
2

ADVANCED
GNU/Linux

ADMINISTRATION>
J. Jorba EsteveR. Suppi Boldrito

AUTHOR: COORDINATOR:

is version of the text is a preliminary version.
e FTA version will be published soon.

© 2008, FUOC. Permission is granted to copy, distribute and modify this document either under the
terms of the GNU Free Documentation Licence, Version 1.2 or any subsequent version published by the
Free Software Foundation, with no invariant sections or front-cover or back-cover texts, or under the
terms of Creative Commons by-sa 3.0 license, at the option of the user. A copy of these licenses is
included in the corresponding appendixes or this document.

is version of the text is a preliminary version.
e FTA version will be published soon.

Software has become a strategic societal resource in the last few decades.

e emergence of Free Software, which has entered in major sectors of

the ICT market, is drastically changing the economics of software

development and usage. Free Software – sometimes also referred to as

“Open Source” or “Libre Software” – can be used, studied, copied,

modified and distributed freely. It offers the freedom to learn and to

teach without engaging in dependencies on any single technology

provider. ese freedoms are considered a fundamental precondition for

sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software

and Open Standards), still a limited number of people have sufficient

knowledge and expertise in these fields. e FTA attempts to respond to

this demand.

Introduction to the FTA
e Free Technology Academy (FTA) is a joint initiative from several

educational institutes in various countries. It aims to contribute to a

society that permits all users to study, participate and build upon existing

knowledge without restrictions.

What does the FTA offer?
e Academy offers an online master level programme with course

modules about Free Technologies. Learners can choose to enrol in an

individual course or register for the whole programme. Tuition takes

place online in the FTA virtual campus and is performed by teaching

staff from the partner universities. Credits obtained in the FTA

programme are recognised by these universities.

Who is behind the FTA?
e FTA was initiated in 2008 supported by the Life Long Learning

Programme (LLP) of the European Commission, under the coordination

of the Free Knowledge Institute and in partnership with three european

universities: Open Universiteit Nederland (e Netherlands), Universitat

Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
e Free Technology Academy is specially oriented to IT professionals,

educators, students and decision makers.

What about the licensing?
All learning materials used in and developed by the FTA are Open

Educational Resources, published under copyleft free licenses that allow

them to be freely used, modified and redistributed. Similarly, the

software used in the FTA virtual campus is Free Software and is built

upon an Open Standards framework.

Preface

Evolution of this book
e FTA has reused existing course materials from the Universitat

Oberta de Catalunya and that had been developed together with

LibreSoft staff from the Universidad Rey Juan Carlos. In 2008 this book

was translated into English with the help of the SELF (Science,

Education and Learning in Freedom) Project, supported by the

European Commission's Sixth Framework Programme. In 2009, this

material has been improved by the Free Technology Academy.

Additionally the FTA has developed a study guide and learning activities

which are available for learners enrolled in the FTA Campus.

Participation
Users of FTA learning materials are encouraged to provide feedback and

make suggestions for improvement. A specific space for this feedback is

set up on the FTA website. ese inputs will be taken into account for

next versions. Moreover, the FTA welcomes anyone to use and distribute

this material as well as to make new versions and translations.

See for specific and updated information about the book, including

translations and other formats: http://ftacademy.org/materials/fsm/2. For

more information and enrolment in the FTA online course programme,

please visit the Academy's website: http://ftacademy.org/.

I sincerely hope this course book helps you in your personal learning

process and helps you to help others in theirs. I look forward to see you

in the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens
President of the Free Knowledge Institute

Director of the Free technology Academy

e authors would like to thank the Foundation for the
Universitat Oberta de Catalunya for financing the first edition
of this work, and a large share of the improvements leading to
the the second edition, as part of the Master Programme in
Free Software offered by the University in question, where it is
used as material for one of the subjects.

e translation of this work into English has been made
possible with the support from the SELF Project, the SELF
Platform, the European Comission's programme on
Information Society Technologies and the Universitat Oberta
de Catalunya. We would like to thank the translation of the
materials into English carried out by lexia:park.

e current version of these materials in English has been
extended with the funding of the Free Technology Academy
(FTA) project. e FTA project has been funded with support
from the European Commission (reference no. 142706-
LLP-1-2008-1-NL-ERASMUS-EVC of the Lifelong Learning
Programme). is publication reflects the views only of the
authors, and the Commission cannot be held responsible for
any use which may be made of the information contained
therein.

������������������������� � ���������������������������������

��������

��������

��

������������������

�� �����������������������������

�� ����������������������

�� �����������������

�� ��

�� ��������������������������

�� �����������������������

�� �����������������������

��������

��

������������������

�� ������������������������������

�� ������������������

�� ������������

�� ������������������������

�� ���������������������������������������

��������

���������������������������������

������������������

�� ��������������������������������

�� �������������������

�� ���������������������������

�� ������������������

�� ������������������������

�� ����������������������������

�� �����������

��������

����������

������������������

�� ����������������������������������

�� ��������������������������������

�� �������������������������������������

�� �������������������

�� ��������������

�� �������������������������������������

�� ��

������������������������� � ���������������������������������

��������

��������������������

������������������

�� �������������������������������

�� ���������������������������

�� �������������������������������

�� �����������

�� ����������������

�� ����������������

�� ���������������������������������

�� ������������������

�� ��������������������

��� ��

��������

����������������������

�������������������

�� �������������������������������������

�� ���������������

�� �������������������������������������

�� ������������������������������������

�� ������������������

�� �����������

�� �������������

�� �����������������������������

�� ���

��� ���������������������������������������

��� �����������������������������

��� ���������������������������������

��������

���������������������

�������������������

�� ������������������������

�� ��������

�� ��

�� ���������������������������

�� ���

�� ��������������������

�� ���������������

�� �������������������

��������

�������������������

�������������������

�� ����������

�� �����

�� ���

������������������������� � ���������������������������������

�� ����������

��������

�����������������������

������������������

�� ���������������������������

�� ���������������

�� ��������������

�� �������

�� ����������������

�� �������������������

�� ��

�� ��������������

�� �������������

��� ���������������������������������������

���������

��������������������������������������

�������������������

�� �������������

���������

����������

�������������������

�� �������������������

�� ���������

�� �����������������������������

Introduction to
the GNU/Linux
operating system

Josep Jorba Esteve

P07/M2003/02280

© FUOC • P07/M2003/02280 Introduction to the GNU/Linux operating system

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2003/02280 Introduction to the GNU/Linux operating system

Index

Introduction... 5

1. Free Software and Open Source... 7

2. UNIX. A bit of history.. 13

3. GNU/Linux systems... 21

4. The profile of the systems administrator................................... 25

5. Tasks of the administrator... 30

6. GNU/Linux distributions... 35

6.1. Debian ... 39

6.2. Fedora Core ... 42

7. What we will look at... 47

Activities.. 51

Bibliography... 52

© FUOC • P07/M2003/02280 5 Introduction to the GNU/Linux operating system

Introduction

GNU/Linux systems [Joh98] are no longer a novelty; they have a broad range

of users and they are used in most work environments.

Their origin dates back to August 1991, when a Finnish student called Linus

Torvalds announced on a news list that he had created his own operating

system and that he was offering it to the community of developers for testing

and suggesting improvements to make it more usable. This was the origin of

the core (or kernel) of the operating system that would later come to be known

as Linux.

Separately, the FSF (Free Software Foundation), through its GNU project, had

been producing software that could be used for free since 1984. Richard Stall-

man (FSF member) considered free software that whose source code we could

obtain, study, modify and redistribute without being obliged to pay for it. Un-

der this model, the business does not reside in hiding the code, but rather in

the complementary additional software, tailoring the software to clients and

added services, such as maintenance and user training (the support we give)

whether in the form of materials, books and manuals, or training courses.

The combination of the GNU software and the Linux kernel, is what has

brought us to today's GNU/Linux systems. At present, the open source move-

ments, through various organisations, such as the FSF, and the companies

that generate the different Linux distributions (Red Hat, Mandrake, SuSe...),

including large companies that offer support, such as HP, IBM or Sun, have

given a large push to GNU/Linux systems to position them at a level of being

capable of competing and surpassing many of the existing closed proprietary

solutions.

GNU/Linux systems are no longer a novelty. GNU software started in the mid-

eighties, the Linux kernel, in the early nineties. And Linux is based on tested

UNIX technology with more than 30 years of history.

In this introductory unit we will revise some of the general ideas of the Open

Source and Free Software movements, as well as a bit of the history of Linux

and its shared origins with UNIX, from which it has profited from more than

30 years of research into operating systems.

© FUOC • P07/M2003/02280 7 Introduction to the GNU/Linux operating system

1. Free Software and Open Source

Under the movements of Free Software and Open Source [OSIc] [OSIb] (also

known as open code or open software), we find various different forms of

software that share many common ideas.

A software product that is considered to be open source implies as its

main idea that it is possible to access its source code, and to modify

it and redistribute it as deemed appropriate subject to a specific open

source license that defines the legal context.

As opposed to a proprietary type code, whereby the manufacturer (software

company) will lock the code, hiding it and restricting the rights to it to itself,

without allowing the possibility of any modification or change that has not

been made previously by the manufacturer, open source offers:

a) access to the source code, whether to study it (ideal for education purposes)

or to modify it, to correct errors, to adapt it or to add more features;

b) software that is free of charge: normally, the software, whether in binary

form or source code form, can be obtained free of charge or for a modest sum

to cover packaging and distribution costs and added value;

c) standards that prevent monopolies of proprietary software, avoiding depen-

dency on a single choice of software manufacturer; this is more important for

a large organisation, whether a company or a state, which cannot (or should

not) put itself in the hands of a single specific solution and depend exclusively

upon it;

d) a model of progress that is not based on hiding information but on sharing

knowledge (like the scientific community) so as to progress more rapidly, and

with better quality since decisions are based on the community's consensus

and not on the whims of the companies that develop proprietary software.

Creating programs and distributing them together with the source code is

nothing new. Since the beginnings of IT and the Internet, things had been

done this way. However, the concept of open source itself, its definition and

the drafting of the conditions it has to meet date back to the middle of 1997.

© FUOC • P07/M2003/02280 8 Introduction to the GNU/Linux operating system

Eric Raymond and Bruce Perens promoted the idea. Raymond [Ray98] was

the author of an essay called The Cathedral and the Bazaar, which discusses

software development techniques used by the Linux community, headed by

Linus Torvalds, and the GNU community of the Free Software Foundation

(FSF), headed by Richard Stallman. Bruce Perens was the leader of the Debian

project, which was working on creating a GNU/Linux distribution that inte-

grated exclusively free software.

Note

Two of the most important communities are the FSF, with its GNU software project, and
the Open Source community, with Linux as its major project. GNU/Linux is the outcome
of their combined work.

An important distinction between these communities lies in the definitions

of open source and free software. [Deba] [PS02]

The Free Software Foundation [FSF] is a non-profit corporation founded by

Richard Stallman, who believes that we should guarantee that programs are

within everyone's reach free of charge, freely accessible and for use as each

individual sees fit. The term free caused some reticence among companies.

In English, the word can mean "without cost or payment" or "not under the

control or in the power of another". The FSF sought both, but it was difficult

to sell these two ideas to businesses; the main question was: "How can we

make money with this?" The answer came from the Linux community (headed

by Linus Torvalds), when they managed to obtain something that the GNU

and FSF community had not yet achieved: a free operating system with an

available source code. It was at that moment that the community decided to

unite the various activities within the free software movement under a new

name: open source software.

Open Source was registered as a certification brand, to which software prod-

ucts complying with its specifications could adhere. This did not please ev-

erybody and there tends to be a certain divide or controversy over the two

groups of Open Source and FSF (with GNU), although really they have more

things in common than not.

To some extent, for the exponents of free software (such as the FSF), open

source is a false step, because it means selling out its ideals to the market,

leaving the door open for software that was free to become proprietary. Those

who back open source see it as an opportunity to promote software that would

otherwise only be used by a minority, whereas through its worldwide diffusion

and sharing, including with companies wishing to participate in open source,

we find sufficient strength to challenge proprietary software.

Note

See English version at:
http://es.tldp.org/Otros/cate-
dral-bazar/cathedral-es-paper-
00.html

© FUOC • P07/M2003/02280 9 Introduction to the GNU/Linux operating system

However, the idea pursued by both movements is to increase the use of

free software, thus offering an alternative to the sole solutions that large

companies wish to impose. The differences are more than practical.

Having established the basic ideas of the open source community, we reached

the point where we needed to clarify the criteria a software product should

meet in order to qualify as open source. We had to base it on the definition of

open source [OSIb] that was originally written by Bruce Perens in June 1997

in response to comments by developers of the Debian Linux distribution,

which was subsequently re-edited (with minor changes) by the Open Source

Initiative organisation (OSI). This body is responsible for controlling the open

source definition and licenses.

Note

Open source is regulated by a public definition used as the basis for drafting its software
licenses.

A small summary (interpretation) of the definition: Open source software [OS-

Ib], or software with an open source code, must fulfil the following require-

ments:

1) The software may be copied, given away or sold to third parties, without

requiring any payment for it.

2) The program must include source code and must allow distribution in

source code as well as in compiled form. Or, in all events, there must be a

well-publicised means of obtaining the source code (such as downloading via

the Internet, for example). Deliberately obfuscated or intermediary forms of

source code are not allowed. The license must guarantee that changes can be

made.

3) The software license must allow modifications and derived works, and must

allow them to be distributed under the same terms as the license of the original

software. It allows the original code to be re-used.

4) The integrity of the author's source code may be required, in other words,

modifications may be presented in the form of patches to the original code, or

may be required to carry a different name or version number from the original.

This protects which modifications can be attributed to the author. This point

depends on what the software license says.

5) The license must not discriminate against any person or group of persons.

Access to the software must not be restricted. In some cases there may be legal

restrictions, as in the case of the United States for technology exports to third

countries. If there are restrictions of this type, they must be mentioned.

Note

See the original definition of
Open Source at:
http://www.opensource.org/
docs/definition.php
And in re-edition at:
http://www.opensource.org

© FUOC • P07/M2003/02280 10 Introduction to the GNU/Linux operating system

6) No discrimination against fields of endeavour. The software can be used in

any field of endeavour, even if it was not designed for that field. Commercial

use is allowed; nobody can stop the software from being used for commercial

purposes.

7) The license applies to everyone who receives the program.

8) If the software forms part of a larger product, it must keep the same license.

This makes sure that parts are not separated in order to form proprietary soft-

ware (in an uncontrolled manner). In the case of proprietary software, it must

inform that it contains parts (stating which parts) of open source software.

9) The license must not restrict any incorporated or jointly distributed soft-

ware, in other words, its incorporation should not act as a barrier for another

jointly distributed software product. This is a controversial issue since it ap-

pears to contradict the preceding point, basically it says that anyone can take

open source software and add it to their own software without this affecting

its license conditions (for example proprietary), although, according to the

preceding point, it would have to inform that there are parts of open source.

10) The license must be technology neutral, i.e. not restricted to certain de-

vices or operating systems. It is not allowed to mention exclusive distribution

means or to exclude possibilities. For example, under the open source licence,

it is not possible to restrict the distribution to CD, FTP or web form.

This definition of open source is not a software license in itself, but

rather a specification of the requirements that an open source software

license must fulfil.

In order to be considered an open source program, the program's license must

comply with the above specifications. The OSI is responsible for checking that

licences meet the specifications. On the Open Source Licenses web page you

can find the list of licenses [OSIa], of which one of the most famous and ex-

tensively used is the GPL (GNU Public License).

Under the GPL, the software may be copied and modified, but modifications

must be made public under the same license, and it prevents the code becom-

ing mixed with proprietary code so as to avoid proprietary code taking over

parts of open source. There is the LGPL license, which is practically identical

except that software with this license can be integrated into proprietary soft-

ware. A classic example is the Linux C library (with LGPL license); if it were

GPL, only free software could be developed, with the LGPL it can be used for

developing proprietary software.

Note

Open Source Licences:
http://www.opensource.org/li-
censes/index.html

© FUOC • P07/M2003/02280 11 Introduction to the GNU/Linux operating system

Many free software projects, or with part open source and part proprietary

code, have their own license: Apache (based on BSD), Mozilla (MPL and NPL

of Netscape) etc. Basically, when it comes to identifying the software as open

source we can make our own license that complies with the above definition

(of open source) or we can choose to license it under an already established

license, or in the case of GPL, we are obliged for our license also to be GPL.

Having studied the concepts of open source and its licenses, we need to look

at to what extent it is profitable for a company to work on or produce open

source. If it were not attractive for companies, we would lose both a potential

client and one of the leading software producers at the same time.

Open source is also attractive for companies, with a business model that em-

phasises a product's added value.

Open source offers various attractive benefits where companies are concerned:

a) For software developers, it poses a problem: how to make money without

selling a product. A lot of money is spent on developing a program and then

profit has to be made on top. Well, there is no simple answer, it is not possible

with any type of software, the return lies in the type of software that can

generate profit beyond the mere sale. Normally, a study will be made as to

whether the application will become profitable if developed as open source

(most will), based on the premises that we will have a reduced development

cost (the community will help us), a reduced cost of maintenance or error

correction (the community can help with this quite quickly) and taking into

account the number of users that the open source will provide, as well as the

needs that they will have for our support or documentation services. If the

balance is positive, then it will be viable to do without revenue from sales.

b) Increasing the number of users.

c) Obtaining greater development flexibility, the more people who intervene,

the more people will be able to detect errors.

d) Revenue will mostly come from support, user training and maintenance.

e) Companies that use software need to take many parameters into consid-

eration before choosing a software for managing tasks, such as performance,

reliability, security, scalability and financial cost. And although it would seem

that open source is already an evident choice on the cost basis, we must say

that there is open source software capable of competing with (or even surpass-

ing) proprietary software on any other parameter. Also, we need to take care

with choosing the options or proprietary systems of a single manufacturer;

we cannot rely solely on them (we may recall cases such as Sony's beta videos

© FUOC • P07/M2003/02280 12 Introduction to the GNU/Linux operating system

versus VHS, or the MicroChannel architecture of IBM for PCs). We need to

avoid using monopolies with their associated risks: lack of price competition,

expensive services, expensive maintenance, little (or no) choice of options etc.

f) For private users it offers a large variety of software adapted for common

uses, since a lot of the software has been conceived and implemented by peo-

ple who wanted to do the same tasks but could not find the right software.

Usually, in the case of a domestic user, a very important parameter is the soft-

ware cost, but the paradox is that precisely domestic users are more prone to

using proprietary software. Normally, domestic users will use illegal copies of

software products; recent statistics show levels of 60-70% of illegal domestic

copies. Users feel that merely by owning a home PC they are entitled to using

the software for it. In these cases, we are dealing with illegal situations, which

although they may not have been prosecuted, may be one day, or are attempt-

ed to be controlled through license systems (or product activations). Also, this

has an indirect negative effects on free software, because if users are extensive-

ly using proprietary software, it forces everyone who wants to communicate

them, whether banks, companies or public administrations, to use the same

proprietary software too, and they do have to pay the product licenses. One

of the most important battles for free software is to capture domestic users.

g) Finally, states, as a particular case, can obtain important benefits from open

source software, since it offers them quality software at ridiculous prices com-

pared to the enormous cost of licenses for proprietary software (thousands or

tens of thousands). Moreover, open source software can easily integrate cul-

tural aspects (of each country) such as language, for example. This last case is

fairly problematic, since manufacturers of proprietary software refuse to adapt

their applications in some regions – small states with their own language – or

ask to be paid for doing so.

Note

Illegal domestic copies are also
sometimes known as pirated
copies.

© FUOC • P07/M2003/02280 13 Introduction to the GNU/Linux operating system

2. UNIX. A bit of history

As a predecessor to our GNU/Linux systems [Sta02], let's recall a bit about the

history of UNIX [Sal94] [Lev]. Originally, Linux was conceived as a Minix clone

(an academic implementation of UNIX for PC) and used some ideas developed

in proprietary UNIX; but, in turn, it was developed in open source, and with

a focus on domestic PCs. In this section on UNIX and in the following one

on GNU/Linux, we will see how this evolution has brought us to current day

GNU/Linux systems that are capable of competing with any proprietary UNIX

and that are available for a large number of hardware architectures, from the

simple PC to supercomputers.

Linux can be used on a broad range of machines. In the TOP500 list,

we can find several supercomputers with GNU/Linux (see list on webpage

top500.org): for example, the MareNostrum, in the Barcelona Supercomputing

Center, a cluster, designed by IBM, with 10240 CPUs PowerPC with GNU/Lin-

ux operating system (adapted to the requirements of these machines). From

the list we can see that overall supercomputers with GNU/Linux make up 75%

of the list.

UNIX started back in 1969 (we now have almost 40 years of history) in the

Bell Telephone Labs (BTL) of AT&T. These had just withdrawn from a project

called MULTICS, which was designed to create an operating system so that a

large computer could support thousands of users simultaneously. BTL, General

Electric, and MIT were involved in the project. But it failed, in part, because

it was too ambitious for the time.

While this project was underway, two BTL engineers who were involved in

MULTICS: Ken Thompson and Dennis Ritchie, found a DEC PDP7 computer

that nobody was using, which only had an assembler and a loading program.

Thompson and Ritchie developed as tests (and often in their free time) parts

of UNIX, an assembler (of machine code) and the rudimentary kernel of the

operating system.

That same year, in 1969, Thompson had the idea of writing a file system for

the created kernel, in such a way that files could be stored in an ordered form

in a system of hierarchical directories. Following various theoretical debates

(which took place over about two months) the system was implemented in

just a couple of days. As progress was made on the system's design, and a

few more BTL engineers joined in, the original machine became too small,

and they thought about asking for a new one (in those days they cost about

100,000 US dollars, which was a considerable investment). They had to make

Note

We can see the TOP500 list of
the fastest supercomputers at:
http://www.top500.org

© FUOC • P07/M2003/02280 14 Introduction to the GNU/Linux operating system

up an excuse (since the UNIX system was a free time development) so they

said they wanted to create a new text processor (an application that generated

money at that time), so they were given approval to purchase a PDP11.

UNIX dates back to 1969, with over 30 years of technologies developed and

used on all types of systems.

When the machine arrived, they were only given the CPU and the memory,

but not the disk or the operating system. Thompson, unable to wait, designed

a RAM disk in memory and used half of the memory as a disk and the other

half for the operating system that he was designing. Once the disk arrived,

they continued working on both UNIX and the promised text processor (the

excuse). The text processor was a success (it was Troff, an editor language sub-

sequently used for creating the UNIX man pages), and BTL started using the

rudimentary UNIX with the new text processor, with BTL thus becoming the

first user of UNIX.

At that time, the UNIX philosophy started to emerge [Ray02a]:

• Write programs that do one thing and do it well.

• Write programs to work together.

• Write programs to handle text streams.

Another important characteristic was that UNIX was one of the first systems

conceived to be independent of the hardware architecture, and this has al-

lowed it to be carried over to a large number of different hardware architec-

tures.

In November 1971, as there were external users, the need to document what

was being done resulted in the UNIX Programmer's Manual signed by Thomp-

son and Richie. In the second edition (June 1972), known as V2 (the edition

of the manuals was made to correspond with the UNIX version number), it

was said that the number of UNIX installations had already reached 10. And

the number continued to grow to about 50 in V5.

Then, at the end of 1973, it was decided to present the results at a conference

on operating systems. And consequently, various IT centres and universities

asked for copies of UNIX. AT&T did not offer support or maintenance to UNIX,

which meant that users had to unite and share their knowledge by forming

communities of UNIX users. AT&T decided to cede UNIX to universities, but

did not offer them support or correct errors for them. Users started sharing

their ideas, information on programs, bugs etc. They created an association

called USENIX, meaning users of UNIX. Their first meeting in May 1974 was

attended by a dozen people.

Note

See: http://www.usenix.org

© FUOC • P07/M2003/02280 15 Introduction to the GNU/Linux operating system

One of the universities to have obtained a UNIX license was the University of

California at Berkeley, where Ken Thompson had studied. In 1975, Thompson

returned to Berkeley as a teacher bringing with him the latest version of UNIX.

Two recently-graduated students, Chuck Haley and Bill Joy (nowadays one

of the vice-presidents of SUN Microsystems), joined him and started to work

together on a UNIX implementation.

One of the first things that they were disappointed with were the editors; Joy

perfected an editor called EX, until transforming it into VI, a full screen visual

editor. And the two developed a Pascal language compiler, which they added

to UNIX. There was a certain amount of demand for this UNIX implementa-

tion, and Joy started to produce it as the BSD, Berkeley Software Distribution

(or UNIX BSD).

BSD (in 1978) had a particular license regarding its price: it said that it corre-

sponded to the cost of the media and the distribution it had at that time. Thus,

new users ended up making some changes or incorporating features, selling

their remade copies and after a certain amount of time, these changes were

incorporated into the following version of BSD.

Joy also made a few more contributions to his work on the vi editor, such

as handling text terminals in such a way that the editor was independent of

the terminal where it was being used; he created the TERMCAP system as a

generic terminals interface with controllers for each specific terminal, so that

programs could be executed irrespective of the terminals using the interface.

The following step was to adapt it to different architectures. Until 1977, it

could only be run on PDP machines; that year adaptations were made for

machines of the time such as Interdata and IBM. UNIX Version 7 (V7 in June

1979) was the first portable one. This version offered many advances, as it

included: awk, lint, make, uucp; the manual already had 400 pages (plus two

appendices of 400 pages each). It also included the C compiler designed at BTL

by Kernighan and Ritchie, which had been created to rewrite most of UNIX,

initially in the assembler and then into C with the parts of the assembler

that only depended on the architecture. Also included were an improved shell

(Bourne shell) and commands such as: find, cpio and expr.

The UNIX industry also started to grow, and versions of UNIX (implementa-

tions) started to appear from companies such as: Xenix, a collaboration be-

tween Microsoft – which in its early days it also worked with UNIX versions

– and SCO for Intel 8086 machines (the first IBM PC); new versions of BSD

from Berkeley...

© FUOC • P07/M2003/02280 16 Introduction to the GNU/Linux operating system

However, a new problem appeared when AT&T realised that UNIX was a valu-

able commercial product, the V7 license prohibited its study in academic in-

stitutions in order to protect its commercial secret. Until that time many uni-

versities used the UNIX source code in order to teach operating systems, and

they stopped using it to teach only theory.

However, everyone found their own way of solving the problem. In Amster-

dam, Andrew Tanenbaum (prestigious author of theory books on operating

systems) decided to write a new UNIX-compatible operating system without

using a single line of AT&T code; he called this new operating system Minix.

This is what would subsequently be used in 1991 by a Finnish student to cre-

ate his own version of UNIX, which he called Linux.

Bill Joy, who was still at Berkeley developing BSD (already in version 4.1), de-

cided to leave to a new company called SUN Microsystems, where he finished

working on BSD 4.2, which would later be modified to create SUN's UNIX,

SunOS (around 1983). Every company started developing its own versions:

IBM developed AIX, DEC - Ultrix, HP - HPUX, Microsoft/SCO - Xenix etc. As

of 1980, UNIX began as a commercial venture, AT&T released a final version

called UNIX System V (SV), on which as well as on the BSD 4.x, current UNIX

are based, whether on the BSD or the System V branch. SV was revised several

times and, for example, SV Release 4 was one of the most important ones. The

result of these latest versions was that more or less all existing UNIX systems

were adapted to each other; in practice they are versions of AT&T's System

V R4 or Berkeley's BSD, adapted by each manufacturer. Some manufacturers

specify whether their UNIX is a BSD or SV type, but in reality they all have a

bit of each, since later several UNIX standards were drawn up in order to try

and harmonise them; among these, we find IEEE POSIX, UNIX97, FHS etc.

Over time, the UNIX system split into several branches, of which the two main

ones were AT&T's UNIX or System V, and the University of California's BSD.

Most current UNIX systems are based on one or the other, or are a mixture

of the two.

However, at that time, AT&T (SVR4) was undergoing legal proceedings as a

telephone monopoly (it was the leading, if not the only, telephone company

in the US), which forced it to split into several smaller companies, causing

the rights to UNIX to start dancing between owners: in 1990 it was shared

50/50 by the Open Software Foundation (OSF) and UNIX International (UI),

later, UNIX Systems Laboratories (USL), which denounced the University of

Berkeley for its BSD copies, but lost, since the original license did not impose

any ownership rights over the UNIX code. Later, the rights to UNIX were sold

to Novell, which ceded a share to SCO, and as of today it is not very clear who

owns them: they are claimed through different fronts by Novell, the OSF and

SCO. A recent example of this problem is the case of SCO, which initiated a

lawsuit against IBM because according to SCO, it had ceded parts of the UNIX

source code to versions of the Linux kernel, which allegedly include some

© FUOC • P07/M2003/02280 17 Introduction to the GNU/Linux operating system

original UNIX code. The result as of today is that the matter remains in the

courts, with SCO turned into a pariah of the IT industry threatening Linux,

IBM, and other proprietary UNIX users, with the assertion that they own the

original rights to UNIX and that everyone else should pay for them. We will

have to see how this case evolves, and the issue of UNIX rights along with it.

Figure 1. Historical summary of the different versions of UNIX

The current scenario with UNIX has changed a lot since Linux appeared in

1991, since as of 1995-99 it became a serious alternative to proprietary UNIX

systems, due to the large number of hardware platforms that it supports and

the extensive support for its progress of the international community and

companies. Different proprietary versions of UNIX continue to survive in the

market, because of their adaptation to industrial environments or for being

the best operating system in the market, or because there are needs that can

only be covered with UNIX and the corresponding hardware. Also, some pro-

prietary UNIX are even better than GNU/Linux in terms of reliability and per-

formance although the gap is shortening all the time, since companies with

their own proprietary UNIX systems are showing more and more interest in

GNU/Linux and offering some of their own developments for inclusion in

© FUOC • P07/M2003/02280 18 Introduction to the GNU/Linux operating system

Linux. We can expect a more or less slow extinction of proprietary UNIX ver-

sions towards Linux-based distributions from manufacturers adapted to their

equipment.

Overview of these companies:

• SUN: it offers a UNIX implementation called Solaris (SunOS evolution). It

started as a BSD system, but is now mostly System V with parts of BSD;

it is commonly used on Sun machines with a SPARC architecture, and in

multiprocessor machines (up to 64 processors). They promote GNU/Lin-

ux as a Java development environment and have a GNU/Linux distribu-

tion known as Java Desktop System, which has been widely accepted in a

number of countries. Also, it has started using Gnome as a desktop, and

offers financial support to various projects such as Mozilla, Gnome and

OpenOffice. We should also mention its initiative with its latest version

of Solaris UNIX, to almost totally free its code in Solaris version 10. Cre-

ating a community for Intel and SPARC architectures, called OpenSolaris,

which has made it possible to create free Solaris distributions. On a sep-

arate note, we should mention recent initiatives (2006) to free the Java

platform under GPL licenses.

• IBM: it has its proprietary version of UNIX called AIX, which survives in

some segments of the company's workstations and servers. At the same

time, it firmly supports the Open Source community, by promoting free

development environments (eclipse.org) and Java technologies for Linux,

it incorporates Linux in its large machines and designs marketing cam-

paigns to promote Linux. It also has influence among the community be-

cause of its legal defence against SCO, which accuses it of violating intel-

lectual property alleging that it incorporated elements of UNIX in GNU/

Linux.

• HP: it has its HPUX UNIX, but offers Linux extensive support, both in the

form of Open Source code and by installing Linux on its machines. It is

said to be the company that has made the most money with Linux.

• SGI: Silicon Graphics has a UNIX system known as IRIX for its graph-

ics machines, but lately tends to sell machines with Windows, and possi-

bly some with Linux. The company has been through difficulties and was

about to break up. It offers support to the Linux community in OpenGL

(3D graphics technology), different file systems and peripheral device con-

trol.

• Apple: joined the UNIX world recently (in the mid-nineties), when it de-

cided to replace its operating system with a UNIX variant. The core known

as Darwin derives from BSD 4.4; this Open Source kernel together with

some very powerful graphic interfaces is what gives Apple its MacOS X

operating system. Considered today to be one of the best UNIX and, at

Note

Many companies with pro-
prietary UNIX participate in
GNU/Linux and offer some
of their developments to the
community.

© FUOC • P07/M2003/02280 19 Introduction to the GNU/Linux operating system

least, one of the most appealing in its graphics aspect. It also uses a large

amount of GNU software as system utilities.

• Linux distributors: both commercial and institutional, we will mention

companies such as Red Hat, SuSe, Mandriva (formerly known as Man-

drake), and non-commercial institutions such as Debian etc. These (the

most widespread distributions) and the smallest ones are responsible for

most of the development of GNU/Linux, with the support of the Linux

community and the FSF with GNU software, in addition to receiving con-

tributions from the abovementioned companies.

• BSD: although it is not a company as such, BSD versions continue to de-

velop, as well as other BSD clone projects such as the FreeBSD, netBSD,

OpenBSD (the UNIX considered to be the securest), TrustedBSD etc. These

operating systems will also result in improvements or software incorpora-

tions to Linux sooner or later. Additionally, an important contribution is

the Darwin kernel stemming from BSD 4.4, which Apple developed as the

Open Source kernel of its MacOS X operating system.

• Microsoft: apart from hindering the development of UNIX and GNU/Lin-

ux, by setting up obstacles through incompatibilities between different

technologies, it has no direct participation in the world of UNIX/Linux.

However, in its early days it developed Xenix (1980) for PCs, based on an

AT&T UNIX license, which although not sold directly was sold through

intermediaries, such as SCO, which acquired control in 1987, and was

renamed SCO UNIX (1989). As a curious side note, later it bought the

rights to the UNIX license from SCO (which in turn had obtained them

from Novell). Microsoft's motives for this acquisition are not clear, but

some suggest that there is a relation with the fact that it supports SCO in

the lawsuit against IBM. In addition, recently (2006), Microsoft reached

agreements with Novell (current provider of the SuSe distribution and the

OpenSuse community), in a number of bilateral decisions to give busi-

ness promotion to both platforms. But part of the GNU/Linux communi-

ty remains sceptical due to the potential implications for Linux intellec-

tual property and issues that could include legal problems for the use of

patents.

Another interesting historical anecdote is that together with a company called

UniSys, they launched a marketing campaign on how to convert UNIX sys-

tems to Windows systems; and although its purpose may be more or less com-

mendable, a curious fact is that the original web server of the business was

on a FreeBSD machine with Apache. Occasionally, it also pays "independent"

companies (some would say they are not very independent) to conduct com-

parative performance analyses between UNIX/Linux and Windows.

Note

Open letter from Novell to the
GNU/Linux community
http://www.novell.com/linux/
microsoft/community_open_
letter.html

© FUOC • P07/M2003/02280 20 Introduction to the GNU/Linux operating system

As a general summary, some comments that tend to appear in UNIX

bibliography point to the fact that UNIX is technically a simple and

coherent system designed with good ideas that were put into practice,

but we should not forget that some of these ideas were obtained thanks

to the enthusiastic support offered by a large community of users and

developers who collaborated by sharing technology and governing its

evolution.

And since history tends to repeat itself, currently that evolution and enthusi-

asm continues with GNU/Linux systems.

© FUOC • P07/M2003/02280 21 Introduction to the GNU/Linux operating system

3. GNU/Linux systems

Twenty years ago the users of the first personal computers did not have many

operating systems to choose from. The market for personal computers was

dominated by Microsoft DOS. Another possibility was Apple's MAC, but at an

exorbitant cost in comparison to the rest. Another important option reserved

to large (and expensive) machines was UNIX.

A first option to appear was MINIX (1984), created from scratch by Andrew

Tanenbaum, for educational purposes in order to teach how to design and

implement operating systems [Tan87] [Tan06].

MINIX was conceived for running on an Intel 8086 platform, which was very

popular at the time as it was the basis for the first IBM PCs. The main advantage

of this operating system stemmed from its source code, which was accessible

to anyone (twelve thousand lines of code for assembler and C), and available

from Tanenbaum's teaching books on operating systems [Tan87]. However,

MINIX was an educational tool rather than an efficient system designed for

professional performance or activities.

In the nineties, the Free Software Foundation (FSF) and its GNU project, moti-

vated many programmers to promote quality and freely distributed software.

And aside from utilities software, work was being done on the kernel of an

operating system known as HURD, which would take several years to develop.

Meanwhile, in October 1991, a Finnish student called Linus Torvalds present-

ed version 0.0.1 of his operating system's kernel, which he called Linux, de-

signed for Intel 386 machines, and offered under a GPL license to communi-

ties of programmers and the Internet community for testing, and if they liked

it, for helping with its development. There was such enthusiasm that in no

time a large number of programmers were working on the kernel or on appli-

cations for it.

Some of the features that distinguished Linux from other operating systems

of the time and which continue to be applicable, and others inherited from

UNIX could be:

a) It is an open source operating system: anyone can have access to its sources,

change them and create new versions that can be shared under the GPL license

(which, in fact, makes it free software).

b) Portability: like the original UNIX, Linux is designed to depend very little

on the architecture of a specific machine; as a result, Linux is, mostly, inde-

pendent from its destination machine and can be carried to practically any

© FUOC • P07/M2003/02280 22 Introduction to the GNU/Linux operating system

architecture with a C compiler such as the GNU gcc. There are just small parts

of assembler code and a few devices that depend on the machine, which need

to be rewritten at each port to a new architecture. Thanks to this, GNU/Lin-

ux is one of the operating systems running on the largest number of architec-

tures: Intel x86 and IA64, AMD x86 and x8664, Sun's SPARC, MIPS of Silicon,

PowerPC (Apple), IBM S390, Alpha by Compaq, m68k Motorola, Vax, ARM,

HPPArisc...

c) Monolith-type kernel: the design of the kernel is joined into a single piece

but is conceptually modular in its different tasks. Another school of design

for operating systems advocates microkernels (Mach is an example), where

services are implemented as separate processes communicated by a more basic

(micro) kernel. Linux was conceived as a monolith because it is difficult to

obtain good performance from microkernels (it is a hard and complex task).

At the same time, the problem with monoliths is that when they grow they

become very large and untreatable for development; dynamic load modules

were used to try to resolve this.

d)�Dynamically loadable modules: these make it possible to have parts of the

operating system, such as file systems, or device controllers, as external parts

that are loaded (or linked) with the kernel at run-time on-demand. This makes

it possible to simplify the kernel and to offer these functionalities as elements

that can be separately programmed. With this use of modules, Linux could be

considered to be a mixed kernel, because it is monolithic but offers a number

of modules that complement the kernel (similar to the microkernel).

e)�System developed by an Internet-linked community: operating systems had

never been developed so extensively and dispersely, they tend not to leave

the company that develops them (in the case of proprietary systems) or the

small group of academic institutions that collaborate in order to create one.

The phenomenon of the Linux community allows everyone to collaborate

as much as their time and knowledge will permit. The result is: hundreds to

thousands of developers for Linux. Additionally, because of its open-source

nature, Linux is an ideal laboratory for testing ideas for operating systems at

minimum cost; it can be implemented, tested, measures can be taken and the

idea can be added to the kernel if it works.

Projects succeeded each other and – at the outset of Linux with the kernel –

the people of the FSF, with the GNU utility software and, above all, with the

(GCC) C compiler, were joined by other important projects such as XFree (a PC

version of X Window), and desktop projects such as KDE and Gnome. And the

Internet development with projects such as the Apache web server, the Mozilla

navigator, or MySQL and PostgreSQL databases, ended up giving the initial

Linux kernel a sufficient coverage of applications to build the GNU/Linux

systems and to compete on an equal level with proprietary systems. And to

convert the GNU/Linux systems into the paradigm of Open Source software.

Note

Original Mach project:
http://www.cs.cmu.edu/afs/
cs/project/mach/public/www/
mach.html

© FUOC • P07/M2003/02280 23 Introduction to the GNU/Linux operating system

GNU/Linux systems have become the tip of the spear of the Open Source

community, for the number of projects they have been capable of drawing

together and concluding successfully.

The birth of new companies that created GNU/Linux distributions (packaging

of the kernel + applications) and supported it, such as Red Hat, Mandrake,

SuSe, helped to introduce GNU/Linux to reluctant companies and to initiate

the unstoppable growth we are now witnessing today.

We will also comment on the debate over the naming of systems such as GNU/

Linux. The term Linux is commonly used (in order to simplify the name) to

identify this operating system, although in some people's opinion it under-

mines the work done by the FSF with the GNU project, which has provided

the system's main tools. Even so, the term Linux, is extensively used commer-

cially in order to refer to the full operating system.

In general, a more appropriate term that would reflect the community's par-

ticipation, is Linux, when we are referring only to the operating system's ker-

nel. This has caused a certain amount of confusion because people talk about

the Linux operating system or systems in order to abbreviate. When we work

with a GNU/Linux operating system, we are working with a series of utilities

software that is mostly the outcome of the GNU project on the Linux kernel.

Therefore, the system is basically GNU with a Linux kernel.

The purpose of the FSF's GNU project was to create a UNIX-style free software

operating system called GNU [Sta02].

In 1991, Linus Torvalds managed to join his Linux kernel with the GNU util-

ities when FSF still didn't have a kernel. GNU's kernel is called HURD, and

quite a lot of work is being done on it at present, and there are already beta

versions available of GNU/HURD distributions (see more under the section on

kerneladministration).

It is estimated that in a GNU/Linux distribution there is 28% of GNU

code and 3% that corresponds to the Linux kernel code; the remain-

ing percentage corresponds to third parties, whether for applications or

utilities.

To highlight GNU's contribution [FSF], we can look at some of its contribu-

tions included in GNU/Linux systems:

• The C and C++ compiler (GCC)

• The bash shell

• The Emacs editor (GNU Emacs)

• The postscript interpreter (ghostscript)

Note

GNU and Linux by Richard-
Stallman:
http://www.gnu.org/gnu/ lin-
ux-andgnu.html.

© FUOC • P07/M2003/02280 24 Introduction to the GNU/Linux operating system

• The standard C library (GNU C library, or glibc)

• The debugger (GNU gdb)

• Makefile (GNU make)

• The assembler (GNU assembler or gas)

• The linker (GNU linker or gld)

GNU/Linux systems are not the only systems to use GNU software; for ex-

ample, BSD systems also incorporate GNU utilities. And some proprietary op-

erating systems such as MacOS X (Apple) also use GNU software. The GNU

project has produced high quality software that has been incorporated into

most UNIX-based system distributions, both free and proprietary.

It is only fair for the world to recognise everyone's work by calling the

systems we will deal with GNU/Linux.

© FUOC • P07/M2003/02280 25 Introduction to the GNU/Linux operating system

4. The profile of the systems administrator

Large companies and organisations rely more and more on their IT resources

and on how these are administered and adapted to the required tasks. The

huge increase in distributed networks, with server and client machines, has

created a large demand for a new job in the marketplace: the so-called systems

administrator.

A systems administrator is responsible for a large number of important tasks.

The best systems administrators tend to have a fairly general practical and the-

oretical background. They can perform tasks such as: cabling installations or

repairs; installing operating systems or applications software; correcting sys-

tems problems and errors with both hardware and software; training users;

offering tricks or techniques for improving productivity in areas ranging from

word processing applications to complex CAD or simulator systems; financial-

ly appraising purchases of hardware and software equipment; automating a

large number of shared tasks, and increasing the organisation's overall work

performance.

The administrator can be considered the employee who helps the organisation

to make the most of the available resources, so that the entire organisation

can improve.

The relationship with the organisation's end users can be established in several

ways: either through training users or by offering direct assistance if problems

should arise. The administrator is the person responsible for ensuring that the

technologies employed by users function properly, meaning that the systems

satisfy users' expectations and do the tasks they need to fulfil.

Years ago, and even nowadays, many companies and organisations had no

clear vision of the system administrator's role. When business computing was

in its early days (in the eighties and nineties), the administrator was seen as

the person who understood computers (the "guru") responsible for installing

machines and monitoring or repairing them in case there were any prob-

lems. Normally, the job was filled by a versatile computer technician respon-

sible for solving problems as and when they appeared. There was no clear-cut

profile for the job because extensive knowledge was not required, just basic

knowledge of a dozen (at most) applications (the word processor, spreadsheet,

database etc.), and some basic hardware knowledge was enough for day to

day tasks. Therefore, anyone in the know who understood the issue could do

the job, meaning that usually administrators were not traditional computer

technicians and often knowledge was even communicated orally between an

existing or older administrator and a trainee.

© FUOC • P07/M2003/02280 26 Introduction to the GNU/Linux operating system

This situation reflected to some extent the prehistory of systems administra-

tion (although there are still people who think that it is basically the same

job). Nowadays, in the age of Internet and distributed servers, a systems ad-

ministrator is a professional (employed full-time exclusively for this purpose)

who offers services in the field of systems software and hardware. The systems

administrator has to execute several tasks destined for multiple IT systems,

mostly heterogeneous, with a view to making them operative for a number

of tasks.

Currently, systems administrators need general knowledge (theoretical and

practical) in a diversity of fields, from network technologies, to operating sys-

tems, diverse applications, basic programming in a large number of program-

ming languages, extensive hardware knowledge – regarding the computer it-

self as well as peripherals – Internet technologies, web-page design, database

management etc. And normally the profile is sought to correspond to the

company's area of work, chemistry, physics, mathematics etc. Therefore, it is

no surprise that any medium to large company has turned away from employ-

ing the available dogsbody towards employing a small group of professionals

with extensive knowledge, most with a university degree, assigned to different

tasks within the organisation.

The systems administrator must be capable of mastering a broad range

of technologies in order to adapt to a variety of tasks that can arise

within an organisation.

Because of the large amount of knowledge required, unsurprisingly there are

several sub-profiles for a systems administrator. In a large organisation it is

common to find different operating systems administrators (UNIX, Mac, or

Windows): database administrator, backup copies administrator, IT security

administrator, user help administrators etc.

In a smaller organisation, all or some of the tasks may be allocated to one or a

few administrators. The UNIX systems (or GNU/Linux) administrators would

be a part of these (unless there is one administrator responsible for all tasks).

Normally, the administrator's working platform is UNIX (or GNU/Linux in

our case), which requires enough specific elements to make this job unique.

UNIX (and its variants) is an open and very powerful operating system and,

like any software system, requires a certain level of adaptation, configuration

and maintenance in the tasks for which it will be used. Configuring and main-

taining an operating system is a serious job, and in the case of UNIX can be-

come quite frustrating.

© FUOC • P07/M2003/02280 27 Introduction to the GNU/Linux operating system

a) The fact that the system is very powerful also means that there is a lot of

potential for adapting it (configuring it) for the tasks we need to do. We will

have to evaluate what possibilities it can offer us and which are appropriate

for our final objective.

b) A clear example of an open system is GNU/Linux, which will offer us per-

manent updates, whether to correct system errors or to incorporate new fea-

tures. And, obviously, all of this has a considerable direct impact on the main-

tenance cost of administration tasks.

c) Systems can be used for critical cost tasks, or in critical points of the organ-

isation, where important failures that would slow down or impede the func-

tioning of the organisation cannot be allowed.

d) Networks are currently an important point (if not the most important), but

it is also a very critical problems area, due both to its own distributed nature

and to the system's complexity for finding, debugging and resolving problems

that can arise.

e) In the particular case of UNIX, and our GNU/Linux systems, the abundance

of both different versions and distributions, adds more problems to their ad-

ministration, because it is important to know what problems and differences

each version and distribution has.

In particular, system and network administration tasks tend to have different

features, and sometimes they are handled separately (or by different adminis-

trators). Although we could also look at it as the two sides of the same job,

with the system itself (machine and software) on the one hand, and the envi-

ronment (network environment) where the system coexists, on the other.

Usually, network administration is understood to mean managing the system

as part of the network and refers to the nearby services or devices required for

the machine to function in a network environment; it does not cover network

devices such as switches, bridges or hubs or other network devices, but basic

knowledge is essential in order to facilitate administration tasks.

In this course, we will first deal with the local aspects of the system itself and

secondly we will look at the tasks of administering a network and its services.

We have already mentioned the problem of determining exactly what a sys-

tems administrator is, because in the IT job market it is not very clear. It was

common to ask for systems administrators based on categories (established

by companies) of programmer or software engineer, which are not entirely

appropriate.

© FUOC • P07/M2003/02280 28 Introduction to the GNU/Linux operating system

A programmer is basically a producer of code; in this case, an administrator

would not need to produce much, because it may be necessary for some tasks

but not for others. Normally, it is desirable for an administrator to have more

or less knowledge depending on the job category:

a) Some qualification or university degree, preferably in IT, or in a field di-

rectly related to the company or organisation.

The profile of a systems administrator tends to include computer studies or

an education related to the organisation's sphere of activity together with

proven experience in the field and broad knowledge of heterogeneous sys-

tems and network technologies.

b) It is common to ask for 1 to 3 years of experience as an administrator (un-

less the job is as an assistant of an already existing administrator). Experi-

ence of 3 to 5 years may also be requested.

c) Familiarity with or broad knowledge of network environments and ser-

vices. TCP/IP protocols, ftp, telnet, ssh, http, nfs, nis, ldap services etc.

d) Knowledge of script languages for prototyping tools or rapid task automa-

tion (for example, shell scripts, Perl, tcl, Python etc.) and programming

experience in a broad range of languages (C, C++, Java, Asm etc.).

e) Experience in large applications development in any of these languages

may be requested.

f) Extensive knowledge of the IT market, for both hardware and software,

in the event of having to evaluate purchases or install new systems or

complete installations.

g) Experience with more than one version of UNIX (or GNU/Linux systems),

such as Solaris, AIX, AT&T System V, BSD etc.

h) Experience of non-UNIX operating systems, complementary systems that

may be found in the organisation: Windows 9x/NT/2000/XP/Vista, Mac

OS, VMS, IBM systems etc.

i) Solid knowledge of UNIX design and implementation, paging mecha-

nisms, exchange, interprocess communication, controllers etc., for exam-

ple, if administration tasks include optimising systems (tuning).

j) Knowledge and experience in IT security: construction of firewalls, au-

thentication systems, cryptography applications, file system security, se-

curity monitoring tools etc.

k) Experience with databases, knowledge of SQL etc.

© FUOC • P07/M2003/02280 29 Introduction to the GNU/Linux operating system

l) Installation and repair of hardware and/or network cabling and devices.

© FUOC • P07/M2003/02280 30 Introduction to the GNU/Linux operating system

5. Tasks of the administrator

As we have described, we could divide the tasks of a GNU/Linux administrator

(or UNIX in general) [Lev02] into two main parts: system administration and

network administration. In the following points we will show in summary

what these tasks in general consist of for GNU/LINUX (or UNIX) systems; most

part of the content of this course manual will be treated in a certain amount

of detail; for reasons of space or complexity, another part will be explained

superficially or will not be treated.

Administration tasks encompass a series of techniques and knowledge, of

which this manual only reflects the tip of the iceberg; in any case, the bibli-

ography attached to each unit offers references to expand on those subjects.

As we will see, there is an extensive bibliography for almost every point that

is treated.

System administration tasks could be summarised, on the one hand, as

to administer the local system, and on the other hand, to administer

the network.

Local�system�administration�tasks�(in�no�specific�order)

• Switching the system on and off: any UNIX-based system has configurable

switching on and off systems so that we can configure what services are

offered when the machine switches on and when they need to be switched

off, so that we can program the system to switch off for maintenance.

• Users and groups management: giving space to users is one of the main

tasks of any systems administrator. We will need to decide what users will

be able to access the system, how, and with what permissions; and to es-

tablish communities through the groups. A special case concerns system

users, pseudousers dedicated to system tasks.

• Management of the system's resources: what we offer, how we offer it and

to whom we give access.

• Management of the file system: the computer may have different resources

for storing data and devices (diskettes, hard disks, optical disk drives etc.)

with different file access systems. They may be permanent or removable

or temporary, which will mean having to model and manage the process

© FUOC • P07/M2003/02280 31 Introduction to the GNU/Linux operating system

of installing and uninstalling the file systems offered by related disks or

devices.

• System quotas: any shared resource will have to be administered, and de-

pending on the number of users, a quota system will need to be established

in order to avoid an abuse of the resources on the part of users or to dis-

tinguish different classes (or groups) of users according to greater or lesser

use of the resources. Quota systems for disk space or printing or CPU use

are common (used computing time).

• System security: local security, about protecting resources against undue

use or unauthorised access to system data or to other users or groups data.

• System backup and restore: (based on the importance of the data) peri-

odic policies need to be established for making backup copies of the sys-

tems. Backup periods need to be established in order to safeguard our da-

ta against system failures (or external factors) that could cause data to be-

come lost or corrupted.

• Automation of routine tasks: many routine administration tasks or tasks

associated to daily use of the machine can be automated easily, due to their

simplicity (and therefore, due to the ease of repeating them) as well as their

timing, which means that they need to be repeated at specific intervals.

These automations tend to be achieved either through programming in

an interpreted language of the script type (shells, Perl etc.), or by inclusion

in scheduling systems (crontab, at...).

• Printing and queue management: UNIX systems can be used as printing

systems to control one or more printers connected to the system, as well as

to manage the work queues that users or applications may send to them.

• Modem and terminals management. These devices are common in envi-

ronments that are not connected to a local network or to broadband:

– Modems make it possible to connect to a network through an inter-

mediary (the ISP or access provider) or to our system from outside, by

telephone access from any point of the telephone network.

– In the case of terminals, before the introduction of networks it was

common for the UNIX machine to be the central computing element,

with a series of dumb terminals that were used merely to visualise in-

formation or to allow information to be entered using external key-

boards; these tended to be series or parallel type terminals. Nowadays,

they are still common in industrial environments and our GNU/Linux

desktop system has a special feature: the virtual text terminals accessed

using the Alt+Fxx keys.

© FUOC • P07/M2003/02280 32 Introduction to the GNU/Linux operating system

• System accounting (or log): to check that our system is functioning cor-

rectly, we need to enforce log policies to inform us of potential failures of

the system or performance of an application, service or hardware resource.

Or to summarise spent resources, system uses or productivity in the form

of a report.

• System performance tunning: system tuning techniques for an established

purpose. Frequently, a system is designed for a specific job and we can

verify that it is functioning correctly (using logs, for example), in order to

check its parameters and adapt them to the expected service.

• System tailoring: kernel reconfiguration. In GNU/Linux, for example, the

kernels are highly configurable, according to the features we wish to in-

clude and the type of devices we have or hope to have on our machine,

in addition to the parameters that affect the system's performance or are

obtained by the applications.

Network�administration�tasks

• Network interface and connectivity: the type of network interface we use,

whether access to a local network, a larger network, or broadband type

connection with DSL or ISDN technologies. Also, the type of connectivity

we will have, in the form of services or requests.

• Data routing: data that will circulate, where from or where to, depending

on the available network devices, and the machine's functions within the

network; it may be necessary to redirect traffic from/to one or more places.

• Network security: a network, especially one that is open (like Internet)

to any external point, is a possible source of attacks and, therefore, can

compromise the security of our systems or our users' data. We need to

protect ourselves, detect and prevent potential attacks with a clear and

efficient security policy.

• Name services: a network has an infinite number of available resources.

Name services allow us to name objects (such as machines and services) in

order to be able to locate them. With services such as DNS, DHCP, LDAP

etc., we will be able to locate services or equipment later...

• NIS (Network Information Service): large organisations need mechanisms

to organise and access resources efficiently. Standard UNIX forms, such

as user logins controlled by local passwords, are effective when there are

few machines and users, but when we have large organisations, with hi-

erarchical structures, users that can access multiple resources in a unified

fashion or separately with different permissions... simple UNIX methods

are clearly insufficient or impossible. Then we need more efficient systems

© FUOC • P07/M2003/02280 33 Introduction to the GNU/Linux operating system

in order to control all of this structure. Services such as NIS, NIS+, LDAP

help us to organise this complexity in an effective manner.

• NFS (Network Fylesystems): often, on network system structures informa-

tion needs to be shared (such as files themselves) by all or some users.

Or simply, because of the physical distribution of users, access to the files

is required from any point of the network. Network file systems (such as

NFS) offer us transparent access to files, irrespective of our location on the

network.

• UNIX remote commands: UNIX has transparent network commands, in

the sense that irrespective of the physical connection it is possible to run

commands that move information along the network or that allow access

to some of the machines' services. These commands tend to have an "r" in

front of them, meaning "remote", such as: rcp, rlogin, rsh, rexec etc., which

remotely enable the specified functionalities on the network.

• Network applications: applications for connecting to network services,

such as telnet (interactive access), FTP (file transmission), in the form of

a client application that connects to a service served from another ma-

chine. Or that we can serve ourselves with the right server: telnet server,

FTP server, web server etc.

• Remote printing: access to remote printing servers, whether directly to

remote printers or to other machines that offer their own local printers.

Network printing transparently for the user or application.

• E-mail: one of the main services offered by UNIX machines is the e-mail

server, which can either store mail or redirect it to other servers, if it is not

directed at its system's own users. In the case of the web, a UNIX system

similarly offers an ideal web platform with the right web server. UNIX has

the biggest market share with regards to e-mail and web servers, and this is

one of its main markets, where it has a dominating position. GNU/Linux

systems offer open source solutions for e-mail and web, representing one

of its main uses.

• X Window: a special model of interconnection is the graphics system of

the GNU/Linux systems (and most of UNIX), X Window. This system al-

lows total network transparency and operates under client-server models;

it allows an application to be totally unlinked from its visualisation and

interaction with it by means of input devices, meaning that these can be

located anywhere on the network. For example, we may be executing a

specific application on one UNIX machine while on another we may vi-

sualise the graphic results on screen and we may enter data using the lo-

cal keyboard and mouse in a remote manner. Moreover, the client, called

client X, is just a software component that can be carried onto other op-

erating systems, making it possible to run applications on one UNIX ma-

© FUOC • P07/M2003/02280 34 Introduction to the GNU/Linux operating system

chine and to visualise them on any other system. So-called X terminals

are a special case – they are basically a type of dumb terminal that can

only visualise or interact (using a keyboard and mouse) with a remotely

run application.

© FUOC • P07/M2003/02280 35 Introduction to the GNU/Linux operating system

6. GNU/Linux distributions

When speaking about the origins of GNU/Linux, we have seen that there is

no clearly defined unique operating system. On the one hand, there are three

main software elements that make up a GNU/Linux system:

1) The Linux kernel: as we have seen, the kernel is just the central part of the

system. But without the utility applications, shells, compilers, editors etc. we

could not have a complete system.

2) GNU applications: Linux's development was complemented by the FSF's ex-

isting software under the GNU project, which provided editors (such as emacs),

a compiler (gcc) and various utilities.

3) Third party software: normally open source. Additionally, any GNU/Lin-

ux system incorporates third party software which makes it possible to add a

number of extensively used applications, whether the graphics system itself

X Windows, servers such as Apache for web, navigators etc. At the same time,

it may be customary to include some proprietary software, depending on to

what extent the distribution's creators want the software to be free.

Because most of the software is open source or free, whether the kernel, GNU

or third-party software, normally there is a more or less rapid evolution of

versions, either through the correction of errors or new features. This means

that in the event of wanting to create a GNU/Linux system, we will have to

choose which software we wish to install on the system, and which specific

versions of that software.

The world of GNU/Linux is not limited to a particular company or communi-

ty, which means that it offers everyone the possibility of creating their own

system adapted to their own requirements.

Normally, among these versions there are always some that are stable and oth-

ers that are under development in phase alpha or beta, which may contain er-

rors or be unstable, which means that when it comes to creating a GNU/Linux

system, we will have to be careful with our choice of versions. Another addi-

tional problem is the choice of alternatives, the world of GNU/Linux is suffi-

ciently rich for there to be more than one alternative for the same software

product. We need to choose among the available alternatives, incorporating

some or all of them, if we wish to offer the user freedom of choice to select

their software.

© FUOC • P07/M2003/02280 36 Introduction to the GNU/Linux operating system

Example

We find a practical example with the X Window desktop managers, which, for example,
offer us (mainly) two different desktop environments such as Gnome and KDE; both
have similar characteristics and similar or complementary applications.

In the case of a distributor of GNU/Linux systems, whether commercial or non-profit,
the distributor's responsibility is to generate a system that works, by selecting the best
software products and versions available.

In this case, a GNU/Linux distribution [Dis] is a collection of software that makes up an
operating system based on the Linux kernel.

An important fact that needs to be taken into account, and that causes more

than a little confusion, is that because each of the distribution's software pack-

ages will have its own version (irrespective of the distribution it is located on)

the allocated distribution number does not correspond to the software pack-

ages versions.

Example

Let's look at a few current versions as an example (the versions that appear refer to the
end of 2003):

a) Linux kernel: we can currently find distributions that offer one or more kernels, such as
those of the old series 2.4.x or generally, the latest 2.6.x in revisions of varying recentness
(the number x).

b) The X Window graphics option, in open source version, which we can find on prac-
tically all GNU/Linux systems, whether as some residual versions of Xfree86 such as the
ones handled by 4.x.y versions or as the new Xorg project (a fork of the previous one in
2003), which is more popular in various versions 6.x or 7.x.

c) Desktop or windows manager: we can have Gnome or KDE, or both; Gnome with
versions 2.x or KDE 3.x.y.

For example, we could obtain a distribution that included kernel 2.4, with XFree 4.4 and
Gnome 2.14; or another, for example, kernel 2.6, Xorg 6.8, KDE 3.1. Which is better? It
is difficult to compare them because they combine a mixture of elements and depending
on how the mixture is made, the product will come out better or worse, and more or
less adapted to the user's requirements. Normally, the distributor will maintain a balance
between the system's stability and the novelty of included versions. As well as provide
attractive application software for the distribution's users, whether it is of a general nature
or specialized in any specific field.

In general, we could analyse the distributions better on the basis of the

following headings, which would each have to be checked:

a) Version of the Linux kernel: the version is indicated by numbers X.Y.Z,

where normally X is the main version, which represents important

changes to the kernel; Y is the secondary version and usually implies im-

provements in the kernel's performance: Y is even for stable kernels and

uneven for developments or tests. And Z is the build version, which indi-

cates the revision number of X.Y, in terms of patches or corrections made.

Distributors tend not to include the kernel's latest version, but rather the

version that they have tested most frequently and have checked is stable

for the software and components that they include. This classical num-

bering scheme (which was observed for branches 2.4.x, until the first ones

of 2.6), was slightly modified to adapt to the fact that the kernel (branch

2.6.x) becomes more stable and that there are fewer revisions all the time

© FUOC • P07/M2003/02280 37 Introduction to the GNU/Linux operating system

(meaning a leap in the first numbers), but development is continuous and

frenetic. Under the latest schemes, fourth numbers are introduced to spec-

ify in Z minor changes or the revision's different possibilities (with differ-

ent added patches). The version thus defined with four numbers is the

one considered to be stable. Other schemes are also used for the various

test versions (normally not advisable for production environments), using

suffixes such as -rc (release candidate), -mm, experimental kernels testing

different techniques, or -git, a sort of daily snapshot of the kernel's devel-

opment. These numbering schemes are constantly changing in order to

adapt to the kernel community's way of working, and its needs in order

to speed up the kernel's development.

b) Packaging format: this is the mechanism used for installing and admin-

istering the distribution's software. It tends to be known for the format

of the software packages it supports. In this case we normally find RPM,

DEB, tar.gz, mdk formats, and although every distribution usually offers

the possibility of using different formats, it tends to have a default format.

The software normally comes with its files in a package that includes in-

formation on installing it and possible dependencies on other software

packages. The packaging is important if third party software that does not

come with the distribution is used, since the software may only be found

in some package systems, or even in just one.

c) File system structure: the main file system structure (/) tells us where we

can find our fils (or the system's files) in the file system. GNU/Linux and

UNIX have some file location standards (as we will see in the tools unit),

such as FHS (filesystem hierarchy standard) [Lin03b]. Therefore, if we have

an idea of the standard, we will know where to find most of the files; then

it depends whether the distribution follows it more or less and tells us of

any changes that have been made.

d) System boot scripts: UNIX and GNU/Linux systems incorporate boot

scripts (or shell scripts) that indicate how the machine should start up,

what will be the process (or phases) followed, and what has to be done

at each step. There are two models for this start up, those of SysV or BSD

(this is a difference between the two main UNIX branches); and every dis-

tribution may choose one or the other. Although both systems have the

same functionality, they differ in the details, and this will be important

for administration issues (we will look at this under local administration).

In our case, the analysed systems, both Fedora and Debian, use the SysV

system (which we will look at under the unit on local administration), but

there are other distributions such as Slackware that use the other BSD sys-

tem. And there are some proposals of new options for this start up aspect.

e) Versions of the system library: all the programs (or applications) that we

have on the system will depend on a (bigger or smaller) number of system

libraries for running. These libraries, normally of two types, whether static

© FUOC • P07/M2003/02280 38 Introduction to the GNU/Linux operating system

joined to the program (libxxx.a files) or dynamic runtime loaded (libxxx.so

files), provide a large amount of utility or system code that the applica-

tions will use. Running an application may depend on the existence of

corresponding libraries and the specific version of these libraries (it is not

advisable, but can happen). A fairly common case affects the GNU C li-

brary, the standard C library, also known as glibc. An application may ask

us for a specific version of glibc in order to be run or compiled. It is a fair-

ly problematic issue and therefore, one of the parameters valued by the

distribution is knowing what version of the glibc it carries and possible

additional versions that are compatible with old versions. The problem

appears when trying to run or compile an old software product on a recent

distribution, or a very new software product on an old distribution.

The biggest change occurred in moving to a glibc 2.0, in which all the pro-

grams had to be recompiled in order to run correctly, and in the different

revisions numbered 2.x there have been a few minor modifications that

could affect an application. In many cases, the software packages check

whether the correct version of glibc is available or the name itself mentions

the version that needs to be used (example: package-xxx-glibc2.rpm).

f) X Window desktop: the X Window system is the graphics standard for

desktop visualisation in GNU/Linux. It was developed by MIT in 1984 and

practically all UNIX systems have a version of it. GNU/Linux distributions

have different versions such as Xfree86 or Xorg. Usually, X Window is an

intermediary graphic layer that entrusts another layer known as the win-

dows manager to visualise its elements. Also, we can combine the win-

dows manager with a variety of application programs and utilities to cre-

ate what is known as a desktop environment.

Linux mainly has two desktop environments: Gnome and KDE. Each one

is special in that it is based on a library of its own components (the dif-

ferent elements of the environment such as windows, buttons, lists etc.):

gtk+ (in Gnome) and Qt (in KDE), which are the main graphics libraries

used to program applications in these environments. But in addition to

these environments, there are many more windows or desktop managers:

XCFE, Motif, Enlightement, BlackIce, FVWM etc., meaning that there is a

broad range of choice. In addition, each one makes it possible to change

the appearance (look & feel) of the windows and components as users'

desire, or even to create their own.

g) User software: software added by the distributor, mostly Open Source, for

common tasks (or not so common, for highly specialised fields).

Common distributions are so large that we can find hundreds to thou-

sands of these extra applications (many distributions have 1 to 4 CDs – ap-

proximately 1 DVD of extra applications). These applications cover prac-

tically all fields, whether domestic, administrative or scientific. And some

distributions add third party proprietary software (for example, in the case

of an Office-type office suite), server software prepared by the distributor,

for example an e-mail server, secure web server etc.

© FUOC • P07/M2003/02280 39 Introduction to the GNU/Linux operating system

This is how each distributor tends to release different versions of their

distribution, for example, sometimes there are distinctions between a per-

sonal, professional or server version.

Often, this financial cost does not make sense, because the standard soft-

ware is sufficient (with a bit of extra administration work); but it can be

interesting for companies because it reduces server installation times and

maintenance and also optimises certain critical servers and applications

for the company's IT management.

6.1. Debian

The case of Debian [Debb] is special, in the sense that it is a distribution deliv-

ered by a community with no commercial objectives other than to maintain

its distribution and promote the use of free and open source software.

Debian is a distribution supported by an enthusiastic community of its own

users and developers, based on the commitment to use free software.

The Debian project was founded in 1993 to create the Debian GNU/Linux dis-

tribution. Since then it has become fairly popular and even rivals other com-

mercial distributions in terms of use, such as Red Hat or Mandrake. Because it

is a community project, the development of this distribution is governed by

a series of policies or rules; there are documents known as the Debian Social

Contract, which mention the project's overall philosophy and Debian's poli-

cies, specifying in detail how to implement its distribution.

Note

We can see the Debian So-
cial Contract documents at:
debian.org.

The Debian distribution is closely related to the objectives of the FSF and its

GNU Free Software project; for this reason, they always include "Debian GNU/

Linux" in their name; also, the text of their social contract has served as the

basis for open source definitions. Where their policies are concerned, anyone

who wishes to participate in the distribution project, must abide by them. Al-

though not a collaborator, these policies can be interesting because they ex-

plain how the Debian distribution operates.

We should also mention a practical aspect where end users are concerned: De-

bian has always been a difficult distribution. It tends to be the distribution

used by Linux hackers, meaning those that gut the kernel and make changes,

low level programmers, who wish to be on the leading edge to test new soft-

ware, and to test unpublished kernel developments... in other words, all man-

ner of folk who are mad about GNU/Linux.

Earlier versions of Debian became famous for the difficulty of installing them.

The truth is that not enough effort had been made to make it easy for non-

experts. But with time things have improved. Now, the installation still re-

quires a certain amount of knowledge, but can be done following menus (text

Figure 2

© FUOC • P07/M2003/02280 40 Introduction to the GNU/Linux operating system

menus, unlike other commercial versions that are totally graphic), and there

are programs to facilitate package installations. But even so, the first attempts

can be somewhat traumatic.

Normally, they tend to be variants (called flavours) of the Debian distribution.

Currently, there are three branches of the distribution: stable, testing and un-

stable. And, as their names indicate, stable is the one used for production en-

vironments (or users who want stability), testing offers newer software that has

been tested minimally (we could say it is a sort of beta version of Debian) that

will soon be included in the stable branch. And the unstable branch offers the

latest novelties in software, and its packages change over a short time period;

within a week, or even every day, several packages can change. All distribu-

tions are updatable from various sources (CD, FTP, web) or by a system known

as APT which manages Debian DEB software packages. The three distributions

have more common names assigned to them (current photo):

• Etch (stable)

• Lenny (testing)

• Sid (unstable)

The previous stable version was called Sarge (3.1r6), formerly Woody (that was

3.0). The most current one (in 2007), is the Debian GNU/Linux Etch (4.0).

The most extended versions are Etch and Sid, which are the two extremes. Sid

is not recommended for daily working environments (production), because it

may have features that are halfway through testing and can fail (although this

is uncommon); it is the distribution that GNU/Linux hackers tend to use. Also,

this version changes almost daily; it is normal, if a daily update is wanted, for

there to be between 10 and 20 new software packages per day (or even more

at certain points in the development).

Etch is perhaps the best choice for daily working environments, it is updated

periodically in order to cover new software or updates (such as security up-

dates). Normally, it does not have the latest software which is not included

until the community has tested it with an extensive range of tests.

We will comment briefly on some of this distribution's characteristics (current

default versions of Etch and Sid):

a) The current (stable) version consists of between 1 and 21 CDs (or 3 DVDs)

of the latest available version of Etch. Normally there are different possi-

bilities depending on the set of software that we find on physical support

(CD or DVD) or what we can subsequently download from the Internet,

for which we only need a basic CD, plus the internet access to download

the rest upon demand. This distribution can be bought (at a symbolic cost

for the physical support, thus contributing to maintain the distribution)

or can be downloaded from debian.org or its mirrors.

© FUOC • P07/M2003/02280 41 Introduction to the GNU/Linux operating system

b) The testing and unstable versions tend not to have official CDs, but rather

a stable Debian can be converted into a testing or unstable version by chang-

ing the configuration of the APT packages system.

c) Linux kernel: the default kernels were 2.4.x series and included an optional

2.6.x, which is now the default in the latest versions. The focus of the stable

Debian is to promote stability and to leave users the option of another

more updated software product if they need it (in unstable or testing).

d) Packaging format: Debian supports one of the formats that offers most

facilities, APT. The software packages have a format known as DEB. APT

is a high level tool for managing them and maintaining a database of

instantly installable or available ones. Also, the APT system can obtain

software from various sources, CD, FTP, or web.

e) The APT system is updatable at any time, from a list of Debian software

sources (APT sources), which may be default Debian (debian.org) or third

party sites. This way we are not linked to a single company or to a single

subscription payment system.

f) Some of the versions used are, for example: Xfree86(4.x), glibc (2.3.x)...

Debian Sid has Xorg (7.1), glibc (2.3.x)...

g) For the desktop, it accepts Gnome 2.16.x (default) or KDE 3.3.x (K Desktop

Environment). Unstable with Gnome 2.18.x and KDE 3.5.x.

h) In terms of interesting applications, it includes the majority of those we

tend to find in GNU/Linux distributions; in Sid: editors such as emacs (and

xemacs), gcc compiler and tools, Apache web server, Mozilla (or Firefox)

web browser, Samba software for sharing files with Windows etc.

i) It also includes office suites such as OpenOffice and KOffice.

j) Debian includes many personalised configuration files for distribution in

/etc directories.

k) Debian uses the lilo, boot manager by default, although it can also use

Grub.

l) The configuration for listening to TCP/IP network services, which is done,

as on most UNIX systems, with the inetd server (/etc/inetd.conf). Al-

though it also has an optional xinetd, which is becoming the preferred

choice.

m) There are many more GNU/Linux distributions based on Debian, since the

system can be easily adapted to make bigger or smaller distributions with

more or less software adapted to a particular segment. One of the most

© FUOC • P07/M2003/02280 42 Introduction to the GNU/Linux operating system

famous ones is Knoppix, a single CD distribution, of the Live CD type (run

on CD), which is commonly used for GNU/Linux demos, or to test it on

a machine without previously installing it, since it runs from the CD, al-

though it can also be installed on the hard disk and become a standard De-

bian. Linex is another distribution that has become quite famous because

of its development supported by the local authority of the autonomous

community of Extremadura. At the same time, we find Ubuntu, one of the

distributions to have achieved the greatest impact (even exceeding Debian

in several aspects), because of its ease for building an alternative desktop.

Note

Debian can be used as a base for other distributions; for example, Knoppix is a distri-
bution based on Debian that can be run from CD without having to install it on the
hard drive. Linex is a Debian distribution adapted to the autonomous community of
Extremadura as part of its project to adopt open source software. And Ubuntu is a distri-
bution optimised for desktop environments.

Figure 3. Debian Sid environment with Gnome 2.14

6.2. Fedora Core

Red Hat Inc. [Redh] is one of the main commercial companies in the world

of GNU/Linux, with one of the most successful distributions. Bob Young and

Marc Ewing created Red Hat Inc. in 1994. They were interested in open source

software models and thought it would be a good way of doing business. Their

main product is their Red Hat Linux distribution (which we will abbreviate

to Red Hat), which is available to different segments of the market, individu-

al users (personal and professional versions), or medium or large companies

(with their Enterprise version and its different sub-versions).

© FUOC • P07/M2003/02280 43 Introduction to the GNU/Linux operating system

Red Hat Linux is the main commercial distribution of Linux, oriented

at both the personal desktop and high range server markets. Addition-

ally, Red Hat Inc. is one of the companies that collaborates the most

in the development of Linux, since various important members of the

community work for it.

Figure 4

Although they work with an open source model, it is a company with com-

mercial objectives, which is why they tend to add value to their basic distri-

bution through support contracts, update subscriptions and other means. For

businesses, they add tailor-made software (or own software), to adapt it to the

company's needs, either through optimised servers or utility software owned

by Red Hat.

As of a certain point (towards the end of 2003), Red Hat Linux (version 9.x), de-

cided to discontinue its desktop version of GNU/Linux, and advised its clients

to migrate towards the company's business versions, which will continue to

be the only officially supported versions.

At that moment, Red Hat decided to initiate the project open to the commu-

nity known as Fedora [Fed], with a view to producing a distribution guided by

the community (Debian-style, although for different purposes), to be called

Fedora Core. In fact, the goal is to create a development laboratory open to

the community that makes it possible to test the distribution and at the same

time to guide the company's commercial developments in its business distri-

butions.

To some extent, critics have pointed out that the community is being used as

betatesters for technologies that will subsequently be included in commercial

products. Also, this model is subsequently used by other companies to create

in turn dual models of community and commercial distributions. Examples

such as OpenSuse appear (based on the commercial SuSe), or Freespire (based

on Linspire).

Normally, the duo of Red Hat and the Fedora community present a certain

conservative vision (less accentuated at Fedora) of the software elements it

adds to the distribution, since its main market is businesses, and it tries to

Note

See: http://fedora.redhat.com

© FUOC • P07/M2003/02280 44 Introduction to the GNU/Linux operating system

make its distribution as stable as possible, even if it means not having the lat-

est versions. What it does do as an added value is to extensively debug the

Linux kernel with its distribution and to generate corrections and patches to

improve its stability. Sometimes, it can even disable a functionality (or driver)

of the kernel, if it considers that it is not stable enough. It also offers many

utilities in the graphics environment and its own graphics programs, includ-

ing a couple of administration tools; in terms of graphics environments, it

uses both Gnome (by default) and KDE, but through its own modified envi-

ronment called BlueCurve, which makes the two desktops practically identi-

cal (windows, menus etc.).

The version that we will use will be the latest available Fedora Core, which

we will simply call Fedora. In general, the developments and features that are

maintained tend to be fairly similar in the versions released later, meaning

that most comments will be applicable to the different versions over time.

We should take into account that the Fedora [Fed] community tries to meet

a calendar of approximately 6 months for each new version. And there is a

certain consensus over what new features to include.

Red Hat, on the other hand, leaves its desktop versions in the hands of the

community and focuses its activity on the business versions (Red Hat Linux

Enterprise WS, ES, and AS).

Let's look briefly at a few characteristics of this Fedora Core distribution:

a) The current distribution consists of 5 CDs, the first one being the bootable

one, which serves for the installation. There are also extra CDs containing

documentation and the source code of most of the software installed with

the distribution. The distribution is also provided on 1 DVD.

b) Linux kernel: it uses kernels of the 2.6.x series, which can be updated with

the rpm packages system (see unit on the kernel) (through the yum utility

for example). Red Hat, for its part, subjects the kernel to many tests and

creates patches for solving problems, which are normally also incorporat-

ed into the version of the Linux community, since many important Linux

collaborators also work for Red Hat.

c) Packaging format: Red Hat distributes its software through the RPM pack-

ages system (red hat package manager), which are managed by the rpm com-

mand or the yum utilities (we will comment on this in the unit on local

administration). RPM is one of the best available packaging systems (sim-

ilar to Debian's deb), and some proprietary UNIX systems are including it.

Basically, the RPM system maintains a small database with the installed

packages and verifies that the package to be installed with the rpm com-

mand is not already installed or does not enter into conflict with any oth-

er software package, or on the other hand that a software package or the

version required by the installation is not missing. The RPM package is

© FUOC • P07/M2003/02280 45 Introduction to the GNU/Linux operating system

basically a set of compressed files containing information on dependen-

cies or on the software that it requires.

d) Regarding start up, it uses scripts of the System V type (which we will look

at in the unit on local administration).

e) Some of the versions used are: Xorg (7.x), glibc (2.5.x) etc.

f) The desktop accepts Gnome (default desktop) and KDE as an option.

g) Where interesting applications are concerned, it includes most of the ones

we tend to find with almost all GNU/Linux distributions: editors such as

emacs (and xemacs), gcc compiler and tools, Apache web server, Firefox/

Mozilla web browser, Samba software for sharing files with Windows etc.

h) It also includes office suites such as OpenOffice and KOffice.

i) Additional software can be obtained through the yum update services

(among others) in a similar way to the Debian APT system or using differ-

ent update tools, or from the Internet using RPM packages designed for

the distribution.

j) Fedora uses the Grub boot loader by default to start up the machine.

k) Red Hat has replaced the configuration for listening to the TCP/IP net-

work services, which for most UNIX systems uses the inetd server (/etc/

inetd.conf), with xinetd, which has a more modular configuration (direc-

tory/etc/xinetd.d).

l) Upon start up it has a program called Kudzu which verifies any changes

in hardware and detects newly installed hardware. We expect that it will

be left out of following versions, because there is now a new API called

HAL, which performs this function.

m) There are several more distributions based on the original Red Hat, which

retain many of its characteristics, in particular Mandriva (formerly Man-

drake): a French distribution, that was originally based on Red Hat and

that together with Red Hat remains among the leaders in terms of user

preferences (especially for desktop work). Mandriva develops its own soft-

ware and lots of wizards to help with the installation and administration

of the most common tasks, separating itself from its origin based on Red

Hat. At the same time, Red Hat business versions have also given rise to

a series of very popular free distributions in server environments, such as

CentOS [Cen] (which tries to maintain 100% compatibility with the busi-

ness Red Hat), and Scientific Linux [Sci] (specialised in scientific comput-

ing for scientific research projects). As for the packaging system, it is worth

© FUOC • P07/M2003/02280 46 Introduction to the GNU/Linux operating system

noting that the rpm system is used for a large number of distributions,

including SuSe.

Figure 5. Fedora Core desktop with Gnome

Regarding the community distribution Fedora Core, and its commercial ori-

gins in Red Hat:

a) It is a distribution created by a community of programmers and users

based on development; it does not have any support for updates or main-

tenance on the part of the manufacturer. This aspect comes to depend on

the community, as in the case of the Debian GNU/Linux distribution.

b) These versions are produced fairly rapidly, and new versions of the distri-

bution are expected approximately every six months.

c) It also uses the RPM package management system. In terms of the process

of updating the distribution's packages or installing other new ones, it can

be achieved by means of different tools, via update, through the Fedora

update channels or the new Yum update systems and in some cases Apt

(inherited from Debian, but that works with RPM files).

d) Other more technical aspects (some of which we will look at in later chap-

ters) can be found in the Fedora Core version notes.

Note

See:
http://fedora.redhat.com/
docs/release-notes.

© FUOC • P07/M2003/02280 47 Introduction to the GNU/Linux operating system

7. What we will look at...

Having studied this "philosophical" introduction to the world of open source

and the history of UNIX and GNU/Linux systems, as well as defining the tasks

of a system administrator, we will look at how to handle the typical tasks

involved in administrating GNU /Linux systems.

Next, we will look at the different areas involved in administering GNU/Linux

systems. For each area, we will try to examine a few basic theoretical founda-

tions that will help us to explain the tasks that need to be done and to under-

stand how the tools that we will use work. Each subject will be accompanied

by a type of workshop where we will look at a small work session or how some

tools are used. We will simply remember that, as mentioned in the introduc-

tion, the field of administration is very broad and any attempt at covering it

completely (like this one) is destined to fail because of its limited size; there-

fore, you will find an abundant bibliography for each subject (in the form of

books, web pages, web sites, howtos etc.), where you can broaden your knowl-

edge from the brief introduction we have made on the subject.

The subjects we will look at are as follows:

• Under the section on migration, we will gain a perspective of the type of

computer systems that are being used and in what work environments; we

will also look at how GNU/Linux systems adapt better or worse to each one

of them and will consider a first dilemma when it comes to introducing

a GNU/Linux system: do we change the system we had or do we do it in

stages with both coexisting?

• Under the section on tools we will study (basically) the set of tools that

the administrator will have to live with (and/or suffer with) on a daily

basis, and that could comprise the administrator's toolbox. We will talk

about the GNU/Linux standards, which will allow us to learn about com-

mon aspects of all GNU/Linux distributions, in other words, what we can

expect to find in any system. Other basic tools will be: simple (or not so

simple) editors; some basic commands for learning about the system's sta-

tus or for obtaining filtered information depending on what we are inter-

ested in; programming command scripts (or shell scripts) that will allow

us to automate tasks; characteristics of the languages we may find in the

administration tools or applications; basic program compilation processes

based on source codes; tools for managing the installed software, as well as

commenting on the dilemma over using graphics tools or command lines.

© FUOC • P07/M2003/02280 48 Introduction to the GNU/Linux operating system

• Under the section concerning the kernel, we will observe the Linux kernel

and how, by tailoring it, we can adjust it better to the hardware or to the

services that we wish to provide from our system.

• Under the local administration heading, we will deal with those aspects

of the administration that we could consider "local" to our system. These

aspects may comprise most of the administrator's typical tasks when it

comes to handling elements such as users, printers, disks, software, pro-

cesses etc.

• In the section on the network, we will examine all the administration tasks

that concern our system and its neighbourhood in the network, irrespec-

tive of its type, and we will look at the different types of connectivity that

we can have with neighbouring systems or the services that we can offer

or receive from them.

• In the section on servers, we will look at a few typical configurations of

servers that we can commonly find on a GNU/Linux system.

• In the section on data, we will look at one of today's most relevant themes,

the data storage and consultation mechanisms that GNU/Linux systems

can offer us, in particular, database systems and version control mecha-

nisms.

• In the section on security, we will handle one of today's most relevant and

important issues regarding the whole GNU/Linux system. The existence

of a world interconnected by the Internet entails a series of important

dangers for our systems' correct functioning and gives rise to the issue of

reliability, both of these systems and of the data that we may receive or

offer through the net. Therefore, our systems need to provide minimum

levels of security and to prevent unauthorised access to or handling of our

data. We will look at the most frequent types of attacks, security policies

that can be enforced and the tools that can help us to control our security

level.

• In the section on optimisation, we will see how, because of the large num-

ber of servers and services on offer, as well as the large number of environ-

ments for which the system is designed, GNU/Linux systems tend to have

many functioning parameters that influence the performance of the ap-

plications or services on offer. We can (or should) try to extract maximum

performance by analysing the system's own configurations to adjust them

to the quality of service that we wish to offer clients.

• In the section on clustering, we will look at some of the techniques for

providing high performance computing on GNU/Linux systems, exten-

sively used in the fields of scientific computing and becoming more fre-

quently used by a large number of industries (pharmaceuticals, chemistry,

© FUOC • P07/M2003/02280 49 Introduction to the GNU/Linux operating system

materials etc.), for researching and developing new products. In addition

to the organisation of various GNU/Linux systems into clusters, to ampli-

fy the performance of individual systems, by creating groups of systems

that make it possible to scale the services offered to an increased client

demand.

© FUOC • P07/M2003/02280 51 Introduction to the GNU/Linux operating system

Activities

1) Read the Debian manifesto at:

http://www.debian.org/social_contract

2) Read up on the different distributions based on Debian: Knoppix, Linex, Ubuntu variants.
Apart from each distribution's website, the address www.distrowatch.com offers a good guide
to the distributions and their status, as well as the software that they include. Through this
webpage or by accessing the different communities or manufacturers we can obtain the ISO
images of the different distributions.

© FUOC • P07/M2003/02280 52 Introduction to the GNU/Linux operating system

Bibliography

Other sources of reference and information

[LPD] The Linux Documentation Project (LDP), collection of Howtos, manuals and guides
covering any aspect of GNU/Linux.

[OSDb] Community with various websites, news, developments, projects etc.

[Sla] Open Source community news site and general sites on IT and the Internet.

[New] [Bar] Open Source News.

[Fre] [Sou] List of Open Source projects.

[Dis] Monitoring of GNU/Linux distributions and new features of the software packages. And
links to the sites for downloading the ISO images of the GNU/Linux distribution CDs/DVDs.

[His] [Bul] [LPD] General documentation and communities of users.

[Mag03] [Jou03] GNU/Linux magazines.

Migration and
coexistence
with non-Linux
systems

Josep Jorba Esteve

P07/M2103/02281

© FUOC • P07/M2103/02281 Migration and coexistence with non-Linux systems

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02281 Migration and coexistence with non-Linux systems

Index

Introduction... 5

1. Computer systems: environments... 7

2. GNU/Linux services... 11

3. Types of use... 13

4. Migration or coexistence... 16

4.1. Identify service requirements ... 17

4.2. Migration process .. 18

5. Migration workshop: case study analysis................................... 24

Activities.. 37

Bibliography... 38

© FUOC • P07/M2103/02281 5 Migration and coexistence with non-Linux systems

Introduction

Having had a brief introduction to GNU/Linux systems, the following step is

to integrate them in the work environment as production systems. According

to the current system in use, we can consider either a full migration to GNU/

Linux systems or a coexistence through compatible services.

Migration to the GNU/Linux environment may be done progressively by re-

placing services partially or by substituting everything in the old system by

GNU/Linux equivalents.

In current distributed environments, the most relevant concern is the client/

server. Any task in the global system is managed by one or more dedicated

servers, with the applications or users directly accessing the offered services.

Regarding the work environment, whether in the simplest case of the individ-

ual user or the more complex case of a business environment, every environ-

ment will require a set of services that we will need to select, later adjusting

client and server machines so that they can access them or provide their use.

The services may encompass different aspects and there tend to be various

types for sharing resources or information. File servers, print servers, web

servers, name servers, e-mail servers etc., are common.

The administrator will normally select a set of services that need to be present

in the work environment according to the needs of the end users and/or the

organisation; and must configure the right support for the infrastructure, in

the form of servers that support the expected workload.

© FUOC • P07/M2103/02281 7 Migration and coexistence with non-Linux systems

1. Computer systems: environments

During the process of installing some GNU/Linux distributions, we often find

that we are asked about the type of environment or tasks our system will be

dedicated to, which often allows us to choose a sub-set of software that will be

installed for us by default, because it is the most suited to the contemplated

job. We will often be asked if the system will be used as a:

a) Workstation: this type of system usually incorporates particular applica-

tions that will be used most frequently. The system is basically dedicated

to running these applications and a small set of network services.

b) Server: basically it integrates most network services or, in any case, a par-

ticular service, which will be the system's main service.

c) Dedicated calculation unit: calculation-intensive applications, renders,

scientific applications, CAD graphics etc.

d) Graphics station: desktop with applications that require interaction with

the user in graphic form.

We can normally set up our GNU/Linux system with one or more of these

possibilities.

More generally, if we had to separate the work environments [Mor03]

where a GNU/Linux system can be used, we could identify three main

types of environment: workstation, server and desktop .

We could also include another type of systems, which we will generically

call embedded devices or small mobile systems like a PDA, mobile telephone,

portable video console etc. GNU/Linux also offers support for these devices,

with smaller personalised kernels for them.

Example

For example, we should mention the work done by the Sharp company on its Zaurus
models, a PDA with advanced Linux features (there are four or five models on the mar-
ket). Or also other Linux initiatives of an embedded type such as POS (point of sale)
terminals. Or video consoles such as GP2X.

Regarding the three main environments, let's look at how each one of these

computer systems is developed in a GNU/Linux environment:

Note

GNU/Linux systems can be
dedicated to server, worksta-
tion or desktop functions.

© FUOC • P07/M2103/02281 8 Migration and coexistence with non-Linux systems

1) A workstation type system tends to be a high performance machine

used for a specific task instead of a general set of tasks. The workstation

classically consisted of a high performance machine with specific hard-

ware suited to the task that needed doing; it was usually a Sun's SPARC,

IBM's RISC or Silicon Graphics machine (among others) with its variants

of proprietary UNIX. These high cost machines were oriented at a clear

segment of applications, whether 3D graphic design (in the case of Silicon

or Sun) or databases (IBM or Sun). Nowadays, the performance of many

current PCs is comparable (although not equal) to these systems and the

frontier between one of these systems and a PC is no longer clear, thanks

to the existence of GNU/Linux as an alternative to the proprietary UNIX

versions.

2) A server type system has a specific purpose, which is to offer services to

other machines on the network: it offers a clearly distinct set of charac-

teristics or functionality from other machines. In small computer systems

(for example, with less than 10 machines), there is not usually an exclu-

sive server system, and it tends to be shared with other functionalities, for

example as a desktop type machine. Medium systems (a few dozen ma-

chines) tend to have one or more machines dedicated to acting as a serv-

er, whether as an exclusive machine that centralises all services (e-mail,

web etc.) or as a pair of machines dedicated to sharing the main services.

In large systems (hundreds or even thousands of machines), the load

makes it necessary to have a large group of servers, with each one usual-

ly exclusively dedicated to a particular service, or even with a set of ma-

chines exclusively dedicated to one service. Moreover, if these services

are provided inwards or outwards of the organisation, through access by

direct clients or open to the Internet, depending on the workload to be

supported, we will have to resort to SMP type solutions (machines with

multiple processors) or of the cluster type (grouping of machines that dis-

tribute a particular service's load).

The services that we may need internally (or externally) can encompass

(among others) the following service categories:

a) Applications: the server can run applications and as clients we just

observe their execution and interact with them. For example, it may

encompass terminals services and web-run applications.

b) Files: we are offered a shared and accessible space from any point

of the network where we can store/recover our files.

c) Database: centralisation of data for consultation or production by

the system's applications on the network (or for other services).

© FUOC • P07/M2103/02281 9 Migration and coexistence with non-Linux systems

d) Printing: there are sets of printers and their queues and jobs sent

to them from any point of the network are managed.

e) E-mail: offers services for receiving, sending or resending incoming

or outgoing mail.

f) Web: server (or servers) belonging to the organisation for internal

or external use by clients.

g) Network information: for large organisations it is vital for finding

the services offered or the shared resources; or users themselves, if

they need services that make this localisation possible and to consult

the properties of each type of object.

h) Names services: services are required to name and translate the

different names by which the same resource is known.

i) Remote access services: in the case of not having direct access, we

need alternative methods that allow us to interact from the outside,

giving us access to the system that we want.

j) Name generation services: in naming machines, for example, there

may be a highly variable number of them, or they may not always be

the same ones. We need to provide methods for clearly identifying

them.

k) Internet access services: many organisations have no reasons for

direct access and rather have access through gateways or proxies.

l) Filtering services: security measures for filtering incorrect informa-

tion or information that affects our security.

3) A desktop type machine would simply be a machine used for routine

everyday computer tasks (such as our home or office PC).

© FUOC • P07/M2103/02281 10 Migration and coexistence with non-Linux systems

Example

For example, we could establish the following as common tasks (included in some of the
most used GNU/Linux programs):

• Office tasks: providing the classical software of an office suite: word processor, spread-
sheet, presentations, a small database etc. We can find suites like OpenOffice (free),
StarOffice (paid for, produced by Sun), KOffice (by KDE), or various programs like
Gnumeric, AbiWord which would form part of a suite for Gnome (known as Gnome-
Office).

• Web browser: browsers such as Mozilla, Konqueror, Galeon etc.

• Hardware support (USB, storage devices...). Supported in GNU/Linux by the appro-
priate drivers, usually provided in the kernel or by the manufacturers. There are also
new hardware analysis tools such as kudzu (Fedora/Red Hat) or discover (Debian).
Media and entertainment (graphics, image processing, digital photography, games
and more). In GNU/Linux there is an enormous amount of these applications of a
very professional quality: Gimp (touching up photographs), Sodipodi, Xine, Mplay-
er, gphoto etc.

• Connectivity (remote desktop access, access to other systems). In this regard, GNU/
Linux has an enormous amount of own tools whether TCP/IP or FTP, telnet, web
etc., or X Window, which has remote desktop capabilities for any UNIX machine,
rdesktop (for connecting to Windows 2000/XP desktops), or VNC (for connecting to
UNIX, Windows, Mac etc.).

Note

http://www.gnome.org/
gnomeoffice

© FUOC • P07/M2103/02281 11 Migration and coexistence with non-Linux systems

2. GNU/Linux services

GNU/Linux has servers adapted for any work environment.

The service categories we have mentioned have equivalents that we can pro-

vide from our GNU/Linux systems to all other machines on the network (and

from which they can also act as clients):

a) Applications: GNU/Linux can provide remote terminal services, whether

by direct connection through series interfaces of dumb terminals, serving

to visualise or interact with the applications. Another possibility is remote

connection in text mode, from another machine via TCP/IP services such

as rlogin, telnet, or in a secure way with ssh. GNU/Linux provides servers

for all these protocols. In the case of running graphics applications, we

have remote solutions through X Window, any UNIX, Linux or Windows

client (or others) with an X Window client can visualise the running of the

environment and its applications. At the same time, there are other solu-

tions such as VNC for the same problem. Regarding the issue of web-run

applications, GNU/Linux has the Apache server, and any of the multiple

web running systems are available, whether Servlets (with Tomcat), JSP,

Perl, PHP, xml, webservices etc., as well as web application servers such as

BEA Weblogic, IBM Websphere, JBoss (free) which are also run on GNU/

Linux platforms.

b) Files: files can be served in various ways, either through FTP access to the

files, or by serving them in a transparent manner to UNIX and Linux ma-

chines with NFS, or by acting as client or server towards Windows ma-

chines through Samba.

c) Database: it supports a large number of relational client/server type

databases such as MySQL, PostgreSQL and several commercial ones such

as Oracle or IBM DB2, among others.

d) Printing: it can serve local or remote printers, for both UNIX systems with

TCP/IP protocols and Windows through Samba/CIFS.

e) E-mail: it offers services for clients to obtain mail on their machines (POP3

or IMAP servers), as mail transfer agents (MTA) to recover and retransmit

mail, such as the Sendmail server (UNIX standard) or others like Exim and,

in the case of outward sending, the SMTP service for outgoing mail.

© FUOC • P07/M2103/02281 12 Migration and coexistence with non-Linux systems

f) Web: we have the http Apache server, whether in its 1.3.x versions or the

new 2.0.x. version Also, we can integrate web application servers, such as

Tomcat for servlets, JSP...

g) Network information: services such as NIS, NIS+ or LDAP allow us to cen-

tralise the information from the machines, users, and various resources

on our network, facilitating administration and service to users, in such a

way that the latter do not depend on their situation in the network. Or if

our organisation has a certain internal structure, these services will allow

us to model it allowing access to the resources to whoever needs it.

h) Names services: services such as DNS for machine names and their trans-

lation from or to IP, by means of the Bind server for example (the standard

UNIX DNS).

i) Remote access services: whether to run applications or to obtain remote

information on the machines. The servers could be the ones we have men-

tioned for the applications: X Window, VNC etc., and also those that al-

low some remote commands to be run without interactivity such as rexec,

rsh, ssh etc.

j) Name generation services: services such as DHCP allow TCP/IP networks,

to dynamically (or statically) generate the available IP addresses according

to the machines that need it.

k) Internet access services: in certain situations there may be a single out-

put to Internet (or several). These points tend to act as proxy, since they

have access and they redirect it to potential Internet accesses on behalf of

clients. They also tend to act as content cache. In GNU/Linux we can have

Squid for example. In this category, a gateway or router could also come

into action in a GNU/Linux system, whether to direct packages to other

networks or to find alternative resending routes. Also, in the case of small

installations such as domestic ones, we could include the Internet access

by modem through the PPP services.

l) Filtering services: one of the most commonly used security measures at

present is firewalls. They basically represent filtering techniques for in-

coming or outgoing packages, for the different protocols we are using, to

put up barriers against unwanted ones. In GNU/Linux, we have mecha-

nisms such as ipchains and iptables (more modern) for implementing fire-

walls.

© FUOC • P07/M2103/02281 13 Migration and coexistence with non-Linux systems

3. Types of use

GNU/Linux, as a system, offers characteristics that are valid for personal users

as well as users of a medium or large-scale infrastructure.

From the perspective of GNU/Linux system users, we could distinguish:

a) The individual or domestic user: normally, this type of user has one or

several machines at home that may or may not be shared. In general, in

this environment, GNU/Linux is used to develop a desktop system, which

means that the graphics part will be important: the GNU/Linux desktop.

For this desktop we have two main options in the form of Gnome and

KDE environments, both of which are perfectly valid. Either of the two

environments offers applications running and visualisation services, to-

gether with a broad range of basic own applications that allow us to de-

velop all sorts of routine tasks. The two environments offer a visual desk-

top with different menus, icon bars and icons, in addition to navigators

for own files and various useful applications. Any environment can run

its own applications and the others', although, in the same way as the ap-

plications, they run better in their own environment because their visual

aspect is more suited to the environment for which they were designed.

Regarding applications for the personal user, we should include the typical

ones of the desktop system. If the user has a home network, for example,

a small group of computers joined by an Ethernet type network, services

for sharing files and printers between machines could also be interesting.

Services such as NFS may be necessary if there are other Linux machines;

or Samba, if there are machines with Windows.

In the case of having an Internet connection through an ISP (Internet

Service Provider) depending on the type of connection used, we would

need to control the corresponding devices and protocols:

• Modem connection: telephone modems tend to use the PPP protocol

to connect with the provider. We would have to enable this protocol

and configure the accounts we have enabled with the provider. An

important problem with Linux is the winModems issue, which has

caused a lot of trouble. This modem (with some exceptions) is not sup-

ported, because it is not a real modem but rather a hardware simpli-

fication plus driver software, and most only function with Windows,

meaning that we need to avoid them (if not supported) and to buy

real (full) modems.

• ADSL modem connection: the functioning would be similar, the PPP

protocol could be used or another one called EoPPP. This may depend

© FUOC • P07/M2103/02281 14 Migration and coexistence with non-Linux systems

on the modem's manufacturer and on the type of modem: Ethernet

or USB.

• ADSL connection with a router: the configuration is very simple, be-

cause in this situation all we need to do is to configure the Ethernet

card that comes with the ADSL router.

Once the interface to Internet is connected and configured, the last point

is to include the type of services that we will need. If we only want to

act as clients on Internet, it will be sufficient to use the client tools of the

different protocols, whether FTP, telnet, the web navigator, e-mail or news

reader etc. If we also wish to offer outgoing services – for example, to pub-

lish a website (web server) or to allow our external access to the machine

(ssh, telnet, FTP, X Window, VNC, services etc.), in this case, server – then

we must remember that this will only be possible if our provider gives us

fixed IP addresses for our machine. Otherwise, our IP address will change

every time we connect and the possibility of offering a service will become

either very difficult or impossible.

Another interesting service would be sharing access to the Internet be-

tween our available machines.

b) Mid-scale user: this is the user of a middle scale organisation, whether a

small company or group of users. Normally, this type of users will have

local network connectivity (through a LAN, for example) with some con-

nected machines and printers. And will have direct access to Internet,

either through some proxy (point or machine designed for an external

connection), or there will be a few machines physically connected to the

Internet. In general, in this environment, work is partly local and part-

ly shared (whether resources, printers or applications). Normally, we will

need desktop systems; for example, in an office we can use office suite

applications together with Internet clients; and perhaps also workstation

type systems; for example, for engineering or scientific jobs, CAD or im-

age processing applications may be used, as well as intensive mathemati-

cal calculation systems etc., and almost certainly more powerful machines

will be assigned to these tasks.

In this user environment, we will often have to share resources such as

files, printers, possibly applications etc. Therefore, in a GNU/Linux sys-

tem, NFS services will be appropriate, printer services, Samba (if there are

Windows machines with which files or printers need to be shared), and we

may also need database environments, an internal web server with shared

applications etc.

c) Large-scale users: this type of user resembles the preceding one and dif-

fers only in the size of the organisation and available resources, which

can be plenty, in such a way that some resources of the NIS, NIS+ or

LDAP type network system directory may be needed in order to handle

the organisation's information and reflect its structure, certainly also to

© FUOC • P07/M2103/02281 15 Migration and coexistence with non-Linux systems

have large service infrastructures for external clients generally in the form

of websites with various applications.

This type of organisation has high levels of heterogeneity in both system

hardware and software, and we could find lots of architectures and differ-

ent operating systems, meaning that the main tasks will consist of easing

data compatibility by means of databases and standard document formats

and to ease interconnectivity by means of standard protocols, clients and

servers (usually with TCP/IP elements).

© FUOC • P07/M2103/02281 16 Migration and coexistence with non-Linux systems

4. Migration or coexistence

Next, we will consider another important aspect in adopting GNU/Linux sys-

tems. Let's suppose that we are amateurs at handling this system; or, the op-

posite, that we are experienced and wish to adopt one or several GNU/Linux

systems as individual users for working in our small organisation; or that we

are considering replacing the infrastructure of our large company or organi-

sation in full (or part).

Migrating to a new system is no trivial matter, it needs to be evaluated through

a study that analyses both the costs and the beneficial features that we expect

to obtain. Also, migration can be done in full or in part, with a certain degree

of coexistence with former systems.

We will be dealing with a full or partial migration project of our IT systems to

GNU/Linux and, as administrators, we will be responsible for this process.

As in any project, we will have to study the way of responding to questions

such as: Does the change make sense in financial terms or in terms of perfor-

mance benefits? What is the migration's objective? What requirements will

we want to or need to fulfil? Can we do a partial migration or do we need

to do a full migration? Is coexistence with other systems necessary? Will we

need to retrain users? Will we be able to use the same hardware or will we

need new hardware? Will there be important added costs? Or simply, will it

go okay? These and many others are the questions that we will have to try

and answer. In the case of a company, the answers would be provided in a mi-

gration project, specifying its objectives, requirements, the implementation

process, and including a financial analysis, user training plans etc. We will

not go into this in detail, but will consider some of these issues in a simple

manner. And in the final workshop we will examine a few small cases of how

we would implement the migration.

Also, the moment we start migrating to GNU/Linux, we will start to notice

the advantages the system brings to our organisation:

a) Costs: reduction in license costs for the system's software and applica-

tions. GNU/Linux has 0 cost for licenses if purchased from the Internet

(for example, in the form of images from the distribution's CDs), or a

negligible cost if we take into account that the nearest comparison for

systems with equivalent features would be Windows Server systems with

license costs ranging between € 1,500 and € 3,000, without including a

large amount of the additional software that a typical GNU/Linux distri-

bution would include.

© FUOC • P07/M2103/02281 17 Migration and coexistence with non-Linux systems

But careful, we should not underestimate maintenance and training costs.

If our organisation consists solely of users and administrators trained in

Windows, we may have high costs for retraining personnel and, possibly,

for maintenance. Therefore, many big companies prefer to depend on a

commercial distributor of GNU/Linux to implement and maintain the

system, such as the business versions offered by Red Hat, SuSe and others.

These GNU/Linux versions also have high license costs (comparable to

Windows), but at the same time are already adapted to business structures

and contain their own software for managing companies' IT infrastruc-

ture. Another important aspect, to conclude with cost estimates, is the

TCO concept (total cost of ownership), as a global evaluation of the asso-

ciated costs that we will find when we undertake a technological devel-

opment; we don't just have to evaluate the costs of licenses and machines,

but also the costs of training and support for the people and products

involved, which may be as high or more than the implemented solution.

b) Support: GNU/Linux offers the best maintenance support that any op-

erating system has ever had, and it is mostly free. Nevertheless, some com-

panies are reluctant to adopt GNU/Linux on the basis that there is no

product support and prefer to buy commercial distributions that come

with support and maintenance contracts. GNU/Linux has a well-estab-

lished support community worldwide, through various organisations that

provide free documentation (the famous HOWTOs), specialised user fo-

rums, communities of users in practically any region or country in the

world etc. Any question or problem we have can be searched on the Inter-

net and we can find answers within minutes. If we don't, if we have found

a bug, error, or untested situation, we can report it on various sites (fo-

rums, development sites, distribution bug sites etc.), and obtain solutions

within hours or, at the most, within days. Whenever we have a question

or problem, we should first try a few procedures (this is how we will learn)

and if we do not find the solution within a reasonable amount of time,

we should consult the GNU/Linux community in case any other user (or

group of users) has encountered the same problem and found a solution,

and if not, we can always post a report on the problem and see if we are

offered solutions.

4.1. Identify service requirements

Normally, if we have systems that are already functioning we will have to have

some services implemented for users or for helping the infrastructure of the IT

support. The services will fall within some of the categories seen above, with

the GNU/Linux options that we mentioned.

GNU/Linux systems are not at all new, and as we saw in the introduction,

stem from a history of more than thirty years of UNIX systems use and de-

velopment. Therefore, one of the first things that we will find is that we are

not lacking support for any type of service we want. If anything, there will

Note

Linux Howto's: http://
www.tldp.org/

© FUOC • P07/M2103/02281 18 Migration and coexistence with non-Linux systems

be differences in the way of doing things. Also, many of the services used by

IT systems were conceived, researched, developed and implemented in their

day for UNIX, and only subsequently adapted to others systems (such as Win-

dows, more or less successfully).

Many companies with proprietary UNIX participate in GNU/Linux and

offer some of their developments to the community.

Any service available at the time may be adapted to GNU/Linux systems with

equivalent (if not the same) services.

Example

A famous case is the one of the Samba servers [Woo00] [Sam]. Windows offers what it
calls "sharing files and printers on the network" by means of its own protocols known
generically as SMB (server message block) [Smb] (with network support in the NetBios
and NetBEUI protocols). The name CIFS (common Internet file system) is also commonly
used, which is what the protocol was called in a second revision (which continued to
include SMB as a basic protocol). These protocols allowed the sharing of files (or disks)
and printers on a network of Windows machines (in a workgroup configuration or in
Windows domains). In UNIX this idea was already old when it appeared in Windows
and services such as NFS for sharing files or managing printers remotely were already
available using TCP/IP protocols.

One of the problems with replacing the Windows sharing services based on NetBios/Net-
Beui (and ultimately with NetBios over TCP/IP) was how to support these protocols, since
if we wanted to keep the client machines with Windows, we could not use the UNIX ser-
vices. For this purpose, Samba was developed as a UNIX server that supported Windows
protocols and that could replace a Windows server/client machine transparently, with
client users with Windows not having to notice anything at all. Moreover, the result in
most cases was that the performance was comparable if not better than in the original
machine with Windows services.

Currently, Samba [Sam] is constantly evolving to maintain compatibility with Windows
file and printer sharing services; because of the general changes that Microsoft subjects
SMB/CIFS [Smb] protocols to (the base implemented by Samba) with each new Windows
version, in particular the evolution of workgroup schemes in the operating systems' client
versions, to centralised server (or group of servers) schemes, with specific user authenti-
cation services (NTLM, NTLMv2, Kerberos), and centralised storage of the system's man-
agement such as Active Directory. In addition to this, the configuration of existing do-
main servers (whether with primary controller, backup or Active Directory).

Currently, in migration processes with Samba, we will need to observe what configura-
tions of Windows clients/servers (and its versions) exist on the system, as well as what
user authentication and/or information management systems are used. Also, we will
need to know how the system is structured into domains (and its controller servers,
members or isolated servers), in order to make a complete and correct mapping towards
Samba-based solutions, and into complementary user authentication (winbind, kerberos,
nss_ldap) and management services (for example openLDAP) [Sama] [Samb] .

4.2. Migration process

In the migration process, we need to consider how we want to migrate and

if we want to migrate totally or partially, coexisting with other services or

equipment that has a different operating system .

In the environments of large organisations, where we find a large number of

heterogeneous systems, we will need to take into account that we will almost

certainly not migrate every one of them, especially workstation type systems

Note

An example of Samba perfor-
mance evaluation in: http:/
/www.vnunet.com/ News/
1144289

© FUOC • P07/M2103/02281 19 Migration and coexistence with non-Linux systems

that are dedicated to running a basic application for a specific task; it could be

that there is no equivalent application or simply that we wish to keep these

systems for financial reasons or in order to maximise an investment.

We can migrate various elements, whether the services we offer, the machines

that offer the services or the clients who access the services.

Elements that can be migrated include:

a) Services or machines dedicated to one or more services. In migrating,

we will replace the service with another equivalent one, normally with

minimum possible impact unless we also wish to replace the clients. In

the case of Windows clients, we can use the Samba server to replace the

file and printer services offered by the Windows machines. For other ser-

vices, we can replace them with GNU/Linux equivalents. In the case of

replacing just one service, normally we will disable the service on the ma-

chine that offered it and enable it on the new system. Client changes may

be necessary (for example, new machine addresses or parameters related

to the service).

If a server machine was responsible for an entire function, we will need to

analyse whether the machine was dedicated to one or more services and

whether they can all be replaced. If so, we will just have to replace the old

machine with the new one (or maintain the old one) with the services

under GNU/Linux and in any case, modify a client parameter if necessary.

Normally, before making a change, it is advisable to test the machine

separately with a few clients in order to make sure that it performs the

function correctly and then to replace the machines during a period when

the system is inactive.

In any case, we will certainly have to back up data existing prior to the

new system, for example, file systems or the applications available in the

original server. Another point to consider in advance is data portability; a

problem we often find is compatibility when the organisation used data

or applications that depended on a platform.

Example

To mention a few practical cases that some companies find nowadays:

• Web applications with ASP: these applications can only be executed on web platforms
with Windows and Microsoft's IIS web server. We should avoid them if we intend
to migrate platforms at any time and don't wish to rewrite them or pay another
company to do so. GNU/ Linux platforms have the Apache web server (the most
commonly used on the Internet), which can also be used with Windows, this server
supports ASP in Perl (in Windows it generally uses visual basic, C# and Javascript),
there are third party solutions to migrate ASP or to more or less convert them. But if
our company depended on this, it would be very costly in terms of time and money.
A practical solution would have been to make the web developments in Java (which
is portable between platforms) or other solutions such as PHP. On this point, we
should highlight the Mono project [Mon] (sponsored by Novell) for portability of
part of Microsoft's .NET environment to GNU/Linux, in particular a large amount
of the.NET API's, C# language, and the ASP.NET specification. Allowing a flexible

© FUOC • P07/M2103/02281 20 Migration and coexistence with non-Linux systems

migration of .NET applications based on .NET APIs that are supported by the Mono
platform. At the same time, we should mention the FSF's DotGnu [Dgn] project, as
a GPL alternative to Mono.

• Databases: using a Microsoft SQL Server for example, makes us totally dependant on
its Windows platform, plus, if we use proprietary solutions in a specific environment
for database applications, they will be difficult to transfer. Other databases such as
Oracle and DB2 (IBM) are more portable because they have a version in the different
platforms or because they use more portable programming languages. We could also
work with PostgreSQL or MySQL database systems (it also has a version for Windows)
available in GNU/Linux, and that allow an easier transition. At the same time, if
we combine it with a web development we have a lot of possibilities; in this sense,
nowadays we use systems such as: web applications with Java, whether servlets, ap-
plets, or EJB; or solutions such as the famous LAMP, the combination of GNU/Linux,
Apache, Mysql and Php.

b) Workstation: in these migrations, the biggest problem stems from the

applications, whether for CAD, animation, engineering or scientific pro-

grams, which are the workstation's main reason for being. Here it will

be important to be able to replace them with equal or at least compat-

ible applications with the same expected features or functionality. Nor-

mally, most of these applications stem from a UNIX world, given that

most of these workstations were conceived as UNIX machines. Meaning

that a compilation or minimum adaptation to the new GNU/Linux may

be enough, if we have source code (as tends to be the case with many

scientific applications). If we are dealing with commercial applications,

the manufacturers (of engineering and scientific software) are starting to

adapt them to GNU/Linux, although in these cases the applications are

usually very expensive (easily hundreds to thousands of euros).

c) Desktop client machines. Desktop machines continue to be a headache

for the world of GNU/Linux, because they involve a number of additional

problems. In servers, the machines are assigned clear functionalities, as a

rule they do not require complex graphic interfaces (often text communi-

cation is sufficient), and the normally specific high performance hardware

is purchased for a specific set of functions and the applications tend to

be the servers themselves included in the operating system or some third

party applications. Also, these machines are often managed by adminis-

trators with extensive knowledge of what they are dealing with. However,

in the case of desktops, we are dealing with a problem factor (in itself and

more so for administrators): the system's end users. The users of desktop

systems expect to have powerful graphic interfaces that are more or less

intuitive and applications that allow them to run routine – usually office

– tasks. This type of user (with a few exceptions) has no reason to have

advanced knowledge of computers; in general, they are familiar with of-

fice suites and use a couple of applications with varying degrees of skill.

Here GNU/Linux has a clear problem, because UNIX as such was never

conceived as a purely desktop system and was only later adapted with

graphic interfaces such as X Window and the different desktops, such as

Note

For example: http://
www.linuxrsp.ru/win-linsoft/
table-eng.html

© FUOC • P07/M2103/02281 21 Migration and coexistence with non-Linux systems

the current GNU/Linux ones: Gnome and KDE. Furthermore, the end us-

er tends to be familiar with Windows systems (which have almost a 95%

share of the desktop market).

In the case of desktops, GNU/Linux has a number of obstacles to over-

come. One of the most critical ones is that it does not come preinstalled

on machines, which obliges the user to have a certain amount of knowl-

edge in order to be able to install it. Other reasons could be:

Note

The desktop environment is a battle yet to be waged by GNU/Linux systems; which need
to defeat users' reluctance to switch systems and generate awareness of their ability to
offer simple alternatives and applications that can handle the tasks demanded by users.

• User reluctance: a question a user may ask is: Why should I switch

system? Will the new environment offer me the same thing? One of

the basic reasons for changing will be quality software and its cost,

since a large proportion will be free. On this point, we should con-

sider the issue of illegal software. Users seem to consider that their

software is free, when really they are in an illegal situation. GNU/Lin-

ux software offers good quality at a low cost (or at no cost in many

cases), with several alternatives for the same job.

• Simplicity: users are normally lost if the system does not have sim-

ilar reference points to those the user is already familiar with, such

as interface behaviour or tools with similar functionality. Users gen-

erally expect not to have to spend too much extra time on learning

how to handle the new system. GNU/Linux still has a few problems

with more or less automatic installations, which means that a certain

amount of knowledge is still required in order to install it correctly.

On this point, we should mention the ease of installing it in different

environments provided by recent distributions like Ubuntu [Ubu].

Another common problem concerns support for the PC hardware;

even though it is improving all the time, manufacturers still don't

pay enough attention to it (partly for reasons of market share). Until

there is a clear intention in this regard, we will not be able to have

the same support as other proprietary systems (like Windows). How-

ever, we should emphasise the work of the Linux kernel communi-

ty to offer the right support for new technologies, in some cases by

supporting the manufacturer or by preparing primary support (if not

supported by the manufacturer) or alternative support to that offered

by the manufacturer.

• Transparency: GNU/Linux environments have many complex

mechanisms, such as daemons, services, difficult to configure ASCII

files etc. For end users, it should be necessary to hide all of these

© FUOC • P07/M2103/02281 22 Migration and coexistence with non-Linux systems

complexities by means of graphics programs, configuration wizards

etc. This is the path taken by some distributions such as Red Hat,

Mandriva, Ubuntu or SuSe.

• Support for known applications: a standard office suite user will

face the problem of data portability or handling data formats. What

to do with existing data? This problem is being solved daily, thanks

to the office suites that are starting to have the functionalities a desk-

top user needs. For example, if we consider a migration from using

a Windows Office suite, we can find suites such as OpenOffice (free

software) that can read (and create) the formats of Office files (with

some restrictions). Format compatibility is not difficult when it is

open, but in the case of Windows, Microsoft continues to maintain a

policy of closed formats; and a serious amount of work is needed in

order to be able to use these formats, by means of reverse engineering

(a fairly costly process). Also, in the Internet age, when information

is supposed to move about freely, undocumented closed formats are

more an obstacle than anything else. The best thing is to use open

formats such as RTF (although these also have some problems be-

cause of the many versions of it that there are), or XML based for-

mats (OpenOffice generates its own documents in XML), or PDF for

read-only documents. We should also highlight recent efforts by the

OpenOffice community to create the standard open document (used

by the suite from versions 2.x), which have made it possible to have

a free format as an ISO standard for document creation. This fact has

obliged Microsoft to (partially) open its format in versions starting

from Office 2007, to incorporate OpenXML formats.

• To provide valid alternatives: the software we stop using has to have

alternatives that do the same job as the previous system. Most ap-

plications have one or several alternatives with similar, if not better,

functionalities. On the Internet you can find different lists of (more

or less complete) applications for GNU/Linux that match the func-

tionality of Windows applications.

• Support for running applications for other systems: under some

conditions it is possible to run applications for other UNIX systems

(with the same architecture, for example, Intel x86), or for MS-DOS or

Windows, through compatibility packages or some type of emulator.

Most of the problems that affect desktop migrations are being overcome slow-

ly but surely and will allow us in future to have a larger number of GNU/Linux

desktop users, who, as they increase, will have access to better applications en-

couraging software companies to start implementing versions for GNU/Linux.

© FUOC • P07/M2103/02281 23 Migration and coexistence with non-Linux systems

In the case of companies, it can be overcome with a gentle migration, starting

with servers and workstations, and then desktops after following an extensive

training program for users in the new systems and applications.

A process that will help to a large extent is to introduce open code soft-

ware in education and in public administrations, as in the recent case of the

Autonomous Community of Extremadura with its GNU/Linux distribution

called Linex; or recent measures for taking this software to primary education,

or the measures taken by universities by running courses and subjects using

these systems.

© FUOC • P07/M2103/02281 24 Migration and coexistence with non-Linux systems

5. Migration workshop: case study analysis

In this workshop we will try to apply what we have learned in this unit to anal-

yse some simple migration processes, and some detail of the required tech-

niques (in the case of network techniques, we will look at these in the units

on network administration).

We will consider the following case studies:

• Individual migration of a Windows desktop user to a GNU/Linux system.

• Migration of a small organisation with Windows systems and a few UNIX.

• Migration of a standalone Windows server to a Samba server running

GNU/ Linux.

1.�Individual�migration�of�a�Windows�desktop�user�to�a�GNU/Linux

system

A user considers migrating to GNU/Linux [Ray02b]. Normally, there will

first be a period of cohabitation, so that the user can have both systems

and use each one for a series of tasks: tasks will continue to be executed

in Windows while the user learns about the new system and finds equiv-

alent software or new software that does tasks for which no software was

previously available.

Migration for a private user is perhaps one of the most complex processes;

we need to offer users alternatives to what they commonly use, so that

adaptation is as simple as possible and the user can adapt gradually and

with ease to the new system.

A first possibility would be a dual installation [Ban01] [Sko03b] of the

original system (Windows 9x or NT/XP for example) together with the

GNU/Linux system.

Note

Linux Hardware Howto: http:/
/www.tldp.org/HOWTO/Hard-
wareHOWTO/index.html

A first step for a determined machine configuration will consist of check-

ing that our hardware is compatible with Linux [Pri02], either from a list

of hardware compatibility or by checking with the manufacturer if new

components need to be purchased or the existing ones require a particu-

lar configuration. If we are unfamiliar with our hardware, we can check

it through the Windows "device administrator" (in the control panel) or

© FUOC • P07/M2103/02281 25 Migration and coexistence with non-Linux systems

using some type of hardware recognition software. At the same time, an

advisable method is to use LiveCD-type GNU/Linux distributions, which

will allow us to check the functioning of GNU/Linux on our hardware

without requiring a physical installation, since the only requirement is

the possibility of booting the system from a CD/DVD (in some cases the

BIOS configuration may have to be changed for this). There are Live CDs

such as Knoppix [Knp] with great support for hardware checks and most

GNU/Linux distributions tend to offer a Live CD in order to initially check

its functioning (in some cases, Ubuntu [Ubn] for example, the full instal-

lation can be done using the same Live CD). In any case, we should men-

tion that checking with a specific Live CD does not mean that there will

not be any problems with the final installation, either because the Live

CD is not of the same GNU/Linux distribution that we eventually install

or because the versions of the system and/or applications will not be the

same.

Regarding the physical installation on disk, we will either need to have

unpartitioned free disk space or, if we have FAT/32-type partitions, we can

liberate space using programs that make it possible to adjust the size of

partitions, reducing an existing partition (a previous data backup here is

obviously advisable). Currently, most distributions support various disk

partitioning and partition reduction schemes, although problems may

arise depending on the distribution. If there is not enough space or there

are partitions with file systems that present problems (like NTFS with

some distributions), we may have to consider buying a new additional

hard disk, to use totally or partially for GNU/Linux.

After checking the hardware, we will have to decide on the distribution

of the GNU/Linux system that we will use (a possibility we mentioned

before is to choose a Live CD that has been satisfactory and to install

that distribution). If the user is inexperienced in GNU/Linux or only has

basic computer knowledge, it is preferable to choose one of the more us-

er-friendly distributions such as Fedora, Mandriva, SuSe, or similar (we

would highlight the ease of Ubuntu in this regard). If we are more knowl-

edgeable or tempted to experiment, we could try a Debian distribution. In

the case of commercial distributions, on most occasions the distributions

with compatible hardware (business versions like Red Hat and SuSe certify

the hardware that they support), are installed perfectly without any prob-

lem and basic configurations are made that allow the operating system

to be used immediately. During the process, we will have to install the

software, which will normally be defined by sets of oriented software: for

servers, specific applications or desktop applications, such as office suites,

development applications (if we are interested in programming) etc.

© FUOC • P07/M2103/02281 26 Migration and coexistence with non-Linux systems

Once the system is installed, we have to tackle the issue of sharing data

[Gon00] [Kat01], how will we share the data between the two systems?

or is it possible to share certain applications? There are various solutions

for this:

a) Indirect method: this consists of sharing data using a diskette for

example. For this, the best thing are the utilities known as mtools,

which allow transparent access to diskettes in MS-DOS format, and

there are several commands that function in a very similar way to

MS-DOS or Windows. These commands have exactly the same names

as the original MS-DOS commands, except that they have an "m" in

front, for example: mcd, mcopy, mdir, mdel, mformat, mtype etc.

b) Direct method: this consists of using the file system in Windows

directly. As we will see in the unit on local administration, GNU/Lin-

ux can read and write a large number of file systems, including FAT,

FAT32, and NTFS (read only in some cases, although most distribu-

tions already include the ntfs-3g [Nt3] driver that allows writing).

Mounting the Windows disk is required first and that makes it possi-

ble to incorporate the Windows file system into a point of the Linux

file tree; for example, we could mount our Windows disk in /mnt/

Windows and from this point access its folders and files for reading

and writing. With ASCII text files, conversions need to be consid-

ered, since UNIX and Windows treat them differently: in UNIX, the

end of a line has only one character, the line feed, ASCII 10, whereas

Windows has two, the return and the line feed, characters ASCII 13

and 10 (as a curious note, in Mac it is ASCII 13). Which means that

usually when we read a DOS/Windows ASCII file, it contains strange

characters at the end of a line. There are editors such as emacs that

handle them transparently and, in any case, there are GNU/Linux

utilities that make it possible to convert them into another format

(utilities such as duconv, recode, dos2UNIX, UNIX2dos).

c) Use of applications: there are a few alternatives for running the ap-

plications (not all of them) for MS-DOS and Windows. For GNU/Lin-

ux there are MS-DOS emulators such as Dosemu [Sun02] or DOsBox,

and for Windows there is the Wine [Win] software. It can run various

Windows applications (for example, it can run some version of Of-

fice and Internet Explorer), but it is constantly being improved. If it

is vital to run Windows applications, some commercial software can

help us; these applications give extra support to Wine, for example,

Win4Lin, CrossOver and in some cases special support for games like

Cedega. Another potential solution is to use virtual machines; an ex-

ample of extensively used software is VMware, which creates a full PC

as a virtual machine, simulated by the software, where a large num-

ber of different operating systems can be installed. VMware is avail-

able in versions for Windows and for GNU/Linux, which makes it

© FUOC • P07/M2103/02281 27 Migration and coexistence with non-Linux systems

possible to have a GNU/Linux installed with a Windows running on

it virtually, or a Windows installed with a virtual GNU/Linux. There

are also other solutions of free virtual machines like QEmu, Bochs.

In another segment, virtual machines or generically virtualisation is

used oriented at the creation of virtual servers, with solutions such as

VMware server or the open projects Xen, OpenVZ, Vserver; where it

is possible to make several virtual machines running on an operating

system coexist (normally through modifications to the kernel that

support this virtualisation), or even directly on the hardware, with

small layers of software.

Aside from sharing the information (applications and/or data) you

can search for GNU/Linux applications that replace the original Win-

dows ones as the user gradually learns to use them and sees that they

offer the expected functionalities.

Example

A typical case would be the office suite that can be migrated to OpenOffice, which has
a high degree of compatibility with Office files and functions fairly similarly, or KOffice
(for the KDE desktop), or GNumeric and AbiWord (for Gnome). Or, in the case of image
processing, we can take Gimp, with similar functionalities to Photoshop. And numerous
multimedia players: Xine, Mplayer (or also a version of RealPlayer). On the Internet we
can find numerous lists of equivalent programs between Windows and GNU/Linux.

2.�Migration�of�a�small�organisation�with�Windows�systems�and�a�few

UNIX

Note

List of equivalent applications:
http://www.linuxrsp.ru/win-
lin-soft/table-eng.html
http://www.linuxeq.com/

Migration within an organisation (even a small one) has several difficul-

ties: we will have different work environments and heterogeneous soft-

ware, and, once more, users who are resistant to change.

Now, let's consider an organisation with Windows machines and some

UNIX machines as servers or workstations and somewhat "anarchic" users.

For example, let's study the following situation: the organisation has a

small local network of Windows machines shared by users as equal ma-

chines in a Windows workgroup (there are no NT domains).

The group is diverse: we have machines with Windows 98, ME, NT, XP,

but configured for each user with the software needed for their daily jobs:

whether Office, a browser, e-mail reader, or development environments

for different language programmers (for example, C, C++, Java).

© FUOC • P07/M2103/02281 28 Migration and coexistence with non-Linux systems

There are some extra hardware resources available, such as various print-

ers connected to the local network (they accept TCP/IP jobs), which can

be used from any point within the organisation. At the same time, there

is a shared machine, with a few special resources, such as a scanner, CD

recorder and directories shared by the network, where users can leave

their own directories with their files for backup processes or to recover

scanned images, for example.

We also have several workstations, in this case Sun Microsystem's SPARC,

which are running Solaris (commercial UNIX of Sun). These stations are

dedicated to development and to some scientific and graphics applica-

tions. These machines have NFS services for file sharing and NIS+ for han-

dling the information of users who connect to them and who can do so

from any machine in a transparent manner. Some of the machines in-

clude specific services; one is the company's web server and another is

used as an e-mail server.

We are considering the possibility of migrating to GNU/Linux because

of an interest in software development and the particular interest from

some users to use this system.

Also, the migration will be made the most of in order to resolve certain

problems related to security – some old Windows systems are not the best

way of sharing files; we want to restrict use of the printer (the cost in paper

and associated costs are high) to more reasonable quotas. At the same

time we would like users to have a certain amount of freedom, they will

not be obliged to change system, although the suggestion will be made to

them. And we will also take advantage in order to purchase new hardware

to complement existing hardware, for example if the workstations require

additional disk space, which imposes limits on e-mail and user accounts.

Following this small description of our organisation (in other more com-

plex cases it could fill several pages or be a full document analysing the

present situation and making future proposals), we can start to consider

the possibilities for solving all this:

a) What do we do with the current workstations? The cost of main-

tenance and software licenses is high. We need to cover the mainte-

nance of faults in the stations, expensive hardware (in this case, SCSI

disks) and also expensive memory extensions. The cost of the oper-

ating system and its updates is also expensive. In this case, we have

two possibilities (depending on the budget that we have to make the

change):

© FUOC • P07/M2103/02281 29 Migration and coexistence with non-Linux systems

– We can cut costs by converting the machines to GNU/Linux sys-

tems. These systems have a SPARC architecture and there are distri-

butions that support this architecture. We could replace the services

for their GNU/Linux equivalents; replacement would be virtually di-

rect, since we already use a UNIX system.

– Another possibility would be to eliminate Sun's proprietary hard-

ware and to convert the stations into powerful PCs with GNU/Lin-

ux; this would make subsequent maintenance simpler, although the

initial cost would be high.

b) And what about the workstations software? If the applications

have been developed in-house, it may be enough to compile them

again or to make a simple adjustment to the new environment. If

they are commercial, we will have to see whether the company can

provide them in GNU/Linux environments, or if we can find replace-

ments with a similar functionality. In the case of the developers, their

environments of C, C++ and Java languages are easily portable; in

the case of C and C++, gcc, the GNU compiler, can be used and there

are numerous IDEs for development (KDevelop, Anjuta,...); or in the

case of Java, the Sun kit can be used in GNU/Linux and in various

open code environments (IBM's Eclipse or Netbeans).

c) And what about users? For those who are interested in GNU/Lin-

ux systems, we can install dual equipment with Windows and GNU/

Linux so that they can start to test the system and if they are inter-

ested, we can finally transfer to just the one GNU/Linux system. We

can find two types of users: purely office suite users, who will basi-

cally need the suite, navigator and e-mail; all of which can be offered

with a GNU/Linux desktop such as Gnome or KDE and software such

as OpenOffice, Mozilla/Firefox navigator, and Mozilla Mail or Thun-

derbird e-mail (or any other Kmail, Evolution...). They are more or

less directly equivalent, it all depends on users' desire to test and use

the new software. For developers, the change can be more direct,

since they are offered many more environments and flexible tools;

they could pass completely over to the GNU/Linux systems or work

directly with the workstations.

d) And the printers? We could establish a workstation as a printer

server (whether through TCP/IP queues or Samba server), and control

printing by means of quotas.

e) The shared machine? The shared hardware can be left on the same

machine or can be controlled from a GNU/Linux system. Regarding

the shared disk space, it can be moved to a Samba server that will

replace the current one.

© FUOC • P07/M2103/02281 30 Migration and coexistence with non-Linux systems

f) Do we expand the disk space? This will depend on our budget.

We can improve control by means of a quota system that distributes

space equitably and imposes limits on saturation.

c)�Migration�of�a�Windows�server�to�a�Samba�server�in�GNU/Linux

The basic required process tends to me much more extensive, consult the

bibliography for the full steps to be taken.

In this case, the basic required process for a migration from a Windows

server that shares files and a printer to a Samba server in a GNU/Linux

system.

Thanks to software such as Samba, migration from Windows environ-

ments is very flexible and fast and even improves the machine's perfor-

mance.

Let's suppose a machine belonging to a workgroup GROUP, sharing a

printer called PRINTER and with a shared file called DATA, which is no

more than the machine's D drive. Several Windows clients access the fold-

er for reading/writing, within a local network with IP 192.168.1.x address-

es, where x will be 1 for our Windows server, and the clients will have

other values (192.168.x.x networks are often used as addresses to install

private internal networks).

As part of our process we will build a Samba server, which is what, as

we saw, will allow us to run the SMB/CIFS (server message block / com-

mon Internet file system) protocol in GNU/Linux. This protocol allows

the file system and the printers to interact through networks on different

operating systems. We can mount folders belonging to Windows on the

GNU/Linux machines, or part of the GNU/Linux folders on Windows and

similarly with each other's printers. The server consists of two daemons

(system processes) called smbd and nmbd.

The smbd process manages clients' requests from shared files or printers.

The nmbd process manages the machines' names system and resources

under the NetBIOS protocol (created by IBM). This protocol is indepen-

dent from the network used (currently, in NT/2000/XP Microsoft general-

ly uses Netbios over TCP/IP). The nmbd also offers WINS services, which is

the name assignment service that is normally run on Windows NT/Server

if we have a collection of machines; it is a sort of combination of DNS and

DHCP for Windows environments. The process is somewhat complex,

but to summarise: when a Windows machine starts up or has a static IP

address or dynamic address through a DHCP server and additionally pos-

sibly a NetBIOS name (that the user assigns to the machine: in network

identification), then the WINS client contacts the server to report its IP;

© FUOC • P07/M2103/02281 31 Migration and coexistence with non-Linux systems

if a network machine subsequently requests the NetBios name, the WINS

server is contacted to obtain its IP address and communication is estab-

lished. The nmbd runs this process on GNU/Linux.

Like any other network service, it should not be run without considering

the risk activating it could entail, and how we can minimise this risk.

Regarding Samba, we need to be aware of security issues, because we are

opening part of our local or network files and printers. We will also have

to check the communication restrictions properly in order to prevent ac-

cess to unwanted users or machines. In this basic example, we will not

comment on these issues; in a real case scenario, we would have to exam-

ine the security options and only allow access for those we want.

In the migration process, we will first have to configure the GNU/Lin-

ux system to support Samba [Woo00], we will need the Samba file sys-

tems support in the kernel (smbfs), which is normally already activated.

We should add that currently there is additional support in the kernel

through the cifs module [Ste07], which as of kernel version 2.6.20 is con-

sidered the default method, leaving smbfs as a secondary option. The

cifs module offers support for new features related to the CIFS protocol

(as an extension of SMB). Through "smbfs" and "cifs" file system names

these modules allow us to conduct operations for mounting Windows

file systems onto the Windows directory tree (mount -t smbfs or mount

-t cifs). Apart from the fact that the kernel support is inclined towards

the cifs module, there are some characteristics that may need smbfs sup-

port, which means that usually both modules are activated in the kernel.

We should also mention the configuration issue, whereas smbfs bases its

functioning on the Samba configuration (as we will see in the smb.conf

file), the cifs module is given its configuration through the operations (for

example, in the mounting process through mount).

In the case of using a Samba server, in addition to the kernel support,

we will need to install the associated software packages: we will have to

examine what packages related to Samba the distribution includes and

install those associated to the functioning of the server. And also, if want-

ed, those related to Samba as a client, in the event we wish to be clients

of Windows machines or to test resources shared with the Windows ma-

chines from our GNU/Linux system. In a Debian distribution, these pack-

ages are: samba, samba-common, smbclient, smbfs. It may also be inter-

esting to install swat, which is a web-based graphics tool for Samba ser-

vices administration. For our GNU/Linux Samba server [Woo00] [War03],

for the proposed example, we will have to transfer the contents of the

previous D disk (where we had our shared file system) from the original

machine to the new machine and place its content in a path, like, /home/

DATA, whether through a backup copy, FTP transfer, or using Samba as

a client to transfer the files.

© FUOC • P07/M2103/02281 32 Migration and coexistence with non-Linux systems

Regarding the use of GNU/Linux as a Samba client, it is fairly simple.

Through the use of client commands for occasional use of the file system:

a) We mount a Windows shared directory (for instance, host being

the name of the Windows server), on an existing predefined mount-

ing point:

smbmount //host/carpeta /mnt/windows

b) We will place the access to the Windows folder of the host machine

in our local directory, accessing in the directory tree:

/mnt/windows

c) Next, when it is no longer in use we can dismount the resource

with:

smbumount /mnt/windows

If we are not aware of the shared resources, we can obtain a list with:

smbclient -L host

And we can also use smbclient //host/folder, which is a similar program

to an FTP client.

In the event of wanting to make the file systems available permanently,

or to provide certain special configurations, we can study the use of mount

directly (the smbxxxx utilities use it), whether with the smbfs or cifs file

systems (supported in the kernel), taking the parameters into account

(Windows users/groups authentication or other service parameters) that

we will have to provide depending on the case, and of the pre-existing

Samba configuration [Ste07].

Note

Always consult the man pages,
or manuals, that come with
the software.

In the case of the Samba server, once we have installed all the Samba

software, we will have to configure the server through its configuration

file. Depending on the version (or distribution), this file may be in /etc/

smb.conf or in /etc/samba/smb.conf. The options shown here belong to

a Samba 3.x.x installed on a Debian distribution system. Other versions

may have a few minor modifications.

© FUOC • P07/M2103/02281 33 Migration and coexistence with non-Linux systems

During the installation of the software packages we will normally be asked

for data regarding its configuration. In the case of Samba, we will be asked

for the workgroup to be served; we will have to place the same group name

as in Windows. We will also be asked if we want encrypted passwords

(advisable for security reasons, in Windows 9x they were sent in raw text,

in a clear case of scarce security and high system vulnerability).

Next we will look at the process of configuring the file smb.conf. This file has

three main sections:

1)�Global (basic functioning characteristics).

2)�Browser (controls what other machines see of our resources).

3)�Share (controls what we share).

In this file's extensive manual we can see the available options (man

smb.conf). We will edit the file with an editor and see some of the file's lines

(characters '#' or ';' at the beginning of a line are comments: If the line contains

';' it is a comment; to enable a line, if it is an optional configuration line we

must edit it and remove the ';'):

workgroup = GROUP

This shows the Windows workgroup that the Windows client machines will

be members of.

server string = %h server (Samba %v)

We can place a text description of our server. The h and the v that appear

are variables of Samba that refer to the host name and version of Samba. For

security reasons, it is a good idea to remove the v, since this will inform the

exterior what version of Samba we have; if there are known security bugs, this

can be used.

hosts allow = 192.168.1

This line may or may not be present, and we can include it to enable what

hosts will be served; in this case, all of those in the 192.168.1.x range.

printcap name = /etc/printcap

The printcap file is where GNU/Linux stores the printers' definition, and this

is where Samba will look for information about them.

guest account = nobody

© FUOC • P07/M2103/02281 34 Migration and coexistence with non-Linux systems

This is the guest account. We can create a different account, or just enable

access to Samba for the users registered on the GNU/Linux system.

log file = /var/log/samba/log.%m

This line tells us where the Samba log files will be stored. One is stored per

client (variable m is the name of the connected client).

encrypt passwords = true

For security reasons it is advisable to use encrypted passwords if we have client

machines with Windows 98, NT or above. These passwords are saved in a /etc/

samba/smbpasswd file, which is normally generated for users of the Samba

installation. Passwords can be changed with the smbpasswd command. There

is also an option called UNIX password sync, which allows the change to be

simultaneous for both passwords (Samba user and Linux user).

Next, we will jump to the Share Definitions section:

[homes]

These lines allow access to the users' accounts from the Windows machines.

If we don't want this, we will add some ';' to the start of these lines, and when

the machines connect they will see the name comment. In principle, writing

is disabled, to enable it, you just have to set "yes" as the writable option.

Any sharing of a specific directory (Samba tends to call a group of shared data

a partition), we will proceed as shown in the examples that appear (see, for

example the definition of sharing the CD-ROM in the lines that start with

[cdrom]). In path we will place the access route.

Example

In our case, for example, we would give the name DATA to the partition on the route
/home/DATA, where we had copied the D disk from the original Windows machine and
the path where it can be found, in addition to a large group of options that can be
modified, users authorised to access them and the way of doing so.

There is also a profiles definition, that makes it possible to control the profiles

of Windows users, in other words, the directory where their Windows desktop

configuration is saved, the start up menu etc.

The method is similar for the printers: a partition is made with the printer

name (the same one given in GNU/Linux), and in the path we place the queue

address associated to the printer (in GNU/Linux we will find it in: /var/spool/

samba/PRINTER). And the option printable = yes, if we want jobs to be sent

with Samba. And we can also restrict user access (valid users).

Note

See: man smb.conf

© FUOC • P07/M2103/02281 35 Migration and coexistence with non-Linux systems

Once we have made these changes we will just have to save them and reinitiate

Samba so that it can read the new configuration. In Debian:

/etc/init.d/samba restart

Now, our shared directory and the printer through Samba will be available to

serve users without them noticing any difference in relation to the previous

connections with the Windows server.

© FUOC • P07/M2103/02281 37 Migration and coexistence with non-Linux systems

Activities

1) In the GNU/Linux services description, do we find we are missing any functionality? What
other type of services would we add?

2) In the second case study of the workshop (the one of the organisation), how would you
change the IT infrastructure if you had zero budget, an average budget, or a high budget?
Present some alternative solutions to the ones shown.

3) The software VMware Workstation is a virtual machine through software, which can install
operating systems on a virtual PC. You can obtain a demo from www.vmware.com. Test (in
the case of having a Windows license) installing it on Windows, and then on GNU/Linux
on the virtual PC (or the other way around). What advantages does this method for sharing
operating systems offer? What problems does it cause?

4) If we have two machines for installing a Samba server, we can test the server installation or
configuration in configurations of Samba UNIX client-Windows server, or Windows client-
Samba server in GNU/Linux. You can test it on a single machine using the same machine
as a Samba server and client.

© FUOC • P07/M2103/02281 38 Migration and coexistence with non-Linux systems

Bibliography

Other sources of reference and information

[LPD] Linux Documentation Project offers Howtos regarding different aspects of a GNU/Lin-
ux system and a set of more detailed manuals.

[Mor03] Good reference for the configuration of Linux systems, with some case studies in
different environments; comments on different distributions of Debian and Red Hat.

Basic tools for the
administrator

Josep Jorba Esteve

P07/M2103/02282

© FUOC • P07/M2103/02282 Basic tools for the administrator

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02282 Basic tools for the administrator

Index

Introduction... 5

1. Graphics tools and command lines... 7

2. Standards documents.. 9

3. Online system documentation... 12

4. Shells and Scripts... 14

4.1. Interactive shells... 15

4.2. Available shells .. 18

4.3. System variables .. 21

4.4. Programming scripts in Bash .. 22

4.4.1. Variables in Bash ... 23

4.4.2. Comparisons .. 24

4.4.3. Control structures .. 24

5. Package management tools.. 27

5.1. TGZ package .. 28

5.2. Fedora/Red Hat: RPM packages ... 30

5.3. Debian: DEB packages ... 34

6. Generic administration tools... 38

7. Other tools... 40

Activities.. 41

Bibliography... 42

© FUOC • P07/M2103/02282 5 Basic tools for the administrator

Introduction

On a daily basis, an administrator of GNU/Linux systems has to tackle a large

number of tasks. In general, the UNIX philosophy does not have just one tool

for every task or just one way of doing things. What is common is for UNIX

systems to offer a large number of more or less simple tools to handle the

different tasks.

It will be the combination of the basic tools, each with a well-defined

task that will allow us to resolve a problem or administration task.

In this unit we will look at different groups of tools, identify some of their

basic functions and look at a few examples of their uses. We will start by ex-

amining some of the standards of the world of GNU/Linux, which will help

us to find some of the basic characteristics that we expect of any GNU/Linux

distribution. These standards, such as LSB (or Linux standard base) [Linc] and

FHS (filesystem hierarchy standard) [Linb], tell us about the tools we can ex-

pect to find available, a common structure for the file system, and the various

norms that need to be fulfilled for a distribution to be considered a GNU/Lin-

ux system and to maintain shared rules for compatibility between them.

For automating administration tasks we tend to use commands grouped in-

to shell scripts (also known as command scripts), through language interpret-

ed by the system's shell (command interpreter). In programming these shell

scripts we are allowed to join the system's commands with flow control struc-

tures, and thus to have a fast prototype environment of tools for automating

tasks.

Another common scheme is to use tools of compiling and debugging high

level languages (for example C). In general, the administrator will use them to

generate new developments of applications or tools, or to incorporate appli-

cations that come as source code and that need to be adapted and compiled.

We will also analyse the use of some graphics tools with regards to the usu-

al command lines. These tools tend to facilitate the administrator's tasks but

their use is limited because they are heavily dependent on the GNU/Linux

distribution and version. Even so, there are some useful exportable tools be-

tween distributions.

Finally, we will analyse a set of essential tools for maintaining the system up-

dated, the package management tools. The software served with the GNU/

Linux distribution or subsequently incorporated is normally offered in units

known as packages, which include the files of specific software, plus the vari-

Note

GNU/Linux has a very broad
range of tools with basic func-
tionalities, whose strength lies
in their combination.

© FUOC • P07/M2103/02282 6 Basic tools for the administrator

ous steps required in order to prepare the installation and then to configure it

or, where applicable, to update or uninstall specific software. And every distri-

bution tends to carry management software for maintaining lists of installed

or installable packages, as well as for controlling existing versions or various

possibilities of updating them through different original sources.

© FUOC • P07/M2103/02282 7 Basic tools for the administrator

1. Graphics tools and command lines

There are a large number of tools, of which we will examine a small share in

this and subsequent modules, which are provided as administration tools by

third parties, independent from the distribution, or by the distributor of the

GNU/Linux system itself.

These tools may cover more or fewer aspects of the administration of a specific

task and can appear with various different interfaces: whether command line

tools with various associated configuration options and/or files or text tools

with some form of menus; or graphics tools, with more suitable interfaces for

handling information, wizards to automate the tasks or web administration

interfaces.

All of this offers us a broad range of possibilities where administration is con-

cerned, but we will always have to evaluate the ease of using them with the

benefits of using them, and the knowledge of the administrator responsible

for these tasks.

The common tasks of a GNU/Linux administrator can include working with

different distributions (for example, the ones we will discuss Fedora [Fed] or

Debian [Debb] or any other) or even working with commercial variants of oth-

er UNIX systems. This entails having to establish a certain way of working that

allows us to perform the tasks in the different systems in a uniform manner.

For this reason, throughout the different modules we will try to highlight the

most common aspects and the administration techniques will be mostly per-

formed at a low level through a command line and/or the editing of associated

configuration files.

Any of the GNU/Linux distributions tends to include command line, text, or

especially, graphics tools to complement the above and to a greater or lesser

degree simplify task administration [Sm02]. But we need to take several things

into account:

a) These tools are a more or less elaborate interface of the basic command line

tools and corresponding configuration files.

b) Normally they do not offer all the features or configurations that can be

carried out at a low level.

c) Errors may not be well managed or may simply provide messages of the

type "this task could not be performed".

© FUOC • P07/M2103/02282 8 Basic tools for the administrator

d) The use of these tools hides, sometimes completely, the internal function-

ing of the service or task. Having a good understanding of the internal func-

tioning is basic for the administrator, especially if the administrator is respon-

sible for correcting errors or optimising services.

e) These tools are useful for improving production once the administrator

has the required knowledge to handle routine tasks more efficiently and to

automate them.

f) Or, in the opposite case, the task may be so complex, require so many pa-

rameters or generate so much data, that it may become impossible to control

it manually. In these cases, the high level tools can be very useful and make

practicable tasks that are otherwise difficult to control. For example, this cat-

egory would include visualisation tools, monitorisation tools, and summaries

of tasks or complex services.

g) For automating tasks, these tools (of a higher level) may not be suitable: they

may not have been designed for the steps that need taking or may perform

them inefficiently. For example, a specific case would be creating users, where

a visual tool can be very attractive because of the way of entering the data;

but what if instead of entering one or a few users we want to enter a list of

tens or hundreds of them? if not prepared for this, the tool will become totally

inefficient.

h) Finally, administrators normally wish to personalise their tasks using the

tools they find most convenient and easy to adapt. In this aspect, it is common

to use basic low-level tools, and shell scripts (we will study the basics in this

unit) combining them in order to form a task.

We may use these tools occasionally (or daily), if we have the required knowl-

edge for dealing with errors that can arise or to facilitate a process that the

tool was conceived for, but always controlling the tasks we implement and

the underlying technical knowledge.

© FUOC • P07/M2103/02282 9 Basic tools for the administrator

2. Standards documents

Standards, whether generic of UNIX or particular to GNU/Linux, allow us to

follow a few basic criteria that guide us in learning how to execute a task and

that offer us basic information for starting our job.

In GNU/Linux we can find standards, such as the FHS (filesystem hierar-

chy standard) [Linb], which tells us what we can find in the our system's

file system structure (or where to look for it), or the LSB (Linux standard

base), which discusses the different components that we tend to find

in the systems [Linc].

Note

See FHS in:
www.pathname.com/fhs

The FHS�filesystem hierchachy standard describes the main file system tree struc-

ture (/), which specifies the structure of the directories and the main files that

they will contain. This standard is also used to a greater or lesser extent for

commercial UNIX, where originally there were many differences that made

each manufacturer change the structure as they wished. The standard original-

ly conceived for GNU/Linux was made to normalise this situation and avoid

drastic changes. Even so, the standard is observed to varying degrees, most

distributions follow a high percentage of the FHS, making minor changes or

adding files or directories that did not exist in the standard.

A basic directories scheme could be:

• /bin: basic system utilities, normally programs used by users, whether from

the system's basic commands (such as /bin/ls, list directory), shells (/bin/

bash) etc.

• /boot: files needed for booting the system, such as the image of the Linux

kernel, in /boot/vmlinuz.

• /dev: here we will find special files that represent the different possible

devices in the system, access to peripherals in UNIX systems is made as if

they were files. We can find files such as /dev/console, /dev/modem, /dev/

mouse, /dev/cdrom, /dev/floppy... which tend to be links to more specific

devices of the driver or interface type used by the devices: /dev/mouse,

linked to /dev/psaux, representing a PS2 type mouse; or /dev/cdrom to

/dev/hdc, a CD-ROM that is a device of the second IDE connector and

master. Here we find IDE devices such as /dev/hdx, scsi /dev/sdx... with x

varying according to the number of the device. Here we should mention

that initially this directory was static, with the files predefined, and/or

configured at specific moments, nowadays we use dynamic technology

Note

The FHS standard is a basic
tool that allows us to under-
stand the structure and func-
tionality of the system's main
file system.

© FUOC • P07/M2103/02282 10 Basic tools for the administrator

techniques (such as hotplug or udev), that can detect devices and create

/dev files dynamically when the system boots or while running, with the

insertion of removable devices.

• /etc: configuration files. Most administration tasks will need to examine

or modify the files contained in this directory. For example: /etc/passwd

contains part of the information on the system's user accounts.

• /home: it contains user accounts, meaning the personal directories of each

user.

• /lib: the system's libraries, shared by user programs, whether static (.a ex-

tension) or dynamic (.so extension). For example, the standard C library,

in libc.so files or libc.a. Also in particular, we can usually find the dynamic

modules of the Linux kernel, in /lib/modules.

• /mnt: point for mounting (mount command) file systems temporarily; for

example: /mnt/cdrom, for mounting a disk in the CD-ROM reader tem-

porarily.

• /media: for common mounting point of removable devices.

• /opt: the software added to the system after the installation is normally

placed here; another valid installation is in /usr/local.

• /sbin: basic system utilities. They tend to be command reserved for the

administrator (root). For example: /sbin/fsck to verify the status of the file

systems.

• /tmp: temporary files of the applications or of the system itself. Although

they are for temporary running, between two executions the application/

service cannot assume that it will find the previous files.

• /usr: different elements installed on the system. Some more complete sys-

tem software is installed here, in addition to multimedia accessories (icons,

images, sounds, for example in: /usr/share) and the system documenta-

tion (/usr/share/doc). It also tends to be used in /usr/local for installing

software.

• /var: log or status type files and/or error files of the system itself and of

various both local and network services. For example, log files in /var/log,

e-mail content in /var/spool/mail, or printing jobs in /var/spool/lpd.

© FUOC • P07/M2103/02282 11 Basic tools for the administrator

These are some of the directories defined in the FHS for the root system, then

for example it specifies some subdivisions, such as the content of /usr and /var,

and the typical data and/or executable files expected to be found at minimum

in the directories (see references to FHS documents).

Regarding the distributions, Fedora/Red Hat follows the FHS standard very

closely. It only presents a few changes in the files present in /usr, /var. In /etc

there tends to be a directory per configurable component and in /opt, /usr/

local there is usually no software installed unless the user installs it. Debian

follows the standard, although it adds some special configuration directories

in /etc.

Note

http://www.linuxbase.org/
spec/refsp ecs/LSB_1.3.0/
gLSB/gLSB/rstandard s.html

Another standard in progress is the LSB (Linux standard base) [Linc]. Its idea is

to define compatibility levels between the applications, libraries and utilities,

so that portability of applications is possible between distributions without

too many problems. In addition to the standard, they offer test sets to check

the compatibility level. LSB in itself is a collection of various standards applied

to GNU/Linux.

Note

http://www.linuxbase.org/
spec/

© FUOC • P07/M2103/02282 12 Basic tools for the administrator

3. Online system documentation

One of the most important aspects of our administration tasks will be to have

the right documentation for our system and installed software. There are nu-

merous sources of information, but we should highlight the following:

a)�man is by far the best choice of help. It allows us to consult the GNU/

Linux manual, which is grouped into various sections corresponding to

administration commands, file formats, user commands, C language calls

etc. Normally, to obtain the associated help, we will have enough with:

man command

Every page usually describes the command together with its options and,

normally, several examples of use. Sometimes, there may be more than

one entry in the manual. For example, there may be a C call with the

same name as a command; in this case, we would have to specify what

section we want to look at:

man n command

with n being the section number.

There are also several tools for exploring the manuals, for example xman

and tkman, which through a graphic interface help to examine the dif-

ferent sections and command indexes. Another interesting command is

apropos word, which will allow us to locate man pages that discuss a spe-

cific topic (associated with the word).

b)� info is another common help system. This program was developed

by GNU to document many of its tools. It is basically a text tool where

the chapters and pages can be looked up using a simple keyboard-based

navigation system.

c)�Applications�documentation: in addition to certain man pages, it is

common to include extra documentation in the applications, in the form

of manuals, tutorials or simple user guides. Normally, these documenta-

tion components are installed in the directory /usr/share/doc (or /usr/doc

depending on the distribution), where normally a directory is created for

each application package (normally the application can have a separate

documentation package).

© FUOC • P07/M2103/02282 13 Basic tools for the administrator

d)�Distributions'�own�systems. Red Hat tends to come with several CDs

of consultation manuals that can be installed on the system and that

come in HTML or PDF formats. Fedora has a documentation project on

its webpage. Debian offers its manuals in the form of one more software

package that is usually installed in /usr/doc. At the same time, it has tools

that classify the documentation in the system, organising it by means of

menus for visualisation, such as dwww or dhelp, which offer web inter-

faces for examining the system's documentation.

e)�Finally, X desktops, such as Gnome and KDE, usually also carry their

own documentation systems and manuals, in addition to information for

developers, whether in the form of graphic help files in their applications

or own applications that compile all the help files (for example devhelp

in Gnome).

© FUOC • P07/M2103/02282 14 Basic tools for the administrator

4. Shells and Scripts

The generic term shell is used to refer to a program that serves as an interface

between the user and the GNU/Linux system's kernel. In this section, we will

focus on the interactive text shells, which are what we will find as users once

we have logged in the system.

The shell is a system utility that allows users to interact with the kernel

through the interpretation of commands that the user enters in the

command line or files of the shell script type.

The shell is what the users see of the system. The rest of the operating system

remains mostly hidden from them. The shell is written in the same way as a

user process (program); it does not form part of the kernel, but rather is run

like just another user program.

When our GNU/Linux system starts up, it tends to offer users an interface

with a determined appearance; the interface may be a text or graphic interface.

Depending on the modes (or levels) of booting the system, whether with the

different text console modes or modes that give us a direct graphic start up

in X Window.

In graphic start up modes, the interface consists of an access administrator to

manage the user login procedure using a graphic cover page that asks for the

corresponding information to be entered: user identification and passsword.

Access managers are common in GNU/Linux: xdm (belonging to X Window),

gdm (Gnome) and kdm (KDE), as well as a few others associated to different

window managers. Once we have logged in, we will find ourselves in the X

Window graphic interface with a windows manager such as Gnome or KDE.

To interact through an interactive shell, all we will need to do is to open one

of the available terminal emulation programs.

If our access is in console mode (text), once logged in, we will obtain direct

access to the interactive shell.

Another case of obtaining an interactive shell is by remote access to the ma-

chine, whether through any of the text possibilities such as telnet, rlogin, ssh,

or graphic possibilities such as the X Window emulators.

© FUOC • P07/M2103/02282 15 Basic tools for the administrator

Figure 1. Example of starting up a text shell textual and the system processes involved [Oke]

4.1. Interactive shells

Having initiated the interactive shell [Qui01], the user is shown a prompt, in-

dicating that a command line may be entered. After entering it, the shell be-

comes responsible for validating it and starting to run the required processes,

in a number of phases:

• Reading and interpreting the command line.

• Evaluating wildcard characters such as $ * ? and others.

• Managing the required I/O redirections, pipes and background processes

(&).

• Handling signals.

• Preparing to run programs.

Normally, command lines will be ways of running the system's commands,

interactive shell commands, starting up applications or shell scripts.

© FUOC • P07/M2103/02282 16 Basic tools for the administrator

Shell scripts are text files that contain command sequences of the sys-

tem, plus a series of internal commands of the interactive shell, plus

the necessary control structures for processing the program flow (of the

type while, for etc.).

The system can run script files directly under the name given to the file. To

run them, we invoke the shell together with the file name or we give the shell

script execution permissions.

To some extent, we can see shell script as the code of an interpreted language

that is executed on the corresponding interactive shell. For the administrator,

shell scripts are very important, basically for two reasons:

1) The system's configuration and most of the services are provided through

tools in the form of shell scripts.

2) The main way of automating administration processes is creating shell

scripts.

Figure 2. Basic shell flow control

© FUOC • P07/M2103/02282 17 Basic tools for the administrator

All the programs that are invoked by a shell possess three predefined files,

specified by the corresponding file handles. By default, these files are:

1)�standard input: normally assigned to the terminal's keyboard (console);

uses file handle number 0 (in UNIX the files use whole number file han-

dles).

2)�standard output: normally assigned to the terminal's screen; uses file

handle 1.

3)�standard error: normally assigned to the terminal's screen; uses file han-

dle 2.

This tells us that any program run from the shell by default will have the

input associated to the terminal's keyboard, the output associated to the

screen, and that it will also send errors to the screen.

Also, the shells tend to provide the three following mechanisms:

1)�Redirection:�given that I/O devices and files are treated the same way

in UNIX, the shell simply handles them all as files. From the user's point

of view, the file handles can be reassigned so that the data flow of one

file handle goes to any other file handle; this is called redirection. For

example, we refer to redirecting file handles 0 or 1 as redirecting standard

I/O.

2)�Pipes: a program's standard output can be used as another's standard

input by means of pipes. Various programs can be connected to each other

using pipes to create what is called a pipeline.

3)�Concurrence�of user programs: users can run several programs simul-

taneously, indicating that they will be run in the background, or in the

foreground, with exclusive control of the screen. Another way consists

of allowing long jobs in the background while interacting with the shell

and with other programs in the foreground.

In practice, in UNIX/Linux these shells entail:

• Redirection: a command will be able to receive input or output

from other files or devices.

© FUOC • P07/M2103/02282 18 Basic tools for the administrator

Example

let's see

command op file

where op may be:

• < : receive input from file.
• > : send output to file.
• >> : it indicates to add the output (by default, with > the file is created again).

• Pipes: chaining several commands, with transmission of their data:

command1 | command2 | command3

• This instruction tells us that command1 will receive input possibly

from the keyboard, send its output to command2, which will receive

it as input and produce output towards command3, which will re-

ceive it and send its output to the standard output (by default, the

screen).

• Background concurrence: any command executed with the '&' at

the end of the line will be run in the background and the prompt of

the shell will be returned immediately while it continues to be exe-

cuted. We can follow the execution of commands with the ps com-

mand and its options, which allows us to observe the status of the

system's processes. And we also have the kill order, which allows us

to eliminate processes that are still being run or that have entered an

error condition: kill -9 PID allows us to kill process number 9 PID. PID

is the identifier associated to the process, a whole number assigned

to it by the system and that can be obtained using the ps command.

4.2. Available shells

The shell's independence in relation to the operating system's kernel (the shell

is just an interface layer), allows us to have several of them on the system

[Qui01]. Although some of the more frequent ones are:

a) The Bash (initialism for Bourne-again shell). The default GNU/Linux

shell.

b) The Bourne shell (sh). This has always been the standard UNIX shell,

and the one that all UNIX systems have in some version. Normally, it is

the administrator's default shell (root). In GNU/Linux it tends to be Bash,

an improved version of the Bourne shell, which was created by Stephen

Bourne at AT&T at the end of the seventies. The default prompt tends to

be a '$' (in root a '#').

© FUOC • P07/M2103/02282 19 Basic tools for the administrator

c) The Korn shell (ksh). It is a supergroup of Bourne (some compatibility is

maintained), written at AT&T by David Korn (in the mid eighties), which

some functionalities of Bourne and C, with some additions. The default

prompt is the $.

d) The C shell (csh). It was developed at the University of Berkeley by Bill

Joy towards the end of the seventies and has a few interesting additions

to Bourne, like a command log, alias, arithmetic from the command line,

it completes file names and controls jobs in the background. The default

prompt for users is '%'. UNIX users tend to prefer this shell for interaction,

but UNIX administrators prefer to use Bourne, because the scripts tend to

be more compact and to execute faster. At the same time, an advantage

of the scripts in C shell is that, as the name indicates, the syntax is based

on C language (although it is not the same).

e) Others, such as restricted or specialised versions of the above.

The Bash (Bourne again shell) [Bas] [Coo] has grown in importance since it

was included in GNU/Linux systems as the default shell. This shell forms

part of the GNU software project. It is an attempt to combine the three

preceding shells (Bourne, C and Korn), maintaining the syntax of the

original Bourne shell. This is the one we will focus on in our subsequent

examples.

A rapid way of knowing what shell we are in as users is by using the

variable $SHELL, from a command line with the instruction:

echo $ SHELL

We will find that some aspects are common to all shells:

• They all allow shell scripts to be written, which are then interpreted

executing them either by the name (if the file has an execution per-

mission) or by passing it as a parameter to the command of the shell.

• System users have a default shell associated to them. This informa-

tion is provided upon creating the users' accounts. The administra-

tor will assign a shell to each user, or otherwise the default shell will

be assigned (bash in GNU/Linux). This information is saved in the

passwords file in /etc/passwd and can be changed with the chsh com-

mand, this same command with the option -l will list the system's

available shells (see also /etc/shells).

• Every shell is actually an executable command, normally present

in the /bin directories in GNU/Linux (or /usr/bin).

© FUOC • P07/M2103/02282 20 Basic tools for the administrator

• Shell scripts can be written in any of them, but adjusting to each

one's syntax, which is normally different (sometimes the differences

are minor). The construction syntax, as well as the internal com-

mands, are documented in every shell's man page (man bash for ex-

ample).

• Every shell has some associated start up files (initialisation files),

and every user can adjust them to their needs, including code, vari-

ables, paths...

• The capacity in the programming lies in the combination of each

shell's syntax (of its constructions), with the internal commands of

each shell, and a series of UNIX commands that are commonly used

in the scripts, like for example cut, sort, cat, more, echo, grep, wc,

awk, sed, mv, ls, cp...

Note

To program a shell it is advis-
able to have a good knowl-
edge of these UNIX com-
mands and of their different
options.

• If as users we are using a specific shell, nothing prevents us from

starting up a new copy of the shell (we call it a subshell), whether it

is the same one or a different one. We simply invoke it through the

name of the executable, whether sh, bash, csh or ksh. Also when we

run a shell script a subshell is launched with the corresponding shell

for executing the requested script.

Some basic differences between them [Qui01]:

a) Bash is the default shell in GNU/Linux (unless otherwise specified

in creating the user account). In other UNIX systems it tends to be the

Bourne shell (sh). Bash is compatible with sh and also incorporates some

features of the other shells, csh and ksh.

b)�Start-up files: sh, ksh have .profile (in the user account, and is execut-

ed in the user's login) and ksh also tends to have a .kshrc which is ex-

ecuted next, csh uses .login (it is run when the user login initiates one

time only), .logout (before leaving the user's session) and .cshrc (similar to

the .profile, in each initiated C subshell). And Bash uses the .bashrc and

the .bash_profile. Also, the administrator can place common variables and

paths in the /etc/profile file that will be executed before the files that each

© FUOC • P07/M2103/02282 21 Basic tools for the administrator

user has. The shell start-up files are placed in the user's account when it

is created (normally they are copied from the /etc/skel directory), where

the administrator can leave some skeletons of the prepared files.

c) The system or service configuration scripts are usually written in

Bourne shell (sh), since most UNIX systems used them this way. In GNU/

Linux we can also find some in Bash and also in other script languages

not associated to the shell such as Perl or Python.

d) We can identify what shell the script is run on using the file command,

for example file <scriptname>. Or by examining the first line of the script,

which tends to be: #!/bin/name, where the name is bash, sh, csh, ksh... This

line tells us, at the moment of running the script, what shell needs to be

used to interpret it (in other words, what subshell needs to be launched in

order to run it). It is important for all scripts to contain it, since otherwise

they will try to run the default shell (Bash in our case) and the syntax

may not be the right one, causing many syntax errors in the execution.

4.3. System variables

Some useful system variables (we can see them using the echo command for

example), which can be consulted in the command line or within the pro-

gramming of the shell scripts are:

Variable Value�Example Description

HOME /home/juan Root directory of the user

LOGNAME Juan User ID at login

PATH /bin:/usr/local/bin:/usr/X11/bin Paths

SHELL /bin/bash User shell

PS1 $ Shell prompt, the user can change it

MAIL /var/mail/juan E-mail directory

TERM xterm Type of terminal used by the user

PWD /home/juan Current user directory

The different variables of the environment can be seen using the env com-

mand. For example:

$ env

SSH_AGENT_PID = 598

MM_CHARSET = ISO-8859-15

TERM = xterm

DESKTOP_STARTUP_ID =

SHELL = /bin/bash

© FUOC • P07/M2103/02282 22 Basic tools for the administrator

WINDOWID = 20975847

LC_ALL = es_ES@euro

USER = juan

LS_COLORS = no = 00:fi = 00:di = 01;34:ln = 01;

SSH_AUTH_SOCK = /tmp/ssh-wJzVY570/agent.570

SESSION_MANAGER = local/aopcjj:/tmp/.ICE-unix/570

USERNAME = juan

PATH=/soft/jdk/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/

X11:/usr/games

MAIL = /var/mail/juan

PWD = /etc/skel

JAVA_HOME = /soft/jdk

LANG = es_ES@euro

GDMSESSION = Gnome

JDK_HOME = /soft/jdk

SHLVL = 1

HOME = /home/juan

GNOME_DESKTOP_SESSION_ID = Default

LOGNAME = juan

DISPLAY = :0.0

COLORTERM = gnome-terminal

XAUTHORITY = /home/juan/.Xauthority

_ = /usr/bin/env

OLDPWD = /etc

4.4. Programming scripts in Bash

Here we will look at some basic concepts of the shell scripts in Bash, we advise

further reading in [Bas] [Coo].

All Bash scripts have to start with the line:

#!/bin/bash

This line indicates the shell used by the user, the one active at the time, what

shell is needed for running the script that appears next.

The script can be run in two different ways:

1) By running directly from the command line, on condition it has an execu-

tion permission. If this is not the case, we can establish the permission with:

chmod +x script.

2) By running through the shell, we call on the shell explicitly: /bin/bash script.

© FUOC • P07/M2103/02282 23 Basic tools for the administrator

We should take into account that, irrespective of the method of execution, we

are always creating a subshell where our script will be run.

4.4.1. Variables in Bash

The assignment of variables is done by:

variable = value

The value of the variable can be seen with:

echo $variable

where '$' refers us to the variable's value.

The default variable is only visible in the script (or in the shell). If the variable

needs to be visible outside the script, at the level of the shell or any subshell

that is generated a posteriori, we will need to "export" it as well as assign it.

We can do two things:

• Assign first and export after:

var = value

export var

• Export during assignment:

export var = value

In Bash scripts we have some accessible predetermined variables:

• $1-$N: It saves past arguments as parameters to the script from the com-

mand line.

• $0: It saves the script name, it would be parameter 0 of the command line.

• $*: It saves all parameters from 1 to N of this variable.

• $: It saves both parameters, but with double inverted commas (" ") for each

of them.

• $?: "Status": it saves the value returned by the most recent executed com-

mand. Useful for checking error conditions, since UNIX tends to return 0

if the execution was correct, and a different value as an error code.

Another important issue regarding assignments is the use of inverted commas:

© FUOC • P07/M2103/02282 24 Basic tools for the administrator

• Double inverted commas allow everything to be considered as a unit.

• Single inverted commas are similar, but ignore the special characters inside

them.

• Those pointed to the left (`command`) are used for evaluating the inside,

if there is an execution or replacement to be made. First the content is ex-

ecuted, and then what there was is replaced by the result of the execution.

For example: var = 'ls' saves the list of the directory in $var.

4.4.2. Comparisons

For conditions the order test expression tends to be used or directly [expression].

We can group available conditions in:

• Numerical comparison: -eq, -ge, -gt, -le, -lt, -ne, corresponding to: equal

to, greater than or equal to (ge), greater than, less than or equal to (le),

less than, not equal to.

• Chain comparison: :=, !=, -n, -z, corresponding to chains of characters:

equal, different, with a greater length than 0, length equal to zero or emp-

ty.

• File comparison: -d, -f -r, -s, -w, -x. The file is: a directory, an ordinary file,

is readable, is not empty, is writable, is runnable.

• Booleans between expressions: !, -a, -o, conditions of not, and, and or.

4.4.3. Control structures

Regarding the script's internal programming, we need to think that we are

basically going to find:

• Commands of the operating system itself.

• Internal commands of the Bash (see: man bash).

• Programming control structures (for, while...), with the syntax of Bash.

The basic syntax of control structures is as follows:

a) Structure if...then, evaluates the expression and if a certain value is obtained,

then the commands are executed.

if [expresion]

 then

 commands

© FUOC • P07/M2103/02282 25 Basic tools for the administrator

fi

b) Structure if...then...else, evaluates the expression and if a certain value is

obtained then the commands1 are executed, otherwise comands2 are execut-

ed:

if [expresion]

 then

 commands1

 else

 commands2

fi

c) Structure if..then...else if...else, same as above, with additional if structures.

if [expresion]

 then

 commands

 elif [expresion2]

 then

 commands

 else

 commands

fi

d) Structure case select, multiple selection structure according to the selection

value (in case)

case string1 in

 str1)

 commands;;

 str2)

 commands;;

 *)

 commands;;

esac

e)�Loop for, replacement of the variable for each element of the list:

for var1 in list

do

 commands

done

f)�Loop while, while the expression is fulfilled:

while [expresion]

Note

Shells such as Bash offer a
wide set of control structures
that make them comparable
to any other language.

© FUOC • P07/M2103/02282 26 Basic tools for the administrator

do

 commands

done

g)�Loop until, until the expression is fulfilled:

until [expression]

do

 commands

done

h) Declaration of functions:

fname() {

 commands

}

or with a call accompanied by parameters:

fname2(arg1,arg2...argN) {

 commands

}

and function calls with fname or fname2 p1 p2 p3 ... pN.

© FUOC • P07/M2103/02282 27 Basic tools for the administrator

5. Package management tools

In any distribution, the packages are the basic item for handling the tasks

of installing new software, updating existing software or eliminating unused

software.

Basically, a package is a set of files that form an application or the

combination of several related applications, normally forming a single

file (known as a package), with its own format, normally compressed,

which is distributed via CD, diskette or access to FTP or web services.

The use of packages is helpful for adding or removing software, because it

considers it as a unit instead of having to work with the individual files.

In the distribution's content (its CDs) the packages tend to be grouped in-

to categories such as: a) base: essential packages for the system's functioning

(tools, start-up programs, system libraries); b) system: administration tools,

utility commands; c) development: programming tools: editors, compilers, de-

buggers... d) graphics: graphics controllers and interfaces, desktops, windows

managers... e) other categories.

Normally, to install a package we will need to follow a series of steps:

1) Preliminary steps (pre-installation): check that the required software

exists (and with the correct versions) for its functioning (dependencies),

whether system libraries or other applications used by the software.

2) Decompress the package content, copying the files to their definitive

locations, whether absolute (with a fixed position) or can be relocated to

other directories.

3) Post-installation: retouching the necessary files, configuring possible

software parameters, adjusting it to the system...

Depending on the types of packages, these steps may be mostly automat-

ic (this is the case in RPM [Bai03] and DEB [Deb02]) or they may all be

needed to be done by hand (.tgz case) depending on the tools provided

by the distribution.

© FUOC • P07/M2103/02282 28 Basic tools for the administrator

Next, let's see perhaps the three most classical packages of most distribu-

tions. Each distribution has one as standard and supports one of the oth-

ers.

5.1. TGZ package

TGZ packages are perhaps those that have been used for longest. The first

GNU/Linux distributions used them for installing the software, and several

distributions still use it (for example, Slackware) and some commercial UNIX.

They are a combination of files joined by the tar command in a single .tar file

that has then been compressed using the gzip utility, and that tends to appear

with the .tgz or .tar.gz extension. At the same time, nowadays it is common

to find tar.bz2 which instead of gzip use another utility called bzip2, which in

some cases obtains greater file compression.

Contrary to what it may seem, it is a commonly used format especially by the

creators or distributors of software external to the distribution. Many software

creators that work for various platforms, such as various commercial UNIX and

different distributions of GNU/Linux prefer it as a simpler and more portable

system.

An example of this case is the GNU project, which distributes its software in

this format (in the form of source code), since it can be used in any UNIX,

whether a proprietary system, a BSD variant or a GNU/Linux distribution.

If in binary format, we will have to bear in mind that it is suitable for our

system, for example a denomination such as the following one is common (in

this case, version 1.4 of the Mozilla web navigator):

mozilla-i686-pc-linux-gnu-1.4-installer.tar.gz

where we have the package name, as Mozilla, designed for i686 architecture

(Pentium II or above or compatible), it could be i386, i586, i686, k6 (amd k6),

k7 (amd athlon), amd64 u x86_64 (for AMD64 and some 64bit intels with

em64t), o ia64 (intel Itaniums) others for the architectures of other machines

such as sparc, powerpc, mips, hppa, alpha... then it tells us that it is for Linux,

on a PC machine, software version 1.4.

If it were in source format, it could appear as:

mozilla-source-1.4.tar.gz

where we are shown the word source; in this case it does not mention the

machine's architecture version, this tells us that it is ready for compiling on

different architectures.

Note

TGZ packages are a basic tool
when it comes to installing un-
organised software. Besides,
they are a useful tool for back-
up processes and restoring
files.

© FUOC • P07/M2103/02282 29 Basic tools for the administrator

Otherwise, there would be different codes for every operating system or

source: GNU/Linux, Solaris, Irix, bsd...

The basic process with these packages consists of:

1) Decompressing the package (they do not tend to use absolute path,

meaning that they can be decompressed anywhere):

tar -zxvf file.tar.gz (or .tgz file)

With the tar command we use z options: decompress, x: extract files, v:

view process, f: name the file to be treated.

It can also be done separately (without the tar's z):

gunzip file.tar.gz

(leaves us with a tar file)

tar -xvf file.tar

2)�Once we have decompressed the tgz, we will have the files it contained,

normally the software should include some file of the readme or install

type, which specifies the installation options step by step, and also pos-

sible software dependencies.

In the first place, we should check the dependencies to see if we have the

right software, and if not, look for it and install it.

If it is a binary package, the installation is usually quite easy, since it will

be either directly executable from wherever we have left it or it will carry

its own installer. Another possibility is that we may have to do it manu-

ally, meaning that it will be enough to copy it (cp -r, recursive copy) or to

move it (mv command) to the desired position.

Another case is the source code format. Then, before installing the soft-

ware we will first have to do a compilation. For this we will need to read

the instruction that the program carries in some detail. But most devel-

opers use a GNU system called autoconf (from autoconfiguration), which

normally uses the following steps (if no errors appear):

• ./configure: it is a script that configures the code so that it can be

compiled on our machine and that verifies that the right tools exist.

The --prefix = directory option makes it possible to specify where the

software will be installed.

© FUOC • P07/M2103/02282 30 Basic tools for the administrator

• make: compilation itself.

• make install: installing the software in the right place, normally

previously specified as an option to configure or assumed by default.

This is a general process, but it depends on the software whether it follows it

or not, there are fairly worse cases where the entire process needs to be carried

out by hand, retouching configuration files or the makefile, and/or compiling

the files one by one, but luckily this is becoming less and less common.

In the case of wanting to delete all of the installed software, we will have to

use the uninstaller if provided or, otherwise, directly delete the directory or

installed files, looking out for potential dependencies.

The tgz packages are fairly common as a backup mechanism for administra-

tion tasks, for example, for saving copies of important data, making backups

of user accounts or saving old copies of data that we do not know if we will

need again. The following process tends to be used: let's suppose that we want

to save a copy of the directory "dir", we can type: tar -cvf dir.tar dir

(c: compact dir in the file dir.tar) gzip dir.tar (compress) or in a single

instruction like:

tar -zcvf dir.tgz dir

The result will be a dir.tgz file. We need to be careful if we are interested in

conserving the file attributes and user permissions, as well as possibly links

that may exist (we must examine the tar options so that it adjusts to the re-

quired backup options).

5.2. Fedora/Red Hat: RPM packages

The RPM packages system [Bai03] created by Red Hat represents a step

forward, since it includes the management of software configuration

tasks and dependencies. Also, the system stores a small database with

the already installed packages, which can be consulted and updated

with new installations.

Conventionally, RPM packages use a name such as:

package-version-rev.arq.rpm

© FUOC • P07/M2103/02282 31 Basic tools for the administrator

where package is the name of the software, version is the numbering of the soft-

ware version, rev normally indicates the revision of the RPM package, which

indicates the number of times it has been built and arq refers to the archi-

tecture that it is designed for, whether Intel/AMD (i386, i586, i686, x86_64,

em64t, ia64) or others such as alpha, sparc, PPC... The Noarch "architecture" is

normally used when it is independent, for example, a set of scripts and src in

the case of dealing with source code packages. A typical execution will include

running rpm, the options of the operation to be performed, together with one

or more names of packages to be processed together.

Typical operations with RPM packages include:

• Package�information: specific information about the package is consult-

ed using the option -q together with the package name (with -p if on an

rpm file). If the package has not yet been installed, the option would be

-q accompanied by the information option to be requested, and if the re-

quest is to be made to all the installed packages at the same time, the op-

tion would be -qa. For example, requests from an installed package:

Request RPM�options Results

Files rpm -ql List of the files it contains

Information rpm -qi Package description

Requirements rpm -qR Prior requirements, libraries or software

• Installation: simply rpm -i package.rpm, or with the URL where the

package can be found, for downloading from FTP or web servers, we just

need to use the syntax ftp:// or http:// to obtain the package's location.

The installation can be completed on condition that the package depen-

dencies are met, whether in the form of prior software or the libraries that

should be installed. In the case of not fulfilling this requirement, we will

be told what software is missing, and the name of the package that pro-

vides it. We can force the installation (although the installed software may

not work) with the options --force or --nodeps, or simply by ignoring

the information on the dependencies.

The task of installing a package (done by rpm) entails various sub-tasks:

a) checking for potential dependencies; b) examining for conflicts with

other previously installed packages; c) performing pre-installation tasks; c)

deciding what to do with the configuration files associated to the package

if they existed previously; d) unpackaging the files and placing them in the

right place; e) performing other post-installation tasks; finally, f) storing

the log of tasks done in the RPM database.

Note

The package: apache-1.3.19-
23.i686.rpm would indicate
that it is Apache software (the
web server), in its version
1.3.19, package revision RPM
23, for Pentium II architectures
or above.

© FUOC • P07/M2103/02282 32 Basic tools for the administrator

• Updating: equivalent to the installation but first checking that the soft-

ware already exists rpm -U package.rpm. It will take care of deleting the

previous installation.

• Verification: during the system's normal functioning many of the in-

stalled files will change. In this regard, RPM allows us to check files in or-

der to detect any changes from a normal process or from a potential error

that could indicate corrupt data. Through rpm -V package we verify a

specific package and through rpm -Va we will verify all of them.

• Deletion: erasing the package from the RPM system (-e or --erase); if there

are dependencies, we may need to eliminate others previously.

Example

For a remote case:

rpm -i ftp://site/directory/package.rpm

would allow us to download the package from the provided FTP or web site, with its
directory location, and proceed in this case to install the package.

We need to control where the packages come from and only use known and

reliable package sources, such as the distribution's own manufacturer or trust-

worthy sites. Normally, together with the packages, we are offered a digital

signature for them, so that we can check their authenticity. The sums md5 are

normally used for checking that the package has not been altered and other

systems, such as GPG (GNU version of PGP), for checking the authenticity

of the package issuer. Similarly, we can find different RPM package stores on

Internet, where they are available for different distributions that use or allow

the RPM format.

For a secure use of the packages, official and some third party repositories

currently sign the packages electronically, for example, using the abovemen-

tioned GPG; this helps us to make sure (if we have the signatures) that the

packages come from a reliable source. Normally, every provider (the reposito-

ry) will include some PGP signature files with the key for its site. From official

repositories they are normally already installed, if they come from third par-

ties we will need to obtain the key file and include it in RPM, typically:

$ rpm –import GPG-KEY-FILE

With GPP-KEY-FILE being the GPG key file or URL of the file, normally this

file will also have sum md5 to check its integrity. And we can find the keys

in the system with:

$ rpm -qa | grep ^gpg-pubkey

we can observe more details on the basis of the obtained key:

Note

View the site:
www.rpmfind.net.

© FUOC • P07/M2103/02282 33 Basic tools for the administrator

$ rpm -qi gpg-key-xxxxx-yyyyy

For a specific RPM package we will be able to check whether it has a signature

and with which one it has been used:

$ rpm –checksig -v <package>.rpm

And to check that a package is correct based on the available signatures, we

can use:

$ rpm -K <package.rpm>

We need to be careful to import just the keys from the sites that we trust.

When RPM finds packages with a signature that we do not have on our system

or when the package is not signed, it will tell us and, then, we will have to

decide on what we do.

Regarding RPM support in the distributions, in Fedora (Red Hat and also in its

derivatives), RPM is the default package format and the one used extensively

by the distribution for updates and software installation. Debian uses the for-

mat called DEB (as we will see), there is support for RPM (the rpm command

exists), but only for consulting or package information. If it is essential to in-

stall an rpm package in Debian, we advise using the alien utility, which can

convert package formats, in this case from RPM to DEB, and proceed to install

with the converted package.

In addition to the distribution's basic packaging system, nowadays each one

tends to support an intermediate higher level software management system,

which adds an upper layer to the basic system, helping with software manage-

ment tasks, and adding a number of utilities to improve control of the process.

In the case of Fedora (Red Hat and derivatives) it uses the YUM system, which

allows as a higher level tool to install and manage packages in rpm systems, as

well as automatic management of dependencies between packages. It allows

access to various different repositories, centralises their configuration in a file

(/etc/yum.conf normally), and has a simple commands interface.

The yum configuration is based on:

/etc/yum.config (options file)

/etc/yum (directory for some associated utilities)

/etc/yum.repos.d (directory for specifying repositories, a file for each one, including access information and location of
the gpg signatures).

A summary of the typical yum operations would be:

Note

YUM in: http://linux.duke.edu/
projects/yum

© FUOC • P07/M2103/02282 34 Basic tools for the administrator

Order Description

yum install <name> Install the package with the name

yum update <name> Update an existing package

yum remove <name> Eliminate package

yum list <name> Search package by name (name only)

yum search <name> More extensive search

yum provices <file> Search for packages that provide the file

yum update Update the entire system

yum upgrade As above, including additional packages

Finally, Fedora also offers a couple of graphics utilities for YUM, pup for con-

trolling recently available updates, and pirutas a software management pack-

age. There are also others like yumex, with greater control of yum's internal

configuration.

5.3. Debian: DEB packages

Debian has interactive tools such as tasksel, which makes it possible to select

sub-sets of packages grouped into types of tasks: packages for X, for develop-

ment, for documentation etc., or such as dselect, which allows us to navigate

the entire list of available packages (there are thousands) and select those we

wish to install or uninstall. In fact, these are only a front-end of the APT mid-

level software manager.

At the command line level it has dpkg, which is the lowest level command

(base, would be the equivalent to rpm), for managing the DEB software pack-

ages directly [Deb02], typically dpkg-i package.deb to perform the installation.

All sorts of tasks related to information, installation, removal or making in-

ternal changes to the software packages can be performed.

The intermediary level (as in the case of Yum in Fedora) is presented by the

APT tools (most are apt-xxx commands). APT allows us to manage the pack-

ages from a list of current and available packages based on various software

sources, whether the installation's own CDs, FTP or web (HTTP) sites. This

management is conducted transparently, in such a way that the system is in-

dependent from the software sources.

The APT system is configured from the files available in /etc/apt, where

/etc/apt/sources.list is the list of available sources; an example could

be:

deb http://http.us.debian.org/debian stable main contrib non-

free

© FUOC • P07/M2103/02282 35 Basic tools for the administrator

debsrc http://http.us.debian.org/debian stable main contrib

non-free

deb http://security.debian.org stable/updates main contrib

non-free

#Official Sources of Debian STABLE "etch"

deb http://ftp.debian.org/debian/ etch main non-free contrib

debsrc http://ftp.debian.org/debian/ etch main non-free con-

trib

Where various of the "official" sources for a Debian are compiled (etch in this

case, which is assumed to be stable), from which we can obtain the software

packages in addition to their available updates. Basically, we specify the type

of source (web/FTP in this case), the site, the version of the distribution (stable

or etch in this example) and categories of software to be searched for (free,

third party contributions, non-free or commercial licenses).

The software packages are available for the different versions of the Debian

distribution, there are packages for the stable, testing, and unstable versions.

The use of one or the others determines the type of distribution (after chang-

ing the repository sources in sources.list). It is possible to have mixed package

sources, but it is not advisable, because conflicts could arise between the ver-

sions of the different distributions.

Once we have configured the software sources, the main tool for handling

them in our system is apt-get, which allows us to install, update or remove

from the individual package, until the entire distribution is updated. There is

also a front-end to apt-get, called aptitude, whose options interface is practi-

cally identical (in fact it could be described as an apt-get emulator, since the

interface is equivalent); as benefits it manages package dependencies better

and allows an interactive interface. In fact it is hoped that aptitude will be-

come the default interface in the command line for package management.

Some basic functions of apt-get:

• Installation of a particular package:

apt-get install package

• Removing a package:

apt-get remove package

• Updating the list of available packages:

apt-get update

• Updating the distribution, we could carry out the combined steps:

apt-get update

apt-get upgrade

Note

Debian's DEB packages are
perhaps the most powerful in-
stallation system existing in
GNU/Linux. A significant ben-
efit is the system's indepen-
dence from the sources of the
packages (through APT).

© FUOC • P07/M2103/02282 36 Basic tools for the administrator

apt-get dist-upgrade

Through this last process, we can keep our distribution permanently updated,

updating installed packages and verifying dependencies with the new ones.

Some useful tools for building this list are apt-spy, which tries to search for

the fastest official sites, or netselect, which allows us to test a list of sites. On

a separate note, we can search the official sites (we can configure these with

apt-setup) or copy an available source file. Additional (third party) software

may need to add more other sources (to sources.list); lists of available source

sites can be obtained (for example: http://www.apt-get.org).

Updating a system in particular generates a download of a large number of

packages (especially in unstable), which makes it advisable to empty the

cache, the local repository, with the downloaded packages (they are kept

in /var/cache/apt/archive) that will no longer be used, either with apt-get

clean to eliminate them all or with apt-get autoclean to eliminate the

packages that are not required because there are already new versions and, in

principle, they will no longer be needed. We need to consider whether we may

need these packages again for the purposes of reinstalling them, since, if so,

we will have to download them again.

The APT system also allows what is known as SecureAPT, which is the secure

management of packages through verifying sums (md5) and the signatures of

package sources (of the GPG type). If the signatures are not available during

the download, apt-get reports this and generates a list of unsigned packages,

asking whether they will stop being installed or not, leaving the decision to

the administrator. The list of current reliable sources is obtained using:

apt-key list

The GPG keys of the official Debian sites are distributed through a package,

and we can install them as follows:

apt-get install debian-archive-keyring

Obviously, considering that we have the sources.list with the official sites. It

is hoped that by default (depending on the version of Debian) these keys will

already be installed when the system initiates. For other unofficial sites that

do not provide the key in a package, but that we consider trustworthy, we

can import their key, obtaining it from the repository (we will have to consult

where the key is available, there is no defined standard, although it is usually

on the repository's home page). Using apt-key add with the file, to add the

key or also:

gpg –import file.key

gpg –export –armor XXXXXXXX | apt-key add -

© FUOC • P07/M2103/02282 37 Basic tools for the administrator

With X being a hexadecimal related to the key (see repository instructions for

the recommended way of importing the key and the necessary data).

Another important functionality of the AP system is for consulting package

information, using the apt-cache tool, which allows us to interact with the

lists of Debian software packages.

Example

The apt-cache tool has commands that allow us to search for information about the
packages, for example:

• Search packages based on an incomplete name:
apt-cache search name

• Show package description:
apt-cache show package

• What packages it depends on:
apt-cache depends package

Other interesting apt tools or functionalities:

- apt-show-versions: tells us what packages may be updated (and for what ver-

sions, see option -u).

Other more specific tasks will need to be done with the lowest level tool, such

as dpkg. For example, obtaining the list of files of a specific installed package:

dpkg -L package

The full list of packages with

dpkg -l

Or searching for what package an element comes from (file for example):

dpkg -S file

This functions for installed packages; apt-file can also search for packages that

are not yet installed.

Finally, some graphic tools for Apt, such as synaptic, gnome-apt for gnome,

and kpackage or adept for KDE are also worth mentioning, as well as the al-

ready mentioned text ones such as aptitude or dselect.

Conclusion: we should highlight that the APT management system (in com-

bination with the dpkg base) is very flexible and powerful when it comes to

managing updates and is the package management system used by Debian

and its derived distributions such as Ubuntu, Kubuntu, Knoppix, Linex etc.

© FUOC • P07/M2103/02282 38 Basic tools for the administrator

6. Generic administration tools

In the field of administration, we could also consider some tools, such as those

designed generically for administration purposes. Although it is difficult to

keep up to date with these tools because of the current plans of distribution

with different versions, which evolve very quickly. We will mention a few

examples (although at a certain time they may not be completely functional):

a)�Linuxconf: this is a generic administration tool that groups together

different aspects in a kind of text menu interface, which in the latest ver-

sions evolved to web support; it can be used with practically any GNU/

Linux distribution and supports various details inherent to each one (un-

fortunately, it has not been updated for a while).

b)�Webmin: this is another administration tool conceived from a web

interface; it functions with a series of plug-ins that can be added for each

service that needs to be administered; normally it has forms that spec-

ify the service configuration parameters; it also offers the possibility (if

activated) of allowing remote administration from any machine with a

navigator.

c) Others under development like cPanel, ISPConfig.

At the same time, the Gnome and KDE desktop environments tend to

include the "Control Panel" concept, which allows management of the

graphical interfaces' visual aspect as well as the parameters of some system

devices.

With regards to the individual graphics tools for administration, the GNU/

Linux distribution offers some directly (tools that accompany both Gnome

and KDE), tools dedicated to managing a device (printers, sound, network card

etc.), and others for the execution of specific tasks (Internet connection, con-

figuring the start up of system services, configuring X Window, visualising

logs...). Many of them are simple front-ends for the system's basic tools, or are

adapted to special features of the distribution.

In this section, we should particularly highlight the Fedora distribution (Red

Hat and derivatives), which tries to offer several (rather minimalist) utilities for

different administration functions, we can find them on the desktop (in the

administration menu), or in commands like system-config-xxxxx for differ-

ent management functionalities for: screen, printer, network, security, users,

packages etc. We can see some of them in the figure:

Note

We can find them
in: Linuxconf http://
www.solucorp.qc.ca/linuxconf

© FUOC • P07/M2103/02282 39 Basic tools for the administrator

Figure 3. A few of the administration graphics utilities in Fedora

© FUOC • P07/M2103/02282 40 Basic tools for the administrator

7. Other tools

In this unit's limited space we cannot comment on all the tools that can offer

us benefits for administration. We will cite some of the tools that we could

consider basic:

• The various basic UNIX commands: grep, awk, sed, find, diff, gzip, bzip2,

cut, sort, df, du, cat, more, file, which...

• The editors, essential for any editing task, like: vi, very much used for

administration tasks because of the speed of making small changes to

the files. Vim is the vi compatible editor, which GNU/Linux tends to car-

ry; it allows a syntax coloured in various languages. Emacs, a very com-

plete editor, adapted to different programming languages (syntax and edit-

ing modes); it has a very complete environment and an X version called

Xemacs. Joe, editor compatible with Wordstar. And many more...

• Scripting languages, tools for administration, like: Perl, very useful for

handling regular expressions and analysing files (filtering, ordering etc.).

PHP, language that is very often used in web environments. Python, an-

other language that can make fast prototypes of applications...

• Tool for compiling and debugging high level languages: GNU gcc (com-

piler of C and C++), gdb (debugger), xxgdb (X interface for gdb), ddd (de-

bugger for various languages).

Note

See material associated to the
introduction course to GNU/
Linux, the man pages of the
commands or a tools reference
such as [Stu01].

© FUOC • P07/M2103/02282 41 Basic tools for the administrator

Activities

1) For a fast reading of the FHS standard, which will help us to have a good guide for searching
for files in our distribution.

2) To revise and broaden concepts and programming of shell scripts in bash, see: [Bas] [Coo].

3) For RPM packages, how would we do some of the following tasks?:
• Find out what package installed a specific command.
• Obtain a description of the package that installed a command.
• Erase a package whose full name we don't know.

Show all the files that were in the same package as a specific file.

4) Perform the same tasks as above, but for Debian packages, using APT tools.

5) Update a Debian (or Fedora) distribution.

6) Install a generic administration tool, such as Linuxconf or Webadmin for example, on our
distribution. What do they offer us? Do we understand the executed tasks, and the effects
they cause?

© FUOC • P07/M2103/02282 42 Basic tools for the administrator

Bibliography

Other sources of reference and information

[Bas][Coo] offer a broad introduction (and advanced concepts) of programming shell scripts
in bash, as well as several examples. [Qui01] discusses the different programming shells in
GNU/Linux, as well as their similarities and differences.

[Deb02][Bai03] offer a broad vision of the software package systems of the Debian and Fedo-
ra/Red Hat distributions.

[Stu] is a wide introduction to the tools available in GNU/Linux.

The kernel

Josep Jorba Esteve

P07/M2103/02283

© FUOC • P07/M2103/02283 The kernel

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02283 The kernel

Index

Introduction... 5

1. The kernel of the GNU/Linux system... 7

2. Tailoring or updating the kernel.. 15

3. Configuration and compilation process...................................... 18

3.1. Kernel compilation versions 2.4.x .. 19

3.2. Migration to kernel 2.6.x .. 24

3.3. Compilation of the kernel versions 2.6.x 26

3.4. Compilation of the kernel in Debian (Debian way) 27

4. Patching the kernel.. 30

5. Kernel modules.. 32

6. Future of the kernel and alternatives... 34

7. Workshop: configuring the kernel to the requirements of

the user... 38

7.1. To update the kernel in Debian .. 38

7.2. Updating the kernel in Fedora/Red Hat 40

7.3. To tailor and install a generic kernel. ... 42

Activities.. 45

Bibliography... 46

© FUOC • P07/M2103/02283 5 The kernel

Introduction

The kernel of the GNU/Linux system (which is normally called Linux) [Vasb]

is the heart of the system: it is responsible for booting the system, and it can

be used by the applications and their users, for managing the machine's re-

sources by managing the memory, file system, input/output, processes and

intercommunication of processes.

Its origin dates back to August 1991, when a Finnish student called Linus Tor-

valds announced on a news list that he had created his own operating system

core that worked together with the GNU project software and that he was of-

fering it to the community of developers for testing and suggesting improve-

ments for making it more usable. This was the origin of the operating system's

kernel that would later come to be known as Linux.

One of the particular features of Linux is that following the Free Software phi-

losophy, it offers the source code of the operating system itself (of the kernel),

in a way that makes it a perfect tool for teaching about operating systems.

Another main advantage, is that by having the source code, we can compile

it to adapt it better to our system and we can also configure its parameters to

improve the system's performance.

In this unit, we will look at how to handle this process of preparing a kernel for

our system. How, starting with the source code, we can obtain a new version

of the kernel adapted to our system. Similarly, we will discuss how to develop

the configuration and subsequent compilation and how to test the new kernel

we have obtained.

Note

The Linux kernel dates back
to 1991, when Linus Torvalds
made it available to the com-
munity. It is one of the few op-
erating systems that while ex-
tensively used, also makes its
source code available.

© FUOC • P07/M2103/02283 7 The kernel

1. The kernel of the GNU/Linux system

The core or kernel is the basic part of any operating system [Tan87], where

the code of the fundamental services for controlling the entire system lie.

Basically, its structure can be divided into a series of management components

designed to:

• Manage processes: what tasks will be run, in what order and with what

priority. An important aspect is the planning of the CPU: how do we op-

timise the CPU's time to run the tasks with the best possible performance

or interactivity with users?

• Intercommunication of processes and synchronisation: how do tasks com-

municate with each other, with what different mechanisms and how can

groups of tasks be synchronised?

• Input/output management (I/O): control of peripherals and management

of associated resources.

• Memory management: optimising use of the memory, paginating service,

and virtual memory.

• File management: how the system controls and organises the files present

in the system and access to them.

Figure 1. Basic functions of a kernel with regards to executed applications and commands

In proprietary systems, the kernel is perfectly "hidden" below the layers of the

operating system's software; the end user does not have a clear perspective of

what the kernel is and has no possibility of changing it or optimising it, other

than through the use of esoteric editors of internal "logs" or specialised third

© FUOC • P07/M2103/02283 8 The kernel

party programs, which are normally very expensive. Besides, the kernel is nor-

mally unique, it is the one the manufacturer provides and the manufacturer

reserves the right to introduce any changes it wants whenever it wants and

to handle the errors that appear in non-stipulated periods through updates

offered to us in the form of error "patches".

One of the main problems of this approach is precisely the availability of these

patches, having the error updates on time is crucial and if they are security-

related, even more so, because until they are corrected we cannot guarantee

the system's security for known problems. Many organisations, large compa-

nies, governments, scientific and military institutions cannot depend on the

whims of a manufacturer to solve the problems with their critical applications.

The Linux kernel offers an open source solution with the ensuing permissions

for modifying, correcting, generating new versions and updates very quickly

by anyone anywhere with the required knowledge for doing so.

This allows critical users to control their applications and the system itself

better, and offers the possibility of mounting systems with a "tailor-made"

operating system adjusted to each individual's taste and in turn to have an

open source operating system developed by a community of programmers

who coordinate via the Internet, accessible for educational purposes because it

has open source code and abundant documentation, for the final production

of GNU/Linux systems adapted to individual needs or to the needs of a specific

group.

Because the source code is open, improvements and solutions can be found

immediately, unlike proprietary software, where we have to wait for the

manufacturer's updates. Also, we can personalise the kernel as much as we

wish, an essential requirement, for example, in high performance applica-

tions, applications that are critical in time or solutions with embedded sys-

tems (such as mobile devices).

Following a bit of (quick) history of the kernel [Kera] [Kerb]: it was initially

developed by a Finnish student called Linus Torvalds, in 1991, with the in-

tention of creating a similar version to Minix [Tan87] (version for PC of UNIX

[Bac86]) for the Intel 386 processor. The first officially published version was

Linux 1.0 in March 1994, which only included the execution for the i386 ar-

chitecture and supported single-processor machines. Linux 1.2 was published

in March 1995, and was the first version to cover different architectures such

as Alpha, SPARC and Mips. Linux 2.0, in June 1996, added more architectures

and was the first version to include multiprocessor support (SMP) [Tum]. In

Linux 2.2, January 1999, SMP benefits were significantly increased, and con-

trollers were added for a large amount of hardware. In 2.4, released in January

2001, SMP support was improved, new supported architectures were incorpo-

rated and controllers for USB, PC card devices were included (PCMCIA for lap-

tops) part of PnP (plug and play), RAID and volumes support etc. Branch 2.6

© FUOC • P07/M2103/02283 9 The kernel

of the kernel (December 2003), considerably improved SMP support, offered

a better response of the CPU planning system, use of threads in the kernel,

better support for 64-bit architectures, virtualisation support and improved

adaptation to mobile devices.

Where the development is concerned, since the kernel was created by Linus

Torvalds in 1991 (version 0.01), he has continued to maintain it, but as his

work allowed it and as the kernel matured (and grew) he was helped to main-

tain the different stable versions of the kernel by different collaborators, while

Linus continued (insofar as possible) developing and compiling contributions

for the latest version of the kernel's development. The main collaborators of

these versions have been [lkm]:

• 2.0 David Weinehall.

• 2.2 Alan Cox (who also develops and publishes patches for most versions).

• 2.4 Marcelo Tosatti.

• 2.6 Andrew Morton / Linus Torvalds.

In order to understand a bit about the complexity of the Linux kernel, let's

look at a table with a bit of a summarised history of its different versions and

its size in relation to the source code. The table only shows the production

versions; the (approximate) size is specified in thousands of lines (K) of source

code:

Version Publication�date Code�lines�(thousands)

0.01 09-1991 10

1.0 03-1994 176

1.20 03-1995 311

2.0 06-1996 649

2.2 01-1999 1800

2.4 01-2001 3378

2.6 12-2003 5930

As we can see, we have moved from about ten thousand lines to six million.

Note

The kernel has its origins in the
MINIX system, a development
by Andrew Tanenbaum, as a
UNIX clone for PC.

Now, development of branch 2.6.x of the kernel continues, the latest stable

version, which most distributions include as the default version (although

some still include 2.4.x, but 2.6.x is an option during the installation); al-

though a certain amount of knowledge about the preceding versions is essen-

tial, because we can easily find machines with old distributions that have not

been updated, which we may have to maintained or migrated to more mod-

ern versions.

Note

Today's kernel has reached a
significant degree of complexi-
ty and maturity.

© FUOC • P07/M2103/02283 10 The kernel

During the development of branch 2.6, the works on the kernel accelerated

considerably, because both Linus Torvalds, and Andrew Morton (who main-

tain Linux 2.6) joined (in 2003) OSDL (Open Source Developement Labora-

tory) [OSDa], a consortium of companies dedicated to promoting the use of

Open Source and GNU/Linux by companies (the consortium includes among

many other companies with interests in GNU/Linux: HP, IBM, Sun, Intel, Fu-

jitsu, Hitachi, Toshiba, Red Hat, Suse, Transmeta...). Now we are coming across

an interesting situation, since the OSDL consortium sponsored the works of

both the stable version of the kernel's maintainer (Andrew) and developer (Li-

nus), working full time on the versions and on related issues. Linus remains

independent, working on the kernel, while Andrew went to work for Google,

where he continued his developments full time, making patches with different

contributions to the kernel. Recently, OSDL became The Linux Foundation.

We need to bear in mind that with current versions of the kernel, a high degree

of development and maturity has been achieved, which means that the time

between the publication of versions is longer (this is not the case with partial

revisions).

Another factor to consider is the number of people that are currently working

on its development. Initially, there were just a handful of people with com-

plete knowledge of the entire kernel, whereas nowadays many people are in-

volved in its development. Estimates are almost two thousand with different

levels of contribution, although the number of developers working on the

hard core is estimated at several dozen.

We should also take into consideration that most only have partial knowl-

edge of the kernel and neither do they all work simultaneously nor is their

contribution equally relevant (some just correct simple errors); it is just a few

people (such as the maintainers who have full knowledge of the kernel. This

means that developments can take a while to occur, contributions need to be

debugged to make sure that they do not come into conflict with each other

and choices need to be made between alternative features.

Regarding the numbering of the Linux kernel's versions ([lkm][DBo]), we

should bear in mind the following:

a) Until kernel branch 2.6.x, the versions of the Linux kernel were gov-

erned by a division into two series: one was known as the "experimental"

version (with the second number being an odd number, such as 1.3.xx,

2.1.x or 2.5.x) and the other was the "production" version (even series,

such as 1.2.xx, 2.0.xx, 2.2.x, 2.4.x and more). The experimental series

were versions that moved rapidly and that were used for testing new fea-

tures, algorithms, device controllers etc. Because of the nature of the ex-

perimental kernels, they could behave unpredictably, losing data, block-

Note

The Linux Foundation:
www.linux-foundation.org

© FUOC • P07/M2103/02283 11 The kernel

ing the machine etc. Therefore, they were not suited to production en-

vironments, unless for testing a specific feature (with the associated dan-

gers).

Production or stable kernels (even series) were kernels with a well defined

set of features, a low number of known errors and with tried and tested

device controllers. They were published less frequently than the experi-

mental versions and there were a variety of versions, some better than

others. GNU/Linux systems are usually based on a specifically chosen sta-

ble kernel, not necessarily the latest published production kernel.

b) The current Linux kernel numbering (used in branch 2.6.x), contin-

ues to maintain some basic aspects: the version is indicated by numbers

X.Y.Z, where normally X is the main version, which represents important

changes to the kernel; Y is the secondary version and usually implies im-

provements in the kernel's performance: Y is even for stable kernels and

odd for developments or tests; and Z is the build version, which indicates

the revision number of X.Y, in terms of patches or corrections made. Dis-

tributors do not tend to include the latest version of the kernel, but rather

the one they have tested most frequently and can verify is stable for the

software and components it includes. On the basis of this classical num-

bering scheme (followed during versions 2.4.x, until the early versions of

branch 2.6), modifications were made to adapt to the fact that the kernel

(branch 2.6.x) is becoming more stable (fixing X.Y to 2.6), and that there

are fewer and fewer revisions (thus the leap in version of the first num-

bers), but development remains continuous and frenetic.

Under the latest schemes, four numbers are introduced to specify in Z mi-

nor changes or the revision's different possibilities (with different added

patches). The version thus defined with four numbers is the one consid-

ered to be stable. Other schemes are also used for the various test versions

(normally not advisable for production environments), such as -rc suf-

fixes (release candidate), -mm which refers to experimental kernels with

tests for different innovative techniques, or -git which are a sort of dai-

ly snapshot of the kernel's development. These numbering schemes are

constantly changing to adapt to the way of working of the kernel com-

munity and its needs to accelerate the development.

c) To obtain the latest published kernel, you need to visit the Linux ker-

nels file (at http://www.kernel.org) or its local mirror (in Spain http://

www.es.kernel.org). It will also be possible to find some patches for the

original kernel, which correct errors detected after the kernel's publica-

tion.

Some of the technical characteristics ([DBo][Arc]) of the Linux kernel that

we should highlight are:

© FUOC • P07/M2103/02283 12 The kernel

• Kernel of the monolithic type: basically it is a program created as a

unit, but conceptually divided into several logical components.

• It has support for loading/downloading portions of the kernel up-

on demand, these portions are known as modules, and tend to be

characteristics of the kernel or device controllers.

• Threads of the kernel: for internal functioning, several execution

threads are used internal to the kernel, which may be associated to a

user program or to an internal functionality of the kernel. In Linux,

this concept was not used intensively. The revisions of branch 2.6.x

offered better support and a large proportion of the kernel is run us-

ing these various execution threads.

• Multithread applications support: user applications support of the

multithread type, since many computing paradigms of the client/

server type, need servers capable of attending to numerous simulta-

neous requests, dedicating an execution thread to each request or

group of requests. Linux has its own library of threads that can be

used for multithread applications, with the improvements made to

the kernel, they have also allowed a better use for implementing

thread libraries for developing applications.

• The kernel is of a nonpreemptive type: this means that within

the kernel, system calls (in supervisory mode) cannot be interrupt-

ed while the system task is being resolved and, when the latter fin-

ishes, the execution of the previous task is resumed. Therefore, the

kernel within a call cannot be interrupted to attend to another task.

Normally, preemptive kernels are associated to systems that operate

in real time, where the above needs to be allowed in order to han-

dle critical events. There are some special versions of the Linux ker-

nel for real time, that allow this by introducing some fixed points

where they can be exchanged. This concept has also been especially

improved in branch 2.6.x of the kernel, in some cases allowing some

resumable kernel tasks to be interrupted in order to deal with others

and resuming them later. This concept of a preemptive kernel can

also be useful for improving interactive tasks, since if costly calls are

made to the system, they can cause delays in interactive applications.

• Multiprocessor support, known as symmetrical multiprocessing

(SMP). This concept tends to encompass machines that incorporate

the simple case of 2 up to 64 CPUs. This issue has become particular-

ly relevant with multicore type architectures, that allow from 2 or 4

to more CPU cores in machines accessible to domestic users. Linux

can use multiple processors, where each processor can handle one

or more tasks. But some parts of the kernel decreased performance,

since they were designed for a single CPU and forced the entire sys-

© FUOC • P07/M2103/02283 13 The kernel

tem to stop under certain cases of blockage. SMP is one of the most

studied techniques in the Linux kernel community and important

improvements have been achieved in branch 2.6. Since SMP perfor-

mance is a determining factor when it comes to companies adopting

Linux as an operating system for servers.

• File systems: the kernel has a good file system architecture, internal

work is based on an abstraction of a virtual system (VFS, virtual file

system), which can be easily adapted to any real system. As a result,

Linux is perhaps the operating system that supports the largest num-

ber of file systems, from ext2, to MSDOS, VFAT, NTFS, journaled sys-

tems, such as ext3, ReiserFS, JFS(IBM), XFS(Silicon), NTFS, ISO9660

(CD), UDF and more added in the different revisions.

Other less technical characteristics (a bit of marketing):

a) Linux is free: together with the GNU software and included in any

distribution, we can have a full UNIX system practically for the cost of

the hardware, regarding GNU/Linux distribution costs, we can have it

practically free. Although it makes sense to pay a bit extra for a complete

distribution, with the full set of manuals and technical support, at a lower

cost than would be paid for some proprietary systems or to contribute

with the purchase to the development of distributions that we prefer or

that we find more practical.

b) Linux can be tailored: the GPL license allows us to read and to modify

the source code of the kernel (on condition that we have the required

know-how).

c) Linux can run on fairly limited old hardware; for example, it is possible

to create a network server on a 386 with 4 MB of RAM (there are distribu-

tions specialised for limited resources).

d) Linux is a powerful system: the main objective of Linux is efficiency,

it aims to make the most of the available hardware.

e) High quality: GNU/Linux systems are very stable, have a low fault ratio

and reduce the time needed for maintaining the systems.

f) The kernel is fairly small and compact: it is possible to place it, together

with some basic programs, on a disk of just 1.44 MB (there are several

distributions on just one diskette with basic programs).

© FUOC • P07/M2103/02283 14 The kernel

g) Linux is compatible with a large number of operating systems, it can

read the files of practically any file system and can communicate by net-

work to offer/receive services from any of these systems. Also, with certain

libraries it can also run the programs of other systems (such as MSDOS,

Windows, BSD, Xenix etc.) on the x86 architecture.

h) Linux has extensive support: there is no other system that has the

same speed and number of patches and updates as Linux, not even any

proprietary system. For a specific problem, there is an infinite number of

mail lists and forums that can help to solve any problem within just a few

hours. The only problem affects recent hardware controllers, which many

manufacturers are still reluctant to provide if they are not for proprietary

systems. But this is gradually changing and many of the most important

manufacturers in sectors such as video cards (NVIDIA, ATI) and printers

(Epson, HP,) are already starting to provide the controllers for their de-

vices.

© FUOC • P07/M2103/02283 15 The kernel

2. Tailoring or updating the kernel

As GNU/Linux users or system administrators, we need to bear in mind the

possibilities the kernel offers us for tailoring it to our requirements and equip-

ment.

At the time of installing them, these distributions provide a series of precon-

figured and compiled binary Linux kernels and we will usually have to choose

which kernel from the available set best adapts to our hardware. There are

generic kernels, oriented at IDE devices, others at SCSI, others that offer a mix

of device controllers [AR01] etc.

Another option during the installation is the kernel version. Distributions nor-

mally use an installation that they consider sufficiently tested and stable so

that it does not cause any problems for its users. For example, nowadays many

distributions come with versions 2.6.x of the kernel by default, since it is con-

sidered the most stable version (at the time the distribution was released). In

certain cases, as an alternative, more modern versions may be offered during

the installation, with improved support for more modern (latest generation)

devices that perhaps had not been so extensively tested at the time when the

distribution was published.

Distributors tend to modify the kernel to improve their distribution's be-

haviour or to correct errors detected in the kernel during tests. Another fairly

common technique with commercial distributions is to disable problematic

features that can cause errors for users or that require a specific machine con-

figuration or when a specific feature is not considered sufficiently stable to be

included enabled by default.

This leads us to consider that no matter how well a distributor does the job

of adapting the kernel to its distribution, we can always encounter a number

of problems:

• The kernel is not updated to the latest available stable version; some mod-

ern devices are not supported.

• The standard kernel does not support the devices we have because they

have not been enabled.

• The controllers a manufacturer offers us require a new version of the kernel

or modifications.

• The opposite, the kernel is too modern, and we have old hardware that is

no longer supported by the modern kernels.

• The kernel, as it stands, does not obtain the best performance from our

devices.

Note

The possibility of updating and
tailoring the kernel offers a
good adjustment to any sys-
tem through tuning and opti-
misation.

© FUOC • P07/M2103/02283 16 The kernel

• Some of the applications that we want to use require the support of a new

kernel or one of its features.

• We want to be on the leading edge, we risk installing the latest versions

of the Linux kernel.

• We like to investigate or to test the new advances in the kernel or would

like to touch or modify the kernel.

• We want to program a driver for an unsupported device.

• ...

For these and other reasons we may not be happy with the kernel we have; in

which case we have two possibilities: updating the distribution's binary kernel

or tailoring it using the source.

Let's look at a few issues related to the different options and what they entail:

1) Updating the distribution's kernel: the distributor normally also publishes

kernel updates as they are released. When the Linux community creates a new

version of the kernel, every distributor joins it to its distribution and conducts

the relevant tests. Following the test period, potential errors are identified,

corrected and the relevant update of the kernel is made in relation to the one

offered on the distribution's CDs. Users can download the new revision of the

distribution from the website, or update it via some other automatic package

system through a package repository. Normally, the system's version is veri-

fied, the new kernel is downloaded and the required changes are made so that

the following time the system functions with the new kernel, maintaining the

old version in case there are any problems.

This type of update simplifies the process for us a lot, but may not solve

our problems, since our hardware may not yet be supported or the fea-

ture of the kernel to be tested is still not in the version that we have

of the distribution; we need to remember that there is no reason for

distributor to use the latest available version (for example in kernel.org)

but rather the one it considers stable for its distribution.

If our hardware is not enabled by default in the new version either, we will

find ourselves in the same situation. Or simply, if we want the latest version,

this process is no use.

2) Tailoring the kernel (this process is described in detail in the following sec-

tions). In this case, we will go to the sources of the kernel and "manually" ad-

just the hardware or required characteristics. We will pass through a process

of configuring and compiling the source code of the kernel so as to create a

binary kernel that we will install on the system and thus have it available the

following time the system is booted.

© FUOC • P07/M2103/02283 17 The kernel

Here we may also encounter two more options, either by default we will obtain

the "official" version of the kernel (kernel.org), or we can go to the sources

provided by the distribution itself. We need to bear in mind that distributions

like Debian and Fedora do a lot of work on adapting the kernel and correcting

kernel errors that affect their distribution, which means that in some cases we

may have additional corrections to the kernel's original code. Once again, the

sources offered by the distribution do not necessarily have to correspond to

the latest published version.

This system allows us maximum reliability and control, but at a high

administration cost; since we will need to have extensive knowledge of

the devices and characteristics that we are selecting (what they mean

and what implications they may have), in addition to the consequences

that the decisions we make may imply.

© FUOC • P07/M2103/02283 18 The kernel

3. Configuration and compilation process

Tailoring the kernel [Vasb] is a costly process and requires extensive knowledge

on the part of the person doing it, it is also one of the critical tasks on which

the system's stability depends, given the nature of the kernel, which is the

system's central component.

Any error in the procedure can cause instability or the loss of the system.

Therefore, it is advisable to make a backup of user data, configurations we

have tailored, or, if we have the required devices, to make a complete system

backup. It is also advisable to have a start up diskette (or Live CD distribution

with tools) to help us in the event of any problem, or a rescue disk which

most distributions allow us to create from the distribution's CDs (or by directly

providing a rescue CD for the distribution).

Without meaning to exaggerate, if the steps are followed correctly, we know

what we are doing and take the necessary precautions, errors almost never

occur.

Let's look at the process required to install and configure a Linux kernel. In

the following sections, we look at:

1) The case of old 2.4.x versions.

2) Some considerations regarding migrating to 2.6.x

3) Specific details regarding versions 2.6.x.

4) A particular case with the Debian distribution, which has its own more

flexible compilation system (debian way).

Versions 2.4.x are practically no longer offered by current distributions, but

we should consider that on more than one occasion we may find ourselves

obliged to migrate a specific system to new versions or to maintain it on the

old ones, due to incompatibilities or the existence of old unsupported hard-

ware.

The general concepts of the compilation and configuration process will be

explained in the first section (2.4.x), since most of them are generic, and we

will subsequently see the differences with regard to the new versions.

Note

The process of obtaining a
new personalised kernel in-
volves obtaining the sources,
adapting the configuration,
and compiling and installing
the obtained kernel on the sys-
tem.

© FUOC • P07/M2103/02283 19 The kernel

3.1. Kernel compilation versions 2.4.x

The instructions are specifically for the Intel x86 architecture, by root user

(although part of the process can be done as a normal user):

1) Obtaining the kernel: for example, we can visit www.kernel.org (or its

FTP server) and download the version we would like to test. There are mir-

rors for different countries, for example, visit www.es.kernel.org. In most

GNU/Linux distributions, such as Fedora/Red Hat or Debian, the kernel's

source code is also offered as a package (normally with some modifica-

tions included), if we are dealing with the version of the kernel that we

need, it may be preferable to use these (through the kernel-source pack-

ages or similar). If we want the latest kernels, perhaps they are not avail-

able in the distribution and we will have to go to kernel.org.

2) Unpack the kernel: the sources of the kernel were usually placed and

unpacked from the directory /usr/src, although we advise using a sep-

arate directory so as not to mix with source files that the distribution may

carry. For example, if the sources come in a compressed file of the bzip2

type:

bzip2 -dc linux-2.4.0.tar.bz2 | tar xvf -

If the sources come in a gz file, we will replace bzip2 with gzip. When

we decompress the sources, we will have generated a directory linux-

version_kernel that we will enter in order to configure the kernel.

Before taking the steps prior to compilation, we should make sure that

we have the right tools, especially the gcc compiler, make and other com-

plementary gnu utilities for the process. For example, the modutils, the

different utilities for using and handling the dynamic kernel modules.

Likewise, for the different configuration options we should take into ac-

count a number of pre-requirements in the form of libraries associated to

the configuration interface used (for example ncurses for the menuconfig

interface).

In general, we advise checking the kernel documentation (whether via

the package or in the root directory of the sources) to know what pre-re-

quirements and versions of them will be needed for the process. We ad-

vise studying the README files in the "root" directory, and Documenta-

tion/Changes or the documentation index of the kernel in Documenta-

tion/00-INDEX.

If we have made previous compilations in the same directory, we need to

make sure that the directory we use is clear of previous compilations; we

can clear it using make mrproper (from the "root" directory).

© FUOC • P07/M2103/02283 20 The kernel

For the process of configuring the kernel [Vasb], we have several alterna-

tive methods, which offer us different interfaces for adjusting the various

parameters of the kernel (which tend to be stored in a configuration file,

normally .config in the "root" directory of the sources). The different al-

ternatives are:

• make�config: from the command line we are asked for each option,

and we are asked for confirmation (y/n) – yes or no, the option, or we

are asked for the required values. Or the long configuration, where

we are asked for many answers, and depending on each version, we

will likewise have to answer almost a hundred questions (or more

depending on the version).

• make�oldconfig: it is useful if we want to reuse an already used

configuration (normally stored in a .config file, in the root directory

of the sources), we need to take into account that it is only valid if we

are compiling the same version of the kernel, since different kernel

versions can have variable options.

• make�menuconfig: configuration based on text menus, fairly con-

venient; we can enable or disable what we want and it is faster than

make config.

• make�xconfig: the most convenient, based on graphic dialogues

in X Window. We need to have tcl/tk libraries installed, since this

configuration is programmed in this language. The configuration is

based on tables of dialogues and buttons/checkboxes, can be done

fairly quickly and has help with comments on most options. But it

has a defect, which is that some options may not appear (it depends

on whether the configuration program is updated and sometimes

it is not). In this last case, make config (or menuconfig) is the only

one we can be sure will offer all the options we can choose; for the

other types of configuration it depends on whether the programs

have been adapted to the new options in time for the kernel being

released. Although in general they try to do it at the same time.

© FUOC • P07/M2103/02283 21 The kernel

Figure 2. Configuration of the kernel (make xconfig) from graphic interface in X Window

Once the configuration process has been done, we need to save the

file (.config), since the configuration requires a considerable amount

of time. Also, it may be useful to have the configuration done if the

plan is to do it on several similar or identical machines.

Another important issue concerning configuration options is that in

many cases we will be asked if we want a specific characteristic inte-

grated into the kernel or as a module (in the section on modules we

will provide more details on them). This is a fairly important deci-

sion, since in certain cases our choice will influence the performance

of the kernel (and therefore of the entire system).

The Linux kernel has become very large, due both to its complexity

and to the device controllers (drivers) [AR01] that it includes. If we

integrated everything, we could create a very large kernel file that

would occupy a lot of memory and, therefore, slow down some func-

tioning aspects. The modules of the kernel [Hen] are a method that

makes it possible to divide part of the kernel into smaller sections,

which will be loaded dynamically upon demand or when they are

necessary for either explicit load or use of a feature.

The normal choice is to integrate what is considered fundamental

for functioning or critical for performance within the kernel and to

leave parts or controllers that will be used sporadically as modules

for future extensions of the equipment.

• A clear case are the device controllers: if we are updating the ma-

chine, it may be that when it comes to creating the kernel we are not

sure what hardware it will have: for example, what network card; but

we do know that it will be connected to a network, so, the network

support will be integrated into the kernel, but for the card controllers

we can select a few (or all) of them and install them as modules.

Then, when we have the card we can load the required module or

© FUOC • P07/M2103/02283 22 The kernel

if we need to change one card for another later, we will just have to

change the module to be loaded. If just one controller were integrat-

ed into the kernel and we changed the card, we would be forced to

reconfigure and recompile the kernel with the new card's controller.

• Another case that arises (although it is not very common) is when

we have two devices that are incompatible with each other, or when

one or the other is functioning (for example, this tends to happen

with a parallel cable printer and hardware connected to the parallel

port). Therefore, in this case, we need to put the controllers as mod-

ules and load or download the one we need.

• Another example is the case of file systems. Normally we would

hope that our system would have access to some of them, like ext2

or ext3 (belonging to Linux), VFAT (belonging to Windows 95/98/

ME), and we will enable them in configuring the kernel. If at some

moment we have to read another unexpected type, for example data

stored on a disk or partition of the Windows NT/XP NTFS system, we

would not be able to: the kernel would not know how to or would

not have support to do so. If we have foreseen that at some point (but

not usually) we may need to access these systems, we could leave the

other file systems as modules.

3)�Compiling�the�kernel

We will start the compilation using make, first we will have to generate

the possible dependencies between the code and then the type of image

of the kernel that we want (in this case, a compressed image, which tends

to be the normal case):

make dep

make bzImage

When this process is completed, we will have the integrated part of the

kernel; we are missing the parts that we have set as modules:

make modules

At this point we have done the configuring and compiling of the kernel.

This part could be done by a normal user or by the root user, but now

we will definitely need the root user, because we will move onto the in-

stallation part.

4)�Installation

We'll start by installing the modules:

© FUOC • P07/M2103/02283 23 The kernel

make modules_install

And the installation of the new kernel (from the directory /usr/src/linux-

versionor the one we have used as temporary):

cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.0

cp System.map /boot/System.map-2.4.0

the file bzImageis the newly compiled kernel, which is placed in the /boot

directory. Normally, we will find the old kernel in the same /boot directory

with the name vmlinuz or vmlinuz-previous-version and vmlinuzas, a

symbolic link to the old kernel. Once we have our kernel, it is better to

keep the old one, in case any faults occur or the new one functions badly,

so that we can recover the old one. The file System.map contains the

symbols available for the kernel and is necessary for the processing of

starting it up; it is also placed in the same directory.

On this point, we also need to consider that when the kernel starts up it

may need to create initrd type files, which serve as a compound image

of some basic drivers and is used when loading the system, if the system

needs those drivers before booting certain components. In some cases, it

is vital because in order to boot the rest of the system, certain drivers need

to be loaded in a first phase; for example specific disk controllers such as

RAID or volume controllers, which would be necessary so that in a second

phase, the disk can be accessed for booting the rest of the system.

The kernel can be generated with or without an initrd image, depending

on the needs of the hardware or system in question. In some cases, the

distribution imposes the need to use an initrd image, in other cases it will

depend on our hardware. It is also often used to control the size of the

kernel, so that its basics can be loaded through the initrd image and later

the rest in a second phase in the form of modules. In the case of requiring

the initrd image, it would be created using the mkinitrd utility (see man,

or chapter workshop), within the /boot directory.

5) The following step is to tell the system what kernel it needs to boot

with, although this depends on the Linux booting system:

• From booting with lilo [Zan][Skoa], whether in the MBR (master

boot record) or from an own partition, we need to add the following

lines to the configuration file (in: /etc/lilo.conf):

image = /boot/vmlinuz-2.4.0

 label = 2.4.0

© FUOC • P07/M2103/02283 24 The kernel

where image is the kernel to be booted, and label is the name that

the option will appear with during booting. We cam add these lines

or modify the ones of the old kernel. We recommend adding them

and leaving the old kernel, in case any problems occur, so that the

old one can be recovered. In the file /etc/lilo.conf we may have one or

more start up configurations, for either Linux or other systems (such

as Windows).

Every start up is identified by its line image and the label that ap-

pears in the boot menu. There is a line default = label that indicates

the label that is booted by default. We can also add root = /dev/...

to the preceding lines to indicate the disk partition where the main

file system is located (the '/'), remembering that the disks have de-

vices such as /dev/hda (1.r disk ide) /dev/hdb (2 disk ide) or /dev/sdx

for SCSI (or emulated) disks, and the partition would be indicated as

root = /dev/hda2 if the '/' of our Linux were on the second partition

of the first ide disk. Using "append =" we can also add parameters to

the kernel start up [Gor]. If the system uses initrd, we will also have

to indicate which is the file (which will also be located in /boot/ini-

trd-versionkernel), with the option "initrd=". After changing the lilo

configuration, we need to write it for it to boot:

/sbin/lilo -v

We reboot and start up with the new kernel.

If we have problems, we can recover the old kernel, by selecting the

option of the old kernel, and then, using the retouch lilo.conf, we can

return to the old configuration or study the problem and reconfigure

and recompile the kernel.

• Boot with grub [Kan01][Pro]. In this case, handling is simple, we

need to add a new configuration consisting of the new kernel and

adding it as another option to the grub file. Next, reboot in a similar

way as with lilo, but remembering that in grub it is sufficient to edit

the file (typically /boot/grub/menu.lst) and to reboot. It is also bet-

ter to leave the old configuration in order to recover from potential

errors.

3.2. Migration to kernel 2.6.x

In the case of having to update versions of old distributions, or changing the

kernel generation using the source code, we will have to take some aspects

into account, due to the novelties introduced into kernel branch 2.6.x.

Here is a list of some of the specific points to consider:

© FUOC • P07/M2103/02283 25 The kernel

• Some of the kernel modules have changed their name, and some may have

disappeared, we need to check the situation of the dynamic modules that

are loaded (for example, examine /etc/modules and/or /etc/modules.conf)

and edit them to reflect the changes.

• New options have been added to the initial configuration of the kernel:

like make gconfig, an interface based on gtk (Gnome). In this case, as a

prerequisite, we will need to look out for Gnome libraries. The option

make xconfig has now been implemented with the qt libraries (KDE).

• The minimum required versions of various utilities needed for the compi-

lation process are increased (consult Documentation/Changes in the ker-

nel sources). Especially, the minimum gcc compiler version.

• The default package for the module utilities has changed, becoming mod-

ule-init-tools (instead of modutils used in 2.4.x). This package is a prereq-

uisite for compiling kernels 2.6.x, since the modules loader is based on

this new version.

• The devfs system becomes obsolete in favour of udev, the system that con-

trols the hotplug start up (connection) of devices (and their initial recog-

nition, in fact simulating a hotplug start up when the system boots), dy-

namically creating inputs in the directory /dev, only for devices that are

actually present.

• In Debian as of certain versions of branch 2.6.x, for the binary images of

the kernels, headers and source code, the name of the packages changes

from kernel-images/source/headers to linux-image/source/headers.

• In some cases, new technology devices (like SATA) may have moved from

/dev/hdX to /dev/sdX. In these cases, we will have to edit the configura-

tions of /etc/fstab and the bootloader (lilo or grub) in order to reflect the

changes.

• There may be some problems with specific input/output devices. The

change in name of kernel modules has affected, among others, mouse de-

vices, which likewise can affect the running of X-Window, until the re-

quired models are verified and the correct modules are loaded (for example

psmouse). At the same time, the kernel integrates the Alsa sound drivers.

If we have the old OSS, we will have to eliminate them from the loading

of modules, since Alsa already takes care of emulating these.

• Regarding the architectures that the kernel supports, we need to bear in

mind that kernel 2.6.x, in its different revisions, has been increasing the

supported architectures which will allow us to have the binary images of

the kernel in the distributions (or the options for compiling the kernel)

best suited to supporting our processors. Specifically, we can find archi-

© FUOC • P07/M2103/02283 26 The kernel

tectures such as i386 (for Intel and AMD): supporting the compatibility

of Intel in 32 bits for the entire family of processors (some distributions

use the 486 as the general architecture), some distributions integrate dif-

ferentiated versions for i686 (Intel from pentium pro thereafter), for k7

(AMD Athlon thereafter), and those specific to 64 bits, for AMD 64 bits,

and Intel with em64t extensions of 64 bits such as Xeon, and Multicores.

At the same time, there is also the IA64 architecture for 64bit Intel Itanium

models. In most cases, the architectures have SMP capabilities activated

in the kernel image (unless the distribution supports versions with and

without SMP, created independently, in this case, the suffix -smp is usually

added to the image that supports it).

• In Debian, to generate inirtrd images, as of certain versions of the kernel

(>=2.6.12) the mkinitrd tools are considered obsolete, and are replaced with

new utilities such as initramfs tools or yaird. Both allow the initrd image

to be built, but the former is the recommended one (by Debian).

3.3. Compilation of the kernel versions 2.6.x

In versions 2.6.x, bearing in mind the abovementioned considerations, the

compilation takes place in a similar way to the one described above:

Having downloaded the kernel 2.6.x (with x the number or pair of numbers

of the kernel revision) to the directory that will be used for the compilation

and checking the required versions of the basic utilities, we can proceed to the

step of compiling and cleaning up previous compilations:

make clean mrproper

configuration of parameters (remember that if we have a previous.config, we

will not be able to start the configuration from zero). We do the configuration

through the selected make option (depending on the interface we use):

make menuconfig

construction of the kernel's binary image

make dep

make bzImage

construction of the modules (those specified as such):

make modules

installation of the created modules (/lib/modules/version)

© FUOC • P07/M2103/02283 27 The kernel

make modules_install

copying of the image to its final position (assuming i386 as the architecture):

cp arch/i386/boot/bzimage /boot/vmlinuz-2.6.x.img

and finally, creating the initrd image that we consider necessary, with the

necessary utilities according to the version (see subsequent comment). And

adjustment of the lilo or grub bootloader depending on which one we use.

The final steps (vmlinuz, system.map and initrd) of moving files to /boot can

normally also be done with the process:

make install

but we need to take into account that it does the entire process and will update

the bootloaders, removing or altering old configurations; at the same time, it

may alter the default links in the /boot directory. We need to bear this in mind

when it comes to thinking of past configurations that we wish to save.

Regarding the creation of the initrd, in Fedora/Red Hat it will be created au-

tomatically with the install option. In Debian we should either use the tech-

niques of the following section or create it expressly using mkinitrd (versions

<=2.6.12) or, subsequently, with mkinitramfs, or a utility known as update-

initramfs, specifying the version of the kernel (it is assumed that it is called

vmlinuz-version within the /boot directory):

update-initramfs -c -k 'version'

3.4. Compilation of the kernel in Debian (Debian way)

In Debian, in addition to the examined methods, we need to add the config-

uration using the method known as Debian Way. A method that allows us to

build the kernel in a fast and flexible manner.

For the process, we will need several utilities (install the packages or similar):

kernel-package, ncurses-dev, fakeroot, wget, bzip2.

We can see the method from two perspectives, rebuilding a kernel equiva-

lent to the one provided by the distribution or tailoring it and then using the

method for building an equivalent personalised kernel.

© FUOC • P07/M2103/02283 28 The kernel

In the first case, we initially obtain the version of the kernel sources provided

by the distribution (meaning x the revision of the kernel 2.6):

apt-get install linux-source-2.6.x

$ tar -xvjf /usr/src/linux-source-2.6.x.tar.bz2

where we obtain the sources and decompress them (the package leaves the

file in /usr/src).

Installing the basic tools:

apt-get install build-essential fakeroot

Checking source dependencies

apt-get build-dep linux-source-2.6.x

And construction of the binary, according to the pre-established package con-

figuration (similar to that included in the official image packages of the kernel

in Debian):

$ cd linux-source-2.6.x

$ fakeroot debian/rules binary

There are some extra procedures for creating the kernels based on different

patch levels provided by the distribution and possibilities of generating dif-

ferent final configurations (view the reference note to complement these as-

pects).

In the second, more common case, when we would like a personalised kernel,

we will have to follow a similar process through a typical tailoring step (for

example, using make menuconfig); the steps would be:

obtaining and preparing the directory (here we obtain the distribution's pack-

ages, but it is equivalent to obtaining the sources from kernel.org):

apt-get install linux-source-2.6.x

$ tar xjf /usr/src/linux-source-2.6.x.tar.bz2

$ cd linux-source-2.6.x

next, we configure the parameters, as always, we can base ourselves on .config

files that we have used previously, to start from a known configuration (for

tailoring we can also use any of the other methods, xconfig, gconfig...):

$ make menuconfig

Note

We can see the Debian
way process in a detailed
manner in: http://kernel-
handbook.alioth.debian.org/

© FUOC • P07/M2103/02283 29 The kernel

final construction of the kernel depending on initrd or not, without initrd

available (we need to take care with the version we use; as of a certain version

of the kernel, the use of the initrd image can be mandatory):

$ make-kpkg clean

$ fakeroot make-kpkg --revision=custom.1.0 kernel_image

or if we have initrd available (already built)

$ make-kpkg clean

$ fakeroot make-kpkg --initrd --revision=custom.1.0

kernel_image

The process will end with adding the associated package to the kernel image,

which we will finally be able to install:

dpkg -i ../linux-image-2.6.x_custom.1.0_i386.deb

In this section, we will also add another peculiarity to be taken into consider-

ation in Debian, which is the existence of utilities for adding dynamic kernel

modules provided by third parties. In particular, the module-assistant utility

helps to automate this process on the basis of the module sources.

We need to have the headers of the kernel installed (package linux-headers-

version) or the sources we use for compiling the kernel. As of here, the mod-

ule-assistant can be used interactively, allowing us to select from an extensive

list of previously registered modules in the application, and it can be respon-

sible for downloading the module, compiling it and installing it in the exist-

ing kernel.

Also from the command line, we can simply specify (m-a is equivalent to mod-

ule-assistant):

m-a prepare

m-a auto-install module_name

which prepares the system for possible dependencies, downloads the module

sources, compiles them and, if there are no problems, installs them for the

current kernel. We can see the name of the module on the interactive list of

the module assistant.

© FUOC • P07/M2103/02283 30 The kernel

4. Patching the kernel

In some cases the application of patches to thekernel [lkm] is also common.

A patch file in relation to the Linux kernel is an ASCII text file that

contains the differences between the original source code and the new

code, with additional information on file names and code lines. The

patch program (see man patch) serves to apply it to the tree of the kernel

source code (normally in /usr/src).

The patches are usually necessary when special hardware requires some mod-

ification of the kernel or some bugs (errors) have been detected subsequent

to a wide distribution of a kernel version or else a new specific feature is to

be added. In order to correct the problem (or add the new feature), it is usual

to distribute a patch instead of an entire new kernel. When there are already

several of these patches, they are added to various improvements of the pre-

ceding kernel to form a new version of the kernel. In all events, if we have

problematic hardware or the error affects the functioning or stability of the

system and we cannot wait for the next version of the kernel; we will have

to apply the patch.

The patch is usually distributed in a compressed file of the type bz2 (bunzip2,

although you can also find it in gzip with the extension .gz), as in the case

of for example:

patchxxxx-2.6.21-pversion.bz2

where xxxx is usually any message regarding the type or purpose of the patch

2.6.21 would be the version of the kernel to which the patch is to be applied,

and pversion would refer to the version of the patch, of which there can also

be several. We need to bear in mind that we are speaking of applying patches

to the sources of the kernel (normally installed, as we have already seen, in

/usr/src/linuxor a similar directory).

Once we have the patch, we must apply it, we will find the process to follow

in any readme file that accompanies the patch, but generally the process fol-

lows the steps (once the previous requirements are checked) of decompressing

the patch in the source files directory and applying it over the sources of the

kernel, for example:

cd /usr/src/linux (or /usr/src/linux-2.6.21 or whichever ver-

sion).

© FUOC • P07/M2103/02283 31 The kernel

bunzip2 patch-xxxxx-2.6.21-version.bz2

patch -p1 < patch-xxxxx-2.6.21-version

and afterwards we will have to recompile the kernel in order to generate it

again.

The patches can be obtained from different places. Normally, we can find them

in the kernel storage site (www.kernel.org) or else in www.linuxhq.com, which

has a complete record of them. Some Linux communities (or individual users)

also offer corrections, but it is better to search the standard sites in order to

ensure that the patches are trustworthy and to avoid possible security prob-

lems with "pirate" patches. Another way is the hardware manufacturer, which

may offer certain modifications of the kernel (or controllers) so that its de-

vices work better (one known example is Linux NVIDIA and the drivers for

its graphic cards).

Finally, we should point out that many of the GNU/Linux distributions (Fedo-

ra/Red Hat, Mandriva...), already offer the kernels patched by themselves and

systems for updating them (some even automatically, as in the case of Fedo-

ra/Red Hat and Debian). Normally, in production systems it is more advisable

to keep up with the manufacturer's updates, although it does not necessarily

offer the latest published kernel, but rather the one that it finds most stable

for its distribution, at the expense of missing the latest generation features or

technological innovations included in the kernel.

Note

For systems that we want to
update, for testing reasons or
because we need the latest
features, we can always go to
www.kernel.org and obtain
the latest published kernel.

© FUOC • P07/M2103/02283 32 The kernel

5. Kernel modules

The kernel is capable of loading dynamic portions of code (modules) on de-

mand [Hen], in order to complement its functionality (this possibility is avail-

able from kernel version 1.2 and higher). For example, the modules can add

support for a file system or for specific hardware devices. When the function-

ality provided by the module is not necessary, the module can be download-

ed, freeing up memory.

On demand, the kernel usually identifies a characteristic not present in the

kernel at that moment it makes contact with a thread of the kernel known as

kmod (in kernel versions 2.0.x the daemon was called kerneld), this executes

a command, modprobeto, to try and load the associated module from or of

a chain with the name of the module or else from an generic identifier; this

information is found in the file /etc/modules.conf in the form of an alias be-

tween the name and the identifier.

Next, we search in /lib/modules/version_kernel/modules.dep

to find out whether there are dependencies with other modules. Final-

ly, with the insmod command the module is loaded from /lib/modules/

version_kernel/ (the standard directory for modules), the version_kernel is the

current version of the kernel using the uname -r command in order to set it.

Therefore, the modules in binary form are related to a specific version of the

kernel, and are usually located in /lib/modules/version-kernel.

If we need to compile them, we will need to have the sources and/or headers

of the version of the core for which it is designed.

There are some utilities that allow us to work with modules (they usually ap-

pear in a software package called modutils, which was replaced by the module

-init-tools for managing modules of the 2.6.x branch):

• lsmod: we can see the loaded modules in the kernel (the information is

obtained from the pseudofile /proc/modules). It lists the names and de-

pendencies with others (in []), the size of the module in bytes, and the

module use counter; this allows it to be downloaded if the count is zero.

Note

The modules offer the system
a large degree of flexibility, al-
lowing it to adapt to dynamic
situations.

© FUOC • P07/M2103/02283 33 The kernel

Example

Some modules in a Debian distribution:

Module Size Used by Tainted: P

agpgart 37.344 3 (autoclean)

apm 10.024 1 (autoclean)

parport_pc 23.304 1 (autoclean)

lp 6.816 0 (autoclean)

parport 25.992 1 [parport_pc lp]

snd 30.884 0

af_packet 13.448 1 (autoclean)

NVIDIA 1.539.872 10

es1371 27.116 1

soundcore 3.972 4 [snd es1371]

ac97_codec 10.9640 0 [es1371]

gameport 1.676 0 [es1371]

3c59x 26.960 1

• modprobe: tries the loading of a module and its dependencies.

• insmod: loads a specific module.

• depmod: analyses dependencies between modules and creates a file of de-

pendencies.

• rmmod: removes a module from the kernel.

• Other commands can be used for debugging or analysing modules, like mod-

info, which lists some information associated to the module or ksyms, which

(only in versions 2.4.x) allows examination of the symbols exported by the

modules (also in /proc/ksyms).

In order to load the module the name of the module is usually specified, either

by the kernel itself or manually by the user using insmod and specific param-

eters optionally. For example, in the case of devices, it is usual to specify the

addresses of the I/O ports or IRQ or DMA resources. For example:

insmod soundx io = 0x320 irq = 5

© FUOC • P07/M2103/02283 34 The kernel

6. Future of the kernel and alternatives

At certain moments, advances in the Linux kernel were released at very short

intervals, but now with a fairly stable situation regarding the kernels of the

2.6.x series, more and more time elapses between kernel versions, which in

some ways is very positive. It allows time for correcting errors, seeing what

ideas did not work well, and trying new ideas, which, if they work, are includ-

ed.

In this section, we'll discuss some of the ideas of the latest kernels and some

of those planned for the near future in the development of the kernel.

The previous series, series 2.4.x [DBo], included in most current distributions,

contributions were made in:

• Fulfilling IEEE POSIX standards, this means that many existing UNIX pro-

grams can be recompiled and executed in Linux.

• Improved devices support: PnP, USB, Parallel Port, SCSI...

• Support for new file systems, like UDF (CD-ROM rewritable like a disc).

Other journaled systems, like Reiser from IBM or the ext3, these allow

having a log (journal) of the file system modifications and thus they are

able to recover from errors or incorrect handling of files.

• Memory support up to 4 GB, in its day some problems arose (with the 1.2x

kernels) which would not support more memory than 128 MB (at that

time it was a lot of memory).

• The /proc interface was improved. This is a pseudo-filesystem (the direc-

tory /proc) that does not really exist on the disc, but that is simply a way

of accessing the data of the kernel and of the hardware in an organised

manner.

• Sound support in the kernel: Alsa controllers, which were configured sep-

arately beforehand, were partially added,.

• Preliminary support for RAID software and the dynamic volumes manager

LVM1 was included.

In the current series, kernel branch 2.6.x [Pra] has made important advances in

relation to the previous one (with the different.x revisions of the 2.6 branch):

Note

The kernel continues to evolve,
incorporating the latest in
hardware support and im-
proved features.

© FUOC • P07/M2103/02283 35 The kernel

• Improved SMP features, important for the multi-core processors widely

used in business and scientific environments.

• Improvements in the CPU scheduler.

• Improvements in the multithread support for user applications. New mod-

els of threads NGPT (IBM) and NPTL (Red Hat) are incorporated (over time

NPTL was finally consolidated).

• Support for USB 2.0.

• Alsa sound controllers incorporated in the kernel.

• New architectures for 64-bit CPUs, supporting AMD x86_64 (also known

as amd64) and PowerPC 64 and IA64 (Intel Itanium architecture).

• Support for journaled file systems: JFS, JFS2 (IBM), and XFS (Silicon Graph-

ics).

• Improved I/O features, and new models of unified controllers.

• Improvements in implementing TCP/IP, and the NFSv4 system (sharing

of the file system with other systems via the network).

• Significant improvements for a preemptive kernel: allowing the kernel to

manage internally various tasks that can interrupt each other, essential for

the efficient implementation of real time systems.

• System suspension and restoration after rebooting (by kernel).

• UML, User Mode Linux, a sort of virtual Linux machine on Linux that

allows us to see a Linux (in user mode) running on a virtual machine.

This is ideal for debugging now that a version of Linux can be developed

and tested on another system, which is useful for the development of the

kernel itself and for analysing its security.

• Virtualisation techniques included in the kernel: the distributions have

gradually been incorporating different virtualisation techniques, which

require extensions to the kernel; we should emphasise, for example, ker-

nels modified for Xen, or Virtual Server (Vserver).

• New version of the volumes support LVM2.

• New pseudo file system /sys, designed to include the system information

and devices that will be migrating from the /proc system, leaving the latter

© FUOC • P07/M2103/02283 36 The kernel

with information regarding the processes and their development during

execution.

• FUSE module for implementing file systems on user space.

In the future, improvement of the following aspects is planned:

• Increasing the virtualisation technology in the kernel, for supporting dif-

ferent operating system configurations and different virtualisation tech-

nologies, in addition to better hardware support for virtualisation includ-

ed in the processors that arise with new architectures.

• The SMP support (multi-processor machines) of 64-bit CPUs (Intel's Itani-

um, and AMD's Opteron), the support of multi-core CPUs.

• Improved file systems for clustering and distributed systems.

• Improvement for kernels optimised for mobile devices (PDA, teléfonos...).

• Improved fulfilment of the POSIX standard etc.

• Improved CPU scheduling; although in the initial series of the 2.6.x

branch many advances were made in this aspect, there is still low perfor-

mance in some situations, in particular in the use of interactive desktop

applications, different alternatives are being studied to improve this and

other aspects.

Page Web

POSIX:
www.UNIX-systems.org/

Also, although it is separate from the Linux systems, the FSF (Free Software

Foundation) and its GNU project continue working on the project to finish

a complete operating system. It is important to remember that the main ob-

jective of the GNU project was to obtain a free software UNIX clone and the

GNU utilities are just the necessary software for the system. In 1991, when

Linux managed to combine its kernel with some GNU utilities, the first step

was taken towards the culmination in today's GNU/Linux systems. But the

GNU project continues working on its idea to finish the complete system.

Right now, they already have a core that can run its GNU utilities. This core

is known as Hurd; and a system built with it known as GNU/Hurd. There are

already some test distributions, specifically, a Debian GNU/Hurd.

Page Web

The GNU project:
http://www.gnu.org/gnu/
thegnuproject.html

Hurd was designed as a core for the GNU system around 1990 when its devel-

opment started, since most of the GNU software had already been developed

at the time, and the only thing that was missing was the kernel. It was in 1991

when Linus combined GNU with his Linux kernel that the history of GNU/

Linux systems began. But Hurd continues to develop. The development ideas

for Hurd are more complex, since Linux could be considered a conservative

design, based on already known and implemented ideas.

Reference bibliographic

GNU and Linux, by
RichardStallman: http://
www.gnu.org/gnu/linux-and-
gnu.html

© FUOC • P07/M2103/02283 37 The kernel

Specifically, Hurd was conceived as a collection of servers implemented on a

Mach microkernel [Vah96], which is a kernel design of the microkernel type

(unlike Linux, which is of the monolithic type) developed by the University

of Carnegie Mellon and subsequently by that of Utah. The basic idea was to

model the functionalities of the UNIX kernel as servers that would be imple-

mented on a basic Mach kernel. The development of Hurd was delayed while

the design of the Mach was being finished and this was finally published as

free software, which would allow its use for developing Hurd. At this point,

we should mention the importance of Mach, since many operating systems

are now based on ideas extracted from it; the most outstanding example is

Apple's MacOS X.

The development of Hurd was further delayed due to its internal complexi-

ty, because it had several servers with different tasks of the multithread type

(execution of multiple threads), and debugging was extremely difficult. But

nowadays, the first production versions of GNU/Hurd are already available, as

well as test versions of a GNU/Hurd distribution.

It could be that in the not too distant future GNU/Linux systems will coexist

with GNU/Hurd, or even that the Linux kernel will be replaced with the Hurd

kernel, if some lawsuits against Linux prosper (read the case of SCO against

IBM), since it would represent a solution for avoiding later problems. In all

events, both systems have a promising future ahead of them. Time will tell

how the balance will tip.

© FUOC • P07/M2103/02283 38 The kernel

7. Workshop: configuring the kernel to the
requirements of the user

In this section we will have a look at a small interactive workshop for the

process of updating and configuring the kernel in the two distributions used:

Debian and Fedora.

The first essential thing, before starting, is to know the current version of the

kernel we have with uname -r, in order to determine which is the the next

version that we want to update to or personalise. And the other is to have the

means to boot our system in case of errors: the set of installation CDs, the flop-

py disc (or CD) for recovery (currently the distribution's first CD is normally

used) or some Live CD distribution that allows us to access the machine's file

system, in order to redo any configurations that may have caused problems.

It is also essential to back up our data or important configurations.

We will look at the following possibilities:

1) Updating the distribution's kernel. Automatic case of Debian.

2) Automatic update in Fedora.

3) Tailoring a generic kernel (Debian or Fedora). In this last case, the steps are

basically the same as those presented in the section on configuration, but we

will make a few more comments:

7.1. To update the kernel in Debian

In the case of the Debian distribution, the installation can also be done au-

tomatically, using the APT packages system. It can be done either from the

command line or with graphic APT managers (synaptic, gnome-apt...).

We are going to carry out the installation using the command line with apt-

get, assuming that the access to the apt sources (above all to the Debian orig-

inals) is properly configured in the /etc/apt/sources.list file. Let's look at the

steps:

1) To update the list of packages.

apt-get update

2) To list the packages associated with images of the kernel:

© FUOC • P07/M2103/02283 39 The kernel

apt-cache search linux-image

3) To select a version suitable for our architecture (generic, 386/486/686 for

Intel, k6 or k7 for amd or in particular for 64Bits versions amd64, intel and

amd or ia64, for Intel Itanium). The version is accompanied by kernel version,

Debian revision of the kernel and architecture. For example: 2.6.21-4-k7, ker-

nel for AMD Athlon, Debian revision 4 of the kernel 2.6.21.

4) Check for the selected version that the extra accessory modules are available

(with the same version number) With apt-cache we will search for whether

there are other dynamic modules that could be interesting for our hardware,

depending on the version of the kernel to be installed. Remember that, as

we saw in the Debian way, there is also the module-assistant utility, which

allows us to automate this process after compiling the kernel. If the necessary

modules are not supported, this could prevent us from updating the kernel

if we consider that the functioning of the problematic hardware is vital for

the system.

5) Search, if we also want to have the source code of the kernel, the Lin-

ux-source-version (only 2.6.21, that is, the principal numbers) and the corre-

sponding kernel headers, in case we later want to make a personalised kernel:

in this case, the corresponding generic kernel patched by Debian.

6) Install what we have decided: if we want to compile from the sources or

simply to have the code:

apt-get install linux-image-version

apt-get install xxxx-modules-version (if some modules are

necessary)

and

apt-get install linux-source-version-generica

apt-get install linux-headers-version

7) Install the new kernel, for example in the lilo bootloader, this is done au-

tomatically. If we are asked if the initrd is active, we will have to verify the lilo

file (/etc/lilo.conf) and, in the lilo configuration of the new image, include

the new line:

initrd = /initrd.img-version (or /boot/initrd.img-version)

once this is configured, we would have to have a a lilo of the mode (fragment),

supposing that initrd.img and vmlinuz are links to the position of the files of

the new kernel:

default = Linux

© FUOC • P07/M2103/02283 40 The kernel

image = /vmlinuz

 label = Linux

 initrd = /initrd.img

restricted

alias = 1

image = /vmlinuz.old

 label = LinuxOLD

 initrd = /initrd.img.old

restricted

alias = 2

We have the first image by default, the other is the former kernel. Thus, from

the lilo menu we can ask for one or the other or, simply by changing the

default, we can recover the former. Whenever we make any changes in /etc/

lilo.conf we should not forget to rewrite in the corresponding sector with the

command /sbin/lilo or /sbin/lilo -v.

7.2. Updating the kernel in Fedora/Red Hat

Updating the kernel in the Fedora/Red Hat distribution is totally automatic

by means of its package management service or else by means of the graphic

programs that the distribution includes for updating; for example, in business

versions of Red Hat there is one called up2date. Normally, we will find it in

the task bar or in the Fedora/Red Hat system tools menu.

This updating program basically checks the packages of the current distribu-

tion against a Fedora/Red Hat database and offers the possibility of download-

ing the updated packages, including those of the kernel. This Red Hat service

for businesses works via a service account and Red Hat offers it for payment.

With this type of utilities the kernel is updated automatically.

For example, in figure 10, we can see that once running, a new available ver-

sion of the kernel has been detected, which we can select for downloading:

© FUOC • P07/M2103/02283 41 The kernel

Figure 3. The Red Hat updating service (Red Hat Network up2date) shows the available kernel update and its sources.

In Fedora we can either use the equivalent graphic tools or simply use yum

directly, if we know that new kernels are available:

yum install kernel kernel-source

Once downloaded, we proceed to install it, normally also as an automatic

process, whether with grub or lilo as boot managers. In the case of grub, it is

usually automatic and leaves a pair of options on the menu, one for the newest

version and the other for the old one. For example, in this grub configuration

(the file is in /boot/grub/grub.conf or else /boot/grub/menu.lst), we have two

different kernels, with their respective version numbers.

#file grub.conf

default = 1

timeout = 10

splashimage = (hd0,1)/boot/grub/splash.xpm.gz

title Linux (2.6.20-2945)

root (hd0,1)

kernel /boot/vmlinuz-2.6.20-2945 ro root = LABEL = /

initrd /boot/initrd-2.6.20-18.9.img

title LinuxOLD (2.6.20-2933)

root (hd0,1)

kernel /boot/vmlinuz-2.4.20-2933 ro root = LABEL = /

initrd /boot/initrd-2.4.20-2933.img

© FUOC • P07/M2103/02283 42 The kernel

Each configuration includes a title that appears during start up. The root or

partition of the disc from where it boots, the directory where the file corre-

sponding to the kernel is found and the corresponding initrd file.

In the case of having lilo (by default grub is used) in the Fedora/Red Hat as

manager, the system will also update it (file /etc/lilo.conf), but then we will

have to rewrite the boot manually with the command /sbin/lilo.

It is also important to mention that with the previous installation we had the

possibility of downloading the sources of the kernel; these, once installed, are

in/usr/src/linux-version and can be compiled and configured following the

usual procedure as if it was a generic kernel. We should mention that the Red

Hat company carries out a lot of work on the patches and corrections for the

kernel (used after Fedora) and that its kernels are modifications to the generic

standard with a fair number of additions, which means that it could be better

to use Red Hat's own sources, unless we want a newer or more experimental

kernel than the one supplied.

7.3. To tailor and install a generic kernel.

Let's look at the general case of installing a kernel starting from its sources.

Let's suppose that we have some sources already installed in /usr/src (or the

corresponding prefix). Normally, we would have a Linux directory or linux-

version or simply the version number. This will be the tree of the sources of

the kernel.

These sources can come from the distribution itself (or we may have down-

loaded them during a previous udpate), first it will be interesting to check

whether they are the latest available, as we have already done before with Fe-

dora or Debian. Or if we want to have the latest and generic versions, we can

go to kernel.org and download the latest available version (better the stable

one than the experimental ones), unless we are interested in the kernel's de-

velopment. We download the file and in /usr/src (or another selected directory,

even better) decompress the kernel sources. We can also search to see if there

are patches for the kernel and apply them (as we have seen in section 4.4).

Next, we will comment on the steps that will have to be carried out: we will

do it briefly, as many of them have been mentioned before when working on

the configuration and tailoring.

1) Cleaning the directory of previous tests (where applicable):

make clean mrproper

2) Configuring the kernel with, for example: make menuconfig (or xconfig, gcon-

fig or oldconfig). We saw this in section 4.3.

See also

It would be advisable to reread
section 3.4.3.

© FUOC • P07/M2103/02283 43 The kernel

Figure 4. Configuring the kernel using text menus

4) Dependencies and cleaning of previous compilations:

make dep

5) Compiling and creating an image of the kernel: make bzImage. zImage

would also be possible if the image was smaller, but bzImage is more normal,

as it optimises the loading process and compression of larger kernels. On some

ancient hardware it may not work and zImage may be necessary. The process

can last from a few minutes to an hour on modern hardware (CPU of 1-3

GHz) and hours on older hardware. When it finishes, the image is found in:

/usr/src/directory-sources/arch/i386/boot.

6) Now we can compile the modules with make modules. Until now we have

not changed anything in our system. Now we have to proceed to the instal-

lation.

7) In the case of the modules, if we try an older version of the kernel (branch

2.2 or the first ones of 2.4), we will have to be careful, since some used to

overwrite the old ones (in the last 2.4.x or 2.6.x it is no longer like this).

But we will also need to be careful if we are compiling a version that is the

same (exact numbering) as the one we have (the modules are overwritten), it

is better to back up the modules:

cd /lib/modules

tar -cvzf old_modules.tgz versionkernel-old/

© FUOC • P07/M2103/02283 44 The kernel

This way we have a version in .tgz that we can recover later if there is any

problem And, finally, we can install the modules with:

make modules install

8) Now we can move on to installing the kernel, for example with:

cd /usr/src/directory-sources/arch/i386/boot

cp bzImage /boot/vmlinuz-versionkernel

cp System.map /boot/System.map-versionkernel

ln -s /boot/vmlinuz-versionkernel /boot/vmlinuz

ln -s /boot/System.map-versionkernel /boot/System.map

This way we store the symbols file of the kernel (System.map) and the image

of the kernel.

9) Now all we have to do is put the required configuration in the configura-

tion file of the boot manager, whether lilo (/etc/lilo.conf) or grub (/boot/grub/

grub.conf) depending on the configurations we already saw with Fedora or

Debian. And rememeber, in the case of lilo, that we will need to update the

configuration again with /sbin/lilo or /sbin/lilo -v.

10) Restart the machine and observe the results (if all has gone well).

© FUOC • P07/M2103/02283 45 The kernel

Activities

1) Determine the current version of the Linux kernel incorporated into our distribution.
Check the available updates automatically, whether in Debian (apt) or in Fedora/Red Hat
(via yum or up2date).

2) Carry out an automatic update of our distribution. Check possible dependencies with
other modules used (whether pcmcia or others) and with the bootloader (lilo or grub) used.
A backup of important system data (account users and modified configuration files) is rec-
ommended if we do not have another sytem that is available for tests.

3) For our branch of the kernel, to determine the latest available version (consult
www.kernel.org) and carry out a manual installation following the steps described in the
unit. The final installation can be left optional, or else make an entry in the bootloader for
testing the new kernel.

4) In the case of the Debian distribution, in addition to the manual steps, we saw how there
is a special way (recommended) of installing the kernel from its sources using the kernel-
package.

© FUOC • P07/M2103/02283 46 The kernel

Bibliography

Other sources of reference and information

[Kerb] Site that provides a store of the different versions of the Linux kernel and its patches.

[Kera] [lkm] Web sites that refer to a part of the Linux kernel community. It offers various
documentary resources and mailing lists of the kernel's evolution, its stability and the new
features that develop.

[DBo] Book about the Linux 2.4 kernel, which details the different components, their im-
plementation and design. There is a first edition about the 2.2 kernel and a new update to
the 2.6 kernel.

[Pra] An article that describes some of the main innovations of the new 2.6 series of the
Linux kernel.

[Ker] [Mur] Documentation projects of the kernel, incomplete but with useful material.

[Bac86] [Vah96] [Tan87] Some texts about the concepts, design and implementation of the
kernels of different UNIX versions.

[Skoa][Zan01][Kan][Pro] For further information on lilo and grub loaders.

Local
administration

Josep Jorba Esteve

P07/M2103/02284

© FUOC • P07/M2103/02284 Local administration

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02284 Local administration

Index

Introduction... 5

1. Distributions: special features... 7

2. Booting and services levels... 9

3. Observe the state of the system... 12

3.1. System boot ... 12

3.2. kernel: /proc directory .. 13

3.3. kernel: /sys .. 14

3.4. Processes .. 14

3.5. System Logs ... 15

3.6. Memory ... 17

3.7. Disks and file systems ... 17

4. File system.. 21

4.1. Mount point .. 22

4.2. Permissions .. 25

5. Users and groups.. 27

6. Printing servers.. 32

6.1. BSD LPD .. 36

6.2. LPRng ... 37

6.3. CUPS .. 39

7. file systems disks and management... 42

7.1. RAID software .. 44

7.2. Logical Volume Manager (LVM) ... 50

8. Software: updating.. 54

9. Non-interactive work.. 56

10. Workshop: combined practices of the different sections........ 58

Activities.. 67

Bibliography... 68

© FUOC • P07/M2103/02284 5 Local administration

Introduction

One of the administrator's first tasks will be to manage the machine's local

resources. Some of these aspects were basically covered in the GNU/Linux

course. In this course, we will cover these management tasks in more depth

as well as some of the customisation and resource efficiency aspects.

We will start by analysing the process for starting up a GNU/Linux system,

which will help us to understand the initial structure of the system and its

relationship with the various services that it provides.

We will now learn how to obtain a general overview of the current state of

the system, using different procedures and commands that are available for

evaluating the various parts of the system; this will allow us to make admin-

istrative decisions if we detect any faults or deficiencies in the performance or

if we find that we are missing any of the resources.

One of the administrator's main tasks is managing the user accounts, as any

configuration of the machine will be designed for the users; we will see how

we can define new user accounts and control the levels to which they may

access the resources.

With regard to the system's peripherals, such as disks and printers, there are

different management possibilities available, either through different servers

(for printing) or different filing systems that we can treat, as well as some

techniques for optimising the disks' performance.

We will also examine the need to update the system and how best to keep it

updated; likewise, we will examine how to install new applications and soft-

ware and how to make these programs available to the users. At the same time,

we will analyse the problems involved in executing predetermined timed tasks

in the system.

In the last workshop, we will learn how to evaluate the state of a machine,

following the points that we have seen in this module, and we will carry out

some of the basic administrative tasks we have described. In this module, we

will discuss some of the commands and subsequently, in the workshop, we

will examine some of these in more detail, with regard to how they work and

the options available.

Note

Local administration covers
many varied tasks, which are
possibly the ones that the ad-
ministrator will most use dur-
ing their daily routines.

© FUOC • P07/M2103/02284 7 Local administration

1. Distributions: special features

We will now try to outline some minor technical differences (which are con-

stantly being reduced) in the distributions (Fedora/Red Hat and Debian) used

[Mor03], which we will examine in more detail throughout the modules as

they appear.

Modifications to or particularities of Fedora/Red Hat:

• Using the grub boot loader (a GNU utility); unlike previous versions of

most distributions, which tend to use lilo, Fedora uses grub. GRUB (grand

unified bootloader) has a text-mode configuration (usually in /boot/grub/

grub.conf) that is quite simple and that can be modified when booting. It

is possibly more flexible than lilo. Lately, distributions tend to use grub;

Debian also includes it as an option.

• Management of alternatives. If there is more than one equivalent program

present for a specific task, the alternative that will be used must be indi-

cated through a directory (/etc/alternatives). This system was borrowed

from Debian, which uses it a lot in its distribution.

• TCP/IP portscanning program based on xinetd; in /etc/xinetd.d we will

find the modular configuration files for some of the TCP/IP services, along

with the /etc/xinetd.conf. configuration file. In classic UNIX systems, the

program used for this was inetd, which had a single configuration file in

/etc/inetd.conf, which was the case, for example, in the Debian distribu-

tion, which uses inetd, leaving xinetd as an option.

• Some special configuration directories: /etc/profile.d, files that are execut-

ed when a user opens a shell; /etc/xinetd.d, configuration of some net ser-

vices; /etc/sysconfig, configuration data for various aspects of the system;

/etc/cron., various directories where the tasks that have to be performed

regularly are specified (through crontab); /etc/pam.d, where the authenti-

cation modules are known as PAM: the permissions for the particular ser-

vice or program are configured in each of the PAM files; /etc/logrotate.d,

rotation configuration (when it is necessary to clean, compress etc.) of

some of the log files for different services.

• There is a software library called kudzu, which examines the hardware at

start-up to detect any possible changes in the configuration and to create

the appropriate elements or configurations. Although there is currently a

progressive migration to API Hal that controls precisely this aspect.

Note

It is important to know the de-
tails of a distribution, as they
are essential for performing
a task or resolving an issue
(for example, if there are tools
available).

© FUOC • P07/M2103/02284 8 Local administration

In Debian's case:

• In-house packaging system based on DEB packages, with tools at various

levels for working with packages such as: dpkg, apt-get, dselect, tasksel.

• Debian follows FHS, over the directories structure, adding some particu-

lars in /etc, such as: /etc/default, configuration files and default values for

some programs; /etc/network, data and network interfaces configuration

scripts; /etc/dpkg y /etc/apt, information on the configuration of the pack-

age management tools; /etc/alternatives, links to the default programs, in

which there are (or may be) various available alternatives.

• Configuration system for many software packages using the dpkg-recon-

figure tool. For example:

dpkg-reconfigure gdm

makes it possible to select the incoming manager for X, or:

dpkg-reconfigure X-Window-system

allows us to configure the different elements of X.

• Uses the TCP/IP services configuration through inetd; the configuration

isin file /etc/inetd.conf; there is an update-inetd tool for disabling or cre-

ating services entries.

• Some special configuration directories: /etc/cron., several directories

where the tasks that have to be performed regularly are specified (though

crontab); /etc/pam.d, where PAM are authentication modules.

© FUOC • P07/M2103/02284 9 Local administration

2. Booting and services levels

A first important point in the analysis of a system's local performance is how it

works on the runlevels, which determine the current work mode of the system

and the services provided (on the level) [Wm02].

A service is a functionality provided by the machine, normally based on dae-

mons (or background execution processes that control network requests, hard-

ware activity or other programs that provide any task).

The services can be activated or halted using scripts. Most standard processes,

which are usually configured in the /etc directory, tend to be controlled with

the scripts in /etc/init.d/. Scripts with names similar to those of the service to

which they correspond usually appear in this directory and starting or stop-

ping parameters are usually accepted. The following actions are taken:

/etc/init.d/service start start the service.

/etc/init.d/service start stop the service.

/etc/init.d/service start stop and subsequent

restart of the service.

When a GNU/Linux system starts up, first the system's kernel is loaded, then

the first process begins; this process is called init and it has to execute and

activate the rest of the system, through the management of different runlevels.

A runlevel is basically a configuration of programs and services that will

be executed in order to carry out determined tasks.

The typical levels, although there may be differences in the order, especially

at levels 2-5 (in the configuration table in Fedora and that recommended in

the LSB standard), are usually:

Runlevel Function Description

0 Halt Halts or shuts down the active services and programs, and umounts ac-
tive file systems for CPU.

1 Single-user mode Halts or shuts down most services, only permitting the (root) administra-
tor to login. Used for maintenance tasks and correcting critical errors.

2 Multi-user mode without networking No networking services are started and only local logins are allowed.

3 Multi-user Starts up all the services except the graphics associated to X Window.

© FUOC • P07/M2103/02284 10 Local administration

Runlevel Function Description

4 Multi-user Not usually used; normally the same as 3.

5 Multi-user X As with 3, but with X support for user logins (graphic login).

6 Reboot For all programs and services. Reboots the system.

On the other hand, it should be noted that Debian uses a model in which

practically no distinction is made between runlevels 2-5 and performs exactly

the same task (although this may change in a future version, so that these

levels correspond with the LSB).

These runlevels are usually configured in GNU/Linux systems (and UNIX) by

two different systems: BSD or System V (sometimes abbreviated to sysV). In

the cases of Fedora and Debian, System V is used, which is the one that we

will examine, but other UNIX and some GNU/Linux distributions (such as

Slackware) use the BSD model.

In the case of the runlevel model of System V, when the init process begins, it

uses a configuration file called /etc/inittab to decide on the execution mode

it will enter. This file defines the runlevel by default (initdefault) at start-up

(by installation, 5 in Fedora and 2 in Debian), and a series of terminal services

that must be activated so that users may log in.

Afterwards, the system, according to the selected runlevel, will consult the

files contained in /etc/rcn.d, where n is the number associated to the runlevel

(the selected level), which contains a list of services that should be started or

halted if we boot up in the runlevel or abandon it. Within the directory, we

will find a series of scripts or links to the scripts that control the service.

Each script has a number related to the service, an S or K initial that indicates

whether it is the script for starting (S) or killing (K) the service, and a number

that shows the order in which the services will be executed.

A series of system commands help us to handle the runlevels; we must men-

tion:

• The scripts, which we have already seen, in /etc/init.d/ allow us to start-up,

halt or reboot individual services.

• telinit, allows us to change the runlevel; we simply have to indicate the

number. For example, we have to perform a critical task in root; with no

users working, we can perform a telinit 1 (S may also be used) to pass to

the single-user runlevel and then, after the task, a telinit 3 to return to

multi-user mode. The init command may also be used for the same task,

although telinit does provide a few extra parameters. For example, the

typical reboot of a UNIX system would be performed with sync; init 6, the

© FUOC • P07/M2103/02284 11 Local administration

sync command forces the buffers of the files system to empty, and then

we reboot at runlevel 6.

• shutdown allows us to halt ("h") or reboot the system ("r"). This may be

performed in a given period of time or immediately. There are also the

halt and reboot commands for these tasks.

• wall allows us to send warning messages to the system users. Specifically,

the administrator may warn users that the machine is going to stop at

a determined moment. Commands such as shutdown usually use them

automatically.

• pidof permits us to find out the process ID associated to a process. With ps

we obtain the lists of the processes, and if we wish to eliminate a service

or process through a kill, we will need its PID.

There are some small changes in the distributions, with regard to the start-up

model:

• Fedora/Red Hat: runlevel 4 has no declared use. The /etc/rcn.d directories

exist as links to /etc/rc.d subdirectories, where the start-up scripts are cen-

tralised. The directories are as follows: /etc/rc.d/rcn.d; but as the links ex-

ist, it is transparent to the user. The default runlevel is 5 when starting

up with X.

The commands and files associated to the system's start-up are in the

sysvinit and initscripts software packages.

Regarding the changes to files and scripts in Fedora, we must point out

that in /etc/sysconfig we can find files that specify the default values for

the configuration of devices or services. The /etc/rc.d/rc.sysinit script is

invoked once when the system starts-up; The /etc/rc.d/rc.local script is

invoked at the end of the process and serves to indicate the machine's

specific boots.

The real start-up of the services is carried out through the scripts stored

in /etc/rc.d/init.d. There is also a link from /etc/init.d. In addition, Fedora

provides some useful scripts for handling the services: /sbin/service to halt

or start-up a service by the name; and /sbin/chkconfig, to add links to the

S and K files that are necessary for a service or to obtain information on

the services.

• Debian has management commands for the runlevels such as update-rc.d,

that allows us to install or delete services by booting them or halting them

in one or more runlevels; invoke-rc.d, allows the classic operations for

starting-up, halting or rebooting the service.

The default runlevel in Debian is 2, the X Window System is not managed

from /etc/inittab; instead there is a manager (for example, gdm or kdm)

that works as if it were another of the services of runlevel 2.

© FUOC • P07/M2103/02284 12 Local administration

3. Observe the state of the system

One of the main daily tasks of the (root) administrator will be to verify that

the system works properly and check for any possible errors or saturation of

the machine's resources (memory, disks etc.). In the following subsections,

we will study the basic methods for examining the state of the system at a

determined point in time and how to perform the operations required to avoid

any subsequent problems.

In this module's final workshop, we will carry out a full examination of a

sample system, so that we may see some of these techniques.

3.1. System boot

When booting a GNU/Linux system, there is a large extraction of interesting

information; when the system starts-up, the screen usually shows the data

from the processes detecting the machine's characteristics, the devices, system

services boots etc., and any problems that appear are mentioned.

In most distributions, this can be seen directly in the system's console during

the booting process. However, either the speed of the messages or some of

the modern distributions that hide the messages behind graphics can stop us

from seeing the messages properly, which means that we need a series of tools

for this process.

Basically, we can use:

• dmesg command: shows the messages from the last kernel boot.

• /var/log/messages file: general system log that contains the messages gen-

erated by the kernel and other daemons (there may be many different log

files, normally in /var/log, and depending on the configuration of the sys-

log service).

• uptime command: indicates how long the system has been active.

• /proc system: pseudo file system (procfs) that uses the kernel to store the

processes and system information.

• /sys system: pseudo file system (sysfs) that appeared in the kernel 2.6.x

branch to provide a more coherent method of accessing the information

on the devices and their drivers.

© FUOC • P07/M2103/02284 13 Local administration

3.2. kernel: /proc directory

When booting up, the kernel starts up a pseudo-file system called /proc, in

which it dumps the information compiled on the machine, as well as many

other internal data, during the execution. The /proc directory is implemented

on memory and not saved to disk. The contained data are both static and

dynamic (they vary during execution).

It should be remembered that, as /proc heavily depends on the kernel, the

structure tends to depend on the system's kernel and the included structure

and files can change.

One of the interesting points is that we can find the images of the processes

that are being executed in the /proc directory, along with the information that

the kernel handles on the processes. Each of the system's processes can be

found in the /proc/<pidprocess, directory, where there is a directory with files

that represent its state. This information is basic for debugging programs or

for the system's own commands such as ps or top, which can use it for seeing

the state of the processes. In general, many of the system's utilities consult

the system's dynamic information from /proc (especially some of the utilities

provided in the procps package).

On another note, we can find other files on the global state of the system in

/proc. We will look at some of the files that we can examine to obtain important

information briefly:

File Description

/proc/bus Directory with information on the PCI and USB buses.

/proc/cmdline Kernel startup line

/proc/cpuinfo CPU data

/proc/devices List of system character devices or block devices

/proc/drive Information on some hardware kernel modules

/proc/filesystems Systems of enabled files in the kernel

/proc/ide Directory of information on the IDE bus, disks characteristics

/proc/interrups Map of the hardware interrupt requests (IRQ) used

/proc/ioports I/O ports used

/proc/meminfo Data on memory usage

/proc/modules Modules of the kernel

/proc/mounts File systems currently mounted

Note

The /proc directory is an ex-
traordinary resource for ob-
taining low-level information
on the system's working and
many system commands rely
on it for their tasks.

© FUOC • P07/M2103/02284 14 Local administration

File Description

/proc/net Directory with all the network information

/proc/scsi Directory of SCSI devices or IDEs emulated by SCSI

/proc/sys Access to the dynamically configurable parameters of the kernel

/proc/version Version and date of the kernel

As of kernel version 2.6, a progressive transition of procfs (/proc) to sysfs (/sys)

has begun, in order to migrate all the information that is not related to the

processes, especially the devices and their drivers (modules of the kernel) to

the /sys system.

3.3. kernel: /sys

The sys system is in charge of making the information on devices and drivers,

which is in the kernel, available to the user space so that other APIs or appli-

cations can access the information on the devices (or their drivers) in a more

flexible manner. It is usually used by layers such as HAL and the udev service

for monitoring and dynamically configuring the devices.

Within the sys concept there is a tree data structure of the devices and drivers

(let us say the fixed conceptual model) and how it can subsequently be ac-

cessed through the sysfs file system (the structure of which may change be-

tween different versions).

When an added object is detected or appears in the system, a directory is cre-

ated in sysfs in the driver model tree (drivers, devices including their different

classes). The parent/child node relationship is reflected with subdirectories

under /sys/devices/ (reflecting the physical layer and its identifiers). Symbolic

links are placed in the /sys/bus subdirectory reflecting the manner in which

the devices belong to the different physical buses of the system. And the de-

vices are shown in /sys/class, grouped according to their class, for example

network, whereas /sys/block/ contains the block devices.

Some of the information provided by /sys can also be found in /proc, but it

was decided that this method involved mixing different elements (devices,

processes, data, hardware, kernel parameters) in a manner that was not very

coherent and this was one of the reasons that /sys was created. It is expected

that the information will migrate from /proc to /sys to centralise the device

data.

3.4. Processes

The processes that are executing at a given moment will be of a different na-

ture, generally. We may find:

© FUOC • P07/M2103/02284 15 Local administration

• System�processes, whether they are processes associated to the machine's

local workings, kernel, or processes (known as daemons) associated to the

control of different services. On another note, they may be local or net-

worked, depending on whether the service is being offered (we are acting

as a server) or we are receiving the results of the service (we are acting as

clients). Most of these processes will appear associated to the root user,

even if we are not present at that moment as users. There may be some

services associated to other system users (lp, bin, www, mail etc.), which

are virtual non-interactive users that the system uses to execute certain

processes.

• Processes�of�the�administering�user: when acting as the root user, our

interactive processes or the launched applications will also appear as pro-

cesses associated to the root user.

• System�users�processes: associated to the execution of their applications,

whether they are interactive tasks in text mode or in graphic mode.

We can use the following as faster and more useful:

• ps: the standard command, list of processes with the user data, time, pro-

cess identifier and the command line used. One of the most commonly

used options is ps -ef (or -ax), but there are many options available (see

man).

• top: one version that provides us with an updated list by intervals, dynam-

ically monitoring the changes. And it allows us to order the list of process-

es sorted by different categories, such as memory usage, CPU usage, so as

to obtain a ranking of the processes that are taking up all the resources. It is

very useful for providing information on the possible source of the prob-

lem, in situations in which the system's resources are all being used up.

• kill: this allows us to eliminate the system's processes by sending com-

mands to the process such as kill -9 pid_of_process (9 corresponding to

SIGKILL), where we set the process identifier. It is useful for processes with

unstable behaviour or interactive programs that have stopped responding.

We can see a list of the valid signals in the system with man 7 signal

3.5. System Logs

Both the kernel and many of the service daemons, as well as the different

GNU/Linux applications or subsystems, can generate messages that are sent

to log files, either to obtain the trace of the system's functioning or to detect

© FUOC • P07/M2103/02284 16 Local administration

errors or fault warnings or critical situations. These types of logs are essential

in many cases for administrative tasks and much of the administrator's time

is spent processing and analysing their contents.

Most of the logs are created in the /var/log directory, although some

applications may modify this behaviour; most of the logs of the system

itself are located in this directory.

A particular daemon of the system (important) is daemon Syslogd. This dae-

mon is in charge of receiving the messages sent by the kernel and other ser-

vice daemons and sends them to a log file that is located in /var/log/messages.

This is the default file, but Syslogd is also configurable (in the /etc/syslog.conf

file), so as to make it possible to create other files depending on the source,

according to the daemon that sends the message, thereby sending it to the log

or to another location (classified by source), and/or classify the messages by

importance (priority level): alarm, warning, error, critical etc.

Depending on the distribution, it can be configured in different modes by de-

fault; in /var/log in Debian it is possible to create (for example) files such as:

kern.log, mail.err, mail.info... which are the logs of different services. We can

examine the configuration to determine where the messages come from and

in which files they are saved. An option that is usually useful is the possibil-

ity of sending the messages to a virtual text console (in /etc/syslog.conf the

destination console, such as /dev/tty8 or /dev/xconsole, is specified for the type

or types of message), so that we can see the messages as they appear. This is

usually useful for monitoring the execution of the system without having to

constantly check the log files at each time. One simple modification to this

method could be to enter, from a terminal, the following instruction (for the

general log):

tail -f /var/log/messages

This sentence allows us to leave the terminal or terminal window so that the

changes that occur in the file will progressively appear.

Other related commands:

• uptime: time that the system has been active. Useful for checking that no

unexpected system reboot has occurred.

• last: analyses the in/out log of the system (/var/log/wtmp) of the users,

and the system reboots. Or last log control of the last time that the users

were seen in the system (information in /var/log/lastlog).

Note

The Syslogd daemon is the
most important service for ob-
taining dynamic information
on the machine. The process
of analysing the logs helps us
to understand how they work,
the potential errors and the
performance of the system.

© FUOC • P07/M2103/02284 17 Local administration

• Various utilities for combined processing of logs, that issue summaries (or

alarms) of what has happened in the system, such as: logwatch, logcheck

(Debian), log_analysis (Debian)...

3.6. Memory

Where the system's memory is concerned, we must remember that we have:

a) the physical memory of the machine itself, b) virtual memory that can by

addressed by the processes. Normally (unless we are dealing with corporate

servers), we will not have very large amounts, so the physical memory will be

less than the necessary virtual memory (4GB in 32bit systems). This will force

us to use a swap zone on the disk, to implement the processes associated to

the virtual memory.

This swap zone may be implemented as a file in the file system, but it is more

usual to find it as a swap partition (called swap), created during the installation

of the system. When partitioning the disk, it is declared as a Linux Swap type.

To examine the information on the memory, we have various useful com-

mands and methods:

• /etc/fstab file: the swap partition appears (if it exists). With an fdisk com-

mand, we can find out its size (or check /proc/swaps).

• ps command: allows us to establish the processes that we have, with the

options on the percentage and memory used.

• top command: is a dynamic ps version that is updatable by periods of time.

It can classify the processes according to the memory that they use or CPU

time.

• free command: reports on the global state of the memory. Also provides

the size of the virtual memory.

• vmstat command: reports on the state of the virtual memory and the use

to which it is assigned.

• Some packages, like dstat, allow us to collate data on the different param-

eters (memory, swap and others) by intervals of time (similar to top).

3.7. Disks and file systems

We will examine which disks are available, how they are organised and which

partitions and file systems we have.

© FUOC • P07/M2103/02284 18 Local administration

When we have a partition and we have a determined accessible file system, we

will have to perform a mounting process, so as to integrate it in the system,

whether explicitly or as programmed at startup/boot. During the mounting

process, we connect the file system associated to the partition to a point in

the directory tree.

In order to find out about the disks (or storage devices) present in the system,

we can use the system boot information (dmesg), when those available are

detected, such as the /dev/hdx for IDE devices or /dev/sdx for SCSI devices.

Other devices, such as hard disks connected by USB, flash disks (pen drive

types), removable units, external CD-ROMs etc., may be devices with some

form of SCSI emulation, so they will appear as devices as this type.

Any storage device will present a series of space partitions. Typically,

an IDE disk supports a maximum of four physical partitions or more if

they are logical (they permit the placement of various partitions of this

type on one physical partition). Each partition may contain different

file system types, whether they are of one same operative or different

operatives.

To examine the structure of a known device or to change its structure by par-

titioning the disk, we can use the fdisk command or any of its more or less in-

teractive variants (cfdisk, sfdisk). For example, when examining a sample disk

ide /dev/hda, we are given the following information:

fdisk /dev/hda (within p option)

Disk /dev/hda: 20.5 GB, 20520493056 bytes 255 heads, 63
sectors/track, 2494 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

/dev/hda1 * 1 1305 10482381 7 HPFS/NTFS

/dev/hda2 * 1306 2429 9028530 83 Linux

/dev/hda3 2430 2494 522112+ 82 Linux swap

20 GB disk with three partitions (they are identified by the number added to

the device name), where we observe two NTFS and Linux-type boot partitions

(Boot column with *), which indicates the existence of a Windows NT/2000/

XP/Vista along with a GNU/Linux distribution and a last partition that is used

as a swap for Linux. In addition, we have information on the structure of the

disk and the sizes of each partition.

© FUOC • P07/M2103/02284 19 Local administration

Some of the disks and partitions that we have, some will be mounted in our

file system, or will be ready for set up upon demand, or they may be set up

when the resource becomes available (in the case of removable devices).

We can obtain this information in different ways (we will see this in more

detail in the final workshop):

• The /etc/fstab file indicates the devices that are ready to be mounted on

booting or the removable devices that may be mounted. Not all of the sys-

tem devices will appear necessarily; only the ones that we want to appear

when booting. We can mount the others upon demand using the mount

command or remove them with umount.

• mount command. This informs us of the file systems mounted at that mo-

ment (whether they are real devices or virtual file systems such as /proc).

We may also obtain this information from the /etc/mtab file.

• df -k command. This informs us of the storage file systems and allows

us to verify the used space and available space. It's a basic command for

controlling the available disk space.

With regard to this last df -k command, one of our basic tasks as an adminis-

trator of the machine is to control the machine's resources and, in this case,

the space available in the file systems used. These sizes have to be monitored

fairly frequently to avoid a system crash; a file system must never be left at less

than 10 or 15% (especially if it is the /), as there are many process daemons

that are normally writing temporary information or logs, that may generate

a large amount of information; a particular case is that of the core files that

we have already mentioned and which can involve very large files (depending

on the process). Normally, some precautions should be taken with regard to

system hygiene if any situations of file system saturation are detected:

• Eliminate old temporary files. The /tmp and /var/tmp directories tend to

accumulate many files created by different users or applications. Some sys-

tems or distributions take automatic hygiene measures, such as clearing

/tmp every time the system boots up.

• Logs: avoiding excessive growth, according to the system configuration

(for example, Syslogd), as the information generated by the messages can

be very large. Normally, the system will have to be cleared regularly, when

certain amounts of space are taken up and, in any case, if we need the

information for subsequent analyses, backups can be made in removable

devices. This process can be automated using cron scripts or using spe-

cialised tools such as logrotate.

• There are other parts of the system that tend to grow a lot, such as: a) user

core files: we can delete these periodically or eliminate their generation;

© FUOC • P07/M2103/02284 20 Local administration

b) the email system: stores all of the emails sent and received; we can ask

the users to clean them out regularly or implement a quota system; c) the

caches of the browsers or other applications: other elements that usually

occupy a lot of space, which require regular clearing, are: d) the accounts

of the users themselves: they may have quotas so that pre-established al-

located spaces are not exceeded etc.

© FUOC • P07/M2103/02284 21 Local administration

4. File system

In each machine with a GNU/Linux system, we will find different types of file

systems [Hin].

To start with, it is typical to find the actual Linux file systems created

in various partitions of the disks [Koe]. The typical configuration is to

have two partitions: that corresponding to "/" (root file system) and that

corresponding to the swap file. Although, in more professional config-

urations, it is usual to separate partitions with "differentiated" parts of

the system, a typical technique is, for example (we will examine other

options later), to create different partitions so:

/ /boot /home /opt /tmp /usr /var swap

That will certainly be found mounted from different sources (different

disks, or even the network in some cases). The idea is to clearly separate

the static and dynamic parts of the system, so as to make it easier to

extend the partitions when any overload problems arise. Or more easily

isolate the parts to perform backups (for example, the user accounts in

the /home partition).

The swap partitions are Linux swap type partitions and that corresponding to

/ tends to be one of the standard file systems, either ext2 (the default type up

to kernels 2.4), or the new ext3, which is an upgrade of ext2 with journaling,

which makes it possible to have a log of what goes on in the file system, for

faster recoveries in the event of an error. Other file system types, such as Reiser

or XFS are also typical.

Another typical configuration may be that of having three partitions: /, swap,

/home, in which the /home will be used for the user accounts. This makes

it possible to separate the system's user accounts, isolating two separate parti-

tions and allocating the necessary space for the accounts in another partition.

Another configuration that is widely used is that of separating the static parts

of the system from the dynamic ones, in different partitions; for example one

partition is used for placing / with the static part (/bin /sbin and /usr in some

cases), which is not expected to grow or, if it does, not by much, and another

or various partitions with the dynamic part (/var /tmp /opt), supposing that

/opt, for example, is the installation point for new software. This makes it

possible to better adjust the disk space and to leave more space for the parts

of the system that need it.

© FUOC • P07/M2103/02284 22 Local administration

Where the supported file systems are concerned, we must point out the variety

of these; we can currently find (among others):

• Systems associated to GNU/Linux, such as the ext2 and ext3 standards,

developed from the previous concept of journaling (support log for oper-

ations performed in the file system that allows us to recover it in the event

of any disaster that renders it inconsistent).

• Compatibility with non- GNU/Linux environments: MSDOS, VFAT, NTFS,

access to the different systems of FAT16, FAT32 and NTFS. In particular, we

must point out that the kernel support, in the case of the kernel, is read-

only. But, as we have mentioned, there are user space solutions (through

FUSE, a kernel module that allows us to write file systems in the user

space), that make read/write possible, such as the abovementioned NTFS-

3g. There is also compatibility with other environments such as Mac with

HFS and HFSplus.

• Systems associated to physical supports, such as CD/DVDs, for example

ISO9660 and UDF.

• Systems used in different Unix, which generally provide better perfor-

mance (sometimes at the cost of a greater consumption of resources, in

CPU for example), such as JFS2 (IBM), XFS (SGI), or ReiserFS.

• Network file systems (more traditional): NFS, Samba (smbfs, cifs), permit

us to access the file systems available in other machines transparently us-

ing the network.

• Systems distributed in the network: such as GFS, Coda.

• Pseudo file systems, such as procfs (/proc) or sysfs (/sys).

In most of these file systems (except in some special cases), GNU/Linux will

allow us to create partitions of these types, build the file systems of the re-

quired type and mount them as an integrating part of the directory tree, either

temporarily or permanently.

4.1. Mount point

Apart from the / root file system and its possible extra partitions (/usr /var /tmp

/home), it should be remembered that it is possible to leave mount points

prepared for mounting other file systems, whether they are disk partitions or

other storage devices.

In the machines in which GNU/Linux shares the partition with other oper-

ating systems, through some bootloader (lilo or grub), there may be various

partitions assigned to the different operating systems. It is often good to share

Note

The file systems howto doc-
ument provides brief expla-
nations of the various file sys-
tems as well as the websites
that you may consult for each
of these.

© FUOC • P07/M2103/02284 23 Local administration

data with these systems, whether for reading or modifying their files. Unlike

other systems (that only register their own data and file systems and in some

versions of which some of the actual file systems are not supported), GNU/

Linux is able to treat, as we have seen, an enormous amount of file systems

from different operating systems and to share the information.

Example

If we have installed GNU/Linux in the PCs, we will certainly find more than one operat-
ing system, for example, another version of GNU/Linux with ext2 or 3 of the file system,
we may find an old MSDOS with its FAT file system, a Windows98/ME/XP Home with
FAT32 (or VFAT for Linux), or a Windows NT/2000/XP/Vista with NTFS systems (NTFS
for Linux) and FAT32 (VFAT) at the same time.

Our GNU/Linux system can read data (in other words, files and directories)

from all these file systems and write in most of them.

In the case of NTFS, up until certain points, there were problems with writ-

ing, which was experimental in most of the kernel drivers that appeared. Due

mainly to the different versions of the file system that progressively appeared,

as there were two main versions called NTFS and NTFS2, and some extensions

such as the so-called dynamic volumes or the encrypted file systems. And ac-

cessing with certain drivers caused certain incompatibilities, which could re-

sult in data corruption or faults in the file system.

Thanks to FUSE, a module integrated in the kernel (as of version 2.6.11), it

has been possible to develop the file systems more flexibly, directly in the user

space (in fact, FUSE acts as a "bridge" between the kernel requests, and access

from the driver).

Thanks to the features of FUSE, we have more or less complete support for

NTFS, (provided Microsoft does not make any further changes to the specifi-

cations), especially since the appearance of the driver (based on FUSE) ntfs-3g

(http://www.ntfs-3g.org), and the combination with the ntfsprogs utilities.

Depending on the distribution, different ones are used, or we may also create

it ourselves. Normally, they exist either as root subdirectories, for example

/cdrom /win /floppy or subdirectories within /mnt, the standard mount point

(they appear as /mnt/cdrom /mnt/floppy...), or the /media directory, which

is lately preferred by the distributions. According to the FHS standard, /mnt

should be used for temporary mounting of file systems, whereas /media should

be used to mount removable devices.

The mounting process is performed through the mount command, with the

following format:

mount -t filesystem-type device mount-point

© FUOC • P07/M2103/02284 24 Local administration

The type of file system may be: MSDOS (FAT), VFAT (FAT32), NTFS (NTFS

read), ISO9660 (for CD-ROM)... (of the possible ones).

The device is the in point in the /dev directory corresponding to the location

of the device, the IDEs had /dev/hdxy where x is a,b,c, or d (1 master, 1 slave,

2 master, 2 slave) e and, the partition number, the SCSI (/dev/sdx) where x is

a,b,c,d ... (according to the associated SCSI ID, 0,1,2,3,4 ...).

We will now look at some examples:

mount -t iso9660 /dev/hdc /mnt/cdrom

This would mount the CD-ROM (if it is the IDE that is in the second IDE in

master mode) at point /mnt/cdrom.

mount -t iso9660 /dev/cdrom /mnt/cdrom

This would mount the CD-ROM; /dev/cdrom is used as a synonym (it is a link)

for the device where it is connected.

mount -t vfat /dev/fd0H1440 /mnt/floppy

This would mount the diskette, /dev/fd0H1440. It would be a high-density

(1.44 MB) disk drive A; /dev/fd0 can also be used.

mount -t ntfs /dev/hda2 /mnt/winXP

This would mount the second partition of the first NTFS-type IDE device (C:)

(for example, a Windows XP).

If these partitions are more or less stable in the system (in other words, they

are not changed frequently) and we wish to use them, the best thing will be

to include the mounts so that they take place during the execution period,

when booting the system, through the configuration of file /etc/fstab:

/etc/fstab: Static information on the file system
#

#<Sys. files> <Mount point> <Type> <Options> <dump> <pass>

/dev/hda2 / ext3 errors = remountro 0 1

/dev/hdb3 none swap sw 0 0

proc /proc proc defaults 0 0

/dev/fd0 /floppy auto user,noauto 0 0

/dev/cdrom /cdrom iso9660 ro,user,noauto 0 0

© FUOC • P07/M2103/02284 25 Local administration

/dev/sdb1 /mnt/usb vfat user,noauto 0 0

For example, this configuration includes some of the standard systems, such

as the root in /dev/hda2, the swap partition that is in hdb3, the proc system

(which uses the kernel to save its information). The diskette, the CD-ROM

and, in this case, a Flash-type USB disk (which is detected as a SCSI device).

In some cases, auto is specified as a type of file system. This permits the au-

todetection of the file system. If unknown, it is better to indicate it in the

configuration and, on another note, the noauto option will mean that it is

not always mounted automatically, but upon request (or access).

If we have this information in the file, the mounting process is simplified,

as it will take place either on execution, when booting up, or upon demand

(noautos). And it may now be performed by simply asking that the mount

point or device be mounted:

mount /mnt/cdrom

mount /dev/fd0

given that the system already has the rest of the information.

The reverse process, umounting, is quite simple, the umount command with

the mount point or device:

umount /mnt/cdrom

umount /dev/fd0

When using removable devices, such as CD-ROMs (or others), eject may be

used to extract the physical support:

eject /dev/cdrom

or, in this case, only:

eject

The mount and umount commands mount or umount all the available sys-

tems. The file /etc/mtab maintains a list of the mounted systems at a specific

point in time, which can be consulted, or a mount, without parameters, may

be executed to obtain this information.

4.2. Permissions

Another subject that we will have to control in the cases of files and directo-

ries is the permissions that we wish to establish for each of them, whilst re-

membering that that each file may have a series of permissions: rwxrwxrwx

© FUOC • P07/M2103/02284 26 Local administration

where they correspond with the owner rwx, the group rwx to which the user

belongs, and the rwx for other users. In each one, we may establish the access

rights for reading (r), writing (w) or executing (x). In the case of a directory,

x denotes the permission for being able to access that directory (with the cd

command, for example).

In order to modify the access rights to a directory or file, we have the

commands:

• chown: change file owner.

• chgrp: change file owner group.

• chmod: change specific permissions (rwx) of the files.

The commands also provide the -R option, which is recursive if affecting

a directory.

© FUOC • P07/M2103/02284 27 Local administration

5. Users and groups

The users of a GNU/Linux system normally have an associated account (de-

fined with some of their data and preferences) along with an allocated amount

of space on the disk in which they can develop their files and directories. This

space is allocated to the user and may only be used by the user (unless the

permissions specify otherwise).

Among the accounts associated to users, we can find different types:

• The administrator account, with the root identifier, which should only

be used for administration operations. The root user is the one with most

permissions and complete access to the machine and the configuration

files. Consequently, this user is also the one that most damage can cause

due to any faults or omissions. It is better to avoid using the root account

as if it were that of just another user; it is therefore recommended that it

should only be used for administration operations.

• User accounts: the normal accounts for any of the machine's users have

the permissions restricted to the use of their account files and to some

particular zones (for example, the temporary files in /tmp), and to the use

of the particular devices that they have been authorised to use.

• Special service accounts: lp, news, wheel, www-data... accounts that are

not used by people but by the system's internal services, which uses them

under these user names. Some of the services are also used under the root

account.

A user account is normally created by specifying a name (or user identifier), a

password and a personal associated directory (the account).

The information on the system's users is included in the following files:

/etc/passwd

/etc/shadow

/etc/group

/etc/gshadow

Example of some lines of the /etc/passwd:

juan:x:1000:1000:Juan Garcia,,,:/home/juan:/bin/bash

root:x:0:0:root:/root:/bin/bash

© FUOC • P07/M2103/02284 28 Local administration

where (if the :: appear together, the box is empty):

• juan: identifier of the user of the system.

• x: encoded user password; if there is an "x" then it is located in the /etc/

shadow file.

• 1000: user code, which the system uses as the identity code of the user.

• 1000: code of the main group to which the user belongs, the group's in-

formation is in /etc/group.

• Juan García: comment, usually the user's full name.

• /home/juan: personal directory associated to his account.

• /bin/bash: interactive shell that the user uses when interacting with the

system, in text mode, or through the graphic shell. In this case, the GNU

Bash, which is the shell used by default. The /etc/passwd file used to con-

tain the user passwords in an encrypted form, but the problem was that

any user could see this file and, at the time, cracks were designed to try

and find out the passwords directly using the encrypted password as the

starting point (word encoded with the crypt system).

In order to avoid this, the passwords are no longer placed in this file; only

an "x" is, to indicate that they are located in another file, which can only be

read by the root user, /etc/shadow, the contents of which may be something

similar to the following:

juan:a1gNcs82ICst8CjVJS7ZFCVnu0N2pBcn/:12208:0:99999:7:::

where the user identifier is located, along with the encrypted password. In

addition, they appear as spaces separated by ":":

• Days since 1st January 1970 in which the password was changed for the

last time.

• Days left for it to be changed (0 it does not have to be changed).

• Days after which the password must be changed (in other words, change

period).

• Days on which the user will be warned before the password expires.

• Days, after expiry, after which the account will be disabled.

• Days since 1st January 1970 that the account has been disabled.

• And a reserve space.

© FUOC • P07/M2103/02284 29 Local administration

In addition, the encryption codes can be more difficult, as it is now possible

to use a system called md5 (it usually appears as an option when installing the

system) to protect the users' passwords. We will examine some more details

in the unit on security.

In /etc/group we will find the information on the user groups:

jose:x:1000:

where we have:

name-group:password-group:identifier-of-group:list-users

The list of the users in the group may or may not be present; given that this

information is already in /etc/passwd, it is not usually placed in /etc/group. If

it is placed there, it usually appears as a list of users separated by commas.

The groups may also posses an associated password (although this is not that

common), as in the case of the user, there is also a shadow file: /etc/gshadow.

Other interesting files are the ones in /etc/skel directory, which contains the

files that are included in each user account when it is created. We must re-

member that, as we saw with the interactive shells, we could have some con-

figuration scripts that execute when we enter or exit the account. The "skele-

tons", which are copied in user account when they are created, are saved in

the skel directory. The administrator is usually in charge of creating adequate

files for the users, providing the necessary execution paths, initialising the

system's variables that are needed for the software etc.

We will now see a series of useful commands for the administration of users

(we will mention their functions and perform some tests in the workshop):

• useradd: adding a user to the system.

• userdel: to delete a user from the system.

• usermod: to modify a user of the system.

• groupadd, groupdel, groupmod the same for groups.

• newusers, chpasswd: these can be very useful in large installations with

many users, as they allow us to create various accounts from the informa-

tion entered into a newusers file or change the passwords for a large num-

ber of users (chpasswd).

• chsh: to change the user login shell.

© FUOC • P07/M2103/02284 30 Local administration

• chfn: to change the user information present in the /etc/passwd comment

file.

• passwd: to change a user's password. This may be executed as a user, and

it will then ask for the old password and the new one. When doing this,

the root account has to specify the user whose password will be changed

(otherwise, they would be changing the account's password) and the old

password is not necessary. This is perhaps the command that the root most

uses, when users forget their old password.

• su: a kind of identity change. It is used both by users and by the root to

change the current user. In the case of the administrator, it is used quite

a lot to test that the user account works properly; there are different vari-

ants: su (without parameters, it serves to switch to root user, after identifi-

cation, making it possible for us to pass, when we are in a user account, to

the root account to perform a task). The su iduser sentence (changes the

user to iduser, but leaves the environment as it is, in other words, in the

same directory...). The su - iduser mandate (which performs a complete

substitution, as if the second user had logged in the system).

With regard to the administration of users and groups, what we have men-

tioned here refers to the local administration of one sole machine. In systems

with multiple machines that the users share, a different management system

is used for the information on users. These systems, generically called net-

work information systems, such as NIS, NIS+ or LDAP, use databases for stor-

ing the information on the users and groups, effectively using servers, where

the database and other client machines are stored and where this information

can be consulted. This makes it possible to have one single copy of the user

data (or various synchronised copies) and makes it possible for them to enter

any available machine of the set administered with these systems. At the same

time, these systems incorporate additional concepts of hierarchies and/or do-

mains/machine and resource zones, that make it possible to adequately repre-

sent the resources and their use in organisations with different organisational

structures for their own personnel and internal departments.

We can check whether we are in a NIS-type environment by seeing if compat

appears in the passwd line and group configuration file, /etc/nsswitch.conf, if

we are working with local files, or nis or nisplus according to the system on

which we are working. Generally, this does not involve any modification for

the simple user, as the machines are managed transparently, more so if it is

combined with files shared by NFS that makes the account available, regardless

of the machine used. Most of the abovementioned commands can still be used

without any problem under NIS or NIS+, in which they are equivalent, except

for the command for changing the password, which, instead of passwd, we

© FUOC • P07/M2103/02284 31 Local administration

usually use yppasswd (NIS) or nispasswd (NIS+); although it is typical for the

administrator to rename them to passwd, (through a link), which means that

users will not notice the difference.

We will look at this and other methods for configuring the network adminis-

tration units.

© FUOC • P07/M2103/02284 32 Local administration

6. Printing servers

The GNU/Linux [Gt] [Smi02] printing server derives from UNIX's BSD vari-

ant; this system was called LPD (line printer daemon). This is a very powerful

printing system, because it integrates the capacity to manage both local and

network printers. And it provides this service within the system for both the

client and the printing server.

LPD is a system that is quite old, as its origins date back to UNIX's BSD branch

(mid 1980s). Consequently, LPD usually lacks support for modern devices,

given that the system was not originally conceived for the type of printing

that takes place now. The LPD system was not designed as a system based on

device drivers, as it was typical to produce only printers in series or in parallel

for writing text characters.

Currently, the LPD system combines with another common software, such as

the Ghostscript system, which offers a postscript type output for a very wide

range of printers for which it has the right drivers. At the same time, they are

usually combined with filtering software, which, depending on the type of

document that must be printed, selects the appropriate filters. Normally, the

procedure that should be followed is (basically):

1) The work is started by a command in the LPD system.

2) The filtering system identifies the type of job (or file) that must be used and

transforms the job into an outgoing postscript file, which is the one sent to

the printer. In GNU/Linux and UNIX, most of the applications assume that

the job will be sent to a postscript printer and many of them directly generate

a postscript output, which is why the following step needs to be taken.

Note

The UNIX systems provide,
possibly, the most powerful
and complex printing systems,
which provide a lot of flexibili-
ty to printing environments.

3) The Ghostscript has to interpret the postscript file it receives, and, depend-

ing on the driver of the printer to which the file has been sent, it performs the

transformation to the driver's own format. If the printer is a postscript type

printer, the printing process is direct; if not, it has to "translate" the job. The

job is sent to the printing queue.

Apart from the LPD printing system (that originated with UNIX's BSD), there

is also the system known as System V (originally in the other System V branch

of UNIX). Normally, for compatibility reasons, most UNIX systems integrate

both systems, so that either one or the other is used as the main one and

the other emulates the main one. In the case of GNU/Linux, a similar process

occurs, depending on the installation that we have, we can have only the LPD

commands of the printing system, but it will also be common to have the

Page Web

Ghostscript: http://
www.cs.wisc.edu/ghost/

© FUOC • P07/M2103/02284 33 Local administration

System V commands. A simple way of identifying the two systems (BSD or

System V) is using the main printing command (which sends the jobs to the

system), in BSD, it is Ipr, and it is Ip in System V.

This is the initial situation for the GNU/Linux printing systems, although over

the last few years, more systems have appeared, which provide more flexibility

and make more drivers available for the printers. The two main systems are

CUPS and, to a lesser extent, LPRng. In fact, recently, CUPS is GNU/Linux's

de facto standard, although the other systems must be supported for compat-

ibility with the existing UNIX systems.

Both (both CUPS and LPRng) are a type of higher-level system, but they are not

all that perceptibly different for average users, with regard to the standard BDS

and System V systems; for example, the same client commands (or compatible

commands in the options) are used for printing. There are perceptible differ-

ences for the administrator, because the configuration systems are different.

In one way, we can consider LPRng and CUPS as new architectures for printing

systems, which are compatible for users with regard to the old commands.

In the current GNU/Linux distributions, we can find different printing sys-

tems. If the distribution is old, it may only incorporate the BSD LPD system; in

the current distributions: both Debian and Fedora/Red Hat use CUPS. In older

versions of Red Hat, there was a tool, Print switch, which made it possible

to change the system, switching the printing system, although recently only

CUPS is available. In Debian, it is possible to install both systems, but they are

mutually exclusive: only one may be used for printing.

In the case of Fedora Core, the default printing system is CUPS (as LPRng

disappeared in Fedora Core 4), and the Print Switch tool no longer exists, as

it is no longer necessary: system-config-printer is used to configure devices.

By default, Debian uses BSD LPD, but it is common to install CUPS (and we

can expect it to continue to be the default option in future new versions) and

LPRng may also be used. In addition, we must remember that we also had

the possibility (seen in the unit on migration) of interacting with Windows

systems through the Samba protocols, which allowed you to share printers

and access to these printers.

Regarding each of the [Gt] systems:

• BSD LPD: this is one of UNIX's standards, and some applications assume

that the commands and the printing system will be available, for which

both LPRng and CUPS emulate the functions and commands of BDS LPD.

The LPD system is usable but not very configurable, especially with regard

to access control, which is why the distributions have been moved to oth-

er, more modern, systems.

Pages Web

LPRng: http://www.lprng.org
CUPS: http://www.cups.org

© FUOC • P07/M2103/02284 34 Local administration

• LPRng: basically it was designed to replace BSD, and therefore, most of

the configuration is similar and only some of the configuration files are

different.

• CUPS: it is the biggest deviation from the original BSD and the configura-

tion is the same. Information is provided to the applications on the avail-

able printers (also in LPRng). In CUPS, both the client and the server have

to have CUPS software.

The two systems emulate the printing commands of System V.

For GNU/Linux printing, various aspects have to be taken into account:

• Printing system that is used: BSD, LPRng or CUPS.

• Printing device (printer): it may have a local connection to a machine or

be on the network. The current printers may be connected to a machine

using local connections, through interfaces in series, in parallel, USB etc.

Or they may simply be on the network, as another machine, or with spe-

cial ownership protocols. Those connected to the network can normally

act themselves as a printing server (for example, many HP laser printers

are BSD LPD servers) or they can be connected to a machine that acts as

a printing server for them.

• Communication protocols used with the printer or the printing system:

whether it is direct TCP/IP connection (for example, an HP with LPD) or

high level ones based on TCP/IP, such as IPP (CUPS), JetDirect (some HP

printers) etc. This parameter is important, as we have to know it so as to

install the printer in a system.

• Filtering systems used: each printing system supports one or more.

• Printer drivers: in GNU/Linux, there are quite a few different types; we

might mention, for example CUPS drivers, the system's or third parties'

(for example, HP and Epson provide them); Gimp, the image editing pro-

gram also has drivers optimised for printing images; Foomatic is a driver

management system that works with most systems (CUPS, LPD, LPRng

and others); Ghostscript drivers etc. In almost all printers, there are one

or more of the drivers in these sets.

With regard to the client part of the system, the basic commands are the same

for the different systems and these are the BSD system commands (each system

supports emulation of these commands):

• lpr: a job is sent to the default printing queue (or the one that is selected),

and the printing daemon (lpd) then sends it to the corresponding queue

and assigns a job number, which will be used with the other commands.

Page Web

Information on the most
appropriate printers and
drivers can be found at: http:/
/www.linuxprinting.org/
foomatic.html

© FUOC • P07/M2103/02284 35 Local administration

Normally, the default printer would be indicated by the PRINTER system

variable or the first defined and existing one will be used or, in some sys-

tems, the Ip queue will be used (as the default name).

Example

Lpr example:

 lpr –Pepson data.txt

This command sends the data.txt file to the print queue associated to a printer that we
have defined as "epson".

• lpq: This allows us to examine the jobs in the queue.

Example

Example

lpq -P epson

Rank Owner Job Files Total Size

1st juan 15 data.txt 74578 bytes

2nd marta 16 fpppp.F 12394 bytes

This command shows us the jobs in the queue, with the respective order and

sizes; the files may appear with different names, as this depends on whether

we have sent them with Ipr or with another application that might change

the names when it sends them or if any filters have had to be used when

converting them.

• lprm: eliminates jobs from the queue and we can specify a job number or

the user, to cancel these operations.

Example

 lprm -Pepson 15

Delete the job with id 15 from the queue.

With regard to the administrative side (in BSD), the main command would be

lpc; this command can be used to activate or deactivate queues, move jobs in

the queue order and activate or deactivate the printers (jobs may be received

in the queues but they are not sent to the printers).

We should also point out that, in the case of System V, the printing commands

are usually also available, normally simulated on the basis of the BSD com-

mands. In the client's case, the commands are: lp, lpstat, cancel and, for ad-

ministrative subjects, lpadmin, accept, reject, lpmove, enable, disable, lpshut.

© FUOC • P07/M2103/02284 36 Local administration

In the following sections we will see that it is necessary to configure a printer

server for the three main systems. These servers may be used both for local

printing and for the network clients' prints (if they are enabled).

6.1. BSD LPD

In the case of the BSD LPD server, there are two main files that have to be

examined: on the one hand, the definition of the printers in /etc/printcap

and, on the other, the network access permissions in /etc/hosts.lpd.

With regard to the permissions, by default, BSD LPD only provides local access

to the printer and, therefore, it has to be expressly enabled in /etc/hosts.lpd.

Example

The file may be:

#file hosts.lpd
second
first.the.com
192.168.1.7
+@groupnis
-three.the.com

which would indicate that it is possible to print to a series of machines, listed

either by their DNS name or by the IP address. Machine groups that belong to

a NIS server (groupnis, as shown in the example) may be added or it is possible

to deny access to several machines by indicating this with a dash (-).

With regard to the configuration of the server in /etc/printcap, we define in-

puts, in which each represents a printing system queue that can be used to

stop the printing jobs. The queue may be associated to a local device or a re-

mote server, whether this is a printer or another server.

The following options may exist in each port:

• lp =, indicates the device to which the printer is connected, for example,

lp = /dev/lp0 would indicate the first parallel port. If the printer is an LPD-

type printer, for example, a network printer that accepts the LPD protocol

(such as an HP), then we can leave the box empty and fill in the following.

• rm =, address with name or IP of the remote machine that will use the

printing queue. If it is a network printer, it will be this printer's address.

• rp =, name of the remote queue, in the machine indicated before with rm.

Let us examine an example::

Local printer input

lp|epson|Epson C62:\

© FUOC • P07/M2103/02284 37 Local administration

 :lp=/dev/lp1:sd=/var/spool/lpd/epson:\

 :sh:pw#80:pl#72:px#1440:mx#0:\

 :if = /etc/magicfilter/StylusColor@720dpi-filter:\filter

 :af = /var/log/lp-acct:lf = /var/log/lp-errs:

Remote printer input

hpremote|hpr|remote hp of the department|:\

 :lp = :\

 :rm = server:rp = queuehp:\

 :lf = /var/adm/lpd_rem_errs:\log file.

 :sd = /var/spool/lpd/hpremote:local associated spool

6.2. LPRng

In the case of the LPRng system, as this was made to maintain BSD compatibil-

ity, and, among other improvements with regard to access, the system is com-

patible in terms of the configuration of queues and this is performed through

the same file format, /etc/printcap, with some additional intrinsic operations.

Where the configuration is different is with regard to access: in this case, we

generally obtain access through a /etc/lpd.perms file that is general for the

whole system and there may also be individual configurations for each queue

with the lpd.perms file placed in the directory corresponding to the queue,

usually /var/spool/lpd/name-queue.

These lpd.perms files have a greater capacity for configuring the access and

permit the following basic commands:

DEFAULT ACCEPT

DEFAULT REJECT

ACCEPT [key = value[,value]*]*

REJECT [key = value[,value]*]*

where the first two allow us to establish the default value, of accepting every-

thing or rejecting everything, and the next two of accepting or rejecting a

specific configuration in the line. It is possible to accept (or reject) requests

from a specific host, user or IP port. Likewise, it is possible to configure the

type of service that will be provided to the element: X (may be connected), P

(job printing), Q (examine queue with lpq), M (remove jobs from the queue,

lprm), C (control printers, Ipc command lpc), among others, as with the file:

ACCEPT SERVICE = M HOST = first USER = jose

ACCEPT SERVICE = M SERVER REMOTEUSER = root

REJECT SERVICE = M

© FUOC • P07/M2103/02284 38 Local administration

Deleting jobs from the queue is allowed for the (first) user of the machine and

the root user from the server where the printing service is hosted (localhost)

and, in addition, whatsoever other requests for deleting jobs from the queue

that are not the already established are rejected.

With this configuration, we have to be very careful, because in some distribu-

tions, the LPRng services are open by default. The connection may be limited,

for example, with:

ACCEPT SERVICE = X SERVER

REJECT SERVICE = X NOT REMOTEIP = 100.200.0.0/255

Connection service only accessible to the server's local machine and denying

access if the machine does not belong to our subnet (in this case, we are as-

suming that it is 100.200.0.x).

For the administration of line commands, the same tools as the standard BSD

are used. With regard to the graphical administration of the system, we should

point out the lprngtool tool (not available in all versions of the LPRng system).

Figure 1. lprngtool, configuration of a printer

There are various software packages related to LPRng; for example, in a Debian,

we might find:

lprng - lpr/lpd printer spooling system

lprng-doc - lpr/lpd printer spooling system (documentation)

lprngtool - GUI front-end to LPRng based /etc/printcap

printop - Graphical interface to the LPRng print system.

© FUOC • P07/M2103/02284 39 Local administration

6.3. CUPS

CUPS is a new architecture for the printing system that is quite different; it

has a layer of compatibility with BSD LPD, which means that it can interact

with servers of this type. It also supports a new printing protocol called IPP

(based on http), but it is only available when the client and the server are

CUPS-type clients and servers. In addition, it uses a type of driver called PPD

that identifies the printer's capacities; CUPS comes with some of these drivers

and some manufacturers also offer them (HP and Epson).

CUPS has an administration system that is completely different, based on dif-

ferent files: /etc/cups/cupsd.conf centralises the configuration of the printing

system, /etc/cups/printers.conf controls the definition of printers and /etc/

cups/classes.conf the printer groups.

In /etc/cups/cupsd.conf, we can configure the system according to a series of

file sections and the directives of the different actions. The file is quite big; we

will mention some important directives:

• Allow: this permits us to specify which machines may access the server,

either in groups or individually, or segments of the network's IP.

• AuthClass: makes it possible to indicate whether the user clients will be

asked to authenticate their accounts or not.

• BrowseXXX: there is a series of directives related to the possibility of ex-

amining a network to find the served printers; this possibility is activated

by default (browsing on), which means that we will normally find that all

the printers available in the network are available. We can deactivate it,

so that we only see the printers that we have defined. Another important

option is BrowseAllow, which we use to determine who is permitted to ask

for our printers; it is activated by default, which means that anyone can

see our printer from our network.

We must point out that CUPS is, in principle, designed so that both clients

and the server work under the same system; if the clients use LPD or LPRng,

it is necessary to install a compatibility daemon called cups-lpd (normally in

packages such as cupsys-bsd). In this case, CUPS accepts the jobs that come

from an LPD or LPRng system, but it does not control the accesses (cupsd.conf

only works for the CUPS system itself and therefore, it will be necessary to

implement some strategy for controlling access, like a firewall, for example

(see unit on security).

For administering from the commands line, CUPS is somewhat peculiar, in

that it accepts both LPD and System V commands in the clients, and the

administration is usually performed with the SystemV's lpadmin command.

© FUOC • P07/M2103/02284 40 Local administration

Where the graphic tools are concerned, we have the gnome-cups-manager,

gtklp or the web interface which comes with the same CUPS system, accessible

at http://localhost:631.

Figure 2. Interface for the administration of the CUPS system

With regard to the software packages listed with CUPS, in Debian, we can find

(among others):

cupsys - Common UNIX Printing System(tm) - server

cupsys-bsd - Common UNIX Printing System(tm) - BSD commands

cupsys-client - Common UNIX Printing System(tm) - client pro-

grams (SysV)

cupsys-driver-gimpprint - Gimp-Print printer drivers for CUPS

cupsys-pt - Tool for viewing/managing print jobs under CUPS

cupsomatic-ppd - linuxprinting.org printer support - transi-

tion package

foomatic-db - linuxprinting.org printer support - database

foomatic-db-engine - linuxprinting.org printer support - pro-

grams

foomatic-db-gimp-print - linuxprinting - db Gimp-Print print-

er drivers

foomatic-db-hpijs - linuxprinting - db HPIJS printers

foomatic-filters - linuxprinting.org printer support - fil-

ters

foomatic-filters-ppds - linuxprinting - prebuilt PPD files

foomatic-gui - GNOME interface for Foomatic printer filter

system

© FUOC • P07/M2103/02284 41 Local administration

gimpprint-doc - Users' Guide for GIMP-Print and CUPS

gimpprint-locals - Local data files for gimp-print

gnome-cups-manager - CUPS printer admin tool for GNOME

gtklp - Front-end for cups written in gtk

© FUOC • P07/M2103/02284 42 Local administration

7. file systems disks and management

In respect of the storage units, as we have seen, they have a series of associated

devices, depending on the type of interface:

• IDE: devices

/dev/had master disk, first IDE connector;

/dev/hdb slave disk of the first connector,

/dev/hdc master second connector,

/dev/hdd slave second connector.

• SCSI: /dev/sda, /dev/sdb devices... following the numbering of the periph-

eral devices in the SCSI Bus.

• Diskettes: /dev/fdx devices, with x diskette number (starting in 0). There

are different devices depending on the capacity of the diskette, for exam-

ple, a 1.44 MB diskette in disk drive A would be /dev/fd0H1440.

With regard to the partitions, the number that follows the device indicates

the partition index within the disk and it is treated as an independent device:

/dev/hda1 first partition of the first IDE disk, or /dev/sdc2, second partition

of the third SCSI device. In the case of the IDE disks, these allow four parti-

tions, known as primary partitions, and a higher number of logical partitions.

Therefore, if /dev/hdan, n is less than or equal to 4, then it will be a primary

partition; if not, it will be a logical partition with n being higher than or equal

to 5.

With the disks and the associated file systems, the basic processes that we can

carry out are included in:

• Creation of partitions or modification of partitions. Through commands

such as fdiskor or similar (cfdisk, sfdisk).

• Formatting diskettes: different tools may be used for diskettes: Fdformat

(low-level formatting), superformat (formatting at different capacities in

MSDOS format), mformat (specific formatting creating standard MSDOS

file systems).

• Creation of Linux files ystems, in partitions, using the mkfs com-

mand. There are specific versions for creating diverse file systems,

mkfs.ext2, mkfs.ext3 and also non-Linux file systems: mkfs.ntfs,

mkfs.vfat, mkfs.msdos, mkfs.minix, or others. For CD-ROMs, commands

such as mkisofs for creating the ISO9660s (with joliet or rock ridge exten-

sions), which may be an image that might subsequently be recorded on

© FUOC • P07/M2103/02284 43 Local administration

a CD/DVD, which along with commands such as cdrecord will finally al-

low us to create/save the CD/DVDs. Another particular case is the mkswap

order, which allows us to create swap areas in the partitions, which will

subsequently be activated or deactivated with swapon and swapoff.

• Setting up file systems: mount, umount. commands

• Status verification: the main tool for verifying Linux file systems is the fsck

command. This command checks the different areas of the file system to

verify the consistency and check for possible errors and to correct these

errors where possible. The actual system automatically activates the com-

mand on booting when it detects situations where the system was not

switched off properly (due to a cut in the electricity supply or an acciden-

tal shutting down of the machine) or when the system has been booted

a certain number of times; this check usually takes a certain amount of

time, usually a few minutes (depending on the size of the data). There are

also particular versions for other file systems: fsck.ext2, fsck.ext3, fsck.vfat,

fsck.msdos etc. The fsck process is normally performed with the device in

read only mode with the partitions mounted; it is advisable to unmount

the partitions for performing the process if errors are detected and it is

necessary to correct the errors. In certain cases, for example, if the system

that has to be checked is the root system (/) and a critical error is detect-

ed, we will be asked to change the system's runlevel execution mode to

the root execution mode and to perform the verification process there. In

general, if it is necessary to verify the system; this should be performed in

superuser mode (we can switch between the runlevel mode with the init

or telinit commands).

• Backup processes: whether in the disk, blocks of the disk, partitions, file

systems, files... There are various useful tools for this: tar allows us to copy

files towards file or tape units; cpio, likewise, can perform backups of files

towards a file; both cpio and tar maintain information on the permissions

and file owners; ddmakes it possible to make copies, whether they are files,

devices, partitions or disks to files; it is slightly complex and we have to

have some low-level information, on the type, size, block or sector, and

it can also be sent to tapes.

• Various utilities: some individual commands, some of which are used by

preceding processes to carry out various treatments: badblocks for find-

ing defective blocks in the device; dumpe2fs for obtaining information on

Linux file systems; tune2fs makes it possible to carry out Linux file sys-

tem tuning of the ext2 or ext3 type and to adjust different performance

parameters.

© FUOC • P07/M2103/02284 44 Local administration

We will now mention two subjects related to the concept of storage space,

which are used in various environments for the basic creation of storage space.

The use of RAID software and the creation of dynamic volumes.

7.1. RAID software

The configuration of disks using RAID levels is currently one of the most wide-

ly-used high-availability storage schemes, when we have various disks for im-

plementing our file systems.

The main focus on the different existing techniques is based on a fault-tol-

erance that is provided from the level of the device and the set of disks, to

different potential errors, both physical or in the system, to avoid the loss of

data or the lack of coherence in the system. As well as in some schemes that

are designed to increase the performance of the disk system, increasing the

bandwidth of these available for the system and applications.

Today we can find RAID in hardware mainly in corporate servers (although it

is beginning to appear in desktops), where there are different hardware solu-

tions available that fulfil these requirements. In particular, for disk-intensive

applications, such as audio and/or video streaming, or in large databases.

In general, this hardware is in the form of cards (or integrated with the ma-

chine) of RAID-type disk drivers, which implement the management of one

or more levels (of the RAID specification) over a set of disks administered with

this driver.

In RAID a series of levels (or possible configurations) are distinguished, which

can be provided (each manufacturer of specific hardware or software may sup-

port one or more of these levels). Each RAID level is applied over a set of disks,

sometimes called RAID array (or RAID disk matrix), which are usually disks

with equal sizes (or equal to group sizes). For example, in the case of an array,

four 100 GB disks could be used or, in another case, 2 groups (at 100 GB) of 2

disks, one 30 GB disk and one 70 GB disk. In some cases of hardware drivers,

the disks (or groups) cannot have different sizes; in others, they can, but the

array is defined by the size of the smallest disk (or group).

We will describe some basic concepts on some levels in the following list (it

should be remembered that, in some cases, the terminology has not been fully

accepted, and it may depend on each manufacturer):

• RAID 0: The data are distributed equally between one or more disks with-

out information on parity or redundancy, without offering fault-tolerance.

Only data are being distributed; if the disk fails physically, the informa-

tion will be lost and we will have to recover it from the backup copies.

What does increase is the performance, depending on the RAID 0 imple-

© FUOC • P07/M2103/02284 45 Local administration

mentation, given that the read and write options will be divided among

the different disks.

Figure 3

• RAID 1: An exact (mirror) copy is created in a set of two or more disks

(known as a RAID array). In this case, it is useful for the reading perfor-

mance (which can increase lineally with the number of disks) and espe-

cially for having a tolerance to faults in one of the disks, given that (for

example, with two disks) the same information is available. RAID 1 is usu-

ally adequate for high-availability, such as 24x7 environments, where we

critically need the resources. This configuration also makes it possible (if

the hardware supports this) to hot swap disks. If we detect a fault in any

of the disks, we can replace the disk in question without switching off the

system with another disk.

© FUOC • P07/M2103/02284 46 Local administration

Figure 4

• RAID 2: In the preceding systems, the data would be divided in blocks for

subsequent distribution; here, the data are divided into bits and redun-

dant codes are used to correct the data. It is not widely used, despite the

high performance levels that it could provide, as it ideally requires a high

number of disks, one per data bit, and various for calculating the redun-

dancy (for example, in a 32 bit system, up to 39 disks would be used).

• RAID 3: It uses byte divisions with a disk dedicated to the parity of blocks.

This is not very widely used either, as depending on the size of the data

and the positions, it does not provide simultaneous accesses. RAID 4 is

similar, but it stripes the data at the block level, instead of byte level, which

means that it is possible to service simultaneous requests when only a

single block is requested.

• RAID 5: Block-level striping is used, distributing the parity among the

disks. It is widely used, due to the simple parity scheme and due to the fact

that this calculation is implemented simply by the hardware, with good

performance levels.

© FUOC • P07/M2103/02284 47 Local administration

Figure 5

• RAID 0+1 (or 01): A mirror stripe is a nested RAID level; for example, we

implement two groups of RAID 0, which are used in RAID 1 to create a

mirror between them. An advantage is that, in the event of an error, the

RAID 0 level used may be rebuilt thanks to the other copy, but if more disks

need to be added, they have to be added to all the RAID 0 groups equally.

• RAID 10 (1+0): striping of mirrors, groups of RAID 1 under RAID 0. In this

way, in each RAID 1 group, a disk may fail without ensuing loss of data. Of

course, this means that they have to be replaced, otherwise the disk that is

left in the group becomes another possible error point within the system.

This configuration is usually used for high-performance databases (due to

the fault tolerance and the speed, as it is not based on parity calculations).

© FUOC • P07/M2103/02284 48 Local administration

Figure 6

Some points that should be taken into account with regard to RAID in general:

• RAID improves the system's uptime, as some of the levels make it possible

for the system to carry on working consistently when disks fail and, de-

pending on the hardware, it is even possible to hot swap the problematic

hardware without having to stop the system, which is especially impor-

tant in critical systems.

• RAID can improve the performance of the applications, especially in sys-

tems with mirror implementations, where data striping permits the lineal

read operations to increase significantly, as the disks can provide simulta-

neous read capability, increasing the data transfer rate.

• RAID does not protect data; evidently, it does not protect data from other

possible malfunctions (virus, general errors or natural disasters). We must

rely on backup copy schemes.

• Data recovery is not simplified. If a disk belongs to a RAID array, its recov-

ery should be attempted within that environment. Software that is specif-

ic to the hardware drivers is necessary to access the data.

© FUOC • P07/M2103/02284 49 Local administration

• On the other hand, it does not usually improve the performance of typi-

cal user applications, even if they are desktop applications, because these

applications have components that access RAM and small sets of data,

which means they will not benefit from lineal reading or sustained data

transfers. In these environments, it is possible that the improvement in

performance and efficiency is hardly even noticed.

• Information transfer is not improved or facilitated in any way; without

RAID, it is quite easy to transfer data, by simply moving the disk from one

system to another. In RAID's case, it is almost impossible (unless we have

the same hardware) to move one array of disks to another system.

In GNU/Linux, RAID hardware is supported through various kernel modules,

associated to different sets of manufacturers or chipsets of these RAID drivers.

This permits the system to abstract itself from the hardware mechanisms and

to make them transparent to the system and the end user. In any case, these

kernel modules allow us to access the details of these drivers and to configure

their parameters at a very low level, which in some cases (especially in servers

that support a high I/O load) may be beneficial for tuning the disks system

that the server uses in order to maximise the system's performance.

The other option that we will analyse is that of carrying out these processes

through software components, specifically GNU/Linux's RAID software com-

ponent.

GNU/Linux has a kernel of the so-called Multiple Device (md) kind, which we

can consider as a support through the driver of the kernel for RAID. Through

this driver we can generally implement RAID levels 0,1,4,5 and nested RAID

levels (such as RAID 10) on different block devices such as IDE or SCSI disks.

There is also the linear level, where there is a lineal combination of the avail-

able disks (it doesn't matter if they have different sizes), which means that

disks are written on consecutively.

In order to use RAID software in Linux, we must have RAID support in the

kernel, and, if applicable, the md modules activated (as well as some specific

drivers, depending on the case (see available drivers associated to RAID, such

as in Debian with modconf). The preferred method for implementing arrays

of RAID disks through the RAID software offered by Linux is either during the

installation or through the mdadm utility. This utility allows us to create and

manage the arrays.

Let's look at some examples (we will assume we are working with some SCSI

/dev/sda, /dev/sdb disks... in which we have various partitions available for

implementing RAID):

Creation of a linear array:

© FUOC • P07/M2103/02284 50 Local administration

mdadm –create –verbose /dev/md0 –level=linear –raid-de-

vices=2 /dev/sda1 /dev/sdb1

where we create a linear array based on the first partitions of /dev/sda and

/dev/sdb, creating the new device /dev/md0, which can already be used as a

new disk (supposing that the mount point /media/diskRAID exists):

mkfs.ext2fs /dev/md0

mount /dev/md0 /media/diskRAID

For a RAID 0 or RAID 1, we can simply change the level (-level) to raid0 or

raid1. With mdadm –detail /dev/md0, we can check the parameters of the new-

ly created array.

We can also consult the mdstat entry in /proc to determine the active arrays

and their parameters. Especially in the cases with mirrors (for example, in

levels 1, 5...) we can examine the initial backup reconstruction in the created

file; in /proc/mdstat we will see the reconstruction level (and the approximate

completion time).

The mdadm utility provides many options that allow us to examine and man-

age the different RAID software arrays created (we can see a description and

examples in man mdadm).

Another important consideration are the optimisations that should be made

to the RAID arrays so as to improve the performance, through both the mon-

itoring of its behaviour to optimise the file system parameters, as well as to

use the RAID levels and their characteristics more effectively.

7.2. Logical Volume Manager (LVM)

There is a need to abstract from the physical disk system and its configuration

and number of devices, so that the (operating) system can take care of this

work and we do not have to worry about these parameters directly. In this

sense, the logical volume management system can be seen as a layer of storage

virtualisation that provides a simpler view, making it simpler and smoother

to use.

In the Linux kernel, there is an LVM (logical volume manager), which is based

on ideas developed from the storage volume managers used in HP-UX (HP's

proprietary implementation of a version of the UNIX OP). There are current-

ly two versions and LVM2 is the most widely used due to a series of added

features.

The architecture of an LVM typically consists of the (main) components:

Note

The optimisation of the RAID
arrays, may be an important
resource for tuning the system
and some questions should be
examined in:
Software-RAID-Howto, or in
the actual mdadm man site.

© FUOC • P07/M2103/02284 51 Local administration

• Physical�volumes (PV): PVs are hard disks or partitions or any other el-

ement that appears as a hard disk in the system (for example, RAID soft-

ware or hardware).

• Logical�volumes (LV): These are equivalent to a partition on the physi-

cal disk. The LV is visible in the system as a raw block device (completely

equivalent to a physical partition) and it may contain a file system (such

as the users' /home). Normally, the volumes make more sense for the ad-

ministrators, as names can be used to identify them (for example, we can

use a logical device, named stock or marketing instead of hda6 or sdc3).

• Volume�groups (VG): This is the element on the upper layer. The admin-

istrative unit that includes our resources, whether they are logical volumes

(LV) or physical volumes (PV). The data on the available PVs and how the

LVs are formed using the PVs are saved in this unit. Evidently, in order

to use a Volume Group, we have to have physical PV supports, which are

organised in different logical LV units.

For example, in the following figure, we can see volume groups where we have

7 PVs (in the form of disk partitions, which are grouped to form two logical

volumes (which have been completed using /usr and /home to form the file

systems):

Figure 7. Scheme of an example of LVM

© FUOC • P07/M2103/02284 52 Local administration

By using logical volumes, we can treat the storage space available (which may

have a large number of different disks and partitions) more flexibly, according

to the needs that arise, and we can manage the space by the more appropriate

identifiers and by operations that permit us to adapt the space to the needs

that arise at any given moment.

Logical Volume Management allows us to:

• Resize logical groups and volumes, using new PVs or extracting some of

those initially available.

• Snapshots of the file system (reading in LVM1, and reading and/or writing

in LVM2). This makes it possible to create a new device that is a snapshot

of the situation of an LV. Likewise, we can create the snapshot, mount it,

try various operations or configure new software or other elements and, if

these do not work as we were expecting, we can return the original volume

to the state it was in before performing the tests.

• RAID 0 of logical volumes.

RAID levels 1 or 5 are not implemented in LVM; if they are necessary (in other

words, redundancy and fault tolerance are required), then either we use RAID

software or RAID hardware drivers that will implement it and we place LVM

as the upper layer.

We will provide a brief, typical example (in many cases, the distributor in-

staller carries out a similar process if we set an LVM as the initial storage sys-

tem). Basically, we must: 1) create physical volumes (PV). 2) create the logical

group (VG) and 3) create the logical volume and finally use the following to

create and mount a file system:

1) example: we have three partitions on different disks, we have created three

PVs and started-up the contents:

dd if=/dev/zero of=/dev/hda1 bs=1k count=1

dd if=/dev/zero of=/dev/hda2 bs=1k count=1

dd if=/dev/zero of=/dev/hdb1 bs=1k count=1

pvcreate /dev/hda1

Physical volume "/dev/sda1" successfully created

pvcreate /dev/hda2

Physical volume "/dev/hda2" successfully created

pvcreate /dev/hdb1

Physical volume "/dev/hdb1" successfully created

2)�placement of a VG created from the different PVs:

vgcreate group_disks /dev/hda1 /dev/hda2 /dev/hdb1

© FUOC • P07/M2103/02284 53 Local administration

Volume group "group_disks" successfully created

3)�we create the LV (in this case, with a size of 1 GB) based on the elements

that we have in group VG group (-n indicates the name of the volume):

lvcreate -L1G -n logical_volume group_disks

lvcreate -- doing automatic backup of "group_disks"

lvcreate -- logical volume "/dev/group_disks/ logical_volume"

successfully created

And finally, we create a file system (a ReiserFS in this case):

mkfs.reiserfs /dev/group_disks/logical_volume

Which we could, for example, place as backup space

mkdir /mnt/backup

mount -t reiserfs /dev/group_disks/logical_volume/mnt/backup

Finally, we will have a device as a logical volume that implements a file system

in our machine.

© FUOC • P07/M2103/02284 54 Local administration

8. Software: updating

In order to administer the installation or to update the software in our system,

we will, in the first instance, depend on the type of software packages used

by our system:

• RPM: packages that use the Fedora/Red Hat distribution (and derivatives).

They are usually handled through the rpm command. Contains informa-

tion on the dependencies that the software has on other software. At a

high level, through Yum (or up2date in some distributions derived from

Red Hat).

• DEB: Debian packages that are usually handled with a set of tools that

work on different levels with individual packages or groups. Among these,

we must mention: dselect, tasksel, dpkg, and apt-get.

• Tar or the tgz (also tar.gz): these are simply package files that have been

joined and compressed using standard commands such as tar, and gzip

(these are used for decompressing). The packages do not contain informa-

tion on any dependencies and can normally be installed in different places

if they do not carry any absolute root (path) information.

There are various graphical tools for handling these packages, such as RPM:

Kpackage; DEB: Synaptic, Gnome-apt; Tgz: Kpackage,or from the actual graph-

ic file manager itself (in Gnome or KDE). There are also usually package con-

version utilities. For example, in Debian we have the alien command, with

which we can change RPM packages to DEB packages. Although it is neces-

sary to take the appropriate precautions, so that the package does not unex-

pectedly modify any behaviour or file system, as it has a different destination

distribution.

Depending on the use of the types of packages or tools: it will be possible to

update or install the software in our system in different ways:

1) From the actual system installation CDs; normally, all the distributions

search for the software on the CDs. But the software should be checked

to ensure that it is not old and does not, therefore, include some patches

like updates or new versions with more features; consequently, if a CD is

used for installation, it is standard practice to check that it is the latest

version and that no more recent version exists.

© FUOC • P07/M2103/02284 55 Local administration

2) Through updating or software search services, whether they are free,

as is the case with Debian's apt-get tool or yum in Fedora, or through

subscription services (paid services or services with basic facilities), such

as the Red Hat Network of the commercial Red Hat versions.

3) Through software repositories that offer pre-built software packages for

a determined distribution.

4) From the actual creator or distributor of the software, who may offer a

series of software installation packages. We may find that we are unable

to locate the type of packages that we need for our distribution.

5) Unpackaged software or with compression only, without any type of

dependencies.

6) Only source code, in the form of a package or compressed file.

© FUOC • P07/M2103/02284 56 Local administration

9. Non-interactive work

In administration tasks, it is usually necessary to execute certain tasks at reg-

ular intervals, either because it is necessary to program the tasks so that they

take place when the machine is least being used or due to the periodic nature

of the tasks that have to be performed.

There are various systems that allow us to set up a task schedule (planning

task execution) for performing these tasks out-of-hours, such as periodic or

programmed services:

• nohup is perhaps the simplest command used by users, as it permits the

execution of a non-interactive task once they have logged out from their

account. Normally, when users log out, they lose their processes; nohup

allows them to leave the processes executing even though the user has

logged out.

• at permits us to launch a task for later, programming the determined point

in time at which we wish for it to start, specifying the time (hh:mm) and

date, or specifying whether it will be today or tomorrow. Examples:

at 10pm task

to perform the task at ten o'clock at night.

at 2am tomorrow task

to perform the task at two o'clock in the morning.

• cron: it permits us to establish a list of tasks that will be performed with the

corresponding programming; this configuration is saved in /etc/crontab;

specifically, in each entry in this file, we have: hour and minutes at which

the task will be performed, which day of the month, which month, which

day of the week, along with which element (which might be a task or a

directory where the tasks that are to be executed are located). For example,

the standard content is similar to:

25 6 * * * root test -e /usr/sbin/anacron || run-parts --report /etc/cron.daily

47 6 * * 7 root test -e /usr/sbin/anacron || run-parts --report /etc/cron.weekly

52 6 1 * * root test -e /usr/sbin/anacron || run-parts --report /etc/cron.monthl

where a series of tasks are programmed to execute: each day ("*" indicates

'whichever'), weekly (7th day of the week) or monthly (the 1st day of each

month). Normally, the tasks will be executed with the crontab command, but

the cron system assumes that the machine is always switched on, and if this

is not the case, it is better to use anacron, which checks whether the task was

performed when it was supposed to be or not, and if not, it executes the task.

© FUOC • P07/M2103/02284 57 Local administration

Each line in the preceding file is checked to ensure that the anacron command

is there and the scripts associated to each action are executed; in this case,

they are saved in directories assigned for this.

There may also be cron.allow or cron.deny files to limit who can (or cannot)

put tasks in cron. Through the crontab command, a user may define tasks in

the same format as we have seen before, which are usually saved in /var/spool/

cron/crontabs. In some cases, there is also a /etc/cron.d directory where we

can place the tasks and they are treated as through they were an extension to

the /etc/crontab file.

© FUOC • P07/M2103/02284 58 Local administration

10.Workshop: combined practices of the different
sections

We will begin by examining the general state of our system. We will carry

out different steps in a Debian system. It is an unstable Debian system (the

unstable version, but more updated); however, the procedures are, mostly,

transferable to other distributions such as Fedora/Red Hat (we will mention

some of the most important changes). The hardware consists of a Pentium 4

at 2.66 Ghz with 768 MB RAM and various disks, DVD and CD-writer, as well

as other peripherals, on which we will obtain information as we proceed step

by step.

First we will see how our system booted up the last time:

uptime

17:38:22 up 2:46, 5 users, load average: 0.05, 0.03, 0.04

This command tells us the time that the system has been up since it last boot-

ed, 2 hours and 47 minutes and, in this case, we have 5 users. These will not

necessarily correspond to five different users, but they will usually be opened

user sessions (for example, through one terminal). The who command pro-

vides a list of these users. The load average is the system's average load over

the last 1, 5 and 15 minutes.

Let's look at system's boot log (dmesg command), and the lines that were gen-

erated when the system booted up (we have removed some lines for the pur-

pose of clarity):

Linux version 2.6.20-1-686 (Debian 2.6.20-2) (waldi@debian.org)

(gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Sun Apr

 15 21:03:57 UTC 2007

BIOS-provided physical RAM map:

 BIOS-e820: 0000000000000000 - 000000000009f800 (usable)

 BIOS-e820: 000000000009f800 - 00000000000a0000 (reserved)

 BIOS-e820: 00000000000ce000 - 00000000000d0000 (reserved)

 BIOS-e820: 00000000000dc000 - 0000000000100000 (reserved)

 BIOS-e820: 0000000000100000 - 000000002f6e0000 (usable)

 BIOS-e820: 000000002f6e0000 - 000000002f6f0000 (ACPI data)

 BIOS-e820: 000000002f6f0000 - 000000002f700000 (ACPI NVS)

 BIOS-e820: 000000002f700000 - 000000002f780000 (usable)

 BIOS-e820: 000000002f780000 - 0000000030000000 (reserved)

 BIOS-e820: 00000000ff800000 - 00000000ffc00000 (reserved)

 BIOS-e820: 00000000fffffc00 - 0000000100000000 (reserved)

0MB HIGHMEM available.

© FUOC • P07/M2103/02284 59 Local administration

759MB LOWMEM available.

These first lines already indicate some interesting data: the Linux kernel is

version 2.6.20-1-686, one version 2.6 revision 20 at revision 1 of Debian and

for 686 machines (Intel 32 bits architecture). They also indicate that we are

booting a Debian system, with this kernel which was compiled with a GNU

gcc compiler, version 4.1.2 and the date. There is then a map of the memory

zones used (reserved) by the BIOS and then the total memory detected in the

machine: 759 MB, to which we would have to add the first 1 MB, making a

total of 760 MB.

Kernel command line: BOOT_IMAGE=LinuxNEW ro root=302 lang=es acpi=force
Initializing CPU#0
Console: colour dummy device 80x25
Memory: 766132k/777728k available (1641k kernel code, 10968k reserved, 619k data,
208k init, 0k highmem)
Calibrating delay using timer specific routine.. 5320.63 BogoMIPS (lpj=10641275)

Here, we are told how the machine booted up and which command line has

been passed to the kernel (different options may be passed, such as lilo or

grub). And we are booting in console mode with 80 x 25 characters (this can

be changed). The BogoMIPS are internal measurements of the kernel of the

CPU speed. There are architectures in which it is difficult to detect how many

MHz the CPU works with and this is why this speed measurement is used.

Subsequently, we are given more data on the main memory and what it is

being used for at this booting stage.

CPU: Trace cache: 12K uops, L1 D cache: 8K
CPU: L2 cache: 512K
CPU: Hyper-Threading is disabled
Intel machine check architecture supported.
Intel machine check reporting enabled on CPU#0.
CPU0: Intel P4/Xeon Extended MCE MSRs (12) available
CPU0: Intel(R) Pentium(R) 4 CPU 2.66GHz stepping 09

Likewise, we are given various data on the CPU: the size of the first-level cache,

the internal CPU cache, L1 divided in a TraceCache of the Pentium 4 (or cache

instruction), and the data cache and the unified second-level cache (L2), the

type of CPU, its speed and the system's bus.

PCI: PCI BIOS revision 2.10 entry at 0xfd994, last bus=3
Setting up standard PCI resources
...
NET: Registered protocol
IP route cache hash table entries: 32768 (order: 5, 131072 bytes)
TCP: Hash tables configured (established 131072 bind 65536)
checking if image is initramfs... it is
Freeing initrd memory: 1270k freed
fb0: VESA VGA frame buffer device
Serial: 8250/16550 driver $Revision: 1.90 $ 4 ports, IRQ sharing enabled
serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
00:09: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
RAMDISK driver initialized: 16 RAM disks of 8192K size 1024 blocksize
PNP: PS/2 Controller [PNP0303:KBC0,PNP0f13:MSE0] at 0x60,0x64 irq 1,12
i8042.c: Detected active multiplexing controller, rev 1.1.
serial: i8042 KBD port at 0x60,0x64 irq 1
serial: i8042 AUX0 port at 0x60,0x64 irq 12
serial: i8042 AUX1 port at 0x60,0x64 irq 12
serial: i8042 AUX2 port at 0x60,0x64 irq 12

© FUOC • P07/M2103/02284 60 Local administration

serial: i8042 AUX3 port at 0x60,0x64 irq 12
mice: PS/2 mouse device common for all mice

The kernel and devices continue to boot, mentioning the initiation of the net-

work protocols. The terminals, the serial ports ttyS0 (which would be com1)

and ttyS01 (com2). It provides information on the RAM disks that are being

used, the detection of PS2 devices, keyboard and mouse.

ICH4: IDE controller at PCI slot 0000:00:1f.1

ide0: BM-DMA at 0x1860-0x1867, BIOS settings: hda:DMA, hdb:pio
ide1: BM-DMA at 0x1868-0x186f, BIOS settings: hdc:DMA, hdd:pio
Probing IDE interface ide0...
hda: FUJITSU MHT2030AT, ATA DISK drive
ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
Probing IDE interface ide1...
hdc: SAMSUNG CDRW/DVD SN-324F, ATAPI CD/DVD-ROM drive
ide1 at 0x170-0x177,0x376 on irq 15
SCSI subsystem initialized
libata version 2.00 loaded.
hda: max request size: 128KiB
hda: 58605120 sectors (30005 MB) w/2048KiB Cache, CHS=58140/16/63<6>hda:
hw_config=600b
, UDMA(100)
hda: cache flushes supported
hda: hda1 hda2 hda3
kjournald starting. Commit interval 5 seconds
EXT3-fs: mounted file system with ordered data mode.
hdc: ATAPI 24X DVD-ROM CD-R/RW drive, 2048kB Cache, UDMA(33)
Uniform CD-ROM driver Revision: 3.20
Addinf 618492 swap on /dev/hda3.

Detection of IDE devices, detecting the IDE chip in the PCI bus and reporting

what is driving the devices: hda, and hdc, which are, respectively: a hard disk

(Fujitsu), a second hard disk, a Samsung DVD Samsung, and a CD-writer (giv-

en that in this case, we have a combo unit). It indicates active partitions. Sub-

sequently, the machine detects the main Linux file system, a journaled ext3,

that activates and adds the swap space available in a partition.

usbcore: registered new interface driver usbfs
usbcore: registered new interface driver hub
usbcore: registered new device driver usb
input: PC Speaker as /class/input/input1
USB Universal Host Controller Interface driver v3.0
hub 1-0:1.0: USB hub found
hub 1-0:1.0: 2 ports detected
uhci_hcd 0000:00:1d.1: UHCI Host Controller
uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 2
uhci_hcd 0000:00:1d.1: irq 11, io base 0x00001820
usb usb2: configuration #1 chosen from 1 choice
hub 2-0:1.0: USB hub found
hub 2-0:1.0: 2 ports detected
hub 4-0:1.0: USB hub found
hub 4-0:1.0: 6 ports detected

More detection of devices, USB (and the corresponding modules); in this case,

two hub devices (with a total of 8 USB ports) have been detected.

parport: PnPBIOS parport detected.
parport0: PC-style at 0x378 (0x778), irq 7, dma 1
[PCSPP,TRISTATE,COMPAT,EPP,ECP,DMA]
input: ImPS/2 Logitech Wheel Mouse as /class/input/input2
ieee1394: Initialized config rom entry 'ip1394'
eepro100.c:v1.09j-t 9/29/99 Donald Becker

© FUOC • P07/M2103/02284 61 Local administration

Synaptics Touchpad, model: 1, fw: 5.9, id: 0x2e6eb1, caps: 0x944713/0xc0000
input: SynPS/2 Synaptics TouchPad as /class/input/input3

agpgart: Detected an Intel 845G Chipset
agpgart: Detected 8060K stolen Memory
agpgart: AGP aperture is 128M
eth0: OEM i82557/i82558 10/100 Ethernet, 00:00:F0:84:D3:A9, IRQ 11.
Board assembly 000000-000, Physical connectors present: RJ45
e100: Intel(R) PRO/100 Network Driver, 3.5.17-k2-NAPI
usbcore: registered new interface driver usbkbd
Initializing USB Mass Storage driver...
usbcore: registered new interface driver usb-storage
USB Mass Storage support registered.

lp0: using parport0 (interrupt-driven).
ppdev: user-space parallel port driver

And the final detection of the rest of the devices: Parallel port, mouse model,

FireWire port (IEEE1394) network card (Intel), a touchscreen, the AGP video

card (i845). More data on the network card, an intel pro 100, registry of usb as

mass storage (indicates a USB storage device as an external disk) and detection

of parallel port.

We can also see all this information, which we accessed through the dmesg

command, dumped in the system's main log, /var/log/messages. In this log,

we will find the kernel messages, among others, the messages of the daemons

and network or device errors, which communicate their messages to a special

daemon called syslogd, which is in charge of writing the messages in this file.

If we have recently booted the machine, we will observe that the last lines

contain exactly the same information as the dmesg command,

for example, if we look at the final part of the file (which is usually very large):

tail 200 /var/log/messages

We observe the same lines as before and some more information such as:

shutdown[13325]: shutting down for system reboot
kernel: usb 4-1: USB disconnect, address 3
kernel: nfsd: last server has exited
kernel: nfsd: unexporting all file systems
kernel: Kernel logging (proc) stopped.
kernel: Kernel log daemon terminating.

exiting on signal 15
syslogd 1.4.1#20: restart.

kernel: klogd 1.4.1#20, log source = /proc/kmsg started.
Linux version 2.6.20-1-686 (Debian 2.6.20-2) (waldi@debian.org) (gcc version 4.1.2
20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Sun Apr 15 21:03:57 UTC 2007
kernel: BIOS-provided physical RAM map:

The first part corresponds to the preceding shutdown of the system, informing

us that the kernel has stopped placing information in /proc, that the system is

shutting down... At the beginning of the new boot, the Syslogd daemon that

generates the log is activated, and the system begins to load, which tells us

© FUOC • P07/M2103/02284 62 Local administration

that the kernel will begin to write information in its system, /proc; we look at

the first lines of the dmesg mentioning the version of the kernel that is being

loaded and we then find what we have seen with dmesg.

At this point, another useful command for finding out how the load process

has taken place is ismod, which will tell us which modules have been loaded

in the kernel (summarised version):

lsmod

Module Size Used by

nfs 219468 0

nfsd 202192 17

exportfs 5632 1 nfsd

lockd 58216 3 nfs,nfsd

nfs_acl 3616 2 nfs,nfsd

sunrpc 148380 13 nfs,nfsd,lockd,nfs_acl

ppdev 8740 0

lp 11044 0

button 7856 0

ac 5220 0

battery 9924 0

md_mod 71860 1

dm_snapshot 16580 0

dm_mirror 20340 0

dm_mod 52812 2 dm_snapshot,dm_mirror

i810fb 30268 0

vgastate 8512 1 i810fb

eeprom 7184 0

thermal 13928 0

processor 30536 1 thermal

fan 4772 0

udf 75876 0

ntfs 205364 0

usb_storage 75552 0

hid 22784 0

usbkbd 6752 0

eth1394 18468 0

e100 32648 0

eepro100 30096 0

ohci1394 32656 0

ieee1394 89208 2 eth1394,ohci1394

snd_intel8x0 31420 1

snd_ac97_codec 89412 1 snd_intel8x0

ac97_bus 2432 1 snd_ac97_codec

parport_pc 32772 1

snd 48196 6 snd_intel8x0,snd_ac97_codec,snd_pcm,snd_timer

ehci_hcd 29132 0

© FUOC • P07/M2103/02284 63 Local administration

ide_cd 36672 0

cdrom 32960 1 ide_cd

soundcore 7616 1 snd

psmouse 35208 0

uhci_hcd 22160 0

parport 33672 3 ppdev,lp,parport_pc

intelfb 34596 0

serio_raw 6724 0

pcspkr 3264 0

pci_hotplug 29312 1 shpchp

usbcore 122312 6 dvb_usb,usb_storage,usbkbd,ehci_hcd,uhci_hcd

intel_agp 22748 1

agpgart 30504 5 i810fb,drm,intelfb,intel_agp

ext3 121032 1

jbd 55368 1 ext3

ide_disk 15744 3

ata_generic 7876 0

ata_piix 15044 0

libata 100052 2 ata_generic,ata_piix

scsi_mod 133100 2 usb_storage,libata

generic 4932 0 [permanent]

piix 9540 0 [permanent]

ide_core 114728 5 usb_storage,ide_cd,ide_disk,generic,piix

We see that we basically have the drivers for the hardware that we have de-

tected and other related elements or those necessary by dependencies.

This gives us, then, an idea of how the kernel and its modules have been load-

ed. In this process, we may already have observed an error, if the hardware

is not properly configured or there are kernel modules that are not properly

compiled (they were not compiled for the appropriate kernel version), inex-

istent etc.

The next step for examining the processes in the system, such as the ps (for

process status) command, for example (only the system processes are shown,

not the user ones):

ps -ef

UID PID PPID C STIME TTY TIME CMD

Processes information, UID user that has launched the process (or the identi-

fier with which it has been launched), PID and process code assigned by the

system are consecutively shown, as the processes launch; the first is always 0,

which corresponds to the init process. PPID is the id of the current parent pro-

cess. STIME, time in which the process was booted, TTY, terminal assigned to

the process (if there is one), CMD, command line with which it was launched.

© FUOC • P07/M2103/02284 64 Local administration

root 1 0 0 14:52 ? 00:00:00 init [2]
root 3 1 0 14:52 ? 00:00:00 [ksoftirqd/0]
root 143 6 0 14:52 ? 00:00:00 [bdflush]
root 145 6 0 14:52 ? 00:00:00 [kswapd0]
root 357 6 0 14:52 ? 00:00:01 [kjournald]
root 477 1 0 14:52 ? 00:00:00 udevd --daemon
root 719 6 0 14:52 ? 00:00:00 [khubd]

Various system daemons, such as the kswapd daemon, which controls the

virtual memory swaps. Handling of system buffers (bdflush). Handling of file

system journal (kjournald), USB handling (khubd). Or the udev daemon that

controls the hot device connection. In general, the daemons are not always

identified by a d at the end, and if they have a k at the beginning, they are

normally internal threads of the kernel.

root 1567 1 0 14:52 ? 00:00:00 dhclient -e -pf ...
root 1653 1 0 14:52 ? 00:00:00 /sbin/portmap
root 1829 1 0 14:52 ? 00:00:00 /sbin/syslogd
root 1839 1 0 14:52 ? 00:00:00 /sbin/klogd -x
root 1983 1 0 14:52 ? 00:00:09 /usr/sbin/cupsd
root 2178 1 0 14:53 ? 00:00:00 /usr/sbin/inetd

We have dhclient, which indicates that the machine is the client of a DHCP

server, for obtaining its IP. Syslogd, a daemon that sends messages to the log.

The cups daemon, which, as we have discussed, is related to the printing sys-

tem. And inetd, which, as we shall see in the section on networks, is a type of

"superserver" or intermediary of other daemons related to network services.

root 2154 1 0 14:53 ? 00:00:00 /usr/sbin/rpc.mountd
root 2241 1 0 14:53 ? 00:00:00 /usr/sbin/sshd
root 2257 1 0 14:53 ? 00:00:00 /usr/bin/xfs -daemon
root 2573 1 0 14:53 ? 00:00:00 /usr/sbin/atd
root 2580 1 0 14:53 ? 00:00:00 /usr/sbin/cron
root 2675 1 0 14:53 ? 00:00:00 /usr/sbin/apache
www-data 2684 2675 0 14:53 ? 00:00:00 /usr/sbin/apache
www-data 2685 2675 0 14:53 ? 00:00:00 /usr/sbin/apache

There is also sshd, a safe remote access server (an improved version that per-

mits services compatible with telnet and FTP). xfs is the fonts server (character

types) of X Window. The atd and cron commands can be used for handling

programmed tasks at a determined moment. Apache is a web server, which

may have various active threads for attending to different requests.

root 2499 2493 0 14:53 ?
root 2502 2499 4 14:53 tty7
root 2848 1 0 14:53 tty2
root 2849 1 0 14:53 tty3
root 3941 2847 0 14:57 tty1
root 16453 12970 0 18:10 pts/2

00:00:00 /usr/sbin/gdm
00:09:18 /usr/bin/X :0 -dpi 96 ...
00:00:00 /sbin/getty 38400 tty2
00:00:00 /sbin/getty 38400 tty3
00:00:00 -bash
00:00:00 ps -ef

Gdm is the graphical login of the Gnome desktop system (the entry point

where we are asked for the login name and password) and the getty process-

es are the ones that manage the virtual text terminals (which we can see by

pressing Alt+Fx (or Ctrl+Alt+Fx if we are in graphic mode). X is the process of

© FUOC • P07/M2103/02284 65 Local administration

the X Window System graphic server and is essential for executing any desk-

top environment above this. An open shell (bash), and finally, the process that

we have generated when requesting this ps from the command line.

The ps command provides various command line options for adjusting the

information that we want on each process, whether it is the time that it has

been executing, the percentage of CPU used, memory used etc. (see man of

ps). Another very interesting command is top, which does the same as ps but

dynamically; in other words, it updates every certain period of time, we can

classify the processes by use of CPU or memory and it also provides informa-

tion on the state of the overall memory.

Other useful commands for resources management are free and vmstat, which

provide information on the memory used and the virtual memory system:

free total used free shared buffers cached
Mem: 767736 745232 22504 0 89564 457612
-/+ buffers/cache: 198056 569680
Swap: 618492 1732 616760

vmstat
procs -----------memory---------- ---swap-- -----io-- --system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 1732 22444 89584 457640 0 0 68 137 291 418 7 1 85 7

The free command also shows the swap size, approximately 600 MB, which

are not currently used intensely as there is sufficient physical memory space;

there are still 22 MB free (which indicates a high use of the physical memory

and the need to use swap soon). The memory space and swap (as of kernels

2.4) add to each other to comprise the total memory in the system, which in

this case, means that there is a total of 1.4 GB available. This may seem a lot,

but it will depend on the applications that are being executed.

Note

See man of the commands to
interpret outputs.

© FUOC • P07/M2103/02284 67 Local administration

Activities

1) The swap space makes it possible to add to the physical memory so that there is more
virtual memory. Depending on the amounts of physical memory and swap space, can all the
memory get used up? Can we resolve this in any other way that does not involve adding
more physical memory?

2) Suppose that we have a system with two Linux partitions: one / and one swap partition.
How do we solve the situation if the user accounts use up all the disk space? And if we have
an isolated /home partition, which was also being used up, how would we solve this?

3) Install the CUPS printing system, define our printer so that it works with CUPS and try
administering through the web interface. As the system is now, would it be advisable to
modify, in any way, CUPS' default settings? Why?

4) Examine the default setting that comes with the GNU/Linux system for non-interactive
work using cron. Which jobs are there and when are they being performed? Any ideas for
new jobs that have to be added?

5) Reproduce the workshop analysis (plus the other sections of the unit) on the machine
that is available. Can we see any errors or irregular situations in the system? If so, how do
we solve them?

© FUOC • P07/M2103/02284 68 Local administration

Bibliography

Other sources of reference and information

[Wm02] [Fri02] [Smi02] GNU/Linux and UNIX administration manuals, which explain in
detail the aspects on local administration and printing systems management.

[Gt] Updated information on the printing systems and their settings, as well as the details
of some of the printers, can be found here. For specific details on the printer models and
drivers, we can go to http://www.linuxprinting.org/.

[Hin][Koe] We can find information on the different file systems available and the schemes
for creating partitions for the installation of the system.

Network
administration

Remo Suppi Boldrito

P07/M2103/02285

© FUOC • P07/M2103/02285 Network administration

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02285 Network administration

Index

Introduction... 5

1. Introduction to TCP/IP (TCP/IP suite).. 7

1.1. Services on TCP/IP .. 7

1.2. What is TCP/IP? .. 9

1.3. Physical network devices (hardware) .. 10

2. TCP/IP Concepts... 13

3. How do we assign an Internet address?...................................... 16

4. How should we configure the network?..................................... 20

4.1. Configuration of the network interface controller (NIC) 20

4.1.1. Configuration of network in Fedora (style). 22

4.1.2. Configuration of a Wi-Fi (wireless) network 23

4.2. Configuration of Name Resolver .. 24

4.3. Configuration of routing .. 26

4.4. Configuration of inetd .. 28

4.5. Additional configuration: protocols and networks 31

4.6. Security aspects ... 31

4.7. IP Options ... 32

4.7.1. Commands for solving problems with the network 33

5. DHCP Configuration... 34

6. IP aliasing.. 36

7. IP Masquerade... 37

8. NAT with kernel 2.2 or higher.. 38

9. How do I configure a DialUP and PPP connection?................. 39

10. Configuring the network through hotplug............................... 42

11. Virtual private network (VPN).. 44

11.1. Simple example ... 44

12. Advanced configurations and tools.. 47

Activities.. 55

© FUOC • P07/M2103/02285 Network administration

Annex. Controlling the services linked to an FC6 network........... 56

© FUOC • P07/M2103/02285 5 Network administration

Introduction

The UNIX (GNU/Linux) operating system is used as an example of a standard

communications architecture. From the mythical UUCP (Unix-to-Unix CoPy

or service for copying between UNIX operating systems) to the current net-

works, UNIX has always proven its versatility in aspects related to communica-

tion and information exchange. With the introduction of computer networks

(Local Area Networks, Wide Area Networks or the latest Metropolitan Area

Networks) offering multipoint connections at different speeds (from 56 kbits/

sec to 1 Gbit/sec), new services that are based on faster protocols, portable be-

tween different computers and better adapted, such as TCP/IP (transport control

program / Internet protocol), have arisen. [Com01, Mal96, Cis00, Gar98, KD00]

© FUOC • P07/M2103/02285 7 Network administration

1. Introduction to TCP/IP (TCP/IP suite)

The TCP/IP protocol synthesises an example of a will to communicate and to

standardise the communication on a global scale.

The TCP/IP is, in reality, a set of basic protocols that have been added to

the original protocol, to meet the different needs in computer-to-com-

puter communication, such as TCP, UDP, IP, ICMP, ARP. [Mal96]

TCP/IP is most frequently used by most current users to remotely connect to

other computers (telnet, SSH Secure Shell), to use remote files (NFS network

file system) or to transfer them (FTP file transfer protocol, HTTP hypertext markup

protocol).

1.1. Services on TCP/IP

The most important traditional TCP/IP services are [Gar98]:

• File�transfer: the file transfer protocol (FTP) allows the user of a computer

to obtain files or send them from one computer to another. In order to do

this, the user must have an account in the remote computer and identify

themselves through their login name and password or the user must con-

nect to computers containing an information repository (software, docu-

mentation etc.) under an anonymous account to transfer (or read) those

computers on their computer. This is not the same as the more recent Net-

work File Systems (NFS) (or netbios protocols over TCP/IP, a completely

insecure "invention" in Windows, which should be replaced with an older

but more secure version called netbeui) that make it possible to virtualise

the file system in a machine so that it can be accessed interactively from

another computer.

• Remote�connection (login): the terminal network protocol (telnet) allows

a user to remotely connect to a computer. The local computer is used as

the remote computer's terminal and everything is executed over it, whilst

the local computer remains invisible from the perspective of the user that

started the session. This service has now been replaced by the SSH (secure

shell), for security reasons. This can use a remote connection through tel-

net and the messages are sent as they are (plain text); in other words,

if someone "examines" the messages on the network, it is equivalent to

looking at the user's screen. SSH encrypts the information (which is an

Note

Typical use of TCP/IP remote
login: telnet localhost
Debian GNU/Linux 4.0 login:

© FUOC • P07/M2103/02285 8 Network administration

added-value to the communication) so that the packages on the network

cannot be read by any foreign node.

• Email: this service makes it possible to send messages to users of oth-

er computers. This form of communication has become an essential ele-

ment for users and allows email messages to be sent to a central server, so

that they can then be recovered using specific programs (clients) or read

through an internet connection.

The progress in the technology and the increasingly lower cost of computers

has meant that determined services have specialised in SSH and are now of-

fered configured on determined computers working in a client-server model.

A server is a system that performs specific services for the rest of the network

or connected clients. A client is another computer that uses this service. All of

these services are generally offered within TCP/IP:

• File�systems�in�network�file�systems: allows a system to access the files

through a remote system in a manner that is more integrated than FTP. The

storage devices (or part of them) are exported to the system that wishes to

access the files and this system can "see" them as if they were local devices.

This protocol permits the exporting party to establish the rules and ways

of accessing the files, which (if properly configured) makes the place where

the information physically resides independent from the place where the

information is "seen".

• Remote�printing: permits users to access printers connected to other com-

puters.

• Remote�execution: permits a user to execute a program on another com-

puter. There are various ways of executing a program in this way: either

through a command (rsh, ssh, rexec) or through systems with RPC (re-

mote procedure call), which allows a program on a local computer to ex-

ecute a function in a program on another computer. The RPC processes

have been studied in-depth and there are various implementations, but

the most common are Xerox's Courier and Sun's RPC (the latter has been

adopted in most UNIX systems).

• Name�servers: in large-scale setups, there are data that have to be cen-

tralised so that they can be easily used; for example, user names, pass-

words, internet addresses etc. All of this makes it easier for a user to have

an account for all the machines in an organisation. For example, Sun's

Yellow Pages (NIS in the current Sun versions) is designed to handle all

these types of data and it is available for most UNIX systems. The DNS

(domain name system) is another domain-name service but one that keeps

a direct relationship between the hostname and the logical identification

name of this machine (IP address).

© FUOC • P07/M2103/02285 9 Network administration

• Terminal�Servers: connect terminals to a server that executes telnet so as

to connect to the central computer. These types of setup are basically good

for reducing costs and improving the connections to the central computer

(in some cases).

• Graphical�terminal�servers (network-oriented window systems): these per-

mit a computer to visualise graphic information on a display that is con-

nected to another computer. The most common of these systems is X Win-

dow.

1.2. What is TCP/IP?

TCP/IP is in fact two communication protocols between computers that are

independent to each other.

On the one hand, TCP (transmission control protocol) defines the com-

munication rules so that a (host) computer can talk to another com-

puter (if we use the OSI/ISO communications model as a reference, it

describes layer 4, see following table).

TCP is a connection-oriented protocol, in other words, it is equivalent to a

telephone, and the communication is treated as a data stream.

IP (Internet protocol) defines the protocol that makes it possible to iden-

tify the networks and establish the pathways between different com-

puters.

In other words, it routes the data between two computers through the net-

works. It corresponds to layer 3 of the OSI/ISO model and it is a connection-

less protocol (see following table). [Com01, Rid00, Dra99]

An alternative to TCP is the UDP protocol (user datagram protocol), which treats

the data as a message (datagram) and sends packets. It is a connectionless pro-

tocol (the recipient computer does not necessarily have to be listening when

the other computer establishes communication with it) and it has the advan-

tage of creating less overload on the network than a TCP connection, but it is

less reliable (the packets may not arrive or arrive duplicated).

There is another alternative protocol called ICMP (Internet control message pro-

tocol). ICMP is used for error or control messages. For example, if one tries to

connect to a host computer, the local computer may receive an ICMP message

indicating "host unreachable". ICMP may also be used to extract information

on a network. ICMP is similar to UDP in that it handles messages (datagrams),

© FUOC • P07/M2103/02285 10 Network administration

but it is simpler than UPD, because it does not have port identification (the

ports are mailboxes where the data packets are left and from where the server

applications read the packets) in the message header.

In the OSI/ISO communications model (OSI, open systems interconnection ref-

erence model, ISO, International Standards Organization), is a theoretical model

applied by many networks.There are seven communication layers where each

one has an interface for communicating with the preceding and following

one.

Level Name Use

7 Application SMTP, simple mail transfer protocol, the service itself

6 Introduction Telnet, FTP implements the service protocol

5 Session Generally not used

4 Transport TCP, UDP transformation in accordance with the communication protocol.

3 Network IP makes it possible to route the packet.

2 Link Drivers - transformation in accordance with the physical protocol.

1 Physical Ethernet, ADSL... physically sends the packet

To summarise, TCP/IP is a set of protocols including IP, TCP, UDP that provide

a set of low-level functions used by most of the applications. [KD00, Dra99].

Some of the protocols that use the abovementioned services were designed by

Berkeley, Sun or other organisations. They are not officially part of the Inter-

net protocol suite (IPS). However, they are implemented using TCP/IP and they

are therefore considered as a formal part of IPS. A description of the protocols

available by Internet can be found in RFC 1011 (see references on RFC [IET]).

There is currently a new version of protocol IPv6, also called IPng (IP next gen-

eration) which replaces IPv4. This protocol significantly improves the previous

ones in elements such as having a greater number of nodes, traffic control,

security or improvements in the routing.

1.3. Physical network devices (hardware)

From the physical point of view (layer 1 of the OSI model), the most com-

monly used hardware for LAN is that known as Ethernet (or FastEthernet or

GigaEthernet). Its advantages consist of a lower cost, acceptable speeds (10,

100 or 1,000 megabits per second) and its user-friendly installation.

There are three connection modes, depending on the type of intercon-

nection: thick, thin and twisted pair.

© FUOC • P07/M2103/02285 11 Network administration

The first two are obsolete (they used coaxial cable) whereas the last is through

twisted pair cables and connectors similar to those used by telephones (known

as RJ45). The twisted pair connection is known as 10baseT or 100baseT (ac-

cording to the speed) and it uses repeaters known as hubs as interconnec-

tion points. Ethernet technology uses intermediate communication elements

(hubs, switches, routers) to configure multiple segments of the network and

divide the traffic to improve the performance of the data transfer. Normally,

in large organisations, these Ethernet LAN are interconnected through fibre

optic cables using FDDI (fibre distributed data interface) technology, which is

more expensive and more difficult to install, but with which we can obtain

transmission speeds equivalent to Ethernet whilst not having the limits on

distance involved in Ethernet (DFFI allows for distances of up to 200 km). The

costs are justified when they are linked between buildings or other network

segments that are very congested. [Rid00, KD00].

At the same time, there are other types of hardware that are less common, but

no less interesting, such as ATM (asynchronous transfer mode). This hardware

allows us to set up a LAN with a high level of service quality and it is a good

option when we have to set up high-speed and low-latency networks, such as

those that require real time video streaming.

There is other hardware supported by GNU/Linux for interconnecting com-

puters, of which we would mention: Frame Relay or X.25 (used in comput-

ers that access or interconnect WANs and for servers with large data transfer

needs), Packet Radio (interconnection via radio using protocols such as AX.25,

NetRom or Rose) or dial-up devices that use serial lines, which are slow but

very cheap, through analogical or digital (RDSI, DSL, ADSL etc.) modems. The

latter are the ones commonly used domestically or in small and medium-sized

businesses, and they require another protocol for the transmission of packets,

such as SLIP or PPP. In order to virtualise the diverse hardware on a network,

TCP/IP defines an abstract interface through which all the packets that will be

sent by a physical device (which includes a network or network segment) are

concentrated. Consequently, for each communication device in the machine,

we will have a corresponding interface in the operating system's kernel.

Example

In GNU/Linux, Ethernet is called with ethx (where, in all of them, 0 indicates an order
number beginning with 0), the interface to serial lines (modems) is called up with pppx
(for PPP) or slx (for SLIP); fddix is used for FDDI. These names are used by the commands
to configure them and assign them the identification that will subsequently permit them
to communicate with other devices in the network.

© FUOC • P07/M2103/02285 12 Network administration

In GNU/Linux, this may mean that we have to include the appropriate mod-

ules for the appropriate device (NIC network interface card) in the kernel or as

modules, and this means compiling the kernel after choosing, the appropri-

ate NIC, with, for example, make menuconfig, indicating it as internal or as a

module (in the latter case, the appropriate module must also be compiled).

The network devices can be seen in the /dev directory, which is where there

is a file (a special file, which may be a block file or a character file, according

to the transfer) that represents each hardware device.[KD00, Dra99].

Note

How do we see the network
interfaces that are available?
ifconfig -a

This command shows all of the
default interfaces/parameters
for each one.

© FUOC • P07/M2103/02285 13 Network administration

2. TCP/IP Concepts

As we have observed, communication involves a series of concepts that we

will now discuss [Mal96, Com01]:

• Internet/intranet: the term intranet refers to the application of Internet

technology (the network of networks) within an organisation, basically

to distribute the company's internal information and to have it available

within the company. For example, the services offered by GNU/Linux as

Internet and Intranet services include email, WWW, news etc.

• Node: the (host) node refers to a machine that is connected to the network

(in a wider sense, a node may be a computer, a printer, a CD (rack) etc.);

in other words, an active and differentiable element in the network that

requires or provides some kind of service and/or shares information.

• Ethernet� Network� Address (Ethernet address or MAC address): a 48-bit

number (for example 00:88:40:73:AB:FF –in octal– 0000 0000 1000 1000

0100 0000 0111 0011 1010 1011 1111 1111 –in binary–) that is inside the

physical device (hardware) of the Ethernet driver (NIC) and that is record-

ed by the manufacturer (this number must be the only one of its kind in

the world, which is why each NIC manufacturer has a pre-allocated range).

Note

Name of the machine:
more /etc/hostname

• Host�name: each node must also have a unique network name. These may

simply be names or they may use a scheme based on a hierarchical domain

naming scheme. The names of the nodes must be unique, which is easy

in small networks, more complex in large networks and impossible on the

Internet unless some form of control is implemented. The names must

have a maximum of 32 characters within the a-z, A-Z and 0-9 ranges and

they may not contain spaces or # beginning with an alphabetic character.

Note

Machine IP address:
more /etc/hosts

• Internet�Address (IP address): this consists of four numbers within the

range of 0-255 separated by dots (for example, 192.168.0.1) and it is used

universally to identify the computers on a network or on the Internet.

The names are translated into IP addresses by a DNS (domain name system)

server, that transforms the node names (legible to humans) in IP addresses

(this service is performed by an application called named).

Note

Pre-assigned ports in UNIX:
more /etc/services

This command shows the
ports predefined by order and
by whether they support TCP
or UDP.

• Port: numerical identifier of the mailbox in a node that makes it possible

for a message (TCP, UDP) to be read by a specific application within that

node (for example, two machines that communicate by telnet, will do so

through port 23, but the two machines may also have an FTP connection

Note

Visualisation of the routing's
configuration:
netstat -r

© FUOC • P07/M2103/02285 14 Network administration

through port 21). There may be different applications communicating be-

tween two nodes through various different ports simultaneously.

• Router�node (gateway): it is a node that performs the routing (data trans-

fer). A router, depending on its characteristics, may transfer information

between two similar or different network protocols and may also be selec-

tive.

• Domain�name�system (DNS): makes it possible to ensure one single name

and to provide the administration of the databases that perform the trans-

lation between the name and Internet address and that are structured in

the form of a tree. In order to do this, domains separated by points are de-

fined, of which the highest (from right to left) describes a category, insti-

tution or country (COM stands for Commercial, EDU for Education, GOV

for Governmental, MIL for Military (government), ORG, non-profit Or-

ganisation, XX which could be any two letters to indicate the country, or

special cases, such as CAT to indicate Catalan language and culture etc.).

The second level represents the organisation and the third and remaining

sections indicate the departments, sections or divisions within an organ-

isation (for example, www.uoc.edu or nteum@pirulo.remix.es). The first

two names (from right to left), uoc.edu in the first case, remix.es (in the

second) must be assigned (approved) by the SRI-NIC (global organisation

that manages the Internet domain registry) and the rest may be config-

ured/assigned by the institution.

• DHCP,�bootp: DHCP and bootp are protocols that permit a client node to

obtain information on the network (such as the node's IP address). Many

organisations with many machines use this mechanism to facilitate the

administration of large networks or networks in which there are many

roaming users.

• ARP,�RARP: in some networks (such as IEEE 802 LAN, which is the stan-

dard for Ethernet), the IP addresses are dynamically discovered through

the use of two other members of the Internet protocol suite: address reso-

lution protocol (ARP) and reverse address resolution protocol (RARP). ARP uses

broadcast messages to determine the Ethernet address (MAC specification

for layer 3 of the OSI model), corresponding to a particular network-layer

address (IP). RARP uses broadcast messages (messages that reach all of the

nodes) to determine the network-layer address associated with a particu-

lar hardware address. RARP is especially important to diskless nodes, for

which network-layer addresses are usually unknown at boot time.

• Socket�Library: in UNIX, all TCP/IP implementation is part of the kernel

of the operating system (either within the same or as a module that loads

at boot time, as is the case with the device drivers in GNU/Linux).

Note

Domain and who our DNS
server is:
more /etc/default do-
main

more /etc/resolv.conf

Note

arp tables: :
arp to NameNode

© FUOC • P07/M2103/02285 15 Network administration

The way for a programmer to use them is through an API (application program-

ming interface) which implements this source-code interface. For TCP/IP, the

most common API is the Berkeley Socket Library (Windows uses an equivalent

library that is called Winsocks). This library makes it possible to create a com-

munication end-point (socket), associate it to a remote/bind port node ad-

dress and offer the communication service (through connect, listen, accept, send,

sendto, recv, recvfrom, for example). The library also provides a more general

communication mode (AF INET family) and more optimised communications

for cases in which the process are communicating within the same machine

(AF UNIX family). In GNU/Linux, the socket library is part of the C standard

library, Libc, (Libc6 in current versions), and it supports AF_INET, AF_UNIX,

AF_IPX (for Novell protocols), AF_X25 (for the X.25 protocol), AF_ATMPVC-

AF_ATMSVC (for the ATM protocol) and AF_AX25,F_NETROM, AF_ROSE (for

amateur radio protocol).

© FUOC • P07/M2103/02285 16 Network administration

3. How do we assign an Internet address?

This address is assigned by the NIC and it has two boxes. The one on the

left represents network identification and the one on the right repre-

sents the node identification. In consideration of the point mentioned

above (four numbers between 0-255, or 32 bits or four bytes), each byte

represents either the network or the node. The NIC assigns the net and

the institution (or provider) assigns the node.

There are some restrictions: 0 (for example, 0.0.0.0) in the network space is

reserved for the routing by default and 127 (for example, 127.0.0.1) is reserved

for the (local loopback or local host), 0 in the node part refers to this network

(for example,192.168.0.0) and 255 is reserved for sending packets to all the

broadcast machines (for example, 198.162.255.255). There may be different

types of networks or addresses in the different assignations:

Class�A (network.host.host.host): 1.0.0.1 to 126.254.254.254 (126 networks, 16

million nodes) define the large networks. The binary standard is: 0 + 7 network

bits + 24 node bits.

Class� B (network.network.host.host): 128.1.0.1 to 191.255.254.254 (16K net-

works, 65K nodes); (usually, the first node byte is used to identify subnets

within an institution). The binary standard is 10 + 14 network bits + 16 node

bits.

Class�C (net.net.net.host): 192.1.1.1 to 223.255.255.254 (2 million of networks,

254 nodes). The binary standard is 110 + 21 network bits + 8 node bits.

Classes�D�and�E (network.network.network.host): 224.1.1.1 to 255.255.255.254

reserved for multicast (from one node to a set of nodes that form part of the

group) and experimental purposes.

Some address ranges have been reserved so that they do not correspond to

public networks, but to private networks (machines that connect between

each other and have no external connection; the messages will not be sent

through Internet, but through an intranet). These address ranges are class

A 10.0.0.0 to 10.255.255.255, class�B 172.16.0.0 to 172.31.0.0 and class�C

192.168.0.0 to 192.168.255.0.

The broadcast address is special, because each node in a network listens to

all the messages (as well as its own address). This address makes it possible

to send datagrams (generally routing information and warning messages) to a

© FUOC • P07/M2103/02285 17 Network administration

network and all nodes on the network will be able to read them. For example,

when ARP tries to find the Ethernet address corresponding to an IP, it uses a

broadcast message, which is sent to all the machines on the network at the

same time. Each node in the network reads this message and compares the IP

that is being searched for with its own and sends back a message to the node

that made the request if they match.

Two concepts that are related to the point described above are the subnets

and�routing between these subnets. Subnets subdivide the node part into

smaller networks within the same network, so as to, for example, improve the

traffic. A subnet is in charge of sending traffic to certain IP address ranges,

extending to the same concept of Class A, B and C networks, but only apply-

ing this rerouting in the IP node part. The number of bits interpreted as a

subnet identifier is provided by a netmask, which is a 32-bit number (as is an

IP). In order to obtain the subnet identifier, we will have to perform a logical

AND operation between the mask and the IP, which will provide us with the

subnet IP. For example, an institution with a B class network, with number

172.17.0.0, would therefore have a netmask with number 255.255.0.0. Inter-

nally, this network is formed by small networks (one per floor in the building,

for example). In this way, the range of addresses is reassigned in 20 subnets

(floors for us), 172.17.1.0 to 172.17.20.0. The point that connects all these

floors, called the backbone, has its own address, for example 172.17.1.0.

These subnets share the same network IP, whereas the third is used to iden-

tify each of the subnets within it (which is why it will use the netmask

255.255.255.0).

The second concept, routing, represents the mode in which the messages are

sent through the subnets. For example, let us say there are three departments

with Ethernet subnets:

1) Purchases (subnet 172.17.2.0),

2) Clients (subnet 172.17.4.0),

3) Human Resources, (subnet 172.17.6.0)

4) Backbone with FFDI (subnet 172.17.1.0).

In order to route the messages between the computers on the three networks,

we need three gateways that will each have two network interfaces to switch

between Ethernet and FFDI. These would be:

1) PurchasesGW IPs:172.17.2.1 and 172.17.1.1,

2) ClientsGW IPs:172.17.4.1 and 172.17.1.2

3) HumanResourcesGW IPs:172.17.6.1 and 172.17.1.3, in other words, one IP

on the subnet side and another on the backbone side.

© FUOC • P07/M2103/02285 18 Network administration

When messages are sent between machines in the purchases area, it is not

necessary to leave the gateway, as the TCP/IP will find the machine directly.

The problem arises when the Purchases0 machine wishes to send a message to

HumanResources3. The message must pass through the two respective gate-

ways. When Purchases0 "sees" that HumanResources3 is on another network,

it sends the packet through the PurchasesGW gateway, which in turn sends

it to HumanResourcesGW, which, in turn, sends it to HumanResources3. The

advantage of having subnets is obvious, given that the traffic between all the

purchases machines, for example, will not affect the Clients or Human Re-

sources machines. (although this does prove more complex and expensive in

terms of designing and building the network).

Figure 1. Configuration of segments and gateways in an intranet

IP uses a table to route the packets between the different networks, in which

there is a default routing associated to net 0.0.0.0. All the addresses coincide

with this one, as none of the 32 bits are necessary; they are sent through the

default gateway to the indicated network. In the purchasesGW, for example,

the table would be:

Address Mask Gateway Interface�

172.17.1.0 255.255.255.0 - fddi0

172.17.4.0 255.255.255.0 172.17.1.2 fddi0

172.17.6.0 255.255.255.0 172.17.1.3 fddi0

0.0.0.0 0.0.0.0 172.17.2.1 fddi0

172.17.2.0 255.255.255.0 - eth0

The '-' means that the machine is directly connected and does not need rout-

ing. The procedure for identifying whether routing is required or not consists

of performing a very simple operation with the two logic ANDs (subnet AND

© FUOC • P07/M2103/02285 19 Network administration

mask and origin AND mask) and comparing the two results. If they match,

there is no routing, but the machine defined as gateway must be sent in each

machine, so that this machine routes the message.

For example, a message from 172.17.2.4 to 172.17.2.6 would mean:

172.17.2.4 AND 255.255.255.0 = 172.17.2.0

172.17.2.6 AND 255.255.255.0 = 172.17.2.0

As the results are the same, there would be no routing. On the other hand, if

we do the same from 172.17.2.4 to 172.17.6.6 we see that there will be rout-

ing through 172.17.2.1 with an interface change (eth0 to ffdi0) to 172.17.1.1

and from here to 172.17.1.2 with another interface change (fddi0 to eth0) and

then to 172.17.6.6. The default routing will be used when none of the rules

match. If two rules match, the routing that matches the most precisely, in

other words, the one with the least zeros, will be used. In order to build the

routing tables, we can use the route command during machine startup; how-

ever, if it is necessary to use more complex rules (or automatic routing), we

can use the routing information protocol (RIP) command or, between indepen-

dent systems, the external gateway protocol (EGP) or also the border gateway pro-

tocol (BGP) commands. These protocols are implemented through the gated

command.

In order to install a machine on an existing network, it is therefore

necessary to have the following information, obtained from the net-

work provider or the administrator: node IP address, network IP address,

broadcast address, netmask address, router address and DNS address.

If we are setting up a network that will never have an Internet connection,

we can choose the addresses that we wish, but it is advisable to maintain an

appropriate order corresponding to the size of the network that will be needed,

so as to avoid administrative problems within the network in question. We

will now see how to define the network and node for a private network (we

have to be careful, as, if the machine is connected to the network, we can

inconvenience another user to whom this address has been assigned): node

address 192.168.110.23, netmask 255.255.255.0, net part 192.168.110., node

part .23, net address 192.168.110.0, broadcast address 192.168.110.255.

© FUOC • P07/M2103/02285 20 Network administration

4. How should we configure the network?

4.1. Configuration of the network interface controller (NIC)

Once the GNU/Linux kernel has loaded, it executes the init command, which,

in turn, reads the configuration file /etc/inittab and begins the start up pro-

cess. Generally, the inittab has sequences such as: si::sysinit: /etc/init.d/boot,

which represents the name of the commands file (script) that controls the

booting sequences. Generally, this script calls the other scripts, which include

the network startup script.

Example

In Debian, etc/init.d/network is executed to configure the network interface, depending
on the boot level; For example, in boot level 2, all the S* files in directory /etc/rc2.d
(which are links to the /etc/initd directory) will execute, and on the termination level,
all the K* files in the same directory. In this way, the script is only there once (/etc/init.d)
and, depending on the services required in that status, a link is created in the directory
corresponding to the node-status.

The network devices are created automatically when the corresponding hard-

ware starts up. For example, the Ethernet driver creates the eth[0..n] interfaces

sequentially, when the corresponding hardware is located.

The network interface may be configured as of that moment, which requires

two steps: assign the network address to the device and boot the network

parameters to the system. The command used for this is ifconfig (interface

configure). An example might be:

ifconfig eth0 192.168.110.23 netmask 255.255.255.0 up

Which indicates that the eth0 device should be configured with IP address

192.168.110.23 and netmask 255.255.255.0. Up indicates that the interface

will be activated (to deactivate it, execute ifconfig eth0 down). If no values

are specified, the command assumes that the default values should be used.

In this case, the kernel will configure this machine as a C-Type machine and

it will configure the network with 192.168.110.23 and the broadcast address

with 192.168.110.255. For example:

ifconfig eth0 192.168.110.23 netmask 255.255.255.0 up

There are commands, such as ifup and ifdown, that make it possible to config-

ure/unconfigure the network more simply using the /etc/network/interfaces

file to obtain all the necessary parameters (consult man interfaces for syntax).

Note

Consult
man ifconfig

for the different command op-
tions.

© FUOC • P07/M2103/02285 21 Network administration

In Debian, there is another simpler method for configuring the network (con-

sidered high-level), which uses the abovementioned commands ifup, ifdow-

nand the /etc/network/interfaces file. If we decide to use these commands, we

should not configure the network at low-level, as these commands are suffi-

cient for configuring/unconfiguring the network.

In order to modify the parameters of the eth0 interface network, we can (con-

sult man interfaces in section 5 of the Unix manual included with the operat-

ing system for more information):

ifdown eth0 for all network services over eth0

vi /etc/network/interfaces edit and modify whatever is needed

ifup eth0 start up the network services over eth0

Let us suppose that we wish to configure an eth0 interface in Debian, which

has a fixed IP address 192.168.0.123 and has 192.168.0.1 as the gateway. We

must edit /etc/network/interfaces so that it includes a section such as:

iface eth0 inet static
 address 192.168.0.123
 netmask 255.255.255.0
 gateway 192.168.0.1

If we have installed the resolvconf packet, we can add lines to specify the DNS

information. For example:

iface eth0 inet static
 address 192.168.0.123
 netmask 255.255.255.0

 gateway 192.168.0.1
 dns-search remix.org
 dns-nameservers 195.238.2.21 195.238.2.22

After the interface has been activated, the command line arguments of the

options dns-search and dns-nameservers are available for resolvconf for in-

clusion in resolv.conf. The command line argument remix.org of option dns-

search corresponds to the argument of the search option in resolv.conf (we

will look at this in more detail later) and the arguments 195.238.2.21 and

195.238.2.22 of option dns-nameservers corresponds to the arguments of the

nameserver options in resolv.conf (consult man resolv.conf). It is also possi-

ble to configure the network at low-level through the ip command (which

is equivalent to ifconfig and route). Although this command is much more

versatile and powerful (it can be used to establish tunnels, alternate routings

etc.), it is more complex and it is recommendable to use the preceding proce-

dures for basic network configurations.

© FUOC • P07/M2103/02285 22 Network administration

4.1.1. Configuration of network in Fedora (style).

Red Hat and Fedora use a different file structure for network configuration:

/etc/sysconfig/network. For example, to configure the network statically:

NETWORKING=yes
HOSTNAME=my-hostname
FORWARD_IPV4=true

GATEWAY="XXX.XXX.XXX.YYY"

Name of the host defined by the cmd hostname
True for NAT firewall gateways and routers.
False for any other case
Gateway leading out to Internet

To configure using DHCP, it is necessary to delete the GATEWAY line, as it

will be assigned by the server. And if NIS is to be incorporated, a line with the

server domain must be added: NISDOMAIN=NISProject1

To configure interface eth0 in the file

/etc/sysconfig/network-scripts/ifcfg-eth0:

DEVICE=eth0

BOOTPROTO=static

BROADCAST=XXX.XXX.XXX.255

IPADDR=XXX.XXX.XXX.XXX

NETMASK=255.255.255.0

NETWORK=XXX.XXX.XXX.0

ONBOOT=yes Activates the network on boot.

From FC3 on, it is also possible to add:

TYPE=Ethernet

HWADDR=XX:XX:XX:XX:XX:XX

GATEWAY=XXX.XXX.XXX.XXX

IPV6INIT=no

USERCTL=no

PEERDNS=yes

Or else, for configuring using DHCP :

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=dhcp

To disable DCHP, change BOOTPROTO=dhcp to BOOTPROTO=none. Any

change in these files must restart the services with service network restart (or,

otherwise, /etc/init.d/network restart).

The following three steps must be taken to change the hostname:

© FUOC • P07/M2103/02285 23 Network administration

1) Command hostname new-name.

2) Change the network configuration in /etc/sysconfig/network editing

HOSTNAME=new-name.

3) Restoring all the services (or rebooting):

• service network restart (o: /etc/init.d/network restart)

• Restarting the desktop by passing into console mode init 3 and

changing to GUI mode init 5.

Verifying whether the name is not registered in /etc/hosts. The

hostname may be changed during execution time with sysctl -w

kernel.hostname="new-name".

4.1.2. Configuration of a Wi-Fi (wireless) network

In order to configure Wi-Fi interfaces, we basically use the wireless-tools pack-

age (as well as ifconfig or ip). This package uses the iwconfig command to

configure a wireless interface, but this can also be carried out through /etc/

network/interfaces.

Example: Configure WiFi in Debian Sarge (Etch) (similar in FC6)

Let's assume that we wish to configure an Intel Pro/Wireless 2200BG wireless network
card (very common in many laptops, such as Dell, HP...). The software that controls
the cards is usually divided into two parts: the software module that will be loaded in
the kernel through the modprobe command and the firmware that is the code that will
be loaded in the card and which is given to us by the manufacturer (consult the Intel
site for this model). As we are discussing modules, it is interesting to use the Debian
module-assistant package which allows us to create and install a module easily (another
option would be to install the sources and create the corresponding module). We will
compile and install the software (which we can find on the manufacturers' website and
is called ipw2200) using the m-a command in the module-assistant package.

aptget install module-assistant (install the package)
m-a -t update
m-a -t -f get ipw2200
m-a -t -build ipw2200
m-a -t install ipw2200

We can download the compatible firmware version from the site address provided by the
manufacturer (in the product documentation) along with the version of the driver we
need, which in our case, would be driver version 1.8 and firmware version 2.0.4, obtained
from the following address:

http://ipw2200.sourceforge.net/firmware.php

We should then decompress and install the firmware:

tar xzvf ipw2200fw2.4.tgz C /tmp/fwr/
cp /tmp/fwr/*.fw /usr/lib/hotplug/firmware/

This will copy three packages (ipw2200-bss.fw, ipw2200-ibss.fw and ipw2200-sniffer.fw).
The module is then loaded with: modprobe ipw2200, the system reboots and then, from
the console, we can execute the dmesg | grep ipw command, which will show us some
lines similar to the ones below and which indicate that the module is loading (this can
be checked with lsmod):

ipw2200: Intel(R) PRO/Wireless 2200/2915 Network Driver, git1.0.8

© FUOC • P07/M2103/02285 24 Network administration

ipw2200: Detected Intel PRO/Wireless 2200BG Network Connection
...

We should then download the wireless tools package that contains iwconfig

in order to install wireless tools with aptget, among others, and if we execute

iwconfig, something similar to the following will display:

eth1 IEEE 802.11b ESSID:"Name-of-the-Wifi"

Mode:Managed Frequency:2.437 GHz

Access Point:00:0E:38:84:C8:72

Bit Rate=11 Mb/s TxPower=20 dBm

Security mode:open

...

We must then configure the network file, for example, gedit /etc/network/interfaces, and
add the eth1 wifi interface, for example:

iface eth1 inet dhcp

 pre-up iwconfig eth1 essid "Name of the Wifi"

 pre-up iwconfig eth1 key open XXXXXXXXXX

The pre-up lines execute the iwconfig command before activating the interface. This config-
uration is used if we wish to use the service in DHCP mode (automatic IP assignation, as we
shall see). Instead of DHCP, the word static should be used and the following lines, as an
example, must be entered (as in a cable card):

address 192.168.1.132

netmask 255.255.255.0

network 192.168.0.0

broadcast 192.168.0.255

gateway 192.168.1.1

Another method for configuring the interface is:

iface eth1 inet dhcp

 wireless-essid "Name of the Wifi"

 wireless-key 123456789e

We can then start up the network with ifup eth1 and we will be given information on the
connection and the state and quality of reception. In order to scan the available WiFi net-
works (access points), we can use iwlist scan, which will show us information on the avail-
able networks, and if we want to connect to a different network, we can use the iwconfig
command to change the network or Access Point.

4.2. Configuration of Name Resolver

The next step is to configure the name resolver, which changes names like

pirulo.remix.com to 192.168.110.23. The /etc/resolv.conf file is used for this.

The format is very simple (one line of text per sentence). There are three

key words for this purpose: domain (local domain), search (list of alternate do-

mains) and name server (IP address of the domain name server).

© FUOC • P07/M2103/02285 25 Network administration

Example of /etc/resolv.conf

domain remix.com
search remix.com piru.com
name server 192.168.110.1
name server 192.168.110.65

This list of name servers often depends on the network environment, which

may change depending on where the machine is or where it is connected.

The programs for connecting to telephone lines (pppd) or obtaining IP ad-

dresses automatically (dhclient) can modify resolv.conf to insert or delete

servers; but these characteristics do not always work properly and they can

sometimes generate conflicts or incorrect configurations. The resolvconf

package (even if unstable) adequately solves the problem and allows us to

configure the name servers easily and dynamically. resolvconf is designed

to work without the user having to configure anything manually; however,

the package is quite new and may require some manual assistance to make it

work properly. For more information:

http://packages.debian.org/unstable/net/resolvconf

Another important file is /etc/host.conf, which can be used to configure the

behaviour of the name resolver. The reason it is important is that it indicates

where the node address or name is first resolved. This can be consulted in the

DNS server or the local tables within the existing machine (/etc/hosts).

Example of /etc/host.conf

order hosts,bind
multi on

This configuration indicates that /etc/hosts should be verified first before con-

sulting the DNS and it also indicates (2nd line) that all valid addresses found

in /etc/hosts should be returned. Consequently, the /etc/hosts file is where the

local addresses are placed and it can also be used to access the nodes without

having to consult the DNS.

The consulting process is much faster, but the disadvantage is that, if the node

changes, the address will be incorrect. In a system that is properly configured,

only the local node and an input for the loopback interface should appear.

Example of /etc/hosts

 127.0.0.1 localhost loopback
 192.168.1.2 pirulo.remix.com pirulo

Aliases may be used for the name of a machine; this means that this machine

may have different names for the same IP address. The loopback interface

is a special type of interface that makes it possible for a node to connect to

itself (for example, to verify that the network subsystem is working without

accessing the net). By default, the IP address 127.0.0.1 has specifically been

© FUOC • P07/M2103/02285 26 Network administration

assigned to the loopback (a telnet 127.0.0.1 command will connect with

the same machine). Configuring aliases is very easy (generally, the network

startup script configures them).

Example of loopback

ifconfig lo 127.0.0.1
route add host 127.0.0.1 lo

In version 2 of the GNU library, there is an important replacement with regard

to the functions of the host.conf. file. This improvement includes the central-

isation of information on different services for name resolution, which pro-

vides many advantages for the network administrator. All the information on

name and service consultations has been centralised in the /etc/nsswitch.conf

file, which allows the administrator to configure the order and the databases

in a very simple manner. In this file, each service appears, one per line, with

a set of options, such as the node name resolution option. This indicates that

the order for consulting the databases for obtaining the node's IP or its name

will be first through the DNS service (which uses the /etc/resolv.conf file to

determine the IP of the DNS node) and then, if it cannot be obtained here,

the databases of the local (/etc/hosts) will be used. Other options for this could

be nis or nisplus, which are other information services that are explained in

subsequent units. The method for each consultation may also be controlled

through actions (between []), for example:

hosts: xfn nisplus dns [NOTFOUND = return] files

Note

Example of nsswitch.conf: ...
hosts: dns files
...
networks: files

This indicates that, when the DNS is consulted, if there is no registry for this

consultation, the program that made the consultation will return a zero. The

'!' may be used to deny the action, for example:

hosts dns [!UNAVAIL = return] files

4.3. Configuration of routing

Another aspect that has to be configured is the routing. Although the process

is considered to be very complex, in general, the routing requirements are

very simple. In a node with multiple connections, routing consists of deciding

where to send and what to receive. A simple node (one single network connec-

tion) also needs routing, given that all the nodes have a loopback and a net-

work connection (for example, Ethernet, PPP, SLIP...). As we have explained,

there is a table known as a routing table that contains rows with various fields,

Note

Consultation of routing tables:
route -n
or also
netstat -r

© FUOC • P07/M2103/02285 27 Network administration

three of which are especially important: destination address, interface through

which the message will be sent and IP address, which will take the next step

in the gateway.

The route command can be used to modify this table so as to carry out

the appropriate routing tasks. When a message arrives, the destination

address is examined, compared with the entries in the table and sent

through the interface with the address that most resembles the packet's

destination. If a gateway is specified, it is sent to the appropriate inter-

face.

Let us assume, for example, that our node is in a C class network with the

address 192.168.110.0 and the address is 192.168.110.23; and the router con-

nected to the Internet is 192.168.110.3. The configuration will be:

• First, the interface:

ifconfig�eth0�192.168.110.23�netmask�255.255.255.0�up

• Subsequently, indicate that all the datagrams for nodes with 192.168.0.*

addresses must be sent to the network device:

route�add�-net�192.1�ethernetmask�255.255.255.0�eth0

-net indicates that it is a network route but -host 192.168.110.3. may also be

used. This configuration will allow it to connect with all the nodes within a

network segment (192.1), but, what would happen if we wanted to connect

with another node outside this segment? It would be very difficult to have all

the appropriate entries for all the machines to which we wish to connect. To

simplify this task, we have the default route, which is used when the destination

address does not match any of the entries in the table. One configuration

possibility would be:

route�add�default�gw�192.168.110.3�eth0

(the gw is the IP or name of a gateway or router node).

Another method of doing this would be:

ifconfig eth0 inet down enable the interface

ifconfig lo Link encap:Local Loopback

... (no entries for eth0 will appear)

route

... (no entry in the routing table will appear)

Subsequently, the interface is enabled with another IP and a new route:

© FUOC • P07/M2103/02285 28 Network administration

ifconfig eth0 inet up 192.168.0.111 \

 netmask 255.255.0.0 broadcast 192.168.255.255

route add -net 10.0.0.0 netmask 255.0.0.0 \

 gw 192.168.0.1 dev eth0

The bar (\) indicates that the command continues on the following line. The

result:

ifconfig

 eth0 Link encap:Ethernet HWaddr 08:00:46:7A:02:B0

 inet addr:192.168.0.111 Bcast: 192.168.255.255 Mask:255.255.0.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 ...

 lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 ...

 route

 Kernel IP routing table

 Destination Gateway Genmask Flags Metric Ref Use Iface

 192.168.0.0 * 255.255.0.0 U 0 0 0 eth0

 10.0.0.0 192.168.0.1 255.0.0.0 UG 0 0 0 eth0

For more information, see the ifconfig (8) and route (8) commands.

4.4. Configuration of inetd

The next step in the configuration of the network is to configure the servers

and services that will allow another user to access the local machine or its

services. The server programs will use the ports to listen to the requests from

the clients, which will be sent to this service as IP:port. The servers may work

in two different ways: standalone (in which the service listens to the assigned

port and is always active) or through inetd.

The inetd is a server that controls and manages the network connec-

tions of the services specified in the /etc/inetd.conf file, which, when

a service request is made, starts up the appropriate server and transfers

the request.

Two important files must be configured: /etc/services and /etc/inetd.conf.

In the first file, we associate the services, the ports and the protocol, and in

the second, the server programs that will respond to a request to a determined

port. The /etc/services format is name port/protocol aliases, where the

first field is the service name, the second is the port where the service is at-

© FUOC • P07/M2103/02285 29 Network administration

tended and the protocol that it uses, and the next field is an alias of the name.

There is a series of default pre-configured services. We will now show an ex-

ample of /etc/services (# indicates that what follows is a comment):

tcpmux 1/tcp # TCP port service multiplexer

echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

systat 11/tcp users

...

ftp 21/tcp

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

24 - private

smtp 25/tcp mail

...

The /etc/inetd.conf file is the configuration for the master network service

(inetd server daemon). Each line contains seven fields separated by spaces: ser-

vice socket_type proto flags user server_path server_args, where service is the ser-

vice described in the first column in /etc/services, socket_type is the type of

socket (possible values are stream, dgram, raw, rdm, or seqpacket), proto is the

protocol that is valid for this input (it must match that in /etc/services), flags

indicates the action that should be taken when there is a new connection on

a service that is attending another connection, (wait tells inetd not to start up

a new server or nowait means that inetd must start up a new server). user will

be the user with which the person that has started up the service is identified,

server_path is the directory where the server is located and server_args are pos-

sible arguments that will be passed to the server. An example of some /etc/

inetd.conf lines is (bear in mind that # means that a comment follows, which

means that, if a service has # before the name, it means that it is not available):

...

telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd

fsp dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.fspd

shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd

login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind

exec stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rexecd...

© FUOC • P07/M2103/02285 30 Network administration

...

As of Debian Woody 3.0 r1, the inetd function has been replaced by xinetd

(recommendable), which needs the /etc/xinetd.conf configuration file (see

end of unit). If we wish to start up the inetd service, we must execute (and

create the appropriate links in the /etc/rcX.d directories) /etc/init.d/inetd.real

start (see the end of this chapter for examples of configurations).

Apart from the inetd or xinetd configuration, the typical configuration of net-

work services in a desktop or basic server environment might also include

(may of these services will be examined in the chapter on servers):

• ssh: secure interactive connection to replace telnet that includes two

configuration files /etc/ssh/ssh_config (for the client) and /etc/ssh/

sshd_config (for the server)

• exim: multi transfer agent (MTA), includes configuration files: /etc/exim/

exim.conf, /etc/mailname, /etc/aliases, /etc/email-addresses.

• fetchmail: daemon for downloading the mail from a POP3 account, /

etc/fetchmailrc

• procmail: program for filtering and distributing local mail, ~/.procmailrc

• tcpd: Filtering services for machines and domains enabled and disabled

for connecting to the server (wrappers): /etc/hosts.allow, /etc/hosts.deny

• DHCP. Service for managing (server) or obtaining an IP (client), /

etc/dhcp3/dhclient.conf (client), /etc/default/dhcp3-server (server), /etc/

dhcp3/dhcpd.conf (server)

• CVS: system for controlling concurrent versions, /etc/cvs-cron.conf, /etc/

cvs-pserver.conf

• NFS: network file system, /etc/exports

• Samba: network file system and sharing printers in Windows networks,

/etc/samba/smb.conf

• lpr: daemon for the printing system, /etc/printcap (for the Ipr system -not

CUPS-)

• Apache and Apache2: Web Server, /etc/apache/* and /etc/apache2/*

• squid: Server proxy-cache, /etc/squid/*

© FUOC • P07/M2103/02285 31 Network administration

4.5. Additional configuration: protocols and networks

There are other configuration files that are hardly ever modified, but that can

be interesting. The /etc/protocols is a file that shows the protocol identifiers

with the protocol names; in this way, the programmers can specify the proto-

cols by their names in the programs.

Example of /etc/protocols

ip 0 IP # internet protocol, pseudo protocol number

#hopopt 0 HOPOPT # IPv6 Hop-by-Hop Option [RFC1883]

icmp 1 ICMP # internet control message protocol

The /etc/networks file has a function similar to /etc/hosts, but where the net-

works are concerned, it shows the network names in relation to its IP address

(the route command will show the name of the network and not its address

in this case).

Example of /etc/networks

loopnet 127.0.0.0
localnet 192.168.0.0
amprnet 44.0.0.0 ...

4.6. Security aspects

It is important to take into account the security aspects in network connec-

tions, as a significant amount of attacks occur through the network. We will

discuss this subject in more detail in the unit on security; however, there are

some basic recommendations that should be taken into account in order to

minimise the risks immediately before and after configuring the network in

our computer:

• Do not activate services in /etc/inetd.conf that will not be used, insert an

before the name to avoid sources of risk.

• Modify the /etc/ftpusers file to deny access to certain users who may have

an FTP connection to your machine.

• Modify the /etc/securetty file to indicate from which terminals (a name

per line), for example: tty1 tty2 tty3 tty4, it will be possible for the root

superuser to connect. The root superuser will not be able to connect from

any of the remaining terminals.

• Use the tcpd program. This server is a wrapper that makes it possible to

allow/deny a service from a given node and it is placed in /etc/inetd.conf

© FUOC • P07/M2103/02285 32 Network administration

as a service intermediary. The tcpd verifies certain access rules in two files:

/etc/hosts.allow /etc/host.deny.

If the connection is accepted, it starts up an appropriate service passed as an

argument (for example, the FTP service line shown earlier in inetd.conf:

ftp stream tcp nowait root /usr/sbin/tcpd/usr/sbin/in.ftpd.

tcpdfirst search /etc/hosts.allow and then /etc/hosts.deny. The hosts.deny file

contains the rules on which nodes do not have access to a service within this

machine. A restrictive configuration is ALL: ALL, as it will only allow access

to the services from the nodes declared in /etc/hosts.allow.

The /etc/hosts.equiv file permits access to this machine without having to

enter the password. Using this mechanism is not recommended; users should

be advised not to use the equivalent from the user account, through the .rhosts

file.

In Debian, it is important to configure /etc/security/access.conf, the file that

indicates the rules on who and from where it is possible to log in to this ma-

chine. This file has a line by command with three fields separated by a ':' of

the permission type: Users: origin. The first will be an +o- (allow or deny), the

second a user name/user names, group or user@host, and the third will be the

name of a device, node, domain, node or networks addresses or ALL.

Example of access.conf

This command does not permit root logins over tty1:

 ALL EXCEPT root:tty1...

It permits access to u1, u2, g1 and all those in the remix.com domain:

 +:u1 u2 g1 .remix.com:ALL

4.7. IP Options

There are further options with regard to IP traffic that we should mention.

This is configured by starting up the corresponding file in the /proc/sys/net/

ipv4/ directory. The file name is the same as the command and a 1 must be

placed in the file to activate them, or a 0 to deactivate them.

Example

For example, if we wish to activate ip_forward, we have to execute:

 echo 1 > /proc/sys/net/ipv4/ip_forward

© FUOC • P07/M2103/02285 33 Network administration

The most widely used are: ip_forward used for routing between interfaces or

with IP Masquerading; ip_default_ttl, which is the lifetime for an IP packet (64

milliseconds, by default) ip_bootp_agent logical variable (BOOLEAN) which

accepts packets (or not) with the origin address of the 0.b.c.d type and the

destination of this node, broadcast or multicast.

4.7.1. Commands for solving problems with the network

If there are problems in the configuration of the network, we can begin by

verifying the output of the following commands to obtain an initial idea:

ifconfig

cat /proc/pci

cat /proc/interrupts

dmesg | more

In order to verify the network connection, we can use the following com-

mands (netkit-ping, traceroute, dnsutils, iptables and net-tools must be in-

stalled):

ping uoc.edu # verifies the Internet connection

traceroute uoc.edu # scans IP packets

ifconfig # verifies the host configuration

route -n # verifies the routing configuration

dig [@dns.uoc.edu] www.uoc.edu # verifies the registries in

www.uoc.edu # on the dns.uoc.edu server.

iptables -L -n |less # verifies packet filtering (kernel >=2.4)

netstat -a # shows all the open ports

netstat -l --inet # shows all the listening ports

netstat -ln --tcp # shoos the listening tcp ports (number)

© FUOC • P07/M2103/02285 34 Network administration

5. DHCP Configuration

DHCP stands for dynamic host configuration protocol. It is very simple to

configure and it is useful because, instead of having to configure each node in

a network individually, this can be done in a centralised manner and adminis-

tering it is therefore easier. The configuration of a client is very easy, as we only

have to install one of the following packages: dhcp3-client (version 3, In-

ternet Software Consortium), dhcpcd (Yoichi Hariguchi and Sergei Viznyuk),

pump (Red Hat); we then add the word dhcp in the section corresponding to

the interface that we wish to work under this dhcp client (e.g./etc/network/

interfaces must have iface eth0 inet dhcp...).

Configuring the server requires more care, but it is not especially complicated.

First, for the server to serve all the DHCP clients (including Windows), we

must address some questions concerning the broadcast addresses. In order to

do this, first the server must be able to send messages to the 255.255.255.255

address, which is not valid in GNU/Linux. In order to try this, execute:

route add -host 255.255.255.255 dev eth0

If the following message appears: 255.255.255.255: Unknown host, then the

following entry must be added in /etc/hosts: 255.255.255.255 dhcp and try

again:

route add -host dhcp dev eth0

The configuration of dhcpd can be carried out with the graphic interface of

linuxconf (not advisable) or by editing /etc/dhcpd.conf. An example of this

file is:

Example of /etc/dhcpd.conf:

default-lease-time 1200;

max-lease-time 9200;

option domain-name "remix.com";

deny unknown-clients;

deny bootp;

option broadcast-address 192.168.11.255;

option routers 192.168.11.254;

option domain-name-servers 192.168.11.1,192.168.168.11.2;

subnet 192.168.11.0 netmask 255.255.255.0

{ not authoritative;

 range 192.168.11.1 192.168.11.254

 host marte {

 hardware ethernet 00:00:95:C7:06:4C;

© FUOC • P07/M2103/02285 35 Network administration

 fixed address 192.168.11.146;

 option host-name "marte";

 }

 host saturno {

 hardware ethernet 00:00:95:C7:06:44;

 fixed address 192.168.11.147;

 option host-name "saturno";

 }

 }

This will allow the server to assign the address range from 192.168.11.1 to

192.168.11.254, as described for each node. If the corresponding host { ... }

segment does not exist, they will be assigned randomly. The IPs are assigned

for a minimum time of 1,200 seconds and a maximum of 9,200 (if these pa-

rameters do not exist, they will be assigned indefinitely).

Before executing the server, we must verify if the file /var/state/dhcp/

dhcpd.leases exists (otherwise, it will have to be created with touch /var/

state/dhcp/dhcpd.leases). To execute the server: /usr/sbin/dhcpd (or we

can put it in the startup scripts). With /usr/sbin/dhcpd -d-f, we can see

the activity in the server within the system's console. [Mou01, Rid00, KD00,

Dra99]

It is important not to forget the not authoritative phrase, as, otherwise,

this server may leave other dhcp servers that serve IP for other segments in-

active.

© FUOC • P07/M2103/02285 36 Network administration

6. IP aliasing

There are some applications in which it is useful to configure multiple IP ad-

dresses to a single network device. The ISPs (Internet service providers) frequent-

ly use this characteristic to provide personalised features (such as World Wide

Web and FTP) to their users. For this, the kernel must be compiled with the

Network Aliasing and IP (aliasing support) options. After installing the new

kernel, the configuration is very easy. The aliases are attached to the virtual

network devices associated with the new device with a format such as: device:

virtual number.

For example: eth0:0, ppp0:8

Let us say that we have an Ethernet network that supports two different IP

subnets simultaneously and that our machine wants to have direct access to

them. An example of the configuration would be:

ifconfig eth0 192.168.110.23 netmask 255.255.255.0 up

route add -net 192.168.110.0 netmask 255.255.255.0 eth0

ifconfig eth0:0 192.168.10.23 netmask 255.255.255.0 up

route add -net 192.168.10.0 netmask 255.255.255.0 eth0:0

Which means that we would have two IPs, 192.168.110.23 and 192.168.10.23

for the same NIC. In order to delete an alias, add a '-' at the end of the name

(for example, ifconfig eth0:0- 0). [Mou01, Ran05]

A typical case is when we wish to configure a single Ethernet card so that it

acts as the interface for different IP subnets. For example, suppose we have

a machine that is on a LAN network, LAN 192.168.0.x/24. And we wish to

connect the machine to the Internet using a public IP address provided with

DHCP using the existing Ethernet card. For example, we can follow the pro-

cedure described in the preceding example or edit the /etc/network/interfaces

file so that it includes a section similar to the following:

iface eth0 inet static
address 192.168.0.1
netmask 255.255.255.0
network 192.168.0.0
broadcast 192.168.0.255

iface eth0:0 inet dhcp

The eth0:0 interface is a virtual interface and its parent interface, eth0, will

activate when it does.

© FUOC • P07/M2103/02285 37 Network administration

7. IP Masquerade

The IP Masquerade is a resource used so that a set of machines may

use a single IP address. This permits the hidden nodes (in other words,

the ones that use a private IP, such as 198.162.10.1) can go out to the

Internet; but they cannot directly accept external calls or services; only

through the machine that has the real IP.

This means that some services will not work (for example, talk) and others

must be configured in PASV (passive) mode for them to work (for example,

FTP). However, WWW, telnet or IRC will work properly. The kernel must be

configured with the following options: Network firewalls, TCP/IP networking,

IP: forwarding/gatewaying, IP: masquerading. Normally, the most common

configuration is to have a machine with a SLIP or PPP connection and to have

another network device (for example, an Ethernet card) with a reserved net

address. As we have seen and as described in RFC 1918, the following address

ranges (IP/Mask) can be used as private IPs: 10.0.0.0/255.0.0.0, 172.16.0.0/

255.240.0.0, 192.168.0.0/255.255.0.0. The nodes that must be masqueraded

will be on this second network. Each of these machines must have the address

of the machine that is masquerading such as default gateway or router. On

this machine, we can configure:

• Network route for Ethernet considering that the network has a IP =

192.168.1.0/255.255.255.0:

route add -net 192.168.1.0 netmask 255.255.255.0 eth0

• Default route for the rest of Internet:

route add default ppp0

• All the nodes over the 192.168.1/24 network will be masqueraded:

ipchains -A forward -s 192.168.1.0/24 -j MASQ

• If iptables are used over a kernel, version 2.4 or higher:

iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

Consult the references in the unit covering security for information on

ipchains and iptables. [Ran05, KD00]

© FUOC • P07/M2103/02285 38 Network administration

8. NAT with kernel 2.2 or higher

The IP network address translation, NAT, is a replacement that has made the fea-

tures of GNU/Linux IP Masquerade obsolete and that provides new features to

the service. One of the improvements included in the TCP/IP stack of GNU/

Linux 2.2 is that NAT is integrated into the kernel. In order to use it, we have

to compile the kernel with:

CONFIG_IP_ADVANCED_ROUTER, CONFIG_IP_MULTIPLE_TABLES and

CONFIG_IP_ROUTE_NAT.

And if we need comprehensive control of the NAT rules (for example, to acti-

vate the firewall we must also have

CONFIG_IP_FIREWALL and CONFIG_IP_ROUTE_FWMARK.

In order to work with these new features, we need to use the ip program (which

can be obtained at ftp://ftp.inr.ac.ru/ip_routing/). Then, to translate the in-

coming datagram addresses, we can use:

ip route add nat <extaddr>[/<masklen>] via <intaddr>

This will translate the destination address of an incoming packet addressed to

ext-addr (the address that is visible externally from Internet) to int-addr (the

address of the internal network through the gateway/firewall). The packet is

routed in accordance with the local route table. Single or block addresses can

be translated. For example:

ip route add nat 240.0.11.34 via 192.109.0.2

ip route add nat 240.0.11.32/27 via 192.109.0.0

The first makes the internal address 192.109.0.2 accessible as 240.0.11.34.

The second remaps the 192.109.0.031 block to 240.0.11.3263. In this case,

we have used, as an example, translations to class D and E addresses, such as

240.0.*.* so as not to use a public address. The user must replace these address-

es (240.0.11.34 and 240.0.11.3263) for the corresponding public addresses to

which they wish to translate. [Ran05]

© FUOC • P07/M2103/02285 39 Network administration

9. How do I configure a DialUP and PPP connection?

Configuring a dial -up connection using PPP in GNU/Linux is very simple.

PPP (point to point protocol) makes it possible to establish IP-Links between two

computers with a modem (bearing in mind that it must be a modem supported

by GNU/Linux, as not all modems, especially internal ones or those known

as Winmodems, can be configured because many of them need additional

software in order to establish communication). [Vas00, Law07, Sec00].

To start with, we must have the following information: the modem init-string

(this is not normally necessary but if it is and it is not available, we can use

ATZ, which works in most modems or we can consult specialised init-string

lists).

We also need the ISP data: connection ID (login name), password and tele-

phone number. The DNS addresses would be advisable, but this is optional

in the current versions of pppd. Also, we should verify that the modem is

connected properly. With an external modem, we must execute echo > /dev/

ttyS0 and check the LEDs on the modem to see if it is active. Otherwise, try

with ttyS1, if the modem is connected to the 2nd serial port. With an internal

modem, check the supported hardware manual to see if this modem can be

recognised by GNU/Linux; if this is the case, it may be necessary to reconfig-

ure the kernel in order to use it. We can also use cat /proc/pci in case it is in

the PCI bus. [PPP00]

The easiest way to configure the modem now is through the kppp package (we

must install the kdenetwork-ppp* and ppp* packages). On a terminal, execute

/usr/bin/kppp. On the window, fill in the following boxes:

Accounts ⇒ New Connection

Dial ⇒ Authentication 'PAP/CHAP'

Store Password ⇒ yes

IP ⇒ Dynamic IP Address

Autoconfigure hostname ⇒ No

Gateway ⇒Default Gateway ⇒ Assign the Default Route

DNS ⇒Configuration Automatic ⇒Disable existing DNS

Device ⇒ttyS1(com1) o ttyS2 (com2)

Modem ⇒Query Modem to see the results (if you do not obtain the results,

change the ttySx device).

© FUOC • P07/M2103/02285 40 Network administration

After entering the login name and password, we will be connected to the In-

ternet (to check that we are connected, execute pingwww.google.com for exam-

ple). Here, we have used the kppp package, but we could as easily have used

linuxconf or gnomeppp indistinctly).

A quick way of configuring pppd in Debian consists of using the pppconfig

program, which comes with the package. pppconfig configures files such as the

preceding ones after asking the user some questions through the menu inter-

face. Another option for using pppd consists of executing it from wvdial, which

comes with the wvdial package. Instead of making pppd execute chat to dial

and negotiate the connection, wvdial dials, carries out the initial negotiation

and then starts up pppd so that it can do the rest. In most cases, with just the

telephone number, username and password, wvdial can start the connection.

Once PPP has been configured, for it to work with, for example, my_isp, we

must edit /etc/network/interfaces so that it includes a section such as the fol-

lowing (the ifup, ifdown commands use the pon and poff commands to config-

ure PPP interfaces):

iface ppp0 inet ppp
provider mi_isp

with this section, ifup ppp0 executes:

pon my_isp

It is not currently possible to use ifup down to perform a supporting config-

uration of the PPP interfaces. As pon disappears before pppd has finished es-

tablishing the connection, ifup executes the up scripts before the PPP inter-

face is ready to be used. Until this fault is resolved, it will still be necessary to

configure the connection later in /etc/ppp/ip-up or /etc/ppp/ip-up.d/.

Many broadband Internet Service Providers (ISP) use PPP to negotiate the con-

nection even when the clients' machines are connected through Ethernet and/

or ATM networks. This is achieved through PPP over Ethernet (PPPoE) which is

a technique for encapsulating PPP flow within Ethernet frames. Suppose that

the ISP is called my_isp. First, we must configure PPP and PPPoE for my _isp.

The easiest way of doing this consists of installing the pppoeconf package and

executing pppoeconf from the console. We then edit /etc/network/interfaces so

that it includes a fragment such as the following:

iface eth0 inet ppp
provider mi_isp

© FUOC • P07/M2103/02285 41 Network administration

Sometimes, problems arise with PPPoE that are related to the maximum trans-

mit unit (or MTU) in DSL (digital subscriber line) lines; you may consult DSL-

HOWTO for further details. If the modem has a router, this should be borne

in mind, as the modem/router will handle the PPPoE connection on its own

and it will appear on the LAN side as a simple Ethernet to Internet gateway.

© FUOC • P07/M2103/02285 42 Network administration

10.Configuring the network through hotplug

The hotplug package supports hot swapping when booting (the package in

question must have been installed). The network hardware can be hot plugged

either at start up, after inserting the card in the machine (a PCMCIA card,

for example) or after a utility such as discover has been executed and the nec-

essary modules have been loaded. When the kernel detects new hardware,

it starts up the driver for the hardware and then executes the hotplug pro-

gram to configure it. If the hardware is subsequently removed, the program

executes hotplug again, with different parameters. In Debian, when hotplug

is called, this executes the scripts of /etc/hotplug/ and /etc/hotplug.d/. The

network hardware that was recently connected is configured by /etc/hotplug/

net.agent. Let us assume that the PCMCIA network card has been connected,

which would mean that the eth0 interface would be ready to be used. /etc/

hotplug/net.agent performs the following:

ifup eth0=hotplug

Unless a logical interface called hotplug has been added in /etc/network/in-

terfaces, this command will have no effect. For this command to configure

eth0, we have to add the following lines to /etc/network/interfaces:

mapping hotplug
script echo

If you only want eth0 to hotplug and not other interfaces, use grep instead

of echo as follows:

mapping hotplug
script grep
map eth0

ifplugd activates or deactivates an interface depending on whether the under-

lying hardware is connected to the network or not. The program can detect

a cable connected to an Ethernet interface or an access point associated to

a Wi-Fi interface. When ifplugd sees that the status of the connection has

changed, it will execute a script, which, by default, executes ifup or ifdown

for the interface. ifplugd works in combination with hotplug. When a card is

inserted, which means that the interface is ready to be used, /etc/hotplug.d/

net/ifplugd.hotplug starts up an instance of ifplugd for that interface. When

ifplugd detects that the card is connected to a network, it executes ifup for

this interface.

In order to associate a Wi-Fi card with an access point, we may have to pro-

gram it with an appropriate WEP encryption code. If ifplugd is being used to

control ifup, as we have explained, then evidently it will not be able to con-

© FUOC • P07/M2103/02285 43 Network administration

figure the encryption code using ifup, as this is only called once the card has

been associated. The simplest solution is to use waproamd, which configures

the WEP encryption code according to the available access points that are dis-

covered through a WiFi network search. For more information, consult man

waproamd and the information on the package.

© FUOC • P07/M2103/02285 44 Network administration

11.Virtual private network (VPN)

A VPN (virtual private network) is a network that uses Internet to trans-

port data, but stops any external members from accessing that data.

This means that we have a network with connected VPN nodes tunnelled

through another network, through which the traffic passes and with which

no one can interact. It is used when remote users wish to access a corporate

network to maintain the security and privacy of the data. Various methods

can be used to configure a VPN, such as SSH (SSL), CIPE, IPSec, PPTP; they can

be consulted in the bibliography (we recommend consulting VPN PPP-SSH

HOWTO, by Scott Bronson and VPN-HOWTO by Matthew D. Wilson). [Bro01,

Wil02].

In order to perform the configuration tests in this section, we will use Open-

VPN, which is a solution based on SSL VPN and can be used for a wide range

of solutions, for example, remote access, VPN point to point, secure WiFi net-

works or distributed corporate networks. OpenVPN implements OSI layer 2 or

3 using SSL/TLS protocols and supports authentication based on certificates,

smart cards and other confirmation methods. OpenVPN is not a proxy appli-

cations server and does not operate through a web browser.

In order to analyse it, we will use an option in OpenVPN called OpenVPN

for Static key configurations, which provides a simple method for configuring

a VPN that is ideal for tests or point-to-point connections. The advantages

are the simplicity and the fact that it is not necessary to have a X509 public

key infrastructure (PKI) certificate to maintain the VPN. The disadvantages are

that it only permits one client and one server, as, because the public key and

private key are not used, there may be the same keys as in previous sessions

and there must be a text-mode key in each peer and the secret key must be

previously exchanged for a secure channel.

11.1. Simple example

In this example, we will configure a VPN tunnel on a server with IP=10.8.0.1

and a client with IP=10.8.0.2. The communication will be encrypted between

the client and server on a UDP port 1194, which is the default port in Open-

VPN. After installing the package (http://openvpn.net/install.html), we must

generate the static key:

openvpn --genkey --secret static.key

© FUOC • P07/M2103/02285 45 Network administration

Then, we must copy the static.key file in the other peer over a secure chan-

nel (using ssh or scp, for example). The server configuration file of the

openVPN_server for example:

dev tun

ifconfig 10.8.0.1 10.8.0.2

secret static.key

The client configuration file for example openVPN_client

remote myremote.mydomain

dev tun

ifconfig 10.8.0.2 10.8.0.1

secret static.key

Before verifying that the VPN works, we must verify the firewall to check that

port 1194 UDP is open on a server and that the virtual interface tun0 used

by OpenVPN is not blocked either over the client or over the server. Bear in

mind that 90% of the connection problems faced by new OpenVPN users are

related in some way to the firewall.

In order to verify the OpenVPN between two machines, we must change the

IPs for the real ones and the domain for the corresponding one, and then

execute the server side.

openvpn [server config file]

Which will provide an output such as:

Sun Feb 6 20:46:38 2005 OpenVPN 2.0_rc12 i686-suse-linux [SSL]

[LZO] [EPOLL] built on Feb 5 2005

Sun Feb 6 20:46:38 2005 Diffie-Hellman initialized with 1024

bit key

Sun Feb 6 20:46:38 2005 TLS-Auth MTU parms [L:1542 D:138

EF:38 EB:0 ET:0 EL:0]

Sun Feb 6 20:46:38 2005 TUN/TAP device tun1 opened

Sun Feb 6 20:46:38 2005 /sbin/ifconfig tun1 10.8.0.1 pointo-

point 10.8.0.2 mtu 1500

Sun Feb 6 20:46:38 2005 /sbin/route add -net 10.8.0.0 netmask

255.255.255.0 gw 10.8.0.2

Sun Feb 6 20:46:38 2005 Data Channel MTU parms [L:1542

D:1450 EF:42 EB:23 ET:0 EL:0 AF:3/1]

Sun Feb 6 20:46:38 2005 UDPv4 link local (bound): [undef]:1194

Sun Feb 6 20:46:38 2005 UDPv4 link remote: [undef]

Sun Feb 6 20:46:38 2005 MULTI: multi_init called, r=256 v=256

Sun Feb 6 20:46:38 2005 IFCONFIG POOL: base=10.8.0.4 size=62

Sun Feb 6 20:46:38 2005 IFCONFIG POOL LIST

© FUOC • P07/M2103/02285 46 Network administration

Sun Feb 6 20:46:38 2005 Initialization Sequence Completed

And the client side:

openvpn [client config file]

In order to check that it works, we might ping 10.8.0.2 from the server and

ping 10.8.0.1 from the client. For more information, please check http://

openvpn.net/howto.html.

To add compression to the link, we must add the following line to the two

configuration files:

comp-lzo

In order to protect the connection through a NAT router/firewall alive and

carry on the IP changes through a DNS, if one of the peers changes, add the

following to the two configuration files:

keng-timer-rem

persist-tun

peepalive 10 60

pirsist-key

To execute as a daemon with the privileges of the nobody user/group, add the

following to the configuration files:

user nobody

group nobody

Daemon

© FUOC • P07/M2103/02285 47 Network administration

12.Advanced configurations and tools

There is a set of additional packages (that replace the conventional ones) and

tools that either improve the machine's security (recommended in hostile en-

vironments) or help to configure the network (and the system in general) in

a more user-friendly style.

These packages may be of great help to the network administrator for

avoiding intrusions or avoiding local users exceeding their permissions

(usually not carried out by the local user but by someone assuming their

identity) or for helping new users to configure the services properly.

In this sense, we must examine:

• Advanced�TCP/IP� configuration: the sysctl command can be used to

modify the parameters of the kernel during execution or at start up, to

adjust them to the needs of the system. The parameters that may be mod-

ified are the ones in the /proc/sys/ directory and they can be consulted

with sysctl -a. The simplest way of modifying these parameters is through

the /etc/syscntl.conf. configuration file. After carrying out the modifica-

tion, we must restart the network:

/etc/init.d/networking�restart

In this section, we will examine some modifications for improving the

network's performance (improvements depending on conditions) or the

system's security (consult the references for more details) [Mou01]:

net.ipv4.icmp_echo_ignore_all = 1

• Does not respond to ICMP packages, such as the ping command for ex-

ample, which could mean that there is a denial-of-service (DoS) attack.

net.ipv4.icmp_echo_ignore_broadcasts = 1

• Avoids congestion in the network not responding to the broadcast.

net.ipv4.conf.all.accept_source_route = 0

net.ipv4.conf.lo.accept_source_route = 0

net.ipv4.conf.eth0.accept_source_route = 0

net.ipv4.conf.default.accept_source_route = 0

• Inhibits the IP source routing packages, which could represent a security

threat (in all the interfaces).

net.ipv4.tcp_syncookies = 1

net.ipv4.conf.all.accept_redirects = 0

© FUOC • P07/M2103/02285 48 Network administration

• Permits the rejection of a DoS by SYNC packages, which would consume

all the system's resources, forcing the user to reboot the machines.

net.ipv4.conf.lo.accept_redirects = 0

net.ipv4.conf.eth0.accept_redirects = 0

net.ipv4.conf.default.accept_redirects = 0

• Useful for avoiding CMP redirect acceptance attacks (these packages are

used when the routing does not have the appropriate route) in all the

interfaces.

net.ipv4.icmp_ignore_bogus_error_responses = 1

• Sends alerts on all the error messages in the network.

net.ipv4.conf.all.rp_filter = 1

net.ipv4.conf.lo.rp_filter = 1

net.ipv4.conf.eth0.rp_filter = 1

net.ipv4.conf.default.rp_filter = 1

• Enables protection against IP spoofing in all the interfaces.

net.ipv4.conf.all.log_martians = 1

net.ipv4.conf.lo.log_martians = 1

net.ipv4.conf.eth0.log_martians = 1

net.ipv4.conf.default.log_martians = 1

Generates a log of all the spoofed packets, source routed packets and redi-

rect packets.

• The following parameters will permit the machine to attend the TCP con-

nections faster and better.

net.ipv4.tcp_fin_timeout = 40, By default, 60.

net.ipv4.tcp_keepalive_time = 3600, By default, 7.200.

net.ipv4.tcp_window_scaling = 0

net.ipv4.tcp_sack = 0

net.ipv4.tcp_timestamps = 0, By default, all at 1 (enabled).

• Iptables: the latest versions of GNU/Linux (kernel 2.4 or higher) include a

new feature for building package filters called netfilter [Mou01]. This new

feature is controlled by a tool called iptables that has better characteristics

than its predecessor (ipchains). As we will see in the unit on security, it is

extremely easy to build a firewall with this tool for detecting and warding

off the most common attacks, such as DoS, IP/MAC spoofing etc. Before it

is activated, we have to verify that the kernel is version 2.4 or later, which

is the one that is configured to support ipfilter (which means that it is nec-

essary to compile the kernel to activate the option network packet filtering

[CONFIG_NETFILTER], and all the specific suboptions). The specific rules

must be activated when booting (for example, through /etc/init.d and the

appropriate link in the appropriate rc directory) and will have a format

similar (check the references on capacities and complete syntax) to:

© FUOC • P07/M2103/02285 49 Network administration

iptables -A Type -i Interface -p protocol -s SourceIP --

source-port Port -d DestinationIP --destination-port Port

-j Action

• GnuPG: this tool makes it possible to encrypt data for subsequent sending

(emails, for example) or storage, it can also generate digital signatures (it

meets the RFC2440 standard) and it does not use patented algorithms,

which means that the open source is freer, but we lose compatibility with

other tools (for example, PGP 2.0), which use algorithms such as IDEA and

RSA. For compiling and/or installing the tool, follow the instructions of

the programmers at http://www.gnupg.org/. Firstly, we must create a pair

of keys (public and private) by executing, in root, the gpg --gen-key

command twice and answering the questions that appear. Generally, these

keys will be stored in /root. Then we export (to a website, for example) the

public key so that other users can use it to encrypt the mail/information

that may only be seen by the user that generated the public key. For this,

we must use gpg --export -ao UID, which will generate an ASCII file

of the UID user's public key.

In order to import another user's public key, we can use gpg --import

filename, and to sign a key (which is to tell the system that we are satis-

fied that the signed key is from who it says it is), we can use gpg --sign-

key UID. To verify a key, we can use gpg --verify file/data and to

encrypt/decrypt a key, gpg-sear UID file g, gpg -d file, respectively. [Gnu]

• Logcheck: one of a network administrator's main tasks is to check the log

files daily (more than once a day) to detect any possible attacks/intrusions

or events that may be evidence of these questions. This tool selects com-

pressed information on problems and potential risks (from the log files)

and then sends this information to the corresponding administrator, by

email, for example. The package includes utilities for executing in inde-

pendent mode and remembering the last entry verified for the subsequent

executions. For information on the configuration/installation, you may

consult the references. [Log]

• PortSentry and Tripwire: these tools help the network administrator to

carry out their security tasks. PortSentry makes it possible to detect and

respond to port searching processes (the preliminary step before attack-

ing or spamming) in real time and to make various decisions with regard

to the actions that are being performed. Tripwire is a tool that will help

administrators by warning them of possible modifications and changes

in the files, to avoid possible (severe) damage. This tool compares the dif-

ferences between the current files and a database previously generated to

detect changes (insertions and deletions), which is very useful for detect-

ing possible modifications to vital files such as, for example, configura-

tion files. Consult the references on the installation/configuration of these

tools. [Tri]

© FUOC • P07/M2103/02285 50 Network administration

• Xinetd: this tool significantly improves the efficiency and performance

of inetd and tcp -wrappers. One of the biggest advantages of xinetd is

that it can ward off denial-of-access (DoA) attacks through the control

mechanisms for services based on the identification of client addresses,

during the accessing time and (logging) time. It should not be assumed

that Xinetd is the most appropriate option for all the services (for example,

it is better if FTP and SSH execute only as daemons), as many of these

processes will overload the system and there are secure access mechanisms

that do not create interruptions in the system's security. [Xin]

Compiling and/or installing is simple; we only have to configure two files:

/etc/xinetd.conf (the configuration file of Xinetd) and /etc/rc.d/init.d/

xinetd (the Xinetd startup file). The first file contains two sections: de-

faults, which is where we find the parameters that will apply to all the

services, which will be the ones that activate through Xinetd.

A typical example of the configuration might be:

xinetd.conf
The default configuration options that are applied to all the
servers may be modified for each service
defaults
{
instances = 10
log_type = FILE /var/log/service.log
log_on_success = HOST PID
log_on_failure = HOST RECORD
}
The name of the service must be located in /etc/services to obtain
the right port
If the server/Port is not a standard one, use "port = X"
service ftp
{
socket_type = stream
protocol = tcp
wait = no
user = root
server = /usr/sbin/proftpd
}
#service telnet
#{
socket_type = stream
protocol = tcp
wait = no
user = root
no_access = 0.0.0.0
only_from = 127.0.0.1
banner_fail = /etc/telnet_fail
server = /usr/sbin/in.telnetd
#}
service ssh
{
socket_type = stream
protocol = tcp
wait = no
user = root
port = 22
server = /usr/sbin/sshd
server_args = -i
}
service http
{
socket_type = stream
protocol = tcp
wait = no
user = root

© FUOC • P07/M2103/02285 51 Network administration

server = /usr/local/apache/bin/httpd
}
#service finger
#{
socket_type = stream
protocol = tcp
wait = no
user = root
no_access = 0.0.0.0
only_from = 127.0.0.1
banner_fail = /etc/finger_fail
server = /usr/sbin/in.fingerd
server_args = -l
#}
End of /etc/xinetd.conf

The abovementioned services (#) will not be available. In the defaults sec-

tion, we can install parameters such as maximum number of simultane-

ous service requests, the type of registry (log) that we require, from which

nodes the requests will be received by default, the maximum number of IP

requests that will be attended or the services that execute as superservers

(imapd or popd), such as:

default {
instances = 20
log_type = SYSLOG
authpriv log_on_success = HOST
log_on_failure = HOST
only_from = 192.168.0.0/16
per_source = 3
enabled = imaps
}

The service section, one for each service, such as:

service imapd {
socket_type = stream
wait = no
user = root
server = /usr/sbin/imapd
only_from = 0.0.0.0/0 #allows every client
no_access = 192.168.0.1
instances = 30
log_on_success += DURATION USERID
log_on_failure += USERID
nice = 2
redirect = 192.168.1.1 993 #Makes it possible to redirect the traffic of port 993
to node 192.168.1.1
bind = 192.168.10.4
#Makes it possible to indicate the interface to which the service is associated to avoid
service spoofing problems.
}

The /etc/init.d/xinetd file makes it possible to start up the server (with the

appropriate link, according to the selected runlevel, for example, 3, 4 and

5). It is convenient to change the attributes of both files to guarantee that

they are not subsequently modified or disabled with: chmod 700 /etc/

init.d/xinetd; chown 0.0 /etc/init.d/xconfig; chmod 400 /etc/xinetd.conf;

chattr +i /etc/xinetd.conf.

• Linuxconf: this is a configuration and administration tool of a GNU/Linux

system, but it has been rendered obsolete, although it can still be found in

© FUOC • P07/M2103/02285 52 Network administration

some distributions. More information at http://www.solucorp.qc.ca/lin-

uxconf/.

• Webmin: this is another tool (webmin-core, webmin-dhcp, webmin-inetd,

webmin-sshd packages etc.) that makes it possible to configure and add

aspects related to the network through a web interface (we must have in-

stalled the Apache server, for example). Although it is still being developed

in many distributions, it is not included by default. For more information,

please visit http://www.webmin.com/. To execute the tool after it has been

installed from a browser, call the URL https://localhost:10000, which will

ask you to accept the SSL certificate and the username (root user initially)

and the corresponding password.

• System-config-*: in Fedora, there are a variety of graphic tools that are

called system-config-"something" and where "something" is what they

have been designed for. In general, if we are in a graphical environment,

we can reach each of them using a menu; however, each of these tools

means we have to remember the menu. One tool that centralises all the

system configs is system-config-control in one single entry in the menu

and one single graphical interface from which we can make our selections

using a set of icons. For this, we have to go to Applications -> Add/Remove

Software and this will start up, in root mode, in the graphical interface of

the Pirut software (the Fedora Extras repository must be enabled). In the

Pirut interface, the available packages can be searched for using, for ex-

ample, system-config-*; make the selection for the system-config-control*

and click on Apply. Among other options, we can configure almost all of

the features of the network and services here.

• Networkmanager: it is a tool that makes it possible to manage wireless

networks and cable networks easily, simply and without any complica-

tions, but it is not the most appropriate for servers (only for desktops).

Installing the tool is very easy: apt-get install network-manager-xx, where

xx is gnome or kde depending on the installed desktop. To configure the

tool, we must fill in all the entries in (Debian) /etc/network/interfaces ex-

cept for the loopback interface, for example, by only leaving:

auto lo

iface lo inet loopback

This step is not obligatory but it does make the process for discovering

networks/interfaces quicker. On Debian, there is an extra step that must

be taken, as the user must integrate within the netdev group, for reasons

related to the permissions. To do this, we must execute (as the root user, or

if not, with the sudo command first) adduser current_user netdev

and reboot the system (or restart the network with /etc/init.d/net-

working restart and logging out and back in, so that the current user

is included in the netdev group).

© FUOC • P07/M2103/02285 53 Network administration

• Other tools: (some of these are explained in the unit on se-

curity) Nmap(explore and audit for network security purpos-

es), Nessus(evaluate the network security remotely), Wireshark

http://www.wireshark.org/download.html (ex-Ethereal) (network proto-

cols analyser), Snort(intrusion detection system, IDS), Netcat(simple

and powerful utility for debugging and exploring a net-

work), TCPDump(monitoring networks and information acquisition),

Hping2(generates and sends ICMP/UDP/TCP packages to analyse how a

network works).

© FUOC • P07/M2103/02285 55 Network administration

Activities

1)�Define the following network scenarios:
a) Isolated machine.
b) Small local network (4 machines, 1 gateway).
c) 2 segmented local networks (2 sets of 2 machines and one router each and a general
gateway).
d) 2 interconnected local networks (two sets of 2 machines + a gateway each).
e) 2 machines connected through a private virtual network. Indicate the advantages/disad-
vantages of each configuration, for which types of infrastructure they are appropriate and
which important parameters are needed.

2) Configure the network in options a, b and d of the point.

© FUOC • P07/M2103/02285 56 Network administration

Annex. Controlling the services linked to an FC6 net-
work.

An important aspect for all the services is how they are started up. FC6 includes

a series of utilities for managing the service daemons (including the network

ones). As we have seen on the chapter on local administration, the runlevel is

the operating mode that will specify which daemons will be executed. In FC

we can find: runlevel 1 (single user), runlevel 2 (multiuser), runlevel 3 (mul-

tiuser with network), runlevel 5 (X11 plus /runlevel 3). Typically, we would

execute runlevel 5 or 3 if we do not need any graphical interfaces. In order

to determine the level that is being executed, we can use /sbin/runlevel, and

to know which level will start up by default cat /etc/inittab | grep

:initdefault:which will give us information such as id:5:initdefault: (we

can also edit /etc/inittab to change the default value.)

To visualise the services that are executing, we can use /sbin/chkconfig

–list and to manage them, we can use system-config-services in the graphic

mode or ntsysv in the command line. To enable individual services, we can

use chkconfig; for example the following command enables the crond service

for levels 3 and 5: /sbin/chkconfig --level 35 crond on. Regardless

of how the services were started up, we can use /sbin/service –status-all or

individually /sbin/service crond status to see the status of each service. And

we can also manage this (start, stop, status, reload, restart), for example service

crond stop to stop it or service crond restart to restart it.

It�is�important�to�not�disable�the�following�services (unless you know what

you are doing): acpid,�haldaemon,�messagebus,�klogd,�network,�syslogd.

The most important services linked to the network (although this is not an

exhaustive list and some have been left out, most of the services are listed

here) are:

NetworkManager,� NetworkManagerDispatcher: is a daemon with

which we can easily change networks (Wifi and Ethernet basically). If we

only have one network, it does not have to be executed.

avahi-daemon,�avahi-dnsconfd: is an implementation of zeroconf and

it is useful for detecting devices and services on local networks without

DNS (it is the same as mDNS).

bluetooth,�hcid,�hidd,�sdpd,�dund,�pand: Bluetooth wireless network

is for portable devices (it is not wifi, 802.11). For example, keyboards,

mouse, telephones, speakers/headphones etc.

© FUOC • P07/M2103/02285 57 Network administration

capi,�isdn: network based on ISDN hardware.

Iptables: this is the standard firewall service in Linux. It is essential for

security if we have a network connection (cable, DSL, T1).

Ip6tables: the same applies but for the protocol and networks based on

Ipv6.

netplugd: Netplugd can monitor the network and execute commands

when the status changes.

netfs: it is used to automatically mount the file systems through the net-

work (NFS, Samba etc.) during startup.

nfs,� nfslock: these are the standard daemons for sharing file systems

through the network in Unix/Linux/BSD-type operating systems.

ntpd: server of time and date through the network.

portmap: is a complementary service for NFS (file sharing) and/or NIS

(authentication).

rpcgssd,�rpcidmapd,�rpcsvcgssd: it is used for NFS v4 (new version of

NFS).

sendmail: this service can be used to manage the mails (MTA) or support

services such as IMAP or POP3.

smb: this daemon makes it possible to share files over Windows systems.

sshd: SSH allows other users to connect interactively and securely to the

local machine.

yum-updatesd: FC network updating service.

xinetd: alternative service of inetd that presents a set of features and im-

provements, such as, for example, launching multiple services through

the same port (this service may not be installed by default).

Server
administration

Remo Suppi Boldrito

P07/M2103/02286

© FUOC • P07/M2103/02286 Server administration

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02286 Server administration

Index

Introduction... 5

1. Domain name system (DNS).. 7

1.1. Cache names server .. 7

1.2. Forwarders ... 10

1.3. Configuration of an own domain .. 11

2. NIS (YP)... 14

2.1. ¿How do we initiate a local NIS client in Debian? 14

2.2. What resources must be specified in order to use NIS? 15

2.3. How should we execute a master NIS server? 16

2.4. How should we configure a server? .. 17

3. Remote connection services: telnet and ssh............................... 19

3.1. Telnet and telnetd ... 19

3.2. Secure shell or SSH .. 20

3.2.1. ssh .. 20

3.2.2. sshd .. 21

3.2.3. Tunnel over SSH .. 22

4. File transfer services: FTP.. 23

4.1. FTP client (conventional) ... 23

4.2. FTP servers ... 24

5. Information exchange services at user level.............................. 27

5.1. The mail transport agent (MTA) ... 27

5.2. Internet message access protocol (IMAP) 28

5.2.1. Complementary aspects .. 29

5.3. News .. 32

5.4. World Wide Web (httpd) .. 33

5.4.1. Manual (minimum) configuration of httpd.conf 33

5.4.2. Apache 2.2 + SSL + PHP + MySQL 34

6. Proxy Service: Squid... 39

6.1. Squid as an http accelerator ... 39

6.2. Squid as proxy-caching ... 40

7. OpenLdap (Ldap).. 41

7.1. Creating and maintaining the database 43

8. File services (NFS)... 45

© FUOC • P07/M2103/02286 Server administration

8.1. Wiki server .. 46

Activities.. 49

Bibliography... 50

© FUOC • P07/M2103/02286 5 Server administration

Introduction

The interconnection between machines and high-speed communications has

meant that the resources that are used can be at a different geographical lo-

cation to that of the user. UNIX (and of course GNU/Linux) is probably the

best example of this philosophy, as, since its inception, the focus has always

been on fostering the sharing of resources and the independence of the 'de-

vices'. This philosophy has been realized in the creation of something that

has now become very common: the services. A service is a resource (which

may or may not be universal) that makes it possible to obtain information,

share data or simply process information remotely, under certain conditions.

Our objective is to analyse the services that make it possible for a network

to function. Generally, within a network, there will be a machine (or various

machines, depending on the configuration) that will make it possible to ex-

change information with all the other elements. These machines are called

servers and they contain a set of programs that centralise the information and

make it easily accessible. These services help to reduce costs and increase the

availability of information, but it should be remembered that a centralised

service also involves some disadvantages, as it can come offline and leave the

users without the service.

The servers should be designed so that all the servers are mirrored to

solve these situations.

The services can be classified into two categories: those linking computers to

computers or those linking users to computers. In the first case, the services

are those needed by other computers, whereas in the second, the services are

those required by the users (although there are services that may fall into both

categories). In the first category, there are the naming services, such as the

domain name system (DNS), the user information service (NISYP), the LDAP

information directory or the services for storing in proxies. In the second cate-

gory, we have interactive connection and remote execution services (SSH, tel-

net), file transfer (FTP), user-level information exchange such as email (MTA,

IMAP, POP), news, World Wide Web, Wiki and files (NFS). To demonstrate all

the possibilities of GNU/Linux Debian-FC6, we will describe each of these ser-

vices with a minimal and operative configuration, but without leaving out the

aspects related to security and stability.

© FUOC • P07/M2103/02286 7 Server administration

1. Domain name system (DNS)

The function of the DNS service (as we explained in the unit on network ad-

ministration) is to translate the machine names (legible and easy to remember

for users) into IP addresses or vice-versa.

Example

When we ask what the IP address of pirulo.remix.com is, the server will respond
192.168.0.1 (this process is known as mapping); likewise, when we request an IP address,
the service will respond with the name of the machine (known as reverse mapping).

The domain name system (DNS) is a branching architecture that avoids

duplicating information and makes any searches easier. For this reason,

a single DNS makes no sense unless it is part of the architecture.

The application that provides this service is called named, it is included in

most GNU/Linux distributions (/usr/sbin/named) and it is part of the package

called bind (currently version 9.x) coordinated by the ISC (Internet software

consortium). The DNS is simply a database, which means that the people that

modify it have to be aware of its structure, as, otherwise, the service will be

affected. As a precaution, special care must be taken to save copies of the files

to avoid any interruption in the service. The package in Debian comes as bind

and bind.doc. [LN01, Deb03c, IET03]. The configurations are similar, as they

are FC, but you will have to install bind, bind-utils and caching-nameserver

which will be managed by the yum for example.

1.1. Cache names server

Firstly, we will configure a DNS server to resolve requests, which will act as

a cache for name queries (resolver, caching only server). In other words, the

first time, the appropriate server will be consulted because we are starting with

a database that contains no information, but all subsequent times, the cache

names server will respond, with the corresponding decrease in response times.

To configure the cache names server, we need the /etc/bind/named.conf file

(in Debian), which has the following (the original comments within the file,

indicated with //, have been respected):

options {

directory "/var/cache/bind";

 // query-source address * port 53;

 // forwarders {

 // 0.0.0.0;

 //

© FUOC • P07/M2103/02286 8 Server administration

 };

 auth-nxdomain no; # conform to RFC1035

 };

// prime the server with knowledge of the root servers}

zone "." {

 type hint;

 file "/etc/bind/db.root"; };

 // be authoritative for the localhost forward and reverse zones, and for

 // broadcast zones as per RFC 1912

 }

zone "localhost" {

 type master;

 file "/etc/bind/db.local";

 };

zone "127.in-addr.arpa" {

 type master;

 file "/etc/bind/db.127";

 };

zone "0.in-addr.arpa" {

 type master;

 file "/etc/bind/db.0";

 };

zone "255.in-addr.arpa" {

 type master;

 file "/etc/bind/db.255";

 };

// add entries for other zones below here

}

The directory sentence indicates where we will find the remaining configura-

tion files (/var/cache/bind in our case). The /etc/bind/db.root file will contain

something similar to the following (only the first lines, which are not com-

ments indicated by a ';', are shown, and care must be taken with the full-stops

[.]) at the beginning of some lines –they can be obtained and updated directly

from the Internet–):

...
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
...

© FUOC • P07/M2103/02286 9 Server administration

This file described the root name servers in the world. These servers change,

which means that the file has to be updated regularly. The following sections

are the zones; the localhost and 127.in-addr.arpa zones, that link the files

to the etc/bind/db.local and /etc/bind/db.127 directories, refer to the direct

and inverse resolution for the local interface. The following zones are for the

broadcast zones (as per RFC 1912) and the appropriate zones should be added

at the end. For example, the db.local file could be (';' means 'comment'):

; BIND reverse data file for local loopback interface

$TTL 604800

@ IN SOA ns.remix.bogus. root.remix.bogus. (

 1 ; Serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 604800) ; Negative Cache TTL

@ IN NS ns.remix.bogus.

1.0.0 IN PTR localhost.

We will explain how it is used later. The next step is to put the name server

in /etc/resolv.conf:

search subdomain.your-domain.domain your-domain.domain
for example search remix.bogus bogus
nameserver 127.0.0.1

Where we will have to replace the subdomain.your-domain.domain with the

appropriate values. The search line indicates which domains will be searched

for any host that wants to connect (it is possible to replace search with domain,

although they behave differently) and the name server specifies the address of

the name server (in this case, your actual machine, which is where the naming

process will execute). The search behaves as follows: if a client is searching for

the machine called pirulo, first, the pirulo.subdomain.your-domain.domain

will be searched, then pirulo.your-domain.domain and finally, pirulo. This

means that the search will take some time; however, if we are certain that

pirulo will be in subdomain.your-domain.domain, it is not necessary to enter

the rest.

The next step is to start up named and look at the results of the execution.

To start up the daemon, we can directly use the /etc/init.d/bind9 start

startup script (if the named is already executing, go to /etc/init.d/bind9

reload) or, if not, /usr/sbin/named. If we look at the system log in /var/

log/daemon.log, we will see something similar to:

Sep 1 20:42:28 remolix named[165]: starting BIND 9.2.1 \\
Sep 1 20:42:28 remolix named[165]: using 1 CPU \\
Sep 1 20:42:28 remolix named[167]: loading configuration from '/etc/bind/named.conf'

© FUOC • P07/M2103/02286 10 Server administration

The server's startup and the error messages will appear here (if there were any

errors, in which case they must be corrected and the process started again).

We can now verify the configuration with commands such as nslookup (orig-

inal and easy but obsolete according to the programmers), host or dig (recom-

mended). The output of dig -x 127.0.0.1 will be something like:

dig�-x�127.0.0.1
;; <<>> DiG 9.2.1 <<>> -x 127.0.0.1
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31245
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0
;; QUESTION SECTION: ;1.0.0.127.in-addr.arpa. IN PTR
;;ANSWER SECTION: 1.0.0.127.in-addr.arpa. 604800 IN PTR localhost.
;; AUTHORITY SECTION: 127.in-addr.arpa. 604800 IN NS ns.remix.bogus.
;; Query time: 1 msec
;; SERVER: 127.0.0.1 #53(127.0.0.1)
;; WHEN: Mon Sep 1 22:23:35 2003
;; MSG SIZE rcvd: 91

Where we can see that the query has taken 1 millisecond. If you have an In-

ternet connection, you can search for a machine within your domain and

see how your server behaves. In BIND9 there is the lwresd (lightweight resolver

daemon), which is the daemon that provides naming services to clients that

use the BIND9 lightweight resolver library. It is essentially a cache server (like

the one we have configured) that makes the queries using BIND9 lightweight

resolver protocol instead of the DNS protocol. This server listens through inter-

face 127.0.0.1 (which means it only attends to processes in the local host) in

UPD and port 921. The client requests are decrypted and resolved using the

DNS protocol. When responses are obtained, the lwresd encodes them in the

lightweight format and returns them to the client that has requested them.

Finally, as we have mentioned, the kernel uses various sources of information,

which, for the network, are obtained from /etc/nsswitch.conf. This file indi-

cates from where we obtain the source of information and there is a section,

for machine names and IPs, such as:

hosts: files dns

This line (if it is not there, it should be added) indicates that whoever needs a

machine name or IP should first check /etc/hosts and then in DNS, in accor-

dance with the domains indicated in /etc/resolv.conf.

1.2. Forwarders

In networks with a large workload, it is possible to balance the traffic using

the section on forwarders. If your Internet Service Provider (ISP) has one or

more stable name servers, it is advisable to use them to decongest the requests

on the server. For this, we must delete the comment (//) from each line in the

© FUOC • P07/M2103/02286 11 Server administration

forwarders section of the /etc/bind/named.conf file and replace the 0.0.0.0

with the IPs of the name servers of our ISP. This configuration is advisable

when the connection is slow, when using a modem, for example.

1.3. Configuration of an own domain

DNS possesses a tree structure and the origin is known as '.' (see /etc/bind/

db.root). Beneath the '.' there are the TLDs (top level domains) such as org, com,

edu, net etc. When searching in a server, if the server does not know the an-

swer, the tree will be searched recursively until it is found. Each '.' in an address

(for example, pirulo.remix.com) indicates a different branch of the DNS tree

and a different scope for requesting (or of responsibility) that will be followed

recursively from left to right.

Another important aspect, apart from the domain, is in-addr.arpa (inverse map-

ping), which is also nested as the domains and serves to obtain names when

requesting by IP address. In this case, the addresses are written the other way

round, in accordance with the domain. If pirulo.remix.com is 192.168.0.1, it

will be written as 1.0.168.192, in accordance with pirulo.remix.com.

We must then configure the actual remix.bogus domain in file /etc/bind/

db.127 [LN01]:

; BIND reverse data file for local loopback interface

$TTL 604800

@ IN SOA ns.remix.bogus. root.remix.bogus. (

 1 ; Serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 604800) ; Negative Cache TTL

@ IN NS ns.remix.bogus.

1.0.0 IN PTR localhost.

The '.' must be taken into account at the end of the domain names. The ori-

gin of a zone's hierarchy is specified by the identification of the zone, which

in our case, is 127.in-addr.arpa. This file (db.127) contains 3 registries: SOA,

NS, PTR. The SOA (start of authority) must be in all of the zone files, at the

beginning, after TTL and the @ signifies the origin of the domain; NS, the

name server for the domain and PTR (domain name pointer), which is host 1

in the subnet (127.0.0.1) and is called local host. This is the series 1 file and

root@remix.bogus (last space in the SOA line) is in charge of it. We could now

restart the named as shown above and, using dig -x 127.0.0.1, we could see

how it works (identically to that shown previously).

We would then have to add a new zone in named.conf:

© FUOC • P07/M2103/02286 12 Server administration

zone "remix.bogus" {
 type master;
 notify no;
 file "/etc/bind/remix.bogus";
 };

We must remember that in named.conf, the domains appear without the '.'

at the end. In the file remix.boguswe will put the hosts of which we will be

in charge:

; Zone file for remix.bogus

$TTL 604800

@ IN SOA ns.remix.bogus. root.remix.bogus. (

 199802151 ; serial, todays date + todays serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 604800) ; Negative Cache TTL

@ NS ns ; Inet Address of name server

 MX 10 mail.remix.bogus. ; Primary Mail Exchanger

localhost A 127.0.0.1

ns A 192.168.1.2

mail A 192.168.1.4

 TXT "Mail Server"

ftp A 192.168.1.5

 MX 10 mail

www CNAME ftp

A new MX registry, the Mail exchanger, appears here. This is the place to which

the emails that arrive will be sent, someone@remix.bogus, and they will be

sent to mail.remix.bogus (the number indicates the priority if we have more

than one MX). Always remember the '.' that is necessary in the zone files at the

end of the domain (if these are not entered, the system will add the SOA do-

main at the end, which would transform mail.remix.bogus, for example, into

mail.remix.bogus.remix.bogus, which would be incorrect). CNAME (canonical

name) is used to give a machine one alias or various aliases. As of this moment,

we would be able (after the /etc/init.d/bind9 reload) to test, for example, dig

www.remix.bogus.

The last step is to configure the inverse zone, in other words, so that IP ad-

dresses can be changed into names, for example, adding a new zone:

zone "192.168.1.in-addr.arpa" {
 type master;
 notify no;
 file "/etc/bind/192.168.1";
 };

And the file /etc/bind/192.168.1 similar to the preceding one:

$TTL 604800

© FUOC • P07/M2103/02286 13 Server administration

@ IN SOA ns.remix.bogus. root.remix.bogus. (

 199802151 ; serial, todays date + todays serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 604800) ; Negative Cache TTL

@ NS ns.remix.bogus.

2 PTR ns.remix.bogus

4 PTR mail.remix.bogus

5 PTR ftp.remix.bogus

This can be tested again with dig -x 192.168.1.4. We must remember that

these examples are on private IPs, in other words, not on Internet IPs. Another

important point is that we must not forget the notify no, as otherwise, our

experiments with the DNS will spread to the servers through the DNS tree

(possibly even modifying the DNS of our provider or institution). These should

only be modified when we are sure that it works and we are certain about the

changes we want to make. To look at a real example, please see DNS-HOWTO

at http://tldp.org/HOWTO/DNS-HOWTO-7.html.

Once we have created a master server, we must create a slave server for security,

which is identical to the master, except in that the zone in the place of the

type master must have a slave and the IP of the master. For example:

zone "remix.bogus" {
 type slave;
 notify no;
 masters {192.168.1.2; }
 };

© FUOC • P07/M2103/02286 14 Server administration

2. NIS (YP)

In order to facilitate the administration and make the system more user-friend-

ly, in networks of different sizes that execute GNU/Linux (or Sun's Solaris or

any other operating system that supports this service), there are Network In-

formation Services, NIS (or yellow pages, YP, as per Sun's original definition).

GNU/Linux can provide support as an NIS client/server and can act as a client

("beta" version) of NIS+, which is a safer and more optimised version of NIS.

The information that can be distributed in NIS is: users (login names), pass-

words (/etc/passwd), user directories (home directories), group information (/

etc/group), which has the advantage that, from any client machine or from

the server itself, the user may connect with the same account and password

and to the same directory (although the directory must have been previous-

ly mounted on all the machines with NFS or using the automount service).

[Miq01, Kuk03]

The NIS architecture is of the client-server type, in other words, there is a

server that will have all the databases and some clients that will consult

these data in a transparent manner for the user. For this reason, we

must consider configuring the 'reinforcement' servers (called secondary

servers) so that users will not be blocked in the event of downtime in

the main server. This is why the architecture is actually called multiple

server architecture (master+mirrors-clients).

2.1. ¿How do we initiate a local NIS client in Debian?

Having a local client means adding the computer to an existing NIS domain:

• First, we must verify that the netbase (basic TCP/IP network), portmap (serv-

er that turns RPC numbers into DARPA ports and that is necessary for pro-

grams that execute RPC, including NFS and NIS) and nis (specific) pack-

ages have been installed. We recommend using the kpackage command

or directly with apt-get (we can check if this is installed with apt-cache

pkgnames) in text mode. When installing the NIS package, you will be

prompted for a domain (NIS domainname). This is a name that will describe

the set of machines that will use NIS (it is not a host name). Bear in mind

that NISPirulo is different to Nispirulo as a domain name. To configure this

domain, you may use the command nisdomainname, a domain which

will be saved in /proc/sys/kernel/domainname.

• Firstly, we must start up the portmap service with:

– /etc/init.d/portmap start

© FUOC • P07/M2103/02286 15 Server administration

– We can check whether these are active using rpcinfo -p.

• If the NIS server is not local, we must use the ypbind command. The yp-

bind command is used to find a server for the specified domain, whether

it is through a broadcast (not recommended, as it is not secure) or through

searching the server indicated in the configuration file /etc/yp.conf (rec-

ommended). The /etc/yp.conf file has the following syntax:

– domain nisdomain server hostname: indicates that the hostname should

be used for the nisdomain. It is possible to have more than one entry

of this type for the same domain.

– domain nisdomain broadcast: indicates that broadcast should be used on

the local network to discover a server with a nisdomain.

– ypserver hostname: indicates that hostname should be used as a server.

It is advisable to use this line (ypserver) where we must enter the IP

address of the NIS server. If the name is specified, make sure that the

IP can be found by DNS or that it appears in the /etc/hosts file, as,

otherwise, the client will be blocked.

• Start up the service by executing:

– /etc/init.d/nis stop

and then:

– /etc/init.d/nis start

• As of this moment, the NIS client will be working (this can be confirmed

with rpcinfo or localhost ypbind, which will show the two versions

of the active protocol) or we can use the ypcat mapname command (for

example, ypcat passwd, which will show the NIS users defined in the

server) where the relationship of the mapnames to the tables in the NIS

database are defined in /var/yp/nicknames.

2.2. What resources must be specified in order to use NIS?

Let us assume that we have installed one of Debian's latest distributions (for

example, 3.0 Woody or 3.1 Sarge), which supports Libc6 (the same for FC4

or higher) and that we want to configure the system so that the users of one

client machine may access the information in the server. In this case, we must

send the login request to the appropriate databases by:

1) Verify that the /etc/nsswitch.conf and ensure that the passwd, group, shad-

ow and netgroup entries are similar to:

passwd: compat

group: compat

© FUOC • P07/M2103/02286 16 Server administration

shadow: compat ...

netgroup: nis

See man nsswitch.conf for the syntax of this file.

2) Add the following line in the NIS client machines, in the /etc/passwd file

at the end of the file (this will indicate that if the user is not local, the NIS

server will be asked):

+::::::�(one '+' and six ':')

3) It should be remembered that in /etc/passwd we can use the + and the ? in

front of each user name in /etc/passwd, to include/override the login of these

users. If we are using passwords with shadows (more secure, as it will not allow

a normal user to see the encrypted passwords of other users), the following

line must be added at the end of the /etc/shadow file:

+::::::::�(one '+' and eight ':')

4) The following line must also be added at the end of /etc/group:

+:::�(one '+' and three ':')

5) The searches for hosts (host lookups) will be carried out through DNS (and

not NIS), which means that, for Libc6 applications, in file /etc/nsswitch.conf

we will have to change the hosts entry for the following line: hosts: files dns.

Or, if we prefer to do this using NIS, hosts: files nis. For Libc5 appli-

cations, we must modify the /host.conf file by entering order hosts, DNS or

order hosts, NIS, as required.

With this configuration, it will be possible to establish a local connec-

tion (over the NIS client) with a user that is not defined in the /etc/pass-

wd file, in other words, a user defined in another machine (ypserver).

For example, we may execute ssh -l user localhost, where the user is a

user defined in ypserver.

2.3. How should we execute a master NIS server?

Let us assume that we have installed the nis package and portmap (and

portmap is working) and that the data bases of the NIS have been created (see

the following section):

• We must make sure that /etc/hosts contains all the machines that will

form part of the domain in the FQDN (fully qualified domain name)

© FUOC • P07/M2103/02286 17 Server administration

format, which is where the IP, the name and domain and the name

without the domain of each machine appears (for example, 192.168.0.1

pirulo.remix.com pirulo). This is only necessary in the server, as the NIS

does not use DNS.

• In addition, it exists in the /etc/defaultdomain file with the chosen do-

main name. Do not use your DNS domain so that you do not incur

in any security risks, unless you appropriately configure the files /etc/

ypserv.securenets, which indicates the sites from which the clients will be

able to connect with a netmask/network pair, and /etc/ypserv.conf, which

carried out a more detailed control because it indicates which hosts can

access which maps, for example: passwd.byname o shadow.byname.

• Verify that NISSERVER = master exists in /etc/default/nis.

• For security reasons, it is possible to add the local network number to the

/etc/ypserv.securenets file.

• Start up the server executing the /etc/init.d/nis stop command and

then the /etc/init.d/nis start command. This command will start

up the server (ypserv) and the password daemon (yppasswdd), which may

be consulted if it is active with ypwich -d domain.

2.4. How should we configure a server?

The server is configured with the command /usr/lib/yp/ypinit -m;

however, it is necessary to verify that the /etc/networks file exists, as

it is essential for this script.

If this file does not exist, create an empty one with touch /etc/networks.

It is also possible to make the ypbind client execute on the server; in this way,

all the users entered by NIS, as mentioned above, modifying the /etc/passwd

file, where all the normal entries before the line +:::::: will be ignored by the

NIS (they may only access locally), whereas the subsequent ones may access

through the NIS from any client. [Miq01]

Consider that as of this moment, the commands for changing the passwd or

user information such as passwd, chfn, adduser are no longer valid. Instead,

we will have to use commands such as yppasswd, ypchsh and ypchfn. If we

change the users or modify the abovementioned files, we will have to rebuild

the NIS tables by executing the make command in the /var/yp directory to

update the tables.

© FUOC • P07/M2103/02286 18 Server administration

Bear in mind that the Libc5 does not support shadow passwords, which means

that shadow should not be used with NIS, if we have applications with Libc5.

There will not be a problem if we have Libc6, which accepts NIS with shadow

support.

Configuring a slave server is similar to configuring a master server, except in

that NISSERVER = slave in /etc/default/nis. On the master, we must indicate

that it has to distribute the tables automatically to the slaves by entering NO-

PUSH = "false" in the /var/yp/Makefile file.

Now we must tell the master who its slave is, by executing:

/usr/lib/yp/ypinit -m

and entering the names of the slave servers. This will rebuild the maps but it

will not send the files to the slaves. For this, on the slave, execute:

/etc/init.d/nis stop

/etc/init.d/nis start

and, finally:

/usr/lib/yp/ypinit -s name_master_server.

In this way, the slave will load the tables from the master.

It would also be possible to place the nis file in the /etc/cron.d directory with

a content similar to (remember to perform an chmod 755 /etc/cron.d/nis):

20 * * * * root /usr/lib/yp/ypxfr_1perhour >/dev/null 2>&1
40 6 * * * root /usr/lib/yp/ypxfr_1perday >/dev/null 2>&1
55 6,18 * * * root /usr/lib/yp/ypxfr_2perday >/dev/null 2>&1

With which we will ensure that all the changes in the master will be transferred

to the slave NIS server.

Recommendation: After using adduser to add a new user on the server exe-

cute make -C /var/yp to update the NIS tables (and do this whenever any

user characteristic changes, for example, the password with the passwd com-

mand, which will only change the local password and not the NIS password).

To check that the system is working and that the user is registered in the NIS,

you may execute ypmatch userid passwd where userid is the user previ-

ously registered with adduser and after performing the make. To verify that

the NIS system is working, you may use the script of http://tldp.org/HOWTO/

NIS-HOWTO/verification.html, which permits a more detailed verification on

the NIS.

© FUOC • P07/M2103/02286 19 Server administration

3. Remote connection services: telnet and ssh

3.1. Telnet and telnetd

Telnet is a (client) command used to communicate interactively with another

host that executes the daemon telnetd. The telnet command may be executed

as telnet host or interactively as telnet, which will enter the "telnet>" prompt,

and then, for example: open host. Once communication has been established,

we must enter the user and the password with which we wish to connect to

the remote system. There are various commands (in the interactive mode),

such as open, logout, mode (defines the visualisation characteristics), close,

encrypt, quit, set, unset, or you may execute external commands with '!'. You

may use the /etc/telnetrc file for default definitions or .telnetrc the definitions

of a particular user (these must be in the user's home directory).

The telnetd daemon is the telnet protocol server for the interactive connec-

tion. Telned is generally started up by the inetd daemon and it is recom-

mended that a tcpd wrapper (which uses the access rules in host.allow and

host.deny) be included in the telnetd call within the /etc/inetd.conf file (for

example, include a line such as:

telnet stream tcp nowait telnetd.telenetd /usr/sbin/tcpd /usr/bin/in.telnetd)

To increase the system's security, please see the unit on security. In some dis-

tributions (Debian 3.0 or higher), inetd's functions can be replaced by xinetd,

which means that the /etc/xinetd.conf file must be configured (see the unit

on the network administration). Likewise, if you wish to start up inetd in test

mode, you can use the sentence /etc/init.d/inetd.real start. If the

/etc/uissue.net file is present, telnetd will show its contents when logging in.

It is also possible to use /etc/security/access.conf to enable/disable user logins,

host logins or user group logins, as they connect.

It should be remembered that, although the telnet-telnetd pair may func-

tion in encrypt mode in the latest versions (transfer of encrypted data,

although they must be compiled with the corresponding option), it is

a command that has been rendered obsolete, mainly due to the lack of

security, although it can still be used in secure networks or in controlled

situations.

© FUOC • P07/M2103/02286 20 Server administration

If it has not been installed, we can use (Debian) apt-get install telnetd and

then verify that it has been registered either in /etc/inetd.conf or in /etc/

xinetd.conf (or in the directory in the files are defined, for example, /etc/

xinetd.d as indicated in the previous file with the sentence includes /etc/

xinetd.d). xinetd.conf or /etc/xinetd.d/telnetd should include a section such

as (any modification in xinetd.conf must reboot the service with service xinetd

restart):

service telnet
{
disable = no
flags = REUSE
socket_type = stream
wait = nouser = root
server = /usr/sbin/in.telnetd
log_on_failure += USERID
}

Instead of using telnetd, we recommend using SSL telnet(d) which replaces

telnet(d) using encryption and authentication through SSL or using SSH (next

section). SSLTelnet(d) may work with telnet(d) normally in both directions, as,

when beginning communication, it verifies whether the other peer supports

SSL and if not, it continues with the normal telnet protocol. The advantages

compared to telnet(d) are that the passwords and data do not pass through

the network in the plain text mode and no one using, for example, tcpdump

will be able to see the contents of the communication. Also, SSLtelnet may

be used to connect, for example, to a secure web server (for example https://

servidor.web.org) by simply executing: telnet server .web.org 443.

3.2. Secure shell or SSH

An advisable change to make nowadays is to use ssh instead of telnet, rlogin or

rsh. These latter commands are insecure (except for SSLTelnet) for various rea-

sons: the most important is that all that is transmitted through the network,

including the user names and passwords, is in plain text (although there are

encrypted versions of telnet-telnetd, they must coincide in that both of them

are encrypted), anyone that has access to that network or any segment of that

network will be able to obtain all that information and then assume the iden-

tity of the user. The second is that these ports (telnet, rsh,...) are the first place

at which a cracker will try to connect. The ssh protocol (in version OpenSSH)

provides an encrypted and compressed connection that is much more secure

than, for example, telnet (it is advisable to use version 2 of the protocol). All

current distributions incorporate the ssh client and the sshd server by default.

3.2.1. ssh

To execute the command, proceed as follows:

ssh -l login name host o ssh user@hostname

© FUOC • P07/M2103/02286 21 Server administration

Through SSH we can encapsulate other connections such as X11 or any other

TCP/IP. If we omit the parameter -l, the user will connect to the same local

user and in both cases the server will ask for the password to authenticate

the user's identity. SSH supports different authentication modes (see ssh man

pages) based on the RSA algorithm and the public password.

It is possible to create the user identification passwords using the command

ssh-keygen -t rsa|dsa. The command creates in the user .shh directo-

ry the file id_rsa and id_rsa.pub, the private and public key respectively (for

exemple, for RSA encryption algorithm). The user could copy the public key

(id_rsa.pub) on the remote machine in the .ssh directory of the remote user, in

the authorized_keys file. This file will be able to contain as many public keys

as sites from which a remote connection to the machine will be wanted. The

syntax is of one key per line and functions in an equivalent manner to the

.rhosts file (although the lines will have a considerable size). After entering the

public keys of the user-machine into this file, this user will be able to connect

from that machine without needing a password.

In normal mode (without creating the keys), the user will be prompted for a

password, but the communication will always be encrypted and will never be

accessible to other users who could be listening in on the network. For further

information, see man ssh. In order to execute a command remotely, simply:

ssh -l login name host_remote_command

For example:

ssh -l user localhost ls -al

3.2.2. sshd

The sshd is the server (daemon) for ssh (if not installed, it can be installed

using apt-get install ssh which will install the server and the client).

In combination, they replace rlogin, telnet, and rsh and provide secure and

encrypted communication on two insecure hosts in the network.

This will generally start up with the initialization files (/etc/init.d or /etc/rc)

and wait for connections from clients. The sshd of most current distributions

supports versions 1 and 2 of the SSH protocol. When the package is installed,

it creates a specific RSA key of the host, and when the daemon boots, it creates

another, the RSA for the session, which is not stored on disk and changes every

hour. When a client initiates communication, the client generates a random

number of 256 bits which is encrypted together with the two keys of the server

and sent. This number will be used during the communication as the session

key to encrypt the communication using a standard encryption algorithm.

The user may select any of the available ones offered by the server. There are

some (more secure) differences when using version 2 of the protocol. As of that

© FUOC • P07/M2103/02286 22 Server administration

moment, some of the user authentication methods described in the client are

initiated or it will ask for the password, but always with the communication

encrypted. For further information, see the sshd man pages.

3.2.3. Tunnel over SSH

Often we have access to an sshd server, but for security reasons not to oth-

er non-encrypted services (for example a POP3 mail service or X11 windows

server) or simply we wish to connect to a service that can only be accessed

from the company environment. To do so, it is possible to establish an en-

crypted tunnel between the client machine (for example with Windows, and

a free software ssh client called putty) and the server with sshd. In this case,

when we connect the tunnel to the service, the service will see the request as

if it were coming from the same machine. For example, if we want to establish

a POP3 connection on port 110 of the remote machine (which also has an

sshd server) we will execute:

ssh -C -L 1100:localhost:110 user-id@host

This command will ask for the password of the user-id over the host and, once

connected, the tunnel will have been created. Every package sent to the local

machine over port 1100 will be sent to the remote machine localhost over

port 110, which is where the POP3 service listens (option -C compresses the

traffic through the tunnel).

Making tunnels over other ports is very easy. For example, let's suppose that

we only have access to a remote proxy server from a remote machine (remote

login) – not from the local machine –, we can make a tunnel to connect the

navigator through the tunnel in the local machine. Let's suppose that we have

a login on a gateway machine, which can access the machine called proxy

that runs the Squid proxy server over port 3128. We run:

ssh -C -L 8080:proxy:3128 user@gateway

Once we have connected we will have the tunnel listening over local port

8080, which will redirect traffic from the gateway to the proxy to 3128. To

navigate securely, all we will need to do is http://localhost:8080/

© FUOC • P07/M2103/02286 23 Server administration

4. File transfer services: FTP

The file transfer protocol (FTP) is a client/server protocol (under TCP)

which allows files to be transferred to and from a remote system. An

FTP server is a computer that runs the ftpd daemon.

Some sites that allow an anonymous connection under anonymous user are

generally software repositories. On a private site, we will need a username and

password in order to obtain access. It is also possible to access an FTP server

via a navigator and nowadays software repositories are usually replaced by

web servers (e.g. Apache) or other technologies such as Bittorrent (which uses

peer to peer (P2P) networks). Nonetheless, in some cases and with Debian,

for example, access continues to use the username or password with the pos-

sibility of uploading files to the server (although this is also possible with web

services). The file transfer protocol (FTP) (and servers/clients that implement

it) by definition are not encrypted (the data, usernames and passwords are

transmitted in clear text by the network) with its ensuing risk. But there are a

number of servers/clients that support SSL and therefore, encryption.

4.1. FTP client (conventional)

An FTP client allows acces to FTP servers and there are a large number of clients

available. Using FTP is extremely simple; from the command line, run:

ftp server-name

Or also FTP, and then interactively:

open server-name

The server will prompt for a username and a password (if it accepts anonymous

users, anonymous will be entered as the username and our e-mail address as

the password) and from the command prompt (following several messages)

we will be able to start transferring files.

The protocol allows the transfer in ASCII or binary modes. It is important to

decide what type of file has to be transferred because transferring a binary

in ASCII mode will destroy the file. To change between modes, we will need

to execute the ascii or binary command. Useful commands of the FTP client

are the ls (navigation in the remote directory), get file_name (to download

files) or mget (which admits *), put file_name (to send files to the server) or

mput (which admits *); in these last two cases we need to be authorised to

write on the server's directory. We can run local commands by entering a '!'

© FUOC • P07/M2103/02286 24 Server administration

before the command. For example !cd /tmp will mean that the files down-

loaded to the local machine will be downloaded to /tmp. In order to view the

status and functioning of the transfer, the client will be able to print marks,

or ticks, which are activated by the hash and tick commands. There are other

commands that can be consulted on the page of the manual (FTP man) or by

running help from within the client.

We have numerous alternatives for clients, for example in text mode: ncftp,

lukemftp, lftp, cftp, yafc Yafc, or in graphic mode: gFTP, WXftp, LLNL XFTP,

guiftp. [Bor00]

4.2. FTP servers

The traditional UNIX server is run through port 21 and is booted by the inetd

daemon (or xinetd depending on which one is installed). In inetd.conf it is

advisable to include the tcpd wrapper with the access rules in host.allow and

host.deny in the call to ftpd by inetd to increase the system's security (refer

to the chapter on security). When it receives a connection, it verifies the user

and password and allows entry if authentication is correct. An anonymous

FTP works differently, since the user will only be able to access an established

directory in the configuration file and its subjacent tree, but not upwards,

for security reasons. This directory generally contains pub/, bin/, etc/, and

lib/ directories so that the FTP daemon can run external commands for ls

requests. The ftpd daemon supports the following files for its configuration:

• /etc/ftpusers: list of users that are not accepted on the system, one user

per line.

• /etc/ftpchroot: list of users whose base chroot directory will be changed

when they connect. Necessary when we want to configure an anonymous

server.

• /etc/ftpwelcome: welcome announcement.

• /etc/motd: news after login.

• /etc/nologin: message shown after denying the connection.

• /var/log/ftpd: log of transfers.

If at some point we wish to inhibit the FTP connection, we can do so by in-

cluding the /etc/nologin file. The ftpd will show its content and finish. If there

is a .message file in a directory, the ftpd will show this when accessed.

A user's connection passes through five different levels:

© FUOC • P07/M2103/02286 25 Server administration

1) Having a valid password.

2) Not appearing on the list /etc/ftpusers.

3) Having a valid standard shell.

4) If it appears in /etc/ftpchroot, it will be changed to the home directory

(included if anonymous or FTP).

5) If the user is anonymous or FTP, it should have an entry in the /etc/

passwd with FTP user, but will be able to connect by giving any password

(conventionally the e-mail address is used).

It is important to bear in mind that the users that are only enabled to use

the FTP service do not have a shell to the corresponding entry of said user in

/etc/passwd to prevent this user having a connection through ssh or telnet,

for example. Therefore, when the user is created, we will have to indicate, for

example:

useradd -d/home/nteum -s /bin/false nteum

And then:

passwd nteum

Which will mean that the user nteum will not have a shell for an interactive

connection (if the user already exists, we can edit the /etc/passwd file and

change the last field for /bin/false). Then we will have to add as a last line

/bin/false in /ect/shells. [Mou01] describes step by step how to create both a

secure FTP server with registered users and an anonymous FTP server for non-

registered users. Two of the most common non-standard servers are WUFT-

PD (http://www.wuftpd.org) and ProFTPD (http://www.proftpd.org). [Bor00,

Mou01]

To install Proftpd on Debian, execute: apt-get install proftpd. After it is

downloaded, debconf will ask if we want to run it by inetd or in manual mode

(it is advisable to select the latter). If we wish to stop the service (for example,

in order to change the configuration), we can use /etc/init.d/proftpd

stop and to modify the file we can use /etc/proftpd.conf.

Consult http://www.debian-administration.org/articles/228 in order to con-

figure it in encrypted mode (TSL) or to have anonymous access.

© FUOC • P07/M2103/02286 26 Server administration

A Debian server that is very interesting is PureFtpd (pure-ftpd) which is very

secure, it allows virtual users, quotas, SSL/TSL, and a set of very interesting

features. We can check its installation/configuration at http://www.debian-

administration.org/articles/383.

© FUOC • P07/M2103/02286 27 Server administration

5. Information exchange services at user level

5.1. The mail transport agent (MTA)

An mail transport agent (MTA) is responsible for sending/receiving mails from

an e-mail server to/from Internet, implementing the simple mail transfer pro-

tocol (SMTP). By default, Debian uses exim, because it is easier to configure

than other MTA packages, such as smail or sendmail (the latter is one of the

precursors). exim offers advanced features such as rejecting known SPAM site

connections, it has defences against junk mail or mail bombing and is ex-

tremely efficient at processing large amounts of mail. It is run through inetd

on a line in the configuration file /etc/inetd.conf with parameters for normal

configurations (or xinetd).

exim uses a configuration file in /etc/exim/exim.conf, which can be modified

manually, but it is advisable to do so using a shell script called eximconfig, in

order to be able to configure exim interactively. The configuration values will

depend on the machine's situation; however, its connection is extremely easy,

since the script itself suggests the default values. Nonetheless, in /usr/doc/ex-

im we can find examples of typical configurations.

We can test whether the configuration is valid with exim-bV and, if there are

errors in the configuration file, the program will show them on screen or, if

everything is correct, it will simply indicate the version and date. To test if it

can recognise a local mailbox, use:

exim -v -bt local_user

Which will show the layers of transport used and the user's local address. We

can also do the following test with a remote user by replacing local user with

a remote address to see how it behaves. Then try sending a local mail message

and remotely, passing the messages directly to exim (without using an agent,

for example, mailx), by keying in for example (all together):

exim postmaster@OurDomain
From: user@domain
To: postmaster@OurDomain
Subject: Test Exim
Test message
^D

Next, we can analyse the mainlog and paniclog track files in /var/log/exim/ to

see its behaviour and see what error messages have been generated. Obviously,

we can also connect to the system as the postmaster user (or as the user to

which the mail has been sent) and read the mail messages to see if everything

© FUOC • P07/M2103/02286 28 Server administration

is correct. The other way consists of running it in debug mode using -dNro

as a parameter, where Nro is the debug level (19). The normal parameter with

which we should boot it is exim -bs, whether by inetd or xinetd. It is also

possible to run it as a daemon through /etc/init.d/exim start in systems that

require a high mail processing capacity. See the documentation (included in

Debian in the exim-doc-html package) in order to configure filters, verification

of hosts, senders etc. It is also interesting to install the eximon package, which

is an exim monitor that allows the administrator to see the queue of mail

messages and logs and to act on messages in the queue in order to distribute

them (freezing, bouncing, thawing...).

The latest version of exim is exim4 (it can be installed with apt-get in-

stall exim4-daemon-heavy (and also install exim4-config which will

help to configure exim4) – bear in mind that there are different pack-

ages with different possibilities but exim4-daemon-heavy is the most com-

plete. We recommend reading /usr/share/doc/exim/README.Debian.gz and

update-exim4.conf(8). For further information, see the HowTo section http:/

/www.exim.org/docs.html. One of the small differences to bear in mind in

the configuration is that instead of having a single configuration exim.conf

(which is what it will have if we install exim from the sources) the package ex-

im4-config (it is advisable to install it to configure exim4) uses small configu-

ration files instead of a single one and that these will be in /etc/exim4/conf.d/*

and will be chained into a single file (/var/lib/exim4/config.autogenerated by

default) by update-exim4.conf.

5.2. Internet message access protocol (IMAP)

This service allows access to mail messages stored in a single server through

a mail client such as Thunderbird or the Seamonkey mail client (both in

mozilla.org). This service supported by the imapd daemon (the current ones

support the IMAP4rev1 protocol) allows an electronic mail file that is on a

remote machine. The imapd service is offered through the 143 (imap2) or 993

(when SSL encryption is supported) (imaps) ports. If we use inetd, this server

is booted through a line in /etc/inetd.conf as:

imap2 stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd
imap3 stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd

In this example, the tcpd wrapper is called, which functions with hosts.allow

and hosts.deny in order to increase security. The most popular applications

are uw-imapd (University of Washington and installed by default in Debian)

or its secure version uw-imapd-ssl, cyrus-imap or courier-imap. To test that

the imap server functions, we could use a client, such as seamonkey -mail

and create an account for a local user and configure it appropriately so that it

connects over the local machine, verifying that imap works correctly.

© FUOC • P07/M2103/02286 29 Server administration

On Debian, the imap version has been compiled to support MD5 as the

method for authenticating remote users, for encrypting connection passwords

and to avoid replaced identities by sniffing on the network (the client used

to connect to the imap server must also support the MD5 authentication

method). The method is very simple and secure, but the server must know

the passwords in plain text of the mail users, meaning that it is advisable to

use the version of imapd over SSL which functions over port 993. Like ssh,

the imaps protocol is based on encrypting the communication through a host

certificate (the client used for connecting to the server must also support this

connection method, for example thunderbird or seamonkey -mail). To con-

figure the imaps server, install the Debian package uw-imap-dsslwhich is the

imap server with SSL support.

The installation will generate an auto-signed certificate valid for one year

and stored in /etc/ssl/certs/imapd.pem. This certificate can be replaced by one

signed by a certifying company or can generate its own one using OpenSSL.

It is advisable to leave just the imaps entry in the file /etc/inetd.conf and to

remove the imap2 and imap3 entries if we want the access to imap to be only

by SSL.

Another protocol with similar characteristics which has been very popular in

the past but that has been overtaken now by IMAP, is the post office protocol

(POP) version 2 and 3. It is installed and booted in the same way as IMAP.

There are numerous POP servers, but the most common ones are courier-pop,

cyrus-pop3d, ipopd (University of Washington), qpopper, solid-pop3d.

5.2.1. Complementary aspects

Let's suppose that as users we have 4 email accounts on different servers and

that we would like all email messages that are sent to these accounts to be

gathered into a single one; to access that account externally and for it also to

have an anti-spam filter.

First, we will have to install exim + Imap and check that they work. We need to

take into account that if we install courier-imap (which according to some au-

thors is better than uw-imapd) it functions over a mail format called Maildir,

that exim will also have to be configured to run over maildir with the fol-

lowing configuration in /etc/exim/exim.conf (or the corresponding one if we

have exim4), changing the option mail_dir format = true (the mails will be

saved in the local user account in a directory called Maildir). Then we will

have to reinitiate the exim server with /etc/init.d/exim restart, repeat

the operational test by sending us an email message and read it with a client

that supports maildir (for example mutt -mailx does not support it – see

http://www.mutt.org).

© FUOC • P07/M2103/02286 30 Server administration

To fetch the mail from the different accounts we will use fetchmail, (which is

installed with apt-get install fetchmail). Next, we will have to create

the.fetchmailrc file in our $HOME (we can also use the fetchmailconf tool)

which will have to contain something like:

set postmaster "pirulo"
set bouncemail
set no spambounce
set flush

poll pop.domain.com proto pop3
user 'user1' there with password 'secret' is pirulo here

poll mail.domain2.com
user 'user5' there with password 'secret2' is 'pirulo' here
user 'user7' there with password 'secret3' is 'pirulo' here

The action set tells Fetchmail that this line contains a global option (error

sending, delete mail from servers...). Next, we will specify the mail servers:

one for checking if there is mail with the POP3 protocol and another for test-

ing the use of several protocols to find one that works. We check the mail of

two users with the second server option, but all mail found is sent to pirulo's

mail spool. This allows us to check several mailboxes of different servers as if

they were a single MUA mailbox. The specific information of each user starts

with the action user. The fetchmail can be put in the cron (for example in

/var/spool/cron/crontabs/pirulo adding 1 * * * * /usr/bin/fetchmail -s), so that

it runs automatically or can be run in daemon mode (put set daemon 60 in

.fetchmailrc and run it once for example in Autostart of Gnome/KDE or in

.bashrc – it will run every 60 seconds).

To remove junk mail we will use SpamAssassin (apt-get install spamassassin)

and we can configure Kmail or Evolution (check the bibliography to see how

to configure it) for them to run it. In this configuration we will use Procmail,

which is a very powerful tool (it allows mail distribution, filtering, automatic

resending...). Once installed (apt-get install procmail), we need to create a file

called .procmailrc in each user's home which will call the Spamassassin:

• Set yes for functioning or debugging messages

VERBOSE=no

• We suppose that the mails are in "~/.Maildir", change if it is another

PATH=/usr/bin:/bin:/usr/local/bin:

MAILDIR=$HOME/Maildir

DEFAULT=$MAILDIR/

– Directory for storing the files

PMDIR=$HOME/.procmail

– Comment if we do not want a log of Procmail

LOGFILE=$PMDIR/log

– Spam filter

© FUOC • P07/M2103/02286 31 Server administration

INCLUDERC=$PMDIR/spam.rc

The file ~/.procmail/spam.rc contains:

• If the spamassassin is not on the PATH add the directory:

0fw: spamassassin.lock|

spamassassin - a to the PATH variable

• The three following lines will move Spam mail to a directory called "spam-

folder". If we want to save it in the Inbox, so that it can be filtered later

with the client, comment the three lines.

:0:

* ^X-Spam-Status: Yes

spam-folder

The file ~/.spamassassin/user_prefs contains some useful configurations for

spamassassin (see the bibliography):

• User preferences file. Ver man Mail::SpamAssassin::Conf

• Threshold for recognising a Spam: Default 5, but with 4 it works a bit

better

required_hits 4

• Sites we will never consider Spam to come from

whitelist_from root @debian.org

whitelist_from *@uoc.edu

• Sites SPAM always comes from (separated by commas)

blacklist_from viagra@domain.com

• Addresses on Whitelist and blacklist are global patterns such

as:"friend@place.com", "*@isp.net", or "*.domain.com" .

• Insert the word "[SPAM]" in the subject (to make filtering easier).

• If we do not wish to comment the line.

subject_tag [SPAM]

This will generate a X-Spam-Status tag: Yes in the message heading if it believes

that the message is Spam. Then we will have to filter these and put them in

another file or to delete them directly. We can use procmail to filter mails

from domains, users etc. For further information, visit http://www.debian-

administration.org/articles/242. Finally, we can install a mail client and con-

figure filters so that it selects all email messages with X-Spam-Status: Yes and

deletes them or sends them to a directory where we will later verify false pos-

itives (mails identified as junk but that are not). A complementary aspect of

this installation is if we wish to have a mail server through webmail (in other

words, to be able to check the mails from a server through a navigator with-

out having to install or configure a client – like consulting a gmail or hot-

© FUOC • P07/M2103/02286 32 Server administration

mail account) it is possible to install Squirrelmail (apt-get install squir-

relmail) in order to offer this service. For Debian visit http://www.debian-

administration.org/articles/200.

There are other possibilities as discussed at http://www.debian-

administration.org/articles/364 installing MailDrop instead of Procmail, Post-

fix instead of Exim, or including Clamav/Amavisd as an antivirus (Amavisd

allows postfix to be linked with spamassassin and clamav).

5.3. News

The news or discussion groups are supported through the Network News

Transfer Protocol (NNTP). Installing a news server is necessary if we wish to

read news offline, if we wish to have a repeater of the central servers or if we

wish to have our own news master server. The most common servers are INN

or CNEWS, but they are complex packages designed for large servers. Leafnode

is a USENET package that implements a TNP server, especially suited for sites

with small groups of users but from which we wish to access a large number of

news groups. This server is installed in the basic Debian configuration and can

be reconfigured with dpkg-reconfigure leafnode for all parameters such

as central servers, type of connection etc. This daemon starts up from inetd

in a similar way as imap (or with xinetd). Leafnode supports filters through

regular indicated expressions (of the type ^Newsgroups:. * [,] alt.flame$) in

/etc/news/leafnode/filters, where for each message the heading is compared

to the regular expression and if there is a match, the message is rejected.

This server is simple to configure and all the files must be the property of a

news user with authorisation to write (check that this owner exists in /etc/

passwd). All control, news and configuration files are found in /var/spool/

news except for the configuration of the server itself which is in the /etc/news/

leafnode/config file. The configuration has some obligatory parameters that

must be configured (for example, so that the server can connect to the master

servers). They are server (news server from which the news will be obtained

and sent) and expire (number of days that a thread or session has been read and

will be deleted). Likewise, we have a set of optional parameters of a general or

specific nature to the server that can be configured. For further information,

see the documentation (leafnode man or /usr/doc/leafnode/README.Debian).

To check the server performance, we can run:

telnet localhost nntp

and if everything works correctly, it will show the server identification and

will wait for a command, as a test, we can enter help [to abort, Ctrl+ (and then

Quit)].

© FUOC • P07/M2103/02286 33 Server administration

5.4. World Wide Web (httpd)

Apache is one of the most popular servers with the best capabilities in terms

of hypertext transfer protocol (HTTP). Apache has a modular design and sup-

ports dynamic module extensions during its execution. It is highly config-

urable in the number of servers and available modules and supports various

mechanisms of authentication, access control, metafiles, proxy caching, vir-

tual servers etc. With modules (included in Debian) it is possible to have PHP3,

Perl, Java Servlets, SSL and other extensions (see the documentation in http:/

/www.apache.org).

Apache is designed to be executed as a daemon standalone process. This way

it creates a set of subsidiary processes that will handle entry requests. It can

also be executed as an Internet daemon through inetd, meaning that it will

start up every time it receives a request. The server's configuration can be ex-

tremely complex depending on the requirements (check the documentation),

however, here we can see a minimum acceptable configuration. The config-

uration files are in /etc/apache and are httpd.conf (main configuration file),

srm.conf, access.conf (these last two are maintained for compatibility and the

functionality lies in the former), mime.conf (MIME formats) and magic (file

identification number). The log files are in /var/log/apache and are error.log

(registers the errors in the server requests), access.log (register of who has ac-

cessed what) and apache.pid (process identifier).

Apache boots from the start up script /etc/init.d/apache and /etc/rcX.d, but

can be controlled manually through the apachectl command. The apachecon-

fig command can also be used in order to configure the server. The default

directories (in Debian) are:

• /var/www: directory of HTML documents.

• /usr/lib/cgibin: directory of executables (cgi) by the server.

• http://server.domain/ user: users' personal pages.

• /home/user/public.html: directory of personal pages.

The default file that is read from each directory is index.html. After installing

the apache and apache-common packages, Debian basically configures the serv-

er and initiates it. We can check that it functions by opening a browser (for

example, the Konqueror, and typing "http://localhost" in the URL bar, which

will load the page /var/www/index.html).

5.4.1. Manual (minimum) configuration of httpd.conf

Let's look at some of the most important parameters to be configured in

Apache (the example is taken from Apache version 1.X and there are some

minor changes if we use version 2).

© FUOC • P07/M2103/02286 34 Server administration

ServerType standalone Recommended, more efficient

ServerRoot /etc/apache Where the configuration files are found

Port 80 Where the server will listen to requests

User www-data User and group with which the server will be executed (important for secu-
rity) must be valid users (they can be locked)

Group www-data
ServerAdmin webmaster@pirulo.remix.com

User address that will attend to errors

ServerName pirulo.remix.com Name of the server sent to users – must be a valid name in /etc/host or
DNS –

DocumentRoot /var/www Directory where the documents will be

Alias /icons/ /usr/share/apache/icons/ Where the icons are

ScriptAlias /cgibin/ /usr/lib/cgibin/ Where the CGI scripts are

5.4.2. Apache 2.2 + SSL + PHP + MySQL

An important aspect of dynamic web servers is making the most of the advan-

tages of Apache in secure mode (SSL), PHP (is programming language general-

ly used to create web site content) and MySQL+PHPAdmin (database that will

be discussed in later chapters and graphic interface for managing it) all work-

ing in combination. We will start by installing it on a Debian Sarge, but not

through the deb packages but rather from the software downloaded from the

relevant sites, this way we can repeat the experience with other distributions.

Obviously, afterwards it will not be possible to control these packages using

apt or another package manager. We need to take care with the versions, which

can change, and not to install the package over already installed packages.

a) Download the necessary files (for example within the directory /root

-> cd /root):

1) Apache: from http://httpd.apache.org/download.cgi: httpd-

2.2.4.tar.bz2

2) PHP: from http://www.php.net/downloads.php PHP 5.2.1

(tar.bz2)

3) MySQL from http://mysql.org/get/Downloads/MySQL-4.1/mysql-

standard-4.1.21-pc-linux-gnu-i686.tar.gz/from/pick

4) PHPAdmin from http://prdownloads.sourceforge.net/phpmyad-

min/phpMyAdmin-2.9.1-all-languages.tar.bz2?download

© FUOC • P07/M2103/02286 35 Server administration

b) Utilities: bzip2 libssl-dev openssl gcc g++ cpp make (verify that they

are not installed or otherwise, run apt-get install bzip2 libssl-dev openssl

gcc g++ cpp make.

c)�Apache:

cd /root

tar jxvf httpd-2.2.4.tar.bz2

cd httpd-2.2.4

With prefix, we indicate that we will install for example /usr/lo-

cal/apache2./configure --prefix=/usr/local/apache2 –with

ssl=/usr/include/openssl \--enable-ssl

make

make install

We modify the configuration file /usr/local/apache2/conf/httpd.conf

andchange the user and workgroup for www-data:

User www-data
Group www-data

We change the owner and group of the data directory to

www-data:chown -R www-data:www-data /usr/local/apache2/htdocs

We modify the user www-data to change its home directory in /etc/pass-

wd:

www-data:x:33:33:www-data:/usr/local/apache2/htdocs:/bin/sh

Apache server installed. To initiate it (to stop it, change start for stop):

/usr/local/apache2/bin/apachectl start

We can place a script to start up the apache server upon booting.

ln -s /usr/local/apache2/bin/apachectl /etc/rcS.d/S99apache chmod 755 /etc/rcS.d/
S99apache

d)�SSL:

In /usr/local/apache2/conf/httpd.conf we remove the comment from the

line: Include conf/extra/httpd-ssl.conf

The files are generated with the keys for the secure server, in /root we run

(adjust the versions to the ones that have been downloaded) – the first

openssl command is a complete line and ends with 1024:

© FUOC • P07/M2103/02286 36 Server administration

openssl genrsa -rand ../httpd-2.2.4.tar.bz2:../php-5.2.1.tar.bz2:../phpMyAdmin-2.9.1-
all-languages.tar.bz2 -out server.key 1024
openssl rsa -in server.key -out server.pem
openssl req -new -key server.key -out server.csr
openssl x509 -req -days 720 -in server.csr -signkey server.key -out server.crt

We copy the files...

cp server.crt /usr/local/apache2/conf/
cp server.key /usr/local/apache2/conf/

We restart the server...

/usr/local/apache2/bin/apachectl restart

We can check how to add the SSL module to a server that does not have

it installed at http://www.debian-administration.org/articles/349.

e)�MySQL�(for�more�information�see�module�8):

We create a group and a user for MySQL if it does not exist.

groupadd mysql
useradd -g mysql mysql

In the directory where we will install MySQL (/usr/local/) we type:

cd /usr/local/

gunzip < /root/mysql-standard-4.1.21-pc-linux-gnu-

i686.tar.gz | tar xvf - ln -s mysql-standard-4.1.21-pc-

linux-gnu-i686 mysql cd mysql

We create a database and change the permissions

scripts/mysql_install_db --user=mysql

chown -R root.

chown -R mysql data

chgrp -R mysql.

We can place a script for initiating the mySQL server.

ln -s /usr/local/mysql/support-files/mysql.server /

etc/rcS.d/S99mysql.server chmod 755 /etc/rcS.d/

S99mysql.server

We start the server

/etc/rcS.d/S99mysql.server start

We can enter the database and change the password of the root user for se-

curity (consult http://dev.mysql.com/doc/refman/5.0/en/index.html for

the syntax)

/usr/local/mysql/bin/mysql

Inside, we can type:

© FUOC • P07/M2103/02286 37 Server administration

 USE mysql

We place the password pirulo on the user root

 UPDATE user SET Password=PASSWORD('pirulo') WHERE User='root';

 FLUSH privileges;

To enter MySQL we will have to type

/usr/local/mysql/bin/mysql -u root -ppirulo

f)�PHP (replace with the appropriate versions):

Necessary utilities:

apt-get install libxml2-dev curl libcurl3-dev libjpeg-

mmx-dev zlib1g-dev \ libpng12-dev

With the Apache server stopped we can type:

cd /root

tar jxvf php-5.2.0.tar.bz2

cd php-5.2.0

With the prefix we can indicate where we want to install it (all on one

line):

./configure --prefix=/usr/local/php5 --enable-mbstring

--with-apxs2=/usr/local/apache2/bin/apxs --with-mysql=/

usr/local/mysql --with-curl=/usr/include/curl --with-

jpeg-dir=/usr/include --with-zlib-dir=/usr/include --

with-gd --with-xml --enable-ftp --enable-bcmath

make

make

install cp php.ini-dist /usr/local/php5/lib/php.ini

We modify Apache (/usr/local/apache2/conf/httpd.conf) in the indicated

part:

<IfModule mime_module>
 AddType application/x-httpd-php .php .phtml
 AddType application/x-httpd-php-source .phps

And also:

DirectoryIndex index.php index.html

We restart the server.

© FUOC • P07/M2103/02286 38 Server administration

g)�PHPAdmin

cd /usr/local/apache2/

The phpmyadmin is decompressed in the apache2 directory (be careful

with the versions).

tar jxvf /root/phpMyAdmin-2.9.1-all-languages.tar.bz2

mv phpMyAdmin-2.9.1-all-languages phpmyadmin

cd phpmyadmin

cp config.sample.inc.php config.inc.php

We need to modify the configuration file (config.inc.php):

$cfg['blowfish_secret'] = 'pirulo';

We remove the user and user password by default two quotation marks

(') one after the other:

$cfg['Servers'][$i]['controluser'] = '';
$cfg['Servers'][$i]['controlpass'] = '';

We change apache (/usr/local/apache2/conf/httpd.conf) adding in <If-

Module alias_module>

<IfModule alias_module>
 Alias /phpmyadmin "/usr/local/apache2/phpmyadmin/"
<Directory "/usr/local/apache2/phpmyadmin/">
 Order allow, deny
 Allow from all
</Directory>

We reinitiate the server and we can it call with http://localhost/phpadmin

Further information can be obtained from the respective websites of each

application and in LWP.

© FUOC • P07/M2103/02286 39 Server administration

6. Proxy Service: Squid

A Proxy server (PS) is used to save connection bandwidth, to improve

security and to increase web-surfing speed.

Squid is one of the main PS, since it is OpenSource, it accepts ICP (character-

istics that allow the exchange of hints with other PS), SSL (for secure connec-

tions between proxies) and supports FTP objects, Gopher, HTTP and HTTPS

(secure). Its functioning is simple, it stores the most frequently requested ob-

jects in the RAM and the least requested objects in a database on the disk.

Squid servers can also be configured hierarchically to form a tree of proxies

according to requirements. There are two possible configurations:

1) As an httpd accelerator to achieve improved performance of the web service.

2) As a proxy-caching server to allow the users of a corporation to use the PS

to exit towards the Internet.

In the first mode, it acts as an inverse proxy in other words, it accepts a client's

request, serves the object if it has it, and if not, asks for it and passes it onto

the client when it does, storing it for the next time. In the second option it

can be used as a control to restrict the sites where a connection to the Internet

can be obtained or to authorise access at specific times of day. Once installed

(squid package in Debian, squid-cgi, squidguard or squidtaild can also be in-

stalled) three files are generated: /etc/squid.conf (configuration), /etc/init.d/

squid (initialisation) and /etc/logrotate.d/squid (for log control).

6.1. Squid as an http accelerator

In this mode, if the web server is on the same machine as the PS, it will have to

be reconfigured to attend to the requests of port 81 (in Apache, change Port 80

for Port 81 in httpd.conf). The configuration file (/etc/squid.conf) contains a

large number of entries, but here we will only see the essential ones [Mou01]:

http_port 80
icp_port 0
hierarchy_stoplist cgi-bin \?
acl QUERY urlpath_regex cgi-bin \?
no_cache deny QUERY

Where it listens for httpd
Where it listens for ICP

cache_mem 100 MB
redirect_rewrites_host_header off
cache_replacement_policy lru
memory_replacement_policy lru

Memory for objects in progress

© FUOC • P07/M2103/02286 40 Server administration

cache_dir ufs /var/spool/squid 100 16 256
Database
emulate_httpd_log on

Type and place where we can find the disk cache

acl all src 0.0.0.0/0.0.0.0
http_access allow all
cache_mgr root
cache_effective_user proxy
cache_effective_group proxy
httpd_accel_host192.168.1.1
httpd_accel_port 81
logfile_rotate 0
log_icp_queries off
buffered_logs on

Access for all
And for everything
Mail responsible
UID
GID
Real web server
Port

In this way, the option httpd_accel_host deactivates the possibility of it being

executed as proxy-caching. For further information visit http://www.squid-

cache.org/.

6.2. Squid as proxy-caching

This way, squid is enabled to control Internet access, when access will be giv-

en and to what. In this case, the configuration file will have to include the

following modifications added in /etc/squid.conf:

acl localnet src 192.168.1.0/255.255.255.0
acl localhost src 127.0.0.1/255.255.255.255
acl Safe_ports port 80 443 210 70 21 102565535
acl CONNECT method CONNECT
acl all src 0.0.0.0/0.0.0.0
http_access allow localnet
http_access allow localhost
http_access deny
http_access deny CONNECT
http_access deny all
cache_emulate_httpd_log on

The main difference with the other mode are the acl lines, in which case

C class clients C 192.168.1.0 will be allowed access to the PS, also the lo-

calhost IP and other ports that will be able to access the Internet 80(http),

443(https), 210(whais), 70(gopher), and 21(ftp), also, the connect method is

denied to avoid a connection from the outside to the PS and then all IP and

ports over the PS are denied. [Mou01] More information at http://www.squid-

cache.org/ and for a transparent-proxy at http://tldp.org/HOWTO/Transpar-

entProxy-1.html.

© FUOC • P07/M2103/02286 41 Server administration

7. OpenLdap (Ldap)

LDAP means lightweight directory access protocol and is a protocol for

accessing data based on an X.500 service. It is run on TCP/IP and the

directory is similar to that of a database that contains information based

on attributes. The system allows this information to be organised in a

secure manner and uses replicas to maintain its availability, ensuring

its coherence and verification of accessed-modified data.

The service is based on the client-server model, where there is one or more

servers that contain the data; when a client connects and asks for information,

the server replies with the data or a pointer to another server where more

information can be extracted, but the client will only see a directory of global

information. [Mou01, Mal07]

To import and export information between ldap servers or to describe a num-

ber of changes that will be applied to the directory, we use a format called

LDIF (LDAP data interchange format). LDIF stores the information in hierarchies

oriented at objects that will then be converted to the internal format of the

database. An LDIF file has a similar format to:

dn: o = UOC, c = SP
or: UOC
objectclass: organization
dn: cn = Pirulo Nteum, o = UOC, c = SP
cn: Pirulo Nteum
sn: Nteum
mail: nteum@uoc.edu
objectclass: person

Each entry is identified by a name indicated as a distinguished name (DN).

The DN consists of the entry name plus a series of names that relate it to

the directory's hierarchy and where there is an objectclass, that defines the at-

tributes that can be used in this entry. LDAP offers a basic set of object class-

es: groups (including disorganised lists of individual objects or groups of ob-

jects), locations (such as countries and their description), organisations and

people. An entry can also belong to more than one object class, for example,

an individual is defined by the class of person, but can also be defined by at-

tributes of the classes inetOrgPerson, groupOfNames, and organisation. The

structure of the server's objects (called schema) determines what the permitted

attributes are for an object of a class (which are defined in /etc/ldap/schema

as opeldap.schema, corba.schema, nis.schema, inetorgperson. schema etc.).

© FUOC • P07/M2103/02286 42 Server administration

All the data are represented as a pair attribute = value where attribute is the

description of the information it contains, for example, the attribute used to

store the name of a person is commonName, or cn, in other words for a person

called Pirulo Nteum, it will be represented by cn: Pirulo Nteumand will have

associated other attributes of the person class such as givenname: Pirulo sur-

name: Nteum mail: pirulo@uoc.edu. The classes have obligatory and optional

attributes and every attribute has an associated syntax which indicates what

type of information the attribute contains, for example, bin (binary), ces (case

exact string, case must match in search), cis (case ignore string, case can be ig-

nored during the search), tel (telephone number string, ignores spaces and '-'),

dn (distinguished name). An example of a file in LDIF format could be:

dn:
objectclass:
objectclass:

dc = UOC, dc = com
top
organizationalUnit

dn:
objectclass:
objectclass:
ou:

ou = groups, dc = UOC, dc = com
top
organizationalUnit
groups

dn:
objectclass:
objectclass:
ou:

ou = people, dc = UOC, dc = com
top
organizationalUnit
people

dn:
cn:
sn:
objectclass:
objectclass:
objectclass:
objectclass:

cn = Pirulo Nteum, ou = people, dc = UOC, dc = com
Pirulo Nteum
Nteum
top
person
posixAccount
shadowAccount
uid:pirulo
userpassword:{crypt}p1pss2ii(0pgbs*do&@ =)eksd
uidnumber:104
gidnumber:100
gecos:Pirulo Nteum
loginShell:/bin/bash
homeDirectory: /home/pirulo
shadowLastChange:10877
shadowMin: 0
shadowMax: 999999
shadowWarning: 7
shadowInactive: -1
shadowExpire: -1
shadowFlag: 0

dn:
objectclass:
objectclass:
cn:
gidnumber:
memberuid:
memberuid:

cn = unixgroup, ou = groups, dc = UOC, dc = com
top
posixGroup
unixgroup
200
pirulo other-user

The long lines can be continued underneath starting with a space or a tab

(LDIF format). In this case, the DN base has been defined for the institution

dc = UOC, dc = com, which contains two sub-units: people and groups. Then it

has described a user that belongs to people and to group. Having prepared the

© FUOC • P07/M2103/02286 43 Server administration

file with the data, we need to import it to the server so that it is available for

LDAP clients. There are tools for converting the data of different databases to

the LDIF format. [Mal07]

In Debian, we need to install the slapd package which is the OpenLdap server.

During the installation, it will ask a number of questions such as: Method of in-

stalling the directory: auto; extensions to the directory [domain-host,site,institution]:

host, domain, password of the Adm; replicate local changes to other servers: no.

This installation will generate a configuration file in /etc/ldap/slapd.conf and

the database on /var/lib/ldap. There is also another file /etc/ldap/ldap.conf (or

~/.ldaprc), which is the configuration file used for initialising default values

when ldap clients are executed. Here it indicates which is the database, which

is the ldap server, security parameters, size of the search etc.

The /etc/ldap/slapd.conf server configuration file (see man slap.con) con-

sists of different sections, each indicated by one of the following guidelines:

global, backend specific and database specific, and in that order. The global

guideline is of a general nature and applies to all the backends (databases) and

defines general questions such as access permissions, attributes, waiting times,

schemas etc. The backend specific guideline defines the attributes to the specific

backend that it defines (bdb, dnssrv, ldbm...), and the database specific guide-

line defines the specific attributes for the database it defines. To boot the serv-

er, we need to run:

/etc/init.d/slapd start (or stop to stop it)

During the installation, the system will have created the right links for run-

ning it after start up.

7.1. Creating and maintaining the database

There are two methods for entering data in the LDAP database. The first one is

easy and suitable for small amounts of data, it is interactive and we need to use

tools such as ldapadd (or any other such as Ldap Browser http://www.iit.edu/

~gawojar/ldap/) to make new entries. The second needs to be worked on of-

fline and is suitable for large databases and uses the slapadd command includ-

ed with slapd. Because it is more general, we will briefly describe the second

method, where we must first verify that it contains the following attributes

in slapd.conf: suffix (top of the directory, for example "o = UOC, c = SP"); di-

rectory /var/lib/ldap (directory where the indexes will be created and that can

write slapd). We must also verify that the database contains the definitions of

the indexes we wish to use:

index cn,sn,uid
index objectClass pres,eq

Having defined the slapd.conf, we must execute the command:

© FUOC • P07/M2103/02286 44 Server administration

slapadd -l entry-f configuration [-d level] [-n whole| -b

suffix]

The arguments are:

-l: file in LDFI format.

-f: server configuration file where it indicates how to create the indexes.

-d: level of debugging.

-n: Nro of the database, if we have more than one.

-b: specifies what database need to be modified.

There are other commands with slapd such as slapindex, whichallows the in-

dexes to be regenerated, and slapcat, which allows dumping the database to

a file in LDIF format.

© FUOC • P07/M2103/02286 45 Server administration

8. File services (NFS)

The NFS system allows a server to export a file system so that it can be

used interactively from a client. The service consists of an nfsd server

and a client (mountd) which can share a file system (or part of it) through

the network.

In Debian, install apt-get install nfs-common portmap for the client,

while the server needs apt-get install nfs-kernel-server nfs-com-

mon portmap.

The server (in Debian) starts through the nfscommon and nfs-kernel-server

scripts in /etc/init.d (and the appropriate links in /etc/rcX.d).

The server uses a file (/etc/exports) to manage the access and control of the

file systems that will be accessed remotely. On the client, the root (or other

user through sudo) can mount the remote system using the command:

mount Ipserver:remote-directory local_directory

and as of that moment, the remote-directory will be seen within the local

directory (which must exist before executing the mount). This task in the client

can be automated using the automatic mount file (/etc/fstab) including a line;

for example:

pirulo.remix.com:/usr/local /pub nfs rsize=8192,wzise=8192,timeo=14

This sentence indicates that the directory /usr/local of the host

pirulo.remix.com will be mounted in the /pub local directory. The parameters

rsize, wzise are the size of the reading and writing blocks, timeo is the RPC

timeout (if these three values are not specified, the default values are taken).

The /etc/exports file serves as ACL (access control list) of the file systems that

can be exported to the clients. Every line contains a file system to be exported

followed by the clients that can mount it, separated by blank spaces. Each

client can have a set of options associated to it in order to modify the be-

haviour (see the exports man for a detailed list of the options). An example of

this could be:

Example of /etc/exports

© FUOC • P07/M2103/02286 46 Server administration

/
/projects
/usr
/pub
/home
/user

/master(rw) trusty(rw,no_root_squash)
proj*.local.domain(rw)
*.local.domain(ro) @trusted(rw)
(ro,insecure,all_squash)
195.12.32.2(rw,no_root_squash) www.first.com(ro)
195.12.32.2/24(ro,insecure)

The first line exports the entire file system (/) to master and trusty in read/write

mode. Plus, for trusty there is no uid squashing (the root of the client will

access as root the root files of the server, in other words, the two root are

equivalent despite being from different machines; it is suited for machines

without a disk). The second and third lines show examples of '*' and netgroups

(indicated by @). The fourth line exports the /pub directory to any machine

in the world, read-only, allows access to NFS clients that do not use a port

reserved for NFS (option insecure) and everything is executed under the user

nobody (option all squash). The fifth line specifies one client for its IP and

the sixth the same but with a network mask (/24) and with options between

brackets () and without any spaces. There can only be spaces between the

enabled clients. It is important to bear in mind that there are 3 versions of

NFS (V2, V3 and recently V4). The most common ones are V3 and in some

installations V2. If from a V3 client we connect to a V2 server, this situation

must be indicated with a parameter.

8.1. Wiki server

A wiki (from Hawaiian wiki wiki, "fast") is a collaborative website that can be

edited by various users who can create, edit, delete or modify the content of a

web page, in an easy, fast and interactive manner; these capabilities make wiki

an effective tool for collaborative writing. Wiki technology allows web pages

stored in a public server (the wiki pages) to be written in a collaborative fashion

through a navigator, using simple notation for giving format, creating links

etc., saving a log of changes that makes it possible to recover easily any prior

status of the page. When someone edits a wiki page, its changes appear imme-

diately on the web, without passing through any type of prior revision. Wiki

can also refer to pages of hypertext, which can be visited and edited by any-

one (definition of Wikipedia). Debian has its wiki in http://wiki.debian.org/

and FC in http://fedoraproject.org/wiki/ and both are based on Moin Moin

(http://moinmoin.wikiwikiweb.de/). MoinMoin is a Python WikiClone that

can rapidly initiate its own wiki; it just needs a web server and the installed

Python language.

In http://moinmoin.wikiwikiweb.de/MoinMoinPackages/DebianLinux we

can find detailed instructions for installing Moin Moin on Debian, but, basi-

cally, it comes down to: 1) Installing apache2 and mod_python, 2) configuring

Apache to note the code of MoinMoin, 3) installing the moinmoin package,

4) configuring MoinMoin and 5) restarting Apache. A configuration example:

apt-get install python-moinmoin

© FUOC • P07/M2103/02286 47 Server administration

mkdir /var/www/mywiki

cp -r /usr/share/moin/data /usr/share/moin/underlay \

/usr/share/moin/server/moin.cgi /var/www/mywiki

chown -R www-data:www-data /var/www/mywiki

chmod -R g+w /var/www/mywiki

• Configure apache2 by adding /etc/apache2/conf.d/wiki (or wherever the

configuration file is):

Alias /wiki/ "/usr/share/moin/htdocs/"

<Location /mywiki>

 SetHandler python-program

 PythonPath "['/var/www/mywiki','/etc/moin/']+sys.path"

 PythonHandler MoinMoin.request::RequestModPy.run

 PythonDebug On

</Location>

• Restart apache2:

/etc/init.d/apache2 reload

• Configure MoinMoin: Edit /etc/moin/farmconfig.py (multiple wikis)

wikis = [

("mywiki", r"^yoursite.com/mywiki/.*$"),

]

• we can also use (just one wiki):

wikis = [

("mywiki", r".*"),

]

• Also in /etc/moin/farmconfig.py remove the comment data_dir and

data_underlay_dir (one for each wiki) and copy the file.

cp /etc/moin/moinmaster.py /etc/moin/mywiki.py

• Then edit /etc/moin/mywiki.py and change:

sitename = u'MyWiki'

data_dir = '/var/www/mywiki/data'

data_underlay_dir = '/var/www/mywiki/underlay'

The Wiki will be installed on http://yoursite.com/mywiki/

© FUOC • P07/M2103/02286 49 Server administration

Activities

1) Configure a DNS server as cache and with its own domain.

2) Configure a NIS server/client with two machines exporting the server's user directories
by NFS.

3) Configure an SSH server to access from another machine without a password.

4) Configure an Apache server + SSL+ PHP+ MySQL+ PHPAdmin in order to visualise users'
personal pages.

5) Create and configure an electronic mail system through Exim, fetchmail, Spam-Assassin
and an IMAP server for receiving mail from the outside and being able to read them from a
remote machine with the Mozilla client (Thunderbird).

6) Install the MoinMoin Wiki and create a set of pages to verify that it works.

© FUOC • P07/M2103/02286 50 Server administration

Bibliography

Other sources of reference and information

[Debc, LPD03b, Ibi]

http://tldp.org/HOWTO/DNS-HOWTO-7.html

http://tldp.org/HOWTO/NIS-HOWTO/verification.html

Squid proxy server

Proxy Cache: http://www.squid-cache.org/

Transparent Proxy: http://tldp.org/HOWTO/TransparentProxy-1.html

Proftpd: http://www.debian-administration.org/articles/228

PureFtpd: http://www.debian-administration.org/articles/383

Exim: http://www.exim.org/docs.html

Mutt: http://www.mutt.org

ProcMail: http://www.debian-administration.org/articles/242

LWP:http://www.lawebdelprogramador.com/temas/tema_stablephpapachemysql.php

Moin Moin: (http://moinmoin.wikiwikiweb.de/)

Moin Moin + Debian:

http://moinmoin.wikiwikiweb.de/MoinMoinPackages/DebianLinux

Apache2 + SSL: http://www.debian-administration.org/articles/349

Data
administration

Remo Suppi Boldrito

P07/M2103/02287

© FUOC • P07/M2103/02287 Data administration

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02287 Data administration

Index

Introduction... 5

1. PostgreSQL... 7

1.1. How should we create a DB? .. 7

1.2. How can we access a DB? ... 8

1.3. SQL language ... 8

1.4. Installing PostgreSQL .. 10

1.4.1. Post-installation ... 11

1.4.2. DB users ... 12

1.5. Maintenance .. 14

1.6. Pgaccess ... 15

2. Mysql.. 17

2.1. Installation .. 17

2.2. Post-installation and verification .. 18

2.3. The MySQL monitor program (client) .. 19

2.4. Administration .. 21

2.5. Graphic interfaces ... 22

3. Source code control system (CVS and Subversion).................... 24

3.1. Revision control system (RCS) .. 25

3.2. Concurrent versions system (CVS) ... 25

3.2.1. Example of a session ... 29

3.2.2. Multiple users .. 30

3.3. Graphic interfaces ... 30

4. Subversion.. 32

Activities.. 37

Bibliography... 38

© FUOC • P07/M2103/02287 5 Data administration

Introduction

An important aspect of an operating system is where and how the data is

saved. When the availability of data needs to be efficient, it is necessary to

use databases (DB).

A database is a structured set of data that can be organised in a simple and

efficient manner by the database handler. Current databases are known as

relational, since the data can be stored in different tables for ease of man-

agement and administration. For this purpose and with a view to standardis-

ing database access, a language known as structured query language (SQL) is

used. This language allows a flexible and rapid interaction irrespective of the

database applications.

At present, the most commonly used way consists of accessing a database from

an application that runs SQL code. For example, it is very common to access

a DB through a web page that contains PHP or Perl code (the most common

ones). When a page is requested by a client, the PHP or Perl code embedded

in the page is executed, the DB is accessed and the page is generated with

its static content and the content extracted from the DB that is then sent to

the client. Two of the most relevant current examples of databases are those

provided by ProstgreSQL and MySQL, which are the ones we will analyse.

However, when we work on software development, there are other data-relat-

ed aspects to consider, regarding their validity and environment (especially if

there is a group of users that work on the same data). There are several pack-

ages for version control (revisions), but the purpose of all of them is to facil-

itate the administration of the different versions of each developed product

together with the potential specialisations made for any particular client.

Versions control is provided to control the different versions of the source

code. However, the same concepts apply to other spheres and not only for

source code but also for documents, images etc. Although a version control

system can be implemented manually, it is highly advisable to have tools that

facilitate this management (cvs, Subversion, SourceSafe, Clear Case, Darcs,

Plastic SCM, RCS etc.).

In this chapter, we will look at cvs (version control system) and Subversion

for controlling and administering multiple file revisions, automating storage,

reading, identifying and merging different revisions. These programs are use-

ful when a text is revised frequently and includes source code, executables,

libraries, documentation, graphs, articles and other files. [Pos03e, Mys, Ced]

© FUOC • P07/M2103/02287 6 Data administration

The reasoning behind using cvs and Subversion is that cvs is one of the most

commonly used traditional packages and Subversion is a version control sys-

tem software designed specifically to replace the popular cvs and to resolve

several of its deficiencies. Subversion is also known as svn since this is the

name of the command line tool. An important feature of Subversion is that,

unlike CVS, the files with versions do not each have an independent revision

number. Instead, the entire repository has a single version number that iden-

tifies a shared status of all the repository's files at a certain point in time.

© FUOC • P07/M2103/02287 7 Data administration

1. PostgreSQL

The PostgreSQL database (DB) language uses a client server model [Posa]. A

PostgreSQL session consists of a series of programs that cooperate:

• A server process that handles the DB files accepts connections from clients

and performs the actions required by the clients on the DB. The server

program in PostgreSQL is called postmaster.

• The client application (frontend) is what requests the operations to be

performed on the DB, which can be extremely varied; for example: tools

in text mode, graphic, web servers etc.

Generally, the client and the server are on different hosts and communicate

through a TCP/IP connection. The server can accept multiple requests from

different clients, activating a process that will attend to the user's request ex-

clusively and transparently for each new connection. There is a set of tasks

that can be performed by the user or by the administrator, as appropriate, and

that we describe as follows.

1.1. How should we create a DB?

The first action for checking whether the DB server can be accessed is to cre-

ate a database. The PostgreSQL server can handle many DBs and it is recom-

mended to use a different one for each project. To create a database, we use

the createdb command from the operating system's command line. This com-

mand will generate a CREATE DATABASE message if everything is correct. It

is important to take into account that for this action we will need to have a

user enabled to create a database. In the section on installation (8.1.4) we will

see that there is a user, the one that installs the database, who will have per-

missions for creating databases and creating new users who in turn can create

databases. Generally (and in Debian) the default user is postgres. Therefore,

before running createdb, we need to run postgres (if we are the root user, we

do not need a password, but any other user will need the postgres password)

and then we will be able to run createdb. To create a DB call nteumdb:

createdb nteumdb

If we cannot find the command, it may be that the path is not properly con-

figured or that the DB is not properly installed. We can try with the full path

(/usr/local/pgsql/bin/createdb nteumdb), which will depend on our

specific installation, or check references for problem-solving. Other messages

© FUOC • P07/M2103/02287 8 Data administration

would be could not connect to server when the server has not initiated or CRE-

ATE DATABASE: permission denied when we do not have authorisation to cre-

ate the DB. To eliminate the DB, we can use dropdb nteumdb.

1.2. How can we access a DB?

After we have created the DB, we can access it in various ways:

• By running an interactive command called psql, which allows us to edit

and execute SQL commands (e.g. Psql nteumdb).

• Executing a graphic interface such as PgAccess or a suite with ODBC sup-

port for creating and manipulating DBs.

• Writing an application using one of the supported languages, for example

PHP, Perl, Java... (see PostgreSQL 7.3 Programmer's Guide).

For reasons of simplicity, we will use psql to access the DB, meaning that we

will have to enter psql nteumdb: some messages will appear with the version

and information and a similar prompt to nteumdb =<. We can run some of

the following SQL commands:

SELECT version();

or also

SELECT current date;

psql also has commands that are not SQL and that start with '\', for example

\h (list of all available commands) or \q to finish.

Example

Access the DB nteumdb:
psql nteumdb [enter]
nteumdb =>

1.3. SQL language

The purpose of this section is not to provide a tutorial on SQL, but we will

analyse some examples to see this language's capabilities. They are examples

that come with the PostgreSQL distribution in the InstallationDirectory/src/

tutorial directory; in order to access them, change to the PostgreSQL directory

(cd InstallationDirectory/ src/tutorial) and run psql -s nteumdb and once

inside \i basics.sql. The parameter \i reads the commands of the specified file

(basic.sql in this case).

See also

In order to access the DB, the
database server must be run-
ning. When we install Post-
gresql the appropriate links
are created so that the server
initiates when the computer
boots. For more details, con-
sult the section on installation
(8.1.4).

© FUOC • P07/M2103/02287 9 Data administration

PostgreSQL is a relational database management system (RDBMS), which

means that it manages data stored in tables. Each table has a specific number

of rows and columns and every column contains a specific type of data. The

tables are grouped into one DB and a single server handles this collection of

DB (the full set is called a database cluster).

To create, for example, a table with psql, run:

CREATE TABLE weather (

 city varchar(80),

 min_temp int,

 max_temp int,

 real rain,

 day date

);

Example

Create table. Inside psql:

CREATE TABLE NameTB (var1 type, var2 type,...);

The command ends when we type ';' and we can use blank spaces and tabs

freely. varchar(80) specifies a data structure that can store up to 80 characters

(in this case). The point is a specific type of PostgreSQL.

To delete the table:

DROP TABLE table_name ;

We can enter data in two ways, the first is to enter all the table's data and

the second is to specify the variables and values that we wish to modify:

INSERT INTO weather VALUES ('Barcelona', 16, 37, 0.25, '2007-03-19');

INSERT INTO weather (city, min_temp, max_temp, rain, day)

VALUES ('Barcelona', 16, 37, 0.25, '2007-03-19'); This method can be sim-

ple for small amounts of data, but when a large amount of data has to be

entered, it can be copied from a file with the sentence:

Example

A second example could be:
CREATE TABLE city(name var-
char(80),
 place
 point
);

COPY weather FROM '/home/user/time.txt'; (this file must be on the server,

not on the client).

To look at a table, we could type:

SELECT * FROM weather;

where * means all the columns.

Recommend Reading

We recommend study-
ing chapter 3 of Post-
greSQL on advanced char-
acteristics (Views,Foreign
Keys, Transactions, http://
www.postgresql.org/docs/8.2/
static/tutorial-advanced.html
[Pos03d]

© FUOC • P07/M2103/02287 10 Data administration

Examples

Enter the data into the table. Inside psql:

INSERT INTO TBName (valueVar1, ValueVar2,...);

Data from a file. Inside psql:

COPY TBName FROM 'FileName';

• Visualising data. Inside psql:

SELECT * FROM TBName;

Examples of more complex commands (within psql) would be:

• Visualises the column city after typing:

SELECT city, (max_temp+min_temp)/2 AS average_temp, date FROM weather;

• Visualises everything where the logical operation is fulfilled:

SELECT * FROM weather WHERE city = 'Barcelona'
 AND rain \verb+>+ 0.0;

• Joining tables:

SELECT * FROM weather, city WHERE city = name;

• Functions, in this case maximum:

SELECT max(min_temp) FROM weather;

• Nested functions:

SELECT city FROM weather WHERE min_temp = (SELECT max(min_temp) FROM weath-
er);

• Selective modification:

UPDATE weather SET max_temp = max_temp 2, min_temp = min_temp 2 WHERE day
> '19990128';

• Deleting the register:

DELETE FROM weather WHERE city = 'Sabadell';

1.4. Installing PostgreSQL

This step is necessary for DB administrators [Posa]. The DB administrator's

functions include software installation, initialisation and configuration, ad-

ministration of users, DBs and DB maintenance tasks.

The database can be installed in two ways: through the distribution's binaries,

which is not difficult, since the distribution scripts carry out all the necessary

steps for making the DB operative, or through the source code, which will

have to be compiled and installed. In the first case, we can use the kpackage

(Debian) or the apt-get. In the second case, we recommend always going to the

source (or to a mirror repository of the original distribution). It is important to

bear in mind that the installation from the source code will then be left outside

the DB of installed software and that the benefits of software administration

offered, for example, by apt-cache or apt-get will be lost.

© FUOC • P07/M2103/02287 11 Data administration

Installation from source code step by step:

• First we need to obtain the software from the site (x.x is the available

version) http://www.postgresql.org/download/ and decompress it (x.x.x is

version 8.2.3 at the time of this revision):

gunzip postgresql-x.x.x.tar.gz

tar xf postgresql-7.3.tar

• Change to the postgresql directory and configure it with ./configure.

• Compile it with gmake, verify the compilation with gmake check and

install it with gmake install (by default, it will install it in /usr/local/

pgsql).

1.4.1. Post-installation

Initialise the variables, in bash, sh, ksh:

LD_LIBRARY_PATH = /usr/local/pgsql/lib;
PATH = /usr/local/pgsql/bin:$PATH;
export LD_LIBRARY_PATH PATH;

or, in csh:

setenv LD_LIBRARY_PATH /usr/local/pgsql/lib;
set path = (/usr/local/pgsql/bin $path)

We recommend locating this initialisation in the user configuration scripts,

for example /etc/profile or .bashrc for bash. To have access to the manuals, we

need to initialise the MANPATH variable in the same way:

MANPATH = /usr/local/pgsql/man:$MANPATH;
export MANPATH

Once the DB is installed, we will need to create a user that will handle the

databases (it is advisable to create a different user from the root user so that

there is no connection with other services of the machine), for example, the

postgres user using the useradd, command for example.

Next, we will need to create a storage area for the databases (single space) on

the disk, which will be a directory, for example /usr/local/pgsql/data. For this

purpose, execute initdb -D /usr/local/pgsql/data, connected as the user created

in the preceding point. We may receive a message that the directory cannot

be created due to no privileges, meaning that we will first have to create the

directory and then tell the DB which it is; as root, we have to type, for example:

mkdir /usr/local/pgsql/data

chown postgres /usr/local/pgsql/data su postgres

© FUOC • P07/M2103/02287 12 Data administration

initdb -D /usr/local/pgsql/data

Initiate the server (which is called postmaster), to do so, use:

postmaster -D /usr/local/pgsql/data

to run it in active mode (in the foreground); and to run it in passive mode

(in the background) use:

postmaster -D /usr/local/pgsql/data < logfile 2 >&1 &.

Reroutings are done in order to store the server's errors. The package also in-

cludes a script (pg_ctl) so as not to have to know all the postmaster syntax in

order to run it:

/usr/local/pgsql/bin/pg_ctl start -l logfile \

-D /usr/local/pgsql/data

We can abort the server's execution in different ways, with pg-ctl, for example,

or directly using:

kill -INT 'head -1 /usr/local/pgsql/data/postmaster.pid'

1.4.2. DB users

DB users are completely different to the users of the operating system. In some

cases, it could be interesting for them to maintain correspondence, but it is

not necessary. The users are for all the DBs that the server controls, not for

each DB. To create a user, execute the SQL sentence:

CREATE USER name

To delete users:

DROP USER name

We can also call on the createuser and dropuser programs from the command

line. There is a default user called postgres (within the DB), which is what will

allow us to create the rest (to create new users from psql -U postgres if the user

of the operating system used for administrating the DB is not postgres).

A DB user can have a set of attributes according to what the user is allowed

to do:

• Superuser: this user has no restrictions. For example, it can create new

users; to do this, run:

Note

Creating, deleting users:
createuser [options] name
dropuser [options

© FUOC • P07/M2103/02287 13 Data administration

CREATE USER name CREATEUSER

• DB creator: is authorised to create a DB. To create a user with these char-

acteristics, use the command:

CREATE USER name CREATEDB

• Password: only necessary if we wish to control users' access when they

connect to a DB for security reasons. To create a user with a password, we

can use:

CREATE USER name PASSWORD 'password'

where password will be the password for that user.

• We can change a user's attributes by using the command ALTER USER. We

can also make user groups that share the same privileges with:

CREATE GROUP GroupName

And to insert the users in this group:

ALTER GROUP GroupName ADD USER Name1

Or to delete it :

ALTER GROUP GroupName DROP USER Name1

Example

Group operations inside psql:

CREATE GROUP GroupName;
ALTER GROUP GroupName ADD USER Name1...; ALTER GROUP GroupName
DROP USER Name1...;

When we create a DB, the privileges are for the user that creates it (and for the

superuser). To allow another user to use this DB or part of it, we need to grant

it privileges. There are different types of privileges such as SELECT, INSERT,

UPDATE, DELETE, RULE, REFERENCES, TRIGGER, CREATE, TEMPORARY, EX-

ECUTE, USAGE, and ALL PRIVILEGES (consult the references for their mean-

ing). To assign privileges, we can use:

GRANT UPDATE ON object TO user

where user must be a valid PostgreSQL user and object, a table, for example.

This command must be executed by the superuser or table owner. The PUBLIC

user can be used as a synonym for all users and ALL, as a synonym for all

privileges. For example, to remove all of the privileges from all of the users of

an object, we can execute:

REVOKE ALL ON object FROM PUBLIC;

© FUOC • P07/M2103/02287 14 Data administration

1.5. Maintenance

There is a set of tasks that the DB administrator is responsible for and that

must be performed periodically:

1)�Recovering�the�space: periodically we must execute the VACUUM com-

mand, which will recover the disk space of deleted or modified rows, update

the statistics used by the PostgreSQL scheduler and improve access conditions.

2)�Reindexing: In some cases, PostgreSQL can give problems with the reuse

of indexes, therefore it is advisable to use REINDEX periodically to eliminate

pages and rows. We can also use contrib/reindexdb in order to reindex an

entire DB (we need to take into account that, depending on the size of the

DBs, these commands can take a while).

3) Change of log files: we need to prevent the log files from becoming too large

and difficult to handle. This can be done easily when the server is initiated

with:

pg_ctl start | logrotate

logrotate renames and opens a new log file and it can be configured with

/etc/logrotate.conf.

4)�Backup copy and recovery: there are two ways of saving data, with the

sentence SQL Dump or by saving the DB file. The first will be:

pg_dump DBFile> BackupFile

For recovery, we can use: psql DBFile< BackupFile

In order to save all of the server's DBs, we can execute:

pg_dumpall > TotalBackupFile

Another strategy is to save the database files at the level of the operating sys-

tem, for example using:

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions that can make this method unpractical:

• The server has to be stopped before saving and recovering the data.

• We need to know very well all of the implications at the level of the file

where all the tables are, transactions etc., since otherwise, we could render

a DB useless. Also (in general), the size that will be saved will be greater

© FUOC • P07/M2103/02287 15 Data administration

than if done using the previous methods, since for example, with the

pg_dumb the indexes are not saved, but rather the command in order to

recreate them is saved.

Summary of the installation of PostgreSQL:

./configure
gmake
su
gmake install
adduser postgres
mkdir /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data >logfile 2>&1
&
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test

1.6. Pgaccess

The application pgaccess [DBName] (http://www.pgaccess.org/) allows us to

access and administer a database with a graphic interface. The easiest way of

accessing (from KDE for example) is from a terminal, the DB administrator

will have to do, (if not the postgresql user) xhost+ which will allow other

applications to connect to the current user's display

its postgres pgaccess [DBName]&

If configured in 'Preferences' it will always open the last DB. Figure 15 shows

the pgaccess interface.

Figure 1. PgAccess

In a typical session the administrator /user could, firstly, Open DataBase, indi-

cating here for example, Port = 5432, DataBase = nteum (the other parameters

are not necessary if the database is local) and then Open. As of this moment,

the user will be able to work with the bidimensional space selecting what it

wants to do in the Y axis (tables, consultations, views etc.) and with that el-

ement highlighted, and selecting one of that type within the window, using

© FUOC • P07/M2103/02287 16 Data administration

the X axis above for New (add), Open or Design. For example, if we select in Y

Users and in X, New, the application will ask for the username, password (with

verification), timeout and characteristics (for example, Create DB, Create oth-

er users). In DataBase we could also select Preferences, so as to change the type

of font, for example, and select the possibility of seeing the system's tables.

Users' personal configurations will be registered in the file ~/.pgaccessrc. The

interface helps to perform/facilitate a large amount of the user/administrator's

work and it is recommended for users who have just started in PostgreSQL,

since they will not need to know the syntax of the command line as in psql

(the application itself will request all of a command's options through several

windows).

A simpler tool is through the corresponding webmin module (we need to in-

stall the packages webmin-core and required modules, for example, in this

case webmin-postgresql), but in many distributions it is not included by de-

fault (for more information visit http://www.webmin.com/). During the in-

stallation, webmin will warn that the main user will be the root and will use

the same password as the root of the operating system. To connect, we can

do so from a navigator for example, https://localhost:10000, which will ask to

accept (or deny) the use of the SSL certificate for the SSL communication, and

next it will show all of the services that can be administered, among them the

PostgreSQL Data Base Server.

© FUOC • P07/M2103/02287 17 Data administration

2. Mysql

MySQL [Mys] is (according to its authors) the most popular open SQL (DB), in

other words free software (Open Source), and is developed and distributed by

MySQL AB (a commercial enterprise that makes profit from the services it of-

fers over the DB). MySQL is a database management system (DBMS). A DBMS

is what can add and process the data stored inside the DB. Like PostgreSQL,

MySQL is a relational database, which means that it stores data in tables in-

stead of in a single location, which offers greater speed and flexibility. As it

is free software, anyone can obtain the code, study it and modify it accord-

ing to their requirements, without having to pay anything, since MySQL uses

the GPL license. On its webpage, MySQL offers a set of statistics and features

compared to other DBs to show users how fast, reliable and easy it is to use.

The choice of a DB should be made carefully according to users' needs and the

environment in which the DB will be used.

2.1. Installation

• Obtain it from http://www.mysql.com/ or any of the software repositories.

The binaries and source files can be obtained for compilation and instal-

lation.

• In the case of the binaries, use the Debian distribution, and select the

packages mysql-* (client, server, common are required). Following a num-

ber of questions, the installation will create a mysql user and an entry in

/etc/init.d/mysql in order to start/stop the server during boot. It can also

be done manually using:

/etc/init.d/mysql start|stop

• In order to access the database, we can use the mysql monitor from the

command line. If we obtain the binaries (not Debian or RPM, with this

simply use the common -apt-get, rpm-), for example gz from the MySQL

website, we will have to execute the following commands in order to in-

stall the DB:

groupadd mysql

useradd -g mysql mysql

cd /usr/local

gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -

ln -s full-path-to-mysql-VERSION-OS mysql

cd mysql

scripts/mysql_install_db --user=mysql

chown -R root .

chown -R mysql data

chgrp -R mysql .

© FUOC • P07/M2103/02287 18 Data administration

bin/mysqld_safe --user=mysql &

This creates the user/group/directory, decompresses and installs the DB in /

usr/local/mysql.

• In the case of obtaining the source code, the steps are similar:

groupadd mysql

useradd -g mysql mysql

gunzip < mysql-VERSION.tar.gz | tar -xvf -

cd mysql-VERSION

./configure --prefix=/usr/local/mysql

make

make install

cp support-files/my-medium.cnf /etc/my.cnf

cd /usr/local/mysql

bin/mysql_install_db --user=mysql

chown -R root .

chown -R mysql var

chgrp -R mysql .

bin/mysqld_safe --user=mysql &

It is important to pay attention when configuring, since prefix= /usr/

local/mysql is the directory where the DB will be installed and it can be

changed to locate the DB in any directory we wish.

2.2. Post-installation and verification

Once installed (whether from the binaries or the source code), we will have to

verify if the server works properly. In Debian this can be done directly:

/etc/init.d/mysql start starts the server

mysqladmin version Generates version information

mysqladmin variables Shows the values of the variables

mysqladmin -u root shutdown Shuts down the server

mysqlshow Will show the predefined DBs

mysqlshow mysql Will show the tables of the mySQL DB

If installed from the source code, before making these checks we will have to

execute the following commands in order to create the databases (from the

distribution's directory):

./scripts/mysql_install_db

cd InstallationDirectoryMysql

© FUOC • P07/M2103/02287 19 Data administration

./bin/mysqld_safe --user = mysql &

If we install from the binaries (RPM, Pkg,...), we must do the following:

cd InstallationDirectoryMysql

./scripts/mysql_install_db

./bin/mysqld_safe user = mysql &

The script mysql_install_db creates the mysql DB and mysqld_safe starts

up the mysqld server. Next, we can check all of the commands given above for

Debian, except the first one which is the one that starts up the server. Plus, if

the tests have been installed, these can be run using cd sql-bench and then

run-all-tests. The results will appear in the directory sql-bech/Results for

comparison with other DBs.

2.3. The MySQL monitor program (client)

The MySQL client can be used to create and use simple DBs, it is interactive

and can connect to the server, run searches and visualise results. It also works

in batch mode (as a script) where the commands are passed onto it through

a file). To see all the command options, we can run mysql --help. We will be

able to make a connection (local or remote) using the mysql command, for

example, for a connection via the web interface but from the same machine:

mysql -h localhost -u mysql -p DBName

If we do not enter the last parameter, no DB is selected.

Once inside, mysql will show a prompt (mysql>) and wait for us to insert a

command (own and SQL), for example help. Next, we will give a series of

commands in order to test the server (remember always to type the ';' to end

the command):

mysql> SELECT VERSION(), CURRENT_DATE;

We can use capital letters or small caps.

mysql> SELECT SIN(PI()/4), (4+1)*5; Calculator.
mysql> SELECT VERSION(); SELECT NOW();

Multiple commands on the same line.

mysql> SELECT
-> USER()
-> ,
-> CURRENT_DATE;

Or on multiple lines.

mysql> SHOW DATABASES;

Note

MySQL client (frontend):
mysql�[DBName]

Page Web

For further information, see
the documentation, com-
mands and options. [Mys07]
http://dev.mysql.com/doc/ref-
man/5.0/es/

© FUOC • P07/M2103/02287 20 Data administration

Shows the available DBs.

mysql> USE test

Changes the DB.

mysql> CREATE DATABASE nteum; USE nteum;

Creates and selects a DB called nteum.

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),

-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

Creates a table inside nteum.

mysql> SHOW TABLES;

Shows the tables.

mysql> DESCRIBE pet;

Shows the table's definition.

mysql> LOAD DATA LOCAL INFILE "pet.txt" INTO TABLE pet;

Loads data from pet.txt in pet. The pet.txt file must have one register per line

separated by data tabs according to the table's definition (date in YYYY-MM-

DD format).

mysql> INSERT INTO pet

-> VALUES ('Marciano','Estela','gato','f','1999-03-30',NULL);

Loads data inline.

mysql> SELECT * FROM pet;Shows table data.

mysql> UPDATE pet SET birth = "1989-08-31" WHERE name = "Browser";

Modifies table data.

mysql> SELECT * FROM pet WHERE name = "Browser";

Selective sample.

mysql> SELECT name, birth FROM pet ORDER BY birth;

Ordered sample.

© FUOC • P07/M2103/02287 21 Data administration

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;

Selective sample with functions.

mysql> GRANT ALL PRIVILEGES ON *.* TO martian@localhost -> IDENTIFIED BY 'pass-
wd' WITH GRANT OPTION;

Create user marciano in the DB. This has to be executed by the DB root user.

Or it can also be done directly by using.

mysql> INSERT INTO user (Host,User,Password) ->

VALUES('localhost','marciano','passwd');

2.4. Administration

Mysql has a configuration file in /etc/mysql/my.cnf (in Debian), where the

DB default options can be changed, for example, the connection port, user,

password of remote users, log files, data files, whether it accepts external con-

nections etc. In relation to security, we need to take certain precautions:

1) Not to give anyone (except the root user of MySQL) access to the user table

within the MySQL DB, since this is where the user passwords are, which could

be used for other purposes.

2) Verify mysql -u root. If we can access, it means that the root user does not

have a password. To change this, we can type:

mysql -u root mysql

mysql> UPDATE user SET Password =

PASSWORD('new_password')

-> WHERE user = 'root';

mysql> FLUSH PRIVILEGES;

Now, to connect as root:

mysql -u root -p mysql

3) Check the documentation (point 4.2) concerning the security conditions

and the network environment to avoid problems with attacks and/or intru-

sions.

4) To make copies of the database, we can use the following command:

mysqldump --tab = /DestinationDirectory--opt DBName

or also:

© FUOC • P07/M2103/02287 22 Data administration

mysqlhotcopy DBName /DestinationDirectory

Likewise, we can copy the files *.frm', *.MYD', and *.MYI with the server

stopped. To recover, execute:

REPAIR TABLE o myisamchk –r

which will work in 99% of cases. Otherwise, we could copy the saved files and

start up the server. There are other alternative methods depending on what

we want to recover, such as the possibility of saving/recovering part of the DB

(see point 4.4 of the documentation). [Mys]

2.5. Graphic interfaces

There are a large number of graphic interfaces for MySQL, among which

we should mention MySQL Administrator (it can be obtained from http:/

/www.mysql.com/products/tools/administrator/). Also as tools we can have

Mysql-Navigator (http://sourceforge.net/projects/mysqlnavigator/), or Web-

min with the module for working with MySQL (packages webmin-core and

webmin-mysql) although the latter is no longer included with some distribu-

tions. Similarly to PostgreSQL, Webmin also permits working with MySQL (we

will need to install the webmin-mysql packages as well as webmin-core). Dur-

ing the installation, webmin will warn that the main user will be the root and

will use the same password as the root of the operating system. To connect,

we can type, for example, https://localhost:10000 on the URL bar of a naviga-

tor which will request acceptance (or denial) of the use of a certificate for the

SSL communication and next it will show all the services that can be admin-

istered, among them the MySQL Data Base Server.

MySQL�Administrator is a powerful application for administering and con-

trolling databases based on MySQL. This application integrates DB manage-

ment, control and maintenance in a simple fashion and in the same environ-

ment. Its main characteristics are: advanced administration of large DBs, few-

er errors through "visual administration", greater productivity and a safe man-

agement environment. The following figure shows a view of MySQL Adminis-

trator (in http://dev.mysql.com/doc/administrator/en/index.html we can find

all of the documentation for installing it and starting it up).

© FUOC • P07/M2103/02287 23 Data administration

Figure 2. MySQL Administrator

© FUOC • P07/M2103/02287 24 Data administration

3. Source code control system (CVS and Subversion)

The concurrent versions system (CVS) is a version control system that allows

old version of files to be maintained (generally source code), saving a log of

who made any changes, when and why. Unlike other systems, CVS does not

work with a file/directory per occasion, but rather acts on hierarchical groups

of the directories it controls.

The purpose of CVS is to help to manage software versions and to control

the concurrent editing of source files by multiple authors. CVS uses another

package called RCS (revision control system) internally as a low level layer. Al-

though RCS can be used independently, it is not recommended, because in

addition to its own functionality CVS offers all the capabilities of RCS but with

notable improvements in terms of stability, functioning and maintenance.

Among which we would highlight: decentralised operation (every user can

have their own code tree), concurrent editing, adaptable behaviour through

shell scripts etc. [Ced, CVS, Vasa, Kie]

As already explained in the introduction, Subversion (http://

subversion.tigris.org/) is a version control system software specifically de-

signed to replace the popular CVS, and to extend its capabilities. It is free soft-

ware under an Apache/BSD type license and is also known as svn for the name

on the command line. An important feature of Subversion is that unlike CVS

the versioned files do not each have an independent revision number and

instead the entire repository has a single version number which identifies a

common status of all the repository's files at the time that it was "versioned".

Among the main features we would mention:

• File and directory history can be followed through backups and renam-

ings.

• Atomic and secure modifications (including changes to several files).

• Efficient and simple creation of branches and labels.

• Only the differences are sent in both directions (in CVS, complete files are

always sent to the server).

• It can be served by Apache, over WebDAV/DeltaV.

• It handles binary files efficiently (unlike CVS, which treats them internally

as if they were text).

There is an interesting free book that explains everything related to Subver-

sion http://svnbook.red-bean.com/index.es.html and the translation is fairly

advanced (http://svnbook.red-bean.com/nightly/es/index.html).

© FUOC • P07/M2103/02287 25 Data administration

3.1. Revision control system (RCS)

Given that CVS is based on RCS and is still used on some systems, we will

offer a few brief explanations in this regard. RCS consists of a set of programs

for its different RCS activities: rcs (program that controls file attributes under

RCS), ci and co (which verify the entry and exit of files under RCS control),

ident (searches RCS for files using key words/attributes), rcsclean (cleans files

that are not used or that have not changed), rcsdiff (runs the diff command

to compare versions), rcsmerge (joins two branches [files] into a single file),

and rlog (prints log messages).

The format of the files stored by RCS can be text or another format, like binary

for example. An RCS file consists of an initial revision file called 1.1 and a series

of files of changes, one for each revision. Every time a copy of the repository

is made to the work directory with the co (which obtains a revision of every

RCS file and puts it in the work file) or ci (which stores new revisions in the

RCS) commands is used, the version number is increased (for example, 1.2,

1.3,...). The files are (generally) in the /RCS directory and the operating system

needs to have the diff and diff3 commands installed in order for it to function

properly. In Debian, it does not have to be compiled since it is included in

the distribution.

With the rcs command we will create and modify file attributes (consult rcs

man). The easiest way to create a repository is to create a directory with mkdir

rcs in the directory of originals and include the originals in the repository

using: ci name_files_sources.

We can use the * and should always have a backup copy to avoid problems.

This will create the versions of the files with the name ./RCS/file_name and

request a descriptive text for the file. Then, using co RCS/file_name, we will

obtain a work copy from the repository. This file can be blocked or unblocked

to prevent modifications, respectively, using:

rcs -L workfile_name

rcs -U workfile_name

With rlog file_name we will be able to see the information on the different

versions. [Kie]

3.2. Concurrent versions system (CVS)

First we need to install the concurrent versions system (CVS) from the distri-

bution bearing in mind that we must have RCS installed and that we should

also install OpenSSH if we wish to use it in conjunction with CVS for remote

access. The environment variables EDITOR CVSROOT must also be initiated

for example in /etc/profile (or in .bash profile):

© FUOC • P07/M2103/02287 26 Data administration

export EDITOR = /bin/vi

export CVSROOT = /usr/local/cvsroot

Obviously, users can modify these definitions using /.bash profile. We need

to create the directory for the repository and to configure the permissions; as

root, we have to type, for example:

export CVSROOT = /usr/local/cvsroot

groupadd cvs

useradd -g cvs -d $CVSROOT cvs

mkdir $CVSROOT

chgrp -R cvs $CVSROOT

chmod o-rwx $CVSROOT

chmod ug+rwx $CVSROOT

To start up the repository and save the code file in it:

cvs -d /usr/local/cvsroot init

cvs init will take into account never overwriting an already created repository

to avoid the loss of other repositories. Next, we will need to add the users that

will work with CVS to the cvs group; for example, to add a user called nteum:

usermod -G cvs,nteum

Now user nteum will have to save his or her files in the repository directory

(/usr/local/cvsroot in our case) by typing:

export EDITOR = /bin/vi

export CVSROOT = /usr/local/cvsroot

export CVSREAD = yes

cd directory_of_originals

cvs import RepositoryName vendor_1_0 rev_1_0

The name of the repository can be a single identifier or also user/project/xxxx

if the user wishes to have all their repositories organised. This will create a tree

of directories in CVSROOT with that structure.

This adds a directory (/usr/local/cvsroot/RepositoryName) in the repository

with the files that will be in the repository as of that moment. A test to know

whether everything has been stored correctly is to save a copy in the repository

and then create a copy from there and check the difference. For example,

with the originals in user_directory /dir_org if we want to create a repository

first_cvs/proj, we will have to execute the following commands:

cd dir_org Change to the original source code directory.

© FUOC • P07/M2103/02287 27 Data administration

cvs import -m "Original sources"

\first_cvs/proj userX vers0

 Creates the repository in first_cvs/proj with userX and vers0.

cd.. Change to the superior directory dir_org.

cvs checkout primer_cvs/proj

 Generating a copy of the repository. The variable CVSROOT

 mustbe initiated, otherwise the full path will have to be shown.

diff -r dir_org primer_cvs/proj

 Shows the differences between one and the other; there

 should not be any except for the directory first_cvs/proj/CVS

 created by CVS.

rm -r dir_org

 Deletes the originals (always make a backup copy for safety

 and to have a reference of where the work with CVS started).

The following figure shows the organisation and how the files are distributed

between versions and branches.

Figure 3

Deleting the originals is not always a good idea; only in this case, after veri-

fying that they are in the repository, so that they will not be worked on by

mistake and the changes will not be reflected on the CVS. On machines where

users will want to access a remote CVS server (by ssh), we must type:

export CVSROOT = ":ext:user@CVS.server.com:/home/cvsroot"

© FUOC • P07/M2103/02287 28 Data administration

export CVS_RSH = "ssh"

Where user is the user login and cvs.server.com the name of the server with

CVS. CVS offers a series of commands (named as cvs command options...)

to work with the revision system, including: checkout, update, add, remove,

commit and diff.

The initial cvs checkout command creates its own private copy of the source

code so as to later work with it without interfering with the work of other

users (at minimum it creates a subdirectory where the files will be located).

• cvs update must be executed from the private tree when copies of source

files have to be updated with the changes made by other programmers to

the repository's files.

• cvs add file... this command is necessary when we need to add new

files to the work directory on a module that has already previously run a

checkout. These files will be sent to the CVS repository when we execute

the cvs commit command.

• cvs import can be used for introducing new files to the repository.

• cvs remove file... this command will be used to delete files from the

repository (once these have been deleted from the private file). This com-

mand has to be accompanied by a cvs commit command for the changes

to become effective, since this is the command that converts all of the

users requests over the repository.

• cvs diff file... it can be used without affecting any of the files in-

volved if we need to verify differences between repository and work direc-

tory or between two versions.

• cvs tag -R "version" can be used for introducing a version number

in project files and then typing cvs commit and a cvs checkout -r 'version'

project in order to register a new version.

An interesting characteristic of cvs is that it is able to isolate the changes to files

isolated on a separate line of work called a branch. When we change a file on

a branch, these changes do not appear on the main files or on other branches.

Later, these changes can be incorporated to other branches or to the main

file (merging). To create a new branch, use cvs tag -b rel-1-0-patches

within the work directory, which will assign the name rel-1-0-patches to the

branch. To join the branches to the work directory involves using the cvs

update -j command. Consult references for merging or accessing different

branches.

© FUOC • P07/M2103/02287 29 Data administration

3.2.1. Example of a session

Following the example of the documentation provided in the references, we

will show a work session (in a general form) with cvs. Since cvs saves all the

files in a centralised repository, we will assume that it has already been initi-

ated.

Let's suppose that we are working with a set of files in C and a makefile, for

example. The compiler we use is gcc and the repository is initialised to gccrep.

In the first place, we will need to obtain a copy of the repository files as our

own private copy with:

cvs checkout gccrep

This will create a new directory called gccrep with the source files. If we execute

cd gccrep and ls, we will see, for example, cvs makefile a.c b.c c.c, where

there is a cvs directory that is created to control the private copy that normally

we do not need to touch.

We could use an editor to modify a.c and introduce substantial changes in the

file (see the documentation on multiple concurrent users if we need to work

with more than one user on the same file), compile, change again etc.

When we decide that we have a new version with all the changes made in a.c

(or in the necessary files), it is time to make a new version by saving a.c (or

all those that have been touched) in the repository and making this version

available to the rest of the users: cvs commit a.c.

Using the editor defined in the variable CVSEDITOR (or EDITOR if it is not

initialised) we will be able to enter a comment that discusses what changes

have been made to help other users or to remind what characterised this ver-

sion so that a log can be made.

If we decide to eliminate the files (because the project was completed or be-

cause it will not be worked on any more), one way of doing this is at the lev-

el of the operating system (rm -r gccrep), but it is better to use the cvs itself

outside of the work directory (level immediately above): cvs release -d

gccrep. The command will detect whether there is any file that has not been

sent to the repository, and if there is and it is erased, it means that all the

changes will be lost, which is why it will ask us if we wish to continue or not.

To look at the differences for example, b.c has been changed and we do not

remember what changes were made, within the work directory, we can use:

cvs diff b.c. This will use the operating system's diff command to compare

© FUOC • P07/M2103/02287 30 Data administration

version b.c with the version in the repository (we must always remember to

type cvs commit b.c if we want these differences to be transferred to the

repository as a new version).

3.2.2. Multiple users

When more than one person works on a software project with different revi-

sions, it is extremely complicated, because more than one user will sometimes

want to edit the same file simultaneously. A potential solution is to block the

file or to use verification points (reserved checkouts), which will only allow

one user to edit the same file simultaneously. To do so, we must execute the

command cvs admin -l command (see man for the options).

cvs uses a default model of unreserved checkouts, which allows users to edit

a file in their work directory simultaneously. The first one to transfer their

changes to the repository will be able to do so without any problems, but

the rest will receive an error message when they wish to perform the same

task, meaning that they must use cvs commands in order to transfer firstly

the changes to the work directory from the repository and then update the

repository with their own changes.

Consult the references to see an example of its application and other ways of

working concurrently with communication between users. [Vasa].

3.3. Graphic interfaces

We have a set of graphic interfaces available such as tkcvs (http://

www.twobarleycorns.net/tkcvs.html) [gcus] developed in Tcl/Tk and that sup-

ports subversion, or an also very popular one, cervisia [Cerc].

In the cvs wiki (http://ximbiot.com/cvs/wiki/index.php?title=CVS_Clients)

we can also find a set of clients, plugins for cvs. Next, we will look at two of

the mentioned graphic interfaces (tkcvs and gcvs):

© FUOC • P07/M2103/02287 31 Data administration

Figure 4. TkCVS (TkSVN)

© FUOC • P07/M2103/02287 32 Data administration

4. Subversion

As an initial idea subversion serves to manage a set of files (repository) and its

different versions. It is relevant to note that we do not care how the files are

saved, but rather how we can access them, for which it is common to use a

database. The idea of a repository is like a directory from which we want to

recover a file of one week or 10 months ago based on the database status, to

recover the latest versions and add new ones. Unlike cvs, subversion makes

global revisions of the repository, which means that a change in a file does not

generate a leap in version of that file only, but also of the entire repository,

which adds one to the revision. In addition to the book we have mentioned

(http://svnbook.red-bean.com/nightly/es/index.html), consult the documen-

tation at http://subversion.tigris.org/servlets/ProjectDocumentList.

Figure 5. gCVS

In Debian, we will have to type apt-get install subversion, if we wish

to publish the repositories in Apache2 apt-get install Apache2-common

and the specific module apt-get install libApache2-subversion.

• First step: create our repository, user (we assume the user is svuser), group

(svgroup) as root...

mkdir -p /usr/local/svn

addgroup svgroup

chown -R root.svgroup /usr/local/svn

chmod 2775 /usr/local/svn

• addgroup svuser svggroup Adds the svuser user to the svgroup group.

© FUOC • P07/M2103/02287 33 Data administration

• We connect as svuser and verify that we are in the svgroup group (with

the group command).

• svnadmin create /usr/local/svn/tests

This command will create a series of files and directories for version man-

agement and control. If we are not permitted in /usr/local/svn, we can do

so in the local directory: mkdir -p $HOME/svndir and next svnadmin

create $HOME/svndir/tests.

• Next we create a temporary directory mkdir -p $HOME/svntmp/tests

we move to the directory cd $HOME/svntmp/tests and create a file like:

echo First File Svn 'date' > file1.txt.

• We transfer it to the repository: inside the directory we type svn im-

port file:///home/svuser/svndir/tests-m "View. Initial". If

we have created it in /usr/local/svn/tests we should type the full

path after file://. The import command copies the directory tree and

the -m option allows the version message to be shown. If we do not add

the -m option, an editor will open to do so (we need to enter a message

in order to avoid problems). The subdirectory $HOME/svntmp/tests is a

copy of the work in the repository and deleting it is recommended so as

not to be tempted to commit the error of working with it and not with

the repository (rm -rf $HOME/svntmp/tests).

• Once in the repository, we can obtain the local copy where we can work

and then upload the copies to the repositories, by typing:

mkdir $HOME/svm-work

cd $HOME/svn-work

svn checkout file:///home/svuser/svndir/tests

Where we will see that we have the tests directory. We can copy with an-

other name adding the name we want at the end. To add a new file to it:

cd /home/kikov/svn-work/tests

echo Second File Svn 'date' > file2.txt

svn add file2.txt

svn commit -m"New file"

It is important to note that once in the local copy (svn-work) we must not

specify the path. svn add marks to add the file to the repository and that

really it is added when we run cvn commit. It will give us some messages

indicating that it is the second version.

If we add another line file1.txt with echo 'date'>>file1.txt, then we will be able

to upload the changes with: svn commit -m"New line".

It is possible to compare the local file with the repository file, for example we

add a third line to file1.txt with echo 'date'>>file1.txt, but we do not upload

it and if we want to see the differences we can run: svn diff.

© FUOC • P07/M2103/02287 34 Data administration

This command will highlight what the differences are between the local file

and those of the repository. If we load it with svn commit -m"New line2"

(which will generate another version) then the svn diff will not give us any

differences.

We can also use the command svn update within the directory to update the

local copy. If there are two or more users working at the same time and each

one has made a local copy of the repository and modifies it (by doing commit),

when the second user goes to commit their copy with their modifications,

they will receive a conflict error, since the copy in the repository has a more

recent modification date than this user's original copy (in other words, there

have been changes in between), meaning that if the second user runs commit,

we could lose the modifications of the first one. To do this, we must run svn

update which will tell us the file that creates a conflict with a C and will show

us the files where the parts in conflict have been placed. The user must decide

what version to keep and whether they can run commit.

An interesting command is the svn log file1.txt, which will show all the

changes that have been made to the file and its corresponding versions.

An interesting feature is that subversion can run in conjunction with Apache2

(and also over SSL) to be accessed from another machine (consult the clients

in http://svnbook.red-bean.com/) or simply look at the repository. In Debian

Administration they explain how to configure Apache2 and SSL for Sarge, or

as we already indicated in the part on servers. For this, we need to activate the

WebDAV modules (see http://www.debian-administration.org/articles/285 or

in their absence http://www.debian-administration.org/articles/208.

As root user we type:

mkdir /subversión chmod www-data:www-data

So that Apache can access the directory

svnadmin create /subversion

we create the repository

ls -s /subversion

-rw-r--r-- 1 www-data www-data 376 May 11 20:27 README.txt

drwxr-xr-x 2 www-data www-data 4096 May 11 20:27 conf

drwxr-xr-x 2 www-data www-data 4096 May 11 20:27 dav

drwxr-xr-x 2 www-data www-data 4096 May 11 20:28 db

-rw-r--r-- 1 www-data www-data 2 May 11 20:27 format

drwxr-xr-x 2 www-data www-data 4096 May 11 20:27 hooks

drwxr-xr-x 2 www-data www-data 4096 May 11 20:27 locks

© FUOC • P07/M2103/02287 35 Data administration

For authentication we use htpasswd (for example with htpasswd2 -c -m /sub-

version/.dav_svn.passwd user created as www-data. We only have to type the

-c the first time that we execute the command to create the file. This tells us

that in order to access this directory we need a password (which is the one we

have entered for user).

Then we will need to change the httpd.conf so that it is something like:

<location /svn>

 DAV svn

 SVNPath /subversion

 AuthType Basic

 AuthName "Subversion Repository"

 AuthUserFile /subversion/.dav_svn.passwd

 Require valid-user

</location>

We reinitiate Apache and now we are ready to import some files, such as:

svn import file1.txt http://url-server.org/svn \

-m "Import Initial"

We will be asked for authentication (user/password) and told that the file

file1.txt has been added to the repository.

© FUOC • P07/M2103/02287 37 Data administration

Activities

1) Define in PostgreSQL a DB that has at least 3 tables with 5 columns (of which 3 must be
numerical) in each table.

Generate an ordered list for each table/column. Generate a list ordered by the highest value of
the X column of all tables. Change the numerical value in the Y column with the numerical
value of column Z + the value of column W/2.

2) The same exercise as above, but with MySQL.

3) Configure the cvs to make three revisions of a directory where there are 4 .c files and a
makefile. Make a branch of the file and then merge it with the main one.

4) Simulate the concurrent use of a file with two Linux terminals and indicate the sequence
of steps to be done so that the two alternating modifications of each user are reflected in
the cvs repository.

5) Same exercise as above, but one of the users must connect to the repository from another
machine.

6) Idem 3, 4 and 5 in Subversion.

© FUOC • P07/M2103/02287 38 Data administration

Bibliography

Other sources of reference and information

[Debc, Ibi, Mou01]

PgAccess: http://www.pgaccess.org/

WebMin: http://www.webmin.com/

Mysql Administrator http://www.mysql.com/products/tools/administrator/

Graphic interfaces for CVS: http://www.twobarleycorns.net/tkcvs.html

Or in the CVS wiki: http://ximbiot.com/cvs/wiki/index.php?title=CVS_Clients

Subversion: http://subversion.tigris.org

Free Book about Subversion: http://svnbook.red-bean.com/index.es.html

Apache2 and SSL: http://www.debian-administration.org/articles/349

Apache2 and WebDav: http://www.debian-administration.org/articles/285

There is a large amount of documentation about Apache and SSL + Subversion in Debian
as well as http://www.debian-administration.org, in Google, enter "Apache2 SSL and Subver-
sion in Debian" to obtain some interesting documents.

Security
administration

Josep Jorba Esteve

P07/M2103/02288

© FUOC • P07/M2103/02288 Security administration

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02288 Security administration

Index

Introduction... 5

1. Types and methods of attack... 7

1.1. Techniques used in the attacks ... 10

1.2. Countermeasures ... 16

2. System security... 20

3. Local security.. 21

3.1. Bootloaders .. 21

3.2. Passwords and shadows .. 22

3.3. Suid and sticky bits ... 23

3.4. Enabling hosts ... 24

3.5. PAM modules .. 24

3.6. System alterations ... 26

4. SELinux... 28

4.1. Architecture ... 31

4.2. Criticism .. 34

5. Network security.. 36

5.1. Service client ... 36

5.2. Server: inetd and xinetd ... 36

6. Intrusion detection... 39

7. Filter protection through wrappers and firewalls................... 40

7.1. Firewalls ... 41

7.2. Netfilter: IPtables ... 42

7.3. Packets of firewalls in the distributions 45

7.4. Final considerations .. 46

8. Security tools... 48

9. Logs analysis.. 51

10. Workshop: security analysis using tools..................................... 53

Activities.. 59

Bibliography... 60

© FUOC • P07/M2103/02288 5 Security administration

Introduction

The technological leap from isolated desktop systems to current systems in-

tegrated into local networks and Internet has added a new difficulty to the

administrator's usual tasks: controlling system security.

Security is a complex field, which combines analysis techniques with tech-

niques for detecting or preventing potential attacks. Such as the analysis of

"psychological" factors, in relation to the behaviour of system users or attack-

ers' possible intentions.

The attacks can come from many sources and affect from a single application

or service or user to all of them or even the entire computer system.

Potential attacks can change the systems' behaviour and even make them

crash (disabling them), or give a false impression of security, which can be dif-

ficult to detect. We can come across authentication attacks (obtaining access

through previously disabled programs or users), interceptions (redirecting or

intercepting communication channels and the data circulating within them)

or substitution (replacing programs, machines or users for others, without the

changes being noticed).

We must bear in mind that it is impossible to achieve 100% security.

Security techniques are a double-edged sword that can easily give us a false

impression of controlling the problem. Currently, security is an extensive and

complex problem and, more importantly, it is also dynamic. We can never

expect or say that security is guaranteed, but rather it will probably be one

of the areas that the administrator will have to spend most time on and on

which knowledge will have to be kept updated.

In this unit we will examine some of the types of attacks we can encounter,

how we can verify and prevent parts of local security and network environ-

ments from being attacked. Furthermore, we will examine techniques for de-

tecting intrusions and some basic tools that can help us to control security.

We should also mention that in this unit we can only introduce some of the

aspects related to security nowadays. For any real thorough learning, we advise

consulting the available bibliography, as well as the manuals for the products

and tools we have covered.

Note

Absolute security does not ex-
ist. A false impression of securi-
ty can be as damaging as not
having any security. Security is
a very dynamic field on which
we need to keep our knowl-
edge constantly updated.

© FUOC • P07/M2103/02288 7 Security administration

1. Types and methods of attack

Computer security in administration terms can be understood as the process

that allows the system's administrator to prevent and detect unauthorised use

of the system. Preventive measures help to prevent attempts by unauthorised

users (known as intruders) to access any part of the system. Detection helps

to discover when these attempts where made or, if they are effective, to estab-

lish barriers so that intrusions are not repeated and so that the system can be

recovered if breached.

Intruders (known also colloquially as hackers, crackers, 'attackers' or 'pirates')

normally wish to obtain control over the system, whether to cause its mal-

functioning, to corrupt the system or its data, to make use of the machine's

resources or simply to use it to launch attacks on other systems, thus helping

them to protect their own identity and hide the real source of the attacks. It

is also possible that they wish to examine (or steal) the system's information,

straightforward espionage of the system's actions or to cause physical damage

to the machine, by formatting the disk, changing data, deleting or modifying

critical software etc.

With regard to intruders, we need to establish some differences that are not

very clear in colloquial terms. Normally, we refer to a hacker [Him01], as a

person with detailed knowledge of computing, more or less passionate about

programming and security issues and that normally, for no malevolent pur-

pose uses their knowledge to protect themselves or third parties by entering

networks to detect security failures and, in some cases, to test their abilities.

An example would be the GNU/Linux community, which owes a lot to its

hackers, since the term hacker has to be understood as an expert in certain

issues (rather than an intruder on security).

At the same time, we have crackers. This is where the term is used more or

less negatively, towards those who use their knowledge in order to corrupt (or

destroy) systems, whether for their own fame, for financial reasons, with the

intention of causing damage or simply inconvenience; for reasons of techno-

logical espionage, acts of cyber-terrorism etc. Likewise, we talk of hacking or

cracking, when we refer to techniques for studying, detecting and protecting

security, or, on the contrary, techniques designed to cause damage by breach-

ing systems' security.

Unfortunately, obtaining access to a system (whether it is unprotected or par-

tially safe) is much easier than it would seem. Intruders constantly discover

new vulnerabilities (sometimes know as 'holes' or exploits), that allow them

to enter different layers of software. The ever-increasing complexity of soft-

© FUOC • P07/M2103/02288 8 Security administration

ware (and hardware) makes it more and more difficult to test the security of

computer systems in a reasonable manner. The common use of GNU/Linux

on networks, whether via the Internet or private networks with TCP/IP tech-

nology such as intranets, makes us expose our systems, as victims, to security

attacks. [Bur02][Fen02][Line]

The first thing we have to do is to break the myth of computer security: it

simply does not exist. What we can achieve is a certain level of security that

makes us feel safe within certain parameters. But as such, it is merely a per-

ception of security and, like all perceptions, can be false so that we may only

become aware at the last minute once our systems have already been affected.

The logical conclusion is that computer security requires an important effort

in terms of consistency, realism and learning on a practically daily basis.

We need to be capable of establishing security policies for our systems that

allow us to prevent, identify and react against potential attacks. And to be

aware that the feeling of security that we may have, is precisely no more than

that: a feeling. Therefore, we must not neglect any implemented policies and

we need to keep them up to date, as well as our knowledge of the issue.

Possible attacks are a constant threat to our systems and can compromise their

functioning, as well as the data that we handle; We will always have to define

a certain policy of security requirements for our systems and data. The threats

we may suffer could affect the following aspects:

• Confidentiality: the information must only be accessible to authorised

persons; we are answering the question: who will be able to access it?

• Integrity: the information must only be modified by authorised persons:

what can be done with it?

• Accessibility: the information must be available for those who need it

when they need it, on condition that they are authorised: how and when

can it be accessed?

Let's move on to a certain (non-exhaustive) classification of the usual types

of attacks that we can suffer:

• Authentication: attacks that falsify the identity of the participant so that

access is obtained to programs or services that were initially out of bounds.

• Interception (or tapping): mechanism whereby data is intercepted by

third parties to whom the data was not directed.

• Falsification (or replacement): replacement of some participants –

whether machines, software or data – by other false ones.

Note

Threats affect confidentiality,
or the integrity or accessibility
of our systems.

© FUOC • P07/M2103/02288 9 Security administration

• Theft� of resources: unauthorised use of our resources.

• Or, simply, vandalism: after all, the presence of mechanisms that allow

interference with the correct functioning of the system or services to cause

partial inconvenience or the shutdown or cancellation of resources is fairly

common.

The methods and precise techniques employed can vary enormously (more-

over, innovations arise everyday), obliging us, as administrators to be in con-

stant contact with the field of security to know what we may have to face on

a daily basis.

For each of these types attacks, normally one or more methods of attack may

be used, which in turn can provoke one or more types of attack.

With regards to where an attack occurs, we need to be clear what can be done

or what the objective of the methods will be:

• Hardware: in this respect, the threat is directly on accessibility, what will

someone who has acces to the hardware be able to do? In this case, we will

normally need "physical" measures, such as security controls for access to

the premises where the machines are located in order to prevent problems

of theft or damage to the equipment designed to erase their service. Con-

fidentiality and integrity may also be compromised if physical acess to the

machines allows some of their devices, such as disk drives, to be used, or

if it allows booting of the machines or access to user accounts that may

be open.

• Software: if accessibility is compromised during an attack, programs may

be deleted or disabled, denying access. In the case of confidentiality, it can

give rise to unauthorised copies of the software. In the case of integrity,

the default functioning of the program could be altered, so that it fails in

certain situations or so that it performs tasks in the interest of the attacker,

or may simply compromise the integrity of program data: making them

public, altering them or simply stealing them.

• Data: whether structured, such as in database services, or version manage-

ment (such as cvs) or simple files. Attacks that threaten accessibility can

destroy or eliminate them, thus denying access to them. In the case of con-

fidentiality, we could be allowing unauthorised reading and the integrity

would be affected when modifications are made or new data is created.

• Communication�channel (on the network, for example): for the meth-

ods that affect accessibility, it can cause the destruction or elimination of

messages and prevent access to the network. In confidentiality, reading

and observation of the traffic of messages to or from the machine. And

Note

Attacks may have the purpose
of destroying, disabling or spy-
ing our components, whether
hardware, software or commu-
nication systems.

© FUOC • P07/M2103/02288 10 Security administration

with regards to integrity, any modification, delay, reordering, duplication

or falsification of the incoming and/or outgoing messages.

1.1. Techniques used in the attacks

The methods used are various and can depend on an element (hardware or

software) or the version of the element. Therefore, we need to maintain the

software updated for security corrections that arise and to follow the instruc-

tions of the manufacturer or distributor in order to protect the element.

Despite this, there are normally always "fashionable" techniques or methods

at any particular time. Some brief notes on today's attack techniques are:

• Bug� exploits: or exploitation of errors or exploits [CERb] [Ins][San],

whether of a hardware, software, service, protocol or of the operating sys-

tem itself (for example, in the kernel), and normally in a specific version

of these. Normally, any computer element is more or less prone to errors

in its design, or simply to things that have not been foreseen or taken

into account. Periodically, holes are discovered (sometimes known as ex-

ploits, or simply bugs), which may be taken advantage of for breaching

system security. Normally either generic attack techniques are used, such

as the one explained as follows, or particular techniques for the affected

element. Every affected element will have someone responsible – whether

the manufacturer, developer, distributor or the GNU/Linux community –

for producing new versions or patches to handle these problems. As ad-

ministrators, we are responsible for being informed and maintaining a re-

sponsible policy of updates to avoid potential risks of attack. If there are

no solutions available, we can also study the possibility of using alterna-

tives for the element or disabling it until we find a solution.

• Virus: program normally annexed to others and that uses mechanisms of

autocopy and transmission. It is common to annex viruses to executable

programs, electronic mails, or to incorporate them into documents or pro-

grams that allow macros (not verified). They are perhaps the greatest se-

curity plague of the moment.

GNU/Linux systems are protected almost completely against these mech-

anisms for several reasons: in executable programs, they have very limited

access to the system, in particular to the user account. With the exception

of the root user, where we have to be very careful with what it executes.

Mail does not tend to use non-verified macros (contrary to Outlook and

Visual Basic Script in Windows, which is an exploit for the entry of virus-

es), and in the case of the documents, we are in a similar situation, since

they do not support non-verified macros or scripting languages (such as

Visual Basic for Applications (VBA) in Microsoft Office).

In any case, we will have to pay attention to what may happen in the fu-

ture, since specific viruses for GNU/Linux could be created taking advan-

Note

The techniques used by attack-
ers are extremely varied and
evolve constantly in terms of
the details that they use.

© FUOC • P07/M2103/02288 11 Security administration

tage of some bugs or exploits. We must also take a look at mail systems,

since although we may not generate viruses, we can transmit them; for

example, if our system functions as a mail router, messages with a virus

could come in and could then be sent on to others. Here we can imple-

ment virus detection and filtering policies. Another plague that could en-

ter the category of viruses are spam messages, which although not usually

used as attacking elements, can be considered problematic due to the vir-

ulence with which they appear, and the financial cost that they can entail

(in loss of time and resources).

• Worm: normally this is a type of program that takes advantage of a system

bug in order to execute code without a permission. They tend to be used

to take advantage of the machine's resources, such as the use of the CPU,

when it detects that the system is not functioning or is not in use or, with

malicious intent, with the objective of stealing resources or to use them

to stop or block the system. Transmission and copying techniques are also

commonly used.

• Trojan�horse (or 'Trojans'): useful programs that incorporate some func-

tionality but hide other functionalities, which are the ones used to obtain

information from the system or in order to compromise it. A particular

case could be the one of the mobile type codes of web applications such as

Java, JavaScript or ActiveX; these normally ask for consent to be executed

(ActiveX in Windows), or have limited models of what they can do (Ja-

va, JavaScript). But like all software, they also have bugs and are an ideal

method for transmitting Trojans.

• Back�door (or trap door): method for accessing a hidden program that

could be used to give access to the system or processed data without our

knowledge. Other effects could be changing the system's configuration, or

allowing viruses to be introduced. The mechanism employed could come

included in some type of common software or in a Trojan.

• Logic�bombs: program embedded in another program which checks when

specific conditions occur (temporary, user actions etc.) to activate itself

and perform unauthorised activities.

• Keyloggers: special program dedicated to hijacking the interactions with

the user's keyboard and/or mouse. They may be individual programs or

Trojans incorporated into other programs.

Normally, they would need to be introduced in an open system to which

there was access (although more and more frequently they can come in-

corporated in Trojans that are installed). The idea is to capture any intro-

duction of keys, in such a way as to capture passwords (for example, for

bank accounts), interaction with applications, visited websites, completed

forms etc.

© FUOC • P07/M2103/02288 12 Security administration

• Scanner (port scanning): rather than an attack, it represents a prior step

consisting of gathering potential targets. Basically, it consists of using tools

that allow the network to be examined in order to find machines with

open ports, whether TCP, UDP or other protocols, which indicate the pres-

ence of certain services. For example, scanning machines looking for port

80 TCP, indicates the presence of web servers, from which we can obtain

information about the server and the version used in order to take advan-

tage of its known vulnerabilities.

• Sniffers: allows to capture packages circulating on a network. With the

right tools we can analyse machines' behaviours: which are servers, clients,

what protocols are used, and in many case obtaining passwords for inse-

cure services. Initially, they were used a lot for capturing passwords of tel-

net, rsh, rcp, ftp... insecure services that should not be used (use the secure

versions instead: ssh, scp, sftp). Sniffers (and scanners) are not necessarily

an attack tool, since they can also serve for analysing our networks and

detecting failures, or simply for analysing our own traffic. Normally, the

techniques of both scanners and sniffers tend to be used by an intruder

looking for the system's vulnerabilities whether to learn the data of an

unknown system (scanners), or to analyse its internal interaction (sniffer).

• Hijacking: these are techniques that try to place a machine in such a way

that it intercepts or reproduces the functioning of a service in another

machine from which it has intercepted the communication. They tend to

be common in cases of electronic mail, file or web transfers. For example,

in the web case, a session may be captured and it will be possible to repro-

duce what the user is doing, pages visited, interaction with forms etc.

• Buffer�overflows: fairly complex technique that takes advantage of the

programming errors in the applications. The basic idea is to take advan-

tage of overflows in application buffers, whether queues, arrays etc. If the

limits are not controlled, an attacking program can generate a bigger mes-

sage or data than expected and cause failures. For example, many C appli-

cations with poorly written buffers, in arrays, if we surpass the limit we can

cause the program's code to be overwritten causing a malfunctioning or

breakdown of the service or machine. Moreover, a more complex variant

allows parts of program to be incorporated in the attack (C compiled or

shell scripts), that may allow the execution of any code that the attacker

wishes to introduce.

• Denial�of�Service ('DoS attack'): this type of attack causes the machine

to crash or overloads one or more services, rendering them unusable. An-

other technique is DDoS (Distributed DoS), which is based on using a set

of distributed machines in order to produce the attack or service overload.

This type of attack tends to be solved with software updates, since nor-

mally all of the services that were not designed for a specific workload are

affected and saturation is not controlled. DoS and DDoS attacks are com-

Pages Web

SYN flood, see: http://
www.cert.org/advisories/CA-
1996-21.html
E-mail bombing, see: http://
www.cert.org/tech tips/email_
bombing_spamming.html

© FUOC • P07/M2103/02288 13 Security administration

monly used in attacks on websites or DNS servers, which are affected by

server vulnerabilities, for example, specific versions of Apache or BIND.

Another aspect that is worth taking into account is that our system could

also be used for DDoS type attacks, through control from a backdoor or

a Trojan.

A fairly simple example of this attack (DoS) is known as the SYN flood,

which tries to generate TCP packages that open a connection, but then do

nothing else with it, simply leaving it open; this spends system resources

on data structures of the kernel, and network connection resources. If this

attack is repeated hundreds or thousands of times, all of the resources can

become occupied without being used, in such a way that when users wish

to make use of the service, it is denied because the resources are occupied.

Another case is known as mail bombing, or simply resending (normally

with a false sender) until mail accounts are saturated, causing the mail

system to crash or to become so slow that it is unusable. To some extent

these attacks are fairly simple to carry out with the right tools and have

no easy solution, since they take advantage of the internal functioning of

protocols and services; in these cases we need to take measures of detection

and subsequent control.

• Spoofing: the techniques of spoofing encompass various methods (nor-

mally, very complex) of falsifying both information or the participants in

a transmission (origin and/or destination). Some spoofing examples in-

clude:

– IP spoofing, falsification of a machine, allowing false traffic to be gen-

erated or intercepting traffic that was directed to another machine. In

combination with other attacks, it can even breach firewall protection.

– ARP spoofing, complex technique (uses a DDoS), which tries to falsify

source addresses and network recipients by means of attacking the ma-

chines' ARP caches, in such a way that the real addresses are replaced

by others in various points of a network. This technique can breach all

type of protections, including firewalls, but is not a simple technique.

– E-mail is perhaps the simplest. It consists of generating false emails, in

terms of both content and source address. For this type, techniques of

the type known as social engineering are fairly common; these basi-

cally trick the user in a reasonable manner, a classical example are false

emails from the system administrator or, for example, from the bank

where we have our current account, stating that there have been prob-

lems with the accounts and that we have to send confidential infor-

mation or the previous password in order to solve them, or asking the

password to be changed for a specific one. Surprisingly, this technique

(also known as phising) manages to deceive a considerable number

of users. Even with (social engineering of) simple methods: a famous

cracker commented that his preferred method was by telephone. As an

example, we describe the case of a certification company (Verisign), for

Page Web

See the case of Mi-
crosoft in: http://
www.computerworld.com/
softwaretopics/os/windows/
story/ 0,10801,59099,00.html

© FUOC • P07/M2103/02288 14 Security administration

which the crackers obtained the Microsoft private software signature

by just making a call on behalf of a company that said a problem had

arisen and that they needed their key again. In summary, high levels

of computer security can be overcome by a simple telephone call or

by an email badly interpreted by a user.

• SQL�injection: it is a technique aimed at databases and web servers in par-

ticular, which generally takes advantage of the incorrect programming of

web forms, where the information provided has not been correctly con-

trolled. It does not determine that the input information is of the correct

type (strongly typified in relation to what is expected) or the type or liter-

al characters that are introduced are not controlled. The technique takes

advantage of the fact that the literals obtained by the forms (for example

web, although the attacks can be sustained from any API that allows access

to a database, for example php or perl) are used directly for making consul-

tations (in SQL), which will attack a specific database (to which in princi-

ple there is no direct access). Normally, if there are vulnerabilities and poor

form control, SQL code can be injected into the form, in such a way that

it can make SQL consultations which provide the searched information.

In drastic cases, security information could be obtained (database users

and passwords), or even entire database tables, or else loss of information

or intentional deletion of data. This technique in web environments in

particular can be serious, due to the laws on the protection of the priva-

cy of personal data which an attack of this nature can threaten. In this

case, rather than an issue of system security, we are dealing with a prob-

lem of programming and control with strong typing of the data expected

by the application, in addition to the appropriate control of knowledge

of vulnerabilities present in the used software (database, web server, API

like php, perl...).

• Cross-side�scripting (or XSS): another problem associated to web environ-

ments and, in particular, to alterations of html code and/or scripts that a

user can obtain by visualising a particular website, which can be altered

dynamically. Generally errors when it comes to validating HTML code are

taken advantage of (all navigators have problems with this, due to the def-

inition of HTML itself, which allows reading of practically any HTML code

however incorrect it is). In some cases, the use of vulnerabilities can be

direct through scripts in the web page, but normally the navigators have

good control of these. At the same time, indirectly there are techniques

that allow script code to be inserted, either through access to the user's

cookies from the navigator, or by altering the process of redirecting from

one web page to another. There are also techniques using frames, that can

redirect the HTML code that is being viewed or directly hang the brows-

er. In particular, web sites' search engines can be vulnerable, for allowing

script code to be executed. In general, they are attacks with complex tech-

niques, but designed to capture information such as cookies, which can be

used for sessions, and thus allow a determined person to be substituted by

© FUOC • P07/M2103/02288 15 Security administration

redirecting websites or obtaining their information. Once more from the

system's perspective, it is a question of the software in use. We need to con-

trol and know about vulnerabilities detected in navigators (and make the

most of the resources that they offer in order to avoid these techniques)

and control the use of software (search engines used, versions of the web

server, and APIs used in developments).

Some basic general recommendations for security, could be:

• Controlling a problematic factor: users. One of the factors that can most

affect security is the confidentiality of passwords, which is affected by

users' behaviour; this facilitates actions within the system itself on the part

of potential attackers. Most attacks tend to come from within the system,

in other words, once the attacker has obtained access to the system.

• Users include those who are forgetful (or indiscreet) and forget their pass-

word on a frequent basis, mention it in conversation, write it down on a

piece of paper left somewhere or stuck next to the desk or computer, or

that simply lend it to other users or acquaintances. Another type of user

uses predictable passwords, whether the same as their user id, national

identity number, name of girlfriend, mother, dog etc., which with a min-

imum amount of information can be easily discovered. Another case is

normal users with a certain amount of knowledge, who have valid pass-

words but we should always bear in mind that there are mechanisms capa-

ble of discovering them (cracking of passwords, sniffing, spoofing...). We

need to establish a "culture" of security among users and, through the use

of techniques, oblige them to change their passwords, without using typ-

ical words, for long passwords (of more than 2 or 3 characters) etc. Late-

ly, many companies and institutions are implementing the technique of

making a user sign a contract obliging the user not to disclose the password

or to commit acts of vandalism or attacks from their accounts (although

of course this does not prevent others from doing so through the user).

• Not to use or run programs with no guarantee of origin. Normally, distrib-

utors use signature verification mechanisms in order to verify that soft-

ware packages are what they say, like for example md5 sums (command

md5sum) or the use of GPG signatures [Hatd] (gpg command). The seller

or distributor provides an md5 sum of their file (or CD image) and we can

check its authenticity. Lately, signatures for both individual packages and

for package repositories are used in distributions as a mechanism to ensure

the supplier's reliability.

• Not to use privileged users (like the root user) for the normal working of

the machine; any program (or application) would have the permissions

to access anywhere.

© FUOC • P07/M2103/02288 16 Security administration

• Not to access remotely with privileged users' privileges or to run pro-

grams that could have privileges. Especially if we do not know or have not

checked the system's security levels.

• Not to use elements when we do not know how they behave or to try to

discover how they behave through repeated executions.

These measures may not be very productive but if we have not protected the

system, we have no control over what can happen and, even so, nobody can

guarantee that a malicious program cannot sneak in and breach security if we

execute it with the right permissions. In other words, in general we need to

be very careful with all type of activities related to access and the execution

of more or less privileged tasks.

1.2. Countermeasures

With regard to the measures that can be taken against the types of attacks that

occur, we can find some preventive measures and some measures for detecting

what is happening to our systems.

Let's look at some of the types of measures that we could take in the sphere

of intrusion prevention and detection (useful tools are mentioned, some of

which we will examine later):

• Password�cracking: in attacks of brute force designed to crack passwords,

it is common to try and obtain access through repeated logins; if entry is

obtained, the user's security has been compromised and the door is left

open to other types of attacks, such as backdoor attacks or simply the de-

struction of the user's account. In order to prevent this type of attack, we

need to reinforce the passwords policy, asking for a minimum length and

regular changes of password. One thing we need to avoid is the use of

common words in the passwords: many of these attacks are made using

brute force, with a dictionary file (containing words in the user's language,

common terms, slang etc.). This type of password will be the first to be

broken. It can also be easy to obtain information on the victim, such as

name, national identity number or address, and to use this data for testing

a password. For all of the above, it is also not recommended to have pass-

words with national identity numbers, names (own or of relatives etc.),

addresses etc. A good choice tends to be a password of between 6 and 8

characters at minimum with alphabetic and numerical contents in addi-

tion to a special character.

Even if the password has been well chosen, it may be unsafe if used for

unsafe services. Therefore, it is recommended to reinforce the services us-

ing encryption techniques that protect passwords and messages. And, on

the other hand, to prevent (or not use) any service that does not support

encryption, and consequently that is susceptible of attack using methods,

© FUOC • P07/M2103/02288 17 Security administration

such as sniffers; among these, we could include telnet, FTP, rsh, rlogin ser-

vices.

• Bug�exploits: avoid having programs available that are not used, are old or

are not updated (because they are obsolete). Apply the latest patches and

updates that are available for both applications and the operating system.

Test tools that detect vulnerabilities. Keep up to date with vulnerabilities

as they are discovered.

• Virus: use antivirus mechanisms or programs, systems for filtering suspi-

cious messages; avoid the execution of macros (which cannot be verified).

We should not minimise the potential effects of viruses, every day they

are perfected and technically it is possible to make simple viruses that can

deactivate networks in a matter of minutes (we just have to look at some

of the recent viruses in the world of Windows).

• Worm: control the use of our machines or users outside of normal hours

and control incoming and/or outgoing traffic.

• Trojan�horse (or Trojans): regularly check the integrity of programs us-

ing sum or signature mechanisms. Detection of anomalous incoming or

outgoing system traffic. Use firewalls to block suspicious traffic. A fairly

dangerous version of trojans consist of rootkits (discussed below), which

perform more than one function thanks to a varied set of tools. In order

to verify integrity, we can use sum mechanisms like md5 or gpg, or tools

that automate this process like Tripwire or AIDE.

• Backdoor (or trap door): we need to obtain certification that programs do

not contain any type of undocumented hidden backdoor from software

sellers or suppliers and, of course, only accept software from places that

offer guarantees. When the software belongs to third parties or comes from

sources that could have modified the original software, many manufactur-

ers (or distributors) will integrate some type of software verification based

on sum codes or digital signatures (md5 or gpg type) [Hatd]. Whenever

these are available, it is useful to verify them before proceeding to install

the software. We can also test the system intensively, before installing it

as a production system.

Another problem consists of software alteration a posteriori. In this case,

systems of signatures or sums can also be useful for creating codes over

already installed software so as to control that no changes are made to

vital software. Or backup copies, which we can make comparisons with

in order to detect changes.

• Logic� bombs: in this case, they tend to be hidden after activations

through time or through user actions. We can verify that there are no non-

interactive jobs introduced on the system of the crontab or at type and

other processes (of the nohup type for example), which are periodically

Pages Web

See patches for the op-
erating system at: http://
www.debian.org/security
http://www.redhat.com//secu-
rity
http://fedoraproject.org/wiki/
Security

Page Web

For vulnerabilities, a good tool
is Nessus. To discover new vul-
nerabilities, see CERT in: http:/
/www.cert.org/advisories/

© FUOC • P07/M2103/02288 18 Security administration

executed, or executed in the background for a long time (w commands,

jobs). In any case, we could use preventive measures to prevent non-in-

teractive jobs for users, or only allow them for users that need them.

• Keyloggers�and�rootkits: in this case there would be some intermediary

process that would try to capture our pressing of keys and try to store them

somewhere. We will have to examine situations where a strange process

appears belonging to our user, or to detect if we have any file open with

which we are not working directly (for example, lsof could be helpful, see

man), or network connections, if we were dealing with a keylogger with

external sending. To test a very basic functioning of a simple keylogger,

we can see the system script command (see script man). In the other case,

the rootkit (which also tends to include a keylogger) is usually a package

of several programs with various techniques that allow the attacker, once

inside an account, to use various elements such as a keylogger, backdoors,

Trojans (replacing system commands) etc. in order to obtain information

and entrance doors to the system, often accompanied by programs that

clean the logs, in order to eliminate evidence of the intrusion. A particu-

larly dangerous case is that of rootkits, that are used or come in the form

of kernel modules, which allows them to act at the level of the kernel.

In order to detect them, we will need to control that there is no external

traffic travelling to a specific address. A useful tool for verifying rootkits

is chrootkit.

• Scanner (port scanning): scanners tend to be launched over one or more

loop systems for scanning known ports in order to detect those that are

left open and what services are functioning (and to obtain information on

the versions of the services) that could be susceptible to attacks.

• Sniffers: avoid tapping and thus prevent the possibility of interceptions

being inserted. One technique is the network's hardware construction,

which can be divided into segments so that the traffic can only circulate

through the zone that will be used, placing firewalls to join these segments

to be able to control incoming and outgoing traffic. Use encryption tech-

niques so that the messages cannot be read and interpreted by someone

intercepting the network. For the case of both scanners and sniffers, we

can use tools such as Whireshark [Wir] (formerly Ethereal) and Snort to

check our network or, for port scanning, Nmap. Sniffers can be detected

on the network by searching for machines in promiscuous Ethernet mode

(intercepting any circulating package); the network card only usually cap-

tures the traffic that goes towards it (or of the broadcast or multicast type).

• Hijacking: implement mechanisms for services encryption, requiring au-

thentication, and if possible, regularly renewing authentication. Control

incoming or outgoing traffic through the use of firewalls. Monitor the net-

work in order to detect suspicious flows of traffic.

Page Web

We can find the chkrootkit tool
in: http://www.chkrootkit.org

© FUOC • P07/M2103/02288 19 Security administration

• Buffer�overflows: they tend to be common as bugs or holes in the system,

and tend to be resolved through software updates. In any case, through

logs, we can observe strange situations of crashed services that should be

functioning. We can also maximise the control of processes and access to

resources in order to isolate the problem when it occurs in environments

of controlled access, such as the one offered by SELinux (see further on

in the module).

• Denial�of�Service ('DoS attack') and others, such as SYN flood, or mail

bombing: take measures to block unnecessary traffic on our network

(through the use of firewalls for example). With the services where it is

possible, we will have to control buffer sizes, the number of clients to be

attended, connection timeouts, service capacities etc.

• Spoofing:�a) IP spoofing, b) ARP spoofing, c) electronic mail. These cases

require strong service encryption, control through the use of firewalls, au-

thentication mechanisms based on various aspects (for example, not based

on the IP, if it could be compromised), mechanisms can be implemented

that control established sessions based on several machine parameters at

the same time (operating system, processor, IP, Ethernet address etc.). Al-

so monitor DNS systems, ARP cachés, mail spools etc. in order to detect

changes in the information that invalidate preceding ones.

• Social�engineering: this is not an IT issue really, but we have to make

sure that users do not make security worse. Appropriate measures such as

increasing information or educating users and technicians about security:

controlling which personnel will have access to critical security informa-

tion and in what conditions they may cede it to others. A company's help

and maintenance services can be a critical point: controlling who has se-

curity information and how it is used.

• In relation to end users, improving the culture of passwords, avoiding leav-

ing them noted down anywhere where third parties can see them or sim-

ply disclosing them.

© FUOC • P07/M2103/02288 20 Security administration

2. System security

In the face of potential attacks, we need to have mechanisms for preventing,

detecting and recovering our systems.

For local prevention, we need to examine the different mechanisms of au-

thentication and permissions for accessing the resources in order to define

them correctly and be able to guarantee the confidentiality and integrity of

our information. In this case, we will be protecting ourselves against attackers

that have obtained access to our system or against hostile users who wish to

overcome the restrictions imposed on the system.

In relation to network security, we need to guarantee that the resources that

we offer (if we provide certain services) have the necessary parameters of con-

fidentiality and that the services cannot be used by unauthorised third parties,

meaning that a first step will be to control which of the offered services are

the ones we really want, and that we are not offering other services that are

uncontrolled at the same time. In the case of services of which we are clients,

we will also have to ensure the mechanisms of authentication, in the sense

that we access the right servers and that there are no cases of substitution of

services or servers (normally fairly difficult to detect).

With regards to the applications and the services themselves, in addition to

guaranteeing the right configuration of access levels using permissions and au-

thentication of authorised users, we need to monitor the possible exploitation

of software bugs. Any application, however well designed and implemented

may have a more or less high number of errors that can be taken advantage

of in order to overcome imposed restrictions using certain techniques. In this

case, we enforce a policy of prevention that includes keeping the system up-

dated as much as possible, so that we either update whenever there is a new

correction or if, we are conservative, we maintain those versions that are the

most stable in security terms. Normally, this means periodically checking sev-

eral security sites in order to learn about the latest failures detected in the

software and the vulnerabilities that stem from them that could expose our

systems to local or network security failures.

© FUOC • P07/M2103/02288 21 Security administration

3. Local security

Local security [Peñ] [Hatb] is basic for protecting the system [Deb][Hatc], since

normally following a first attempt from the network, it is the second protec-

tion barrier before an attack that manages to obtain partial control of the ma-

chine. Also, most attacks end up using the system's internal resources.

3.1. Bootloaders

With regards to local security, problems can already start with booting with

the physical access that an intruder could gain to a machine.

One of the problems starts when the system boots. If the system can be booted

from disk or CD, an attacker could access the data of a GNU/Linux (or also

Windows) partition just by mounting the file system and placing themselves

as root users without needing to have any password. In this case, we need

to protect the system's boot from the BIOS, for example, by protecting the

access with a password, so that booting from a CD is not allowed (for example

through a Live CD or diskette). It is also reasonable to update the BIOS, since

it can also have security failures. Plus, we need to be careful because many

BIOS manufacturers offer additional known passwords (a sort of backdoor),

meaning that we cannot depend exclusively on these measures.

The following step is to protect the boot loader, whether lilo or grub, so that

the attacker is not able to modify the start up options of the kernel or directly

modify the boot (in the case of grub). Either of the two can also be protected

using passwords.

In grub, the file /sbin/grub-md5-crypt asks for the password and generates

an associated md5 sum. Then, the obtained value is entered into /boot/grub/

grub.conf. Under the timeout line, we introduce:

password --md5 sum-md5-calculated

For lilo we place, either a global password with:

password = password

or one in the partition that we want:

image = /boot/vmlinuz-version

 password = password

 restricted

Note

Various attacks, although they
may come from the outside,
are designed to obtain local
access.

© FUOC • P07/M2103/02288 22 Security administration

In this case restricted also indicates that we will not be able to change the

parameters passed onto the kernel from the command line. We need to take

care to set the file /etc/lilo.conf as protected so that only the root user has

read/write privileges (chmod 600).

Another issue related to booting is the possibility that someone with access to

the keyboard could reinitiate the system because if they press CTRL+ALT+DEL,

they will cause the machine to shutdown. This behaviour is defined in /etc/

inittab, with a line like:

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

If commented, this possibility of reinitiating will become deactivated. Or on

the other hand, we can create a file /etc/shutdown.allow, which allows certain

users to reinitiate.

3.2. Passwords and shadows

The typical passwords of the initial UNIX systems (and of the first versions of

GNU/Linux) were encrypted using DES algorithms (but with small keys and

a system call that was responsible for encrypting and decrypting, specifically

crypt, see the man).

Normally, they were in the file /etc/passwd, in the second field, for example:

user:sndb565sadsd:...

But the problem lies in the fact that this file is legible by any user, meaning

that an attacker could obtain the file and use an attack of brute force, until

decrypting the passwords that the file contained, or use an attack of brute

force with dictionaries.

The first step is to use the new files /etc/shadow, where the passwords are now

saved. This file is only legible by the root user and by nobody else. In this

case, in /etc/passwd an asterisk (*) appears where previously the encrypted

password was. By default, current GNU/Linux distributions use passwords of

the shadow type unless told not to use them.

A second step is to change the system of encrypting the passwords for one that

is more complex and difficult to break. Now, both Fedora and Debian offer

passwords by md5; we are usually allowed to choose the system at the time

of the installation. We need to take care with md5 passwords, because if we

use NIS, we could have a problem; otherwise, all clients and servers will use

md5 for their passwords. Passwords can be recognised in /etc/shadow because

they have a "1" prefix.

© FUOC • P07/M2103/02288 23 Security administration

Other possible actions include obliging users to change password frequently

(the change command can be useful), imposing restrictions on the size and

content of the passwords, and validating them with dictionaries of common

terms .

Regarding the tools, it is interesting to have a password cracker (i.e. a program

for obtaining passwords), in order to check the real security situation with our

users' accounts, and thus forcing change in the ones we detect to be insecure.

Two of the ones most commonly used by administrators are John the Ripper

and "crack". They can also work with a dictionary, so it will be interesting to

have some ASCII dictionary in Spanish (can be found on the web). Another

tool is "Slurpie", which can test several machines at the same time.

An issue that we always need to take into account is to run these tests on our

systems. We must not forget that the administrators of other systems (or the

access or ISP provider) will have intrusion detection systems enabled and that

we could be denounced for attempts at intrusion, either before the competent

authorities (computer crime units) or before our ISP so that they close down

our access. We need to be very careful with the use of security tools, which are

always on the edge of security or intrusion.

3.3. Suid and sticky bits

Another important problem affects some special permissions used on files or

script.

The sticky bit is used especially on temporary directories, where we want in

some (sometimes unrelated) groups for any user to be able to write, but only

the owner of the directory to be able to delete, or the owner of the file that is

within the directory. A classical example of this bit is the temporary directory

/tmp. We need to make sure that there are no directories of this type, since

they can allow anyone to write on them, so that we must check that there are

no more than those that are purely necessary as temporaries. The bit is placed

using (chmod +t dir), and can be removed with -t. In an ls it will appear as a

directory with drwxrwxrwt permissions (take note of the last t).

The bit setuid allows a user to execute (whether an executable or a shell script)

with another user's permissions. In some cases this can be useful, but it is also

potentially dangerous. This is the case, for example, of programs with setuid

as root: a user, although without root permissions, can execute a program with

setuid that could have internal root user permissions. This is very dangerous

in the case of scripts, since they could be edited and modified to do anything.

Therefore, we need to keep these programs controlled, and if setuid is not

necessary, we need to eliminate it. The bit is placed using chmod +s, whether

applying it to the owner (then it is called suid) or to the group (then it is called

© FUOC • P07/M2103/02288 24 Security administration

bit sgid); it can be removed with -s. In the case of viewing with ls, the file

will appear with -rwSrw-rw (take note of the S), if it is only suid, in sgid the

S would appear after the second w.

In the case of using chmod with octal notation, four numbers are used, where

the last three are the classical rwxrwxrwx permissions (remember that we have

to add in the number 4 for r, 2 w, and 1 for x), and the first has a value for

every special permission that we want (which are added): 4 (for suid), 2 (sgid),

and 1 (for sticky).

3.4. Enabling hosts

The system has several special configuration files that make it possible to en-

able the access of a number of hosts to some network services, but whose er-

rors could later allow local security to come under attack. We can find:

• user .rhosts: allows a user to specify a number of machines (and users) that

can use their account through "r" commands (rsh, rcp...) without having

to enter the account's password. This is potentially dangerous, since a poor

user configuration could allow entry to unwanted users or could allow an

attacker (with access to the user account) to change the addresses in .rhosts

in order to enter comfortably without any type of control. Normally, we

should not allow these files to be created and we should even delete them

completely and disable the "r" commands.

• /etc/hosts.equiv: this is exactly the same as with the .rhosts files but at

the level of the machine, specifying what services, what users and what

groups can access "r" commands without the need for password control.

Also, an error such as putting a "+" on a line of that file allows access to

"any" machine. Nowadays, this file does not usually exist either and there

is always the alternative of the ssh service to "r".

• /etc/hosts.lpd: in the LPD printing system it was used to put the machines

that could access the printing system. We need to be very careful, if we

are not serving, to completely disable access to the system, and if we are

serving, to restrict to a maximum the machines that really make use of it.

Or try to change to a CUPS or LPRng system, which has far more control

over the services. The LPD system is a common target of worm-type or

buffer overflow attacks and several important bugs are documented. We

need to be on the lookout if we use this system and the hosts.lpd file.

3.5. PAM modules

PAM modules [Peñ][Mor03] are a method that allows the administrator to con-

trol how the user authentication process is performed for certain applications.

The applications need to have been created and linked to the PAM libraries.

© FUOC • P07/M2103/02288 25 Security administration

Basically, PAM modules are a set of shared libraries that can be incorporated

into applications as a method for controlling their user authentication. Also,

the authentication method can be changed (by means of the PAM modules

configuration), without having to change the application.

The PAM modules (libraries) tend to be in the /lib/security directory (in the

form of dynamically loadable file objects). And the PAM configuration is

present in the /etc/pam.d directory, where a PAM configuration file appears

for every application that is using PAM modules. We find the authentication

configuration of applications and services such as ssh, graphic login of X Win-

dow System, like xdm, gdm, kdm, xscreensaver... or, for example, the system

login (entrance with username and password). Old PAM versions used a file

(typically in /etc/pam.conf), where the PAM configuration was read if the /etc/

pam.d directory did not exist.

The typical line of these files (in /etc/pam.d) would have this format (if using

/etc/pam.conf we would have to add the service to which it belongs as a first

field):

module-type control-flag module-path arguments

which specifies:

a) module type: if it is a module that requires user authentication (auth), or

has restricted access (account); things we need to do when the user enters or

leaves (session); we the user has to update the password.

b) control flags: they specify whether it is required, a requisite, whether it is

sufficient or whether it is optional. This is a syntax. There is another more up

to date one that works in pairs of value and action.

c) the module path.

d) arguments passed onto the module (they depend on each module).

Because some services need several common configuration lines, it is possible

to have operations for including common definitions for other services, we

just have to add a line with:

@include service

A small example of the use of PAM modules (in a Debian distribution), could

be their use in the login process (we have also listed the lines included from

other services):

auth requisite pam_securetty.so

Page Web

For further information, see
"The Linux-PAM System Ad-
ministrators' Guide": http://
www.kernel.org/pub/linux/
libs/pam/Linux-PAM-html

© FUOC • P07/M2103/02288 26 Security administration

auth requisitepam_nologin.so

auth requiredpam_env.so

auth requiredpam_unix.so nullok

account required pam_unix.so

session required pam_unix.so

session optional pam_lastlog.so

session optional pam_motd.so

session optional pam_mail.so standard noenv

password required pam_unix.so nullok obscure min = 4 max = 8 md5

This specifies the PAM modules required to control user authentication during

login. One of the modules, pam_unix.so, is the one that really verifies the

user's password (looking at files password, shadow...).

Others control the session to see when the latest entry was or save when the

user enters and leaves (for the lastlog command), there is also a module re-

sponsible for verifying whether the user has mail to read (authentication is

also required) and another that controls that the password changes (if the user

is obliged to do so with the first login) and that it has 4 to 8 letters, and that

md5 can be used for encryption.

In this example we could improve user security: the auth and the passwords al-

low passwords of length nil: this is the module's nullok argument. This would

allow having users with empty passwords (potential source of attacks). If we

remove this argument, we no longer allow empty passwords for the login pro-

cess. The same can be done in the password configuration file (in this case,

the passwords change command), which also presents nullok. Another possi-

ble action is to increase the maximum size of the passwords in both files, for

example, with max = 16.

3.6. System alterations

Another problem can be the alteration of basic system commands or config-

urations, through the introduction of Trojans, or backdoors, by merely intro-

ducing software that replaces or slightly modifies the behaviour of the system's

software.

A typical case is the possibility of forcing the root to execute false system com-

mands; for example, if the root were to include the "." in its variable PATH,

this would allow commands to be executed from its current directory, which

would enable the placing of files that replaced system commands and that

would be executed as a priority before the system's commands. The same pro-

cess can be done with a user, although because a user's permissions are more

Page Web

CERT UNIX checklist: http:/
/www.cert.org/tech_tips/
usc20_full.html

© FUOC • P07/M2103/02288 27 Security administration

limited, it may not affect the system as much, rather the security of the user

itself. Another typical case is the one of false login screens, replacing the typi-

cal login process, password, with a false program that would store the entered

passwords.

In the case of these alterations, it will be vital to enforce a policy of auditing

changes, whether through a calculation of signatures or sums (gpg or md5), or

using some type of control software such as Tripwire or AIDE. For Trojans we

can have different types of detections or use tools such as chkrootkit, if these

come from the installation of some known rootkit.

Page Web

chkrootkit, see: http://
www.chkrootkit.org

© FUOC • P07/M2103/02288 28 Security administration

4. SELinux

Traditional security within the system has been based on discretionary access

control (DAC) techniques, whereby normally each program has full control

over the access to its resources. If a specific program (or the user permitting)

decides to make an incorrect access (for example, leaving confidential data

open, whether through negligence or malfunctioning). Therefore in DAC, a

user has full control over the objects that belong to him or her and the pro-

grams he or she executes. The executed program will have the same permis-

sions as the user who is executing it. Therefore, the system's security will de-

pend on the applications that are being executed and on the vulnerabilities

that these may have or on the malicious software that these may include,and

will especially affect the objects (other programs, files or resources) to which

the user has access. In the case of the root user, this would compromise the

global security of the system.

On a separate note, mandatory access control (MAC) techniques, develop se-

curity policies (defined by the administrator) where the system has full control

over the rights of access granted over each resource. For example, we can give

access to files with permissions (of the Unix type), but, with MAC policies,

we have extra control to determine explicity what files a process is allowed

to access and what level of access we wish to grant. Contexts that specify in

what situations an object can access another object are established.

SELinux [NSAb] is a MAC type component recently included in branch 2.6.x

of the kernel, which the distributions are progressively incorporating: Fedora/

Red Hat have it enabled by default (although it is possible to change it during

the installation) and it is an optional component in Debian.

SELinux implements MAC-type security policies, which allow more refined

access permissions than traditional UNIX file permissions. For example, the

administrator could allow data to be added to a log file, but not to rewrite

or truncate it (techniques commonly used by attackers to erase their tracks).

In another example, we could allow network programs to link to the port (or

ports) they require, but deny access to other ports (for example, it could be a

technique that helps to control certain Trojans or backdoors).

© FUOC • P07/M2103/02288 29 Security administration

SELinux was developed by the US NSA agency with direct contributions from

various companies for UNIX and free systems, such as Linux and BSD. It was

freed in the year 2000 and since then it has been integrated in different GNU/

Linux distributions.

In SELinux we have a domain-type model, where each process runs in a so-

called security context and any resource (file, directory, socket etc.) has a type

associated to it. There is a set of rules that indicates what actions can be per-

formed in each context on each type. One of the advantages of this context-

type model is that the policies defined can be analysed (there are tools) for

determining what flows of information are allowed, for example, to detect

various routes of attack, or whether the policy is sufficiently complete so as

to cover all potential accesses.

It has what is known as the SELinux policy database which controls all aspects

of SELinux. It determines what contexts each program can use to run and

specifies what types of each context can be accessed.

In SELlinux, every system process has a context consisting of three parts: an

identity, a role and a domain. The identity is the name of the user account or

system_u for system processes or user_u if the user has no defined policies. The

role determines what the associated contexts are. For example user_r is not

allowed to have the context sysadm_t (main domain for the system adminis-

trator). Therefore a user_r with identity user_u cannot obtain a sysadm_t con-

text in anyway. A security context is always specified by this set of values like:

root:sysadm_r:sysadm_t

is the context for the system administrator, defines its identity, role and secu-

rity context.

For example, in a machine with SELinux activated (in this case a Fedora) we

can see the -Z option of the ps of contexts associated to the processes:

#�ps�ax�–Z

LABEL PID TTY STAT TIME COMMAND

system_u:system_r:init_t 1 ? Ss 0:00 init

system_u:system_r:kernel_t 2 ? S 0:00 [migration/0]

system_u:system_r:kernel_t 3 ? S 0:00 [ksoftirqd/0]

system_u:system_r:kernel_t 4 ? S 0:00 [watchdog/0]

system_u:system_r:kernel_t 5 ? S 0:00 [migration/1]

system_u:system_r:kernel_t 6 ? SN 0:00 [migration/1]

Pages Web

Some resources on SELinux:
http://www.redhat.com/docs/
manuals/enterprise/RHEL-4-
Manual/selinux-guide/
http://www.nsa.gov/selinux/
http://fedora.redhat.com/
docs/selinux-faq/
http://selinux.sourceforge.net/

© FUOC • P07/M2103/02288 30 Security administration

LABEL PID TTY STAT TIME COMMAND

system_u:system_r:kernel_t 7 ? S 0:00 [watchdog/1]

system_u:system_r:syslogd_t 2564 ? Ss 0:00 syslogd -m 0

system_u:system_r:klogd_t 2567 ? Ss 0:00 klogd -x

system_u:system_r:irqbalance_t 2579 ? Ss 0:00 irqbalance

system_u:system_r:portmap_t 2608 ? Ss 0:00 portmap

system_u:system_r:rpcd_t 2629 ? Ss 0:00 rpc.statd

user_u:system_r:unconfined_t 4812 ? Ss 0:00 /usr/libexec/gconfd-2 5

user_u:system_r:unconfined_t 4858 ? Sl 0:00 gnome-terminal

user_u:system_r:unconfined_t 4861 ? S 0:00 gnome-pty-helper

user_u:system_r:unconfined_t 4862 pts/0 Ss 0:00 bash

user_u:system_r:unconfined_t 4920 pts/0 S 0:00 gedit

system_u:system_r:rpcd_t 4984 ? Ss 0:00 rpc.idmapd

system_u:system_r:gpm_t 5029 ? Ss 0:00 gpm -m /dev/input/mice -t exps2

user_u:system_r:unconfined_t 5184 pts/0 R+ 0:00 ps ax -Z

user_u:system_r:unconfined_t 5185 pts/0 D+ 0:00 Bash

and with ls using the -Z option we can see the contexts associated to files and

directories:

ls -Z

drwxr-xr-x josep josep user_u:object_r:user_home_t Desktop

drwxrwxr-x josep josep user_u:object_r:user_home_t proves

-rw-r--r-- josep josep user_u:object_r:user_home_t yum.conf

and from the console we can find out our current context with:

$ id -Z

user_u:system_r:unconfined_t

In relation to the functioning mode, SELinux presents two modes known as:

permissive and enforcing. In permissive, unauthorised access is allowed, but is

audited in the corresponding logs (normally directly over /var/log/messages

or, depending on the distribution, with the use of audit in /var/log/audit/

audit.log). In enforcing mode no type of access that is not allowed by the de-

fined policies is permitted. We can also deactivate SELinux through its config-

uration file (normally in /etc/selinux/config), by setting SELINUX=disabled.

© FUOC • P07/M2103/02288 31 Security administration

We need to take care with activating and deactivating SELinux, especially with

the labelling of contexts in the files, since during periods of activation/deac-

tivation labels could be lost or simply not made. Likewise, when backing up

the file system, we need to make sure that the SELinux labels are preserved.

Another possible problem to be taken into account is the large number of

security policy rules that can exist and that can cause limitations in terms of

controlling the services. In the face of a specific type of malfunctioning, it

is worth determining first that it is not precisely SELinux that is preventing

functioning due to a too strict security limitation (see the section on SELinux

criticism) or options that we did not expect to have activated (can require a

change in the configuration of the Booleans as we will see).

In relation to the policy applied, SELinux supports two different types: targ-

ered and strict. In targered policy type, most processes operate without restric-

tions and only specific services (some daemons) are put into different security

contexts that are confined to security policy. In strict policy type, all processes

are assigned to security contexts and confined to defined policies, in such a

way that any action is controlled by the defined policies. In principle, these

are the two types of policies defined in general, but the specification is open

to include more.

A special case of policy is the multilevel security (MLS), which is a multilevel

policy of the strict type. The idea is to define different levels of security within

the same policy, with security contexts having an additional field of access

level associated to them. This type of security policy (like MLS) tends to be

used in governmental and military organisations, where there are hierarchical

structures with different levels of privileged information, levels of general ac-

cess and different capabilities of action at each level. In order to obtain some

security certifications, we need to have this type of security policy.

We can define what type of policy will be used in /etc/selinux/config, variable

SELINUXTYPE. The corresponding policy and its configuration will normal-

ly be installed in the directories /etc/selinux/SELINUXTYPE/, for example, in

the policy subdirectory we tend to find the binary file of the policy compiled

(which is what is loaded in the kernel, when SELinux is initiated).

4.1. Architecture

SELinux architecture consists of the following components:

• Code at kernel level

• Shared SELinux library

• The security policy (the database)

• Tools

© FUOC • P07/M2103/02288 32 Security administration

Let us take a look at a few considerations with regards to each component:

• The kernel code monitors the system's activity and ensures that the re-

quested operations are authorised under the current SELinux security pol-

icy configuration, not allowing unauthorised operations and normally

generating log entries of denied operations. The code is currently integrat-

ed in kernels 2.6.x and, in previous ones, is offered as a series of patches.

• Most SELinux utilities and components not directly related to the kernel

use the shared library called libselinux1.so, which provides an API for in-

teracting with SELinux.

• The security policy is what is integrated in the SELinux rules database.

When the system starts up (with SELinux activated), it loads the binary

policy file, which normally resides in /etc/security/selinux (although it

can vary according to the distribution).

The binary policy file is created on the basis of a compilation (via make)

of the policy source files and some configuration files.

Some distributions (such as Fedora) do not install the sources by default,

which we can normally find in /etc/security/selinux/src/policy or in /etc/

selinux.

Normally, these sources consist of various groups of information:

– The files related to the compilation, makefile and associated scripts.

– Initial configuration files, associated users and roles.

– Type-enforcement files, which contain most sentences of the policy

language associated to a particular context. We need to take into ac-

count that these files are enormous, typically tens of thousands of

lines, which means that we can encounter the problem of finding bugs

or defining changes in policies.

– And files that serve to label the contexts of the files and directories

during loading or at specific moments.

• Tools: include commands used to administrate and use SELinux. Modified

versions of standard Linux commands. And Tools for the analysis of poli-

cies and for development.

Let's look from this last section at the typical tools that we can generally find:

Some of the main commands:

Name Use

chcon Labels a specific file, or set of files with a specific context.

© FUOC • P07/M2103/02288 33 Security administration

Name Use

checkpolicy Performs various actions related to policies, including compilation of policies to binary, typically invoking from
the makefile operations.

getenforce Generates a message with the SELinux mode (permissive or enforcing). Or deactivated if this is the case.

getsebool Obtains the list of Booleans, in other words, the list of on/off options for every context associated to a service
or general option of the system.

newrole Allows the transition of a user from one role to another.

runn_init Used in order to activate a service (start, stop), ensuring that it is performed in the same context as when it is
started up automatically (with init).

setenforce Changes the mode of SELinux, 0 permissive, 1 enforcing.

setfiles Labels directories and subdirectories with the appropriate contexts, it is typically used in the initial SELinux
configuration.

setstatus Obtains the system status with SELinux.

Also, other common programs are modified to support SELinux such as:

• cron: modified to include the contexts for jobs in progress by cron.

• login: modified to place the initial security context for users when they

log in the system.

• logrotate: modified to preserve the context of the logs when they have

been compiled.

• pam: modified to place the user's initial context and to use the SELinux

API and obtain privileged access to password information.

• ssh: modified to place the user's initial context when the user logs in the

system.

• And various additional programs that modify /etc/passwd or /etc/shadow.

Also some distributions include tools for managing SELinux, such as the se-

tools(-gui), which carry several tools for managing and analysing policies. As

well as specific tools for controlling the contexts associated to the different

services supported by SELinux in the distribution, for example the system-

config-security level tool in Fedora has a section for configuring SELinux as

we can see in the following figure:

© FUOC • P07/M2103/02288 34 Security administration

Figure 1. Interface in Fedora for configuring SELinux

In the figure, we can see the Booleans configuration for different services and

generic options, including the web server. We can also obtain this list with

the getsebool -a command and, with the setsebool/togglesebool command,

we can activate/deactivate the options.

In Fedora, for example, we find Booleans support for (among others): Cron,

FTP, httpd (apache), dns, grub, lilo, nfs, nis, cups, pam, ppd, samba, protec-

tions against undue access to the process memory etc.

The configuration of Booleans allows the SELinux policy to be tailored during

running time. Booleans are used as conditional values of the applied policy

rules, which allow policy modifications without having to load a new policy.

4.2. Criticism

Some administrators and security experts have criticised SELinux in particular

for being too complex to configure and administer. It is argued that due to

its intrinsic complexity, even experienced users can commit errors, leaving

the SELinux configuration insecure or unusable and the system vulnerable.

Although to a certain extent this is debatable, since even if we have SELinux

© FUOC • P07/M2103/02288 35 Security administration

badly configured, the UNIX permissions would remain active, SELinux will

not allow an operation that the original permissions already did not allow, in

fact, we can see this as another stricter level of security.

Performance factors may also be affected, due to the enormous size of the

policies, which use up a lot of memory and take a lot of time to load, and,

in some cases, due to the processing of rules. We need to bear in mind that

we are dealing with a system of practically 10,000 policy rules. And that this

number can be even greater if we select the strict type policy where we need to

specify absolutely all the options to be controlled. Normally, the processing

of policy in binary format and the use of Booleans in order to disable rules

allows the system to be used more efficiently.

Another aspect that tends to bother administrators is the additional prob-

lem of determining, in the event of a malfunction, what the origin or initial

cause is. Because it is common for us to find in the end that the problem

has stemmed from an excessively restrictive configuration (perhaps due to un-

awareness on the part of the administrator) of SELinux for a particular service.

In the last instance, we need to point out the extensive support that SELinux

offers for security and that, as administrators, we need to be aware of the ca-

pabilities and dangers of any new technique that we employ.

© FUOC • P07/M2103/02288 36 Security administration

5. Network security

5.1. Service client

As service clients, we basically need to make sure that we do not put our users

in danger (or they put themselves in danger) by using insecure services. Avoid

the use of services that do not use data encryption and passwords (FTP, telnet,

non-secure mail). Use encrypted connection techniques, such as SSH and SSL.

Another important point concerns the potential substitution of servers for

other false ones or session hijacking techniques. In these cases, we will need to

have powerful authentication mechanisms that allow us to verify the servers'

authenticity (for example, SSH and SSL have some of these mechanisms). And

we will also have to verify the network searching for intruders who try to re-

place servers, as well as to apply correct package filtering services using fire-

walls, which allow us to remove our packages from a request and use the right

servers, controlling the incoming packages that we receive as a response.

5.2. Server: inetd and xinetd

As we have seen, network services [Mou01] are configured from various places

[Ano99][Hat01][Peñ]:

• In /etc/inetd.conf or the equivalent directory in /etc/xinetd.d: these sys-

tems are sort of "superservers" since they control subsidiary services and

start up conditions. The inetd service is used in Debian and xinetd in Fe-

dora (in Debian it can be installed as an option to replace inetd).

• Servers initiated during start up: depending on the runlevel we will have

a number of servers initiated. The start up will originate in the directory

associated to the runlevel. For example, in Debian, the default runlevel is

2, the services will be started up from the /etc/rc2.d directory, certainly

with links to the scripts contained in /etc/init.d, which will run with the

parameter start, stop, restart, as applicable.

• Other RPC type services: associated to remote calls between machines are

used, for example in NIS and NFS. We can examine which ones with the

rpcinfo -p command.

Other support files (with useful information) include: /etc/services, which

consists of a list of known local or network services together with the proto-

col name, (tcp, udp or others), used for the service and the port that it uses;

/etc/protocols is a list of known protocols; and /etc/rpc is a list of RPC servers

Note

As service clients, we will need
to avoid using insecure ser-
vices.

© FUOC • P07/M2103/02288 37 Security administration

together with the used ports. These files come with the distribution and are

a sort of database used by the network tools and commands in order to de-

termine the name of services and their associated protocols or rpc and ports.

We should mention that they are more or less historical files, which do not

necessarily contain all the definitions of protocols and services; likewise we

can search different Internet lists of known ports.

One of the administrator's first actions will be to disable all services that are

not being used or that are not scheduled to be used, reading up on the use of

services [Mou01] and what software may need them. [Neu]

In the case of /etc/inetd.conf, we just have to comment the service line that

has to be disabled, by placing a number symbol (#) as the first character on

the line.

In the other model of services, used by default in Fedora (and optionally in

Debian), xinetd, the configuration lies in the /etc/xinetd.conf file, where some

of the default values of log, control are configured and then the configuration

of each subsidiary service is done through a file within the /etc/xinetd.d di-

rectory. In each file, the service information is defined, equivalent to what

appears in the inetd.conf, in this case, to disable a service, we just have to

enter the line "disable = yes" within the service file. Xinetd has a more flexible

configuration than inetd, since it separates the configuration of the different

services into different files and has a fair number of options for limiting con-

nections to a service, their number or capabilities; all of which allows for a

better control of the service and with the right configuration we can avoid

some of the attacks by denying the service (DoS o DDoS).

With regard to the handling of runlevel services from the distribution's com-

mands, we have already mentioned several tools that allow services to be en-

abled or disabled in the unit on local administration. There are also graphic

tools such as ksysv of KDE, or the system-config-services and ntsysv in Fedora

(in Debian, we recommend sysv-rc-conf, rcconf or bum). And at a lower level,

we can go to the runlevel that we want (/etc/rcx.d) and deactivate the services

we wish by changing the initial S or K of the script for other text: for exam-

ple, one method would be: changing S20ssh, for STOP_S20ssh, and it will no

longer start up; the next time we need it, we can remove the prefix and it will

be active again. Or perhaps the recommended use of simple utilities to place,

remove or activate a specific service (like service and chkconfig in Fedora or

similar ones in Debian, such as update-rc.d and invoke.rc.d).

Another aspect is closing down insecure services. Traditionally, in the world

of UNIX file transfer systems such as FTP were used with remote connection,

such as telnet, and remote run commands (login or copy), many of which

started with the letter "r" (for example, rsh, rcp, rexec...). Other potential dan-

gers are finger and rwhod services, which allowed information to be obtained

from the network of the machine users; here the danger lay in the information

© FUOC • P07/M2103/02288 38 Security administration

that an attacker could obtain that would make the attacker's job easier. All of

these services should not be used currently due to the potential dangers that

they entail. In relation to the first group:

a) in network transmissions, ftp and telnet do not encrypt passwords and any-

one can obtain pde service passwords or the associated accounts (for example,

by using a sniffer).

b) rsh, rexec, rcp also have the problem that, under certain conditions, pass-

words are not even necessary (for example, if run from places validated in

the .rhosts file), which means that once again they are insecure and leave the

doors wide open to attacks.

The alternative is to use secure clients and servers that support message en-

cryption and the authentication of participants. There are secure alternatives

to the classical servers, but currently the most commonly used solution is the

OpenSSH package (which can also be combined with OpenSSL for web en-

vironments). OpenSSH offers solutions based on the ssh, scp and sftp com-

mands, allowing old clients and servers to be replaced (using a daemon called

sshd). The ssh command allows the old functionalities of telnet, rlogin and rsh

among others, scp would be the secure equivalent of rcp and sftp the equiv-

alent of ftp.

With regards to SSH, we also have make sure we use ssh version 2. The first ver-

sion has some known exploits; we need to take care when we install OpenSSH

and, if we do not need the first version, install only the support for ssh2 (see

the option Protocol in the /etc/ssh/ssh_config configuration file).

Besides, most services that we leave active on our machines would have to be

filtered afterwards by a firewall to make sure that they are not used or attacked

by people to whom they are not directed.

© FUOC • P07/M2103/02288 39 Security administration

6. Intrusion detection

With intrusion detection systems [Hat01] (IDS) the aim is to take a step for-

ward. Once we have been able to configure our security correctly, the next

step will be to detect and actively prevent intrusions.

IDS systems create listening procedures and generate alerts when they detect

suspicious situations, in other words, they look for the symptoms of potential

security accidents.

We have systems based on local information, for example, gathering informa-

tion from the system logs, monitoring changes in the file system or in the

configurations of typical services. Other systems are based on the network and

verify that there is no strange behaviour, such as spoofing, with the falsifica-

tion of known addresses; controlling suspicious traffic, potential service denial

attacks, detecting excessive traffic towards particular services, controlling that

there are no network interfaces in promiscuous mode (a symptom of sniffers

or package capturers).

Examples

Some examples of IDS tools: Logcheck (log verification), TripWire (system status through
md5 sums applied to the files), AIDE (a free version of TripWire), Snort (IDS for verifying
the status of an entire network).

Note

IDS systems allow us to detect
on time intruders using our re-
sources or exploring our sys-
tems in search of security fail-
ures.

© FUOC • P07/M2103/02288 40 Security administration

7. Filter protection through wrappers and firewalls

TCP�wrappers [Mou01] are programs that act as intermediaries between the

requests of the users of a service and the daemons of the servers that provide

the service. Most distributions already come with the wrappers activated and

we configure the levels of access. The wrappers tend to be used in combination

with inetd or xinetd, so as to protect the services that they offer.

The wrapper basically replaces the service's daemon for another that acts as

an intermediary (called tcpd, normally in /usr/sbin/tcpd). When this receives

a request, it verifies the user and the origin of the request, in order to deter-

mine whether the configuration of the service's wrapper allows it to be used

or not. Also, it includes the ability to generate logs, or to inform via email

possible attempts at access and then runs the appropriate daemon assigned

to the service.

For example, let's assume the following entry in inetd:

finger stream tcp nowait nobody /usr/etc/in.fingerd

in.fingerd

We change it for:

finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd

so that when a request arrives, it is handled by the tcpd daemon which will

be responsible for verifying the access (for more detailed information, see the

tcpd man pages).

There is also an alternative method of TCP wrapper that consists of compiling

the original application with the wrappers library. This way the application

does not have to be in inetd and we can control it like in the first case with

the configuration that we will discuss next.

The wrappers system is controlled from the /etc/hosts.deny file, where we

specify which services we deny to whom, using options, like a small shell

to save the information on the attempt, and the /etc/hosts.allow file, where

we place the service we intend to use, followed by the list of who is allowed

to use the service (later, in the workshop, we will look at a small example).

We also have the tcpdchk commands, which test the configuration of the

hosts files (see man hosts_access and hosts_options) to check that they are

Note

Wrappers allow us to control
security through access lists to
levels of services.

© FUOC • P07/M2103/02288 41 Security administration

correct, in other words, it tests the configuration. The other useful command

is tcpdmatch, to which we give the name of a service and a potential client

(user, and/or host), and it tells us what the system will do in this situation.

7.1. Firewalls

A firewall is a system or group of systems that reinforces policies of access

control between networks. The firewall can be implemented in software as

a specialised application running on an individual computer or could be a

special device designed to protect one or more computers.

In general, we will have either a firewall application to protect a specific ma-

chine directly connected to Internet (directly or through a provider), or we

can place one or several machines designed for this function on our network

in order to protect our internal network.

Technically, the best solution is to have one computer with two or more

network cards that isolate the different connected networks (or network seg-

ments), in such a way that the firewall software on the machine (or if it is a

special hardware) is responsible for connecting network packages and deter-

mining which can pass or not and to which network.

This type of firewall is normally combined with a router to link the packages

of the different networks. Another typical configuration is the firewall towards

the Internet, for example with two network cards: on one we obtain/provide

traffic to the Internet and on the other we send or provide traffic to our in-

ternal network, thus eliminating traffic that is not addressed to us and also

controlling traffic moving out towards the Internet, in case we do not wish to

allow access to certain protocols or if we suspect that there are potential infor-

mation leaks due to some attack. A third possibility is the individual machine

connected with a single card towards the Internet, either directly or through

a provider. In this case, we just want to protect our machine from intruders,

unwanted traffic or traffic that is susceptible to data robbery.

In other words, in all these cases we can see that a firewall can have differ-

ent configurations and uses depending on whether it is software or not, on

whether the machine has one or several network cards or on whether it pro-

tects an individual machine or a network.

In general, the firewall allows the user to define a series of access policies

(which machines can be connected to do or which machines can receive in-

formation and what type of information) by means of controlling the allowed

incoming or outgoing TCP/UDP ports. Some firewalls come with preconfig-

ured policies; in some cases they just ask whether we want a high, medium

or low level of security; others allow all options to be tailored (machines, pro-

tocols, ports etc.).

Note

Firewalls make it possible to
establish security at the level of
packages and communication
connections.

© FUOC • P07/M2103/02288 42 Security administration

Another related technique is network address translation (NAT). This tech-

nique provides a route for hiding IP addresses used on the private network and

hides them from the Internet, but maintains the access from the machines.

One of the typical methods is the one known as masquerading. Using NAT

masquerading, one or several network devices can appear as a single IP address

seen from the outside. This allows several computers to be connected to a

single external connection device; for example, the case of an ADSL router at

home that allows several machines to be connected without the need for the

provider to give us various IP addresses. ADSL routers often offer some form of

NAT masquerading, and also firewall possibilities. It is fairly common to use a

combination of both techniques. In this case, as well as the configuration of

the firewall machine (in the cases we have seen above), the configuration of

the internal private network that we want to protect also comes into play.

7.2. Netfilter: IPtables

The Linux kernel (as of versions 2.4.x) offers a filtering subsystem called Net-

filter [Net], which offers package filtering features as well as NAT. This system

allows different filter interfaces to be used, the most commonly used one is

called IPtables. The main control command is iptables. Previously [Hata], it

provided another filter called ipchains in kernels 2.2 [Gre], the system had

a different (although similar) syntax. The 2.0 kernels used a different system

called ipfwadm. Here (and in later examples) we will only deal with Netfilter/

IPTables (in other words with the kernel versions 2.4/2.6).

Page Web

Netfilter, ver: http://
www.netfilter.org
Ipchains, see: http://
www.netfilter.org/ipchains/

The interface of the IPtables command allows the different tasks to be per-

fomed for configuring the rules that affect the filter system: whether the gen-

eration of logs, pre and post package routing actions, NAT, and port forward-

ing.

Service start up with: /etc/init.d/iptables start, if not already configured in the

runlevel.

The iptables -L command lists the active rules at that time in each of the

chains. If not previously configured, by default they tend to accept all the

packages of the chains of input output and forward.

The IPTables system has the tables as a superior level. Each one contains dif-

ferent chains, which in turn contain different rules. The three tables that we

have are: Filter, NAT and Mangled. The first is for the filtering norms them-

selves, the second is to translate addresses within a system that uses NAT and

the third, less frequently used, serves to specify some package control options

and how to manage them. Specifically, if we have a system directly connect-

ed to the Internet, we will generally only use the Filter table. If the system

is on a private network that has to pass through a router, gateway or proxy

(or a combination of them), we will almost certainly have a NAT or IP mas-

querading system; if we are configuring the machine to allow external access,

Note

IPTables provides different
elements such as the tables,
chains and the rules them-
selves.

© FUOC • P07/M2103/02288 43 Security administration

we will have to edit the NAT table and the Filter table. If the machine is on a

private network system, but is one of the internal machines, it will be enough

to edit the Filter table, unless it is a server that translates network addresses

to another network segment.

If a package reaches the system, the firewall will first look at whether there are

rules in the NAT table, in case addresses towards the internal network need

to be translated (addresses are not normally visible outwards); then it will

look at the rules in the Filter table in order to decide whether the packages

will be allowed to pass or whether they are not for us and we have forward

rules to know where to redirect them. On the contrary, when our processes

generate packages, the output rules of the Filter table will control whether we

allow them out or not, and if there is a NAT system the rules will translate

the addresses in order to masquerade them. In the NAT table there are usually

two chains: prerouting and postrouting. In the first, the rules have to decide

if the package has to be routed and, if so, what the destination address will be.

In the second, it is finally decided whether the package is allowed inside or

not (to the private network, for example). And there is also an output chain

for locally generated outgoing traffic to the private network, since prerouting

does not control this (for more details, see iptables man page).

Next we will comment on some aspects and examples of configuring the Filter

table (for the other tables, we can consult the associated bibliography).

The Filter table is typically configured as a series of rules that specify what is

done inside a particular chain, like the three preceding ones (input, output

and forward). Normally, we will specify:

iptables -A chain -j target

where chain is the input, output or forward and target is the destination that

will be assigned to the packet which corresponds to the rule. Option -A adds

the rule to the existing ones. We have to be careful here, because the order

does matter. We have to put the least restrictive rules at the beginning, given

that, if we put a rule that eliminates the packets at the beginning, even if

there is another rule, this will not be taken into account. Option -j can be

used to decide what we will do with the packets, typically accept, reject or drop.

It is important to note the difference between reject and drop. With the first,

we reject the packet and we will normally inform the sender that we have

rejected the connection attempt (normally for an ICMP-type packet). With

the second, drop, we simply "lose" the package as though it had never existed

and we will not send any form of response. Another target that is used is log, to

send the packet to the log system. Normally, in this case, there are two rules,

one with the log and another identical one with accept, drop and reject, so that

the information on the accepted, rejected or dropped packets can be sent to

the log.

© FUOC • P07/M2103/02288 44 Security administration

When entering the rule, we can also use the option -I (insert) to indicate a

position, for example:

iptables -I INPUT 3 -s 10.0.0.0/8 -j ACCEPT

which tells us that the rule should be put in the third position in the input

chain; and that packets (-j) that come from (with source, -s) from the subnet

10.0.0.0 with netmask 255.0.0.0 will be accepted. With -D, similarly, we can

delete either a rule number or the exact rule, as specified below, deleting the

first rule of the chain or the rule that we mention:

iptables -D INPUT 1

iptables -D INPUT -s 10.0.0.0/8 -j ACCEPT

There are also rules that can be used to define a default "policy" for the packets

(option -P); the same thing will be done with all the packets. For example, we

would usually decide to drop all the packets by default and then enable the

ones that we require; likewise, we would often avoid forwarding packets if it

is not necessary (if we do not act from the router), this could be declared as

follows:

iptables -P INPUT DENY

iptables -P OUTPUT REJECT

iptables -P FORWARD REJECT

This establishes default policies that consist of rejecting any incoming packets

and not permitting the sending or resending of packets. Now we will be able

to add rules that affect the packets that we wish to use, stating which proto-

cols, ports and origins or destinations we wish to permit or avoid. This can

be difficult as we have to know all the ports and protocols that our software

or services use. Another strategy would be to only leave active the services

that are essential and to enable access to the services for the desired machine

through the firewall.

Some examples of these rules on the Filter table could be:

1)iptables -A INPUT -s 10.0.0.0/8 -d 192.168.1.2 -j DROP

2)iptables -A INPUT -p tcp --dport 113 -j REJECT --reject-with

tcp-reset

3)iptables -I INPUT -p tcp --dport 113 -s 10.0.0.0/8 -j ACCEPT

where:

1) We drop the packets that come from 10.x.x.x sent to 192.168.1.2.

2) We reject the tcp packets sent to port 113, issuing a tcp-reset type response.

© FUOC • P07/M2103/02288 45 Security administration

3) The same packets as in 2) but that come from 10.x.x.x will be accepted.

With regard to the names of the protocols and ports, the iptables system uses

the information provided by the files /etc/services and /etc/protocols, and we

can specify the information (port or protocol) either with numbers or with

the names (we must make sure, in this case, that the information on the files

is correct and that it has not been modified, for example, by an attacker).

The configuration of the iptables is usually established through consecutive

calls to the iptables command with the rules. This creates a state of active rules

that can be consulted with iptables -L; if we wish to save them so that they

are permanent, we can do this in Fedora with:

/etc/init.d/iptables save

And they are saved in:

/etc/sysconfig/iptables

In Debian, we can execute:

/etc/init.d/iptables save name-rules

We have to be careful and ensure that the directory /var/log/iptables already

exists, as this is where the files will be saved; name-rules will be a file in the

directory.

With (/etc/init.d/iptables load) we can load the rules (in Debian, we have to

provide the name of the rules file), although Debian supports some default

file names, which are active for the normal rules (the ones that will be used

when the service starts) and inactive for the ones that will remain when the

service is deactivated (or stopped). Another similar method that is commonly

used is that of putting the rules in a script file with the iptables calls that are

necessary and calling them, for example, by putting them in the necessary

runlevel, or with a link to the script in /etc/init.d.

7.3. Packets of firewalls in the distributions

With regard to the configuration tools that are more or less automatic in the

firewall, there are various possibilities, but we should remember that they do

not usually offer the same features as the manual configuration of iptables

(which in most cases, is the recommended process). Some tools are:

• lokkit: in Fedora/Red Hat, on a very basic level, the user can only choose

the desired security level (high, medium or low). Afterwards, the services

that would be affected are shown and we can leave it, or not, so that we

pass on to the service changing the default configuration. The mechanism

© FUOC • P07/M2103/02288 46 Security administration

used beneath is the iptables. The final configuration of the rules that is

made can be seen at /etc/sysconfig/iptables which, in turn, is read by the

iptables service, which is loaded on boot up or when stopping or booting

using /etc/init.d/iptables with the start or stop options. It is also possible

to install it in Debian, but the rules configuration should be left in /etc/

defaults/lokkit-l and a script in /etc/init.d/lokkit-l. There is also a graphic

version called gnome-lokkit.

• Bastille [Proa]: this is a fairly complete and educational security program

that explains different recommended security settings and how we can

apply them step by step; it also explains the configuration of the firewall

(the program is interactive). It works in various distributions, including in

both Fedora and Debian.

• fwbuilder: a tool that can be used to build the rules of the firewall using

a graphical interface. It can be used in various operating systems (GNU/

Linux, both Fedora and Debian, OpenBSD, MacOS), with different types

of firewalls (including iptables).

• firestarter: a graphical tool (Gnome) for creating a firewall. It is very com-

plete, practically managing all the possibilities of the iptables, but, like-

wise, it has assistants that make it easy to set up a firewall intuitively. Like-

wise, there is a real-time monitor for detecting any intrusions.

Normally, each of these packets uses a rules system that is saved in its own

configuration file and that usually starts up as a service or as a script execution

in the default runlevel.

7.4. Final considerations

Page Web

See: http://
www.fwbuilder.org/

Even if we have well-configured firewalls, we have to remember that they are

not an absolute security protection, as there are complex attacks that can pass

over the firewalls or falsify the data to create confusion. In addition, modern

connectivity sometimes needs to force us to create software that will bypass

the firewalls:

• Technologies, such as IPP, the printing protocol used by CUPS, or WebDAV,

the authoring and versioning protocol for websites, make it possible to

bypass (or make it necessary to bypass) the configurations of the firewalls.

• A technique called tunnelling is often used (for example, with the above-

mentioned protocols and others). This technique basically encapsulates

the non-permitted protocols, on the basis of others that are permitted;

for example, if a firewall only permits HTTP traffic to pass (port 80 by de-

fault), it is possible to write a client and server (each one on one side of

the firewall) that can speak in any protocol known to both, but in which

Note

We should never rely on one
single mechanism or security
system. The security of the sys-
tem must be established at all
the different levels.

© FUOC • P07/M2103/02288 47 Security administration

the network is transformed into a standard HTTP, which means that the

traffic can bypass the firewall.

• The mobile codes by web (ActiveX, Java, y JavaScript) bypass the firewalls,

and it is therefore difficult to protect the systems if these are vulnerable

to attacks against any open holes that are discovered.

Therefore, although firewalls are a very good solution for most security-related

aspects, they can always have vulnerabilities and let traffic that is considered

valid through, which then includes other possible sources of attack or vulner-

abilities. With regard to security, we should never consider (and rely on) only

one single solution and expect it to protect us from everything; it is necessary

to examine the various problems, to propose solutions that will detect any

problems on time and to establish prevention policies that will protect the

system before any harm is done.

© FUOC • P07/M2103/02288 48 Security administration

8. Security tools

Some of these tools can also be considered tools for attacking other

machines. Therefore, it is advisable to test these tools on machines in

our own local or private network; we should never do this with third

party IPs, as these could interpret the tests as intrusions and we or our

ISP may be held responsible for them and the corresponding authorities

may be notified to investigate us and remove our access.

We will now briefly discuss some tools and the ways in which they can be used:

a)�TripWire: this tool maintains a database of sums for checking the important

files in the system.

It may serve as a preventive IDS system. We can use it to "take" a snapshot

of the system, so that we can subsequently check any modification made and

that it has not been corrupted by an attacker. The aim here is to protect the files

in the machine itself and to avoid any changes occurring, such as those that,

for example, the rootkit might have caused. Therefore, when we execute the

tool again, we can check all the changes compared to the previous execution.

We have to choose a subset of files that are important in the system or possible

sources of attack. TripWire is proprietary, but there is a free open-source tool

that is the equivalent called AIDE.

b)�Nmap [Insb]: this is a tool that scans ports in large networks. It can scan

from individual machines to network segments. It provides various scanning

modes, depending on the system's protections. It also provides techniques

with which we can determine the operating system used by remote machines.

Different TCP and UDP packets may be used to test the connections. There is

a graphical interface known as xnmap.

© FUOC • P07/M2103/02288 49 Security administration

Figure 2. xnmap analysing the local services

c)�Wireshark [Wir] (previously called Ethereal): is a protocol analyser that

captures the traffic in the network (it acts as a sniffer). It can be used to visu-

alise the captured traffic, see the statistics and data of the individual packets

and group the packets, either by origin, destination, ports or protocol. It can

even reconstruct the traffic from a whole session from a Transmission Control

Protocol (TCP).

d)�Snort [Sno]: is an IDS system that makes it possible to analyse the traffic in

real time and save logs of the messages. It can be used to analyse the protocols

and search by patterns (protocol, origin, destination etc.). It can be used to

detect various types of attack. Basically, it analyses the traffic in the network

to detect patterns that might correspond to an attack. The system uses a series

of rules to either produce a log of the situation (log) or warn the user (alert)

or reject the information (drop).

e)�Nessus [Nes]: detects any known vulnerabilities (by testing different intru-

sion techniques) and assesses the best security options for those discovered.

It is a modular program that includes a series of plugins (more than 11,000)

for performing the different analyses. It uses a client-server architecture, with

a graphic client to show the results and the server, which carries out differ-

ent tests on the machines. It has the capacity to examine whole networks. It

© FUOC • P07/M2103/02288 50 Security administration

generates reports on the results, which can be exported to different formats

(HTML, for example). Up until 2005, Nessus 2 was a free tool, but the compa-

ny decided to make it proprietary, in version Nessus 3. In GNU/Linux, Nessus

2 is still used, as it continues to have a GPL license and a series of plugins,

which are gradually updated. Nessus 3, as a proprietary tool for GNU/Linux,

is more powerful and widely used, as it is one of the most popular security

tools and there is normally a free version available with plugins that are less

updated than the ones in the version that is not free.

Figure 3. Nessus client showing the vulnerabilities report and the possible solutions

We can find many other security tools that are available. A good place to start

is http://sectools.org, where the designers of Nmap maintain a list of popular

tools, as voted by the users.

© FUOC • P07/M2103/02288 51 Security administration

9. Logs analysis

By observing the files of the log [Ano99][Fri02], we can quickly get an idea

of the global state of the system, as well as the latest events, and detect any

irregular intrusions (or intrusion attempts). But it should also be remembered

that, if there really has been an intrusion, the logs may have been cleaned or

falsified. Most of the log iles will be in the /var/log directory.

Many of the services may have their own logs, which are normally established

during configuration (through the corresponding configuration file). Most of

them usually use the log facilities incorporated in the Syslog through the Sys-

logd daemon. The configuration will be in /etc/syslog.conf. This configuration

is usually established according to the message levels: there are different types

of message according to their importance. Normally, levels such as debug, in-

fo, err, notice, warning, err, crit, alert, emerg, appear, in which the order of im-

portance of the messages would be more or less as follows (from least to most

important). Normally, most of the messages are sent to the /var/log/messages

log, but the system can be set so that each message type goes to different files

and it is also possible to identify who has created them; typically, the kernel,

mail, news, the authentication system etc.

Consequently, it is appropriate to examine (or in any case adapt) the configu-

ration of Syslog so as to determine the logs in which we can find / generate the

information. Another important point is to control its growth, as, depending

on which are active and the operations (and services) that are performed in

the system, the logs can grow very quickly. In Debian and Fedora, this can

be controlled through logrotated, a daemon that regularly makes copies and

compresses the oldest logs; it is possible to find the general configuration in /

etc/logrotate.conf, although some applications set specific configurations that

can be found in the /etc/logrotate.d directory.

In the following points, we will discuss some of the log files that should be

taken into account (perhaps the most frequently used):

a) /var/log/messages: is the default log file of the Syslogd daemon, but we

would have to check its configuration, in case it has been moved to anoth-

er place or there are several of them. This file contains a wide range of mes-

sages from various origins (different daemons, services or the same kernel);

anything that looks irregular must be verified. If there has been an intrusion,

the date of the intrusion and related files should be checked.

© FUOC • P07/M2103/02288 52 Security administration

b) /var/log/utmp: this file contains binary information for each user that is

currently active. It is useful to determine who is logged in the system. The

who command uses this file to provide this information.

c) /var/log/wtmp: each time that a user logs in or out of the system, or the

machine reboots, an entry is saved in this file. This is a binary file from which

the last command obtains the information; the file records which users logged

in or out of the system and when and where the connection was made. It can

be useful for finding out where (in which accounts) the intrusion started and

detect the use of suspicious accounts. There is also a variation in the command

called lastb, which lists the login attempts that were not correctly validated

and the /var/log/btmp file is used (you may have to create it if it doesn't exist).

These same authentication faults can also be sent to log auth.log. In a simi-

lar manner, the lastlog command uses another file, /var/loglastlog, to verify

which was the last connection of each of the users.

d) /var/log/secure: they are usually used in Fedora for sending the tcp wrap-

per messages (or firewalls). Each time that a connection is established to an

inetd service, or, in the case of Red Hat 9, to the xinetd service (with its own

security), a log message is added to this file. We can search for intrusion at-

tempts in services that are not usually used or in unfamiliar machines that

try to connect.

In the logs system, another thing that should be checked is that the directory

logs in /var/log can only be writable by the root (or the daemons associated to

the services). Otherwise, any attacker could falsify the information in the logs.

Nevertheless, if attackers manage to access the root, they may often delete all

their tracks.

© FUOC • P07/M2103/02288 53 Security administration

10.Workshop: security analysis using tools

We will now perform some of the processes described above on a Debian sys-

tem, to improve the security configuration.

First we will examine what our machine offers the network. In order to do

this, we will use the nmap tool as a port scanner. With the command (from

the root):

nmap -sTU -O localhost

we obtain:

root@machine:˜# nmap -sUT -O localhost

starting nmap 3.27 (www.insecure.org/nmap/) at 2003-09-17

11:31 CEST Interesting ports on localhost (127.0.0.1):

(The 3079 ports scanned but not shown below are in state: closed)

Port State Service

9/tcp open discard

9/udp open discard

13/tcp Open daytime

22/tcp Open smtp

25/tcp open time

37/tcp open time

37/udp open http

80/tcp open sunrpc

111/tcp open sunrpc

111/udp open auth

113/tcp open ipp

631/tcp open unknown

728/udp open

731/udp open netviewdm3

734/tcp open unknown

Remote operating system guess: Linux kernel 2.4.0-2.5.20

© FUOC • P07/M2103/02288 54 Security administration

Uptime 2.011 days (since Mon Sep 15 11:14:57 2003)

Nmap run completed --1 IP address (1 host up) scanned in

9.404 seconds

We can see that a high number of open services have been detected (depend-

ing on the machine, there may be more: telnet, FTP, finger...), in both trans-

mission control protocol (TCP) and user datagram protocol (UDP). Some ser-

vices, such as discard, daytime, time may be useful on occasion, but they

should not normally be open to the network, as they are considered non-se-

cure. SMTP is the resending and routing service, for mail; if we are acting as

the host or mail server, this would have to be active; but if we are only reading

and writing emails through POP3 or IMAP accounts, this doesn't necessarily

have to be active.

Another method for detecting active services would be by searching active

listening ports, which can be achieved with netstat -lut.

The nmap service can also be applied with the DNS or IP name of the machine;

this shows us how the system looks from the exterior (with localhost, we see

what the actual machine can see), or, better still, we could even use a machine

of an external network (for example, any PC connected to the Internet) to

examine what could be seen in our machine from outside.

We will now go to /etc/inetd.conf to deactivate these services. We should look

for lines such as:

discard stream tcp nowait root internal

smtp stream tcp nowait mail /usr/sbin/exim exim –bs

and we type a number symbol (#) at the beginning of the line (only in the

services that we wish to deactivate and when we know what they are really

doing (check pages of man as deactivating them has been recommended).

Another case of recommended deactivation would be that of the ftp, telnet,

finger services and we should use ssh to replace them.

Now we have to reboot inetd so that it rereads the configuration that we have

changed: /etc/init.d/inetd restart.

We return to nmap:

22/tcp open ssh

80/tcp open http

111/tcp open sunrpc

111/udp open sunrpc

© FUOC • P07/M2103/02288 55 Security administration

113/tcp open auth

631/tcp open ipp

728/udp open unknown

734/tcp open unknown

From what is left, we have the ssh service, which we wish to leave active, and

the web server, which we will stop for the moment:

/etc/init.d/apache stop

ipp is the printing service associated to CUPS. In the local administration sec-

tion we saw that there was a CUPS web interface that connected to port 631.

If we wish to have an idea of what a specific port is doing, we can look in

/etc/services:

root@machine:# grep 631 /etc/services

ipp 631/tcp # Internet Printing Protocol

ipp 631/udp # Internet Printing Protocol

If we are not acting as the printing server to the exterior, we have to go to

the CUPS configuration and eliminate this feature (for example, by placing a

listen 127.0.0.1:631, so that only the local machine listens), or limit the access

to the permitted machines.

Some other ports also appear as unknown, in this case, ports 728 and 734;

this indicates that the system has not been able to determine which nmap is

associated to the port. We will try to see it ourselves. For this, we can execute

the netstat command on the system, which offers different statistics on the

network system, from the packets sent and received and errors to the elements

in which we are interested, which are the open connections and who is using

them. We will try to find out who is using the unknown ports:

root@machine:˜# netstat -anp | grep 728

udp 0 0 0.0.0.0:728 0.0.0.0:* 552/rpc.statd

And if we do the same with port 734, we can see that it was rpc.statd that

opened the port; rpc.statd is a daemon associated to NFS (in this case, the

system has an NFS server). If we repeat this process with ports 111, which

appeared as sunrpc, we will see that the daemon that is behind is portmap,

which is used in the remote procedure call system (RPC). The RPC system per-

mits users to use the remote calls between two processes that are on different

machines. portmap is a daemon that converts the calls that arrive at the port

to the internal RPC services numbers and it is used by different servers such

as NFS, NIS, NIS+.

© FUOC • P07/M2103/02288 56 Security administration

The RPC services offered can be seen with the rpcinfo command:

root@machine:˜# rpcinfo -p

programme vers proto Port

100000 2 tcp 111 portmapper

100000 2 udp 111 portmapper

100024 1 udp 731 status

100024 1 tcp 734 status

391002 1 tcp 39797 sgi_fam

391002 2 tcp 39797 sgi_fam

where we see the RPC services with some of the ports that had already been

detected. Another command that may be useful is lsof, which, among other

functions, makes it possible to relate ports with the services that have opened

them (for example: lsof -i | grep 731).

The portmap daemon is somewhat critical with regard to security, as, in prin-

ciple, it does not offer the client authentication mechanisms, as this is sup-

posedly delegated to the service (NFS, NIS...). Consequently, portmap could

be subjected to DoS attacks that could cause faults in the services or cause

downtime. We usually protect portmap using some kind of wrapper and/or

firewall. If we do not use these and we do not intend to use the NFS and NIS

services, the best thing to do is to completely deactivate portmap, removing it

from the runlevel on which it activates. We can also stop them momentarily

with the following scripts (in Debian):

/etc/init.d/nfs-common

/etc/init.d/nfs-kernel-server

/etc/init.d/portmap

by entering the stop parameter to stop the RPC services (in this case NFS).

We will then control the security in the base using a simple wrapper. Let us

suppose that we wish to let a specific machine pass through ssh, which we

will call 1.2.3.4 (IP address). We will close portmap to the exterior, as we do

not have NIS and we have an NFS server but we are not serving anything (we

could close it, but we will leave it for future use). We will create a wrapper (we

are assuming that the TCP wrappers are already installed) modifying the files

hosts.deny -j allow. In /etc/hosts.deny:

ALL : ALL : spawn (/usr/sbin/safe_finger -l @%h \

| /usr/bin/mail -s "%c FAILED ACCESS TO %d!!" root) &

© FUOC • P07/M2103/02288 57 Security administration

we are denying all of the services (be careful, some of them are related to inetd)

(primer all), and the next step to take will be to find out who has requested

the service and from what machine and we will send an email message to

the root user reporting the attempt. We could also write a log file... Now, in

/etc/hosts.allow:

sshd: 1.2.3.4

we enable access for the IP 1.2.3.4 machine in the sshd server (of the ssh).

We could also enter the access to portmap, all we would need is a portmap

line: la_ip. We can enter a list of machines or subnets that can use the service

(see man hosts.allow). Remember that we also have the tcpdchk command

to check that the configuration of the wrapper is correct and the tcpdmatch

command to simulate what would happen with a specific attempt, for exam-

ple:

root@machine:˜# tcpdmatch sshd 1.2.3.4

warning: sshd: no such process name in /etc/inetd.conf client:

hostname machine.domain.es

client: address 1.2.3.4

server: process sshd

matched: /etc/hosts.allow line 13

access: grantedv

tells us that access would be provided. One detail is that it tells us that sshd is

not in inetd.conf and, if we verify it, we see that it is not: it is not activated by

the inetd server, but by the daemon in the runlevel on which we are operating.

Besides, in Debian, this is a daemon that is compiled with the included wrap-

per libraries (which does not therefore require tcpd to work). In Debian, there

are various daemons such as: ssh, portmap, in.talk, rpc.statd, rpc.mountd,

among others. This allows us to secure these daemons using wrappers.

Another question that should be verified concerns the existing current con-

nections. With the netstat -utp command, we can list the tcp, udp connec-

tions established with the exterior, whether they are incoming or outgoing;

therefore, at any time, we can detect the connected clients and who we are

connected to. Another important command (with multiple functions) is lsof,

which can relate open files with established processes or connections on the

network through lsof -i, which helps to detect any inappropriate accesses to

files.

We could also use a firewall for similar processes (or as an added mechanism).

We will begin by seeing how the rules of the firewall are at this time: (iptables

-L command)

root@aopcjj:˜# iptables -L

© FUOC • P07/M2103/02288 58 Security administration

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

In other words, the firewall is not placing any restrictions at this time and all

the packets can be sent, received and resent.

At this point, we could add a firewall that would provide better management

of the packets that we receive and send, and which would be a preliminary

control for improving security. Depending on our needs, we would establish

the necessary rules similarly to the firewall examples provided in this unit.

If we set up the firewalls, we can consider whether to use this mechanism as a

single security element and remove the wrappers: this could be done, because

the firewalls (in this case through iptables) offer a very powerful feature that

allows us to follow up a packet by type, protocol and by what it is doing in

the system. A good firewall could be enough, but, to be on the safe side, more

security measures will always be helpful. And if the firewall were not well

designed and let some packets escape, the wrapper would be the level-service

measure for stopping any non-desired accesses. To offer a metaphor that is

often used, if we consider our system to be like a medieval castle that must be

defended, the moat and the front walls would be the firewall, and the second

containment wall would be the wrapper.

© FUOC • P07/M2103/02288 59 Security administration

Activities

1) Suppose that we locate a website in our machine, using Apache for example. Our site is
designed for ten internal users, but we do not control this number. Subsequently, we consider
making this system accessible on the Internet, as we think that it could be useful for the
clients, and the only thing we have to do is assign a public IP address on the Internet to the
system. What types of attack might this system suffer?

2) How can we detect the files with suid in our system? Which commands are necessary?
And the directories with SUID or SGID? Why is it necessary, for example, for /usr/bin/passwd
to have a SUID bit?

3) The .rhosts files, as we have seen, are a significant danger for security. Could we use some
type of automatic method for regularly checking these files? How?

4) Let us suppose that we want to disable a service that we know has its /etc/init.d/service
script that controls it: we wish to disable it in all the runlevels in which it appears. How do
we find the runlevels in which it is present? (for example, searching for links to the script).

5) Examine the active services in your machine. Are they all necessary? How would we protect
or deactivate them?

6) Practice using some of the described security tools (nmap, nessus etc.).

7) Which IPtables rules would be necessary for a machine that we only wish to access through
SSH from a specific address?

8) What if we only want to access the web server?

© FUOC • P07/M2103/02288 60 Security administration

Bibliography

Other sources of reference and information

[Deb] [Hatc] The security sites for the distributions.

[Peñ] Essential for Debian, with a very good description of how to configure security, that
can be followed step by step, [Hatb] would be the equivalent for Fedora/Red Hat.

[Mou01] Excellent security reference for Red Hat (also applicable to Debian).

[Hat01] GNU/Linux security books covering extensive techniques and aspects.

[Line] Small guide (2 pages) to security.

[Sei] Step-by-step guide identifying the key points that have to be verified and the problems
that may arise.

[Net] Project Netfilter, and IPTables.

[Ian] A list of TCP/IP ports.

[Proa] [Sno] [Insb] [Nes] Some of the most commonly used security tools.

[NSAb] Linux version focused on security, produced by the NSA. Reference for SELinux.

[CERa][Aus][Insa][Incb] [NSAa] Security organisations' sites.

[CERb][Ins][San] Vulnerabilities and exploits of the different operating systems.

[NSAa][FBI][USA] Some cybercrime "policies" in the United States.

Configuration,
tuning and
optimisation

Remo Suppi Boldrito

P07/M2103/02289

© FUOC • P07/M2103/02289 Configuration, tuning and optimisation

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02289 Configuration, tuning and optimisation

Index

Introduction... 5

1. Basic aspects.. 7

1.1. Monitoring on a UNIX System V ... 8

1.2. Optimising the system .. 15

1.3. General optimisations ... 19

1.4. Additional configurations ... 20

1.5. Monitoring .. 24

Activities.. 33

Bibliography... 34

© FUOC • P07/M2103/02289 5 Configuration, tuning and optimisation

Introduction

A fundamental aspect, once the system has been installed, is the configura-

tion and adjustment of the system to the user's needs to ensure that the fea-

tures are as adequate as possible for the demands that will be placed on it.

GNU/Linux is an efficient operating system that provides an excellent degree

of possible configurations and a very delicate optimisation that can be tailored

to the needs of the user. This is why, once the system has been installed (or

updated, depending on the case), certain configurations that are essential to

the system must be set up. Although the system may "work", it is necessary to

make some changes (adapting to the environment or tuning) so that all the

needs of the users/services that the machine must provide are met. This tuning

will depend on where the machine is working; the tuning will be carried out,

in some cases, in order to improve the system's performance and efficiency,

and, in other cases (in addition), for security reasons (see module 9, "Security

administrator"). When the system is working, it is necessary to monitor the

system to see how it performs and behaves and to act accordingly. Although it

is a fundamental aspect, tuning an operating system is often left to the opin-

ions of computer experts or gurus; but if we are aware of the parameters that

affect the performance, it is possible to achieve good solutions by undertaking

a cyclical process of analysis, making changes to the configuration, monitor-

ing and making adjustments.

© FUOC • P07/M2103/02289 7 Configuration, tuning and optimisation

1. Basic aspects

Before learning about the optimisation techniques, it is necessary to list the

causes that might affect the performance of an operating system [Maj96].

Among these, we might mention:

a) Bottlenecks in the resources: the consequence is that the whole system will

be slower because there are resources that cannot satisfy the demand to which

they are being subjected. The first step for optimising the system is to find

these bottlenecks and their causes, whilst learning about their theoretical and

practical limitations.

b) Amdahl's law; according to this law, "there is a limit to how much an overall

system can be improved (or speeded-up) when only one part of the system is

improved"; in other words, if we have a program that uses 10% of the CPU

and it is optimised to reduce the use by a factor of 2, the program will improve

its performance (speedup) by 5%, which means that a tremendous amount of

effort is put into something that is not compensated by the ensuing results.

c) Estimates of the speedup: it is necessary to estimate how much the system

will improve so as to avoid any unnecessary efforts and costs. We can use the

previously described law to evaluate whether it is necessary to invest time or

money in the system.

d) Bubble effect: it is very common to have the feeling that, once we have

solved a problem, another one always appears. A manifestation of this prob-

lem is that the system is constantly moving between CPU problems and in/

out problems, and vice versa.

e) Response time in respect of workload: if we have twenty users, improving

the productivity will mean that all will get more work done at the same time,

but the individual response times will not improve; it may be that the response

times for some will be better than for others. Improving the response times

means optimising the system so that the individual tasks take as little time

as possible.

f) User psychology: two parameters are fundamental: 1) the user will be gen-

erally unsatisfied when there are variations in the response time; and 2) the

user will not notice any improvements in execution times of less than 20%.

g) Test effect: the monitoring measures affect the measures themselves. We

should proceed carefully when we are performing tests because of the collat-

eral effects of the actual testing programs.

© FUOC • P07/M2103/02289 8 Configuration, tuning and optimisation

h) Importance of the average and variation: the results should be taken into

account, given that, if we obtain an average of CPU usage of 50% when only

100, 0, 0, 100 has been used, we could come to the wrong conclusions. It is

important to see the variation on the average.

i) Basic knowledge on the hardware of the system that will be optimised: to

improve something we need to "know" whether it can be improved. The per-

son in charge of optimisation must have a lot of basic knowledge about the

underlying hardware (CPU, memory, buses, cache, in/out, disks, video...) and

the interconnections in order to determine where the problems lie.

j) Basic knowledge of the operating system that is to be optimised: as with

the preceding point, the user must know the minimum aspects of the operat-

ing system that they intend to optimise, which would include concepts such

as processes and threads (creation, execution, states, priorities, termination),

system calls, cache buffers, file system, administration of memory and virtual

memory (paging, swap) and tables of the kernel.

1.1. Monitoring on a UNIX System V

/proc will appear as a directory but in reality, it is a fictitious file system, in

other words, it does not exist on the disk and the kernel creates it in the mem-

ory. This is used to provide information on the system (originally on the pro-

cesses, hence the name), which will later be used by the commands that we

will now examine. We will now look at some interesting files (check the rele-

vant page on the manual for more information):

/proc/1: a directory with the information on process 1 (the number of di-

rectories is the PID of the process).

/proc/cpuinfo: information on the CPU (type, brand, model, perfor-

mance...).

/proc/devices: list of devices configured in the kernel.

/proc/dma: DMA channels used at this point in time.

/proc/filesystems: file systems configured in the kernel.

/proc/interrupts: shows which interruptions are in use and how many

of them have been processed.

/proc/ioports: the same applies to the ports.

/proc/kcore: image of the physical memory of the system.

Note

When optimising, the satu-
ration of resources must be
borne in mind. Amdahl's law
lists the knowledge of the soft-
ware and hardware available,
the response times and the
number of jobs.

© FUOC • P07/M2103/02289 9 Configuration, tuning and optimisation

/proc/kmsg: messages generated by the kernel which are then sent to syslog.

/proc/ksyms: table of kernel symbols.

/proc/loadavg: system load.

/proc/meminfo: information on memory use.

/proc/modules: modules loaded by the kernel.

/proc/net: information on the network protocols.

/proc/stat: statistics on the system.

/proc/uptime: from when the system is working.

/proc/version: version of the kernel.

It should be remembered that these files are visible (text) but sometimes the

data are in a "raw" state and commands are necessary to interpret them. These

commands will be the ones that we will now examine.

The compatible UNIX SV systems use the sar and sadc commands to obtain

system statistics (in FC included inside the sysstat package that also includes

iostat or mpstat). The equivalent in GNU/Linux Debian is atsar (and atsadc),

which is the absolute equivalent to the one we have mentioned. The atsar

command reads counters and statistics on the /proc file and shows them at

the standard output. The first way of calling the command is:

atsar options t [n]n

where the activity is shown in n times every t seconds with a header showing

the activity counters (the default value of n is 1). The second way of calling it is:

atsar -options -s time -e time -i sec -f file -n day#

The command extracts data from the file specified by -f (by default /var/log/

atsar/atsarxx, with xx being the day of the month) and that were previously

saved by atsadc (this is used to collect data, save them and process them and, in

Debian, it is in /usr/lib/atsar). The parameter -n can be used to indicate the day

of the month and -s, -e the time of final-boot, respectively. To activate atsadc,

for example, we could include a line such as the following in /etc/cron.d/atsar:

@reboot root test -x /usr/lib/atsadc && /usr/lib/atsar/atsadc

/var/log/atsar/atsa'date +\%d'

© FUOC • P07/M2103/02289 10 Configuration, tuning and optimisation

10,20,30,40,50 * * * * root test -x /usr/lib/atsar/atsa1 &&

/usr/lib/atsar/atsa1

The 1st creates the file after a reboot. The 2nd saves the data every 10 minutes

with the shell script atsa1, which calls atsadc.

In atsar (or sar), the options are used to indicate which counters have to be

shown; some examples include:

Option Description

u CPU Use

d Disk activity

I�(i) Number of interruption/s

V Use of tables in the kernel

and Use statistics of ttys

p Information on paging and swap activity

r Free memory and used-up swap

l�(L) Network statistics

L Network errors information

w IP connection statistics

t TCP statistics

U UDP statistics

m ICMP statistics

N NFS statistics

A All options

Note

Monitoring with atsar

• CPU: atsar -u
• Memory: atsar -r
• Disk: atsar -d
• Paging: atsar -p

Between atsar and sar there are only a few differences in terms of how the

data are shown and sar includes a few additional (or different) options. We

will now see some examples of how to use sar (exactly the same as with atsar,

the only differences are in the way in which the data are displayed) and the

meaning of the information that generates:

1)�CPU�use

© FUOC • P07/M2103/02289 11 Configuration, tuning and optimisation

sar -u 4 5

Linux 2.6.19-prep (localhost.localdomain) 24/03/07

08:23:22 CPU %user %nice %system %iowait %steal %idle

08:23:26 all 0.25 0.00 0.50 0.00 0.00 99.25

08:23:30 all 0.00 0.00 0.00 0.00 0.00 100.00

08:23:34 all 0.00 0.00 0.00 0.00 0.00 100.00

08:23:38 all 0.25 0.00 0.00 0.00 0.00 99.75

08:23:42 all 0.00 0.00 0.00 0.00 0.00 100.00

Media: all 0.10 0.00 0.10 0.00 0.00 99.80

• usr and system show the percentage of CPU time in the user mode with

nice = 0 (normal) and in the kernel mode.

• nice is the same but with user processes with nice > 0 (lower than average

priority).

• idle indicates the CPU time not used by the processes in standby mode

(does not include disk standby).

• iowait is the time that the CPU has been free when the system was entering

or exiting a disk.

• steal is the time wasted uselessly whilst waiting for a virtual CPU (valid in

virtualised environments).

In this case idle=100, which means that the CPU is idle, which means that

there are no processes to execute and the workload is low; if idle=10 and

there are a high number of processes, the optimisation of the CPU should be

considered, as it could be a bottleneck in the system.

2)�Number�of�interruptions�per�second

sar -I 4 5

Linux 2.6.19-prep (localhost.localdomain) 24/03/07

08:24:01 INTR intr/s

08:24:06 4 0.00

Media: 4 0.00

Shows the information on the frequency of interruptions of the active levels

located in /proc/interrupts. This is useful to see if there is any device that is

constantly interrupting the CPU's work.

3)�Memory�and�swap

© FUOC • P07/M2103/02289 12 Configuration, tuning and optimisation

sar -r 4 5

Linux 2.6.19-prep (localhost.localdomain) 24/03/07

08:24:20 kbmemfree kbmemused %memused kbbuffers kbcached kbswpfree kbswpused %swpused kbswpcad

08:24:24 296516 729700 71.11 24260 459972 963860 0 0.00 0

08:24:28 296500 729716 71.11 24268 459968 963860 0 0.00 0

08:24:32 296516 729700 71.11 24268 459976 963860 0 0.00 0

08:24:36 296516 729700 71.11 24276 459976 963860 0 0.00 0

08:24:40 296500 729716 71.11 24276 459976 963860 0 0.00 0

Media: 296510 729706 71.11 24270 459974 963860 0 0.00 0

In this case, kbmemfree is the main free memory (MP); used is the used one,

buffers is the MP used in buffers; cached is the main memory used in the pages

cache; swpfree/used the free/occupied swap space. It is important to remember

that if there is no space in MP, the process pages will end up in the swap, where

there should be space. This should be compared with CPU use. We can also

check that the size of the buffers is appropriate and is so in relation to the

processes that are performing I/O operations.

It is also interesting to examine the free command (fc), as it allows us to see

the amount of memory in a simplified representation:

 total used free shared buffers cached

Mem: 1026216 729716 296500 0 24324 459980

-/+ buffers/cache: 245412 780804

Swap: 963860 0 963860

This indicates that almost ¾ of the 1 Gb memory is occupied and that almost

½ is cache. Plus, it tells us that the swap is not being used for anything, which

means that we can conclude that the system is well. If we wish to see more

details, we must use the vmstat command (or sar -r) to analyse what is causing

the problems or who is consuming that much memory. The following is an

output from vmstat 1 10:

procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------

 r b swpd free buff cache si so bi bo in cs us sy id wa st

 0 0 0 295896 24384 459984 0 0 321 56 1249 724 11 2 81 5 0

 0 0 0 295896 24384 459984 0 0 0 28 1179 383 1 0 99 0 0

 0 0 0 295896 24384 460012 0 0 0 0 1260 498 0 0 100 0 0

 0 0 0 295896 24384 460012 0 0 0 0 1175 342 0 0 100 0

 0 0 0 295896 24384 460012 0 0 0 0 1275 526 0 0 100 0 0

 1 0 0 295896 24392 460004 0 0 0 72 1176 356 0 0 99 1 0

 0 0 0 295896 24392 460012 0 0 0 0 1218 420 0 0 100 0 0

© FUOC • P07/M2103/02289 13 Configuration, tuning and optimisation

 0 0 0 295896 24392 460012 0 0 0 0 1216 436 0 0 100 0 0

 0 0 0 295896 24392 460012 0 0 0 0 1174 361 0 0 100 0 0

 1 0 0 295896 24392 460012 0 0 0 0 1260 492 0 0 100 0 0

4)�Use�of�the�tables�of�the�kernel

sar -v 4 5

Linux 2.6.19-prep (localhost.localdomain) 24/03/07

08:24:48 dentunusd file-sz inode-
sz

super-
sz

%super-sz dquot-
sz

%dquot-sz rtsig-
sz

%rtsig-sz

08:24:52 19177 3904 15153 0 0.00 0 0.00 0 0.00

08:24:56 19177 3904 15153 0 0.00 0 0.00 0 0.00

08:25:00 19177 3904 15153 0 0.00 0 0.00 0 0.00

08:25:04 19177 3904 15153 0 0.00 0 0.00 0 0.00

08:25:08 19177 3904 15153 0 0.00 0 0.00 0 0.00

Media: 19177 3904 15153 0 0.00 0 0.00 0 0.00

In this case, superb-sz is the current maximum number of superblocks main-

tained by the kernel, fo9r are the mounted file systems; inode-sz, the current

maximum number of incore-inodes in the kernel necessary, which would be

one per disk, at the very least; file-sz current maximum number of open files,

dquota-sz current maximum occupation of quota inputs (for the remaining

options, please see sar (or atsar) man). This monitoring process can be com-

pleted with the ps -edaflm (process status) command and the top command,

which will show the activity and the status of the processes in the system. The

following are two examples of both commands (only some of the lines):

ps –edaflm

F S UID PID PPID C PRI NI AD-
DR

SZ WCHANSTIMETTY TIME CMD

4 - root 1 0 0 - - - 508 - 08:01? 00:00:00 init [5]

1 - root 1927 7 0 - - - 0 - 08:02? 00:00:00 [kondemand/0]

1 - rpc 2523 1 0 - - - 424 - 08:02? 00:00:00 syslogd -m 0

5 S rpc 2566 1 0 - - - 444 - 08:02? 00:00:00 portmap

5 - root - 0 78 0 - - - - 08:02- 00:00:00 -

5 root 2587 1 0 - - - 472 - 08:02? 00:00:00 rpc.statd

5 S root - - 0 81 0 - - 08:02- 00:00:00 -

1 - root 2620 1 0 - - 1232 - 08:02? 00:00:00 rpc.idmapd

© FUOC • P07/M2103/02289 14 Configuration, tuning and optimisation

1 S root - - 0 75 0 - defaul08:02- 00:00:00 -

5 - root 2804 1 0 - - - 1294 - 08:02? 00:00:00 /usr/sbin/sshd

5 S root - - 0 84 0 - - - 08:02- 00:00:00 -

5 - root 2910 1 0 - - - 551 - 08:02? 00:00:00 /usr/sbin/atd

5 S root - - 0 84 0 - - - 08:02- 00:00:00 -

4 - root 3066 1 0 - - - 407 - 08:02tty1 00:00:00 /sbin/mingetty tty1

4 root 3305 1 0 - - - 21636 - 08:03? 00:00:01 nautilus --no-default-win-
dow --sm-

4 - root 3305 1 0 - - - 21636 - 08:03? 00:00:01 client-id default3

0 - root 3643 3541 0 - - - 1123 - 08:17pts/
1

00:00:00 bash

4 - root 3701 3643 0 - - - 1054 - 08:27pts/
1

00:00:00 ps -edaflm

..

Where the parameters reflect the value indicated in the variable of the kernel

for this process; the most important ones from the monitoring perspective

are: F flags (in this case 1 is with super privileges, 4 created from the start

daemon), S is the status (D: uninterruptible sleep in/out, R: runnable, or run

queue, S: Sleeping, T: traced or stopped, Z: a defunct process ('zombie'). PRI

is the priority; NI is nice; STIME, the execution start time; TTY, from where

it has executed; TIME, the CPU time; CMD, the program that has run and

its parameters. If we want to come out and refresh the page (configurable),

we can use the top command, which shows the general statistics (processes,

statuses, load etc.) and then obtain information on each point, similar to the

ps, but updated every 5 seconds by default:

top - 08:26:52 up 25 min, 2 users, load average: 0.21, 0.25,

0.33

Tasks: 124 total, 1 running, 123 sleeping, 0 stopped, 0 zombie

Cpu(s): 10.8%us, 2.1%sy, 0.0%ni, 82.0%id, 4.9%wa, 0.1%hi,

0.1%si, 0.0%st

Mem: 1026216k total, 731056k used, 295160k free, 24464k

buffers

Swap: 963860k total, 0k used, 963860k free, 460208k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

3541 root 15 0 42148 14m 981 S 1.9 1.5 0:00.76 gnome-terminal

3695 root 15 0 260 944 1650 R 1.9 0.1 0:00.02 top

1 root RT 0 2032 680 580 S 0.0 0.1 0:00.85 init

Note

Check the ps command man
or the top man for a descrip-
tion of the parameters and the
characteristics

© FUOC • P07/M2103/02289 15 Configuration, tuning and optimisation

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

2 root 34 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

3 root RT 19 0 0 0 S 0.0 0.0 0:00.04 ksoftirqd/0

4 root 10 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

5 root 16 -5 0 0 0 S 0.0 0.0 0:00.00 events/0

6 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 khelper

7 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kthread

53 root 11 -5 0 0 0 S 0.0 0.0 0:00.01 kblockd/0

54 root 15 -5 0 0 0 S 0.0 0.0 0:00.00 kacpid

177 root 18 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/0

178 root 18 -5 0 0 0 S 0.0 0.0 0:00.00 ksuspend_usbd

181 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 khubd

183 root 10 -5 0 0 0 S 0.0 0.0 0:00.01 kseriod

203 root 23 0 0 0 0 S 0.0 0.0 0:00.00 pdflush

204 root 15 0 0 0 0 S 0.0 0.0 0:00.03 pdflush

Debian Linux also includes a whole set of monitoring tools equivalent to sar,

but which originated in UNIX BSD and have a similar functionality, although

from different commands. vmstat (CPU statistics, memory and in/out), iostat

(disks and CPU statistics), uptime (CPU load and general status).

1.2. Optimising the system

We will now look at some recommendations for optimising the system in

accordance with the data obtained.

1)�Resolving�the�problems�with�the�main�memory

We must ensure that the main memory can handle a high percentage of exe-

cuting processes, as, otherwise, the operating system may page and go to the

swap; but this means that the execution of that process will deteriorate signif-

icantly. If we add more memory, the response time will improve significantly.

For this, we must take into account the size of the processes (SIZE) is the R

status and add that which is used by the kernel, which can be obtained with

the dmesg command, which will show us (or with free), for example:

Memory:

255048k/262080k available (1423k kernel core, 6644k reserved, 466k data,

240k init, Ok highmem

© FUOC • P07/M2103/02289 16 Configuration, tuning and optimisation

We must then compare this against the physical memory and analyse whether

the system is limited by the memory (a lot of paging activity can be seen with

atsar -r and -p).

The solutions for the memory problems are obvious: either we increase the

capacity or reduce the demands. Given the current price of memory, it is better

to increase its size than to spend lots of hours trying to free up just a few hun-

dred bytes, by deleting, removing, organising or reducing the requirements

of the executing processes. The requirements can be reduced by reducing the

kernel tables, deleting modules, limiting the maximum number of users, re-

ducing the buffers etc., all of which will downgrade the system (bubble effect)

and the performance will be worse (in some cases, the system could be ren-

dered completely inoperative).

Another aspect that can be reduced is the amount of memory for the users,

eliminating any redundant processes and changing the workload. In order

to do this, we must monitor the defunct processes (zombie processes) and

eliminate them, or those that do not progress in the I/O (knowing whether

they are active processes, how much CPU they are using up and whether the

'users want them'). Changing the workload is using the queue planning so

that the processes that need a large amount of memory can run when there is

little activity *for example, at night, using the at command to launch them).

2)�Too�much�CPU�usage

Basically, we can get this from the idle time (low values). With ps or top, we

must analyse which processes are the ones that 'devour CPU' and make deci-

sions such as: postponing their execution, stopping them temporarily, chang-

ing the priority (less conflictive of all, the priority restart command PID), op-

timise the program (for the next time) or change the CPU (add another one).

As we have mentioned, GNU/Linux uses the /proc directory to keep all the

kernel configuration variables, which can be analysed and, in certain cases,

'adjusted' to achieve different or better performance levels.

To do this, we must use the systune dump > /tmp/sysfile command

to obtain all the variables and their values in the /tmp/sysfile file (in other

distributions, this can be done with sysctl). This file can be edited, changing

the corresponding variable and then using the systune -c /tmp/sysfile

command to reload them in /proc. The systune command also reads by de-

fault if we do not have the -c option in /etc/systune.conf. In this case, for ex-

ample, we could modify (proceed carefully, because the kernel could be left

inoperative) the variables of the category /proc/sys/vm (virtual memory) or

/proc/sys/kernel (configuration of the core of the kernel).

In this same sense, it is also possible (for experts or people with nothing to

lose) to change the maximum slice time, which the CPU scheduler of the op-

erating system dedicates to each process in a circular manner (it is advisable

Note

Where should we look?
1.° Memory
2.° CPU
3.° In/Out
4.° TCP/IP
5.° Kernel

© FUOC • P07/M2103/02289 17 Configuration, tuning and optimisation

to use renice as practice). But GNU/Linux, unlike other operating systems, is a

fixed value within the code, as it is optimised for different functions (yet it is

possible to modify it). We can "play" (at our own risk) with a set of variables

that make it possible to touch the time slice assigned to CPU (kernel-source-

2.x.x/kernel/sched.c).

3)�Reducing�the�number�of�calls

Another practical way of improving the performance is reducing the number

of calls to the system, which cost the most CPU time. These calls are the ones

usually invoked by the shell fork() and exec(). An inadequate configuration

of the PATH variable and due to the fact that the exec() call does not save

anything in the cache, the current directory (indicated with a ./), could have

a negative execution relationship. Consequently, we must always configure

the PATH variable with the current directory as the last route. For example,

in bash (or in .bashrc) we must: export PATH = $PATH. If this is not the case,

the current directory is not there, or if it is, redo the PATH variable to declare

it as the last route.

It should be remembered that a lot of interruption activity can affect CPU per-

formance with regard to the processes that are being executed. By monitoring

(atsar -I), we can see what the relationship of interruptions per second is and

make decisions with regard to the devices that are causing them. For example,

change the modem for a smarter one or change the communications structure

if we detect excessive activity on the serial port to which it is connected.

4)�Too�much�disk�use

After the memory, a low response time could be due to the disks system. Firstly,

we must verify that there is CPU time (for example, idle > 20%) available and

that the in/out number is high (for example, > 30 in/out/s) using atsar -u and

atsar -d. The solutions might be:

a)�In a multi-disk system, planning where the most commonly used files are

located to balance the traffic to them (for example, /home in a disk and /usr

on another) and ensuring that they can use all the in/out capacities with the

cache and concurrently of GNU/Linux (including, for example, planning the

ide bus on which they will be). Then check that there is balance in the traffic

using atsar -d (or iostat). In critical situations, we can consider purchasing a

RAID disk system, which would make these adjustments automatically.

b) Bear in mind that better performance levels are achieved using two small

disks instead of one large disk, equal to the combined size of the first two.

c) In systems with only one disk, for generally reducing space, four partitions

are made in the following manner (from outside to inside): /, swap, /usr, /

home; but this generates terrible in/out response times because if, for exam-

© FUOC • P07/M2103/02289 18 Configuration, tuning and optimisation

ple, a user compiles from their directory /home/user and the compiler is in

/usr/bin, the disk head will move along the whole length. In this case, it is

better to join the partitions /usr and /home in one single one (larger) although

this could present some inconveniences in terms of maintenance.

d) Increase the buffers of the cache of the in/out (see, for example: /proc/ide/

hd...).

e) If we use an ext2fs, we can use the command: dumpe2fs -h /dev/hd... to

obtain information on the disk and tune2fs /dev/hd... to change some of the

configurable parameters of the disk.

f) Obviously, changing the disk for a higher-speed disk (RPM) will always have

a positive effect on a system limited by the disk's in/out. [Maj96]

5)�Improving�TCP/IP�aspects.

k) Examine the network with the atsar command (or also with netstat -i

or with netstat -s | more) to analyse whether there are any fragmented

packets, errors, drops, overflows etc., that may be affecting the communica-

tions and, consequently, the system (for example, in an NFS, NIS, FTP or Web

server). If any problems are detected, we can analyse the network to consider

any of the following actions:

a) Fragmenting the network through active elements that discard packets with

problems or those that are not for machines in the segment.

b) Planning where the servers will be to reduce the traffic to them and the

access times.

c) Adjust parameters of the kernel (/proc/sys/net/), for example, to obtain im-

provements in the throughput, type:

echo 600 > /proc/sys/net/core/netdev max backlog (300 by de-

fault).

6)�Other�actions�on�the�parameters�of�the�kernel.

There is another set of parameters on the kernel that can be tuned to obtain

better performance levels, although, considering the points we have discussed,

this should be performed with care, given that we could cause the opposite

effect or disable the system. Consult the distribution for the source code in

kernel- source-2.4.18/Documentation/sysctl the vm.txt, fs.txt, kernel.txt and

sunrpc.txt files:

© FUOC • P07/M2103/02289 19 Configuration, tuning and optimisation

a)�/proc/sys/vm: controls the virtual memory (MV) of the system. The virtu-

al memory makes it possible for the processes that do not access the main

memory to be accepted by the system but in the swap device, for which, the

programmer has no limit with regard to the size of their program (obviously,

it must be less than the swap device). The parameters that may be tuned can

be changed very easily with gpowertweak.

b) /proc/sys/fs: the kernel-FS interaction parameters can be adjusted, such as

file-max.

c) And also over /proc/sys/kernel, /proc/sys/sunrpc.

7)�Generating�the�kernel�appropriate�to�our�needs.

The optimisation of the kernel means choosing the compilation parameters

in accordance with our needs. It is very important to first read the readme

file in /usr/src/linux. A good configuration of the kernel will make it possible

for it to run faster, providing more memory for the user processes and mak-

ing the overall system more stable. There are two ways of building a kernel:

monolithic (better performance levels) or modular (based on modules, there

will be more portability if we have a very heterogeneous system and we do not

wish to compile a kernel for each one of them). To compile your own kernel

and adapt it to your hardware and needs, each distribution has its own rules

(although the procedure is similar).

8) The following articles are very interesting:

http://people.redhat.com/alikins/system_tuning.html for information on op-

timising and tuning Linux server systems.

http://www.linuxjournal.com/article.php?sid=2396 Performance Monitoring

Tools for Linux; although this is an old article and some options are not avail-

able, the methodology still stands.

1.3. General optimisations

There is a series of general optimisations that can improve the system's per-

formance:

1) Static or dynamic libraries: when a program is compiled, this can be done

with a static library (libr.a), whose functioning code is included in the exe-

cutable or with a dynamic library (libr.so.xx.x), where the library is loaded

at the time of execution. Although the first guarantees a portable and secure

code, it consumes more memory. The programmer must decide which option

is appropriate for their program including -static in the compiler options (not

adding this means dynamic) or o --disable-shared, when the configure com-

© FUOC • P07/M2103/02289 20 Configuration, tuning and optimisation

mand is used. It is advisable to use (almost all new distributions do this) the

standard library libc.a and libc.so of versions 2.2.x or higher (known as Libc6)

which replaces the older ones.

2) Selecting the appropriate processor: generating executable code for the ar-

chitecture on which the applications will be running. Some of the most in-

fluential parameters of the compiler are: -march (for example, marchi 686 or

-march k6) by simply typing gcc -marchi 686, the optimisation attributed -

O1,2,3 (-O3 will generate the fastest version of the program, gcc -O3 -march =

i686) and the attributes -f (consult the documentation for the different types).

3) Disk optimisation: currently, most computers include the UltraDMA (100)

disk by default; however, in many cases, these are not optimised to provide

the best performance levels. There is a tool (hdparm) that can be used to tune

the kernel to the parameters of the IDE-type disk. We have to be careful with

this tool, especially in UltraDMA disks (check the BIOS to ensure that the

parameters for supporting DMA are enabled), as they can disable the disk.

Check the references and the documentation ([Mou01] and man hdparm) to

see which optimisations are the most important (and the risks involved), for

example: -c3, -d1, -X34, -X66, -X12, -X68, -mXX, -a16, -u1, -W1, -k1, -K1.

Each option means one form of optimisation and some are very high-risk,

which means that we must know the disk very well. To consult the optimised

parameters, we could use hdparm -vtT /dev/hdX (where X is the optimised

disk) and the call to hdparm with all the parameters can be used in /etc/init.d

to load it in the boot.

1.4. Additional configurations

There are more complementary configurations from the perspective of the

security provided by optimisation, but they are mostly necessary when the

system is connected to an Intranet or to the Internet. These configurations

require the following actions [Mou01]:

a) Stopping others from starting up another operating system: if someone

has physical access to the machine, they could start up another preconfig-

ured operating system and modify the existing one, which means that we

should access the computer's BIOS settings to disable the boot using flop-

pies or CD-ROMs and set up a password (remember the BIOS password,

or you might have problems if you wish to change the configuration).

b) Configuration and network: it is advisable to disconnect from the net-

work whenever we are adjusting the system. You can remove the cable

or disable the device with /etc/init.d/networking stop (start to re-

activate it) or with ifdown eth0 (use ifup eth0 to enable it) for any

specific device.

© FUOC • P07/M2103/02289 21 Configuration, tuning and optimisation

c) Modify the /etc/security files in accordance with the system's usage

and security needs. For example, in access.conf on who can log in to the

system.

Format:
permission: users : origins
+o - : users: from where

-:ALL EXCEPT root: tty1 Impedes access to all no-root over tty1.

-:ALL EXCEPT user1 user2 user3:console prevents access except for users1,2,3 but the lat-
ter may only access from the console.

-:user1:ALL EXCEPT LOCAL .uoc.edu 'group.conf':

We should also configure the group to control what and how and also

the maximum limits (limits.conf) for establishing the maximum times of

usage of CPU, I/O etc. to avoid, for example, DoS attacks.

d) Maintain the security of the passwords of the root user: use at least 6

characters, with at least one character in capitals or some other symbol

'.-_,'; this is not trivial; likewise, it is advisable to activate the password

expiry option to force yourself to change it regularly, as well as limiting

the amount of times one can enter an incorrect password. Likewise, we

will have to change the parameter min x in the entry in /etc/pam.d/pass-

wd to indicate the minimum number of characters used in the passwords

(x is the number of characters).

e) Do not log in the system as the root user: create an account such as

sysadm and work with it. If you access it remotely, you will always have

to use shh to connect to sysadm and, if necessary, carry out a su - to work

as the root.

f) Set the maximum inactivity time: startup the TMOUT variable, at 360

for example (value expressed in seconds), which will be the maximum

inactivity time that the shell will let pass before blocking; it is possible

to put it in the configuration files of the shell (for example, /etc/profile,

/.bashrc...). If we are using graphical environments (KDE, Gnome etc.),

activate the option to exit the screensaver with password.

g) Configuration of the NFS in restricted mode: in /etc/exports export on-

ly what is necessary, without using wildcards, permitting only the read

access and not permitting the write access by root, for example, with /

directory_exported host.domain.com (ro, root_squash).

h) Avoid boot ups from lilo (or grub) with the parameters: the system

may be booted as Linux single, which will start up the operating system

in single user mode. Configure the system so that the password is always

© FUOC • P07/M2103/02289 22 Configuration, tuning and optimisation

required when booting up in this mode. In order to do this, in the /etc/

inittab file, verify that the following line exists: S:wait:/sbin/sulogin and

that /bin/sulogin is enabled. In addition, the /etc/ lilo.conf file must have

all the adequate permissions so that no one can modify it except the root

user (chmod 600 /etc/lilo.conf). To avoid any accidental changes, change

the blocking attributed with chattr +i /etc/lilo.conf (use -i when

you wish to change). This file permits a series of options that should be

considered: timeout or, if the system only has one operating system for

booting immediately, restricted, to prevent others from being able to in-

sert commands when booting such as linux init = /bin/sh, and have access

as an unauthorised root user; in this case, the password must be used; if

we only enter the password, we will be asked for the password for loading

the image of the kernel. Grub has similar options.

i) Combination control Ctrl-Alt-Delete. To prevent others from being able

to turn off the machine from the keyboard, insert a comment (#) in the

first column of the following line:

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

of file /etc/inittab. Activate the changes with telinit q.

j) Avoid services that are not offered: block the /etc/services file so as not

to admit non-contemplated services by blocking the file with chattr +i

/etc/services.

k) Connection of the root: modify the file /etc/securetty which contains

the TTY and VC (virtual console) in which the root can connect, leaving

only one of each, for example, tty1 and vc/1, and if it is necessary to con-

nect as sysadm do a su.

l) Eliminate user accounts that are not in use: delete the users/groups that

are not necessary, including those that come by default (for example, op-

erator, shutdown, ftp, uucp, games...), and leave only the necessary ones

(root, bin, daemon, sync, nobody, sysadm) and the ones that were creat-

ed with the installation of packages or using commands (the same with

/etc/group). If the system is critical, we might consider blocking (chat-

tr +i file) the /etc/passwd, /etc/shadow, /etc/group amd /etc/gsahdow

files to avoid their modification (be careful with this operation, because

you will not subsequently be able to change the password).

m) Mount the partitions in a restrictive manner: in /etc/fstab use at-

tributes for the partitions such as nosuid (makes it impossible to replace

the user or group on the partition), nodey (does not interpret devices of

characters or blocks on that partition) and noexec (does not permit the

execution of files on this partition). For example:

© FUOC • P07/M2103/02289 23 Configuration, tuning and optimisation

/tmp /tmp ext2 defaults,nosuid,noexec 0 0

It is also advisable to mount the /boot on a separate partition and with

read-only attributes.

n) Various protections: change the protections of the files in /etc/init.d

(system services) to 700 so that only the root may modify them, start

them up or stop them, and modify the /etc/issue and /etc/issue.net files so

that they do not provide any information (operating system, version...)

when someone connects through telnet, ssh etc.

o) SUID and SGID: a user may execute a command as an owner if they

have the SUID or SGID bit activated, which would be reflected in an 's'

SUID (-rwsr-xr-x) and SGID (-r-xr-sr-x). Therefore, it is necessary to delete

the bit (chmod a-s file) from the commands that do not need it. These

files can be searched with:

find / -type f -perm -4000 or -perm -2000 –print

We must proceed carefully with regard to the files that the SUID- GUID

removes because the command could be disabled.

p) Suspicious files: you should regularly check for files with unusual

names, hidden files, or files without a valid uid/gid, such as '...' (three

points), '.. ' (point point space), '..^G', for this, you will have to use:

find / -name ".*" -print | cat -v

or otherwise:

find / name ".." -print

To search non-valid uid/gids, use: find / -nouser or -nogroup (careful,

because some installations are made with a user who is subsequently not

identified and the administrator has to change).

q) Connection without password: do not allow the .rhosts file in any us-

er unless it is strictly necessary (we recommend using ssh with a public

password instead of methods based on .rhosts).

r) X Display manager: modify the file /etc/X11/xdm/Xaccess to specify

the hosts that may connect through XDM and avoid any host having a

login screen.

© FUOC • P07/M2103/02289 24 Configuration, tuning and optimisation

1.5. Monitoring

There are two very interesting tools for monitoring the system: Munin and

Monit. Munin produces graphics on different parameters of the server (load

average, memory usage, CPU usage, MySQL throughput, eth0 traffic etc.) with-

out excessive configurations, whereas monit verifies the availability of services

such as Apache, MySQL, Postfix, and implements different actions such as re-

activating a service that is not present. The combination provides important

graphics for recognising where problems are being generated and what is gen-

erating them.

Let's say that our system is called pirulo.org and we have our page configured

as www.pirulo.org with the documents in /var/www/pirulo.org/web. To install

Munin on Debian Sarge, we can execute, for example, apt-get install munin

munin-node.

We must then configure munin (/etc/munin/munin.conf) with:

dbdir /var/lib/munin

htmldir /var/www/www.pirulo.org/web/monitoring

logdir /var/log/munin

rundir /var/run/munin

tmpldir /etc/munin/templates

[pirulo.org]

address 127.0.0.1

use_node_name yes

The directory is then created, the permissions are changed and the service is

restarted.

mkdir -p /var/www/pirulo.org/web/monitoring

chown munin:munin /var/www/pirulo.org/web/monitoring

/etc/init.d/munin-node restart

After a few minutes we will be able to see the first results in http://

www.pirulo.org/monitoring/ in the browser. For example, two graphs (load

and memory) are shown below.

© FUOC • P07/M2103/02289 25 Configuration, tuning and optimisation

Figure 1

Figure 2

If you wish to maintain privacy in the graphs, all you have to do is set in a pass-

word to the access the directory with apache. For example, we can save the file

.htaccess with the following contents in the directory /var/www/pirulo.org/

web/monitoring:

AuthType Basic

AuthName "Members Only"

AuthUserFile /var/www/pirulo.org/.htpasswd

<limit GET PUT POST>

require valid-user

</limit>

We must then create the password file in /var/www/pirulo.org/.htpasswd with

the command (such as root):

htpasswd -c /var/www/pirulo.org/.htpasswd admin

© FUOC • P07/M2103/02289 26 Configuration, tuning and optimisation

When we connect to www.pirulo.org/monitoring, it will not ask for the user-

name (admin) and the password that we have entered after the preceding com-

mand.

To install monit, we execute apt-get install monit and we edit /etc/monit/

monitrc. The default file includes a set of example, but we can obtain more

from http://www.tildeslash.com/monit/doc/examples.php. For example, if we

want to monitor proftpd, sshd, mysql, apache and postfix, by enabling the

web interface of monit on port 3333, on monitrc, we can type:

set daemon 60

set logfile syslog facility log_daemon

set mailserver localhost

set mail-format { from: monit@pirulo.org }

set alert root@localhost

set httpd port 3333 and

allow admin:test

check process proftpd with pidfile /var/run/proftpd.pid

start program = "/etc/init.d/proftpd start"

stop program = "/etc/init.d/proftpd stop"

if failed port 21 protocol ftp then restart

if 5 restarts within 5 cycles then timeout

check process sshd with pidfile /var/run/sshd.pid

start program "/etc/init.d/ssh start"

stop program "/etc/init.d/ssh stop"

if failed port 22 protocol ssh then restart

if 5 restarts within 5 cycles then timeout

check process mysql with pidfile /var/run/mysqld/

mysqld.pid

group database

start program = "/etc/init.d/mysql start"

stop program = "/etc/init.d/mysql stop"

if failed host 127.0.0.1 port 3306 then restart

if 5 restarts within 5 cycles then timeout

check process apache with pidfile /var/run/apache2.pid

group www

start program = "/etc/init.d/apache2 start"

stop program = "/etc/init.d/apache2 stop"

if failed host www.pirulo.org port 80 protocol http

and request "/monit/token" then restart

if cpu is greater than 60% for 2 cycles then alert

if cpu > 80% for 5 cycles then restart

if totalmem > 500 MB for 5 cycles then restart

© FUOC • P07/M2103/02289 27 Configuration, tuning and optimisation

if children > 250 then restart

if loadavg(5min) greater than 10 for 8 cycles then stop

if 3 restarts within 5 cycles then timeout

check process postfix with pidfile /var/spool/postfix/

pid/master.pid

group mail

start program = "/etc/init.d/postfix start"

stop program = "/etc/init.d/postfix stop"

if failed port 25 protocol smtp then restart

if 5 restarts within 5 cycles then timeout

Consult the manual for more details http://www.tildeslash.com/monit/doc/

manual.php. To verify that the Apache server works with Monit, we have to

put the configuration that accesses to if failed host www.pirulo.org port 80 proto-

col http and request "/monit/token" then restart. If we cannot access this, it means

that Apache does not work, which means that this file must exist (mkdir

/var/www/pirulo.org/web/monit; echo "pirulo" > /var/www/pirulo.org/web/

monit/token). It is also possible to configure monit so that it works on SSL

(see http://www.howtoforge.com/server_monitoring_monit_munin_p2).

Finally, we must modify /etc/default/monit to enable monit and change

startup=1 and CHECK_INTERVALS=60 for example (in seconds). If we

start up monit (/etc/init.d/monit start) and we connect to http://

www.pirulo.org:3333, we will see a screen similar to:

Figure 3

There are more sophisticated tools for monitoring the network and net-

work services using simple network management protocol (SNMP) and mul-

ti-router traffic grapher (MRTG), for example. More information on this sub-

ject can be found at http://www.linuxhomenetworking.com/wiki/index.php/

Quick_HOWTO_:_Ch22_:_Monitoring_Server_Performance.

© FUOC • P07/M2103/02289 28 Configuration, tuning and optimisation

The MRTG (http://oss.oetiker.ch/mrtg/) was created basically to graph net-

work data, but other data can be used to visualise its behaviour, for example,

to generate load average statistics in the server. For this, we use the mrtg and

atsar packages. Once installed, we will configure the /etc/mrtg.cfg file:

WorkDir: /var/www/mrtg

Target[average]: '/usr/local/bin/cpu-load/average'

MaxBytes[average]: 1000

Options[average]: gauge, nopercent, growright, integer

YLegend[average]: Load average

kMG[average]: ,,

ShortLegend[average]:

Legend1[average]: Load average x 100

LegendI[average]: load:

LegendO[average]:

Title[average]: Load average x 100 for pirulo.org

PageTop[average]: <H1>Load average x 100 for pirulo.org</

H1>

<TABLE>

<TR><TD>System:</TD>

<TD>pirulo.org</TD></TR>

<TR><TD>Maintainer:</TD> <TD>webmaster@pirulo.org</

TD></TR>

<TR><TD>Max used:</TD> <TD>1000</TD></TR>

</TABLE>

To generate the data with atsar (or sar) we create a script in /usr/local/bin/

cpu-load/average (which should have execution permissions for all) that will

pass the data to mrtg:

#!/bin/sh

load='/usr/bin/atsar -u 1 | tail -n 1 | awk -F" " '{print

$10}''

echo "$load * 100" | bc | awk -F"." '{print $1}'

We must create and change the permissions in the directory /var/www/

mrtg. By default, mrtg executes in the cron, but if we want to execute it,

we can run mrtg /etc/mrtg.cfg and this will generate the graphs in /var/

www/mrtg/average.html that we can visualise with the browser from http://

www.pirulo.org/mrtg/averange.html.

© FUOC • P07/M2103/02289 29 Configuration, tuning and optimisation

Figure 4

Other interesting packages that should be taken into account when monitor-

ing a system are:

• Frysk (http://sources.redhat.com/frysk/): the objective of the frysk project

is to create a monitoring system that is distributed and intelligent to mon-

itor processes and threads.

• Cacti (http://cacti.net/): Cacti is a graphic solution designed for working

together with the data of RRDTool's. Cacti provides different forms of

graphs, acquisition methods and characteristics that the user can control

very easily and is a solution that is adapted from a machine to a complex

environment of machines, networks and servers.

We will now describe other tools which are no less interesting (in alphabet-

ic order) that GNU/Linux incorporates (for example Debian) for monitoring

the system. This is not an exhaustive list, but simply a selection of the most

commonly used (we recommend seeing the man page of each tool for more

information):

• atsar, ac, sac, sysstat, isag: auditing tools such as ac, last, accton, sa, atsar

or isag (Interactive System Activity Grapher) for auditing hw and sw re-

sources.

• arpwatch; mon: ethernet/FDDI activity monitor that indicates whether

changes have been made in the MACIP tables; network services monitor.

• diffmon, fcheck: generation of reports on changes to the configuration of

the system and monitoring of the file systems so as to detect intrusions.

• fam: file alteration monitor.

• genpower: monitor for managing faults in the power supply.

• gkrellm: graphical CPU monitoring, processes (memory), file systems and

users, disk, network Internet, swap etc.

• ksensors: (lm-sensors): motherboard monitor (temperature, power supply,

fans etc.).

© FUOC • P07/M2103/02289 30 Configuration, tuning and optimisation

• .lcap, systune: removes capacities assigned to the kernel in the /proc/sys/

kernel file and adapts it to the needs with systune.

• logwatcher: log analyser.

• Munin and monit: graphical monitoring of the system.

• Powertweak and gpowertweak: monitoring and modifying different pa-

rameters of the hardware, kernel, network, VFS, or VM (allows us to mod-

ify some of the parameters shown before over /proc).

• gps, gtop, tkps, lavaps (from the most to the least user-friendly): various

types of process monitors (they generally use information from /proc) and

allow us to see resources, sockets, files, environment and other informa-

tion that these use, as well as to administer their resources/statuses.

• swatch: system activity monitor through log files.

• vtgrab: monitoring remote machines (similar to VNC).

• whowatch: real time tool for monitoring users.

• wmnd, dmachinemon: network traffic monitor and monitoring of a clus-

ter on the network.

• xosview, if: graphical resources monitor and System Information.

The following figure shows the interfaces of ksensors, gkrellm and xosview,

which present the results from the monitoring process in real time.

Figure 5

© FUOC • P07/M2103/02289 31 Configuration, tuning and optimisation

Below are some graphic interfaces of isag and gtop. The isag interface obtains

the information generated by systat in /etc/cron.d/, sysstat through the sa1

and sa2 commands in this case, which accumulates on the day; whilst gtop

shows one of the possible displays with the process location, memory and

additional CPU information.

Figure 6

© FUOC • P07/M2103/02289 33 Configuration, tuning and optimisation

Activities

1) Perform a full system monitoring process using the tools that you think are most adequate
and reach a diagnostic on the use of resources and the bottleneck that might exist in the
system. Simulate the system's workload of the code of sumdis.c given in the unit that covers
the clusters. For example, use:

sumdis 1 2000000

2) Change the parameters of the kernel and the compiler and execute the code mentioned
in the preceding point (sumdis.c) with, for example:

time ./sumdis 1 1000000

3) The same with both kernels and formulate a conclusion regarding the results.

© FUOC • P07/M2103/02289 34 Configuration, tuning and optimisation

Bibliography

Other sources of reference and information

[Debc, Ibi]

Optimisation of Linux servers: http://people.redhat.com/alikins/system_tuning.html

Performance Monitoring Tools for Linux http://www.linux

Munin: http://munin.projects.linpro.no/

Monit: http://www.tildeslash.com/monit/

Monitoring with Munin and monit: http://www.howtoforge.com/
server_monitoring_monit_munin

Monitoring with SNMP and MRTG: http://www.linuxhomenetworking.com/wiki/
index.php/Quick_HOWTO_:_Ch22_:_Monitoring_Server_Performance

MRTG: http://oss.oetiker.ch/mrtg/

Frysk: http://sources.redhat.com/frysk/

Cacti: http://cacti.net/

Clustering

Remo Suppi Boldrito

P07/M2103/02290

© FUOC • P07/M2103/02290 Clustering

All rights reserved. Reproduction, copying, distribution or public communication of all
or part of the contents of this work are strictly prohibited without prior authorization
from the owners of the intellectual property rights.

© FUOC • P07/M2103/02290 Clustering

Index

Introduction... 5

1. Introduction to HPC... 7

1.1. Beowulf .. 8

1.1.1. How do we configure the nodes? 9

1.1.2. Benefits of distributed computing 10

1.2. How should we program to take advantage of concurrent

computing? .. 12

1.2.1. Parallel virtual machine (PVM) 13

1.2.2. Message passing interface (MPI) 18

2. OpenMosix.. 24

3. Metacomputers, grid computing... 27

3.1. Different computing architectures .. 27

3.2. Globus ... 29

3.3. Software, installation and administration of Globus 31

Activities.. 33

Bibliography... 34

GNU Free Documentation License.. 43

© FUOC • P07/M2103/02290 5 Clustering

Introduction

A computer cluster refers to a group of computers working closely together

with a common aim. These computers consist of hardware, communication

networks and software for working together as though they were all part of

one single system. There are various reasons for which it would be desirable

to set up these clusters, but one of the main ones is so as to be able to process

information more efficiently and quicker, as though it were a single system.

Generally, a cluster works on a local area network (LAN) and provides efficient

communication, although the machines will be located close to each other

physically. A bigger version of the concept is the grid, where the aim is the

same, but it involves groups of computers connected to each other through

a wide area network (WAN). Some programmers think of the grid as a cluster

of clusters in a 'global' sense. Although the increasingly advanced technolo-

gy and decreasing costs make it easier to set up these types of systems, the

complexity and efforts required to use dozens or hundreds (or, in some cases,

thousands) of computers are very great. However, the advantages in comput-

ing time mean that, despite this situation, these types of high performance

computing (HPC) solutions are considered very attractive and are constantly

developing. In this unit, we will show some of the most widely spread and

used approaches. [Rad, Dieb, Prob, Prod, Proe, Gloa]

Note

A cluster is a group of comput-
ers working closely together,
often connected on a LAN.
Grids are groups of computers
connected with wide area net-
works (WAN).

© FUOC • P07/M2103/02290 7 Clustering

1. Introduction to HPC

The advances in technology have resulted in fast, low-cost and highly efficient

processors and networks, which have brought about a change in the cost/per-

formance ratio in favour of using interconnected processing systems in a sin-

gle high-speed processor. This type of architecture can be classified into two

basic configurations:

• Tighly coupled systems: these are systems in which the memory is shared

by all the processors (shared memory systems) and the memory of each

processor is 'seen' (by the programmer) as one single memory.

• Loosely coupled systems: they do not share memory (each processor has its

own) and they communicate through messages passed through a network

(message passing systems).

The first example is known as a parallel processing system and the second as a

distributed computing system. In the latter case, we can say that a distributed

system is a set of processors interconnected on a network in which each pro-

cessor has its own resources (memory and peripherals) and they communicate

by exchanging messages on the network.

Computing systems are a relatively recent phenomenon (we could say that

computing history started in the seventies). Initially, they consisted of large,

heavy, expensive systems, which could only be used by a few experts and they

were inaccessible and slow. In the seventies, advances in technology led to

some substantial improvements carried out using interactive jobs, time shar-

ing and terminals and the sizes of the computers were reduced considerably.

The eighties were characterised by a significant improvement in the perfor-

mance and efficiency (which has continued to today) and a dramatic reduc-

tion in the sizes, with the creation of microcomputers. Computing continued

to develop through workstations and advances in networking (from 10 Mbits/

s LANs and 56 Kbytes/s WANs in 1973 to today's 1Gbit/s LANs and WANs with

asynchronous transfer mode (ATM) and 1.2 Gbits/s), which is a fundamental

factor in current multimedia applications and those that will be developed in

the near future. Distributed systems, for their part, originated in the seventies

(systems with 4 or 8 computers), but really became widespread in the nineties.

Although administrating/installing/maintaining distributed systems is a com-

plicated task, given that they continue to grow, the basic reasons for their

popularity are the increase in performance and efficiency that they provide in

inherently distributed applications (due to their nature), the information that

© FUOC • P07/M2103/02290 8 Clustering

can be shared by a group of users, the sharing of resources, the high fault toler-

ance and the possibility of ongoing expansion (the ability to add more nodes

to gradually and continuously increase the performance and efficiency).

In the following sections we will look at some of the most common parallel/

distributed processing systems, as well as the programming models used to

generate code that can use these features.

1.1. Beowulf

Beowulf [Rad, Beo] is a multi-computer architecture that can be used for par-

allel/distributed applications (APD). The system basically consists of a server

and one or more clients connected (generally) through Ethernet, without us-

ing any specific hardware. To explore this processing capacity, it is necessary

for the programmers to have a distributed programming model that, whilst it

is true that it is possible to do this through UNIX (socket, rpc), may require

a very significant effort, given that the programming models are at the level

of systems calls and C language, for example; but this working method can

be considered as low-level.

The software layer provided by systems such as parallel virtual machine (PVM)

and message passing interface (MPI) facilitates significantly the abstraction of

the system and makes it possible to program parallel/distributed applications

easily and simply. The basic working form is master-workers, in which there

is a server that distributes the task that the workers perform. In large systems

(systems with 1,024 nodes), there is more than one master and nodes dedicat-

ed to special tasks such as, for example, in/out or monitoring.

One of the main differences between Beowulf and a cluster of workstations

(COW) is that Beowulf is 'seen' as a single machine in which the nodes are

accessed remotely, as they do not have a terminal (or a keyboard), whereas

a COW is a group of computers that can be used by both the COW users

and other users interactively through the screen and keyboard. We must re-

member that Beowulf is not software that transforms the user's code into dis-

tributed code or that affects the kernel of the operating system (like Mosix,

for example). It is simply a way of creating a cluster of machines that execute

GNU/Linux and act as a supercomputer. Obviously, there are many tools that

make it possible to achieve an easier configuration, library or modification

to the kernel for obtaining better performance levels, but it is also possible

to build a Beowulf cluster from a GNU/Linux standard and conventional soft-

ware. The construction of a Beowulf cluster with two nodes, for example, can

be achieved simply with the two machines connected through Ethernet using

a hub, a standard GNU/ Linux distribution (Debian) and the network file sys-

tem (NFS) and after enabling the network services such as rsh or ssh. In such

a situation, we might argue that we have a simple two node cluster.

Note

Various options:
• Beowulf
• OpenMosix
• Grid (Globus)

© FUOC • P07/M2103/02290 9 Clustering

1.1.1. How do we configure the nodes?

First, we must modify (each node) /etc/hosts so that the localhost line only

has 127.0.0.1 and does not include any machine name, such as:

127.0.0.1 localhost

And add the IPs of the nodes (and for all the nodes), for example:

192.168.0.1 pirulo1

192.168.0.2 pirulo2

...

It is possible to create a user (nteum) in all the nodes, create a group and add

this user to the group:

groupadd beowulf

adduser nteum beowulf

echo umask 007 >> /home/nteum/.bash_profile

In this way, any file created by the nteum user or any within the group can

be modified by the Beowulf cluster.

We must create an NFS server (and the rest of the nodes will be clients of this

NFS). On the server, we create a directory as follows:

mkdir /mnt/nteum

chmod 770 /mnt/nteum

chown -R nteum:beowulf /mnt/nteum

Now we can export this directory from the server.

cd /etc

cat >> exports

/mnt/wolf 192.168.0.100/192.168.0.255 (rw)

<control d>

We must remember that our network will be 192.168.0.xxx and it is a private

network, in other words, the cluster will not be seen from the Internet and we

must adjust the configurations so that all the nodes can see each other (from

the firewalls).

We should verify that the services are working:

chkconfig -add sshd

chkconfig -add nfs

chkconfig -add rexec

chkconfig -add rlogin

© FUOC • P07/M2103/02290 10 Clustering

chkconfig -level 3 rsh on

chkconfig -level 3 nfs on

chkconfig -level 3 rexec on

chkconfig -level 3 rlogin on

To work securely, it is important to work with ssh instead of rsh, which means

that we must generate the keys for interconnecting the machines-nteum user

securely, without a password. To do this, we modify (we remove the comment

#) the following lines in /etc/ssh/sshd_config:

RSAAuthentication yes

AuthorizedKeysFile .ssh/authorized_keys

We reboot the machine and we connect as the nteum user, given that this user

will operate the cluster. To generate keys:

ssh-keygen -b 1024 -f ~/.ssh/id_rsa -t rsa -N ""

The id_rsa and id_rsa.pub files will have been created in the /home/nteum/.ssh

library directory and we must copy id_rsa.pub in a file called authorized_keys

in the same directory. And we modify the permissions with chmod 644 ~/

.ssh/aut* and chmod 755 ~/.ssh.

Given that only the main node will be connected to the others (and not the

other way round) we only need to copy the public key (d_rsa.pub) to each

node in the directory/file /home/nteum/.ssh/authorized_keys of each node.

In addition, on each node, we will have to mount the NFS adding /etc/fstab

the line pirulo1:/mnt/nteum /mnt/nteum nfs rw,hard,intr 0 0.

As of this point, we already have a Beowulf cluster for executing appli-

cations that could be PVM or MPI (we will see this in the following sec-

tions). Over FC, there is an application (system-config-cluster) that makes

it possible to configure a cluster based on a graphic tool. For more infor-

mation, please see: http://www.redhat.com/docs/manuals/enterprise/RHEL-5-

manual/Cluster_Administration/index.html.

1.1.2. Benefits of distributed computing

What are the benefits of parallel computing? We will see these with an exam-

ple [Rad]. We have a program for adding numbers (for example, 4 + 5 + 6...)

called sumdis.c and written in C:

#include <stdio.h>

 int main (int argc, char** argv){

float initial, final, result, tmp;

© FUOC • P07/M2103/02290 11 Clustering

if (argc < 2) {

 printf ("Use: %s N.º initial N.º final\n",argv[0]);

 exit(1);

 }

else {

 initial = atol (argv[1]);

 final = atol (argv[2]);

 result = 0.0;

 }

 for (tmp = inicial; tmp <= final; tmp++){

 result + = tmp; }

printf("%f\n", result)

return 0;

}

We compile it with gcc -o sumdis sumdis.c and if we look at the execution of

this program, with, for example:

time ./sumdis 1 1000000 (from 1 to 106)

we can see that the time in a Debian 2.4.18 machine with AMD athjon 1.400

MHz 256 Mb RAM is (approximately) real = 0,013 and user = 0,010 in other

words, 13 ms in total and 10 ms inuser zone. If, however, we enter:

time ./sum 1 16000000 (from 1 to 16 * 106)

the time will be real = 182, in other words, 14 times more, which means, if

we consider 160.000.000 (160*106), the time will be approximately dozens of

minutes.

The idea of distributed computing is: if we have a cluster of 4 machines (node1-

node4) with a server, where the file is shared by NFS, it would be interesting

to divide the execution through rsh *not advisable, but it is acceptable for

this example), so that the first adds from 1 to 40.000.000, the second from

40.000.001 to 80.000.000, the third from 80.000.001 to 120.000.000 and the

fourth from 120.000.001 to 160.000.000. The following commands show one

possibility. We consider that the system has the directory /home shared by NFS

and that the user (nteum) who will execute the script has configured .rhosts

adequately so that it is possible to access their account without the password.

In addition, if tcpd has been activated in /etc/inetd.conf in the rsh line, there

must be the corresponding file in /etc/hosts.allow, which would allow us to

access the four machines in the cluster:

mkfifo out Creates a fifo queue in /home/nteum

© FUOC • P07/M2103/02290 12 Clustering

./distr.sh & time cat salida | awk '{total + = $1 } \ END printf "%lf", total}'

Executes the command distr.sh; the results are collected and added whilst the execution time is measured

The shell script distr.sh can be something like:

rsh node1 /home/nteum/sumdis 1 40000000 > /home/nteum/out <

/dev/null &

rsh node2 /home/nteum/sumdis 40000001 80000000 > /home/nteum/

out < /dev/null &

rsh node3 /home/nteum/sumdis 80000001 120000000 > /home/

nteum/out < /dev/null &

rsh node4 /home/nteum/sumdis 120000001 160000000 > /home/

nteum/out < /dev/null &

We can observe that the time is significantly reduced (by a factor of approxi-

mately 4) and not exactly lineally, but almost. Obviously, this example is very

simple and is only used for demonstrative purposes. The programmers use li-

braries that allow them to set the execution time, the creation and communi-

cation of processes in a distributed system (such as PVM and MPI).

1.2. How should we program to take advantage of concurrent

computing?

There are various ways of expressing the concurrency in a program. The most

common two are:

1) Using threads (or processes).

2) Using processes in different processors that communicate through messages

(MPS, message passing system).

Both methods can be implemented on different hardware configurations

(share memory or messages) but MPS systems can involve latency and speed

problems with the messages on the network, which can be a negative factor.

However, with the advances in network technology, these systems have grown

in popularity (and in number). A message is extremely simple:

send(destination,msg)
recv(origin,msg)

The most common APIs today are PVM and MPI and, in addition, they do not

limit the possibility of using threads (even if it is at a local level) or of having

concurrent processing and in/out. On the other hand, on a machine with

shared memory (SHM) it is only possible to use threads and there is the severe

problem of scalability, given that all the processors use the same memory and

the number of processors in the system is limited by the memory's bandwidth.

© FUOC • P07/M2103/02290 13 Clustering

To summarise, we can conclude that:

1) Proliferation of multitask (multi-user) machines connected through a net-

work with distributed services (NFS and NIS YP).

2) They are heterogeneous systems with networked operating systems (NOS)

that offer a series of distributed and remote services.

3) Distributed applications can be programmed at different levels:

a) Using a client-server model and programming at low-level (sockets).

b) The same model but with a "high"-level API (PVM, MPI).

c) Using other programming models such as programming oriented to dis-

tributed objects (RMI, CORBA, Agents...).

1.2.1. Parallel virtual machine (PVM)

PVM [Proe] is an API that makes it possible to generate, from the perspective

of the application, a dynamic cluster of computers, which constitutes a vir-

tual machine (VM). The tasks can be created dynamically (spawned) and/or

eliminated (killed) and any PVM task can send a message to another. There is

no limit to the size or number of messages (according to the specifications, al-

though there may be hardware/operating system combinations that result in

limitations on message size) and the model supports fault tolerance, resource

control, processes control, heterogeneity in the networks and in the hosts.

The system (VM) has tools for controlling the resources (adding or deleting

hosts from the virtual machine), processes control (dynamic creation/elimi-

nation of processes), different communication models (blocking send, block-

ing/nonblocking receive, multicast), dynamic task groups (a task can be at-

tached or removed from a group dynamically) and fault tolerance (the VM

detects the fault and it can be reconfigured).

The PVM structure is based, on the one hand, on the daemon (pvm3d) that

resides in each machine and is interconnected using UDP, and, on the other

hand, the PVM library (libpvm3.a), which contains all the routines for send-

ing/receiving messages, creating/eliminating processes, groups, synchronisa-

tion etc. which will use the distributed application.

PVM has a console (pvm) that makes it possible to start up the daemon, create

the VM, execute applications etc. It is advisable to install the software from the

distribution, given that the compilation requires a certain amount of 'dedica-

tion'. To install PVM on Debian, for example, we must include two packages

(minimum): pvm and pvm-dev (the pvm console and utilities are in the first

© FUOC • P07/M2103/02290 14 Clustering

and the libraries, header and the rest of the compiling tools are in the second).

If we only need the library because we already have the application, we can

install only the libpvm3 package).

To create a parallel/distributed application in PVM, we can start with the stan-

dard version or look at the physical structure of the problem and determine

which parts can be concurrent (independent). The concurrent parts will be

candidates for being rewritten as parallel code. In addition, we must consider

whether it is possible to replace the algebraic functions with their paralleled

versions (for example, ScaLapack, Scalable Linear Algebra Package, available in

Debian as scalapack-pvm | mpich-test | dev, scalapack1-pvm | mpich depend-

ing on whether it is PVM or MPI). It is also convenient to find out whether

there is any similar parallel application (http://www.epm.ornl.gov/pvm) that

might guide us as to the construction method of the parallel application.

Parallelising a program is not an easy task, as we have to take into account

Amdahl's law.

Amdahl's law states that speedup is limited by the fraction of code (f)

that can be paralleled: speedup�=�1/(1-f).

This law implies that a sequential application f = 0 and the speedup = 1, with

all the parallel code f = 1 and speedup= infinite (!), with possible values, 90% of

the parallel code means a speedup = 10 but with f = 0.99, speedup = 100. This

limitation can be avoided with scalable algorithms and different application

models:

1) Master-worker: the master starts up all the workers and coordinates the

work and in/out.

2) Single process multiple data (SPMD): the same program that executes with

different sets of data.

3) Functional: various programs that perform a different function in the ap-

plication.

With the pvm console and with the add command we can configure the VM

whilst adding all the nodes. The directory In each of these, there must be the

directory ~/pvm3/bin/LINUX must be in each of these, with the binaries of

the application. The variables PVM_ROOT = Directory must be declared, where

the lib/LINUX/libpvm3.a is and PVM_ARCH=LINUX, which can be placed, for

example, in file /.cshrc. The default shell of the user (generally a NIS user or, if

not, the same user must be in each machine with the same password) should

be csh (if we use rsh as a means of remote execution) and the file /.rhosts must

be configured to provide access to each node without the password. The PVM

Note

Amdahl's law
speedup = 1/(1-f)
f is the fraction of parallel code

© FUOC • P07/M2103/02290 15 Clustering

package incorporates an rsh-pvm that can be found in /usr/lib/pvm3/bin as

an rsh specifically made for PVM (see the documentation), as there are some

distributions that do not include it, for security reasons. It is advisable to con-

figure, as we have shown, the ssh with the public keys of the server in .ssh/

authorized_keys of the directory of each user.

As an example of PVM programming, we show a program of the server-client

type, where the server creates the child nodes, sends the data, these nodes

circulate the data a determined number of times between the child nodes (the

one on the left receives a piece of data, processes it and sends it to the one on

the right), whilst the parent nodes waits for each child node to finish.

Example of PVM: master.c

To compile in Debian:
gcc -O -I/usr/share/pvm3/include/ -L/usr/share/pvm3/lib/LINUX -o master master.c -
lpvm3
The directories in -I and in -L must be where the includes pvm3.h and libpvm* are lo-
cated, respectively.
Execution:
1) execute the pvmd daemon with pvm
2) execute add to add the nodes (this command can be skipped if we only have one node
3) execute quit (we leave pvm but it continues to execute)
4) we execute master

#include <stdio.h>

#include "pvm3.h"

#define SLAVENAME "/home/nteum/pvm3/client"

main() {

 int mytid, tids[20], n, nproc, numt, i, who, msgtype, loops;

 float data[10]; int n_times;

 if(pvm_parent() ==PvmNoParent){

 /*Return if this is the parent or child process */

 loops = 1;

 printf("\n How many children (120)? ");

 scanf("%d", &nproc);

 printf("\n How many child-child communication loops (1 - 5000)? ");

 scanf("%d", &loops); }

 /*Redirects the in/out of the children to the parent */

 pvm_catchout(stdout);

 /*Creates the children */

 numt = pvm_spawn(SLAVENAME, (char**)0, 0, "", nproc, tids);

 /*Starts up a new process, 1st: executable child, 2nd: argv, 3rd :options,

 4th :where, 5th :N.º copies, 6th :matrix of id*/

 printf("Result of Spawn: %d \n", numt);

 /*Has it managed?*/

 if(numt < nproc){

Note

Compiling PVM:
gcc -O -I/usr/include/ -o out-
put output.c -lpvm3

© FUOC • P07/M2103/02290 16 Clustering

 Printf("Error creating the children. Error code:\n");

 for(i = numt ; i<nproc ; i++) {

 printf("Tid %d %d\n",i,tids[i]); }

 for(i = 0 ; i<numt ; i++){

 pvm_kill(tids[i]); } /*Kill the processes with id in tids*/

 pvm_exit();

 exit(); /*Finish*/

 }

 /*Start up parent program, initialising the data */

 n = 10;

 for(i = 0 ; i<n ; i++){

 data[i] = 2.0;}

 /*Broadcast with initial data to slaves*/

 pvm_initsend(PvmDataDefault);.

 /*Delete the buffer and specify message encoding*/

 pvm_pkint(&loops, 1, 1);

 /*Package data in the buffer, 2nd N.º, 3*:stride*/

 pvm_pkint(&nproc, 1, 1);

 pvm_pkint(tids, nproc, 1);

 pvm_pkint(&n, 1, 1);

 pvm_pkfloat(data, n, 1);

 pvm_mcast(tids, nproc, 0);

 /*Multicast in the buffer to the tids and wait for the result from the children*/

 msgtype = 5;

 for(i = 0 ; i < nproc ; i++){

 pvm_recv(-1, msgtype);

 /*Receive a message, -1 :of any, 2nd:tag of msg*/

 pvm_upkint(&who, 1, 1);

 /*Unpackage*/

 printf("Finished %d\n",who);

 }

 pvm_exit();

 }

Example of PVM: client.c

To compile in Debian:
gcc -O -I/usr/share/pvm3/include/ -L/usr/share/pvm3/lib/LINUX -or client client.c -
lpvm3
The directories in -I and in -L must be where the included pvm3.h and libpvm* are lo-
cated, respectively.
Execution:
This is not necessary as the master will start them up, but the client must be in /home/
nteum/pvm3

#include <stdio.h>

#include "pvm3.h"

main() {

© FUOC • P07/M2103/02290 17 Clustering

 int mytid; /*Mi task id*/

 int tids[20]; /*Task ids*/

 int n, me, i, nproc, master, msgtype, loops; float data[10];

 long result[4]; float work();

 mytid = pvm_mytid(); msgtype = 0;

 pvm_recv(-1, msgtype);

 pvm_upkint(&loops, 1, 1);

 pvm_upkint(&nproc, 1, 1);

 pvm_upkint(tids, nproc, 1);

 pvm_upkint(&n, 1, 1);

 pvm_upkfloat(data, n, 1);

 /*Determines which child it is (0 -- nproc-1) */

 for(i = 0; i < nproc ; i++)

 if(mytid == tids[i]){ me = i; break; }

 /*Processes and passes the data between neighbours*/

 work (me, data, tids, nproc, loops);

 /*Send the data to the master */

 pvm_initsend(PvmDataDefault);

 pvm_pkint(&me, 1, 1);

 msgtype = 5;

 master = pvm_parent(); /*Find out who created it */

 pvm_send(master, msgtype);

 pvm_exit();

 }

float work(me, data, tids, nproc, loops)

 int me, *tids, nproc; float *data; {

 int i,j, dest; float psum = 0.0, sum = 0.1;

 for (j = 1; j <= loops; j++){

 pvm_initsend(PvmDataDefault);

 pvm_pkfloat(&sum, 1, 1);

 dest = me + 1;

 if(dest == nproc) dest = 0;

 pvm_send(tids[dest], 22);

 i = me - 1;

 if (me == 0) i = nproc-1;

 pvm_recv(tids[i], 22);

 pvm_upkfloat(&psum, 1, 1);

 }

 }

© FUOC • P07/M2103/02290 18 Clustering

The programmer is assisted by a graphic interface that is of great help (see

following figure), which acts as a PVM console and monitor, called xpvm (in

Debian XPVM, install package xpvm), which makes it possible to configure

the VM, execute processes, visualise the interaction between tasks (communi-

cations), statuses, information etc.

Figure 1

1.2.2. Message passing interface (MPI)

The definition of the API of MPI [Prob, Proc] has been the work resulting from

MPI Forum (MPIF), which is a consortium of more than 40 organisations.

MPI has influences from different architectures, languages and works in the

world of parallelism such as: WRC (Ibm), Intel NX/2, Express, nCUBE, Ver-

tex, p4, Parmac and contributions from ZipCode, Chimp, PVM, Chamaleon,

PICL. The main objective of MPIF was to design an API, without any partic-

ular relation with any compiler or library, so that efficient memory-to-mem-

ory copy communication, computing and concurrent communication and

communication downloads would be possible, provided there is a communi-

cations coprocessor. In addition, it supports development in heterogeneous

environments, with interface C and F77 (including C++, F90), where commu-

nication will be reliable and the faults resolved by the system. The API also

needed an interface for different environments (PVM, NX, Express, p4...) and

an implementation that was adaptable to different platforms with insignifi-

cant changes that did not interfere with the operating system (thread-safety).

This API was designed especially for programmers that used message passing

paradigm (MPP) in C and F77 to take advantage of the most important char-

acteristic: portability. The MPP can be executed on multiprocessor machines,

WS networks and even on machines with shared memory. The MPI1 version

(the most widespread version) does not support the dynamic creation (spawn)

of tasks, but MPI2 (which is developing at a growing rate) does.

Many aspects have been designed to take advantage of the benefits of com-

munications hardware on scalable parallel computers (SPC) and the standard

has been mostly accepted by parallel and distributed hardware manufactur-

© FUOC • P07/M2103/02290 19 Clustering

ers (SGI, SUN, Cray, HPConvex, IBM, Parsystec...). There are freeware versions

(mpich, for example) (which are completely compatible with the commercial

implementations from the hardware manufacturers) and they include point-

to-point communications, collective operations and process groups, commu-

nications and topology contexts, support for F77 and C and a control, ad-

ministration and profiling environment. But there are also some unresolved

points, such as: SHM operations, remote execution, program construction

tools, debugging, control of threads, administration of tasks, concurrent in/

out functions (most of these problems arising from a lack of tools are resolved

in version 2 of API MPI2). The function in MPI1, as there is no dynamic pro-

cess creation, is very simple, given that of so many processes as tasks that ex-

ist, autonomous and executing their own multiple instruction multiple data

(MIMD) style code and communicating via MPI calls. The code may be se-

quential or multithread (concurrent) and MPI works in threadsafe mode, in

other words, it is possible to use calls to MPI in concurrent threads, as the

calls re-enter.

To install MPI, it is recommended that you use the distribution, given that

compiling it is extremely complex (due to the dependencies that it needs from

other packages). Debian includes Mpich version 1.2.7-2 (Etch) in the mpich-

bin package (the mpich one is obsolete) and also mpich-mpd-bin (version of

a multipurpose daemon that includes support for scalable processes, manage-

ment and control). The mpich-bin implements the MPI 1.2 standard and some

parts of MPI 2 (such as, for example, parallel in/out). In addition, this same

distribution includes another implementation of MPI called LAM (lam* pack-

ages and documentation in /usr/doc/lam-runtime/release.html). The two im-

plementations are equivalent, from the perspective of MPI, but they are man-

aged differently. All the information on Mpich can be found (after installing

the mpich* packages) in /usr/share/doc/mpi (or in /usr/doc/mpi). Mpich needs

rsh to execute in other machines, which means that we have to insert the user

directory in a ~/.rhosts file with lines in the following format: host username to

allow the username to enter the host without the password (the same as PVM).

It should be remembered that we have to install the rshserver package on all

the machines and if there is tcpd in /etc/inetd.conf on rsh.d, we must enable

the hosts in /etc/hosts.allow. In addition, we must have mounted the directory

of the user by NFS in all the machines and the /etc/mpich/machines.LINUX

file must contain the hostname of all the machines that comprise the cluster

(one machine per line, by default, appears as localhost). In addition, the user

must have the Csh as the shell by default.

On Debian, we can install the update-cluster package to help with the admin-

istration. The installation of Mpich on Debian uses ssh instead of rsh for se-

curity reasons, although there is a link of rsh =>ssh for compatibility. The on-

ly difference is that we must use the ssh authentication mechanisms for the

connection without password through the corresponding files. Otherwise, for

each process that executes, we will have to enter the password before execu-

tion. To allow the connection between machines, with ssh, without the pass-

© FUOC • P07/M2103/02290 20 Clustering

word, we must follow the procedure mentioned in the preceding section. To

check it, we can run ssh localhost and then we should be able to log in with-

out the password. Bear in mind that if we install Mpich and LAM-MPI, the

mpirun of Mpich will be called mpirun.mpich and the mpirun will be that

of LAM-MPI. It is important to remember that mpirun of LAM will use the

lamboot daemon to form the distributed topology of the VM.

The lamboot daemon has been designed so that users can execute distributed

programs without having root permissions (it also makes it possible to execute

programs in a VM without calls to MPI). For this reason, to execute mpirun,

we will have to do it as a user other than the root and execute lamboot before-

hand. lamboot uses a configuration file in /etc/lam for the default definition

of the nodes (see bhost*); please consult the documentation for more infor-

mation (http://www.lam-mpi.org/). [Lam]

To compile MMPI programs, we can use the mpicc command (for example,

mpicc -o test test.c), which accepts all the options of gcc although it is

advisable to use (with modifications) some of the makefiles that are located in

the /usr/doc/mpich/examples file. It is also possible to use mpireconfig Makefile,

that uses the Makefile.in file as an entry to generate the makefile and is much

easier to modify. After, we can run:

mpirun -np 8 programme

or:

mpirun.mpich -np 8 programme

where np is the number of processes or processors in which the program will

execute (8, in this case). We can put in the number we like, as Mpich will try to

distribute the processes in a balanced manner better between all the machines

of /etc/mpich/machines.LINUX. If there are more processes than processors,

Mpich will use the tax exchange characteristics of GNU/Linux to simulate

parallel execution. In Debian and in the directory /usr/doc/mpich-doc (a link

to /usr/share/doc/mpich-doc), we can find all the documentation in different

formats (commands, API of MPI etc.).

To compile MPI: mpicc -O -o output output.c

Execute Mpich: mpirun.mpich -np Nº_processes output

We will now see two examples (which are included in the distribution of

Mpich 1.2.x in directory /usr/doc/mpich/examples). Srtest is a simple program

for establishing communications between point-to-point processes and cpi

calculates the value of Pi in distributed form (through integration).

© FUOC • P07/M2103/02290 21 Clustering

Point-to-point communications: srtest.c

For compiling: mpicc -O -o srtest srtest.c
Execution of Mpich: mpirun.mpich -np N.º_processes srtest (will ask for the password [N.º
processes - 1] times if we do not have direct access through ssh).
Execution of LAM: mpirun -np N.º_processes srtest (must be a user other than the root)

#include "mpi.h"

#include <stdio.h>

#define BUFLEN 512

int main(int argc, char *argv[]) {

 int myid, numprocs, next, namelen;

 char buffer[BUFLEN], processor_name[MPI_MAX_PROCESSOR_NAME]; MPI_Status status;

 MPI_Init(&argc,&argv);

 /* Must be placed before other MPI calls, always */

 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 /*Integrates the process in a communications group*/

 MPI_Get_processor_name(processor_name,&namelen);

 /*Obtains the name of the processor*/

 fprintf(stderr,"Process %d on %s\n", myid, processor_name);

 strcpy(buffer,"Hello People");

 if (myid ==numprocs1) next = 0;

 else next = myid+1;

 if (myid ==0) { /*If it is the initial, send string of buffer*/.

 printf("%d Send '%s' \n",myid,buffer);

 MPI_Send(buffer, strlen(buffer)+1, MPI_CHAR, next, 99,

 MPI_COMM_WORLD);

 /*Blocking Send, 1 or :buffer, 2 or :size, 3 or :type, 4 or :destination, 5

 or :tag, 6 or :context*/

 /*MPI_Send(buffer, strlen(buffer)+1, MPI_CHAR,

 MPI_PROC_NULL, 299,MPI_COMM_WORLD);*/

 printf("%d receiving \n",myid);

 /* Blocking Recv, 1 o :buffer, 2 or :size, 3 or :type, 4 or :source, 5

 or :tag, 6 or :context, 7 or :status*/

 MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_ANY_SOURCE, 99, MPI_COMM_WORLD,&status);

 printf("%d received '%s' \n",myid,buffer) }

 else {

 printf("%d receiving \n",myid);

 MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_ANY_SOURCE, 99, MPI_COMM_WORLD,status);

 /*MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_PROC_NULL, 299,MPI_COMM_WORLD,&status);*/

 printf("%d received '%s' \n",myid,buffer);

 MPI_Send(buffer, strlen(buffer)+1, MPI_CHAR, next, 99,

 MPI_COMM_WORLD);

 printf("%d sent '%s' \n",myid,buffer);}

 MPI_Barrier(MPI_COMM_WORLD); /*Synchronises all the processes*/ MPI_Finalize();

 /*Frees up the resources and ends*/ return (0);

 }

© FUOC • P07/M2103/02290 22 Clustering

Calculation of distributed PI: cpi.c

For compiling: mpicc O or cpi cpi.c.
Execution of Mpich: mpirun.mpich -np N.º processes cpi (will ask for the password (N.°
processes - 1) times if we do not have direct access through ssh).
Execution of LAM: mpirun -np N.º processes cpi (must be a user other than root).

#include "mpi.h"

#include <stdio.h>

#include <math.h>

double f(double);

double f(double a) { return (4.0 / (1.0 + a*a)); }

int main(int argc, char *argv[]) {

 int done = 0, n, myid, numprocs, i;

 double PI25DT = 3.141592653589793238462643;

 double mypi, pi, h, sum, x;

 double startwtime = 0.0, endwtime;

 int namelen;

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 /*Indicates the number of processes in the group*/

 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 /*Id of the process*/ MPI_Get_processor_name(processor_name,&namelen);

 /*Name of the process*/

 fprintf(stderr,"Process %d on %s\n", myid, processor_name);

 n = 0;

 while (!done) {

 if (myid ==0) { /*If it is the first...*/

 if (n ==0) n = 100; else n = 0;

 startwtime = MPI_Wtime();} /* Time Clock */

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); /*Broadcast to the rest*/

 /*Send from 4th arg. to all

 the processes of the group. All others that are not 0

 will copy the buffer from 4 or arg -process 0-*/ /*1.º:buffer,

 2nd :size, 3rd :type, 5th :group */

 if (n == 0) done = 1; else {

 h = 1.0 / (double) n;

 sum = 0.0;

 for (i = myid + 1; i <= n; i + = numprocs) {

 x = h * ((double)i - 0.5); sum + = f(x); }

 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD);

 /* Combines the elements of the Send Buffer of each process of the

 group using the operation MPI_SUM and returns the result in

 the Recv Buffer. It must be called by all the processes of the

 group using the same arguments*/ /*1st :sendbuffer, 2nd

© FUOC • P07/M2103/02290 23 Clustering

 :recvbuffer, 3rd :size, 4th :typo, 5th :oper, 6th :root, 7th

 :context*/

 if (myid == 0){ /*Only the P0 prints the result*/

 printf("Pi is approximately %.16f, the error is %.16f\n", pi, fabs(pi - PI25DT));

 endwtime = MPI_Wtime();

 printf("Execution time = %f\n", endwtime-startwtime); }

 }

 }

 MPI_Finalize(); /*Free up resources and finish*/

 return 0;

}

As XPVM exists in PVM, in MPI there is an analogous application (more so-

phisticated) called XMPI (xmpi in Debian). It is also possible to install a library,

libxmpi3, which implements the XMPI protocol to graphically analyse MPI

programs with more details than offered in xmpi. The following figure shows

some of the possible graphics in xmpi.

© FUOC • P07/M2103/02290 24 Clustering

2. OpenMosix

OpenMosix [Prod] is a software package that transforms a set of machines con-

nected by a network under GNU/Linux in a cluster. This balances the work-

load automatically between the differentnodes of the cluster and the nodes

can be joined or the cluster left without interrupting the service. The load

is distributed between the nodes, taking into account the speed of the con-

nection and the CPU. OpenMosix is part of the kernel (through a Linux Ker-

nel Patch) and maintains total compatibility with GNU/Linux, the user pro-

grams, files and resources. Another characteristic of OpenMosix is that it in-

corporates a powerful and optimised file system (oMFS) for HPC (high perfor-

mance computing) applications. In Debian Woody, we can install OpenMosix

from openmosix-dev (libraries and headers), kernel-pacth- openmosix (Open-

Mosix patch), openmosix (administration tools). Likewise, it is possible to in-

stall mosix (see the documentation for the difference, especially with regard to

the licenses, between Mosix and OpenMosix). In Debian versions subsequent

to Woody, it is not included as a package (stable) and it will be necessary to

go to http://openmosix.sourceforge.net/ to obtain the packages (or resources)

and the installation guides (http://howto.x-tend.be/openMosix-HOWTO/).

Figure 2. XMPI

OpenMosix uses a configuration file that is generally found in en /etc (see

documentation for older versions of this file), which is called openmosix.map

and which should be in each node. Its format is very simple and each line has

three fields: Nodo_ID IP-Address(or hostname) Range-size

An example would be:

1 node1 1
2 node2 1
3 node3 1
4 192.168.1.1 1
5 192.168.1.2 1

© FUOC • P07/M2103/02290 25 Clustering

It is also possible to use a range where the ID and the IP increase respectively.

We have to ensure that we have the same configuration and the same version

of OpenMosix in each node. To execute OpenMosix, in each node we must

type:

setpe -w -f /etc/openmosix.map

We can also use the OpenMosix script (copying it from userspace-tools to /

etc/init.d) to start it up during boot.

The oMFS file system permits remote access to all the files in the cluster, as

though they were locally mounted. The file systems (FS) of the other nodes

can be mounted on /mfs and, therefore, the files in /home on node 3 will be

seen on each machine in /mfs/3/home.

All the UIDs (User IDs) and GIDs (Group IDs) of the FS on each node of

the cluster must be equal (OpenLdap could be used for this).

To mount the oMFS, we must modify /etc/fstab with an entry such as:

mfs_mnt /mfs mfs dfsa = 1 0 0 and to enable or disable it: mfs_mnt /mfs mfs

dfsa = 0 0 0.

Afterward, the FS of each node will be seen in mfs/[openMosixNode ID]/. Once

installed, it will be possible to execute a very simple script various times, such

as, for example (see Howto of OpenMosix):

awk 'BEGIN {for(i = 0;i<10000;i++)for(j = 0;j<10000;j++);}'

And, subsequently, we can observe the behaviour with mosmom or with

openmosixview (recommended). OpenMosix has a daemon (omdiscd), which

makes it possible to automatically configure the cluster eliminating the need

to edit and configure /etc/openmosix.map. This daemon uses multicast to in-

dicate the other nodes that it is also an OpenMosix node, which means that,

once omdiscd has booted, this daemon will join the cluster automatically.

For this to happen, we need to have the default routing (GW) of the network

properly configured. Once it has executed (omdiscd), a series of messages in-

dicating the status of the cluster and the configuration will be generated. We

can use the showmap command to see the new configuration generated by

omdiscd. OpenMosix provides a set of tools that the administrator can use

to configure and tune the OpenMosix cluster. These tasks can be performed

with tools in the space of a user (migrate, mon, mosctl, mosrun) or through the /

© FUOC • P07/M2103/02290 26 Clustering

proc/hpc interface. It is important to remember that up to OpenMosix version

2.4.16, the interface was called /proc/mosix and that, since version 2.4.17, it

has been called /proc/hpc.

We will now present a summary of the configuration tools that are executed

in the space of a user; for /proc/hpc consult the references:

• migrate [PID] [OpenMosix ID]: sends a migration request to a process.

• mon: is a monitor with a text interface that shows information on the

cluster through a bar diagram.

• mosctl: is the configuration tool of OpenMosix. Using the options (stay,

lstay, block, quiet, mfs, expel, bring, get- tune, getyard, getdecay) we can

indicate whether processes can migrate or not, the use of MFS, obtain in-

formation on the load, balance on the load etc.

• mosrun [h | OpenMosix ID | list of OpenMosix IDs] command [arguments]:

executes a command on a determined node.

© FUOC • P07/M2103/02290 27 Clustering

3. Metacomputers, grid computing

The computing requirements that are needed for certain applications are so

large that they require thousands of hours to be able to execute in cluster envi-

ronments. Such applications have promoted the creation of virtual computers

on networks, metacomputers or grid computers. This technology has made it

possible to connect execution environments, high-speed networks, databas-

es, instruments etc., distributed in different geographic locations. This makes

it possible to achieve a processing power that would not be economically vi-

able in any other way with excellent results. Examples of their application are

experiments such as the I-WAY networking (which connects supercomputers

from 17 different places) in North America, or DataGrid, CrossGrid in Europa

or IrisGrid in España. These metacomputers or grid computers have a lot in

common with parallel and distributed systems (SPD), but they are also differ-

ent in certain important aspects. Although they are connected through net-

works, the networks can have different characteristics, the service cannot be

guaranteed and they will be located in different domains. The programming

model and interfaces must be radically different (in respect of the model of

distributed systems) and adequate for high performance computing. As with

SPD, the metacomputing applications require a communications plan to pro-

vide the required performance levels; but given their dynamic nature, new

tools and techniques are needed. In other words, whilst metacomputing can

be formed with the base of the SPDs, it is necessary to create new tools, mech-

anisms and techniques for these. [Fos]

3.1. Different computing architectures

If we only consider the calculative power aspect, we can see that there are

various solutions depending on the size and characteristics of the problem.

Firstly, we could think of a supercomputer (server) but these have problems

such as the lack of scalability, costly equipment and maintenance, peak com-

puting (a lot of time resources are not taken advantage of) and reliability prob-

lems. The economic alternative is a set of computers interconnected by a high

performance network (Fast Ethernet – LAN – or Myrinet – SAN) which would

form a cluster of stations dedicated to parallel/distributed computing (SPD)

with a very high performance level (3 to 15 times cost/performance ratio). But

these systems have inconveniences such as the high cost of communications,

maintenance, programming model etc. However, it is an excellent solution for

medium range or high time computing (HTC). Another interesting concept

is intranet computing, which means using the equipment of a local network

(for example, a C class network) to execute sequential or parallel jobs with

assistance of an administration and load tool; In other words, it is a step down

from a cluster and it permits the exploitation of the computational power in

a large local network with the ensuing advantages, as we increase the effec-

© FUOC • P07/M2103/02290 28 Clustering

tiveness of the use of resources (low cost CPU cycles), improve the scalability

and the administration is not too complex. For these types of solutions, there

is software such as Sun Grid Engine by Sun Microsystems [Sun], Condor by

the University of Wisconsin (both free) [Uni] or LSF by Platform Computing

(commercial) [Pla].

The option of intranet computing presents some inconveniences such as the

impossibility of managing resources outside the domain of administration.

Some of the abovementioned tools (Condor, LSF or SGE) permit cooperation

between different sub-nodes of the system, but all of them must have the same

administrative structure, the same security policies and the same philosophy

of resource management. Although this is a step forward in terms of compu-

tational power at low-cost, they only manage the CPU and not the data shared

between the sub-nodes. Besides, the protocols and interfaces are proprietary

and they are not based on an open standard, it is not possible to amortise the

resources when they are not fully in use and neither can we share resources

with other organisations. [Beo, Ext, Die]

The growth of computers between 1986 and 2000 has multiplied by 500 and

the networks by 340,000, but forecasts would indicate that, between 2001

and 2010, computers will only multiply by 60 and networks by 4,000. This

indicates the standard of the next architecture for HPC: computing distributed

by Internet or grid computing (GC) or metacomputing.

Grid computing is a new emerging technology, the objective of which is to

share resources by Internet in a uniform, transparent, secure, efficient and re-

liable manner. This technology is complementary to the preceding technolo-

gies, in that it permits the interconnection of resources in different admin-

istration domains whilst respecting their internal security policies and their

resource management software on the intranet. According to one of its pre-

cursors, Ian Foster, in his article "What is the Grid? A Three Point Checklist"

(2002), a grid is a system that:

1) coordinates resources that are not subject to centralised control,

2) using standard, open, general-purpose protocols and interfaces,

3) to deliver non-trivial qualities of service.

Among the advantages that this new technology provides, we might mention

the lease of resources, the amortisation of own resources, a great amount of

power without having to invest in resources and installations, collaboration/

sharing between institutions and virtual organisations etc.

The following figure provides a view of all these concepts. [Llo]

© FUOC • P07/M2103/02290 29 Clustering

Figure 3

3.2. Globus

The Globus Project[Gloa, Glob] is one of the most emblematic in this sense, as

it is the precursor in the development of a toolkit for metacomputing or grid

computing and it provides considerable advances in the areas of communica-

tion, information, location and planning of resources, authentication and ac-

cess to data. In other words, Globus makes it possible to share resources locat-

ed in different administration domains, with different security and resource

management policies and it is formed by a middleware software package that

includes a set of libraries, services and API.

The globus tool (Globus toolkit) is formed by a set of modules with well-defined

interfaces for interacting with other modules and/or services. The functions

of these modules are as follows:

• Location and allocation of resources; this allows us to tell the applications

what the requirements are and the resources that we need, given that an

application cannot know where the resources on which it will execute are

located.

• Communications; this provides the basic communication mechanisms,

which represent an important aspect of the system, as they have to allow

various methods for the applications to use them efficiently. These include

message passing, remote procedure calls (RPC), shared distributed memo-

ry, (stream-based) dataflow and multicast.

© FUOC • P07/M2103/02290 30 Clustering

• Unified resource information service provides a uniform mechanism for ob-

taining information in real time as to the status and structure of the meta-

system where the applications are executing.

• Authentication interface; these are the basic authentication mechanisms

for validating the identity of the users and resources. The module gener-

ates the upper layer that will then use the local services for accessing the

data and resources of the system.

• Creation and execution of processes; this is used to start the execution of

tasks that have been allocated to the resources, transmitting the execution

parameters and controlling them until execution is completed.

• Data access; this has to provide high-speed access to the data saved in the

files. For DB, it uses distributed access technology or through CORBA and

it is able to achieve optimal performance levels when it accesses parallel

file systems or in/out devices through the network, such as high perfor-

mance storage system (HPSS).

The internal structure of Globus can be seen in the following figure (http://

www.globus.org/toolkit/about.html).

© FUOC • P07/M2103/02290 31 Clustering

Figure 4

3.3. Software, installation and administration of Globus

The 'The Globus Alliance' website is http://www.globus.org [Gloa]. Here we

can find source code and all the documents that we might need to transform

our intranet into a part of a grid. Being part of a grid means agreeing to and im-

plementing the policies of all the institutions and companies that are part of

that grid. There are various different initiatives based on Globus in Spain. One

of these is IrisGrid [Llo], which we can join if we wish to take advantage of the

benefits of this technology. For more information, see: http://www.rediris.es/

irisgrid/.

The first step for setting up Globus is to obtain the software (currently Globus

Toolkit 4) called GT4. This software implements the services with a combina-

tion of C and Java (the C components can only be executed in UNIX GNU/

Linux platforms, generally), which is why the software is divided into the ser-

vices that it offers. Certain packages, or others, should be installed, depending

on the system that we wish to set up.

© FUOC • P07/M2103/02290 32 Clustering

A quick installation guide, with the download, system requirements and cer-

tificates can be found at http://www.globus.org/toolkit/docs/4.0/admin/doc-

book/quickstart.html. To summarise, the following steps must be taken:

1) Pre-requisites: verify the software and versions (zlib, j2se, disable gcj,

apache, C/C++, tar, make, sed, perl, sudo, postgres, iodbc)

2) Create user, download and compile GT4

3) Start up system security (certificates)

4) Start up GridFTP

5) Start up the Webservices Container

6) Configure RFT (Reliable File Transfer)

7) Start up WS GRAM (job management)

8) Start up the second machine

9) Start up the Index Service hierarchy

10) Start up the cluster

11) Establish Cross-CA Trust

As you will observe, installing and setting up GT4 is not an easy task, but it is

justified if we wish to incorporate a cluster into a grid or if we wish to perform

tests (we recommend an extra dose of enthusiasm and patience) to appreciate

the real power of GT4. For detailed information on installing GT4, please see:

http://www.globus.org/toolkit/docs/4.0/admin/docbook/

© FUOC • P07/M2103/02290 33 Clustering

Activities

1) Install PVM on a node and execute the program master.c and client.c given as examples
and observe their behaviour through xpmv.

2) Install and configure Mpich on a node; compile and execute the program cpi.c.

3) Install and configure LAM-MPI on a node; compile and execute the program cpi.c. and
observe the behaviour through xmpi.

© FUOC • P07/M2103/02290 34 Clustering

Bibliography

Other sources of reference and information

[Debc, Ibi, Mou01]

Lam-mpi: http://www.lam-mpi.org/

System-config-cluster (FC): http://www.redhat.com/docs/manuals/enterprise/RHEL-5-man-
ual/Cluster_Administration/index.html

OpenMosix: http://openmosix.sourceforge.net/

HowTo Openmosix: http://howto.x-tend.be/openMosix-HOWTO/

Globus4: http://www.globus.org/toolkit/docs/4.0/

GT4 Quick Guide: http://www.globus.org/toolkit/docs/4.0/admin/docbook/quickstart.html

Bibliography

[Aiv02] Tigran Aivazian (2002). "Linux Kernel 2.4 Internals". The Linux Documentation
Project (guías).

[Ano99] Anonymous.Maximum Linux Security: A Hacker's Guide to Protecting

[Apa] Apache2 + SSL.
<http://www.debian-administration.org/articles/349>

[Apab] Apache2 + WebDav
<http://www.debian-administration.org/articles/285>

[Apac] Apache2 + Subversion
<http://www.debian-administration.org>

[Ar01] Jonathan Corbet; Alessandro Rubini. Linux Device Drivers 2nd Editon. O'Reilly,
2001.

[Arc] Roberto Arcomano. "Kernel Analysis-HOWTO". The Linux Documentation Project.

[Aus] CERT Australia. "Australian CERT".
<http://www.auscert.org.au/>

[Bac86] Maurice J. Bach (1986). The Design of the UNIX Operating System. Prentice Hall.

[Bai03] Edward C. Bailey (2003). RedHat Maximum RPM.
<http://www.redhat.com/docs/books/max-rpm/index.html>

[Ban] Tobby Banerjee. "Linux Installation Strategies HOWTO". The Linux Documentation
Project.

[Bar] Slashdot. slashdot site.
<http://barrapunto.com>

[Bas] Mike G. "BASH Programming - Introduction HOWTO". The Linux Documentation
Project.

[Beo] Beowulf.org. Beowulf Web Site.
<http://www.beowulf.org>

[Bor] Matthew Borowski (2000). "FTP". The Linux Documentation Project.

[Bro] Scott Bronson (2001). " VPN PPP-SSH". The Linux Documentation Project.

[Bul] Bulma. "Bulma Linux User Group".
<http://bulmalug.net>

[Bur02] Hal Burgiss (2002). "Security QuickStart HOWTO for Linux". The Linux Documen-
tation Project.

[Cac] Monitoring with Cacti.

© FUOC • P07/M2103/02290 35 Clustering

<http://cacti.net/>

[Cdg] Cedega. (Environment for portability of GNU/Linux games)
<http://www.transgaming.com/>

[Ced] Cederqvist. "Version Management with CVS".
<http://www.cvshome.org>

[Cen] The Comunity ENTerprise Operatyng System
<http://www.centos.org>

[CERa] CERT. "CERT site".
<http://www.cert.org>

[CERb] CERT (2003). "CERT vulnerabilities".
<http://www.cert.org/nav/index red.html>

[Cerc] Cervisia. "Cervisia interface for CVS".
<http://cervisia.sourceforge.net>

[Cis00] Cisco (2000). "TCP/IP White Paper".
<http://www.cisco.com>

[Com01] Douglas Comer (2001). TCP/IP Basic principles, protocols and architecture . Prentice
Hall.

[Coo] Mendel Cooper (2006). "Advanced bashScripting Guide". The Linux Documentation
Project (guías).

[CVS] CVShome.org. "CVS Home".
<http://www.cvshome.org>

[CVSI] Graphic interfaces for CVS
<http://www.twobarleycorns.net/tkcvs.html>

[DBo] Marco Cesati; Daniel Bovet (2006). Understanding the Linux Kernel (3.ª ed.). O'Reilly.

[Deb] Debian. "Debian Security Site".
<http://www.debian.org/security/>

[Deb04] Debian (2004). "APT-HOWTO".
<http://www.debian.org/doc/manuals/apt-howto/index.en.html>

[Deba] Debian. "Free Software vs Open Software".
<http://www.debian.org/intro/free.es.html>

[Debb] Comunidad Debian. "Debian Distribution".
<http://www.debian.org>

[Dieb] Hank Dietz (2004). "Linux Parallel Processing". The Linux Documentation Project.

[Dis] Distrowatch. "Available Linux distributions".
<http://www.distrowatch.com>

[Dgn] The Dot Gnu Project.
<http://www.gnu.org/software/dotgnu/>

[DNS] Start up a DNS Server.
<http://tldp.org/HOWTO/DNS-HOWTO-7.html>

[Dra] Joshua Drake (1999). "Linux Networking". The Linux Documentation Project.

[DSL] Digital Line Subscriber (2002). The Linux Documentation Project.

[Buy] Kris Buytaert and others (2002). "The OpenMosix". The Linux DocumentationPro-
ject.

[Ext] ExtremeLinux.org. "Extreme Linux Web Site".
<http://www.extremelinux.org>

[Exim] Exim. Mail service (MTA).

© FUOC • P07/M2103/02290 36 Clustering

<http://www.exim.org/docs.html>

[FBI] FBI. "FBI Brigade for cybercrime".
<http://www.emergency.com/fbi-nccs.htm>

[Fed] The Fedora Project.
<http://fedoraproject.org>

[Fen02] Kevin Fenzi. "Linux security HOWTO". The Linux Documentation Project.

[Fos] Ian Foster; Carl Kesselmany (2003). "Globus: A Metacomputing Infrastructure
Toolkit".
<http://www.globus.org7gt;

[Fre] Freshmeat. "Freshmeat site".
<http://freshmeat.org>

[Fri02] Aleen Frisch (2002). Essential System Administration. O'Reilly.

[Fry] Monitoring with Frysk.
<http://sources.redhat.com/frysk/>

[FSF] FSF. "Free Software Foundation and GNU Project".
<http://www.gnu.org>

[Gar98] Bdale Garbee (1998). TCP/IP Tutorial. N3EUA Inc.

[Gloa] Globus. GT4. "Admin Guide Installation" and "Admin Guide Configuration".
<http://www.globus.org>

[Glob] Globus. "User's Guide Core Framework Globus Toolkit ",
<http://www.globus.org>

[Gt] Dirk Allaert Grant Taylor. "The Linux Printing HOWTO". The Linux Documentation
Project.

[GT4] Quick Guide.
<http://www.globus.org/toolkit/docs/4.0/admin/docbook/quickstart.html>

[Gnu] Gnupg.org. GnuPG Web Site.
<http://www.gnupg.org/>

[Gon] Guido Gonzato. "From DOS/Windows to Linux HOWTO". The Linux Documentation
Project.

[Gor] Paul Gortmaker (2003). "The Linux BootPrompt HOWTO". The Linux Documentation
Project.

[Gre] Mark Grennan. "Firewall and Proxy Server HOWTO". The Linux Documentation Project.

[Hat01] Brian Hatch (2001). Hacking Linux Exposed. McGraw-Hill.

[Hat03] Red Hat (2003). "Firewalls" en Red Hat 9 manual.
<http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/ch-
fw.html#S1-FIREWALL-IPT>

[Hatb] Red Hat (2003). "Red Hat 9 Security Guide".
<http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/>

[Hatc] Red Hat (2003). "Red Hat Security Site".
<http://www.redhat.com/security/>

[Hatd] Red Hat (2003). Use of GPG signatures in Red Hat.
<http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/ch-
gnupg.html>

[Hen03] Bryan Henderson. "Linux Loadable Kernel Module HOWTO". The Linux Docu-
mentation Project.

[Him01] Pekka Himanen (2001). Hacker ethics and the spirit of the information age . Desti-
nation.

© FUOC • P07/M2103/02290 37 Clustering

[Hin00] Martin Hinner. "Filesystems HOWTO". The Linux Documentation Project.

[His] HispaLinux. "Linux Hispanic Community".
<http://www.hispalinux.es>

[IET] IETF. "Request For Comment Repository developed by the Internet Engineering Task
Force (IETF) in the Network Information Center (NIC)".
<http://www.cis.ohio-state.edu/rfc/>

[Ian] Iana. "List of TCP/IP ports".
<http://www.iana.org/assignments/port-numbers>

[IP] Routing with the ip tool. <ftp://ftp.inr.ac.ru/ip_routing/>

[ipw] Firmware for wireless cards IPW2200.
<http://ipw2200.sourceforge.net/firmware.php>

[Ibi] Ibiblio.org (2003). "Linux Documentation Center".
<http://www.ibiblio.org/pub/Linux/docs/HOWTO/>

[Incb] Incidents.org. "vulnerabilities Incidents".
<http://isc.incidents.org>

[Ins] Insecure.org (1998). "Vulnerabilities and exploits".
<http:://www.insecure.org/sploits.html>

[Insa] Insecure.org. "Insecure.org site".
<http://www.insecure.org>

[Insb] Insecure.org (2003). "Nmap".
<http://www.insecure.org/nmap/index.html>

[Log] LogCheck.
<http://logcheck.org/>

[LWP] LWP: Apache+MySQL+:PHP.
<http://www.lawebdelprogramador.com/temas/tema_stablephpapachemysql.php>

[Joh98] Michael K. Johnson (1998). "Linux Information Sheet". The Linux Documentation
Project.

[Jou] Linux Journal.Linux Journal [Linux Magazine].
<http://www.linuxjournal.com>

[Kan] Ivan Kanis. "Multiboot with GRUB Mini-HOWTO". The Linux Documentation Project.

[Kat] Jonathan Katz. "Linux + Windows HOWTO". The Linux Documentation Project.

[KD00] Olaf Kirch; Terry Dawson. Linux Network Administrator's Guide. O'Reilly Asso-
ciates. And how e-book (free) in Free Software Foundation, Inc., 2000.
<http://www.tldp.org/guides.html>

[Ker02] Kernelhacking.org (2002). "Kernel Hacking Doc Project".
<http://www.kernelhacking.org>

[Kera] Kernelnewbies.org. "Kernel Newbies".
<http://www.kernelnewbies.org>

[Kerb] Kernel.org. "Linux Kernel Archives".
<http://www.kernel.org>

[Kie] Robert Kiesling (1997). "The RCS (Revision Control System)". The Linux Documenta-
tion Project.

[Knp] Knoppix Distribution.
<http://knoppix.org>

[Koe] Kristian Koehntopp. "Linux Partition HOWTO". The Linux Documentation Project.

[Kuk] Thorsten Kukuk (2003). "The Linux NIS(YP)/NYS/NIS+". The Linux Documentation
Project.

© FUOC • P07/M2103/02290 38 Clustering

[Lam] LamMPI.org. "LAM (Local Area Multicomputer)".
<http://www.lam-mpi.org>

[Law07] David Lawyer (2007). "Linux Modem". The Linux Documentation Project.

[Lev02] Bozidar Levi (2002). UNIX administration. CRC Press.

[Lev] Eric Levenez. "UNIX History".
<http://www.levenez.com/unix>

[Lin03b] FHS Standard, 2003.
<http://www.pathname.com/fhs>

[Linc] Linux Standards Base project.
<http://www.linux-foundation.org/en/LSB>

[Line] Linuxsecurity.com. Linux Security Reference Card.
<http://www.linuxsecurity.com/docs/QuickRefCard.pdf>

[lkm] lkml.Linux Kernel Mailing List.
<http://www.tux.org/lkml>

[Llo] Ignacio Martín Llorente. State of Grid Technology and IrisGrid Initiative .
<http://www.rediris.es/irisgrid>

[Lan] Nicolai Langfeldt; Jamie Norrish (2001). "DNS". The Linux Documentation Project.

[Log] Logcheck. "Logckeck Web Site".
<http://logcheck.org/>

[LPD] LPD. The Linux Documentation Project.
<http://www.tldp.org>

[Mag] Linux Magazine. Linux Magazine.
<http://www.linux-mag.com/>

[Maj96] Amir Majidimehr (1996). Optimizing UNIX for Performance. Prentice Hall.

[Mal96] Fred Mallett (1996). TCP/IP Tutorial. FAME Computer Education.

[Mal07] Luiz Ernesto Pinheiro Malère (2007). "Ldap". The Linux DocumentationProject.

[Miq] Miquel, S. "NIS Debian". On Debian Woody, /usr/doc/nis/ nis.debian.howto.

[Moin] Moin Moin
<http://moinmoin.wikiwikiweb.de/>

[Moi] Moin Moin + Debian.
<http://moinmoin.wikiwikiweb.de/MoinMoinPackages/DebianLinux>

[Mon] Monit.
<http://www.tildeslash.com/monit/>

[Monb] Monitoring with Munin and monit.
<http://www.howtoforge.com/server_monitoring_monit_munin>

[Monc] Monitoring with SNMP and MRTG.
<http://www.linuxhomenetworking.com/wiki/index.php/
>Quick_HOWTO_:_Ch22_:_Monitoring_Server_Performance

[Mono] Mono project.
<http://www.mono-project.com/Main_Page>

[Mor03] Daniel Morill (2003). Configuration of Linux systems . Anaya Multimedia.

[Mou01] Gerhard Mourani (2001). Securing and Optimizing Linux: The Ultimate Solution.
Open Network Architecture, Inc.

[Mun] Munin.
<http://munin.projects.linpro.no/>

[MRTG] MRTG.

© FUOC • P07/M2103/02290 39 Clustering

<http://oss.oetiker.ch/mrtg/>

[Mur] Gary Lawrence Murphy. Kernel Book Project.
<http://kernelbook.sourceforge.net>

[Mutt] Mutt mail client.
<http://www.mutt.org>

[Mys] Mysql. "Reference Manual".
<http://www.mysql.com/>

[MysqlA] Mysql Administrator.
<http://www.mysql.com/products/tools/administrator/>

[Nes] Nessus.org. "Nessus".
<http://www.nessus.org>

[Net] Netfilter.org. Netfilter/IPtables Project.
<www.netfilter.org>

[Neu] Christopher Neufeld. "Setting Up Your New Domain Mini-HOWTO". The Linux Doc-
umentation Project.

[New] Newsforge. "Newsforge site".
<http://newsforge.org>

[NIS] Setting up a NIS Server.
<http://tldp.org/HOWTO/NIS-HOWTO/verification.html>

[NSAa] NSA. "NIST site".
<http://csrc.nist.gov/>

[NSAb] NSA (2003). "Security Enhanced Linux".
<http://www.nsa.gov/selinux>

[Nt3] NTFS-3g Project: NTFS-3G Read/Write Driver.
<http://www.ntfs-3g.org/>

[Oke] Greg O'Keefe. "From Power Up To bash Prompt HOWTO". The Linux Documentation
Project.

[Open] OpenVPN. Virtual private network.
<http://openvpn.net/howto.html>

[OpenM] OpenMosix.
<http://openmosix.sourceforge.net/>>

[OpenMb] HowTo Openmosix.
<http://howto.x-tend.be/openMosix-HOWTO/>

[OSDa] OSDL. "Open Source Developement Laboratories".
<http://www.osdl.org>

[OSDb]OSDN. "Open Source Development Network".
<http://osdn.com>

[OSIa] OSI. "List of Open Source licenses".
<http://www.opensource.org/licenses/index.html>

[OSIb] OSI (2003). "Open Source Definition".
<http://www.opensource.org/docs/definition.php>

[OSIc] OSI (2003). "Open Source Iniciative".
<http://www.opensource.org>

[Peñ] Javier Fernández-Sanguino Peña (2007). "Securing Debian Manual".
<http://www.debian.org/doc/manuals/securing-debian-howto/>

[Pga] PgAccess. Client for PostgreSQL.
<http://www.pgaccess.org/>

[Pla] Plataform. "LSF".

© FUOC • P07/M2103/02290 40 Clustering

<http://www.platform.com>

[Posa] PostgreSQL.org. "PostgreSQL Administrator's Guide".
<http://www.postgresql.org/docs/>

[Per] Performance Monitoring Tools for Linux.
<http://www.linuxjournal.com/article.php?sid=2396>

[Pose] PostgreSQL.org. "PostgreSQL Web Site".
<http://www.postgresql.org>

[PPP] Linux PPP (2000). "Corwin Williams, Joshua Drake and Robert Hart". The Linux Doc-
umentation Project.

[Pra03] Joseh Pranevich (2003). "The Wonderful World of Linux 2.6".
<http://www.kniggit.net/wwol26.html>

[Pri] Steven Pritchard. "Linux Hardware HOWTO". The Linux Documentation Project.

[Pro] GNU Project. "Grub Manual".
<http://www.gnu.org/software/grub/manual/>

[Proa] Bastille Project. "Bastille".
<http://bastille-linux.sourceforge.net/>

[Prob] Mpich Project. "MPI".
<http://www.mcs.anl.gov:80/mpi/>

[Proc] Mpich Project. "Mpich MPI Freeware".
<http://www-unix.mcs.anl.gov/mpi/>

[Prod] OpenMosix Project. "OpenMosix".
<http://openMosix.sourceforge.net>

[Proe] PVM Project. "PVM Web Site".
<http://www.csm.ornl.gov/pvm/>

[Proc] ProcMail.
<http://www.debian-administration.org/articles/242>

[ProX]Proxy Cache.
<http://www.squid-cache.org/>

[ProT] Transparent Proxy.
<http://tldp.org/HOWTO/TransparentProxy-1.html>

[Prof] ProFTP: FTP file server.
<http://www.debian-administration.org/articles/228>

[PS02] Ricardo Enríquez Pio Sierra (2002). Open Source. Anaya Multimedia.

[PurF] PureFTP: FTP file server.
<http://www.debian-administration.org/articles/383>

[Qui01] Ellie Quigley (2001). Linux shells by Example. Prentice Hall.

[Ran] David Ranch (2005). "Linux IP Masquerade" and John Tapsell. Masquerading Made
Simple. The Linux Documentation Project.

[Ray98] Eric Raymond (1998). "The cathedral and the bazaar".
<http:://es.tldp.org/Otros/catedral-bazar/cathedral-es-paper-00.html>

[Ray02a] Eric Raymond (2002). "UNIX and Internet Fundamentals". The LinuxDocumenta-
tion Project.

[Rayb] Eric Steven Raymond. "The Linux Installation HOWTO". The Linux Documentation
Project.

[Rad] Jacek Radajewski; Douglas Eadline (2002). "Beowulf: Installation and Adminis-
tration". In: Kurt Swendson. Beowulf HOWTO (tlpd).
<http://www.sci.usq.edu.au/staff/jacek/beowulf>

© FUOC • P07/M2103/02290 41 Clustering

[Red] Optimisation of Linux servers.
<http://people.redhat.com/alikins/system_tuning.html>

[Redb] System-config-cluster (FC).
<http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/
Cluster_Administration/index.htm>

[Redh] Red Hat Inc. "Red Hat Distribution".
<http://www.redhat.com>

[Rid] Daniel Lopez Ridruejo (2000). "The Linux Networking Overview". The Linux Docu-
mentation Project.

[Rus] Rusty Russell. "Linux IPCHAINS". The Linux Documentation Project.

[SM02] Michael Schwartz and other (2002). Multitool Linux - Practical Uses for Open Source
Software. Addison Wesley.

[Sal94] Peter H. Salus (1994). "25th anniversary of UNIX" (no. 1, November). Byte Spain.

[Sam] Samba Project.
<http://samba.org>

[Sama] Samba HOWTO and Reference Guide (Chapter Domain Control).
<http://samba.org/samba/docs/man/Samba-HOWTO-Collection/samba-pdc.html>

[Samb] Samba Guide (Chapter Adding Domain member Servers and Clients).
<http://samba.org/samba/docs/man/Samba-Guide/unixclients.html>

[San] Sans. "Top20 vulnerabilities".
<http://www.sans.org/top20/>

[Sci] Scientific Linux.
<http:://www.scientificlinux.org>

[Sec] Andrés Seco (2000). "Diald". The Linux Documentation Project.

[Sei02] Kurt Seifried (2002). "Securing Linux, Step by Step".
<http:://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html>

[Skoa] Miroslav Skoric. "LILO mini-HOWTO". The Linux Documentation Project.

[Skob] Miroslav Skoric. "Linux+WindowsNT mini-HOWTO". The Linux Documentation
Project.

[Sla] Slashdot. "Slashdot site".
<http://slashdot.org>

[Smb] Wikipedia entry for "Server Message Block".
<http://en.wikipedia.org/wiki/Server_Message_Block>

[Smi02] Rod Smith (2002). Advanced Linux Networking. Addison Wesley.

[Sno] Snort.org. Snort.
<http:://www.snort.org>

[Sou] Sourceforge. "Sourceforge site".
<http://sourceforge.org>

[Squ] Squid proxy server.
<http://www.squid-cache.org/>

[Sta02] Richard Stallman (2002). "Discussion by Richard Stallman on relationship be-
tween GNU and Linux".
<http:://www.gnu.org/gnu/linux-and-gnu.html>

[Stu] Michael Stutz. "The Linux Cookbook: Tips and Techniques for Everyday Use". The
Linux Documentation Project (guías).

[Ste07] Steve French, Linux CIFS Client guide.
<http://us1.samba.org/samba/ftp/cifs-cvs/linux-cifs-client-guide.pdf>

© FUOC • P07/M2103/02290 42 Clustering

[Stei] Tony Steidler-Dennison (2005). Your Linux Server and Network. Sams.

[Sub] Subversion.
<http:://subversion.tigris.org>

[Subb] Control of versions with Subversion. Free Book.
<http://svnbook.red-bean.com/index.es.html>

*[Sun02] Rahul Sundaram (2002). "The dosemu HOWTO". The Linux Documentation
Project.

[Sun] Sun. "Sun Grid Engine".
<http://www.sun.com/software/gridware/>

[Tan87] Andrew Tanenbaum (1987). Operating system: Design and Implementation. Prentice
Hall.

[Tan06] Andrew Tanenbaum; Albert S. Woodhull (2006). The Minix Book: Operating
Systems Design and Implementation (3rd ed.). Prentice Hall.

[Tkc] Tkcvs (2003). "Tkcvs interface for CVS".
<http://www.tkcvs.org>
<http://www.twobarleycorns.net/tkcvs.html>

[Tri] Tripwire.com. Tripwire Web Site.
<http://www.tripwire.com/>

[Tum02] Enkh Tumenbayar (2002). "Linux SMP HOWTO". The Linux Documentation
Project.

[Ubn] Ubuntu Distribution.
<http://www.ubuntu.com>

[Uni] Wisconsin University (2003). Condor Web Site.
<http:://www.cs.wisc.edu/condor>

[USA] Dep. Justice USA. "Division of the US Justice Department for cybercrime".
<http://www.usdoj.gov/criminal/cybercrime/>

[Vah96] Uresh Vahalia (1996). UNIX Internals: The New Frontiers. Prentice Hall.

[Vas] Alavoor Vasudevan (2000). "Modem-Dialup-NT". The Linux Documentation Project.

[Vasa] Alavoor Vasudevan (2003). "CVS-RCS (Source Code Control System)". The Linux
Documentation Project.

[Vasb] Alavoor Vasudevan. "The Linux Kernel HOWTO". The Linux Documentation Project.

[Wm02] Matt Welsh and others (2002). Running Linux 4th edition. O'Reilly.

[War] Ian Ward. "Debian and Windows Shared Printing mini-HOWTO". The Linux Docu-
mentation Project.

[Web] Webmin.Tool for administrating Linux systems.
<http://www.webmin.com/>

[Wil02] Matthew D. Wilson (2002). "VPN". The Linux Documentation Project.

[Win] Wine Project.
<http:://www.winehq.com/

[Wir] WireShark.
<http://www.wireshark.org/download.html>

[Woo] David Wood. "SMB HOWTO". The Linux Documentation Project.

[Xin] Xinetd Web Site.
<http://www.xinetd.org/>

[Zan] Renzo Zanelli.Win95 + WinNT + Linux multiboot using LILOmini-HOWTO. The Linux
Documentation Project.

© FUOC • P07/M2103/02290 43 Clustering

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional

and useful document "free" in the sense of freedom: to assure everyone the

effective freedom to copy and redistribute it, with or without modifying it,

either commercially or noncommercially. Secondarily, this License preserves

for the author and publisher a way to get credit for their work, while not being

considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the

document must themselves be free in the same sense. It complements the

GNU General Public License, which is a copyleft license designed for free soft-

ware.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come

with manuals providing the same freedoms that the software does. But this

License is not limited to software manuals; it can be used for any textual work,

regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction

or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that con-

tains a notice placed by the copyright holder saying it can be distributed un-

der the terms of this License. Such a notice grants a world-wide, royalty-free

license, unlimited in duration, to use that work under the conditions stated

herein. The "Document", below, refers to any such manual or work. Any mem-

ber of the public is a licensee, and is addressed as "you". You accept the license

if you copy, modify or distribute the work in a way requiring permission un-

der copyright law.

© FUOC • P07/M2103/02290 44 Clustering

A "Modified Version" of the Document means any work containing the Doc-

ument or a portion of it, either copied verbatim, or with modifications and/or

translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the

Document that deals exclusively with the relationship of the publishers or au-

thors of the Document to the Document's overall subject (or to related mat-

ters) and contains nothing that could fall directly within that overall subject.

(Thus, if the Document is in part a textbook of mathematics, a Secondary Sec-

tion may not explain any mathematics.) The relationship could be a matter

of historical connection with the subject or with related matters, or of legal,

commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are desig-

nated, as being those of Invariant Sections, in the notice that says that the

Document is released under this License. If a section does not fit the above

definition of Secondary then it is not allowed to be designated as Invariant.

The Document may contain zero Invariant Sections. If the Document does

not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-

Cover Texts or Back-Cover Texts, in the notice that says that the Document is

released under this License. A Front-Cover Text may be at most 5 words, and

a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine- readable copy, rep-

resented in a format whose specification is available to the general public, that

is suitable for revising the document straightforwardly with generic text edi-

tors or (for images composed of pixels) generic paint programs or (for draw-

ings) some widely available drawing editor, and that is suitable for input to

text formatters or for automatic translation to a variety of formats suitable for

input to text formatters. A copy made in an otherwise Transparent file format

whose markup, or absence of markup, has been arranged to thwart or discour-

age subsequent modification by readers is not Transparent.

An image format is not Transparent if used for any substantial amount of text.

A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII with-

out markup, Texinfo input format, LaTeX input format, SGML or XML using

a publicly available DTD, and standard- conforming simple HTML, PostScript

or PDF designed for human modification. Examples of transparent image for-

mats include PNG, XCF and JPG. Opaque formats include proprietary formats

that can be read and edited only by proprietary word processors, SGML or

© FUOC • P07/M2103/02290 45 Clustering

XML for which the DTD and/or processing tools are not generally available,

and the machine-generated HTML, PostScript or PDF produced by some word

processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such fol-

lowing pages as are needed to hold, legibly, the material this License requires

to appear in the title page. For works in formats which do not have any title

page as such, "Title Page" means the text near the most prominent appearance

of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose

title either is precisely XYZ or contains XYZ in parentheses following text

that translates XYZ in another language (here XYZ stands for a specific sec-

tion name mentioned below, such as "Acknowledgements", "Dedications",

"Endorsements", or "History"). To "Preserve the Title" of such a section when

you modify the Document means that it remains a section "Entitled XYZ" ac-

cording to this definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty Disclaimers

are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers

may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-

cially or noncommercially, provided that this License, the copyright notices,

and the license notice saying this License applies to the Document are repro-

duced in all copies, and that you add no other conditions whatsoever to those

of this License. You may not use technical measures to obstruct or control

the reading or further copying of the copies you make or distribute. However,

you may accept compensation in exchange for copies. If you distribute a large

enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you

may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed

covers) of the Document, numbering more than 100, and the Document's

license notice requires Cover Texts, you must enclose the copies in covers that

carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front

cover, and Back-Cover Texts on the back cover. Both covers must also clearly

© FUOC • P07/M2103/02290 46 Clustering

and legibly identify you as the publisher of these copies. The front cover must

present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve the title of

the Document and satisfy these conditions, can be treated as verbatim copying

in other respects.

If the required texts for either cover are too voluminous to fit legibly, you

should put the first ones listed (as many as fit reasonably) on the actual cover,

and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more

than 100, you must either include a machine- readable Transparent copy along

with each Opaque copy, or state in or with each Opaque copy a computer-

network location from which the general network-using public has access to

download using public-standard network protocols a complete Transparent

copy of the Document, free of added material.

If you use the latter option, you must take reasonably prudent steps, when you

begin distribution of Opaque copies in quantity, to ensure that this Transpar-

ent copy will remain thus accessible at the stated location until at least one

year after the last time you distribute an Opaque copy (directly or through

your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance

to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the

conditions of sections 2 and 3 above, provided that you release the Modified

Version under precisely this License, with the Modified Version filling the role

of the Document, thus licensing distribution and modification of the Modi-

fied Version to whoever possesses a copy of it. In addition, you must do these

things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that

of the Document, and from those of previous versions (which should, if there

were any, be listed in the History section of the Document). You may use the

same title as a previous version if the original publisher of that version gives

permission.

© FUOC • P07/M2103/02290 47 Clustering

B. List on the Title Page, as authors, one or more persons or entities responsible

for authorship of the modifications in the Modified Version, together with at

least five of the principal authors of the Document (all of its principal authors,

if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,

as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,

in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-

quired Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an

item stating at least the title, year, new authors, and publisher of the Modified

Version as given on the Title Page. If there is no section Entitled "History" in

the Document, create one stating the title, year, authors, and publisher of the

Document as given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public

access to a Transparent copy of the Document, and likewise the network lo-

cations given in the Document for previous versions it was based on. These

may be placed in the "History" section. You may omit a network location for

a work that was published at least four years before the Document itself, or if

the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the

Title of the section, and preserve in the section all the substance and tone of

each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text

and in their titles. Section numbers or the equivalent are not considered part

of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be

included in the Modified Version.

© FUOC • P07/M2103/02290 48 Clustering

N. Do not retitle any existing section to be Entitled "Endorsements" or to con-

flict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that

qualify as Secondary Sections and contain no material copied from the Doc-

ument, you may at your option designate some or all of these sections as in-

variant. To do this, add their titles to the list of Invariant Sections in the Mod-

ified Version's license notice. These titles must be distinct from any other sec-

tion titles.

You may add a section Entitled "Endorsements", provided it contains nothing

but endorsements of your Modified Version by various parties--for example,

statements of peer review or that the text has been approved by an organiza-

tion as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts

in the Modified Version. Only one passage of Front-Cover Text and one of

Back-Cover Text may be added by (or through arrangements made by) any

one entity. If the Document already includes a cover text for the same cover,

previously added by you or by arrangement made by the same entity you are

acting on behalf of, you may not add another; but you may replace the old

one, on explicit permission from the previous publisher that added the old

one.

The author(s) and publisher(s) of the Document do not by this License give

permission to use their names for publicity for or to assert or imply endorse-

ment of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified versions,

provided that you include in the combination all of the Invariant Sections

of all of the original documents, unmodified, and list them all as Invariant

Sections of your combined work in its license notice, and that you preserve

all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple

identical Invariant Sections may be replaced with a single copy. If there are

multiple Invariant Sections with the same name but different contents, make

the title of each such section unique by adding at the end of it, in parentheses,

the name of the original author or publisher of that section if known, or else

a unique number.

© FUOC • P07/M2103/02290 49 Clustering

Make the same adjustment to the section titles in the list of Invariant Sections

in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the

various original documents, forming one section Entitled "History"; likewise

combine any sections Entitled "Acknowledgements", and any sections Entitled

"Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License

in the various documents with a single copy that is included in the collection,

provided that you follow the rules of this License for verbatim copying of each

of the documents in all other respects.

You may extract a single document from such a collection, and distribute it

individually under this License, provided you insert a copy of this License into

the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and in-

dependent documents or works, in or on a volume of a storage or distribution

medium, is called an "aggregate" if the copyright resulting from the compi-

lation is not used to limit the legal rights of the compilation's users beyond

what the individual works permit.

When the Document is included in an aggregate, this License does not apply

to the other works in the aggregate which are not themselves derivative works

of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the

Document, then if the Document is less than one half of the entire aggregate,

the Document's Cover Texts may be placed on covers that bracket the Docu-

ment within the aggregate, or the electronic equivalent of covers if the Doc-

ument is in electronic form.

Otherwise they must appear on printed covers that bracket the whole aggre-

gate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-

lations of the Document under the terms of section 4. Replacing Invariant Sec-

tions with translations requires special permission from their copyright hold-

© FUOC • P07/M2103/02290 50 Clustering

ers, but you may include translations of some or all Invariant Sections in ad-

dition to the original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the Document, and

any Warranty Disclaimers, provided that you also include the original En-

glish version of this License and the original versions of those notices and

disclaimers. In case of a disagreement between the translation and the origi-

nal version of this License or a notice or disclaimer, the original version will

prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications",

or "History", the requirement (section 4) to Preserve its Title (section 1) will

typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as

expressly provided for under this License. Any other attempt to copy, modi-

fy, sublicense or distribute the Document is void, and will automatically ter-

minate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses ter-

minated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU

Free Documentation License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address new

problems or concerns. See http:// www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this License

"or any later version" applies to it, you have the option of following the terms

and conditions either of that specified version or of any later version that has

been published (not as a draft) by the

Free Software Foundation. If the Document does not specify a version number

of this License, you may choose any version ever published (not as a draft) by

the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices

just after the title page:

© FUOC • P07/M2103/02290 51 Clustering

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under

the terms of the GNU Free Documentation License, Version 1.2 or any lat-

er version published by the Free Software Foundation; with no Invariant Sec-

tions, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documen-

tation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-

place the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front- Cover

Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-

tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-

mend releasing these examples in parallel under your choice of free software

license, such as the GNU General Public License, to permit their use in free

software.

The GNU/Linux systems have reached
an important level of maturity,
allowing to integrate them in almost
any kind of work environment, from a
desktop PC to the sever facilities
of a big company.

In the module called "The GNU/Linux
operating system", the main contents
are related with system
administration. This book is the main
documentation for the module

We will learn how to install and
configure several computer
services, and how to optimise and
synchronise the resources.

The activities that will take place
in this module cover the studied
topics in a practical approach,
applying these concepts in real
GNU/Linux systems.

>

With support from the

