. The range can also consist of a single level as discussed at
the start of the MLS section.

The definition is:

low_level

Or

low_level – high_level

Where:
low_level The processes lowest level identifier that has

been previously declared by a level Statement .

If a high_level is not defined, then it is taken
as the same as the low_level.

- The optional hyphen (-) separator if a
high_level is also being defined.

high_level The processes highest level identifier that has
been previously declared by a level Statement .

Page 218

The SELinux Notebook - The Foundations

4.15.6 mlsconstrain Statement
The mlsconstrain statement allows further restriction on permissions for the
specified object classes by using boolean expressions covering: source and target
types, roles, users and security levels as described in the examples.

The statement definition is:

mlsconstrain class perm_set expression;

Where:
mlsconstrain The mlsconstrain keyword.

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces {}.

perm_set One or more permissions. Multiple entries consist of
a space separated list enclosed in braces {}.

expression The boolean expression of the constraint that is
defined as follows:

 (expression : expression)
| not expression
| expression and expression
| expression or expression
| u1 op u2
| r1 role_mls_op r2
| t1 op t2
| l1 role_mls_op l2
| l1 role_mls_op h2
| h1 role_mls_op l2
| h1 role_mls_op h2
| l1 role_mls_op h1
| l2 role_mls_op h2
| u1 op names
| u2 op names
| r1 op names
| r2 op names
| t1 op names
| t2 op names

Where:
u1, r1, t1, l1, h1 = Source user, role, type, low level, high level
u2, r2, t2, l2, h2 = Target user, role, type, low level, high level

and:
op : == | !=
role_mls_op : == | != | eq | dom | domby | incomp
names : name | { name_list }
name_list : name | name_list name

The statement is valid in:

Page 219

The SELinux Notebook - The Foundations

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:
These examples have been taken from the Reference Policy source ./policy/mls
constraints file (the mcs file supports the MCS constraints).

These are built into the policy at build time and add constraints to many of the object
classes.

The MLS Reference Policy mlsconstrain statement for searching
directories that comprises of multiple expressions. Only the
first two expressions are explained.
#
Expression 1 (l1 dom l2) reads as follows:
The dir object class search permission is allowed if the
source lowest security level is dominated by the targets
lowest security level.
OR
Expression 2 ((t1 == mlsfilereadtoclr) and (h1 dom l2))
reads as follows:
If the source type is equal to a type associated to the
mlsfilereadtoclr attribute and the source highest security
level is dominated by the targets lowest security level,
then search permission is allowed on the dir object class.

mlsconstrain dir search
((l1 dom l2) or
 ((t1 == mlsfilereadtoclr) and (h1 dom l2)) or
 (t1 == mlsfileread) or
 (t2 == mlstrustedobject));

4.15.7 mlsvalidatetrans Statement
The mlsvalidatetrans is the MLS equivalent of the validatetrans
statement and is only used for file related object classes where it is used to control the
ability to change the objects security context.

The statement definition is:

mlsvalidatetrans class expression;

Where:

Page 220

The SELinux Notebook - The Foundations

mlsvalidatetrans The mlsvalidatetrans keyword.
class One or more file type object classes. Multiple

entries consist of a space separated list enclosed
in braces {}.

expression The boolean expression of the constraint that
is defined as follows:
(expression : expression)

| not expression
| and (expression and expression
| or expression or expression
| u1 op u2
| r1 role_mls_op r2
| t1 op t2
| l1 role_mls_op l2
| l1 role_mls_op h2
| h1 role_mls_op l2
| h1 role_mls_op h2
| l1 role_mls_op h1
| l2 role_mls_op h2
| u1 op names
| u2 op names
| r1 op names
| r2 op names
| t1 op names
| t2 op names
| u3 op names
| r3 op names
| t3 op names

Where:
u1, r1, t1, l1, h1 = Old user, role, type, low level, high level
u2, r2, t2, l2, h2 = New user, role, type, low level, high level
u3, r3, t3, l3, h3 = Process user, role, type, low level, high level

and:
op : == | !=
role_mls_op : == | != | eq | dom | domby | incomp
names : name | { name_list }
name_list : name | name_list name

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:
This example has been taken from the Reference Policy source ./policy/mls file.

Page 221

The SELinux Notebook - The Foundations

The MLS Reference Policy mlsvalidatetrans statement for
managing the file upgrade/downgrade rules that comprises of
multiple expressions. Only the first two expressions are
explained.
#
Expression 1: (l1 eq l2) reads as follows:
For a file related object to change security context, its
current (old) low security level must be equal to the new
objects low security level.
#
The second part of the expression:
or ((t3 == mlsfileupgrade) and (l1 domby l2)) reads as
follows:
or the process type must equal a type associated to the
mlsfileupgrade attribute and its current (old) low security
level must be dominated by the new objects low security level.

mlsvalidatetrans { dir file lnk_file chr_file blk_file sock_file
fifo_file }
 (((l1 eq l2) or
 ((t3 == mlsfileupgrade) and (l1 domby l2)) or
 ((t3 == mlsfiledowngrade) and (l1 dom l2)) or
 ((t3 == mlsfiledowngrade) and (l1 incomp l2))) and ((h1 eq h2)
or
 ((t3 == mlsfileupgrade) and (h1 domby h2)) or
 ((t3 == mlsfiledowngrade) and (h1 dom h2)) or
 ((t3 == mlsfiledowngrade) and (h1 incomp h2))));

4.16 Policy Support Statements
This section contains language statements used to support policy.

4.16.1 module Statement
This statement is mandatory for loadable modules (non-base) and must be the first
line of any module policy source file. The identifier should not conflict with other
module names within the overall policy, otherwise it will over-write an existing
module when loaded via the semodule command. The semodule -l command
can be used to list all active modules within the policy.

The statement definition is:

module module_name version_number;

Where:
module The module keyword.
module_name The module name.
version_number The module version number in M.m.m format

(where M = major version number and m = minor
version numbers).

Page 222

The SELinux Notebook - The Foundations

The statement is valid in:

Monolithic Policy Base Policy Module Policy

No No Yes

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

Using the module statement to define a loadable module called
bind with a version 1.0.0:

module bind 1.8.0;

4.16.2 require Statement
The require statement is used for two reasons:

1. Within loadable module policy source files to indicate what policy
components are required from an external source file (i.e. they are not
explicitly defined in this module but elsewhere). The examples below show
the usage.

2. Within a base policy source file, but only if preceded by the optional
Statement to indicate what policy components are required from an external
source file (i.e. they are not explicitly defined in the base policy but
elsewhere). The examples below show the usage.

The statement definition is:

require { rule_list }

Where:
require The require keyword.
require_list One or more specific statement keywords with their

required identifiers in a semi-colon (;) separated list
enclosed within braces ({}).

The valid statement keywords are:

• role, type, attribute, user, bool,
sensitivity and category. The keyword is
followed by one or more identifiers in a comma (,)
separated list, with the last entry being terminated
with a semi-colon (;).

• class. The class keyword is followed by a single
object class identifier and one or more permissions.
Multiple permissions consist of a space separated
list enclosed within braces ({}). The list is then
terminated with a semi-colon (;).

Page 223

The SELinux Notebook - The Foundations

The examples below show these in detail.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

No Yes – But only if
proceeded by the

optional Statement .

Yes

Conditional Policy (if) Statement optional Statement require Statement
Yes – But only if proceeded by

the optional Statement .
Yes No

Examples:

A series of require statements showing various entries:

require {
role system_r;
class security { compute_av compute_create compute_member

check_context load_policy compute_relabel compute_user
setenforce setbool setsecparam setcheckreqprot };

class capability2 { mac_override mac_admin };
}

#
require {

attribute direct_run_init, direct_init, direct_init_entry;
type initrc_t;
role system_r;
attribute daemon;

}

#
require {

type nscd_t, nscd_var_run_t;
class nscd { getserv getpwd getgrp gethost shmempwd shmemgrp

shmemhost shmemserv };
}

4.16.3 optional Statement
The optional statement is used to indicate what policy statements may or may not
be present in the final compiled policy. The statements will be included in the policy
only if all statements within the optional { rule list } can be expanded
successfully, this is generally achieved by using a require Statement at the start of
the list.

The statement definition is:

optional { rule_list }

Or

Page 224

The SELinux Notebook - The Foundations

optional { rule_list } else { rule_list }

Where:
optional The optional keyword.

rule_list One or more statements enclosed within braces
({}). The list of valid statements is given in
Table 16.

else An optional else keyword.

rule_list As the rule_list above.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

No Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
Yes Yes Yes

Examples:

Use of optional block in a base policy source file.

optional {
require {

type unconfined_t;
} # end require

allow acct_t unconfined_t:fd use;
} # end optional

Use of optional / else blocks in a base policy source file.

optional {
require {

type ping_t, ping_exec_t;
} # end require

allow dhcpc_t ping_exec_t:file { getattr read execute };
.....

require {
type netutils_t, netutils_exec_t;

} # end require
allow dhcpc_t netutils_exec_t:file { getattr read execute };
.....
type_transition dhcpc_t netutils_exec_t:process netutils_t;
...
} else {

allow dhcpc_t self:capability setuid;
.....

} # end optional

Page 225

The SELinux Notebook - The Foundations

4.16.4 policycap Statement
Policy database version 22 introduced the policycap statement to allow new
capabilities to be enabled or disabled via the policy. In the Reference Policy there are
three policy capabilities configured as shown in the SELinux Filesystem section.

The statement definition is:

policycap capability;

Where:
policycap The policycap keyword.

capability The capability identifier that needs to be
enabled for this policy.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

This statement enables the network_peer_controls to be enabled
for use by the policy.

policycap network_peer_controls;

4.16.5 permissive Statement
Policy database version 23 introduced the permissive statement to allow the
named domain to run in permissive mode instead of running all SELinux domains in
permissive mode (that was the only option prior to version 23). Note that the
permissive statement:

1. Only tests the source context for any policy denial.

2. Can be set by the semanage(8) command as it supports a permissive option
as follows:

semanage supports enabling and disabling of permissive
mode using the following command:
semanage permissive –a|d type

This example will add a new module in /etc/selinux/
<policy_name>/modules/active/modules/ called
permissive_unconfined_t.pp and then reload the policy:

semanage permissive –a unconfined_t

Page 226

The SELinux Notebook - The Foundations

3. Can be built into a loadable policy module so that permissive mode can be
easily enabled or disabled by adding or removing the module. An example
module is as follows:

This is an example loadable module that would allow the
domain to be set to permissive mode.
#
module permissive_unconfined_t 1.0.0;
require {

type unconfined_t;
}
permissive unconfined_t;

The statement definition is:

permissive type_id;

Where:
permissive The permissive keyword.

type_id The type identifier of the domain that will be run
in permissive mode.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes Yes

Conditional Policy (if) Statement optional Statement require Statement
No Yes No

Example:

This is the simple statement that would allow permissive mode
to be set on the httpd_t domain, however this statement is
generally built into a loadable policy module so that the
permissive mode can be easily removed by removing the module.

permissive httpd_t;

semanage(8) Command example:

semanage permissive –a unconfined_t

This command will produce the following module in the default <policy_name>
policy store and then activate the policy:

/etc/selinux/<policy_name>/modules/active/modules/permissive_unconfined_t.pp

Page 227

The SELinux Notebook - The Foundations

4.17 Object Class and Permission Statements
For those who write or manager SELinux policy, there is no need to define new
objects and their associated permissions as these would be done by those who actually
design and/or write object managers.

4.17.1 Object Classes
A list of object classes used by Fedora can be found in the Reference Policy source in
the ./policy/flask/security_classes file.

Object classes are defined within a policy as follows:

The statement definition is:

class class_id

Where:
class The class keyword.

class_id The class identifier.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No Yes

Example:

Define the PostgreSQL db_tuple object class
#
class db_tuple

4.17.2 Permissions
A list of permissions used by the Reference Policy are listed in the
./policy/flask/access_vectors file.

Permissions can be defined within policy in two ways:

1. Define class specific permissions. This is where permissions are declared for a
specific object class only (i.e. the permission is not inherited by any other
object class).

2. Define a set of common permissions that can then be inherited by one or more
object classes. The statement for creating a set of common permissions is
shown in the Defining common Permissions section.

The permission (or AV) statement definition is:

Page 228

The SELinux Notebook - The Foundations

class class_id [inherits common_set] [{ perm_set }]

Where:
class The class keyword.

class_id The previously declared class identifier.
inherits The optional inherits keyword that allows a

set of common permissions to be inherited.

common_set A previously declared common identifier as
described in the Defining common Permissions
section.

perm_set One or more optional permission identifiers in a
space separated list enclosed within braces ({}).

Note:
There must be at least one common_set or one perm_set defined within the
statement.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No Yes

Examples:

The following example shows the db_tuple object class being
allocated two permissions:

class db_tuple { relabelfrom relabelto }

The following example shows the db_blob object class
inheriting permissions from the database set of common
permissions (as described in the Defining common Permissions
section):

class db_blob inherits database

The following example (from the access_vector file) shows the
db_blob object class inheriting permissions from the database
set of common permissions and adding a further four
permissions:

class db_blob inherits database { read write import export }

Page 229

The SELinux Notebook - The Foundations

4.17.2.1 Defining common Permissions

A list of common permissions used by the Reference Policy are listed in the
./policy/flask/access_vectors file.

New or updated common permissions would only be updated by those who produce
kernel or user space object managers.

The statement definition is:

common common_id { perm_set }

Where:
common The common keyword.

common_id The common identifier.
perm_set One or more permission identifiers in a space

separated list enclosed within braces ({}).

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

Define the common PostgreSQL permissions
#
common database { create drop getattr setattr relabelfrom
relabelto }

4.18 Security ID (SID) Statement
There are two SID statements, the first one declares the actual SID identifier and is
defined at the start of a policy source file. The second statement is used to add an
initial security context to the SID that is used when SELinux initialises or as a default.

4.18.1 sid Statement
The sid statement declares the actual SID identifier and is defined at the start of a
policy source file.

The statement definition is:

sid sid_id

Where:
sid The sid keyword.

Page 230

The SELinux Notebook - The Foundations

sid_id The sid identifier. Note that there is no terminating ‘;’.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:
This example has been taken from the Reference Policy source
../policy/flask/initial_sids file.

This example was taken from the
./policy/flask/initial_sids file and declares some
of the initial SIDs:
#
sid kernel
sid security
sid unlabeled
sid fs

4.18.2 sid context Statement
The sid context statement is used to add an initial security context to the SID that is
used when SELinux initialises, or as a default if an object is not labeled correctly.

sid sid_id context

Where:
sid The sid keyword.
sid_id The previously declared sid identifier.

context The initial security context associated with the SID.
Note that there is no terminating ‘;’.

The statements are valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Examples:

These statements add an initial security context to an object
that is used when SELinux initialises or as a default if a

Page 231

The SELinux Notebook - The Foundations

context is not available or labeled incorrectly.
#
This one is from a targeted policy:

sid unlabeled system_u:object_r:unlabeled_t

This one is from an MLS policy. Note that the security level
is set to SystemHigh as it may need to label any object in
the system.

sid unlabeled system_u:object_r:unlabeled_t:s15:c0.c255

4.19 Xen Statements
Xen policy supports additional policy language statements: iomemcon,
ioportcon, pcidevicecon and pirqcon that are discussed in the sections that
follow.

To compile these additional statements using semodule(8), ensure that the
semanage.conf(5) file has the policy-target=xen entry.

4.19.1 iomemcon Statement
The sid statement declares the actual SID identifier and is defined at the start of a
policy source file.

The statement definition is:

iomemcon addr context;

Where:
iomemcon The iomemcon keyword.
addr The memory address to apply the context. This may also be a

range that consists of a start and end address separated by a
hypen ('-').

context The security context to be applied.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

iomemcon 0xfebd9 system_u:object_r:nicP_t;

Page 232

The SELinux Notebook - The Foundations

iomemcon 0xfebe0-0xfebff system_u:object_r:nicP_t;

4.19.2 ioportcon Statement
The sid statement declares the actual SID identifier and is defined at the start of a
policy source file.

The statement definition is:

ioportcon port context;

Where:
ioportcon The ioportcon keyword.
port The port to apply the context. This may also be a range that

consists of a start and end port number separated by a hypen
('-').

context The security context to be applied.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

ioportcon 0xeac0 system_u:object_r:nicP_t;

ioportcon 0xecc0-0xecdf system_u:object_r:nicP_t;

4.19.3 pcidevicecon Statement
The sid statement declares the actual SID identifier and is defined at the start of a
policy source file.

The statement definition is:

pcidevicecon pci_id context;

Where:
pcidevicecon The pcidevicecon keyword.

pci_id The PCI indentifer.
context The security context to be applied.

Page 233

The SELinux Notebook - The Foundations

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

pcidevicecon 0xc800 system_u:object_r:nicP_t;

4.19.4 pirqcon Statement
The sid statement declares the actual SID identifier and is defined at the start of a
policy source file.

The statement definition is:

pirqcon irq context;

Where:
pirqcon The pirqcon keyword.

irq The interrupt request number.
context The security context to be applied.

The statement is valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

pirqcon 33 system_u:object_r:nicP_t;

Page 234

The SELinux Notebook - The Foundations

5. The Reference Policy

5.1 Introduction
The Reference Policy is now the standard policy source used to build SELinux
policies. This provides a single source tree with supporting documentation that can be
used to build policies for different purposes such as: confining important daemons,
supporting MLS / MCS type policies and locking down systems so that all processes
are under SELinux control.

This section details how the Reference Policy is:

1. Constructed and types of policy builds supported.

2. Installation as a full Reference Policy source or as Header files.

3. Modifying the configuration files to build new policies.

4. Adding new modules to the build.

5.1.1 Notebook Reference Policy Information
This section makes use of the F-17 distribution that is built from the standard
Reference Policy that is modified and distributed by Red Hat as the following RPM:

selinux-policy-3.10.0-86.fc16.src.rpm53

This core source code is then used to build various policy RPMs that are distributed
by Red Hat as:

selinux-policy-3.10.0-86.fc16.noarch – Contains the SELinux
/etc/selinux/config file, man pages and the ‘Policy Header’ development
environment that is located at /usr/share/selinux/devel
selinux-policy-doc-3.10.0-86.fc16.noarch - Contains the html
policy documentation that is located at /usr/share/doc/selinux-
policy-3.10.0/html
selinux-policy-minimum-3.10.0-86.fc16.noarch
selinux-policy-mls-3.10.0-86.fc16.noarch
selinux-policy-targeted-3.10.0-86.fc16.noarch
These three rpms contain policy configuration files and the packaged policy
modules (*.pp). They will be used to build the particular policy type in
/usr/share/selinux/<policy_name>, the install process will then
install the policy in the appropriate /etc/selinux/<policy_name>
directory.

53 This RPM can be obtained from the http://koji.fedoraproject.org web site.

Page 235

http://koji.fedoraproject.org/

The SELinux Notebook - The Foundations

5.2 Reference Policy Overview
Important notes - Strictly speaking the ‘Reference Policy’ should refer to the policy
taken from the master repository (see
http://oss.tresys.com/projects/refpolicy/wiki/RepositoryCheckout) or the latest
released version (see http://oss.tresys.com/projects/refpolicy/wiki/DownloadRelease).
However most Linux distributors take a released version and then tailor it to their
specific requirements. Therefore as this Notebook is based on Fedora 16, then this is
the Reference Policy version that will be discussed (if refering to the master
Reference Policy, then the word ‘master’ will be used).

The Reference Policy54 can be used to build two different formats of a policy:

1. Loadable Module Policy – A policy that has a base module for core services
and has the ability to load / unload modules to support applications as required
55. This is now the standard used by GNU / Linux distributions.

2. Monolithic Policy – A policy that has all the required policy information in a
single base policy.

Each of the policy types are built using module files that define the specific rules
required by the policy as detailed in the Reference Policy Module Files section. Note
that the monolithic policy is built using the the same module files, however they are
all assembled into a single ‘base’ source file.

There are tools such as SLIDE (SELinux integrated development environment) that
can be used to make the task of policy development and testing easier when using the
Reference Policy source or headers. SLIDE is an Eclipse plugin and details can be
found at:

http://oss.tresys.com/projects/slide

5.2.1 Distributing Policies
It is possible to distribute the Reference Policy in two forms:

1. As source code that is then used to build policies. This is not the general way
policies are distributed as it contains the complete source that most
administrators do not need. The Reference Policy Source section describes the
source and the Installing and Building the Reference Policy Source section
describes how to install the source and build a policy.

2. As ‘Policy Headers’. This is the most common way to distribute the Reference
Policy. Basically, the modules that make up ‘the distribution’ are pre-built and
then linked to form a base and optional modules. The ‘headers’ that make-up
the policy are then distributed along with makefiles and documentation. A
policy writer can then build policy using the core modules supported by the
distribution, and using development tools they can add their own policy
modules. The Reference Policy Headers section describes how these are
installed and used to build modules.

54 The full source code and details are at the following site: http://oss.tresys.com/projects/refpolicy.
55 These can be installed by system administrators as required. The dynamic loading / unloading of

policies as applications are loaded is not yet supported.

Page 236

http://oss.tresys.com/projects/slide
http://eclipse.org/
http://oss.tresys.com/projects/refpolicy
http://oss.tresys.com/projects/refpolicy/wiki/DownloadRelease
http://oss.tresys.com/projects/refpolicy/wiki/RepositoryCheckout

The SELinux Notebook - The Foundations

The policy header files for F-16 are distributed in a number of rpms as
follows:

selinux-policy-3.10.0-86.fc16.noarch – This package
contains the SELinux /etc/selinux/config file, man pages and the
‘Policy Header’ development environment that is located at
/usr/share/selinux/devel
selinux-policy-doc-3.10.0-86.fc16.noarch – This
package contains the html policy documentation that is located at
/usr/share/doc/selinux-policy-3.10.0/html
selinux-policy-minimum-3.10.0-86.fc16.noarch
selinux-policy-mls-3.10.0-86.fc16.noarch
selinux-policy-targeted-3.10.0-86.fc16.noarch
These three packages contain policy configuration files and policy
modules (*.pp files) for the particular policy type to be installed. The
files are used to build the policy type in
/usr/share/selinux/<policy_name> and then install the policy
in the /etc/selinux/<policy_name> directory.

Normally only one policy would be installed and active, however for
development purposes all three can be installed.

5.2.2 Policy Functionality
As can be seen from the policies distributed with F-16 above, they can be classified
by the name of the functionality they support (taken from the NAME entry of the
build.conf as shown in Table 19), for example the Red Hat policies support56:

minimum – supports a minimal set of confined daemons within their own
domains. The remainder run in the unconfined_t space.

targeted – supports a greater number of confined daemons and can also
confine other areas and users (this targeted version also supports the older ‘strict’
version).

mls – supports server based MLS systems.

For information, the master Reference Policy supports the following types (taken
from the TYPE entry of the build.conf as shown in Table 19):

standard – supports confined daemons and can also confine other areas and
users (this is an amalgamated version of the older ‘targeted’ and ‘strict’ versions).

mcs – As standard but supports MCS labels.

mls – supports MLS labels and confines server processes.

56 Note that Red Hat pre-configure MCS support within all their policies.

Page 237

The SELinux Notebook - The Foundations

5.2.3 Reference Policy Module Files
The reference policy modules are constructed using a mixture of policy language
statements, support macros and access interface calls using three principle types of
source file:

1. A private policy file that contains statements required to enforce policy on the
specific GNU / Linux service being defined within the module. These files are
named <module_name>.te.

For example the ada.te file shown below has two statements:

a) one to state that the ada_t process has permission to write to the
stack and memory allocated to a file.

b) one that states that if the unconfined module is loaded, then allow
the ada_t domain unconfined access. Note that if the flow of this
statement is followed it will be seen that many more interfaces and
macros are called to build the final raw SELinux language statements.
An expanded module source is shown in the Module Expansion
Process section.

2. An external interface file that defines the services available to other modules.
These files are named <module_name>.if.

For example the ada.if file shown below has two interfaces defined for
other modules to call (see also Figure 5.1 that shows a screen shot of the
documentation that can be automatically generated):

a) ada_domtrans - that allows another module (running in domain
$1) to run the ada application in the ada_t domain.

b) ada_run - that allows another module to run the ada application in
the ada_t domain (via the ada_domtrans interface), then
associate the ada_t domain to the caller defined role ($2) and
terminal ($3).

Provided of course that the caller domain has permission.

It should be noted that there are two types of interface specification:

Access Interfaces – These are the most common and define interfaces that
.te modules can call as described in the ada examples. They are
generated by the interface macro as detailed in the the interface
Macro section.

Template Interfaces – These are required whenever a module is required
in different domains and allows the type(s) to be redefined by adding a
prefix supplied by the calling module. The basic idea is to set up an
application in a domain that is suitable for the defined SELinux user and
role to access but not others. These are generated by the template
macro as detailed in the template Macro section that also explains the
openoffice.if template.

3. A file labeling file that defines the labels to be added to files for the specified
module. These files are named <module_name>.fc. The build process will

Page 238

The SELinux Notebook - The Foundations

amalgamate all the .fc files and finally form the file_contexts file that
will be used to label the filesystem.

For example the ada.fc file shown below requires that the specified files are
all labeled system_u:object_r:ada_exec_t:s0.

The <module_name> must be unique within the reference policy source tree and
should reflect the specific GNU / Linux service being enforced by the policy.

The module files are constructed using a mixture of:

1. Policy language statements as defined in the SELinux Policy Language
section.

2. Reference Policy macros that are defined in the Reference Policy Macros
section.

3. External interface calls defined within other modules (.te and .if only).

An example of each file taken from the ada module is as follows:

ada.te file contents:

policy_module(ada, 1.4.0)

##
#
Declarations
#

type ada_t;
type ada_exec_t;
application_domain(ada_t, ada_exec_t)
role system_r types ada_t;

##
#
Local policy
#

allow ada_t self:process { execstack execmem };

userdom_use_user_terminals(ada_t)

optional_policy(`
unconfined_domain(ada_t)

')

ada.if file contents:

<summary>GNAT Ada95 compiler</summary>

##
<summary>
Execute the ada program in the ada domain.
</summary>
<param name="domain">
<summary>
Domain allowed access.
</summary>
</param>
#
interface(`ada_domtrans',`

gen_require(`
type ada_t, ada_exec_t;

')

corecmd_search_bin($1)

Page 239

The SELinux Notebook - The Foundations

domtrans_pattern($1, ada_exec_t, ada_t)
')

##
<summary>
Execute ada in the ada domain, and
allow the specified role the ada domain.
</summary>
<param name="domain">
<summary>
Domain allowed access.
</summary>
</param>
<param name="role">
<summary>
The role to be allowed the ada domain.
</summary>
</param>
<param name="terminal">
<summary>
The type of the terminal allow the ada domain to use.
</summary>
</param>
#
interface(`ada_run',`

gen_require(`
type ada_t;

')

ada_domtrans($1)
role $2 types ada_t;

')

ada.fc file contents:

#
/usr
#
/usr/bin/gnatbind -- gen_context(system_u:object_r:ada_exec_t,s0)
/usr/bin/gnatls -- gen_context(system_u:object_r:ada_exec_t,s0)
/usr/bin/gnatmake -- gen_context(system_u:object_r:ada_exec_t,s0)
/usr/libexec/gcc(/.*)?/gnat1 -- gen_context(system_u:object_r:ada_exec_t,s0)

5.2.4 Reference Policy Documentation
One of the advantages of the reference policy is that it is possible to automatically
generate documentation as a part of the build process. This documentation is defined
in XML and generated as HTML files suitable for viewing via a browser.

The documentation for F-16 can be found in the following locations:

Distributed as Policy Headers - /usr/share/doc/selinux-policy-
<version>/html. Where <version> is the version number of the Red Hat
release, for the build used in this Notebook the location is:

/usr/share/doc/selinux-policy-3.10.0/html
Distributed as Policy Source - <location>/src/policy/doc/html.
Where <location> is the location of the installed source after make
install-src has been executed as described in the Installing The Reference
Policy Source section. The documentation can then be generated using make
html, where for the build used in this Notebook the location is:

/etc/selinux/targeted-86/src/policy/doc/html

Page 240

The SELinux Notebook - The Foundations

Figure 5.1 shows an example screen shot of the documentation produced for the ada
module interfaces.

Figure 5.1: Example Documentation Screen Shot

5.3 Reference Policy Source
This section will explain the source layout and configuration files, with the actual
installation and building covered in the Installing and Building the Reference Policy
Source section.

The source has a README file containing information on the configuration and
installation processes that has been used within this section (and updated with the
authors comments as necessary). There is also a VERSION file that contains the
Reference Policy release date which can be used to obtain the original source from the
repository located at:

http://oss.tresys.com/projects/refpolicy

5.3.1 Source Layout
Figure 5.2 shows the layout of the reference policy source tree, that once installed
would be located at:

/etc/selinux/<policy_name>/src/policy
The following sections detail the source contents:

• Reference Policy Files and Directories – Describes the files and their location.

• Source Configuration Files – Details the contents of the build.conf and
modules.conf configuration files.

• Source Installation and Build Make Options – Describes the make targets.

Page 241

http://oss.tresys.com/projects/refpolicy

The SELinux Notebook - The Foundations

• Modular Policy Build Process – Describes how the various source files are
linked together to form a base policy module (base.conf) during the build
process.

The Installing and Building the Reference Policy Source section then describes how
the initial source is installed and configured to allow a version of the F-16 targeted
policy to be built.

Page 242

The SELinux Notebook - The Foundations

Figure 5.2: The Reference Policy Source Tree – When building a modular policy, files are added to the policy store. For monolithic builds the
policy store is not used.

Page 243

Reference Policy Source Tree
config

appconfig-mcs
appconfig-mls

appconfig-
standard

local.users

./

build.conf

Makefile

Rules.
modular

Rules.
monolithic

Applicat ion
specific

configurat ion
files

doc
templates

example files +
dtd

man
man
ru

policy
flask

modules

support
+

Policy
configuration

files

support
Policy support

scripts

html template
files

Reference
Policy man

pages

Reference
Policy macros

flask config
files

admin

apps

kernel

roles

services

system

.te, .if and .fc
module files

.te, .if and .fc
module files

.te, .if and .fc
module files

.te, .if and .fc
module files

.te, .if and .fc
module files

.te, .if and .fc
module files

SELinux Policy
--------- Policy Store -------------
/etc/selinux/<policy_name>/modules:
semanage.read.LOCK
semanage.trans.LOCK
/etc/selinux/[policy_name]/modules/active:
base.pp
commit_num
file_contexts
file_contexts.homedirs
file_contexts.template
homedir_template
netfilter_contexts
seusers.final
users_extra
/etc/selinux/<policy_name>/modules/active/modules:
amavis.pp
amtu.pp
...
zabbix.pp

--- Policy Configuration Files -----
/etc/selinux/<policy_name>/contexts:
dbus_contexts
netfilter_contexts
/etc/selinux/<policy_name>/contexts/files:
file_contexts
file_contexts.homedirs
/etc/selinux/<policy_name>/policy:
policy.23

SELinux Configuration Files

/etc/selinux/config
/etc/selinux/semanage.conf
/etc/selinux/restorecond.conf
/etc/sestatus
/etc/selinux/<policy_name>/setrans.conf

The SELinux Notebook - The Foundations

5.3.2 Reference Policy Files and Directories
Table 18 shows the major files and their directories with a description of each taken
from the README file. All directories are relative to the root of the Reference Policy
source directory ./policy.

Two of these configuration files (build.conf and modules.conf) are further
detailed in the Source Configuration Files section as they define how the policy will
be built.

During the build process, a file is generated in the ./policy directory called either
policy.conf or base.conf depending whether a monolithic or modular policy
is being built. This file is explained in the Modular Policy Build Structure section.

File / Directory Name Comments
Makefile General rules for building the policy.
Rules.modular Makefile rules specific to building loadable module

policies.
Rules.monolithic Makefile rules specific to building monolithic

policies.
build.conf Options which influence the building of the policy, such

as the policy type and distribution. This file is described
in the Reference Policy Build Options - build.conf
section.

config/appconfig-<type> Application configuration files for all configurations of
the Reference Policy where <type> is taken from the
build.conf TYPE entry that are currently: standard,
MLS and MCS). These files are used by SELinux-aware
programs and described in the SELinux Configuration
Files section.

config/local.users The file read by load policy for adding SELinux users
to the policy on the fly.
Note that this file is not used in the modular policy
build.

doc/html/* When make html has been executed, contains the in-
policy XML documentation, presented in web page
form

doc/policy.dtd The doc/policy.xml file is validated against this
DTD.

doc/policy.xml This file is generated/updated by the conf and html
make targets. It contains the complete XML
documentation included in the policy.

doc/templates/* Templates used for documentation web pages.
support/* Tools used in the build process.
policy/flask/initial_sids This file has declarations for each initial SID.

The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/flask/security_classes This file has declarations for each security class.
The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/flask/access_vectors This file defines the access vectors. Common

Page 244

The SELinux Notebook - The Foundations

File / Directory Name Comments
prefixes for access vectors may be defined at the
beginning of the file. After the common prefixes are
defined, an access vector may be defined for each
security class.
The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/modules/* Each directory represents a layer in Reference Policy all
of the modules are contained in one of these layers.
The files present are:
metadata.xml – describes the layer.
<module_name>.te, .if & .fc – contains
policy source as described in the Reference Policy
Module Files section.
The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/booleans.conf This file is generated/updated by the conf make target.
It contains the booleans in the policy, and their default
values. If tunables are implemented as booleans,
tunables will also be included. This file will be
installed as the /etc/selinux/NAME/booleans
file (note that this is not true for any system that
implements the modular policy - see the Booleans,
Global Booleans and Tunable Booleans section).

policy/constraints This file defines additional constraints on
permissions in the form of boolean expressions that
must be satisfied in order for specified permissions to
be granted. These constraints are used to further
refine the type enforcement rules and the role allow
rules. Typically, these constraints are used to restrict
changes in user identity or role to certain domains.
(Note that this file does not contain the MLS / MCS
constraints as they are in the mls and mcs files
described below).
The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/global_booleans This file defines all booleans that have a global scope,
their default value, and documentation. See the
Booleans, Global Booleans and Tunable Booleans
section.

policy/global_tunables This file defines all tunables that have a global scope,
their default value, and documentation. See the
Booleans, Global Booleans and Tunable Booleans
section.

policy/mcs This contains information used to generate the
sensitivity, category, level and
mlsconstraint statements used to define the MCS
configuration.
The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/mls This contains information used to generate the
sensitivity, category, level and
mlsconstraint statements used to define the MLS

Page 245

The SELinux Notebook - The Foundations

File / Directory Name Comments
configuration.
The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/modules.conf This file contains a listing of available modules, and
how they will be used when building Reference Policy.
This file is described in the Reference Policy Build
Options - modules.conf section, it is also updated
by the F-16 source updates as described in the Installing
and Building the Reference Policy Source section.

policy/policy_capabilities This file defines the policy capabilities that can be
enabled in the policy.
The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/rolemap This file contains prefix and user domain type that
corresponds to each user role. The contents of this file
will be used to expand the per-user domain templates
for each module.
Note this is not used in the Reference Policy
(commented out in makefiles).

policy/users This file defines the users included in the policy.
The file usage in policy generation is described in the
Modular Policy Build Structure section.

policy/support/* Reference Policy support macros. These are described
in the Reference Policy Macros section.

securetty_types These files are not part of the standard distribution but
is added by the F-16 source updates as described in the
Installing and Building the Reference Policy Source
section.

setrans.conf

Table 18: The Reference Policy Files and Directories

5.3.3 Source Configuration Files
There are two major configuration files (build.conf and modules.conf) that
define the policy to be built and are detailed in this section.

5.3.3.1 Reference Policy Build Options - build.conf
This file defines the policy type to be built that will influence its name and where the
source will be located once it is finally installed. It also configures the MCS / MLS
sensitivity and category maximum values. An example file content is shown in the
Installing and Building the Reference Policy Source section where it is used to install
and then build the policy.

Table 19 explains the fields that can be defined within this file, however there are a
number of m4 macro parameters that are set up when this file is read by the build
process makefiles. These definitions are shown in Table 20 and are also used within
the module source files to control how the policy is built with examples shown in the
ifdef / ifndef Parameters section.

Option Type Comments
OUTPUT_POLICY Integer Set the version of the policy created when building a

Page 246

The SELinux Notebook - The Foundations

Option Type Comments
monolithic policy. This option has no effect on modular
policy.

TYPE String Available options are standard, mls, and mcs. For a
type enforcement only system, set standard.
The mls and mcs options control the enable_mls, and
enable_mcs policy blocks.

NAME String
(optional)

Sets the name of the policy; the NAME is used when
installing files to e.g., /etc/selinux/NAME and
/usr/share/selinux/NAME. If not set, the policy
type field (TYPE) is used.
The policy built under this directory is also controlled by
the modules.conf that is described in the Reference
Policy Build Options – policy/modules.conf section.

DISTRO String
(optional)

Enable distribution-specific policy. Available options are
redhat, rhel4, gentoo, debian, and suse. This
option controls distro_redhat, distro_rhel4,
distro_suse policy blocks.

UNK_PERMS String Set the kernel behaviour for handling of permissions
defined in the kernel but missing from the policy. The
permissions can either be allowed, denied, or the policy
loading can be rejected. See the SELinux Filesystem for
more details. If not set, then it will be taken from the
semanage.conf file.

DIRECT_INITRC Boolean
(y|n)

If 'y' sysadm will be allowed to directly run init scripts,
instead of requiring the run_init tool. This is a build
option instead of a tunable since role transitions do not work
in conditional policy. This option controls
direct_sysadm_daemon policy blocks.

MONOLITHIC Boolean
(y|n)

If 'y' a monolithic policy is built, otherwise a modular
policy is built.

UBAC Boolean
(y|n)

If 'y' User Based Access Control policy is built. The default
for Red Hat is 'n'. These are defined as constraints in the
policy/constraints file. Note Version 1 of the
Reference Policy did not have this entry and defaulted to
Role Based Access Control.

CUSTOM_BUILDOPT String Space separated list of custom build options.
MLS_SENS Integer Set the number of sensitivities in the MLS policy.

Ignored on standard and MCS policies.
MLS_CATS Integer Set the number of categories in the MLS policy.

Ignored on standard and MCS policies.
MCS_CATS Integer Set the number of categories in the MCS policy.

Ignored on standard and MLS policies.
QUIET Boolean

(y|n)
If 'y' the build system will only display status messages and
error messages. This option has no effect on policy.

Table 19: build.conf Entries

Page 247

The SELinux Notebook - The Foundations

m4 Parameter Name in
Makefile

From build.conf
entry

Comments

enable_mls TYPE Set if MLS policy build enabled.
enable_mcs TYPE Set if MCS policy build enabled.
enable_ubac UBAC Set if UBAC set to 'y'.
mls_num_sens MLS_SENS The number of MLS sensitivities

configured.
mls_num_cats MLS_CATS The number of MLS categories configured.
mcs_num_cats MCS_CATS The number of MCS categories configured.
distro_$(DISTRO) DISTRO The distro name or blank.
direct_sysadm_daemon DIRECT_INITRC If DIRECT_INITRC entry set to 'y'.
hide_broken_symtoms This is set up in the Makefile and can be

used in modules to hide errors with
dontaudit rules (or even allow rules).

Table 20: m4 parameters set at build time - These have been extracted from the
Reference Policy Makefile file.

5.3.3.2 Reference Policy Build Options – policy/modules.conf
This file controls what modules are built within the policy with example entries as
follows:

Layer: kernel
Module: kernel
Required in base
#
Policy for kernel threads, proc filesystem,and unlabeled processes and
objects.

kernel = base

Module: amanda
#
Automated backup program.

amanda = module

Layer: admin
Module: ddcprobe
#
ddcprobe retrieves monitor and graphics card information

ddcprobe = off

As can be seen the only active line (those without comments57) is:

<module_name> = base | module | off

Where:
module_name The name of the module to be included within the build.
base The module will be in the base module for a modular policy

build (build.conf entry MONOLITHIC = n).

57 The comments are also important as they form part of the documentation when it is generated by
the make html target.

Page 248

The SELinux Notebook - The Foundations

module The module will be built as a loadable module for a modular
policy build. If a monolithic policy is being built
(build.conf entry MONOLITHIC = y), then this module
will be built into the base module.

off The module will not be included in any build.

Generally it is up to the policy distributor to decide which modules are in the base and
those that are loadable, however there are some modules that MUST be in the base
module. To highlight this there is a special entry at the start of the modules interface
file (.if) that has the entry <required val=“true”> as shown below (taken
from the kernel.if file):

<summary>
##Policy for kernel threads, proc filesystem,
##and unlabeled processes and objects.
</summary>
<required val="true">
##This module has initial SIDs.
</required>

The modules.conf file will also reflect that a module is required in the base by
adding a comment ‘Required in base’ when the make conf target is
executed (as all the .if files are checked during this process and the
modules.conf file updated).

Layer: kernel
Module: kernel
Required in base
#
Policy for kernel threads, proc filesystem,and unlabeled processes and
objects.

kernel = base

There are 12 modules in the F-16 reference policy source marked as required and
are shown in Table 21.

Layer Module Name Comments

kernel corecommands Core policy for shells, and generic programs in:
/bin, /sbin, /usr/bin, and /usr/sbin.

The .fc file sets up the labels for these items.
All the interface calls start with
'corecmd_'.

kernel corenetwork Policy controlling access to network objects and also contains the
initial SIDs for these.
The .if file is large and automatically generated. All the
interface calls start with 'corenet_'.

kernel devices This module creates the device node concept and provides the
policy for many of the device files. Notable exceptions are the
mass storage and terminal devices that are covered by other
modules (that is a char or block device file, usually in /dev). All
types that are used to label device nodes should use the dev_node
macro.
Additionally this module controls access to three things:

Page 249

The SELinux Notebook - The Foundations

Layer Module Name Comments

1. the device directories containing device nodes.
2. device nodes as a group
3. individual access to specific device nodes covered by

this module.
All the interface calls start with 'dev_'.

kernel domain Contains the core policy for forming and managing domains.
All the interface calls start with 'domain_'.

kernel files This module contains basic filesystem types and interfaces and
includes:

1. The concept of different file types including basic files,
mount points, tmp files, etc.

2. Access to groups of files and all files.
3. Types and interfaces for the basic filesystem layout (/,

/etc, /tmp, /usr, etc.).
4. Contains the file initial SID.

All the interface calls start with 'files_'.

kernel filesystem Contains the policy for filesystems and the initial SID.
All the interface calls start with 'fs_'.

kernel kernel Contains the policy for kernel threads, proc filesystem, and
unlabeled processes and objects. This module has initial SIDs.
All the interface calls start with 'kernel_'.

kernel mcs Policy for Multicategory security. The .te file only contains
attributes used in MCS policy.
All the interface calls start with 'mcs_'.

kernel mls Policy for Multilevel security. The .te file only contains
attributes used in MLS policy.
All the interface calls start with 'mls_'.

kernel selinux Contains the policy for the kernel SELinux security interface
(selinuxfs).
All the interface calls start with 'selinux_'.

kernel terminal Contains the policy for terminals.
All the interface calls start with 'term_'.

kernel ubac To support user-based access control - if enabled.

Table 21: Mandatory modules.conf Entries

5.3.3.2.1 Building the modules.conf File
The file can be created by an editor, however it is generally built initially by make
conf that will add any additional modules to the file. The file can then be edited to
configure the required modules as base, module or off.

As will be seen in the Installing and Building the Reference Policy Source section, the
Red Hat reference policy source comes with a number of pre-configured files that are
used to produce the required policy including multiple versions of the
modules.conf file.

Page 250

The SELinux Notebook - The Foundations

5.3.4 Source Installation and Build Make Options
This section explains the various make options available that have been taken from
the README file. Table 22 describes the general make targets, Table 23 describes the
modular policy make targets and Table 24 describes the monolithic policy make
targets.

Make Target Comments
install-src Install the policy sources into /etc/selinux/NAME/src/policy,

where NAME is defined in the build.conf file. If it is not defined,
then TYPE is used instead. If a build.conf does not have the information,
then the Makefile will default to the current entry in the
/etc/selinux/config file or default to refpolicy. A pre-
existing source policy will be moved to
/etc/selinux/NAME/src/policy.bak.

conf Regenerate policy.xml, and update/create modules.conf and
booleans.conf. This should be done after adding or removing
modules, or after running the bare target. If the configuration files exist,
their settings will be preserved. This must be run on policy sources that
are checked out from the CVS repository before they can be used.

clean Delete all temporary files, compiled policies, and file_contexts.
Configuration files are left intact.

bare Do the clean make target and also delete configuration files, web page
documentation, and policy.xml.

html Regenerate policy.xml and create web page documentation in the
doc/html directory.

install-appconfig Installs the appropriate SELinux-aware configuration files (not in
README text but still used)

Table 22: General Build Make Targets

Make Target Comments
base Compile and package the base module. This is the default target for

modular policies.
modules Compile and package all Reference Policy modules configured to be built as

loadable modules.
MODULENAME.pp Compile and package the MODULENAME Reference Policy module.
all Compile and package the base module and all Reference Policy modules

configured to be built as loadable modules.
install Compile, package, and install the base module and Reference Policy

modules configured to be built as loadable modules.
load Compile, package, and install the base module and Reference Policy

modules configured to be built as loadable modules, then insert them into
the module store.

validate Validate if the configured modules can successfully link and expand.
install-headers Install the policy headers into /usr/share/selinux/NAME. The

headers are sufficient for building a policy module locally, without requiring
the complete Reference Policy sources. The build.conf settings for this
policy configuration should be set before using this target.

Table 23: Modular Policy Build Make Targets

Page 251

The SELinux Notebook - The Foundations

Make Target Comments
policy Compile a policy locally for development and testing. This is the default

target for monolithic policies.
install Compile and install the policy and file contexts.
load Compile and install the policy and file contexts, then load the policy.
enableaudit Remove all dontaudit rules from policy.conf.
relabel Relabel the filesystem.
checklabels Check the labels on the filesystem, and report when a file would be

relabeled, but do not change its label.
restorelabels Relabel the filesystem and report each file that is relabeled.

Table 24: Monolithic Policy Build Make Targets

5.3.5 Booleans, Global Booleans and Tunable Booleans
The three files booleans.conf, global_booleans and global_tunables
are built and used as follows:

booleans.conf This file is generated / updated by make conf, and
contains all the booleans in the policy with their
default values. If tunable and global booleans are
implemented then these are also included.
This file can also be delivered as a part of the
reference policy source as shown in the Installing and
Building the Reference Policy Source section. This is
generally because other default values are used for
booleans and not those defined within the modules
themselves (i.e. distribution specific booleans). When
the make install is executed, this file will be used to set
the default values.
Note that if booleans are updated locally the policy
store will contain a booleans.local file.
In SELinux enabled systems that support the policy
store features (modular policies) this file is not
installed as /etc/selinux/NAME/booleans.

global_booleans These are booleans that have been defined in the
global_tunables file using the gen_bool
macro. They are normally booleans for managing the
overall policy and currently consist of the following
(where the default values are false):

secure_mode
global_tunables These are booleans that have been defined in module

Page 252

The SELinux Notebook - The Foundations

files using the gen_tunable macro and added to the
global_tunables file by make conf. The
tunable_policy macros are defined in each
module where policy statements or interface calls are
required. They are booleans for managing specific
areas of policy that are global in scope. An example is
allow_execstack that will allow all processes
running in unconfined_t to make their stacks
executable.

5.3.6 Modular Policy Build Structure
This section explains the way a modular policy is constructed, this does not really
need to be known but is used to show the files used that can then be investigated if
required.

When make all or make load or make install are executed the
build.conf and modules.conf files are used to define the policy name and
what modules will be built in the base and those as individual loadable modules.

Basically the source modules (.te, .if and .fc) and core flask files are rebuilt in
the tmp directory where the reference policy macros58 in the source modules will be
expanded to form actual policy language statements as described in the SELinux
Policy Language section. Figure 5.3 shows these temporary files that are used to form
the base.conf59 file during policy generation.

The base.conf file will consist of language statements taken from the module
defined as base in the modules.conf file along with the constraints, users etc.
that are required to build a complete policy.

The individual loadable modules are built in much the same way as shown in Figure
5.4.

Base Policy Component Description Policy Source File Name
(relative to ./policy/policy)

./policy/tmp
File Name

The object classes supported by the
kernel.

flask/security_classes pre_te_files.conf

The initial SIDs supported by the kernel. flask/initial_sids

The object class permissions supported
by the kernel.

flask/access_vectors

This is either the expanded mls or mcs
file depending on the type of policy
being built.

mls or mcs

These are the policy capabilities that can
be configured / enabled to support the
policy.

policy_capabilities

This area contains all the attribute,
bool, type and typealias
statements extracted from the *.te and

modules/*/*.te
modules/*/*.if

all_attrs_types.conf

58 These are explained in the Reference Policy Macros section.
59 The base.conf gets built for modular policies and a policy.conf file gets built for a

monolithic policy.

Page 253

The SELinux Notebook - The Foundations

Base Policy Component Description Policy Source File Name
(relative to ./policy/policy)

./policy/tmp
File Name

*.if files that form the base module.
Contains the global and tunable bools
extracted from the conf files.

global_bools.conf
global_tunables.conf

global_bools.conf

Contains the rules extracted from each of
the modules .te and .if files defined
in the modules.conf file as ‘base’.

base modules only_te_rules.conf

Contains the expanded users from the
users file.

users all_post.conf

Contains the expanded constraints from
the constraints file.

constraints

Contains the default SID labeling
extracted from the *.te files.

modules/*/*.te

Contains the fs_use_xattr,
fs_use_task, fs_use_trans and
genfscon statements extracted from
each of the modules .te and .if files
defined in the modules.conf file as
‘base’.

modules/*/*.te
modules/*/*.if

Contains the netifcon, nodecon and
portcon statements extracted from
each of the modules .te and .if files
defined in the modules.conf file as
‘base’.

modules/*/*.te
modules/*/*.if

Contains the expanded file context file
entries extracted from the *.fc files
defined in the modules.conf file as
‘base’.

modules/*/*.fc base.fc.tmp

Expanded seusers file. seusers seusers

These are the commands used to compile, link and load the base policy module:
checkmodule base.conf –o tmp/base.mod
semodule_package -o base.conf -m base_mod -f base_fc -u users_extra -s tmp/seusers
semodule -s $(NAME) -b base.pp) -i and each module .pp file

The ‘NAME’ is that defined in the build.conf file.

Figure 5.3: Base Module Build – This shows the temporary build files used to build
the base module ‘base.conf’ as a part of the ‘make’ process. Note that the

modules marked as base in modules.conf are built here.

Base Policy Component Description Policy Source File Name
(relative to ./policy/policy)

./policy/tmp
File Name

For each module defined as ‘module’ in
the modules.conf configuration file,
a source module is produced that has
been extracted from the *.te and *.if
file for that module.

modules/*/<module_name>.te
modules/*/<module_name>.if

<module_name>.tmp

For each module defined as ‘module’ in
the modules.conf configuration file,
an object module is produced from
executing the checkmodule command
shown below.

tmp/<module_name>.tmp <module_name>.mod

Page 254

The SELinux Notebook - The Foundations

For each module defined as ‘module’ in
the modules.conf configuration file,
an expanded file context file is built from
the <module_name>.fc file.

modules/*/<module_name>.fc base.fc.tmp

This command is used to compile each module:
checkmodule tmp/<module_name>.tmp –o tmp/<module_name>.mod

Each module is packaged and loaded with the base module using the following commands:
semodule_package -o base.conf -m base_mod -f base_fc -u users_extra -s tmp/seusers
semodule -s $(NAME) -b base.pp) -i and each module .pp file

The ‘NAME’ is that defined in the build.conf file.

Figure 5.4: Module Build – This shows the module files and the temporary build
files used to build each module as a part of the ‘make’ process (i.e. those modules

marked as module in modules.conf).

5.3.7 Creating Additional Layers
One objective of the reference policy is to separate the modules into different layers
reflecting their ‘service’ (e.g. kernel, system, app etc.). While it can sometimes be
difficult to determine where a particular module should reside, it does help separation,
however because the way the build process works, each module must have a unique
name.

If a new layer is required, then the following will need to be completed:

1. Create a new layer directory ./policy/modules/LAYERNAME that
reflects the layer’s purpose.

2. In the ./policy/modules/LAYERNAME directory create a
metadata.xml file. This is an XML file with a summary tag and optional
desc (long description) tag that should describe the purpose of the layer and
will be used as a part of the documentation. An example is as follows:

<summary>ABC modules for the XYZ components.</summary>

5.4 Installing and Building the Reference Policy Source
This section explains how to install the F-16 reference policy source that is distributed
by Red Hat (however the same principle is followed for the source taken directly from
the Tresys repository, except that it will not build a compatible policy to that
discussed in this section).

Any F-16 policy source rpm will suffice and can be obtained from the
http://koji.fedoraproject.org web site, however it is assumed that the
source rpm is:

selinux-policy-3.10.0-86.fc16.src.rpm
The objective of this exercise is to show that the policy built from the above source
rpm is an exact replica of the targeted policy distributed as header files in the F-16
targeted rpm:

selinux-policy-targeted-3.10.0-86.fc16.noarch.rpm

Page 255

http://koji.fedoraproject.org/
http://oss.tresys.com/projects/refpolicy

The SELinux Notebook - The Foundations

Note that there is a good overview of rebuilding the source policy at Dan Walsh's site:

http://danwalsh.livejournal.com/2009/02/16/

5.4.1 Installation and Configuration
Install the source by:

rpm –Uvh selinux-policy-3.10.0-86.fc16.src.rpm

The source will be installed in the users home directory under
./rpmbuild/SOURCES where the serefpolicy-3.10.0.tgz will need to be
unpacked:

cd $HOME/rpmbuild/SOURCES
tar –xzf serefpolicy-3.10.0.tgz

The SOURCES directory contents will then look like this:

booleans-minimum.conf booleans-mls.conf booleans-targeted.conf
config.tgz customizable_types file_contexts.subs_dist
Makefile.devel modules-minimum.conf modules-mls.conf
modules-targeted.conf policy-F16.patch securetty_types-minimum
securetty_types-mls securetty_types-targeted serefpolicy-3.10.0
serefpolicy-3.10.0.tgz setrans-minimum.conf setrans-mls.conf
setrans-targeted.conf users-minimum users-mls
users-targeted

The files with minimum, targeted, and mls within their names are the specific
configuration files used within the Reference Policy for that particular Red Hat policy
type.

The latest patches now need to be applied to the source tree as follows:

cd serefpolicy-3.10.0

patch -p1 <../policy-F16.patch

The config.tgz is Red Hat's updated configuration files this will need to be
unpacked and replace the original set of files:

Unpack the archive:
cd ..
tar –xzf config.tgz

move to source directory:
cd serefpolicy-3.10.0

save the old files:
mv config config.org

and copy over the new Red Hat files
cp -r ../config config

But also need two files from original location:
cp config.org/appconfig-mcs/sepgsql_contexts config/appconfig-mcs
cp config.org/appconfig-mcs/x_contexts config/appconfig-mcs

Page 256

http://danwalsh.livejournal.com/2009/02/16/

The SELinux Notebook - The Foundations

As the ‘targeted’ policy is being built, the files shown in Table 25 left hand
column need to be copied to the location and named as shown in the right hand
column.

Configuration File: Installed as Reference Policy Configuration File:

booleans-targeted.conf ./serefpolicy-3.10.0/policy/booleans.conf
customizable_types ./serefpolicy-3.10.0/config/appconfig-mcs/

customizable_types
file_contexts.subs_dist ./serefpolicy-3.10.0/config/appconfig-

mcs/file_contexts.subs_dist
modules-targeted.conf ./serefpolicy-3.10.0/policy/modules.conf
securetty_types-targeted ./serefpolicy-3.10.0/config/appconfig-mcs/

securetty_types
setrans-targeted.conf ./serefpolicy-3.10.0/config/appconfig-mcs/

setrans.conf
users-targeted.conf ./serefpolicy-3.10.0/policy/users

Table 25: Red Hat specific policy configuration files – This example builds a
‘targeted’ policy.

The serefpolicy-3.10.0 directory will now contain the source code with the
latest patches for this release (3.10.0-86) of the Red Hat Reference Policy and the
correct configuration files for a targeted policy.

The ./serefpolicy-3.10.0/build.conf must now be modified to allow the
source to be installed in its final location and have the correct parameters set for the
build. The entries that need to be updated in the build.conf file are highlighted
below60:

#
Policy build options
#

Policy version
By default, checkpolicy will create the highest version policy it supports.
Setting this will override the version. This only has an effect for
monolithic policies.
#OUTPUT_POLICY = 18

Policy Type
standard, mls, mcs. Note Red Hat always build the MCS Policy Type
as their ‘targeted’ version.
TYPE = mcs
Policy Name
If set, this will be used as the policy name. Otherwise the policy type
will be used for the name. This entry is also used by the
‘make install-src’ process
to copy the source to the /etc/selinux/targeted-86/src/policy directory.
NAME = targeted-86
Distribution
Some distributions have portions of policy for programs or configurations
specific to the distribution. Setting this will enable options for the
distribution. redhat, gentoo, debian, suse, and rhel4 are current options.
Fedora users should enable redhat.

60 The README file in this directory contains helpful information on installation of the source,
headers, documentation etc. The only point the README will not cover are the Red Hat specific
configuration files that need to be copied over as shown in Table 25.

Page 257

The SELinux Notebook - The Foundations

DISTRO = redhat
Unknown Permissions Handling
The behaviour for handling permissions defined in the kernel but missing from
the policy. The permissions can either be allowed, denied, or the policy
loading can be rejected.
allow, deny, and reject are current options. Red Hat use allow for all
policies except MLS that uses 'deny'.
UNK_PERMS = allow
Direct admin init
Setting this will allow sysadm to directly run init scripts, instead of
requiring run_init. This is a build option, as role transitions do not work in
conditional policy.
DIRECT_INITRC = n

Build monolithic policy. Putting n here will build a loadable module policy.
MONOLITHIC = n
User-based access control (UBAC)
Enable UBAC for role separations. Note Red Hat disable UBAC.
UBAC = n

CUSTOM BUILD OPTS

Number of MLS Sensitivities
The sensitivities will be s0 to s(MLS_SENS-1). Dominance will be in increasing
numerical order with s0 being lowest.
MLS_SENS = 16

Number of MLS Categories. Note Red Hat use 1024 categories for MLS and MCS.
The categories will be c0 to c(MLS_CATS-1).
MLS_CATS = 1024
Number of MCS Categories
The categories will be c0 to c(MLS_CATS-1).
MCS_CATS = 1024
Set this to y to only display status messages during build.
QUIET = n

The policy source is now in a position to be installed at its default location that will be
derived from the NAME = targeted-86 entry and will therefore be located at:

/etc/selinux/targeted-86/src/policy

5.4.2 Building the targeted Policy Type
From the ./serefpolicy-3.10.0 directory run the following command:

make install-src

This will copy the source code to its final location making any directories required.

Once the copy process is complete the policy can be built and the modules loaded into
the policy store61 by running the following commands:

Go to the source location:
cd /etc/selinux/targeted-86/src/policy

To ensure a clean source build:
make clean

61 Note that the term ‘load’ is not loading the policy as the active policy, but just building the base
policy + the modules and installing them ready to be activated if required

Page 258

The SELinux Notebook - The Foundations

Build the policy modules and load into the policy store:
make load

The policy will now be built as a targeted policy that will be an exact copy of the
policy distributed in the following rpm:

selinux-policy-targeted-3.10.0-86.fc16.noarch.rpm
Finally copy over files that are not automatically managed by the build process. These
are held in the config/appconfig-mcs directory:

cp config/appconfig-mcs/setrans.conf /etc/selinux/targeted-86
cp config/appconfig-mcs/file_contexts.subs_dist
 /etc/selinux/targeted-86/contexts/files

5.4.3 Checking the Build
Now that the targeted policy has been built, the policy binary file can be compared to
the one that is distributed and built by the following rpm:

selinux-policy-targeted-3.10.0-86.fc16.noarch
The binary files sizes of both policies should be 4,398,420 bytes.

ls –l /etc/selinux/targeted/policy
-rw-r--r-- root root 4398420 <date+time> policy.26

ls –l /etc/selinux/targeted-86/policy
-rw-r--r-- root root 4398420 <date+time> policy.26

Note that the binaries would not be an exact comparison due to time stamps etc.,
therefore the SETools sediffx utility should be run against the two binary policies62

which should show that they are the same and give the results shown in Figure 5.5.
Policy:
/etc/selinux/targeted/policy/policy.26
Policy Version & Type: v.26 (binary, mls)

Number of Classes and Permissions:
Object Classes: 82
Common Classes: 5
Permissions: 241

Number of Types and Attributes:
Types: 3651
Attributes: 297

Number of Rules:
allow: 91628
auditallow: 103
dontaudit 7002
neverallow: not calculated
type_change: 62
type_member: 46
type_transition: 14467

Number of Roles: 13

Number of RBAC Rules:

Policy:
/etc/selinux/targeted-86/policy/policy.26
Policy Version & Type: v.26 (binary, mls)

Number of Classes and Permissions:
Object Classes: 82
Common Classes: 5
Permissions: 241

Number of Types and Attributes:
Types: 3651
Attributes: 297

Number of Rules:
allow: 91628
auditallow: 103
dontaudit 7002
neverallow: not calculated
type_change: 62
type_member: 46
type_transition: 14467

Number of Roles: 13

Number of RBAC Rules:

62 Be aware that comparing these two policies on a low specification machine will take hours. It is
best to select a few items for comparison first.

Page 259

The SELinux Notebook - The Foundations

allow: 290
role_transition 0

Number of Users: 9

Number of Booleans: 218

allow: 290
role_transition 0

Number of Users: 9

Number of Booleans: 218

Total Differences: 0
Figure 5.5: The two ‘targeted’ policies should be the same using sediffx

5.4.4 Running with the new Policy
To run the system using the new targeted-86 build edit the
/etc/selinux/config file entry to read SELINUXTYPE=targeted-86, and
then run the following commands:

touch /.autorelabel
reboot

During reboot, the system will be relabeled and the policy loaded (hopefully with no
errors).

5.5 Reference Policy Headers
This method of building policy and adding new modules is used for distributions that
do not require access to the source code.

Note that the Reference Policy header and the Red Hat F-16 policy header
installations are slightly different as described below.

5.5.1 Building and Installing the Header Files
To be able to fully build the policy headers from the reference policy source two steps
are required:

1. Ensure the source is installed and configured as described in the Installing and
Building the Reference Policy Source section. This is because the make
load (or make install) command will package all the modules as
defined in the modules.conf file, producing a base.pp and the relevant
.pp packages. The build process will then install these files in the
/usr/share/selinux/<policy_name> directory.

2. Execute the make install-headers command that will:

a) Produce a build.conf file that represents the contents of the master
build.conf file and place it in the
/usr/share/selinux/<policy_name>/include directory.

b) Produce the XML documentation set that reflects the source and place
it in the /usr/share/selinux/<policy_name>/include
directory.

c) Copy a development Makefile for building from policy headers to
the /usr/share/selinux/<policy_name>/include
directory.

Page 260

The SELinux Notebook - The Foundations

d) Copy the support macros .spt files to the
/usr/share/selinux/<policy_name>/include/support
directory.

e) Copy the module interface files (.if) to the relevant module
directories at:
/usr/share/selinux/<policy_name>/include/modules.

The directory structure for the targeted-86 build generated above (edited for
readability) would be:

The policy packages:
targeted-86/abrt.pp
....
targeted-86/base.pp

Build / Configuration files:
targeted-86/include/build.conf
targeted-86/include/Makefile
targeted-86/include/rolemap # Note this file is not used by F-16

XML Documentation:
targeted-86/include/global_tunables.xml
targeted-86/include/global_booleans.xml
targeted-86/include/apps.xml
targeted-86/include/roles.xml
targeted-86/include/system.xml
targeted-86/include/kernel.xml
targeted-86/include/services.xml
targeted-86/include/admin.xml

Support Macros:
targeted-86/include/support/ipc_patterns.spt
...
...
The module interface files in their relevant directories:
targeted-86/include/admin/acct.if
..
targeted-86/include/apps/ada.if
..
targeted-86/include/kernel/corecommands.if
..
targeted-86/include/roles/auditadm.if
..
targeted-86/include/services/abrt.if
...
targeted-86/include/system/application.if
...

5.5.2 Using the Standard Ref Policy Headers
Note that this section describes the standard Reference Policy headers, the F-16
installation is slightly different and described in the Using F-16 Supplied Headers
section.

Once the headers are installed as defined above, new modules can be built in any local
directory. An example set of module files are located in the reference policy source at
/etc/selinux/targeted-86/src/policy/doc and are called
example.te, example.if, and example.fc.

During the header build process a Makefile was included in the headers directory.
This Makefile can be used to build the example modules by using makes -f option
as follows (assuming that the example module files are in the local directory):

make -f /usr/share/selinux/<policy_name>/include/Makefile

Page 261

The SELinux Notebook - The Foundations

However there is another Makefile that can be installed in the users home directory
($HOME) that will call the master Makefile. This is located at
/etc/selinux/targeted-86/src/policy/doc in the reference policy
source and is called Makefile.example. This is shown below (note that it
extracts the <policy_name> from the SELinux config file):

AWK ?= gawk

NAME ?= $(shell $(AWK) -F= '/^SELINUXTYPE/{ print $$2 }'
/etc/selinux/config)
SHAREDIR ?= /usr/share/selinux
HEADERDIR := $(SHAREDIR)/$(NAME)/include

include $(HEADERDIR)/Makefile

Table 26 shows the make targets for modules built from headers.
Make Target Comments
MODULENAME.pp Compile and package the MODULENAME local module.
all Compile and package the modules in the current directory.
load Compile and package the modules in the current directory, then insert them

into the module store.
refresh Attempts to reinsert all modules that are currently in the module store from

the local and system module packages.
xml Build a policy.xml from the XML included with the base policy headers

and any XML in the modules in the current directory.

Table 26: Header Policy Build Make Targets

5.5.3 Using F-16 Supplied Headers
The F-16 distribution installs the headers in a slightly different manner as Red Hat
installs:

• The packaged files under the /usr/share/selinux/<policy_name>,
these files may be .pp files or .pp.bz2 depending on the version of rpm
installed (later ones compressed the packages). They are installed by the
selinux-policy-<policy_name>-3.10.0-86.fc16.noarch
type rpms.

• The development header files are installed in the
/usr/share/selinux/devel directory by the selinux-policy-
3.10.0-86.fc16.noarch rpm. Red Hat also include an additional
application called policygentool that allows users to generate policy by
answering various questions. This tool is described in the Fedora 12 SELinux
User Guide [Ref. 1]. The example modules are also in this directory and the
Makefile is also slightly different to that used by the Reference Policy
source.

• The documentation is supplied in the selinux-policy-doc-3.10.0-
86.fc16.noarch type rpms and would be installed (for this version), in
the /usr/share/doc/selinux-policy-3.10.0/html directory.

Page 262

http://docs.fedoraproject.org/selinux-user-guide/f12/en-US/index.html
http://docs.fedoraproject.org/selinux-user-guide/f12/en-US/index.html

The SELinux Notebook - The Foundations

5.6 Reference Policy Support Macros
This section explains some of the support macros used to build reference policy
source modules (see Table 27 for the list). These macros are located at:

• ./policy/policy/support for the reference policy source.

• /usr/share/selinux/<policy_name>/include/support for
reference policy installed header files.

• /usr/share/selinux/devel/support for Red Hat installed header
files.

They consist of the following files:

loadable_module.spt - Loadable module support.

misc_macros.spt - Generate users, bools and security contexts.

mls_mcs_macros.spt - MLS / MCS support.

file_patterns.spt - Sets up allow rules via parameters for files and
directories.

ipc_patterns.spt - Sets up allow rules via parameters for Unix domain
sockets.

misc_patterns.spt – Domain and process transitions.

obj_perm_sets.spt - Object classes and permissions.

Macro Name Function Macro file name
policy_module For adding the module statement and mandatory

require block entries.
loadable_module.spt

gen_require For use in interfaces to optionally insert a require
block

template Generate template interface block
interface Generate the access interface block
optional_policy Optional policy handling
gen_tunable Tunable declaration
tunable_policy Tunable policy handling
gen_user Generate an SELinux user misc_macros.spt
gen_context Generate a security context
gen_bool Generate a boolean
gen_cats Declares categories c0 to c(N-1) mls_mcs_macros.spt
gen_sens Declares sensitivities s0 to s(N-1) with dominance

in increasing numeric order with s0 lowest, s(N-1)
highest.

gen_levels Generate levels from s0 to (N-1) with categories c0
to (M-1)

mls_systemlow Basic level names for system low and high
mls_systemhigh
mcs_systemlow
mcs_systemhigh

Page 263

The SELinux Notebook - The Foundations

mcs_allcats Allocates all categories

Table 27: Support Macros described in this section
Notes:

1. The macro calls can be in any configuration file read by the build process and
can be found in (for example) the users, mls, mcs and constraints
files.

2. There are four main m4 ifdef parameters used within modules:

a) enable_mcs - this is used to test if the MCS policy is being built.

b) enable_mls - this is used to test if the MLS policy is being built.

c) enable_ubac - this enables the user based access control within the
constraints file.

d) hide_broken_symptoms - this is used to hide errors in modules
with dontaudit rules.

These are also mentioned in Table 20 as they are set by the initial build
process with examples shown in the ifdef / ifndef Parameters section.

3. The macro examples in this section have been taken from the reference policy
module files and shown in each relevant “Example Macro” section. The
macros are then expanded by the build process to form modules containing the
policy language statements and rules in the tmp directory. These files have
been extracted and modified for readability, then shown in each relevant
“Expanded Macro” section.

4. An example policy that has had macros expanded is shown in the Module
Expansion Process section.

5. Be aware that spaces between macro names and their parameters are not
allowed:

Correct:

policy_module(ftp, 1.7.0)

Incorrect:

policy_module (ftp, 1.7.0)

5.6.1 Loadable Policy Macros
The loadable policy module support macros are located in the
loadable_module.spt file.

5.6.1.1 policy_module Macro

This macro will add the module statement to a loadable module, and automatically
add a require Statement with pre-defined information for all loadable modules

Page 264

The SELinux Notebook - The Foundations

such as the system_r role, kernel classes and permissions, and optionally MCS /
MLS information (sensitivity and category statements).

The macro definition is:

policy_module(module_name,version)

Where:
policy_module The policy_module macro keyword.

module_name The module identifier that must be unique in
the module layers.

version_number The module version number in M.m.m format
(where M = major version number and m = minor
version numbers).

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

Yes No No

Example Macro:

This example is from the modules/services/ftp.te module:
#
policy_module(ftp, 1.7.0)

Expanded Macro:

This is the expanded macro from the tmp/ftp.tmp file:
#
module ftp 1.7.0;
require {

role system_r;
class security {compute_av compute_create };
....
class capability2 (mac_override mac_admin };

If MLS or MCS configured then the:
sensitivity s0;
....
category c0;
....

}

5.6.1.2 gen_require Macro

For use within module files to insert a require block.

The macro definition is:

gen_require(`require_statements`)

Page 265

The SELinux Notebook - The Foundations

Where:
gen_require The gen_require macro keyword.
require_statements These statements consist of those allowed in the

policy language require Statement .

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

Yes Yes No

Example Macro:

This example is from the modules/services/ftp.te module:
#
gen_require(`type ftp_script_exec_t;')

Expanded Macro:

This is the expanded macro from the tmp/ftp.tmp file:
#
require {

type ftp_script_exec_t;
}

5.6.1.3 optional_policy Macro

For use within module files to insert an optional block that will be expanded by
the build process only if the modules containing the access or template interface calls
that follow are present. If one module is present and the other is not, then the optional
statements are not included (need to check).

The macro definition is:

optional_policy(`optional_statements`)

Where:
optional_policy The optional_policy macro keyword.
optional_statements These statements consist of those allowed in the

policy language optional Statement . However
they can also be interface, template or
support macro calls.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

Yes Yes No

Example Macro:

Page 266

The SELinux Notebook - The Foundations

This example is from the modules/services/ftp.te module and
shows the optional_policy macro with two levels.
#
optional_policy(`

corecmd_exec_shell(ftpd_t)
files_read_usr_files(ftpd_t)

 cron_system_entry(ftpd_t, ftpd_exec_t)

optional_policy(`
logrotate_exec(ftpd_t)

')
')

Expanded Macro:

This is the expanded macro from the tmp/ftp.tmp file showing
the policy language statements with both optional levels
expanded.
#
Start optional_policy - Level 1
optional {
begin corecmd_exec_shell(ftpd_t)

require {
type bin_t, shell_exec_t;

} # end require
allow ftpd_t bin_t:dir { getattr search };
allow ftpd_t bin_t:dir { getattr search read lock ioctl };
allow ftpd_t bin_t:dir { getattr search };
allow ftpd_t bin_t:lnk_file { getattr read };
allow ftpd_t shell_exec_t:file { { getattr read execute ioctl } ioctl lock

execute_no_trans };
end corecmd_exec_shell(ftpd_t)

begin files_read_usr_files(ftpd_t)
require {

type usr_t;
} # end require
allow ftpd_t usr_t:dir { getattr search read lock ioctl };
allow ftpd_t usr_t:dir { getattr search };
allow ftpd_t usr_t:file { getattr read lock ioctl };
allow ftpd_t usr_t:dir { getattr search };
allow ftpd_t usr_t:lnk_file { getattr read };

end files_read_usr_files(ftpd_t)

begin cron_system_entry(ftpd_t,ftpd_exec_t)
require {

type crond_t, system_crond_t;
} # end require
allow system_crond_t ftpd_exec_t:file { getattr read execute };
allow system_crond_t ftpd_t:process transition;
dontaudit system_crond_t ftpd_t:process { noatsecure siginh rlimitinh };
type_transition system_crond_t ftpd_exec_t:process ftpd_t;
cjp: perhaps these four rules from the old
domain_auto_trans are not needed?
allow ftpd_t system_crond_t:fd use;
allow ftpd_t system_crond_t:fifo_file { getattr read write append ioctl

lock };
allow ftpd_t system_crond_t:process sigchld;
allow ftpd_t crond_t:fifo_file { getattr read write append ioctl lock };
allow ftpd_t crond_t:fd use;
allow ftpd_t crond_t:process sigchld;
role system_r types ftpd_t;

end cron_system_entry(ftpd_t,ftpd_exec_t)

Start optional_policy - Level 2
optional {

begin logrotate_exec(ftpd_t)
require {

Page 267

The SELinux Notebook - The Foundations

type logrotate_exec_t;
} # end require
allow ftpd_t logrotate_exec_t:file { { getattr read execute ioctl } ioctl

lock execute_no_trans };
end logrotate_exec(ftpd_t)

} # end optional 2nd level
} # end optional 1st level

5.6.1.4 gen_tunable Macro

This macro defines booleans that are global in scope. The corresponding
tunable_policy macro contains the supporting statements allowed or not
depending on the value of the boolean. These entries are extracted as a part of the
build process (by the make conf target) and added to the global_tunables file
where they can then be used to alter the default values for the make load or make
install targets.

Note that the comments shown in the example MUST be present as they are used to
describe the function and are extracted for the documentation.

The macro definition is:

gen_tunable(boolean_name,boolean_value)

Where:
gen_tunable The gen_tunable macro keyword.

boolean_name The boolean identifier.
boolean_value The boolean value that can be either true or

false.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

Yes Yes No

Example Macro:

This example is from the modules/services/ftp.te module:
#

<desc>
<p>
Allow ftp servers to use nfs
for public file transfer services.
</p>
</desc>
gen_tunable(allow_ftpd_use_nfs, false)

Expanded Macro:

This is the expanded macro from the tmp/ftp.tmp file:

Page 268

The SELinux Notebook - The Foundations

#
bool allow_ftpd_use_nfs false;

5.6.1.5 tunable_policy Macro

This macro contains the statements allowed or not depending on the value of the
boolean defined by the gen_tunable macro.

The macro definition is:

tunable_policy(`gen_tunable_id’,`tunable_policy_rules`)

Where:
tunable_policy The tunable_policy macro keyword.

gen_tunable_id This is the boolean identifier defined by the
gen_tunable macro. It is possible to have
multiple entries separated by && or || as shown
in the example.

tunable_policy_rules These are the policy rules and statements as
defined in the if statement policy language
section.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

Yes Yes No

Example Macro:

This example is from the modules/services/ftp.te module
showing the use of the boolean with the && operator.
#
tunable_policy(`allow_ftpd_use_nfs && allow_ftpd_anon_write',`

fs_manage_nfs_files(ftpd_t)
')

Expanded Macro:

This is the expanded macro from the tmp/ftp.tmp file.
#
if (allow_ftpd_use_nfs && allow_ftpd_anon_write) {

begin fs_manage_nfs_files(ftpd_t)
require {

type nfs_t;
} # end require

allow ftpd_t nfs_t:dir { read getattr lock search ioctl
add_name remove_name write };

allow ftpd_t nfs_t:file { create open getattr setattr read
write append rename link unlink ioctl lock };

Page 269

The SELinux Notebook - The Foundations

end fs_manage_nfs_files(ftpd_t)

} # end if

5.6.1.6 interface Macro

Access interface macros are defined in the interface module file (.if) and form
the interface through which other modules can call on the modules services (as shown
in Figure 5.7 and described in the Module Expansion section.

The macro definition is:

interface(`name`,`interface_rules`)

Where:
interface The interface macro keyword.
name The interface identifier that should be

named to reflect the module identifier and its
purpose.

interface_rules This can consist of the support macros, policy
language statements or other interface calls
as required to provide the service.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

No Yes No

Example Interface Definition:
Note that the comments shown in the example MUST be present as they are used to
describe the function and are extracted for the documentation.

This example is from the modules/services/ftp.if module
showing the ‘ftp_read_config’ interface.
#

##
<summary>
Read ftpd etc files
</summary>
<param name="domain">
##<summary>
Domain allowed access.
##</summary>
</param>
#
interface(`ftp_read_config',`

gen_require(`
type ftpd_etc_t;

')

Page 270

The SELinux Notebook - The Foundations

files_search_etc($1)
allow $1 ftpd_etc_t:file { getattr read };

')

Expanded Macro: (taken from the base.conf file):

Access Interfaces are only expanded at policy compile time
if they are called by a module that requires their services.
#
In this example the ftp_read_config interface is called from
the init.te module via the optional_policy macro as shown
below with the expanded code shown afterwards.
#
######## From ./policy/policy/modules/system/init.te ########
#
optional_policy(`
ftp_read_config(initrc_t)
')
#
#
############# Expanded policy statements taken ##############
############# from the base.conf file that ##################
############# forms the base policy. ########################
#
optional { # Start optional_policy segment for ftp interface
#
This is the resulting output contained the base.conf file
where init calls the ftp_read_config ($1) interface from
init.te with the parameter initrc_t:
#

require {
type ftpd_etc_t;

}

#
Call the files_search_etc ($1) interface contained in the
ftp.if file with the parameter initrc_t:
#

require {
type etc_t;

}
allow initrc_t etc_t:dir { getattr search };

#
end files_search_etc(initrc_t)
#
This is the allow $1 ftpd_etc_t:file { getattr read };
statement with the initrc_t parameter resolved:
#

allow initrc_t ftpd_etc_t:file { getattr read };
#
end ftp_read_config(initrc_t)
} # End optional_policy segment for this ftp interface

5.6.1.7 template Macro

A template interface is used to help create a domain and set up the appropriate rules
and statements to run an application / process. The basic idea is to set up an
application in a domain that is suitable for the defined SELinux user and role to
access but not others. Should a different user / role need to access the same
application, another domain would be allocated (these are known as ‘derived
domains’ as the domain name is derived from caller information).

Page 271

The SELinux Notebook - The Foundations

The application template shown in the example below is for openoffice.org
where the domain being set up to run the application is based on the SELinux user
xguest (parameter $1) therefore a domain type is initialised called
xguest_openoffice_t, this is then added to the user domain attribute
xguest_usertype (parameter $2). Finally the role xguest_r (parameter $3) is
allowed access to the domain type xguest_openoffice_t. If a different user /
role required access to openoffice.org, then by passing different parameters (i.e.
user_u), a different domain would be set up.

The main differences between an application interface and a template interface are:

• An access interface is called by other modules to perform a service.

• A template interface allows an application to be run in a domain based on user
/ role information to isolate different instances.

Note that the comments shown in the example MUST be present as they are used to
describe the function and are extracted for the documentation.

The macro definition is:

template(`name`,`template_rules`)

Where:
template The template macro keyword.

name The template identifier that should be named
to reflect the module identifier and its purpose.
By convention the last component is
_template (e.g. ftp_per_role_template).

template_rules This can consist of the support macros, policy
language statements or interface calls as
required to provide the service.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

No Yes No

Example Macro:

This example is from the modules/apps/openoffice.if module
showing the ‘openoffice_per_role_template’ template interface.
#
#######################################
<summary>
The per role template for the openoffice module.
</summary>
<desc>
<p>
This template creates a derived domains which are used
for openoffice applications.
</p>
</desc>
<param name="userdomain_prefix">
<summary>

Page 272

The SELinux Notebook - The Foundations

The prefix of the user domain (e.g., user
is the prefix for user_t).
</summary>
</param>
<param name="user_domain">
<summary>
The type of the user domain.
</summary>
</param>
<param name="user_role">
<summary>
The role associated with the user domain.
</summary>
</param>
#
template(`openoffice_per_role_template',`

gen_require(`
type openoffice_exec_t;

')

type $1_openoffice_t;
domain_type($1_openoffice_t)
domain_entry_file($1_openoffice_t, openoffice_exec_t)
role $3 types $1_openoffice_t;

domain_interactive_fd($1_openoffice_t)

userdom_unpriv_usertype($1, $1_openoffice_t)
userdom_exec_user_home_content_files($1, $1_openoffice_t)

allow $1_openoffice_t self:process { getsched sigkill execheap execmem
execstack };

allow $2 $1_openoffice_t:process { getattr ptrace signal_perms noatsecure
siginh rlimitinh };

allow $1_openoffice_t $2:tcp_socket { read write };

domtrans_pattern($2, openoffice_exec_t, $1_openoffice_t)

dev_read_urand($1_openoffice_t)
dev_read_rand($1_openoffice_t)

fs_dontaudit_rw_tmpfs_files($1_openoffice_t)

allow $2 $1_openoffice_t:process { signal sigkill };
allow $1_openoffice_t $2:unix_stream_socket connectto;

')

Expanded Macro:

Template Interfaces are only expanded at policy compile time
if they are called by a module that requires their services.
This has been expanded as a part of the roles/xguest.te
module and extracted from tmp/xguest.tmp.
#
################# START Expanded code segment ###########
#
optional {

begin openoffice_per_role_template(xguest,xguest_usertype,xguest_r)
require {

type openoffice_exec_t;
} # end require
type xguest_openoffice_t; # Paremeter $1

......
This is a long set of rules, therefore has been cut down.
......
....

typeattribute xguest_openoffice_t xguest_usertype; # Paremeter $2
..
type_transition xguest_usertype openoffice_exec_t:process xguest_openoffice_t;

Page 273

The SELinux Notebook - The Foundations

..
role xguest_r types xguest_openoffice_t; # Paremeter $3
....
allow xguest_usertype xguest_openoffice_t:process { signal sigkill };
allow xguest_openoffice_t xguest_usertype:unix_stream_socket connectto;

end openoffice_per_role_template(xguest,xguest_usertype,xguest_r)

} # end optional

5.6.2 Miscellaneous Macros
These macros are in the misc_macros.spt file.

5.6.2.1 gen_context Macro

This macro is used to generate a valid security context and can be used in any of the
module files. Its most general use is in the .fc file where it is used to set the files
security context.

The macro definition is:

gen_context(context[,mls | mcs])

Where:
gen_context The gen_context macro keyword.

context The security context to be generated. This can
include macros that are relevant to a context as
shown in the example below.

mls | mcs MLS or MCS labels if enabled in the policy.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

Yes Yes Yes

 Example Macro:

This example shows gen_context being used to generate a
security context for the security initial sid in the
selinux.te module:

sid security gen_context(system_u:object_r:security_t:mls_systemhigh)

Expanded Macro:

This is the expanded entry built into the base.conf source
file for an MLS policy:

sid security system_u:object_r:security_t:s15:c0.c255

Page 274

The SELinux Notebook - The Foundations

Example File Context .fc file:

This is from the modules/apps/gnome.fc file. Note that the
HOME_DIR and USER parameters will be entered during
the file_contexts.homedirs file build as described in the
modules/active/file_contexts.template File section.
#

HOME_DIR/.gnome2(/.*)?

gen_context(system_u:object_r:gnome_home_t,s0)
HOME_DIR/\.config/gtk-.*

gen_context(system_u:object_r:gnome_home_t,s0)
HOME_DIR/\.gconf(d)?(/.*)?

gen_context(system_u:object_r:gconf_home_t,s0)
HOME_DIR/\.local.*

gen_context(system_u:object_r:gconf_home_t,s0)

/tmp/gconfd-USER/.* --
gen_context(system_u:object_r:gconf_tmp_t,s0)

HOME_DIR/.pulse(/.*)?
gen_context(system_u:object_r:gnome_home_t,s0)

Expanded File Context .fc file:

The resulting expanded tmp/gnome.mod.fc file. This will be
concatenated with the main file_contexts file during the
policy build process.
#

HOME_DIR/.gnome2(/.*)? system_u:object_r:gnome_home_t:s0
HOME_DIR/\.config/gtk-.* system_u:object_r:gnome_home_t:s0
HOME_DIR/\.gconf(d)?(/.*)?system_u:object_r:gconf_home_t:s0
HOME_DIR/\.local.* system_u:object_r:gconf_home_t:s0

/tmp/gconfd-USER/.* -- system_u:object_r:gconf_tmp_t:s0

HOME_DIR/.pulse(/.*)? system_u:object_r:gnome_home_t:s0

5.6.2.2 gen_user Macro

This macro is used to generate a valid user statement and add an entry in the
users_extra configuration file if it exists.

The macro definition is:

gen_user(username, prefix, role_set, mls_defaultlevel,
mls_range, [mcs_categories])

Where:
gen_user The gen_user macro keyword.

username The SELinux user id.
prefix SELinux users without the prefix will not be in

the users_extra file. This is added to user

Page 275

The SELinux Notebook - The Foundations

directories by the genhomedircon as
discussed in the
modules/active/file_contexts.temp
late File section.

role_set The user roles.
mls_defaultlevel The default level if MLS / MCS policy.
mls_range The range if MLS / MCS policy.
mcs_categories The categories if MLS / MCS policy.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

Yes No No

Example Macro:

This example has been taken from the policy/policy/users file:
#

gen_user(root, user, unconfined_r sysadm_r staff_r
ifdef(`enable_mls',`secadm_r auditadm_r') system_r, s0, s0 -
mls_systemhigh, mcs_allcats)

Expanded Macro:

The expanded gen_user macro from the base.conf for an MLS
build. Note that the prefix is not present. This is added to
the users_extra file as shown below.
#

user root roles { unconfined_r sysadm_r staff_r secadm_r
auditadm_r system_r } level s0 range s0 - s15:c0.c1023;

users_extra file entry:
#
user root prefix user;

5.6.2.3 gen_bool Macro

This macro defines a boolean and requires the following steps:

1. Declare the boolean in the global_booleans file.

2. Use the boolean in the module files with an if / else statement as shown
in the example.

Note that the comments shown in the example MUST be present as they are used to
describe the function and are extracted for the documentation.

The macro definition is:

Page 276

The SELinux Notebook - The Foundations

gen_bool(name,default_value)

Where:
gen_bool The gen_bool macro keyword.

name The boolean identifier.
default_value The value true or false.

The macro is only valid in the global_booleans file but the boolean declared can
be used in the following module types:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

Yes Yes No

Example Macro (in global_booleans):

This example is from the global_booleans file where the bool
is declared. The comments must be present as it is used to
generate the documentation.
#

<desc>
<p>
Disable transitions to insmod.
</p>
</desc>
gen_bool(secure_mode_insmod,false)

Example usage from the system/modutils.te module:
#
if(! secure_mode_insmod) {

kernel_domtrans_to(insmod_t,insmod_exec_t)
}

Expanded Macro:

This has been taken from the base.conf source file after
expansion by the build process of the modutils.te module.
#

if(! secure_mode_insmod) {
begin kernel_domtrans_to(insmod_t,insmod_exec_t)

allow kernel_t insmod_exec_t:file { getattr read execute };
allow kernel_t insmod_t:process transition;
dontaudit kernel_t insmod_t:process { noatsecure siginh

rlimitinh };
type_transition kernel_t insmod_exec_t:process insmod_t;
allow insmod_t kernel_t:fd use;
allow insmod_t kernel_t:fifo_file { getattr read write append

ioctl lock };
allow insmod_t kernel_t:process sigchld;

end kernel_domtrans_to(insmod_t,insmod_exec_t)
}

Page 277

The SELinux Notebook - The Foundations

5.6.3 MLS and MCS Macros
These macros are in the mls_mcs_macros.spt file.

5.6.3.1 gen_cats Macro

This macro will generate a category statement for each category defined. These are
then used in the base.conf / policy.conf source file and also inserted into
each module by the policy_module Macro . The policy/policy/mcs and
mls configuration files are the only files that contain this macro in the current
reference policy.

The macro definition is:

gen_cats(mcs_num_cats | mls_num_cats)

Where:
gen_cats The gen_cats macro keyword.

mcs_num_cats
mls_num_cats

These are the maximum number of categories
that have been extracted from the build.conf
file MCS_CATS or MLS_CATS entries and set as
m4 parameters.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

na na na

Example Macro:

This example is from the policy/policy/mls configuration file.
#

gen_cats(mls_num_cats)

Expanded Macro:

This example has been extracted from the base.conf source
file.

category c0;
category c1;
...
category c1023;

5.6.3.2 gen_sens Macro

This macro will generate a sensitivity statement for each sensitivity defined.
These are then used in the base.conf / policy.conf source file and also
inserted into each module by the policy_module Macro . The

Page 278

The SELinux Notebook - The Foundations

policy/policy/mcs and mls configuration files are the only files that contain
this macro in the current reference policy (note that the mcs file has gen_sens(1)
as only one sensitivity is required).

The macro definition is:

gen_sens(mls_num_sens)

Where:
gen_sens The gen_sens macro keyword.

mls_num_sens These are the maximum number of sensitivities
that have been extracted from the build.conf
file MLS_SENS entries and set as an m4
parameter.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

na na na

Example Macro:

This example is from the policy/policy/mls configuration file.
#

gen_cats(mls_num_sens)

Expanded Macro:

This example has been extracted from the base.conf source
file.

sensitivity s0;
sensitivity s1;
...
sensitivity s15;

5.6.3.3 gen_levels Macro

This macro will generate a level statement for each level defined. These are then
used in the base.conf / policy.conf source file. The policy/policy/mcs
and mls configuration files are the only files that contain this macro in the current
reference policy.

The macro definition is:

gen_levels(mls_num_sens,mls_num_cats)

Where:

Page 279

The SELinux Notebook - The Foundations

gen_levels The gen_levels macro keyword.
mls_num_sens This is the parameter that defines the number of

sensitivities to generate. The MCS policy is set to
‘1’.

mls_num_cats
mcs_num_cats

This is the parameter that defines the number of
categories to generate.

The macro is valid in:

Private Policy File (.te) External Interface File (.if) File Labeling Policy File (.fc)

na na na

Example Macro:

This example is from the policy/policy/mls configuration file.
#
gen_levels(mls_num_sens,mls_num_cats)

Expanded Macro:

This example has been extracted from the base.conf source
file. Note that the all categories are allocated to each
sensitivity.

level s0:c0.c1023;
level s1:c0.c1023;
...
level s15:c0.c1023;

5.6.3.4 System High/Low Parameters

These macros define system high etc. as shown.

mls_systemlow
gives:
s0

mls_systemhigh
gives:
s15:c0.c1023

mcs_systemlow
gives:
s0

mcs_systemhigh
gives:
s0:c0.c1023

mcs_allcats
gives:
c0.c1023

Page 280

The SELinux Notebook - The Foundations

5.6.4 ifdef / ifndef Parameters
This section contains examples of the common ifdef / ifndef parameters that can
be used in module source files.

5.6.4.1 hide_broken_symptoms

This is used within modules as shown in the example. The parameter is set up by the
Makefile at the start of the build process.

Example Macro:

This example is from the modules/kernel/domain.te module.
#
ifdef(`hide_broken_symptoms',`

cron_dontaudit_rw_tcp_sockets(domain)
allow domain domain:key { link search };

')

5.6.4.2 enable_mls and enable_mcs

These are used within modules as shown in the example. The parameters are set up by
the Makefile with information taken from the build.conf file at the start of the
build process.

Example Macros:

This example is from the modules/kernel/kernel.te module.
#
ifdef(`enable_mls',`

role secadm_r;
role auditadm_r;

')

This example is from the modules/kernel/kernel.if module.
#
ifdef(`enable_mcs',`

range_transition kernel_t $2:process $3;
')

ifdef(`enable_mls',`
range_transition kernel_t $2:process $3;
mls_rangetrans_target($1)

')

5.6.4.3 enable_ubac

This is used within the ./policy/constraints configuration file to set up
various attributes to support user based access control (UBAC). These attributes are
then used within the various modules that want to support UBAC. This support was
added in version 2 of the Referefence Policy.

Page 281

The SELinux Notebook - The Foundations

The orginal method (role based access control, or RBAC) is the default for F-16
(ubac = n). The parameter is set up by the Makefile with information taken
from the build.conf file at the start of the build process (ubac = y | ubac =
n).

Example Macro:

This example is from the ./policy/constraints file.
Note that the ubac_constrained_type attribute is defined in
modules/kernel/ubac.te module.

define(`basic_ubac_conditions',`
ifdef(`enable_ubac',`

u1 == u2
or u1 == system_u
or u2 == system_u
or t1 != ubac_constrained_type
or t2 != ubac_constrained_type

')
')

5.6.4.4 direct_sysadm_daemon

This is used within modules as shown in the example. The parameter is set up by the
Makefile with information taken from the build.conf file at the start of the
build process (if DIRECT_INITRC = y).

Example Macros:

This example is from the modules/system/selinuxutil.te module.
#
ifndef(`direct_sysadm_daemon',`

ifdef(`distro_gentoo',`
Gentoo integrated run_init:
init_script_file_entry_type(run_init_t)

')
')

This example is from the modules/system/userdomain.te module.
#
ifdef(`direct_sysadm_daemon',`

domain_system_change_exemption($1_t)
')

5.7 Module Expansion Process
The objective of this section is to show how the modules are expanded by the
reference policy build process to form files that can then be compiled and then loaded
into the policy store by using the make MODULENAME.pp target.

Page 282

The SELinux Notebook - The Foundations

The files shown are those produced by the build process using the ada policy modules
from the Reference Policy source tree (ada.te, ada.if and ada.fc) that are
shown in the Reference Policy Module Files section.

The initial build process will build the source text files in the policy/tmp directory
as ada.tmp and ada.mod.fc (that are basically build equivalent ada.conf and
ada.fc formatted files). The basic steps are shown in Figure 5.6, and the resulting
expanded code shown in Figure 5.7 and then described in the Module Expansion
section.

Figure 5.6: The make ada sequence of events

Page 283

make ada
The process will take the
ada module files and

produce the ada.tmp
and ada.mod.fc in
the tmp directory.

checkmodule -M -m -o ada.tmp.mod

semodule_package -o ada.pp -m ada.tmp.mod -f ada.mod.fc

semodule -i ada.pp

The SELinux Notebook - The Foundations

Figure 5.7: The Resulting Code - The expanded code in the Module Expansion
section.

5.7.1 Module Expansion
The ada.te module is expanded as shown below. Note that the ada.if module
would only be expanded if another module calls these interfaces, where they would
then be expanded into the calling module.

#
###
#
This is the start of the ada.te file that is expanded by the build
process. Note the following:

1) The macros have been expanded to transform the ‘ada.te’ file into an
‘ada.conf’ file.
#
2) The ‘ada.if’ file Application Interface calls have NOT been expanded #
into this file simply because the ada.te does not call them (but
they would be expanded into any other policy module that called them).
#
3) The module calls the “application_domain(ada_t,ada_exec_t)” that is
one of the mandatory modules that MUST be included in the base.
Note that this then calls other Application Interface macros.
#

Page 284

policy_module(ada, 1.2.0)
#
Declarations
#
type ada_t;
type ada_exec_t;
application_domain(ada_t, ada_exec_t)
role system_r types ada_t;

#
Local policy
#
allow ada_t self:process { execstack
execmem };

optional_policy(`
unconfined_domain_noaudit(ada_t)

')

application_domain(domain , entry_point)

unconfined_domain_noaudit(domain)

module ada 1.2.0;
require {

role system_r;
....
....
begin application_type(ada_t)
require {

attribute application_domain_type;
.....
....
optional { # start optional #6
begin unconfined_domain_noaudit(ada_t)

require {
class dbus { acquire_svc send_msg };

....

....

Resulting expanded module in
./policy/tmp/ada.tmp

Application Interface code extracted from
./policy/module/system/unconfined.if

Application Interface code extracted from
./policy/module/system/application.if

ada loadable module extracted from
./policy/module/apps/ada.te

The SELinux Notebook - The Foundations

4) All the build information that was in the original ada.tmp build
file have been removed for readability.
#
###

The “policy_module(ada, 1.2.0)” macro has been expanded by the build process
and the predefined ‘require { }’ entries are added (system_r role, all
kernel classes and the sensitivity and category statements).
#
module ada 1.2.0;

require {
role system_r;

These are the kernel class statements. There are many of them, therefore most
have been removed for readability.
#

class security { compute_av compute_create compute_member check_context
load_policy compute_relabel compute_user setenforce setbool setsecparam
setcheckreqprot };

class peer { recv };
class capability2 { mac_override mac_admin };

End of classes

As this is built as an MCS policy, there is only one sensitivity.
sensitivity s0;

category c0;
This would contain many lines, one for each of the 1024 category statements
defined in the policy. These have been removed for clarity.

category c1023;
} # END REQUIRE

##
#
Declarations
#

type ada_t;
type ada_exec_t;

#
###
#
This is the “application_domain(ada_t, ada_exec_t)” Application Interface
call that is expanded to policy language statements by the build process.
Note that there are many ‘optional { }’ statements, these have been
marked numbered for easy reference.
#
######## START application_domain(ada_t,ada_exec_t) SEQUENCE ##############
#
begin application_type(ada_t)
require {

attribute application_domain_type;
} # end require

typeattribute ada_t application_domain_type;

begin domain_type(ada_t)
begin domain_base_type(ada_t)
require {

attribute domain;
} # end require

typeattribute ada_t domain;
end domain_base_type(ada_t)

optional { # start optional #1
begin unconfined_use_fds(ada_t)
require {

type unconfined_t;
} # end require

allow ada_t unconfined_t:fd use;
end unconfined_use_fds(ada_t)

Page 285

The SELinux Notebook - The Foundations

} # end optional #1

send init a sigchld and signull
optional { # start optional #2
begin init_sigchld(ada_t)

require {
type init_t;

} # end require
allow ada_t init_t:process sigchld;

end init_sigchld(ada_t)

begin init_signull(ada_t)
require {

type init_t;
} # end require

allow ada_t init_t:process signull;
end init_signull(ada_t)
} # end optional #2

these seem questionable:
optional { # start optional #3
begin rpm_use_fds(ada_t)

require {
type rpm_t;

} # end require

allow ada_t rpm_t:fd use;
end rpm_use_fds(ada_t)

begin rpm_read_pipes(ada_t)
require {

type rpm_t;
} # end require

allow ada_t rpm_t:fifo_file { getattr read lock ioctl };
end rpm_read_pipes(ada_t)
} # end optional #3

optional { # start optional #4
begin selinux_dontaudit_getattr_fs(ada_t)

require {
type security_t;

} # end require

dontaudit ada_t security_t:filesystem getattr;
end selinux_dontaudit_getattr_fs(ada_t)

begin selinux_dontaudit_read_fs(ada_t)
require {

type security_t;
} # end require

begin selinux_dontaudit_getattr_fs(ada_t)
require {

type security_t;
} # end require

dontaudit ada_t security_t:filesystem getattr;
end selinux_dontaudit_getattr_fs(ada_t)

dontaudit ada_t security_t:dir { getattr search };
dontaudit ada_t security_t:file { getattr read };

end selinux_dontaudit_read_fs(ada_t)
} # end optional #4

optional { # start optional #5
begin seutil_dontaudit_read_config(ada_t)

require {
type selinux_config_t;

} # end require
dontaudit ada_t selinux_config_t:dir { getattr search };
dontaudit ada_t selinux_config_t:file { getattr read };

Page 286

The SELinux Notebook - The Foundations

end seutil_dontaudit_read_config(ada_t)
} # end optional #5

end domain_type(ada_t)
end application_type(ada_t)

begin application_executable_file(ada_exec_t)
require {

attribute application_exec_type;
} # end require

typeattribute ada_exec_t application_exec_type;

begin corecmd_executable_file(ada_exec_t)
require {

attribute exec_type;
} # end require

typeattribute ada_exec_t exec_type;

begin files_type(ada_exec_t)
require {

attribute file_type, non_security_file_type;
} # end require

typeattribute ada_exec_t file_type, non_security_file_type;
end files_type(ada_exec_t)
end corecmd_executable_file(ada_exec_t)
end application_executable_file(ada_exec_t)

begin domain_entry_file(ada_t,ada_exec_t)
require {

attribute entry_type;
} # end require
allow ada_t ada_exec_t:file entrypoint;
allow ada_t ada_exec_t:file { { getattr read execute ioctl } ioctl lock };
typeattribute ada_exec_t entry_type;

begin corecmd_executable_file(ada_exec_t)
require {

attribute exec_type;
} # end require
typeattribute ada_exec_t exec_type;

begin files_type(ada_exec_t)
require {
attribute file_type, non_security_file_type;

} # end require
typeattribute ada_exec_t file_type, non_security_file_type;
end files_type(ada_exec_t) depth: 3
end corecmd_executable_file(ada_exec_t)
end domain_entry_file(ada_t,ada_exec_t)
end application_domain(ada_t,ada_exec_t)

#
########## END application_domain(ada_t,ada_exec_t) INSERT ########
#

role system_r types ada_t;

##
#
Local policy
#

This is the only allow statement in the ada.te file:
allow ada_t self:process { execstack execmem };

#
The “optional_policy(`unconfined_domain_noaudit(ada_t)')” is the next
line that expands into the lines between START and END OPTIONAL comments.
NOTE: If the unconfined module was NOT part of the build then this optional
policy section would not be present.
#
################## START OPTIONAL_POLICY STATEMENT ######################

Page 287

The SELinux Notebook - The Foundations

optional { # start optional #6
begin unconfined_domain_noaudit(ada_t)

require {
class dbus { acquire_svc send_msg };
class nscd { getpwd getgrp gethost getstat admin shmempwd shmemgrp

shmemhost getserv shmemserv };
class passwd { passwd chfn chsh rootok crontab };

} # end require

Use any Linux capability.
allow ada_t self:capability { chown dac_override dac_read_search fowner fsetid

kill setgid setuid setpcap linux_immutable net_bind_service net_broadcast
net_admin net_raw ipc_lock ipc_owner sys_module sys_rawio sys_chroot sys_ptrace
sys_pacct sys_admin sys_boot sys_nice sys_resource sys_time sys_tty_config mknod
lease audit_write audit_control setfcap };

allow ada_t self:fifo_file { create open getattr setattr read write append
rename link unlink ioctl lock };

Transition to myself, to make get_ordered_context_list happy.
allow ada_t self:process transition;

Write access is for setting attributes under /proc/self/attr.
allow ada_t self:file { getattr read write append ioctl lock };
allow ada_t self:dir { read getattr lock search ioctl add_name remove_name

write };
Userland object managers

allow ada_t self:nscd { getpwd getgrp gethost getstat admin shmempwd shmemgrp
shmemhost getserv shmemserv };

allow ada_t self:dbus { acquire_svc send_msg };
allow ada_t self:passwd { passwd chfn chsh rootok crontab };
allow ada_t self:association { sendto recvfrom setcontext polmatch };

begin kernel_unconfined(ada_t)
require {

attribute kern_unconfined;
} # end require

typeattribute ada_t kern_unconfined;
end kernel_unconfined(ada_t)

begin corenet_unconfined(ada_t)

require { attribute corenet_unconfined_type;
} # end require

typeattribute ada_t corenet_unconfined_type;
end corenet_unconfined(ada_t)

begin dev_unconfined(ada_t)

require {
attribute devices_unconfined_type;

} # end require

typeattribute ada_t devices_unconfined_type;
end dev_unconfined(ada_t)

begin domain_unconfined(ada_t)

require {
attribute set_curr_context;
attribute can_change_object_identity;
attribute unconfined_domain_type;
attribute process_uncond_exempt;

} # end require

typeattribute ada_t unconfined_domain_type;
pass constraints

typeattribute ada_t can_change_object_identity;
typeattribute ada_t set_curr_context;
typeattribute ada_t process_uncond_exempt;

end domain_unconfined(ada_t)

begin domain_dontaudit_read_all_domains_state(ada_t)
require {

attribute domain;
} # end require

Page 288

The SELinux Notebook - The Foundations

dontaudit ada_t domain:dir { getattr search read lock ioctl };
dontaudit ada_t domain:lnk_file { getattr read };
dontaudit ada_t domain:file { getattr read lock ioctl };

cjp: these should be removed:
dontaudit ada_t domain:sock_file { getattr read };dontaudit ada_t

domain:fifo_file { getattr read lock ioctl };
end domain_dontaudit_read_all_domains_state(ada_t)

begin domain_dontaudit_ptrace_all_domains(ada_t)

require {
attribute domain;

} # end require

dontaudit ada_t domain:process ptrace;
end domain_dontaudit_ptrace_all_domains(ada_t)

begin files_unconfined(ada_t)

require {
attribute files_unconfined_type;

} # end require

typeattribute ada_t files_unconfined_type;
end files_unconfined(ada_t)

begin fs_unconfined(ada_t)

require {
attribute filesystem_unconfined_type;

} # end require

typeattribute ada_t filesystem_unconfined_type;
end fs_unconfined(ada_t)

begin selinux_unconfined(ada_t)

require {
attribute selinux_unconfined_type;

} # end require

typeattribute ada_t selinux_unconfined_type;
end selinux_unconfined(ada_t)

begin domain_mmap_low_type(ada_t)
require {

attribute mmap_low_domain_type;
} # end require

typeattribute ada_t mmap_low_domain_type;
end domain_mmap_low_type(ada_t)

require {
bool allow_unconfined_mmap_low;

} # end require
if (allow_unconfined_mmap_low) {

begin domain_mmap_low(ada_t)
allow ada_t self:memprotect mmap_zero;

end domain_mmap_low(ada_t)
}

require {
bool allow_execheap;

} # end require

if (allow_execheap) {
Allow making the stack executable via mprotect.

allow ada_t self:process execheap;
}

require {
bool allow_execmem;

} # end require

if (allow_execmem) {
Allow making anonymous memory executable, e.g.

 # for runtime-code generation or executable stack.
allow ada_t self:process execmem;

}

Page 289

The SELinux Notebook - The Foundations

require {
bool allow_execstack;

} # end require

if (allow_execstack) {
Allow making the stack executable via mprotect;
execstack implies execmem;
allow ada_t self:process { execstack execmem };
#
auditallow ada_t self:process execstack;}

optional { # start optional #7
begin auth_unconfined(ada_t)

require {
attribute can_read_shadow_passwords;
attribute can_write_shadow_passwords;
attribute can_relabelto_shadow_passwords;

} # end require

typeattribute ada_t can_read_shadow_passwords;typeattribute ada_t
can_write_shadow_passwords;typeattribute ada_t can_relabelto_shadow_passwords;
end auth_unconfined(ada_t) depth: 1
} # end optional #7

optional { # start optional #8
Communicate via dbusd.
begin dbus_system_bus_unconfined(ada_t)

require {
type system_dbusd_t;
class dbus { acquire_svc send_msg };

} # end require

allow ada_t system_dbusd_t:dbus *;
end dbus_system_bus_unconfined(ada_t)
begin dbus_unconfined(ada_t) depth: 2

require {
attribute dbusd_unconfined;

} # end require

typeattribute ada_t dbusd_unconfined;
end dbus_unconfined(ada_t)

} # end optional #8

optional {# start optional #9
begin ipsec_setcontext_default_spd(ada_t)

require {
type ipsec_spd_t;

} # end require

allow ada_t ipsec_spd_t:association setcontext;
end ipsec_setcontext_default_spd(ada_t)

begin ipsec_match_default_spd(ada_t)

require { type ipsec_spd_t;
} # end require

allow ada_t ipsec_spd_t:association polmatch;
allow ada_t self:association sendto;

end ipsec_match_default_spd(ada_t)
} # end optional #9

optional { # start optional #10
this is to handle execmod on shared
libs with text relocations

begin libs_use_shared_libs(ada_t)
require { type lib_t, textrel_shlib_t;
} # end require

begin files_list_usr(ada_t)
require {

type usr_t;
} # end require

allow ada_t usr_t:dir { getattr search read lock ioctl };

Page 290

The SELinux Notebook - The Foundations

end files_list_usr(ada_t)

allow ada_t lib_t:dir { getattr search read lock ioctl };
allow ada_t lib_t:dir { getattr search };allow ada_t { lib_t

textrel_shlib_t }:lnk_file { getattr read };
allow ada_t lib_t:dir { getattr search };allow ada_t { lib_t

textrel_shlib_t }:file { getattr read execute ioctl };
allow ada_t textrel_shlib_t:file execmod;

end libs_use_shared_libs(ada_t)
} # end optional #10

optional { # start optional #11
begin nscd_unconfined(ada_t)

require {
type nscd_t;
class nscd { getpwd getgrp gethost getstat admin shmempwd shmemgrp

shmemhost getserv shmemserv };
} # end require

allow ada_t nscd_t:nscd *;
end nscd_unconfined(ada_t)

} # end optional #11

optional { # start optional #12
begin postgresql_unconfined(ada_t)

require {
attribute sepgsql_unconfined_type;

} # end require

typeattribute ada_t sepgsql_unconfined_type;
end postgresql_unconfined(ada_t)

} # end optional #12

optional { # start optional #13
begin seutil_create_bin_policy(ada_t)

require {
#

attribute can_write_binary_policy;
type selinux_config_t, policy_config_t;

} # end require

begin files_search_etc(ada_t)
require {

type etc_t;
} # end require

allow ada_t etc_t:dir { getattr search };
end files_search_etc(ada_t)

allow ada_t selinux_config_t:dir { getattr search };
allow ada_t policy_config_t:dir { getattr search lock ioctl write add_name

};
allow ada_t policy_config_t:file { getattr create open };
allow ada_t policy_config_t:dir { getattr search };
allow ada_t policy_config_t:file { getattr write append lock ioctl };

typeattribute ada_t can_write_binary_policy;
end seutil_create_bin_policy(ada_t)

begin seutil_relabelto_bin_policy(ada_t)

require {
attribute can_relabelto_binary_policy; type policy_config_t;
} # end require
allow ada_t policy_config_t:file relabelto;typeattribute ada_t

can_relabelto_binary_policy;
end seutil_relabelto_bin_policy(ada_t)
} # end optional #13

optional { # start optional #14
begin storage_unconfined(ada_t)

require {
attribute storage_unconfined_type;

} # end require

typeattribute ada_t storage_unconfined_type;

Page 291

The SELinux Notebook - The Foundations

end storage_unconfined(ada_t)
} # end optional #14

optional { # start optional #15
begin xserver_unconfined(ada_t)

require {
attribute xserver_unconfined_type, x_domain;

} # end require
typeattribute ada_t xserver_unconfined_type, x_domain;

end xserver_unconfined(ada_t)
} # end optional #15

end unconfined_domain_noaudit(ada_t)
} # end optional #6

################## END OPTIONAL_POLICY STATEMENT ######################
#

5.7.2 File Context Expansion
As can be seen the gen_context macro has been expanded to build the security
context:

#
/usr
#
/usr/bin/gnatbind -- system_u:object_r:ada_exec_t:s0
/usr/bin/gnatls -- system_u:object_r:ada_exec_t:s0
/usr/bin/gnatmake -- system_u:object_r:ada_exec_t:s0
/usr/libexec/gcc(/.*)?/gnat1 -- system_u:object_r:ada_exec_t:s0

Page 292

The SELinux Notebook - The Foundations

6. Implementing SELinux-aware Applications

6.1 Introduction
The following definitions attempt to explain the difference between the two types of
userspace SELinux application (however the distinction can get 'blurred'):

SELinux-aware - Any application that provides support for SELinux. This
generally means that the application makes use of SELinux libraries and/or other
SELinux applications. Example SELinux-aware applications are the Pluggable
Authentication Manager (PAM(8)) and SELinux commands such as
runcon(1). It is of course possible to class an object manager as an SELinux-
aware application.

Object Manager - Object Managers are a specialised form of SELinux-aware
application that are responsible for the labeling, management and enforcement63 of
the objects under their control.

Generally the userspace Object Manager forms part of an application that can be
configured out should the base Linux OS not support SELinux.

Example userspace Object Managers are:

• X-SELinux is an optional X-Windows extension responsible for labeling
and enforcement of X-Windows objects.

• Dbus has an optional Object Manager built if SELinux is defined in the
Linux build. This is responsible for the labeling and enforcement of Dbus
objects.

• SE-PostgreSQL is an optional extension for PostgreSQL that is
responsible for the labeling and enforcement of PostgreSQL database and
supporting objects.

Therefore the basic distinction is that Object Managers manage their defined objects
on behalf of an application, whereas general SELinux-aware applications do not (they
rely on 'Object Managers' to do this e.g. the kernel based Object Managers such as
those that manage filesystem, IPC and network labeling).

6.2 Types of Object Manager
There are three basic forms of userspace object manager:

1. Those that do not cache access decisions (i.e. they do not use the
libselinux AVC services). These require a call to the kernel for every
decision using security_compute_av(3) or
security_compute_av_flags(3). The avc_netlink_*(3)
functions can be used to detect policy change events. Auditing would need to
be implemented if required.

63 The SELinux policy / security server do not themselves enforce a decision, they merely state
whether the operation is allowed or not according to the policy. It is the object manager that
enforces the decision of the policy / security server, therefore an object manager must be trusted.
This is also true of labeling - the object manager ensures that the labels are applied to their objects
as defined by the policy.

Page 293

The SELinux Notebook - The Foundations

2. Those that utilise the libselinux userspace AVC services that are
initialised with avc_open(3). These can be built in various configurations
such as:

a) Using the default single threaded mode where avc_has_perm(3) will
automatically cache entries, audit the decision and manage the handling of
policy change events.

b) Implementing threads or a similar service that will handle policy change
events and auditing in real time with avc_has_perm(3) or
avc_has_perm_noaudit(3) handling decisions and caching. This
has the advantage of better performance, which can be further increased by
caching the entry reference.

3. Those that build their own caching service and use
security_compute_av(3) or security_compute_av_flags(3)
for computing access decisions. The avc_netlink_*(3) functions can
then be used to detect policy change events. Auditing would need to be
implemented if required.

6.2.1 Implementing SELinux-aware Applications
This section puts forward various points that may be useful when developing
SELinux-aware applications and object managers using libselinux.

1. Determine the security objectives and requirements.

2. Because these applications manage labeling and access control, they need to
be trusted.

3. Where possible use the libselinux *_raw functions as they avoid the overhead
of translating the context to/from the readable format (unless of course there is
a requirement for a readable context - see mcstransd(8)).

4. Use selinux_set_mapping(3) to limit the classes and permissions to
only those required by the application.

5. The standard output for messages generated by libselinux functions is
stderr. Use selinux_set_callback(3) with SELINUX_CB_LOG
type to redirect these to a log handler.

6. Do not directly reference SELinux configuration files, always use the
libselinux path functions to return the location. This will help portability
as SELinux has some changes in the pipe-line for the location of the policy
configuration files and the SELinux filesystem.

7. Where possible use the selabel_*(3) functions to determine a files
default context as they effectively replace the matchpathcon*(3) series
of functions - see selabel_file(5).

8. Do not use class IDs directly, use string_to_security_class(3) that
will take the class string defined in the policy and return the class ID/value.
Always check the value is > 0. If 0, then signifies that the class is unknown
and the deny_unknown flag setting in the policy will determine the outcome
of any decision - see security_deny_unknown(3).

Page 294

The SELinux Notebook - The Foundations

9. Do not use permission bits directly, use string_to_av_perm(3) that
will take the permission string defined in the policy and return the permission
bit mask.

10. Where performance is important (see the Types of Object Manager section)
when making policy decisions (i.e. using security_compute_av(3),
security_compute_av_flags(3), avc_has_perm(3) or
avc_has_perm_noaudit(3)), then use the selinux_status_*(3)
functions to detect policy updates etc. as these do not require system call over-
heads once set up. Note that the selinux_status_* functions are only
available from libselinux 2.0.99, with Linux kernel 2.6.37 and above.

11. Be aware that applications being built for 32 bit systems need to specify the
CFLAG -D_FILE_OFFSET_BITS=64 as libselinux is built with this
flag. This is particularly important if
matchpathcon_filespec_add(3) is used as it passes over ino_t
ino that is too small otherwise (i.e. needs to be 64 bits).

12. There are changes to the way contexts are computed for sockets in kernels
2.6.39 and above as described in the Computing Contexts section. The
functions affected by this are: avc_compute_create(3),
avc_compute_member(3), security_compute_create(3),
security_compute_member(3) and
security_compute_relabel(3).

13. It is possible to set an undefined file context if the process has
capability(7) CAP_MAC_ADMIN and class capability2 with
mac_admin permission in the policy. This is called 'deferred mapping of
security contexts' and is explained in setfilecon(3) and at:

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commit;h=12b29f34558b9b45a2c6eabd4f3c6be939a3980f

6.2.2 Implementing Object Managers
To implement object managers for applications, an understanding of the application is
essential, because as a minimum:

• What object types and their permissions are required.

• Where in the code object instances are created.

• Where access controls need to be applied.

While this section cannot help with those points, here are some notes to help during
the design phase (also see the Implementing SELinux-aware Applications section):

1. Determine what objects are required and the access controls (permissions) that
need to be applied.

2. Does SELinux already have some of these object classes and permissions
defined. For standard Linux OS objects such as files, then these would be
available. If so, the object manager should remap them with
selinux_set_mapping(3) so only those required are available.

Page 295

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=12b29f34558b9b45a2c6eabd4f3c6be939a3980f
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=12b29f34558b9b45a2c6eabd4f3c6be939a3980f

The SELinux Notebook - The Foundations

However, do not try to reuse a current object that may be similar to the
requirements, it will cause confusion at some stage. Always generate new
classes/permissions.

3. If the application has APIs or functions that integrate with other applications
or scripts, then as part of the object manager implementation these may need
to support the use of security contexts (examples are X-Windows and SE-
PostgreSQL that provide functions for other applications to use). Therefore if
required, provide common functions that can be used to label the objects.

4. Determine how the initial objects will be labeled. For example will a
configuration file be required for default labels, if so how will this be
introduced into the SELinux userspace build. Examples of these are the X-
Windows (selabel_x(5)), SE-PostgreSQL (selabel_db(3)), and file
context series of files (selabel_file(5)).

5. Will the labeling need to be persistent across policy and system reloads or not.
X-Windows is an example of a non-persistent, and SE-PostgreSQL is an
example of a persistent object manager.

6. Will support for the standard audit log or its own be required (the
libselinux functions default to stderr). Use
selinux_set_callback(3) to manage logging services.

7. Decide whether an AVC cache is required or not. If the object manager
handles high volumes of requests then an AVC will be required. See the Types
of Object Manager section for details.

8. Will the object manager need to do additional processing when policy or
enforcement changes are detected. This could be clearing any caches or
resetting variables etc.. If so, then selinux_set_callback(3) will be
used to set up these functions. These events are detected via the
netlink(7) services, see avc_open(3) and avc_netlink_open(3)
for the various options available.

9. If possible implement a service like XACE for the application, and use it to
interface with the applications SELinux object manager. The XACE interface
acts like the LSM which supports SELinux as well as other providers such as
SMACK. The XACE interface is defined in the “X Access Control Extension
Specification”, and for reference, the SE-PostgreSQL service also implements
a similar interface.

The XACE specification is available from:

http://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.pdf

6.2.3 Reference Policy Changes
When adding a new object manager to SELinux, it will require at least a new policy
module to be added. This section assumes that the SELinux Reference Policy is in use
and gives some pointers, however any detail is beyond the scope of this man page.
Further information can be found at the follwing:

http://oss.tresys.com/projects/refpolicy

http://selinuxproject.org.

Page 296

http://selinuxproject.org/
http://oss.tresys.com/projects/refpolicy
http://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.pdf
http://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.pdf
http://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.pdf

The SELinux Notebook - The Foundations

The latest Reference Policy source can be obtained as follows:

git clone http://oss.tresys.com/git/refpolicy.git

The main points to note when adding to the Reference Policy are:

1. Create sample Reference Policy policy modules (*.te, *.if and *.fc
module files) that provide rules for managing the new objects as described in:

http://selinuxproject.org/page/NB_RefPolicy#Reference_Policy_Module_
Files

The SE-PostgreSQL modules provide an example, see the
./refpolicy/policy/modules/services/postgresql.* files
in the Reference Policy source.

2. Create any new policy classes and permissions for the Reference Policy, these
will need to be built into the base module as described in the Adding New
Object Classes and Permissions section.

Note, that if no new object classes, permissions or constraints are being added
to the policy, then the Reference Policy source code does not require
modification, and supplying the module files (*.te, *.if and *.fc) should
suffice.

3. Create any constraints required as these need to be built into the base module
of the Reference Policy. They are added to the
./refpolicy/policy/constraints, mcs and mls files. Again the
SE-PostgreSQL entries in these files give examples (find the db_* class
entries).

4. Create any SELinux configuration files (context, user etc.) that need to be
added to the policy at build time.

5. Either produce an updated Reference Policy source or module patch,
depending on whether new classes/constraints have been added. Note that by
default a new module will be generated as a 'module', if it is required that the
module is in the base (unusual), then add an entry <required
val='true'> to the start of the interface file as shown below:

<summary>
##Comment regarding interface file
</summary>
<required val="true">
##Comment on reason why required in base
</required>

6.2.4 Adding New Object Classes and Permissions
Because userspace object managers do not require their new classes and permissions
to be built into the kernel, the configuration is limited to the actual policy (generally
the Reference Policy) and the application object manager code. New classes are added
to the Reference Policy security_classes file and permissions to the
access_vectors file.

Page 297

http://selinuxproject.org/page/NB_RefPolicy#Reference_Policy_Module_Files
http://selinuxproject.org/page/NB_RefPolicy#Reference_Policy_Module_Files
http://oss.tresys.com/git/refpolicy.git

The SELinux Notebook - The Foundations

The class configuration file is at:
./refpolicy/policy/flask/security_classes

and each entry must be added to the end of the file in the following format:

class object_name # userspace

Where class is the class keyword and object_name is the name of the object.
The # userspace is used by build scripts to detect userspace objects (or more
specifically ‘non-mandatory’ objects).

The permissions configuration file is at:
./refpolicy/policy/flask/access_vectors

and each entry must be added to the end of the file in the following format:

class object_name
{

perm_name
[........]

}

Where class is the class keyword, object_name is the name of the object and
perm_name is the name given to each permission in the class (there is a limit of 32
permissions within a class). It is possible to have a common permission section within
this file, see the file object entry in the access_vectors file for an example.

For reference, http://selinuxproject.org/page/Adding_New_Permissions describes how
new kernel object classes and permissions are added to the system.

Page 298

http://selinuxproject.org/page/Adding_New_Permissions

The SELinux Notebook - The Foundations

7. SEAndroid
This section gives a brief overview of SEAndroid as it stood in August ‘12 as this is a
new project and continually being enhanced (Android 4.1.1 with SEAndroid installs
on F-17 with no issues). It is recommended that the project web site is checked for the
latest enhancements: http://selinuxproject.org/page/SEAndroid.

There is a presentation ‘The Case for Security Enhanced (SE)Android’ [Ref 22] that
gives the rationale behind the enhancements.

The http://en.wikipedia.org/wiki/Android_%28operating_system%29 site gives a
good introduction to Android and http://source.android.com gives details on
installation of the source.

7.1.1 Overview
SEAndroid enhances the Android system by adding SELinux support to the kernel
and userspace with the main objectives being to (taken from
http://selinuxproject.org/page/SEAndroid):

1. Confine privileged daemons to protect them from misuse and limit the damage
that can be done via them.

2. Sandbox and isolate apps from each other and from the system, prevent
privilege escalation by apps.

3. Allow application privileges to be controlled at installation and run-time (the
Middleware-MAC)

4. Provide a centralized, analyzable policy.

These objectives are achieved by:

• Per-file security labeling support for yaffs2

• Filesystem images (yaffs2 and ext4) labeled at build time

• Labeling support in the recovery console and updater program

• Kernel permission checks controlling Binder IPC

• Labeling of service sockets and socket files created by init

• Labeling of device nodes created by ueventd

• Flexible, configurable labeling of apps and app data directories

• Minimal port of SELinux userspace

• SELinux support for the Android toolbox

• JNI bindings for SELinux APIs

• Userspace permission checks controlling use of the Zygote socket commands

• Userspace permission checks controlling setting of Android properties

• Small TE policy written from scratch for Android

• Confined domains for system services and apps

Page 299

http://selinuxproject.org/page/SEAndroid
http://source.android.com/
http://en.wikipedia.org/wiki/Android_(operating_system)
https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf
http://selinuxproject.org/page/SEAndroid

The SELinux Notebook - The Foundations

• Use of MLS categories to isolate apps

The Android git repositories can be found at https://android.googlesource.com and the
SEAndroid enhancements at https://bitbucket.org/seandroid.

But do read the installation information at http://selinuxproject.org/page/SEAndroid
first.

7.1.2 SEAndroid Project Updates
This gives a high level view of the new and updated projects to support the
SEAndroid build:

external/libselinux
Provides the SELinux userspace function library that is installed on the device.
It is based on a version of the Linux library but has additional functions to
support Android. Currently these changes have not been added to the Linux
version. The additional functions are:

selinux_android_setcontext
Sets the correct domain context for applications using setcon(3).
Information contained in the seapp_context file is used to
compute the correct context (see
selinux_android_setcontext). It is called by
dalvik/vm/native/dalvik-system-Zygote.cpp

selinux_android_setfilecon
Used to set the correct context on application directory/files using
setfilecon(3). Information contained in the seapp_context
file is used to compute the correct context (see
selinux_android_setfilecon).

Used by frameworks/base/cmds/installd/commands.c
for package install, make_user_data and protect functions.

selinux_android_seapp_context_reload
Reloads the seapp_context file and sorts the entries in order of
precedence as discussed in the seapps_context File section.

selinux_android_restorecon
Set file contexts to match entries defined in the file_contexts file
using lsetfilecon(3). Used by various commands to reset
contexts during initialisation, installation etc.

There is also a new labeling service for selabel_lookup(3) to query the
property_contexts file (see label_android_property.c). This
file is loaded at init time (see system/core/init/init.c) and used by
system/core/init/property_service.c. that checks property
MAC permissions at system initialisation time (class: property, permission:
set).

external/libsepol

Page 300

http://selinuxproject.org/page/SEAndroid
https://bitbucket.org/seandroid
https://android.googlesource.com/

The SELinux Notebook - The Foundations

Provides the policy userspace library. There are no specific updates to support
SEAndroid, also this library is not available on the device.

external/checkpolicy
Provides the policy build tool. There are no specific updates to support
SEAndroid, also this is not available on the device (therefore policy rebuilds
must be done in the development environment.

external/sepolicy
This is a new policy specifically for SEAndroid. It looks much like the
reference policy but is contained in one directory that has the policy modules
(*.te files), class / permission files (security_classes etc.), and other
configuration files and macros. It is built by the Android.mk file and the
resulting policy is installed on the target device (as sepolicy.24).

There are three new object classes defined for the policy that are described in
the SEAndroid Classes & Permissions section.

The configurable policy files are discussed in the Policy Configuration Files
section.

external/mac-policy
Contains the middle-ware MAC policy files and tools. The
http://selinuxproject.org/page/SEAndroid#Middleware_MAC section contains
details.

packages/apps/SEAndroidManager
This is an Android application to manage the SEAndroid environment. It
allows control of the enforcement modes, booleans, view logs etc.

bionic
Bionic is the Android libc that is a derived from the BSD standard C library
code. It contains enhancements to support security providers such as SELinux.

bootable/recovery
Changes to manage file labeling on recovery.

build
Changes to manage file labeling on images and OTA (over the air) target files.

dalvik
Set the context (using selinux_android_setcontext(3)) on the
dalvik process being forked.

external/yaffs2
mkyaffs2image support for labeling and extended attributes (xattr)

libcore
Add additional parameters seInfo and niceName to Zygote.java

frameworks/base

Page 301

http://selinuxproject.org/page/SEAndroid#Middleware_MAC

The SELinux Notebook - The Foundations

JNI - Add SELinux support functions such as isSELinuxEnabled and
setFSCreateCon.

SELinux Java class and method definitions.

Checking Zygote connection contexts.

Managing file permissions for the package manager and wallpaper services.
system/core

SELinux support services for toolbox (e.g. load_policy, runcon).

SELinux support for system initialisation (e.g. init, init.rc).
system/extras

SELinux support for the ext4 file system.
packages/apps/Settings

SELinux settings for the settings manager application.

7.1.2.1 Kernels

The following Android kernels have been enhanced to configure security/SELinux
services and extend LSM/SELinux to support the Android Binder IPC service.

kernel/goldfish - Emulator platforms

kernel/samsung - Nexus S and Samsung Hummingbird chipsets

kernel/tegra - Xoom and NVIDIA Tegra chipsets

kernel/omap - PandaBoard, Galaxy Nexus and TI OMAP chipsets.

Note that as the Android kernels are based on various versions - 2.6.29 for the
emulator and 3.0 for omap and Samsung, therefore any additional SELinux
enhancements will not have taken place and will need to be added.

7.1.2.2 Devices

These contain updated board configurations to enable SELinux for the following
devices:

device/samsung/crespo - Google Nexus S

device/samsung/crespo4g - Google Nexus S 4G

device/samsung/tuna - Common Samsung Galaxy Nexus files

device/samsung/maguro - Galaxy Nexus (GSM/HSPA+) specific files

device/samsung/toro - Galaxy Nexus (CDMA/LTE) specific files

device/moto/wingray - Motorola Xoom (Wifi)

There are more details at
http://selinuxproject.org/page/SEAndroid#Building_for_a_Device regarding
configuration information.

Page 302

http://selinuxproject.org/page/SEAndroid#Building_for_a_Device

The SELinux Notebook - The Foundations

7.2 Policy Configuration Files
These are contained in the external/sepolicy directory, with some being
copied over to the device as part of the build process.

The access_vectors and security_classes files have been modified to
support the new SEAndroid classes / permissions. The initial_sids file is
standard. To allow the policy to be built easier the contexts for initial SIDs, ports,
genfs etc. are defined in separate files and then linked together during the build. It is
also possible to locate policy files within the device directories as discussed below, to
allow device specific configuration. The mls and macro files are specific to
SEAndroid. The remaining files are as follows:

*.te and *.fc - The policy module definition files. These are the same format
as the standard reference policy. The Android.mk file with the
checkpolicy(8) command are used to build the resulting kernel policy file
that will be copied to the root directory as sepolicy.24, but may also be in
/data/system. The policy file may be examined by the standard setools.

file_contexts - Contains default contexts for setting the filesystem as
standard SELinux. This file will be copied to the root directory, but may also be
in /data/system.

property_contexts - Contains default contexts to be applied to Android
property services as discussed in the property_context File section. This
file will be copied to the root directory, but may also be in /data/system.

seapps_context - Contains information to allow domain or file contexts to be
computed based on parameters as discussed in the seapps_context File
section. This file will be copied to the root directory, but may also be in
/data/system.

selinux-network.sh - If using iptables(8) then SECMARK
information may be configured in this file as part of the build. It is installed in
system/bin and executed at system initialisation time.

mac_permissions.xml - This is installed in /system/etc/security
and is discussed in the mac_permissions.xml File section.

Certain policy files may also be present in device directories where they would
contain device specific information. The Andoid.mk file would add these to the
main policy files. The device specific files currently allowed are:

sepolicy.te, sepolicy.fc, sepolicy.pc, sepolicy.fsuse,
sepolicy.port_contexts, sepolicy.genfs,
sepolicy.init_sids, system.prop

If the policy needs to be updated, the following process can be used (assumes that the
Android build environment is set-up correctly):

1. Modify the required policy source files, then regenerate the kernel policy file
by:

make sepolicy
2. Copy the policy file to the device:

Page 303

The SELinux Notebook - The Foundations

adb push out/target/product/<device>/root/sepolicy.24 /data/system/
3. Then load the new policy by64:

adb shell su 0 setprop selinux.reloadpolicy 1

7.2.1 seapps_context File
This file is loaded and sorted into memory by
selinux_seapp_context_reload(3) using the following precedence rules:

1. isSystemServer= true before isSystemServer= false.

2. Specified user= string before unspecified user= string.

3. Fixed user= equal string before user= prefix (i.e. ending in *).

4. Longer user= prefix before shorter user= prefix.

5. Specified seinfo= string before unspecified seinfo= string.

6. Specified name= string before unspecified name= string.

7. Specified sebool= string before unspecified sebool= string.

The entries can now be used by selinux_android_setcontext(3) and
selinux_android_setfilecon(3) to compute process and file contexts as
described in the sections that follow.

7.2.1.1 selinux_android_setcontext

Set the security context for an Android application domain. This function is used by
the Dalvik / Zygote services to start applications in their specified domain.

Synopsis

#include <selinux/android.h>
int selinux_android_setcontext(uid_t uid, int isSystemServer,
 const char *seinfo, const char *name);

Description
selinux_android_setcontext sets the security context using setcon(3).
The computed context is validated against policy and is based on the applications
username (obtained from uid), seinfo, and the (package) name information.

The username is validated against rules, and then used with the other parameters to
compute a context as described in the Context Computation section.

The isSystemServer value must match that set in the running system and be true
or false.

seinfo and name may be NULL.

64 The 'setprop selinux.reloadpolicy 1' forces a policy reload (see
system/core/init/property_service.c - property_set()). The policy load
function will then check for a policy file in the /data/system directory first (the root directory
will be checked next if a policy file is not found).

Page 304

The SELinux Notebook - The Foundations

If a context cannot be computed an error is returned and an entry added to the error
log.

See the Examples section for a selection of computed contexts based on various
parameters.

Context Computation
Using the ‘in memory’ seapp_context file entries sorted in order of precedence,
the username is checked according to the following rules to determine whether the
application is named (e.g radio), is a system app, or a standard app, and what level
may need to be applied:

• IF the first four chars of the username is ‘app_’, and remainder numeric,
calculate the category based on these numerics.

Example username: app_123
• ELSE IF the first char of the username is ‘u‘ and the second char is

numeric, and it ends in numerics, calculate the category using these numerics
until an ‘a’ is found. Finally reset the username to ‘app_’.

Example username: u0_a36
• ELSE keep username intact. The category is set to ‘0’.

• Using the isSystemServer, username, seinfo and name parameters,
find a matchingentry (logical AND) within the ‘in memory’ sorted version of
the seapp_context(5) file using the following rules:

1. isSystemServer != current value

2. Does username match the user= entry

3. Does seinfo match the seinfo= entry (may also be NULL)

4. Does name match the name= entry (may also be NULL)

5. Is there a domain= entry, if so save as the type component of the
context.

6. Is there an sebool= entry, if so the specified boolean must be
‘active’ (enabled/true).

7. IF levelFromUid=true use category from username check to
form the level, ELSE use the specified level.

• IF all parameters match, build context and check if valid. If valid call
setcon(3) and return, ELSE raise error, log and return.

The Examples section shows a selection of computed contexts.

Return Value
On success, zero is returned.

On failure, -1 is returned and errno is set appropriately.

Error Log Entries
Errors will be logged in the error log when:

Page 305

The SELinux Notebook - The Foundations

i. No match can be found in the seapp_context(5) file.

ii. If isSystemServer is true, a message stating that setting the system server
context failed.

iii. If isSystemServer is false, then a message stating that setting an
application context failed.

iv. If there is an sebool= entry defined, but no boolean of that name is present.

Files
seinfo is defined in the mac_permissions.xml(5) file.

name is defined in the packages AndroidManifest.xml file.

The context is computed using information from the seapp_context(5) file.

Examples
The seapp_context file used is:

isSystemServer=true domain=system
user=system domain=system_app type=system_data_file
user=nfc domain=nfc type=nfc_data_file
user=radio domain=radio type=radio_data_file
user=app_* domain=untrusted_app type=app_data_file levelFromUid=true
user=app_* seinfo=platform domain=platform_app levelFromUid=true
user=app_* seinfo=shared domain=shared_app levelFromUid=true
user=app_* seinfo=media domain=media_app levelFromUid=true
user=app_* seinfo=release domain=release_app levelFromUid=true
user=app_* seinfo=release name=com.android.browser domain=browser_app levelFromUid=true

The following is an example taken as the system server is loaded:

uid 1000
isSystemServer 1
seinfo (null)
name (null)
sebool (null)

username from uid system
Computed username system

Computed context u:r:system:s0

This is the’radio’ application that is part of the platform:

uid 1001
isSystemServer 0
seinfo platform
name com.android.phone
sebool (null)

username from uid radio
Computed username radio

Computed context u:r:radio:s0

This is the’SEAndroid Manager’ application that is part of the platform:

Page 306

The SELinux Notebook - The Foundations

uid 1000
isSystemServer 0
seinfo platform
name com.android.seandroid_manager
sebool (null)

username from uid system
Computed username system

Computed context u:r:system_app:s0

This is the’Desk Clock’ application that is part of the release:

uid 10036
isSystemServer 0
seinfo release
name com.android.deskclock
sebool (null)

username from uid u0_a36
Computed username app_

Computed context u:r:release_app:s0:c36

These are example process contexts taken from the 'ps -Z' command:

ps -Z
LABEL USER PID PPID NAME
u:r:init:s0 root 1 0 /init
..
u:r:ueventd:s0 root 28 1 /sbin/ueventd
..
u:r:kernel:s0 root 31 2 yaffs-bg-1
..
u:r:servicemanager:s0 system 33 1 /system/bin/servicemanager
u:r:vold:s0 root 34 1 /system/bin/vold
u:r:netd:s0 root 36 1 /system/bin/netd
u:r:debuggerd:s0 root 37 1 /system/bin/debuggerd
u:r:rild:s0 radio 38 1 /system/bin/rild
u:r:surfaceflinger:s0 system 39 1 /system/bin/surfaceflinger
u:r:zygote:s0 root 40 1 zygote
u:r:drmserver:s0 drm 41 1 /system/bin/drmserver
u:r:mediaserver:s0 media 42 1 /system/bin/mediaserver
u:r:dbusd:s0 bluetooth 43 1 /system/bin/dbus-daemon
u:r:installd:s0 root 44 1 /system/bin/installd
u:r:keystore:s0 keystore 45 1 /system/bin/keystore
u:r:qemud:s0 root 48 1 /system/bin/qemud
u:r:system:s0 system 89 40 system_server
..
u:r:radio:s0 radio 179 40 com.android.phone
..
u:r:system_app:s0 system 220 40 com.android.settings
u:r:shared_app:s0:c3 app_3 242 40 android.process.acore
u:r:release_app:s0:c28 app_28 302 40 com.android.deskclock
u:r:shared_app:s0:c3 app_3 325 40 com.android.contacts
u:r:system_app:s0 system 362 40 com.android.seandroid_manager

7.2.1.2 selinux_android_setfilecon

Set the security context on an Android application package directory. This function is
primarily used by the package installer to label application directories.

Synopsis

Page 307

The SELinux Notebook - The Foundations

#include <selinux/android.h>
int selinux_android_setfilecon(const char *pkgdir,
 const char *pkgname, uid_t uid);

Description
selinux_android_setfilecon sets the security context on the file object
using setfilecon(3). The computed context is validated against policy and is
based on the applications username (obtained from uid) and pkgname. The
pkgdir will be labeled with the computed context.

The username is validated against rules, and then used with the other parameters to
compute a context as described in the Context Computation section.

pkgname may be NULL.

If a context cannot be computed an error is returned and an entry added to the error
log.

Context Computation
Using the ‘in memory’ seapp_context file entries sorted in order of precedence,
the username is checked according to the following rules to determine whether the
application is named (e.g radio), is a system app, or a standard app, and what level
may need to be applied:

• IF the first four chars of the username is ‘app_’, and remainder numeric,
calculate the category based on these numerics.

Example username: app_123
• ELSE IF the first char of the username is ‘u‘ and the second char is

numeric, and it ends in numerics, calculate the category using these numerics
until an ‘a’ is found. Finally reset the username to ‘app_’.

Example username: u0_a36
• ELSE keep username intact. The category is set to ‘0’.

• Using the username and pkgname parameters, find a matchingentry
(logical AND) within the ‘in memory’ sorted version of the
seapp_context(5) file using the following rules:

1. isSystemServer false

2. Does username match the user= entry

3. Does pkgname match the name= entry (may also be NULL)

4. Is there a type= entry, if so save as the type component of the
context.

5. Is there an sebool= entry, if so the specified boolean must be
‘active’ (enabled/true).

6. IF levelFromUid=true use category from username check to
form the level, ELSE use the specified level.

Page 308

The SELinux Notebook - The Foundations

• IF all parameters match, build context and check if valid. If valid call
setfilecon(3) with pkgdir and return, ELSE raise error, log and return.

Return Value
On success, zero is returned.

On failure, -1 is returned and errno is set appropriately.

Error Log Entries
Errors will be logged in the error log when:

i. No match can be found in the seapp_context(5) file.

ii. If isSystemServer is true, a message stating that setting the system server
context failed.

iii. If isSystemServer is false, then a message stating that setting an
application context failed.

iv. If there is an sebool= entry defined, but no boolean of that name is present.

Files
pkgname is defined in the packages AndroidManifest.xml file.

The context is computed using information from the seapp_context(5) file.

Examples
These are sample application directory (data) contexts taken from /data/data
using the 'ls -Z' command:

ls -Z /data/data
drwxr-x--x u0_a14 u0_a14 u:object_r:platform_app_data_file:s0 com.android.bluetooth
drwxr-x--x u0_a3 u0_a3 u:object_r:platform_app_data_file:s0 com.android.contacts
drwxr-x--x u0_a35 u0_a35 u:object_r:platform_app_data_file:s0 com.android.defcontainer
drwxr-x--x u0_a36 u0_a36 u:object_r:platform_app_data_file:s0 com.android.deskclock
drwxr-x--x system system u:object_r:system_data_file:s0 com.android.inputdevices
drwxr-x--x u0_a39 u0_a39 u:object_r:platform_app_data_file:s0 com.android.packageinstaller
drwxr-x--x radio radio u:object_r:radio_data_file:s0 com.android.phone
drwxr-x--x u0_a3 u0_a3 u:object_r:platform_app_data_file:s0 com.android.providers.applications
drwxr-x--x u0_a26 u0_a26 u:object_r:platform_app_data_file:s0 com.android.providers.calendar
drwxr-x--x u0_a3 u0_a3 u:object_r:platform_app_data_file:s0 com.android.providers.contacts
drwxr-x--x u0_a1 u0_a1 u:object_r:platform_app_data_file:s0 com.android.providers.downloads
drwxr-x--x u0_a1 u0_a1 u:object_r:platform_app_data_file:s0 com.android.providers.downloads.ui
drwxr-x--x u0_a1 u0_a1 u:object_r:platform_app_data_file:s0 com.android.providers.drm
drwxr-x--x u0_a1 u0_a1 u:object_r:platform_app_data_file:s0 com.android.providers.media
drwxr-x--x system system u:object_r:system_data_file:s0 com.android.providers.settings
drwxr-x--x radio radio u:object_r:radio_data_file:s0 com.android.providers.telephony
drwxr-x--x system system u:object_r:system_data_file:s0 com.android.seandroid_manager
drwxr-x--x system system u:object_r:system_data_file:s0 com.android.settings
drwxr-x--x u0_a4 u0_a4 u:object_r:platform_app_data_file:s0 com.android.systemui
drwxr-x--x u0_a11 u0_a11 u:object_r:platform_app_data_file:s0 com.android.videoeditor

7.2.2 property_context File
This file holds property names and their contexts that will be applied by SELinux
when applications are loaded. The property names reflect the 'white list' of Android
property entries that are also built into the system (see
system/core/init/property_service.c), however there are also
additional property entries for applications that require specific contexts to be set.

Page 309

The SELinux Notebook - The Foundations

When selabel_open(3) is called specifying this file it will be read into memory
and sorted using qsort(3), subsequent calls using selabel_lookup(3) will
then retrieve the appropriate context.

Each line within the property contexts file is as follows:

property_key context

Where:
property_key

The key used to obtain the context and may contain '*' for wildcard matching
or '?' for substitution.

context
The security context that will be applied to the object.

Example:

##########################
property service keys
#
#
property_key context
net.rmnet0 u:object_r:radio_prop:s0
net.gprs u:object_r:radio_prop:s0
sys.usb.config u:object_r:radio_prop:s0
ril. u:object_r:rild_prop:s0
net. u:object_r:system_prop:s0
service. u:object_r:system_prop:s0
debug. u:object_r:shell_prop:s0
log. u:object_r:shell_prop:s0
service.adb.tcp.port u:object_r:shell_prop:s0
persist.sys. u:object_r:system_prop:s0
persist.service. u:object_r:system_prop:s0
persist.security. u:object_r:system_prop:s0
selinux. u:object_r:system_prop:s0

mac middleware property
persist.mac_enforcing_mode u:object_r:system_prop:s0
persist.tagprop_enforcing_mode u:object_r:system_prop:s0

default property context
* u:object_r:default_prop:s0

7.2.3 mac_permissions.xml File
This file provides two main functions:

1. x.509 certificate to seinfo string mapping so that (using the
seapp_contexts file), zygote spawns the application in the correct
domain. See the selinux_android_setcontext section for how this is
achieved using information from the seapp_contexts file.

2. Install time Android permission checking.

Page 310

The SELinux Notebook - The Foundations

The following rules have been extracted from the source mac_permissions.xml
file, it is recommended that this file is consulted for a working example that is based
on the AOSP developer keys.

The mac_permissions.xml rules are as follows:

1. A signature is a hex encoded X.509 certificate and is required for each signer
tag.

2. A <signer signature="" > element may have multiple child
elements:

allow-permission : produces a set of maximal allowed permissions
(whitelist).

deny-permission : produces a blacklist of permissions to deny.

allow-all : a wildcard tag that will allow every permission requested.

package : a complex tag which itself defines allow, deny, and wildcard
sub elements for a specific package name protected by the signature.

3. Zero or more global <package name=""> tags are allowed. These tags
allow a policy to be set outside any signature for specific package names.

4. Unknown tags at any level are skipped.

5. Zero or more signer tags are allowed.

6. Zero or more package tags are allowed per signer tag.

7. A <package name=""> tag may not contain another <package
name=""> tag. If found, it's skipped.

8. A <default> tag is allowed that can contain install policy for all apps not
signed with a previously listed cert and not having a per package global
policy.

9. When multiple sub elements appear for a tag the following logic is used to
ultimately determine the type of enforcement:

a) A blacklist is used if at least one deny-permission tag is found

b) A whitelist is used if not a blacklist and at least one allow-
permission tag is found

c) A wildcard (accept all permission) policy is used if not a blacklist and
not a whitelist and at least one allow-all tag is present.

d) If a <package name=""> sub element is found then that sub
element's policy is used according to the above logic and overrides any
signature global policy type.

e) In order for a policy stanza to be enforced at least one of the above
situations must apply. Meaning, empty signer, default or
package tags will not be accepted.

10. Each signer / default / global package tag is allowed to contain one
<seinfo value=""/> tag. This tag represents additional information that
each appplication can use in setting a SELinux security context on the

Page 311

The SELinux Notebook - The Foundations

eventual process. Any <seinfo value=""/> tag found as a child of a
<package name=""> tag which is protected (sub element of signer or
the default tag) is ignored. It's possible that multiple seinfo tags are
relevant for one application. In the event that this happens, the seinfo tag
that will be applied is the one for which the corresponding policy stanza is
used in the policy decision.

11. Strict enforcing of any xml stanza is not enforced in most cases. This mainly
applies to duplicate tags which are allowed. In the event that a tag already
exists, the original tag is replaced.

12. There are also no checks on the validity of permission names. Although valid
android permissions are expected, nothing prevents unknowns.

13. Enforcement decisions:

a) All signatures used to sign an application are checked for policy
according to signer tags. Only one of the signature policies has to pass
however.

b) In the event that none of the signature policies pass, or none even
match, then a global package policy is sought. If found, this policy
mediates the install.

c) The default tag is consulted last if needed.

d) A local package policy always overrides any parent policy.

e) If none of the cases apply then the application is denied.

An example global package policy is as follows:

<package name="com.foo.com">
<allow-permission name="android.permission.INTERNET" />
<allow-permission
name="android.permission.WRITE_EXTERNAL_STORAGE" />
<allow-permission name="android.permission.ACCESS_NETWORK_STATE" />
</package>

7.3 SEAndroid Classes & Permissions
These are the additional class / permissions for SEAndroid, the policy

Class binder – This is a kernel object to manage the Binder IPC
service.

Permission Description (5 unique permissions)
impersonate Not currently used in policy but kernel (selinux/hooks.c)

checks permission in selinux_binder_transaction call.
call Get binder references.
set_context_mgr Allow setting of contexts. This is used by the SEAndroid service

manager that acts as a context manager for Binder. See the
servicemanager.te file.

transfer Transfer binder references
receive Receive binder references

Page 312

The SELinux Notebook - The Foundations

Class zygote – This is a userspace object to manage the Android
application loader. See Java SELinux.checkSELinuxAccess.
In ZygoteConnection.java

Permission Description (5 unique permissions)
specifyids Peer may specify uid’s or gid’s
specifyrlimits Peer may specify rlimits.
specifycapabilities Peer may specify capabilities
specifyinvokewith Peer may specify --invoke-with to launch Zygote with a

wrapper command.
specifyseinfo Specify that seinfo may be used

Class property_service – This is a userspace object to manage
the Android Property Service.

Permission Description (1 unique permission)
set Set a property

Page 313

The SELinux Notebook - The Foundations

8. Appendix A - Object Classes and Permissions

8.1 Introduction
This section contains a list of object classes and their associated permissions that have
been taken from the Fedora F-17 policy sources. There are also additional entries for
Xen, however the SEAndroid entries are shown in the SEAndroid Classes &
Permissions section.

All objects are kernel objects unless marked as user space objects.

In most cases the permissions are self explanatory as they are those used in the
standard Linux function calls (such as ‘create a socket’ or ‘write to a file’). Some
SELinux specific permissions are:

relabelfrom Used on most objects to allow the objects security
context to be changed from the current type.

relabelto Used on most objects to allow the objects security
context to be changed to the new type.

entrypoint Used for files to indicate that they can be used as an
entry point into a domain via a domain transition.

execute_no_trans Used for files to indicate that they can be used as an
entry point into the calling domain (i.e. does not require
a domain transition).

execmod Generally used for files to indicate that they can
execute the modified file in memory.

Where possible the specific object class permissions are explained, however for some
permissions it is difficult to determine what they are used for (or if used at all) so a ‘?’
has been added when doubt exists. There are lists of object classes and permissions at
the following location and would probably be more up-to-date:

http://selinuxproject.org/page/ObjectClassesPerms

8.2 Defining Object Classes and Permissions
The Reference Policy already contains the default object classes and permissions
required to manage the system and supporting services.

For those who write or manager SELinux policy, there is no need to define new
objects and their associated permissions as these would be done by those who actually
design and/or write object managers.

The Object Classes and Permissions sections explain how these are defined within the
SELinux Policy Language.

Page 314

The SELinux Notebook - The Foundations

8.3 Common Permissions

8.3.1 Common File Permissions
Table 28 describes the common file permissions that are inherited by a number of
object classes.

Permissions Description (19 permissions)
append Append to file.
audit_access The rules for this permission work as follows:

If a process calls access() or faccessat() and SELinux denies their
request there will be a check for a dontaudit rule on the
audit_access permission. If there is a dontaudit rule on
audit_access an AVC event will not be written. If there is no
dontaudit rule an AVC event will be written for the permissions
requested (read, write, or exec).

Notes:
1) There will never be a denial message with the audit_access

permission as this permission does not control security decisions.
2) allow and auditallow rules with this permission are therfore

meaningless, however the kernel will accept a policy with such rules, but
they will do nothing.

create Create new file.
execute Execute the file with domain transition.
execmod Make executable a file that has been modified by copy-on-write.
getattr Get file attributes.
ioctl I/O control system call requests.
link Create hard link.
lock Set and unset file locks.
mounton Use as mount point.
quotaon Enable quotas.
read Read file contents.
relabelfrom Change the security context based on existing type.
relabelto Change the security context based on the new type.
rename Rename file.
setattr Change file attributes.
swapon Allow file to be used for paging / swapping space. (not used ?)
unlink Delete file (or remove hard link).
write Write or append file contents.

Table 28: Common File Permissions

8.3.2 Common Socket Permissions
Table 29 describes the common socket permissions that are inherited by a number of
object classes.

Permissions Description (22 Permissions)
accept Accept a connection.
append Write or append socket contents

Page 315

The SELinux Notebook - The Foundations

bind Bind to a name.
connect Initiate a connection.
create Create new socket.
getattr Get socket information.
getopt Get socket options.
ioctl Get and set attributes via ioctl call requests.
listen Listen for connections.
lock Lock and unlock socket file descriptor.
name_bind AF_INET - Controls relationship between a socket and the port number.

AF_UNIX - Controls relationship between a socket and the file.
read Read data from socket.
recv_msg Receive datagram.
recvfrom Receive datagrams from socket.
relabelfrom Change the security context based on existing type.
relabelto Change the security context based on the new type.
send_msg Send datagram.
sendto Send datagrams to socket.
setattr Change attributes.
setopt Set socket options.
shutdown Terminate connection.
write Write data to socket.

Table 29: Common Socket Permissions

8.3.3 Common IPC Permissions
Table 30 describes the common IPC permissions that are inherited by a number of
object classes.

Permissions Description (9 Permissions)
associate shm – Get shared memory ID.

msgq – Get message ID.
sem – Get semaphore ID.

create Create.
destroy Destroy.
getattr Get information from IPC object.
read shm – Attach shared memory to process.

msgq – Read message from queue.
sem – Get semaphore value.

setattr Set IPC object information.
unix_read Read.
unix_write Write or append.
write shm – Attach shared memory to process.

msgq – Send message to message queue.

Page 316

The SELinux Notebook - The Foundations

sem – Change semaphore value.

Table 30: Common IPC Permissions

8.3.4 Common Database Permissions
Table 31 describes the common database permissions that are inherited by a number
of object classes. The “Security-Enhanced PostgreSQL Security Wiki” [Ref. 3]
explains the objects, their permissions and how they should be used in detail.

Permissions Description (6 Permissions)
create Create a database object such as a ‘TABLE’.
drop Delete (DROP) a database object.
getattr Get metadata – needed to reference an object (e.g. SELECT ... FROM ...).
relabelfrom Change the security context based on existing type.
relabelto Change the security context based on the new type.
setattr Set metadata – this permission is required to update information in the database

(e.g. ALTER ...).

Table 31: Common PostgreSQL Database Permissions

8.3.5 Common X_Device Permissions
Table 32 describes the common x_device permissions that are inherited by the X-
Windows x_keyboard and x_pointer object classes.

Permissions Description (19 permissions)
add
bell
create
destroy
force_cursor Get window focus.
freeze
get_property Required to create a device context. (source code)
getattr
getfocus
grab Set window focus.
list_property
manage
read
remove
set_property
setattr
setfocus
use
write

Page 317

http://wiki.postgresql.org/wiki/SEPostgreSQL_Development

The SELinux Notebook - The Foundations

Table 32: Common X_Device Permissions

8.4 File Object Classes
Class filesystem – A mounted filesystem

Permissions Description (10 unique permissions)
associate Use type as label for file.
getattr Get file attributes.
mount Mount filesystem.
quotaget Get quota information.
quotamod Modify quota information.
relabelfrom Change the security context based on existing type.
relabelto Change the security context based on the new type.
remount Remount existing mount.
transition Transition to a new SID (change security context).
unmount Unmount filesystem.

Class dir - Directory

Permissions Description (Inherit 19 common file permissions + 6 unique)
Inherit Common
File Permissions

append, audit_access, create, execute, execmod,
getattr, ioctl, link, lock, mounton, quotaon,
read, relabelfrom, relabelto, rename, setattr,
swapon, unlink, write

add_name Add entry to the directory.
open Added in 2.6.26 Kernel to control the open permission.
remove_name Remove an entry from the directory.
reparent Change parent directory.
rmdir Remove directory.
search Search directory.

Class file – Ordinary file

Permissions Description (Inherit 19 common file permissions + 3 unique)
Inherit Common
File Permissions

append, audit_access, create, execute, execmod,
getattr, ioctl, link, lock, mounton, quotaon,
read, relabelfrom, relabelto, rename, setattr,
swapon, unlink, write

entrypoint Entry point permission for a domain transition.
execute_no_trans Execute in the caller’s domain (i.e. no domain transition).
open Added in 2.6.26 Kernel to control the open permission.

Class lnk_file – Symbolic links

Permissions Description (Inherit 19 common file permissions + 1 unique)
Inherit Common
File Permissions

append, audit_access, create, execute, execmod,
getattr, ioctl, link, lock, mounton, quotaon,
read, relabelfrom, relabelto, rename, setattr,
swapon, unlink, write

Page 318

The SELinux Notebook - The Foundations

open Added in 2.6.26 Kernel to control the open permission.

Class chr_file – Character files

Permissions Description (Inherit 19 common file permissions + 3 unique)
Inherit Common
File Permissions

append, audit_access, create, execute, execmod,
getattr, ioctl, link, lock, mounton, quotaon,
read, relabelfrom, relabelto, rename, setattr,
swapon, unlink, write

entrypoint Entry point permission for a domain transition.
execute_no_trans Execute in the caller’s domain (i.e. no domain transition).
open Added in 2.6.26 Kernel to open a character device.

Class blk_file – Block files

Permissions Description (Inherit 19 common file permissions + 1 unique)
Inherit Common
File Permissions

append, audit_access, create, execute, execmod,
getattr, ioctl, link, lock, mounton, quotaon,
read, relabelfrom, relabelto, rename, setattr,
swapon, unlink, write

open Added in 2.6.26 Kernel to control the open permission.

Class sock_file – UNIX domain sockets

Permissions Description (Inherit 19 common file permissions + 1 unique)
Inherit Common
File Permissions

append, audit_access, create, execute, execmod,
getattr, ioctl, link, lock, mounton, quotaon,
read, relabelfrom, relabelto, rename, setattr,
swapon, unlink, write

open Added in 2.6.26 Kernel to control the open permission.

Class fifo_file – Named pipes

Permissions Description (Inherit 19 common file permissions + 1 unique)
Inherit Common
File Permissions

append, audit_access, create, execute, execmod,
getattr, ioctl, link, lock, mounton, quotaon,
read, relabelfrom, relabelto, rename, setattr,
swapon, unlink, write

open Added in 2.6.26 Kernel to control the open permission.

Class fd – File descriptors

Permissions Description (1 unique permission)
use 1) Inherit fd when process is executed and domain has been changed.

2) Receive fd from another process by Unix domain socket.
3) Get and set attribute of fd.

8.5 Network Object Classes
Class node – IP address or range of IP addresses

Permissions Description (11 unique permissions)

Page 319

The SELinux Notebook - The Foundations

dccp_recv Allow Datagram Congestion Control Protocol receive packets.
dccp_send Allow Datagram Congestion Control Protocol send packets.
enforce_dest Ensure that destination node can enforce restrictions on the destination

socket.
rawip_recv Receive raw IP packet.
rawip_send Send raw IP packet.
recvfrom Network interface and address check permission for use with the

ingress permission.
sendto Network interface and address check permission for use with the

egress permission.
tcp_recv Receive TCP packet.
tcp_send Send TCP packet.
udp_recv Receive UDP packet.
udp_send Send UDP packet.

Class netif – Network Interface (e.g. eth0)

Permissions Description (10 unique permissions)
dccp_recv Allow Datagram Congestion Control Protocol receive packets.
dccp_send Allow Datagram Congestion Control Protocol send packets.
egress Each packet leaving the system must pass an egress access control.

Also requires the node sendto permission.
ingress Each packet entering the system must pass an ingress access control.

Also requires the node recvfrom permission.
rawip_recv Receive raw IP packet.
rawip_send Send raw IP packet.
tcp_recv Receive TCP packet.
tcp_send Send TCP packet.
udp_recv Receive UDP packet.
udp_send Send UDP packet.

Class socket – Socket that is not part of any other specific SELinux socket
object class.

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class tcp_socket – Protocol: PF_INET, PF_INET6 Family Type:
SOCK_STREAM

Permissions Description (Inherit 22 common socket permissions + 5 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,

Page 320

The SELinux Notebook - The Foundations

write
acceptfrom Accept connection from client socket.
connectto Connect to server socket.
name_connect Connect to a specific port type.
newconn Create new connection.
node_bind Bind to a node.

Class udp_socket – Protocol: PF_INET, PF_INET6 Family Type:
SOCK_DGRAM

Permissions Description (Inherit 22 common socket permissions + 1 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

node_bind Bind to a node.

Class rawip_socket – Protocol: PF_INET, PF_INET6 Family Type:
SOCK_RAW

Permissions Description (Inherit 22 common socket permissions + 1 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

node_bind Bind to a node.

Class packet_socket – Protocol: PF_PACKET Family Type: All.

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class unix_stream_socket – Communicate with processes on same
machine. Protocol: PF_STREAM Family Type: SOCK_STREAM

Permissions Description (Inherit 22 common socket permissions + 3 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

acceptfrom Accept connection from client socket.
connectto Connect to server socket.
newconn Create new socket for connection.

Class unix_dgram_socket – Communicate with processes on same

Page 321

The SELinux Notebook - The Foundations

machine. Protocol: PF_STREAM Family Type: SOCK_DGRAM
Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class tun_socket – TUN is Virtual Point-to-Point network device driver
to support IP tunneling.

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

8.5.1 IPSec Network Object Classes
Class association – IPSec security association

Permissions Description (4 unique permissions)
polmatch Match IPSec Security Policy Database (SPD) context (-ctx) entries to

an SELinux domain (contained in the Security Association Database
(SAD) .

recvfrom Receive from an IPSec association.
sendto Send to an IPSec assocation.
setcontext Set the context of an IPSec association on creation.

Class key_socket – IPSec key management. Protocol: PF_KEY Family
Type: All

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class netlink_xfrm_socket - Netlink socket to maintain IPSec
parameters.

Permissions Description (Inherit 22 common socket permissions + 2 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

nlmsg_read Get IPSec configuration information.
nlmsg_write Set IPSec configuration information.

Page 322

The SELinux Notebook - The Foundations

8.5.2 Netlink Object Classes
Netlink sockets communicate between userspace and the kernel.

Class netlink_socket - Netlink socket that is not part of any specific
SELinux Netlink socket class. Protocol: PF_NETLINK Family Type:
All other types that are not part of any other specific netlink object
class.

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class netlink_route_socket – Netlink socket to manage and
control network resources.

Permissions Description (Inherit 22 common socket permissions + 2 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

nlmsg_read Read kernel routing table.
nlmsg_write Write to kernel routing table.

Class netlink_firewall_socket – Netlink socket for firewall
filters.

Permissions Description (Inherit 22 common socket permissions + 2 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

nlmsg_read Read netlink message.
nlmsg_write Write netlink message.

Class netlink_tcpdiag_socket - Netlink socket to monitor TCP
connections.

Permissions Description (Inherit 22 common socket permissions + 2 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

nlmsg_read Request information about a protocol.
nlmsg_write Write netlink message.

Class netlink_nflog_socket - Netlink socket for Netfilter logging

Permissions Description (Inherit 22 common socket permissions)

Page 323

The SELinux Notebook - The Foundations

Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class netlink_selinux_socket - Netlink socket to receive
SELinux events such as a policy or boolean change.

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class netlink_audit_socket - Netlink socket for audit service.

Permissions Description (Inherit 22 common socket permissions + 5 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

nlmsg_read Query status of audit service.
nlmsg_readpriv List auditing configuration rules.
nlmsg_relay Send userspace audit messages to theaudit service.
nlmsg_tty_audit Control TTY auditing.
nlmsg_write Update audit service configuration.

Class netlink_ip6fw_socket - Netlink socket for IPv6 firewall
filters.

Permissions Description (Inherit 22 common socket permissions + 2 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

nlmsg_read Read netlink message.
nlmsg_write Write netlink message.

Class netlink_dnrt_socket - Netlink socket for DECnet routing

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class netlink_kobject_uevent_socket - Netlink socket to

Page 324

The SELinux Notebook - The Foundations

send kernel events to userspace.

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

8.5.3 Miscellaneous Network Object Classes
Class peer - NetLabel and Labeled IPsec have separate access controls, the

network peer label consolidates these two access controls into a single
one (see http://paulmoore.livejournal.com/1863.html for details).

Permissions Description (1 unique permission)
recv Receive packets from a labeled networking peer.

Class packet – Supports ‘secmark’ services where packets are labeled
using iptables to select and label packets, SELinux thent enforces
policy using these packet labels.

Permissions Description (7 unique permissions)
flow_in Receive external packets. (deprecated)
flow_out Send packets externally. (deprecated)
forward_in Allow inbound forwaded packets.
forward_out Allow outbound forwarded packets.
recv Receive inbound locally consumed packets.
relabelto Control how domains can apply specific labels to packets.
send Send outbound locally generated packets.

Class appletalk_socket - Appletalk socket

Permissions Description (Inherit 22 common socket permissions)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

Class dccp_socket - Datagram Congestion Control Protocol (DCCP)

Permissions Description (Inherit 22 common socket permissions + 2 unique)
Inherit Common
Socket
Permissions

accept, append, bind, connect, create, getattr,
getopt, ioctl, listen, lock, name_bind, read,
recv_msg, recvfrom, relabelfrom, relabelto,
send_msg, sendto, setattr, setopt, shutdown,
write

name_connect Allow DCCP name connect().
node_bind Allow DCCP bind().

Page 325

http://paulmoore.livejournal.com/1863.html

The SELinux Notebook - The Foundations

8.6 IPC Object Classes
Class ipc – No longer used

Permissions Description (Inherit 9 common IPC permissions)
Inherit Common
IPC Permissions

associate, create, destroy, getattr, read,
setattr, unix_read, unix_write, write

Class sem - Semaphores

Permissions Description (Inherit 9 common IPC permissions)
Inherit Common
IPC Permissions

associate, create, destroy, getattr, read,
setattr, unix_read, unix_write, write

Class msgq – IPC Message queues

Permissions Description (Inherit 9 common IPC permissions + 1 unique)
Inherit Common
IPC Permissions

associate, create, destroy, getattr, read,
setattr, unix_read, unix_write, write

enqueue Send message to message queue.

Class msg – Message in a queue

Permissions Description (2 unique permissions)
receive Read (and remove) message from queue.
send Add message to queue.

Class shm – Shared memory segment

Permissions Description (Inherit 9 common IPC permissions + 1 unique)
Inherit Common
IPC Permissions

associate, create, destroy, getattr, read,
setattr, unix_read, unix_write, write

lock Lock or unlock shared memory.

8.7 Process Object Class
Class process – An object is instantiated for each process created by the

system.

Permissions Description (30 unique permissions)
dyntransition Dynamically transition to a new context using setcon(3).
execheap Make the heap executable.
execmem Make executable an anonymous mapping or private file mapping that is

writable.
execstack Make the main process stack executable.
fork Create new process using fork(2).
getattr Get process security information.
getcap Get Linux capabilities of process.
getpgid Get group Process ID of another process.
getsched Get scheduling information of another process.
getsession Get session ID of another process.

Page 326

The SELinux Notebook - The Foundations

noatsecure Disable secure mode environment cleansing.
ptrace Trace program execution of parent or child (ptrace(2)).
rlimitinh Inherit rlimit information from parent process.
setcap Set Linux capabilities of process.
setcurrent Set the current process context.
setexec Set security context of executed process by setexecon(3).
setfscreate Set security context by setfscreatecon(3).
setkeycreate Set security context by setkeycreatecon(3).
setpgid Set group Process ID of another process.
setrlimit Change process rlimit information.
setsched Modify scheduling information of another process.
setsockcreate Set security context by setsockcreatecon(3).
share Allow state sharing with cloned or forked process.
sigchld Send SIGCHLD signal.
siginh Inherit signal state from parent process.
sigkill Send SIGKILL signal.
signal Send a signal other than SIGKILL, SIGSTOP, or SIGCHLD.
signull Test for exisitence of another process without sending a signal
sigstop Send SIGSTOP signal
transition Transition to a new context on exec().

8.8 Security Object Class
Class security - This is the security server object and there is only one

instance of this object (for the SELinux security server).

Permissions Description (11 unique permissions)
check_context Determine whether the context is valid by querying the security server.
compute_av Compute an access vector given a source/target/class.
compute_create Determine context to use when querying the security server about a

transition rule (type_transition).
compute_member Determine context to use when querying the security server about a

membership decision (type_member for a polyinstantiated object).
compute_relabel Determines the context to use when querying the security server about a

relabeling decision (type_change).
compute_user Determines the context to use when querying the security server about a

user decision (user).
load_policy Load the security policy into the kernel (the security server).
setbool Change a boolean value within the active policy.
setcheckreqprot Set if SELinux will check original protection mode or modified

protection mode (read-implies-exec) for mmap / mprotect.
setenforce Change the enforcement state of SELinux (permissive or enforcing).
setsecparam Set kernel access vector cache tuning parameters.

Page 327

The SELinux Notebook - The Foundations

8.9 System Operation Object Class
Class system - This is the overall system object and there is only one

instance of this object.

Permissions Description (4 unique permissions)
ipc_info Get info about an IPC object.
syslog_console Control output of kernel messages to the console with syslog(2).
syslog_mod Clear kernel message buffer with syslog(2).
syslog_read Read kernel message with syslog(2).

8.10 Kernel Service Object Class
Class kernel_service - Used to add kernel services.

Permissions Description (2 unique permissions)
use_as_override Grant a process the right to nominate an alternate process SID for the

kernel to use as an override for the SELinux subjective security when
accessing information on behalf of another process.
For example, CacheFiles when accessing the cache on behalf of a process
accessing an NFS file needs to use a subjective security ID appropriate to
the cache rather than the one the calling process is using. The
cachefilesd daemon will nominate the security ID to be used.

create_files_as Grant a process the right to nominate a file creation label for a kernel
service to use.

8.11 Capability Object Classes
Class capability – Used to manage the Linux capabilities granted to

root processes. Taken from the header file:
/usr/include/linux/capability.h

Permissions Description (32 unique permissions)
audit_control Change auditing rules. Set login UID.
audit_write Send audit messsages from user space.
chown Allow changing file and group ownership.
dac_override Overrides all DAC including ACL execute access.
dac_read_search Overrides DAC for read and directory search.
fowner Grant all file operations otherwise restricted due to different ownership

except where FSETID capability is applicable. DAC and MAC accesses
are not overridden.

fsetid Overrides the restriction that the real or effective user ID of a process
sending a signal must match the real or effective user ID of the process
receiving the signal.

ipc_lock Grants the capability to lock non-shared and shared memory segments.
ipc_owner Grant the ability to ignore IPC ownership checks.
kill Allow signal raising for any process.
lease Grants ability to take leases on a file.
linux_immutable Grant privilege to modify S_IMMUTABLE and S_APPEND file

attributes on supporting filesystems.
mknod Grants permission to creation of character and block device nodes.

Page 328

The SELinux Notebook - The Foundations

net_admin Allow the following: interface configuration; administration of IP
firewall; masquerading and accounting; setting debug option on sockets;
modification of routing tables; setting arbitrary process / group
ownership on sockets; binding to any address for transparent proxying;
setting TOS (type of service); setting promiscuous mode; clearing driver
statistics; multicasting; read/write of device-specific registers; activation
of ATM control sockets.

net_bind_service Allow low port binding. Port < 1024 for TCP/UDP. VCI < 32 for ATM.
net_raw Allows opening of raw sockets and packet sockets.
netbroadcast Grant network broadcasting and listening to incoming multicasts.
setfcap Allow the assignment of file capabilities.
setgid Allow setgid(2) allow setgroups(2) allow fake gids on

credentials passed over a socket.
setpcap Transfer capability maps from current process to any process.
setuid Allow all setsuid(2) type calls including fsuid. Allow passing of

forged pids on credentials passed over a socket.
sys_admin Allow the following: configuration of the secure attention key;

administration of the random device; examination and configuration of
disk quotas; configuring the kernel’s syslog; setting the domainname;
setting the hostname; calling bdflush(); mount() and umount(),
setting up new smb connection; some autofs root ioctls; nfsservctl;
VM86_REQUEST_IRQ; to read/write pci config on alpha; irix_prctl on
mips (setstacksize); flushing all cache on m68k (sys_cacheflush);
removing semaphores; locking/unlocking of shared memory segment;
turning swap on/off; forged pids on socket credentials passing; setting
readahead and flushing buffers on block devices; setting geometry in
floppy driver; turning DMA on/off in xd driver; administration of md
devices; tuning the ide driver; access to the nvram device; administration
of apm_bios, serial and bttv (TV) device; manufacturer commands in
isdn CAPI support driver; reading non-standardized portions of pci
configuration space; DDI debug ioctl on sbpcd driver; setting up serial
ports; sending raw qic-117 commands; enabling/disabling tagged
queuing on SCSI controllers and sending arbitrary SCSI commands;
setting encryption key on loopback filesystem; setting zone reclaim
policy.

sys_boot Grant ability to reboot the system.
sys_chroot Grant use of the chroot(2) call.
sys_module Allow unrestricted kernel modification including but not limited to

loading and removing kernel modules. Allows modification of kernel's
bounding capability mask. See sysctl.

sys_nice Grants privilage to change priority of any process. Grants change of
scheduling algorithm used by any process.

sys_pacct Allow modification of accounting for any process.
sys_ptrace Allow ptrace of any process.
sys_rawio Grant permission to use ioperm(2) and iopl(2) as well as the

ability to send messages to USB devices via /proc/bus/usb.
sys_resource Override the following: resource limits; quota limits; reserved space on

ext2 filesystem; size restrictions on IPC message queues; max number
of consoles on console allocation; max number of keymaps.
Set resource limits.
Modify data journaling mode on ext3 filesystem,
Allow more than 64hz interrupts from the real-time clock.

Page 329

The SELinux Notebook - The Foundations

sys_time Grant permission to set system time and to set the real-time lock.
sys_tty_config Grant permission to configure tty devices.

Class capability2
Permissions Description (2 unique permissions)
mac_admin Allow contexts not defined in the policy to be assigned. This is called

'deferred mapping of security contexts' and is explained at:
http://www.nsa.gov/research/selinux/list-archive/0805/26046.shtml

mac_override
wake_alarm
epollwakeup

8.12 X Windows Object Classes
These are userspace objects managed by XSELinux.

Class x_drawable - The drawable parameter specifies the area into which
the text will be drawn. It may be either a pixmap or a window.
Some of the permission information has been extracted from an email
describing them in terms of an MLS system.

Permissions Description (19 unique permissions)
add_child Add new window. Normally SystemLow for MLS systems.
blend There are two cases: 1) Allow a non-root window to have a transparent

background. 2) The application is redirecting the contents of the window
and its sub-windows into a memory buffer when using the Composite
extension. Only SystemHigh processes should have the blend permission
on the root window.

create Create a drawable object. Not applicable to the root windows as it cannot
be created.

destroy Destroy a drawable object. Not applicable to the root windows as it
cannot be destroyed.

get_property Read property information. Normally SystemLow for MLS systems.
getattr Get attributes from a drawable object. Most applications will need this so

SystemLow.
hide Hide a drawable object. Not applicable to the root windows as it cannot

be hidden.
list_child Allows all child window IDs to be returned. From the root window it will

show the client that owns the window and their stacking order. If hiding
this information is required then processes should be SystemHigh.

list_property List property associated with a window. Normally SystemLow for MLS
systems.

manage Required to create a context, move and resize windows. Not applicable to
the root windows as it cannot be resized etc.

override Allow setting the override-redirect bit on the window. Not
applicable to the root windows as it cannot be overridden.

read Read window contents. Note that this will also give read permission to all
child windows, therefore (for MLS), only SystemHigh processes should
have read permission on the root window.

receive Allow receiving of events. Normally SystemLow for MLS systems (but
could leak information between clients running at different levels,

Page 330

http://www.nsa.gov/research/selinux/list-archive/0805/26046.shtml

The SELinux Notebook - The Foundations

therefore needs investigation).
remove_child Remove child window. Normally SystemLow for MLS systems.
send Allow sending of events. Normally SystemLow for MLS systems (but

could leak information between clients running at different levels,
therefore needs investigation).

set_property Set property. Normally SystemLow for MLS systems (but could leak
information between clients running at different levels, therefore needs
investigation. Polyinstantiation may be required).

setattr Allow window attributes to be set. This permission protects operations on
the root window such as setting the background image or colour, setting
the colormap and setting the mouse cursor to display when the cursor is
in nthe window, therefore only SystemHigh processes should have the
setattr permission.

show Show window. Not applicable to the root windows as it cannot be hidden.
write Draw within a window. Note that this will also give write permission to

all child windows, therefore (for MLS), only SystemHigh processes
should have write permission on the root window.

Class x_screen - The specific screen available to the display (X-server)
(hostname:display_number.screen)

Permissions Description (8 unique permissions)
getattr
hide_cursor
saver_getattr
saver_hide
saver_setattr
saver_show
setattr
show_cursor

Class x_gc - The graphics contexts allows the X-server to cache information
about how graphics requests should be interpreted. It reduces the network
traffic.

Permissions Description (5 unique permissions)
create Create Graphic Contexts object.
destroy Free (dereference) a Graphics Contexts object.
getattr Get attributes from Graphic Contexts object.
setattr Set attributes for Graphic Contexts object.
use Allow GC contexts to be used.

Class x_font - An X-server resource for managing the different fonts.

Permissions Description (6 unique permissions)
add_glyph Create glyph for cursor
create Load a font.
destroy Free a font.
getattr Obtain font names, path, etc.

Page 331

The SELinux Notebook - The Foundations

remove_glyph Free glyph
use Use a font.

Class x_colormap - An X-server resource for managing colour mapping.
A new colormap can be created using XCreateColormap.

Permissions Description (10 unique permissions)
add_color Add a colour
create Create a new Colormap.
destroy Free a Colormap.
getattr Get the color gamut of a screen.
install Copy a virtual colormap into the display hardware.
read Read color cells of colormap.
remove_color Remove a colour
uninstall Remove a virtual colormap from the display hardware.
use Use a colormap
write Change color cells in colormap.

Class x_property - An InterClient Communications (ICC) service where
each property has a name and ID (or Atom). Properties are attached to
windows and can be uniquely identified by the windowID and
propertyID. XSELinux supports polyinstantiation of properties.

Permissions Description (7 unique permissions)
append Append a property.
create Create property object.
destroy Free (dereference) a property object.
getattr Get attributes of a property.
read Read a property.
setattr Set attributes of a property.
write Write a property.

Class x_selection - An InterClient Communications (ICC) service that
allows two parties to communicate about passing information. The
information uses properties to define the the format (e.g. whether text or
graphics). XSELinux supports polyinstantiation of selections.

Permissions Description (4 unique permissions)
getattr Get selection owner (XGetSelectionOwner).
read Read the information from the selection owner
setattr Set the selection owner (XSetSelectionOwner).
write Send the information to the selection requestor.

Class x_cursor - The cursor on the screen

Permissions Description (7 unique permissions)
create Create an arbitrary cursor object.
destroy Free (dereference) a cursor object.

Page 332

The SELinux Notebook - The Foundations

getattr Get attributes of the cursor.
read Read the cursor.
setattr Set attributes of the cursor.
use Associate a cursor object with a window.
write Write a cursor

Class x_client - The X-client connecting to the X-server.

Permissions Description (4 unique permissions)
destroy Close down a client.
getattr Get attributes of X-client.
manage Required to create an X-client context. (source code)
setattr Set attributes of X-client.

Class x_device - These are any other devices used by the X-server as the
keyboard and pointer devices have their own object classes.

Permissions Description (Inherit 19 common x_device permissions)
Inherit Common
X_Device
Permissions

add, bell, create, destroy, force_cursor, freeze,
get_property, getattr, getfocus, grab,
list_property, manage, read, remove,
set_property, setattr, setfocus, use, write

Class x_server - The X-server that manages the display, keyboard and
pointer.

Permissions Description (6 unique permissions)
debug
getattr
grab
manage Required to create a context. (source code)
record
setattr

Class x_extension - An X-Windows extension that can be added to the
X-server (such as the XSELinux object manager itself).

Permissions Description (2 unique permissions)
query Query for an extension.
use Use the extensions services.

Class x_resource - These consist of Windows, Pixmaps, Fonts,
Colormaps etc. that are classed as resources.

Permissions Description (2 unique permissions)
read Allow reading a resource.
write Allow writing to a resource.

Class x_event - Manage X-server events.

Page 333

The SELinux Notebook - The Foundations

Permissions Description (2 unique permissions)
receive Receive an event
send Send an event

Class x_synthetic_event - Manage some X-server events (e.g.
confignotify). Note the x_event permissions will still be required
(its magic).

Permissions Description (2 unique permissions)
receive Receive an event
send Send an event

Class x_application_data - Not specifically used by
XSELinux, however is used by userspace applications that need to
manage copy and paste services (such as the CUT_BUFFERs).

Permission Description (3 unique permissions)
copy Copy the data
paste Paste the data
paste_after_confirm Need to confirm that the paste is allowed.

Class x_pointer - The mouse or other pointing device managed by the X-
server.

Permissions Description (Inherit 19 common x_device permissions)
Inherit Common
X_Device
Permissions

add, bell, create, destroy, force_cursor, freeze,
get_property, getattr, getfocus, grab,
list_property, manage, read, remove,
set_property, setattr, setfocus, use, write

Class x_keyboard - The keyboard managed by the X-server.

Permissions Description (Inherit 19 common x_device permissions)
Inherit Common
X_Device
Permissions

add, bell, create, destroy, force_cursor, freeze,
get_property, getattr, getfocus, grab,
list_property, manage, read, remove,
set_property, setattr, setfocus, use, write

8.13 Database Object Classes
These are userspace objects – The PostgreSQL database supports these with their SE-
PostgreSQL database extension. The “Security-Enhanced PostgreSQL Security Wiki”
[Ref. 3] explains the objects, their permissions and how they should be used in detail.

Class db_database
Permission Description (Inherit 6 common database permissions + 3 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

access Required to connect to the database – this is the minimum permission
required by an SE-PostgreSQL client.

Page 334

http://wiki.postgresql.org/wiki/SEPostgreSQL_Development

The SELinux Notebook - The Foundations

install_module Required to install a dynmic link library.
load_module Required to load a dynmic link library.

Class db_table
Permission Description (Inherit 6 common database permissions + 5 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

delete Required to delete from a table with a DELETE statement, or when
removing the table contents with a TRUNCATE statement.

insert Required to insert into a table with an INSERT statement, or when
restoring it with a COPY FROM statement.

lock Required to get a table lock with a LOCK statement.
select Required to refer to a table with a SELECT statement or to dump the

table contents with a COPY TO statement.
update Required to update a table with an UPDATE statement.

Class db_schema
Permission Description (Inherit 6 common database permissions + 3 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

search Search for an object in the schema.
add_name Add an object to the schema.
remove_name Remove an object from the schema.

Class db_procedure
Permission Description (Inherit 6 common database permissions + 3 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

entrypoint Required for any functions defined as Trusted Procedures (see [Ref. 3]).
execute Required for functions executed with SQL queries.
install

Class db_column
Permission Description (Inherit 6 common database permissions + 3 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

insert Required to insert a new entry using the INSERT statement.
select Required to reference columns.

update Required to update a table with an UPDATE statement.

Class db_tuple

Page 335

The SELinux Notebook - The Foundations

Permission Description (7 unique)
delete Required to delete entries with a DELETE or TRUNCATE statement.
insert Required when inserting a entry with an INSERT statement, or restoring

tables with a COPY FROM statement.

relabelfrom The security context of an entry can be changed with an UPDATE to the
security_context column at which time relabelfrom and
relabelto permission is evaluated. The client must have
relabelfrom permission to the security context before the entry is
changed, and relabelto permission to the security context after the
entry is changed.

relabelto

select Required when: reading entries with a SELECT statement, returning
entries that are subjects for updating queries with a RETURNING clause,
or dumping tables with a COPY TO statement.
Entries that the client does not have select permission on will be
filtered from the result set.

update Required when updating an entry with an UPDATE statement. Entries that
the client does not have update permission on will not be updated.

use Controls usage of system objects that require permission to "use" objects
such as data types, tablespaces and operators.

Class db_blob
Permission Description (Inherit 6 common database permissions + 4 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

export Export a binary large object by calling the lo_export() function.

import Import a file as a binary large object by calling the lo_import()
function.

read Read a binary large object the loread() function.
write Write a binary large objecty with the lowrite() function.

Class db_view
Permission Description (Inherit 6 common database permissions + 1 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

expand Allows the expansion of a 'view'.

Class db_sequence - A sequential number generator

Permission Description (Inherit 6 common database permissions + 3 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

get_value Get a value from the sequence generator object.
next_value Get and increment value.
set_value Set an arbitrary value.

Page 336

The SELinux Notebook - The Foundations

Class db_language - Support for script languages such as Perl and Tcl
for SQL Procedures

Permission Description (Inherit 6 common database permissions + 2 unique)
Inherit Common
Database
Permissions

create, drop, getattr, relabelfrom, relabelto,
setattr

implement Whether the language can be implemented or not for the SQL procedure.
execute Allow the execution of a code block using a 'DO' statement.

8.14 Miscellaneous Object Classes
Class passwd - This is a userspace object for controlling changes to passwd

information.

Permissions Description (5 unique permissions)
chfn Change another users finger info.
chsh Change another users shell.
crontab crontab another user.
passwd Change another users passwd.
rootok pam_rootok check – skip authentication.

Class nscd - This is a userspace object for the Name Service Cache Daemon.

Permission Description (10 unique permissions)
admin Allow the nscd daemon to be shut down.
getgrp Get group information.
gethost Get host information.
getpwd Get password information.
getserv Get ?? information.
getstat Get the AVC stats from the nscd daemon.
shmemgrp Get shmem group file descriptor.
shmemhost Get shmem host descriptor. ??
shmempwd
shmemserv

Class dbus - This is a userspace object for the D-BUS Messaging service that
is required to run various services.

Permission Description (2 unique permissions)
acquire_svc Open a virtual circuit (communications channel).
send_msg Send a message.

Class context - This is a userspace object for the translation daemon
mcstransd. These permissions are required to allow translation and
querying of level and ranges for MCS and MLS systems.

Page 337

The SELinux Notebook - The Foundations

Permission Description (2 unique permissions)
contains Calculate a MLS/MCS subset - Required to check what the configuration

file contains.
translate Translate a raw MLS/MCS label - Required to allow a domain to

translate contexts.

Class key – This is a kernel object to manage Keyrings.

Permission Description (7 unique permissions)
create Create a keyring.
link Link a key into the keyring.
read Read a keyring.
search Search a keyring.
setattr Change permissions on a keyring.
view View a keyring.
write Add a key to the keyring.

Class memprotect – This is a kernel object to protect lower memory
blocks.

Permission Description (1 unique permission)
mmap_zero Security check on mmap operations to see if the user is attempting to

mmap to low area of the address space. The amount of space protected is
indicated by a proc tunable (/proc/sys/vm/mmap_min_addr). Setting this
value to 0 will disable the checks. The “SELinux hardening for
mmap_min_addr protections” [Ref. 16] describes additional checks that
will be added to the kernel to protect against some kernel exploits (by
requiring CAP_SYS_RAWIO (root) and the SELinux memprotect /
mmap_zero permission instead of only one or the other).

Class service – This is a userspace object to manage systemd services.

Permission Description (5 unique permissions)
start Start systemd services.
stop Stop systemd services.
status Read service status.
reload Restart systemd services.
kill Kill services.

Page 338

http://eparis.livejournal.com/891.html
http://eparis.livejournal.com/891.html

The SELinux Notebook - The Foundations

9. Appendix B - libselinux Library Functions
This appendix contains:

1. Information regarding the example source that use the libselinux functions -
these are available in the Notebook source tarball (these are for libselinux
version 2.1.6).

2. A summary of all libselinux functions available in version 2.1.11.

9.1 Source Code Examples
The Notebook source tarball contains a number of simple examples that show all the
F-17 (libselinux 2.1.6) functions. These are located in the notebook-
source/libselinux/examples directory along with a README file and
simple Makefile. These examples make use of a simple shared library that must be
installed first (see notebook-source/notebook-
tools/library/README) , this allows users to select contexts strings and other
variables from a configuration file.

Some of the examples require simple policy modules to show different results, these
are located in the notebook-source/libselinux/policy-modules
directory.

Table 33 shows the example name and the functions they use, the policy module
name is shown where applicable.

Notes:

1. The ‘raw’ version of a function is always used if available as this will avoid
any confusion if the mcstrans daemon is running, the exception is for the
translation example.

2. Examples that use the binary policy file also make use of libsepol functions:
sepol_set_policydb_from_file(3)
sepol_check_context(3)

3. There are other examples (basic_...) that use the selinuxfs interface
to obtain information. These are just to show how this interface is used and
should not be implemented in production software.

.

General Context Functions
1. context_get_components_example.c

context_new, context_str, context_user_get, context_role_get, context_type_get,
context_range_get, security_check_context, context_free

2. context_set_components_example.c
context_new, context_str, context_user_set, context_role_set, context_type_set,
context_range_set, security_check_context, context_free, is_selinux_mls_enabled

3. security_canonicalize_context_example.c
(security_canonicalize_context_example.conf)
security_canonicalize_context, freecon

4. security_check_context_example.c
security_check_context

Page 339

The SELinux Notebook - The Foundations

5. security_get_initial_context_example.c
security_get_initial_context_example, freecon

6. selinux_file_context_cmp_example.c
selinux_file_context_cmp

7. selinux_file_context_verify_example.c
selinux_file_context_verify

User Session Functions
8. get_default_type_example.c

get_default_type

9. get_default_context_example.c
get_default_context, freecon

10. get_default_context_with_level_example.c
get_default_context_with_level, freecon

11. get_default_context_with_role_example.c
get_default_context_with_role, freecon

12. get_default_context_with_rolelevel_example.c
get_default_context_with_rolelevel, freecon

13. get_ordered_context_list_example.c
get_ordered_context_list, freecon, freeconary

14. get_ordered_context_list_with_level_example.c
get_ordered_context_list, freecon, freeconary

15. manual_user_enter_context_example.c
manual_user_enter_context, freecon

16. query_user_context_example.c
query_user_context, freecon

17. getseuser_example.c
getseuser

18. getseuserbyname_example.c
getseuserbyname

Default File Labeling Functions (get/set default file contexts)
19. matchpathcon_example.c

matchpathcon, matchpathcon_fini, freecon

20. matchpathcon_init_prefix_example.c
matchpathcon, matchpathcon_fini, freecon, matchpathcon_init_prefix

21. matchpathcon_file_example.c
matchpathcon_init_prefix, matchpathcon, matchpathcon_checkmatches,
matchpathcon_fini, freecon

22. matchpathcon_filespec_example1.c
set_matchpathcon_flags, matchpathcon_init_prefix, matchpathcon_index,
matchpathcon_filespec_add, matchpathcon_filespec_eval,
matchpathcon_checkmatches, matchpathcon_filespec_destroy, matchpathcon_fini,
freecon

23. matchpathcon_filespec_example2.c
set_matchpathcon_printf, set_matchpathcon_invalidcon, set_matchpathcon_flags,
matchpathcon_init_prefix, matchpathcon_index, matchpathcon_filespec_add,
matchpathcon_filespec_eval, matchpathcon_checkmatches,
matchpathcon_filespec_destroy, matchpathcon_fini, freecon

24. matchpathcon_policy_file_example.c
sepol_set_policydb_from_file, sepol_check_context, set_matchpathcon_invalidcon,
set_matchpathcon_flags, matchpathcon_init, matchpathcon,
matchpathcon_checkmatches, matchpathcon_fini, freecon

25. selabel_file_example.c
selabel_open, selabel_lookup, selabel_stats, selabel_close, freecon

26. selabel_policy_file_example.c
sepol_set_policydb_from_file, sepol_check_context, selinux_set_callback,

Page 340

The SELinux Notebook - The Foundations

selabel_open, selabel_lookup, selabel_stats, selabel_close

27. selabel_policy_file_log_example.c
sepol_set_policydb_from_file, sepol_check_context, selinux_set_callback,
selabel_open, selabel_lookup, selabel_stats, selabel_close

28. selinux_lsetfilecon_default_example.c
lgetfilecon, selinux_lsetfilecon_default, freecon

File Labeling Functions (get/set file contexts in extended attributes - xattr)
29. getfilecon_example.c

getfilecon, freecon

30. setfilecon_example.c (setfilecon_example.conf)
getfilecon, setfilecon, freecon

31. fgetfilecon_example.c
fgetfilecon, freecon

32. fsetfilecon_example.c
fgetfilecon, fsetfilecon, freecon

33. lgetfilecon_example.c
lgetfilecon, freecon

34. lsetfilecon_example.c
lgetfilecon, lsetfilecon, freecon

SELinux-aware Application Labeling Functions
35. selabel_db_example.c

selabel_open, selabel_lookup, selabel_stats, selabel_close, freecon

36. selabel_media_example.c
selabel_open, selabel_lookup, selabel_stats, selabel_close, freecon

37. selabel_x_example.c
selabel_open, selabel_lookup, selabel_stats, selabel_close, freecon

38. selinux_path_functions_example.c
selinux_path, selinux_policy_root, selinux_binary_policy_path,
selinux_booleans_path, selinux_colors_path, selinux_contexts_path,
selinux_customizable_types_path, selinux_default_context_path,
selinux_default_type_path, selinux_failsafe_context_path,
selinux_file_context_homedir_path, selinux_file_context_local_path,
selinux_file_context_path, selinux_file_context_subs_path,
selinux_homedir_context_path, selinux_media_context_path,
selinux_netfilter_context_path, selinux_removable_context_path,
selinux_securetty_types_path, selinux_translations_path,
selinux_user_contexts_path, selinux_users_path, selinux_usersconf_path,
selinux_virtual_domain_context_path, selinux_virtual_image_context_path,
selinux_x_context_path, selinux_sepgsql_context_path

39. matchmediacon_example.c
matchmediacon, freecon

40. is_context_customizable_example.c
is_context_customizable

41. selinux_check_securetty_context_example.c
selinux_check_securetty_context

Label Translation Management Functions
42. selinux_raw_to_trans_context_example.c

selinux_raw_to_trans_context, selinux_translation_path, freecon

43. selinux_trans_to_raw_context_example.c
selinux_trans_to_raw_context, selinux_translation_path, freecon

44. selinux_raw_context_to_color_example1.c
selinux_raw_context_to_color, selinux_colors_path, selinux_translation_path,
freecon

45. selinux_raw_context_to_color_example2.c
selinux_raw_context_to_color, selinux_colors_path, selinux_translation_path,
context_new, context_user_get, context_role_get, context_type_get,

Page 341

The SELinux Notebook - The Foundations

context_range_get, context_free, freecon

Process Labeling Functions
46. getcon_example.c

getcon, freecon

47. setcon_example.c (setcon_example.conf)
setcon, getcon, freecon, execvp

48. setcon_thread1_example.c (setcon_example.conf,
setcon_thread_example.conf)
setcon, getcon, freecon, execvp, pthread_create

49. setcon_thread2_example.c (setcon_example.conf,
setcon_thread_example.conf)
setcon, getcon, freecon, execvp, pthread_create

50. getexeccon_example.c
getexeccon, freecon

51. setexeccon_example.c (setexeccon_example.conf)
setexeccon, getexeccon, freecon, execvp

52. getpidcon_example.c
getpidcon, freecon

53. getprevcon_example.c
getprevcon, freecon

54. rpm_execcon_example.c
rpm_execcon, getcon

File Creation Labeling Functions
55. getfscreatecon_example.c

getfscreatecon, freecon

56. setfscreatecon_example.c
setfscreatecon, getfscreatecon, open (file), fgetfilecon, freecon

Key Creation Labeling Functions
57. getkeycreatecon_example.c

getkeycreatecon, freecon

58. setkeycreatecon_example.c (setkeycreatecon_example.conf)
setkeycreatecon, getkeycreatecon, freecon, add_key, request_key, keyctl,
keyctl_revoke

Socket Creation Labeling Functions
59. getsockcreatecon_example.c

getsockcreatecon, freecon

60. setsockcreatecon_example.c
setsockcreatecon, getsockcreatecon, freecon, socket, fgetfilecon, getpeercon

Peer Socket Labeling Functions - These work as client/server

61. getpeercon_server_example.c (getpeercon_example.conf)
getpeercon, getcon, fgetfilecon, freecon + socket services

62. getpeercon_client_example.c (getpeercon_example.conf)
getpeercon, freecon + socket services

Class and Permission Functions
63. print_access_vector_example.c

print_access_vector, string_to_security_class

64. security_class_to_string_example.c
security_class_to_string

65. security_av_perm_to_string_example.c
security_av_perm_to_string, string_to_security_class

Page 342

The SELinux Notebook - The Foundations

66. security_av_string_example.c
security_av_string, string_to_security_class

67. selinux_set_mapping_example.c
selinux_set_mapping, string_to_security_class, string_to_av_perm

68. selinux_set_mapping_with_errors_example.c
selinux_set_mapping, string_to_security_class, string_to_av_perm,
security_class_to_string, security_av_perm_to_string

69. security_class_to_string_with_class_mapping_example.c
selinux_set_mapping, security_class_to_string

70. string_to_security_class_example.c
string_to_security_class

71. string_to_av_perm_example.c
string_to_av_perm, sring_to_security_class, security_class_to_string

72. selinux_check_passwd_access_example.c
selinux_check_passwd_access, security_getenforce

73. selinux_check_access_example.c
selinux_check_access, security_getenforce

74. selinux_check_access_audit_example.c
selinux_check_access, security_getenforce, selinux_set_callback, audit_open,
audit_log_user_avc_message

75. security_deny_unknown_example.c
security_deny_unknown

Compute Access Decision Functions
76. security_compute_av_example.c

security_compute_av, string_to_security_class, security_class_to_string,
print_access_vector

77. security_compute_av_flags_example.c
security_compute_av_flags,string_to_security_class, print_access_vector

78. security_compute_av_mapping_example.c
security_compute_av_flags,string_to_security_class, print_access_vector,
selinux_set_mapping, string_to_av_perm, security_av_string

Compute Labeling Functions
79. security_compute_create_example.c

(security_compute_create_example.conf)
security_compute_create, string_to_security_class

80. security_compute_member_example.c
(security_compute_member_example.conf)
security_compute_member, string_to_security_class

81. security_compute_relabel_example.c
(security_compute_relabel_example.conf)
security_compute_relabel, string_to_security_class

82. security_compute_user_example.c
security_compute_user, freecon, freeconary

Access Vector Cache Functions
83. avc_has_perm_example.c

avc_has_perm, avc_has_perm_noaudit, security_getenforce, avc_open,
avc_entry_ref_init, getcon, avc_context_to_sid, avc_sid_to_context,
string_to_security_class, string_to_av_perm, getfilecon, matchpathcon,
avc_audit, avc_av_stats, avc_sid_stats, avc_cache_stats, avc_reset, avc_destroy

84. avc_compute_create_example.c
avc_compute_create, string_to_security_class, avc_context_to_sid,
avc_sid_to_context, avc_destroy

85. avc_compute_member_example.c
avc_compute_member, string_to_security_class, avc_context_to_sid,
avc_sid_to_context, avc_destroy

Page 343

The SELinux Notebook - The Foundations

86. avc_has_perm_callbacks_example.c
avc_has_perm, security_getenforce, avc_open, avc_entry_ref_init, getcon,
avc_context_to_sid, avc_sid_to_context, string_to_security_class,
string_to_av_perm, getfilecon, matchpathcon, avc_audit, avc_av_stats,
avc_sid_stats, avc_cache_stats, avc_reset, avc_destroy, selinux_set_callback,
avc_add_callback, audit_open, audit_user_avc_message

87. avc_has_perm_deny_unknown_example.c
avc_has_perm, deny_unknown, avc_open, avc_entry_ref_init, avc_destory,
avc_context_to_sid, string_to_security_class

Netlink Functions
88. avc_netlink_check_nb_example.c

avc_netlink_check_nb, avc_acquire_netlink_fd, selinux_set_callback,
selinux_get_callback, avc_add_callback, security_getenforce, avc_open,
avc_entry_ref_init, getcon, avc_context_to_sid, avc_sid_to_context,
string_to_security_class, string_to_av_perm, getfilecon, matchpathcon,
avc_has_perm, avc_av_stats, avc_sid_stats, avc_cache_stats,
avc_netlink_release_fd, avc_netlink_close, audit_close, avc_destroy, sigaction,
audit_open, audit_close, audit_log_user_avc_message

89. avc_netlink_loop_example.c
avc_netlink_loop, avc_acquire_netlink_fd, selinux_set_callback,
selinux_get_callback, avc_add_callback, security_getenforce, avc_open,
avc_entry_ref_init, getcon, avc_context_to_sid, avc_sid_to_context,
string_to_security_class, string_to_av_perm, getfilecon, matchpathcon,
avc_has_perm, avc_av_stats, avc_sid_stats, avc_cache_stats,
avc_netlink_release_fd, avc_netlink_close, audit_close, avc_destroy,
pthread_create, audit_open, audit_close, audit_log_user_avc_message

90. avc_netlink_open_example.c
avc_netlink_loop, avc_acquire_netlink_fd, selinux_set_callback,
selinux_get_callback, security_getenforce, getcon, string_to_security_class,
getfilecon, matchpathcon, security_compute_av, print_access_vector,
avc_netlink_release_fd, avc_netlink_close, audit_close, avc_destroy,
pthread_create, audit_open, audit_close, audit_log_user_avc_message

91. netlink_security_compute_av_example.c
security_getenforce, getcon, string_to_security_class,
security_class_to_string, string_to_av_perm, security_av_string, getfilecon,
matchpathcon, security_compute_av, print_access_vector, pthread_create, socket,
bind, recvfrom, audit_open, audit_log_user_avc_message, audit_close

Boolean Functions
92. security_get_boolean_active_example.c

security_get_boolean_active

93. security_get_boolean_names_example.c
security_get_boolean_names

94. security_get_boolean_pending_example.c
security_get_boolean_pending

95. security_set_boolean_example.c
security_set_boolean

96. security_set_boolean_list_example.c
security_set_boolean_list, selinux_booleans_path

97. security_commit_booleans_example.c
security_commit_booleans

98. security_load_booleans_example.c
security_load_booleans, selinux_booleans_path

SELinux Management Functions
99. is_selinux_mls_enabled_example.c

is_selinux_mls_enabled

100. selinux_getenforcemode_example.c
selinux_getenforcemode, selinux_path

101. selinux_getpolicytype_example.c
selinux_getpolicytype

Page 344

The SELinux Notebook - The Foundations

102. selinux_reset_config_example.c
selinux_reset_config, selinux_path

103. security_load_policy_example.c
security_load_policy

104. selinux_init_load_policy_example.c
selinux_init_load_policy

105. selinux_mkload_policy_example.c
selinux_mkload_policy, selinux_path, selinux_users_path

106. is_selinux_enabled_example.c
is_selinux_enabled

107. security_getenforce_example.c
security_getenforce

108. security_setenforce_example.c
security_setenforce, security_getenforce

109. security_policyvers_example.c
security_policyvers

110. set_selinuxmnt_example.c
set_selinuxmnt

111. security_disable_example.c
security_disable

Table 33: Grouping of the libselinux library functions

Page 345

The SELinux Notebook - The Foundations

9.2 API Summary for libselinux 2.1.11
These functions have been taken from the following header files of libselinux version 2.1.11:

/usr/include/selinux/avc.h
/usr/include/selinux/context.h
/usr/include/selinux/get_context_list.h
/usr/include/selinux/get_default_type.h
/usr/include/selinux/label.h
/usr/include/selinux/selinux.h

The appropriate man(3) pages should consulted for detailed usage, also the libselinux source code.

Num. Function Name Description Header File
1. avc_add_callback Register a callback for security events. avc.h
2. avc_audit Audit the granting or denial of permissions in accordance with the policy. This

function is typically called by avc_has_perm() after a permission check,
but can also be called directly by callers who use
avc_has_perm_noaudit() in order to separate the permission check
from the auditing. For example, this separation is useful when the permission
check must be performed under a lock, to allow the lock to be released before
calling the auditing code.

avc.h

3. avc_av_stats Log AV table statistics. Logs a message with information about the size and
distribution of the access vector table. The audit callback is used to print the
message.

avc.h

4. avc_cache_stats Get cache access statistics. Fill the supplied structure with information about
AVC activity since the last call to avc_init() or avc_reset().

avc.h

5. avc_cleanup Remove unused SIDs and AVC entries.
Search the SID table for SID structures with zero reference counts, and
remove them along with all AVC entries that reference them. This can be used
to return memory to the system.

avc.h

Page 346

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
6. avc_compute_create Compute SID for labeling a new object. Call the security server to obtain a

context for labeling a new object. Look up the context in the SID table,
making a new entry if not found.

avc.h

7. avc_compute_member Compute SID for polyinstantation.
Call the security server to obtain a context for labeling an object instance.
Look up the context in the SID table, making a new entry if not found.

avc.h

8. avc_context_to_sid
avc_context_to_sid_raw

Get SID for context. Look up security context ctx in SID table, making a new
entry if ctx is not found. Store a pointer to the SID structure into the memory
referenced by sid, returning 0 on success or -1 on error with errno set.

avc.h

9. avc_destroy Free all AVC structures.
Destroy all AVC structures and free all allocated memory. User-supplied
locking, memory, and audit callbacks will be retained, but security-event
callbacks will not. All SID's will be invalidated. User must call avc_init()
if further use of AVC is desired.

avc.h

10. avc_entry_ref_init Initialize an AVC entry reference.
Use this macro to initialize an avc entry reference structure before first use.
These structures are passed to avc_has_perm(), which stores cache entry
references in them. They can increase performance on repeated queries.

avc.h

11. avc_get_initial_sid Get SID for an initial kernel security identifier.
Get the context for an initial kernel security identifier specified by name using
security_get_initial_context() and then call
avc_context_to_sid() to get the corresponding SID.

avc.h

12. avc_has_perm Check permissions and perform any appropriate auditing.
Check the AVC to determine whether the requested permissions are
granted for the SID pair (ssid, tsid), interpreting the permissions based on
tclass, and call the security server on a cache miss to obtain a new decision
and add it to the cache. Update aeref to refer to an AVC entry with the
resulting decisions. Audit the granting or denial of permissions in accordance
with the policy. Return 0 if all requested permissions are granted, -1 with
errno set to EACCES if any permissions are denied or to another value upon
other errors.

avc.h

13. avc_has_perm_noaudit Check permissions but perform no auditing. Check the AVC to determine avc.h

Page 347

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
whether the requested permissions are granted for the SID pair (ssid,
tsid), interpreting the permissions based on tclass, and call the security
server on a cache miss to obtain a new decision and add it to the cache. Update
aeref to refer to an AVC entry with the resulting decisions, and return a
copy of the decisions in avd. Return 0 if all requested permissions are
granted, -1 with errno set to EACCES if any permissions are denied, or to
another value upon other errors. This function is typically called by
avc_has_perm(), but may also be called directly to separate permission
checking from auditing, e.g. in cases where a lock must be held for the check
but should be released for the auditing.

14. avc_init (deprecated) Use avc_open
Initialize the AVC. Initialize the access vector cache. Return 0 on success or -1
with errno set on failure. If msgprefix is NULL, use "uavc". If any
callback structure references are NULL, use default methods for those
callbacks (see the definition of the callback structures).

avc.h

15. avc_netlink_acquire_fd Create a netlink socket and connect to the kernel. avc.h
16. avc_netlink_check_nb Wait for netlink messages from the kernel. avc.h
17. avc_netlink_close Close the netlink socket. avc.h
18. avc_netlink_loop Acquire netlink socket fd. Allows the application to manage messages from

the netlink socket in its own main loop.
avc.h

19. avc_netlink_open Release netlink socket fd. Returns ownership of the netlink socket to the
library.

avc.h

20. avc_netlink_release_fd Check netlink socket for new messages. Called by the application when using
avc_netlink_acquire_fd() to process kernel netlink events.

avc.h

21. avc_open Initialize the AVC. This function is identical to avc_init() except the
message prefix is set to “avc” and any callbacks desired should be specified
via selinux_set_callback().

avc.h

22. avc_reset Flush the cache and reset statistics. Remove all entries from the cache and
reset all access statistics (as returned by avc_cache_stats()) to zero.
The SID mapping is not affected. Return 0 on success, -1 with errno set on
error.

avc.h

23. avc_sid_stats Log SID table statistics. Log a message with information about the size and avc.h

Page 348

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
distribution of the SID table. The audit callback is used to print the message.

24. avc_sid_to_context
avc_sid_to_context_raw

Get copy of context corresponding to SID. Return a copy of the security
context corresponding to the input sid in the memory referenced by ctx.
The caller is expected to free the context with freecon(). Return 0 on
success, -1 on failure, with errno set to ENOMEM if insufficient memory was
available to make the copy, or EINVAL if the input SID is invalid.

avc.h

25. checkPasswdAccess (deprecated) Use selinux_check_passwd_access or preferably
selinux_check_access
Check a permission in the passwd class. Return 0 if granted or -1 otherwise.

selinux.h

26. context_free Free the storage used by a context. context.h
27. context_new Return a new context initialized to a context string. context.h
28. context_range_get Get a pointer to the range. context.h

29. context_range_set Set the range component. Returns nonzero if unsuccessful. context.h

30. context_role_get Get a pointer to the role. context.h

31. context_role_set Set the role component. Returns nonzero if unsuccessful. context.h

32. context_str Return a pointer to the string value of context_t. Valid until the next call to
context_str or context_free for the same context_t*.

context.h

33. context_type_get Get a pointer to the type. context.h

34. context_type_set Set the type component. Returns nonzero if unsuccessful. context.h

35. context_user_get Get a pointer to the user. context.h

36. context_user_set Set the user component. Returns nonzero if unsuccessful. context.h

37. fgetfilecon
fgetfilecon_raw

Wrapper for the xattr API - Get file context, and set *con to refer to it.
Caller must free via freecon.

selinux.h

38. fini_selinuxmnt Clear selinuxmnt variable and free allocated memory. selinux.h

39. freecon Free the memory allocated for a context by any of the get* calls. selinux.h

40. freeconary Free the memory allocated for a context array by
security_compute_user.

selinux.h

41. fsetfilecon Wrapper for the xattr API - Set file context. selinux.h

Page 349

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
fsetfilecon_raw

42. get_default_context Get the default security context for a user session for 'user' spawned by
'fromcon' and set *newcon to refer to it. The context will be one of those
authorized by the policy, but the selection of a default is subject to user
customizable preferences. If 'fromcon' is NULL, defaults to current context.
Returns 0 on success or -1 otherwise. Caller must free via freecon.

get_context_list.h

43. get_default_context_with_level Same as get_default_context, but use the provided MLS level rather
than the default level for the user.

get_context_list.h

44. get_default_context_with_role Same as get_default_context, but only return a context that has the
specified role.

get_context_list.h

45. get_default_context_with_rolelevel Same as get_default_context, but only return a context that has the
specified role and level.

get_context_list.h

46. get_default_type Get the default type (domain) for 'role' and set 'type' to refer to it. Caller
must free via free(). Return 0 on success or -1 otherwise.

get_default_type.h

47. get_ordered_context_list Get an ordered list of authorized security contexts for a user session for 'user'
spawned by 'fromcon' and set *conary to refer to the NULL-terminated
array of contexts. Every entry in the list will be authorized by the policy, but
the ordering is subject to user customizable preferences. Returns number of
entries in *conary. If 'fromcon' is NULL, defaults to current context.
Caller must free via freeconary.

get_context_list.h

48. get_ordered_context_list_with_level Same as get_ordered_context_list, but use the provided MLS level
rather than the default level for the user.

get_context_list.h

49. getcon
getcon_raw

Get current context, and set *con to refer to it. Caller must free via
freecon.

selinux.h

50. getexeccon
getexeccon_raw

Get exec context, and set *con to refer to it. Sets *con to NULL if no
exec context has been set, i.e. using default. If non-NULL, caller must free
via freecon.

selinux.h

51. getfilecon
getfilecon_raw

Wrapper for the xattr API - Get file context, and set *con to refer to it.
Caller must free via freecon.

selinux.h

52. getfscreatecon
getfscreatecon_raw

Get fscreate context, and set *con to refer to it. Sets *con to NULL if no
fs create context has been set, i.e. using default.If non-NULL, caller must free

selinux.h

Page 350

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
via freecon.

53. getkeycreatecon
getkeycreatecon_raw

Get keycreate context, and set *con to refer to it. Sets *con to NULL if
no key create context has been set, i.e. using default. If non-NULL, caller must
free via freecon.

selinux.h

54. getpeercon
getpeercon_raw

Wrapper for the socket API - Get context of peer socket, and set *con to refer
to it. Caller must free via freecon.

selinux.h

55. getpidcon
getpidcon_raw

Get context of process identified by pid, and set *con to refer to it. Caller
must free via freecon.

selinux.h

56. getprevcon
getprevcon_raw

Get previous context (prior to last exec), and set *con to refer to it. Caller
must free via freecon.

selinux.h

57. getseuser Get the SELinux username and level to use for a given Linux username
and service. These values may then be passed into the
get_ordered_context_list* and get_default_context*
functions to obtain a context for the user. Returns 0 on success or -1 otherwise.
Caller must free the returned strings via free().

selinux.h

58. getseuserbyname Get the SELinux username and level to use for a given Linux
username. These values may then be passed into the
get_ordered_context_list* and get_default_context*
functions to obtain a context for the user. Returns 0 on success or -1 otherwise.
Caller must free the returned strings via free().

selinux.h

59. getsockcreatecon
getsockcreatecon_raw

Get sockcreate context, and set *con to refer to it. Sets *con to NULL if
no socket create context has been set, i.e. using default. If non-NULL, caller
must free via freecon.

selinux.h

60. init_selinuxmnt There is a man page for this, however it is not a user accessable function
(internal use only - although the fini_selinuxmnt is reachable).

-

61. is_context_customizable Returns whether a file context is customizable, and should not be relabeled. selinux.h
62. is_selinux_enabled Return 1 if running on a SELinux kernel, or 0 if not or -1 for error. selinux.h
63. is_selinux_mls_enabled Return 1 if we are running on a SELinux MLS kernel, or 0 otherwise. selinux.h
64. lgetfilecon

lgetfilecon_raw
Wrapper for the xattr API - Get file context, and set *con to refer to it.
Caller must free via freecon.

selinux.h

Page 351

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
65. lsetfilecon

lsetfilecon_raw
Wrapper for the xattr API- Set file context for symbolic link. selinux.h

66. manual_user_enter_context Allow the user to manually enter a context as a fallback if a list of authorized
contexts could not be obtained. Caller must free via freecon. Returns 0 on
success or -1 otherwise.

get_context_list.h

67. matchmediacon Match the specified media and against the media contexts configuration and
set *con to refer to the resulting context. Caller must free con via freecon.

selinux.h

68. matchpathcon Match the specified pathname and mode against the file context sconfiguration
and set *con to refer to the resulting context.'mode' can be 0 to disable
mode matching. Caller must free via freecon. If matchpathcon_init
has not already been called, then this function will call it upon its first
invocation with a NULL path.

selinux.h

69. matchpathcon_checkmatches Check to see whether any specifications had no matches and report them. The
'str' is used as a prefix for any warning messages.

selinux.h

70. matchpathcon_filespec_add Maintain an association between an inode and a specification index, and check
whether a conflicting specification is already associated with the same inode
(e.g. due to multiple hard links). If so, then use the latter of the two
specifications based on their order in the file contexts configuration. Return
the used specification index.

selinux.h

71. matchpathcon_filespec_destroy Destroy any inode associations that have been added, e.g. to restart for a new
filesystem.

selinux.h

72. matchpathcon_filespec_eval Display statistics on the hash table usage for the associations. selinux.h
73. matchpathcon_fini Free the memory allocated by matchpathcon_init. selinux.h

74. matchpathcon_index Same as ‘matchpathcon’, but return a specification index for later use in a
matchpathcon_filespec_add() call.

selinux.h

75. matchpathcon_init Load the file contexts configuration specified by 'path' into memory for use
by subsequent matchpathcon calls. If 'path' is NULL, then load the active
file contexts configuration, i.e. the path returned by
selinux_file_context_path(). Unless the
MATCHPATHCON_BASEONLY flag has been set, this function also checks for
a 'path'.homedirs file and a 'path'.local file and loads additional
specifications from them if present.

selinux.h

Page 352

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
76. matchpathcon_init_prefix Same as matchpathcon_init, but only load entries with regexes that

have stems that are prefixes of 'prefix'.
selinux.h

77. print_access_vector Display an access vector in a string representation. selinux.h
78. query_user_context Given a list of authorized security contexts for the user, query the user to

select one and set *newcon to refer to it. Caller must free via freecon.
Returns 0 on sucess or -1 otherwise.

get_context_list.h

79. rpm_execcon Execute a helper for rpm in an appropriate security context. selinux.h
80. security_av_perm_to_string Convert access vector permissions to string names. selinux.h
81. security_av_string Returns an access vector in a string representation. User must free the returned

string via free().
selinux.h

82. security_canonicalize_context
security_canonicalize_context_raw

Canonicalize a security context. Returns a pointer to the canonical (primary)
form of a security context in canoncon that the kernel is using rather than
what is provided by the userspace application in con.

selinux.h

83. security_check_context
security_check_context_raw

Check the validity of a security context. selinux.h

84. security_class_to_string Convert security class values to string names. selinux.h
85. security_commit_booleans Commit the pending values for the booleans. selinux.h
86. security_compute_av

security_compute_av_raw
Compute an access decision.
Queries whether the policy permits the source context scon to access the
target context tcon via class tclass with the requested access vector.
The decision is returned in avd.

selinux.h

87. security_compute_av_flags
security_compute_av__flags_raw

Compute an access decision and return the flags.
Queries whether the policy permits the source context scon to access the
target context tcon via class tclass with the requested access vector.
The decision is returned in avd. that has an additional flags entry. Currently
the only flag defined is SELINUX_AVD_FLAGS_PERMISSIVE that
indicates the decision was computed on a permissive domain (i.e. the
permissive policy language statement has been used in policy or
semanage(8) has been used to set the domain in permissive mode). Note
this does not indicate that SELinux is running in permissive mode, only the
scon domain.

selinux.h

Page 353

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
88. security_compute_create

security_compute_create_raw
Compute a labeling decision and set *newcon to refer to it. Caller must free
via freecon.

selinux.h

89. security_compute_create_name
security_compute_create_name_raw

This is identical to security_compute_create(3) but also takes the
name of the new object in creation as an argument.
When a type_transtion rule (see the type_transition Rule
section) on the given class and the scon / tcon pair has an object name
extension, newcon will be returned according to the policy. Note that this
interface is only supported on the kernels 2.6.40 or later. For older kernels the
object name is ignored.

selinux.h

90. security_compute_member
security_compute_member_raw

Compute a polyinstantiation member decision and set *newcon to refer to it.
Caller must free via freecon.

selinux.h

91. security_compute_relabel
security_compute_relabel_raw

Compute a relabeling decision and set *newcon to refer to it. Caller must free
via freecon.

selinux.h

92. security_compute_user
security_compute_user_raw

Compute the set of reachable user contexts and set *con to refer to the
NULL-terminated array of contexts. Caller must free via freeconary.

selinux.h

93. security_deny_unknown Get the behavior for undefined classes / permissions. selinux.h
94. security_disable Disable SELinux at runtime (must be done prior to initial policy load). selinux.h
95. security_get_boolean_active Get the active value for the boolean. selinux.h
96. security_get_boolean_names Get the boolean names selinux.h
97. security_get_boolean_pending Get the pending value for the boolean. selinux.h
98. security_get_initial_context

security_get_initial_context_raw
Get the context of an initial kernel security identifier by name. Caller must
free via freecon.

selinux.h

99. security_getenforce Get the enforce flag value. selinux.h
100. security_load_booleans Load policy boolean settings. Path may be NULL, in which case the booleans

are loaded from the active policy boolean configuration file.
selinux.h

101. security_load_policy Load a policy configuration. selinux.h
102. security_policyvers Get the policy version number. selinux.h
103. security_set_boolean Set the pending value for the boolean. selinux.h
104. security_set_boolean_list Save a list of booleans in a single transaction. selinux.h

Page 354

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
105. security_setenforce Set the enforce flag value. selinux.h

106. selabel_close Destroy the specified handle, closing files, freeing allocated memory, etc. The
handle may not be further used after it has been closed.

label.h

107. selabel_lookup
selabel_lookup_raw

Perform a labeling lookup operation. Return 0 on success, -1 with errno set
on failure. The key and type arguments are the inputs to the lookup
operation; appropriate values are dictated by the backend in use. The result is
returned in the memory pointed to by con and must be freed by freecon.

label.h

108. selabel_open Create a labeling handle.
Open a labeling backend for use. The available backend identifiers are:

SELABEL_CTX_FILE – file_contexts.
SELABEL_CTX_MEDIA - media contexts.
SELABEL_CTX_X – x_contexts.
SELABEL_CTX_ANDROID_PROP – property_contexts.

 Options may be provided via the opts parameter; available options are:
SELABEL_OPT_UNUSED - no-op option, useful for unused slots in an
array of options.
SELABEL_OPT_VALIDATE - validate contexts before returning them
(boolean value).
SELABEL_OPT_BASEONLY - don't use local customizations to backend
data (boolean value).
SELABEL_OPT_PATH - specify an alternate path to use when loading
backend data.
SELABEL_OPT_SUBSET - select a subset of the search space as an
optimization (file backend).

Not all options may be supported by every backend. Return value is the
created handle on success or NULL with errno set on failure.

label.h

109. selabel_stats Log a message with information about the number of queries performed,
number of unused matching entries, or other operational statistics. Message is
backend-specific, some backends may not output a message.

label.h

110. selinux_binary_policy_path Return path to the binary policy file under the policy root directory. selinux.h

111. selinux_booleans_path Return path to the booleans file under the policy root directory. selinux.h

Page 355

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
112. selinux_check_access Used to check if the source context has the access permission for the specified

class on the target context. Note that the permission and class are reference
strings.
The aux parameter may reference supplemental auditing information.
Auditing is handled as described in avc_audit(3).
See security_deny_unknown(3) for how the deny_unknown flag
can influence policy decisions.

selinux.h

113. selinux_check_passwd_access Check a permission in the passwd class. Return 0 if granted or -1 otherwise.
Replaced by selinux_check_access

selinux.h

114. selinux_check_securetty_context Check if the tty_context is defined as a securetty. Return 0 if secure,
< 0 otherwise.

selinux.h

115. selinux_colors_path Return path to file under the policy root directory. selinux.h
116. selinux_contexts_path Return path to contexts directory under the policy root directory. selinux.h

117. selinux_customizable_types_path Return path to customizable_types file under the policy root directory. selinux.h

118. selinux_default_context_path Return path to default_context file under the policy root directory. selinux.h

119. selinux_default_type_path Return path to default_type file. get_default_type.h
120. selinux_failsafe_context_path Return path to failsafe_context file under the policy root directory. selinux.h

121. selinux_file_context_cmp Compare two file contexts, return 0 if equivalent. selinux.h
122. selinux_file_context_homedir_path Return path to file_context.homedir file under the policy root

directory.
selinux.h

123. selinux_file_context_local_path Return path to file_context.local file under the policy root directory. selinux.h

124. selinux_file_context_path Return path to file_context file under the policy root directory. selinux.h

125. selinux_file_context_subs_path Return path to file_context.subs file under the policy root directory. selinux.h

126. selinux_file_context_subsdist_path Return path to file_context.subs_dist file under the policy root
directory.

selinux.h

127. selinux_file_context_verify Verify the context of the file 'path' against policy. Return 0 if correct. selinux.h

128. selinux_get_callback Used to get a pointer to the callback function of the given type. Callback
functions are set using selinux_set_callback(3).

selinux.h

129. selinux_getenforcemode Reads the /etc/selinux/config file and determines whether the selinux.h

Page 356

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
machine should be started in enforcing (1), permissive (0) or
disabled (-1) mode.

130. selinux_getpolicytype Reads the /etc/selinux/config file and determines what the default
policy for the machine is. Calling application must free policytype.

selinux.h

131. selinux_homedir_context_path Return path to file under the policy root directory. Note that this file will only
appear in older versions of policy at this location. On systems that are
managed using semanage(8) this is now in the policy store.

selinux.h

132. selinux_init_load_policy Perform the initial policy load.
This function determines the desired enforcing mode, sets the the *enforce
argument accordingly for the caller to use, sets the SELinux kernel enforcing
status to match it, and loads the policy. It also internally handles the initial
selinuxfs mount required to perform these actions.
The function returns 0 if everything including the policy load succeeds. In this
case, init is expected to re-exec itself in order to transition to the proper
security context. Otherwise, the function returns -1, and init must check
*enforce to determine how to proceed. If enforcing (*enforce > 0), then
init should halt the system. Otherwise, init may proceed normally without
a re-exec.

selinux.h

133. selinux_lsetfilecon_default This function sets the file context on to the system defaults returns 0 on
success.

selinux.h

134. selinux_media_context_path Return path to file under the policy root directory. selinux.h

Page 357

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
135. selinux_mkload_policy Make a policy image and load it.

This function provides a higher level interface for loading policy than
security_load_policy, internally determining the right policy version,
locating and opening the policy file, mapping it into memory, manipulating it
as needed for current boolean settings and/or local definitions, and then calling
security_load_policy to load it.
'preservebools' is a boolean flag indicating whether current policy
boolean values should be preserved into the new policy (if 1) or reset to the
saved policy settings (if 0). The former case is the default for policy reloads,
while the latter case is an option for policy reloads but is primarily for the
initial policy load.

selinux.h

136. selinux_netfilter_context_path Returns path to the netfilter_context file under the policy root
directory.

selinux.h

137. selinux_path Returns path to the policy root directory. selinux.h
138. selinux_policy_root Reads the /etc/selinux/config file and returns the top level directory. selinux.h

139. selinux_raw_context_to_color Perform context translation between security contexts and display colors.
Returns a space-separated list of ten ten hex RGB triples prefixed by hash
marks, e.g. "#ff0000". Caller must free the resulting string via free().
Returns -1 upon an error or 0 otherwise.

selinux.h

140. selinux_raw_to_trans_context Perform context translation between the human-readable format
("translated") and the internal system format ("raw"). Caller must free
the resulting context via freecon. Returns -1 upon an error or 0 otherwise. If
passed NULL, sets the returned context to NULL and returns 0.

selinux.h

141. selinux_removable_context_path Return path to removable_context file under the policy root directory. selinux.h

142. selinux_securetty_types_path Return path to the securetty_types file under the policy root directory. selinux.h

143. selinux_sepgsql_context_path Return path to sepgsql_context file under the policy root directory.
144. selinux_set_mapping Userspace class mapping support that establishes a mapping from a user-

provided ordering of object classes and permissions to the numbers actually
used by the loaded system policy.

selinux.h

145. selinux_trans_to_raw_context Perform context translation between the human-readable format
("translated") and the internal system format ("raw"). Caller must free
the resulting context via freecon. Returns -1 upon an error or 0 otherwise. If

selinux.h

Page 358

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
passed NULL, sets the returned context to NULL and returns 0.

146. selinux_translations_path Return path to setrans.conf file under the policy root directory. selinux.h

147. selinux_user_contexts_path Return path to file under the policy root directory. selinux.h
148. selinux_users_path Return path to file under the policy root directory. selinux.h
149. selinux_usersconf_path Return path to file under the policy root directory. selinux.h
150. selinux_virtual_domain_context_path Return path to file under the policy root directory. selinux.h
151. selinux_virtual_image_context_path Return path to file under the policy root directory. selinux.h
152. selinux_x_context_path Return path to x_context file under the policy root directory. selinux.h

153. set_matchpathcon_canoncon Same as ‘set_matchpathcon_invalidcon’, but also allows
canonicalization of the context, by changing *context to refer to the
canonical form. If not set, and invalidcon is also not set, then this defaults
to calling security_canonicalize_context().

selinux.h

154. set_matchpathcon_flags Set flags controlling operation of matchpathcon_init or
matchpathcon:

MATCHPATHCON_BASEONLY - Only process the base
file_contexts file.
MATCHPATHCON_NOTRANS - Do not perform any context translation.
MATCHPATHCON_VALIDATE - Validate/canonicalize contexts at init
time.

selinux.h

155. set_matchpathcon_invalidcon Set the function used by matchpathcon_init when checking the validity
of a context in the file_contexts configuration. If not set, then this
defaults to a test based on security_check_context(). The function is
also responsible for reporting any such error, and may include the 'path' and
'lineno' in such error messages.

selinux.h

156. set_matchpathcon_printf Set the function used by matchpathcon_init when displaying errors
about the file_contexts configuration. If not set, then this defaults to
fprintf(stderr, fmt, ...).

selinux.h

157. set_selinuxmnt Set the path to the selinuxfs mount point explicitly. Normally, this is
determined automatically during libselinux initialization, but this is not
always possible, e.g. for /sbin/init which performs the initial mount of

selinux.h

Page 359

The SELinux Notebook - The Foundations

Num. Function Name Description Header File
selinuxfs.

158. setcon
setcon_raw

Set the current security context to con.
Note that use of this function requires that the entire application be trusted to
maintain any desired separation between the old and new security contexts,
unlike exec-based transitions performed via setexeccon. When possible,
decompose your application and use setexeccon()+execve() instead.
Note that the application may lose access to its open descriptors as a result of a
setcon() unless policy allows it to use descriptors opened by the old
context.

selinux.h

159. setexeccon
setexeccon_raw

Set exec security context for the next execve. Call with NULL if you want
to reset to the default.

selinux.h

160. setfilecon
setfilecon_raw

Wrapper for the xattr API - Set file context. selinux.h

161. setfscreatecon
setfscreatecon_raw

Set the fscreate security context for subsequent file creations. Call with
NULL if you want to reset to the default.

selinux.h

162. setkeycreatecon
setkeycreatecon_raw

Set the keycreate security context for subsequent key creations. Call with
NULL if you want to reset to the default.

selinux.h

163. setsockcreatecon
setsockcreatecon_raw

Set the sockcreate security context for subsequent socket creations. Call
with NULL if you want to reset to the default.

selinux.h

164. sidget (deprecated) From 2.0.86 this is a no-op. avc.h
165. sidput (deprecated) From 2.0.86 this is a no-op. avc.h
166. string_to_av_perm Convert string names to access vector permissions. selinux.h
167. string_to_security_class Convert string names to security class values. selinux.h

Page 360

The SELinux Notebook - The Foundations

10. Appendix C – SELinux Commands
This section gives a brief explanation of the SELinux specific commands. Some of
these have been used within this Notebook, however the appropriate man pages do
give more detail and the SELinux project site has a page that details all the available
tools and commands at:

http://userspace.selinuxproject.org/trac/wiki/SelinuxTools
Command Man

Page
Purpose

audit2allow 1 Generates policy allow rules from the audit.log file.
audit2why 8 Describes audit.log messages and why access was denied.
avcstat 8 Displays the AVC statistics.
chcat 8 Change or remove a catergory from a file or user.
chcon 1 Changes the security context of a file.
checkmodule 8 Compiles base and loadable modules from source.
checkpolicy 8 Compiles a monolithic policy from source.
fixfiles 8 Update / correct the security context of for filesystems that use

extended attributes.
genhomedircon 8 Generates file configuration entries for users home directories.

This command has also been built into semanage(8), therefore
when using the policy store / loadable modules this does not need
to be used.

getenforce 1 Shows the current enforcement state.
getsebool 8 Shows the state of the booleans.
load_policy 8 Loads a new policy into the kernel. Not required when using

semanage(8) / semodule(8) commands.
matchpathcon 8 Show a files path and security context.
newrole 1 Allows users to change roles - runs a new shell with the new

security context.
restorecon 8 Sets the security context on one or more files.
run_init 8 Runs an init script under the correct context.
runcon 1 Runs a command with the specified context.
selinuxenabled 1 Shows whether SELinux is enabled or not.
semanage 8 Used to configure various areas of a policy within a policy store.
semodule 8 Used to manage the installation, upgrading etc. of policy modules.
semodule_expand 8 Manually expand a base policy package into a kernel binary

policy file.
semodule_link 8 Manually link a set of module packages.
semodule_package 8 Create a module package with various configuration files (file

context etc.)
sestatus 8 Show the current status of SELinux and the loaded policy.
setenforce 1 Sets / unsets enforcement mode.
setfiles 8 Initialise the extended attributes of filesystems.
setsebool 8 Sets the state of a boolean to on or off persistently across reboots

or for this session only.

Page 361

http://userspace.selinuxproject.org/trac/wiki/SelinuxTools

The SELinux Notebook - The Foundations

11. Appendix D – Document References
Ref. Title Author

1. Security-Enhanced PostgreSQL Security Wiki K. Kohei

2. SELinux Policy Module Primer J. Brindle

3. Polyinstantiation of directories in an SELinux system R. Coker

4. Implementing SELinux as a Linux Security Module S. Smalley, C.
Vance, W. Salamon

5. Iptables Tutorial O. Andreasson

6. New secmark-based network controls for SELinux J. Morris

7. Transitioning to Secmark Paul Moore

8. Fallback Label Configuration Example Paul Moore

9. Leveraging IPSec for Distributed Authorization Trent Jaeger

10. IPSec HOWTO Ralf Spenneberg

11. Secure Networking with SELinux J. Brindle

12. SELinux by Example F. Mayer
K Macmillan
D Caplan

13. SELinux From Scratch S. Hallyn

14. SELinux hardening for mmap_min_addr protections E. Paris

15.

16. Application of the Flask Architecture to the X
Window System Server

E. Walsh

17. X Access Control Extension Specification E. Walsh

18. A secure web application platform powered by
SELinux

K. Kohei

19. Kernel-based Virtual Machine Red Hat

20. How Does Xen Work Xen Project

21. Xen Security Modules G. Coker

22. The Case for Security Enhanced (SE)Android S. Smalley

Page 362

https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf
http://www.xen.org/files/xensummit_4/xsm-summit-041707_Coker.pdf
http://www.xen.org/files/Marketing/HowDoesXenWork.pdf
http://www.redhat.com/f/pdf/rhev/DOC-KVM.pdf
http://sepgsql.googlecode.com/files/LCA20090120-lapp-selinux.pdf
http://sepgsql.googlecode.com/files/LCA20090120-lapp-selinux.pdf
http://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.pdf
http://www.nsa.gov/research/_files/selinux/papers/xorg07-paper.pdf
http://www.nsa.gov/research/_files/selinux/papers/xorg07-paper.pdf
http://eparis.livejournal.com/891.html
http://www.ibm.com/developerworks/linux/library/l-selinux.html?S_TACT=105AGX03&S_CMP=ART
http://www.selinuxbyexample.com/
http://securityblog.org/brindle/2007/05/28/secure-networking-with-selinux/
http://www.ipsec-howto.org/
http://nsrc.cse.psu.edu/tech_report/NAS-TR-0037-2006.pdf
http://paulmoore.livejournal.com/1758.html
http://paulmoore.livejournal.com/4281.html
http://james-morris.livejournal.com/11010.html
http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://www.nsa.gov/selinux/papers/module/t1.html
http://www.coker.com.au/selinux/talks/sage-2006/PolyInstantiatedDirectories.html
http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/
http://wiki.postgresql.org/wiki/SEPostgreSQL_Development

The SELinux Notebook - The Foundations

12. Appendix E - GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

0. Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. Applicability and Definitions
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the
Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To
"Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. Verbatim Copying
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for
copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. Copying In Quantity
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

Page 363

http://fsf.org/

The SELinux Notebook - The Foundations

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. Modifications
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were
any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in
the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. Combining Documents
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. Collections Of Documents
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of that document.

7. Aggregation With Independent Works
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called
an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's
Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

Page 364

The SELinux Notebook - The Foundations

8. Translation
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is
the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of
the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. Future Revisions Of This License
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version"
applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. Relicensing
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Page 365

