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Introduction
Amy Brown and Greg Wilson

In the introduction to Volume 1 of this series, we wrote:

Building architecture and software architecture have a lot in common, but there is
one crucial difference. While architects study thousands of buildings in their training
and during their careers, most software developers only ever get to know a handful
of large programs well. . . As a result, they repeat one another’s mistakes rather than
building on one another’s successes. . . This book is our attempt to change that.

In the year since that book appeared, over two dozen people have worked hard to create the sequel
you have in your hands. They have done so because they believe, as we do, that software design can
and should be taught by example—that the best way to learn how think like an expert is to study how
experts think. From web servers and compilers through health record management systems to the
infrastructure that Mozilla uses to get Firefox out the door, there are lessons all around us. We hope
that by collecting some of them together in this book, we can help you become a better developer.

— Amy Brown and Greg Wilson

Contributors
Andrew Alexeev (nginx): Andrew is a co-founder of Nginx, Inc.—the company behind nginx.

Prior to joining Nginx, Inc. at the beginning of 2011, Andrew worked in the Internet industry and in
a variety of ICT divisions for enterprises. Andrew holds a diploma in Electronics from St. Petersburg
Electrotechnical University and an executive MBA from Antwerp Management School.

Chris AtLee (Firefox Release Engineering): Chris is loving his job managing Release Engineers
at Mozilla. He has a BMath in Computer Science from the University of Waterloo. His online
ramblings can be found at http://atlee.ca.

Michael Bayer (SQLAlchemy): Michael Bayer has been working with open source software and
databases since the mid-1990s. Today he’s active in the Python community, working to spread good
software practices to an ever wider audience. Follow Mike on Twitter at @zzzeek.

Lukas Blakk (Firefox Release Engineering): Lukas graduated from Toronto’s Seneca College
with a bachelor of Software Development in 2009, but started working with Mozilla’s Release
Engineering team while still a student thanks to Dave Humphrey’s (http://vocamus.net/dave/)
Topics in Open Source classes. Lukas Blakk’s adventures with open source can be followed on her
blog at http://lukasblakk.com.



Amy Brown (editorial): Amy worked in the software industry for ten years before quitting to
create a freelance editing and book production business. She has an underused degree in Math from
the University of Waterloo. She can be found online at http://www.amyrbrown.ca/.

Michael Droettboom (matplotlib): Michael Droettboom works for STScI developing science
and calibration software for the Hubble and James Webb Space Telescopes. He has worked on the
matplotlib project since 2007.

Elizabeth Flanagan (Yocto): Elizabeth Flanagan works for the Open Source Technologies Center
at Intel Corp as the Yocto Project’s Build and Release engineer. She is the maintainer of the Yocto
Autobuilder and contributes to the Yocto Project and OE-Core. She lives in Portland, Oregon and
can be found online at http://www.hacklikeagirl.com.

Jeff Hardy (Iron Languages): Jeff started programming in high school, which led to a bachelor’s
degree in Software Engineering from the University of Alberta and his current position writing
Python code for Amazon.com in Seattle. He has also led IronPython’s development since 2010. You
can find more information about him at http://jdhardy.ca.

Sumana Harihareswara (MediaWiki): Sumana is the community manager for MediaWiki as the
volunteer development coordinator for the Wikimedia Foundation. She previously worked with the
GNOME, Empathy, Telepathy, Miro, and AltLaw projects. Sumana is an advisory board member for
the Ada Initiative, which supports women in open technology and culture. She lives in New York
City. Her personal site is at http://www.harihareswara.net/.

Tim Hunt (Moodle): Tim Hunt started out as a mathematician, getting as far as a PhD in non-linear
dynamics from the University of Cambridge before deciding to do something a bit less esoteric with
his life. He now works as a Leading Software Developer at the Open University in Milton Keynes,
UK, working on their learning and teaching systems which are based on Moodle. Since 2006 he has
been the maintainer of the Moodle quiz module and the question bank code, a role he still enjoys.
From 2008 to 2009, Tim spent a year in Australia working at the Moodle HQ offices. He blogs at
http://tjhunt.blogspot.com and can be found @tim_hunt on Twitter.

John Hunter (matplotlib): John Hunter is a Quantitative Analyst at TradeLink Securities. He
received his doctorate in neurobiology at the University of Chicago for experimental and numerical
modeling work on synchronization, and continued his work on synchronization processes as a postdoc
in Neurology working on epilepsy. He left academia for quantitative finance in 2005. An avid Python
programmer and lecturer in scientific computing in Python, he is original author and lead developer
of the scientific visualization package matplotlib.

Luis Ibáñez (ITK): Luis has worked for 12 years on the development of the Insight Toolkit (ITK),
an open source library for medical imaging analysis. Luis is a strong supporter of open access and
the revival of reproducibility verification in scientific publishing. Luis has been teaching a course on
Open Source Software Practices at Rensselaer Polytechnic Institute since 2007.

Mike Kamermans (Processing.js): Mike started his career in computer science by failing technical
Computer Science and promptly moved on to getting a master’s degree in Artificial Intelligence,
instead. He’s been programming in order not to have to program since 1998, with a focus on getting
people the tools they need to get the jobs they need done, done. He has focussed on many other things
as well, including writing a book on Japanese grammar, and writing a detailed explanation of the math
behind Bézier curves. His under-used home page is at http://pomax.nihongoresources.com.

Luke Kanies (Puppet): Luke founded Puppet and Puppet Labs in 2005 out of fear and desperation,
with the goal of producing better operations tools and changing how we manage systems. He has been
publishing and speaking on his work in Unix administration since 1997, focusing on development
since 2001. He has developed and published multiple simple sysadmin tools and contributed to
established products like Cfengine, and has presented on Puppet and other tools around the world,
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[chapter1]

Scalable Web Architecture and Distributed
Systems
Kate Matsudaira

Open source software has become a fundamental building block for some of the biggest websites.
And as those websites have grown, best practices and guiding principles around their architectures
have emerged. This chapter seeks to cover some of the key issues to consider when designing large
websites, as well as some of the building blocks used to achieve these goals.

This chapter is largely focused on web systems, although some of the material is applicable to
other distributed systems as well.

1.1 Principles of Web Distributed Systems Design
What exactly does it mean to build and operate a scalable web site or application? At a primitive
level it’s just connecting users with remote resources via the Internet—the part that makes it scalable
is that the resources, or access to those resources, are distributed across multiple servers.

Like most things in life, taking the time to plan ahead when building a web service can help in
the long run; understanding some of the considerations and tradeoffs behind big websites can result
in smarter decisions at the creation of smaller web sites. Below are some of the key principles that
influence the design of large-scale web systems:
Availability: The uptime of a website is absolutely critical to the reputation and functionality of

many companies. For some of the larger online retail sites, being unavailable for even minutes
can result in thousands or millions of dollars in lost revenue, so designing their systems to be
constantly available and resilient to failure is both a fundamental business and a technology
requirement. High availability in distributed systems requires the careful consideration of
redundancy for key components, rapid recovery in the event of partial system failures, and
graceful degradation when problems occur.

Performance: Website performance has become an important consideration for most sites. The
speed of a website affects usage and user satisfaction, as well as search engine rankings, a
factor that directly correlates to revenue and retention. As a result, creating a system that is
optimized for fast responses and low latency is key.

Reliability: A system needs to be reliable, such that a request for data will consistently return the
same data. In the event the data changes or is updated, then that same request should return



the new data. Users need to know that if something is written to the system, or stored, it will
persist and can be relied on to be in place for future retrieval.

Scalability: When it comes to any large distributed system, size is just one aspect of scale that needs
to be considered. Just as important is the effort required to increase capacity to handle greater
amounts of load, commonly referred to as the scalability of the system. Scalability can refer
to many different parameters of the system: how much additional traffic can it handle, how
easy is it to add more storage capacity, or even how many more transactions can be processed.

Manageability: Designing a system that is easy to operate is another important consideration. The
manageability of the system equates to the scalability of operations: maintenance and updates.
Things to consider for manageability are the ease of diagnosing and understanding problems
when they occur, ease of making updates or modifications, and how simple the system is to
operate. (I.e., does it routinely operate without failure or exceptions?)

Cost: Cost is an important factor. This obviously can include hardware and software costs, but
it is also important to consider other facets needed to deploy and maintain the system. The
amount of developer time the system takes to build, the amount of operational effort required
to run the system, and even the amount of training required should all be considered. Cost is
the total cost of ownership.

Each of these principles provides the basis for decisions in designing a distributed web architecture.
However, they also can be at odds with one another, such that achieving one objective comes at
the cost of another. A basic example: choosing to address capacity by simply adding more servers
(scalability) can come at the price of manageability (you have to operate an additional server) and
cost (the price of the servers).

When designing any sort of web application it is important to consider these key principles, even
if it is to acknowledge that a design may sacrifice one or more of them.

1.2 The Basics
When it comes to system architecture there are a few things to consider: what are the right pieces,
how these pieces fit together, and what are the right tradeoffs. Investing in scaling before it is needed
is generally not a smart business proposition; however, some forethought into the design can save
substantial time and resources in the future.

This section is focused on some of the core factors that are central to almost all large web
applications: services, redundancy, partitions, and handling failure. Each of these factors involves
choices and compromises, particularly in the context of the principles described in the previous
section. In order to explain these in detail it is best to start with an example.

Example: Image Hosting Application
At some point you have probably posted an image online. For big sites that host and deliver lots of
images, there are challenges in building an architecture that is cost-effective, highly available, and
has low latency (fast retrieval).

Imagine a system where users are able to upload their images to a central server, and the images
can be requested via a web link or API, just like Flickr or Picasa. For the sake of simplicity, let’s
assume that this application has two key parts: the ability to upload (write) an image to the server,
and the ability to query for an image. While we certainly want the upload to be efficient, we care
most about having very fast delivery when someone requests an image (for example, images could
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be requested for a web page or other application). This is very similar functionality to what a web
server or Content Delivery Network (CDN) edge server (a server CDN uses to store content in many
locations so content is geographically/physically closer to users, resulting in faster performance)
might provide.

Other important aspects of the system are:
• There is no limit to the number of images that will be stored, so storage scalability, in terms of
image count needs to be considered.

• There needs to be low latency for image downloads/requests.
• If a user uploads an image, the image should always be there (data reliability for images).
• The system should be easy to maintain (manageability).
• Since image hosting doesn’t have high profit margins, the system needs to be cost-effective.
Figure 1.1 is a simplified diagram of the functionality.

Figure 1.1: Simplified architecture diagram for image hosting application

In this image hosting example, the system must be perceivably fast, its data stored reliably and
all of these attributes highly scalable. Building a small version of this application would be trivial
and easily hosted on a single server; however, that would not be interesting for this chapter. Let’s
assume that we want to build something that could grow as big as Flickr.

Services
When considering scalable system design, it helps to decouple functionality and think about each
part of the system as its own service with a clearly defined interface. In practice, systems designed
in this way are said to have a Service-Oriented Architecture (SOA). For these types of systems, each
service has its own distinct functional context, and interaction with anything outside of that context
takes place through an abstract interface, typically the public-facing API of another service.
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Deconstructing a system into a set of complementary services decouples the operation of those
pieces from one another. This abstraction helps establish clear relationships between the service, its
underlying environment, and the consumers of that service. Creating these clear delineations can
help isolate problems, but also allows each piece to scale independently of one another. This sort of
service-oriented design for systems is very similar to object-oriented design for programming.

In our example, all requests to upload and retrieve images are processed by the same server;
however, as the system needs to scale it makes sense to break out these two functions into their own
services.

Fast-forward and assume that the service is in heavy use; such a scenario makes it easy to see
how longer writes will impact the time it takes to read the images (since they two functions will be
competing for shared resources). Depending on the architecture this effect can be substantial. Even
if the upload and download speeds are the same (which is not true of most IP networks, since most
are designed for at least a 3:1 download-speed:upload-speed ratio), read files will typically be read
from cache, and writes will have to go to disk eventually (and perhaps be written several times in
eventually consistent situations). Even if everything is in memory or read from disks (like SSDs),
database writes will almost always be slower than reads1.

Another potential problem with this design is that a web server like Apache or lighttpd typically
has an upper limit on the number of simultaneous connections it can maintain (defaults are around
500, but can go much higher) and in high traffic, writes can quickly consume all of those. Since reads
can be asynchronous, or take advantage of other performance optimizations like gzip compression or
chunked transfer encoding, the web server can switch serve reads faster and switch between clients
quickly serving many more requests per second than the max number of connections (with Apache
and max connections set to 500, it is not uncommon to serve several thousand read requests per
second). Writes, on the other hand, tend to maintain an open connection for the duration for the
upload, so uploading a 1MB file could take more than 1 second on most home networks, so that web
server could only handle 500 such simultaneous writes.

Planning for this sort of bottleneck makes a good case to split out reads and writes of images
into their own services, shown in Figure 1.2. This allows us to scale each of them independently
(since it is likely we will always do more reading than writing), but also helps clarify what is going
on at each point. Finally, this separates future concerns, which would make it easier to troubleshoot
and scale a problem like slow reads.

The advantage of this approach is that we are able to solve problems independently of one
another—we don’t have to worry about writing and retrieving new images in the same context. Both
of these services still leverage the global corpus of images, but they are free to optimize their own
performance with service-appropriate methods (for example, queuing up requests, or caching popular
images—more on this below). And from a maintenance and cost perspective each service can scale
independently as needed, which is great because if they were combined and intermingled, one could
inadvertently impact the performance of the other as in the scenario discussed above.

Of course, the above example can work well when you have two different endpoints (in fact this
is very similar to several cloud storage providers’ implementations and Content Delivery Networks).
There are lots of ways to address these types of bottlenecks though, and each has different tradeoffs.

For example, Flickr solves this read/write issue by distributing users across different shards such
that each shard can only handle a set number of users, and as users increase more shards are added to
1Pole Position, an open source tool for DB benchmarking, http://polepos.org/ and results http://polepos.
sourceforge.net/results/PolePositionClientServer.pdf.
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Figure 1.2: Splitting out reads and writes

the cluster2. In the first example it is easier to scale hardware based on actual usage (the number of
reads and writes across the whole system), whereas Flickr scales with their user base (but forces the
assumption of equal usage across users so there can be extra capacity). In the former an outage or
issue with one of the services brings down functionality across the whole system (no-one can write
files, for example), whereas an outage with one of Flickr’s shards will only affect those users. In the
first example it is easier to perform operations across the whole dataset—for example, updating the
write service to include new metadata or searching across all image metadata—whereas with the
Flickr architecture each shard would need to be updated or searched (or a search service would need
to be created to collate that metadata—which is in fact what they do).

When it comes to these systems there is no right answer, but it helps to go back to the principles
at the start of this chapter, determine the system needs (heavy reads or writes or both, level of concur-
rency, queries across the data set, ranges, sorts, etc.), benchmark different alternatives, understand
how the system will fail, and have a solid plan for when failure happens.

Redundancy
In order to handle failure gracefully a web architecture must have redundancy of its services and
data. For example, if there is only one copy of a file stored on a single server, then losing that server
means losing that file. Losing data is seldom a good thing, and a common way of handling it is to
create multiple, or redundant, copies.

This same principle also applies to services. If there is a core piece of functionality for an
application, ensuring that multiple copies or versions are running simultaneously can secure against
the failure of a single node.
2Presentation on Flickr’s scaling: http://mysqldba.blogspot.com/2008/04/mysql-uc-2007-presentation-file.
html
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Creating redundancy in a system can remove single points of failure and provide a backup or
spare functionality if needed in a crisis. For example, if there are two instances of the same service
running in production, and one fails or degrades, the system can failover to the healthy copy. Failover
can happen automatically or require manual intervention.

Another key part of service redundancy is creating a shared-nothing architecture. With this
architecture, each node is able to operate independently of one another and there is no central “brain”
managing state or coordinating activities for the other nodes. This helps a lot with scalability since
new nodes can be added without special conditions or knowledge. However, and most importantly,
there is no single point of failure in these systems, so they are much more resilient to failure.

For example, in our image server application, all images would have redundant copies on another
piece of hardware somewhere (ideally in a different geographic location in the event of a catastrophe
like an earthquake or fire in the data center), and the services to access the images would be redundant,
all potentially servicing requests. (See Figure 1.3.) (Load balancers are a great way to make this
possible, but there is more on that below).

Figure 1.3: Image hosting application with redundancy

Partitions
There may be very large data sets that are unable to fit on a single server. It may also be the case
that an operation requires too many computing resources, diminishing performance and making it
necessary to add capacity. In either case you have two choices: scale vertically or horizontally.

Scaling vertically means adding more resources to an individual server. So for a very large data
set, this might mean adding more (or bigger) hard drives so a single server can contain the entire
data set. In the case of the compute operation, this could mean moving the computation to a bigger
server with a faster CPU or more memory. In each case, vertical scaling is accomplished by making
the individual resource capable of handling more on its own.

To scale horizontally, on the other hand, is to add more nodes. In the case of the large data
set, this might be a second server to store parts of the data set, and for the computing resource it
would mean splitting the operation or load across some additional nodes. To take full advantage of
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horizontal scaling, it should be included as an intrinsic design principle of the system architecture,
otherwise it can be quite cumbersome to modify and separate out the context to make this possible.

When it comes to horizontal scaling, one of the more common techniques is to break up your
services into partitions, or shards. The partitions can be distributed such that each logical set of
functionality is separate; this could be done by geographic boundaries, or by another criteria like
non-paying versus paying users. The advantage of these schemes is that they provide a service or
data store with added capacity.

In our image server example, it is possible that the single file server used to store images could
be replaced by multiple file servers, each containing its own unique set of images. (See Figure 1.4.)
Such an architecture would allow the system to fill each file server with images, adding additional
servers as the disks become full. The design would require a naming scheme that tied an image’s
filename to the server containing it. An image’s name could be formed from a consistent hashing
scheme mapped across the servers. Or alternatively, each image could be assigned an incremental
ID, so that when a client makes a request for an image, the image retrieval service only needs to
maintain the range of IDs that are mapped to each of the servers (like an index).

Figure 1.4: Image hosting application with redundancy and partitioning

Of course there are challenges distributing data or functionality across multiple servers. One of
the key issues is data locality; in distributed systems the closer the data to the operation or point of
computation, the better the performance of the system. Therefore it is potentially problematic to
have data spread across multiple servers, as any time it is needed it may not be local, forcing the
servers to perform a costly fetch of the required information across the network.

Another potential issue comes in the form of inconsistency. When there are different services
reading and writing from a shared resource, potentially another service or data store, there is the
chance for race conditions—where some data is supposed to be updated, but the read happens prior
to the update—and in those cases the data is inconsistent. For example, in the image hosting scenario,
a race condition could occur if one client sent a request to update the dog image with a new title,
changing it from “Dog” to “Gizmo”, but at the same time another client was reading the image. In
that circumstance it is unclear which title, “Dog” or “Gizmo”, would be the one received by the
second client.

Kate Matsudaira 7



There are certainly some obstacles associated with partitioning data, but partitioning allows each
problem to be split—by data, load, usage patterns, etc.—into manageable chunks. This can help
with scalability and manageability, but is not without risk. There are lots of ways to mitigate risk
and handle failures; however, in the interest of brevity they are not covered in this chapter. If you are
interested in reading more, you can check out my blog post on fault tolerance and monitoring3.

1.3 The Building Blocks of Fast and Scalable Data Access
Having covered some of the core considerations in designing distributed systems, let’s now talk
about the hard part: scaling access to the data.

Most simple web applications, for example, LAMP stack applications, look something like
Figure 1.5.

Figure 1.5: Simple web applications

As they grow, there are two main challenges: scaling access to the app server and to the database.
In a highly scalable application design, the app (or web) server is typically minimized and often
embodies a shared-nothing architecture. This makes the app server layer of the system horizontally
scalable. As a result of this design, the heavy lifting is pushed down the stack to the database server
and supporting services; it’s at this layer where the real scaling and performance challenges come
into play.

The rest of this chapter is devoted to some of the more common strategies and methods for
making these types of services fast and scalable by providing fast access to data.

Figure 1.6: Oversimplified web application

Most systems can be oversimplified to Figure 1.6. This is a great place to start. If you have a lot
of data, you want fast and easy access, like keeping a stash of candy in the top drawer of your desk.
Though overly simplified, the previous statement hints at two hard problems: scalability of storage
and fast access of data.

For the sake of this section, let’s assume you have many terabytes (TB) of data and you want
to allow users to access small portions of that data at random. (See Figure 1.7.) This is similar to
locating an image file somewhere on the file server in the image application example.
3http://katemats.com/2011/11/13/distributed-systems-basics-handling-failure-fault-tolerance-and-
monitoring/
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Figure 1.7: Accessing specific data

This is particularly challenging because it can be very costly to load TBs of data into memory; this
directly translates to disk IO. Reading from disk is many times slower than from memory—memory
access is as fast as Chuck Norris, whereas disk access is slower than the line at the DMV. This
speed difference really adds up for large data sets; in real numbers memory access is as little as 6
times faster for sequential reads, or 100,000 times faster for random reads4, than reading from disk.
Moreover, even with unique IDs, solving the problem of knowing where to find that little bit of data
can be an arduous task. It’s like trying to get that last Jolly Rancher from your candy stash without
looking.

Thankfully there are many options that you can employ to make this easier; four of the more
important ones are caches, proxies, indexes and load balancers. The rest of this section discusses
how each of these concepts can be used to make data access a lot faster.

Caches
Caches take advantage of the locality of reference principle: recently requested data is likely to be
requested again. They are used in almost every layer of computing: hardware, operating systems,
web browsers, web applications and more. A cache is like short-term memory: it has a limited
amount of space, but is typically faster than the original data source and contains the most recently
accessed items. Caches can exist at all levels in architecture, but are often found at the level nearest to
the front end, where they are implemented to return data quickly without taxing downstream levels.

How can a cache be used to make your data access faster in our API example? In this case, there
are a couple of places you can insert a cache. One option is to insert a cache on your request layer
node, as in Figure 1.8.

Placing a cache directly on a request layer node enables the local storage of response data. Each
time a request is made to the service, the node will quickly return local, cached data if it exists. If it
is not in the cache, the request node will query the data from disk. The cache on one request layer
node could also be located both in memory (which is very fast) and on the node’s local disk (faster
than going to network storage).

What happens when you expand this to many nodes? As you can see in Figure 1.9, if the request
layer is expanded to multiple nodes, it’s still quite possible to have each node host its own cache.
However, if your load balancer randomly distributes requests across the nodes, the same request
4The Pathologies of Big Data, http://queue.acm.org/detail.cfm?id=1563874.
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Figure 1.8: Inserting a cache on your request layer node

Figure 1.9: Multiple caches

will go to different nodes, thus increasing cache misses. Two choices for overcoming this hurdle are
global caches and distributed caches.

Global Cache
A global cache is just as it sounds: all the nodes use the same single cache space. This involves
adding a server, or file store of some sort, faster than your original store and accessible by all the
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request layer nodes. Each of the request nodes queries the cache in the same way it would a local
one. This kind of caching scheme can get a bit complicated because it is very easy to overwhelm a
single cache as the number of clients and requests increase, but is very effective in some architectures
(particularly ones with specialized hardware that make this global cache very fast, or that have a
fixed dataset that needs to be cached).

There are two common forms of global caches depicted in the diagrams. In Figure 1.10, when a
cached response is not found in the cache, the cache itself becomes responsible for retrieving the
missing piece of data from the underlying store. In Figure 1.11 it is the responsibility of request
nodes to retrieve any data that is not found in the cache.

Figure 1.10: Global cache where cache is responsible for retrieval

Figure 1.11: Global cache where request nodes are responsible for retrieval

The majority of applications leveraging global caches tend to use the first type, where the cache
itself manages eviction and fetching data to prevent a flood of requests for the same data from the
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clients. However, there are some cases where the second implementation makes more sense. For
example, if the cache is being used for very large files, a low cache hit percentage would cause the
cache buffer to become overwhelmed with cache misses; in this situation it helps to have a large
percentage of the total data set (or hot data set) in the cache. Another example is an architecture
where the files stored in the cache are static and shouldn’t be evicted. (This could be because of
application requirements around that data latency—certain pieces of data might need to be very fast
for large data sets—where the application logic understands the eviction strategy or hot spots better
than the cache.)

Distributed Cache
In a distributed cache (Figure 1.12), each of its nodes own part of the cached data, so if a refrigerator
acts as a cache to the grocery store, a distributed cache is like putting your food in several locations—
your fridge, cupboards, and lunch box—convenient locations for retrieving snacks from, without a
trip to the store. Typically the cache is divided up using a consistent hashing function, such that if
a request node is looking for a certain piece of data it can quickly know where to look within the
distributed cache to determine if that data is available. In this case, each node has a small piece
of the cache, and will then send a request to another node for the data before going to the origin.
Therefore, one of the advantages of a distributed cache is the increased cache space that can be had
just by adding nodes to the request pool.

Figure 1.12: Distributed cache

A disadvantage of distributed caching is remedying a missing node. Some distributed caches get
around this by storing multiple copies of the data on different nodes; however, you can imagine how
this logic can get complicated quickly, especially when you add or remove nodes from the request
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layer. Although even if a node disappears and part of the cache is lost, the requests will just pull
from the origin—so it isn’t necessarily catastrophic!

The great thing about caches is that they usually make things much faster (implemented correctly,
of course!) The methodology you choose just allows you to make it faster for even more requests.
However, all this caching comes at the cost of having to maintain additional storage space, typically
in the form of expensive memory; nothing is free. Caches are wonderful for making things generally
faster, and moreover provide system functionality under high load conditions when otherwise there
would be complete service degradation.

One example of a popular open source cache is Memcached5 (which can work both as a local
cache and distributed cache); however, there are many other options (including many language- or
framework-specific options).

Memcached is used in many large web sites, and even though it can be very powerful, it is simply
an in-memory key value store, optimized for arbitrary data storage and fast lookups (O(1)).

Facebook uses several different types of caching to obtain their site performance6. They use
$GLOBALS and APC caching at the language level (provided in PHP at the cost of a function call)
which helps make intermediate function calls and results much faster. (Most languages have these
types of libraries to improve web page performance and they should almost always be used.) Facebook
then use a global cache that is distributed across many servers7, such that one function call accessing
the cache could make many requests in parallel for data stored on different Memcached servers.
This allows them to get much higher performance and throughput for their user profile data, and
have one central place to update data (which is important, since cache invalidation and maintaining
consistency can be challenging when you are running thousands of servers).

Now let’s talk about what to do when the data isn’t in the cache. . .

Proxies
At a basic level, a proxy server is an intermediate piece of hardware/software that receives requests
from clients and relays them to the backend origin servers. Typically, proxies are used to filter requests,
log requests, or sometimes transform requests (by adding/removing headers, encrypting/decrypting,
or compression).

Figure 1.13: Proxy server

Proxies are also immensely helpful when coordinating requests from multiple servers, providing
opportunities to optimize request traffic from a system-wide perspective. One way to use a proxy to
speed up data access is to collapse the same (or similar) requests together into one request, and then
return the single result to the requesting clients. This is known as collapsed forwarding.

Imagine there is a request for the same data (let’s call it littleB) across several nodes, and that
piece of data is not in the cache. If that request is routed thought the proxy, then all of those requests
5http://memcached.org/
6Facebook caching and performance, http://sizzo.org/talks/.
7Scaling memcached at Facebook, http://www.facebook.com/note.php?note_id=39391378919.
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can be collapsed into one, which means we only have to read littleB off disk once. (See Figure 1.14.)
There is some cost associated with this design, since each request can have slightly higher latency,
and some requests may be slightly delayed to be grouped with similar ones. But it will improve
performance in high load situations, particularly when that same data is requested over and over.
This is similar to a cache, but instead of storing the data/document like a cache, it is optimizing the
requests or calls for those documents and acting as a proxy for those clients.

In a LAN proxy, for example, the clients do not need their own IPs to connect to the Internet, and
the LAN will collapse calls from the clients for the same content. It is easy to get confused here
though, since many proxies are also caches (as it is a very logical place to put a cache), but not all
caches act as proxies.

Figure 1.14: Using a proxy server to collapse requests

Another great way to use the proxy is to not just collapse requests for the same data, but also to
collapse requests for data that is spatially close together in the origin store (consecutively on disk).
Employing such a strategy maximizes data locality for the requests, which can result in decreased
request latency. For example, let’s say a bunch of nodes request parts of B: partB1, partB2, etc. We
can set up our proxy to recognize the spatial locality of the individual requests, collapsing them into
a single request and returning only bigB, greatly minimizing the reads from the data origin. (See
Figure 1.15.) This can make a really big difference in request time when you are randomly accessing
across TBs of data! Proxies are especially helpful under high load situations, or when you have
limited caching, since they can essentially batch several requests into one.

Figure 1.15: Using a proxy to collapse requests for data that is spatially close together

It is worth noting that you can use proxies and caches together, but generally it is best to put the
cache in front of the proxy, for the same reason that it is best to let the faster runners start first in a
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crowded marathon race. This is because the cache is serving data from memory, it is very fast, and it
doesn’t mind multiple requests for the same result. But if the cache was located on the other side of
the proxy server, then there would be additional latency with every request before the cache, and this
could hinder performance.

If you are looking at adding a proxy to your systems, there are many options to consider; Squid8
and Varnish9 have both been road tested and are widely used in many production web sites. These
proxy solutions offer many optimizations to make the most of client-server communication. Installing
one of these as a reverse proxy (explained in the load balancer section below) at the web server layer
can improve web server performance considerably, reducing the amount of work required to handle
incoming client requests.

Indexes
Using an index to access your data quickly is a well-known strategy for optimizing data access
performance; probably the most well known when it comes to databases. An index makes the
trade-offs of increased storage overhead and slower writes (since you must both write the data and
update the index) for the benefit of faster reads.

Figure 1.16: Indexes

Just as to a traditional relational data store, you can also apply this concept to larger data sets.
The trick with indexes is you must carefully consider how users will access your data. In the case of
data sets that are many TBs in size, but with very small payloads (e.g., 1 KB), indexes are a necessity
for optimizing data access. Finding a small payload in such a large data set can be a real challenge
since you can’t possibly iterate over that much data in any reasonable time. Furthermore, it is very
likely that such a large data set is spread over several (or many!) physical devices—this means you
8http://www.squid-cache.org/
9https://www.varnish-cache.org/
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need some way to find the correct physical location of the desired data. Indexes are the best way to
do this.

An index can be used like a table of contents that directs you to the location where your data
lives. For example, let’s say you are looking for a piece of data, part 2 of B—how will you know
where to find it? If you have an index that is sorted by data type—say data A, B, C—it would tell
you the location of data B at the origin. Then you just have to seek to that location and read the part
of B you want. (See Figure 1.16.)

These indexes are often stored in memory, or somewhere very local to the incoming client request.
Berkeley DBs (BDBs) and tree-like data structures are commonly used to store data in ordered lists,
ideal for access with an index.

Often there are many layers of indexes that serve as a map, moving you from one location to the
next, and so forth, until you get the specific piece of data you want. (See Figure 1.17.)

Figure 1.17: Many layers of indexes

Indexes can also be used to create several different views of the same data. For large data sets,
this is a great way to define different filters and sorts without resorting to creating many additional
copies of the data.

For example, imagine that the image hosting system from earlier is actually hosting images of
book pages, and the service allows client queries across the text in those images, searching all the
book content about a topic, in the same way search engines allow you to search HTML content. In
this case, all those book images take many, many servers to store the files, and finding one page to
render to the user can be a bit involved. First, inverse indexes to query for arbitrary words and word
tuples need to be easily accessible; then there is the challenge of navigating to the exact page and
location within that book, and retrieving the right image for the results. So in this case the inverted
index would map to a location (such as book B), and then B may contain an index with all the words,
locations and number of occurrences in each part.

An inverted index, which could represent Index1 in the diagram above, might look something
like the following—each word or tuple of words provide an index of what books contain them.

Word(s) Book(s)
being awesome Book B, Book C, Book D
always Book C, Book F
believe Book B
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The intermediate index would look similar but would contain just the words, location, and
information for book B. This nested index architecture allows each of these indexes to take up less
space than if all of that info had to be stored into one big inverted index.

And this is key in large-scale systems because even compressed, these indexes can get quite
big and expensive to store. In this system if we assume we have a lot of the books in the world—
100,000,00010—and that each book is only 10 pages long (to make the math easier), with 250 words
per page, that means there are 250 billion words. If we assume an average of 5 characters per word,
and each character takes 8 bits (or 1 byte, even though some characters are 2 bytes), so 5 bytes per
word, then an index containing only each word once is over a terabyte of storage. So you can see
creating indexes that have a lot of other information like tuples of words, locations for the data, and
counts of occurrences, can add up very quickly.

Creating these intermediate indexes and representing the data in smaller sections makes big data
problems tractable. Data can be spread across many servers and still accessed quickly. Indexes are a
cornerstone of information retrieval, and the basis for today’s modern search engines. Of course, this
section only scratched the surface, and there is a lot of research being done on how to make indexes
smaller, faster, contain more information (like relevancy), and update seamlessly. (There are some
manageability challenges with race conditions, and with the sheer number of updates required to add
new data or change existing data, particularly in the event where relevancy or scoring is involved).

Being able to find your data quickly and easily is important; indexes are an effective and simple
tool to achieve this.

Load Balancers
Finally, another critical piece of any distributed system is a load balancer. Load balancers are a
principal part of any architecture, as their role is to distribute load across a set of nodes responsible
for servicing requests. This allows multiple nodes to transparently service the same function in a
system. (See Figure 1.18.) Their main purpose is to handle a lot of simultaneous connections and
route those connections to one of the request nodes, allowing the system to scale to service more
requests by just adding nodes.

Figure 1.18: Load balancer

There are many different algorithms that can be used to service requests, including picking a
random node, round robin, or even selecting the node based on certain criteria, such as memory or
10Inside Google Books blog post, http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-
counted.html.

Kate Matsudaira 17



CPU utilization. Load balancers can be implemented as software or hardware appliances. One open
source software load balancer that has received wide adoption is HAProxy11.

In a distributed system, load balancers are often found at the very front of the system, such that
all incoming requests are routed accordingly. In a complex distributed system, it is not uncommon
for a request to be routed to multiple load balancers as shown in Figure 1.19.

Figure 1.19: Multiple load balancers

Like proxies, some load balancers can also route a request differently depending on the type of
request it is. (Technically these are also known as reverse proxies.)

One of the challenges with load balancers is managing user-session-specific data. In an e-
commerce site, when you only have one client it is very easy to allow users to put things in their
shopping cart and persist those contents between visits (which is important, because it is much
more likely you will sell the product if it is still in the user’s cart when they return). However, if a
user is routed to one node for a session, and then a different node on their next visit, there can be
inconsistencies since the new node may be missing that user’s cart contents. (Wouldn’t you be upset
if you put a 6 pack of Mountain Dew in your cart and then came back and it was empty?) One way
around this can be to make sessions sticky so that the user is always routed to the same node, but
then it is very hard to take advantage of some reliability features like automatic failover. In this case,
the user’s shopping cart would always have the contents, but if their sticky node became unavailable
there would need to be a special case and the assumption of the contents being there would no longer
be valid (although hopefully this assumption wouldn’t be built into the application). Of course, this
problem can be solved using other strategies and tools in this chapter, like services, and many not
covered (like browser caches, cookies, and URL rewriting).

If a system only has a couple of a nodes, systems like round robin DNS may make more sense
since load balancers can be expensive and add an unneeded layer of complexity. Of course in larger
systems there are all sorts of different scheduling and load-balancing algorithms, including simple
ones like random choice or round robin, and more sophisticated mechanisms that take things like
utilization and capacity into consideration. All of these algorithms allow traffic and requests to be
distributed, and can provide helpful reliability tools like automatic failover, or automatic removal of
a bad node (such as when it becomes unresponsive). However, these advanced features can make
problem diagnosis cumbersome. For example, when it comes to high load situations, load balancers
will remove nodes that may be slow or timing out (because of too many requests), but that only
exacerbates the situation for the other nodes. In these cases extensive monitoring is important,
because overall system traffic and throughput may look like it is decreasing (since the nodes are
serving less requests) but the individual nodes are becoming maxed out.

Load balancers are an easy way to allow you to expand system capacity, and like the other
techniques in this article, play an essential role in distributed system architecture. Load balancers
11http://haproxy.1wt.eu/

18 Scalable Web Architecture and Distributed Systems



also provide the critical function of being able to test the health of a node, such that if a node is
unresponsive or over-loaded, it can be removed from the pool handling requests, taking advantage of
the redundancy of different nodes in your system.

Queues
So far we have covered a lot of ways to read data quickly, but another important part of scaling the
data layer is effective management of writes. When systems are simple, with minimal processing
loads and small databases, writes can be predictably fast; however, in more complex systems writes
can take an almost non-deterministically long time. For example, data may have to be written several
places on different servers or indexes, or the system could just be under high load. In the cases where
writes, or any task for that matter, may take a long time, achieving performance and availability
requires building asynchrony into the system; a common way to do that is with queues.

Figure 1.20: Synchronous request

Imagine a system where each client is requesting a task to be remotely serviced. Each of these
clients sends their request to the server, where the server completes the tasks as quickly as possible
and returns the results to their respective clients. In small systems where one server (or logical
service) can service incoming clients just as fast as they come, this sort of situation should work
just fine. However, when the server receives more requests than it can handle, then each client is
forced to wait for the other clients’ requests to complete before a response can be generated. This is
an example of a synchronous request, depicted in Figure 1.20.

This kind of synchronous behavior can severely degrade client performance; the client is forced
to wait, effectively performing zero work, until its request can be answered. Adding additional
servers to address system load does not solve the problem either; even with effective load balancing
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in place it is extremely difficult to ensure the even and fair distribution of work required to maximize
client performance. Further, if the server handling requests is unavailable, or fails, then the clients
upstream will also fail. Solving this problem effectively requires abstraction between the client’s
request and the actual work performed to service it.

Figure 1.21: Using queues to manage requests

Enter queues. A queue is as simple as it sounds: a task comes in, is added to the queue and then
workers pick up the next task as they have the capacity to process it. (See Figure 1.21.) These tasks
could represent simple writes to a database, or something as complex as generating a thumbnail
preview image for a document. When a client submits task requests to a queue they are no longer
forced to wait for the results; instead they need only acknowledgement that the request was properly
received. This acknowledgement can later serve as a reference for the results of the work when the
client requires it.

Queues enable clients to work in an asynchronous manner, providing a strategic abstraction
of a client’s request and its response. On the other hand, in a synchronous system, there is no
differentiation between request and reply, and they therefore cannot be managed separately. In an
asynchronous system the client requests a task, the service responds with a message acknowledging
the task was received, and then the client can periodically check the status of the task, only requesting
the result once it has completed. While the client is waiting for an asynchronous request to be
completed it is free to perform other work, even making asynchronous requests of other services.
The latter is an example of how queues and messages are leveraged in distributed systems.

Queues also provide some protection from service outages and failures. For instance, it is quite
easy to create a highly robust queue that can retry service requests that have failed due to transient
server failures. It is more preferable to use a queue to enforce quality-of-service guarantees than to
expose clients directly to intermittent service outages, requiring complicated and often-inconsistent
client-side error handling.

Queues are fundamental in managing distributed communication between different parts of any

20 Scalable Web Architecture and Distributed Systems



large-scale distributed system, and there are lots of ways to implement them. There are quite a few
open source queues like RabbitMQ12, ActiveMQ13, BeanstalkD14, but some also use services like
Zookeeper15, or even data stores like Redis16.

1.4 Conclusion
Designing efficient systems with fast access to lots of data is exciting, and there are lots of great
tools that enable all kinds of new applications. This chapter covered just a few examples, barely
scratching the surface, but there are many more—and there will only continue to be more innovation
in the space.

12http://www.rabbitmq.com/
13http://activemq.apache.org/
14http://kr.github.com/beanstalkd/
15http://zookeeper.apache.org/
16http://redis.io/
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[chapter2]

Firefox Release Engineering
Chris AtLee, Lukas Blakk, JohnO’Duinn, and Armen Zambrano
Gasparnian

Recently, the Mozilla Release Engineering team has made numerous advances in release automation
for Firefox. We have reduced the requirements for human involvement during signing and sending
notices to stakeholders, and have automated many other small manual steps, because each manual step
in the process is an opportunity for human error. While what we have now isn’t perfect, we’re always
striving to streamline and automate our release process. Our final goal is to be able to push a button
and walk away; minimal human intervention will eliminate many of the headaches and do-overs we
experienced with our older part-manual, part-automated release processes. In this chapter, we will
explore and explain the scripts and infrastructure decisions that comprise the complete Firefox rapid
release system, as of Firefox 10.

You’ll follow the system from the perspective of a release-worthy Mercurial changeset as it
is turned into a release candidate—and then a public release—available to over 450 million daily
users worldwide. We’ll start with builds and code signing, then customized partner and localization
repacks, the QA process, and how we generate updates for every supported version, platform and
localization. Each of these steps must be completed before the release can be pushed out to Mozilla
Community’s network of mirrors which provide the downloads to our users.

We’ll look at some of the decisions that have been made to improve this process; for example, our
sanity-checking script that helps eliminate much of what used to be vulnerable to human error; our
automated signing script; our integration of mobile releases into the desktop release process; patcher,
where updates are created; and AUS (Application Update Service), where updates are served to our
users across multiple versions of the software.

This chapter describes the mechanics of how we generate release builds for Firefox. Most of this
chapter details the significant steps that occur in a release process once the builds start, but there is
also plenty of complex cross-group communication to deal with before Release Engineering even
starts to generate release builds, so let’s start there.

2.1 Look N Ways Before You Start a Release
When we started on the project to improve Mozilla’s release process, we began with the premise that
the more popular Firefox became, the more users we would have, and the more attractive a target
Firefox would become to blackhat hackers looking for security vulnerabilities to exploit. Also, the
more popular Firefox became, the more users we would have to protect from a newly discovered



Figure 2.1: Getting from code to “Go to build”

security vulnerability, so the more important it would be to be able to deliver a security fix as quickly
as possible. We even have a term for this: a “chemspill” release1. Instead of being surprised by the
occasional need for a chemspill release in between our regularly scheduled releases, we decided to
plan as if every release could be a chemspill release, and designed our release automation accordingly.

This mindset has three important consequences:
1. We do a postmortem after every release, and look to see where things could be made smoother,

easier, and faster next time. If at all possible, we find and fix at least one thing, no matter
how small, immediately—before the next release. This constant polishing of our release
automation means we’re always looking for new ways to rely on less human involvement
while also improving robustness and turnaround time. A lot of effort is spent making our
tools and processes bulletproof so that “rare” events like network hiccups, disk space issues
or typos made by real live humans are caught and handled as early as possible. Even though
we’re already fast enough for regular, non-chemspill releases, we want to reduce the risk of
any human error in a future release. This is especially true in a chemspill release.

2. When we do have a chemspill release, the more robust the release automation, the less stressed
the humans in Release Engineering are. We’re used to the idea of going as fast as possible
with calm precision, and we’ve built tools to do this as safely and robustly as we know how.
Less stress means more calm and precise work within a well-rehearsed process, which in turn
helps chemspill releases go smoothly.

1Short for “chemical spill”.
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3. We created a Mozilla-wide “go to build” process. When doing a regular (non-chemspill)
release, it’s possible to have everyone look through the same bug triage queries, see clearly
when the last fix was landed and tested successfully, and reach consensus on when to start
builds. However, in a chemspill release—where minutes matter—keeping track of all the
details of the issue as well as following up bug confirmations and fixes gets very tricky very
quickly. To reduce complexity and the risk of mistakes, Mozilla now has a full-time person
to track the readiness of the code for a “go to build” decision. Changing processes during
a chemspill is risky, so in order to make sure everyone is familiar with the process when
minutes matter, we use this same process for chemspill and regular releases.
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Figure 2.2: Complete release timeline, using a chemspill as example

2.2 "Go to Build"
Who Can Send the “Go to Build”?
Before the start of the release, one person is designated to assume responsibility for coordinating the
entire release. This person needs to attend triage meetings, understand the background context on all
the work being landed, referee bug severity disputes fairly, approve landing of late-breaking changes,
and make tough back-out decisions. Additionally, on the actual release day this person is on point
for all communications with the different groups (developers, QA, Release Engineering, website
developers, PR, marketing, etc.).

Different companies use different titles for this role. Some titles we’ve heard include Release
Manager, Release Engineer, Program Manager, Project Manager, Product Manager, Product Czar,
Release Driver. In this chapter, we will use the term “Release Coordinator” as we feel it most clearly
defines the role in our process as described above. The important point here is that the role, and the
final authority of the role, is clearly understood by everyone before the release starts, regardless of
their background or previous work experiences elsewhere. In the heat of a release day, it is important
that everyone knows to abide by, and trust, the coordination decisions that this person makes.

The Release Coordinator is the only person outside of Release Engineering who is authorized
to send “stop builds” emails if a show-stopper problem is discovered. Any reports of suspected
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show-stopper problems are redirected to the Release Coordinator, who will evaluate, make the final
go/no-go decision and communicate that decision to everyone in a timely manner. In the heat of
the moment of a release day, we all have to abide by, and trust, the coordination decisions that this
person makes.

How to Send the “Go to Build”?
Early experiments with sending “go to build” in IRC channels or verbally over the phone led to
misunderstandings, occasionally causing problems for the release in progress. Therefore, we now
require that the “go to build” signal for every release is done by email, to a mailing list that includes
everyone across all groups involved in release processes. The subject of the email includes “go to
build” and the explicit product name and version number; for example:

go to build Firefox 6.0.1

Similarly, if a problem is found in the release, the Release Coordinator will send a new “all stop”
email to the same mailing list, with a new subject line. We found that it was not sufficient to just hit
reply on the most recent email about the release; email threading in some email clients caused some
people to not notice the “all stop” email if it was way down a long and unrelated thread.

What Is In the “Go to Build” Email?
1. The exact code to be used in the build; ideally, the URL to the specific change in the source

code repository that the release builds are to be created from.
(a) Instructions like “use the latest code” are never acceptable; in one release, after the

“go to build” email was sent and before builds started, a well-intentioned developer
landed a change, without approval, in the wrong branch. The release included that
unwanted change in the builds. Thankfully the mistake was caught before we shipped,
but we did have to delay the release while we did a full stop and rebuilt everything.

(b) In a time-based version control system like CVS, be fully explicit about the exact
time to use; give the time down to seconds, and specify timezone. In one release,
when Firefox was still based on CVS, the Release Coordinator specified the cutoff
time to be used for the builds but did not give the timezone. By the time Release
Engineering noticed the missing timezone info, the Release Coordinator was asleep.
Release Engineering correctly guessed that the intent was local time (in California),
but in a late-night mixup over PDT instead of PST we ended up missing the last critical
bug fix. This was caught by QA before we shipped, but we had to stop builds and start
the build over using the correct cutoff time.

2. A clear sense of the urgency for this particular release. While it sounds obvious, it is important
when handling some important edge cases, so here is a quick summary:

(a) Some releases are “routine”, and can be worked on in normal working hours. They are
a pre-scheduled release, they are on schedule, and there is no emergency. Of course,
all release builds need to be created in a timely manner, but there is no need for release
engineers to pull all-nighters and burn out for a routine release. Instead, we schedule
them properly in advance so everything stays on schedule with people working normal
hours. This keeps people fresh and better able to handle unscheduled urgent work if
the need arises.
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(b) Some releases are “chemspills”, and are urgent, where minutes matter. These are
typically to fix a published security exploit, or to fix a newly introduced top-crash
problem impacting a large percentage of our user base. Chemspills need to be created
as quickly as possible and are typically not pre-scheduled releases.

(c) Some releases change from routine to chemspill or from chemspill to routine. For
example, if a security fix in a routine release was accidentally leaked, it is now a
chemspill release. If a business requirement like a “special sneak preview” release for
an upcoming conference announcement was delayed for business reasons, the release
now changes from chemspill to routine.

(d) Some releases have different people holding different opinions on whether the release
is normal or urgent, depending on their perspective on the fixes being shipped in the
release.

It is the role of the Release Coordinator to balance all the facts and opinions, reach a decision,
and then communicate that decision about urgency consistently across all groups. If new information
arrives, the Release Coordinator reassesses, and then communicates the new urgency to all the same
groups. Having some groups believe a release is a chemspill, while other groups believe the same
release is routine can be destructive to cross-group cohesion.

Finally, these emails also became very useful to measure where time was spent during a release.
While they are only accurate to wall-clock time resolution, this accuracy is really helpful when
figuring out where next to focus our efforts on making things faster. As the old adage goes, before
you can improve something, you have to be able to measure it.

Throughout the beta cycle for Firefox we also do weekly releases from our mozilla-beta
repository2. Each one of these beta releases goes through our usual full release automation, and is
treated almost identically to our regular final releases. To minimize surprises during a release, our
intent is to have no new untested changes to release automation or infrastructure by the time we start
the final release builds.

2.3 Tagging, Building, and Source Tarballs
In preparation for starting automation, we recently started to use a script, release_sanity.py3, that
was originally written by a Release Engineering summer intern. This Python script assists a release
engineer with double-checking that all configurations for a release match what is checked into our
tools and configuration repositories. It also checks what is in the specified release code revisions for
mozilla-release and all the (human) languages for this release, which will be what the builds and
language repacks are generated from.

The script accepts the buildbot config files for any release configurations that will be used (such
as desktop or mobile), the branch to look at (e.g., mozilla-release), the build and version number,
and the names of the products that are to be built (such as “fennec” or “firefox”). It will fail if the
release repositories do not match what’s in the configurations, if locale repository changesets don’t
match our shipping locales and localization changeset files, or if the release version and build number
don’t match what has been given to our build tools with the tag generated using the product, version,
and build number. If all the tests in the script pass, it will reconfigure the buildbot master where the
script is being run and where release builders will be triggered, and then generate the “send change”
that starts the automated release process.
2http://hg.mozilla.org/releases/mozilla-beta/
3http://mxr.mozilla.org/build/source/tools/buildbot-helpers/release_sanity.py
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Figure 2.3: Automated tagging

After a release engineer kicks off builders, the first automated step in the Firefox release process is
tagging all the related source code repositories to record which revision of the source, language reposi-
tories, and related tools are being used for this version and build number of a release candidate. These
tags allow us to keep a history of Firefox and Fennec (mobile Firefox) releases’ version and build num-
bers in our release repositories. For Firefox releases, one example tag set is FIREFOX_10_0_RELEASE
FIREFOX_10_0_BUILD1 FENNEC_10_0_RELEASE FENNEC_10_0_BUILD1.

A single Firefox release uses code from about 85 version control repositories that host things
such as the product code, localization strings, release automation code, and helper utilities. Tagging
all these repositories is critical to ensure that future steps of the release automation are all executed
using the same set of revisions. It also has a number of other benefits: Linux distributions and other
contributors can reproduce builds with exactly the same code and tools that go into the official builds,
and it also records the revisions of source and tools used on a per-release basis for future comparison
of what changed between releases.

Once all the repositories are branched and tagged, a series of dependent builders automatically
start up: one builder for each release platform plus a source bundle that includes all source used
in the release. The source bundle and built installers are all uploaded to the release directory as
they become available. This allows anyone to see exactly what code is in a release, and gives a
snapshot that would allow us to re-create the builds if we ever needed to (for example, if our VCS
failed somehow).

For the Firefox build’s source, sometimes we need to import code from an earlier repository.
For example, with a beta release this means pulling in the signed-off revision from Mozilla-Aurora
(our more-stable-than-Nightly repository) for Firefox 10.0b1. For a release it means pulling in
the approved changes from Mozilla-Beta (typically the same code used for 10.0b6) to the Mozilla-
Release repository. This release branch is then created as a named branch whose parent changeset
is the signed-off revision from the ‘go to build’ provided by the Release Coordinator. The release
branch can be used to make release-specific modifications to the source code, such as bumping
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version numbers or finalizing the set of locales that will be built. If a critical security vulnerability is
discovered in the future that requires an immediate fix—a chemspill—a minimal set of changes to
address the vulnerability will be landed on this relbranch and a new version of Firefox generated and
released from it. When we have to do another round of builds for a particular release, buildN, we
use these relbranches to grab the same code that was signed off on for ‘go to build’, which is where
any changes to that release code will have been landed. The automation starts again and bumps the
tagging to the new changeset on that relbranch.

Our tagging process does a lot of operations with local and remote Mercurial repositories. To
streamline some of the most common operations we’ve written a few tools to assist us: retry.py4
and hgtool.py5. retry.py is a simple wrapper that can take a given command and run it, retrying
several times if it fails. It can also watch for exceptional output conditions and retry or report failure
in those cases. We’ve found it useful to wrap retry.py around most of the commands which can
fail due to external dependencies. For tagging, the Mercurial operations could fail due to temporary
network outages, web server issues, or the backend Mercurial server being temporarily overloaded.
Being able to automatically retry these operations and continue saves a lot of our time, since we don’t
have to manually recover, clean up any fallout and then get the release automation running again.

hgtool.py is a utility that encapsulates several common Mercurial operations, like cloning,
pulling, and updating with a single invocation. It also adds support for Mercurial’s share extension,
which we use extensively to avoid having several full clones of repositories in different directories
on the same machine. Adding support for shared local repositories significantly sped up our tagging
process, since most full clones of the product and locale repositories could be avoided.

An important motivation for developing tools like these is making our automation as testable as
possible. Because tools like hgtool.py are small, single-purpose utilities built on top of reusable
libraries, they’re much easier to test in isolation.

Today our tagging is done in two parallel jobs: one for desktop Firefox which takes around 20
minutes to complete as it includes tagging 80+ locale repositories, and another for mobile Firefox
which takes around 10 minutes to complete since we have fewer locales currently available for our
mobile releases. In the future we would like to streamline our release automation process so that we
tag all the various repositories in parallel. The initial builds can be started as soon as the product
code and tools requirement repository is tagged, without having to wait for all the locale repositories
to be tagged. By the time these builds are finished, the rest of the repositories will have been tagged
so that localization repackages and future steps can be completed. We estimate this can reduce the
total time to have builds ready by 15 minutes.

2.4 Localization Repacks and Partner Repacks
Once the desktop builds are generated and uploaded to ftp.mozilla.org, our automation triggers
the localization repackaging jobs. A “localization repack” takes the original build (which contains
the en-US locale), unpacks it, replaces the en-US strings with the strings for another locale that we
are shipping in this release, then repackages all the files back up again (this is why we call them
repacks). We repeat this for each locale shipping in the release. Originally, we did all repacks serially.
However, as we added more locales, this took a long time to complete, and we had to restart from
the beginning if anything failed out mid-way through.
4http://hg.mozilla.org/build/tools/file/7adc08bd1386/lib/python/util/retry.py
5http://hg.mozilla.org/build/mozharness/file/a0fce0162fd5/scripts/hgtool.py
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Figure 2.4: Repacking Firefox for each localization

Now, we instead split the entire set of repacks into six jobs, each processed concurrently on six
different machines. This approach completes the work in approximately a sixth of the time. This
also allows us to redo a subset of repacks if an individual repack fails, without having to redo all
repacks. (We could split the repacks into even more, smaller, concurrent jobs, but we found it took
away too many machines from the pool, which affected other unrelated jobs triggered by developers
on our continuous integration system.)

The process for mobile (on Android) is slightly different, as we produce only two installers: an
English version and a multi-locale version with over a dozen languages built into the installer instead
of a separate build per locale. The size of this multi-locale version is an issue, especially with slow
download speeds onto small mobile devices. One proposal for the future is to have other languages
be requested on demand as add-ons from addons.mozilla.org.

In Figure 2.4, you can see that we currently rely on three different sources for our locale in-
formation: shipped_locales, l10_changesets and l10n-changesets_mobile-release.json.
(There is a plan to move all three into a unified JSON file.) These files contain information about the
different localizations we have, and certain platform exceptions. Specifically, for a given localization
we need to know which revision of the repository to use for a given release and we need to know if
the localization can build on all of our supported platforms (e.g., Japanese for Mac comes from a
different repository all together). Two of these files are used for the Desktop releases and one for the
Mobile release (this JSON file contains both the list of platforms and the changesets).

Who decides which languages we ship? First of all, localizers themselves nominate their specific
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changeset for a given release. The nominated changeset gets reviewed by Mozilla’s localization team
and shows up in a web dashboard that lists the changesets needed for each language. The Release
Coordinator reviews this before sending the “go to build” email. On the day of a release, we retrieve
this list of changesets and we repackage them accordingly.

Besides localization repackages we also generate partner repackages. These are customized
builds for various partners we have who want to customize the experience for their customers. The
main type of changes are custom bookmarks, custom homepage and custom search engines but many
other things can be changed. These customized builds are generated for the latest Firefox release and
not for betas.

2.5 Signing
In order for users to be sure that the copy of Firefox they have downloaded is indeed the unmodified
build from Mozilla, we apply a few different types of digital signatures to the builds.

The first type of signing is for our Windows builds. We use a Microsoft Authenticode (signcode)
signing key to sign all our .exe and .dll files. Windows can use these signatures to verify that
the application comes from a trusted source. We also sign the Firefox installer executable with the
Authenticode key.

Next we use GPG to generate a set of MD5 and SHA1 checksums for all the builds on all
platforms, and generate detached GPG signatures for the checksum files as well as all the builds
and installers. These signatures are used by mirrors and other community members to validate their
downloads.

For security purposes, we sign on a dedicated signing machine that is blocked off via firewall
and VPN from outside connections. Our keyphrases, passwords, and keystores are passed among
release engineers only in secure channels, often in person, to minimize the risk of exposure as much
as possible.

Until recently this signing process involved a release engineer working on a dedicated server (the
“signing master”) for almost an hour manually downloading builds, signing them, and uploading them
back to ftp.mozilla.org before the automation could continue. Once signing on the master was
completed and all files were uploaded, a log file of all the signing activities was uploaded to the release
candidates directory on ftp.mozilla.org. The appearance of this log file on ftp.mozilla.org
signified the end of human signing work and from that point, dependent builders watching for
that log file could resume automation. Recently we’ve added an additional wrapper of automation
around the signing steps. Now the release engineer opens a Cygwin shell on the signing master
and sets up a few environment variables pertaining to the release, like VERSION, BUILD, TAG, and
RELEASE_CONFIG, that help the script find the right directories on ftp.mozilla.org and know when
all the deliverables for a release have been downloaded so that the signing can start. After checking
out the most recent production version of our signing tools, the release engineer simply runs make
autosign. The release engineer then enters two passphrases, one for gpg and one for signcode. Once
these passphrases are automatically verified by the make scripts, the automation starts a download
loop that watches for uploaded builds and repacks from the release automation and downloads them
as they become available. Once all items have been downloaded, the automation begins signing
immediately, without human intervention.

Not needing a human to sign is important for two reasons. Firstly, it reduces the risk of human
error. Secondly, it allows signing to proceed during non-work hours, without needing a release
engineer awake at a computer at the time.
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Figure 2.5: Signing Firefox installers

All deliverables have an MD5SUM and SHA1SUM generated for them, and those hash values
are written to files of the same name. These files will be uploaded back to the release-candidates
directory as well as synced into the final location of the release on ftp.mozilla.org once it is
live, so that anyone who downloads a Firefox installer from one of our mirrors can ensure they
got the correct object. When all signed bits are available and verified they are uploaded back to
ftp.mozilla.org along with the signing log file, which the automation is waiting for to proceed.

Our next planned round of improvements to the signing process will create a tool that allows
us to sign bits at the time of build/repack. This work requires creating a signing server application
that can receive requests to sign files from the release build machines. It will also require a signing
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client tool which would contact the signing server, authenticate itself as a machine trusted to request
signing, upload the files to be signed, wait for the build to be signed, download the signed bits, and
then include them as part of the packaged build. Once these enhancements are in production, we
can discontinue our current all-at-once signing process, as well as our all-at-once generate-updates
process (more on this below). We expect this work to trim a few hours off our current end-to-end
times for a release.

2.6 Updates
Updates are created so users can update to the latest version of Firefox quickly and easily using
our built-in updater, without having to download and run a standalone installer. From the user’s
perspective, the downloading of the update package happens quietly in the background. Only after
the update files are downloaded, and ready to be applied, will Firefox prompt the user with the option
to apply the update and restart.

The catch is, we generate a lot of updates. For a series of releases on a product line, we generate
updates from all supported previous releases in the series to the new latest release for that product
line. For Firefox LATEST, that means generating updates for every platform, every locale, and every
installer from Firefox LATEST-1, LATEST-2, LATEST-3, . . . in both complete and partial forms. We
do all this for several different product lines at a time.

Our update generation automation modifies the update configuration files of each release’s build
off a branch to maintain our canonical list of what version numbers, platforms, and localizations
need to have updates created to offer users this newest release. We offer updates as “snippets”. As
you can see in the example below, this snippet is simply an XML pointer file hosted on our AUS
(Application Update Service) that informs the user’s Firefox browser where the complete and/or
partial .mar (Mozilla Archive) files are hosted.

Major Updates vs. Minor Updates
As you can see in Figure 2.6, update snippets have a type attribute which can be either major or
minor. Minor updates keep people updated to the latest version available in their release train; for
example, it would update all 3.6.* release users to the latest 3.6 release, all rapid-release beta users to
the latest beta, all Nightly users to the latest Nightly build, etc. Most of the time, updates are minor
and don’t require any user interaction other than a confirmation to apply the update and restart the
browser.

Major updates are used when we need to advertise to our users that the latest and greatest release
is available, prompting them that “A new version of Firefox is available, would you like to update?”
and displaying a billboard showcasing the leading features in the new release. Our new rapid-release
system means we no longer need to do as many major updates; we’ll be able to stop generating major
updates once the 3.6.* release train is no longer supported.

Complete Updates vs. Partial Updates
At build time we generate “complete update” .mar files which contain all the files for the new release,
compressed with bz2 and then archived into a .mar file. Both complete and partial updates are
downloaded automatically through the update channel to which a user’s Firefox is registered. We
have different update channels (that is, release users look for updates on release channel, beta users
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<updates>
<update type="minor" version="7.0.1" extensionVersion="7.0.1"

buildID="20110928134238"
detailsURL="https://www.mozilla.com/en-US/firefox/7.0.1/releasenotes/">

<patch type="complete"
URL="http://download.mozilla.org/?product=firefox-7.0.1-complete& os=osx&\

lang=en-US&force=1"
hashFunction="SHA512"
hashValue="7ecdbc110468b9b4627299794d793874436353dc36c80151550b08830f9d8c\

5afd7940c51df9270d54e11fd99806f41368c0f88721fa17e01ea959144f47\
3f9d"

size="28680122"/>
<patch type="partial"

URL="http://download.mozilla.org/?product=firefox-7.0.1-partial-6.0.2&\
os=osx&lang=en-US&force=1"

hashFunction="SHA512"
hashValue="e9bb49bee862c7a8000de6508d006edf29778b5dbede4deaf3cfa05c22521f\

c775da126f5057621960d327615b5186b27d75a378b00981394716e93fc5cc\
a11a"

size="10469801"/>
</update>

</updates>

Figure 2.6: Sample update snippet

look on beta channel, etc.) so that we can serve updates to, for example, release users at a different
time than we serve updates to beta users.

Partial update .mar files are created by comparing the complete .mar for the old release with the
complete .mar for the new release to create a “partial-update” .mar file containing the binary diff of
any changed files, and a manifest file. As you can see in the sample snippet in Figure 2.6, this results
in a much smaller file size for partial updates. This is very important for users with slower or dial-up
Internet connections.

In older versions of our update automation the generation of partial updates for all locales and
platforms could take six to seven hours for one release, as the complete .mar files were downloaded,
diffed, and packaged into a partial-update .mar file. Eventually it was discovered that even across
platforms, many component changes were identical, therefore many diffs could be re-used. With
a script that cached the hash for each part of the diff, our partial update creation time was brought
down to approximately 40 minutes.

After the snippets are uploaded and are hosted on AUS, an update verification step is run to a)
test downloading the snippets and b) run the updater with the downloaded .mar file to confirm that
the updates apply correctly.

Generation of partial-update .mar files, as well as all the update snippets, is currently done after
signing is complete. We do this because generation of the partial updates must be done between
signed files of the two releases, and therefore generation of the snippets must wait until the signed
builds are available. Once we’re able to integrate signing into the build process, we can generate
partial updates immediately after completing a build or repack. Together with improvements to our
AUS software, this means that once we’re finished builds and repacks we would be able to push
immediately to mirrors. This effectively parallelizes the creation of all the updates, trimming several
hours from our total time.
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2.7 Pushing to Internal Mirrors and QA
Verifying that the release process is producing the expected deliverables is key. This is accomplished
by QA’s verification and sign offs process.

Once the signed builds are available, QA starts manual and automated testing. QA relies on
a mix of community members, contractors and employees in different timezones to speed up this
verification process. Meanwhile, our release automation generates updates for all languages and
all platforms, for all supported releases. These update snippets are typically ready before QA has
finished verifying the signed builds. QA then verifies that users can safely update from various
previous releases to the newest release using these updates.

Mechanically, our automation pushes the binaries to our “internal mirrors” (Mozilla-hosted
servers) in order for QA to verify updates. Only after QA has finished verification of the builds and
the updates will we push them to our community mirrors. These community mirrors are essential to
handle the global load of users, by allowing them to request their updates from local mirror nodes
instead of from ftp.mozilla.org directly. It’s worth noting that we do not make builds and updates
available on the community mirrors until after QA signoff, because of complications that arise if QA
finds a last-minute showstopper and the candidate build needs to be withdrawn.

The validation process after builds and updates are generated is:
• QA, along with community and contractors in other timezones, does manual testing.
• QA triggers the automation systems to do functional testing.
• QA independently verifies that fixed problems and new features for that release are indeed
fixed and of good enough quality to ship to users.

• Meanwhile, release automation generates the updates.
• QA signs off the builds.
• QA signs off the updates.
Note that users don’t get updates until QA has signed off and the Release Coordinator has sent

the email asking to push the builds and updates live.

2.8 Pushing to Public Mirrors and AUS
Once the Release Coordinator gets signoff from QA and various other groups at Mozilla, they give
Release Engineering the go-ahead to push the files to our community mirror network. We rely on
our community mirrors to be able to handle a few hundred million users downloading updates over
the next few days. All the installers, as well as the complete and partial updates for all platforms and
locales, are already on our internal mirror network at this point. Publishing the files to our external
mirrors involves making a change to an rsync exclude file for the public mirrors module. Once this
change is made, the mirrors will start to synchronize the new release files. Each mirror has a score
or weighting associated with it; we monitor which mirrors have synchronized the files and sum their
individual scores to compute a total “uptake” score. Once a certain uptake threshold is reached, we
notify the Release Coordinator that the mirrors have enough uptake to handle the release.

This is the point at which the release becomes “official”. After the Release Coordinator sends
the final “go live” email, Release Engineering will update the symlinks on the web server so that
visitors to our web and ftp sites can find the latest new version of Firefox. We also publish all the
update snippets for users on past versions of Firefox to AUS.
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Firefox installed on users’ machines regularly checks our AUS servers to see if there’s an updated
version of Firefox available for them. Once we publish these update snippets, users are able to
automatically update Firefox to the latest version.

2.9 Lessons Learned
As software engineers, our temptation is to jump to solve what we see as the immediate and obvious
technical problem. However, Release Engineering spans across different fields—both technical and
non-technical—so being aware of technical and non-technical issues is important.

The Importance of Buy-in from Other Stakeholders
It was important tomake sure that all stakeholders understood that our slow, fragile release engineering
exposed the organization, and our users, to risks. This involved all levels of the organization
acknowledging the lost business opportunities, and market risks, caused by slow fragile automation.
Further, Mozilla’s ability to protect our users with super-fast turnaround on releases became more
important as we grew to have more users, which in turn made us more attractive as a target.

Interestingly, some people had only ever experienced fragile release automation in their careers,
so came to Mozilla with low, “oh, it’s always this bad” expectations. Explaining the business
gains expected with a robust, scalable release automation process helped everyone understand the
importance of the “invisible” Release Engineering improvement work we were about to undertake.

Involving Other Groups
To make the release process more efficient and more reliable required work, by Release Engineering
and other groups across Mozilla. However, it was interesting to see how often “it takes a long time
to ship a release” was mistranslated as “it takes Release Engineering a long time to ship a release”.
This misconception ignored the release work done by groups outside of Release Engineering, and
was demotivating to the Release Engineers. Fixing this misconception required educating people
across Mozilla on where time was actually spent by different groups during a release. We did this
with low-tech “wall-clock” timestamps on emails of clear handoffs across groups, and a series of
“wall-clock” blog posts detailing where time was spent.

• These helped raise awareness of which different groups were actually involved in a release.
• These helped people appreciate whenever RelEng got processes to run faster, which in turn
helped motivate Release Engineers to make further improvements.

• These helped other groups think about how they too could help improve the overall release
process—a big mindset shift for the entire organization.

• Finally, these also eliminated all the unclear handoff communications across groups, which
had historically cost us many respins, false-starts, and other costly disruptions to the release
process.

Establishing Clear Handoffs
Many of our “release engineering” problems were actually people problems: miscommunication
between teams; lack of clear leadership; and the resulting stress, fatigue and anxiety during chemspill
releases. By having clear handoffs to eliminate these human miscommunications, our releases
immediately started to go more smoothly, and cross-group human interactions quickly improved.
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Managing Turnover
When we started this project, we were losing team members too often. In itself, this is bad. However,
the lack of accurate up-to-date documentation meant that most of the technical understanding of the
release process was documented by folklore and oral histories, which we lost whenever a person left.
We needed to turn this situation around, urgently.

We felt the best way to improve morale and show that things were getting better was to make sure
people could see that we had a plan to make things better, and that people had some control over their
own destiny. We did this by making sure that we set aside time to fix at least one thing—anything!—
after each release. We implemented this by negotiating for a day or two of “do not disturb” time
immediately after we shipped a release. Solving immediate small problems, while they were still
fresh in people’s minds, helped clear distractions, so people could focus on larger term problems
in subsequent releases. More importantly, this gave people the feeling that we had regained some
control over our own fate, and that things were truly getting better.

Managing Change
Because of market pressures, Mozilla’s business and product needs from the release process changed
while we were working on improving it. This is not unusual and should be expected.

We knew we had to continue shipping releases using the current release process, while we were
building the new process. We decided against attempting to build a separate “greenfield project”
while also supporting the existing systems; we felt the current systems were so fragile that we literally
would not have the time to do anything new.

We also assumed from the outset that we didn’t fully understand what was broken. Each incre-
mental improvement allowed us to step back and check for new surprises, before starting work on
the next improvement. Phrases like “draining the swamp”, “peeling the onion”, and “how did this
ever work?” were heard frequently whenever we discovered new surprises throughout this project.

Given all this, we decided to make lots of small, continuous improvements to the existing
process. Each iterative improvement made the next release a little bit better. More importantly,
each improvement freed up just a little bit more time during the next release, which allowed a
release engineer a little more time to make the next improvement. These improvements snowballed
until we found ourselves past the tipping point, and able to make time to work on significant major
improvements. At that point, the gains from release optimizations really kicked in.

2.10 For More Information
We’re really proud of the work done so far, and the abilities that it has brought to Mozilla in a newly
heated-up global browser market.

Four years ago, doing two chemspill releases in a month would be a talking point within Mozilla.
By contrast, last week a published exploit in a third-party library caused Mozilla to ship eight
chemspills releases in two low-fuss days.

As with everything, our release automation still has plenty of room for improvement, and our
needs and demands continue to change. For a look at our ongoing work, please see:

• Chris AtLee’s blog: http://atlee.ca/blog.
• Lukas Blakk’s blog: http://lukasblakk.com.
• John O’Duinn’s blog: http://oduinn.com.
• Armen Zambrano Gasparnian’s blog: http://armenzg.blogspot.com.
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• Documentation on the design and flow of our Mercurial-based release process: https://
wiki.mozilla.org/Release:Release_Automation_on_Mercurial:Documentation.

• Release Engineering’s build repositories: http://hg.mozilla.org/build. In particular, the
buildbotcustom, buildbot-configs, and tools repositories are used heavily for releases.

• The Firefox 7.0 Beta 4 Build Notes: https://wiki.mozilla.org/Releases/Firefox_7.
0b4/BuildNotes. In addition to code, we document every aspect of a release. This link is to
our 7.0b4 release notes, but you can find all our release notes if you edit the URL appropriately.
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[chapter3]

FreeRTOS
Christopher Svec

FreeRTOS (pronounced “free-arr-toss”) is an open source real-time operating system (RTOS) for
embedded systems. FreeRTOS supports many different architectures and compiler toolchains, and is
designed to be “small, simple, and easy to use”1.

FreeRTOS is under active development, and has been since Richard Barry started work on it in
2002. As for me, I’m not a developer of or contributor to FreeRTOS, I’m merely a user and a fan.
As a result, this chapter will favor the “what” and “how” of FreeRTOS’s architecture, with less of
the “why” than other chapters in this book.

Like all operating systems, FreeRTOS’s main job is to run tasks. Most of FreeRTOS’s code
involves prioritizing, scheduling, and running user-defined tasks. Unlike all operating systems,
FreeRTOS is a real-time operating system which runs on embedded systems.

By the end of this chapter I hope that you’ll understand the basic architecture of FreeRTOS. Most
of FreeRTOS is dedicated to running tasks, so you’ll get a good look at exactly how FreeRTOS does
that.

If this is your first look under the hood of an operating system, I also hope that you’ll learn
the basics about how any OS works. FreeRTOS is relatively simple, especially when compared to
Windows, Linux, or OS X, but all operating systems share the same basic concepts and goals, so
looking at any OS can be instructive and interesting.

3.1 What is “Embedded” and “Real-Time”?
“Embedded” and “real-time” can mean different things to different people, so let’s define them as
FreeRTOS uses them.

An embedded system is a computer system that is designed to do only a few things, like the system
in a TV remote control, in-car GPS, digital watch, or pacemaker. Embedded systems are typically
smaller and slower than general purpose computer systems, and are also usually less expensive. A
typical low-end embedded system may have an 8-bit CPU running at 25MHz, a few KB of RAM,
and maybe 32KB of flash memory. A higher-end embedded system may have a 32-bit CPU running
at 750MHz, a GB of RAM, and multiple GB of flash memory.

Real-time systems are designed to do something within a certain amount of time; they guarantee
that stuff happens when it’s supposed to.
1http://www.freertos.org/index.html?http://www.freertos.org/FreeRTOS_Features.html



A pacemaker is an excellent example of a real-time embedded system. A pacemaker must
contract the heart muscle at the right time to keep you alive; it can’t be too busy to respond in time.
Pacemakers and other real-time embedded systems are carefully designed to run their tasks on time,
every time.

3.2 Architecture Overview
FreeRTOS is a relatively small application. The minimum core of FreeRTOS is only three source
(.c) files and a handful of header files, totalling just under 9000 lines of code, including comments
and blank lines. A typical binary code image is less than 10KB.

FreeRTOS’s code breaks down into three main areas: tasks, communication, and hardware
interfacing.

• Tasks: Almost half of FreeRTOS’s core code deals with the central concern in many operating
systems: tasks. A task is a user-defined C function with a given priority. tasks.c and task.h
do all the heavy lifting for creating, scheduling, and maintaining tasks.

• Communication: Tasks are good, but tasks that can communicate with each other are even bet-
ter! Which brings us to the second FreeRTOS job: communication. About 40% of FreeRTOS’s
core code deals with communication. queue.c and queue.h handle FreeRTOS communica-
tion. Tasks and interrupts use queues to send data to each other and to signal the use of critical
resources using semaphores and mutexes.

• The Hardware Whisperer: The approximately 9000 lines of code that make up the base of
FreeRTOS are hardware-independent; the same code runs whether FreeRTOS is running on
the humble 8051 or the newest, shiniest ARM core. About 6% of FreeRTOS’s core code acts
a shim between the hardware-independent FreeRTOS core and the hardware-dependent code.
We’ll discuss the hardware-dependent code in the next section.

Hardware Considerations
The hardware-independent FreeRTOS layer sits on top of a hardware-dependent layer. This hardware-
dependent layer knows how to talk to whatever chip architecture you choose. Figure 3.1 shows
FreeRTOS’s layers.

Hardware

FreeRTOS Hardware-Dependent Code

FreeRTOS Hardware-Independent Code

FreeRTOS User Tasks and ISR Code

Figure 3.1: FreeRTOS software layers

FreeRTOS ships with all the hardware-independent as well as hardware-dependent code you’ll
need to get a system up and running. It supports many compilers (CodeWarrior, GCC, IAR, etc.) as
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well as many processor architectures (ARM7, ARM Cortex-M3, various PICs, Silicon Labs 8051,
x86, etc.). See the FreeRTOS website for a list of supported architectures and compilers.

FreeRTOS is highly configurable by design. FreeRTOS can be built as a single CPU, bare-bones
RTOS, supporting only a few tasks, or it can be built as a highly functional multicore beast with
TCP/IP, a file system, and USB.

Configuration options are selected in FreeRTOSConfig.h by setting various #defines. Clock
speed, heap size, mutexes, and API subsets are all configurable in this file, along with many other
options. Here are a few examples that set the maximum number of task priority levels, the CPU
frequency, the system tick frequency, the minimal stack size and the total heap size:

#define configMAX_PRIORITIES ( ( unsigned portBASE_TYPE ) 5 )
#define configCPU_CLOCK_HZ ( 12000000UL )
#define configTICK_RATE_HZ ( ( portTickType ) 1000 )
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 100 )
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 4 * 1024 ) )

Hardware-dependent code lives in separate files for each compiler toolchain and CPU architecture.
For example, if you’re working with the IAR compiler on an ARM Cortex-M3 chip, the hardware-
dependent code lives in the FreeRTOS/Source/portable/IAR/ARM_CM3/ directory. portmacro.h
declares all of the hardware-specific functions, while port.c and portasm.s contain all of the
actual hardware-dependent code. The hardware-independent header file portable.h #include’s
the correct portmacro.h file at compile time. FreeRTOS calls the hardware-specific functions using
#define’d functions declared in portmacro.h.

Let’s look at an example of how FreeRTOS calls a hardware-dependent function. The hardware-
independent file tasks.c frequently needs to enter a critical section of code to prevent preemption.
Entering a critical section happens differently on different architectures, and the hardware-independent
tasks.c does not want to have to understand the hardware-dependent details. So tasks.c calls
the global macro portENTER_CRITICAL(), glad to be ignorant of how it actually works. Assum-
ing we’re using the IAR compiler on an ARM Cortex-M3 chip, FreeRTOS is built with the file
FreeRTOS/Source/portable/IAR/ARM_CM3/portmacro.hwhich defines portENTER_CRITICAL()
like this:

#define portENTER_CRITICAL() vPortEnterCritical()

vPortEnterCritical() is actually defined in FreeRTOS/Source/portable/IAR/ARM_CM3/port.c.
The port.c file is hardware-dependent, and contains code that understands the IAR compiler and
the Cortex-M3 chip. vPortEnterCritical() enters the critical section using this hardware-specific
knowledge and returns to the hardware-independent tasks.c.

The portmacro.h file also defines an architecture’s basic data types. Data types for basic integer
variables, pointers, and the system timer tick data type are defined like this for the IAR compiler on
ARM Cortex-M3 chips:

#define portBASE_TYPE long // Basic integer variable type
#define portSTACK_TYPE unsigned long // Pointers to memory locations
typedef unsigned portLONG portTickType; // The system timer tick type

This method of using data types and functions through thin layers of #defines may seem a bit
complicated, but it allows FreeRTOS to be recompiled for a completely different system architecture
by changing only the hardware-dependent files. And if you want to run FreeRTOS on an architecture
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it doesn’t currently support, you only have to implement the hardware-dependent functionality which
is much smaller than the hardware-independent part of FreeRTOS.

As we’ve seen, FreeRTOS implements hardware-dependent functionality with C preprocessor
#define macros. FreeRTOS also uses #define for plenty of hardware-independent code. For non-
embedded applications this frequent use of #define is a cardinal sin, but in many smaller embedded
systems the overhead for calling a function is not worth the advantages that “real” functions offer.

3.3 Scheduling Tasks: A Quick Overview
Task Priorities and the Ready List
Each task has a user-assigned priority between 0 (the lowest priority) and the compile-time value of
configMAX_PRIORITIES-1 (the highest priority). For instance, if configMAX_PRIORITIES is set to
5, then FreeRTOS will use 5 priority levels: 0 (lowest priority), 1, 2, 3, and 4 (highest priority).

FreeRTOS uses a “ready list” to keep track of all tasks that are currently ready to run. It
implements the ready list as an array of task lists like this:

static xList pxReadyTasksLists[ configMAX_PRIORITIES ]; /* Prioritised ready tasks. */

pxReadyTasksLists[0] is a list of all ready priority 0 tasks, pxReadyTasksLists[1] is a list of all
ready priority 1 tasks, and so on, all theway up to pxReadyTasksLists[configMAX_PRIORITIES-1].

The System Tick
The heartbeat of a FreeRTOS system is called the system tick. FreeRTOS configures the system
to generate a periodic tick interrupt. The user can configure the tick interrupt frequency, which is
typically in the millisecond range. Every time the tick interrupt fires, the vTaskSwitchContext()
function is called. vTaskSwitchContext() selects the highest-priority ready task and puts it in the
pxCurrentTCB variable like this:

/* Find the highest-priority queue that contains ready tasks. */
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) )
{

configASSERT( uxTopReadyPriority );
--uxTopReadyPriority;

}

/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the tasks of the same
priority get an equal share of the processor time. */
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopReadyPriority ] ) );

Before the while loop starts, uxTopReadyPriority is guaranteed to be greater than or equal to the
priority of the highest-priority ready task. Thewhile() loop starts at priority level uxTopReadyPriority
and walks down through the pxReadyTasksLists[] array to find the highest-priority level with
ready tasks. listGET_OWNER_OF_NEXT_ENTRY() then grabs the next ready task from that priority
level’s ready list.

Now pxCurrentTCB points to the highest-priority task, and when vTaskSwitchContext() re-
turns the hardware-dependent code starts running that task.
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Those nine lines of code are the absolute heart of FreeRTOS. The other 8900+ lines of FreeRTOS
are there to make sure those nine lines are all that’s needed to keep the highest-priority task running.

Figure 3.2 is a high-level picture of what a ready list looks like. This example has three priority
levels, with one priority 0 task, no priority 1 tasks, and three priority 2 tasks. This picture is accurate
but not complete; it’s missing a few details which we’ll fill in later.

pxReadyTaskLists[0] 

pxReadyTaskLists[1] 

pxReadyTaskLists[2] 

next ptr == NULL

pointer to task task A

(empty list)

next ptr 

pointer to task

task B

next ptr 

pointer to task

task C

next ptr == NULL

pointer to task

task D

Figure 3.2: Basic view of FreeRTOS Ready List

Now that we have the high-level overview out of the way, let’s dive in to the details. We’ll look
at the three main FreeRTOS data structures: tasks, lists, and queues.

3.4 Tasks
The main job of all operating systems is to run and coordinate user tasks. Like many operating
systems, the basic unit of work in FreeRTOS is the task. FreeRTOS uses a Task Control Block (TCB)
to represent each task.

Task Control Block (TCB)
The TCB is defined in tasks.c like this:

typedef struct tskTaskControlBlock
{

volatile portSTACK_TYPE *pxTopOfStack; /* Points to the location of
the last item placed on
the tasks stack. THIS
MUST BE THE FIRST MEMBER
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OF THE STRUCT. */

xListItem xGenericListItem; /* List item used to place
the TCB in ready and
blocked queues. */

xListItem xEventListItem; /* List item used to place
the TCB in event lists.*/

unsigned portBASE_TYPE uxPriority; /* The priority of the task where 0 is the lowest
priority. */

portSTACK_TYPE *pxStack; /* Points to the start of
the stack. */

signed char pcTaskName[ configMAX_TASK_NAME_LEN ]; /* Descriptive name given
to the task when created.
Facilitates debugging
only. */

#if ( portSTACK_GROWTH > 0 )
portSTACK_TYPE *pxEndOfStack; /* Used for stack overflow

checking on architectures
where the stack grows up
from low memory. */

#endif

#if ( configUSE_MUTEXES == 1 )
unsigned portBASE_TYPE uxBasePriority; /* The priority last

assigned to the task -
used by the priority
inheritance mechanism. */

#endif

} tskTCB;

The TCB stores the address of the stack start address in pxStack and the current top of stack in
pxTopOfStack. It also stores a pointer to the end of the stack in pxEndOfStack to check for stack
overflow if the stack grows “up” to higher addresses. If the stack grows “down” to lower addresses
then stack overflow is checked by comparing the current top of stack against the start of stack memory
in pxStack.

The TCB stores the initial priority of the task in uxPriority and uxBasePriority. A task is
given a priority when it is created, and a task’s priority can be changed. If FreeRTOS implements
priority inheritance then it uses uxBasePriority to remember the original priority while the task is
temporarily elevated to the “inherited” priority. (See the discussion about mutexes below for more
on priority inheritance.)

Each task has two list items for use in FreeRTOS’s various scheduling lists. When a task is
inserted into a list FreeRTOS doesn’t insert a pointer directly to the TCB. Instead, it inserts a pointer
to either the TCB’s xGenericListItem or xEventListItem. These xListItem variables let the
FreeRTOS lists be smarter than if they merely held a pointer to the TCB. We’ll see an example of
this when we discuss lists later.

A task can be in one of four states: running, ready to run, suspended, or blocked. You might
expect each task to have a variable that tells FreeRTOS what state it’s in, but it doesn’t. Instead,
FreeRTOS tracks task state implicitly by putting tasks in the appropriate list: ready list, suspended
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list, etc. The presence of a task in a particular list indicates the task’s state. As a task changes from
one state to another, FreeRTOS simply moves it from one list to another.

Task Setup
We’ve already touched on how a task is selected and scheduled with the pxReadyTasksLists array;
now let’s look at how a task is initially created. A task is created when the xTaskCreate() function
is called. FreeRTOS uses a newly allocated TCB object to store the name, priority, and other details
for a task, then allocates the amount of stack the user requests (assuming there’s enough memory
available) and remembers the start of the stack memory in TCB’s pxStack member.

The stack is initialized to look as if the new task is already running and was interrupted by a
context switch. This way the scheduler can treat newly created tasks exactly the same way as it
treats tasks that have been running for a while; the scheduler doesn’t need any special case code for
handling new tasks.

The way that a task’s stack is made to look like it was interrupted by a context switch depends on
the architecture FreeRTOS is running on, but this ARM Cortex-M3 processor’s implementation is a
good example:

unsigned int *pxPortInitialiseStack( unsigned int *pxTopOfStack,
pdTASK_CODE pxCode,
void *pvParameters )

{
/* Simulate the stack frame as it would be created by a context switch interrupt. */
pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on

entry/exit of interrupts. */
*pxTopOfStack = portINITIAL_XPSR; /* xPSR */
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) pxCode; /* PC */
pxTopOfStack--;
*pxTopOfStack = 0; /* LR */
pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
*pxTopOfStack = ( portSTACK_TYPE ) pvParameters; /* R0 */
pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */

return pxTopOfStack;
}

The ARM Cortex-M3 processor pushes registers on the stack when a task is interrupted.
pxPortInitialiseStack() modifies the stack to look like the registers were pushed even though
the task hasn’t actually started running yet. Known values are stored to the stack for the ARM
registers xPSR, PC, LR, and R0. The remaining registers R1 – R12 get stack space allocated for
them by decrementing the top of stack pointer, but no specific data is stored in the stack for those
registers. The ARM architecture says that those registers are undefined at reset, so a (non-buggy)
program will not rely on a known value.

After the stack is prepared, the task is almost ready to run. First though, FreeRTOS disables
interrupts: We’re about to start mucking with the ready lists and other scheduler structures and we
don’t want anyone else changing them underneath us.

If this is the first task to ever be created, FreeRTOS initializes the scheduler’s task lists. Free-
RTOS’s scheduler has an array of ready lists, pxReadyTasksLists[], which has one ready list for
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each possible priority level. FreeRTOS also has a few other lists for tracking tasks that have been
suspended, killed, and delayed. These are all initialized now as well.

After any first-time initialization is done, the new task is added to the ready list at its specified
priority level. Interrupts are re-enabled and new task creation is complete.

3.5 Lists
After tasks, the most used FreeRTOS data structure is the list. FreeRTOS uses its list structure to
keep track of tasks for scheduling, and also to implement queues.

uxNumberOfItems = 3

pxReadyTaskLists[0] 

xListEnd
xItemValue = 

0xffffffff

pxNext 

pxPrevious  

pxIndex 

xItemValue = 0

pxNext 

pxPrevious 

pvOwner 

pvContainer 

xItemValue = 0

pxNext 

pxPrevious 

pvOwner 

pvContainer

TCB: Task A TCB: Task CTCB: Task B

pxCurrentTCB

struct xListItem
xItemValue = 0

pxNext 

pxPrevious 

pvOwner 

pvContainer

struct xListItem struct xListItem

Figure 3.3: Full view of FreeRTOS Ready List

The FreeRTOS list is a standard circular doubly linked list with a couple of interesting additions.
Here’s a list element:

struct xLIST_ITEM
{

portTickType xItemValue; /* The value being listed. In most cases
this is used to sort the list in
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descending order. */
volatile struct xLIST_ITEM * pxNext; /* Pointer to the next xListItem in the

list. */
volatile struct xLIST_ITEM * pxPrevious; /* Pointer to the previous xListItem in

the list. */
void * pvOwner; /* Pointer to the object (normally a TCB)

that contains the list item. There is
therefore a two-way link between the
object containing the list item and
the list item itself. */

void * pvContainer; /* Pointer to the list in which this list
item is placed (if any). */

};

Each list element holds a number, xItemValue, that is the usually the priority of the task being
tracked or a timer value for event scheduling. Lists are kept in high-to-low priority order, meaning
that the highest-priority xItemValue (the largest number) is at the front of the list and the lowest
priority xItemValue (the smallest number) is at the end of the list.

The pxNext and pxPrevious pointers are standard linked list pointers. pvOwner is a pointer to
the owner of the list element. This is usually a pointer to a task’s TCB object. pvOwner is used to
make task switching fast in vTaskSwitchContext(): once the highest-priority task’s list element is
found in pxReadyTasksLists[], that list element’s pvOwner pointer leads us directly to the TCB
needed to schedule the task.

pvContainer points to the list that this item is in. It is used to quickly determine if a list item is
in a particular list. Each list element can be put in a list, which is defined as:

typedef struct xLIST
{

volatile unsigned portBASE_TYPE uxNumberOfItems;
volatile xListItem * pxIndex; /* Used to walk through the list. Points to

the last item returned by a call to
pvListGetOwnerOfNextEntry (). */

volatile xMiniListItem xListEnd; /* List item that contains the maximum
possible item value, meaning it is always
at the end of the list and is therefore
used as a marker. */

} xList;

The size of a list at any time is stored in uxNumberOfItems, for fast list-size operations. All
new lists are initialized to contain a single element: the xListEnd element. xListEnd.xItemValue
is a sentinel value which is equal to the largest value for the xItemValue variable: 0xffff when
portTickType is a 16-bit value and 0xffffffff when portTickType is a 32-bit value. Other list
elements may also have the same value; the insertion algorithm ensures that xListEnd is always the
last item in the list.

Since lists are sorted high-to-low, the xListEnd element is used as a marker for the start of the
list. And since the list is circular, this xListEnd element is also a marker for the end of the list.
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Most “traditional” list accesses you’ve used probably do all of their work within a single for()
loop or function call like this:

for (listPtr = listStart; listPtr != NULL; listPtr = listPtr->next) {
// Do something with listPtr here...

}

FreeRTOS frequently needs to access a list across multiple for() and while() loops as well as
function calls, and so it uses list functions that manipulate the pxIndex pointer to walk the list. The
list function listGET_OWNER_OF_NEXT_ENTRY() does pxIndex = pxIndex->pxNext; and returns
pxIndex. (Of course it does the proper end-of-list-wraparound detection too.) This way the list itself
is responsible for keeping track of “where you are” while walking it using pxIndex, allowing the
rest of FreeRTOS to not worry about it.

uxNumberOfItems = 3

pxReadyTaskLists[0] 

xListEnd
xItemValue = 

0xffffffff

pxNext 

pxPrevious  

pxIndex 

xItemValue = 0

pxNext 

pxPrevious 

pvOwner 

pvContainer 

xItemValue = 0

pxNext 

pxPrevious 

pvOwner 

pvContainer

TCB: Task A TCB: Task CTCB: Task B

struct xListItem
xItemValue = 0

pxNext 

pxPrevious 

pvOwner 

pvContainer

struct xListItem struct xListItem

pxCurrentTCB

Figure 3.4: Full view of FreeRTOS Ready List after a system timer tick

The pxReadyTasksLists[] list manipulation done in vTaskSwitchContext() is a good exam-
ple of how pxIndex is used. Let’s assume we have only one priority level, priority 0, and there are
three tasks at that priority level. This is similar to the basic ready list picture we looked at earlier, but
this time we’ll include all of the data structures and fields.
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As you can see in Figure 3.3, pxCurrentTCB indicates that we’re currently running Task B. The
next time vTaskSwitchContext() runs, it calls listGET_OWNER_OF_NEXT_ENTRY() to get the next
task to run. This function uses pxIndex->pxNext to figure out the next task is Task C, and now
pxIndex points to Task C’s list element and pxCurrentTCB points to Task C’s TCB, as shown in
Figure 3.4.

Note that each struct xListItem object is actually the xGenericListItem object from the
associated TCB.

3.6 Queues
FreeRTOS allows tasks to communicate and synchronize with each other using queues. Interrupt
service routines (ISRs) also use queues for communication and synchronization.

The basic queue data structure is:

typedef struct QueueDefinition
{

signed char *pcHead; /* Points to the beginning of the queue
storage area. */

signed char *pcTail; /* Points to the byte at the end of the
queue storage area. One more byte is
allocated than necessary to store the

queue items; this is used as a marker. */
signed char *pcWriteTo; /* Points to the free next place in the

storage area. */
signed char *pcReadFrom; /* Points to the last place that a queued

item was read from. */

xList xTasksWaitingToSend; /* List of tasks that are blocked waiting
to post onto this queue. Stored in
priority order. */

xList xTasksWaitingToReceive; /* List of tasks that are blocked waiting
to read from this queue. Stored in
priority order. */

volatile unsigned portBASE_TYPE uxMessagesWaiting; /* The number of items currently
in the queue. */

unsigned portBASE_TYPE uxLength; /* The length of the queue
defined as the number of
items it will hold, not the
number of bytes. */

unsigned portBASE_TYPE uxItemSize; /* The size of each items that
the queue will hold. */

} xQUEUE;

This is a fairly standard queue with head and tail pointers, as well as pointers to keep track of
where we’ve just read from and written to.

When creating a queue, the user specifies the length of the queue and the size of each item to
be tracked by the queue. pcHead and pcTail are used to keep track of the queue’s internal storage.
Adding an item into a queue does a deep copy of the item into the queue’s internal storage.
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FreeRTOS makes a deep copy instead of storing a pointer to the item because the lifetime of the
item inserted may be much shorter than the lifetime of the queue. For instance, consider a queue of
simple integers inserted and removed using local variables across several function calls. If the queue
stored pointers to the integers’ local variables, the pointers would be invalid as soon as the integers’
local variables went out of scope and the local variables’ memory was used for some new value.

The user chooses what to queue. The user can queue copies of items if the items are small, like
in the simple integer example in the previous paragraph, or the user can queue pointers to the items
if the items are large. Note that in both cases FreeRTOS does a deep copy: if the user chooses to
queue copies of items then the queue stores a deep copy of each item; if the user chooses to queue
pointers then the queue stores a deep copy of the pointer. Of course, if the user stores pointers in the
queue then the user is responsible for managing the memory associated with the pointers. The queue
doesn’t care what data you’re storing in it, it just needs to know the data’s size.

FreeRTOS supports blocking and non-blocking queue insertions and removals. Non-blocking
operations return immediately with a “Did the queue insertion work?” or “Did the queue removal
work?” status. Blocking operations are specified with a timeout. A task can block indefinitely or for
a limited amount of time.

A blocked task—call it Task A—will remain blocked as long as its insert/remove operation cannot
complete and its timeout (if any) has not expired. If an interrupt or another task modifies the queue
so that Task A’s operation could complete, Task A will be unblocked. If Task A’s queue operation is
still possible by the time it actually runs then Task A will complete its queue operation and return
“success”. However, by the time Task A actually runs, it is possible that a higher-priority task or
interrupt has performed yet another operation on the queue that prevents Task A from performing its
operation. In this case Task A will check its timeout and either resume blocking if the timeout hasn’t
expired, or return with a queue operation “failed” status.

It’s important to note that the rest of the system keeps going while a task is blocking on a queue;
other tasks and interrupts continue to run. This way the blocked task doesn’t waste CPU cycles that
could be used productively by other tasks and interrupts.

FreeRTOS uses the xTasksWaitingToSend list to keep track of tasks that are blocking on
inserting into a queue. Each time an element is removed from a queue the xTasksWaitingToSend
list is checked. If a task is waiting in that list the task is unblocked.

Similarly, xTasksWaitingToReceive keeps track of tasks that are blocking on removing from
a queue. Each time a new element is inserted into a queue the xTasksWaitingToReceive list is
checked. If a task is waiting in that list the task is unblocked.

Semaphores and Mutexes
FreeRTOS uses its queues for communication between and within tasks. FreeRTOS also uses its
queues to implement semaphores and mutexes.

What’s The Difference?

Semaphores and mutexes may sound like the same thing, but they’re not. FreeRTOS implements
them similarly, but they’re intended to be used in different ways. How should they be used differ-
ently? Embedded systems guru Michael Barr says it best in his article, “Mutexes and Semaphores
Demystified”2:
2http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
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The correct use of a semaphore is for signaling from one task to another. A mutex is
meant to be taken and released, always in that order, by each task that uses the shared
resource it protects. By contrast, tasks that use semaphores either signal [“send” in
FreeRTOS terms] or wait [“receive” in FreeRTOS terms] - not both.

A mutex is used to protect a shared resource. A task acquires a mutex, uses the shared resource,
then releases the mutex. No task can acquire a mutex while the mutex is being held by another task.
This guarantees that only one task is allowed to use a shared resource at a time.

Semaphores are used by one task to signal another task. To quote Barr’s article:

For example, Task 1 may contain code to post (i.e., signal or increment) a particular
semaphore when the “power” button is pressed and Task 2, which wakes the display,
pends on that same semaphore. In this scenario, one task is the producer of the event
signal; the other the consumer.

If you’re at all in doubt about semaphores and mutexes, please check out Michael’s article.

Implementation

FreeRTOS implements an N-element semaphore as a queue that can hold N items. It doesn’t
store any actual data for the queue items; the semaphore just cares how many queue entries are
currently occupied, which is tracked in the queue’s uxMessagesWaiting field. It’s doing “pure
synchronization”, as the FreeRTOS header file semphr.h calls it. Therefore the queue has a item
size of zero bytes (uxItemSize == 0). Each semaphore access increments or decrements the
uxMessagesWaiting field; no item or data copying is needed.

Like a semaphore, a mutex is also implemented as a queue, but several of the xQUEUE struct fields
are overloaded using #defines:

/* Effectively make a union out of the xQUEUE structure. */
#define uxQueueType pcHead
#define pxMutexHolder pcTail

Since a mutex doesn’t store any data in the queue, it doesn’t need any internal storage, and so the
pcHead and pcTail fields aren’t needed. FreeRTOS sets the uxQueueType field (really the pcHead
field) to 0 to note that this queue is being used for a mutex. FreeRTOS uses the overloaded pcTail
fields to implement priority inheritance for mutexes.

In case you’re not familiar with priority inheritance, I’ll quote Michael Barr again to define it,
this time from his article, “Introduction to Priority Inversion”3:

[Priority inheritance] mandates that a lower-priority task inherit the priority of any
higher-priority task pending on a resource they share. This priority change should take
place as soon as the high-priority task begins to pend; it should end when the resource
is released.

FreeRTOS implements priority inheritance using the pxMutexHolder field (which is really just
the overloaded-by-#define pcTail field). FreeRTOS records the task that holds a mutex in the
pxMutexHolder field. When a higher-priority task is found to be waiting on a mutex currently
taken by a lower-priority task, FreeRTOS “upgrades” the lower-priority task to the priority of the
higher-priority task until the mutex is available again.
3http://www.eetimes.com/discussion/beginner-s-corner/4023947/Introduction-to-Priority-Inversion
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3.7 Conclusion
We’ve completed our look at the FreeRTOS architecture. Hopefully you now have a good feel for
how FreeRTOS’s tasks run and communicate. And if you’ve never looked at any OS’s internals
before, I hope you now have a basic idea of how they work.

Obviously this chapter did not cover all of FreeRTOS’s architecture. Notably, I didn’t mention
memory allocation, ISRs, debugging, or MPU support. This chapter also did not discuss how to set
up or use FreeRTOS. Richard Barry has written an excellent book4, Using the FreeRTOS Real Time
Kernel: A Practical Guide, which discusses exactly that; I highly recommend it if you’re going to
use FreeRTOS.
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[chapter4]

GDB
Stan Shebs

GDB, the GNU Debugger, was among the first programs to be written for the Free Software Foun-
dation, and it has been a staple of free and open source software systems ever since. Originally
designed as a plain Unix source-level debugger, it has since been expanded to a wide range of uses,
including use with many embedded systems, and has grown from a few thousand lines of C to over
half a million.

This chapter will delve into the overall internal structure of GDB, showing how it has gradually
developed as new user needs and new features have come in over time.

4.1 The Goal
GDB is designed to be a symbolic debugger for programs written in compiled imperative languages
such as C, C++, Ada, and Fortran. Using its original command-line interface, a typical usage looks
something like this:

% gdb myprog
[...]
(gdb) break buggy_function
Breakpoint 1 at 0x12345678: file myprog.c, line 232.
(gdb) run 45 92
Starting program: myprog
Breakpoint 1, buggy_function (arg1=45, arg2=92) at myprog.c:232
232 result = positive_variable * arg1 + arg2;
(gdb) print positive_variable
$$1 = -34
(gdb)

GDB shows something that is not right, the developer says “aha” or “hmmm”, and then has to decide
both what the mistake is and how to fix it.

The important point for design is that a tool like GDB is basically an interactive toolbox for
poking around in a program, and as such it needs to be responsive to an unpredictable series of
requests. In addition, it will be used with programs that have been optimized by the compiler, and
programs that exploit every hardware option for performance, so it needs to have detailed knowledge
down to the lowest levels of a system.

GDB also needs to be able to debug programs compiled by different compilers (not just the GNU
C compiler), to debug programs compiled years earlier by long-obsolete versions of compilers, and to



debug programs whose symbolic info is missing, out of date, or simply incorrect; so, another design
consideration is that GDB should continue to work and be useful even if data about the program is
missing, or corrupted, or simply incomprehensible.

The following sections assume a passing familiarity with using GDB from the command line. If
you’re new to GDB, give it a try and peruse the manual.[SPS+00]

4.2 Origins of GDB
GDB is an old program. It came into existence around 1985, written by Richard Stallman along with
GCC, GNU Emacs, and other early components of GNU. (In those days, there were no public source
control repositories, and much of the detailed development history is now lost.)

The earliest readily available releases are from 1988, and comparison with present-day sources
shows that only a handful of lines bear much resemblance; nearly all of GDB has been rewritten at
least once. Another striking thing about early versions of GDB is that the original goals were rather
modest, and much of the work since then has been extension of GDB into environments and usages
that were not part of the original plan.

4.3 Block Diagram
At the largest scale, GDB can be said to have two sides to it:

1. The “symbol side” is concerned with symbolic information about the program. Symbolic
information includes function and variable names and types, line numbers, machine register
usage, and so on. The symbol side extracts symbolic information from the program’s exe-
cutable file, parses expressions, finds the memory address of a given line number, lists source
code, and in general works with the program as the programmer wrote it.

2. The “target side” is concerned with the manipulation of the target system. It has facilities to
start and stop the program, to read memory and registers, to modify them, to catch signals,
and so on. The specifics of how this is done can vary drastically between systems; most
Unix-type systems provide a special system call named ptrace that gives one process the
ability to read and write the state of a different process. Thus, GDB’s target side is mostly
about making ptrace calls and interpreting the results. For cross-debugging an embedded
system, however, the target side constructs message packets to send over a wire, and waits for
response packets in return.

The two sides are somewhat independent of each other; you can look around your program’s
code, display variable types, etc., without actually running the program. Conversely, it is possible to
do pure machine-language debugging even if no symbols are available.

In the middle, tying the two sides together, is the command interpreter and the main execution
control loop.

4.4 Examples of Operation
To take a simple case of how it all ties together, consider the print command from above. The
command interpreter finds the print command function, which parses the expression into a simple
tree structure and then evaluates it by walking the tree. At some point the evaluator will consult the
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Figure 4.1: Overall structure of GDB

symbol table to find out that positive_variable is an integer global variable that is stored at, say,
memory address 0x601028. It then calls a target-side function to read the four bytes of memory at
that address, and hands the bytes to a formatting function that displays them as a decimal number.

To display source code and its compiled version, GDB does a combination of reads from the
source file and the target system, then uses compiler-generated line number information to connect
the two. In the example here, line 232 has the address 0x4004be, line 233 is at 0x4004ce, and so on.

[...]
232 result = positive_variable * arg1 + arg2;
0x4004be <+10>: mov 0x200b64(%rip),%eax # 0x601028 <positive_variable>
0x4004c4 <+16>: imul -0x14(%rbp),%eax
0x4004c8 <+20>: add -0x18(%rbp),%eax
0x4004cb <+23>: mov %eax,-0x4(%rbp)

233 return result;
0x4004ce <+26>: mov -0x4(%rbp),%eax
[...]
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The single-stepping command step conceals a complicated dance going on behind the scenes.
When the user asks to step to the next line in the program, the target side is asked to execute only a
single instruction of the program and then stop it again (this is one of the things that ptrace can do).
Upon being informed that the program has stopped, GDB asks for the program counter (PC) register
(another target side operation) and then compares it with the range of addresses that the symbol side
says is associated with the current line. If the PC is outside that range, then GDB leaves the program
stopped, figures out the new source line, and reports that to the user. If the PC is still in the range of
the current line, then GDB steps by another instruction and checks again, repeating until the PC gets
to a different line. This basic algorithm has the advantage that it always does the right thing, whether
the line has jumps, subroutine calls, etc., and does not require GDB to interpret all the details of the
machine’s instruction set. A disadvantage is that there are many interactions with the target for each
single-step which, for some embedded targets, results in noticeably slow stepping.

4.5 Portability
As a program needing extensive access all the way down to the physical registers on a chip, GDB
was designed from the beginning to be portable across a variety of systems. However, its portability
strategy has changed considerably over the years.

Originally, GDB started out similar to the other GNU programs of the time; coded in a minimal
common subset of C, and using a combination of preprocessor macros and Makefile fragments to
adapt to a specific architecture and operating system. Although the stated goal of the GNU project
was a self-contained “GNU operating system”, bootstrapping would have to be done on a variety of
existing systems; the Linux kernel was still years in the future. The configure shell script is the
first key step of the process. It can do a variety of things, such as making a symbolic link from a
system-specific file to a generic header name, or constructing files from pieces, more importantly the
Makefile used to build the program.

Programs like GCC and GDB have additional portability needs over something like cat or diff,
and over time, GDB’s portability bits came to be separated into three classes, each with its own
Makefile fragment and header file.

• “Host” definitions are for the machine that GDB itself runs on, and might include things
like the sizes of the host’s integer types. Originally done as human-written header files, it
eventually occurred to people that they could be calculated by having configure run little test
programs, using the same compiler that was going to be used to build the tool. This is what
autoconf[aut12] is all about, and today nearly all GNU tools and many (if not most) Unix
programs use autoconf-generated configure scripts.

• “Target” definitions are specific to the machine running the program being debugged. If the
target is the same as the host, then we are doing “native” debugging, otherwise it is “cross”
debugging, using some kind of wire connecting the two systems. Target definitions fall in turn
into two main classes:

– “Architecture” definitions: These define how to disassemble machine code, how to walk
through the call stack, and which trap instruction to insert at breakpoints. Originally
done with macros, they were migrated to regular C accessed by via “gdbarch” objects,
described in more depth below.

– “Native” definitions: These define the specifics of arguments to ptrace (which vary
considerably between flavors of Unix), how to find shared libraries that have been loaded,
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and so forth, which only apply to the native debugging case. Native definitions are a last
holdout of 1980s-style macros, although most are now figured out using autoconf.

4.6 Data Structures
Before drilling down into the parts of GDB, let’s take a look at the major data structures that GDB
works with. As GDB is a C program, these are implemented as structs rather than as C++-style
objects, but in most cases they are treated as objects, and here we follow GDBers’ frequent practice
in calling them objects.

Breakpoints
A breakpoint is the main kind of object that is directly accessible to the user. The user creates a
breakpoint with the break command, whose argument specifies a location, which can be a function
name, a source line number, or a machine address. GDB assigns a small positive integer to the
breakpoint object, which the user subsequently uses to operate on the breakpoint. Within GDB, the
breakpoint is a C struct with a number of fields. The location gets translated to a machine address,
but is also saved in its original form, since the address may change and need recomputation, for
instance if the program is recompiled and reloaded into a session.

Several kinds of breakpoint-like objects actually share the breakpoint struct, including watch-
points, catchpoints, and tracepoints. This helps ensure that creation, manipulation, and deletion
facilities are consistently available.

The term “location” also refers to the memory addresses at which the breakpoint is to be installed.
In the cases of inline functions and C++ templates, it may be that a single user-specified breakpoint
may correspond to several addresses; for instance, each inlined copy of a function entails a separate
location for a breakpoint that is set on a source line in the function’s body.

Symbols and Symbol Tables
Symbol tables are a key data structure to GDB, and can be quite large, sometimes growing to occupy
multiple gigabytes of RAM. To some extent, this is unavoidable; a large application in C++ can have
millions of symbols in its own right, and it pulls in system header files which can have millions more
symbols. Each local variable, each named type, each value of an enum—all of these are separate
symbols.

GDB uses a number of tricks to reduce symbol table space, such as partial symbol tables (more
about those later), bit fields in structs, etc.

In addition to symbol tables that basically map character strings to address and type information,
GDB builds line tables that support lookup in two directions; from source lines to addresses, and
then from addresses back to source lines. (For instance, the single-stepping algorithm described
earlier crucially depends on the address-to-source mapping.)

Stack Frames
The procedural languages for which GDB was designed share a common runtime architecture, in
that function calls cause the program counter to be pushed on a stack, along with some combination
of function arguments and local arguments. The assemblage is called a stack frame, or “frame” for
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short, and at any moment in a program’s execution, the stack consists of a sequence of frames chained
together. The details of a stack frame vary radically from one chip architecture to the next, and is
also dependent on the operating system, compiler, and optimization options.

A port of GDB to a new chip may need a considerable volume of code to analyze the stack,
as programs (especially buggy ones, which are the ones debugger users are mostly interested in)
can stop anywhere, with frames possibly incomplete, or partly overwritten by the program. Worse,
constructing a stack frame for each function call slows down the application, and a good optimizing
compiler will take every opportunity to simplify stack frames, or even eliminate them altogether,
such as for tail calls.

The result of GDB’s chip-specific stack analysis is recorded in a series of frame objects. Originally
GDB kept track of frames by using the literal value of a fixed-frame pointer register. This approach
breaks down for inlined function calls and other kinds of compiler optimizations, and starting in
2002, GDBers introduced explicit frame objects that recorded what had been figured out about each
frame, and were linked together, mirroring the program’s stack frames.

Expressions
As with stack frames, GDB assumes a degree of commonality among the expressions of the various
languages it supports, and represents them all as a tree structure built out of node objects. The set of
node types is effectively a union of all the types of expressions possible in all the different languages;
unlike in the compiler, there is no reason to prevent the user from trying to subtract a Fortran variable
from a C variable—perhaps the difference of the two is an obvious power of two, and that gives us
the “aha” moment.

Values
The result of evaluation may itself be more complex than an integer or memory address, and GDB
also retains evaluation results in a numbered history list, which can then be referred to in later
expressions. To make all this work, GDB has a data structure for values. Value structs have a
number of fields recording various properties; important ones include an indication of whether the
value is an r-value or l-value (l-values can be assigned to, as in C), and whether the value is to be
constructed lazily.

4.7 The Symbol Side
The symbol side of GDB is mainly responsible for reading the executable file, extracting any symbolic
information it finds, and building it into a symbol table.

The reading process starts with the BFD library. BFD is a sort of universal library for handling
binary and object files; running on any host, it can read and write the original Unix a.out format,
COFF (used on System V Unix and MS Windows), ELF (modern Unix, GNU/Linux, and most
embedded systems), and some other file formats. Internally, the library has a complicated structure
of C macros that expand into code incorporating the arcane details of object file formats for dozens
of different systems. Introduced in 1990, BFD is also used by the GNU assembler and linker, and its
ability to produce object files for any target is key to cross-development using GNU tools. (Porting
BFD is also a key first step in porting the tools to a new target.)
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GDB only uses BFD to read files, using it to pull blocks of data from the executable file into
GDB’s memory. GDB then has two levels of reader functions of its own. The first level is for basic
symbols, or “minimal symbols”, which are just the names that the linker needs to do its work. These
are strings with addresses and not much else; we assume that addresses in text sections are functions,
addresses in data sections are data, and so forth.

The second level is detailed symbolic information, which typically has its own format different
from the basic executable file format; for instance, information in the DWARF debug format is
contained in specially named sections of an ELF file. By contrast, the old stabs debug format of
Berkeley Unix used specially flagged symbols stored in the general symbol table.

The code for reading symbolic information is somewhat tedious, as the different symbolic formats
encode every kind of type information that could be in a source program, but each goes about it in
its own idiosyncratic way. A GDB reader just walks through the format, constructing GDB symbols
that we think correspond to what the symbolic format intends.

Partial Symbol Tables
For a program of significant size (such as Emacs or Firefox), construction of the symbol table can
take quite a while, maybe even several minutes. Measurements consistently show that the time is not
in file reading as one might expect, but in the in-memory construction of GDB symbols. There are
literally millions of small interconnected objects involved, and the time adds up.

Most of the symbolic information will never be looked at in a session, since it is local to functions
that the user may never examine. So, when GDB first pulls in a program’s symbols, it does a cursory
scan through the symbolic information, looking for just the globally visible symbols and recording
only them in the symbol table. Complete symbolic info for a function or method is filled in only if
the user stops inside it.

Partial symbol tables allow GDB to start up in only a few seconds, even for large programs.
(Shared library symbols are also dynamically loaded, but the process is rather different. Typically
GDB uses a system-specific technique to be notified when the library is loaded, then builds a symbol
table with functions at the addresses that were decided on by the dynamic linker.)

Language Support
Source language support mainly consists of expression parsing and value printing. The details of
expression parsing are left up to each language, but in the general the parser is based on a Yacc
grammar fed by a hand-crafted lexical analyzer. In keeping with GDB’s goal of providing more
flexibility to the interactive user, the parser is not expected to be especially stringent; for instance,
if it can guess at a reasonable type for an expression, it will simply assume that type, rather than
require the user to add a cast or type conversion.

Since the parser need not handle statements or type declarations, it is much simpler than the full
language parser. Similarly, for printing, there are just a handful of types of values that need to be
displayed, and oftentimes the language-specific print function can call out to generic code to finish
the job.

4.8 Target Side
The target side is all about manipulation of program execution and raw data. In a sense, the target side
is a complete low-level debugger; if you are content to step by instructions and dump raw memory,
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you can use GDB without needing any symbols at all. (You may end up operating in this mode
anyway, if the program happens to stop in a library whose symbols have been stripped out.)

Target Vectors and the Target Stack
Originally the target side of GDB was composed of a handful of platform-specific files that handled
the details of calling ptrace, launching executables, and so on. This is not sufficiently flexible for
long-running debugging sessions, in which the user might switch from local to remote debugging,
switch from files to core dumps to live programs, attach and detach, etc., so in 1990 John Gilmore
redesigned the target side of GDB to send all target-specific operations through the target vector,
which is basically a class of objects, each of which defines the the specifics of a type of target system.
Each target vector is implemented as a structure of several dozen function pointers (often called
“methods”), whose purposes range from the reading and writing of memory and registers, to resuming
program execution, to setting parameters for the handling of shared libraries. There are about 40
target vectors in GDB, ranging from the well-used target vector for Linux to obscure vectors such as
the one that operates a Xilinx MicroBlaze. Core dump support uses a target vector that gets data by
reading a corefile, and there is another target vector that reads data from the executable.

It is often useful to blend methods from several target vectors. Consider the printing of an
initialized global variable on Unix; before the program starts running, printing the variable should
work, but at that point there is no process to read, and bytes need to come from the executable’s .data
section. So, GDB uses the target vector for executables and reads from the binary file. But while the
program is running, the bytes should instead come from the process’s address space. So, GDB has a
“target stack” where the target vector for live processes is pushed on top of the executable’s target
vector when the process starts running, and is popped when it exits.

In reality, the target stack turns out not to be quite as stack-like as one might think. Target vectors
are not really orthogonal to each other; if you have both an executable and a live process in the
session, while it makes sense to have the live process’s methods override the executable’s methods,
it almost never makes sense to do the reverse. So GDB has ended up with a notion of a stratum in
which “process-like” target vectors are all at one stratum, while “file-like” target vectors get assigned
to a lower stratum, and target vectors can get inserted as well as pushed and popped.

(AlthoughGDBmaintainers don’t like the target stackmuch, no one has proposed—or prototyped—
any better alternative.)

Gdbarch
As a program that works directly with the instructions of a CPU, GDB needs in-depth knowledge
about the details of the chip. It needs to know about all the registers, the sizes of the different kinds
of data, the size and shape of the address space, how the calling convention works, what instruction
will cause a trap exception, and so on. GDB’s code for all this typically ranges from 1,000 to over
10,000 lines of C, depending on the architecture’s complexity.

Originally this was handled using target-specific preprocessor macros, but as the debugger
became more sophisticated, these got larger and larger, and over time long macro definitions were
made into regular C functions called from the macros. While this helped, it did not help much with
architectural variants (ARM vs. Thumb, 32-bit vs. 64-bit versions of MIPS or x86, etc.), and worse,
multiple-architecture designs were on the horizon, for which macros would not work at all. In 1995,
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I proposed solving this with an object-based design, and starting in 1998 Cygnus Solutions1 funded
Andrew Cagney to start the changeover. It took several years and contributions from dozens of
hackers to finish the job, affecting perhaps 80,000 lines of code in all.

The introduced constructs are called gdbarch objects, and at this point may contain as many as
130 methods and variables defining a target architecture, although a simple target might only need a
dozen or so of these.

To get a sense of how the old and new ways compare, see the declaration that x86 long doubles
are 96 bits in size from gdb/config/i386/tm-i386.h, circa 2002:

#define TARGET_LONG_DOUBLE_BIT 96

and from gdb/i386-tdep.c, in 2012:

i386_gdbarch_init( [...] )
{

[...]

set_gdbarch_long_double_bit (gdbarch, 96);

[...]
}

Execution Control
The heart of GDB is its execution control loop. We touched on it earlier when describing single-
stepping over a line; the algorithm entailed looping over multiple instructions until finding one
associated with a different source line. The loop is called wait_for_inferior, or “wfi” for short.

Conceptually it is inside the main command loop, and is only entered for commands that cause
the program to resume execution. When the user types continue or step and then waits while
nothing seems to be happening, GDB may in fact be quite busy. In addition to the single-stepping
loop mentioned above, the program may be hitting trap instructions and reporting the exception
to GDB. If the exception is due to the trap being a breakpoint inserted by GDB, it then tests the
breakpoint’s condition, and if false, it removes the trap, single-steps the original instruction, re-inserts
the trap, and then lets the program resume. Similarly, if a signal is raised, GDB may choose to ignore
it, or handle it one of several ways specified in advance.

All of this activity is managed by wait_for_inferior. Originally this was a simple loop,
waiting for the target to stop and then deciding what to do about it, but as ports to various systems
needed special handling, it grew to a thousand lines, with goto statements criss-crossing it for poorly
understood reasons. For instance, with the proliferation of Unix variants, there was no one person
who understood all their fine points, nor did we have access to all of them for regression testing, so
there was a strong incentive to modify the code in a way that exactly preserved behavior for existing
ports—and a goto skipping over part of the loop was an all-too-easy tactic.

The single big loop was also a problem for any kind of asynchronous handling or debugging of
threaded programs, in which the user wants to start and stop a single thread while allowing the rest
of the program to continue running.

The conversion to an event-oriented model took several years. I broke up wait_for_inferior in
1999, introducing an execution control state structure to replace the pile of local and global variables,
1Cygnus Solutions was a company founded in 1989 to provide commercial support for free software. It was acquired in 2000
by Red Hat.
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and converting the tangle of jumps into smaller independent functions. At the same time Elena
Zannoni and others introduced event queues that included both input from the user and notifications
from the inferior.

The Remote Protocol
Although GDB’s target vector architecture allows for a broad variety of ways to control a program
running on a different computer, we have a single preferred protocol. It does not have a distinguishing
name, and is typically called just the “remote protocol”, “GDB remote protocol”, “remote serial
protocol” (abbreviating to “RSP”), “remote.c protocol” (after the source file that implements it), or
sometimes the “stub protocol”, referring to the target’s implementation of the protocol.

The basic protocol is simple, reflecting the desire to have it work on small embedded systems of
the 1980s, whose memories were measured in kilobytes. For instance, the protocol packet $g requests
all registers, and expects a reply consisting of all the bytes of all the registers, all run together—the
assumption being that their number, size, and order will match what GDB knows about.

The protocol expects a single reply to each packet sent, and assumes the connection is reliable,
adding only a checksum to packets sent (so $g is really sent as $g#67 over the wire).

Although there are only a handful of required packet types (corresponding to the half-dozen
target vector methods that are most important), scores of additional optional packets have been added
over the years, to support everything from hardware breakpoints, to tracepoints, to shared libraries.

On the target itself, the implementation of the remote protocol can take a wide variety of
forms. The protocol is fully documented in the GDB manual, which means that it is possible to
write an implementation that is not encumbered with a GNU license, and indeed many equipment
manufacturers have incorporated code that speaks the GDB remote protocol, both in the lab and in
the field. Cisco’s IOS, which runs much of their networking equipment, is one well-known example.

A target’s implementation of the protocol is often referred to as a “debugging stub”, or just “stub”,
connoting that it is not expected to do very much work on its own. The GDB sources include a few
example stubs, which are typically about 1,000 lines of low-level C. On a totally bare board with
no OS, the stub must install its own handlers for hardware exceptions, most importantly to catch
trap instructions. It will also need serial driver code if the hardware link is a serial line. The actual
protocol handling is simple, since all the required packets are single characters that can be decoded
with a switch statement.

Another approach to remote protocol is to build a “sprite” that interfaces between GDB and
dedicated debugging hardware, including JTAG devices, “wigglers”, etc. Oftentimes these devices
have a library that must run on the computer that is physically connected to a target board, and often
the library API is not architecturally compatible with GDB’s internals. So, while configurations of
GDB have called hardware control libraries directly, it has proven simpler to run the sprite as an
independent program that understands remote protocol and translates the packets into device library
calls.

GDBserver
The GDB sources do include one complete and working implementation of the target side of the
remote protocol: GDBserver. GDBserver is a native program that runs under the target’s operating
system, and controls other programs on the target OS using its native debugging support, in response
to packets received via remote protocol. In other words, it acts as a sort of proxy for native debugging.
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GDBserver doesn’t do anything that native GDB can’t do; if your target system can run GDBserver,
then theoretically it can run GDB. However, GDBserver is 10 times smaller and doesn’t need to
manage symbol tables, so it is very convenient for embedded GNU/Linux usages and the like.

Figure 4.2: GDBserver

GDB and GDBserver share some code, but while it is an obvious idea to encapsulate OS-specific
process control, there are practical difficulties with separating out tacit dependencies in native GDB,
and the transition has gone slowly.

4.9 Interfaces to GDB
GDB is fundamentally a command-line debugger. Over time people have tried various schemes to
make it into a graphical windowed debugger but, despite all the time and effort, none of these are
universally accepted.

Command-Line Interface
The command-line interface uses the standard GNU library readline to handle the character-by-
character interaction with the user. Readline takes care of things like line editing and command
completion; the user can do things like use cursor keys to go back in a line and fix a character.

GDB then takes the command returned by readline and looks it up using a cascaded structure
of command tables, where each successive word of the command selects an additional table. For
instance set print elements 80 involves three tables; the first is the table of all commands, the
second is a table of options that can be set, and the third is a table of value printing options, of
which elements is the one that limits the number of objects printed from an aggregate like a string
or array. Once the cascaded tables have called an actual command-handling function, it takes control,
and argument parsing is completely up to the function. Some commands, such as run, handle their
arguments similarly to traditional C argc/argv standards, while others, such as print, assume that
the remainder of the line is a single programming language expression, and give the entire line over
to a language-specific parser.
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Machine Interface
One way to provide a debugging GUI is to use GDB as a sort of “backend” to a graphical interface
program, translating mouse clicks into commands and formatting print results into windows. This
has been made to work several times, including KDbg and DDD (Data Display Debugger), but it’s
not the ideal approach because sometimes results are formatted for human readability, omitting
details and relying on human ability to supply context.

To solve this problem, GDB has an alternate “user” interface, known as the Machine Interface
or MI for short. It is still fundamentally a command-line interface, but both commands and results
have additional syntax that makes everything explicit—each argument is bounded by quotes, and
complex output has delimiters for subgroups and parameter names for component pieces. In addition,
MI commands can be prefixed with sequence identifiers that are echoed back in results, ensuring
reported results are matched up with the right commands.

To see how the two forms compare, here is a normal step command and GDB’s response:

(gdb) step

buggy_function (arg1=45, arg2=92) at ex.c:232
232 result = positive_variable * arg1 + arg2;

With the MI, the input and output are more verbose, but easier for other software to parse accurately:

4321-exec-step

4321^done,reason="end-stepping-range",
frame={addr="0x00000000004004be",

func="buggy_function",
args=[{name="arg1",value="45"},

{name="arg2",value="92"}],
file="ex.c",
fullname="/home/sshebs/ex.c",
line="232"}

The Eclipse[ecl12] development environment is the most notable client of the MI.

Other User Interfaces
Additional frontends include a tcl/tk-based version called GDBtk or Insight, and a curses-based
interface called the TUI, originally contributed by Hewlett-Packard. GDBtk is a conventional
multi-paned graphical interface built using the tk library, while the TUI is a split-screen interface.

4.10 Development Process
Maintainers
As an original GNU program, GDB development started out following the “cathedral” model of
development. Originally written by Stallman, GDB then went through a succession of “maintainers”,
each of whom was a combination of architect, patch reviewer, and release manager, with access to
the source repository limited to a handful of Cygnus employees.
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In 1999, GDB migrated to a public source repository and expanded to a team of several dozen
maintainers, aided by scores of individuals with commit privileges. This has accelerated development
considerably, with the 10-odd commits each week growing to 100 or more.

Testing Testing
As GDB is highly system-specific, has a great many ports to systems ranging from the smallest to
the largest in computerdom, and has hundreds of commands, options, and usage styles, it is difficult
for even an experienced GDB hacker to anticipate all the effects of a change.

This is where the test suite comes in. The test suite consists of a number of test programs
combined with expect scripts, using a tcl-based testing framework called DejaGNU. The basic
model is that each script drives GDB as it debugs a test program, sending commands and then
pattern-matching the output against regular expressions.

The test suite also has the ability to run cross-debugging to both live hardware and simulators,
and to have tests that are specific to a single architecture or configuration.

At the end of 2011, the test suite includes some 18,000 test cases, which include tests of basic
functionality, language-specific tests, architecture-specific tests, and MI tests. Most of these are
generic and are run for any configuration. GDB contributors are expected to run the test suite on
patched sources and observe no regressions, and new tests are expected to accompany each new
feature. However, as no one has access to all platforms that might be affected by a change, it is rare to
get all the way to zero failures; 10–20 failures is usually reasonable for a trunk snapshot configured
for native debugging, and some embedded targets will have more failures.

4.11 Lessons Learned
Open Development Wins
GDB started out as an exemplar of the “cathedral” development process, in which the maintainer
keeps close control of the sources, with the outside world only seeing progress via periodic snapshots.
This was rationalized by the relative infrequence of patch submissions, but the closed process was
actually discouraging patches. Since the open process has been adopted, the number of patches is
much larger than ever before, and quality is just as good or better.

Make a Plan, but Expect It to Change
The open source development process is intrinsically somewhat chaotic, as different individuals work
on the code for a while, then fall away, leaving others to continue on.

However, it still makes sense to make a development plan and publish it. It helps guide developers
as they work on related tasks, it can be shown to potential funders, and it lets volunteers think about
what they can do to advance it.

But don’t try to force dates or time frames; even if everyone is enthusiastic about a direction, it is
unlikely that people can guarantee full-time effort for long enough to finish by a chosen date.

For that matter, don’t cling to the plan itself if it has become outdated. For a long time, GDB had
a plan to restructure as a library, libgdb, with a well-defined API, that could be linked into other
programs (in particular ones with GUIs); the build process was even changed to build a libgdb.a as
an intermediate step. Although the idea has come up periodically since then, the primacy of Eclipse
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and MI meant that the library’s main rationale has been sidestepped, and as of January 2012 we have
abandoned the library concept and are expunging the now-pointless bits of code.

Things Would Be Great If We Were Infinitely Intelligent
After seeing some of the changes we made, you might be thinking: Why didn’t we do things right in
the first place? Well, we just weren’t smart enough.

Certainly we could have anticipated that GDB was going to be tremendously popular, and was
going to be ported to dozens and dozens of architectures, both native and cross. If we had known
that, we could have started with the gdbarch objects, instead of spending years upgrading old macros
and global variables; ditto for the target vector.

Certainly we could have anticipated GDB was going to be used with GUIs. After all in 1986
both the Mac and the X Window System had already been out for two years! Instead of designing a
traditional command interface, we could have set it up to handle events asynchronously.

The real lesson though is that not that GDBers were dumb, but that we couldn’t possibly have
been smart enough to anticipate how GDB would need to evolve. In 1986 it was not at all clear that
the windows-and-mouse interface was going to become ubiquitous; if the first version of GDB was
perfectly adapted for GUI use, we’d have looked like geniuses, but it would have been sheer luck.
Instead, by making GDB useful in a more limited scope, we built a user base that enabled more
extensive development and re-engineering later.

Learn to Live with Incomplete Transitions
Try to complete transitions, but they may take a while; expect to live with them being incomplete.

At the GCC Summit in 2003, Zack Weinberg lamented the “incomplete transitions” in GCC,
where new infrastructure had been introduced, but the old infrastructure could not be removed. GDB
has these also, but we can point to a number of transitions that have been completed, such as the
target vector and gdbarch. Even so, they can take a number of years to complete, and in the meantime
one has to keep the debugger running.

Don’t Get Too Attached to the Code
When you spend a long time with a single body of code, and it’s an important program that also pays
the bills, it’s easy to get attached to it, and even to mold your thinking to fit the code, rather than the
other way around.

Don’t.
Everything in the code originated with a series of conscious decisions: some inspired, some less

so. The clever space-saving trick of 1991 is a pointless complexity with the multi-gigabyte RAMs of
2011.

GDB once supported the Gould supercomputer. When they turned off the last machine, around
2000, there really wasn’t any point in keeping those bits around. That episode was the genesis of an
obsoletion process for GDB, and most releases now include the retirement of some piece or another.

In fact, there are a number of radical changes on the table or already underway, ranging from the
adoption of Python for scripting, to support for debugging of highly parallel multicore systems, to
recoding into C++. The changes may take years to complete; all the more reason to get started on
them now.
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[chapter5]

The Glasgow Haskell Compiler
Simon Marlow and Simon Peyton Jones

The Glasgow Haskell Compiler (GHC) started as part of an academic research project funded by the
UK government at the beginning of the 1990s, with several goals in mind:

• To make freely available a robust and portable compiler for Haskell that generates high
performance code;

• To provide a modular foundation that other researchers can extend and develop;
• To learn how real programs behave, so that we can design and build better compilers.
GHC is now over 20 years old, and has been under continuous active development since its

inception. Today, GHC releases are downloaded by hundreds of thousands of people, the online
repository of Haskell libraries has over 3,000 packages, GHC is used to teach Haskell in many
undergraduate courses, and there are a growing number of instances of Haskell being depended upon
commercially.

Over its lifetime GHC has generally had around two or three active developers, although the
number of people who have contributed some code to GHC is in the hundreds. While the ultimate
goal for us, the main developers of GHC, is to produce research rather than code, we consider
developing GHC to be an essential prerequisite: the artifacts of research are fed back into GHC,
so that GHC can then be used as the basis for further research that builds on these previous ideas.
Moreover, it is important that GHC is an industrial-strength product, since this gives greater credence
to research results produced with it. So while GHC is stuffed full of cutting-edge research ideas, a
great deal of effort is put into ensuring that it can be relied on for production use. There has often
been some tension between these two seemingly contradictory goals, but by and large we have found
a path that is satisfactory both from the research and the production-use angles.

In this chapter we want to give an overview of the architecture of GHC, and focus on a handful
of the key ideas that have been successful in GHC (and a few that haven’t). Hopefully throughout the
following pages you will gain some insight into how we managed to keep a large software project
active for over 20 years without it collapsing under its own weight, with what is generally considered
to be a very small development team.

5.1 What is Haskell?
Haskell is a functional programming language, defined by a document known as the “Haskell Report”
of which the latest revision is Haskell 2010 [Mar10]. Haskell was created in 1990 by several members



of the academic research community interested in functional languages, to address the lack of a
common language that could be used as a focus for their research.

Two features of Haskell stand out amongst the programming languages crowd:
• It is purely functional. That is, functions cannot have side effects or mutate data; for a given
set of inputs (arguments) a function always gives the same result. The benefits of this model
for reasoning about code (and, we believe, writing code) are clear, but integrating input/output
into the purely functional setting proved to be a significant challenge. Fortunately an elegant
solution in the form of monads was discovered, which not only allowed input/output to be
neatly integrated with purely functional code, but introduced a powerful new abstraction that
revolutionised coding in Haskell (and subsequently had an impact on other languages too).

• It is lazy. This refers to the evaluation strategy of the language: most languages use strict
evaluation in which the arguments to a function are evaluated before the function is called,
whereas in Haskell the arguments to a function are passed unevaluated, and only evaluated on
demand. This aspect of Haskell also has benefits for reasoning about programs, but more than
anything else serves as a barrier to prevent the leakage of impure non-functional features into
the language: such features fundamentally cannot work in conjunction with lazy semantics.

Haskell is also strongly-typed, while supporting type inference which means that type annotations
are rarely necessary.

Those interested in a complete history of Haskell should read [HHPW07].

5.2 High-Level Structure
At the highest level, GHC can be divided into three distinct chunks:

• The compiler itself. This is essentially a Haskell program whose job is to convert Haskell
source code into executable machine code.

• The Boot Libraries. GHC comes with a set of libraries that we call the boot libraries, because
they constitute the libraries that the compiler itself depends on. Having these libraries in
the source tree means that GHC can bootstrap itself. Some of these libraries are very tightly
coupled to GHC, because they implement low-level functionality such as the Int type in terms
of primitives defined by the compiler and runtime system. Other libraries are more high-level
and compiler-independent, such as the Data.Map library.

• The Runtime System (RTS). This is a large library of C code that handles all the tasks associated
with running the compiled Haskell code, including garbage collection, thread scheduling,
profiling, exception handling and so on. The RTS is linked into every compiled Haskell
program. The RTS represents a significant chunk of the development effort put into GHC, and
the design decisions made there are responsible for some of Haskell’s key strengths, such as
its efficient support for concurrency and parallelism. We’ll describe the RTS in more detail in
Section 5.5.

In fact, these three divisions correspond exactly to three subdirectories of a GHC source tree:
compiler, libraries, and rts respectively.

We won’t spend much time here discussing the boot libraries, as they are largely uninteresting
from an architecture standpoint. All the key design decisions are embodied in the compiler and
runtime system, so we will devote the rest of this chapter to discussing these two components.
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Code Metrics
The last time we measured the number of lines in GHC was in 19921, so it is interesting to look at
how things have changed since then. Figure 5.1 gives a breakdown of the number of lines of code in
GHC divided up into the major components, comparing the current tallies with those from 1992.

Module Lines (1992) Lines (2011) Increase
Compiler
Main 997 11,150 11.2
Parser 1,055 4,098 3.9
Renamer 2,828 4,630 1.6
Type checking 3,352 24,097 7.2
Desugaring 1,381 7,091 5.1
Core transformations 1,631 9,480 5.8
STG transformations 814 840 1
Data-Parallel Haskell — 3,718 —
Code generation 2913 11,003 3.8
Native code generation — 14,138 —
LLVM code generation — 2,266 —
GHCi — 7,474 —
Haskell abstract syntax 2,546 3,700 1.5
Core language 1,075 4,798 4.5
STG language 517 693 1.3
C-- (was Abstract C) 1,416 7,591 5.4
Identifier representations 1,831 3,120 1.7
Type representations 1,628 3,808 2.3
Prelude definitions 3,111 2,692 0.9
Utilities 1,989 7,878 3.96
Profiling 191 367 1.92
Compiler Total 28,275 139,955 4.9
Runtime System
All C and C-- code 43,865 48,450 1.10

Figure 5.1: Lines of code in GHC, past and present

There are some notable aspects of these figures:
• Despite nearly 20 years of non-stop development the compiler has only increased in size by
a factor of 5, from around 28,000 to around 140,000 lines of Haskell code. We obsessively
refactor while adding new code, keeping the code base as fresh as possible.

• There are several new components, although these only account for about 28,000 new lines.
Much of the new components are concerned with code generation: native code generators
for various processors, and an LLVM2 code generator. The infrastructure for the interactive
interpreter GHCi also added over 7,000 lines.

1“The Glasgow Haskell compiler: a technical overview”, JFIT technical conference digest, 1992
2Formerly the “Low Level Virtual Machine”, the LLVM project includes a generic code-generator with targets for many
different processors. Formore information see http://llvm.org/, and the chapter on LLVM inVolume 1 of The Architecture
of Open Source Applications.
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• The biggest increase in a single component is the type checker, where over 20,000 lines were
added. This is unsurprising given that much of the recent research using GHC has been into
new type system extensions (for example GADTs [PVWW06] and Type Families [CKP05]).

• A lot of code has been added to the Main component; this is partly because there was previously
a 3,000-line Perl script called the “driver” that was rewritten in Haskell and moved into GHC
proper, and also because support for compiling multiple modules was added.

• The runtime system has barely grown: it is only 10% larger, despite having accumulated a lot
of new functionality and being ported to more platforms. We rewrote it completely around
1997.

• GHC has a complex build system, which today comprises about 6,000 lines of GNUmake code.
It is on its fourth complete rewrite, the latest being about two years ago, and each successive
iteration has reduced the amount of code.

The Compiler
We can divide the compiler into three:

• The compilation manager, which is responsible for the compilation of multiple Haskell source
files. The job of the compilation manager is to figure out in which order to compile the
different files, and to decide which modules do not need to be recompiled because none of
their dependencies have changed since the last time they were compiled.

• The Haskell compiler (we abbreviate this as Hsc inside GHC), which handles the compilation
of a single Haskell source file. As you might imagine, most of the action happens in here. The
output of Hsc depends on what backend is selected: assembly, LLVM code, or bytecode.

• The pipeline, which is responsible for composing together any necessary external programs
with Hsc to compile a Haskell source file to object code. For example, a Haskell source file
may need preprocessing with the C preprocessor before feeding to Hsc, and the output of Hsc
is usually an assembly file that must be fed into the assembler to create an object file.

The compiler is not simply an executable that performs these functions; it is itself a library with
a large API that can be used to build other tools that work with Haskell source code, such as IDEs
and analysis tools. More about this later in Section 5.4.

Compiling Haskell Code
As with most compilers, compiling a Haskell source file proceeds in a sequence of phases, with
the output of each phase becoming the input of the subsequent phase. The overall structure of the
different phases is illustrated in Figure 5.2.

Parsing

We start in the traditional way with parsing, which takes as input a Haskell source file and produces
as output abstract syntax. In GHC the abstract syntax datatype HsSyn is parameterised by the types
of the identifiers it contains, so an abstract syntax tree has type HsSyn t for some type of identifiers t.
This enables us to add more information to identifiers as the program passes through the various
stages of the compiler, while reusing the same type of abstract syntax trees.

The output of the parser is an abstract syntax tree in which the identifiers are simple strings,
which we call RdrName. Hence, the abstract syntax produced by the parser has type HsSyn RdrName.
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Cmm (C--)

CoreExpr
(in A-normal form)

CoreExpr
(with tidy names)

HsSyn Id

HsSyn RdrName

HsSyn Name

CoreExpr

CoreExpr

IfaceSyn

STG

･ The Simplifier
･ Rewrite rules
･ Strictness analysis
･ Let-floating (inwards and outwards)
･ Specialise overloaded functions
･ Constructor specialisation

M.hs

Parse

Rename

Typecheck

Desugar

Simplify

CoreTidy

CorePrep Convert to IfaceSyn

Serialise

M.hi
(interface file)

Convert to STG

Code generation

Pretty-print 
C code

Generate 
machine code

Generate 
LLVM code

M.hc
(C code)

M.s
(asm code)

M.ll
(LLVM code)

Figure 5.2: The compiler phases

GHC uses the tools Alex and Happy to generate its lexical analysis and parsing code respectively,
which are analogous to the tools lex and yacc for C.

GHC’s parser is purely functional. In fact, the API of the GHC library provides a pure function
called parser that takes a String (and a few other things) and returns either the parsed abstract
syntax or an error message.
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Renaming

Renaming is the process of resolving all of the identifiers in the Haskell source code into fully qualified
names, at the same time identifying any out-of-scope identifiers and flagging errors appropriately.

In Haskell it is possible for a module to re-export an identifier that it imported from another
module. For example, suppose module A defines a function called f, and module B imports module
A and re-exports f. Now, if a module C imports module B, it can refer to f by the name B.f—even
though f is originally defined in module A. This is a useful form of namespace manipulation; it
means that a library can use whatever module structure it likes internally, but expose a nice clean
API via a few interface modules that re-export identifiers from the internal modules.

The compiler however has to resolve all this, so that it knows what each name in the source
code corresponds to. We make a clean distinction between the entities, the “things themselves” (in
our example, A.f), and the names by which the entities can be referred to (e.g., B.f). At any given
point in the source code, there are a set of entities in scope, and each may be known by one or more
different names. The job of the renamer is to replace each of the names in the compiler’s internal
representation of the code by a reference to a particular entity. Sometimes a name can refer to several
different entities; by itself that is not an error, but if the name is actually used, then the renamer will
flag an ambiguity error and reject the program.

Renaming takes Haskell abstract syntax (HsSyn RdrName) as input, and also produces abstract
syntax as output (HsSyn Name). Here a Name is a reference to a particular entity.

Resolving names is the main job of the renamer, but it performs a plethora of other tasks too:
collecting the equations of a function together and flagging an error if they have differing numbers of
arguments; rearranging infix expressions according to the fixity of the operators; spotting duplicate
declarations; generating warnings for unused identifiers, and so on.

Type Checking

Type checking, as one might imagine, is the process of checking that the Haskell program is type-
correct. If the program passes the type checker, then it is guaranteed to not crash at runtime.3

The input to the type checker is HsSyn Name (Haskell source with qualified names), and the
output is HsSyn Id. An Id is a Name with extra information: notably a type. In fact, the Haskell
syntax produced by the type checker is fully decorated with type information: every identifier has its
type attached, and there is enough information to reconstruct the type of any subexpression (which
might be useful for an IDE, for example).

In practice, type checking and renaming may be interleaved, because the Template Haskell feature
generates code at runtime that itself needs to be renamed and type checked.

Desugaring, and the Core language

Haskell is a rather large language, containing many different syntactic forms. It is intended to
be easy for humans to read and write—there is a wide range of syntactic constructs which gives
the programmer plenty of flexibility in choosing the most appropriate construct for the situation
at hand. However, this flexibility means that there are often several ways to write the same code;
for example, an if expression is identical in meaning to a case expression with True and False
branches, and list-comprehension notation can be translated into calls to map, filter, and concat.
3The term “crash” here has a formal definition that includes hard crashes like “segmentation fault”, but not things like
pattern-matching failure. The non-crash guarantee can be subverted by using certain unsafe language features, such as the
Foreign Function Interface.
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In fact, the definition of the Haskell language defines all these constructs by their translation into
simpler constructs; the constructs that can be translated away like this are called “syntactic sugar”.

It is much simpler for the compiler if all the syntactic sugar is removed, because the subsequent
optimisation passes that need to work with the Haskell program have a smaller language to deal
with. The process of desugaring therefore removes all the syntactic sugar, translating the full Haskell
syntax into a much smaller language that we call Core. We’ll talk about Core in detail in Section 5.3.

Optimisation

Now that the program is in Core, the process of optimisation begins. One of GHC’s great strengths
is in optimising away layers of abstraction, and all of this work happens at the Core level. Core is
a tiny functional language, but it is a tremendously flexible medium for expressing optimisations,
ranging from the very high-level, such as strictness analysis, to the very low-level, such as strength
reduction.

Each of the optimisation passes takes Core and produces Core. The main pass here is called the
Simplifier, whose job it is to perform a large collection of correctness-preserving transformations,
with the goal of producing a more efficient program. Some of these transformations are simple
and obvious, such as eliminating dead code or reducing a case expression when the value being
scrutinised is known, and some are more involved, such as function inlining and applying rewrite
rules (Section 5.4).

The simplifier is normally run between the other optimisation passes, of which there are about
six; which passes are actually run and in which order depends on the optimisation level selected by
the user.

Code Generation

Once the Core program has been optimised, the process of code generation begins. After a couple of
administrative passes, the code takes one of two routes: either it is turned into byte code for execution
by the interactive interpreter, or it is passed to the code generator for eventual translation to machine
code.

The code generator first converts the Core into a language called STG, which is essentially just
Core annotated with more information required by the code generator. Then, STG is translated to Cmm,
a low-level imperative language with an explicit stack. From here, the code takes one of three routes:

• Native code generation: GHC contains simple native code generators for a few processor
architectures. This route is fast, and generates reasonable code in most cases.

• LLVM code generation: The Cmm is converted to LLVM code and passed to the LLVM
compiler. This route can produce significantly better code in some cases, although it takes
longer than the native code generator.

• C code generation: GHC can produce ordinary C code. This route produces significantly
slower code than the other two routes, but can be useful for porting GHC to new platforms.

5.3 Key Design Choices
In this section we focus on a handful of the design choices that have been particularly effective in
GHC.
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The Intermediate Language

Expressions
t, e, u ::= x Variables

| K Data constructors
| k Literals
| λx:σ.e | e u Value abstraction and application
| Λa:η.e | e φ Type abstraction and application
| let x : τ = e in u Local bindings
| case e of p→ u Case expressions
| e.γ Casts
| bγc Coercions

p ::= K c:η x:τ Patterns

Figure 5.3: The syntax of Core

A typical structure for a compiler for a statically-typed language is this: the program is type
checked, and transformed to some untyped intermediate language, before being optimised. GHC is
different: it has a statically-typed intermediate language. As it turns out, this design choice has had
a pervasive effect on the design and development of GHC.

GHC’s intermediate language is called Core (when thinking of the implementation) or System FC
(when thinking about the theory). Its syntax is given in Figure 5.3. The exact details are not important
here; the interested reader can consult [SCPD07] for more details. For our present purposes, however,
the following points are the key ones:

• Haskell is a very large source language. The data type representing its syntax tree has literally
hundreds of constructors.
In contrast Core is a tiny, principled, lambda calculus. It has extremely few syntactic forms,
yet we can translate all of Haskell into Core.

• Haskell is an implicitly-typed source language. A programmay have few or no type annotations;
instead it is up to the type inference algorithm to figure out the type of every binder and sub-
expressions. This type inference algorithm is complex, and occasionally somewhat ad hoc,
reflecting the design compromises that every real programming language embodies.
In contrast Core is an explicitly-typed language. Every binder has an explicit type, and terms
include explicit type abstractions and applications. Core enjoys a very simple, fast type
checking algorithm that checks that the program is type correct. The algorithm is entirely
straightforward; there are no ad hoc compromises.

All of GHC’s analysis and optimisation passes work on Core. This is great: because Core is
such a tiny language an optimisation has only a few cases to deal with. Although Core is small, it is
extremely expressive—System F was, after all, originally developed as a foundational calculus for
typed computation. When new language features are added to the source language (and that happens
all the time) the changes are usually restricted to the front end; Core stays unchanged, and hence so
does most of the compiler.

But why is Core typed? After all, if the type inference engine accepts the source program,
that program is presumably well typed, and each optimisation pass presumably maintains that
type-correctness. Core may enjoy a fast type checking algorithm, but why would you ever want
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to run it? Moreover, making Core typed carries significant costs, because every transformation or
optimisation pass must produce a well-typed program, and generating all those type annotations is
often non-trivial.

Nevertheless, it has been a huge win to have an explicitly-typed intermediate language, for several
reasons:

• Running the Core type checker (we call it Lint) is a very powerful consistency check on the
compiler itself. Imagine that you write an “optimisation” that accidentally generates code that
treats an integer value as a function, and tries to call it. The chances are that the program will
segmentation fault, or fail at runtime in a bizarre way. Tracing a seg-fault back to the particular
optimisation pass that broke the program is a long road.
Now imagine instead that we run Lint after every optimisation pass (and we do, if you use
the flag -dcore-lint): it will report a precisely located error immediately after the offending
optimisation. What a blessing.
Of course, type soundness is not the same as correctness: Lint will not signal an error if you
“optimise” (x ∗ 1) to 1 instead of to x. But if the program passes Lint, it will guarantee to
run without seg-faults; and moreover in practice we have found that it is surprisingly hard to
accidentally write optimisations that are type-correct but not semantically correct.

• The type inference algorithm for Haskell is very large and very complex: a glance at Figure 5.1
confirms that the type checker is by far the largest single component of GHC. Large and complex
means error-prone. But Lint serves as an 100% independent check on the type inference
engine; if the type inference engine accepts a program that is not, in fact, type-correct, Lint
will reject it. So Lint serves as a powerful auditor of the type inference engine.

• The existence of Core has also proved to be a tremendous sanity check on the design of
the source language. Our users constantly suggest new features that they would like in the
language. Sometimes these features are manifestly “syntactic sugar”, convenient new syntax
for something you can do already. But sometimes they are deeper, and it can be hard to tell
how far-reaching the feature is.
Core gives us a precise way to evaluate such features. If the feature can readily be translated
into Core, that reassures us that nothing fundamentally new is going on: the new feature is
syntactic-sugar-like. On the other hand, if it would require an extension to Core, then we think
much, much more carefully.

In practice Core has been incredibly stable: over a 20-year time period we have added exactly
one new major feature to Core (namely coercions and their associated casts). Over the same period,
the source language has evolved enormously. We attribute this stability not to our own brilliance, but
rather to the fact that Core is based directly on foundational mathematics: bravo Girard!

Type Checking the Source Language
One interesting design decision is whether type checking should be done before or after desugaring.
The trade-offs are these:

• Type checking before desugaring means that the type checker must deal directly with Haskell’s
very large syntax, so the type checker has many cases to consider. If we desugared into (an
untyped variant of) Core first, one might hope that the type checker would become much
smaller.
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• On the other hand, type checking after desugaring would impose a significant new obligation:
that desugaring does not affect which programs are type-correct. After all, desugaring implies
a deliberate loss of information. It is probably the case that in 95% of the cases there is no
problem, but any problem here would force some compromise in the design of Core to preserve
some extra information.

• Most seriously of all, type checking a desugared program would make it much harder to report
errors that relate to the original program text, and not to its (sometimes elaborate) desugared
version.

Most compilers type check after desugaring, but for GHC we made the opposite choice: we type
check the full original Haskell syntax, and then desugar the result. It sounds as if adding a new
syntactic construct might be complicated, but (following the French school) we have structured the
type inference engine in a way that makes it easy. Type inference is split into two parts:

1. Constraint generation: walk over the source syntax tree, generating a collection of type
constraints. This step deals with the full syntax of Haskell, but it is very straightforward code,
and it is easy to add new cases.

2. Constraint solving: solve the gathered constraints. This is where the subtlety of the type
inference engine lies, but it is independent of the source language syntax, and would be the
same for a much smaller or much larger language.

On the whole, the type-check-before-desugar design choice has turned out to be a big win. Yes,
it adds lines of code to the type checker, but they are simple lines. It avoids giving two conflicting
roles to the same data type, and makes the type inference engine less complex, and easier to modify.
Moreover, GHC’s type error messages are pretty good.

No Symbol Table
Compilers usually have one or more data structures known as symbol tables, which are mappings
from symbols (e.g., variables) to some information about the variable, such as its type, or where in
the source code it was defined.

In GHC we use symbol tables quite sparingly; mainly in the renamer and type checker. As far as
possible, we use an alternative strategy: a variable is a data structure that contains all the information
about itself. Indeed, a large amount of information is reachable by traversing the data structure of a
variable: from a variable we can see its type, which contains type constructors, which contain their
data constructors, which themselves contain types, and so on. For example, here are some data types
from GHC (heavily abbreviated and simplified):

data Id = MkId Name Type
data Type = TyConApp TyCon [Type]

| ....
data TyCon = AlgTyCon Name [DataCon]

| ...
data DataCon = MkDataCon Name Type ...

An Id contains its Type. A Typemight be an application of a type constructor to some arguments
(e.g., Maybe Int), in which case it contains the TyCon. A TyCon can be an algebraic data type, in
which case it includes a list of its data constructors. Each DataCon includes its Type, which of course
mentions the TyCon. And so on. The whole structure is highly interconnected. Indeed it is cyclic;
for example, a TyCon may contain a DataCon which contains a Type, which contains the very TyCon
we started with.
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This approach has some advantages and disadvantages:
• Many queries that would require a lookup in a symbol table are reduced to a simple field
access, which is great for efficiency and code clarity.

• There is no need to carry around extra symbol tables, the abstract syntax tree already contains
all the information.

• The space overheads are better: all instances of the same variable share the same data structure,
and there is no space needed for the table.

• The only difficulties arise when we need to change any of the information associated with a
variable. This is where a symbol table has the advantage: we would just change the entry in the
symbol table. In GHC we have to traverse the abstract syntax tree and replace all the instances
of the old variable with the new one; indeed the simplifier does this regularly, as it needs to
update certain optimisation-related information about each variable.

It is hard to know whether it would be better or worse overall to use symbol tables, because this
aspect of the design is so fundamental that it is almost impossible to change. Still, avoiding symbol
tables is a natural choice in the purely functional setting, so it seems likely that this approach is a
good choice for Haskell.

Inter-Module Optimisation
Functional languages encourage the programmer to write small definitions. For example, here is the
definition of && from the standard library:

(&&) :: Bool -> Bool -> Bool
True && True = True
_ && _ = False

If every use of such a function really required a function call, efficiency would be terrible. One
solution is to make the compiler treat certain functions specially; another is to use a pre-processor to
replace a “call” with the desired inline code. All of these solutions are unsatisfactory in one way or
another, especially as another solution is so obvious: simply inline the function. To “inline a function”
means to replace the call by a copy of the function body, suitably instantiating its parameters.

In GHC we have systematically adopted this approach [PM02]. Virtually nothing is built into the
compiler. Instead, we define as much as possible in libraries, and use aggressive inlining to eliminate
the overheads. This means that programmers can define their own libraries that will be inlined and
optimised as well as the ones that come with GHC.

A consequence is that GHC must be able to do cross-module, and indeed cross-package, inlining.
The idea is simple:

• When compiling a Haskell module Lib.hs, GHC produces object code in Lib.o and an
“interface file” in Lib.hi. This interface file contains information about all the functions that
Lib exports, including both their types and, for sufficiently small functions, their definitions.

• When compiling a module Client.hs that imports Lib, GHC reads the interface Lib.hi. So
if Client calls a function Lib.f defined in Lib, GHC can use the information in Lib.hi to
inline Lib.f.

By default GHC will expose the definition of a function in the interface file only if the function
is “small” (there are flags to control this size threshold). But we also support an INLINE pragma, to
instruct GHC to inline the definition aggressively at call sites, regardless of size, thus:
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foo :: Int -> Int
{-# INLINE foo #-}
foo x = <some big expression>

Cross-module inlining is absolutely essential for defining super-efficient libraries, but it does
come with a cost. If the author upgrades his library, it is not enough to re-link Client.o with the new
Lib.o, because Client.o contains inlined fragments of the old Lib.hs, and they may well not be
compatible with the new one. Another way to say this is that the ABI (Application Binary Interface)
of Lib.o has changed in a way that requires recompilation of its clients.

In fact, the only way for compilation to generate code with a fixed, predictable ABI is to disable
cross-module optimisation, and this is typically too high a price to pay for ABI compatibility. Users
working with GHC will usually have the source code to their entire stack available, so recompiling is
not normally an issue (and, as we will describe later, the package system is designed around this
mode of working). However, there are situations where recompiling is not practical: distributing bug
fixes to libraries in a binary OS distribution, for example. In the future we hope it may be possible
to find a compromise solution that allows retaining ABI compatibility while still allowing some
cross-module optimisation to take place.

5.4 Extensibility
It is often the case that a project lives or dies according to how extensible it is. A monolithic piece of
software that is not extensible has to do everything and do it right, whereas an extensible piece of
software can be a useful base even if it doesn’t provide all the required functionality out of the box.

Open source projects are of course extensible by definition, in that anyone can take the code and
add their own features. But modifying the original source code of a project maintained by someone
else is not only a high-overhead approach, it is also not conducive to sharing your extension with
others. Therefore successful projects tend to offer forms of extensibility that do not involve modifying
the core code, and GHC is no exception in this respect.

User-Defined Rewrite Rules
The core of GHC is a long sequence of optimisation passes, each of which performs some semantics-
preserving transformation, Core into Core. But the author of a library defines functions that often
have some non-trivial, domain-specific transformations of their own, ones that cannot possibly be
predicted by GHC. So GHC allows library authors to define rewrite rules that are used to rewrite the
program during optimisation [PTH01]. In this way, programmers can, in effect, extend GHC with
domain-specific optimisations.

One example is the foldr/build rule, which is expressed like this:

{-# RULES "fold/build"
forall k z (g::forall b. (a->b->b) -> b -> b) .

foldr k z (build g) = g k z
#-}

The entire rule is a pragma, introduced by {-# RULES. The rule says that whenever GHC sees
the expression (foldr k z (build g)) it should rewrite it to (g k z). This transformation is
semantics-preserving, but it takes a research paper to argue that it is [GLP93], so there is no chance
of GHC performing it automatically. Together with a handful of other rules, and some INLINE
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pragmas, GHC is able to fuse together list-transforming functions. For example, the two loops in
(map f (map g xs)) are fused into one.

Although rewrite rules are simple and easy to use, they have proved to be a very powerful
extension mechanism. When we first introduced the feature into GHC ten years ago we expected
it to be an occasionally useful facility. But in practice it has turned out to be useful in very many
libraries, whose efficiency often depends crucially on rewrite rules. For example, GHC’s own base
library contains upward of 100 rules, while the popular vector library uses several dozen.

Compiler Plugins
One way in which a compiler can offer extensibility is to allow programmers to write a pass that is
inserted directly into the compiler’s pipeline. Such passes are often called “plugins”. GHC supports
plugins in the following way:

• The programmer writes a Core to Core pass, as an ordinary Haskell function in a module P.hs,
say, and compiles it to object code.

• When compiling some module, the programmer uses the command-line flag -plugin P.
(Alternatively, he can give the flag in a pragma at the start of the module.)

• GHC searches for P.o, dynamically links it into the running GHC binary, and calls it at the
appropriate point in the pipeline.

But what is “the appropriate point in the pipeline”? GHC does not know, and so it allows the
plugin to make that decision. As a result of this and other matters, the API that the plugin must offer
is a bit more complicated than a single Core to Core function—but not much.

Plugins sometimes require, or produce, auxiliary plugin-specific data. For example, a plugin
might perform some analysis on the functions in the module being compiled (M.hs, say), and might
want to put that information in the interface file M.hi, so that the plugin has access to that information
when compiling modules that import M. GHC offers an annotation mechanism to support this.

Plugins and annotations are relatively new to GHC. They have a higher barrier to entry than
rewrite rules, because the plugin is manipulating GHC’s internal data structures, but of course they
can do much more. It remains to be seen how widely they will be used.

GHC as a Library: The GHC API
One of GHC’s original goals was to be a modular foundation that others could build on. We wanted
the code of GHC to be as transparent and well-documented as possible, so that it could be used as
the basis for research projects by others; we imagined that people would want to make their own
modifications to GHC to add new experimental features or optimisations. Indeed, there have been
some examples of this: for example, there exists a version of GHC with a Lisp front-end, and a
version of GHC that generates Java code, both developed entirely separately by individuals with little
or no contact with the GHC team.

However, producing modified versions of GHC represents only a small subset of the ways in
which the code of GHC can be re-used. As the popularity of the Haskell language has grown, there
has been an increasing need for tools and infrastructure that understand Haskell source code, and
GHC of course contains a lot of the functionality necessary for building these tools: a Haskell parser,
abstract syntax, type checker and so on.

With this in mind, we made a simple change to GHC: rather than building GHC as a monolithic
program, we build GHC as a library, that is then linked with a small Main module to make the GHC
executable itself, but also shipped in library form so that users can call it from their own programs.
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At the same time we built an API to expose GHC’s functionality to clients. The API provides enough
functionality to implement the GHC batch compiler and the GHCi interactive environment, but it
also provides access to individual passes such as the parser and type checker, and allows the data
structures produced by these passes to be inspected. This change has given rise to a wide range of
tools built using the GHC API, including:

• A documentation tool, Haddock4, which reads Haskell source code and produces HTML
documentation.

• New versions of the GHCi front end with additional features; e.g., ghci-haskeline5 which was
subsequently merged back into GHC.

• IDEs that offer advanced navigation of Haskell source code; e.g., Leksah6.
• hint7, a simpler API for on-the-fly evaluation of Haskell source code.

The Package System
The package system has been a key factor in the growth in use of the Haskell language in recent
years. Its main purpose is to enable Haskell programmers to share code with each other, and as such
it is an important aspect of extensibility: the package system extends the shared codebase beyond
GHC itself.

The package system embodies various pieces of infrastructure that together make sharing code
easy. With the package system as the enabler, the community has built a large body of shared
code; rather than relying on libraries from a single source, Haskell programmers draw on libraries
developed by the whole community. This model has worked well for other languages; CPAN for
Perl, for example, although Haskell being a predominantly compiled rather than interpreted language
presents a somewhat different set of challenges.

Basically, the package system lets a user manage libraries of Haskell code written by other people,
and use them in their own programs and libraries. Installing a Haskell library is as simple as uttering
a single command, for example:

$ cabal install zlib

downloads the code for the zlib package from http://hackage.haskell.org, compiles it using
GHC, installs the compiled code somewhere on your system (e.g., in your home directory on a Unix
system), and registers the installation with GHC. Furthermore, if zlib depends on any other packages
that are not yet installed, those will also be downloaded, compiled and installed automatically before
zlib itself is compiled. It is a tremendously smooth way to work with libraries of Haskell code
shared by others.

The package system is made of four components, only the first of which is strictly part of the
GHC project:

• Tools for managing the package database, which is simply a repository for information about
the packages installed on your system. GHC reads the package database when it starts up, so
that it knows which packages are available and where to find them.

• A library called Cabal (Common Architecture for Building Applications and Libraries), which
implements functionality for building, installing and registering individual packages.

4http://www.haskell.org/haddock/
5http://hackage.haskell.org/package/ghci-haskeline
6http://hackage.haskell.org/package/leksah
7http://hackage.haskell.org/package/hint

80 The Glasgow Haskell Compiler



• A website at http://hackage.haskell.org which hosts packages written and uploaded by
users. The website automatically builds documentation for the packages which can be browsed
online. At the time of writing, Hackage is hosting over 3,000 packages covering functionality
including database libraries, web frameworks, GUI toolkits, data structures, and networking.

• The cabal tool which ties together the Hackage website and the Cabal library: it downloads
packages from Hackage, resolves dependencies, and builds and installs packages in the right
order. New packages can also be uploaded to Hackage using cabal from the command line.

These components have been developed over several years by members of the Haskell commu-
nity and the GHC team, and together they make a system that fits perfectly with the open source
development model. There are no barriers to sharing code or using code that others have shared
(provided you respect the relevant licenses, of course). You can be using a package that someone
else has written literally within seconds of finding it on Hackage.

Hackage has been so successful that the remaining problems it has are now those of scale: users
find it difficult to choose amongst the four different database frameworks, for example. Ongoing
developments are aimed at solving these problems in ways that leverage the community. For example,
allowing users to comment and vote on packages will make it easier to find the best and most popular
packages, and collecting data on build success or failures from users and reporting the results will
help users avoid packages that are unmaintained or have problems.

5.5 The Runtime System
The Runtime System is a library of mostly C code that is linked into every Haskell program. It
provides the support infrastructure needed for running the compiled Haskell code, including the
following main components:

• Memory management, including a parallel, generational, garbage collector;
• Thread management and scheduling;
• The primitive operations provided by GHC;
• A bytecode interpreter and dynamic linker for GHCi.
The rest of this section is divided into two: first we focus on a couple of the aspects of the design

of the RTS that we consider to have been successful and instrumental in making it work so well, and
secondly we talk about the coding practices and infrastructure we have built in the RTS for coping
with what is a rather hostile programming environment.

Key Design Decisions
In this section we describe two of the design decisions in the RTS that we consider to have been
particularly successful.

The Block Layer

The garbage collector is built on top of a block layer that manages memory in units of blocks, where
a block is a multiple of 4 KB in size. The block layer has a very simple API:

typedef struct bdescr_ {
void * start;
struct bdescr_ * link;
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struct generation_ * gen; // generation
// .. various other fields

} bdescr;

bdescr * allocGroup (int n);
void freeGroup (bdescr *p);
bdescr * Bdescr (void *p); // a macro

This is the only API used by the garbage collector for allocating and deallocating memory. Blocks
of memory are allocated with allocGroup and freed with freeGroup. Every block has a small
structure associated with it called a block descriptor (bdescr). The operation Bdescr(p) returns the
block descriptor associated with an arbitrary address p; this is purely an address calculation based
on the value of p and compiles to a handful of arithmetic and bit-manipulation instructions.

Blocks may be linked together into chains using the link field of the bdescr, and this is the real
power of the technique. The garbage collector needs to manage several distinct areas of memory
such as generations, and each of these areas may need to grow or shrink over time. By representing
memory areas as linked lists of blocks, the GC is freed from the difficulties of fitting multiple resizable
memory areas into a flat address space.

The implementation of the block layer uses techniques that are well-known from C’s
malloc()/free() API; it maintains lists of free blocks of various sizes, and coalesces free ar-
eas. The operations freeGroup() and allocGroup() are carefully designed to be O(1).

One major advantage of this design is that it needs very little support from the OS, and hence is
great for portability. The block layer needs to allocate memory in units of 1 MB, aligned to a 1 MB
boundary. While none of the common OSs provide this functionality directly, it is implementable
without much difficulty in terms of the facilities they do provide. The payoff is that GHC has no
dependence on the particular details of the address-space layout used by the OS, and it coexists
peacefully with other users of the address space, such as shared libraries and operating system
threads.

There is a small up-front complexity cost for the block layer, in terms of managing chains of
blocks rather than contiguous memory. However, we have found that this cost is more than repaid in
flexibility and portability; for example, the block layer enabled a particularly simple algorithm for
parallel GC to be implemented [MHJP08].

Lightweight Threads and Parallelism

We consider concurrency to be a vitally important programming abstraction, particularly for building
applications like web servers that need to interact with large numbers of external agents simultaneously.
If concurrency is an important abstraction, then it should not be so expensive that programmers
are forced to avoid it, or build elaborate infrastructure to amortise its cost (e.g., thread pools). We
believe that concurrency should just work, and be cheap enough that you don’t worry about forking
threads for small tasks.

All operating systems provide threads that work perfectly well, the problem is that they are far
too expensive. Typical OSs struggle to handle thousands of threads, whereas we want to manage
threads by the million.

Green threads, otherwise known as lightweight threads or user-space threads, are a well-known
technique for avoiding the overhead of operating system threads. The idea is that threads are managed
by the program itself, or a library (in our case, the RTS), rather than by the operating system.
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Managing threads in user space should be cheaper, because fewer traps into the operating system are
required.

In the GHC RTS we take full advantage of this idea. A context switch only occurs when the
thread is at a safe point, where very little additional state needs to be saved. Because we use accurate
GC, the stack of the thread can be moved and expanded or shrunk on demand. Contrast these with
OS threads, where every context switch must save the entire processor state, and where stacks are
immovable so a large chunk of address space has to be reserved up front for each thread.

Green threads can be vastly more efficient than OS threads, so why would anyone want to use
OS threads? It comes down to three main problems:

• Blocking and foreign calls. A thread should be able to make a call to an OS API or a foreign
library that blocks, without blocking all the other threads in the system.

• Parallelism. Threads should automatically run in parallel if there are multiple processor cores
on the system.

• Some external libraries (notably OpenGL and some GUI libraries) have APIs that must be
called from the same OS thread each time, because they use thread-local state.

It turns out that all of these are difficult to arrange with green threads. Nevertheless, we persevered
with green threads in GHC and found solutions to all three:

• When a Haskell thread makes a foreign call, another OS thread takes over the execution of
the remaining Haskell threads [MPT04]. A small pool of OS threads are maintained for this
purpose, and new ones are created on demand.

• GHC’s scheduler multiplexes many lightweight Haskell threads onto a few heavyweight OS
threads; it implements a transparent M:N threading model. Typically N is chosen to be the
same as the number of processor cores in the machine, allowing real parallelism to take place
but without the overhead of having a full OS thread for each lightweight Haskell thread.
In order to run Haskell code, an OS thread must hold a Capability8: a data structure that
holds the resources required to execute Haskell code, such as the nursery (memory where new
objects are created). Only one OS thread may hold a given Capability at a time.

• We provide an API for creating a bound thread: a Haskell thread that is tied to one specific
OS thread, such that any foreign calls made by this Haskell thread are guaranteed to be made
by that OS thread.

So in the vast majority of cases, Haskell’s threads behave exactly like OS threads: they can make
blocking OS calls without affecting other threads, and they run in parallel on a multicore machine.
But they are orders of magnitude more efficient, in terms of both time and space.

Having said that, the implementation does have one problem that users occasionally run into,
especially when running benchmarks. We mentioned above that lightweight threads derive some
of their efficiency by only context-switching at “safe points”, points in the code that the compiler
designates as safe, where the internal state of the virtual machine (stack, heap, registers, etc.) is in
a tidy state and garbage collection could take place. In GHC, a safe point is whenever memory is
allocated, which in almost all Haskell programs happens regularly enough that the program never
executes more than a few tens of instructions without hitting a safe point. However, it is possible in
highly optimised code to find loops that run for many iterations without allocating memory. This
tends to happen often in benchmarks (e.g., functions like factorial and Fibonacci). It occurs less
often in real code, although it does happen. The lack of safe points prevents the scheduler from
running, which can have detrimental effects. It is possible to solve this problem, but not without
8We have also called it a “Haskell Execution Context”, but the code currently uses the Capability terminology.
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impacting the performance of these loops, and often people care about saving every cycle in their
inner loops. This may just be a compromise we have to live with.

5.6 Developing GHC
GHC is a single project with a twenty-year life span, and is still in a ferment of innovation and
development. For the most part our infrastructure and tooling has been conventional. For example,
we use a bug tracker (Trac), a wiki (also Trac), and Git for revision control. (This revision-control
mechanism evolved from purely manual, then CVS, then Darcs, before finally moving to Git in 2010.)
There are a few points that may be less universal, and we offer them here.

Comments and Notes
One of the most serious difficulties in a large, long-lived project is keeping technical documentation
up to date. We have no silver bullet, but we offer one low-tech mechanism that has served us
particularly well: Notes.

When writing code, there is often a moment when a careful programmer will mentally say
something like “This data type has an important invariant”. She is faced with two choices, both
unsatisfactory. She can add the invariant as a comment, but that can make the data type declaration
too long, so that it is hard to see what the constructors are. Alternatively, she can document the
invariant elsewhere, and risk it going out of date. Over twenty years, everything goes out of date!

Thus motivated, we developed the following very simple convention:
• Comments of any significant size are not interleaved with code, but instead set off by themselves,
with a heading in standard form, thus:

Note [Equality-constrained types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The type forall ab. (a ~ [b]) => blah
is encoded like this:

ForAllTy (a:*) $ ForAllTy (b:*) $
FunTy (TyConApp (~) [a, [b]]) $
blah

• A the point where the comment is relevant, we add a short comment referring to the Note:

data Type
= FunTy Type Type -- See Note [Equality-constrained types]

| ...

The comment highlights that something interesting is going on, and gives a precise reference to
the comment that explains. It sounds trivial, but the precision is vastly better than our previous
habit of saying “see the comment above”, because it often was not clear which of the many
comments above was intended, and after a few years the comment was not even above (it was
below, or gone altogether).
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Not only is it possible to go from the code that refers to the Note to the Note itself, but the reverse
is also possible, and that is often useful. Moreover, the same Note may be referred to from multiple
points in the code.

This simple, ASCII-only technique, with no automated support, has transformed our lives: GHC
has around 800 Notes, and the number grows daily.

How to Keep On Refactoring
The code of GHC is churning just as quickly as it was ten years ago, if not more so. There is no
doubt that the complexity of the system has increased manyfold over that same time period; we saw
measures of the amount of code in GHC earlier. Yet, the system remains manageable. We attribute
this to three main factors:

• There’s no substitute for good software engineering. Modularity always pays off: making
the APIs between components as small as possible makes the individual components more
flexible because they have fewer interdependencies. For example, GHC’s Core{} datatype
being small reduces the coupling between Core-to-Core passes, to the extent that they are
almost completely independent and can be run in arbitrary order.

• Developing in a strongly-typed language makes refactoring a breeze. Whenever we need to
change a data type, or change the number of arguments or type of a function, the compiler
immediately tells us what other places in the code need to be fixed. Simply having an absolute
guarantee that a large class of errors have been statically ruled out saves a huge amount of
time, especially when refactoring. It is scary to imagine how many hand-written test cases we
would need to provide the same level of coverage that the type system provides.

• When programming in a purely functional language, it is hard to introduce accidental depen-
dencies via state. If you decide that you suddenly need access to a piece of state deep in an
algorithm, in an imperative language you might be tempted to just make the state globally
visible rather than explicitly pass it down to the place that needs it. This way eventually leads
to a tangle of invisible dependencies, and brittle code: code that breaks easily when modified.
Pure functional programming forces you to make all the dependencies explicit, which exerts
some negative pressure on adding new dependencies, and fewer dependencies means greater
modularity. Certainly when it is necessary to add a new dependency then purity makes you
write more code to express the dependency, but in our view it is a worthwhile price to pay for
the long-term health of the code base.
As an added benefit, purely functional code is thread-safe by construction and tends to be
easier to parallelise.

Crime Doesn’t Pay
Looking back over the changes we’ve had to make to GHC as it has grown, a common lesson emerges:
being less than purely functional, whether for the purposes of efficiency or convenience, tends to
have negative consequences down the road. We have a couple of great examples of this:

• GHC uses a few data structures that rely on mutation internally. One is the FastString type,
which uses a single global hash table; another is a global NameCache that ensures all external
names are assigned a unique number. When we tried to parallelise GHC (that is, make GHC
compile multiple modules in parallel on a multicore processor), these data structures based on
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mutation were the only sticking points. Had we not resorted to mutation in these places, GHC
would have been almost trivial to parallelise.
In fact, although we did build a prototype parallel version of GHC, GHC does not currently
contain support for parallel compilation, but that is largely because we have not yet invested
the effort required to make these mutable data structures thread-safe.

• GHC’s behaviour is governed to a large extent by command-line flags. These command-line
flags are by definition constant over a given run of GHC, so in early versions of GHC we made
the values of these flags available as top-level constants. For example, there was a top-level
value opt_GlasgowExts of type Bool, that governed whether certain language extensions
should be enabled or not. Top-level constants are highly convenient, because their values don’t
have to be explicitly passed as arguments to all the code that needs access to them.
Of course these options are not really constants, because they change from run to run, and
the definition of opt_GlasgowExts involves calling unsafePerformIO because it hides a side
effect. Nevertheless, this trick is normally considered “safe enough” because the value is
constant within any given run; it doesn’t invalidate compiler optimisations, for example.
However, GHC was later extended from a single-module compiler to a multi-module compiler.
At this point the trick of using top-level constants for flags broke, because the flags may have
different values when compiling different modules. So we had to refactor large amounts of
code to pass around the flags explicitly.
Perhaps you might argue that treating the flags as state in the first place, as would be natural
in an imperative language, would have sidestepped the problem. To some extent this is true,
although purely functional code has a number of other benefits, not least of which is that
representing the flags by an immutable data structure means that the resulting code is already
thread-safe and will run in parallel without modification.

Developing the RTS
GHC’s runtime system presents a stark contrast to the compiler in many ways. There is the obvious
difference that the runtime system is written in C rather than Haskell, but there are also considerations
unique to the RTS that give rise to a different design philosophy:

1. Every Haskell program spends a lot of time executing code in the RTS: 20–30% is typical,
but characteristics of Haskell programs vary a lot and so figures greater or less than this range
are also common. Every cycle saved by optimising the RTS is multiplied many times over, so
it is worth spending a lot of time and effort to save those cycles.

2. The runtime system is statically linked into every Haskell program9, so there is an incentive
to keep it small.

3. Bugs in the runtime system are often inscrutable to the user (e.g., “segmentation fault”) and
are hard to work around. For example, bugs in the garbage collector tend not to be tied
to the use of a particular language feature, but arise when some complex combination of
factors emerges at runtime. Furthermore, bugs of this kind tend to be non-deterministic (only
occurring in some runs), and highly sensitive (tiny changes to the program make the bug
disappear). Bugs in the multithreaded version of the runtime system present even greater
challenges. It is therefore worth going to extra lengths to prevent these bugs, and also to build
infrastructure to make identifying them easier.

9That is, unless dynamic linking is being used.
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The symptoms of an RTS bug are often indistinguishable from two other kinds of failure:
hardware failure, which is more common than you might think, and misuse of unsafe Haskell
features like the FFI (Foreign Function Interface). The first job in diagnosing a runtime crash
is to rule out these two other causes.

4. The RTS is low-level code that runs on several different architectures and operating systems,
and is regularly ported to new ones. Portability is important.

Every cycle and every byte is important, but correctness is even more so. Moreover, the tasks
performed by the runtime system are inherently complex, so correctness is hard to begin with.
Reconciling these has lead us to some interesting defensive techniques, which we describe in the
following sections.

Coping With Complexity

The RTS is a complex and hostile programming environment. In contrast to the compiler, the RTS
has almost no type safety. In fact, it has even less type safety than most other C programs, because it
is managing data structures whose types live at the Haskell level and not at the C level. For example,
the RTS has no idea that the object pointed to by the tail of a cons cell is either [] or another cons:
this information is simply not present at the C level. Moreover, the process of compiling Haskell
code erases types, so even if we told the RTS that the tail of a cons cell is a list, it would still have no
information about the pointer in the head of the cons cell. So the RTS code has to do a lot of casting
of C pointer types, and it gets very little help in terms of type safety from the C compiler.

So our first weapon in this battle is to avoid putting code in the RTS. Wherever possible, we put
the minimum amount of functionality into the RTS and write the rest in a Haskell library. This has
rarely turned out badly; Haskell code is far more robust and concise than C, and performance is
usually perfectly acceptable. Deciding where to draw the line is not an exact science, although in
many cases it is reasonably clear. For example, while it might be theoretically possible to implement
the garbage collector in Haskell, in practice it is extremely difficult because Haskell does not allow
the programmer precise control of memory allocation, and so dropping down to C for this kind of
low-level task makes practical sense.

There is plenty of functionality that can’t be (easily) implemented in Haskell, and writing code
in the RTS is not pleasant. In the next section we focus on one aspect of managing complexity and
correctness in the RTS: maintaining invariants.

Invariants, and Checking Them
The RTS is full of invariants. Many of them are trivial and easy to check: for example, if the pointer
to the head of a queue is NULL, then the pointer to the tail should also be NULL. The code of the RTS
is littered with assertions to check these kinds of things. Assertions are our go-to tool for finding
bugs before they manifest; in fact, when a new invariant is added, we often add the assertion before
writing the code that implements the invariant.

Some of the invariants in the runtime are far more difficult to satisfy, and to check. One invariant
of this kind that pervades more of the RTS than any other is the following: the heap has no dangling
pointers.

Dangling pointers are easy to introduce, and there are many places both in the compiler and the
RTS itself that can violate this invariant. The code generator could generate code that creates invalid
heap objects; the garbage collector might forget to update the pointers of some object when it scans
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the heap. Tracking down these kinds of bugs can be extremely time-consuming10 because by the
time the program eventually crashes, execution might have progressed a long way from where the
dangling pointer was originally introduced. There are good debugging tools available, but they tend
not to be good at executing the program in reverse.11

The general principle is: if a program is going to crash, it should crash as soon, as noisily, and
as often as possible.12

The problem is, the no-dangling-pointer invariant is not something that can be checked with a
constant-time assertion. The assertion that checks it must do a full traversal of the heap! Clearly we
cannot run this assertion after every heap allocation, or every time the GC scans an object (indeed,
this would not even be enough, as dangling pointers don’t appear until the end of GC, when memory
is freed).

So, the debug RTS has an optional mode that we call sanity checking. Sanity checking enables all
kinds of expensive assertions, and can make the program run many times more slowly. In particular,
sanity checking runs a full scan of the heap to check for dangling pointers (amongst other things),
before and after every GC. The first job when investigating a runtime crash is to run the program
with sanity checking turned on; sometimes this will catch the invariant violation well before the
program actually crashes.

5.7 Conclusion
GHC has consumed a significant portion of the authors’ lives over the last 20 years, and we are rather
proud of how far it has come. It is not the only Haskell implementation, but it is the only one in
regular use by hundreds of thousands of people to get real work done. We are constantly surprised
when Haskell turns up being used in unusual places; one recent example is Haskell being used to
control the systems in a garbage truck13.

For many, Haskell and GHC are synonymous: it was never intended to be so, and indeed in
many ways it is counterproductive to have just one implementation of a standard, but the fact is that
maintaining a good implementation of a programming language is a lot of work. We hope that our
efforts in GHC, to support the standard and to clearly delimit each separate language extension, will
make it feasible for more implementations to emerge and to integrate with the the package system
and other infrastructure. Competition is good for everyone!

We are deeply indebted to Microsoft in particular for giving us the opportunity to develop GHC
as part of our research and to distribute it as open source.

10It is, however, one of the author’s favourite activities!
11Recent versions of GDB and the Microsoft Visual Studio debugger do have some support for reverse execution, however.
12This quote comes from the GHC coding style guidelines, and was originally written by Alastair Reid, who worked on an
early version of the RTS.

13http://www.haskell.org/pipermail/haskell-cafe/2010-April/075647.html
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[chapter6]

Git
Susan Potter

6.1 Git in a Nutshell
Git enables the maintenance of a digital body of work (often, but not limited to, code) by many
collaborators using a peer-to-peer network of repositories. It supports distributed workflows, allowing
a body of work to either eventually converge or temporarily diverge.

This chapter will show how various aspects of Git work under the covers to enable this, and how
it differs from other version control systems (VCSs).

6.2 Git’s Origin
To understand Git’s design philosophy better it is helpful to understand the circumstances in which
the Git project was started in the Linux Kernel Community.

The Linux kernel was unusual, compared to most commercial software projects at that time,
because of the large number of committers and the high variance of contributor involvement and
knowledge of the existing codebase. The kernel had been maintained via tarballs and patches for
years, and the core development community struggled to find a VCS that satisfied most of their needs.

Git is an open source project that was born out of those needs and frustrations in 2005. At that
time the Linux kernel codebase was managed across two VCSs, BitKeeper and CVS, by different
core developers. BitKeeper offered a different view of VCS history lineage than that offered by the
popular open source VCSs at this time.

Days after BitMover, the maker of BitKeeper, announced it would revoke the licenses of some
core Linux kernel developers, Linus Torvalds began development, in haste, of what was to become
Git. He began by writing a collection of scripts to help him manage email patches to apply one after
the other. The aim of this initial collection of scripts was to be able to abort merges quickly so the
maintainer could modify the codebase mid-patch-stream to manually merge, then continue merging
subsequent patches.

From the outset, Torvalds had one philosophical goal for Git—to be the anti-CVS—plus three
usability design goals:

• Support distributed workflows similar to those enabled by BitKeeper
• Offer safeguards against content corruption
• Offer high performance



These design goals have been accomplished and maintained, to a degree, as I will attempt to
show by dissecting Git’s use of directed acyclic graphs (DAGs) for content storage, reference pointers
for heads, object model representation, and remote protocol; and finally how Git tracks the merging
of trees.

Despite BitKeeper influencing the original design of Git, it is implemented in fundamentally
different ways and allows even more distributed plus local-only workflows, which were not possible
with BitKeeper. Monotone1, an open source distributed VCS started in 2003, was likely another
inspiration during Git’s early development.

Distributed version control systems offer great workflow flexibility, often at the expense of
simplicity. Specific benefits of a distributed model include:

• Providing the ability for collaborators to work offline and commit incrementally.
• Allowing a collaborator to determine when his/her work is ready to share.
• Offering the collaborator access to the repository history when offline.
• Allowing the managed work to be published to multiple repositories, potentially with different
branches or granularity of changes visible.

Around the time the Git project started, three other open source distributed VCS projects were
initiated. (One of them, Mercurial, is discussed in Volume 1 of The Architecture of Open Source
Applications.) All of these dVCS tools offer slightly different ways to enable highly flexible workflows,
which centralized VCSs before them were not capable of handling directly. Note: Subversion has an
extension named SVKmaintained by different developers to support server-to-server synchronization.

Today popular and actively maintained open source dVCS projects include Bazaar, Darcs, Fossil,
Git, Mercurial, and Veracity.

6.3 Version Control System Design
Now is a good time to take a step back and look at the alternative VCS solutions to Git. Understanding
their differences will allow us to explore the architectural choices faced while developing Git.

A version control system usually has three core functional requirements, namely:
• Storing content
• Tracking changes to the content (history including merge metadata)
• Distributing the content and history with collaborators

Note: The third requirement above is not a functional requirement for all VCSs.

Content Storage
The most common design choices for storing content in the VCS world are with a delta-based
changeset, or with directed acyclic graph (DAG) content representation.

Delta-based changesets encapsulate the differences between two versions of the flattened content,
plus some metadata. Representing content as a directed acyclic graph involves objects forming
a hierarchy which mirrors the content’s filesystem tree as a snapshot of the commit (reusing the
unchanged objects inside the tree where possible). Git stores content as a directed acyclic graph
using different types of objects. The “Object Database” section later in this chapter describes the
different types of objects that can form DAGs inside the Git repository.
1http://www.monotone.ca/
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Commit and Merge Histories
On the history and change-tracking front most VCS software uses one of the following approaches:

• Linear history
• Directed acyclic graph for history
Again Git uses a DAG, this time to store its history. Each commit contains metadata about its

ancestors; a commit in Git can have zero or many (theoretically unlimited) parent commits. For
example, the first commit in a Git repository would have zero parents, while the result of a three-way
merge would have three parents.

Another primary difference between Git and Subversion and its linear history ancestors is its
ability to directly support branching that will record most merge history cases.

Figure 6.1: Example of a DAG representation in Git

Git enables full branching capability using directed acyclic graphs to store content. The history
of a file is linked all the way up its directory structure (via nodes representing directories) to the root
directory, which is then linked to a commit node. This commit node, in turn, can have one or more
parents. This affords Git two properties that allow us to reason about history and content in more
definite ways than the family of VCSs derived from RCS do, namely:

• When a content (i.e., file or directory) node in the graph has the same reference identity (the
SHA in Git) as that in a different commit, the two nodes are guaranteed to contain the same
content, allowing Git to short-circuit content diffing efficiently.

• When merging two branches we are merging the content of two nodes in a DAG. The DAG
allows Git to "efficiently" (as compared to the RCS family of VCS) determine common
ancestors.
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Distribution
VCS solutions have handled content distribution of a working copy to collaborators on a project in
one of three ways:

• Local-only: for VCS solutions that do not have the third functional requirement above.
• Central server: where all changes to the repository must transact via one specific repository
for it to be recorded in history at all.

• Distributed model: where there will often be publicly accessible repositories for collaborators
to "push" to, but commits can be made locally and pushed to these public nodes later, allowing
offline work.

To demonstrate the benefits and limitations of each major design choice, we will consider a
Subversion repository and a Git repository (on a server), with equivalent content (i.e., the HEAD of
the default branch in the Git repository has the same content as the Subversion repository’s latest
revision on trunk). A developer, named Alex, has a local checkout of the Subversion repository and
a local clone of the Git repository.

Let us say Alex makes a change to a 1 MB file in the local Subversion checkout, then commits
the change. Locally, the checkout of the file mimics the latest change and local metadata is updated.
During Alex’s commit in the centralized Subversion repository, a diff is generated between the
previous snapshot of the files and the new changes, and this diff is stored in the repository.

Contrast this with the way Git works. When Alex makes the same modification to the equivalent
file in the local Git clone, the change will be recorded locally first, then Alex can "push" the local
pending commits to a public repository so the work can be shared with other collaborators on the
project. The content changes are stored identically for each Git repository that the commit exists
in. Upon the local commit (the simplest case), the local Git repository will create a new object
representing a file for the changed file (with all its content inside). For each directory above the
changed file (plus the repository root directory), a new tree object is created with a new identifier. A
DAG is created starting from the newly created root tree object pointing to blobs (reusing existing
blob references where the files content has not changed in this commit) and referencing the newly
created blob in place of that file’s previous blob object in the previous tree hierarchy. (A blob
represents a file stored in the repository.)

At this point the commit is still local to the current Git clone on Alex’s local device. When Alex
"pushes" the commit to a publicly accessible Git repository this commit gets sent to that repository.
After the public repository verifies that the commit can apply to the branch, the same objects are
stored in the public repository as were originally created in the local Git repository.

There are a lot more moving parts in the Git scenario, both under the covers and for the user,
requiring them to explicitly express intent to share changes with the remote repository separately
from tracking the change as a commit locally. However, both levels of added complexity offer the
team greater flexibility in terms of their workflow and publishing capabilities, as described in the
“Git’s Origin” section above.

In the Subversion scenario, the collaborator did not have to remember to push to the public
remote repository when ready for others to view the changes made. When a small modification
to a larger file is sent to the central Subversion repository the delta stored is much more efficient
than storing the complete file contents for each version. However, as we will see later, there is a
workaround for this that Git takes advantage of in certain scenarios.
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6.4 The Toolkit
Today the Git ecosystem includes many command-line and UI tools on a number of operating systems
(including Windows, which was originally barely supported). Most of these tools are mostly built on
top of the Git core toolkit.

Due to the way Git was originally written by Linus, and its inception within the Linux community,
it was written with a toolkit design philosophy very much in the Unix tradition of command line
tools.

The Git toolkit is divided into two parts: the plumbing and the porcelain. The plumbing consists
of low-level commands that enable basic content tracking and the manipulation of directed acyclic
graphs (DAG). The porcelain is the smaller subset of git commands that most Git end users are likely
to need to use for maintaining repositories and communicating between repositories for collaboration.

While the toolkit design has provided enough commands to offer fine-grained access to function-
ality for many scripters, application developers complained about the lack of a linkable library for
Git. Since the Git binary calls die(), it is not reentrant and GUIs, web interfaces or longer running
services would have to fork/exec a call to the Git binary, which can be slow.

Work is being done to improve the situation for application developers; see the “Current And
Future Work” section for more information.

6.5 The Repository, Index and Working Areas
Let’s get our hands dirty and dive into using Git locally, if only to understand a few fundamental
concepts.

First to create a new initialized Git repository on our local filesystem (using a Unix inspired
operating system) we can do:

$ mkdir testgit
$ cd testgit
$ git init

Now we have an empty, but initialized, Git repository sitting in our testgit directory. We can branch,
commit, tag and even communicate with other local and remote Git repositories. Even communication
with other types of VCS repositories is possible with just a handful of git commands.

The git init command creates a .git subdirectory inside of testgit. Let’s have a peek inside it:

tree .git/
.git/
|-- HEAD
|-- config
|-- description
|-- hooks
| |-- applypatch-msg.sample
| |-- commit-msg.sample
| |-- post-commit.sample
| |-- post-receive.sample
| |-- post-update.sample
| |-- pre-applypatch.sample
| |-- pre-commit.sample
| |-- pre-rebase.sample
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| |-- prepare-commit-msg.sample
| |-- update.sample
|-- info
| |-- exclude
|-- objects
| |-- info
| |-- pack
|-- refs

|-- heads
|-- tags

The .git directory above is, by default, a subdirectory of the root working directory, testgit.
It contains a few different types of files and directories:

• Configuration: the .git/config, .git/description and .git/info/exclude files essen-
tially help configure the local repository.

• Hooks: the .git/hooks directory contains scripts that can be run on certain lifecycle events
of the repository.

• Staging Area: the .git/index file (which is not yet present in our tree listing above) will
provide a staging area for our working directory.

• Object Database: the .git/objects directory is the default Git object database, which
contains all content or pointers to local content. All objects are immutable once created.

• References: the .git/refs directory is the default location for storing reference pointers for
both local and remote branches, tags and heads. A reference is a pointer to an object, usually
of type tag or commit. References are managed outside of the Object Database to allow the
references to change where they point to as the repository evolves. Special cases of references
may point to other references, e.g. HEAD.

The .git directory is the actual repository. The directory that contains the working set of files
is the working directory, which is typically the parent of the .git directory (or repository). If you
were creating a Git remote repository that would not have a working directory, you could initialize it
using the git init --bare command. This would create just the pared-down repository files at the
root, instead of creating the repository as a subdirectory under the working tree.

Another file of great importance is the Git index: .git/index. It provides the staging area
between the local working directory and the local repository. The index is used to stage specific
changes within one file (or more), to be committed all together. Even if you make changes related to
various types of features, the commits can be made with like changes together, to more logically
describe them in the commit message. To selectively stage specific changes in a file or set of files
you can using git add -p.

The Git index, by default, is stored as a single file inside the repository directory. The paths to
these three areas can be customized using environment variables.

It is helpful to understand the interactions that take place between these three areas (the repository,
index and working areas) during the execution of a few core Git commands:

• git checkout [branch]

This will move the HEAD reference of the local repository to branch reference path (e.g.
refs/heads/master), populate the index with this head data and refresh the working directory
to represent the tree at that head.

• git add [files]
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This will cross reference the checksums of the files specified with the corresponding entries in
the Git index to see if the index for staged files needs updating with the working directory’s
version. Nothing changes in the Git directory (or repository).

Let us explore what this means more concretely by inspecting the contents of files under the
.git directory (or repository).

$ GIT_DIR=$PWD/.git
$ cat $GIT_DIR/HEAD

ref: refs/heads/master

$ MY_CURRENT_BRANCH=$(cat .git/HEAD | sed ’s/ref: //g’)
$ cat $GIT_DIR/$MY_CURRENT_BRANCH

cat: .git/refs/heads/master: No such file or directory

We get an error because, before making any commits to a Git repository at all, no branches exist
except the default branch in Git which is master, whether it exists yet or not.

Now if we make a new commit, the master branch is created by default for this commit. Let us
do this (continuing in the same shell, retaining history and context):

$ git commit -m "Initial empty commit" --allow-empty
$ git branch

* master

$ cat $GIT_DIR/$MY_CURRENT_BRANCH

3bce5b130b17b7ce2f98d17b2998e32b1bc29d68

$ git cat-file -p $(cat $GIT_DIR/$MY_CURRENT_BRANCH)

What we are starting to see here is the content representation inside Git’s object database.

6.6 The Object Database
Git has four basic primitive objects that every type of content in the local repository is built around.
Each object type has the following attributes: type, size and content. The primitive object types are:

• Tree: an element in a tree can be another tree or a blob, when representing a content directory.
• Blob: a blob represents a file stored in the repository.
• Commit: a commit points to a tree representing the top-level directory for that commit as well
as parent commits and standard attributes.

• Tag: a tag has a name and points to a commit at the point in the repository history that the tag
represents.

All object primitives are referenced by a SHA, a 40-digit object identity, which has the following
properties:

• If two objects are identical they will have the same SHA.
• if two objects are different they will have different SHAs.
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Figure 6.2: Git objects

• If an object was only copied partially or another form of data corruption occurred, recalculating
the SHA of the current object will identify such corruption.

The first two properties of the SHA, relating to identity of the objects, is most useful in enabling
Git’s distributed model (the second goal of Git). The latter property enables some safeguards against
corruption (the third goal of Git).

Despite the desirable results of using DAG-based storage for content storage and merge histories,
for many repositories delta storage will be more space-efficient than using loose DAG objects.

6.7 Storage and Compression Techniques
Git tackles the storage space problem by packing objects in a compressed format, using an index file
which points to offsets to locate specific objects in the corresponding packed file.

We can count the number of loose (or unpacked) objects in the local Git repository using git
count-objects. Now we can have Git pack loose objects in the object database, remove loose
objects already packed, and find redundant pack files with Git plumbing commands if desired.

The pack file format in Git has evolved, with the initial format storing CRC checksums for the
pack file and index file in the index file itself. However, this meant there was the possibility of
undetectable corruption in the compressed data since the repacking phase did not involve any further
checks. Version 2 of the pack file format overcomes this problem by including the CRC checksums
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Figure 6.3: Diagram of a pack file with corresponding index file

of each compressed object in the pack index file. Version 2 also allows packfiles larger than 4 GB,
which the initial format did not support. As a way to quickly detect pack file corruption the end
of the pack file contains a 20-byte SHA1 sum of the ordered list of all the SHAs in that file. The
emphasis of the newer pack file format is on helping fulfill Git’s second usability design goal of
safeguarding against data corruption.

For remote communication Git calculates the commits and content that need to be sent over the
wire to synchronize repositories (or just a branch), and generates the pack file format on the fly to
send back using the desired protocol of the client.

6.8 Merge Histories
As mentioned previously, Git differs fundamentally in merge history approach than the RCS family
of VCSs. Subversion, for example, represents file or tree history in a linear progression; whatever
has a higher revision number will supercede anything before it. Branching is not supported directly,
only through an unenforced directory structure within the repository.

Let us first use an example to show how this can be problematic when maintaining multiple
branches of a work. Then we will look at a scenario to show its limitations.

When working on a "branch" in Subversion at the typical root branches/branch-name, we are
working on directory subtree adjacent to the trunk (typically where the live or master equivalent
code resides within). Let us say this branch is to represent parallel development of the trunk tree.

For example, we might be rewriting a codebase to use a different database. Part of the way
through our rewrite we wish to merge in upstream changes from another branch subtree (not trunk).
We merge in these changes, manually if necessary, and proceed with our rewrite. Later that day
we finish our database vendor migration code changes on our branches/branch-name branch and
merge our changes into trunk. The problem with the way linear-history VCSs like Subversion handle
this is that there is no way to know that the changesets from the other branch are now contained
within the trunk.

Susan Potter 97



Figure 6.4: Diagram showing merge history lineage

DAG-based merge history VCSs, like Git, handle this case reasonably well. Assuming the other
branch does not contain commits that have not been merged into our database vendor migration
branch (say, db-migration in our Git repository), we can determine—from the commit object parent
relationships—that a commit on the db-migration branch contained the tip (or HEAD) of the other
upstream branch. Note that a commit object can have zero or more (bounded by only the abilities
of the merger) parents. Therefore the merge commit on the db-migration branch knows it merged
in the current HEAD of the current branch and the HEAD of the other upstream branch through
the SHA hashes of the parents. The same is true of the merge commit in the master (the trunk
equivalent in Git).

A question that is hard to answer definitively using DAG-based (and linear-based) merge histories
is which commits are contained within each branch. For example, in the above scenario we assumed
we merged into each branch all the changes from both branches. This may not be the case.

For simpler cases Git has the ability to cherry pick commits from other branches in to the current
branch, assuming the commit can cleanly be applied to the branch.

6.9 What’s Next?
As mentioned previously, Git core as we know it today is based on a toolkit design philosophy
from the Unix world, which is very handy for scripting but less useful for embedding inside or
linking with longer running applications or services. While there is Git support in many popular
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Integrated Development Environments today, adding this support and maintaining it has been more
challenging than integrating support for VCSs that provide an easy-to-link-and-share library for
multiple platforms.

To combat this, Shawn Pearce (of Google’s Open Source Programs Office) spearheaded an
effort to create a linkable Git library with more permissive licensing that did not inhibit use of the
library. This was called libgit22. It did not find much traction until a student named Vincent Marti
chose it for his Google Summer of Code project last year. Since then Vincent and Github engineers
have continued contributing to the libgit2 project, and created bindings for numerous other popular
languages such as Ruby, Python, PHP, .NET languages, Lua, and Objective-C.

Shawn Pearce also started a BSD-licensed pure Java library called JGit that supports many
common operations on Git repositories3. It is now maintained by the Eclipse Foundation for use in
the Eclipse IDE Git integration.

Other interesting and experimental open source endeavours outside of the Git core project are a
number of implementations using alternative datastores as backends for the Git object database such
as:

• jgit_cassandra4, which offers Git object persistence using Apache Cassandra, a hybrid datastore
using Dynamo-style distribution with BigTable column family data model semantics.

• jgit_hbase5, which enables read and write operations to Git objects stored in HBase, a dis-
tributed key-value datastore.

• libgit2-backends6, which emerged from the libgit2 effort to create Git object database backends
for multiple popular datastores such as Memcached, Redis, SQLite, and MySQL.

All of these open source projects are maintained independently of the Git core project.
As you can see, today there are a large number of ways to use the Git format. The face of Git is

no longer just the toolkit command line interface of the Git Core project; rather it is the repository
format and protocol to share between repositories.

As of this writing, most of these projects, according to their developers, have not reached a stable
release, so work in the area still needs to be done but the future of Git appears bright.

6.10 Lessons Learned
In software, every design decision is ultimately a trade-off. As a power user of Git for version control
and as someone who has developed software around the Git object database model, I have a deep
fondness for Git in its present form. Therefore, these lessons learned are more of a reflection of
common recurring complaints about Git that are due to design decisions and focus of the Git core
developers.

One of the most common complaints by developers and managers who evaluate Git has been the
lack of IDE integration on par with other VCS tools. The toolkit design of Git has made this more
challenging than integrating other modern VCS tools into IDEs and related tools.

Earlier in Git’s history some of the commands were implemented as shell scripts. These shell
script command implementations made Git less portable, especially to Windows. I am sure the
Git core developers did not lose sleep over this fact, but it has negatively impacted adoption of
2https://github.com/libgit2/libgit2
3https://github.com/eclipse/jgit
4https://github.com/spearce/jgit_cassandra
5https://github.com/spearce/jgit_hbase
6https://github.com/libgit2/libgit2-backends
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Git in larger organizations due to portability issues that were prevalent in the early days of Git’s
development. Today a project named Git for Windows has been started by volunteers to ensure new
versions of Git are ported to Windows in a timely manner.

An indirect consequence of designing Git around a toolkit design with a lot of plumbing com-
mands is that new users get lost quickly; from confusion about all the available subcommands to not
being able to understand error messages because a low level plumbing task failed, there are many
places for new users to go astray. This has made adopting Git harder for some developer teams.

Even with these complaints about Git, I am excited about the possibilities of future development
on the Git Core project, plus all the related open source projects that have been launched from it.
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[chapter7]

GPSD
Eric Raymond

GPSD is a suite of tools for managing collections of GPS devices and other sensors related to
navigation and precision timekeeping, including marine AIS (Automatic Identification System)
radios and digital compasses. The main program, a service daemon named gpsd, manages a
collection of sensors and makes reports from all of them available as a JSON object stream on a
well-known TCP/IP port. Other programs in the suite include demonstration clients usable as code
models and various diagnostic tools.

GPSD is widely deployed on laptops, smartphones, and autonomous vehicles including self-
driving automobiles and robot submarines. It features in embedded systems used for navigation,
precision agriculture, location-sensitive scientific telemetry, and network time service. It’s even
used in the Identification-Friend-or-Foe system of armored fighting vehicles including the M1
“Abrams”main battle tank.

GPSD is a mid-sized project—about 43 KLOC, mainly in C and Python—with a history under
its current lead going back to 2005 and a prehistory going back to 1997. The core team has been
stable at about three developers, with semi-regular contributions from about two dozen more and the
usual one-off patches from hundreds of others.

GPSD has historically had an exceptionally low defect rate, as measured both by auditing
tools such as splint, valgrind, and Coverity and by the incidence of bug reports on its tracker
and elsewhere. This did not come about by accident; the project has been very aggressive about
incorporating technology for automated testing, and that effort has paid off handsomely.

GPSD is sufficiently good at what it does that it has coopted or effectively wiped out all of its
approximate predecessors and at least one direct attempt to compete with it. In 2010, GPSD won the
first Good Code Grant from the Alliance for Code Excellence. By the time you finish this chapter
you should understand why.

7.1 Why GPSD Exists
GPSD exists because the application protocols shipped with GPSs and other navigation-related
sensors are badly designed, poorly documented, and highly variable by sensor type and model. See
[Ray] for a detailed discussion; in particular, you’ll learn there about the vagaries of NMEA 0183
(the sort-of standard for GPS reporting packets) and the messy pile of poorly documented vendor
protocols that compete with it.



If applications had to handle all this complexity themselves the result would be huge amounts of
brittle and duplicative code, leading to high rates of user-visible defects and constant problems as
hardware gradually mutated out from under the applications.

GPSD isolates location-aware applications from hardware interface details by knowing about
all the protocols itself (at time of writing we support about 20 different ones), managing serial and
USB devices so the applications don’t have to, and reporting sensor payload information in a simple
device-independent JSON format. GPSD further simplifies life by providing client libraries so client
applications need not even know about that reporting format. Instead, getting sensor information
becomes a simple procedure call.

GPSD also supports precision timekeeping; it can act as a time source for ntpd (the Network
Time Protocol Daemon) if any of its attached sensors have PPS (pulse-per-second) capability. The
GPSD developers cooperate closely with the ntpd project in improving the network time service.

We are presently (mid-2011) working on completing support for the AIS network of marine
navigational receivers. In the future, we expect to support new kinds of location-aware sensors—such
as receivers for second-generation aircraft transponders—as protocol documentation and test devices
become available.

To sum up, the single most important theme in GPSD’s design is hiding all the device-dependent
ugliness behind a simple client interface talking to a zero-configuration service.

7.2 The External View
The main program in the GPSD suite is the gpsd service daemon. It can collect the take from a set of
attached sensor devices over RS232, USB, Bluetooth, TCP/IP, and UDP links. Reports are normally
shipped to TCP/IP port 2947, but can also go out via a shared-memory or D-BUS interface.

The GPSD distribution ships with client libraries for C, C++, and Python. It includes sample
clients in C, C++, Python, and PHP. A Perl client binding is available via CPAN. These client libraries
are not merely a convenience for application developers; they save GPSD’s developers headaches
too, by isolating applications from the details of GPSD’s JSON reporting protocol. Thus, the API
exposed to clients can remain the same even as the protocol grows new features for new sensor types.

Other programs in the suite include a utility for low-level device monitoring (gpsmon), a profiler
that produces reports on error statistics and device timing (gpsprof), a utility for tweaking device
settings (gpsctl), and a program for batch-converting sensor logs into readable JSON (gpsdecode).
Together, they help technically savvy users look as deeply into the operation of the attached sensors
as they care to.

Of course, these tools also help GPSD’s own developers verify the correct operation of gpsd.
The single most important test tool is gpsfake, a test harness for gpsd which can connect it to any
number of sensor logs as though they were live devices. With gpsfake, we can re-run a sensor
log shipped with a bug report to reproduce specific problems. gpsfake is also the engine of our
extensive regression-test suite, which lowers the cost of modifying the software by making it easy to
spot changes that break things.

One of the most important lessons we think we have for future projects is that it is not enough for
a software suite to be correct, it should also be able to demonstrate its own correctness. We have
found that when this goal is pursued properly it is not a hair shirt but rather a pair of wings—the
time we’ve take to write test harnesses and regression tests has paid for itself many times over in the
freedom it gives us to modify code without fearing that we are wreaking subtle havoc on existing
functionality.
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7.3 The Software Layers
There is a lot more going on inside GPSD than the “plug a sensor in and it just works” experience
might lead people to assume. gpsd’s internals break naturally into four pieces: the drivers, the packet
sniffer, the core library and the multiplexer. We’ll describe these from the bottom up.

Multiplexer

Core library

Packet Sniffer Driver Driver Driver Driver.  .  .

sensor sensor sensor sensor

client 
session

client 
session

client 
session

client 
session

client 
session

Figure 7.1: Software layers

The drivers are essentially user-space device drivers for each kind of sensor chipset we support.
The key entry points are methods to parse a data packet into time-position-velocity or status informa-
tion, change its mode or baud rate, probe for device subtype, etc. Auxiliary methods may support
driver control operations, such as changing the serial speed of the device. The entire interface to a
driver is a C structure full of data and method pointers, deliberately modeled on a Unix device driver
structure.

The packet sniffer is responsible for mining data packets out of serial input streams. It’s basically
a state machine that watches for anything that looks like one of our 20 or so known packet types
(most of which are checksummed, so we can have high confidence when we think we have identified
one). Because devices can hotplug or change modes, the type of packet that will come up the wire
from a serial or USB port isn’t necessarily fixed forever by the first one recognized.

The core library manages a session with a sensor device. The key entry points are:
• starting a session by opening the device and reading data from it, hunting through baud rates
and parity/stopbit combinations until the packet sniffer achieves synchronization lock with a
known packet type;

• polling the device for a packet; and
• closing the device and wrapping up the session.
A key feature of the core library is that it is responsible for switching each GPS connection to

using the correct device driver depending on the packet type that the sniffer returns. This is not
configured in advance and may change over time, notably if the device switches between different
reporting protocols. (Most GPS chipsets support NMEA and one or more vendor binary protocols,
and devices like AIS receivers may report packets in two different protocols on the same wire.)
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Finally, the multiplexer is the part of the daemon that handles client sessions and device assign-
ment. It is responsible for passing reports up to clients, accepting client commands, and responding
to hotplug notifications. It is essentially all contained in one source file, gpsd.c, and never talks to
the device drivers directly.

The first three components (other than the multiplexer) are linked together in a library called
libgpsd and can be used separately from the multiplexer. Our other tools that talk to sensors directly,
such as gpsmon and gpsctl, do it by calling into the core library and driver layer directly.

The most complex single component is the packet sniffer at about two thousand lines of code.
This is irreducible; a state machine that can recognize as many different protocols as it does is bound
to be large and gnarly. Fortunately, the packet sniffer is also easy to isolate and test; problems in it
do not tend to be coupled to other parts of the code.

The multiplexer layer is about same size, but somewhat less gnarly. The device drivers make up
the bulk of the daemon code at around 15 KLOC. All the rest of the code—all the support tools and
libraries and test clients together—adds up to about the size of the daemon (some code, notably the
JSON parser, is shared between the daemon and the client libraries).

The success of this layering approach is demonstrated in a couple of different ways. One is that
new device drivers are so easy to write that several have been contributed by people not on the core
team: the driver API is documented, and the individual drivers are coupled to the core library only
via pointers in a master device types table.

Another benefit is that system integrators can drastically reduce GPSD’s footprint for embedded
deployment simply by electing not to compile in unused drivers. The daemon is not large to begin
with, and a suitably stripped-down build runs quite happily on low-power, low-speed, small-memory
ARM devices1.

A third benefit of the layering is that the daemon multiplexer can be detached from atop the core
library and replaced with simpler logic, such as the straight batch conversion of sensor logfiles to
JSON reports that the gpsdecode utility does.

There is nothing novel about this part of the GPSD architecture. Its lesson is that conscious and
rigorous application of the design pattern of Unix device handling is beneficial not just in OS kernels
but also in userspace programs that are similarly required to deal with varied hardware and protocols.

7.4 The Dataflow View
Now we’ll consider GPSD’s architecture from a dataflow view. In normal operation, gpsd spins in a
loop waiting for input from one of these sources:

1. A set of clients making requests over a TCP/IP port.
2. A set of navigation sensors connected via serial or USB devices.
3. The special control socket used by hotplug scripts and some configuration tools.
4. A set of servers issuing periodic differential-GPS correction updates (DGPS and NTRIP).

These are handled as though they are navigation sensors.
When a USB port goes active with a device that might be a navigation sensor, a hotplug script

(shipped with GPSD) sends a notification to the control socket. This is the cue for the multiplexer
layer to put the device on its internal list of sensors. Conversely, a device-removal event can remove
a device from that list.
1ARM is a 32-bit RISC instruction set architecture used in mobile and embedded electronics. See http://en.wikipedia.
org/wiki/ARM_architecture.
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When a client issues a watch request, the multiplexer layer opens the navigation sensors in its list
and begins accepting data from them (by adding their file descriptors to the set in the main select
call). Otherwise all GPS devices are closed (but remain in the list) and the daemon is quiescent.
Devices that stop sending data get timed out of the device list.

sensor Packet 
sniffer

Core 
library Driver Exporter 

Sniffer
client 

session

Figure 7.2: Dataflow

When data comes in from a navigation sensor, it’s fed to the packet sniffer, a finite-state machine
that works like the lexical analyzer in a compiler. The packet sniffer’s job is to accumulate data from
each port (separately), recognizing when it has accumulated a packet of a known type.

A packet may contain a position fix from a GPS, a marine AIS datagram, a sensor reading from a
magnetic compass, a DGPS (Differential GPS) broadcast packet, or any of several other things. The
packet sniffer doesn’t care about the content of the packet; all it does is tell the core library when it
has accumulated one and pass back the payload and the packet type.

The core library then hands the packet to the driver associated with its type. The driver’s job is
to mine data out of the packet payload into a per-device session structure and set some status bits
telling the multiplexer layer what kind data it got.

One of those bits is an indication that the daemon has accumulated enough data to ship a report
to its clients. When this bit is raised after a data read from a sensor device, it means we’ve seen the
end of a packet, the end of a packet group (which may be one or more packets), and the data in the
device’s session structure should be passed to one of the exporters.

The main exporter is the “socket” one; it generates a report object in JSON and ships it to
all the clients watching the device. There’s a shared-memory exporter that copies the data to a
shared-memory segment instead. In either of these cases, it is expected that a client library will
unmarshal the data into a structure in the client program’s memory space. A third exporter, which
ships position updates via DBUS, is also available.

The GPSD code is as carefully partitioned horizontally as it vertically. The packet sniffer neither
knows nor needs to know anything about packet payloads, and doesn’t care whether its input source
is a USB port, an RS232 device, a Bluetooth radio link, a pseudo-tty, a TCP socket connection, or
a UDP packet stream. The drivers know how to analyze packet payloads, but know nothing about
either the packet-sniffer internals nor the exporters. The exporters look only at the session data
structure updated by the drivers.

This separation of function has served GPSD very well. For example, when we got a request
in early 2010 to adapt the code to accept sensor data coming in as UDP packets for the on-board
navigation system of a robot submarine, it was easy to implement that in a handful of lines of code
without disturbing later stages in the data pipeline.

More generally, careful layering and modularization has made it relatively easy to add new sensor
types. We incorporate new drivers every six months or so; some have been written by people who
are not core developers.
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7.5 Defending the Architecture
As an open source program like gpsd evolves, one of the recurring themes is that each contributor
will do things to solve his or her particular problem case which gradually leak more information
between layers or stages that were originally designed with clean separation.

One that we’re concerned about at the time of writing is that some information about input source
type (USB, RS232, pty, Bluetooth, TCP, UDP) seems to need to be passed up to the multiplexer
layer, to tell it, for example, whether probe strings should be sent to an unidentified device. Such
probes are sometimes required to wake up RS232C sensors, but there are good reasons not to ship
them to any more devices than we have to. Many GPSs and other sensor devices are designed on low
budgets and in a hurry; some can be confused to the point of catatonia by unexpected control strings.

For a similar reason, the daemon has a -b option that prevents it from attempting baud-rate
changes during the packet-sniffer hunt loop. Some poorly made Bluetooth devices handle these so
poorly that they have to be power-cycled to function again; in one extreme case a user actually had to
unsolder the backup battery to unwedge his!

Both these cases are necessary exceptions to the project’s design rules. Much more usually,
though, such exceptions are a bad thing. For example, we’ve had some patches contributed to make
PPS time service work better that messed up the vertical layering, making it impossible for PPS to
work properly with more than the one driver they were intended to help. We rejected these in favor
of working harder at device-type-independent improvement.

On one occasion some years ago, we had a request to support a GPS with the odd property that
the checksums in its NMEA packets may be invalid when the device doesn’t have a location fix.
To support this device, we would have had to either (a) give up on validating the checksum on any
incoming data that looked like an NMEA packet, risking that the packet-sniffer would hand garbage
to the NMEA driver, or (b) add a command-line option to force the sensor type.

The project lead (the author of this chapter) refused to do either. Giving up on NMEA packet
validation was an obvious bad idea. But a switch to force the sensor type would have been an
invitation to get lazy about proper autoconfiguration, which would cause problems all the way up to
GPSD’s client applications and their users. The next step down that road paved with good intentions
would surely have been a baud-rate switch. Instead, we declined to support this broken device.

One of the most important duties of a project’s lead architect is to defend the architecture
against expedient “fixes” that would break it and cause functional problems or severe maintenance
headaches down the road. Arguments over this can get quite heated, especially when defending
architecture conflicts against something that a developer or user considers a must-have feature. But
these arguments are necessary, because the easiest choice is often the wrong one for the longer term.

7.6 Zero Configuration, Zero Hassles
An extremely important feature of gpsd is that it is a zero-configuration service2. It has no dotfile!
The daemon deduces the sensor types it’s talking to by sniffing the incoming data. For RS232 and
USB devices gpsd even autobauds (that is, automatically detects the serial line speed), so it is not
necessary for the daemon to know in advance the speed/parity/stopbits at which the sensor is shipping
information.

When the host operating system has a hotplug capability, hotplug scripts can ship device-activation
and deactivation messages to a control socket to notify the daemon of the change in its environment.
2With one minor exception for Bluetooth devices with broken firmware.
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The GPSD distribution supplies these scripts for Linux. The result is that end users can plug a
USB GPS into their laptop and expect it to immediately begin supplying reports that location-aware
applications can read—no muss, no fuss, and no editing a dotfile or preferences registry.

The benefits of this ripple all the way up the application stack. Among other things, it means that
location-aware applications don’t have to have a configuration panel dedicated to tweaking the GPS
and port settings until the whole mess works. This saves a lot of effort for application writers as well
as users: they get to treat location as a service that is nearly as simple as the system clock.

One consequence of the zero-configuration philosophy is that we do not look favorably on
proposals to add a config file or additional command-line options. The trouble with this is that
configuration which can be edited, must be edited. This implies adding setup hassle for end users,
which is precisely what a well-designed service daemon should avoid.

The GPSD developers are Unix hackers working from deep inside the Unix tradition, in which
configurability and having lots of knobs is close to being a religion. Nevertheless, we think open
source projects could be trying a lot harder to throw away their dotfiles and autoconfigure to what
the running environment is actually doing.

7.7 Embedded Constraints Considered Helpful
Designing for embedded deployment has been a major goal of GPSD since 2005. This was originally
because we got a lot of interest from system integrators working with single-board computers, but
it has since paid off in an unexpected way: deployment on GPS-enabled smartphones. (Our very
favorite embedded-deployment reports are still the ones from the robot submarines, though.)

Designing for embedded deployment has influenced GPSD in important ways. We think a lot
about ways to keep memory footprint and CPU usage low so the code will run well on low-speed,
small-memory, power-constrained systems.

One important attack on this issue, as previously mentioned, is to ensure that gpsd builds don’t
have to carry any deadweight over the specific set of sensor protocols that a system integrator needs
to support. In June 2011 a minimum static build of gpsd on an x86 system has a memory footprint
of about 69K (that is with all required standard C libraries linked in) on 64-bit x86. For comparison,
the static build with all drivers is about 418K.

Another is that we profile for CPU hotspots with a slightly different emphasis than most projects.
Because location sensors tend to report only small amounts of data at intervals on the order of 1
second, performance in the normal sense isn’t a GPSD issue—even grossly inefficient code would
be unlikely to introduce enough latency to be visible at the application level. Instead, our focus is
on decreasing processor usage and power consumption. We’ve been quite successful at this: even
on low-power ARM systems without an FPU, gpsd’s fraction of CPU is down around the level of
profiler noise.

While designing the core code for low footprint and good power efficiency is at this point largely
a solved problem, there is one respect in which targeting embedded deployments still produces
tension in the GPSD architecture: use of scripting languages. On the one hand, we want to minimize
defects due to low-level resource management by moving as much code as possible out of C. On the
other hand, Python (our preferred scripting language) is simply too heavyweight and slow for most
embedded deployments.

We’ve split the difference in the obvious way: the gpsd service daemon is C, while the test
framework and several of the support utilities are written in Python. Over time, we hope to migrate
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more of the auxiliary code out of C and into Python, but embedded deployment makes those choices
a continuing source of controversy and discomfort.

Still, on the whole we find the pressures from embedded deployment quite bracing. It feels good
to write code that is lean, tight, and sparing of processor resources. It has been said that art comes
from creativity under constraints; to the extent that’s true, GPSD is better art for the pressure.

That feeling doesn’t translate directly into advice for other projects, but something else definitely
does: don’t guess, measure! There is nothing like regular profiling and footprint measurements to
warn you when you’re straying into committing bloat—and to reassure you that you’re not.

7.8 JSON and the Architecturenauts
One of the most significant transitions in the history of the project was when we switched over from
the original reporting protocol to using JSON as a metaprotocol and passing reports up to clients as
JSON objects. The original protocol had used one-letter keys for commands and responses, and we
literally ran out of keyspace as the daemon’s capabilities gradually increased.

Switching to JSON was a big, big win. JSON combines the traditional Unix virtues of a purely
textual format—easy to examine with a Mark 1 Eyeball, easy to edit with standard tools, easy to
generate programmatically—with the ability to pass structured information in rich and flexible ways.

By mapping report types to JSON objects, we ensured that any report could contain mixes of
string, numeric, and Boolean data with structure (a capability the old protocol lacked). By identifying
report types with a "class" attribute, we guaranteed that we would always be able to add new report
types without stepping on old ones.

This decision was not without cost. A JSON parser is a bit more computationally expensive than
the very simple and limited parser it replaced, and certainly requires more lines of code (implying
more places for defects to occur). Also, conventional JSON parsers require dynamic storage allocation
in order to cope with the variable-length arrays and dictionaries that JSON describes, and dynamic
storage allocation is a notorious defect attractor.

We coped with these problems in several ways. The first step was to write a C parser for a
(sufficiently) large subset of JSON that uses entirely static storage. This required accepting some
minor restrictions; for example, objects in our dialect cannot contain the JSON null value, and
arrays always have a fixed maximum length. Accepting these restrictions allowed us to fit the parser
into 600 lines of C.

We then built a comprehensive set of unit tests for the parser in order to verify error-free operation.
Finally, for very tight embedded deployments where the overhead of JSON might be too high, we
wrote a shared-memory exporter that bypasses the need to ship and parse JSON entirely if the daemon
and its client have access to common memory.

JSON isn’t just for web applications anymore. We think anyone designing an application protocol
should consider an approach like GPSD’s. Of course the idea of building your protocol on top of a
standard metaprotocol is not new; XML fans have been pushing it for many years, and that makes
sense for protocols with a document-like structure. JSON has the advantages of being lower-overhead
than XML and better fitted to passing around array and record structures.

7.9 Designing for Zero Defects
Because of its use in navigational systems, any software that lives between the user and a GPS or
other location sensor is potentially life-critical, especially at sea or when airborne. Open source
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navigation software has a tendency to try to evade this problem by shipping with disclaimers that
say, “Don’t rely on this if doing so might put lives at risk.”

We think such disclaimers are futile and dangerous: futile because system integrators are quite
likely to treat them as pro-forma and ignore them, and dangerous because they encourage developers
to fool themselves that code defects won’t have serious consequences, and that cutting corners in
quality assurance is acceptable.

The GPSD project developers believe that the only acceptable policy is to design for zero defects.
Software complexity being what it is, we have not quite achieved this—but for a project GPSD’s size
and age and complexity we come very close.

Our strategy for doing this is a combination of architecture and coding policies that aim to exclude
the possibility of defects in shipped code.

One important policy is this: the gpsd daemon never uses dynamic storage allocation—no malloc
or calloc, and no calls to any functions or libraries that require it. At a stroke this banishes the
single most notorious defect attractor in C coding. We have no memory leaks and no double-malloc
or double-free bugs, and we never will.

We get away with this because all of the sensors we handle emit packets with relatively small
fixed maximum lengths, and the daemon’s job is to digest them and ship them to clients with minimal
buffering. Still, banishing malloc requires coding discipline and some design compromises, a few
of which we previously noted in discussing the JSON parser. We pay these costs willingly to reduce
our defect rate.

A useful side effect of this policy is that it increases the effectiveness of static code checkers such
as splint, cppcheck, and Coverity. This feeds into another major policy choice; we make extremely
heavy use of both these code-auditing tools and a custom framework for regression testing. (We
do not know of any program suite larger than GPSD that is fully splint-annotated, and strongly
suspect that none such yet exist.)

The highly modular architecture of GPSD aids us here as well. The module boundaries serve as
cut points where we can rig test harnesses, and we have very systematically done so. Our normal
regression test checks everything from the floating-point behavior of the host hardware up through
JSON parsing to correct reporting behavior on over seventy different sensor logs.

Admittedly, we have a slightly easier time being rigorous than many applications would because
the daemon has no user-facing interfaces; the environment around it is just a bunch of serial data
streams and is relatively easy to simulate. Still, as with banishing malloc, actually exploiting that
advantage requires the right attitude, which very specifically means being willing to spend as much
design and coding time on test tools and harnesses as we do on the production code. This is a policy
we think other open-source projects can and should emulate.

As I write (July 2011), GPSD’s project bug tracker is empty. It has been empty for weeks, and
based on past rates of bug submissions we can expect it to stay that way for a good many more. We
haven’t shipped code with a crash bug in six years. When we do have bugs, they tend to be the sort of
minor missing feature or mismatch with specification that is readily fixed in a few minutes of work.

This is not to say that the project has been an uninterrupted idyll. Next, we’ll review some of our
mistakes. . .

7.10 Lessons Learned
Software design is difficult; mistakes and blind alleys are all too normal a part of it, and GPSD has
been no exception to that rule. The largest mistake in this project’s history was the design of the
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original pre-JSON protocol for requesting and reporting GPS information. Recovering from it took
years of effort, and there are lessons in both the original mis-design and the recovery.

There were two serious problems with the original protocol:
1. Poor extensibility. It used requests and response tags consisting of a single letter each, case-

insensitive. Thus, for example, the request to report longitude and latitude was "P" and a
response looked like "P -75.32 40.05". Furthermore, the parser interpreted a request like
"PA" as a "P" request followed by an "A" (altitude) request. As the daemon’s capabilities
gradually broadened, we literally ran out of command space.

2. A mismatch between the protocol’s implicit model of sensor behavior and how they actually
behave. The old protocol was request/response: send a request for position (or altitude, or
whatever) get back a report sometime later. In reality, it is usually not possible to request a
report from a GPS or other navigation-related sensors; they stream out reports, and the best
a request can do is query a cache. This mismatch encouraged sloppy data-handling from
applications; too often, they would ask for location data without also requesting a timestamp
or any check information about the fix quality, a practice which could easily result in stale or
invalid data getting presented to the user.

It became clear as early as 2006 that the old protocol design was inadequate, but it took nearly
three years of design sketches and false starts to design a new one. The transition took two years
after that, and caused some pain for developers of client applications. It would have cost a lot more
if the project had not shipped client-side libraries that insulated users from most of the protocol
details—but we didn’t get the API of those libraries quite right either at first.

If we had known then what we know now, the JSON-based protocol would have been introduced
five years sooner, and the API design of the client libraries would have required many fewer revisions.
But there are some kinds of lessons only experience and experiment can teach.

There are at least two design guidelines that future service daemons could bear in mind to avoid
replicating our mistakes:

1. Design for extensibility. If your daemon’s application protocol can run out of namespace
the way our old one did, you’re doing it wrong. Overestimating the short-term costs and
underestimating the long-term benefits of metaprotocols like XML and JSON is an error
that’s all too common.

2. Client-side libraries are a better idea than exposing the application protocol details. A library
may be able to adapt its internals to multiple versions of the application protocol, substantially
reducing both interface complexity and defect rates compared to the alternative, in which
each application writer needs to develop an ad hoc binding. This difference will translate
directly into fewer bug reports on your project’s tracker.

One possible reply to our emphasis on extensibility, not just in GPSD’s application protocol
but in other aspects of the project architecture like the packet-driver interface, is to dismiss it as an
over-elaboration brought about by mission creep. Unix programmers schooled in the tradition of
“do one thing well” may ask whether gpsd’s command set really needs to be larger in 2011 than it
was in 2006, why gpsd now handles non-GPS sensors like magnetic compasses and Marine AIS
receivers, and why we contemplate possibilities like ADS-B aircraft tracking.

These are fair questions. We can approach an answer by looking at the actual complexity cost
of adding a new device type. For very good reasons, including relatively low data volumes and the
high electrical-noise levels historically associated with serial wires to sensors, almost all reporting
protocols for GPSs and other navigation-related sensors look broadly similar: small packets with
a validation checksum of some sort. Such protocols are fiddly to handle but not really difficult to
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distinguish from each other and parse, and the incremental cost of adding a new one tends to be
less than a KLOC each. Even the most complex of our supported protocols with their own report
generators attached, such as Marine AIS, only cost on the order of 3 KLOC each. In aggregate, the
drivers plus the packet-sniffer and their associated JSON report generators are about 18 KLOC total.

Comparing this with 43 KLOC for the project as a whole, we see that most of the complexity
cost of GPSD is actually in the framework code around the drivers—and (importantly) in the test
tools and framework for verifying the daemon’s correctness. Duplicating these would be a much
larger project than writing any individual packet parser. So writing a GPSD-equivalent for a packet
protocol that GPSD doesn’t handle would be a great deal more work than adding another driver
and test set to GPSD itself. Conversely, the most economical outcome (and the one with the lowest
expected cumulative rate of defects) is for GPSD to grow packet drivers for many different sensor
types.

The “one thing” that GPSD has evolved to do well is handle any collection of sensors that ship
distinguishable checksummed packets. What looks like mission creep is actually preventing many
different and duplicative handler daemons from having to be written. Instead, application developers
get one relatively simple API and the benefit of our hard-won expertise at design and testing across
an increasing range of sensor types.

What distinguishes GPSD from a mere mission-creepy pile of features is not luck or black magic
but careful application of known best practices in software engineering. The payoff from these begins
with a low defect rate in the present, and continues with the ability to support new features with little
effort or expected impact on defect rates in the future.

Perhaps the most important lesson we have for other open-source projects is this: reducing
defect rates asymptotically close to zero is difficult, but it’s not impossible—not even for a project as
widely and variously deployed as GPSD is. Sound architecture, good coding practice, and a really
determined focus on testing can achieve it—and the most important prerequisite is the discipline to
pursue all three.
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[chapter8]

The Dynamic Language Runtime and the
Iron Languages
Jeff Hardy

The Iron languages are an informal group of language implementations with “Iron” in their names, in
honour of the first one, IronPython. All of these languages have at least one thing in common—they
are dynamic languages that target the Common Language Runtime (CLR), which is more commonly
known as the .NET Framework1, and they are built on top of the Dynamic Language Runtime (DLR).
The DLR is a set of libraries for the CLR that provide much better support for dynamic languages on
the CLR. IronPython and IronRuby are both used in a few dozen closed and open source projects,
and are both under active development; the DLR, which started as an open-source project, is included
as part of the .NET Framework and Mono.

Architecturally, IronPython, IronRuby, and the DLR are both simple and devilishly complex.
From a high level, the designs are similar to many other language implementations, with parsers and
compilers and code generators; however, look a little closer and the interesting details begin to emerge:
call sites, binders, adaptive compilation, and other techniques are used to make dynamic languages
perform nearly as fast as static languages on a platform that was designed for static languages.

8.1 History
The history of the Iron languages begins in 2003. Jim Hugunin had already written an implementation
of Python, called Jython, for the Java Virtual Machine (JVM). At the time, the then-new .NET
Framework Common Language Runtime (CLR) was considered by some (exactly who, I’m not
sure) to be poorly suited for implementing dynamic languages such as Python. Having already
implemented Python on the JVM, Jim was curious as to how Microsoft could have made .NET so
much worse than Java. In a September 2006 blog post2, he wrote:

I wanted to understand how Microsoft could have screwed up so badly that the CLR
was a worse platform for dynamic languages than the JVM. My plan was to take a couple
of weeks to build a prototype implementation of Python on the CLR and then to use
that work to write a short pithy article called, “Why the CLR is a terrible platform for
dynamic languages”. My plans quickly changed as I worked on the prototype, because I

1“CLR” is the generic term; the .NET Framework is Microsoft’s implementation, and there is also the open-source Mono
implementation.

2http://blogs.msdn.com/b/hugunin/archive/2006/09/05/741605.aspx



found that Python could run extremely well on the CLR—in many cases noticeably faster
than the C-based implementation. For the standard pystone3 benchmark, IronPython on
the CLR was about 1.7x faster than the C-based implementation.

(The “Iron” part of the name was a play on the name of Jim’s company at the time, Want of a Nail
Software.)

Shortly afterwards, Jim was hired byMicrosoft to make .NET an even better platform for dynamic
languages. Jim (and several others) developed the DLR by factoring the language-neutral parts out of
the original IronPython code. The DLR was designed to provide a common core for implementing
dynamic languages for .NET, and was a major new feature of .NET 4.

At the same time as the DLR was announced (April 2007), Microsoft also announced that, in
addition to a new version of IronPython built on top of the DLR (IronPython 2.0), they would be
developing IronRuby on top of the DLR to demonstrate the DLR’s adaptability to multiple languages4.
Integration with dynamic languages using the DLR would also be a major part of C# and Visual
Basic, with a new keyword (dynamic) that allowed those languages to easily call into any language
implemented on the DLR, or any other dynamic data source. The CLR was already a good platform
for implementing static languages, and the DLR makes dynamic languages a first-class citizen.

Other language implementations from outside of Microsoft also use the DLR, including Iron-
Scheme5 and IronJS6. In addition, Microsoft’s PowerShell v3 will use the DLR instead of its own
dynamic object system.

8.2 Dynamic Language Runtime Principles
The CLR is designed with statically-typed languages in mind; the knowledge of types is baked very
deeply into the runtime, and one of its key assumptions is that those types do not change—that a
variable never changes its type, or that a type never has any fields or members added or removed
while the program is running. This is fine for languages like C# or Java, but dynamic languages,
by definition, do not follow those rules. The CLR also provides a common object system for static
types, which means that any .NET language can call objects written in any other .NET language
with no extra effort.

Without the DLR, every dynamic language would have to provide its own object model; the
various dynamic languages would not be able to call objects in another dynamic language, and C#
would not be able to treat IronPython and IronRuby equally. Thus, the heart of the DLR is a standard
way of implementing dynamic objects while still allowing an object’s behaviour to be customized for
a particular language by using binders. It also includes a mechanism known as call-site caching for
ensuring that dynamic operations are as fast as possible, and a set of classes for building expression
trees, which allow code to be stored as data and easily manipulated.

The CLR also provides several other features that are useful to dynamic languages, including a
sophisticated garbage collector; a Just-in-Time (JIT) compiler that converts Common Intermediate
Language (IL) bytecode, which is what .NET compilers output, into machine code at runtime; a
runtime introspection system, which allows dynamic languages to call objects written in any static
language; and finally, dynamic methods (also known as lightweight code generation) that allow code
3http://ironpython.codeplex.com/wikipage?title=IP26RC1VsCPy26Perf
4In October of 2010, Microsoft stopped developing IronPython and IronRuby and they became independent open-source
projects.

5http://ironscheme.codeplex.com/
6https://github.com/fholm/IronJS/

114 The Dynamic Language Runtime and the Iron Languages



to be generated at runtime and then executed with only sightly more overhead than a static method
call7.

The result of the DLR design is that languages like IronPython and IronRuby can call each
other’s objects (and those of any other DLR language), because they have a common dynamic object
model. Support for this object model was also added to C# 4 (with the dynamic keyword) and
Visual Basic 10 (in addition to VB’s existing method of “late binding”) so that they can perform
dynamic calls on objects as well. The DLR thus makes dynamic languages first-class citizens on
.NET.

Interestingly, the DLR is entirely implemented as a set of libraries and can be built and run on
.NET 2.0 as well. No changes to the CLR are required to implement it.

8.3 Language Implementation Details
Every language implementation has two basic stages—parsing (the front end) and code generation
(the backend). In the DLR, each language implements its own front end, which contains the language
parser and syntax tree generator; the DLR provides a common backend that takes expression trees
to produce Intermediate Language (IL) for the CLR to consume; the CLR will pass the IL to a
Just-In-Time (JIT) compiler, which produces machine code to run on the processor. Code that is
defined at runtime (and run using eval) is handled similarly, except that everything happens at the
eval call site instead of when the file is loaded.

There are a few different way to implement the key pieces of a language front end, and while
IronPython and IronRuby are very similar (they were developed side-by-side, after all) they differ
in a few key areas. Both IronPython and IronRuby have fairly standard parser designs—both use
a tokenizer (also known as a lexer) to split the text into tokens, and then the parser turns those
tokens into an abstract syntax tree (AST) that represents the program. However, the languages have
completely different implementations of these pieces.

8.4 Parsing
IronPython’s tokenizer is in the IronPython.Compiler.Tokenizer class and the parser is in the
IronPython.Compiler.Parser class. The tokenizer is a hand-written state machine that recognizes
Python keywords, operators, and names and produces the corresponding tokens. Each token also
carries with it any additional information (such as the value of a constant or name), as well as where
in the source the token was found, to aid in debugging. The parser then takes this set of tokens and
compares them to the Python grammar to see if it matches legal Python constructs.

IronPython’s parser is an LL(1) recursive descent parser. The parser will look at the incoming
token, call a function if the token is allowed and return an error if it is not. A recursive descent
parser is built from a set of mutually recursive functions; these functions ultimately implement a
state machine, with each new token triggering a state transition. Like the tokenizer, IronPython’s
parser is written by hand.

IronRuby, on the other hand, has a tokenizer and parser generated by the Gardens Point Parser
Generator (GPPG). The parser is is described in the Parser.y file8, which is a yacc-format file that
describes the grammar of IronRuby at a high level using rules that describe the grammar. GPPG then
7The JVM acquired a similar mechanism with invokedynamic in Java 7.
8Languages/Ruby/Ruby/Compiler/Parser/Parser.y
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takes Parser.y and creates the actual parser functions and tables; the result is a table-based LALR(1)
parser. The generated tables are long arrays of integers, where each integer represents a state; based
on the current state and the current token, the tables determine which state should be transitioned to
next. While IronPython’s recursive descent parser is quite easy to read, IronRuby’s generated parser
is not. The transition table is enormous (540 distinct states and over 45,000 transitions) and it is next
to impossible to modify it by hand.

Ultimately, this is an engineering tradeoff—IronPython’s parser is simple enough to modify by
hand, but complex enough that it obscures the structure of the language. The IronRuby parser, on the
other hand, makes it much easier to understand the structure of the language in the Parser.y file,
but it is now dependent on a third-party tool that uses a custom (albeit well-known) domain-specific
language and may have its own bugs or quirks. In this case, the IronPython team didn’t want to
commit to a dependency on an external tool, while the IronRuby team didn’t mind.

What is clear, however, is how important state machines are to parsing, at every phase. For any
parsing task, no matter how simple, a state machine is always the right answer.

The output of the parser for either language is an abstract syntax tree (AST). This describes the
structure of the program at a high level, with each node mapping directly to a language construct—a
statement or expression. These trees can be manipulated at runtime, often to make optimizations to
the program before compilation. However, a language’s AST is tied to the language; the DLR needs
to operate on trees that do not contain any language-specific constructs, only general ones.

8.5 Expression Trees
An expression tree is also a representation of a program that can be manipulated at
runtime, but in a lower-level, language-independent form. In .NET, the node types are in the
System.Linq.Expressions namespace9, and all of the node types are derived from the abstract
Expression class. These expression trees cover more than just expressions, however, as there are
node types for if statements, try blocks, and loops as well; in some languages (Ruby, for one) these
are expressions and not statements.

There are nodes to cover almost every feature a programming language could want. However,
they tend to be defined at a fairly low level—instead of having ForExpression, WhileExpression,
etc., there is a single LoopExpressionwhich, when combined with a GotoExpression, can describe
any type of loop. To describe a language at a higher level, languages can define their own node
types by deriving from Expression and overriding the Reduce() method, which returns another
expression tree. In IronPython, the parse tree is also a DLR expression tree, but it contains many
custom nodes that the DLR would not normally understand (such as ForStatement). These custom
nodes can be reduced to expression trees that the DLR does understand (such as a combination of
LoopExpressions and GotoExpressions). A custom expression node can reduce to other custom
expression nodes, so the reduction proceeds recursively until only the intrinsic DLR nodes remain.
One key difference between IronPython and IronRuby is that while IronPython’s AST is also an
expression tree, IronRuby’s is not. Instead, IronRuby’s AST is transformed into an expression tree
before moving onto the next stage. It’s arguable whether having the AST also be an expression tree
is actually useful, so IronRuby did not implement it that way.

Each node type knows how to reduce itself, and it can usually only be reduced in one way. For
transformations that come from code outside the tree—optimizations such as constant folding, for ex-
9The namespace is a historical artifact; expression trees were originally added in .NET 3.5 to implement LINQ—Language
Integrated Query—and the DLR expression trees extended that.
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ample, or IronPython’s implementation of Python generators—a subclass of the ExpressionVisitor
class is used. ExpressionVisitor has a Visit() method that calls the Accept() method on
Expression, and subclasses of Expression override Accept() to call a specific Visit() method
on ExpressionVisitor, such as VisitBinary(). This is a textbook implementation of the Visitor
pattern from Gamma et al.—there’s a fixed set of node types to visit, and an infinite number of
operations that could be performed upon them. When the expression visitor visits a node, it usu-
ally recursively visits its children as well, and its children, and so on down the tree. However, an
ExpressionVisitor can’t actually modify the expression tree it is visiting, because expression trees
are immutable. If the expression visitor needs to modify a node (such as removing children), it must
produce a new node that replaces the old one instead, and all of its parents as well.

Once an expression tree has been created, reduced, and visited, it ultimately needs to be executed.
While expression trees can be compiled directly to IL code, IronPython and IronRuby pass them to
an interpreter first, because compiling directly to IL is expensive for code that may only be executed
a handful of times.

8.6 Interpreting and Compilation
One of the downsides to using a JIT compiler, like .NET does, is that it imposes a time penalty when
starting up because it takes time to convert the IL bytecode into machine code that the processor
can run. JIT compilation makes the code much faster while running than using an interpreter, but
the initial cost can be prohibitive, depending on what is being done. For example, a long-lived
server process such as a web application will benefit from the JIT because the startup time is mostly
irrelevant but the per-request time is critical, and it tends to run the same code repeatedly. On the
other hand, a program that is run often but only for short periods of time, such as the Mercurial
command-line client, would be better off with a short startup time because it likely only runs each
chunk of code once, and the fact that the JIT’d code is faster doesn’t overcome the fact that it takes
longer to start running.

.NET can’t execute IL code directly; it always gets JIT compiled into machine code, and this takes
time. In particular, program startup times are one of the weak spots of the .NET Framework because
much of the code needs to be JIT compiled. While there are ways to avoid the JIT penalty in static .NET
programs10, they don’t work for dynamic programs. Rather than always compile directly to IL, Iron-
Ruby and IronPython will use their own interpreter (found in Microsoft.Scripting.Interpreter)
that isn’t as fast as JIT-compiled code but takes much less time to get started. The interpreter is also
useful in situations where dynamic code generation is not allowed, such as on mobile platforms;
otherwise the DLR languages would not be able to run at all.

Before execution, the entire expression tree must be wrapped in a function so that it can be
executed. In the DLR, functions are represented as LambdaExpression nodes. While in most
languages a lambda is an anonymous function, the DLR has no concept of names; all functions are
anonymous. The LambdaExpression is unique in that it is the only node type that can be converted
to a delegate, which is what .NET calls first-class functions, using its Compile()method. A delegate
is similar to a C function pointer—it is simply a handle to a piece of code that can be called.

Initially, the expression tree is wrapped in a LightLambdaExpression, which can also produce
a delegate that can be executed, but rather than generate IL code (which would then invoke the
JIT), it instead compiles the expression tree to a list of instructions that are then executed on the
interpreter’s simple VM. The interpreter is a simple stack-based one; instructions pop values off
10Native Image Generation, or NGEN—http://msdn.microsoft.com/en-us/library/6t9t5wcf.aspx.
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of the stack, perform an operation, and then push the result back on the stack. Each instruction is
an instance of a class derived from Microsoft.Scripting.Interpreter.Instruction (such as
AddInstruction or BranchTrueInstruction) that has properties describing how many items it
takes off of the stack, how many it will put on, and a Run() method that executes the instruction
by popping and pushing values on the stack and returning the offset of the next instruction. The
interpreter takes the list of instructions and executes them one by one, jumping forward or backwards
depending on the return value of the Run() method.

Once a a piece of code has been executed a certain number of times, it will be converted
to a full LambdaExpression by calling LightLambdaExpression.Reduce(), then compiled to a
DynamicMethod delegate (on a background thread for a bit of parallelism), and the old delegate
call site will be replaced with the newer, faster one. This greatly reduces the cost of executing
functions that may only be called a few times, such as the main function of a program, while making
commonly called functions run as fast as possible. By default, the compilation threshold is set at 32
executions, but this can be changed with a command-line option or by the host program, and can
include disabling either compilation or the interpreter entirely.

Whether running through the interpreter or compiled to IL, the language’s operations are not
hard-coded by the expression tree compiler. Instead, the compiler generates call sites for each
operation that may be dynamic (which is nearly all of them). These call sites give the objects a
chance to implement dynamic behaviour while still keeping performance high.

8.7 Dynamic Call Sites
In a static .NET language, all of the decisions about what code should be called are made at compile
time. For example, consider the following line of C#:

var z = x + y;

The compiler knows what the types of ‘x’ and ‘y’ are and whether or not they can be added. The
compiler can emit the proper code for handling overloaded operators, type conversions, or whatever
else might be needed to make the code run properly, based solely on the static information it knows
about the types involved. Now, consider the following line of Python code:

z = x + y

The IronPython compiler has no idea what this might do when it encounters it, because it doesn’t
know what the types of x and y are11, and even if it did know, the ability of x and y to be added
could change at runtime anyway. Instead of emitting the IL code for adding numbers, the IronPython
emits a call site that will be resolved at runtime.

A call site is a placeholder for an operation to be determined at runtime; they are implemented
as instances of the System.Runtime.CompilerServices.CallSite class. In a dynamic language
like Ruby or Python, just about every operation has a dynamic component; these dynamic operations
are represented in the expression trees as DynamicExpression nodes, which the expression tree
compiler knows to convert to a call site. When a call site is created, it is does not yet know how to
perform the desired operation; however, it is created with an instance of the proper call site binder
that is specific to the language in use, and contains all of the necessary information about how to
perform the operation.
11In principle it could, but neither IronPython nor IronRuby do type inference.
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+Target	  :	  Delegate
+Update	  :	  Delegate
-‐Rules	  :	  Delegate[]
-‐_binder	  :	  CallSiteBinder

CallSite

+Bind()	  :	  Expression
+BindDelegate()	  :	  Delegate

-‐Cache	  :	  Delegate[]

CallSiteBinder

Figure 8.1: CallSite class diagram

Each language will have a different call site binder for each operation, and the binders often
know many different ways to perform an operation depending on the arguments given to the call
site. However, generating these rules is expensive (in particular, compiling them to a delegate for
execution, which involves invoking the .NET JIT), so the call site has a multi-level call site cache
that stores the rules that have already been created for later use.

The first level, L0, is the CallSite.Target property on the call site instance itself. This stores
the most-recently-used rule for this call site; for a vast number of call sites, this is all that will ever
be needed as they are only ever called with one set of argument types. The call site also has another
cache, L1, that stores a further 10 rules. If Target is not valid for this call (for example, if the
arguments types are different), the call site first checks its rules cache to see if it has already created
the proper delegate from a previous call, and reuses that rule instead of creating a new one.

Storing rules in the cache is driven by the time it takes to actually compile a new rule compared
to the time it takes to check the existing rules. Roughly speaking, it takes about 10 ns for .NET to
execute a type check on a variable (checking a binary function takes 20 ns, etc.), which is the most
common type of rule predicate. Compiling a simple method to add doubles, on the other hand, takes
about 80 µs, or three orders of magnitude longer. The size of the caches is limited to prevent wasting
memory storing every rule that gets used at a call site; for a simple addition, each variation requires
about 1 KB of memory. However, profiling showed that very few call sites ever had more than 10
variations.

Finally, there is the L2 cache, which is stored on the binder instance itself. The binder instance
that is associated with a call site may store some extra information with it that makes it specific to
a call site, but a large number of call sites aren’t unique in any way and can share the same binder
instance. For example, in Python, the basic rules for addition are the same throughout the program;
it depends on the two types on the either side of the +, and that’s it. All of the addition operations in
the program can share the same binder, and if both the L0 and L1 caches miss, the L2 cache contains
a much larger number of recent rules (128) collected from across the entire program. Even if a call
site is on its first execution, there’s a good chance it might already find an appropriate rule in the
L2 cache. To ensure that this works most effectively, IronPython and IronRuby both have a set of
canonical binder instances that are used for common operations like addition.

If the L2 cache misses, the binder is asked to create an implementation for the call site, taking
into account the types (and possibly even the values) of the arguments. In the above example, if x
and y are doubles (or another native type), then the implementation simply casts them to doubles and
calls the IL add instruction. The binder also produces a test that checks the arguments and ensures
they are valid for the implementation. Together, the implementation and the test make a rule. In most
cases, both the implementation and the test are created and stored as expression trees12.

12The call site infrastructure does not depend on expression trees, however; it can be used with delegates alone.
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Figure 8.2: CallSite flowchart

If the expression trees were expressed in C#, the code would be similar to:

if(x is double && y is double) { // check for doubles
return (double)x + (double)y; // execute if doubles

}
return site.Update(site, x, y); // not doubles, so find/create another rule

// for these types
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The binder then produces a delegate from the expression trees, which means the rule is compiled
to IL and then to machine code. In the case of adding two numbers, this will likely become a quick
type check and then a machine instruction to add the numbers. Even with all of the machinery
involved, the ultimate end result is only marginally slower than static code. IronPython and IronRuby
also include a set of precompiled rules for common operations like addition of primitive types, which
saves time because they don’t have to be created at runtime, but does cost some extra space on disk.

8.8 Meta-Object Protocol
Besides the language infrastructure, the other key part of the DLR is the ability for a language
(the host language) to make dynamic calls on objects defined in another language (the source
language). To make this possible, the DLR must be able to understand what operations are valid
on an object, no matter the language it was written in. Python and Ruby have fairly similar object
models, but JavaScript has a radically different prototype-based (as opposed class-based) type system.
Instead of trying to unify the various type systems, the DLR treats them all as if they were based on
Smalltalk-style message passing.

In a message-passing object-oriented system, objects send messages to other objects (with
parameters, usually), and the object can return another object as a result. Thus, while each language
has its own idea of what an object is, they can almost all be made equivalent by viewing method
calls as messages that are sent between objects. Of course, even static OO languages fit this model to
some extent; what makes dynamic languages different is that the method being called does not have
to be known at compile time, or even exist on the object at all (e.g., Ruby’s method_missing), and
the target object usually has a chance to intercept the message and process it differently if necessary
(e.g., Python’s __getattr__).

The DLR defines the following messages:
• Get|Set|DeleteMember: operations for manipulating an object’s members
• Get|Set|DeleteIndex: operations for indexed objects (such as arrays or dictionaries)
• Invoke, InvokeMember: invoke an object or member of an object
• CreateInstance: create an instance of an object
• Convert: convert an object from one type to another
• UnaryOperation, BinaryOperation: perform operator-based operations, such as negate (!)
or add (+)

Taken together, these operations should be sufficient for implementing just about any language’s
object model.

Because the CLR is inherently statically typed, dynamic language objects must still be rep-
resented by static classes. The usual technique is to have a static class such as PythonObject
and have the actual Python objects be instances of this class or its subclasses. For reasons of
interoperability and performance, the DLR’s mechanism is a lot more complicated. Instead of
dealing with language-specific objects the DLR deals with meta-objects, which are subclasses of
System.Dynamic.DynamicMetaObject and have methods for handling all of the above messages.
Each language has its own subclasses of DynamicMetaObject that implement the language’s object
model, such as IronPython’s MetaPythonObject. The meta classes also have corresponding concrete
classes that implement the System.Dynamic.IDynamicMetaObjectProtocol interface, which is
how the DLR identifies dynamic objects.

From a class that implements IDynamicMetaObjectProtocol, the DLR can get a Dynamic-
MetaObject by calling GetMetaObject(). This DynamicMetaObject is provided by the language
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+GetMetaObject(in	  parameter	  :	  Expression)	  :	  DynamicMetaObject

«interface»
IDynamicMetaObjectProvider

+BindInvoke(in	  binder	  :	  InvokeMemberBinder,	  in	  args	  :	  DynamicMetaObject[])	  :	  DynamicMetaObject
+BindGetMember(in	  binder	  :	  GetMemberBinder,	  in	  args	  :	  DynamicMetaObject[])	  :	  DynamicMetaObject
-‐...()

+Expression	  :	  Expression
+Value	  :	  object
+RunLmeType	  :	  Type
-‐...

DynamicMetaObject

+GetMetaObject(in	  parameter	  :	  Expression)	  :	  DynamicMetaObject

OldInstance

+BindInvoke(in	  binder	  :	  InvokeMemberBinder,	  in	  args	  :	  DynamicMetaObject[])	  :	  DynamicMetaObject
+BindGetMember(in	  binder	  :	  GetMemberBinder,	  in	  args	  :	  DynamicMetaObject[])	  :	  DynamicMetaObject
+...()

MetaOldInstance

MetaPythonObject

Figure 8.3: IDMOP class diagram

and implements the binding functions as required by that object. Each DynamicMetaObject also
has the value and type, if available, of the underlying object. Finally, a DynamicMetaObject stores
an expression tree representing the call site so far and any restrictions on that expression, similar to
the call site binders.

When the DLR is compiling a call to a method on a user-defined class, it first creates a call
site (i.e., an instance of the CallSite class). The call site initiates the binding process as de-
scribed above in “Dynamic Call Sites”, which results in it eventually calling GetMetaObject()
on an instance of OldInstance13, which returns a MetaOldInstance. Next, a binder is called
(PythonGetMemberBinder.Bind()) which in turn calls MetaOldInstance.BindGetMember();
it returns a new DynamicMetaObject that describes how to look up the method name on
the object. Then another binder, PythonInvokeBinder.Bind(), is called, which calls
MetaOldInstance.BindInvoke(), wrapping the first DynamicMetaObject with a new one rep-
resenting how to call the method that was looked up. This includes the original object, the expression
tree for looking up the method name, and DynamicMetaObjects representing the arguments to the
method.

Once the final DynamicMetaObject in an expression has been built, its expression tree and
13Python has old-style and new-style classes, but that’s not relevant here.
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restrictions are used to build a delegate which is then returned to the call site that initiated the binding.
From there the code can be stored in the call site caches, making operations on objects as fast as
other dynamic calls, and almost as fast as static calls.

Host languages that want to perform dynamic operations on dynamic languages must derive
their binders from DynamicMetaObjectBinder. The DynamicMetaObjectBinder will first ask the
target object to bind the operation (by calling GetMetaObject() and going through the binding
process described above) before falling back on the host language’s binding semantics. As a result,
if an IronRuby object is accessed from an IronPython program, the binding is first attempted with
Ruby (target language) semantics; if that fails, the DynamicMetaObjectBinder will fall back on
the Python (host language) semantics. If the object being bound is not dynamic (i.e., it does not
implement IDynamicMetaObjectProvider), such as classes from the .NET base class library, then
it is accessed with the host language’s semantics using .NET reflection.

Languages do have some freedom in how they implement this; IronPython’s PythonInvokeBinder
does not derive from InvokeBinder because it needs to do some extra processing specific to Python
objects. As long as it only deals with Python objects, there are no issues; if it encounters an ob-
ject that implements IDynamicMetaObjectProvider but is not a Python object, it forwards to a
CompatibilityInvokeBinder class that does inherit from InvokeBinder and can handle foreign
objects correctly.

If the fallback cannot bind the operation, it doesn’t throw an exception; instead, it returns a
DynamicMetaObject representing the error. The host language’s binder will then handle this in an
appropriate manner for the host language; for example, accessing a missing member on an IronPython
object from a hypothetical JavaScript implementation could return undefined, while doing the same
to a JavaScript object from IronPython would raise an AttributeError.

The ability for languages to work with dynamic objects is rather useless without the ability to
first load and execute code written in other languages, and for this the DLR provides a common
mechanism for hosting other languages.

8.9 Hosting
In addition to providing common language implementation details, the DLR also provides a shared
hosting interface. The hosting interface is used by the host language (usually a static language like
C#) to execute code written in another language such as Python or Ruby. This is a common technique
that allows end users to extend an application, and the DLR takes it step further by making it trivial
to use any scripting language that has a DLR implementation. There are four key parts to the hosting
interface: the runtime, engines, sources, and scopes.

The ScriptRuntime is generally shared amongst all dynamic languages in an application. The
runtime handles all of the current assembly references that are presented to the loaded languages,
provides methods for quick execution of a file, and provides the methods for creating new engines.
For simple scripting tasks, the runtime is the only interface that needs to be used, but the DLR also
provides classes with more control over how scripts are run.

Usually, only one ScriptEngine is used for each scripting language. The DLR’s meta-object pro-
tocol means that a program can load scripts from multiple languages, and the objects created by each
language can all seamlessly interoperate. The engine wraps a language-specific LanguageContext
(such as PythonContext or RubyContext) and is used for executing code from files or strings and
performing operations on dynamic objects from languages that don’t natively support the DLR (such
as C# prior to .NET 4). Engines are thread-safe, and can execute multiple scripts in parallel, as long
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as each thread has its own scope. It also provides methods for creating script sources, which allow
for more fine-grained control of script execution.

A ScriptSource holds a chunk of code to be executed; it binds a SourceUnit object, which
holds the actual code, to the ScriptEngine that created the source. This class allows code to be
compiled (which produces a CompiledCode object that can be cached) or executed directly. If a
chunk of code is going to be executed repeatedly, it’s best to compile first, and then execute the
compiled code; for scripts that will only be executed once, it’s best to just execute it directly.

Finally, however the code gets to be executed, a ScriptScope must be provided for the code to
execute in. The scope is used to hold all of script’s variables, and can be pre-loaded with variables
from the host, if necessary. This allows a host to provide custom objects to the script when it starts
running—for example, an image editor may provide a method to access the pixels of the image
the script is working on. Once a script has executed, any variables it created can be read from the
scope. The other main use of scopes is to provide isolation, so that multiple scripts can be loaded
and executed at the same time without interfering with each other.

It’s important to note that all of these classes are provided by the DLR, not the language; only
the LanguageContext used by the engine comes from the language implementation. The language
context provides all of the functionality—loading code, creating scopes, compilation, execution, and
operations on dynamic objects—that is needed by a host, and the DLR hosting classes provide a
more usable interface to access that functionality. Because of this, the same hosting code can be
used to host any DLR-based language.

For dynamic language implementations written in C (such as the original Python and Ruby),
special wrapper code must be written to access code not written in the dynamic language, and
it must be repeated for each supported scripting language. While software like SWIG exists to
make this easier, it’s still not trivial to add a Python or Ruby scripting interface to a program and
expose its object model for manipulation by external scripts. For .NET programs, however, adding
scripting is as simple as setting up a runtime, loading the program’s assemblies into the runtime, and
using ScriptScope.SetVariable() to make the program’s objects available to the scripts. Adding
support for scripting to a .NET application can be done in a matter of minutes, which is a huge bonus
of the DLR.

8.10 Assembly Layout
Because of how the DLR evolved from a separate library into part of the CLR, there are parts that
are in the CLR (call sites, expression trees, binders, code generation, and dynamic meta objects) and
parts that are part of IronLanguages open-source project (hosting, the interpreter, and a few other bits
not discussed here). The parts that are in the CLR are also included in the IronLanguages project in
Microsoft.Scripting.Core. The DLR parts are split into two assemblies, Microsoft.Scripting
and Microsoft.Dynamic—the former contains the hosting APIs and the latter contains code for
COM interop, the interpreter, and some other pieces common to dynamic languages.

The languages themselves are split in two as well: IronPython.dll and IronRuby.dll im-
plement the languages themselves (parsers, binders, etc.) while IronPython.Modules.dll and
IronRuby.Libraries.dll implement the portions of the standard library that are implemented in
C in the classic Python and Ruby implementations.
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8.11 Lessons Learned
The DLR is a useful example of a language-neutral platform for dynamic languages built on top of
a static runtime. The techniques it uses to achieve high-performance dynamic code are tricky to
implement properly, so the DLR takes these techniques and makes them available to every dynamic
language implementation.

IronPython and IronRuby are good examples of how to build a language on top of the DLR. The
implementations are very similar because they were developed at the same time by close teams,
yet they still have significant differences in implementation. Having multiple different languages
co-developed14, along with C#’s and VB’s dynamic features, made sure that the DLR design got
plenty of testing during development.

The actual development of IronPython, IronRuby, and the DLR was handled very differently
than most projects within Microsoft at the time—it was a very agile, iterative development model
with continuous integration running from day one. This enabled them to change very quickly when
they had to, which was good because the DLR became tied into C#’s dynamic features early in its
development. While the DLR tests are very quick, only taking a dozen seconds or so, the language
tests take far too long to run (the IronPython test suite takes about 45 minutes, even with parallel
execution); improving this would have improved the iteration speed. Ultimately, these iterations
converged on the current DLR design, which seems overly complicated in parts but fits together quite
nicely in total.

Having the DLR tied to C# was critically important because it made sure the DLR had a place and
a “purpose”, but once the C# dynamic features were done the political climate changed (coinciding
with an economic downturn) and the Iron languages lost their support within the company. The
hosting APIs, for example, never made it into the .NET Framework (and it’s highly unlikely they
ever will); this means that PowerShell 3, which is also based on the DLR, uses a completely different
set of hosting APIs than IronPython and IronRuby, although all of their objects can still interact as
described above15. But, thanks to the wonder of open source licensing, they will continue to survive
and even thrive.

14IronPython, IronRuby, a prototype JavaScript, and the mysterious VBx—a fully dynamic version of VB.
15Some of the DLR team members went on to work on the C# compiler-as-a-service library code-named “Roslyn”, which
bears a striking resemblance to the IronPython and IronRuby hosting APIs.
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[chapter9]

ITK
Luis Ibáñez and Brad King

9.1 What Is ITK?
ITK (the Insight Toolkit)1 is a library for image analysis that was developed by the initiative, and
mainly with the funding, of the US National Library of Medicine2. ITK can be thought of as a usable
encyclopedia of image analysis algorithms, in particular for image filtering, image segmentation and
image registration. The library was developed by a consortium involving universities, commercial
companies, and many individual contributors from around the world. Development of ITK started in
1999, and recently after its 10th anniversary the library underwent a refactoring process intended to
remove crusty code and to reshape it for the next decade.

9.2 Architectural Features
Software toolkits have a very synergistic relationship with their communities. They shape one another
in a continuous iterative cycle. The software is continuously modified until it satisfies the needs of
the community, while the community behaviors themselves are adapted based on what the software
empowers or restricts them to do. In order to better understand the nature of ITK’s architecture,
it is therefore very useful to get a sense of what kind of problems the ITK community is usually
addressing, and how they tend to go about solving them.

The Nature of the Beast
If you did not understand the nature of the beasts,
it would be of little use to know the mechanics of their anatomy.

Dee Hock, One from Many: VISA and the Rise of Chaordic Organization

In a typical image analysis problem, a researcher or an engineer will take an input image, improve
some characteristics of the image by, let’s say, reducing noise or increasing contrast, and then proceed
to identify some features in the image, such as corners and strong edges. This type of processing is
naturally well-suited for a data pipeline architecture, as shown in Figure 9.1.
1http://www.itk.org
2http://www.nlm.nih.gov



File

Reader

Noise

Reducion

Edge

Detection

File

Writer

Figure 9.1: Image processing pipeline

To illustrate this point, Figure 9.2 shows an image of a brain from a magnetic resonance image
(MRI), and the result of processing it with a median filter to reduce its level of noise, as well as the
outcome of an edge detection filter used to identify the borders of anatomical structures.

Figure 9.2: From left to right: MRI brain image, median filter, edge detection filter

For each one of these tasks, the image analysis community has developed a variety of algorithms,
and continue developing new ones. Why do they continue doing this?, you may ask, and the answer
is that image processing is a combination of science, engineering, art, and “cooking” skills. Claiming
that there is an algorithmic combination that is the “right” answer to an image processing task is as
misleading as claiming that there is such a thing as the “right” type of chocolate dessert for a dinner.
Instead of pursuing perfection, the community strives to produce a rich set of tools that ensures that
there will be no shortage of options to try when facing a given image processing challenge. This
state of affairs, of course, comes at a price. The cost is that the image analyst has the difficult task
of choosing among dozens of different tools that can be used in different combinations to achieve
similar results.

The image analysis community is closely integrated with the research community. It is common
to find that specific research groups become attached to the algorithmic families they have developed.
This custom of “branding”, and up to some level “marketing”, leads to a situation where the best
that the software toolkit can do for the community is to offer a very complete set of algorithmic
implementations that they can try, and then mix and match to create a recipe that satisfies their needs.

These are some of the reasons why ITK was designed and implemented as a large collection
of somewhat independent but coherent tools, the image filters, many of which can be used to solve
similar problems. In this context, a certain level of “redundancy”—for example, offering three
different implementations of the Gaussian filter—is not seen as a problem but as a valuable feature,
because different implementations can be used interchangeably to satisfy constraints and exploit
efficiencies with respect to image size, number of processors, and Gaussian kernel size that might be
specific to a given imaging application.
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The toolkit was also conceived as a resource that grows and renews itself continuously as new
algorithms and better implementations become available, superseding existing ones, and as new
tools are developed in response to the emerging needs of new medical imaging technologies.

Armed with this quick insight into the daily routine of the image analysts in the ITK community,
we can now dive into the main features of the architecture:

• Modularity
• Data Pipeline
• Factories
• IO Factories
• Streaming
• Reusability
• Maintainability

Modularity
Modularity is one of the main characteristics of ITK. This is a requirement that emerges from
the way people in the image analysis community work when solving their problems. Most image
analysis problems put one or more input images through a combination of processing filters that
enhance or extract particular pieces of information from the images. Therefore there is no single
large processing object, but rather myriad small ones. This structural nature of the image processing
problem logically implies implementing the software as a large collection of image processing filters
that can be combined in many different ways.

It is also the case that certain types of processing filters are clustered into families, inside which
some of their implementation features can be factorized. This leads to natural grouping of the image
filters into modules and groups of modules.

Modularity, therefore occurs at three natural levels in ITK:
• Filter Level
• Filter Family Level
• Filter Family Group Level
At the image filter level, ITK has a collection of about 700 filters. Given that ITK is implemented

in C++, this is a natural level at which every one of those filters is implemented by a C++ Class
following object-oriented design patterns. At the filter family level, ITK groups filters together
according to the nature of the processing that they perform. For example, all filters that are related to
Fourier transforms will be put together into a Module. At the C++ level, Modules map to directories
in the source tree, and to libraries once the software is compiled to its binary form. ITK has about
120 of these Modules. Each module contains:

1. The source code of the image filters that belong to that family.
2. A set of configuration files that describe how to build the module and list dependencies

between this module and other modules.
3. The set of unit tests corresponding to each one of the filters.
The group level is mostly a conceptual division that has been drawn on top of the software to

help locate filters in the source tree. Groups are associated with high-level concepts such as Filtering,
Segmentation, Registration and IO. This hierarchical structure is illustrated in Figure 9.3. ITK
currently has 124 modules, which are in turn aggregated into 13 major groups. The modules have a
variety of different sizes. This size distribution, in bytes, is presented in Figure 9.4.
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Figure 9.3: Hierarchical structure of groups, modules and classes
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Figure 9.4: Size distribution of 50 largest ITK modules in KB

The modularization in ITK also applies to a set of third-party libraries that are not directly part
of the toolkit, but that the toolkit depends upon, and that are distributed along with the rest of the
code for the convenience of users. Particular examples of these third-party libraries are the image file
format libraries: HDF5, PNG, TIFF, JPEG and OpenJPEG among others. The third party libraries
are highlighted here because they account for about 56 percent of the size of ITK. This reflects the
usual nature of open source applications that build upon existing platforms. The size distribution
of the third-party libraries does not necessarily reflect the architectural organization of ITK, since
we have adopted these useful libraries just as they have been developed upstream. However, the
third-party code is distributed along with the toolkit, and partitioning it was one of the key driving
directives for the modularization process.

Themodule size distribution is presented here because it is a measure of the proper modularization
of the code. One can see the modularization of the code as a continuous spectrum that ranges from
the extremes of having all the code in a single module, the monolithic version, to partitioning the
code in a very large collection of equally sized modules. This size distribution was a tool used to
monitor the progression of the modularization process, particularly to ensure that no big blocks of
code were left in the same module unless true logical dependencies called for such grouping.

The modular architecture of ITK enables and facilitates:
• Reduction and clarification of cross-dependencies
• Adoption of code contributed by the community
• Evaluation of quality metrics per module (for example, code coverage)
• Building selected subsets of the toolkit
• Packaging selected subsets of the toolkit for redistribution
• Continued growth by progressive addition of new modules
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The modularization process made it possible to explicitly identify and declare the dependencies
between different portions of the toolkit as they were put into modules. In many cases, this exercise
revealed artificial or incorrect dependencies that had been introduced in the toolkit over time, and
that passed unnoticed when most of the code was put together in a few large groups.

The usefulness of evaluating quality metrics per module is twofold. First, it makes it easier to
hold developers accountable for the modules which they maintain. Second, it makes it possible to
engage in clean-up initiatives in which a few developers focus for a short period of time on raising
the quality of a specific module. When concentrating on a small portion of the toolkit, it is easier to
see the effect of the effort and to keep developers engaged and motivated.

To reiterate, we note that the structure of the toolkit reflects the organization of the community
and in some cases the processes that have been adopted for the continuous growth and quality control
of the software.

Data Pipeline
The staged nature of most image analysis tasks led naturally to the selection of a Data Pipeline
architecture as the backbone infrastructure for data processing. The Data Pipeline enables:

• Filter Concatenation: A set of image filters can be concatenated one after another, composing
a processing chain in which a sequence of operations are applied to the input images.

• Parameter Exploration: Once a processing chain is put together, it is easy to change the
parameters of any filter in the chain, and to explore the effects that such change will have on
the final output image.

• Memory Streaming: Large images can be managed by processing only sub-blocks of the image
at a time. In this way, it becomes possible to process large images that otherwise would not
have fit into main memory.

Figures 9.1 and 9.2 have already presented a simplified representation of a data pipeline from the
image processing point of view. Image filters typically have numeric parameters that are used to
regulate the behavior of the filter. Every time one of the numeric parameters is modified, the data
pipeline marks its output as “dirty” and knows that this particular filter, and all the downstream ones
that use its output, should be executed again. This feature of the pipeline facilitates the exploration
of parameter space while using a minimum amount of processing power for each instance of an
experiment.

The process of updating the pipeline can be driven in such a way that only sub-pieces of the
images are processed at a time. This is a mechanism necessary to support the functionality of
streaming. In practice, the process is controlled by the internal passing of a RequestedRegion
specification from one filter downstream to its provider filter upstream. This communication is done
through an internal API and it is not exposed to the application developers.

For a more concrete example, if a Gaussian blur image filter is expecting to use as input a
100x100-pixel image that is produced by a median image filter, the blur filter can ask the median
filter to produce only a quarter of the image, that is, an image region of size 100x25 pixels. This
request can be further propagated upstream, with the caveat that every intermediate filter may have
to add an extra border to the image region size in order to produce that requested output region size.
There is more on data streaming in Section 9.2.

Both a change in the parameters of a given filter, or a change in the specific requested region to
be processed by that filter, will have the effect of marking the pipeline as “dirty” and indicating the
need for a reexecution of that filter through the downstream filters in the pipeline.
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Process and Data Objects

Two main types of objects were designed to hold the basic structure of the pipeline. They are the
DataObject and the ProcessObject. The DataObject is the abstraction of classes that carry data;
for example, images and geometrical meshes. The ProcessObject provides an abstraction for the
image filters and mesh filters that process such data. ProcessObjects take DataObjects as input and
perform some type of algorithmic transformation on them, such as the ones illustrated in Figure 9.2.

DataObjects are generated by ProcessObjects. This chain typically starts by reading a DataObject
from disk, for example by using a ImageFileReader which is a type of ProcessObject. The
ProcessObject that created a given DataObject is the only one that shouldmodify such DataObject.
This output DataObject is typically connected as input to another ProcessObject downstream in
the pipeline.
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Figure 9.5: Relationship between ProcessObjects and DataObjects

This sequence is illustrated in Figure 9.5. The same DataObject may be passed as input to
multiple ProcessObjects, as it is shown in the figure, where the DataObject is produced by the
file reader at the beginning of the pipeline. In this particular case, the file reader is an instance of the
ImageFileReader class, and the DataObject that it produces as output is an instance of the Image
class. It is also common for some filters to require two DataObjects as input, as it is the case of the
subtract filter indicated in the right side of the same figure.

The ProcessObjects and DataObjects are connected together as a side effect of constructing
the pipeline. From the application developer’s point of view, the pipeline is linked together by
invoking a sequence of calls involving the ProcessObjects such as:

writer->SetInput( canny->GetOutput() );
canny->SetInput( median->GetOutput() );
median->SetInput( reader->GetOutput() );

Internally, however, what is connected as a consequence of these calls is not one ProcessObject
to the next ProcessObject, but the downstream ProcessObject to the DataObject that is produced
by the upstream ProcessObject.

The internal chained structure of the pipeline is held together by three types of connections:
• The ProcessObject holds a list of pointers to its output DataObjects. Output DataObjects
are owned and controlled by the ProcessObject that produces them.

• The ProcessObject holds a list of pointers to its input DataObjects. Input DataObjects are
owned by the upstream ProcessObject.

• The DataObject holds a pointer to its producer ProcessObject. That happens to be the
ProcessObject that also owns and control this DataObject.

This collection of internal links is later exploited to propagate calls upstream and downstream
in the pipeline. During all these interactions, the ProcessObject retains control and ownership of

Luis Ibáñez and Brad King 133



the DataObject that it generates. The filters downstream gain access to the information about a
given DataObject through the pointer links that are established as a consequence of the calls to the
SetInput() and GetOutput() methods, without ever taking control of that input data. For practical
purposes, filters should treat their input data as read-only objects. This is enforced in the API by
using the C++ const keyword in the arguments of SetInput() methods. As a general rule, ITK
embraces a const-correct external API, even though internally this const-correctness is overridden by
some of the pipeline operations.

The Pipeline Class Hierarchy

LightObject

Object

ProcessObject DataObject

ImageSource

FileReader MedianFilter

Image Mesh

...

Figure 9.6: Hierarchy of ProcessObjects and DataObjects

The initial design and implementation of the Data Pipeline in ITK was derived from the Visual-
ization Toolkit (VTK)3, a mature project at the time when ITK development began.

Figure 9.6 shows the object-oriented hierarchy of the pipeline objects in ITK. In particular, note
the relationship between the basic Object, ProcessObject, DataObject, and some of the classes in
the filter family and the data family. In this abstraction, any object that is expected to be passed as input
to a filter, or to be produced as output by a filter, must derive from the DataObject. All filters that
produce and consume data are expected to derive from the ProcessObject. The data negotiations
required to move data through the pipeline are implemented partly in the ProcessObject and partly
in the DataObject.

The LightObject and Object classes are above the dichotomy of the ProcessObject and
DataObject. The LightObject and Object classes provide common functionalities such as the
API for communications of Events, and the support for multi-threading.
3See The Architecture of Open Source Applications, Volume 1
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The Inner Workings of the Pipeline

Figure 9.7 presents a UML sequence diagram describing the interactions between ProcessObjects
and DataObjects in a minimal pipeline composed of an ImageFileReader, MedianImageFilter
and ImageFileWriter.

The full interaction consist of four passes:
• Update Output Information (upstream call sequence)
• Update Requested Region (upstream call sequence)
• Update Output Data (upstream call sequence)
• Generate Data (downstream call sequence)

















 




























































Figure 9.7: UML sequence diagram

The whole process is triggered when an application invokes the Update() method in the last
filter of the pipeline; in this concrete example this is the ImageFileWriter. The Update() call
initiates the first pass that goes in the upstream direction. That is, from the last filter in the pipeline,
towards the first filter in the pipeline.

The goal of this first pass is to ask the question, “How much data can you generate for me?”
This question is codified in the method UpdateOutputInformation(). In this method, every filter
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computes the amount of image data that can be produced as output with the given amount of data
available to it as input. Given that the amount of data input must be known first before the filter
can answer the question about the amount of data output, the question has to propagate to the filter
upstream, until it reaches a source filter that can answer the first question by itself. In this concrete
example, that source filter is the ImageFileReader. This filter can figure out the size of its output by
gathering information from the image file that it has been assigned to read. Once the first filter of the
pipeline answers the question, then the subsequent filters downstream can compute their respective
amount of output one after another, until they make it to the last filter of the pipeline.

The second pass, which also travels in the upstream direction, informs filters as to the amount
of output that they are requested to produce during pipeline execution. The concept of Requested
Region is essential in supporting the streaming capabilities of ITK. It makes it possible to tell the
filters in the pipeline not to generate the entire full image, but to focus instead in a subregion of
the image, the Requested Region. This is very useful when the image at hand is larger than the
RAM available in the system. The call propagates from the last filter to the first one, and at every
intermediate filter the requested region size is modified to take into account any extra borders that a
filter may need in the input so it can generate a given region size as output. In our concrete example,
the median filter will typically have to add a 2-pixel border to the size of its own input. That is, if the
writer requests a region of size 500 x 500 pixels to the median filter, the median filter in its turn will
request a region of 502 x 502 pixels to the reader, because the median filter by default needs a 3 x
3 pixel neighborhood region to compute the value of one output pixel. The pass is encoded in the
PropagateRequestedRegion() method.

The third pass is intended to trigger the computation on the data inside the Requested Region.
This pass also goes in the upstream direction and it is codified in the UpdateOutputData() method.
Since every filter needs its input data before it can compute its output data, the call is passed to
the respective upstream filter first, hence the upstream propagation. Upon return the current filter
actually proceeds to computes its data.

The fourth and final pass proceeds downstream, and consists of the actual execution of computa-
tion by every filter. The call is codified in the GenerateData() method. The downstream direction
is not a consequence of one filter making calls on its downstream partner, but rather of the fact that
the UpdateOutputData() calls are executing in order from the first filter to the last filter. That is,
the sequence happens downstream due to timing of the calls, and not due to what filter is driving the
calls. This clarification is important because the ITK pipeline is by nature a Pull Pipeline, in which
data is requested from the end, and the logic is also controlled from the end.

Factories
One of the fundamental design requirements of ITK is to provide support for multiple platforms. This
requirement emerges from the desire to maximize the impact of the toolkit by making it usable to a
broad community regardless of their platform of choice. ITK adopted the Factory design pattern to
address the challenge of supporting fundamental differences among the many hardware and software
platforms, without sacrificing the fitness of a solution to each one of the individual platforms.

The Factory pattern in ITK uses class names as keys to a registry of class constructors. The
registration of factories happens at run time, and can be done by simply placing dynamic libraries in
specific directories that ITK applications search at start-up time. This last feature provides a natural
mechanism for implementing a plugin architecture in a clean and transparent way. The outcome is to
facilitate the development of extensible image analysis applications, satisfying the need to provide
an ever-growing set of image analysis capabilities.
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IO Factories
The factory mechanism is particularly important when performing IO.

Embracing Diversity with Facades

The image analysis community has developed a very large set of file formats to store image data.
Many of these file formats are designed and implemented with specific uses in mind, and therefore are
fine-tuned to specific types of images. As a consequence, on a regular basis, new image file formats
are conceived and promoted across the community. Aware of this situation, the ITK development
team designed an IO architecture suitable for ease of extensibility, in which it is easy to add support
for more and more file formats on a regular basis.

ImageIOFactory

PNGImageIOPNGImageIOFactory

JPEGImageIOJPEGImageIOFactory

GDCMImageIOGDCMImageIOFactory

...

ImageFileReader

ImageFileReader

Figure 9.8: IO Factories dependencies

This IO extensible architecture is built upon the Factory mechanism described in the previous
section. The main difference is that in the case of IO, the IO Factories are registered in a specialized
registry that is managed by the ImageIOFactory base class, shown on the upper left corner of Fig-
ure 9.8. The actual functionality of reading and writing data from image file formats is implemented
in a family of ImageIO classes, shown on the right side of Figure 9.8. These service classes are
intended to be instantiated on demand when the user requests to read or write an image. The service
classes are not exposed to the application code. Instead, applications are expected to interact with
the facade classes:

• ImageFileReader
• ImageFileWriter

These are the two classes with which the application will invoke code such as:

reader->SetFileName(‘‘image1.png’’);
reader->Update();

or

writer->SetFileName(‘‘image2.jpg’’);
writer->Update();
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In both cases the call to Update() triggers the execution of the upstream pipeline to which these
ProcessObjects are connected. Both the reader and the writer behave as one filter more in a pipeline.
In the particular case of the reader, the call to Update() triggers the reading of the corresponding
image file into memory. In the case of the writer, the call to Update() triggers the execution of
the upstream pipeline that is providing the input to the writer, and finally results in an image being
written out to disk into a particular file format.

These facade classes hide from the application developer the internal differences that are inherent
to the particularities of each file format. They even hide the existence of the file format itself. The
facades are designed in such a way that most of the time application developers do not need to know
what file formats are expected to be read by the application. The typical application will simply
invoke code such as

std::string filename = this->GetFileNameFromGUI();
writer->SetFileName( filename );
writer->Update();

These calls will work fine regardless of whether the content of the filename variable is any of the
following strings:

• image1.png
• image1.jpeg
• image1.tiff
• image1.dcm
• image1.mha
• image1.nii
• image1.nii.gz

where the file name extensions identify a different image file format in every case.

Know Thy Pixel Type

Despite the assistance that the file reader and writer facades provide, it is still up to the application
developer to be aware of the pixel type that the application needs to process. In the context of
medical imaging, it is reasonable to expect that the application developer will know whether the
input image will contain a MRI, a mammogram or a CT scan, and therefore be mindful of selecting
the appropriate pixel type and image dimensionality for each one of these different image modalities.
This specificity of image type might not be convenient for application settings where users wants
to read any image type, which are most commonly found in the scenarios of rapid prototyping and
teaching. In the context of deploying a medical image application for production in a clinical setting,
however, it is expected that the pixel type and dimension of the images will be clearly defined and
specified based on the image modality to be processed. A concrete example, where an application
manages 3D MRI scans, looks like:

typedef itk::Image< signed short, 3 > MRImageType;
typedef itk::ImageFileWriter< MRImageType > MRIWriterType;
MRIWriterType::Pointer writer = MRIWriterType::New();
writer->Update();

There is a limit, however, to how much the particularities of the image file formats can be hidden
from the application developer. For example, when reading images from DICOM files, or when
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reading RAW images, the application developer may have to insert extra calls to further specify
the characteristics of the file format at hand. DICOM files will be the most commonly found in
clinical environments, while RAW images are still a necessary evil for exchanging data in the research
environment.

Together But Separate

The self-contained nature of every IO Factory and ImageIO service class is also reflected in the
modularization. Typically, an ImageIO class depends on a specialized library that is dedicated to
managing a specific file format. That is the case for PNG, JPEG, TIFF and DICOM, for example.
In those cases, the third-party library is managed as a self-contained module, and the specialized
ImageIO code that interfaces ITK to that third-party library is also put in a module by itself. In
this way, specific applications may disable many file formats that are not relevant to their domain,
and can focus on offering only those file formats that are useful for the anticipated scenarios of that
application.

Just as with standard factories, the IO factories can be loaded at run-time from dynamic libraries.
This flexibility facilitates the use of specialized and in-house developed file formats without requiring
all such file formats to be incorporated directly into the ITK toolkit itself. The loadable IO factories
has been one of the most successful features in the architectural design of ITK. It has made it possible
to easily manage a challenging situation without placing a burden on the code or obscuring its
implementation. More recently, the same IO architecture has been adapted to manage the process
of reading and writing files containing spatial transformations represented by the Transform class
family.

Streaming
ITK was initially conceived as a set of tools for processing the images acquired by the Visible Human
Project4. At the time, it was clear that such a large dataset would not fit in the RAM of computers
that were typically available to the medical imaging research community. It is still the case that
the dataset will not fit in the typical desktop computers that we use today. Therefore, one of the
requirements for developing the Insight Toolkit was to enable the streaming of image data through
the data pipeline. More specifically, to be able to process large images by pushing sub-blocks of the
image throughout the data pipeline, and then assembling the resulting blocks on the output side of
the pipeline.

This partitioning of the image domain is illustrated in Figure 9.9 for the concrete example of a
median filter. The median filter computes the value of one output pixel as the statistical median of the
pixel values from the input image in a neighborhood around the pixel. The size of that neighborhood
is a numerical parameter of the filter. In this case we set it to 2 pixels, which means that we will
take a neighborhood with a 2-pixel radius around our output pixel. This leads to a neighborhood of
5x5 pixels with the position of the output pixel in the middle, and a rectangular border of 2 pixels
around it. This is usually called a Manhattan radius. When the median filter is asked to computed
a particular Requested Region of the output image, it turns around and asks its upstream filter to
provide a larger region that is formed by the Requested Region enlarged by a border of, in this case,
2 pixels. In the specific case of Figure 9.9, when asked for Region 2, of size 100x25 pixels, the
median filter passes along that request to its upstream filter for a region of size 100x29 pixels. The
29-pixel size in the vertical direction is computed as 25 pixels plus two borders of 2-pixel radius
4http://www.nlm.nih.gov/research/visible/visible_human.html
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Figure 9.9: Illustration of image streaming process

each. Note that the horizontal dimension is not enlarged in this case because it is already at the
maximum that the input image can provide; therefore, the enlarged request of 104 pixels (100 pixels
plus two borders of 2 pixels) gets cropped to the maximum size of the image, which is 100 pixels in
the horizontal dimension.

ITK filters that operate on neighborhoods will take care of the boundary conditions by using one
of the three typical approaches: considering a null value outside of the image, mirroring the pixels’
values across the border, or repeating the border value on the outside. In the case of the median filter,
a zero-flux Neumann boundary condition is used, which simply means that the pixels outside of the
region border are assumed to be a repetition of the pixel values found in the last pixels inside the
border.

It is a well-kept dirty little secret of the image processing literature that most of the implementation
difficulties with image filters are related to proper management of boundary conditions. This is a
particular symptom of the disconnection between the theoretical training found in many textbooks
and the software practice of image processing. In ITK this was managed by implementing a collection
of image iterator classes and an associated family of boundary condition calculators. These two
helper classes families hide from image filters the complexities of managing boundary conditions in
N-dimensions.

The streaming process is driven from outside the filter, typically by the ImageFileWriter or
the StreamingImageFilter. These two classes implement the streaming functionality of taking the
total size of the image and partitioning it into a number of divisions requested by the application
developer. Then, during their Update() call, they go in an iteration loop asking for each one of the
intermediate pieces of the image. At that stage, they take advantage of the SetRequestedRegion()
API described in Figure 9.7 in Section 9.2. That constrains the computation of the upstream pipeline
to a subregion of the image.

The application code driving the streaming process looks like

median->SetInput( reader->GetOutput() );
median->SetNeighborhoodRadius( 2 );
writer->SetInput( median->GetOutput() );
writer->SetFileName( filename );
writer->SetNumberOfStreamDivisions( 4 );
writer->Update();

where the only new element is the SetNumberOfStreamDivisions() call that defines the number
of pieces into which the image will be split for the purpose of streaming it through the pipeline. To
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match the example of Figure 9.9 we have used four as the number of regions to split the image into.
This means that the writer is going to trigger the execution of the median filter four times, each
time with a different Requested Region.

There are interesting similarities between the process of streaming and the process of parallelizing
the execution of a given filter. Both of them rely on the possibility of dividing the image processing
work into image chunks that are processed separately. In the streaming case, the image chunks are
processed across time, one after another, while in the parallelization case the image chunks are
assigned to different threads, which in turn are assigned to separate processor cores. At the end, it is
the algorithmic nature of the filter that will determine whether it is possible to split the output image
into chunks that can be computed independently based on a corresponding set of image chunks from
the input image. In ITK, streaming and parallelization are actually orthogonal, in the sense that
there is an API to take care of the streaming process, and a separate API dedicated to support the
implementation of parallel computation base on multiple-threads and shared memory.

Streaming, unfortunately, can not be applied to all types of algorithms. Specific cases that are
not suitable for streaming are:

• Iterative algorithms that, to compute a pixel value at every iteration, require as input the pixel
values of its neighbors. This is the case for most PDE-solving-based algorithms, such as
anisotropic diffusion, demons deformable registration, and dense level sets.

• Algorithms that require the full set of input pixel values in order to compute the value of one
of the output pixels. Fourier transform and Infinite Impulse Response (IIR) filters, such as the
Recursive Gaussian filter, are examples of this class.

• Region propagation or front propagation algorithms in which the modification of pixels also
happens in an iterative way but for which the location of the regions or fronts can not be
systematically partitioned in blocks in a predictable way. Region growing segmentation, sparse
level sets, some implementations of mathematical morphology operations and some forms of
watersheds are typical examples here.

• Image registration algorithms, given that they require access to the full input image data for
computing metric values at every iteration of their optimization cycles.

Fortunately, on the other hand, the data pipeline structure of ITK enables support for streaming
in a variety of transformation filters by taking advantage of the fact that all filters create their own
output, and therefore they do not overwrite the memory of the input image. This comes at the price
of memory consumption, since the pipeline has to allocate both the input and output images in
memory simultaneously. Filters such as flipping, axes permutation, and geometric resampling fall
in this category. In these cases, the data pipeline manages the matching of input regions to output
regions by requiring that every filter provide a method called GenerateInputRequestedRegion()
that takes as an argument a rectangular output region. This method computes the rectangular input
region that will be needed by this filter to compute that specific rectangular output region. This
continuous negotiation in the data pipeline makes it possible to associate, for every output block, the
corresponding section of input image that is required for computation.

To be more precise here, we must say therefore that ITK supports streaming—but only in
algorithms that are “streamable” in nature. That said, in the spirit of being progressive regarding
the remaining algorithms, we should qualify this statement not by claiming that “it is impossible to
stream such algorithms”, but rather that “our typical approach to streaming is not suitable for these
algorithms” at this point, and that hopefully new techniques will be devised by the community in the
future to address these cases.
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9.3 Lessons Learned
Reusability
The principle of reusability can also be read as “avoidance of redundancy”. In the case of ITK, this
has been achieved with a three-pronged approach.

• First, the adoption of object-oriented programming, and in particular the proper creation of
class hierarchies where common functionalities are factorized in base classes.

• Second, the adoption of generic programming, implemented via the heavy use of C++ templates,
factorizing behaviors that are identified as patterns.

• Third, the generous use of C++ macros has also permitted reuse of standard snippets of code
that are needed in myriad places across the toolkit.

Many of these items may sound like platitudes and appear obvious today, but when ITK develop-
ment started in 1999 some of them were not that obvious. In particular, at the time the support most
C++ compilers offered for templates did not quite follow a consistent standard. Even today, decisions
such as the adoption of generic programming and the use of a widely templated implementation
continue to be controversial in the community. This is manifested in the communities that prefer to
use ITK via the wrapping layers to Python, Tcl or Java.

Generic Programming

The adoption of generic programming was one of the defining implementation features of ITK. It
was a difficult decision in 1999 when the compiler support for C++ templates was rather fragmented,
and the Standard Template Library (STL) was still considered a bit exotic.

Generic programming was adopted in ITK by embracing the use of C++ templates for imple-
menting generalization of concepts and in this way increasing code reuse. The typical example of
C++ template parameterization in ITK is the Image class, that can be instantiated in the following
way:

typedef unsigned char PixelType;
const unsigned int Dimension = 3;
typedef itk::Image< PixelType, Dimension > ImageType;
ImageType::Pointer image = ImageType::New();

In this expression, the application developer chooses the type to be used to represent pixels in
the image, as well as the dimension of the image as a grid in space. In this particular example, we
chose to use an 8-bit pixel represented in an unsigned char type, for a 3D image. Thanks to the
underlying generic implementation, it is possible to instantiate images of any pixel type and any
dimension in ITK.

To make it possible to write these expressions, ITK developers had to implement the Image
class by being very careful with the assumptions made about the pixel type. Once the application
developer has instantiated the image type, the developer can create objects of that type, or proceed to
instantiate image filters whose types, in turn, depend on the image type. For example:

typedef itk::MedianImageFilter< ImageType, ImageType> FilterType;
FilterType::Pointer median = FilterType::New();

The algorithmic specificity of different image filters restricts the actual pixel types that they
can support. For example, some image filters expect the image pixel type to be an integer scalar
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type while some other filters expect the pixel type to be a vector of floating point numbers. When
instantiated with inappropriate pixel types, these filters will produce compilation errors or will
result in erroneous computational results. To prevent incorrect instantiations and to facilitate the
troubleshooting of compilation errors, ITK adopted the use of concept checking that is based on
forcing the exercise of certain expected features of the types, with the goal of producing early failures
combined with human-readable error messages.

C++ templates are also exploited in certain sections of the toolkit in the form of Template
Metaprogramming, with the goal of increasing run-time speed performance of the code, in particular
for unrolling loops that control the computation of low-dimensional vectors and matrices. Ironically,
we have found over time that certain compilers have become smarter at figuring out when to unroll
loops, and no longer need the help of Template MetaProgramming expressions in some cases.

Knowing When to Stop

There is also the general risk of doing “too much of a good thing”, meaning, there is a risk of
overusing templates, or overusing macros. It is easy to go overboard and end up creating a new
language on top of C++ that is essentially based on the use of templates and macros. This is a fine
line, and it demands continuous attention from the development team to make sure that the language
features are properly used without being abused.

As a concrete example, the widespread use of explicitly naming types via C++ typedefs has
proved to be particularly important. This practice plays two roles: on the one hand it provides a
human-readable informative name describing the nature of the type and its purpose; on the other
hand, it ensures that the type is used consistently across the toolkit. As an example, during the
refactoring of the toolkit for its 4.0 version, a massive effort was invested in collecting the cases where
C++ integer types such as int, unsigned int, long and unsigned long were used and to replace
them with types named after the proper concept that the associated variables were representing. This
was the most costly part of the task of ensuring that the toolkit was able to take advantage of 64-bit
types for managing images larger than four gigabytes in all platforms. This task was of the utmost
importance for promoting the use of ITK in the fields of microscopy and remote sensing, where
image of tens of gigabytes in size are common.

Maintainability
The architecture satisfies the constraints that minimize maintenance cost.

• Modularity (at the class level)
• Many small files
• Code reuse
• Repeated patterns

These characteristics reduce maintenance cost in the following ways:
• Modularity (at the class level) makes it possible to enforce test-driven development techniques
at the image filter level, or in general the ITK class level. Stringent testing discipline applied to
small and modular pieces of code has the advantage of reducing the pools of code where bugs
can hide, and with the natural decoupling that results from modularization, it is a lot easier to
locate defects and eliminate them.

• Many small files facilitate the assignment of portions of the code to specific developers, and
simplify the tracking of defects when they are associated with specific commits in the revision
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control system. The discipline of keeping small files also leads to the enforcement of the
golden rule of functions and classes: Do one thing, and do it right.

• Code reuse: When code is reused (instead of being copy-pasted and reimplemented) the code
itself benefits from the higher level of scrutiny that results from being exercised in many
different circumstances. It leads more eyes to look at the code, or at least at the effects of
the code, and so the code benefits from Linus’s Law: “Given enough eyeballs, all bugs are
shallow.”

• Repeated patterns simplify the work of maintainers, who in reality account for more than 75%
of the cost of software development over the lifetime of a project. Using coding patterns that
are consistently repeated in different places in the code makes it a lot easier for a developer to
open a file and quickly understand what the code is doing, or what it is intended to do.

As the developers got involved in regular maintenance activities they were exposed to some
“common failures”, in particular:

• Assumptions that some filters make regarding specific pixel types for their input or output
images, but that are not enforced via types or concept checking, and that are not specified in
the documentation.

• Not writing for readability. This is one of the most common challenges for any software whose
new algorithm implementations originate in the research community. It is common in that
environment to write code that “just works”, and to forget that the purpose of code is not just
to be executed at run time, but to be easily read by the next developer. Typical good rules
of “clean code” writing—for example, write small functions that do one thing and one thing
only (the Single Responsibility Principle and the Principle of Least Surprise), adhere to proper
naming of variables and functions—tend to be ignored when researchers are excited about
getting their new shiny algorithm to work.

• Ignoring failure cases and error management. It is common to focus on the “nice cases” of data
processing and to fail to provide code for managing all the cases that can go wrong. Adopters
of the toolkit quickly run into such cases once they start developing and deploying applications
in the real world.

• Insufficient testing. It requires a lot of discipline to follow the practice of test-driven develop-
ment, especially the notion of writing the tests first and only implementing functionalities as
you test them. It is almost always the case that bugs in the code are hiding behind the cases
that were skipped while implementing the testing code.

Thanks to the communication practices of open source communities, many of these items end
up being exposed through questions that are commonly asked in the mailing lists, or are directly
reported as bugs by users. After dealing with many such issues, developers learn to write code that is
“good for maintenance”. Some of these traits apply to both coding style and the actual organization
of the code. It is our view that a developer only reaches mastery after spending some time—at least
a year—doing maintenance and getting exposed to “all the things that can go wrong”.

The Invisible Hand
Software should look like it was written by a single person. The best developers are the ones who
write code that, should they be hit by the proverbial bus, can be taken over by anybody else. We have
grown to recognize that any trace of a “personal touch” is an indication of a defect introduced in the
software.

In order to enforce and promote code style uniformity, the following tools have proved to be very
effective:
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• KWStyle5 for automatic source code style checking. This is a simplified C++ parser that checks
coding style and flags any violations.

• Gerrit6 for regular code reviews. This tools serves two purposes: On one hand, it prevents im-
mature code from entering the code base by distilling its errors, deficiencies and imperfections
during iterative review cycles where other developers contribute to improve the code. On the
other hand, it provides a virtual training camp in which new developers get to learn from more
experienced developers (read “experienced” as have made all the mistakes and know where
the bodies are buried. . . ) how to improve the code and avoid known problems that have been
observed during maintenance cycles.

• Git hooks that enforce the use of the KWStyle and Gerrit and that also perform some of their
own checks. For example, ITK uses Git hooks that prevent commits of code with tabs or with
trailing blank spaces.

• The team has also explored the use of Uncrustify7 as a tool for enforcing a consistent style.
It is worth emphasizing that uniformity of style is not a simple matter of aesthetic appeal, it is

really a matter of economics. Studies on the Total Cost of Ownership (TCO) of software projects
have estimated that in the life-cycle of a project, the cost of maintenance will be about 75% of the
TCO, and given that maintenance cost is applied on an annual basis, it typically surpasses the cost of
initial development costs by the first five years of the life-cycle of a software project8. Maintenance
is estimated to be about 80% of what software developers actually do, and when engaged in that
activity the large majority of the developer’s time is dedicated to reading someone else’s code, trying
to figure out what it was supposed to do9. Uniform style does wonders for reducing the time it takes
for developers to immerse themselves in a newly open source file and understand the code before
they make any modifications to it. By the same token, it reduces the chances that developers will
misinterpret the code and make modifications that end up introducing new bugs when they were
honestly trying to fix old bugs10.

The key for making these tools effective is to make sure that they are:
• Available to all developers, hence our preference for Open Source tools.
• Run on a regular basis. In the case of ITK, these tools have been integrated in the Nightly and
Continuous Dashboard builds managed by CDash11.

• Run as close as possible to the point where the code is being written, so that deviations can be
fixed immediately, and so developers quickly learn what kind of practices break style rules.

Refactoring
ITK started in 2000 and grew continuously until 2010. In 2011, thanks to an infusion of federal
funding investment, the development team had the truly unique opportunity to embark on a refactoring
effort. The funding was provided by the National Library of Medicine as part of the initiative of the
American Recovery and Reinvestment Act (ARRA). This was not a minor undertaking. Imagine you
have been working on a piece of software for over a decade, and you are offered the opportunity to
clean it up; what would you change?
5http://public.kitware.com/KWStyle
6http://code.google.com/p/gerrit
7http://uncrustify.sourceforge.net
8“Software Development Cost Estimating Handbook”, Volume I, Naval Center for Cost Analysis, Air Force Cost Analysis
Agency, 2008.

9“Clean Code, A Handbook of Agile Software Craftsmanship”, Robert C. Martin, Prentice Hall, 2009
10“The Art of Readable Code”, Dustin Boswell, Trevor Foucher, O’Reilly, 2012
11http://www.cdash.org/CDash/index.php?project=Insight
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This opportunity for widespread refactoring is very rare. For the previous ten years, we had
relied on the daily effort of performing small local refactorings, cleaning up specific corners of the
toolkit as we ran into them. This continuous process of clean up and improvement takes advantage
of the massive collaboration of open source communities, and it is safely enabled by the testing
infrastructure driven by CDash, which regularly exercises about 84% of the code in the toolkit. Note
that in contrast, the average code coverage of software industry testing is estimated to be only 50%.

Among the many things that were changed in the refactoring effort, the ones that are most relevant
to the architecture are:

• Modularization was introduced in the toolkit
• Integer types were standardized
• Typedefs were fixed to allow management of images larger than 4 GB on all platforms
• The software process was revised:

– Migrated from CVS to Git
– Introduced code review with Gerrit
– Introduced testing on demand with CDash@home
– Improved method for downloading data for unit testing

• Deprecated support for obsolete compilers
• Improved support for many IO image file formats including:

– DICOM
– JPEG2000
– TIFF (BigTIFF)
– HDF5

• Introduced a framework for supporting GPU computation
• Introduced support for video processing

– Added a bridge to OpenCV
– Added a bridge to VXL

Maintenance based on incremental modifications—tasks such as adding features to an image filter,
improving performance of a given algorithm, addressing bug reports, and improving documentation
of specific image filters—works fine for the local improvement of specific C++ classes. However, a
massive refactoring is needed for infrastructure modifications that affect a large number of classes
across the board, such as the ones listed above. For example, the set of changes needed to support
images larger than 4 GB was probably one of the largest patches ever applied to ITK. It required the
modification of hundreds of classes and could not have been done incrementally without incurring in
a great deal of pain. The modularization is another example of a task that could not have been done
incrementally. It truly affected the entire organization of the toolkit, how its testing infrastructure
works, how testing data is managed, how the toolkit is packaged and distributed, and how new
contributions will be encapsulated to be added to the toolkit in the future.

Reproducibility
One of the early lessons learned in ITK was that the many papers published in the field were not
as easy to implement as we were led to believe. The computational field tends to over-celebrate
algorithms and to dismiss the practical work of writing software as “just an implementation detail”.

That dismissive attitude is quite damaging to the field, since it diminishes the importance of the
first-hand experience with the code and its proper use. The outcome is that most published papers
are simply not reproducible, and when researchers and students attempt to use such techniques they
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end up spending a lot of time in the process and deliver variations of the original work. It is actually
quite difficult, in practice, to verify if an implementation matches what was described in a paper.

ITK disrupted, for the good, that environment and restored a culture of DIY to a field that had
grown accustomed to theoretical reasoning, and that had learned to dismiss experimental work. The
new culture brought by ITK is a practical and pragmatic one in which the virtues of the software are
judged by its practical results and not by the appearance of complexity that is celebrated in some
scientific publications. It turns out that in practice the most effective processing methods are those
that would appear to be too simple to be accepted for a scientific paper.

The culture of reproducibility is a continuation of the philosophy of test driven development, and
systematically results in better software; higher clarity, readability, robustness and focus.

In order to fill the gap of lack of reproducible publications, the ITK community created the
Insight Journal12. It is an open-access, fully online publication in which contributions are required to
include code, data, parameters, and tests in order to enable verification by reproducibility. Articles are
published online less than 24 hours after submission. Then they are made available for peer-review by
any member of the community. Readers get full access to all the materials accompanying the article,
namely source code, data, parameters, and testing scripts. The Journal has provided a productive
space for sharing new code contributions which from there make their way into the code base. The
Journal recently received its 500th article, and continues to be used as the official gateway for new
code to be added to ITK.

12http://www.insight-journal.org

147



148 ITK



[chapter10]

GNU Mailman
Barry Warsaw

GNU Mailman1 is free software for managing mailing lists. Almost everybody who writes or uses
free and open source software has encountered a mailing list. Mailing lists can be discussion-based or
announcement-based, with all kinds of variations in between. Sometimes mailing lists are gatewayed
to newsgroups on Usenet or similar services such as Gmane2. Mailing lists typically have archives
which contain the historical record of all the messages that have been posted to the mailing list.

GNU Mailman has been around since the early 1990s, when John Viega wrote the first version
to connect fans with the nascent Dave Matthews Band, the members of which he was friends with in
college. This early version came to the attention of the Python community in the mid-’90s, when the
center of the Python universe had moved from CWI3, a scientific research institute in the Netherlands,
to CNRI4, the Corporation for National Research Initiatives in Reston, Virginia, USA. At CNRI
we were running various Python-related mailing lists using Majordomo, a Perl-based mailing list
manager. Of course, it just wouldn’t do for the Python world to be maintaining so much Perl code.
More importantly, because of its design, we found that modifying Majordomo for our purposes (such
as to add minimal anti-spam measures) was too difficult.

Ken Manheimer was instrumental in much of the early GNU Mailman work, and many excellent
developers have contributed to Mailman since then. Today, Mark Sapiro is maintaining the stable 2.1
branch, while Barry Warsaw, the author of this chapter, concentrates on the new 3.0 version.

Many of the original architectural decisions John made have lived on in the code right up until the
Mailman 3 branch, and can still be seen in the stable branch. In the sections that follow, I’ll describe
some of the more problematic design decisions in Mailman 1 and 2, and how we’ve addressed them
in Mailman 3.

In the early Mailman 1 days, we had a lot of problems with messages getting lost, or bugs causing
messages to be re-delivered over and over again. This prompted us to articulate two overriding
principles that are critical to Mailman’s ongoing success:

• No message should ever be lost.
• No message should ever be delivered more than once.
In Mailman 2 we re-designed the message handling system to ensure that these two principles

would always be of prime importance. This part of the system has been stable for at least a decade
1http://www.list.org
2http://gmane.org/
3http://www.cwi.nl/
4http://www.cnri.reston.va.us/



now, and is one of the key reasons that Mailman is as ubiquitous as it is today. Despite modernizing
this subsystem in Mailman 3, the design and implementation remains largely unchanged.

10.1 The Anatomy of a Message
One of the core data structures in Mailman is the email message, represented by a message object.
Many of the interfaces, functions, and methods in the system take three arguments: the mailing list
object, the message object, and a metadata dictionary that is used to record and communicate state
while a message is processed through the system.

Figure 10.1: A MIME multipart/mixed message containing text, images, and an audio file

On the face of it, an email message is a simple object. It consists of a number of colon-separated
key-value pairs, called the headers, followed by an empty line which separates the headers from
the message body. This textural representation should be easy to parse, generate, reason about, and
manipulate, but in fact it quickly gets quite complicated. There are countless RFCs that describe
all the variations that can occur, such as handling complex data types like images, audio, and more.
Email can contain ASCII English, or just about any language and character set in existence. The
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basic structure of an email message has been borrowed over and over again for other protocols,
such as NNTP and HTTP, yet each is slightly different. Our work on Mailman has spawned several
libraries just to deal with the vagaries of this format (often called “RFC822” for the founding
1982 IETF standard5). The email libraries originally developed for use by GNU Mailman have
found their way into the Python standard library, where development continues to make them more
standards-compliant and robust.

Email messages can act as containers for other types of data, as defined in the various MIME
standards. A container message part can encode an image, some audio, or just about any type of
binary or text data, including other container parts. In mail reader applications, these are known as
attachments. Figure 10.1 shows the structure of a complex MIME message. The boxes with solid
borders are the container parts, the boxes with dashed borders are Base64 encoded binary data, and
the box with a dotted border is a plain text message.

Container parts can also be arbitrarily nested; these are called multiparts and can in fact get quite
deep. But any email message, regardless of its complexity, can be modeled as a tree with a single
message object at its root. Within Mailman, we often refer to this as the message object tree, and we
pass this tree around by reference to the root message object. Figure 10.2 shows the object tree of
the multipart message in Figure 10.1.

Figure 10.2: Message object tree of a complex MIME email message

Mailman will almost always modify the original message in some way. Sometimes the trans-
formations can be fairly benign, such as adding or removing headers. Sometimes we’ll completely
change the structure of the message object tree, such as when the content filter removes certain
content types like HTML, images, or other non-text parts. Mailman might even collapse “multi-
part/alternatives”, where a message appears as both plain text and as some rich text type, or add
additional parts containing information about the mailing list itself.

Mailman generally parses the on the wire bytes representation of a message just once, when it
first comes into the system. From then on, it deals only with the message object tree until it’s ready to
send it back out to the outgoing mail server. It’s at that point that Mailman flattens the tree back into
a bytes representation. Along the way, Mailman pickles6 the message object tree for quick storage
to, and reconstruction from, the file system. Pickles are a Python technology for serializing any
5http://www.faqs.org/rfcs/rfc822.html
6http://docs.python.org/library/pickle.html
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Python object, including all its subobjects, to a byte stream, and it’s perfectly suited to optimizing
the handling of email message object trees. Unpickling is deserializing this byte stream back into a
live object. By storing these byte streams in a file, Python programs gain low-cost persistence.

10.2 The Mailing List
The mailing list is obviously another core object in the Mailman system, and most of the operations
in Mailman are mailing list-centric, such as:

• Membership is defined in terms of a user or address being subscribed to a specific mailing list.
• Mailing lists have a large number of configuration options that are stored in the database, and
which control everything from posting privileges to how messages are modified before final
delivery.

• Mailing lists have owners and moderators which have greater permission to change aspects of
the list, or to approve and reject questionable postings.

• Every mailing list has its own archive.
• Users post new messages to a specific mailing list.

and so on. Almost every operation in Mailman takes a mailing list as an argument—it’s that
fundamental. Mailing list objects have undergone a radical redesign in Mailman 3 to make them
more efficient and to expand their flexibility.

One of John’s earliest design decisions was how to represent a mailing list object inside the
system. For this central data type, he chose a Python class with multiple base classes, each of
which implements a small part of the mailing list’s responsibility. These cooperating base classes,
called mixin classes, were a clever way to organize the code so that it was easy to add entirely
new functionality. By grafting on a new mixin base class, the core MailList class could easily
accommodate something new and cool.

For example, to add an auto-responder to Mailman 2, a mixin class was created that held the data
specific to that feature. The data would get automatically initialized when a new mailing list was
created. The mixin class also provided the methods necessary to support the auto-responder feature.
This structure was even more useful when it came to the design of the mailing MailList object’s
persistence.

Another of John’s early design decisions was to use Python pickles for storing MailList state
persistence.

In Mailman 2, the MailList object’s state is stored in a file called config.pck, which is just
the pickled representation of the MailList object’s dictionary. Every Python object has an attribute
dictionary called __dict__. So saving a mailing list object then is simply a matter of pickling its
__dict__ to a file, and loading it just involves reading the pickle from the file and reconstituting its
__dict__.

Thus, when a new mixin class was added to implement some new functionality, all the attributes
of the mixin were automatically pickled and unpickled appropriately. The only extra work we had
to do was to maintain a schema version number to automatically upgrade older mailing list objects
when new attributes were added via the mixin, since the pickled representation of older MailList
objects would be missing the new attributes.

As convenient as this was, both the mixin architecture and pickle persistence eventually crumbled
under their own weight. Site administrators often requested ways to access the mailing list configura-
tion variables via external, non-Python systems. But the pickle protocol is entirely Python-specific,
so sequestering all that useful data inside a pickle wouldn’t work for them. Also, because the entire
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state of a mailing list was contained in the config.pck, and Mailman has multiple processes that
need to read, modify, and write the mailing list state, we had to implement exclusive file-based and
NFS-safe locks to ensure data consistency. Every time some part of Mailman wants to change the
state of a mailing list, it must acquire the lock, write out the change, then release the lock. Even read
operations can require a re-load of the list’s config.pck file, since some other process may have
changed it before the read operation. This serialization of operations on a mailing list turned out to
be horribly slow and inefficient.

For these reasons, Mailman 3 stores all of its data in a SQL database. By default SQLite3 is
used, though this is easily changed since Mailman 3 uses the Object Relational Mapper called Storm,
which supports a wide variety of databases. PostgreSQL support was added with just a few lines of
code, and a site administrator can enable it by changing one configuration variable.

Another, bigger problem is that in Mailman 2, each mailing list is a silo. Often operations span
across many mailing lists, or even all of them. For example, a user might want to temporarily suspend
all their subscriptions when they go on vacation. Or a site administrator might want to add some
disclaimer to the welcome message of all of the mailing lists on her system. Even the simple matter
of figuring out which mailing lists a single address is subscribed to required unpickling the state of
every mailing list on the system, since membership information was kept in the config.pck file too.

Another problem was that each config.pck file lived in a directory named after the mailing list,
but Mailman was originally designed without consideration for virtual domains. This lead to a very
unfortunate problem where two mailing lists could not have the same name in different domains.
For example, if you owned both the example.com and example.org domains, and you wanted them
to act independently and allow for a different support mailing list in each, you cannot do this in
Mailman 2, without modifications to the code, a barely supported hook, or conventional workarounds
that forced a different list name under the covers, which is the approach used by large sites such as
SourceForge.

This has been solved inMailman 3 by changing thewaymailing lists are identified, alongwithmov-
ing all the data into a traditional database. The primary key for the mailing list table is the fully qual-
ified list name or as you’d probably recognize it, the posting address. Thus support@example.com
and support@example.org are now completely independent rows in the mailing list table, and can
easily co-exist in a single Mailman system.

10.3 Runners
Messages flow through the system by way of a set of independent processes called runners. Originally
conceived as a way of predictably processing all the queued message files found in a particular
directory, there are now a few runners which are simply independent, long-running processes that
perform a specific task and are managed by a master process; more on that later. When a runner does
manage files in a directory, it is called a queue runner.

Mailman is religiously single-threaded, even though there is significant parallelism to exploit. For
example, Mailman can accept messages from the mail server at the same time it’s sending messages
out to recipients, or processing bounces, or archiving a message. Parallelism in Mailman is achieved
through the use of multiple processes, in the form of these runners. For example, there is an incoming
queue runner with the sole job of accepting (or rejecting) messages from the upstream mail server.
There is an outgoing queue runner with the sole job of communicating with the upstream mail server
over SMTP in order to send messages out to the final recipients. There’s an archiver queue runner,
a bounce processing queue runner, a queue runner for forwarding messages to an NNTP server, a
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runner for composing digests, and several others. Runners which don’t manage a queue include a
Local Mail Transfer Protocol (LMTP)7 server and an administrative HTTP server.

Each queue runner is responsible for a single directory, i.e., its queue. While the typical Mailman
system can perform perfectly well with a single process per queue, we use a clever algorithm for
allowing parallelism within a single queue directory, without requiring any kind of cooperation or
locking. The secret is in the way we name the files within the queue directory.

As mentioned above, every message that flows through the system is also accompanied by a
metadata dictionary that accumulates state and allows independent components of Mailman to
communicate with each other. Python’s pickle library is able to serialize and deserialize multiple
objects to a single file, so we can pickle both the message object tree and metadata dictionary into
one file.

There is a core Mailman class called Switchboard which provides an interface for enqueuing
(i.e., writing) and dequeuing (i.e., reading) the message object tree and metadata dictionary to files
in a specific queue directory. Every queue directory has at least one switchboard instance, and every
queue runner instance has exactly one switchboard.

Pickle files all end in the .pck suffix, though you may also see .bak, .tmp, and .psv files in a
queue. These are used to ensure the two sacrosanct tenets of Mailman: no file should ever get lost,
and no message should ever be delivered more than once. But things usually work properly and these
files can be pretty rare.

As indicated, for really busy sites Mailman supports running more than one runner process per
queue directory, completely in parallel, with no communication between them or locking necessary
to process the files. It does this by naming the pickle files with a SHA1 hash, and then allowing a
single queue runner to manage just a slice of the hash space. So if a site wants to run two runners on
the bounces queue, one would process files from the top half of the hash space, and the other would
process files from the bottom half of the hash space. The hashes are calculated using the contents of
the pickled message object tree, the name of the mailing list that the message is destined for, and
a time stamp. The SHA1 hashes are effectively random, and thus on average a two-runner queue
directory will have about equal amounts of work per process. And because the hash space can be
statically divided, these processes can operate on the same queue directory with no interference or
communication necessary.

There’s an interesting limitation to this algorithm. Since the splitting algorithm allots one or
more bits of the hash to each space, the number of runners per queue directory must be a power of 2.
This means there can be 1, 2, 4, or 8 runner processes per queue, but not, for example, 5. In practice
this has never been a problem, since few sites will ever need more than 4 processes to handle their
load.

There’s another side effect of this algorithm that did cause problems during the early design of
this system. Despite the unpredictability of email delivery in general, the best user experience is
provided by processing the queue files in FIFO order, so that replies to a mailing list get sent out in
roughly chronological order. Not making a best effort attempt at doing so can cause confusion for
members. But using SHA1 hashes as file names obliterates any timestamps, and for performance
reasons stat() calls on queue files, or unpickling the contents (e.g., to read a time stamp in the
metadata) should be avoided.

Mailman’s solution was to extend the file naming algorithm to include a time stamp prefix, as
the number of seconds since the epoch (e.g., <timestamp>+<sha1hash>.pck). Each loop through
the queue runner starts by doing an os.listdir(), which returns all the files in the queue directory.
7http://tools.ietf.org/html/rfc2033

154 GNU Mailman



Then for each file, it splits the file name and ignores any file names where the SHA1 hash doesn’t
match its slice of responsibility. The runner then sorts the remaining files based on the timestamp
part of the file name. It’s true that with multiple queue runners each managing different slices of the
hash space, this could lead to ordering problems between the parallel runners, but in practice, the
timestamp ordering is enough to preserve end-user perception of best-effort sequential delivery.

In practice this has worked extremely well for at least a decade, with only the occasional minor
bug fix or elaboration to handle obscure corner cases and failure modes. It’s one of the most stable
parts of Mailman and was largely ported untouched from Mailman 2 to Mailman 3.

10.4 The Master Runner
With all these runner processes, Mailman needed a simple way to start and stop them consistently;
thus the master watcher process was born. It must be able to handle both queue runners and runners
which do not manage a queue. For example, in Mailman 3, we accept messages from the incoming
upstream mail server via LMTP, which is a protocol similar to SMTP, but which operates only for
local delivery and thus can be much simpler as it doesn’t need to deal with the vagaries of delivering
mail over an unpredictable Internet. The LMTP runner simply listens on a port, waiting for its
upstream mail server to connect and send it a byte stream. It then parses this byte stream into a
message object tree, creates an initial metadata dictionary, and enqueues this into a processing queue
directory.

Mailman also has a runner that listens on another port and processes REST requests over HTTP.
This process doesn’t handle queue files at all.

A typical running Mailman system might have eight or ten processes, and they all need to be
stopped and started appropriately and conveniently. They can also crash occasionally; for example,
when a bug in Mailman causes an unexpected exception to occur. When this happens, the message
being delivered is shunted to a holding area, with the state of the system at the time of the exception
preserved in the message metadata. This ensures that an uncaught exception does not cause multiple
deliveries of the message. In theory, the Mailman site administrator could fix the problem, and
then unshunt the offending messages for redelivery, picking up where it left off. After shunting the
problematic message, the master restarts the crashed queue runner, which begins processing the
remaining messages in its queue.

When the master watcher starts, it looks in a configuration file to determine how many and which
types of child runners to start. For the LMTP and REST runners, there is usually a single process.
For the queue runners, as mentioned above, there can be a power-of-2 number of parallel processes.
The master fork()s and exec()s all the runner processes based on the configuration file, passing in
the appropriate command line arguments to each (e.g., to tell the subprocess which slice of the hash
space to look at). Then the master basically sits in an infinite loop, blocking until one of its child
processes exits. It keeps track of the process ID for each child, along with a count of the number of
times the child has been restarted. This count prevents a catastrophic bug from causing a cascade of
unstoppable restarts. There’s a configuration variable which specifies how many restarts are allowed,
after which an error is logged and the runner is not restarted.

When a child does exit, the master looks at both the exit code and the signal that killed the
subprocess. Each runner process installs a number of signal handlers with the following semantics:

• SIGTERM: intentionally stop the subprocess. It is not restarted. SIGTERM is what init will kill
the process with when changing run levels, and it’s also the signal that Mailman itself uses to
stop the subprocess.
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• SIGINT: also used to intentionally stop the subprocess, it’s the signal that occurs when control-C
is used in a shell. The runner is not restarted.

• SIGHUP: tells the process to close and reopen its log files, but to keep running. This is used
when rotating log files.

• SIGUSR1: initially stop the subprocess, but allow the master to restart the process. This is used
in the restart command of init scripts.

The master also responds to all four of these signals, but it doesn’t do much more than forward
them to all its subprocesses. So if you sent SIGTERM to the master, all the subprocesses would get
SIGTERM’d and exit. The master would know that the subprocess exited because of SIGTERM and it
would know that this was an intentional stoppage, so it would not restart the runner.

To ensure that only one master is running at any time, it acquires a lock with a lifetime of about a
day and a half. The master installs a SIGALRM handler, which wakes the master up once per day so
that it can refresh the lock. Because the lock’s lifetime is longer than the wake up interval, the lock
should never time out or be broken while Mailman is running, unless of course the system crashes or
the master is killed with an uncatchable signal. In those cases, the command line interface to the
master process provides an option to override a stale lock.

This leads to the last bit of the master watcher story, the command line interface to it. The
actual master script takes very few command line options. Both it and the queue runner scripts are
intentionally kept simple. This wasn’t the case in Mailman 2, where the master script was fairly
complex and tried to do too much, which made it more difficult to understand and debug. In Mailman
3, the real command line interface for the master process is in the bin/mailman script, a kind of
meta-script that contains a number of subcommands, in a style made popular by programs like
Subversion. This reduces the number of programs that need to be installed on your shell’s PATH.
bin/mailman has subcommands to start, stop, and restart the master, as well as all the subprocesses,
and also to cause all the log files to be reopened. The start subcommand fork()s and exec()s
the master process, while the others simply send the appropriate signal to the master, which then
propagates it to its subprocesses as described above. This improved separation of responsibility
make it much easier to understand each individual piece.

10.5 Rules, Links, and Chains
A mailing list posting goes through several phases from the time it’s first received until the time it’s
sent out to the list’s membership. In Mailman 2, each processing step was represented by a handler,
and a string of handlers were put together into a pipeline. So, when a message came into the system,
Mailman would first determine which pipeline would be used to process it, and then each handler in
the pipeline would be called in turn. Some handlers would do moderation functions (e.g., “Is this
person allowed to post to the mailing list?”), others would do modification functions (e.g., “Which
headers should I remove or add?”), and others would copy the message to other queues. A few
examples of the latter are:

• A message accepted for posting would be copied to the archiver queue at some point, so that
its queue runner would add the message to the archive.

• A copy of the message eventually had to end up in the outgoing queue so that it could be
delivered to the upstream mail server, which has the ultimate responsibility of delivery to a list
member.

• A copy of the message had to get put into a digest for people who wanted only occasional,
regular traffic from the list, rather than an individual message whenever someone sent it.
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The pipeline-of-handlers architecture proved to be quite powerful. It provided an easy way that
people could extend and modify Mailman to do custom operations. The interface for a handler was
fairly straightforward, and it was a simple matter to implement a new handler, ensuring it got added
to the right pipeline in the right location to accomplish the custom operation.

One problem with this was that mixing moderation and modification in the same pipeline became
problematic. The handlers had to be sequenced in the pipeline just so, or unpredictable or undesirable
things would happen. For example, if the handler that added the RFC 23698 List-* headers came
after the handler to copy the message to the digest collator, then folks receiving digests would get
incorrect copies of the list posts. In different cases, it might be beneficial to moderate the message
before or after modifying it. In Mailman 3, the moderation and modification operations have been
split into separate subsystems for better control over the sequencing.

As described previously, the LMTP runner parses an incoming byte stream into a message object
tree and creates an initial metadata dictionary for the message. It then enqueues these to one or
another queue directory. Some messages may be email commands (e.g., to join or leave a mailing
list, to get automated help, etc.) which are handled by a separate queue. Most messages are postings
to the mailing list, and these get put in the incoming queue. The incoming queue runner processes
each message sequentially through a chain consisting of any number of links. There is a built-in
chain that most mailing lists use, but even this is configurable.

Figure 10.3 illustrates the default set of chains in the Mailman 3 system. Each link in the chain is
illustrated by a rounded rectangle. The built-in chain is where the initial rules of moderation are
applied to the incoming message, and in this chain, each link is associated with a rule. Rules are
simply pieces of code that get passed the three typical parameters: the mailing list, the message
object tree, and the metadata dictionary. Rules are not supposed to modify the message; they just
make a binary decision and return a Boolean answering the question, “Did the rule match or not?”.
Rules can also record information in the metadata dictionary.

In the figure, solid arrows indicates message flow when the rule matches, while dotted arrows
indicate message flow when the rule does not match. The outcome of each rule is recorded in
the metadata dictionary so that later on, Mailman will know (and be able to report) exactly which
rules matched and which ones missed. The dashed arrows indication transitions which are taken
unconditionally, regardless of whether the rule matches or not.

It’s important to note that the rules themselves do not dispatch based on outcome. In the built-in
chain, each link is associated with an action which is performed when the rule matches. So for
example, when the “loop” rule matches (meaning, the mailing list has seen this message before), the
message is immediate handed off to the “discard” chain, which throws the message away after some
bookkeeping. If the “loop” rule does not match, the next link in the chain will process the message.

In Figure 10.3, the links associated with “administrivia”, “max-size”, and “truth” rules have
no binary decision. In case of the first two, this is because their action is deferred, so they simply
record the match outcome and processing continues to the next link. The “any” rule then matches if
any previous rule matches. This way, Mailman can report on all the reasons why a message is not
allowed to be posted, instead of just the first reason. There are several more such rules not illustrated
here for simplicity.

The “truth” rule is a bit different. It’s always associated with the last link in the chain, and it
always matches. With the combination of the penultimate “any” rule sweeping aside all previously
matching messages, the last link then knows that any message making it this far is allowed to be
posted to the mailing list, so it unconditionally moves the message to the “accept” chain.
8http://www.faqs.org/rfcs/rfc2369.html
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Figure 10.3: Simplified view of default chains with their links

There are a few other details of chain processing not described here, but the architecture is very
flexible and extensible so that just about any type of message processing can be implemented, and
sites can customize and extend rules, links, and chains.

What happens to the message when it hits the “accept” chain? The message, which is now
deemed appropriate for the mailing list, is sent off to the pipeline queue for some modifications
before it is delivered to the end recipients. This process is described in more detail in the following
section.

The “hold” chain puts the message into a special bucket for the human moderator to review.
The “moderation” chain does a little additional processing to decide whether the message should
be accepted, held for moderator approval, discarded, or rejected. In order to reduce clutter in the
diagram, the “reject” chain, which is used to bounce messages back to the original sender, is not
illustrated.
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10.6 Handlers and Pipelines
Once a message has made its way through the chains and rules and is accepted for posting, the
message must be further processed before it can be delivered to the final recipients. For example, some
headers may get added or deleted, and some messages may get some extra decorations that provide
important disclaimers or information, such as how to leave the mailing list. These modifications
are performed by a pipeline which contains a sequence of handlers. In a manner similar to chains
and rules, pipelines and handlers are extensible, but there are a number of built-in pipelines for the
common cases. Handlers have a similar interface as rules, accepting a mailing list, message object,
and metadata dictionary. However, unlike rules, handlers can and do modify the message. Figure 10.4
illustrates the default pipeline and set of handlers (some handlers are omitted for simplicity).

Figure 10.4: Pipeline queue handlers

For example, a posted message needs to have a Precedence: header added, which tells other
automated software that this message came from a mailing list. This header is a de facto standard to
prevent vacation programs from responding back to the mailing list. Adding this header (among other
header modifications) is done by the “add headers” handler. Unlike rules, handler order generally
doesn’t matter, and messages always flow through all handlers in the pipeline.

Some handlers send copies of the message to other queues. As shown in Figure 10.4, there is a
handler that makes a copy of the message for folks who want to receive digests. Copies are also sent
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to the archive queue for eventual delivery to the mailing list archives. Finally, the message is copied
to the outgoing queue for final delivery to the mailing list’s members.

10.7 VERP
“VERP” stands for “Variable Envelope Return Path”, and it is a well-known technique9 that mailing
lists use to unambiguously determine bouncing recipient addresses. When an address on a mailing
list is no longer active, the recipient’s mail server will send a notification back to the sender. In the
case of a mailing list, you want this bounce to go back to the mailing list, not to the original author
of the message; the author can’t do anything about the bounce, and worse, sending the bounce back
to the author can leak information about who is subscribed to the mailing list. When the mailing
list gets the bounce, however, it can do something useful, such as disable the bouncing address or
remove it from the list’s membership.

There are two general problems with this. First, even though there is a standard format for these
bounces10 (called delivery status notifications) many deployed mail servers do not conform to it.
Instead, the body of their bounce messages can contain just about any amount of difficult-to-machine-
parse gobbledygook, which makes automated parsing difficult. In fact, Mailman uses a library that
contains dozens of bounce format heuristics, all of which have been seen in the wild during the 15
years of Mailman’s existence.

Second, imagine the situation where a member of a mailing list has several forwards. She
might be subscribed to the list with her anne@example.com address, but this might forward to
person@example.org, which might further forward the message to me@example.net. When the
final destination server at example.net receives the message, it will usually just send a bounce
saying that me@example.net is no longer valid. But the Mailman server that sent the message only
knows the member as anne@example.com, so a bounce flagging me@example.net will not contain
a subscribed address, and Mailman will ignore it.

Along comes VERP, which exploits a requirement of the fundamental SMTP protocol11 to
provide unambiguous bounce detection, by returning such bounce messages to the envelope sender.
This is not the From: field in the message body, but in fact the MAIL FROM value set during the SMTP
dialog. This is preserved along the delivery route, and the ultimate receiving mail server is required,
by the standards, to send the bounces to this address. Mailman uses this fact to encode the original
recipient email address into the MAIL FROM value.

If the Mailman server is mylist@example.org, then the VERP-encoded envelope sender for a
mailing list posting sent to anne@example.com will be:

mylist-bounce+anne=example.com@example.org

Here, the + is a local address separator, which is a format supported by most modern mail servers.
So when the bounce comes back, it will actually be delivered to mylist-bounce@example.com but
with the To: header still set to VERP-encoded recipient address. Mailman can then parse this To:
header to decode the original recipient as anne@example.com.

While VERP is an extremely powerful tool for culling bad addresses from the mailing list, it does
have one potentially important disadvantage. Using VERP requires that Mailman send out exactly
one copy of the message per recipient. Without VERP, Mailman can bundle up identical copies of an
9http://cr.yp.to/proto/verp.txt
10http://www.faqs.org/rfcs/rfc5337.html
11http://www.faqs.org/rfcs/rfc5321.html
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outgoing message for multiple recipients, thus reducing overall bandwidth and processing time. But
VERP requires a unique MAIL FROM for each recipient, and the only way to do that is to send a unique
copy of the message. Generally this is an acceptable trade-off, and in fact, once these individualized
messages are being sent for VERP anyway, there are a lot of useful things Mailman can also do. For
example, it can embed a URL in the footer of the message customized for each recipient which gives
them a direct link to unsubscribe from the list. You could even imagine various types of mail-merge
operations for customizing the body of the message for each individual recipient.

10.8 REST
One of the key architectural changes in Mailman 3 addresses a common request over the years: to
allow Mailman to be more easily integrated with external systems. When I was hired by Canonical,
the corporate sponsor of the Ubuntu project, in 2007 my job was originally to add mailing lists to
Launchpad, a collaboration and hosting platform for software projects. I knew that Mailman 2 could
do the job, but there was a requirement to use Launchpad’s web user interface instead of Mailman’s
default user interface. Since Launchpad mailing lists were almost always going to be discussion
lists, we wanted very little variability in the way they operated. List administrators would not need
the plethora of options available in the typical Mailman site, and what few options they would need
would be exposed through the Launchpad web user interface.

At the time, Launchpad was not free software (this changed in 2009), so we had to design the
integration in such a way that Mailman 2’s GPLv2 code could not infect Launchpad. This led
to a number of architectural decisions during that integration design that were quite tricky and
somewhat inefficient. Because Launchpad is now free software licensed under the AGPLv3, these
hacks wouldn’t be necessary today, but having to do it this way did provide some very valuable
lessons on how a web-user-interface-less Mailman could be integrated with external systems. The
vision that emerged was of a core engine that implemented mailing list operations efficiently and
reliably, and that could be managed by any kind of web front-end, including ones written in Zope,
Django, or PHP, or with no web user interface at all.

There were a number of technologies at the time that would allow this, and in fact Mailman’s
integration with Launchpad is based on XMLRPC. But XMLRPC has a number of problems that
make it a less-than-ideal protocol.

Mailman 3 has adopted the Representational State Transfer (REST) model for external admin-
istrative control. REST is based on HTTP, and Mailman’s default object representation is JSON.
These protocols are ubiquitous and well-supported in a large variety of programming languages and
environments, making it fairly easy to integrate Mailman with third party systems. REST was the
perfect fit for Mailman 3, and now much of its functionality is exposed through a REST API.

This is a powerful paradigm that more applications should adopt: deliver a core engine that
implements its basic functionality well, exposing a REST API to query and control it. The REST API
provides yet another way of integrating with Mailman, the others being utilizing the command line
interface, and writing Python code to access the internal API. This architecture is extremely flexible
and can be used and integrated in ways that are beyond the initial vision of the system designers.

Not only does this design allow for much greater choices for deployment, but it even allowed the
official components of the system to be designed and implemented independently. For example, the
new official web user interface for Mailman 3 is technically a separate project with its own code base,
driven primarily by experienced web designers. These outstanding developers are empowered to
make decisions, create designs, and execute implementations without the core engine development

Barry Warsaw 161



being a bottleneck. The web user interface work feeds back into the core engine implementation
by requesting additional functionality, exposed through the REST API, but they needn’t wait for it,
since they can mock up the server side on their end and continue experimenting and developing the
web user interface while the core engine catches up.

We plan to use the REST API for many more things, including allowing the scripting of common
operations and integration with IMAP or NNTP servers for alternative access to the archives.

10.9 Internationalization
GNU Mailman was one of the first Python programs to embrace internationalization. Of course,
because Mailman does not usually modify the contents of email messages posted through it, those
messages can be in any language of the original author’s choosing. However, when interacting
directly with Mailman, either through the web interface or via email commands, users would prefer
to use their own natural language.

Mailman pioneered many of the internationalization technologies used in the Python world, but it
is actually much more complex than most applications. In a typical desktop environment, the natural
language is chosen when the user logs in, and remains static throughout the desktop session. However,
Mailman is a server application, so it must be able to handle dozens of languages, separate from the
language of the system on which it runs. In fact, Mailman must somehow determine the language
context that a response is to be returned under, and translate its text to that language. Sometimes a
response may even involve multiple languages; for example, if a bounce message from a Japanese
user is to be forwarded to list administrators who speak German, Italian, and Catalan.

Again, Mailman pioneered some key Python technologies to handle complex language contexts
such as these. It utilizes a library that manages a stack of languages which can be pushed onto
and popped from as the context changes, even within the processing of a single message. It also
implements an elaborate scheme for customizing its response templates based on site preferences, list
owner preferences, and language choice. For example, if a list owner wants to customize a response
template for one of her lists, but only for Japanese users, she would place the specific template in the
appropriate place on the file system, and this would override more generic defaults.

10.10 Lessons Learned
While this article has provided an overview of Mailman 3’s architecture and insight into how that
architecture has evolved over the 15 years of its existence (through three major rewrites), there are
lots of other interesting architectural decisions in Mailman which I can’t cover. These include the
configuration subsystem, the testing infrastructure, the database layer, the programmatic use of
formal interfaces, archiving, mailing list styles, the email commands and command-line interface,
and integration with the outgoing mail server. Contact us on the mailman-developers mailing list12
if you’re interested in more details.

Here are some lessons we’ve learned while rewriting a popular, established, and stable piece of
the open source ecosystem.

• Use test driven development (TDD). There really is no other way! Mailman 2 largely lacks an
automated test suite, and while it’s true that not all of the Mailman 3 code base is covered by
its test suite, most of it is, and all new code is required to be accompanied by tests, using either

12http://mail.python.org/mailman/listinfo/mailman-developers
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unittests or doctests. Doing TDD is the only way to gain the confidence that the changes
you make today do not introduce regressions in existing code. Yes, TDD can sometimes take
longer, but think of it as an investment in the future quality of your code. In that way, not
having a good test suite means you’re just wasting your time. Remember the mantra: untested
code is broken code.

• Get your bytes/strings story straight from the beginning. In Python 3, a sharp distinction is
made between Unicode text strings and byte arrays, which, while initially painful, is a huge
benefit to writing correct code. Python 2 blurred this line by having both Unicode and 8-bit
ASCII strings, with some automated coercions between them. While appearing to be a useful
convenience, problems with this fuzzy line are the number one cause of bugs in Mailman 2.
This is not helped by the fact that email is notoriously difficult to classify into strings and
bytes. Technically, the on-the-wire representation of an email is as a sequence of bytes, but
these bytes are almost always ASCII, and there is a strong temptation to manipulate message
components as text. The email standards themselves describe how human-readable, non-ASCII
text can be safely encoded, so even things like finding a Re: prefix in a Subject: header will
be text operations, not byte operations. Mailman’s principle is to convert all incoming data
from bytes to Unicode as early as possible, deal with the text as Unicode internally, and only
convert it back to bytes on the way out. It’s critical to be crystal clear from the start when
you’re dealing with bytes and when you’re dealing with text, since it’s very difficult to retrofit
this fundamental model shift later.

• Internationalize your application from the start. Do you want your application to be used only
by the minority of the world that speaks English? Think about how many fantastic users this
ignores! It’s not hard to set up internationalization, and there are lots of good tools for making
this easy, many of which were pioneered in Mailman. Don’t worry about the translations to
start with; if your application is accessible to the world’s wealth of languages, you will have
volunteer translators knocking down your door to help.

GNU Mailman is a vibrant project with a healthy user base, and lots of opportunities for contri-
butions. Here are some resources you can use if you think you’d like to help us out, which I hope
you do!

Primary web site http://www.list.org
Project wiki http://wiki.list.org
Developer mailing list mailman-developers@python.org
Users mailing list mailman-users@python.org
Freenode IRC channel #mailman

A Final Note

While this chapter was being written, we learned with sadness of the passing of Tokio Kikuchi13, a
Japanese professor who contributed heavily to Mailman, and was especially knowledgeable about
internationalization and the idiosyncrasies of Japanese mail user agents. He will be greatly missed.

13http://wiki.list.org/display/COM/TokioKikuchi
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[chapter11]

matplotlib
John Hunter and Michael Droettboom

matplotlib is a Python-based plotting library with full support for 2D and limited support for 3D
graphics, widely used in the Python scientific computing community. The library targets a broad
range of use cases. It can embed graphics in the user interface toolkit of your choice, and currently
supports interactive graphics on all major desktop operating systems using the GTK+, Qt, Tk, FLTK,
wxWidgets and Cocoa toolkits. It can be called interactively from the interactive Python shell to
produce graphics with simple, procedural commands, much like Mathematica, IDL or MATLAB.
matplotlib can also be embedded in a headless webserver to provide hardcopy in both raster-based
formats like Portable Network Graphics (PNG) and vector formats like PostScript, Portable Document
Format (PDF) and Scalable Vector Graphics (SVG) that look great on paper.

11.1 The Dongle Problem
matplotlib’s origin dates to an attempt by one of us (John Hunter) to free himself and his fellow
epilepsy researchers from a proprietary software package for doing electrocorticography (ECoG)
analysis. The laboratory in which he worked had only one license for the software, and the various
graduate students, medical students, postdocs, interns, and investigators took turns sharing the
hardware key dongle. MATLAB is widely used in the biomedical community for data analysis
and visualization, so Hunter set out, with some success, to replace the proprietary software with a
MATLAB-based version that could be utilized and extended by multiple investigators. MATLAB,
however, naturally views the world as an array of floating point numbers, and the complexities of
real-world hospital records for epilepsy surgery patients with multiple data modalities (CT, MRI,
ECoG, EEG) warehoused on different servers pushed MATLAB to its limits as a data management
system. Unsatisfied with the suitability of MATLAB for this task, Hunter began working on a new
Python application built on top of the user interface toolkit GTK+, which was at the time the leading
desktop windowing system for Linux.

matplotlib was thus originally developed as an EEG/ECoG visualization tool for this GTK+
application, and this use case directed its original architecture. matplotlib was originally designed to
serve a second purpose as well: as a replacement for interactive command-driven graphics generation,
something that MATLAB does very well. The MATLAB design makes the simple task of loading a
data file and plotting very straightforward, where a full object-oriented API would be too syntactically
heavy. So matplotlib also provides a stateful scripting interface for quick and easy generation of
graphics similar to MATLAB’s. Because matplotlib is a library, users have access to all of the rich
built-in Python data structures such as lists, dictionaries, sets and more.



Figure 11.1: The original matplotlib application: an ECoG viewer

11.2 Overview of matplotlib Architecture
The top-level matplotlib object that contains and manages all of the elements in a given graphic
is called the Figure. One of the core architectural tasks matplotlib must solve is implementing a
framework for representing and manipulating the Figure that is segregated from the act of rendering
the Figure to a user interface window or hardcopy. This enables us to build increasingly sophisticated
features and logic into the Figures, while keeping the “backends”, or output devices, relatively
simple. matplotlib encapsulates not just the drawing interfaces to allow rendering to multiple devices,
but also the basic event handling and windowing of most popular user interface toolkits. Because of
this, users can create fairly rich interactive graphics and toolkits incorporating mouse and keyboard
input that can be plugged without modification into the six user interface toolkits we support.

The architecture to accomplish this is logically separated into three layers, which can be viewed
as a stack. Each layer that sits above another layer knows how to talk to the layer below it, but the
lower layer is not aware of the layers above it. The three layers from bottom to top are: backend,
artist, and scripting.
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Backend Layer
At the bottom of the stack is the backend layer, which provides concrete implementations of the
abstract interface classes:

• FigureCanvas encapsulates the concept of a surface to draw onto (e.g. “the paper”).
• Renderer does the drawing (e.g. “the paintbrush”).
• Event handles user inputs such as keyboard and mouse events.
For a user interface toolkit such as Qt, the FigureCanvas has a concrete implementation which

knows how to insert itself into a native Qt window (QtGui.QMainWindow), transfer the matplotlib
Renderer commands onto the canvas (QtGui.QPainter), and translate native Qt events into the
matplotlib Event framework, which signals the callback dispatcher to generate the events so upstream
listeners can handle them. The abstract base classes reside in matplotlib.backend_bases and
all of the derived classes live in dedicated modules like matplotlib.backends.backend_qt4agg.
For a pure image backend dedicated to producing hardcopy output like PDF, PNG, SVG, or PS, the
FigureCanvas implementation might simply set up a file-like object into which the default headers,
fonts, and macro functions are defined, as well as the individual objects (lines, text, rectangles, etc.)
that the Renderer creates.

The job of the Renderer is to provide a low-level drawing interface for putting ink onto the
canvas. As mentioned above, the original matplotlib application was an ECoG viewer in a GTK+
application, and much of the original design was inspired by the GDK/GTK+ API available at
that time. The original Renderer API was motivated by the GDK Drawable interface, which
implements such primitive methods as draw_point, draw_line, draw_rectangle, draw_image,
draw_polygon, and draw_glyphs. Each additional backend we implemented—the earliest were
the PostScript backend and the GD backend—implemented the GDK Drawable API and translated
these into native backend-dependent drawing commands. As we discuss below, this unnecessarily
complicated the implementation of new backends with a large proliferation of methods, and this API
has subsequently been dramatically simplified, resulting in a simple process for porting matplotlib to
a new user interface toolkit or file specification.

One of the design decisions that has worked quite well for matplotlib is support for a core
pixel-based renderer using the C++ template library Anti-Grain Geometry or “agg” [She06]. This is
a high-performance library for rendering anti-aliased 2D graphics that produces attractive images.
matplotlib provides support for inserting pixel buffers rendered by the agg backend into each user
interface toolkit we support, so one can get pixel-exact graphics across UIs and operating systems.
Because the PNG output matplotlib produces also uses the agg renderer, the hardcopy is identical to
the screen display, so what you see is what you get across UIs, operating systems and PNG output.

The matplotlib Event framework maps underlying UI events like key-press-event or
mouse-motion-event to the matplotlib classes KeyEvent or MouseEvent. Users can connect to
these events to callback functions and interact with their figure and data; for example, to pick a data
point or group of points, or manipulate some aspect of the figure or its constituents. The following
code sample illustrates how to toggle all of the lines in an Axes window when the user types ‘t’.

import numpy as np
import matplotlib.pyplot as plt

def on_press(event):
if event.inaxes is None: return
for line in event.inaxes.lines:

if event.key==’t’:
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visible = line.get_visible()
line.set_visible(not visible)

event.inaxes.figure.canvas.draw()

fig, ax = plt.subplots(1)

fig.canvas.mpl_connect(’key_press_event’, on_press)

ax.plot(np.random.rand(2, 20))

plt.show()

The abstraction of the underlying UI toolkit’s event framework allows both matplotlib developers
and end-users to write UI event-handling code in a “write once run everywhere” fashion. For example,
the interactive panning and zooming of matplotlib figures that works across all user interface toolkits
is implemented in the matplotlib event framework.

Artist Layer
The Artist hierarchy is the middle layer of the matplotlib stack, and is the place where much of the
heavy lifting happens. Continuing with the analogy that the FigureCanvas from the backend is the
paper, the Artist is the object that knows how to take the Renderer (the paintbrush) and put ink on
the canvas. Everything you see in a matplotlib Figure is an Artist instance; the title, the lines, the
tick labels, the images, and so on all correspond to individual Artist instances (see Figure 11.3).
The base class is matplotlib.artist.Artist, which contains attributes that every Artist shares:
the transformation which translates the artist coordinate system to the canvas coordinate system
(discussed in more detail below), the visibility, the clip box which defines the region the artist can
paint into, the label, and the interface to handle user interaction such as “picking”; that is, detecting
when a mouse click happens over the artist.

Figure 11.2: A figure
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Figure 11.3: The hierarchy of artist instances used to draw Figure 11.2.

The coupling between the Artist hierarchy and the backend happens in the draw method. For
example, in the mockup class below where we create SomeArtist which subclasses Artist, the
essential method that SomeArtist must implement is draw, which is passed a renderer from the
backend. The Artist doesn’t know what kind of backend the renderer is going to draw onto (PDF,
SVG, GTK+ DrawingArea, etc.) but it does know the Renderer API and will call the appropriate
method (draw_text or draw_path). Since the Renderer has a pointer to its canvas and knows how
to paint onto it, the draw method transforms the abstract representation of the Artist to colors in a
pixel buffer, paths in an SVG file, or any other concrete representation.

class SomeArtist(Artist):
’An example Artist that implements the draw method’

def draw(self, renderer):
"""Call the appropriate renderer methods to paint self onto canvas"""
if not self.get_visible(): return

# create some objects and use renderer to draw self here
renderer.draw_path(graphics_context, path, transform)

There are two types of Artists in the hierarchy. Primitive artists represent the kinds of objects you
see in a plot: Line2D, Rectangle, Circle, and Text. Composite artists are collections of Artists
such as the Axis, Tick, Axes, and Figure. Each composite artist may contain other composite
artists as well as primitive artists. For example, the Figure contains one or more composite Axes
and the background of the Figure is a primitive Rectangle.

The most important composite artist is the Axes, which is where most of the matplotlib API
plotting methods are defined. Not only does the Axes contain most of the graphical elements that
make up the background of the plot—the ticks, the axis lines, the grid, the patch of color which is
the plot background—it contains numerous helper methods that create primitive artists and add them
to the Axes instance. For example, Table 11.1 shows a small sampling of Axes methods that create
plot objects and store them in the Axes instance.
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method creates stored in
Axes.imshow one or more matplotlib.image.AxesImages Axes.images
Axes.hist many matplotlib.patch.Rectangles Axes.patches
Axes.plot one or more matplotlib.lines.Line2Ds Axes.lines

Table 11.1: Sampling of Axes methods and the Artist instances they create

Below is a simple Python script illustrating the architecture above. It defines the backend,
connects a Figure to it, uses the array library numpy to create 10,000 normally distributed random
numbers, and plots a histogram of these.

# Import the FigureCanvas from the backend of your choice
# and attach the Figure artist to it.
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
fig = Figure()
canvas = FigureCanvas(fig)

# Import the numpy library to generate the random numbers.
import numpy as np
x = np.random.randn(10000)

# Now use a figure method to create an Axes artist; the Axes artist is
# added automatically to the figure container fig.axes.
# Here "111" is from the MATLAB convention: create a grid with 1 row and 1
# column, and use the first cell in that grid for the location of the new
# Axes.
ax = fig.add_subplot(111)

# Call the Axes method hist to generate the histogram; hist creates a
# sequence of Rectangle artists for each histogram bar and adds them
# to the Axes container. Here "100" means create 100 bins.
ax.hist(x, 100)

# Decorate the figure with a title and save it.
ax.set_title(’Normal distribution with $\mu=0,\ \sigma=1$’)
fig.savefig(’matplotlib_histogram.png’)

Scripting Layer (pyplot)
The script using the API above works very well, especially for programmers, and is usually the
appropriate programming paradigm when writing a web application server, a UI application, or
perhaps a script to be shared with other developers. For everyday purposes, particularly for interactive
exploratory work by bench scientists who are not professional programmers, it is a bit syntactically
heavy. Most special-purpose languages for data analysis and visualization provide a lighter scripting
interface to simplify common tasks, and matplotlib does so as well in its matplotlib.pyplot
interface. The same code above, using pyplot, reads

import matplotlib.pyplot as plt
import numpy as np
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x = np.random.randn(10000)
plt.hist(x, 100)
plt.title(r’Normal distribution with $\mu=0, \sigma=1$’)
plt.savefig(’matplotlib_histogram.png’)
plt.show()

Figure 11.4: A histogram created using pyplot

pyplot is a stateful interface that handles much of the boilerplate for creating figures and axes and
connecting them to the backend of your choice, and maintains module-level internal data structures
representing the current figure and axes to which to direct plotting commands.

Let’s dissect the important lines in the script to see how this internal state is managed.
• import matplotlib.pyplot as plt: When the pyplot module is loaded, it parses a local
configuration file in which the user states, among many other things, their preference for a
default backend. This might be a user interface backend like QtAgg, in which case the script
above will import the GUI framework and launch a Qt window with the plot embedded, or it
might be a pure image backend like Agg, in which case the script will generate the hard-copy
output and exit.

• plt.hist(x, 100): This is the first plotting command in the script. pyplot will check its
internal data structures to see if there is a current Figure instance. If so, it will extract the
current Axes and direct plotting to the Axes.hist API call. In this case there is none, so it
will create a Figure and Axes, set these as current, and direct the plotting to Axes.hist.

• plt.title(r’Normal distribution with $\mu=0, \sigma=1$’): As above, pyplot will
look to see if there is a current Figure and Axes. Finding that there is, it will not create new
instances but will direct the call to the existing Axes instance method Axes.set_title.

• plt.show(): This will force the Figure to render, and if the user has indicated a default GUI
backend in their configuration file, will start the GUI mainloop and raise any figures created to
the screen.
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A somewhat stripped-down and simplified version of pyplot’s frequently used line plotting
function matplotlib.pyplot.plot is shown below to illustrate how a pyplot function wraps func-
tionality in matplotlib’s object-oriented core. All other pyplot scripting interface functions follow
the same design.

@autogen_docstring(Axes.plot)
def plot(*args, **kwargs):

ax = gca()

ret = ax.plot(*args, **kwargs)
draw_if_interactive()

return ret

The Python decorator @autogen_docstring(Axes.plot) extracts the documentation string
from the corresponding API method and attaches a properly formatted version to the pyplot.plot
method; we have a dedicated module matplotlib.docstring to handle this docstring magic. The
*args and **kwargs in the documentation signature are special conventions in Python to mean all
the arguments and keyword arguments that are passed to the method. This allows us to forward them
on to the corresponding API method. The call ax = gca() invokes the stateful machinery to “get
current Axes” (each Python interpreter can have only one “current axes”), and will create the Figure
and Axes if necessary. The call to ret = ax.plot(*args, **kwargs) forwards the function call
and its arguments to the appropriate Axes method, and stores the return value to be returned later.
Thus the pyplot interface is a fairly thin wrapper around the core Artist API which tries to avoid
as much code duplication as possible by exposing the API function, call signature and docstring in
the scripting interface with a minimal amount of boilerplate code.

11.3 Backend Refactoring
Over time, the drawing API of the output backends grew a large number of methods, including:

draw_arc, draw_image, draw_line_collection, draw_line, draw_lines, draw_point,
draw_quad_mesh, draw_polygon_collection, draw_polygon, draw_rectangle,
draw_regpoly_collection

Unfortunately, having more backend methods meant it took much longer to write a new backend,
and as new features were added to the core, updating the existing backends took considerable work.
Since each of the backends was implemented by a single developer who was expert in a particular
output file format, it sometimes took a long time for a new feature to arrive in all of the backends,
causing confusion for the user about which features were available where.

For matplotlib version 0.98, the backends were refactored to require only the minimum necessary
functionality in the backends themselves, with everything else moved into the core. The number of
required methods in the backend API was reduced considerably, to only:

• draw_path: Draws compound polygons, made up of line and Bézier segments. This interfaces
replaces many of the old methods: draw_arc, draw_line, draw_lines, and draw_rectangle.

• draw_image: Draws raster images.
• draw_text: Draws text with the given font properties.
• get_text_width_height_descent: Given a string of text, return its metrics.

172 matplotlib



It’s possible to implement all of the drawing necessary for a new backend using only these
methods.1 This is useful for getting a new backend up and running more easily. However, in some
cases, a backend may want to override the behavior of the core in order to create more efficient
output. For example, when drawing markers (small symbols used to indicate the vertices in a line
plot), it is more space-efficient to write the marker’s shape only once to the file, and then repeat it as
a “stamp” everywhere it is used. In that case, the backend can implement a draw_markers method.
If it’s implemented, the backend writes out the marker shape once and then writes out a much shorter
command to reuse it in a number of locations. If it’s not implemented, the core simply draws the
marker multiple times using multiple calls to draw_path.

The full list of optional backend API methods is:
• draw_markers: Draws a set of markers.
• draw_path_collection: Draws a collection of paths.
• draw_quad_mesh: Draws a quadrilateral mesh.

11.4 Transforms
matplotlib spends a lot of time transforming coordinates from one system to another. These coordinate
systems include:

• data: the original raw data values
• axes: the space defined by a particular axes rectangle
• figure: the space containing the entire figure
• display: the physical coordinates used in the output (e.g. points in PostScript, pixels in PNG)
Every Artist has a transformation node that knows how to transform from one coordinate system

to another. These transformation nodes are connected together in a directed graph, where each node is
dependent on its parent. By following the edges to the root of the graph, coordinates in data space can
be transformed all the way to coordinates in the final output file. Most transformations are invertible,
as well. This makes it possible to click on an element of the plot and return its coordinate in data
space. The transform graph sets up dependencies between transformation nodes: when a parent
node’s transformation changes, such as when an Axes’s limits are changed, any transformations
related to that Axes are invalidated since they will need to be redrawn. Transformations related to
other Axes in the figure, of course, may be left alone, preventing unnecessary recomputations and
contributing to better interactive performance.

Transform nodes may be either simple affine transformations and non-affine transformations.
Affine transformations are the family of transformations that preserve straight lines and ratios of
distances, including rotation, translation, scale and skew. Two-dimensional affine transformations
are represented using a 3× 3 affine transformation matrix. The transformed point (x′, y′) is obtained
by matrix-multiplying the original point (x, y) by this matrix:x′y′

1

 =

sx θx tx
θy sy ty
0 0 1

xy
1


Two-dimensional coordinates can then easily be transformed by simply multiplying them by the

transformation matrix. Affine transformations also have the useful property that they can be composed
1We could also go one step further and draw text using draw_path, removing the need for the draw_text method, but we
haven’t gotten around to making that simplification. Of course, a backend would still be free to implement its own draw_text
method to output “real” text.
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together using matrix multiplication. This means that to perform a series of affine transformations,
the transformation matrices can first be multiplied together only once, and the resulting matrix can
be used to transform coordinates. matplotlib’s transformation framework automatically composes
(freezes) affine transformation matrices together before transforming coordinates to reduce the
amount of computation. Having fast affine transformations is important, because it makes interactive
panning and zooming in a GUI window more efficient.

Figure 11.5: The same data plotted with three different non-affine transformations: logarithmic, polar and
Lambert

Non-affine transformations in matplotlib are defined using Python functions, so they are truly
arbitrary. Within the matplotlib core, non-affine transformations are used for logarithmic scaling,
polar plots and geographical projections (Figure 11.5). These non-affine transformations can be
freely mixed with affine ones in the transformation graph. matplotlib will automatically simplify the
affine portion and only fall back to the arbitrary functions for the non-affine portion.

From these simple pieces, matplotlib can do some pretty advanced things. A blended transforma-
tion is a special transformation node that uses one transformation for the x axis and another for the y
axis. This is of course only possible if the given transformations are “separable”, meaning the x and
y coordinates are independent, but the transformations themselves may be either affine or non-affine.
This is used, for example, to plot logarithmic plots where either or both of the x and y axes may have
a logarithmic scale. Having a blended transformation node allow the available scales to be combined
in arbitrary ways. Another thing the transform graph allows is the sharing of axes. It is possible to
“link” the limits of one plot to another and ensure that when one is panned or zoomed, the other is
updated to match. In this case, the same transform node is simply shared between two axes, which
may even be on two different figures. Figure 11.6 shows an example transformation graph with some
of these advanced features at work. axes1 has a logarithmic x axis; axes1 and axes2 share the same
y axis.




 














Figure 11.6: An example transformation graph
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11.5 The Polyline Pipeline
When plotting line plots, there are a number of steps that are performed to get from the raw data to
the line drawn on screen. In an earlier version of matplotlib, all of these steps were tangled together.
They have since been refactored so they are discrete steps in a “path conversion” pipeline. This
allows each backend to choose which parts of the pipeline to perform, since some are only useful in
certain contexts.

Figure 11.7: A close-up view of the effect of pixel snapping. On the left, without pixel snapping; on the right,
with pixel snapping.

• Transformation: The coordinates are transformed from data coordinates to figure coordinates.
If this is a purely affine transformation, as described above, this is as simple as a matrix
multiplication. If this involves arbitrary transformations, transformation functions are called to
transform the coordinates into figure space.

• Handle missing data: The data array may have portions where the data is missing or invalid.
The user may indicate this either by setting those values to NaN, or using numpy masked arrays.
Vector output formats, such as PDF, and rendering libraries, such as Agg, do not often have a
concept of missing data when plotting a polyline, so this step of the pipeline must skip over
the missing data segments using MOVETO commands, which tell the renderer to pick up the pen
and begin drawing again at a new point.

• Clipping: Points outside of the boundaries of the figure can increase the file size by including
many invisible points. More importantly, very large or very small coordinate values can cause
overflow errors in the rendering of the output file, which results in completely garbled output.
This step of the pipeline clips the polyline as it enters and exits the edges of the figure to prevent
both of these problems.

• Snapping: Perfectly vertical and horizontal lines can look fuzzy due to antialiasing when
their centers are not aligned to the center of a pixel (see Figure 11.7). The snapping step of
the pipeline first determines whether the entire polyline is made up of horizontal and vertical
segments (such as an axis-aligned rectangle), and if so, rounds each resulting vertex to the
nearest pixel center. This step is only used for raster backends, since vector backends should
continue to have exact data points. Some renderers of vector file formats, such as Adobe
Acrobat, perform pixel snapping when viewed on screen.

• Simplification: When plotting really dense plots, many of the points on the line may not
actually be visible. This is particularly true of plots representing a noisy waveform. Including
these points in the plot increases file size, and may even hit limits on the number of points
allowed in the file format. Therefore, any points that lie exactly on the line between their two
neighboring points are removed (see Figure 11.8). The determination depends on a threshold
based on what would be visible at a given resolution specified by the user.
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Figure 11.8: The figure on the right is a close-up of the figure on the left. The circled vertex is automatically
removed by the path simplification algorithm, since it lies exactly on the line between its neighboring vertices,
and therefore is redundant.

11.6 Math Text
Since the users of matplotlib are often scientists, it is useful to put richly formatted math expressions
directly on the plot. Perhaps the most widely used syntax for math expressions is from Donald
Knuth’s TeX typesetting system. It’s a way to turn input in a plain-text language like this:

\sqrt{\frac{\delta x}{\delta y}}

into a properly formatted math expression like this:√
δx
δy

matplotlib provides two ways to render math expressions. The first, usetex, uses a full copy of
TeX on the user’s machine to render the math expression. TeX outputs the location of the characters
and lines in the expression in its native DVI (device independent) format. matplotlib then parses the
DVI file and converts it to a set of drawing commands that one of its output backends then renders
directly onto the plot. This approach handles a great deal of obscure math syntax. However, it
requires that the user have a full and working installation of TeX. Therefore, matplotlib also includes
its own internal math rendering engine, called mathtext.

mathtext is a direct port of the TeX math-rendering engine, glued onto a much simpler parser
written using the pyparsing [McG07] parsing framework. This port was written based on the
published copy of the TeX source code [Knu86]. The simple parser builds up a tree of boxes and
glue (in TeX nomenclature), that are then laid out by the layout engine. While the complete TeX
math rendering engine is included, the large set of third-party TeX and LaTeX math libraries is not.
Features in such libraries are ported on an as-needed basis, with an emphasis on frequently used and
non-discipline-specific features first. This makes for a nice, lightweight way to render most math
expressions.
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11.7 Regression Testing
Historically, matplotlib has not had a large number of low-level unit tests. Occasionally, if a serious
bug was reported, a script to reproduce it would be added to a directory of such files in the source
tree. The lack of automated tests created all of the usual problems, most importantly regressions
in features that previously worked. (We probably don’t need to sell you on the idea that automated
testing is a good thing.) Of course, with so much code and so many configuration options and
interchangeable pieces (e.g., the backends), it is arguable that low-level unit tests alone would ever
be enough; instead we’ve followed the belief that it is most cost-effective to test all of the pieces
working together in concert.

To this end, as a first effort, a script was written that generated a number of plots exercising
various features of matplotlib, particularly those that were hard to get right. This made it a little
easier to detect when a new change caused inadvertent breakage, but the correctness of the images
still needed to be verified by hand. Since this required a lot of manual effort, it wasn’t done very
often.

As a second pass, this general approach was automated. The current matplotlib testing script
generates a number of plots, but instead of requiringmanual intervention, those plots are automatically
compared to baseline images. All of the tests are run inside of the nose testing framework, which
makes it very easy to generate a report of which tests failed.

Complicating matters is that the image comparison cannot be exact. Subtle changes in versions
of the Freetype font-rendering library can make the output of text slightly different across different
machines. These differences are not enough to be considered “wrong”, but are enough to throw off
any exact bit-for-bit comparison. Instead, the testing framework computes the histogram of both
images, and calculates the root-mean-square of their difference. If that difference is greater than a
given threshold, the images are considered too different and the comparison test fails. When tests
fail, difference images are generated which show where on the plot a change has occurred (see
Figure 11.9). The developer can then decide whether the failure is due to an intentional change and
update the baseline image to match the new image, or decide the image is in fact incorrect and track
down and fix the bug that caused the change.

Figure 11.9: A regression test image comparison. From left to right: a) The expected image, b) the result of
broken legend placement, c) the difference between the two images.

Since different backends can contribute different bugs, the testing framework tests multiple
backends for each plot: PNG, PDF and SVG. For the vector formats, we don’t compare the vector
information directly, since there are multiple ways to represent something that has the same end
result when rasterized. The vector backends should be free to change the specifics of their output to
increase efficiency without causing all of the tests to fail. Therefore, for vector backends, the testing
framework first renders the file to a raster using an external tool (Ghostscript for PDF and Inkscape
for SVG) and then uses those rasters for comparison.
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Using this approach, we were able to bootstrap a reasonably effective testing framework from
scratch more easily than if we had gone on to write many low-level unit tests. Still, it is not perfect;
the code coverage of the tests is not very complete, and it takes a long time to run all of the tests.2
Therefore, some regressions do still fall through the cracks, but overall the quality of the releases has
improved considerably since the testing framework was implemented.

11.8 Lessons Learned
One of the important lessons from the development of matplotlib is, as Le Corbusier said, “Good
architects borrow”. The early authors of matplotlib were largely scientists, self-taught programmers
trying to get their work done, not formally trained computer scientists. Thus we did not get the
internal design right on the first try. The decision to implement a user-facing scripting layer largely
compatible with the MATLAB API benefited the project in three significant ways: it provided a
time-tested interface to create and customize graphics, it made for an easy transition to matplotlib
from the large base of MATLAB users, and—most importantly for us in the context of matplotlib
architecture—it freed developers to refactor the internal object-oriented API several times with
minimal impact to most users because the scripting interface was unchanged. While we have had
API users (as opposed to scripting users) from the outset, most of them are power users or developers
able to adapt to API changes. The scripting users, on the other hand, can write code once and pretty
much assume it is stable for all subsequent releases.

For the internal drawing API, while we did borrow from GDK, we did not spend enough
effort determining whether this was the right drawing API, and had to expend considerable effort
subsequently after many backends were written around this API to extend the functionality around
a simpler and more flexible drawing API. We would have been well-served by adopting the PDF
drawing specification [Ent11b], which itself was developed from decades of experience Adobe had
with its PostScript specification; it would have given us mostly out-of-the-box compatibility with PDF
itself, the Quartz Core Graphics framework, and the Enthought Enable Kiva drawing kit [Ent11a].

One of the curses of Python is that it is such an easy and expressive language that developers
often find it easier to re-invent and re-implement functionality that exists in other packages than work
to integrate code from other packages. matplotlib could have benefited in early development from
expending more effort on integration with existing modules and APIs such as Enthought’s Kiva and
Enable toolkits which solve many similar problems, rather than reinventing functionality. Integration
with existing functionality is, however, a double-edged sword, as it can make builds and releases
more complex and reduce flexibility in internal development.

2Around 15 minutes on a 2.33 GHz Intel Core 2 E6550.

178 matplotlib



[chapter12]

MediaWiki
Sumana Harihareswara and Guillaume Paumier

From the start, MediaWiki was developed specifically to be Wikipedia’s software. Developers
have worked to facilitate reuse by third-party users, but Wikipedia’s influence and bias have shaped
MediaWiki’s architecture throughout its history.

Wikipedia is one of the top ten websites in the world, currently getting about 400 million unique
visitors a month. It gets over 100,000 hits per second. Wikipedia isn’t commercially supported by
ads; it is entirely supported by a non-profit organization, the Wikimedia Foundation, which relies on
donations as its primary funding model. This means that MediaWiki must not only run a top-ten
website, but also do so on a shoestring budget. To meet these demands, MediaWiki has a heavy
bias towards performance, caching and optimization. Expensive features that can’t be enabled on
Wikipedia are either reverted or disabled through a configuration variable; there is an endless balance
between performance and features.

The influence of Wikipedia on MediaWiki’s architecture isn’t limited to performance. Unlike
generic content management systems (CMSes), MediaWiki was originally written for a very specific
purpose: supporting a community that creates and curates freely reusable knowledge on an open
platform. This means, for example, thatMediaWiki doesn’t include regular features found in corporate
CMSes, like a publication workflow or access control lists, but does offer a variety of tools to handle
spam and vandalism.

So, from the start, the needs and actions of a constantly evolving community of Wikipedia
participants have affected MediaWiki’s development, and vice versa. The architecture of MediaWiki
has been driven many times by initiatives started or requested by the community, such as the creation
of Wikimedia Commons, or the Flagged Revisions feature. Developers made major architectural
changes because the way that MediaWiki was used by Wikipedians made it necessary.

MediaWiki has also gained a solid external user base by being open source software from the
beginning. Third-party reusers know that, as long as such a high-profile website as Wikipedia uses
MediaWiki, the software will be maintained and improved. MediaWiki used to be really focused on
Wikimedia sites, but efforts have been made to make it more generic and better accommodate the
needs of these third-party users. For example, MediaWiki now ships with an excellent web-based
installer, making the installation process much less painful than when everything had to be done via
the command line and the software contained hardcoded paths for Wikipedia.

Still, MediaWiki is and remains Wikipedia’s software, and this shows throughout its history and
architecture.



This chapter is organized as follows:
• Historical Overview gives a short overview of the history of MediaWiki, or rather its prehistory,
and the circumstances of its creation.

• MediaWiki Code Base and Practices explains the choice of PHP, the importance and imple-
mentation of secure code, and how general configuration is handled.

• Database and Text Storage dives into the distributed data storage system, and how its structure
evolved to accommodate growth.

• Requests, Caching and Delivery follows the execution of a web request through the components
of MediaWiki it activates. This section includes a description of the different caching layers,
and the asset delivery system.

• Languages details the pervasive internationalization and localization system, why it matters,
and how it is implemented.

• Users presents how users are represented in the software, and how user permissions work.
• Content details how content is structured, formatted and processed to generate the final HTML.
A subsection focuses on how MediaWiki handles media files.

• Customizing and ExtendingMediaWiki explains how JavaScript, CSS, extensions, and skins can
be used to customize a wiki, and how they modify its appearance and behavior. A subsection
presents the software’s machine-readable web API.

12.1 Historical Overview
Phase I: UseModWiki
Wikipedia was launched in January 2001. At the time, it was mostly an experiment to try to boost
the production of content for Nupedia, a free-content, but peer-reviewed, encyclopedia created by
Jimmy Wales. Because it was an experiment, Wikipedia was originally powered by UseModWiki,
an existing GPL wiki engine written in Perl, using CamelCase and storing all pages in individual
text files with no history of changes made.

It soon appeared that CamelCase wasn’t really appropriate for naming encyclopedia articles. In
late January 2001, UseModWiki developer and Wikipedia participant Clifford Adams added a new
feature to UseModWiki: free links; i.e., the ability to link to pages with a special syntax (double
square brackets), instead of automatic CamelCase linking. A few weeks later, Wikipedia upgraded
to the new version of UseModWiki supporting free links, and enabled them.

While this initial phase isn’t about MediaWiki per se, it provides some context and shows that,
even before MediaWiki was created, Wikipedia started to shape the features of the software that
powered it. UseModWiki also influenced some of MediaWiki’s features; for example, its markup
language. The Nostalgia Wikipedia1 contains a complete copy of the Wikipedia database from
December 2001, when Wikipedia still used UseModWiki.

Phase II: The PHP Script
In 2001, Wikipedia was not yet a top ten website; it was an obscure project sitting in a dark corner of
the Interwebs, unknown to most search engines, and hosted on a single server. Still, performance
was already an issue, notably because UseModWiki stored its content in a flat file database. At the
1http://nostalgia.wikipedia.org
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time, Wikipedians were worried about being inundated with traffic following articles in the New
York Times, Slashdot and Wired.

So in summer 2001, Wikipedia participant Magnus Manske (then a university student) started
to work on a dedicated Wikipedia wiki engine in his free time. He aimed to improve Wikipedia’s
performance using a database-driven app, and to develop Wikipedia-specific features that couldn’t
be provided by a “generic” wiki engine. Written in PHP and MySQL-backed, the new engine was
simply called the “PHP script”, “PHP wiki”, “Wikipedia software” or “phase II”.

The PHP script was made available in August 2001, shared on SourceForge in September, and
tested until late 2001. AsWikipedia suffered from recurring performance issues because of increasing
traffic, the English language Wikipedia eventually switched from UseModWiki to the PHP script in
January 2002. Other language versions also created in 2001 were slowly upgraded as well, although
some of them would remain powered by UseModWiki until 2004.

As PHP software using a MySQL database, the PHP script was the first iteration of what would
later become MediaWiki. It introduced many critical features still in use today, like namespaces to
organize content (including talk pages), skins, and special pages (including maintenance reports, a
contributions list and a user watchlist).

Phase III: MediaWiki
Despite the improvements from the PHP script and database backend, the combination of increasing
traffic, expensive features and limited hardware continued to cause performance issues on Wikipedia.
In 2002, Lee Daniel Crocker rewrote the code again, calling the new software “Phase III”2. Because
the site was experiencing frequent difficulties, Lee thought there “wasn’t much time to sit down and
properly architect and develop a solution”, so he “just reorganized the existing architecture for better
performance and hacked all the code”. Profiling features were added to track down slow functions.

The Phase III software kept the same basic interface, and was designed to look and behave as
much like the Phase II software as possible. A few new features were also added, like a new file
upload system, side-by-side diffs of content changes, and interwiki links.

Other features were added over 2002, like new maintenance special pages, and the “edit on
double click” option. Performance issues quickly reappeared, though. For example, in November
2002, administrators had to temporarily disable the “view count” and “site” statistics which were
causing two database writes on every page view. They would also occasionally switch the site to
read-only mode to maintain the service for readers, and disable expensive maintenance pages during
high-access times because of table locking problems.

In early 2003, developers discussed whether they should properly re-engineer and re-architect
the software from scratch, before the fire-fighting became unmanageable, or continue to tweak and
improve the existing code base. They chose the latter solution, mostly because most developers
were sufficiently happy with the code base, and confident enough that further iterative improvements
would be enough to keep up with the growth of the site.

In June 2003, administrators added a second server, the first database server separate from the web
server. (The new machine was also the web server for non-English Wikipedia sites.) Load-balancing
between the two servers would be set up later that year. Admins also enabled a new page-caching
system that used the file system to cache rendered, ready-to-output pages for anonymous users.

June 2003 is also when Jimmy Wales created the non-profit Wikimedia Foundation to support
Wikipedia and manage its infrastructure and day-to-day operations. The “Wikipedia software” was
2http://article.gmane.org/gmane.science.linguistics.wikipedia.technical/2794
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officially named “MediaWiki” in July, as wordplay on the Wikimedia Foundation’s name. What was
thought at the time to be a clever pun would confuse generations of users and developers.

New features were added in July, like the automatically generated table of contents and the ability
to edit page sections, both still in use today. The first release under the name “MediaWiki” happened
in August 2003, concluding the long genesis of an application whose overall structure would remain
fairly stable from there on.

12.2 MediaWiki Code Base and Practices
PHP
PHP was chosen as the framework for Wikipedia’s “Phase II” software in 2001; MediaWiki has
grown organically since then, and is still evolving. Most MediaWiki developers are volunteers
contributing in their free time, and there were very few of them in the early years. Some software
design decisions or omissions may seem wrong in retrospect, but it’s hard to criticize the founders
for not implementing some abstraction which is now found to be critical, when the initial code base
was so small, and the time taken to develop it so short.

For example, MediaWiki uses unprefixed class names, which can cause conflicts when PHP core
and PECL (PHP Extension Community Library) developers add new classes: MediaWiki Namespace
class had to be renamed to MWNamespace to be compatible with PHP 5.3. Consistently using a prefix
for all classes (e.g., “MW”) would have made it easier to embed MediaWiki inside another application
or library.

Relying on PHP was probably not the best choice for performance, since it has not benefitted
from improvements that some other dynamic languages have seen. Using Java would have been
much better for performance, and simplified execution scaling for back-end maintenance tasks. On
the other hand, PHP is very popular, which facilitates recruiting new developers.

Even if MediaWiki still contains “ugly” legacy code, major improvements have been made over
the years, and new architectural elements have been introduced to MediaWiki throughout its history.
They include the Parser, SpecialPage, and Database classes, the Image class and the FileRepo
class hierarchy, ResourceLoader, and the Action hierarchy. MediaWiki started without any of these
things, but all of them support features that have been around since the beginning. Many developers
are interested primarily in feature development and architecture is often left behind, only to catch up
later as the cost of working within an inadequate architecture becomes apparent.

Security
Because MediaWiki is the platform for high-profile sites such as Wikipedia, core developers and code
reviewers have enforced strict security rules3. To make it easier to write secure code, MediaWiki
gives developers wrappers around HTML output and database queries to handle escaping. To sanitize
user input, a develop uses the WebRequest class, which analyzes data passed in the URL or via a
POSTed form. It removes “magic quotes” and slashes, strips illegal input characters and normalizes
Unicode sequences. Cross-site request forgery (CSRF) is avoided by using tokens, and cross-site
scripting (XSS) by validating inputs and escaping outputs, usually with PHP’s htmlspecialchars()
function. MediaWiki also provides (and uses) an XHTML sanitizer with the Sanitizer class, and
database functions that prevent SQL injection.
3See https://www.mediawiki.org/wiki/Security_for_developers for a detailed guide.
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Configuration
MediaWiki offers hundreds of configuration settings, stored in global PHP variables. Their default
value is set in DefaultSettings.php, and the system administrator can override them by editing
LocalSettings.php.

MediaWiki used to over-depend on global variables, including for configuration and context
processing. Globals cause serious security implications with PHP’s register_globals function
(which MediaWiki hasn’t needed since version 1.2). This system also limits potential abstractions for
configuration, andmakes it more difficult to optimize the start-up process. Moreover, the configuration
namespace is shared with variables used for registration and object context, leading to potential
conflicts. From a user perspective, global configuration variables have also made MediaWiki seem
difficult to configure and maintain. MediaWiki development has been a story of slowly moving
context out of global variables and into objects. Storing processing context in object member
variables allows those objects to be reused in a much more flexible way.

12.3 Database and Text Storage
MediaWiki has been using a relational database backend since the Phase II software. The default
(and best-supported) database management system (DBMS) for MediaWiki is MySQL, which is
the one that all Wikimedia sites use, but other DBMSes (such as PostgreSQL, Oracle, and SQLite)
have community-supported implementations. A sysadmin can choose a DBMS while installing
MediaWiki, and MediaWiki provides both a database abstraction and a query abstraction layer that
simplify database access for developers.

The current layout contains dozens of tables. Many are about the wiki’s content (e.g., page,
revision, category, and recentchanges). Other tables include data about users (user,
user_groups), media files (image, filearchive), caching (objectcache, l10n_cache,
querycache) and internal tools (job for the job queue), among others4. (See Figure 12.1.) In-
dices and summary tables are used extensively in MediaWiki, since SQL queries that scan huge
numbers of rows can be very expensive, particularly on Wikimedia sites. Unindexed queries are
usually discouraged.

The database went through dozens of schema changes over the years, the most notable being the
decoupling of text storage and revision tracking in MediaWiki 1.5.

In the 1.4 model, the content was stored in two important tables, cur (containing the text and
metadata of the current revision of the page) and old (containing previous revisions); deleted pages
were kept in archive. When an edit was made, the previously current revision was copied to the
old table, and the new edit was saved to cur. When a page was renamed, the page title had to be
updated in the metadata of all the old revisions, which could be a long operation. When a page was
deleted, its entries in both the cur and old tables had to be copied to the archive table before being
deleted; this meant moving the text of all revisions, which could be very large and thus take time.

In the 1.5 model, revision metadata and revision text were split: the cur and old tables were
replaced with page (pages’ metadata), revision (metadata for all revisions, old or current) and
text (text of all revisions, old, current or deleted). Now, when an edit is made, revision metadata
don’t need to be copied around tables: inserting a new entry and updating the page_latest pointer
is enough. Also, the revision metadata don’t include the page title anymore, only its ID: this removes
the need for renaming all revisions when a page is renamed
4Complete documentation of the database layout in MediaWiki is available at https://www.mediawiki.org/wiki/Manual:
Database_layout.
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Figure 12.1: Main content tables in MediaWiki 1.4 and 1.5

The revision table stores metadata for each revision, but not their text; instead, they contain a
text ID pointing to the text table, which contains the actual text. When a page is deleted, the text of
all revisions of the page stays there and doesn’t need to be moved to another table. The text table
is composed of a mapping of IDs to text blobs; a flags field indicates if the text blob is gzipped
(for space savings) or if the text blob is only a pointer to external text storage. Wikimedia sites use a
MySQL-backed external storage cluster with blobs of a few dozen revisions. The first revision of
the blob is stored in full, and following revisions to the same page are stored as diffs relative to the
previous revision; the blobs are then gzipped. Because the revisions are grouped per page, they tend
to be similar, so the diffs are relatively small and gzip works well. The compression ratio achieved
on Wikimedia sites nears 98%.

On the hardware side, MediaWiki has built-in support for load balancing, added as early as 2004
in MediaWiki 1.2 (when Wikipedia got its second server—a big deal at the time). The load balancer
(MediaWiki’s PHP code that decides which server to connect to) is now a critical part of Wikimedia’s
infrastructure, which explains its influence on some algorithm decisions in the code. The system
administrator can specify, in MediaWiki’s configuration, that there is one master database server and
any number of slave database servers; a weight can be assigned to each server. The load balancer
will send all writes to the master, and will balance reads according to the weights. It also keeps track
of the replication lag of each slave. If a slave’s replication lag exceeds 30 seconds, it will not receive
any read queries to allow it to catch up; if all slaves are lagged more than 30 seconds, MediaWiki
will automatically put itself in read-only mode.

MediaWiki’s “chronology protector” ensures that replication lag never causes a user to see a
page that claims an action they’ve just performed hasn’t happened yet: for instance, if a user renames
a page, another user may still see the old name, but the one who renamed will always see the new
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name, because he’s the one who renamed it. This is done by storing the master’s position in the
user’s session if a request they made resulted in a write query. The next time the user makes a read
request, the load balancer reads this position from the session, and tries to select a slave that has
caught up to that replication position to serve the request. If none is available, it will wait until one
is. It may appear to other users as though the action hasn’t happened yet, but the chronology remains
consistent for each user.

12.4 Requests, Caching and Delivery
Execution Workflow of a Web Request
index.php is the main entry point for MediaWiki, and handles most requests processed by the
application servers (i.e., requests that were not served by the caching infrastructure; see below).
The code executed from index.php performs security checks, loads default configuration settings
from includes/DefaultSettings.php, guesses configuration with includes/Setup.php and
then applies site settings contained in LocalSettings.php. Next it instantiates a MediaWiki object
($mediawiki), and creates a Title object ($wgTitle) depending on the title and action parameters
from the request.

index.php can take a variety of action parameters in the URL request; the default action is
view, which shows the regular view of an article’s content. For example, the request https://en.
wikipedia.org/w/index.php?title=Apple\&action=view displays the content of the article
“Apple” on the English Wikipedia5. Other frequent actions include edit (to open an article for
editing), submit (to preview or save an article), history (to show an article’s history) and watch
(to add an article to the user’s watchlist). Administrative actions include delete (to delete an article)
and protect (to prevent edits to an article).

MediaWiki::performRequest() is then called to handle most of the URL request. It checks
for bad titles, read restrictions, local interwiki redirects, and redirect loops, and determines whether
the request is for a normal or a special page.

Normal page requests are handed over to MediaWiki::initializeArticle(), to create an
Article object for the page ($wgArticle), and then to MediaWiki::performAction(), which
handles “standard” actions. Once the action has been completed, MediaWiki::finalCleanup()
finalizes the request by committing database transactions, outputting the HTML and launching
deferred updates through the job queue. MediaWiki::restInPeace() commits the deferred updates
and closes the task gracefully.

If the page requested is a Special page (i.e., not a regular wiki content page, but a special
software-related page such as Statistics), SpecialPageFactory::executePath is called instead
of initializeArticle(); the corresponding PHP script is then called. Special pages can do all
sorts of magical things, and each has a specific purpose, usually independent of any one article or its
content. Special pages include various kinds of reports (recent changes, logs, uncategorized pages)
and wiki administration tools (user blocks, user rights changes), among others. Their execution
workflow depends on their function.

Many functions contain profiling code, which makes it possible to follow the execution work-
flow for debugging if profiling is enabled. Profiling is done by calling the wfProfileIn and
wfProfileOut functions to respectively start and stop profiling a function; both functions take
the function’s name as a parameter. On Wikimedia sites, profiling is done for a percentage of all
5View requests are usually prettified with URL rewriting, in this example to https://en.wikipedia.org/wiki/Apple.

Sumana Harihareswara and Guillaume Paumier 185



requests, to preserve performance. MediaWiki sends UDP packets to a central server that collects
them and produces profiling data.

Caching
MediaWiki itself is improved for performance because it plays a central role onWikimedia sites, but it
is also part of a larger operational ecosystem that has influenced its architecture. Wikimedia’s caching
infrastructure (structured in layers) has imposed limitations in MediaWiki; developers worked around
the issues, not by trying to shape Wikimedia’s extensively optimized caching infrastructure around
MediaWiki, but rather by makingMediaWiki more flexible, so it could work within that infrastructure
without compromising on performance and caching needs. For example, by default MediaWiki
displays the user’s IP in the top-right corner of the interface (for left-to-right languages) as a reminder
that that’s how they’re known to the software when they’re not logged in. The $wgShowIPinHeader
configuration variable allows the system administrator to disable this feature, thus making the page
content independent of the user: all anonymous visitors can then be served the exact same version of
each page.

The first level of caching (used on Wikimedia sites) consists of reverse caching proxies (Squids)
that intercept and serve most requests before they make it to the MediaWiki application servers.
Squids contain static versions of entire rendered pages, served for simple reads to users who aren’t
logged in to the site. MediaWiki natively supports Squid and Varnish, and integrates with this caching
layer by, for example, notifying them to purge a page from the cache when it has been changed. For
logged-in users, and other requests that can’t be served by Squids, Squid forwards the requests to the
web server (Apache).

The second level of caching happens when MediaWiki renders and assembles the page from
multiple objects, many of which can be cached to minimize future calls. Such objects include
the page’s interface (sidebar, menus, UI text) and the content proper, parsed from wikitext. The
in-memory object cache has been available in MediaWiki since the early 1.1 version (2003), and is
particularly important to avoid re-parsing long and complex pages.

Login session data can also be stored in memcached, which lets sessions work transparently on
multiple front-end web servers in a load-balancing setup (Wikimedia heavily relies on load balancing,
using LVS with PyBal).

Since version 1.16, MediaWiki uses a dedicated object cache for localized UI text; this was
added after noticing that a large part of the objects cached in memcached consisted of UI messages
localized into the user’s language. The system is based on fast fetches of individual messages from
constant databases (CDB), e.g., files with key-value pairs. CDBs minimize memory overhead and
start-up time in the typical case; they’re also used for the interwiki cache.

The last caching layer consists of the PHP opcode cache, commonly enabled to speed up PHP
applications. Compilation can be a lengthy process; to avoid compiling PHP scripts into opcode
every time they’re invoked, a PHP accelerator can be used to store the compiled opcode and execute
it directly without compilation. MediaWiki will “just work” with many accelerators such as APC,
PHP accelerator and eAccelerator.

Because of its Wikimedia bias, MediaWiki is optimized for this complete, multi-layer, distributed
caching infrastructure. Nonetheless, it also natively supports alternate setups for smaller sites. For
example, it offers an optional simplistic file caching system that stores the output of fully rendered
pages, like Squid does. Also, MediaWiki’s abstract object caching layer lets it store the cached
objects in several places, including the file system, the database, or the opcode cache.
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ResourceLoader
As in many web applications, MediaWiki’s interface has become more interactive and responsive
over the years, mostly through the use of JavaScript. Usability efforts initiated in 2008, as well
as advanced media handling (e.g., online editing of video files), called for dedicated front-end
performance improvements.

To optimize the delivery of JavaScript and CSS assets, the ResourceLoader module was developed
to optimize delivery of JS and CSS. Started in 2009, it was completed in 2011 and has been a core
feature of MediaWiki since version 1.17. ResourceLoader works by loading JS and CSS assets on
demand, thus reducing loading and parsing time when features are unused, for example by older
browsers. It also minifies the code, groups resources to save requests, and can embed images as data
URIs6.

12.5 Languages
Context and Rationale
A central part of effectively contributing and disseminating free knowledge to all is to provide it in as
many languages as possible. Wikipedia is available in more than 280 languages, and encyclopedia
articles in English represent less than 20% of all articles. Because Wikipedia and its sister sites exist
in so many languages, it is important not only to provide the content in the readers’ native language,
but also to provide a localized interface, and effective input and conversion tools, so that participants
can contribute content.

For this reason, localization and internationalization (l10n and i18n) are central components of
MediaWiki. The i18n system is pervasive, and impacts many parts of the software; it’s also one of the
most flexible and feature-rich7. Translator convenience is usually preferred to developer convenience,
but this is believed to be an acceptable cost.

MediaWiki is currently localized in more than 350 languages, including non-Latin and right-
to-left (RTL) languages, with varying levels of completion. The interface and content can be in
different languages, and have mixed directionality.

Content Language
MediaWiki originally used per-language encoding, which led to a lot of issues; for example, foreign
scripts could not be used in page titles. UTF-8 was adopted instead. Support for character sets other
than UTF-8 was dropped in 2005, along with the major database schema change in MediaWiki 1.5;
content must now be encoded in UTF-8.

Characters not available on the editor’s keyboard can be customized and inserted via Medi-
aWiki’s Edittools, an interface message that appears below the edit window; its JavaScript version
automatically inserts the character clicked into the edit window. The WikiEditor extension for
MediaWiki, developed as part of a usability effort, merges special characters with the edit toolbar.
Another extension, called Narayam, provides additional input methods and key mapping features for
non-ASCII characters.
6For more on ResourceLoader, see https://www.mediawiki.org/wiki/ResourceLoader for the official documentation,
and the talk Low Hanging Fruit vs. Micro-optimization: Creative Techniques for Loading Web Pages Faster given by Trevor
Parscal and Roan Kattouw at OSCON 2011.

7For an exhaustive guide to internationalization and localization in MediaWiki, see https://www.mediawiki.org/wiki/
Localisation.
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Interface Language
Interface messages have been stored in PHP arrays of key-values pairs since the Phase III software
was created. Each message is identified by a unique key, which is assigned different values across
languages. Keys are determined by developers, who are encouraged to use prefixes for extensions;
for example, message keys for the UploadWizard extension will start with mwe-upwiz-, where mwe
stands for MediaWiki extension.

MediaWiki messages can embed parameters provided by the software, which will often influence
the grammar of the message. In order to support virtually any possible language, MediaWiki’s
localization system has been improved and complexified over time to accommodate languages’
specific traits and exceptions, often considered oddities by English speakers.

For example, adjectives are invariable words in English, but languages like French require adjec-
tive agreement with nouns. If the user specified their gender in their preferences, the GENDER: switch
can be used in interface messages to appropriately address them. Other switches include PLURAL:,
for “simple” plurals and languages like Arabic with dual, trial or paucal numbers, and GRAMMAR:,
providing grammatical transformation functions for languages like Finnish whose grammatical cases
cause alterations or inflections.

Localizing Messages
Localized interface messages for MediaWiki reside in MessagesXx.php files, where Xx is the ISO-
639 code of the language (e.g. MessagesFr.php for French); default messages are in English
and stored in MessagesEn.php. MediaWiki extensions use a similar system, or host all localized
messages in an <Extension-name>.i18n.php file. Along with translations, Message files also
include language-dependent information such as date formats.

Contributing translations used to be done by submitting PHP patches for the MessagesXx.php
files. In December 2003, MediaWiki 1.1 introduced “databasemessages”, a subset of wiki pages in the
MediaWiki namespace containing interface messages. The content of the wiki page
MediaWiki:<Message-key> is the message’s text, and overrides its value in the PHP file. Local-
ized versions of the message are at MediaWiki:<Message-key>/<language-code>; for example,
MediaWiki:Rollbacklink/de.

This feature has allowed power users to translate (and customize) interface messages locally
on their wiki, but the process doesn’t update i18n files shipping with MediaWiki. In 2006, Niklas
Laxström created a special, heavily hacked MediaWiki website (now hosted at
http://translatewiki.net) where translators can easily localize interface messages in all lan-
guages simply by editing a wiki page. The MessagesXx.php files are then updated in the MediaWiki
code repository, where they can be automatically fetched by any wiki, and updated using the Localisa-
tionUpdate extension. On Wikimedia sites, database messages are now only used for customization,
and not for localization any more. MediaWiki extensions and some related programs, such as bots,
are also localized at translatewiki.net.

To help translators understand the context and meaning of an interface message, it is consid-
ered a good practice in MediaWiki to provide documentation for every message. This documen-
tation is stored in a special Message file, with the qqq language code which doesn’t correspond
to a real language. The documentation for each message is then displayed in the translation in-
terface on translatewiki.net. Another helpful tool is the qqx language code; when used with the
&uselang parameter to display a wiki page (e.g., https://en.wikipedia.org/wiki/Special:
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RecentChanges?uselang=qqx), MediaWiki will display the message keys instead of their values in
the user interface; this is very useful to identify which message to translate or change.

Registered users can set their own interface language in their preferences, to override the site’s
default interface language. MediaWiki also supports fallback languages: if a message isn’t available
in the chosen language, it will be displayed in the closest possible language, and not necessarily in
English. For example, the fallback language for Breton is French.

12.6 Users
Users are represented in the code using instances of the User class, which encapsulates all of the user-
specific settings (user id, name, rights, password, email address, etc.). Client classes use accessors to
access these fields; they do all the work of determining whether the user is logged in, and whether
the requested option can be satisfied from cookies or whether a database query is needed. Most of
the settings needed for rendering normal pages are set in the cookie to minimize use of the database.

MediaWiki provides a very granular permissions system, with a user permission for, basically, ev-
ery possible action. For example, to perform the “Rollback” action (i.e., to “quickly rollback the edits
of the last user who edited a particular page”), a user needs the rollback permission, included by
default in MediaWiki’s sysop user group. But it can also be added to other user groups, or have a ded-
icated user group only providing this permission (this is the case on the English Wikipedia, with the
Rollbackers group). Customization of user rights is done by editing the $wgGroupPermissions ar-
ray in LocalSettings.php; for instance, $wgGroupPermissions[’user’][’movefile’] = true;
allows all registered users to rename files. A user can belong to several groups, and inherits the
highest rights associated with each of them.

However, MediaWiki’s user permissions system was really designed with Wikipedia in mind: a
site whose content is accessible to all, and where only certain actions are restricted to some users.
MediaWiki lacks a unified, pervasive permissions concept; it doesn’t provide traditional CMS features
like restricting read or write access by topic or type of content. A few MediaWiki extensions provide
such features to some extent.

12.7 Content
Content Structure
The concept of namespaces was used in the UseModWiki era of Wikipedia, where talk pages were
at the title “<article name>/Talk”. Namespaces were formally introduced in Magnus Manske’s first
“PHP script”. They were reimplemented a few times over the years, but have kept the same function:
to separate different kinds of content. They consist of a prefix separated from the page title by a colon
(e.g. Talk: or File: and Template:); the main content namespace has no prefix. Wikipedia users
quickly adopted them, and they provided the community with different spaces to evolve. Namespaces
have proven to be an important feature of MediaWiki, as they create the necessary preconditions for
a wiki’s community and set up meta-level discussions, community processes, portals, user profiles,
etc.

The default configuration for MediaWiki’s main content namespace is to be flat (no subpages),
because it’s how Wikipedia works, but it is trivial to enable subpages. They are enabled in other
namespaces (e.g., User:, where people can, for instance, work on draft articles) and display bread-
crumbs.
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Namespaces separate content by type; within the same namespace, pages can be organized by
topic using categories, a pseudo-hierarchical organization scheme introduced in MediaWiki 1.3.

Content Processing: MediaWiki Markup Language and Parser
The user-generated content stored by MediaWiki isn’t in HTML, but in a markup language specific
to MediaWiki, sometimes called “wikitext”. It allows users to make formatting changes (e.g. bold,
italic using quotes), add links (using square brackets), include templates, insert context-dependent
content (like a date or signature), and make an incredible number of other magical things happen8.

To display a page, this content needs to be parsed, assembled from all the external or dynamic
pieces it calls, and converted to proper HTML. The parser is one of the most essential parts of
MediaWiki, which makes it difficult to change or improve. Because hundreds of millions of wiki
pages worldwide depend on the parser to continue outputting HTML the way it always has, it has to
remain extremely stable.

The markup language wasn’t formally specced from the beginning; it started based on Use-
ModWiki’s markup, then morphed and evolved as needs demanded. In the absence of a formal
specification, the MediaWiki markup language has become a complex and idiosyncratic language,
basically only compatible with MediaWiki’s parser; it can’t be represented as a formal grammar. The
current parser’s specification is jokingly referred to as “whatever the parser spits out from wikitext,
plus a few hundred test cases”.

There have been many attempts at alternative parsers, but none has succeeded so far. In 2004 an
experimental tokenizer was written by Jens Frank to parse wikitext, and enabled on Wikipedia; it had
to be disabled three days later because of the poor performance of PHP array memory allocations.
Since then, most of the parsing has been done with a huge pile of regular expressions, and a ton of
helper functions. The wiki markup, and all the special cases the parser needs to support, have also
become considerably more complex, making future attempts even more difficult.

A notable improvement was Tim Starling’s preprocessor rewrite in MediaWiki 1.12, whose
main motivation was to improve the parsing performance on pages with complex templates. The
preprocessor converts wikitext to an XML DOM tree representing parts of the document (template
invocations, parser functions, tag hooks, section headings, and a few other structures), but can skip
“dead branches”, such as unfollowed #switch cases and unused defaults for template arguments, in
template expansion. The parser then iterates through the DOM structure and converts its content to
HTML.

Recent work on a visual editor for MediaWiki has made it necessary to improve the parsing
process (and make it faster), so work has resumed on the parser and intermediate layers between
MediaWiki markup and final HTML (see Future, below).

Magic Words and Templates
MediaWiki offers “magic words” that modify the general behavior of the page or include dynamic
content into it. They consist of: behavior switches like __NOTOC__ (to hide the automatic table of
content) or __NOINDEX__ (to tell search engines not to index the page); variables like CURRENTTIME
or SITENAME; and parser functions, i.e., magic words that can take parameters, like lc:<string> (to
output <string> in lowercase). Constructs like GENDER:, PLURAL: and GRAMMAR:, used to localize
the UI, are parser functions.
8Detailed documentation is available at https://www.mediawiki.org/wiki/Markup_spec and the associated pages.
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The most common way to include content from other pages in a MediaWiki page is to use
templates. Templates were really intended to be used to include the same content on different pages,
e.g., navigation panels or maintenance banners on Wikipedia articles; having the ability to create
partial page layouts and reuse them in thousands of articles with central maintenance made a huge
impact on sites like Wikipedia.

However, templates have also been used (and abused) by users for a completely different purpose.
MediaWiki 1.3 made it possible for templates to take parameters that change their output; the ability
to add a default parameter (introduced in MediaWiki 1.6) enabled the construction of a functional
programming language implemented on top of PHP, which was ultimately one of the most costly
features in terms of performance.

Tim Starling then developed additional parser functions (the ParserFunctions extension), as a
stopgap measure against insane constructs created by Wikipedia users with templates. This set
of functions included logical structures like #if and #switch, and other functions like #expr (to
evaluate mathematical expressions) and #time (for time formatting).

Soon enough, Wikipedia users started to create even more complex templates using the new
functions, which considerably degraded the parsing performance on template-heavy pages. The
new preprocessor introduced in MediaWiki 1.12 (a major architectural change) was implemented to
partly remedy this issue. Recently, MediaWiki developers have discussed the possibility of using an
actual scripting language, perhaps Lua, to improve performance.

Media Files
Users upload files through the Special:Upload page; administrators can configure the allowed file
types through an extension whitelist. Once uploaded, files are stored in a folder on the file system,
and thumbnails in a dedicated thumb directory.

Because of Wikimedia’s educational mission, MediaWiki supports file types that may be uncom-
mon in other web applications or CMSes, like SVG vector images, and multipage PDFs and DjVus.
They are rendered as PNG files, and can be thumbnailed and displayed inline, as are more common
image files like GIFs, JPGs and PNGs.

When a file is uploaded, it is assigned a File: page containing information entered by the
uploader; this is free text and usually includes copyright information (author, license) and items
describing or classifying the content of the file (description, location, date, categories, etc.). While
private wikis may not care much about this information, on media libraries like Wikimedia Commons
it are critical to organise the collection and ensure the legality of sharing these files. It has been
argued that most of these metadata should, in fact, be stored in a queryable structure like a database
table. This would considerably facilitate search, but also attribution and reuse by third parties—for
example, through the API.

Most Wikimedia sites also allow “local” uploads to each wiki, but the community tries to store
freely licensed media files in Wikimedia’s free media library, Wikimedia Commons. Any Wikimedia
site can display a file hosted on Commons as if it were hosted locally. This custom avoids having to
upload a file to every wiki to use it there.

As a consequence, MediaWiki natively supports foreign media repositories, i.e., the ability to
access media files hosted on another wiki through its API and the ForeignAPIRepo system. Since
version 1.16, any MediaWiki website can easily use files from Wikimedia Commons through the
InstantCommons feature. When using a foreign repository, thumbnails are stored locally to save
bandwidth. However, it is not (yet) possible to upload to a foreign media repository from another
wiki.
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12.8 Customizing and Extending MediaWiki
Levels
MediaWiki’s architecture provides different ways to customize and extend the software. This can be
done at different levels of access:

• System administrators can install extensions and skins, and configure the wiki’s separate
helper programs (e.g., for image thumbnailing and TeX rendering) and global settings (see
Configuration above).

• Wiki sysops (sometimes called “administrators” too) can edit site-wide gadgets, JavaScript
and CSS settings.

• Any registered user can customize their own experience and interface using their preferences
(for existing settings, skins and gadgets) or make their own modifications (using their personal
JS and CSS pages).

External programs can also communicate with MediaWiki through its machine API, if it’s
enabled, basically making any feature and data accessible to the user.

JavaScript and CSS
MediaWiki can read and apply site-wide or skin-wide JavaScript and CSS using custom wiki
pages; these pages are in the MediaWiki: namespace, and thus can only be edited by sysops;
for example, JavaScript modifications from MediaWiki:Common.js apply to all skins, CSS from
MediaWiki:Common.css applies to all skins, but MediaWiki:Vector.css only applies to users with
the Vector skin.

Users can do the same types of changes, which will only apply to their own interface, by
editing subpages of their user page (e.g. User:<Username>/common.js for JavaScript on all skins,
User:<Username>/common.css for CSS on all skins, or User:<Username>/vector.css for CSS
modifications that only apply to the Vector skin).

If the Gadgets extension is installed, sysops can also edit gadgets, i.e., snippets of JavaScript code,
providing features that can be turned on and off by users in their preferences. Upcoming developments
on gadgets will make it possible to share gadgets across wikis, thus avoiding duplication.

This set of tools has had a huge impact and greatly increased the democratization of MediaWiki’s
software development. Individual users are empowered to add features for themselves; power users
can share them with others, both informally and through globally configurable sysop-controlled
systems. This framework is ideal for small, self-contained modifications, and presents a lower barrier
to entry than heavier code modifications done through hooks and extensions.

Extensions and Skins
When JavaScript and CSS modifications are not enough, MediaWiki provides a system of hooks
that let third-party developers run custom PHP code before, after, or instead of MediaWiki code for
particular events9. MediaWiki extensions use hooks to plug into the code.

Before hooks existed in MediaWiki, adding custom PHP code meant modifying the core code,
which was neither easy nor recommended. The first hooks were proposed and added in 2004 by
Evan Prodromou; many more have been added over the years when needed. Using hooks, it is even
possible to extend MediaWiki’s wiki markup with additional capabilities using tag extensions.
9MediaWiki hooks are referenced at https://www.mediawiki.org/wiki/Manual:Hooks.
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The extension system isn’t perfect; extension registration is based on code execution at startup,
rather than cacheable data, which limits abstraction and optimization and hurts MediaWiki’s perfor-
mance. But overall, the extension architecture is now a fairly flexible infrastructure that has helped
make specialized code more modular, keeping the core software from expanding (too) much, and
making it easier for third-party users to build custom functionality on top of MediaWiki.

Conversely, it’s very difficult to write a new skin for MediaWiki without reinventing the wheel.
In MediaWiki, skins are PHP classes each extending the parent Skin class; they contain functions
that gather the information needed to generate the HTML. The long-lived “MonoBook” skin was
difficult to customize because it contained a lot of browser-specific CSS to support old browsers;
editing the template or CSS required many subsequent changes to reflect the change for all browsers
and platforms.

API
The other main entry point for MediaWiki, besides index.php, is api.php, used to access its
machine-readable web query API (Application Programming Interface).

Wikipedia users originally created “bots” that worked by screen scraping the HTML content
served by MediaWiki; this method was very unreliable and broke many times. To improve this
situation, developers introduced a read-only interface (located at query.php), which then evolved into
a full-fledged read and write machine API providing direct, high-level access to the data contained
in the MediaWiki database10.

Client programs can use the API to login, get data, and post changes. The API supports thin
web-based JavaScript clients and end-user applications. Almost anything that can be done via the
web interface can basically be done through the API. Client libraries implementing the MediaWiki
API are available in many languages, including Python and .NET.

12.9 Future
What started as a summer project done by a single volunteer PHP developer has grown intoMediaWiki,
a mature, stable wiki engine powering a top-ten website with a ridiculously small operational
infrastructure. This has been made possible by constant optimization for performance, iterative
architectural changes and a team of awesome developers.

The evolution of web technologies, and the growth of Wikipedia, call for ongoing improvements
and new features, some of which require major changes to MediaWiki’s architecture. This is, for
example, the case for the ongoing visual editor project, which has prompted renewed work on the
parser and on the wiki markup language, the DOM and final HTML conversion.

MediaWiki is a tool used for very different purposes. Within Wikimedia projects, for instance,
it’s used to create and curate an encyclopedia (Wikipedia), to power a huge media library (Wiki-
media Commons), to transcribe scanned reference texts (Wikisource), and so on. In other contexts,
MediaWiki is used as a corporate CMS, or as a data repository, sometimes combined with a semantic
framework. These specialized uses that weren’t planned for will probably continue to drive constant
adjustments to the software’s internal structure. As such, MediaWiki’s architecture is very much
alive, just like the immense community of users it supports.
10Exhaustive documentation of the API is available at https://www.mediawiki.org/wiki/API.
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12.10 Further Reading
• MediaWiki documentation and support: https://www.mediawiki.org.
• Automatically generated MediaWiki documentation: http://svn.wikimedia.org/doc/.
• Domas Mituzas, Wikipedia: site internals, configuration, code examples and management
issues, MySQL Users conference, 2007. Full text available at http://dom.as/talks/.
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[chapter13]

Moodle
Tim Hunt

Moodle is a web application used in educational settings. While this chapter will try to give an
overview of all aspects of how Moodle works, it focuses on those areas where Moodle’s design is
particularly interesting:

• The way the application is divided into plugins;
• The permission system, which controls which users can perform which actions in different
parts of the system;

• The way output is generated, so that different themes (skins) can be used to give different
appearances, and so that the interface can be localised.

• The database abstraction layer.
Moodle1 provides a place online where students and teachers can come together to teach and

learn. A Moodle site is divided into courses. A course has users enrolled in it with different roles,
such as Student or Teacher. Each course comprises a number of resources and activities. A resource
might be a PDF file, a page of HTML within Moodle, or a link to something elsewhere on the web.
An activity might be a forum, a quiz or a wiki. Within the course, these resources and activities will
be structured in some way. For example they may be grouped into logical topics, or into weeks on a
calendar.

Figure 13.1: Moodle course
1http://moodle.org/



Moodle can be used as a standalone application. Should you wish to teach courses on software
architecture (for example) you could download Moodle to your web host, install it, start creating
courses, and wait for students to come and self-register. Alternatively, if you are a large institution,
Moodle would be just one of the systems you run. You would probably also have the infrastructure
shown in Figure 13.2.

Figure 13.2: Typical university systems architecture

• An authentication/identity provider (for example LDAP) to control user accounts across all
your systems.

• A student information system; that is, a database of all your students, which program of study
they are on, and hence which courses they need to complete; and their transcript—a high-level
summary of the results of the courses they have completed. This would also deal with other
administrative functions, like tracking whether they have paid their fees.

• A document repository (for example, Alfresco); to store files, and track workflow as users
collaborate to create files.

• An ePortfolio; this is a place where students can assemble assets, either to build a CV (resume),
or to provide evidence that they have met the requirements of a practice-based course.

• A reporting or analytics tool; to generate high-level information about what is going on in your
institution.

Moodle focuses on providing an online space for teaching and learning, rather than any of the
other systems that an educational organisation might need. Moodle provides a basic implementation
of the other functionalities, so that it can function either as a stand-alone system or integrated with
other systems. The role Moodle plays is normally called a virtual learning environment (VLE), or
learning or course management system (LMS, CMS or even LCMS).

Moodle is open source or free software (GPL). It is written in PHP. It will run on most common
web servers, on common platforms. It requires a database, and will work with MySQL, PostgreSQL,
Microsoft SQL Server or Oracle.

The Moodle project was started by Martin Dougiamas in 1999, while he was working at Curtin
University, Australia. Version 1.0 was released in 2002, at which time PHP4.2 and MySQL 3.23
were the technologies available. This limited the kind of architecture that was possible initially, but
much has changed since then. The current release is the Moodle 2.2.x series.
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13.1 An Overview of How Moodle Works
A Moodle installation comprises three parts:

1. The code, typically in a folder like /var/www/moodle or ~/htdocs/moodle. This should not
be writable by the web server.

2. The database, managed by one of the supported RDMSs. In fact, Moodle adds a prefix to all
the table names, so it can share a database with other applications if desired.

3. The moodledata folder. This is a folder where Moodle stores uploaded and generated files,
and so needs to be writable by the web server. For security reasons, the should be outside the
web root.

These can all be on a single server. Alternatively, in a load-balanced set-up, there will be multiple
copies of the code on each web server, but just one shared copy of the database and moodledata,
probably on other servers.

The configuration information about these three parts is stored in a file called config.php in the
root of the moodle folder when Moodle is installed.

Request Dispatching
Moodle is a web applications, so users interact with it using their web browser. From Moodle’s
point of view that means responding to HTTP requests. An important aspect of Moodle’s design is,
therefore, the URL namespace, and how URLs get dispatched to different scripts.

Moodle uses the standard PHP approach to this. To view the main page for a course,
the URL would be .../course/view.php?id=123, where 123 is the unique id of the course
in the database. To view a forum discussion, the URL would be something like
.../mod/forum/discuss.php?id=456789. That is, these particular scripts, course/view.php
or mod/forum/discuss.php, would handle these requests.

This is simple for the developer. To understand how Moodle handles a particular request, you
look at the URL and start reading code there. It is ugly from the user’s point of view. These URLs
are, however, permanent. The URLs do not change if the course is renamed, or if a moderator moves
a discussion to a different forum.2

The alternative approach one could take is to have a single entry point .../index.php/[extra-
information-to-make-the-request-unique]. The single script index.php would then dispatch
the requests in some way. This approach adds a layer of indirection, which is something software
developers always like to do. The lack of this layer of indirection does not seem to hurt Moodle.

Plugins
Like many successful open source projects, Moodle is built out of many plugins, working together
with the core of the system. This is a good approach because at allows people to change and enhance
Moodle in defined ways. An important advantage of an open source system is that you can tailor
it to your particular needs. Making extensive customisations to the code can, however, lead to big
problems when the time comes to upgrade, even when using a good version control system. By
allowing as many customisations and new features as possible to be implemented as self-contained
plugins that interact with the Moodle core through a defined API, it is easier for people to customise
2This is a good property for URLs to have, as explained in Tim Berners-Lee’s article Cool URIs don’t change http:
//www.w3.org/Provider/Style/URI.html
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Moodle to their needs, and to share customisations, while still being able to upgrade the core Moodle
system.

There are various ways a system can be built as a core surrounded by plugins. Moodle has a
relatively fat core, and the plugins are strongly-typed. When I say a fat core, I mean that there is a lot
of functionality in the core. This contrasts with the kind of architecture where just about everything,
except for a small plugin-loader stub, is a plugin.

When I say plugins are strongly typed, I mean that depending on which type of functionality
you want to implement, you have to write a different type of plugin, and implement a different API.
For example, a new Activity module plugin would be very different from a new Authentication
plugin or a new Question type. At the last count there are about 35 different types of plugin3. This
contrasts with the kind of architecture where all plugins use basically the same API and then, perhaps,
subscribe to the subset of hooks or events they are interested in.

Generally, the trend in Moodle has been to try to shrink the core, by moving more functionality
into plugins. This effort has only been somewhat successful, however, because an increasing feature-
set tends to expand the core. The other trend has been to try to standardise the different types of
plugin as much as possible, so that in areas of common functionality, like install and upgrade, all
types of plugins work the same way.

A plugin in Moodle takes the form of a folder containing files. The plugin has a type and a name,
which together make up the “Frankenstyle” component name of the plugin4. The plugin type and
name determine the path to the plugin folder. The plugin type gives a prefix, and the foldername is
the plugin name. Here are some examples:

Plugin type Plugin name Frankenstyle Folder
mod (Activity module) forum mod_forum mod/forum

mod (Activity module) quiz mod_quiz mod/quiz

block (Side-block) navigation block_navigation blocks/navigation

qtype (Question type) shortanswer qtype_shortanswer question/type/shortanswer
quiz (Quiz report) statistics quiz_statistics mod/quiz/report/statistics

The last example shows that each activity module is allowed to declare sub-plugin types. At the
moment only activity modules can do this, for two reasons. If all plugins could have sub-plugins that
might cause performance problems. Activity modules are the main educational activities in Moodle,
and so are the most important type of plugin, thus they get special privileges.

An Example Plugin
I will explain a lot of details of the Moodle architecture by considering a specific example plugin.
As is traditional, I have chosen to implement a plugin that displays “Hello world”.

This plugin does not really fit naturally into any of the standard Moodle plugin types. It is just a
script, with no connection to anything else, so I will choose to implement it as a “local” plugin. This
is a catch-all plugin type for miscellaneous functionality that does not fit anywhere better. I will name
my plugin greet, to give a Frankensyle name of local_greet, and a folder path of local/greet.5

Each plugin must contain a file called version.php which defines some basic metadata about
the plugin. This is used by the Moodle’s plugin installer system to install and upgrade the plugin.
For example, local/greet/version.php contains:
3For a full list of Moodle plugin types see http://docs.moodle.org/dev/Plugins.
4The word “Frankenstyle” arose out of an argument in the developers’ Jabber channel, but everyone liked it and it stuck.
5The plugin code can be downloaded from https://github.com/timhunt/moodle-local_greet.
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<?php
$plugin->component = ’local_greet’;
$plugin->version = 2011102900;
$plugin->requires = 2011102700;
$plugin->maturity = MATURITY_STABLE;

It may seem redundant to include the component name, since this can be deduced from the path,
but the installer uses this to verify that the plugin has been installed in the right place. The version
field is the version of this plugin. Maturity is ALPHA, BETA, RC (release candidate), or STABLE.
Requires is the minimum version of Moodle that this plugin is compatible with. If necessary, one
can also document other plugins that this one depends on.

Here is the main script for this simple plugin (stored in local/greet/index.php):

<?php
require_once(dirname(__FILE__) . ’/../../config.php’); // 1

require_login(); // 2
$context = context_system::instance(); // 3
require_capability(’local/greet:begreeted’, $context); // 4

$name = optional_param(’name’, ’’, PARAM_TEXT); // 5
if (!$name) {

$name = fullname($USER); // 6
}

add_to_log(SITEID, ’local_greet’, ’begreeted’,
’local/greet/index.php?name=’ . urlencode($name)); // 7

$PAGE->set_context($context); // 8
$PAGE->set_url(new moodle_url(’/local/greet/index.php’),

array(’name’ => $name)); // 9
$PAGE->set_title(get_string(’welcome’, ’local_greet’)); // 10

echo $OUTPUT->header(); // 11
echo $OUTPUT->box(get_string(’greet’, ’local_greet’,

format_string($name))); // 12
echo $OUTPUT->footer(); // 13

Line 1: Bootstrapping Moodle
require_once(dirname(__FILE__) . ’/../../config.php’); // 1

The single line of this script that does the most work is the first. I said above that config.php
contains the details Moodle needs to connect to the database and find the moodledata folder. It ends,
however, with the line require_once(’lib/setup.php’). This:

1. loads all the standard Moodle libraries using require_once;
2. starts the session handling;
3. connects to the database; and
4. sets up a number of global variables, which we shall meet later.
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Line 2: Checking the User Is Logged In
require_login(); // 2

This line causes Moodle to check that the current user is logged in, using whatever authentication
plugin the administrator has configured. If not, the user will be redirected to the log-in form, and
this function will never return.

A script that was more integrated into Moodle would pass more arguments here, to say which
course or activity this page is part of, and then require_login would also verify that the user is
enrolled in, or otherwise allowed to access this course, and is allowed to see this activity. If not, an
appropriate error would be displayed.

13.2 Moodle’s Roles and Permissions System
The next two lines of code show how to check that the user has permission to do something. As you
can see, from the developer’s point of view, the API is very simple. Behind the scenes, however,
there is a sophisticated access system which gives the administrator great flexibility to control who
can do what.

Line 3: Getting the Context
$context = context_system::instance(); // 3

In Moodle, users can have different permissions in different places. For example, a user might be
a Teacher in one course, and a Student in another, and so have different permissions in each place.
These places are called contexts. Contexts in Moodle form a hierarchy rather like a folder hierarchy in
a file-system. At the top level is the System context (and, since this script is not very well integrated
into Moodle, it uses that context).

Within the System context are a number of contexts for the different categories that have been
created to organise courses. These can be nested, with one category containing other categories.
Category contexts can also contain Course contexts. Finally, each activity in a course will have its
own Module context.

Line 4: Checking the User Has Permission to Use This Script
require_capability(’local/greet:begreeted’, $context); // 4

Having got the context—the relevant area of Moodle—the permission can be checked. Each
bit of functionality that a user may or may not have is called a capability. Checking a capability
provides more fine-grained access control than the basic checks performed by require_login. Our
simple example plugin has just one capability: local/greet:begreeted.

The check is done using the require_capability function, which takes the capability name
and the context. Like other require_... functions, it will not return if the user does not have the
capability. It will display an error instead. In other places the non-fatal has_capability function,
which returns a Boolean would be used, for example, to determine whether to display a link to this
script from another page.

How does the administrator configure which user has which permission? Here is the calculation
that has_capability performs (at least conceptually):
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Figure 13.3: Contexts

1. Start from the current Context.
2. Get a list of the Roles that the user has in this Context.
3. Then work out what the Permission is for each Role in this Context.
4. Aggregate those permissions to get a final answer.

Defining Capabilities
As the example shows, a plugin can define new capabilities relating to the particular functionality it
provides. Inside each Moodle plugin there is a sub-folder of the code called db. This contains all the
information required to install or upgrade the plugin. One of those bits of information is a file called
access.php that defines the capabilities. Here is the access.php file for our plugin, which lives in
local/greet/db/access.php:

<?php
$capabilities = array(’local/greet:begreeted’ => array(

’captype’ => ’read’,
’contextlevel’ => CONTEXT_SYSTEM,
’archetypes’ => array(’guest’ => CAP_ALLOW, ’user’ => CAP_ALLOW)

));

This gives somemetadata about each capability which are used when constructing the permissions
management user interface. It also give default permissions for common types of role.

Roles
The next part of the Moodle permissions system is roles. A role is really just a named set of
permissions. When you are logged into Moodle, you will have the “Authenticated user” role in
the System context, and since the System context is the root of the hierarchy, that role will apply
everywhere.

Within a particular course, you may be a Student, and that role assignment will apply in the
Course context and all the Module contexts within it. In another course, however, you may have a
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different role. For example, Mr Gradgrind may be Teacher in the “Facts, Facts, Facts” course, but a
Student in the professional development course “Facts Aren’t Everything”. Finally, a user might be
given the Moderator role in one particular forum (Module context).

Permissions
A role defines a permission for each capability. For example the Teacher role will probably ALLOW
moodle/course:manage, but the Student role will not. However, both Student and Teacher will
allow mod/forum:startdiscussion.

The roles are normally defined globally, but they can be re-defined in each context. For exam-
ple, one particular wiki can be made read-only to students by overriding the permission for the
mod/wiki:edit capability for the Student role in that wiki (Module) context, to PREVENT.

There are four Permissions:
• NOT SET/INHERIT (default)
• ALLOW
• PREVENT
• PROHIBIT
In a given context, a role will have one of these four permissions for each capability. One difference

between PROHIBIT and PREVENT is that a PROHIBIT cannot be overridden in sub-contexts.

Permission Aggregation
Finally the permissions for all the roles the user has in this context are aggregated.

• If any role gives the permission PROHIBIT for this capability, return false.
• Otherwise, if any role gives ALLOW for this capability, return true.
• Otherwise return false.
A use case for PROHIBIT is this: Suppose a user has been making abusive posts in a number

of forums, and we want to stop them immediately. We can create a Naughty user role, which sets
mod/forum:post and other such capabilities to PROHIBIT. We can then assign this role to the
abusive user in the System context. That way, we can be sure that the user will not be able to post any
more in any forum. (We would then talk to the student, and having reached a satisfactory outcome,
remove that role assignment so that they may use the system again.)

So, Moodle’s permissions system gives administrators a huge amount of flexibility. They can
define whichever roles they like with different permissions for each capability; they can alter the role
definitions in sub-contexts; and then they can assign different roles to users in different contexts.

13.3 Back to Our Example Script
The next part of the script illustrates some miscellaneous points:

Line 5: Get Data From the Request
$name = optional_param(’name’, ’’, PARAM_TEXT); // 5
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Something that every web application has to do is get data from a request (GET or POST variables)
without being susceptible to SQL injection or cross-site scripting attacks. Moodle provides two ways
to do this.

The simple method is the one shown here. It gets a single variable given the parameter name
(here name) a default value, and the expected type. The expected type is used to clean the input of all
unexpected characters. There are numerous types like PARAM_INT, PARAM_ALPHANUM, PARAM_EMAIL,
and so on.

There is also a similar required_param function, which like other require_... functions stops
execution and displays an error message if the expected parameter is not found.

The other mechanism Moodle has for getting data from the request is a fully fledged forms library.
This is a wrapper around the HTML QuickForm library from PEAR6. This seemed like a good choice
when it was selected, but is now no longer maintained. At some time in the future we will have
to tackle moving to a new forms library, which many of us look forwards to, because QuickForm
has several irritating design issues. For now, however, it is adequate. Forms can be defined as a
collection of fields of various types (e.g. text box, select drop-down, date-selector) with client- and
server- side validation (including use of the same PARAM_... types).

Line 6: Global Variables
if (!$name) {

$name = fullname($USER); // 6
}

This snippet shows the first of the global variables Moodle provides. $USER makes accessible
the information about the user accessing this script. Other globals include:

• $CFG: holds the commonly used configuration settings.
• $DB: the database connection.
• $SESSION: a wrapper around the PHP session.
• $COURSE: the course the current request relates to.

and several others, some of which we will encounter below.
You may have read the words “global variable” with horror. Note, however, that PHP processes a

single request at a time. Therefore these variables are not as global as all that. In fact, PHP global
variables can be seen as an implementation of the thread-scoped registry pattern7 and this is the way
in which Moodle uses them. It is very convenient in that it makes commonly used objects available
throughout the code, without requiring them to be passed to every function and method. It is only
infrequently abused.

Nothing is Simple
This line also serves to make a point about the problem domain: nothing is ever simple. To dis-
play a user’s name is more complicated than simply concatenating $USER->firstname, ’ ’, and
$USER->lastname. The school may have policies about showing either of those parts, and different
cultures have different conventions for which order to show names. Therefore, there are several
configurations settings and a function to assemble the full name according to the rules.
6For non-PHP programmers, PEAR is PHP’s equivalent of CPAN.
7See Martin Fowler’s Patterns of Enterprise Application Architecture.
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Dates are a similar problem. Different users may be in different time-zones. Moodle stores
all dates as Unix time-stamps, which are integers, and so work in all databases. There is then a
userdate function to display the time-stamp to the user using the appropriate timezone and locale
settings.

Line 7: Logging
add_to_log(SITEID, ’local_greet’, ’begreeted’,

’local/greet/index.php?name=’ . urlencode($name)); // 7

All significant actions in Moodle are logged. Logs are written to a table in the database. This is
a trade-off. It makes sophisticated analysis quite easy, and indeed various reports based on the logs
are included with Moodle. On a large and busy site, however, it is a performance problem. The log
table gets huge, which makes backing up the database more difficult, and makes queries on the log
table slow. There can also be write contention on the log table. These problems can be mitigated in
various ways, for example by batching writes, or archiving or deleting old records to remove them
from the main database.

13.4 Generating Output
Output is mainly handled via two global objects.

Line 8: The $PAGE Global
$PAGE->set_context($context); // 8

$PAGE stores the information about the page to be output. This information is then readily
available to the code that generates the HTML. This script needs to explicitly specify the current
context. (In other situations, this might have been set automatically by require_login.) The URL
for this page must also be set explicitly. This may seem redundant, but the rationale for requiring it is
that you might get to a particular page using any number of different URLs, but the URL passed to
set_url should be the canonical URL for the page—a good permalink, if you like. The page title is
also set. This will end up in the head element of the HTML.

Line 9: Moodle URL
$PAGE->set_url(new moodle_url(’/local/greet/index.php’),

array(’name’ => $name)); // 9

I just wanted to flag this nice little helper class which makes manipulating URLs much easier. As
an aside, recall that the add_to_log function call above did not use this helper class. Indeed, the log
API cannot accept moodle_url objects. This sort of inconsistency is a typical sign of a code-base as
old as Moodle’s.

Line 10: Internationalisation
$PAGE->set_title(get_string(’welcome’, ’local_greet’)); // 10
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Moodle uses its own system to allow the interface to be translated into any language. There may
now be good PHP internationalisation libraries, but in 2002 when it was first implemented there was
not one available that was adequate. The system is based around the get_string function. Strings
are identified by a key and the plugin Frankenstyle name. As can be seen on line 12, it is possible to
interpolate values into the string. (Multiple values are handled using PHP arrays or objects.)

The strings are looked up in language files that are just plain PHP arrays. Here is the language
file local/greet/lang/en/local_greet.php for our plugin:

<?php
$string[’greet:begreeted’] = ’Be greeted by the hello world example’;
$string[’welcome’] = ’Welcome’;
$string[’greet’] = ’Hello, {$a}!’;
$string[’pluginname’] = ’Hello world example’;

Note that, as well as the two string used in our script, there are also strings to give a name to the
capability, and the name of the plugin as it appears in the user interface.

The different languages are identified by the two-letter country code (en here). Languages packs
may derive from other language packs. For example the fr_ca (French Canadian) language pack
declares fr (French) as the parent language, and thus only has to define those strings that differ from
the French. Since Moodle originated in Australia, en means British English, and en_us (American
English) is derived from it.

Again, the simple get_string API for plugin developers hides a lot of complexity, including
working out the current language (which may depend on the current user’s preferences, or the settings
for the particular course they are currently in), and then searching through all the language packs and
parent language packs to find the string.

Producing the language pack files, and co-ordinating the translation effort is managed at http:
//lang.moodle.org/, which is Moodle with a custom plugin8. It uses both Git and the database as
a backend to store the language files with full version history.

Line 11: Starting Output
echo $OUTPUT->header(); // 11

This is another innocuous-looking line that does much more than it seems. The point is that
before any output can be done, the applicable theme (skin) must be worked out. This may depend on
a combination of the page context and the user’s preferences. $PAGE->context was, however, only
set on line 8, so the $OUTPUT global could not have been initialised at the start of the script. In order
to solve this problem, some PHP magic is used to create the proper $OUTPUT object based on the
information in $PAGE the first time any output method is called.

Another thing to consider is that every page in Moodle may contain blocks. These are extra
configurable bits of content that are normally displayed to the left or right of the main content. (They
are a type of plugin.) Again, the exact collection of blocks to display depends, in a flexible way
(that the administrator can control) on the page context and some other aspects of the page identity.
Therefore, another part of preparing for output is a call to $PAGE->blocks->load_blocks().

Once all the necessary information has been worked out, the theme plugin (that controls the
overall look of the page) is called to generate the overall page layout, including whatever standard
header and footer is desired. This call is also responsible for adding the output from the blocks
8local_amos, http://docs.moodle.org/22/en/AMOS.
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at the appropriate place in the HTML. In the middle of the layout there will be a div where the
specific content for this page goes. The HTML of this layout is generated, and then split in half after
the start of the main content div. The first half is returned, and the rest is stored to be returned by
$OUTPUT->footer().

Line 12: Outputting the Body of the Page
echo $OUTPUT->box(get_string(’greet’, ’local_greet’,

format_string($name))); // 12

This line outputs the body of the page. Here it simply displays the greeting in a box. The
greeting is, again, a localised string, this time with a value substituted into a placeholder. The core
renderer $OUTPUT provides many convenience methods like box to describe the required output in
quite high-level terms. Different themes can control what HTML is actually output to make the box.

The content that originally came from the user ($name) is output though the format_string
function. This is the other part of providing XSS protection. It also enables the user of text filters
(another plugin type). An example filter would be the LaTeX filter, which replaces input like
$$x + 1$$ with an image of the equation. I will mention, but not explain, that there are actually
three different functions (s, format_string, and format_text) depending on the particular type
of content being output.

Line 13: Finishing Output
echo $OUTPUT->footer(); // 13

Finally, the footer of the page is output. This example does not show it, but Moodle tracks all the
JavaScript that is required by the page, and outputs all the necessary script tags in the footer. This is
standard good practice. It allows users to see the page without waiting for all the JavaScript to load. A
developer would include JavaScript using API calls like $PAGE->requires->js(’/local/greet/
cooleffect.js’).

Should This Script Mix Logic and Output?
Obviously, putting the output code directly in index.php, even if at a high level of abstraction, limits
the flexibility that themes have to control the output. This is another sign of the age of the Moodle
code-base. The $OUTPUT global was introduced in 2010 as a stepping stone on the way from the old
code, where the output and controller code were in the same file, to a design where all the view code
was properly separated. This also explains the rather ugly way that the entire page layout is generated,
then split in half, so that any output from the script itself can be placed between the header and the
footer. Once the view code has been separated out of the script, into what Moodle calls a renderer,
the theme can then choose to completely (or partially) override the view code for a given script.

A small refactoring can move all the output code out of our index.php and into a renderer. The
end of index.php (lines 11 to 13) would change to:

$output = $PAGE->get_renderer(’local_greet’);
echo $output->greeting_page($name);

and there would be a new file local/greet/renderer.php:
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<?php
class local_greet_renderer extends plugin_renderer_base {

public function greeting_page($name) {
$output = ’’;
$output .= $this->header();
$output .= $this->box(get_string(’greet’, ’local_greet’, $name));
$output .= $this->footer();
return $output;

}
}

If the theme wished to completely change this output, it would define a subclass of this renderer
that overrides the greeting_page method. $PAGE->get_renderer() determines the appropriate
renderer class to instantiate depending on the current theme. Thus, the output (view) code is fully
separated from the controller code in index.php, and the plugin has been refactored from typical
legacy Moodle code to a clean MVC architecture.

13.5 Database Abstraction
The "Hello world" script was sufficiently simple that it did not need to access the database, although
several of the Moodle library calls used did do database queries. I will now briefly describe the
Moodle database layer.

Moodle used to use the ADOdb library as the basis of its database abstraction layer, but there were
issues for us, and the extra layer of library code had a noticeable impact on performance. Therefore,
in Moodle 2.0 we switched to our own abstraction layer, which is a thin wrapper around the various
PHP database libraries.

The moodle_database Class
The heart of the library is the moodle_database class. This defines the interface provided by the
$DB global variable, which gives access to the database connection. A typical usage might be:

$course = $DB->get_record(’course’, array(’id’ => $courseid));

That translates into the SQL:

SELECT * FROM mdl_course WHERE id = $courseid;

and returns the data as a plain PHP object with public fields, so you could access $course->id,
$course->fullname, etc.

Simple methods like this deal with basic queries, and simple updates and inserts. Sometimes it
is necessary to do more complex SQL, for example to run reports. In that case, there are methods to
execute arbitrary SQL:

$courseswithactivitycounts = $DB->get_records_sql(
’SELECT c.id, ’ . $DB->sql_concat(’shortname’, "’ ’", ’fullname’) . ’ AS coursename,

COUNT(1) AS activitycount
FROM {course} c
JOIN {course_modules} cm ON cm.course = c.id

Tim Hunt 207



WHERE c.category = :categoryid
GROUP BY c.id, c.shortname, c.fullname ORDER BY c.shortname, c.fullname’,
array(’categoryid’ => $category));

Some things to note there:
• The table names are wrapped in {} so that the library can find them and prepend the table
name prefix.

• The library uses placeholders to insert values into the SQL. In some cases this uses the facilities
of the underlying database driver. In other cases the values have to be escaped and inserted
into the SQL using string manipulation. The library supports both named placeholders (as
above) and anonymous ones, using ? as the placeholder.

• For queries to work on all our supported databases a safe subset of standard SQL must be used.
For example, you can see that I have used the AS keyword for column aliases, but not for table
aliases. Both of these usage rules are necessary.

• Even so, there are some situations where no subset of standard SQL will work on all our
supported databases; for example, every database has a different way to concatenate strings. In
these cases there are compatibility functions to generate the correct SQL.

Defining the Database Structure
Another area where database management systems differ a lot is in the SQL syntax required to define
tables. To get around this problem, each Moodle plugin (and Moodle core) defines the required
database tables in an XML file. The Moodle install system parses the install.xml files and uses
the information they contain to create the required tables and indexes. There is a developer tool
called XMLDB built into Moodle to help create and edit these install files.

If the database structure needs to change between two releases of Moodle (or of a plugin) then
the developer is responsible for writing code (using an additional database object that provides DDL
methods) to update the database structure, while preserving all the users’ data. Thus, Moodle will
always self-update from one release to the next, simplifying maintenance for administrators.

One contentious point, stemming from the fact that Moodle started out using MySQL 3, is that the
Moodle database does not use foreign keys. This allows some buggy behaviour to remain undetected
even though modern databases would be capable of detecting the problem. The difficulty is that
people have been running Moodle sites without foreign keys for years, so there is almost certainly
inconsistent data present. Adding the keys now would be impossible, without a very difficult clean-up
job. Even so, since the XMLDB system was added to Moodle 1.7 (in 2006!) the install.xml files
have contained the definitions of the foreign keys that should exist, and we are still hoping, one day,
to do all the work necessary to allow us to create them during the install process.

13.6 What Has Not Been Covered
I hope I have given you a good overview of how Moodle works. Due to lack of space I have had to
omit several interesting topics, including how authentication, enrolment and grade plugins allow
Moodle to interoperate with student information systems, and the interesting content-addressed way
that Moodle stores uploaded files. Details of these, and other aspects of Moodle’s design, can be
found in the developer documentation9.
9http://docs.moodle.org/dev/

208 Moodle



13.7 Lessons Learned
One interesting aspect of working on Moodle is that it came out of a research project. Moodle enables
(but does not enforce) a social constructivist pedagogy10. That is, we learn best by actually creating
something, and we learn from each other as a community. Martin Dougiamas’s PhD question did
not ask whether this was an effective model for education, but rather whether it is an effective model
for running an open source project. That is, can we view the Moodle project as an attempt to learn
how to build and use a VLE, and an attempt to learn that by actually building and using Moodle as a
community where teachers, developers, administrators and students all teach and learn from each
other? I find this a good model for thinking about an open source software development project. The
main place where developers and users learn from each other is in discussions in the Moodle project
forums, and in the bug database.

Perhaps the most important consequence of this learning approach is that you should not be
afraid to start by implementing the simplest possible solution first. For example, early versions of
Moodle had just a few hard-coded roles like Teacher, Student and Administrator. That was enough
for many years, but eventually the limitations had to be addressed. When the time came to design
the Roles system for Moodle 1.7, there was a lot of experience in the community about how people
were using Moodle, and many little feature requests that showed what people needed to be able to
adjust using a more flexible access control system. This all helped design the Roles system to be as
simple as possible, but as complex as necessary. (In fact, the first version of the roles system ended
up slightly too complex, and it was subsequently simplified a little in Moodle 2.0.)

If you take the view that programming is a problem-solving exercise, then you might think that
Moodle got the design wrong the first time, and later had to waste time correcting it. I suggest that
is an unhelpful viewpoint when trying to solve complex real-world problems. At the time Moodle
started, no-one knew enough to design the roles system we now have. If you take the learning
viewpoint, then the various stages Moodle went through to reach the current design were necessary
and inevitable.

For this perspective to work, it must be possible to change almost any aspect of a system’s
architecture once you have learned more. I think Moodle shows that this is possible. For example,
we found a way for code to be gradually refactored from legacy scripts to a cleaner MVC architecture.
This requires effort, but it seems that when necessary, the resources to implement these changes can
be found in open source projects. From the user’s point of view, the system gradually evolves with
each major release.

10http://docs.moodle.org/22/en/Pedagogy
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[chapter14]

nginx
Andrew Alexeev

nginx (pronounced “engine x”) is a free open source web server written by Igor Sysoev, a Russian
software engineer. Since its public launch in 2004, nginx has focused on high performance, high
concurrency and low memory usage. Additional features on top of the web server functionality, like
load balancing, caching, access and bandwidth control, and the ability to integrate efficiently with a
variety of applications, have helped to make nginx a good choice for modern website architectures.
Currently nginx is the second most popular open source web server on the Internet.

14.1 Why Is High Concurrency Important?
These days the Internet is so widespread and ubiquitous it’s hard to imagine it wasn’t exactly there,
as we know it, a decade ago. It has greatly evolved, from simple HTML producing clickable text,
based on NCSA and then on Apache web servers, to an always-on communication medium used by
more than 2 billion users worldwide. With the proliferation of permanently connected PCs, mobile
devices and recently tablets, the Internet landscape is rapidly changing and entire economies have
become digitally wired. Online services have become much more elaborate with a clear bias towards
instantly available live information and entertainment. Security aspects of running online business
have also significantly changed. Accordingly, websites are now much more complex than before,
and generally require a lot more engineering efforts to be robust and scalable.

One of the biggest challenges for a website architect has always been concurrency. Since
the beginning of web services, the level of concurrency has been continuously growing. It’s not
uncommon for a popular website to serve hundreds of thousands and even millions of simultaneous
users. A decade ago, the major cause of concurrency was slow clients—users with ADSL or dial-
up connections. Nowadays, concurrency is caused by a combination of mobile clients and newer
application architectures which are typically based on maintaining a persistent connection that
allows the client to be updated with news, tweets, friend feeds, and so on. Another important factor
contributing to increased concurrency is the changed behavior of modern browsers, which open four
to six simultaneous connections to a website to improve page load speed.

To illustrate the problem with slow clients, imagine a simple Apache-based web server which
produces a relatively short 100 KB response—a web page with text or an image. It can be merely a
fraction of a second to generate or retrieve this page, but it takes 10 seconds to transmit it to a client
with a bandwidth of 80 kbps (10 KB/s). Essentially, the web server would relatively quickly pull 100
KB of content, and then it would be busy for 10 seconds slowly sending this content to the client
before freeing its connection. Now imagine that you have 1,000 simultaneously connected clients



who have requested similar content. If only 1 MB of additional memory is allocated per client, it
would result in 1000 MB (about 1 GB) of extra memory devoted to serving just 1000 clients 100 KB
of content. In reality, a typical web server based on Apache commonly allocates more than 1 MB of
additional memory per connection, and regrettably tens of kbps is still often the effective speed of
mobile communications. Although the situation with sending content to a slow client might be, to
some extent, improved by increasing the size of operating system kernel socket buffers, it’s not a
general solution to the problem and can have undesirable side effects.

With persistent connections the problem of handling concurrency is even more pronounced,
because to avoid latency associated with establishing new HTTP connections, clients would stay
connected, and for each connected client there’s a certain amount of memory allocated by the web
server.

Consequently, to handle the increased workloads associated with growing audiences and hence
higher levels of concurrency—and to be able to continuously do so—a website should be based on a
number of very efficient building blocks. While the other parts of the equation such as hardware (CPU,
memory, disks), network capacity, application and data storage architectures are obviously important,
it is in the web server software that client connections are accepted and processed. Thus, the web
server should be able to scale nonlinearly with the growing number of simultaneous connections and
requests per second.

Isn’t Apache Suitable?
Apache, the web server software that still largely dominates the Internet today, has its roots in the
beginning of the 1990s. Originally, its architecture matched the then-existing operating systems
and hardware, but also the state of the Internet, where a website was typically a standalone physical
server running a single instance of Apache. By the beginning of the 2000s it was obvious that the
standalone web server model could not be easily replicated to satisfy the needs of growing web
services. Although Apache provided a solid foundation for future development, it was architected
to spawn a copy of itself for each new connection, which was not suitable for nonlinear scalability
of a website. Eventually Apache became a general purpose web server focusing on having many
different features, a variety of third-party extensions, and universal applicability to practically any
kind of web application development. However, nothing comes without a price and the downside to
having such a rich and universal combination of tools in a single piece of software is less scalability
because of increased CPU and memory usage per connection.

Thus, when server hardware, operating systems and network resources ceased to be major
constraints for website growth, web developers worldwide started to look around for a more efficient
means of running web servers. Around ten years ago, Daniel Kegel, a prominent software engineer,
proclaimed that “it’s time for web servers to handle ten thousand clients simultaneously”1 and
predicted what we now call Internet cloud services. Kegel’s C10K manifest spurred a number of
attempts to solve the problem of web server optimization to handle a large number of clients at the
same time, and nginx turned out to be one of the most successful ones.

Aimed at solving the C10K problem of 10,000 simultaneous connections, nginx was written
with a different architecture in mind—one which is much more suitable for nonlinear scalability in
both the number of simultaneous connections and requests per second. nginx is event-based, so it
does not follow Apache’s style of spawning new processes or threads for each web page request. The
end result is that even as load increases, memory and CPU usage remain manageable. nginx can
now deliver tens of thousands of concurrent connections on a server with typical hardware.
1http://www.kegel.com/c10k.html
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When the first version of nginx was released, it was meant to be deployed alongside Apache
such that static content like HTML, CSS, JavaScript and images were handled by nginx to offload
concurrency and latency processing from Apache-based application servers. Over the course of
its development, nginx has added integration with applications through the use of FastCGI, uswgi
or SCGI protocols, and with distributed memory object caching systems like memcached. Other
useful functionality like reverse proxy with load balancing and caching was added as well. These
additional features have shaped nginx into an efficient combination of tools to build a scalable web
infrastructure upon.

In February 2012, the Apache 2.4.x branch was released to the public. Although this latest
release of Apache has added new multi-processing core modules and new proxy modules aimed
at enhancing scalability and performance, it’s too soon to tell if its performance, concurrency and
resource utilization are now on par with, or better than, pure event-driven web servers. It would be
very nice to see Apache application servers scale better with the new version, though, as it could
potentially alleviate bottlenecks on the backend side which still often remain unsolved in typical
nginx-plus-Apache web configurations.

Are There More Advantages to Using nginx?
Handling high concurrency with high performance and efficiency has always been the key benefit of
deploying nginx. However, there are now even more interesting benefits.

In the last few years, web architects have embraced the idea of decoupling and separating their
application infrastructure from the web server. However, what would previously exist in the form
of a LAMP (Linux, Apache, MySQL, PHP, Python or Perl)-based website, might now become not
merely a LEMP-based one (‘E’ standing for ‘Engine x’), but more and more often an exercise in
pushing the web server to the edge of the infrastructure and integrating the same or a revamped set
of applications and database tools around it in a different way.

nginx is very well suited for this, as it provides the key features necessary to conveniently offload
concurrency, latency processing, SSL (secure sockets layer), static content, compression and caching,
connections and requests throttling, and even HTTP media streaming from the application layer to a
much more efficient edge web server layer. It also allows integrating directly with memcached/Redis
or other “NoSQL” solutions, to boost performance when serving a large number of concurrent users.

With recent flavors of development kits and programming languages gaining wide use, more
and more companies are changing their application development and deployment habits. nginx has
become one of the most important components of these changing paradigms, and it has already
helped many companies start and develop their web services quickly and within their budgets.

The first lines of nginx were written in 2002. In 2004 it was released to the public under the
two-clause BSD license. The number of nginx users has been growing ever since, contributing ideas,
and submitting bug reports, suggestions and observations that have been immensely helpful and
beneficial for the entire community.

The nginx codebase is original and was written entirely from scratch in the C programming
language. nginx has been ported to many architectures and operating systems, including Linux,
FreeBSD, Solaris, Mac OS X, AIX and Microsoft Windows. nginx has its own libraries and with
its standard modules does not use much beyond the system’s C library, except for zlib, PCRE and
OpenSSL which can be optionally excluded from a build if not needed or because of potential license
conflicts.

A few words about the Windows version of nginx. While nginx works in a Windows environment,
the Windows version of nginx is more like a proof-of-concept rather than a fully functional port.
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There are certain limitations of the nginx and Windows kernel architectures that do not interact well
at this time. The known issues of the nginx version for Windows include a much lower number
of concurrent connections, decreased performance, no caching and no bandwidth policing. Future
versions of nginx for Windows will match the mainstream functionality more closely.

14.2 Overview of nginx Architecture
Traditional process- or thread-based models of handling concurrent connections involve handling
each connection with a separate process or thread, and blocking on network or input/output operations.
Depending on the application, it can be very inefficient in terms of memory and CPU consumption.
Spawning a separate process or thread requires preparation of a new runtime environment, including
allocation of heap and stack memory, and the creation of a new execution context. Additional CPU
time is also spent creating these items, which can eventually lead to poor performance due to thread
thrashing on excessive context switching. All of these complications manifest themselves in older
web server architectures like Apache’s. This is a tradeoff between offering a rich set of generally
applicable features and optimized usage of server resources.

From the very beginning, nginx was meant to be a specialized tool to achieve more performance,
density and economical use of server resources while enabling dynamic growth of a website, so it
has followed a different model. It was actually inspired by the ongoing development of advanced
event-based mechanisms in a variety of operating systems. What resulted is a modular, event-driven,
asynchronous, single-threaded, non-blocking architecture which became the foundation of nginx
code.

nginx uses multiplexing and event notifications heavily, and dedicates specific tasks to separate
processes. Connections are processed in a highly efficient run-loop in a limited number of single-
threaded processes called workers. Within each worker nginx can handle many thousands of
concurrent connections and requests per second.

Code Structure
The nginx worker code includes the core and the functional modules. The core of nginx is responsible
for maintaining a tight run-loop and executing appropriate sections of modules’ code on each stage of
request processing. Modules constitute most of the presentation and application layer functionality.
Modules read from and write to the network and storage, transform content, do outbound filtering,
apply server-side include actions and pass the requests to the upstream servers when proxying is
activated.

nginx’s modular architecture generally allows developers to extend the set of web server features
without modifying the nginx core. nginx modules come in slightly different incarnations, namely
core modules, event modules, phase handlers, protocols, variable handlers, filters, upstreams and
load balancers. At this time, nginx doesn’t support dynamically loaded modules; i.e., modules are
compiled along with the core at build stage. However, support for loadable modules and ABI is
planned for the future major releases. More detailed information about the roles of different modules
can be found in Section 14.4.

While handling a variety of actions associated with accepting, processing and managing network
connections and content retrieval, nginx uses event notification mechanisms and a number of disk I/O
performance enhancements in Linux, Solaris and BSD-based operating systems, like kqueue, epoll,
and event ports. The goal is to provide as many hints to the operating system as possible, in regards
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to obtaining timely asynchronous feedback for inbound and outbound traffic, disk operations, reading
from or writing to sockets, timeouts and so on. The usage of different methods for multiplexing and
advanced I/O operations is heavily optimized for every Unix-based operating system nginx runs on.

A high-level overview of nginx architecture is presented in Figure 14.1.

Figure 14.1: Diagram of nginx’s architecture

Workers Model
As previously mentioned, nginx doesn’t spawn a process or thread for every connection. Instead,
worker processes accept new requests from a shared “listen” socket and execute a highly efficient
run-loop inside each worker to process thousands of connections per worker. There’s no specialized
arbitration or distribution of connections to the workers in nginx; this work is done by the OS kernel
mechanisms. Upon startup, an initial set of listening sockets is created. workers then continuously
accept, read from and write to the sockets while processing HTTP requests and responses.

The run-loop is the most complicated part of the nginx worker code. It includes comprehensive
inner calls and relies heavily on the idea of asynchronous task handling. Asynchronous operations
are implemented through modularity, event notifications, extensive use of callback functions and
fine-tuned timers. Overall, the key principle is to be as non-blocking as possible. The only situation
where nginx can still block is when there’s not enough disk storage performance for a worker process.

Because nginx does not fork a process or thread per connection, memory usage is very conserva-
tive and extremely efficient in the vast majority of cases. nginx conserves CPU cycles as well because
there’s no ongoing create-destroy pattern for processes or threads. What nginx does is check the
state of the network and storage, initialize new connections, add them to the run-loop, and process
asynchronously until completion, at which point the connection is deallocated and removed from the
run-loop. Combined with the careful use of syscalls and an accurate implementation of supporting
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interfaces like pool and slab memory allocators, nginx typically achieves moderate-to-low CPU
usage even under extreme workloads.

Because nginx spawns several workers to handle connections, it scales well across multiple
cores. Generally, a separate worker per core allows full utilization of multicore architectures, and
prevents thread thrashing and lock-ups. There’s no resource starvation and the resource controlling
mechanisms are isolated within single-threaded worker processes. This model also allows more
scalability across physical storage devices, facilitates more disk utilization and avoids blocking on
disk I/O. As a result, server resources are utilized more efficiently with the workload shared across
several workers.

With some disk use and CPU load patterns, the number of nginx workers should be adjusted.
The rules are somewhat basic here, and system administrators should try a couple of configurations
for their workloads. General recommendations might be the following: if the load pattern is CPU
intensive—for instance, handling a lot of TCP/IP, doing SSL, or compression—the number of nginx
workers should match the number of CPU cores; if the load is mostly disk I/O bound—for instance,
serving different sets of content from storage, or heavy proxying—the number of workers might be
one and a half to two times the number of cores. Some engineers choose the number of workers
based on the number of individual storage units instead, though efficiency of this approach depends
on the type and configuration of disk storage.

One major problem that the developers of nginx will be solving in upcoming versions is how to
avoid most of the blocking on disk I/O. At the moment, if there’s not enough storage performance to
serve disk operations generated by a particular worker, that workermay still block on reading/writing
from disk. A number of mechanisms and configuration file directives exist to mitigate such disk I/O
blocking scenarios. Most notably, combinations of options like sendfile and AIO typically produce a
lot of headroom for disk performance. An nginx installation should be planned based on the data set,
the amount of memory available for nginx, and the underlying storage architecture.

Another problem with the existing worker model is related to limited support for embedded
scripting. For one, with the standard nginx distribution, only embedding Perl scripts is supported.
There is a simple explanation for that: the key problem is the possibility of an embedded script to
block on any operation or exit unexpectedly. Both types of behavior would immediately lead to a
situation where the worker is hung, affecting many thousands of connections at once. More work is
planned to make embedded scripting with nginx simpler, more reliable and suitable for a broader
range of applications.

nginx Process Roles
nginx runs several processes in memory; there is a single master process and several worker processes.
There are also a couple of special purpose processes, specifically a cache loader and cache manager.
All processes are single-threaded in version 1.x of nginx. All processes primarily use shared-memory
mechanisms for inter-process communication. The master process is run as the root user. The cache
loader, cache manager and workers run as an unprivileged user.

The master process is responsible for the following tasks:
• Reading and validating configuration
• Creating, binding and closing sockets
• Starting, terminating and maintaining the configured number of worker processes
• Reconfiguring without service interruption
• Controlling non-stop binary upgrades (starting new binary and rolling back if necessary)
• Re-opening log files
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• Compiling embedded Perl scripts
The worker processes accept, handle and process connections from clients, provide reverse

proxying and filtering functionality and do almost everything else that nginx is capable of. In regards
to monitoring the behavior of an nginx instance, a system administrator should keep an eye on
workers as they are the processes reflecting the actual day-to-day operations of a web server.

The cache loader process is responsible for checking the on-disk cache items and populating
nginx’s in-memory database with cache metadata. Essentially, the cache loader prepares nginx
instances to work with files already stored on disk in a specially allocated directory structure. It
traverses the directories, checks cache content metadata, updates the relevant entries in shared
memory and then exits when everything is clean and ready for use.

The cache manager is mostly responsible for cache expiration and invalidation. It stays in memory
during normal nginx operation and it is restarted by the master process in the case of failure.

Brief Overview of nginx Caching
Caching in nginx is implemented in the form of hierarchical data storage on a filesystem. Cache
keys are configurable, and different request-specific parameters can be used to control what gets into
the cache. Cache keys and cache metadata are stored in the shared memory segments, which the
cache loader, cache manager and workers can access. Currently there is not any in-memory caching
of files, other than optimizations implied by the operating system’s virtual filesystem mechanisms.
Each cached response is placed in a different file on the filesystem. The hierarchy (levels and naming
details) are controlled through nginx configuration directives. When a response is written to the
cache directory structure, the path and the name of the file are derived from an MD5 hash of the
proxy URL.

The process for placing content in the cache is as follows: When nginx reads the response from
an upstream server, the content is first written to a temporary file outside of the cache directory
structure. When nginx finishes processing the request it renames the temporary file and moves it to
the cache directory. If the temporary files directory for proxying is on another file system, the file
will be copied, thus it’s recommended to keep both temporary and cache directories on the same file
system. It is also quite safe to delete files from the cache directory structure when they need to be
explicitly purged. There are third-party extensions for nginx which make it possible to control cached
content remotely, and more work is planned to integrate this functionality in the main distribution.

14.3 nginx Configuration
nginx’s configuration system was inspired by Igor Sysoev’s experiences with Apache. His main
insight was that a scalable configuration system is essential for a web server. The main scaling
problem was encountered when maintaining large complicated configurations with lots of virtual
servers, directories, locations and datasets. In a relatively big web setup it can be a nightmare if not
done properly both at the application level and by the system engineer himself.

As a result, nginx configuration was designed to simplify day-to-day operations and to provide
an easy means for further expansion of web server configuration.

nginx configuration is kept in a number of plain text files which typically reside in /usr/local-
/etc/nginx or /etc/nginx. The main configuration file is usually called nginx.conf. To keep
it uncluttered, parts of the configuration can be put in separate files which can be automatically
included in the main one. However, it should be noted here that nginx does not currently support
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Apache-style distributed configurations (i.e., .htaccess files). All of the configuration relevant to
nginx web server behavior should reside in a centralized set of configuration files.

The configuration files are initially read and verified by the master process. A compiled read-only
form of the nginx configuration is available to the worker processes as they are forked from the
master process. Configuration structures are automatically shared by the usual virtual memory
management mechanisms.

nginx configuration has several different contexts for main, http, server, upstream, location
(and also mail for mail proxy) blocks of directives. Contexts never overlap. For instance, there is no
such thing as putting a location block in the main block of directives. Also, to avoid unnecessary
ambiguity there isn’t anything like a “global web server” configuration. nginx configuration is meant
to be clean and logical, allowing users to maintain complicated configuration files that comprise
thousands of directives. In a private conversation, Sysoev said, “Locations, directories, and other
blocks in the global server configuration are the features I never liked in Apache, so this is the reason
why they were never implemented in nginx.”

Configuration syntax, formatting and definitions follow a so-called C-style convention. This
particular approach to making configuration files is already being used by a variety of open source
and commercial software applications. By design, C-style configuration is well-suited for nested
descriptions, being logical and easy to create, read and maintain, and liked by many engineers.
C-style configuration of nginx can also be easily automated.

While some of the nginx directives resemble certain parts of Apache configuration, setting up an
nginx instance is quite a different experience. For instance, rewrite rules are supported by nginx,
though it would require an administrator to manually adapt a legacy Apache rewrite configuration to
match nginx style. The implementation of the rewrite engine differs too.

In general, nginx settings also provide support for several original mechanisms that can be very
useful as part of a lean web server configuration. It makes sense to briefly mention variables and the
try_files directive, which are somewhat unique to nginx. Variables in nginx were developed to
provide an additional even-more-powerful mechanism to control run-time configuration of a web
server. Variables are optimized for quick evaluation and are internally pre-compiled to indices.
Evaluation is done on demand; i.e., the value of a variable is typically calculated only once and
cached for the lifetime of a particular request. Variables can be used with different configuration
directives, providing additional flexibility for describing conditional request processing behavior.

The try_files directive was initially meant to gradually replace conditional if configuration
statements in a more proper way, and it was designed to quickly and efficiently try/match against
different URI-to-content mappings. Overall, the try_files directive works well and can be extremely
efficient and useful. It is recommended that the reader thoroughly check the try_files directive
and adopt its use whenever applicable2.

14.4 nginx Internals
As was mentioned before, the nginx codebase consists of a core and a number of modules. The core
of nginx is responsible for providing the foundation of the web server, web and mail reverse proxy
functionalities; it enables the use of underlying network protocols, builds the necessary run-time
environment, and ensures seamless interaction between different modules. However, most of the
protocol- and application-specific features are done by nginx modules, not the core.
2See http://nginx.org/en/docs/http/ngx_http_core_module.html#try_files for more details.
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Internally, nginx processes connections through a pipeline, or chain, of modules. In other words,
for every operation there’s a module which is doing the relevant work; e.g., compression, modifying
content, executing server-side includes, communicating to the upstream application servers through
FastCGI or uwsgi protocols, or talking to memcached.

There are a couple of nginx modules that sit somewhere between the core and the real “functional”
modules. These modules are http and mail. These two modules provide an additional level of
abstraction between the core and lower-level components. In these modules, the handling of the
sequence of events associated with a respective application layer protocol like HTTP, SMTP or IMAP
is implemented. In combination with the nginx core, these upper-level modules are responsible for
maintaining the right order of calls to the respective functional modules. While the HTTP protocol
is currently implemented as part of the http module, there are plans to separate it into a functional
module in the future, due to the need to support other protocols like SPDY3.

The functional modules can be divided into event modules, phase handlers, output filters, variable
handlers, protocols, upstreams and load balancers. Most of these modules complement the HTTP
functionality of nginx, though event modules and protocols are also used for mail. Event modules
provide a particular OS-dependent event notification mechanism like kqueue or epoll. The event
module that nginx uses depends on the operating system capabilities and build configuration. Protocol
modules allow nginx to communicate through HTTPS, TLS/SSL, SMTP, POP3 and IMAP.

A typical HTTP request processing cycle looks like the following:
1. Client sends HTTP request
2. nginx core chooses the appropriate phase handler based on the configured location matching

the request
3. If configured to do so, a load balancer picks an upstream server for proxying
4. Phase handler does its job and passes each output buffer to the first filter
5. First filter passes the output to the second filter
6. Second filter passes the output to third (and so on)
7. Final response is sent to the client
nginx module invocation is extremely customizable. It is performed through a series of callbacks

using pointers to the executable functions. However, the downside of this is that it may place a big
burden on programmers who would like to write their own modules, because they must define exactly
how and when the module should run. Both the nginx API and developers’ documentation are being
improved and made more available to alleviate this.

Some examples of where a module can attach are:
• Before the configuration file is read and processed
• For each configuration directive for the location and the server where it appears
• When the main configuration is initialized
• When the server (i.e., host/port) is initialized
• When the server configuration is merged with the main configuration
• When the location configuration is initialized or merged with its parent server configuration
• When the master process starts or exits
• When a new worker process starts or exits
• When handling a request
• When filtering the response header and the body
• When picking, initiating and re-initiating a request to an upstream server

3See "SPDY: An experimental protocol for a faster web" at http://www.chromium.org/spdy/spdy-whitepaper
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• When processing the response from an upstream server
• When finishing an interaction with an upstream server
Inside a worker, the sequence of actions leading to the run-loop where the response is generated

looks like the following:
1. Begin ngx_worker_process_cycle()
2. Process events with OS specific mechanisms (such as epoll or kqueue)
3. Accept events and dispatch the relevant actions
4. Process/proxy request header and body
5. Generate response content (header, body) and stream it to the client
6. Finalize request
7. Re-initialize timers and events
The run-loop itself (steps 5 and 6) ensures incremental generation of a response and streaming it

to the client.
A more detailed view of processing an HTTP request might look like this:
1. Initialize request processing
2. Process header
3. Process body
4. Call the associated handler
5. Run through the processing phases
Which brings us to the phases. When nginx handles an HTTP request, it passes it through a

number of processing phases. At each phase there are handlers to call. In general, phase handlers
process a request and produce the relevant output. Phase handlers are attached to the locations
defined in the configuration file.

Phase handlers typically do four things: get the location configuration, generate an appropriate
response, send the header, and send the body. A handler has one argument: a specific structure
describing the request. A request structure has a lot of useful information about the client request,
such as the request method, URI, and header.

When the HTTP request header is read, nginx does a lookup of the associated virtual server
configuration. If the virtual server is found, the request goes through six phases:

1. Server rewrite phase
2. Location phase
3. Location rewrite phase (which can bring the request back to the previous phase)
4. Access control phase
5. try_files phase
6. Log phase
In an attempt to generate the necessary content in response to the request, nginx passes the

request to a suitable content handler. Depending on the exact location configuration, nginx may try
so-called unconditional handlers first, like perl, proxy_pass, flv, mp4, etc. If the request does not
match any of the above content handlers, it is picked by one of the following handlers, in this exact
order: random index, index, autoindex, gzip_static, static.

Indexing module details can be found in the nginx documentation, but these are the modules
which handle requests with a trailing slash. If a specialized module like mp4 or autoindex isn’t
appropriate, the content is considered to be just a file or directory on disk (that is, static) and is served
by the static content handler. For a directory it would automatically rewrite the URI so that the
trailing slash is always there (and then issue an HTTP redirect).
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The content handlers’ content is then passed to the filters. Filters are also attached to locations,
and there can be several filters configured for a location. Filters do the task of manipulating the
output produced by a handler. The order of filter execution is determined at compile time. For the
out-of-the-box filters it’s predefined, and for a third-party filter it can be configured at the build stage.
In the existing nginx implementation, filters can only do outbound changes and there is currently no
mechanism to write and attach filters to do input content transformation. Input filtering will appear
in future versions of nginx.

Filters follow a particular design pattern. A filter gets called, starts working, and calls the next
filter until the final filter in the chain is called. After that, nginx finalizes the response. Filters don’t
have to wait for the previous filter to finish. The next filter in a chain can start its own work as soon
as the input from the previous one is available (functionally much like the Unix pipeline). In turn,
the output response being generated can be passed to the client before the entire response from the
upstream server is received.

There are header filters and body filters; nginx feeds the header and the body of the response to
the associated filters separately.

A header filter consists of three basic steps:
1. Decide whether to operate on this response
2. Operate on the response
3. Call the next filter

Body filters transform the generated content. Examples of body filters include:
• Server-side includes
• XSLT filtering
• Image filtering (for instance, resizing images on the fly)
• Charset modification
• gzip compression
• Chunked encoding
After the filter chain, the response is passed to the writer. Along with the writer there are a couple

of additional special purpose filters, namely the copy filter, and the postpone filter. The copy filter
is responsible for filling memory buffers with the relevant response content which might be stored in
a proxy temporary directory. The postpone filter is used for subrequests.

Subrequests are a very important mechanism for request/response processing. Subrequests are
also one of the most powerful aspects of nginx. With subrequests nginx can return the results from
a different URL than the one the client originally requested. Some web frameworks call this an
internal redirect. However, nginx goes further—not only can filters perform multiple subrequests and
combine the outputs into a single response, but subrequests can also be nested and hierarchical. A
subrequest can perform its own sub-subrequest, and a sub-subrequest can initiate sub-sub-subrequests.
Subrequests can map to files on the hard disk, other handlers, or upstream servers. Subrequests are
most useful for inserting additional content based on data from the original response. For example,
the SSI (server-side include) module uses a filter to parse the contents of the returned document,
and then replaces include directives with the contents of specified URLs. Or, it can be an example
of making a filter that treats the entire contents of a document as a URL to be retrieved, and then
appends the new document to the URL itself.

Upstream and load balancers are also worth describing briefly. Upstreams are used to implement
what can be identified as a content handler which is a reverse proxy (proxy_pass handler). Upstream
modules mostly prepare the request to be sent to an upstream server (or “backend”) and receive
the response from the upstream server. There are no calls to output filters here. What an upstream
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module does exactly is set callbacks to be invoked when the upstream server is ready to be written to
and read from. Callbacks implementing the following functionality exist:

• Crafting a request buffer (or a chain of them) to be sent to the upstream server
• Re-initializing/resetting the connection to the upstream server (which happens right before
creating the request again)

• Processing the first bits of an upstream response and saving pointers to the payload received
from the upstream server

• Aborting requests (which happens when the client terminates prematurely)
• Finalizing the request when nginx finishes reading from the upstream server
• Trimming the response body (e.g. removing a trailer)
Load balancer modules attach to the proxy_pass handler to provide the ability to choose an

upstream server when more than one upstream server is eligible. A load balancer registers an enabling
configuration file directive, provides additional upstream initialization functions (to resolve upstream
names in DNS, etc.), initializes the connection structures, decides where to route the requests, updates
stats information. Currently nginx supports two standard disciplines for load balancing to upstream
servers: round-robin and ip-hash.

Upstream and load balancing handling mechanisms include algorithms to detect failed upstream
servers and to re-route new requests to the remaining ones—though a lot of additional work is
planned to enhance this functionality. In general, more work on load balancers is planned, and in the
next versions of nginx the mechanisms for distributing the load across different upstream servers as
well as health checks will be greatly improved.

There are also a couple of other interesting modules which provide an additional set of variables
for use in the configuration file. While the variables in nginx are created and updated across different
modules, there are two modules that are entirely dedicated to variables: geo and map. The geo
module is used to facilitate tracking of clients based on their IP addresses. This module can create
arbitrary variables that depend on the client’s IP address. The other module, map, allows for the
creation of variables from other variables, essentially providing the ability to do flexible mappings
of hostnames and other run-time variables. This kind of module may be called the variable handler.

Memory allocation mechanisms implemented inside a single nginx worker were, to some extent,
inspired by Apache. A high-level description of nginx memory management would be the following:
For each connection, the necessary memory buffers are dynamically allocated, linked, used for
storing and manipulating the header and body of the request and the response, and then freed upon
connection release. It is very important to note that nginx tries to avoid copying data in memory as
much as possible and most of the data is passed along by pointer values, not by calling memcpy.

Going a bit deeper, when the response is generated by a module, the retrieved content is put in a
memory buffer which is then added to a buffer chain link. Subsequent processing works with this
buffer chain link as well. Buffer chains are quite complicated in nginx because there are several
processing scenarios which differ depending on the module type. For instance, it can be quite tricky
to manage the buffers precisely while implementing a body filter module. Such a module can only
operate on one buffer (chain link) at a time and it must decide whether to overwrite the input buffer,
replace the buffer with a newly allocated buffer, or insert a new buffer before or after the buffer in
question. To complicate things, sometimes a module will receive several buffers so that it has an
incomplete buffer chain that it must operate on. However, at this time nginx provides only a low-level
API for manipulating buffer chains, so before doing any actual implementation a third-party module
developer should become really fluent with this arcane part of nginx.

A note on the above approach is that there are memory buffers allocated for the entire life of a
connection, thus for long-lived connections some extra memory is kept. At the same time, on an idle
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keepalive connection, nginx spends just 550 bytes of memory. A possible optimization for future
releases of nginx would be to reuse and share memory buffers for long-lived connections.

The task of managing memory allocation is done by the nginx pool allocator. Shared memory
areas are used to accept mutex, cache metadata, the SSL session cache and the information associated
with bandwidth policing and management (limits). There is a slab allocator implemented in nginx to
manage shared memory allocation. To allow simultaneous safe use of shared memory, a number
of locking mechanisms are available (mutexes and semaphores). In order to organize complex data
structures, nginx also provides a red-black tree implementation. Red-black trees are used to keep
cache metadata in shared memory, track non-regex location definitions and for a couple of other
tasks.

Unfortunately, all of the above was never described in a consistent and simple manner, making
the job of developing third-party extensions for nginx quite complicated. Although some good
documents on nginx internals exist—for instance, those produced by Evan Miller—such documents
required a huge reverse engineering effort, and the implementation of nginx modules is still a black
art for many.

Despite certain difficulties associated with third-party module development, the nginx user
community recently saw a lot of useful third-party modules. There is, for instance, an embedded Lua
interpreter module for nginx, additional modules for load balancing, full WebDAV support, advanced
cache control and other interesting third-party work that the authors of this chapter encourage and
will support in the future.

14.5 Lessons Learned
When Igor Sysoev started to write nginx, most of the software enabling the Internet already existed,
and the architecture of such software typically followed definitions of legacy server and network
hardware, operating systems, and old Internet architecture in general. However, this didn’t prevent
Igor from thinking he might be able to improve things in the web servers area. So, while the first
lesson might seem obvious, it is this: there is always room for improvement.

With the idea of better web software in mind, Igor spent a lot of time developing the initial code
structure and studying different ways of optimizing the code for a variety of operating systems. Ten
years later he is developing a prototype of nginx version 2.0, taking into account the years of active
development on version 1. It is clear that the initial prototype of a new architecture, and the initial
code structure, are vitally important for the future of a software product.

Another point worth mentioning is that development should be focused. The Windows version
of nginx is probably a good example of how it is worth avoiding the dilution of development efforts
on something that is neither the developer’s core competence or the target application. It is equally
applicable to the rewrite engine that appeared during several attempts to enhance nginx with more
features for backward compatibility with the existing legacy setups.

Last but not least, it is worth mentioning that despite the fact that the nginx developer community
is not very large, third-party modules and extensions for nginx have always been a very important
part of its popularity. The work done by Evan Miller, Piotr Sikora, Valery Kholodkov, Zhang
Yichun (agentzh) and other talented software engineers has been much appreciated by the nginx user
community and its original developers.

223



224 nginx



[chapter15]

Open MPI
Jeffrey M. Squyres

15.1 Background
Open MPI [GFB+04] is an open source software implementation of The Message Passing Interface
(MPI) standard. Before the architecture and innards of Open MPI will make any sense, a little
background on the MPI standard must be discussed.

The Message Passing Interface (MPI)
The MPI standard is created and maintained by the MPI Forum1, an open group consisting of
parallel computing experts from both industry and academia. MPI defines an API that is used for a
specific type of portable, high-performance inter-process communication (IPC): message passing.
Specifically, the MPI document describes the reliable transfer of discrete, typed messages between
MPI processes. Although the definition of an “MPI process” is subject to interpretation on a given
platform, it usually corresponds to the operating system’s concept of a process (e.g., a POSIX
process). MPI is specifically intended to be implemented as middleware, meaning that upper-level
applications call MPI functions to perform message passing.

MPI defines a high-level API, meaning that it abstracts away whatever underlying transport is
actually used to pass messages between processes. The idea is that sending-processX can effectively
say “take this array of 1,073 double precision values and send them to process Y ”. The corresponding
receiving-process Y effectively says “receive an array of 1,073 double precision values from process
X .” A miracle occurs, and the array of 1,073 double precision values arrives in Y ’s waiting buffer.

Notice what is absent in this exchange: there is no concept of a connection occurring, no stream
of bytes to interpret, and no network addresses exchanged. MPI abstracts all of that away, not only
to hide such complexity from the upper-level application, but also to make the application portable
across different environments and underlying message passing transports. Specifically, a correct
MPI application is source-compatible across a wide variety of platforms and network types.

MPI defines not only point-to-point communication (e.g., send and receive), it also defines other
communication patterns, such as collective communication. Collective operations are where multiple
processes are involved in a single communication action. Reliable broadcast, for example, is where
one process has a message at the beginning of the operation, and at the end of the operation, all
1http://www.mpi-forum.org/



processes in a group have the message. MPI also defines other concepts and communications patterns
that are not described here.2

Uses of MPI
There are many implementations of the MPI standard that support a wide variety of platforms,
operating systems, and network types. Some implementations are open source, some are closed
source. Open MPI, as its name implies, is one of the open source implementations. Typical MPI
transport networks include (but are not limited to): various protocols over Ethernet (e.g., TCP,
iWARP, UDP, raw Ethernet frames, etc.), shared memory, and InfiniBand.

MPI implementations are typically used in so-called “high-performance computing” (HPC)
environments. MPI essentially provides the IPC for simulation codes, computational algorithms,
and other “big number crunching” types of applications. The input data sets on which these codes
operate typically represent too much computational work for just one server; MPI jobs are spread out
across tens, hundreds, or even thousands of servers, all working in concert to solve one computational
problem.

That is, the applications using MPI are both parallel in nature and highly compute-intensive.
It is not unusual for all the processor cores in an MPI job to run at 100% utilization. To be clear,
MPI jobs typically run in dedicated environments where the MPI processes are the only application
running on the machine (in addition to bare-bones operating system functionality, of course).

As such, MPI implementations are typically focused on providing extremely high performance,
measured by metrics such as:

• Extremely low latency for short message passing. As an example, a 1-byte message can be
sent from a user-level Linux process on one server, through an InfiniBand switch, and received
at the target user-level Linux process on a different server in a little over 1 microsecond (i.e.,
0.000001 second).

• Extremely high message network injection rate for short messages. Some vendors have MPI
implementations (paired with specified hardware) that can inject up to 28 million messages
per second into the network.

• Quick ramp-up (as a function of message size) to the maximum bandwidth supported by the
underlying transport.

• Low resource utilization. All resources used by MPI (e.g., memory, cache, and bus bandwidth)
cannot be used by the application. MPI implementations therefore try to maintain a balance of
low resource utilization while still providing high performance.

Open MPI
The first version of the MPI standard, MPI-1.0, was published in 1994 [Mes93]. MPI-2.0, a set of
additions on top of MPI-1, was completed in 1996 [GGHL+96].

In the first decade after MPI-1 was published, a variety of MPI implementations sprung up. Many
were provided by vendors for their proprietary network interconnects. Many other implementations
arose from the research and academic communities. Such implementations were typically “research-
quality,” meaning that their purpose was to investigate various high-performance networking concepts
and provide proofs-of-concept of their work. However, some were high enough quality that they
gained popularity and a number of users.
2As of this writing, the most recent version of the MPI standard is MPI-2.2 [For09]. Draft versions of the upcoming MPI-3
standard have been published; it may be finalized as early as late 2012.
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Open MPI represents the union of four research/academic, open source MPI implementations:
LAM/MPI, LA/MPI (Los Alamos MPI), and FT-MPI (Fault-Tolerant MPI). The members of the
PACX-MPI team joined the Open MPI group shortly after its inception.

The members of these four development teams decided to collaborate when we had the collective
realization that, aside from minor differences in optimizations and features, our software code bases
were quite similar. Each of the four code bases had their own strengths and weaknesses, but on the
whole, they more-or-less did the same things. So why compete? Why not pool our resources, work
together, and make an even better MPI implementation?

After much discussion, the decision was made to abandon our four existing code bases and take
only the best ideas from the prior projects. This decision was mainly predicated upon the following
premises:

• Even though many of the underlying algorithms and techniques were similar among the four
code bases, they each had radically different implementation architectures, and would be
incredible difficult (if not impossible) to merge.

• Each of the four also had their own (significant) strengths and (significant) weaknesses. Specif-
ically, there were features and architecture decisions from each of the four that were desirable
to carry forward. Likewise, there were poorly optimized and badly designed code in each of
the four that were desirable to leave behind.

• The members of the four developer groups had not worked directly together before. Starting
with an entirely new code base (rather than advancing one of the existing code bases) put all
developers on equal ground.

Thus, Open MPI was born. Its first Subversion commit was on November 22, 2003.

15.2 Architecture
For a variety of reasons (mostly related to either performance or portability), C and C++ were the only
two possibilities for the primary implementation language. C++ was eventually discarded because
different C++ compilers tend to lay out structs/classes in memory according to different optimization
algorithms, leading to different on-the-wire network representations. C was therefore chosen as the
primary implementation language, which influenced several architectural design decisions.

When Open MPI was started, we knew that it would be a large, complex code base:
• In 2003, the current version of the MPI standard, MPI-2.0, defined over 300 API functions.
• Each of the four prior projects were large in themselves. For example, LAM/MPI had over
1,900 files of source code, comprising over 300,000 lines of code (including comments and
blanks).

• We wanted Open MPI to support more features, environments, and networks than all four prior
projects put together.

We therefore spent a good deal of time designing an architecture that focused on three things:
1. Grouping similar functionality together in distinct abstraction layers
2. Using run-time loadable plugins and run-time parameters to choose between multiple different

implementations of the same behavior
3. Not allowing abstraction to get in the way of performance
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Figure 15.1: Abstraction layer architectural view of Open MPI showing its three main layers: OPAL, ORTE,
and OMPI

Abstraction Layer Architecture
Open MPI has three main abstraction layers, shown in Figure 15.1:

• Open, Portable Access Layer (OPAL): OPAL is the bottom layer of Open MPI’s abstractions.
Its abstractions are focused on individual processes (versus parallel jobs). It provides utility
and glue code such as generic linked lists, string manipulation, debugging controls, and other
mundane—yet necessary—functionality.
OPAL also provides Open MPI’s core portability between different operating systems, such as
discovering IP interfaces, sharing memory between processes on the same server, processor
and memory affinity, high-precision timers, etc.

• OpenMPI Run-Time Environment (ORTE)3: AnMPI implementation must provide not only the
required message passing API, but also an accompanying run-time system to launch, monitor,
and kill parallel jobs. In Open MPI’s case, a parallel job is comprised of one or more processes
that may span multiple operating system instances, and are bound together to act as a single,
cohesive unit.
In simple environments with little or no distributed computational support, ORTE uses rsh
or ssh to launch the individual processes in parallel jobs. More advanced, HPC-dedicated
environments typically have schedulers and resource managers for fairly sharing computational
resources between many users. Such environments usually provide specialized APIs to launch
and regulate processes on compute servers. ORTE supports a wide variety of such managed
environments, such as (but not limited to): Torque/PBS Pro, SLURM, Oracle Grid Engine,
and LSF.

• Open MPI (OMPI): The MPI layer is the highest abstraction layer, and is the only one exposed
to applications. The MPI API is implemented in this layer, as are all the message passing
semantics defined by the MPI standard.
Since portability is a primary requirement, the MPI layer supports a wide variety of network
types and underlying protocols. Some networks are similar in their underlying characteristics
and abstractions; some are not.

Although each abstraction is layered on top of the one below it, for performance reasons the
ORTE and OMPI layers can bypass the underlying abstraction layers and interact directly with the
3Pronounced “or-tay”.
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operating system and/or hardware when needed (as depicted in Figure 15.1). For example, the
OMPI layer uses OS-bypass methods to communicate with certain types of NIC hardware to obtain
maximum networking performance.

Each layer is built into a standalone library. The ORTE library depends on the OPAL library; the
OMPI library depends on the ORTE library. Separating the layers into their own libraries has acted
as a wonderful tool for preventing abstraction violations. Specifically, applications will fail to link
if one layer incorrectly attempts to use a symbol in a higher layer. Over the years, this abstraction
enforcement mechanism has saved many developers from inadvertently blurring the lines between
the three layers.

Plugin Architecture
Although the initial members of the Open MPI collaboration shared a similar core goal (produce a
portable, high-performance implementation of the MPI standard), our organizational backgrounds,
opinions, and agendas were—and still are—wildly different. We therefore spent a considerable
amount of time designing an architecture that would allow us to be different, even while sharing a
common code base.

Run-time loadable components were a natural choice (a.k.a., dynamic shared objects, or “DSOs”,
or “plugins”). Components enforce a common API but place few limitations on the implementation of
that API. Specifically: the same interface behavior can be implemented multiple different ways. Users
can then choose, at run time, which plugin(s) to use. This even allows third parties to independently
develop and distribute their own Open MPI plugins outside of the core Open MPI package. Allowing
arbitrary extensibility is quite a liberating policy, both within the immediate set of Open MPI
developers and in the greater Open MPI community.

This run-time flexibility is a key component of the Open MPI design philosophy and is deeply
integrated throughout the entire architecture. Case in point: the Open MPI v1.5 series includes
155 plugins. To list just a few examples, there are plugins for different memcpy() implementations,
plugins for how to launch processes on remote servers, and plugins for how to communicate on
different types of underlying networks.

One of the major benefits of using plugins is that multiple groups of developers have freedom
to experiment with alternate implementations without affecting the core of Open MPI. This was a
critical feature, particularly in the early days of the Open MPI project. Sometimes the developers
didn’t always know what was the right way to implement something, or sometimes they just disagreed.
In both cases, each party would implement their solution in a component, allowing the rest of the
developer community to easily compare and contrast. Code comparisons can be done without
components, of course, but the component concept helps guarantee that all implementations expose
exactly the same external API, and therefore provide exactly the same required semantics.

As a direct result of the flexibility that it provides, the component concept is utilized heavily
throughout all three layers of Open MPI; in each layer there are many different types of components.
Each type of component is enclosed in a framework. A component belongs to exactly one framework,
and a framework supports exactly one kind of component. Figure 15.2 is a template of Open MPI’s
architectural layout; it shows a few of Open MPI’s frameworks and some of the components that
they contain. (The rest of Open MPI’s frameworks and components are laid out in the same manner.)
Open MPI’s set of layers, frameworks, and components is referred to as the Modular Component
Architecture (MCA).

Finally, another major advantage of using frameworks and components is their inherent compos-
ability. With over 40 frameworks in Open MPI v1.5, giving users the ability to mix-n-match different
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Figure 15.2: Framework architectural view of Open MPI, showing just a few of Open MPI’s frameworks and
components (i.e., plugins). Each framework contains a base and one or more components. This structure is
replicated in each of the layers shown in Figure 15.1. The sample frameworks listed in this figure are spread
across all three layers: btl and coll are in the OMPI layer, plm is in the ORTE layer, and timer is in the OPAL
layer.

plugins of different types allows them to create a software stack that is effectively tailored to their
individual system.

Plugin Frameworks
Each framework is fully self-contained in its own subdirectory in the Open MPI source code tree. The
name of the subdirectory is the same name as the framework; for example, the memory framework is
in the memory directory. Framework directories contain at least the following three items:

1. Component interface definition: A header file named <framework>.h will be located in the
top-level framework directory (e.g., the Memory framework contains memory/memory.h).
This well-known header file defines the interfaces that each component in the framework must
support. This header includes function pointer typedefs for the interface functions, structs for
marshaling these function pointers, and any other necessary types, attribute fields, macros,
declarations, etc.

2. Base code: The base subdirectory contains the glue code that provides the core functionality
of the framework. For example, the memory framework’s base directory is memory/base. The
base is typically comprised of logistical grunt work such as finding and opening components
at run-time, common utility functionality that may be utilized by multiple components, etc.

3. Components: All other subdirectories in the framework directory are assumed to be compo-
nents. Just like the framework, the names of the components are the same names as their
subdirectories (e.g., the memory/posix subdirectory contains the POSIX component in the
Memory framework).

Similar to how each framework defines the interfaces to which its components must adhere,
frameworks also define other operational aspects, such as how they bootstrap themselves, how they
pick components to use, and how they are shut down. Two common examples of how frameworks
differ in their setup are many-of-many versus one-of-many frameworks, and static versus dynamic
frameworks.

230 Open MPI



Many-of-many frameworks. Some frameworks have functionality that can be implemented
multiple different ways in the same process. For example, Open MPI’s point-to-point network
framework will load multiple driver plugins to allow a single process to send and receive messages
on multiple network types.

Such frameworks will typically open all components that they can find and then query each
component, effectively asking, “Do you want to run?” The components determine whether they want
to run by examining the system on which they are running. For example, a point-to-point network
component will look to see if the network type it supports is both available and active on the system.
If it is not, the component will reply “No, I do not want to run”, causing the framework to close and
unload that component. If that network type is available, the component will reply “Yes, I want to
run”, causing the framework to keep the component open for further use.

One-of-many frameworks. Other frameworks provide functionality for which it does not make
sense to have more than one implementation available at run-time. For example, the creation of
a consistent checkpoint of a parallel job—meaning that the job is effectively “frozen” and can be
arbitrarily resumed later—must be performed using the same back-end checkpointing system for
each process in the job. The plugin that interfaces to the desired back-end checkpointing system is
the only checkpoint plugin that must be loaded in each process—all others are unnecessary.

Dynamic frameworks. Most frameworks allow their components to be loaded at run-time via
DSOs. This is the most flexible method of finding and loading components; it allows features such
as explicitly not loading certain components, loading third-party components that were not included
in the main-line Open MPI distribution, etc.

Static frameworks. Some one-of-many frameworks have additional constraints that force their
one-and-only-one component to be selected at compile time (versus run time). Statically linking one-
of-many components allows direct invocation of its member functions (versus invocation via function
pointer), which may be important in highly performance-sensitive functionality. One example is the
memcpy framework, which provides platform-optimized memcpy() implementations.

Additionally, some frameworks provide functionality that may need to be utilized before Open
MPI is fully initialized. For example, the use of some network stacks require complicated memory
registration models, which, in turn, require replacing the C library’s default memory management
routines. Since memory management is intrinsic to an entire process, replacing the default scheme
can only be done pre-main. Therefore, such components must be statically linked into Open MPI
processes so that they can be available for pre-main hooks, long before MPI has even been initialized.

Plugin Components
OpenMPI plugins are divided into two parts: a component struct and amodule struct. The component
struct and the functions to which it refers are typically collectively referred to as “the component.”
Similarly, “the module” collectively refers to the module struct and its functions. The division
is somewhat analogous to C++ classes and objects. There is only one component per process; it
describes the overall plugin with some fields that are common to all components (regardless of
framework). If the component elects to run, it is used to generate one or more modules, which
typically perform the bulk of the functionality required by the framework.
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Throughout the next few sections, we’ll build up the structures necessary for the TCP component
in the BTL (byte transfer layer) framework. The BTL framework effects point-to-point message
transfers; the TCP component, not surprisingly, uses TCP as its underlying transport for message
passing.

Component struct. Regardless of framework, each component contains a well-known, statically
allocated and initialized component struct. The struct must be named according to the template
mca_<framework>_<component>_component. For example, the TCP network driver component’s
struct in the BTL framework is named mca_btl_tcp_component.

Having templated component symbols both guarantees that there will be no name collisions
between components, and allows the MCA core to find any arbitrary component struct via dlsym(2)
(or the appropriate equivalent in each supported operating system).

The base component struct contains some logistical information, such as the component’s formal
name, version, framework version adherence, etc. This data is used for debugging purposes, inventory
listing, and run-time compliance and compatibility checking.

struct mca_base_component_2_0_0_t {
/* Component struct version number */
int mca_major_version, mca_minor_version, mca_release_version;

/* The string name of the framework that this component belongs to,
and the framework’s API version that this component adheres to */

char mca_type_name[MCA_BASE_MAX_TYPE_NAME_LEN + 1];
int mca_type_major_version, mca_type_minor_version,

mca_type_release_version;

/* This component’s name and version number */
char mca_component_name[MCA_BASE_MAX_COMPONENT_NAME_LEN + 1];
int mca_component_major_version, mca_component_minor_version,

mca_component_release_version;

/* Function pointers */
mca_base_open_component_1_0_0_fn_t mca_open_component;
mca_base_close_component_1_0_0_fn_t mca_close_component;
mca_base_query_component_2_0_0_fn_t mca_query_component;
mca_base_register_component_params_2_0_0_fn_t

mca_register_component_params;
};

The base component struct is the core of the TCP BTL component; it contains the following
function pointers:

• Open. The open call is the initial query function invoked on a component. It allows a component
to initialize itself, look around the system where it is running, and determine whether it wants
to run. If a component can always be run, it can provide a NULL open function pointer.
The TCP BTL component open function mainly initializes some data structures and ensures
that invalid parameters were not set by the user.

• Close. When a framework decides that a component is no longer needed, it calls the close
function to allow the component to release any resources that it has allocated. The close
function is invoked on all remaining components when processes are shutting down. However,
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close can also be invoked on components that are rejected at run time so that they can be closed
and ignored for the duration of the process.
The TCP BTL component close function closes listening sockets and frees resources (e.g.,
receiving buffers).

• Query. This call is a generalized “Do you want to run?” function. Not all frameworks utilize
this specific call—some need more specialized query functions.
The BTL framework does not use the generic query function (it defines its own; see below), so
the TCP BTL does not fill it in.

• Parameter registration. This function is typically the first function called on a component. It
allows the component to register any relevant run-time, user-settable parameters. Run-time
parameters are discussed further below.
The TCP BTL component register function creates a variety of user-settable run-time parame-
ters, such as one which allows the user to specify which IP interface(s) to use.

The component structure can also be extended on a per-framework and/or per-component basis.
Frameworks typically create a new component struct with the component base struct as the first
member. This nesting allows frameworks to add their own attributes and function pointers. For
example, a framework that needs a more specialized query function (as compared to the query
function provided on the basic component) can add a function pointer in its framework-specific
component struct.

The MPI btl framework, which provides point-to-point MPI messaging functionality, uses this
technique.

struct mca_btl_base_component_2_0_0_t {
/* Base component struct */
mca_base_component_t btl_version;
/* Base component data block */
mca_base_component_data_t btl_data;

/* btl-framework specific query functions */
mca_btl_base_component_init_fn_t btl_init;
mca_btl_base_component_progress_fn_t btl_progress;

};

As an example of the TCP BTL framework query functions, the TCP BTL component btl_init
function does several things:

• Creates a listening socket for each “up” IPv4 and IPv6 interface
• Creates a module for each “up” IP interface
• Registers the tuple (IP address, port) for each “up” IP interface with a central repository
so that other MPI processes know how to contact it

Similarly, plugins can extend the framework-specific component struct with their own members.
The tcp component in the btl framework does this; it caches many data members in its component
struct.

struct mca_btl_tcp_component_t {
/* btl framework-specific component struct */
mca_btl_base_component_2_0_0_t super;
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/* Some of the TCP BTL component’s specific data members */
/* Number of TCP interfaces on this server */
uint32_t tcp_addr_count;

/* IPv4 listening socket descriptor */
int tcp_listen_sd;

/* ...and many more not shown here */
};

This struct-nesting technique is effectively a simple emulation of C++ single inheritance: a
pointer to an instance of a struct mca_btl_tcp_component_t can be cast to any of the three types
such that it can be used by an abstraction layer than does not understand the “derived” types.

That being said, casting is generally frowned upon in Open MPI because it can lead to incredibly
subtle, difficult-to-find bugs. An exception was made for this C++-emulation technique because it
has well-defined behaviors and helps enforce abstraction barriers.

Module struct. Module structs are individually defined by each framework; there is little com-
monality between them. Depending on the framework, components generate one or more module
struct instances to indicate that they want to be used.

For example, in the BTL framework, one module usually corresponds to a single network device.
If an MPI process is running on a Linux server with three “up” Ethernet devices, the TCP BTL
component will generate three TCP BTL modules; one corresponding to each Linux Ethernet device.
Each module will then be wholly responsible for all sending and receiving to and from its Ethernet
device.

Tying it all together. Figure 15.3 shows the nesting of the structures in the TCP BTL component,
and how it generates one module for each of the three Ethernet devices.
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Figure 15.3: The left side shows the nesting of structures in the TCP BTL component. The right side shows
how the component generates one module struct for each “up” Ethernet interface.

Composing BTL modules this way allows the upper-layer MPI progression engine both to treat
all network devices equally, and to perform user-level channel bonding.

For example, consider sending a large message across the three-device configuration described
above. Assume that each of the three Ethernet devices can be used to reach the intended receiver
(reachability is determined by TCP networks and netmasks, and some well-defined heuristics). In
this case, the sender will split the large message into multiple fragments. Each fragment will be
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assigned—in a round-robin fashion—to one of the TCP BTL modules (each module will therefore
be assigned roughly one third of the fragments). Each module then sends its fragments over its
corresponding Ethernet device.

This may seem like a complex scheme, but it is surprisingly effective. By pipelining the sends
of a large message across the multiple TCP BTL modules, typical HPC environments (e.g., where
each Ethernet device is on a separate PCI bus) can sustain nearly maximum bandwidth speeds across
multiple Ethernet devices.

Run-Time Parameters
Developers commonly make decisions when writing code, such as:

• Should I use algorithm A or algorithm B?
• How large of a buffer should I preallocate?
• How long should the timeout be?
• At what message size should I change network protocols?
• . . . and so on.
Users tend to assume that the developers will answer such questions in a way that is generally

suitable for most types of systems. However, the HPC community is full of scientist and engineer
power users who want to aggressively tweak their hardware and software stacks to eke out every
possible compute cycle. Although these users typically do not want to tinker with the actual code
of their MPI implementation, they do want to tinker by selecting different internal algorithms,
choosing different resource consumption patterns, or forcing specific network protocols in different
circumstances.

Therefore, the MCA parameter system was included when designing Open MPI; the system is
a flexible mechanism that allows users to change internal Open MPI parameter values at run time.
Specifically, developers register string and integer MCA parameters throughout the Open MPI code
base, along with an associated default value and descriptive string defining what the parameter is
and how it is used. The general rule of thumb is that rather than hard-coding constants, developers
use run-time-settable MCA parameters, thereby allowing power users to tweak run-time behavior.

There are a number of MCA parameters in the base code of the three abstraction layers, but the
bulk of Open MPI’s MCA parameters are located in individual components. For example, the TCL
BTL plugin has a parameter that specifies whether only TCPv4 interfaces, only TCPv6 interfaces, or
both types of interfaces should be used. Alternatively, another TCP BTL parameter can be set to
specify exactly which Ethernet devices to use.

Users can discover what parameters are available via a user-level command line tool (ompi_info).
Parameter values can be set in multiple ways: on the command line, via environment variables, via
the Windows registry, or in system- or user-level INI-style files.

TheMCA parameter system complements the idea of run-time plugin selection flexibility, and has
proved to be quite valuable to users. Although Open MPI developers try hard to choose reasonable
defaults for a wide variety of situations, every HPC environment is different. There are inevitably
environments where Open MPI’s default parameter values will be unsuitable—and possibly even
detrimental to performance. The MCA parameter system allows users to be proactive and tweak
Open MPI’s behavior for their environment. Not only does this alleviate many upstream requests for
changes and/or bug reports, it allows users to experiment with the parameter space to find the best
configuration for their specific system.
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15.3 Lessons Learned
With such a varied group of core Open MPI members, it is inevitable that we would each learn
something, and that as a group, we would learn many things. The following list describes just a few
of these lessons.

Performance
Message-passing performance and resource utilization are the king and queen of high-performance
computing. Open MPI was specifically designed in such a way that it could operate at the very
bleeding edge of high performance: incredibly low latencies for sending short messages, extremely
high short message injection rates on supported networks, fast ramp-ups to maximum bandwidth for
large messages, etc. Abstraction is good (for many reasons), but it must be designed with care so
that it does not get in the way of performance. Or, put differently: carefully choose abstractions that
lend themselves to shallow, performant call stacks (versus deep, feature-rich API call stacks).

That being said, we also had to accept that in some cases, abstraction—not architecture—must
be thrown out the window. Case in point: Open MPI has hand-coded assembly for some of its most
performance-critical operations, such as shared memory locking and atomic operations.

It is worth noting that Figures 15.1 and 15.2 show two different architectural views of Open MPI.
They do not represent the run-time call stacks or calling invocation layering for the high performance
code sections.

Lesson learned: It is acceptable (albeit undesirable) and unfortunately sometimes necessary to
have gross, complex code in the name of performance (e.g., the aforementioned assembly code).
However, it is always preferable to spend time trying to figure out how to have good abstractions to
discretize and hide complexity whenever possible. A few weeks of design can save literally hundreds
or thousands of developer-hours of maintenance on tangled, subtle, spaghetti code.

Standing on the Shoulders of Giants
We actively tried to avoid re-inventing code in OpenMPI that someone else has already written (when
such code is compatible with Open MPI’s BSD licensing). Specifically, we have no compunctions
about either directly re-using or interfacing to someone else’s code.

There is no place for the “not invented here” religion when trying to solve highly complex
engineering problems; it only makes good logistical sense to re-use external code whenever possible.
Such re-use frees developers to focus on the problems unique to Open MPI; there is no sense
re-solving a problem that someone else has solved already.

A good example of this kind of code re-use is the GNU Libtool Libltdl package. Libltdl is a
small library that provides a portable API for opening DSOs and finding symbols in them. Libltdl is
supported on a wide variety of operating systems and environments, including Microsoft Windows.

Open MPI could have provided this functionality itself—but why? Libltdl is a fine piece of
software, is actively maintained, is compatible with Open MPI’s license, and provides exactly the
functionality that was needed. Given these points, there is no realistic gain for Open MPI developers
to re-write this functionality.

Lesson learned: When a suitable solution exists elsewhere, do not hesitate to integrate it and stop
wasting time trying to re-invent it.
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Optimize for the Common Case
Another guiding architectural principle has been to optimize for the common case. For example,
emphasis is placed on splitting many operations into two phases: setup and repeated action. The
assumption is that setup may be expensive (meaning: slow). So do it once and get it over with.
Optimize for the much more common case: repeated operation.

For example, malloc() can be slow, especially if pages need to be allocated from the operating
system. So instead of allocating just enough bytes for a single incoming network message, allocate
enough space for a bunch of incoming messages, divide the result up into individual message buffers,
and set up a freelist to maintain them. In this way, the first request for a message buffer may be slow,
but successive requests will be much faster because they will just be de-queues from a freelist.

Lesson learned: Split common operations into (at least) two phases: setup and repeated action.
Not only will the code perform better, it may be easier to maintain over time because the distinct
actions are separated.

Miscellaneous
There are too many more lessons learned to describe in detail here; the following are a few more
lessons that can be summed up briefly:

• Wewere fortunate to draw upon 15+ years of HPC research and make designs that have (mostly)
successfully carried us for more than eight years. When embarking on a new software project,
look to the past. Be sure to understand what has already been done, why it was done, and what
its strengths and weaknesses were.

• The concept of components—allowingmultiple different implementations of the same functionality—
has saved us many times, both technically and politically. Plugins are good.

• Similarly, we continually add and remove frameworks as necessary. When developers start
arguing about the “right” way to implement a new feature, add a framework that fronts
components that implement that feature. Or when newer ideas come along that obsolete older
frameworks, don’t hesitate to delete such kruft.

Conclusion
If we had to list the three most important things that we’ve learned from the Open MPI project, I
think they would be as follows:

• One size does not fit all (users). The run-time plugin and companion MCA parameter system
allow users flexibility that is necessary in the world of portable software. Complex software
systems cannot (always) magically adapt to a given system; providing user-level controls allows
a human to figure out—and override— when the software behaves sub-optimally.

• Differences are good. Developer disagreements are good. Embrace challenges to the status
quo; do not get complacent. A plucky grad student saying “Hey, check this out. . . ” can lead to
the basis of a whole new feature or a major evolution of the product.

• Although outside the scope of this book, people and community matter. A lot.
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[chapter16]

OSCAR
Jennifer Ruttan

Since their initial adoption, EMR (electronic medical record) systems have attempted to bridge the
gap between the physical and digital worlds of patient care. Governments in countries around the
world have attempted to come up with a solution that enables better care for patients at a lower cost
while reducing the paper trail that medicine typically generates. Many governments have been very
successful in their attempts to create such a system—some, like that of the Canadian province of
Ontario, have not (some may remember the so-called “eHealth Scandal” in Ontario that, according
to the Auditor General, cost taxpayers $1 billion CAD).

An EMR permits the digitization of a patient chart, and when used properly should make it
easier for a physician to deliver care. A good system should provide a physician a bird’s eye view
of a patient’s current and ongoing conditions, their prescription history, their recent lab results,
history of their previous visits, and so on. OSCAR (Open Source Clinical Application Resource), an
approximately ten-year-old project of McMaster University in Hamilton, Ontario, Canada, is the
open source community’s attempt to provide such a system to physicians at low or no cost.

OSCAR has many subsystems that provide functionality on a component-by-component basis.
For example, oscarEncounter provides an interface for interacting with a patient’s chart directly; Rx3
is a prescription module that checks for allergies and drug interactions automatically and allows a
physician to directly fax a prescription to a pharmacy from the UI; the Integrator is a component to
enable data sharing between multiple compatible EMRs. All of these separate components come
together to build the typical OSCAR user experience.

OSCAR won’t be for every physician; for example, a specialist may not find all the features of
the system useful, and it is not easily customizable. However, it offers a complete set of features for
a general physician interacting with patients on a day-to-day basis.

In addition, OSCAR is CMS 3.0 certified (and has applied for CMS 4.0 certification)—which
allows physicians to receive funding for installing it in their clinic1. Receiving CMS certification
involves passing a set of requirements from the Government of Ontario and paying a fee.

This chapter will discuss the architecture of OSCAR in fairly general terms, describing the
hierarchy, major components, and most importantly the impact that past decisions have made on the
project. As a conclusion and to wrap up, there will be a discussion on how OSCAR might have been
designed today if there was an opportunity to do so.
1See https://www.emradvisor.ca/ for details.



16.1 System Hierarchy
As a Tomcat web application, OSCAR generally follows the typical model-view-controller design
pattern. This means that the model code (Data Access Objects, or DAOs) is separate from the
controller code (servlets) and those are separated from the views (Java Server Pages, or JSPs). The
most significant difference between the two is that servlets are classes and JSPs are HTML pages
marked up with Java code. Data gets placed into memory when a servlet executes and the JSP reads
that same data, usually done via reads and writes to the attributes of the request object. Just about
every JSP page in OSCAR has this kind of design.

16.2 Past Decision Making
I mentioned that OSCAR is a fairly old project. This has implications for how effectively the MVC
pattern has been applied. In short, there are sections of the code that completely disregard the
pattern as they were written before tighter enforcement of the MVC pattern began. Some of the most
common features are written this way; for example, performing many actions related to demographics
(patient records) are done via the demographiccontrol.jsp file—this includes creating patients
and updating their data.

OSCAR’s age is a hurdle for tackling many of the problems that are facing the source tree today.
Indeed, there has been significant effort made to improve the situation, including enforcing design
rules via a code review process. This is an approach that the community at present has decided will
allow better collaboration in the future, and will prevent poor code from becoming part of the code
base, which has been a problem in the past.

This is by no means a restriction on how we could design parts of the system now; it does,
however, make it more complicated when deciding to fix bugs in a dated part of OSCAR. Do you, as
somebody tasked to fix a bug in the Demographic Creation function, fix the bug with code in the
same style as it currently exists? Or do you re-write the module completely so that it closely follows
the MVC design pattern?

As developers we must carefully weigh our options in situations like those. There is no guarantee
that if you re-architect a part of the system you will not create new bugs, and when patient data is on
the line, we must make the decision carefully.

16.3 Version Control
ACVS repository was used for much of OSCAR’s life. Commits weren’t often checked for consistency
and it was possible to commit code that could break the build. It was tough for developers to keep up
with changes—especially new developers joining the project late in its lifecycle. A new developer
could see something that they would want to change, make the change, and get it into the source
branch several weeks before anybody would notice that something significant had been modified
(this was especially prevalent during long holidays, such as Christmas break, when not many people
were watching the source tree).

Things have changed; OSCAR’s source tree is now controlled by git. Any commits to the main
branch have to pass code-style checking and unit testing, successfully compile, and be code reviewed
by the developers (much of this is handled by the combination of Hudson2 and Gerrit3). The project
2A continuous integration server: http://hudson-ci.org/
3A code review tool: http://code.google.com/p/gerrit/
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has become much more tightly controlled. Many or all of the issues caused by poor handling of the
source tree have been solved.

16.4 Data Models/DAOs
When looking through the OSCAR source, you may notice that there are many different ways to
access the database: you can use a direct connection to the database via a class called DBHandler,
use a legacy Hibernate model, or use a generic JPA model. As new and easier database access models
became available, they were integrated into OSCAR. The result is that there is now a slightly noisy
picture of how OSCAR interacts with data in MySQL, and the differences between the three types of
data access methods are best described with examples.

EForms (DBHandler)
The EForm system allows users to create their own forms to attach to patient records—this feature is
usually used to replace a paper-based form with a digital version. On each creation of a form of a
particular type, the form’s template file is loaded; then the data in the form is stored in the database
for each instance. Each instance is attached to a patient record.

EForms allow you to pull in certain types of data from a patient chart or other area of the system
via free-form SQL queries (which are defined in a file called apconfig.xml). This can be extremely
useful, as a form can load and then immediately be populated with demographic or other relevant
information without intervention from the user; for example, you wouldn’t have to type in a patient’s
name, age, date of birth, hometown, phone number, or the last note that was recorded for that patient.

A design decision was made, when originally developing the EForm module, to use raw database
queries to populate a POJO (plain-old Java object) called EForm in the controller that is then passed
to the view layer to display data on the screen, sort of like a JavaBean. Using a POJO in this case is
actually closer in design to the Hibernate or JPA architecture, as I’ll discuss in the next sections.

All of the functionality regarding saving EForm instances and templates is done via raw SQL
queries run through the DBHandler class. Ultimately, DBHandler is a wrapper for a simple JDBC
object and does not scrutinize a query before sending it to the SQL server. It should be added here
that DBHandler is a potential security flaw as it allows unchecked SQL to be sent to the server. Any
class that uses DBHandler must implement its own checking to make sure that SQL injection doesn’t
occur.

Depending on the type of application you’re writing, direct access of a database is sometimes
fine. In certain cases, it can even speed development up. Using this method to access the database
doesn’t conform to the model-view-controller design pattern, though: if you’re going to change your
database structure (the model), you have to change the SQL query elsewhere (in the controller).
Sometimes, adding certain columns or changing their type in OSCAR’s database tables requires this
kind of invasive procedure just to implement small features.

It may not surprise you to find out that the DBHandler object is one of the oldest pieces of code
still intact in the source. I personally don’t know where it originated from but I consider it to be the
most “primitive” of database access types that exist in the OSCAR source. No new code is permitted
to use this class, and if code is committed that uses it, the commit will be rejected automatically.
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Demographic Records (Hibernate)
A demographic record contains general metadata about a patient; for example, their name, age,
address, language, and sex; consider it to be the result of an intake form that a patient fills out during
their first visit to a doctor. All of this data is retrieved and displayed as part of OSCAR’s Master
Record for a specific demographic.

Using Hibernate to access the database is far safer than using DBHandler. For one, you have
to explicitly define which columns match to which fields in your model object (in this case, the
Demographic class). If you want to perform complex joins, they have to be done as prepared
statements. Finally, you will only ever receive an object of the type you ask for when performing a
query, which is very convenient.

The process of working with a Hibernate-style DAO and Model pair is quite simple. In the case
of the Demographic object, there’s a file called Demographic.hbm.xml that describes the mapping
between object field and database column. The file describes which table to look at and what type of
object to return. When OSCAR starts, this file will be read and a sanity check occurs to make sure
that this kind of mapping can actually be made (server startup fails if it can’t). Once running, you
grab an instance of the DemographicDao object and run queries against it.

The best part about using Hibernate over DBHandler is that all of the queries to the server are
prepared statements. This restricts you from running free-form SQL during runtime, but it also
prevents any type of SQL injection attack. Hibernate will often build large queries to grab the data,
and it doesn’t always perform in an extremely efficient way.

In the previous section I mentioned an example of the EForm module using DBHandler to
populate a POJO. This is the next logical step to preventing that kind of code from being written. If
the model has to change, only the .hbm.xml file and the model class have to change (a new field and
getter/setter for the new column), and doing so won’t impact the rest of the application.

While newer than DBHandler, the Hibernate method is also starting to show its age. It’s not
always convenient to use and requires a big configuration file for each table you want to access.
Setting up a new object pair takes time and if you do it incorrectly OSCAR won’t even start. For this
reason, nobody should be writing new code that uses pure Hibernate, either. Instead, generic JPA is
being embraced in new development.

Integrator Consent (JPA)
The newest form of database access is done via generic JPA. If the OSCAR project decided to switch
from Hibernate to another database access API, conforming to the JPA standard for DAOs and Model
objects would make it very easy to migrate. Unfortunately, because this is so “new” to the OSCAR
project, there are almost no areas of the system that actually use this method to get data.

In any case, let me explain how it works. Instead of a .hbm.xml file, you add annotations to your
Model and DAO objects. These annotations describe the table to look in, column mappings for fields,
and join queries. Everything is contained inside the two files and nothing else is necessary for their
operation. Hibernate still runs behind the scenes, though, in actually retrieving the data from the
database.

All of the Integrator’s models are written using JPA—and they are pretty good examples of both
the new style of database access as well as demonstrating that as a new technology to be implemented
into OSCAR, it hasn’t been used in very many places yet. The Integrator is a relatively new addition
to the source. It makes quite a lot of sense to use this new data access model as opposed to Hibernate.
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Touching on a now-common theme in this section of the chapter, the annotated POJOs that JPA
uses allow for a far more streamlined experience. For example, during the Integrator’s build process,
an SQL file is created that sets up all of the tables for you—an enormously useful thing to have. With
that ability, it’s impossible to create mismatching tables and model objects (as you can do with any
other type of database access method) and you never have to worry about naming of columns and
tables. There are no direct SQL queries, so it’s not possible to create SQL injection attacks. In short,
it “just works”.

The way that JPA works can be considered to be fairly similar to the way that ActiveRecord works
in Ruby on Rails. The model class defines the data type and the database stores it; what happens in
between that—getting data in and out—is not up to the user.

Issues with Hibernate and JPA
Both Hibernate and JPA offer some significant benefits in typical use cases. For simple retrieval and
storage, they really cut time out of development and debugging.

However, that doesn’t mean that their implementation into OSCAR has been without issue.
Because the user doesn’t define the SQL between the database and the POJO referencing a specific
row, Hibernate gets to choose the best way to do it. The “best way” can manifest itself in a couple of
ways: Hibernate can choose to just retrieve the simple data from the row, or it can perform a join and
retrieve a lot of information at once. Sometimes these joins get out of hand.

Here’s another example: The casemgmt_note table stores all patient notes. Each note object
stores lots of metadata about the note—but it also stores a list of all of the issues that the note deals
with (issues can be things like, “smoking cessation” or “diabetes”, which describe the contents of
the note). The list of issues is represented in the note object as a List<CaseManagementIssue>.
In order to get that list, the casemgmt_note table is joined with the casemgmt_issue_notes table
(which acts as a mapping table) and finally the casemgmt_issue table.

When you want to write a custom query in Hibernate, which this situation requires, you don’t
write standard SQL—you write HQL (Hibernate Query Language) that is then translated to SQL (by
inserting internal column names for all the fields to be selected) before parameters are inserted and
the query is sent to the database server. In this specific case, the query was written with basic joins
with no join columns—meaning that when the query was eventually translated to SQL, it was so
large that it wasn’t immediately obvious what the query was gathering. Additionally, in almost all
cases, this never created a large enough temporary table for it to matter. For most users, this query
actually runs quickly enough that it’s not noticeable. However, this query is unbelievably inefficient.

Let’s step back for a second. When you perform a join on two tables, the server has to create a
temporary table in memory. In the most generic type of joins, the number of rows is equal to the
number of rows in the first table multiplied by the number of rows in the second table. So if your
table has 500,000 rows, and you join it with a table that has 10,000,000 rows, you’ve just created
a 5×1012 row temporary table in memory, which the select statement is then run against and that
temporary table is discarded.

In one extreme case that we ran into, the join across three tables caused a temporary table to be
created that was around 7×1012 rows in length, of which about 1000 rows were eventually selected.
This operation took about 5 minutes and locked the casemgmt_note table while it was running.

The problem was solved, eventually, through the use of a prepared statement that restricted
the scope of the first table before joining with the other two. The newer, far more efficient query
brought the number of rows to select down to a very manageable 300,000 and enormously improved
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performance of the notes retrieval operation (down to about 0.1 seconds to perform the same select
statement).

The moral of the story is simply that while Hibernate does a fairly good job, unless the join is
very explicitly defined and controlled (either in the .hbm.xml file or a join annotation in the object
class for a JPA model), it can very quickly get out of control. Dealing with objects instead of SQL
queries requires you to leave the actual implementation of the query up to the database access library
and only really allows you to control definition. Unless you’re careful with how you define things, it
can all fall apart under extreme conditions. Furthermore, if you’re a database programmer with lots
of SQL knowledge, it won’t really help much when designing a JPA-enabled class, and it removes
some of the control that you would have if you were writing an SQL statement manually. Ultimately,
a good knowledge of both SQL and JPA annotations and how they affect queries is required.

16.5 Permissions
CAISI (Client Access to Integrated Services and Information) was originally a standalone product—a
fork of OSCAR—to help manage homeless shelters in Toronto. A decision was eventually made to
merge the code from CAISI into the main source branch. The original CAISI project may no longer
exist, but what it gave to OSCAR is very important: its permission model.

The permissions model in OSCAR is extremely powerful and can be used to create just about
as many roles and permission sets as possible. Providers belong to programs (as staff ) where
they have a specific role. Each program takes place at a facility. Each role has a description (for
example, “doctor”, “nurse”, “social worker”, and so on) and a set of attached global permissions.
The permissions are written in a format that makes them very easy to understand: “read nurse notes”
may be a permission that a doctor role may have, but the nurse role may not have the “read doctor
notes” permission.

This format may be easy to understand, but under the hood it requires quite a bit of heavy lifting
to actually check for these types of permissions. The name of the role that the current provider has is
checked against its list of permissions for a match with the action that they are trying to perform.
For example, a provider attempting to read a doctor’s notes would cause “read doctor notes” to be
checked for each and every note written by a doctor.

Another problem is the reliance on English for permission definition. Anybody using OSCAR in
a language other than English would still need to write their permissions in a format such as “read
[role] notes”, using the English words “read”, “write”, “notes”, and so on.

CAISI’s permission model is a significant part of OSCAR, but it’s not the only model in place.
Before CAISI was implemented, another role-based (but not program-based) system was developed
and is still in use in many parts of the system today.

For this second system, providers are assigned one or many roles (for example, “doctor”, “nurse”,
“admin”, and so on). They can be assigned as many roles as necessary—the roles’ permissions
stack on top of each other. These permissions are generally used for restricting access to parts of
the system, as opposed to CAISI’s permissions which restrict access to certain pieces of data on
a patient’s chart. For example, a user has to have the “_admin” “read” permission on a role that
they have assigned to them to be able to access the Admin panel. Having the “read” permission will
exempt them from being able to perform administrative tasks, however. They’ll need the “write”
permission as well for that.

Both of these systems accomplish roughly the same goal; it’s due to CAISI’s merge later in the
project lifecycle that they both exist. They don’t always exist happily together, so in reality it can be
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a lot easier to just focus on using one for day-to-day operations of OSCAR. You can generally date
code in OSCAR by knowing which permissions model preceded which other permissions model:
Provider Type then Provider Roles then CAISI Programs/Roles

The oldest type of permissions model, “Provider Type”, is so dated that it’s actually not used in
most parts of the system and is in fact defaulted to “doctor” during new provider creation—having it
as any other value (such as “receptionist”) causes significant issues throughout the system. It’s easier
and more fine-grained to control permissions via Provider Roles instead.

16.6 Integrator
OSCAR’s Integrator component is a separate web application that independent OSCAR instances
use to exchange patient, program and provider information over a secure link. It can be optionally
installed as a component for an installation in an environment such as a LHN (Local Health Network)
or a hospital. The easiest way to describe the Integrator is as a temporary storage facility.

Consider the following use case and argument for use of the Integrator: in Hospital X, there is
an ENT (ear, nose, and throat) clinic as well as an endocrinology clinic. If an ENT doctor refers
their patient to an endocrinologist upstairs, they may be required to send along patient history and
records. This is inconvenient and generates more paper than is necessary—perhaps the patient is
only seeing the endocrinologist once. By using the Integrator, the patient’s data can be accessed on
the endocrinologist’s EMR, and access to the contents of the patient’s chart can be revoked after the
visit.

A more extreme example: if an unconscious man shows up in an ER with nothing but his health
card, because the home clinic and the hospital’s system are connected via the Integrator, the man’s
record can be pulled and it can be very quickly realized that he has been prescribed the blood thinner
warfarin. Ultimately, information retrieval like this is what an EMR like OSCAR paired with the
Integrator can achieve.

Technical Details
The Integrator is available in source code form only, which requires the user to retrieve and build it
manually. Like OSCAR, it runs on a standard installation of Tomcat with MySQL.

When the URL where the Integrator lives is accessed, it doesn’t appear to display anything useful.
This component is almost purely a web service; OSCAR communicates via POST and GET requests
to the Integrator URL.

As an independently developed project (initially as part of the CAISI project), the Integrator is
fairly strict in adhering to the MVC design pattern. The original developers have done an excellent
job of setting it up with very clearly defined lines between the models, views, and controllers. The
most recently implemented type of database access layer that I mentioned earlier—generic JPA—is
the only such layer in the project. (As an interesting side note: because the entire project is properly
set up with JPA annotations on all the model classes, an SQL script is created at build time that
can be used to initialize the structure of the database; the Integrator, therefore, doesn’t ship with a
stand-alone SQL script.)

Communication is handled via web service calls described in WSDL XML files that are available
on the server. A client could query the Integrator to find out what kind of functions are available and
adapt to it. This really means that the Integrator is compatible with any kind of EMR that somebody
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decides to write a client for; the data format is generic enough that it could easily be mapped to local
types.

For OSCAR, though, a client library is built and included in the main source tree, for simplicity’s
sake. That library only ever needs to be updated if new functions become available on the Integrator.
A bug fix on the Integrator doesn’t require an update of that file.

Design
Data for the Integrator comes in from all of the connected EMRs at scheduled times and, once
there, another EMR can request that data. None of the data on the Integrator is stored permanently,
though—its database could be erased and it could be rebuilt from the client data.

The dataset sent is configured individually at each OSCAR instance which is connected to a
particular Integrator, and except in situations where the entire patient database has to be sent to the
Integrator server, only patient records that have been viewed since the previous push to the server are
sent. The process isn’t exactly like delta patching, but it’s close.

Figure 16.1: Data exchange between OSCARs and Integrator

Let me go into a little more detail about how the Integrator works with an example: a remote
clinic seeing another clinic’s patient. When that clinic wants to access the patient’s record, the clinics
first have to have been connected to the same Integrator server. The receptionist can search the
Integrator for the remote patient (by name and optionally date of birth or sex) and find their record
stored on the server. They initiate the copy of a limited set of the patient’s demographic information
and then double-check with the patient to make sure that they consent to the retrieval of their record by
completing a consent form. Once completed, the Integrator server will deliver whatever information
the Integrator knows about that patient—notes, prescriptions, allergies, vaccinations, documents,
and so on. This data is cached locally so that the local OSCAR doesn’t have to send a request to the
Integrator every time it wants to see this data, but the local cache expires every hour.

After the initial setup of a remote patient by copying their demographic data to the local OSCAR,
that patient is set up as any other on the system. All of the remote data that is retrieved from
the Integrator is marked as such (and the clinic from which it came from is noted), but it’s only
temporarily cached on the local OSCAR. Any local data that is recorded is recorded just like any
other patient data—to the patient record, and sent to the Integrator—but not permanently stored on
any remote machine.

This has a very important implication, especially for patient consent and how that factors into
the design of the Integrator. Let’s say that a patient sees a remote physician and is fine with them
having access to their record, but only temporarily. After their visit, they can revoke the consent for
that clinic to be able to view that patient’s record and the next time that clinic opens the patient’s
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Figure 16.2: The Demographic information and associated data is sent to the Integrator during a data push from
the home clinic. The record on the Integrator may not be a representation of the complete record from the home
clinic as the OSCAR can choose not to send all patient data.

Figure 16.3: A remote OSCAR requests data from the Integrator by asking for a specific patient record. The
Integrator server sends only the demographic information, which is stored permanently on the remote OSCAR.

chart there won’t be any data there (with the exception of any data that was locally recorded). This
ultimately gives control over how and when a record is viewed directly to the patient and is similar
to walking into a clinic carrying a copy of your paper chart. They can see the chart while they’re
interacting with you, but you take it home with you when you leave.

Figure 16.4: A remote clinic can see the contents of a patient chart by asking for the data; if the appropriate
consent is present, the data is sent. The data is never stored permanently on the remote OSCAR.

Another very important ability is for physicians to decide what kinds of data they want to share
with the other connected clinics via their Integrator server. A clinic can choose to share all of a
demographic record or only parts of it, such as notes but not documents, allergies but not prescriptions,
and so on. Ultimately it’s up to the group of physicians who set up the Integrator server to decide
what kinds of data they’re comfortable with sharing with each other.

As I mentioned before, the Integrator is only a temporary storage warehouse and no data is ever
stored permanently there. This is another very important decision that was made during development;
it allows clinics to back out of sharing any and all data via the Integrator very easily—and in fact if
necessary the entire Integrator database can be wiped. If the database is wiped, no user of a client
will ever notice because the data will be accurately reconstructed from the original data on all of the

Jennifer Ruttan 247



various connected clients. An implication is that the OSCAR provider needs to trust the Integrator
provider to have wiped the database when they say so—it is therefore best to deploy an Integrator to
a group of physicians already in a legal organization such as a Family Health Organization or Family
Health Team; the Integrator server would be housed at one of these physician’s clinics.

Data Format
The Integrator’s client libraries are built via wsdl2java, which creates a set of classes representing
the appropriate data types the web service communicates in. There are classes for each data type as
well as classes representing keys for each of these data types.

It’s outside the scope of this chapter to describe how to build the Integrator’s client library. What’s
important to know is that once the library is built, it must be included with the rest of the JARs in
OSCAR. This JAR contains everything necessary to set up the Integrator connection and access
all of the data types that the Integrator server will return to OSCAR, such as CachedDemographic,
CachedDemographicNote, and CachedProvider, among many others. In addition to the data types
that are returned, there are “WS” classes that are used for the retrieval of such lists of data in the first
place—the most frequently used being DemographicWs.

Dealing with the Integrator data can sometimes be a little tricky. OSCAR doesn’t have anything
truly built-in to handle this kind of data, so what usually happens is when retrieving a certain kind of
patient data (for example, notes for a patient’s chart) the Integrator client is asked to retrieve data
from the server. That data is then manually transformed into a local class representing that data (in
the case of notes, it’s a CaseManagementNote). A Boolean flag is set inside the class to indicate
that it’s a piece of remote content and that is used to change how the data is displayed to the user on
the screen. On the opposite end, CaisiIntegratorUpdateTask handles taking local OSCAR data,
converting it into the Integrator’s data format, and then sending that data to the Integrator server.

This design may not be as efficient or as clean as possible, but it does enable older parts of
the system to become “compatible” with Integrator-delivered data without much modification. In
addition, keeping the view as simple as possible by referring to only one type of class improves the
readability of the JSP file and makes it easier to debug in the event of an error.

16.7 Lessons Learned
As you can probably imagine, OSCAR has its share of issues when it comes to overall design. It does,
however, provide a complete feature set that most users will find no issues with. That’s ultimately
the goal of the project: provide a good solution that works in most situations.

I can’t speak for the entire OSCAR community, so this section will be highly subjective and from
my point of view. I feel that there are some important takeaways from an architectural discussion
about the project.

First, it’s clear that poor source control in the past has caused the architecture of the system to
become highly chaotic in parts, especially in areas where the controllers and the views blend together.
The way that the project was run in the past didn’t prevent this from happening, but the process has
changed since and hopefully we won’t have to deal with such a problem again.

Next, because the project is so old, it’s difficult to upgrade (or even change) libraries without
causing significant disruption throughout the code base. That’s exactly what has happened, though.
I often find it difficult to figure out what’s necessary and what isn’t when I’m looking in the library
folder. In addition to that, sometimes when libraries undergo major upgrades they break backwards
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compatibility (changing package names is a common offense). There are often several libraries
included with OSCAR that all accomplish the same task—this goes back to poor source control, but
also the fact that that there has been no list or documentation describing which library is required by
which component.

Additionally, OSCAR is a little inflexible when it comes to adding new features to existing
subsystems. For example, if you want to add a new box to the E-Chart, you’ll have to create a new
JSP page and a new servlet, modify the layout of the E-Chart (in a few places), and modify the
configuration file of the application so that your servlet can load.

Next, due to the lack of documentation, sometimes it is nearly impossible to figure out how a part
of the system works—the original contributor may not even be part of the project anymore—and
often the only tool you have to figure it out is a debugger. As a project of this age, this is costing
the community the potential for new contributors to get involved. However, it’s something that, as a
collaborative effort, the community is working on.

Finally, OSCAR is a repository for medical information and its security is compromised by the
inclusion of the DBHandler class (discussed in a previous section). I personally feel that freeform
database queries that accept parameters should never be acceptable in an EMR because it’s so easy
to perform SQL injection attacks. While it’s good that no new code is permitted that uses this class,
it should be a priority of the development team to remove all instances of its use.

All of that may sound like some harsh criticism of the project. In the past, all of these problems
have been significant and, like I said, prevent the community from growing as the barrier to entry
is so high. This is something that is changing, so in the future, these issues won’t be so much of a
hindrance.

In looking back over the project’s history (and especially over the past few versions) we can come
up with a better design for how the application would be built. The system still has to provide a base
level of functionality (mandated by the Ontario government for certification as an EMR), so that
all has to be baked in by default. But if OSCAR were to be redesigned today, it should be designed
in a truly modular fashion that would allow modules to be treated as plugins; if you didn’t like the
default E-Form module, you could write your own (or even another module entirely). It should be
able to speak to more systems (or more systems should be able to speak to it), including the medical
hardware that you see in increasing use throughout the industry, such as devices for measuring visual
acuity. This also means that it would be easy to adapt OSCAR to the requirements of local and
federal governments around the world for storing medical data. Since every region has a different set
of laws and requirements, this kind of design would be crucial for making sure that OSCAR develops
a worldwide userbase.

I also believe that security should be the most important feature of all. An EMR is only as secure
as its least secure component, so there should be focus on abstracting away as much data access
as possible from the application so that it stores and retrieves data in a sandbox-style environment
through a main data access layer API that has been audited by a third-party and found to be adequate
for storing medical information. Other EMRs can hide behind obscurity and proprietary code as
a security measure (which isn’t really a security measure at all), but being open source, OSCAR
should lead the charge with better data protection.

I stand firmly as a believer in the OSCAR project. We have hundreds of users that we know about
(and the many hundreds that we don’t), and we receive valuable feedback from the physicians who
are interacting with our project on a daily basis. Through the development of new processes and
new features, we hope to grow the installed base and to support users from other regions. It is our
intention to make sure that what we deliver is something that improves the lives of the physicians who
use OSCAR as well as the lives of their patients, by creating better tools to help manage healthcare.
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[chapter17]

Processing.js
Mike Kamermans

Originally developed by Ben Fry and Casey Reas, the Processing programming language started
as an open source programming language (based on Java) to help the electronic arts and visual
design communities learn the basics of computer programming in a visual context. Offering a highly
simplified model for 2D and 3D graphics compared to most programming languages, it quickly
became well-suited for a wide range of activities, from teaching programming through writing small
visualisations to creating multi-wall art installations, and became able to perform a wide variety of
tasks, from simply reading in a sequence of strings to acting as the de facto IDE for programming
and operating the popular “Arduino” open source hardware prototyping boards. Continuing to gain
popularity, Processing has firmly taken its place as an easy to learn, widely used programming
language for all things visual, and so much more.

The basic Processing program, called a “sketch”, consists of two functions: setup and draw.
The first is the main program entry point, and can contain any amount of initialization instructions.
After finishing setup, Processing programs can do one of two things: 1) call draw, and schedule
another call to draw at a fixed interval upon completion; or 2) call draw, and wait for input events
from the user. By default, Processing does the former; calling noLoop results in the latter. This
allows for two modes to present sketches, namely a fixed framerate graphical environment, and an
interactive, event-based updating graphical environment. In both cases, user events are monitored
and can be handled either in their own event handlers, or for certain events that set persistent global
values, directly in the draw function.

Processing.js is a sister project of Processing, designed to bring it to the web without the need
for Java or plugins. It started as an attempt by John Resig to see if the Processing language could be
ported to the web, by using the—at the time brand new—HTML5 <canvas> element as a graphical
context, with a proof of concept library released to the public in 2008. Written with the idea in
mind that “your code should just work”, Processing.js has been refined over the years to make data
visualisations, digital art, interactive animations, educational graphs, video games, etc. work using
web standards and without any plugins. You write code using the Processing language, either in
the Processing IDE or your favourite editor of choice, include it on a web page using a <canvas>
element, and Processing.js does the rest, rendering everything in the <canvas> element and letting
users interact with the graphics in the same way they would with a normal standalone Processing
program.



17.1 How Does It Work?
Processing.js is a bit unusual as an open source project, in that the code base is a single file called
processing.js which contains the code for Processing, the single object that makes up the entire
library. In terms of how the code is structured, we constantly shuffle things around inside this object
as we try to clean it up a little bit with every release. Its design is relatively straightforward, and its
function can be described in a single sentence: it rewrites Processing source code into pure JavaScript
source code, and every Processing API function call is mapped to a corresponding function in the
JavaScript Processing object, which effects the same thing on a <canvas> element as the Processing
call would effect on a Java Applet canvas.

For speed, we have two separate code paths for 2D and 3D functions, and when a sketch is loaded,
either one or the other is used for resolving function wrappers so that we don’t add bloat to running
instances. However, in terms of data structures and code flow, knowing JavaScript means you can
read processing.js, with the possible exception of the syntax parser.

Unifying Java and JavaScript
Rewriting Processing source code into JavaScript source code means that you can simply tell the
browser to execute the rewritten source, and if you rewrote it correctly, things just work. But, making
sure the rewrite is correct has taken, and still occasionally takes, quite a bit of effort. Processing
syntax is based on Java, which means that Processing.js has to essentially transform Java source code
into JavaScript source code. Initially, this was achieved by treating the Java source code as a string,
and iteratively replacing substrings of Java with their JavaScript equivalents1. For a small syntax set,
this is fine, but as time went on and complexity added to complexity, this approach started to break
down. Consequently, the parser was completely rewritten to build an Abstract Syntax Tree (AST)
instead, first breaking down the Java source code into functional blocks, and then mapping each of
those blocks to their corresponding JavaScript syntax. The result is that, at the cost of readability2,
Processing.js now effectively contains an on-the-fly Java-to-JavaScript transcompiler.

Here is the code for a Processing sketch:

void setup() {
size(200,200);
noCursor();
noStroke();
smooth(); }

void draw() {
fill(255,10);
rect(-1,-1,width+1,height+1);
float f = frameCount*PI/frameRate;
float d = 10+abs(60*sin(f));
fill(0,100,0,50);
ellipse(mouseX, mouseY, d,d); }

1For those interested in an early incarnation of the parser, it can be found at https://github.com/jeresig/processing-
js/blob/51d280c516c0530cd9e63531076dfa147406e6b2/processing.js, running from line 37 to line 266.

2Readers are welcome to peruse https://github.com/jeresig/processing-js/blob/v1.3.0/processing.js#L17649,
up to line 19217.
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And here is its Processing.js conversion:

function($p) {
function setup() {

$p.size(200, 200);
$p.noCursor();
$p.noStroke();
$p.smooth(); }

$p.setup = setup;

function draw() {
$p.fill(255, 10);
$p.rect(-1, -1, $p.width + 1, $p.height + 1);
var f = $p.frameCount * $p.PI / $p.__frameRate;
var d = 10 + $p.abs(60 * $p.sin(f));
$p.fill(0, 100, 0, 50);
$p.ellipse($p.mouseX, $p.mouseY, d, d); }

$p.draw = draw; }

This sounds like a great thing, but there are a few problems when converting Java syntax to
JavaScript syntax:

1. Java programs are isolated entities. JavaScript programs share the world with a web page.
2. Java is strongly typed. JavaScript is not.
3. Java is a class/instance based object-oriented language. JavaScript is not.
4. Java has distinct variables and methods. JavaScript does not.
5. Java allows method overloading. JavaScript does not.
6. Java allows importing compiled code. JavaScript has no idea what that even means.
Dealing with these problems has been a tradeoff between what users need, and what we can do

given web technologies. The following sections will discuss each of these issues in greater detail.

17.2 Significant Differences
Java programs have their own threads; JavaScript can lock up your browser.

Java programs are isolated entities, running in their own thread in the greater pool of applications
on your system. JavaScript programs, on the other hand, live inside a browser, and compete with
each other in a way that desktop applications don’t. When a Java program loads a file, the program
waits until the resource is done loading, and operation resumes as intended. In a setting where the
program is an isolated entity on its own, this is fine. The operating system stays responsive because
it’s responsible for thread scheduling, and even if the program takes an hour to load all its data, you
can still use your computer. On a web page, this is not how things work. If you have a JavaScript
“program” waiting for a resource to be done loading, it will lock its process until that resource is
available. If you’re using a browser that uses one process per tab, it will lock up your tab, and the rest
of the browser is still usable. If you’re using a browser that doesn’t, your entire browser will seem
frozen. So, regardless of what the process represents, the page the script runs on won’t be usable
until the resource is done loading, and it’s entirely possible that your JavaScript will lock up the
entire browser.
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This is unacceptable on the modern web, where resources are transferred asynchronously, and
the page is expected to function normally while resources are loaded in the background. While
this is great for traditional web pages, for web applications this is a real brain twister: how do you
make JavaScript idle, waiting for a resource to load, when there is no explicit mechanism to make
JavaScript idle? While there is no explicit threading in JavaScript, there is an event model, and there
is an XMLHTTPRequest object for requesting arbitrary (not just XML or HTML) data from arbitrary
URLS. This object comes with several different status events, and we can use it to asynchronously
get data while the browser stays responsive. Which is great in programs in which you control the
source code: you make it simply stop after scheduling the data request, and make it pick up execution
when the data is available. However, this is near impossible for code that was written based on the
idea of synchronous resource loading. Injecting “idling” in programs that are supposed to run at a
fixed framerate is not an option, so we have to come up with alternative approaches.

For some things, we decided to force synchronous waiting anyway. Loading a file with strings,
for instance, uses a synchronous XMLHTTPRequest, and will halt execution of the page until the data
is available. For other things, we had to get creative. Loading images, for instance, uses the browser’s
built-in mechanism for loading images; we build a new Image in JavaScript, set its src attribute to
the image URL, and the browser does the rest, notifying us that the image is ready through the onload
event. This doesn’t even rely on an XMLHTTPRequest, it simply exploits the browser’s capabilities.

To make matters easier when you already know which images you are loading, we added preload
directives so that the sketch does not start execution until preloading is complete. A user can indicate
any number of images to preload via a comment block at the start of the sketch; Processing.js then
tracks outstanding image loading. The onload event for an image tells us that it is done transferring
and is considered ready to be rendered (rather than simply having been downloaded but not decoded
to a pixel array in memory yet), after which we can populate the corresponding Processing PImage
object with the correct values (width, height, pixel data, etc.) and clear the image from the list.
Once the list is empty, the sketch gets executed, and images used during its lifetime will not require
waiting.

Here is an example of preload directives:

/* @pjs preload="./worldmap.jpg"; */

PImage img;

void setup() {
size(640,480);
noLoop();
img = loadImage("worldmap.jpg"); }

void draw() {
image(img,0,0); }

For other things, we’ve had to build more complicated “wait for me” systems. Fonts, unlike
images, do not have built-in browser loading (or at least not a system as functional as image loading).
While it is possible to load a font using a CSS @font-face rule and rely on the browser to make it all
happen, there are no JavaScript events that can be used to determine that a font finished loading. We
are slowly seeing events getting added to browsers to generate JavaScript events for font download
completion, but these events come “too early”, as the browser may need anywhere from a few to a
few hundred more milliseconds to actually parse the font for use on the page after download. Thus,
acting on these events will still lead to either no font being applied, or the wrong font being applied

254 Processing.js



if there is a known fallback font. Rather than relying on these events, we embed a tiny TrueType
font that only contains the letter “A” with impossibly small metrics, and instruct the browser to load
this font via an @font-face rule with a data URI that contains the font’s bytecode as a BASE64
string. This font is so small that we can rely on it being immediately available. For any other font
load instruction we compare text metrics between the desired font and this tiny font. A hidden <div>
is set up with text styled using the desired font, with our tiny font as fallback. As long as the text in
that <div> is impossibly small, we know the desired font is not available yet, and we simply poll at
set intervals until the text has sensible metrics.

Java is strongly typed; JavaScript is not.

In Java, the number 2 and the number 2.0 are different values, and they will do different things
during mathematical operations. For instance, the code i = 1/2 will result in i being 0, because the
numbers are treated as integers, whereas i = 1/2.0, i = 1.0/2, and even i = 1./2. will all result
in i being 0.5, because the numbers are considered decimal fractions with a non-zero integer part,
and a zero fractional part. Even if the intended data type is a floating point number, if the arithmetic
uses only integers, the result will be an integer. This lets you write fairly creative math statements in
Java, and consequently in Processing, but these will generate potentially wildly different results when
ported to Processing.js, as JavaScript only knows “numbers”. As far as JavaScript is concerned, 2
and 2.0 are the same number, and this can give rise to very interesting bugs when running a sketch
using Processing.js.

This might sound like a big issue, and at first we were convinced it would be, but you can’t argue
with real world feedback: it turns out this is almost never an issue for people who put their sketches
online using Processing.js. Rather than solving this in some cool and creative way, the resolution of
this problem was actually remarkably straightforward; we didn’t solve it, and as a design choice, we
don’t intend to ever revisit that decision. Short of adding a symbol table with strong typing so that
we can fake types in JavaScript and switch functionality based on type, this incompatibility cannot
properly be solved without leaving much harder to find edge case bugs, and so rather than adding
bulk to the code and slowdown to execution, we left this quirk in. It is a well-documented quirk, and
“good code” won’t try to take advantage of Java’s implicit number type casting. That said, sometimes
you will forget, and the result can be quite interesting.

Java is a class/instance-based object-oriented language, with separate variable and method
spaces; JavaScript is not.

JavaScript uses prototype objects, and the inheritance model that comes with it. This means all
objects are essentially key/value pairs where each key is a string, and values are either primitives,
arrays, objects, or functions. On the inheritance side, prototypes can extend other prototypes,
but there is no real concept of “superclass” and “subclass”. In order to make “proper” Java-style
object-oriented code work, we had to implement classical inheritance for JavaScript in Processing.js,
without making it super slow (we think we succeeded in that respect). We also had to come up
with a way to prevent variable names and function names from stepping on each other. Because of
the key/value nature of JavaScript objects, defining a variable called line, followed by a function
like line(x1,y1,x2,y2) will leave you with an object that uses whatever was declared last for a
key. JavaScript first sets object.line = "some value" for you, and then sets object.line =
function(x1,y1,x2,y2){...}, overriding what you thought your variable line was.
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It would have slowed down the library a lot to create separate administration for variables and
methods/functions, so again the documentation explains that it’s a bad idea to use variables and
functions with the same name. If everyone wrote “proper” code, this wouldn’t be much of a problem,
as you want to name variables and functions based on what they’re for, or what they do, but the
real world does things differently. Sometimes your code won’t work, and it’s because we decided
that having your code break due to a naming conflict is preferable to your code always working, but
always being slow. A second reason for not implementing variable and function separation was that
this could break JavaScript code used inside Processing sketches. Closures and the scope chain for
JavaScript rely on the key/value nature of objects, so driving a wedge in that by writing our own
administration would have also severely impacted performance in terms of Just-In-Time compilation
and compression based on functional closures.

Java allows method overloading; JavaScript does not.

One of Java’s more powerful features is that you can define a function, let’s say add(int,int),
and then define another function with the same name, but a different number of arguments, e.g.
add(int,int,int), or with different argument types, e.g. add(ComplexNumber,ComplexNumber).
Calling add with two or three integer arguments will automatically call the appropriate function,
and calling add with floats or Car objects will generate an error. JavaScript, on the other hand, does
not support this. In JavaScript, a function is a property, and you can dereference it (in which case
JavaScript will give you a value based on type coercion, which in this case returns true when the
property points to a function definition, or falsewhen it doesn’t), or you can call it as a function using
the execution operators (which you will know as parentheses with zero or more arguments between
them). If you define a function as add(x,y) and then call it as add(1,2,3,4,5,6), JavaScript is
okay with that. It will set x to 1 and y to 2 and simply ignore the rest of the arguments. In order
to make overloading work, we rewrite functions with the same name but different argument count
to a numbered function, so that function(a,b,c) in the source becomes function$3(a,b,c) in
the rewritten code, and function(a,b,c,d) becomes function$4(a,b,c,d), ensuring the correct
code paths.

We also mostly solved overloading of functions with the same number but differently typed
arguments, as long as the argument types can be seen as different by JavaScript. JavaScript can
tell the functional type of properties using the typeof operator, which will return either number,
string, object or function depending onwhat a property represents. Declaring var x = 3 followed
by x = ’6’ will cause typeof x to report number after the initial declaration, and string after
reassignment. As long as functions with the same argument count differ in argument type, we rename
them and switch based on the result of the typeof operation. This does not work when the functions
take arguments of type object, so for these functions we have an additional check involving the
instanceof operator (which returns the name of the function that was used to create the object) to
make function overloading work. In fact, the only place where we cannot successfully transcompile
overloaded functions is where the argument count is the same between functions, and the argument
types are different numerical types. As JavaScript only has one numerical type, declaring functions
such as add(int x, int y), add(float x, float y) and add(double x, double y) will clash.
Everything else, however, will work just fine.
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Java allows importing compiled code.

Sometimes, plain Processing is not enough, and additional functionality is introduced in the form
of a Processing library. These take the form of a .jarchive with compiled Java code, and offer
things like networking, audio, video, hardware interfacing and other exotic functions not covered by
Processing itself.

This is a problem, because compiled Java code is Java byte code. This has given us many
headaches: how do we support library imports without writing a Java byte code decompiler? After
about a year of discussions, we settled on what may seem the simplest solution. Rather than trying
to also cover Processing libraries, we decided to support the import keyword in sketches, and
create a Processing.js Library API, so that library developers can write a JavaScript version of
their library (where feasible, given the web’s nature), so that if they write a package that is used
via import processing.video, native Processing will pick the .jarchive, and Processing.js will
instead pick processing.video.js, thus ensuring that things “just work”. This functionality is slated for
Processing.js 1.4, and library imports is the last major feature that is still missing from Processing.js
(we currently support the import keyword only in the sense that it is removed from the source code
before conversion), and will be the last major step towards parity.

Why Pick JavaScript if It Can’t Do Java?
This is not an unreasonable question, and it has multiple answers. The most obvious one is that
JavaScript comes with the browser. You don’t “install” JavaScript yourself, there’s no plugin to
download first; it’s just there. If you want to port something to the web, you’re stuck with JavaScript.
Although, given the flexibility of JavaScript, “stuck with” is really not doing justice to how powerful
the language is. So, one reason to pick JavaScript is “because it’s already there”. Pretty much every
device that is of interest comes with a JavaScript-capable browser these days. The same cannot be
said for Java, which is being offered less and less as a preinstalled technology, if it is available at all.

However, the proper answer is that it’s not really true that JavaScript “can’t do” the things that
Java does; it can, it would just be slower. Even though out of the box JavaScript can’t do some of the
things Java does, it’s still a Turing-complete programming language and it can be made to emulate any
other programming language, at the cost of speed. We could, technically, write a full Java interpreter,
with a String heap, separate variable and method models, class/instance object-orientation with
rigid class hierarchies, and everything else under the Sun (or, these days, Oracle), but that’s not what
we’re in it for: Processing.js is about offering a Processing-to-the-web conversion, in as little code as
is necessary for that. This means that even though we decided not to make it do certain Java things,
our library has one huge benefit: it can cope with embedded JavaScript really, really well.

In fact, during a meeting between the Processing.js and Processing people at Bocoup in Boston,
in 2010, Ben Fry asked John Resig why he used regular expression replacement and only partial
conversion instead of doing a proper parser and compiler. John’s response was that it was important
to him that people be able to mix Processing syntax (Java) and JavaScript without having to choose
between them. That initial choice has been crucial in shaping the philosophy of Processing.js ever
since. We’ve worked hard to keep it true in our code, and we can see a clear payoff when we look
at all the “purely web” users of Processing.js, who never used Processing, and will happily mix
Processing and JavaScript syntax without a problem.
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The following example shows how JavaScript and Processing work together.

// JavaScript (would throw an error in native Processing)
var cs = { x: 50,

y: 0,
label: "my label",
rotate: function(theta) {

var nx = this.x*cos(theta) - this.y*sin(theta);
var ny = this.x*sin(theta) + this.y*cos(theta);
this.x = nx; this.y = ny; }};

// Processing
float angle = 0;

void setup() {
size(200,200);
strokeWeight(15); }

void draw() {
translate(width/2,height/2);
angle += PI/frameRate;
while(angle>2*PI) { angle-=2*PI; }
jQuery(’#log’).text(angle); // JavaScript (error in native Processing)
cs.rotate(angle); // legal JavaScript as well as Processing
stroke(random(255));
point(cs.x, cs.y); }

A lot of things in Java are promises: strong typing is a content promise to the compiler, visibility
is a promise on who will call methods and reference variables, interfaces are promises that instances
contain the methods the interface describes, etc. Break those promises and the compiler complains.
But, if you don’t—and this is a one of the most important thoughts for Processing.js—then you don’t
need the additional code for those promises in order for a program to work. If you stick a number in
a variable, and your code treats that variable as if it has a number in it, then at the end of the day var
varname is just as good as int varname. Do you need typing? In Java, you do; in JavaScript, you
don’t, so why force it in? The same goes for other code promises. If the Processing compiler doesn’t
complain about your code, then we can strip all the explicit syntax for your promises and it’ll still
work the same.

This has made Processing.js a ridiculously useful library for data visualisation, media presentation
and even entertainment. Sketches in native Processing work, but sketches that mix Java and JavaScript
also work just fine, as do sketches that use pure JavaScript by treating Processing.js as a glorified
canvas drawing framework. In an effort to reach parity with native Processing, without forcing
Java-only syntax, the project has been taken in by an audience as wide as the web itself. We’ve seen
activity all over the web using Processing.js. Everyone from IBM to Google has built visualisations,
presentations and even games with Processing.js—Processing.js is making a difference.

Another great thing about converting Java syntax to JavaScript while leaving JavaScript untouched
is that we’ve enabled something we hadn’t even thought about ourselves: Processing.js will work with
anything that will work with JavaScript. One of the really interesting things that we’re now seeing,
for instance, is that people are using CoffeeScript (a wonderfully simple, Ruby-like programming
language that transcompiles to JavaScript) in combination with Processing.js, with really cool results.
Even though we set out to build “Processing for the web” based on parsing Processing syntax, people
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took what we did and used it with brand new syntaxes. They could never have done that if we had
made Processing.js simply be a Java interpreter. By sticking with code conversion rather than writing
a code interpreter, Processing.js has given Processing a reach on the web far beyond what it would
have had if it had stayed Java-only, or even if it had kept a Java-only syntax, with execution on the
web taken care of by JavaScript. The uptake of our code not just by end users, but also by people
who try to integrate it with their own technologies, has been both amazing and inspiring. Clearly
we’re doing something right, and the web seems happy with what we’re doing.

The Result
As we are coming up to Processing.js 1.4.0, our work has resulted in a library that will run any
sketch you give it, provided it does not rely on compiled Java library imports. If you can write it in
Processing, and it runs, you can put it on a webpage and it will just run. Due to the differences in
hardware access and low level implementations of different parts of the rendering pipeline there will
be timing differences, but in general a sketch that runs at 60 frames per seconds in the Processing
IDE will run at 60 frames per second on a modern computer, with a modern browser. We have
reached a point where bug reports have started to die down, and most work is no longer about adding
feature support, but more about bug fixing and code optimization.

Thanks to the efforts of many developers working to resolve over 1800 bug reports, Processing
sketches run using Processing.js “just work”. Even sketches that rely on library imports can be made
to work, provided that the library code is at hand. Under favourable circumstances, the library is
written in a way that lets you rewrite it to pure Processing code with a few search-replace operations.
In this case the code can be made to work online virtually immediately. When the library does things
that cannot be implemented in pure Processing, but can be implemented using plain JavaScript, more
work is required to effectively emulate the library using JavaScript code, but porting is still possible.
The only instances of Processing code that cannot be ported are those that rely on functionality that
is inherently unavailable to browsers, such as interfacing directly with hardware devices (such as
webcams or Arduino boards) or performing unattended disk writes, though even this is changing.
Browsers are constantly adding functionality to allow for more elaborate applications, and limiting
factors today may disappear a year from now, so that hopefully in the not too distant future, even
sketches that are currently impossible to run online will become portable.

17.3 The Code Components
Processing.js is presented and developed as a large, single file, but architecturally it represents three
different components: 1) the launcher, responsible for converting Processing source to Processing.js
flavoured JavaScript and executing it, 2) static functionality that can be used by all sketches, and 3)
sketch functionality that has to be tied to individual instances.

The Launcher
The launcher component takes care of three things: code preprocessing, code conversion, and sketch
execution.
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Preprocessing

In the preprocessing step, Processing.js directives are split off from the code, and acted upon. These
directives come in two flavours: settings and load instructions. There is a small number of directives,
keeping with the “it should just work” philosophy, and the only settings that sketch authors can change
are related to page interaction. By default a sketch will keep running if the page is not in focus, but the
pauseOnBlur = true directive sets up a sketch in such a way that it will halt execution when the page
the sketch is running on is not in focus, resuming execution when the page is in focus again. Also by
default, keyboard input is only routed to a sketch when it is focussed. This is especially important
when people run multiple sketches on the same page, as keyboard input intended for one sketch
should not be processed by another. However, this functionality can be disabled, routing keyboard
events to every sketch that is running on a page, using the globalKeyEvents = true directive.

Load instructions take the form of the aforementioned image preloading and font preloading.
Because images and fonts can be used by multiple sketches, they are loaded and tracked globally, so
that different sketches don’t attempt multiple loads for the same resource.

Code Conversion

The code conversion component decomposes the source code into AST nodes, such as statements
and expressions, methods, variables, classes, etc. This AST then expanded to JavaScript source code
that builds a sketch-equivalent program when executed. This converted source code makes heavy use
of the Processing.js instance framework for setting up class relations, where classes in the Processing
source code become JavaScript prototypes with special functions for determining superclasses and
bindings for superclass functions and variables.

Sketch Execution

The final step in the launch process is sketch execution, which consists of determining whether or
not all preloading has finished, and if it has, adding the sketch to the list of running instances and
triggering its JavaScript onLoad event so that any sketch listeners can take the appropriate action.
After this the Processing chain is run through: setup, then draw, and if the sketch is a looping sketch,
setting up an interval call to draw with an interval length that gets closest to the desired framerate for
the sketch.

Static Library
Much of Processing.js falls under the “static library” heading, representing constants, universal
functions, and universal data types. A lot of these actually do double duty, being defined as global
properties, but also getting aliased by instances for quicker code paths. Global constants such as key
codes and color mappings are housed in the Processing object itself, set up once, and then referenced
when instances are built via the Processing constructor. The same applies to self-contained helper
functions, which lets us keep the code as close to “write once, run anywhere” as we can without
sacrificing performance.

Processing.js has to support a large number of complex data types, not just in order to support
the data types used in Processing, but also for its internal workings. These, too, are defined in the
Processing constructor:
Char, an internal object used to overcome some of the behavioural quirks of Java’s char datatype.
PShape, which represents shape objects.
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PShapeSVG, an extension for PShape objects, which is built from and represents SVG XML.
For PShapeSVG, we implemented our own SVG-to-<canvas>-instructions code. Since Pro-
cessing does not implement full SVG support, the code we saved by not relying on an external
SVG library means that we can account for every line of code relating to SVG imports. It
only parses what it has to, and doesn’t waste space with code that follows the spec, but is
unused because native Processing does not support it.

XMLElement, an XML document object.
For XMLElement, too, we implemented our own code, relying on the browser to first load the
XML element into a Node-based structure, then traveling the node structure to build a leaner
object. Again, this means we don’t have any dead code sitting in Processing.js, taking up
space and potentially causing bugs because a patch accidentally makes use of a function that
shouldn’t be there.

PMatrix2D and PMatrix3D, which perform matrix operations in 2D and 3D mode.
PImage, which represents an image resource.

This is effectively a wrapper of the Image object, with some additional functions and properties
so that its API matches the Processing API.

PFont, which represents a font resource.
There is no Font object defined for JavaScript (at least for now), so rather than actually storing
the font as an object, our PFont implementation loads a font via the browser, computes its
metrics based on how the browser renders text with it, and then caches the resultant PFont
object. For speed, PFonts have a reference to the canvas that was used to determine the font
properties, in case textWidth must be calculated, but because we track PFont objects based
on name/size pair, if a sketch uses a lot of distinct text sizes, or fonts in general, this will
consume too much memory. As such, PFonts will clear their cached canvas and instead call
a generic textWidth computation function when the cache grows too large. As a secondary
memory preservation strategy, if the font cache continues to grow after clearing the cached
canvas for each PFont, font caching is disabled entirely, and font changes in the sketch simply
build new throwaway PFont objects for every change in font name, text size or text leading.

DrawingShared, Drawing2D, and Drawing3D, which house all the graphics functions.
The DrawingShared object is actually the biggest speed trap in Processing.js. It determines
if a sketch is launching in 2D or 3D mode, and then rebinds all graphics functions to either
the Drawing2D or Drawing3D object. This ensures short code path for graphics instructions,
as 2D Processing sketches cannot used 3D functions, and vice versa. By only binding one of
the two sets of graphics functions, we gain speed from not having to switch on the graphics
mode in every function to determine the code path, and we save space by not binding the
graphics functions that are guaranteed not to be used.

ArrayList, a container that emulates Java’s ArrayList.
HashMap, a container that emulates Java’s HashMap.

ArrayList, and HashMap in particular, are special data structures because of how Java
implements them. These containers rely on the Java concepts of equality and hashing, and all
objects in Java have an equals and a hashCode method that allow them to be stored in lists
and maps.
For non-hashing containers, objects are resolved based on equality rather than identity.
Thus, list.remove(myobject) iterates through the list looking for an element for which
element.equals(myobject), rather than element == myobject, is true. Because all objects
must have an equals method, we implemented a “virtual equals” function on the JavaScript
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side of things. This function takes two objects as arguments, checks whether either of them
implements their own equals function, and if so, falls through to that function. If they don’t,
and the passed objects are primitives, primitive equality is checked. If they’re not, then there
is no equality.
For hashing containers, things are even more interesting, as hashing containers act as shortcut
trees. The container actually wraps a variable number of lists, each tied to a specific hash
code. Objects are found based on first finding the container that matches their hash code,
in which the object is then searched for based on equality evaluation. As all objects in Java
have a hashCode method, we also wrote a “virtual hashcode” function, which takes a single
object as an argument. The function checks whether the object implements its own hashCode
function, and if so falls through to that function. If it doesn’t, the hash code is computed
based on the same hashing algorithm that is used in Java.

Administration

The final piece of functionality in the static code library is the instance list of all sketches that are
currently running on the page. This instance list stores sketches based on the canvas they have been
loaded in, so that users can call Processing.getInstanceById(’canvasid’) and get a reference
to their sketch for page interaction purposes.

Instance Code
Instance code takes the form of p.functor = function(arg, ...) definitions for the Processing
API, and p.constant = ... for sketch state variables (where p is our reference to the sketch being
set up). Neither of these are located in dedicated code blocks. Rather, the code is organized based on
function, so that instance code relating to PShape operations is defined near the PShape object, and
instance code for graphics functions are defined near, or in, the Drawing2D and Drawing3D objects.

In order to keep things fast, a lot of code that could be written as static code with an instance wrap-
per is actually implemented as purely instance code. For instance, the lerpColor(c1, c2, ratio)
function, which determines the color corresponding to the linear interpolation of two colors, is
defined as an instance function. Rather than having p.lerpColor(c1, c2, ratio) acting as a wrap-
per for some static function Processing.lerpColor(c1, c2, ratio), the fact that nothing else
in Processing.js relies on lerpColor means that code execution is faster if we write it as a pure
instance function. While this does “bloat” the instance object, most functions for which we insist on
an instance function rather than a wrapper to the static library are small. Thus, at the expense of
memory we create really fast code paths. While the full Processing object will take up a one-time
memory slice worth around 5 MB when initially set up, the prerequisite code for individual sketches
only takes up about 500 KB.

17.4 Developing Processing.js
Processing.js is worked on intensively, which we can only do because our development approach
sticks to a few basic rules. As these rules influence the architecture of Processing.js, it’s worth having
a brief look at them before closing this chapter.
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Make It Work
Writing code that works sounds like a tautological premise; you write code, and by the time you’re
done your code either works, because that’s what you set out to do, or it doesn’t, and you’re not done
yet. However, “make it work” comes with a corollary: Make it work, and when you’re done, prove it.

If there is one thing above all other things that has allowed Processing.js to grow at the pace it
has, it is the presence of tests. Any ticket that requires touching the code, be it either by writing new
code or rewriting old code, cannot be marked as resolved until there is a unit or reference test that
allows others to verify not only that the code works the way it should, but also that it breaks when it
should. For most code, this typically involves a unit test—a short bit of code that calls a function and
simply tests whether the function returns the correct values, for both legal and illegal function calls.
Not only does this allow us to test code contributions, it also lets us perform regression tests.

Before any code is accepted and merged into our stable development branch, the modified Pro-
cessing.js library is validated against an ever-growing battery of unit tests. Big fixes and performance
tests in particular are prone to passing their own unit tests, but breaking parts that worked fine before
the rewrite. Having tests for every function in the API, as well as internal functions, means that
as Processing.js grows, we don’t accidentally break compatibility with previous versions. Barring
destructive API changes, if none of the tests failed before a code contribution or modification, none
of the tests are allowed to fail with the new code in.

The following is an example of a unit test verifying inline object creation.

interface I {
int getX();
void test(); }

I i = new I() {
int x = 5;
public int getX() {
return x; }

public void test() {
x++; }};

i.test();

_checkEqual(i.getX(), 6);
_checkEqual(i instanceof I, true);
_checkEqual(i instanceof Object, true);

In addition to regular code unit tests, we also have visual reference (or “ref”) tests. As Processing.js
is a port of a visual programming language, some tests cannot be performed using just unit tests.
Testing to see whether an ellipse gets drawn on the correct pixels, or whether a single-pixel-wide
vertical line is drawn crisp or smoothed cannot be determined without a visual reference. Because all
mainstream browsers implement the <canvas> element and Canvas2D API with subtle differences,
these things can only be tested by running code in a browser and verifying that the resulting sketch
looks the same as what native Processing generates. To make life easier for developers, we use an
automated test suite for this, where new test cases are run through Processing, generating “what it
should look like” data to be used for pixel comparison. This data is then stored as a comment inside
the sketch that generated it, forming a test, and these tests are then run by Processing.js on a visual
reference test page which executes each test and performs pixel comparisons between “what it should
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look like” and “what it looks like”. If the pixels are off, the test fails, and the developer is presented
with three images: what it should look like, how Processing.js rendered it, and the difference between
the two, marking problem areas as red pixels, and correct areas as white. Much like unit tests, these
tests must pass before any code contribution can be accepted.

Make It Fast
In an open source project, making things work is only the first step in the life of a function. Once
things work, you want to make sure things work fast. Based on the “if you can’t measure it, you can’t
improve it” principle, most functions in Processing.js don’t just come with unit or ref tests, but also
with performance (or “perf”) tests. Small bits of code that simply call a function, without testing the
correctness of the function, are run several hundred times in a row, and their run time is recorded on
a special performance test web page. This lets us quantify how well (or not!) Processing.js performs
in browsers that support HTML5’s <canvas> element. Every time an optimization patch passes
unit and ref testing, it is run through our performance test page. JavaScript is a curious beast, and
beautiful code can, in fact, run several orders of magnitude slower than code that contains the same
lines several times over, with inline code rather than function calls. This makes performance testing
crucial. We have been able to speed up certain parts of the library by three orders of magnitude
simply by discovering hot loops during perf testing, reducing the number of function calls by inlining
code, and by making functions return the moment they know what their return value should be, rather
than having only a single return at the very end of the function.

Another way in which we try to make Processing.js fast is by looking at what runs it. As
Processing.js is highly dependent on the efficiency of JavaScript engines, it makes sense to also look
at which features various engines offer to speed things up. Especially now that browsers are starting to
support hardware accelerated graphics, instant speed boosts are possible when engines offer new and
more efficient data types and functions to perform the low level operations that Processing.js depends
on. For instance, JavaScript technically has no static typing, but graphics hardware programming
environments do. By exposing the data structures used to talk to the hardware directly to JavaScript,
it is possible to significantly speed up sections of code if we know that they will only use specific
values.

Make It Small
There are two ways to make code small. First, write compact code. If you’re manipulating a variable
multiple times, compact it to a single manipulation (if possible). If you access an object variable
multiple times, cache it. If you call a function multiple times, cache the result. Return once you
have all the information you need, and generally apply all the tricks a code optimiser would apply
yourself. JavaScript is a particularly nice language for this, since it comes with an incredible amount
of flexibility. For example, rather than using:

if ((result = functionresult)!==null) {
var = result;

} else {
var = default;

}

in JavaScript this becomes:

var = functionresult || default
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There is also another form of small code, and that’s in terms of runtime code. Because JavaScript
lets you change function bindings on the fly, running code becomes much smaller if you can say
“bind the function for line2D to the function call for line” once you know that a program runs in 2D
rather than 3D mode, so that you don’t have to perform:

if(mode==2D) { line2D() } else { line3D() }

for every function call that might be either in 2D or 3D mode.
Finally, there is the process of minification. There are a number of good systems that let you

compress your JavaScript code by renaming variables, stripping whitespace, and applying certain
code optimisations that are hard to do by hand while still keeping the code readable. Examples of
these are the YUI minifier and Google’s closure compiler. We use these technologies in Processing.js
to offer end users bandwidth convenience—minification after stripping comments can shrink the
library by as much as 50%, and taking advantage of modern browser/server interaction for gzipped
content, we can offer the entire Processing.js library in gzipped form in 65 KB.

If All Else Fails, Tell People
Not everything that can currently be done in Processing can be done in the browser. Security models
prevent certain things like saving files to the hard disk and performing USB or serial port I/O, and
a lack of typing in JavaScript can have unexpected consequences (such as all math being floating
point math). Sometimes we’re faced with the choice between adding an incredible amount of code
to enable an edge case, or mark the ticket as a “wontfix” issue. In such cases, a new ticket gets filed,
typically titled “Add documentation that explains why. . . ”.

In order to make sure these things aren’t lost, we have documentation for people who start
using Processing.js with a Processing background, and for people who start using Processing.js
with a JavaScript background, covering the differences between what is expected, and what actually
happens. Certain things just deserve special mention, because no matter how much work we put
into Processing.js, there are certain things we cannot add without sacrificing usability. A good
architecture doesn’t just cover the way things are, it also covers why; without that, you’ll just end up
having the same discussions about what the code looks like and whether it should be different every
time the team changes.

17.5 Lessons Learned
The most important lesson we learned while writing Processing.js is that when porting a language,
what matters is that the result is correct, not whether or not the code used in your port is similar to
the original. Even though Java and JavaScript syntax are fairly similar, and modifying Java code
to legal JavaScript code is fairly easy, it often pays to look at what JavaScript can natively do and
exploit that to get the same functional result. Taking advantage of the lack of typing by recycling
variables, using certain built-in functions that are fast in JavaScript but slow in Java, or avoiding
patterns that are fast in Java but slow in JavaScript means your code may look radically different, but
has the exact same effect. You often hear people say not to reinvent the wheel, but that only applies
to working with a single programming language. When you’re porting, reinvent as many wheels as
you need to obtain the performance you require.

Another important lesson is to return early, return often, and branch as little as possible. An if/then
statement followed by a return can be made (sometimes drastically) faster by using an if-return/return
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construction instead, using the return statement as a conditional shortcut. While it’s conceptually
pretty to aggregate your entire function state before calling the ultimate return statement for that
function, it also means your code path may traverse code that is entirely unrelated to what you will
be returning. Don’t waste cycles; return when you have all the information you need.

A third lesson concerns testing your code. In Processing.js we had the benefit of starting with
very good documentation outlining how Processing was “supposed” to work, and a large set of test
cases, most of which started out as “known fail”. This allowed us to do two things: 1) write code
against tests, and 2) create tests before writing code. The usual process, in which code is written and
then test cases are written for that code, actually creates biased tests. Rather than testing whether or
not your code does what it should do, according to the specification, you are only testing whether
your code is bug-free. In Processing.js, we instead start by creating test cases based on what the
functional requirements for some function or set of functions is, based on the documentation for it.
With these unbiased tests, we can then write code that is functionally complete, rather than simply
bug-free but possibly deficient.

The last lesson is also the most general one: apply the rules of agile development to individual
fixes as well. No one benefits from you retreating into dev mode and not being heard from for three
days straight while you write the perfect solution. Rather, get your solutions to the point where they
work, and not even necessarily for all test cases, then ask for feedback. Working alone, with a test
suite for catching errors, is no guarantee of good or complete code. No amount of automated testing
is going to point out that you forgot to write tests for certain edge cases, or that there is a better
algorithm than the one you picked, or that you could have reordered your statements to make the
code better suited for JIT compilation. Treat fixes like releases: present fixes early, update often, and
work feedback into your improvements.
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[chapter18]

Puppet
Luke Kanies

18.1 Introduction
Puppet is an open source IT management tool written in Ruby, used for datacenter automation
and server management at Google, Twitter, the New York Stock Exchange, and many others. It is
primarily maintained by Puppet Labs, which also founded the project. Puppet can manage as few as
2 machines and as many as 50,000, on teams with one system administrator or hundreds.

Puppet is a tool for configuring and maintaining your computers; in its simple configuration
language, you explain to Puppet how you want your machines configured, and it changes them as
needed to match your specification. As you change that specification over time—such as with package
updates, new users, or configuration updates—Puppet will automatically update your machines to
match. If they are already configured as desired, then Puppet does nothing.

In general, Puppet does everything it can to use existing system features to do its work; e.g., on
Red Hat it will use yum for packages and init.d for services, but on OS X it will use dmg for packages
and launchd for services. One of the guiding goals in Puppet is to have the work it does make sense
whether you are looking at Puppet code or the system itself, so following system standards is critical.

Puppet comes from multiple traditions of other tools. In the open source world, it is most
influenced by CFEngine, which was the first open source general-purpose configuration tool, and
ISconf, whose use of make for all work inspired the focus on explicit dependencies throughout the
system. In the commercial world, Puppet is a response to BladeLogic and Opsware (both since
acquired by larger companies), each of which was successful in the market when Puppet was begun,
but each of which was focused on selling to executives at large companies rather than building great
tools directly for system administrators. Puppet is meant to solve similar problems to these tools, but
it is focused on a very different user.

For a simple example of how to use Puppet, here is a snippet of code that will make sure the
secure shell service (SSH) is installed and configured properly:

class ssh {
package { ssh: ensure => installed }
file { "/etc/ssh/sshd_config":

source => ’puppet:///modules/ssh/sshd_config’,
ensure => present,
require => Package[ssh]

}
service { sshd:



ensure => running,
require => [File["/etc/ssh/sshd_config"], Package[ssh]]

}
}

This makes sure the package is installed, the file is in place, and the service is running. Note that
we’ve specified dependencies between the resources, so that we always perform any work in the right
order. This class could then be associated with any host to apply this configuration to it. Notice that
the building blocks of a Puppet configuration are structured objects, in this case package, file, and
service. We call these objects resources in Puppet, and everything in a Puppet configuration comes
down to these resources and the dependencies between them.

A normal Puppet site will have tens or even hundreds of these code snippets, which we call
classes; we store these classes on disk in files called manifests, and collect them in related groups
called modules. For instance, you might have an ssh module with this ssh class plus any other
related classes, along with modules for mysql, apache, and sudo.

Most Puppet interactions are via the command line or long-running HTTP services, but there
are graphical interfaces for some things such as report processing. Puppet Labs also produces
commercial products around Puppet, which tend more toward graphical web-based interfaces.

Puppet’s first prototype was written in the summer of 2004, and it was turned into a full-time
focus in February of 2005. It was initially designed and written by Luke Kanies, a sysadmin who
had a lot of experience writing small tools, but none writing tools greater than 10,000 lines of code.
In essence, Luke learned to be a programmer while writing Puppet, and that shows in its architecture
in both positive and negative ways.

Puppet was first and foremost built to be a tool for sysadmins, to make their lives easier and
allow them to work faster, more efficiently, and with fewer errors. The first key innovation meant to
deliver on this was the resources mentioned above, which are Puppet’s primitives; they would both
be portable across most operating systems and also abstract away implementation detail, allowing the
user to focus on outcomes rather than how to achieve them. This set of primitives was implemented
in Puppet’s Resource Abstraction Layer.

Puppet resources must be unique on a given host. You can only have one package named “ssh”,
one service named “sshd”, and one file named “/etc/ssh/sshd_config”. This prevents different parts of
your configurations from conflicting with each other, and you find out about those conflicts very early
in the configuration process. We refer to these resources by their type and title; e.g., Package[ssh]
and Service[sshd]. You can have a package and a service with the same name because they are
different types, but not two packages or services with the same name.

The second key innovation in Puppet provides the ability to directly specify dependencies between
resources. Previous tools focused on the individual work to be done, rather than how the various bits
of work were related; Puppet was the first tool to explicitly say that dependencies are a first-class
part of your configurations and must be modeled that way. It builds a graph of resources and their
dependencies as one of the core data types, and essentially everything in Puppet hangs off of this
graph (called a Catalog) and its vertices and edges.

The last major component in Puppet is its configuration language. This language is declarative,
and is meant to be more configuration data than full programming—it most resembles Nagios’s
configuration format, but is also heavily influenced by CFEngine and Ruby.

Beyond the functional components, Puppet has had two guiding principles throughout its develop-
ment: it should be as simple as possible, always preferring usability even at the expense of capability;
and it should be built as a framework first and application second, so that others could build their
own applications on Puppet’s internals as desired. It was understood that Puppet’s framework needed
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a killer application to be adopted widely, but the framework was always the focus, not the application.
Most people think of Puppet as being that application, rather than the framework behind it.

When Puppet’s prototype was first built, Luke was essentially a decent Perl programmer with a
lot of shell experience and some C experience, mostly working in CFEngine. The odd thing is he
had experience building parsers for simple languages, having built two as part of smaller tools and
also having rewritten CFEngine’s parser from scratch in an effort to make it more maintainable (this
code was never submitted to the project, because of small incompatibilities).

A dynamic language was easily decided on for Puppet’s implementation, based on much higher
developer productivity and time to market, but choosing the language proved difficult. Initial
prototypes in Perl went nowhere, so other languages were sought for experimentation. Python was
tried, but Luke found the language quite at odds with how he thought about the world. Based on
what amounted to a rumor of utility heard from a friend, Luke tried Ruby, and in four hours had built
a usable prototype. When Puppet became a full-time effort in 2005 Ruby was a complete unknown,
so the decision to stick with it was a big risk, but again programmer productivity was deemed the
primary driver in language choice. The major distinguishing feature in Ruby, at least as opposed to
Perl, was how easy it was to build non-hierarchical class relationships, but it also mapped very well
to Luke’s brain, which turned out to be critical.

18.2 Architectural Overview
This chapter is primarily about the architecture of Puppet’s implementation (that is, the code that
we’ve used to make Puppet do the things it’s supposed to do) but it’s worth briefly discussing its
application architecture (that is, how the parts communicate), so that the implementation makes
some sense.

Puppet has been built with two modes in mind: A client/server mode with a central server
and agents running on separate hosts, or a serverless mode where a single process does all of the
work. To ensure consistency between these modes, Puppet has always had network transparency
internally, so that the two modes used the same code paths whether they went over the network or
not. Each executable can configure local or remote service access as appropriate, but otherwise they
behave identically. Note also that you can use the serverless mode in what amounts to a client/server
configuration, by pulling all configuration files to each client and having it parse them directly.
This section will focus on the client/server mode, because it’s more easily understood as separate
components, but keep in mind that this is all true of the serverless mode, too.

One of the defining choices in Puppet’s application architecture is that clients should not get
access to raw Puppet modules; instead, they get a configuration compiled just for them. This provides
multiple benefits: First, you follow the principle of least privilege, in that each host only knows exactly
what it needs to know (how it should be configured), but it does not know how any other servers are
configured. Second, you can completely separate the rights needed to compile a configuration (which
might include access to central data stores) from the need to apply that configuration. Third, you can
run hosts in a disconnected mode where they repeatedly apply a configuration with no contact to
a central server, which means you remain in compliance even if the server is down or the client is
disconnected (such as would be the case in a mobile installation, or when the clients are in a DMZ).

Given this choice, the workflow becomes relatively straightforward:
1. The Puppet agent process collects information about the host it is running on, which it passes

to the server.
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2. The parser uses that system information and Puppet modules on local disk to compile a
configuration for that particular host and returns it to the agent.

3. The agent applies that configuration locally, thus affecting the local state of the host, and files
the resulting report with the server.

Figure 18.1: Puppet dataflow

Thus, the agent has access to its own system information, its configuration, and each report it
generates. The server has copies of all of this data, plus access to all of the Puppet modules, and any
back-end databases and services that might be needed to compile the configuration.

Beyond the components that go into this workflow, which we’ll address next, there are many data
types that Puppet uses for internal communication. These data types are critical, because they’re how
all communication is done and they’re public types which any other tools can consume or produce.

The most important data types are:
Facts: System data collected on each machine and used to compile configurations.
Manifest: Files containing Puppet code, generally organized into collections called “modules”.
Catalog: A graph of a given host’s resources to be managed and the dependencies between them.
Report: The collection of all events generated during application of a given Catalog.

Beyond Facts, Manifests, Catalogs, and Reports, Puppet supports data types for files, certificates
(which it uses for authentication), and others.
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Figure 18.2: Orchestration of data flow between Puppet processes and components

18.3 Component Analysis
Agent
The first component encountered in a Puppet run is the agent process. This was traditionally a
separate executable called puppetd, but in version 2.6 we reduced down to one executable so now it
is invoked with puppet agent, akin to how Git works. The agent has little functionality of its own;
it is primarily configuration and code that implements the client-side aspects of the above-described
workflow.

Facter
The next component after the agent is an external tool called Facter, which is a very simple tool used
to discover information about the host it is running on. This is data like the operating system, IP
address, and host name, but Facter is easily extensible so many organizations add their own plugins
to discover custom data. The agent sends the data discovered by Facter to the server, at which point
it takes over the workflow.

External Node Classifier
On the server, the first component encountered is what we call the External Node Classifier, or
ENC. The ENC accepts the host name and returns a simple data structure containing the high-level
configuration for that host. The ENC is generally a separate service or application: either another
open source project, such as Puppet Dashboard or Foreman, or integration with existing data stores,
such as LDAP. The purpose of the ENC is to specify what functional classes a given host belongs to,
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and what parameters should be used to configure those classes. For example, a given host might be
in the debian and webserver classes, and have the parameter datacenter set to atlanta.

Note that as of Puppet 2.7, the ENC is not a required component; users can instead directly
specify node configurations in Puppet code. Support for an ENC was added about 2 years after
Puppet was launched because we realized that classifying hosts is fundamentally different than
configuring them, and it made more sense to split these problems into separate tools than to extend
the language to support both facilities. The ENC is always recommended, and at some point soon
will become a required component (at which point Puppet will ship with a sufficiently useful one
that that requirement will not be a burden).

Once the server receives classification information from the ENC and system information from
Facter (via the agent), it bundles all of the information into a Node object and passes it on to the
Compiler.

Compiler
As mentioned above, Puppet has a custom language built for specifying system configurations. Its
compiler is really three chunks: A Yacc-style parser generator and a custom lexer; a group of classes
used to create our Abstract Syntax Tree (AST); and the Compiler class that handles the interactions
of all of these classes and also functions as the API to this part of the system.

The most complicated thing about the compiler is the fact that most Puppet configuration code
is lazily loaded on first reference (to reduce both load times and irrelevant logging about missing-
but-unneeded dependencies), which means there aren’t really explicit calls to load and parse the
code.

Puppet’s parser uses a normal Yacc1-style parser generator (built using the open source Racc2
tool). Unfortunately, there were no open source lexer generators when Puppet was begun, so it uses a
custom lexer.

Because we use an AST in Puppet, every statement in the Puppet grammar evaluates to an instance
of a Puppet AST class (e.g., Puppet::Parser::AST::Statement), rather than taking action directly,
and these AST instances are collected into a tree as the grammar tree is reduced. This AST provides
a performance benefit when a single server is compiling configurations for many different nodes,
because we can parse once but compile many times. It also gives us the opportunity to perform some
introspection of the AST, which provides us information and capability we wouldn’t have if parsing
operated directly.

Very few approachable AST examples were available when Puppet was begun, so there has been
a lot of evolution in it, and we’ve arrived at what seems a relatively unique formulation. Rather than
creating a single AST for the entire configuration, we create many small ASTs, keyed off their name.
For instance, this code:

class ssh {
package { ssh: ensure => present }

}

creates a new AST containing a single Puppet::Parser::AST::Resource instance, and stores that
AST by the name “ssh” in the hash of all classes for this particular environment. (I’ve left out details
about other constructs akin to classes, but they are unnecessary for this discussion.)
1http://dinosaur.compilertools.net/
2https://github.com/tenderlove/racc
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Given the AST and a Node object (from the ENC), the compiler takes the classes specified in the
node object (if there are any), looks them up and evaluates them. In the course of this evaluation, the
compiler is building up a tree of variable scopes; every class gets its own scope which is attached to
the creating scope. This amounts to dynamic scoping in Puppet: if one class includes another class,
then the included class can look up variables directly in the including class. This has always been a
nightmare, and we have been on the path to getting rid of this capability.

The Scope tree is temporary and is discarded once compiling is done, but the artifact of compiling
is also built up gradually over the course of the compilation. We call this artifact a Catalog, but it
is just a graph of resources and their relationships. Nothing of the variables, control structures, or
function calls survive into the catalog; it’s plain data, and can be trivially converted to JSON, YAML,
or just about anything else.

During compilation, we create containment relationships; a class “contains” all of the resources
that come with that class (e.g., the ssh package above is contained by the ssh class). A class might
contain a definition, which itself contains either yet more definitions, or individual resources. A
catalog tends to be a very horizontal, disconnected graph: many classes, each no more than a couple
of levels deep.

One of the awkward aspects of this graph is that it also contains “dependency” relationships, such
as a service requiring a package (maybe because the package installation actually creates the service),
but these dependency relationships are actually specified as parameter values on the resources, rather
than as edges in the structure of the graph. Our graph class (called SimpleGraph, for historical
reasons) does not support having both containment and dependency edges in the same graph, so we
have to convert between them for various purposes.

Transaction
Once the catalog is entirely constructed (assuming there is no failure), it is passed on to the Transaction.
In a system with a separate client and server, the Transaction runs on the client, which pulls the
Catalog down via HTTP as in Figure 18.2.

Puppet’s transaction class provides the framework for actually affecting the system, whereas
everything else we’ve discussed just builds up and passes around objects. Unlike transactions in
more common systems such as databases, Puppet transactions do not have behaviors like atomicity.

The transaction performs a relatively straightforward task: walk the graph in the order specified
by the various relationships, and make sure each resource is in sync. As mentioned above, it
has to convert the graph from containment edges (e.g., Class[ssh] contains Package[ssh] and
Service[sshd]) to dependency edges (e.g., Service[sshd] depends on Package[ssh]), and then
it does a standard topological sort of the graph, selecting each resource in turn.

For a given resource, we perform a simple three-step process: retrieve the current state of that
resource, compare it to the desired state, and make any changes necessary to fix discrepancies. For
instance, given this code:
file { "/etc/motd":

ensure => file,
content => "Welcome to the machine",
mode => 644

}

the transaction checks the content and mode of /etc/motd, and if they don’t match the specified state,
it will fix either or both of them. If /etc/motd is somehow a directory, then it will back up all of the
files in that directory, remove it, and replace it with a file that has the appropriate content and mode.
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This process of making changes is actually handled by a simple ResourceHarness class that defines
the entire interface between Transaction and Resource. This reduces the number of connections
between the classes, and makes it easier to make changes to either independently.

Resource Abstraction Layer
The Transaction class is the heart of getting work done with Puppet, but all of the work is actually
done by the Resource Abstraction Layer (RAL), which also happens to be the most interesting
component in Puppet, architecturally speaking.

The RAL was the first component created in Puppet and, other than the language, it most clearly
defines what the user can do. The job of the RAL is to define what it means to be a resource and how
resources can get work done on the system, and Puppet’s language is specifically built to specify
resources as modeled by the RAL. Because of this, it’s also the most important component in the
system, and the hardest to change. There are plenty of things we would like to fix in the RAL, and
we’ve made a lot of critical improvements to it over the years (the most crucial being the addition of
Providers), but there is still a lot of work to do to the RAL in the long term.

In the Compiler subsystem, we model resources and resource types with separate classes (named,
conveniently, Puppet::Resource and Puppet::Resource::Type). Our goal is to have these classes
also form the heart of the RAL, but for now these two behaviors (resource and type) are modeled
within a single class, Puppet::Type. (The class is named poorly because it significantly predates
our use of the term Resource, and at the time we were directly serializing memory structures when
communicating between hosts, so it was actually quite complicated to change class names.)

When Puppet::Type was first created, it seemed reasonable to put resource and resource type
behaviors in the same class; after all, resources are just instances of resource types. Over time,
however, it became clear that the relationship between a resource and its resource type aren’t modeled
well in a traditional inheritance structure. Resource types define what parameters a resource can
have, but not whether it accepts parameters (they all do), for instance. Thus, our base class of
Puppet::Type has class-level behaviors that determine how resource types behave, and instance-
level behaviors that determine how resource instances behave. It additionally has the responsibility
of managing registration and retrieval of resource types; if you want the “user” type, you call
Puppet::Type.type(:user).

This mix of behaviors makes Puppet::Type quite difficult to maintain. The whole class is less
than 2,000 lines of code, but working at three levels—resource, resource type, and resource type
manager—makes it convoluted. This is obviously why it’s a major target for being refactored, but
it’s more plumbing than user-facing, so it’s always been hard to justify effort here rather than directly
in features.

Beyond Puppet::Type, there are two major kinds of classes in the RAL, the most interesting of
which are what we call Providers. When the RAL was first developed, each resource type mixed
the definition of a parameter with code that knew how to manage it. For instance, we would define
the “content” parameter, and then provide a method that could read the content of a file, and another
method that could change the content:

Puppet::Type.newtype(:file) do
...
newproperty(:content) do

def retrieve
File.read(@resource[:name])

end
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def sync
File.open(@resource[:name], "w") { |f| f.print @resource[:content] }

end
end

end

This example is simplified considerably (e.g., we use checksums internally, rather than the full
content strings), but you get the idea.

This became impossible to manage as we needed to support multiple varieties of a given resource
type. Puppet now supports more than 30 kinds of package management, and it would have been
impossible to support all of those within a single Package resource type. Instead, we provide a clean
interface between the definition of the resource type—essentially, what the name of the resource
type is and what properties it supports—from how you manage that type of resource. Providers
define getter and setter methods for all of a resource type’s properties, named in obvious ways. For
example, this is how a provider of the above property would look:

Puppet::Type.newtype(:file) do
newproperty(:content)

end
Puppet::Type.type(:file).provide(:posix) do

def content
File.read(@resource[:name])

end
def content=(str)

File.open(@resource[:name], "w") { |f| f.print(str) }
end

end

This is a touch more code in the simplest cases, but is much easier to understand and maintain,
especially as either the number of properties or number of providers increases.

I said at the beginning of this section that the Transaction doesn’t actually affect the system
directly, and it instead relies on the RAL for that. Now it’s clear that it’s the providers that do the
actual work. In fact, in general the providers are the only part of Puppet that actually touch the
system. The transaction asks for a file’s content, and the provider collects it; the transaction specifies
that a file’s content should be changed, and the provider changes it. Note, however, that the provider
never decides to affect the system—the Transaction owns the decisions, and the provider does the
work. This gives the Transaction complete control without requiring that it understand anything
about files, users, or packages, and this separation is what enables Puppet to have a full simulation
mode where we can largely guarantee the system won’t be affected.

The second major class type in the RAL is responsible for the parameters themselves. We actually
support three kinds of parameters: metaparameters, which affect all resource types (e.g., whether
you should run in simulation mode); parameters, which are values that aren’t reflected on disk (e.g.,
whether you should follow links in files); and properties, which model aspects of the resource that
you can change on disk (e.g., a file’s content, or whether a service is running). The difference between
properties and parameters is especially confusing to people, but if you just think of properties as
having getter and setter methods in the providers, it’s relatively straightforward.
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Reporting
As the transaction walks the graph and uses the RAL to change the system’s configuration, it
progressively builds a report. This report largely consists of the events generated by changes to the
system. These events, in turn, are comprehensive reflections of what work was done: they retain
a timestamp the resource changed, the previous value, the new value, any message generated, and
whether the change succeeded or failed (or was in simulation mode).

The events are wrapped in a ResourceStatus object that maps to each resource. Thus, for a given
Transaction, you know all of the resources that are run, and you know any changes that happen, along
with all of the metadata you might need about those changes.

Once the transaction is complete, some basic metrics are calculated and stored in the report, and
then it is sent off to the server (if configured). With the report sent, the configuration process is
complete, and the agent goes back to sleep or the process just ends.

18.4 Infrastructure
Now that we have a thorough understanding of what Puppet does and how, it’s worth spending a
little time on the pieces that don’t show up as capabilities but are still critical to getting the job done.

Plugins
One of the great things about Puppet is that it is very extensible. There are at least 12 different
kinds of extensibility in Puppet, and most of these are meant to be usable by just about anyone. For
example, you can create custom plugins for these areas:

• resource types and custom providers
• report handlers, such as for storing reports in a custom database
• Indirector plugins for interacting with existing data stores
• facts for discovering extra information about your hosts
However, Puppet’s distributed nature means that agents need a way to retrieve and load new

plugins. Thus, at the start of every Puppet run, the first thing we do is download all plugins that the
server has available. These might include new resource types or providers, new facts, or even new
report processors.

This makes it possible to heavily upgrade Puppet agents without ever changing the core Puppet
packages. This is especially useful for highly customized Puppet installations.

Indirector
You’ve probably detected by now that we have a tradition of bad class names in Puppet, and according
to most people, this one takes the cake. The Indirector is a relatively standard Inversion of Control
framework with significant extensibility. Inversion of Control systems allow you to separate develop-
ment of functionality from how you control which functionality you use. In Puppet’s case, this allows
us to have many plugins that provide very different functionality, such as reaching the compiler via
HTTP or loading it in-process, and switch between them with a small configuration change rather
than a code change. In other words, Puppet’s Indirector is basically an implementation of a service
locator, as described on the Wikipedia page for “Inversion of Control”. All of the hand-offs from
one class to another go through the Indirector, via a standard REST-like interface (e.g., we support
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find, search, save, and destroy as methods), and switching Puppet from serverless to client/server is
largely a question of configuring the agent to use an HTTP endpoint for retrieving catalogs, rather
than using a compiler endpoint.

Because it is an Inversion of Control framework where configuration is stringently separated
from the code paths, this class can also be difficult to understand, especially when you’re debugging
why a given code path was used.

Networking
Puppet’s prototype was written in the summer of 2004, when the big networking question was
whether to use XMLRPC or SOAP. We chose XMLRPC, and it worked fine but had most of the
problems everyone else had: it didn’t encourage standard interfaces between components, and it
tended to get overcomplicated very quickly as a result. We also had significant memory problems,
because the encoding needed for XMLRPC resulted in every object appearing at least twice in
memory, which quickly gets expensive for large files.

For our 0.25 release (begun in 2008), we began the process of switching all networking to a
REST-like model, but we chose a much more complicated route than just changing out the networking.
We developed the Indirector as the standard framework for inter-component communication, and
built REST endpoints as just one option. It took two releases to fully support REST, and we have
not quite finished converting to using JSON (instead of YAML) for all serialization. We undertook
switching to JSON for two major reasons: first, YAML processing Ruby is painfully slow, and pure
Ruby processing of JSON is a lot faster; second, most of the web seems to be moving to JSON, and
it tends to be implemented more portably than YAML. Certainly in the case of Puppet, the first use
of YAML was not portable across languages, and was often not portable across different versions of
Puppet, because it was essentially serialization of internal Ruby objects.

Our next major release of Puppet will finally remove all of the XMLRPC support.

18.5 Lessons Learned
In terms of implementation, we’re proudest of the various kinds of separation that exist in Puppet:
the language is completely separate from the RAL, the Transaction cannot directly touch the system,
and the RAL can’t decide to do work on its own. This gives the application developer a lot of control
over application workflow, along with a lot of access to information about what is happening and
why.

Puppet’s extensibility and configurability are also major assets, because anyone can build on top
of Puppet quite easily without having to hack the core. We’ve always built our own capabilities on
the same interfaces we recommend our users use.

Puppet’s simplicity and ease of use have always been its major draw. It’s still too difficult to get
running, but it’s miles easier than any of the other tools on the market. This simplicity comes with a
lot of engineering costs, especially in the form of maintenance and extra design work, but it’s worth
it to allow users to focus on their problems instead of the tool.

Puppet’s configurability is a real feature, but we took it a bit too far. There are too many ways
you can wire Puppet together, and it’s too easy to build a workflow on top of Puppet that will make
you miserable. One of our major near-term goals is to dramatically reduce the knobs you can turn in
a Puppet configuration, so the user cannot so easily configure it poorly, and so we can more easily
upgrade it over time without worrying about obscure edge cases.
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We also just generally changed too slowly. There are major refactors we’ve been wanting to do
for years but have never quite tackled. This has meant a more stable system for our users in the short
term, but also a more difficult-to-maintain system, and one that’s much harder to contribute to.

Lastly, it took us too long to realize that our goals of simplicity were best expressed in the
language of design. Once we began speaking about design rather than just simplicity, we acquired a
much better framework for making decisions about adding or removing features, with a better means
of communicating the reasoning behind those decisions.

18.6 Conclusion
Puppet is both a simple system and a complex one. It has many moving parts, but they’re wired
together quite loosely, and each of them has changed pretty dramatically since its founding in 2005.
It is a framework that can be used for all manner of configuration problems, but as an application it
is simple and approachable.

Our future success rests on that framework becoming more solid and more simple, and that
application staying approachable while it gains capability.
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[chapter19]

PyPy
Benjamin Peterson

PyPy is a Python implementation and a dynamic language implementation framework.
This chapter assumes familiarity with some basic interpreter and compiler concepts like bytecode

and constant folding.

19.1 A Little History
Python is a high-level, dynamic programming language. It was invented by the Dutch programmer
Guido van Rossum in the late 1980s. Guido’s original implementation is a traditional bytecode
interpreter written in C, and consequently known as CPython. There are now many other Python
implementations. Among the most notable are Jython, which is written in Java and allows for
interfacing with Java code, IronPython, which is written in C# and interfaces with Microsoft’s
.NET framework, and PyPy, the subject of this chapter. CPython is still the most widely used
implementation and currently the only one to support Python 3, the next generation of the Python
language. This chapter will explain the design decisions in PyPy that make it different from other
Python implementations and indeed from any other dynamic language implementation.

19.2 Overview of PyPy
PyPy, except for a negligible number of C stubs, is written completely in Python. The PyPy source
tree contains two major components: the Python interpreter and the RPython translation toolchain.
The Python interpreter is the programmer-facing runtime that people using PyPy as a Python
implementation invoke. It is actually written in a subset of Python called Restricted Python (usually
abbreviated RPython). The purpose of writing the Python interpreter in RPython is so the interpreter
can be fed to the second major part of PyPy, the RPython translation toolchain. The RPython
translator takes RPython code and converts it to a chosen lower-level language, most commonly
C. This allows PyPy to be a self-hosting implementation, meaning it is written in the language it
implements. As we shall see throughout this chapter, the RPython translator also makes PyPy a
general dynamic language implementation framework.

PyPy’s powerful abstractions make it the most flexible Python implementation. It has nearly
200 configuration options, which vary from selecting different garbage collector implementations to
altering parameters of various translation optimizations.



19.3 The Python Interpreter
Since RPython is a strict subset of Python, the PyPy Python interpreter can be run on top of another
Python implementation untranslated. This is, of course, extremely slow but it makes it possible to
quickly test changes in the interpreter. It also enables normal Python debugging tools to be used to
debug the interpreter. Most of PyPy’s interpreter tests can be run both on the untranslated interpreter
and the translated interpreter. This allows quick testing during development as well as assurance that
the translated interpreter behaves the same as the untranslated one.

For the most part, the details of the PyPy Python interpreter are quite similiar to that of CPython;
PyPy and CPython use nearly identical bytecode and data structures during interpretation. The
primary difference between the two is PyPy has a clever abstraction called object spaces (or objspaces
for short). An objspace encapsulates all the knowledge needed to represent and manipulate Python
data types. For example, performing a binary operation on two Python objects or fetching an attribute
of an object is handled completely by the objspace. This frees the interpreter from having to know
anything about the implementation details of Python objects. The bytecode interpreter treats Python
objects as black boxes and calls objspace methods whenever it needs to manipulate them. For example,
here is a rough implementation of the BINARY_ADD opcode, which is called when two objects are
combined with the + operator. Notice how the operands are not inspected by the interpreter; all
handling is delegated immediately to the objspace.

def BINARY_ADD(space, frame):
object1 = frame.pop() # pop left operand off stack
object2 = frame.pop() # pop right operand off stack
result = space.add(object1, object2) # perform operation
frame.push(result) # record result on stack

The objspace abstraction has numerous advantages. It allows new data type implementations to
be swapped in and out without modifying the interpreter. Also, since the sole way to manipulate
objects is through the objspace, the objspace can intercept, proxy, or record operations on objects.
Using the powerful abstraction of objspaces, PyPy has experimented with thunking, where results
can be lazily but completely transparently computed on demand, and tainting, where any operation
on an object will raise an exception (useful for passing sensitive data through untrusted code). The
most important application of objspaces, however, will be discussed in Section 19.4.

The objspace used in a vanilla PyPy interpreter is called the standard objspace (std objspace for
short). In addition to the abstraction provided by the objspace system, the standard objspace provides
another level of indirection; a single data type may have multiple implementations. Operations on data
types are then dispatched using multimethods. This allows picking the most efficient representation
for a given piece of data. For example, the Python long type (ostensibly a bigint data type) can
be represented as a standard machine-word-sized integer when it is small enough. The memory
and computationally more expensive arbitrary-precision long implementation need only be used
when necessary. There’s even an implementation of Python integers available using tagged pointers.
Container types can also be specialized to certain data types. For example, PyPy has a dictionary
(Python’s hash table data type) implementation specialized for string keys. The fact that the same data
type can be represented by different implementations is completely transparent to application-level
code; a dictionary specialized to strings is identical to a generic dictionary and will degenerate
gracefully if non-string keys are put into it.

PyPy distinguishes between interpreter-level (interp-level) and application-level (app-level) code.
Interp-level code, which most of the interpreter is written in, must be in RPython and is translated.
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It directly works with the objspace and wrapped Python objects. App-level code is always run by
the PyPy bytecode interpreter. As simple as interp-level RPython code is, compared to C or Java,
PyPy developers have found it easiest to use pure app-level code for some parts of the interpreter.
Consequently, PyPy has support for embedding app-level code in the interpreter. For example, the
functionality of the Python print statement, which writes objects to standard output, is implemented
in app-level Python. Builtin modules can also be written partially in interp-level code and partially
in app-level code.

19.4 The RPython Translator
The RPython translator is a toolchain of several lowering phases that rewrite RPython to a target
language, typically C. The higher-level phases of translation are shown in Figure 19.1. The translator
is itself written in (unrestricted) Python and intimately linked to the PyPy Python interpreter for
reasons that will be illuminated shortly.

Figure 19.1: Translation steps

The first thing the translator does is load the RPython program into its process. (This is done
with the normal Python module loading support.) RPython imposes a set of restrictions on normal,
dynamic Python. For example, functions cannot be created at runtime, and a single variable cannot
have the possibility of holding incompatible types, such as an integer and a object instance. When
the program is initially loaded by the translator, though, it is running on a normal Python interpreter
and can use all of Python’s dynamic features. PyPy’s Python interpreter, a huge RPython program,
makes heavy use of this feature for metaprogramming. For example, it generates code for standard
objspace multimethod dispatch. The only requirement is that the program is valid RPython by the
time the translator starts the next phase of translation.

The translator builds flow graphs of the RPython program through a process called abstract
interpretation. Abstract interpretation reuses the PyPy Python interpreter to interpret RPython
programs with a special objspace called the flow objspace. Recall that the Python interpreter treats
objects in a program like black boxes, calling out to the objspace to perform any operation. The flow
objspace, instead of the standard set of Python objects, has only two objects: variables and constants.
Variables represent values not known during translation, and constants, not surprisingly, represent
immutable values that are known. The flow objspace has a basic facility for constant folding; if it is
asked to do an operation where all the arguments are constants, it will statically evaluate it. What
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is immutable and must be constant in RPython is broader than in standard Python. For example,
modules, which are emphatically mutable in Python, are constants in the flow objspace because
they don’t exist in RPython and must be constant-folded out by the flow objspace. As the Python
interpreter interprets the bytecode of RPython functions, the flow objspace records the operations it
is asked to perform. It takes care to record all branches of conditional control flow constructs. The
end result of abstract interpretation for a function is a flow-graph consisting of linked blocks, where
each block has one or more operations.

An example of the flow-graph generating process is in order. Consider a simple factorial function:

def factorial(n):
if n == 1:

return 1
return n * factorial(n - 1)

The flow-graph for the function looks like Figure 19.2.

Figure 19.2: Flow-graph of factorial

The factorial function has been divided into blocks containing the operations the flowspace
recorded. Each block has input arguments and a list of operations on the variables and constants.
The first block has an exit switch at the end, which determines which block control-flow will pass to
after the first block is run. The exit switch can be based on the value of some variable or whether
an exception occurred in the last operation of the block. Control-flow follows the lines between the
blocks.

The flow-graph generated in the flow objspace is in static single assignment form, or SSA, an
intermediate representation commonly used in compilers. The key feature of SSA is that every
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variable is only assigned once. This property simplifies the implementation of many compiler
transformations and optimizations.

After a function graph is generated, the annotation phase begins. The annotator assigns a type
to the results and arguments of each operation. For example, the factorial function above will be
annotated to accept and return an integer.

The next phase is called RTyping. RTyping uses type information from the annotator to expand
each high-level flow-graph operation into low-level ones. It is the first part of translation where the
target backend matters. The backend chooses a type system for the RTyper to specialize the program
to. The RTyper currently has two type systems: A low-level typesystem for backends like C and one
for higher-level typesystems with classes. High-level Python operations and types are transformed
into the level of the type system. For example, an add operation with operands annotated as integers
will generate a int_add operation with the low-level type system. More complicated operations like
hash table lookups generate function calls.

After RTyping, some optimizations on the low-level flow-graph are performed. They are mostly
of the traditional compiler variety like constant folding, store sinking, and dead code removal.

Python code typically has frequent dynamic memory allocations. RPython, being a Python
derivative, inherits this allocation intensive pattern. In many cases, though, allocations are temporary
and local to a function. Malloc removal is an optimization that addresses these cases. Malloc removal
removes these allocations by “flattening” the previously dynamically allocated object into component
scalars when possible.

To see how malloc removals works, consider the following function that computes the Euclidean
distance between two points on the plane in a roundabout fashion:

def distance(x1, y1, x2, y2):
p1 = (x1, y1)
p2 = (x2, y2)
return math.hypot(p1[0] - p2[0], p1[1] - p2[1])

When initially RTyped, the body of the function has the following operations:

v60 = malloc((GcStruct tuple2))
v61 = setfield(v60, (’item0’), x1_1)
v62 = setfield(v60, (’item1’), y1_1)
v63 = malloc((GcStruct tuple2))
v64 = setfield(v63, (’item0’), x2_1)
v65 = setfield(v63, (’item1’), y2_1)
v66 = getfield(v60, (’item0’))
v67 = getfield(v63, (’item0’))
v68 = int_sub(v66, v67)
v69 = getfield(v60, (’item1’))
v70 = getfield(v63, (’item1’))
v71 = int_sub(v69, v70)
v72 = cast_int_to_float(v68)
v73 = cast_int_to_float(v71)
v74 = direct_call(math_hypot, v72, v73)

This code is suboptimal in several ways. Two tuples that never escape the function are allocated.
Additionally, there is unnecessary indirection accessing the tuple fields.

Running malloc removal produces the following concise code:
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v53 = int_sub(x1_0, x2_0)
v56 = int_sub(y1_0, y2_0)
v57 = cast_int_to_float(v53)
v58 = cast_int_to_float(v56)
v59 = direct_call(math_hypot, v57, v58)

The tuple allocations have been completely removed and the indirections flattened out. Later, we
will see how a technique similar to malloc removal is used on application-level Python in the PyPy
JIT (Section 19.5).

PyPy also does function inlining. As in lower-level languages, inlining improves performance
in RPython. Somewhat surprisingly, it also reduces the size of the final binary. This is because it
allows more constant folding and malloc removal to take place, which reduces overall code size.

The program, now in optimized, low-level flow-graphs, is passed to the backend to generate
sources. Before it can generate C code, the C backend must perform some additional transformations.
One of these is exception transformation, where exception handling is rewritten to use manual stack
unwinding. Another is the insertion of stack depth checks. These raise an exception at runtime if the
recursion is too deep. Places where stack depth checks are needed are found by computing cycles in
the call graph of the program.

Another one of the transformations performed by the C backend is adding garbage collection
(GC). RPython, like Python, is a garbage-collected language, but C is not, so a garbage collector has
to be added. To do this, a garbage collection transformer converts the flow-graphs of the program into
a garbage-collected program. PyPy’s GC transformers provide an excellent demonstration of how
translation abstracts away mundane details. In CPython, which uses reference counting, the C code
of the interpreter must carefully keep track of references to Python objects it is manipulating. This
not only hardcodes the garbage collection scheme in the entire codebase but is prone to subtle human
errors. PyPy’s GC transformer solves both problems; it allows different garbage collection schemes
to be swapped in and out seamlessly. It is trivial to evaluate a garbage collector implementation (of
which PyPy has many), simply by tweaking a configuration option at translation. Modulo transformer
bugs, the GC transformer also never makes reference mistakes or forgets to inform the GC when
an object is no longer in use. The power of the GC abstraction allows GC implementations that
would be practically impossible to hardcode in an interpreter. For example, several of PyPy’s GC
implementations require a write barrier. A write barrier is a check which must be performed every
time a GC-managed object is placed in another GC-managed array or structure. The process of
inserting write barriers would be laborious and fraught with mistakes if done manually, but is trivial
when done automatically by the GC transformer.

The C backend can finally emit C source code. The generated C code, being generated from
low-level flow-graphs, is an ugly mess of gotos and obscurely named variables. An advantage of
writing C is that the C compiler can do most of the complicated static transformation work required
to make a final binary-like loop optimizations and register allocation.

19.5 The PyPy JIT
Python, like most dynamic languages, has traditionally traded efficiency for flexibility. The archi-
tecture of PyPy, being especially rich in flexibility and abstraction, makes very fast interpretation
difficult. The powerful objspace and multimethod abstractions in the std objspace do not come with-
out a cost. Consequently, the vanilla PyPy interpreter performs up to 4 times slower than CPython.
To remedy not only this but Python’s reputation as a sluggish language, PyPy has a just-in-time
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compiler (commonly written JIT). The JIT compiles frequently used codepaths into assembly during
the runtime of the program.

The PyPy JIT takes advantage of PyPy’s unique translation architecture described in Section 19.4.
PyPy actually has no Python-specific JIT; it has a JIT generator. JIT generation is implemented as
simply another optional pass during translation. A interpreter desiring JIT generation need only
make two special function calls called jit hints.

PyPy’s JIT is a tracing JIT. This means it detects “hot” (meaning frequently run) loops to
optimize by compiling to assembly. When the JIT has decided it is going to compile a loop, it records
operations in one iteration of the loop, a process called tracing. These operations are subsequently
compiled to machine code.

As mentioned above, the JIT generator requires only two hints in the interpreter to generate a JIT:
merge_point and can_enter_jit. can_enter_jit tells the JIT where in the interpreter a loop
starts. In the Python interpreter, this is the end of the JUMP_ABSOLUTE bytecode. (JUMP_ABSOLUTE
makes the interpreter jump to the head of the app-level loop.) merge_point tells the JIT where it is
safe to return to the interpreter from the JIT. This is the beginning of the bytecode dispatch loop in
the Python interpreter.

The JIT generator is invoked after the RTyping phase of translation. Recall that at this point,
the program’s flow-graphs consist of low-level operations nearly ready for target code generation.
The JIT generator locates the hints mentioned above in the interpreter and replaces them with calls
to invoke the JIT during runtime. The JIT generator then writes a serialized representation of the
flow-graphs of every function that the interpreter wants jitted. These serialized flow-graphs are called
jitcodes. The entire interpreter is now described in terms of low-level RPython operations. The
jitcodes are saved in the final binary for use at runtime.

At runtime, the JIT maintains a counter for every loop that is executed in the program. When a
loop’s counter exceeds a configurable threshold, the JIT is invoked and tracing begins. The key object
in tracing is the meta-interpreter. The meta-interpreter executes the jitcodes created in translation.
It is thus interpreting the main interpreter, hence the name. As it traces the loop, it creates a list
of the operations it is executing and records them in JIT intermediate representation (IR), another
operation format. This list is called the trace of the loop. When the meta-interpreter encounters a
call to a jitted function (one for which jitcode exists), the meta-interpreter enters it and records its
operations to original trace. Thus, the tracing has the effect of flattening out the call stack; the only
calls in the trace are to interpreter functions that are outside the knowledge of jit.

The meta-interpreter is forced to specialize the trace to properties of the loop iteration it is
tracing. For example, when the meta-interpreter encounters a conditional in the jitcode, it naturally
must choose one path based on the state of the program. When it makes a choice based on runtime
information, the meta-interpreter records an IR operation called a guard. In the case of a conditional,
this will be a guard_true or guard_false operation on the condition variable. Most arithmetic
operations also have guards, which ensure the operation did not overflow. Essentially, guards codify
assumptions the meta-interpreter is making as it traces. When assembly is generated, the guards
will protect assembly from being run in a context it is not specialized for. Tracing ends when the
meta-interpreter reaches the same can_enter_jit operation with which it started tracing. The loop
IR can now be passed to the optimizer.

The JIT optimizer features a few classical compiler optimizations and many optimizations special-
ized for dynamic languages. Among the most important of the latter are virtuals and virtualizables.

Virtuals are objects which are known not to escape the trace, meaning they are not passed as
arguments to external, non-jitted function calls. Structures and constant length arrays can be virtuals.
Virtuals do not have to be allocated, and their data can be stored directly in registers and on the
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stack. (This is much like the static malloc removal phase described in the section about translation
backend optimizations.) The virtuals optimization strips away the indirection and memory allocation
inefficiencies in the Python interpreter. For example, by becoming virtual, boxed Python integer
objects are unboxed into simple word-sized integers and can be stored directly in machine registers.

A virtualizable acts much like a virtual but may escape the trace (that is, be passed to non-
jitted functions). In the Python interpreter the frame object, which holds variable values and the
instruction pointer, is marked virtualizable. This allows stack manipulations and other operations on
the frame to be optimized out. Although virtuals and virtualizables are similar, they share nothing in
implementation. Virtualizables are handled during tracing by the meta-interpreter. This is unlike
virtuals, which are handled during trace optimization. The reason for this is virtualizables require
special treatment, since they may escape the trace. Specifically, the meta-interpreter has to ensure
that non-jitted functions that may use the virtualizable don’t actually try to fetch its fields. This is
because in jitted code, the fields of virtualizable are stored in the stack and registers, so the actual
virtualizable may be out of date with respect to its current values in the jitted code. During JIT
generation, code which accesses a virtualizable is rewritten to check if jitted assembly is running. If
it is, the JIT is asked to update the fields from data in assembly. Additionally when the external call
returns to jitted code, execution bails back to the interpreter.

After optimization, the trace is ready to be assembled. Since the JIT IR is already quite low-level,
assembly generation is not too difficult. Most IR operations correspond to only a few x86 assembly
operations. The register allocator is a simple linear algorithm. At the moment, the increased time that
would be spent in the backend with a more sophisticated register allocation algorithm in exchange for
generating slightly better code has not been justified. The trickiest portions of assembly generation
are garbage collector integration and guard recovery. The GC has to be made aware of stack roots in
the generated JIT code. This is accomplished by special support in the GC for dynamic root maps.

Figure 19.3: Bailing back to the interpreter on guard failure

When a guard fails, the compiled assembly is no longer valid and control must return to the
bytecode interpreter. This bailing out is one of the most difficult parts of JIT implementation, since
the interpreter state has to be reconstructed from the register and stack state at the point the guard
failed. For each guard, the assembler writes a compact description of where all the values needed to
reconstruct the interpreter state are. At guard failure, execution jumps to a function which decodes
this description and passes the recovery values to a higher level be reconstructed. The failing guard
may be in the middle of the execution of a complicated opcode, so the interpreter can not just start
with the next opcode. To solve this, PyPy uses a blackhole interpreter. The blackhole interpreter
executes jitcodes starting from the point of guard failure until the next merge point is reached.
There, the real interpreter can resume. The blackhole interpreter is so named because unlike the
meta-interpreter, it doesn’t record any of the operations it executes. The process of guard failure is
depicted in Figure 19.3.
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As described up to this point, the JIT would be essentially useless on any loop with a frequently
changing condition, because a guard failure would prevent assembly from running very many
iterations. Every guard has a failure counter. After the failure count has passed a certain threshold,
the JIT starts tracing from the point of guard failure instead of bailing back to the interpreter. This
new sub-trace is called a bridge. When the tracing reaches the end of the loop, the bridge is optimized
and compiled and the original loop is patched at the guard to jump to the new bridge instead of the
failure code. This way, loops with dynamic conditions can be jitted.

How successful have the techniques used in the PyPy JIT proven? At the time of this writing, PyPy
is a geometric average of five times faster than CPython on a comprehensive suite of benchmarks.
With the JIT, app-level Python has the possibility of being faster than interp-level code. PyPy
developers have recently had the excellent problem of having to write interp-level loops in app-level
Python for performance.

Most importantly, the fact that the JIT is not specific to Python means it can be applied to any
interpreter written within the PyPy framework. This need not necessarily be a language interpreter.
For example, the JIT is used for Python’s regular expression engine. NumPy is a powerful array
module for Python used in numerical computing and scientific research. PyPy has an experimental
reimplementation of NumPy. It harnesses the power of the PyPy JIT to speed up operations on
arrays. While the NumPy implementation is still in its early stages, initial performance results look
promising.

19.6 Design Drawbacks
While it beats C any day, writing in RPython can be a frustrating experience. Its implicit typing
is difficult to get used to at first. Not all Python language features are supported and others are
arbitrarily restricted. RPython is not specified formally anywhere and what the translator accepts
can vary from day to day as RPython is adapted to PyPy’s needs. The author of this chapter often
manages to create programs that churn in the translator for half an hour, only to fail with an obscure
error.

The fact that the RPython translator is a whole-program analyzer creates some practical problems.
The smallest change anywhere in translated code requires retranslating the entire interpreter. That
currently takes about 40 minutes on a fast, modern system. The delay is especially annoying for
testing how changes affect the JIT, since measuring performance requires a translated interpreter. The
requirement that the whole program be present at translation means modules containing RPython
cannot be built and loaded separately from the core interpreter.

The levels of abstraction in PyPy are not always as clear cut as in theory. While technically the
JIT generator should be able to produce an excellent JIT for a language given only the two hints
mentioned above, the reality is that it behaves better on some code than others. The Python interpreter
has seen a lot of work towards making it more “jit-friendly”, including many more JIT hints and
even new data structures optimized for the JIT.

The many layers of PyPy can make tracking down bugs a laborious process. A Python interpreter
bug could be directly in the interpreter source or buried somewhere in the semantics of RPython and
the translation toolchain. Especially when a bug cannot be reproduced on the untranslated interpreter,
debugging is difficult. It typically involves running GDB on the nearly unreadable generated C
sources.

Translating even a restricted subset of Python to a much lower-level language like C is not an
easy task. The lowering passes described in Section 19.4 are not really independent. Functions
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are being annotated and rtyped throughout translation, and the annotator has some knowledge of
low-level types. The RPython translator is thus a tangled web of cross-dependencies. The translator
could do with cleaning up in several places, but doing it is neither easy nor much fun.

19.7 A Note on Process
In part to combat its own complexity (see Section 19.6), PyPy has adopted several so-called “agile”
development methodologies. By far the most important of these is test-driven development. All
new features and bug fixes are required to have tests to verify their correctness. The PyPy Python
interpreter is also run against CPython’s regression test suite. PyPy’s test driver, py.test, was spun off
and is now used in many other projects. PyPy also has a continuous integration system that runs
the test suite and translates the interpreter on a variety of platforms. Binaries for all platforms are
produced daily and the benchmark suite is run. All these tests ensure that the various components
are behaving, no matter what change is made in the complicated architecture.

There is a strong culture of experimentation in the PyPy project. Developers are encouraged
to make branches in the Mercurial repository. There, ideas in development can be refined without
destabilizing the main branch. Branches are not always successful, and some are abandoned. If
anything though, PyPy developers are tenacious. Most famously, the current PyPy JIT is the fifth
attempt to add a JIT to PyPy!

Figure 19.4: The jitviewer showing Python bytecode and associated JIT IR operations
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The PyPy project also prides itself on its visualization tools. The flow-graph charts in Section 19.4
are one example. PyPy also has tools to show invocation of the garbage collector over time and view
the parse trees of regular expressions. Of special interest is jitviewer, a program that allows one to
visually peel back the layers of a jitted function, from Python bytecode to JIT IR to assembly. (The
jitviewer is shown in Figure 19.4.) Visualization tools help developers understand how PyPy’s many
layers interact with each other.

19.8 Summary
The Python interpreter treats Python objects as black boxes and leaves all behavior to be defined by
the objspace. Individual objspaces can provide special extended behavior to Python objects. The
objspace approach also enables the abstract interpretation technique used in translation.

The RPython translator allows details like garbage collection and exception handling to be
abstracted from the language interpreter. It also opens up the possibly of running PyPy on many
different runtime platforms by using different backends.

One of the most important uses of the translation architecture is the JIT generator. The generality
of the JIT generator allows JITs for new languages and sub-languages like regular expressions to be
added. PyPy is the fastest Python implementation today because of its JIT generator.

While most of PyPy’s development effort has gone into the Python interpreter, PyPy can be used
for the implementation of any dynamic language. Over the years, partial interpreters for JavaScript,
Prolog, Scheme, and IO have been written with PyPy.

19.9 Lessons Learned
Finally, some of lessons to take away from the PyPy project:

Repeated refactoring is often a necessary process. For example, it was originally envisioned that
the C backend for the translator would be able to work off the high-level flow graphs! It took several
iterations for the current multi-phase translation process to be born.

The most important lesson of PyPy is the power of abstraction. In PyPy, abstractions separate
implementation concerns. For example, RPython’s automatic garbage collection allows a developer
working the interpreter to not worry about memory management. At the same time, abstractions have
a mental cost. Working on the translation chain involves juggling the various phases of translation
at once in one’s head. What layer a bug resides in can also be clouded by abstractions; abstraction
leakage, where swapping low-level components that should be interchangeable breaks higher-level
code, is perennial problem. It is important that tests are used to verify that all parts of the system are
working, so a change in one system does not break a different one. More concretely, abstractions can
slow a program down by creating too much indirection.

The flexibility of (R)Python as an implementation language makes experimenting with new
Python language features (or even new languages) easy. Because of its unique architecture, PyPy
will play a large role in the future of Python and dynamic language implementation.
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[chapter20]

SQLAlchemy
Michael Bayer

SQLAlchemy is a database toolkit and object-relational mapping (ORM) system for the Python
programming language, first introduced in 2005. From the beginning, it has sought to provide an
end-to-end system for working with relational databases in Python, using the Python Database API
(DBAPI) for database interactivity. Even in its earliest releases, SQLAlchemy’s capabilities attracted
a lot of attention. Key features include a great deal of fluency in dealing with complex SQL queries
and object mappings, as well as an implementation of the “unit of work” pattern, which provides for
a highly automated system of persisting data to a database.

Starting from a small, roughly implemented concept, SQLAlchemy quickly progressed through
a series of transformations and reworkings, turning over new iterations of its internal architectures as
well as its public API as the userbase continued to grow. By the time version 0.5 was introduced in
January of 2009, SQLAlchemy had begun to assume a stable form that was already proving itself
in a wide variety of production deployments. Throughout 0.6 (April, 2010) and 0.7 (May, 2011),
architectural and API enhancements continued the process of producing the most efficient and stable
library possible. As of this writing, SQLAlchemy is used by a large number of organizations in a
variety of fields, and is considered by many to be the de facto standard for working with relational
databases in Python.

20.1 The Challenge of Database Abstraction
The term “database abstraction” is often assumed to mean a system of database communication
which conceals the majority of details of how data is stored and queried. The term is sometimes
taken to the extreme, in that such a system should not only conceal the specifics of the relational
database in use, but also the details of the relational structures themselves and even whether or not
the underlying storage is relational.

The most common critiques of ORMs center on the assumption that this is the primary purpose
of such a tool—to “hide” the usage of a relational database, taking over the task of constructing an
interaction with the database and reducing it to an implementation detail. Central to this approach
of concealment is that the ability to design and query relational structures is taken away from the
developer and instead handled by an opaque library.

Those who work heavily with relational databases know that this approach is entirely impractical.
Relational structures and SQL queries are vastly functional, and comprise the core of an application’s
design. How these structures should be designed, organized, and manipulated in queries varies not



just on what data is desired, but also on the structure of information. If this utility is concealed,
there’s little point in using a relational database in the first place.

The issue of reconciling applications that seek concealment of an underlying relational database
with the fact that relational databases require great specificity is often referred to as the “object-
relational impedance mismatch” problem. SQLAlchemy takes a somewhat novel approach to this
problem.

SQLAlchemy’s Approach to Database Abstraction
SQLAlchemy takes the position that the developer must be willing to consider the relational form of
his or her data. A system which pre-determines and conceals schema and query design decisions
marginalizes the usefulness of using a relational database, leading to all of the classic problems of
impedance mismatch.

At the same time, the implementation of these decisions can and should be executed through
high-level patterns as much as possible. Relating an object model to a schema and persisting it via
SQL queries is a highly repetitive task. Allowing tools to automate these tasks allows the development
of an application that’s more succinct, capable, and efficient, and can be created in a fraction of the
time it would take to develop these operations manually.

To this end, SQLAlchemy refers to itself as a toolkit, to emphasize the role of the developer
as the designer/builder of all relational structures and linkages between those structures and the
application, not as a passive consumer of decisions made by a library. By exposing relational
concepts, SQLAlchemy embraces the idea of “leaky abstraction”, encouraging the developer to tailor
a custom, yet fully automated, interaction layer between the application and the relational database.
SQLAlchemy’s innovation is the extent to which it allows a high degree of automation with little to
no sacrifice in control over the relational database.

20.2 The Core/ORM Dichotomy
Central to SQLAlchemy’s goal of providing a toolkit approach is that it exposes every layer of
database interaction as a rich API, dividing the task into two main categories known as Core and
ORM. The Core includes Python Database API (DBAPI) interaction, rendering of textual SQL
statements understood by the database, and schema management. These features are all presented
as public APIs. The ORM, or object-relational mapper, is then a specific library built on top of
the Core. The ORM provided with SQLAlchemy is only one of any number of possible object
abstraction layers that could be built upon the Core, and many developers and organizations build
their applications on top of the Core directly.

The Core/ORM separation has always been SQLAlchemy’s most defining feature, and it has both
pros and cons. The explicit Core present in SQLAlchemy leads the ORM to relate database-mapped
class attributes to a structure known as a Table, rather than directly to their string column names as
expressed in the database; to produce a SELECT query using a structure called select, rather than
piecing together object attributes directly into a string statement; and to receive result rows through a
facade called ResultProxy, which transparently maps the select to each result row, rather than
transferring data directly from a database cursor to a user-defined object.

Core elements may not be visible in a very simple ORM-centric application. However, as the
Core is carefully integrated into the ORM to allow fluid transition between ORM and Core constructs,
a more complex ORM-centric application can “move down” a level or two in order to deal with the
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Figure 20.1: SQLAlchemy layer diagram

database in a more specific and finely tuned manner, as the situation requires. As SQLAlchemy has
matured, the Core API has become less explicit in regular use as the ORM continues to provide
more sophisticated and comprehensive patterns. However, the availability of the Core was also a
contributor to SQLAlchemy’s early success, as it allowed early users to accomplish much more than
would have been possible when the ORM was still being developed.

The downside to the ORM/Core approach is that instructions must travel through more steps.
Python’s traditional C implementation has a significant overhead penalty for individual function
calls, which are the primary cause of slowness in the runtime. Traditional methods of ameliorating
this include shortening call chains through rearrangement and inlining, and replacing performance-
critical areas with C code. SQLAlchemy has spent many years using both of these methods to
improve performance. However, the growing acceptance of the PyPy interpreter for Python may
promise to squash the remaining performance problems without the need to replace the majority of
SQLAlchemy’s internals with C code, as PyPy vastly reduces the impact of long call chains through
just-in-time inlining and compilation.

20.3 Taming the DBAPI
At the base of SQLAlchemy is a system for interacting with the database via the DBAPI. The
DBAPI itself is not an actual library, only a specification. Therefore, implementations of the DBAPI
are available for a particular target database, such as MySQL or PostgreSQL, or alternatively for
particular non-DBAPI database adapters, such as ODBC and JDBC.
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The DBAPI presents two challenges. The first is to provide an easy-to-use yet full-featured facade
around the DBAPI’s rudimentary usage patterns. The second is to handle the extremely variable
nature of specific DBAPI implementations as well as the underlying database engines.

The Dialect System
The interface described by the DBAPI is extremely simple. Its core components are the DBAPI
module itself, the connection object, and the cursor object—a “cursor” in database parlance represents
the context of a particular statement and its associated results. A simple interaction with these objects
to connect and retrieve data from a database is as follows:

connection = dbapi.connect(user="user", pw="pw", host="host")
cursor = connection.cursor()
cursor.execute("select * from user_table where name=?", ("jack",))
print "Columns in result:", [desc[0] for desc in cursor.description]
for row in cursor.fetchall():

print "Row:", row
cursor.close()
connection.close()

SQLAlchemy creates a facade around the classical DBAPI conversation. The point of entry
to this facade is the create_engine call, from which connection and configuration information is
assembled. An instance of Engine is produced as the result. This object then represents the gateway
to the DBAPI, which itself is never exposed directly.

For simple statement executions, Engine offers what’s known as an implicit execution interface.
The work of acquiring and closing both a DBAPI connection and cursor are handled behind the
scenes:

engine = create_engine("postgresql://user:pw&#64;host/dbname")
result = engine.execute("select * from table")
print result.fetchall()

When SQLAlchemy 0.2 was introduced the Connection object was added, providing the ability
to explicitly maintain the scope of the DBAPI connection:

conn = engine.connect()
result = conn.execute("select * from table")
print result.fetchall()
conn.close()

The result returned by the execute method of Engine or Connection is called a ResultProxy,
which offers an interface similar to the DBAPI cursor but with richer behavior. The Engine,
Connection, and ResultProxy correspond to the DBAPI module, an instance of a specific DBAPI
connection, and an instance of a specific DBAPI cursor, respectively.

Behind the scenes, the Engine references an object called a Dialect. The Dialect is an
abstract class for which many implementations exist, each one targeted at a specific DBAPI/database
combination. A Connection created on behalf of the Engine will refer to this Dialect for all
decisions, which may have varied behaviors depending on the target DBAPI and database in use.

The Connection, when created, will procure and maintain an actual DBAPI connection from
a repository known as a Pool that’s also associated with the Engine. The Pool is responsible for
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creating new DBAPI connections and, usually, maintaining them in an in-memory pool for frequent
re-use.

During a statement execution, an additional object called an ExecutionContext is created
by the Connection. The object lasts from the point of execution throughout the lifespan of the
ResultProxy. It may also be available as a specific subclass for some DBAPI/database combinations.

Figure 20.2 illustrates all of these objects and their relationships to each other as well as to the
DBAPI components.

<<uses>>

Engine Dialect psycopg2
DBAPI

<<uses>>

ExecutionContext DBAPI cursor
<<uses>>

sqlalchemy.engine psycopg2

<<produces>>

Connection

<<creates>>

<<creates>>

ResultProxy

<<creates>>

<<uses>>

DBAPI 
connection

<<produces>>

<<uses>>

Pool

sqlalchemy.pool

<<uses>>
<<maintains>>

<<uses>>

Figure 20.2: Engine, Connection, ResultProxy API

Dealing with DBAPI Variability
For the task of managing variability in DBAPI behavior, first we’ll consider the scope of the problem.
The DBAPI specification, currently at version two, is written as a series of API definitions which
allow for a wide degree of variability in behavior, and leave a good number of areas undefined.
As a result, real-life DBAPIs exhibit a great degree of variability in several areas, including when
Python unicode strings are acceptable and when they are not; how the “last inserted id”—that is, an
autogenerated primary key—may be acquired after an INSERT statement; and how bound parameter
values may be specified and interpreted. They also have a large number of idiosyncratic type-oriented
behaviors, including the handling of binary, precision numeric, date, Boolean, and unicode data.

SQLAlchemy approaches this by allowing variability in both Dialect and ExecutionContext
via multi-level subclassing. Figure 20.3 illustrates the relationship between Dialect and
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ExecutionContext when used with the psycopg2 dialect. The PGDialect class provides behaviors
that are specific to the usage of the PostgreSQL database, such as the ARRAY datatype and schema
catalogs; the PGDialect_psycopg2 class then provides behaviors specific to the psycopg2 DBAPI,
including unicode data handlers and server-side cursor behavior.

Dialect

DefaultDialect

PGDialect_psycopg2

PGDialect

ExecutionContext

DefaultExecutionContext

PGExecutionContext

PGExecutionContext_psycopg2

sqlalchemy.dialects.postgresql

sqlalchemy.engine
<<uses>>

Figure 20.3: Simple Dialect/ExecutionContext hierarchy

A variant on the above pattern presents itself when dealing with a DBAPI that supports multiple
databases. Examples of this include pyodbc, which deals with any number of database backends via
ODBC, and zxjdbc, a Jython-only driver which deals with JDBC. The above relationship is augmented
by the use of a mixin class from the sqlalchemy.connectors package which provides DBAPI
behavior that is common to multiple backends. Figure 20.4 illustrates the common functionality of
sqlalchemy.connectors.pyodbc shared among pyodbc-specific dialects forMySQL andMicrosoft
SQL Server.

The Dialect and ExecutionContext objects provide a means to define every interaction with
the database and DBAPI, including how connection arguments are formatted and how special quirks
during statement execution are handled. The Dialect is also a factory for SQL compilation constructs
that render SQL correctly for the target database, and type objects which define how Python data
should be marshaled to and from the target DBAPI and database.

20.4 Schema Definition
With database connectivity and interactivity established, the next task is to provide for the creation
and manipulation of backend-agnostic SQL statements. To achieve this, we need to define first
how we will refer to the tables and columns present in a database—the so-called “schema”. Tables
and columns represent how data is organized, and most SQL statements consist of expressions and
commands referring to these structures.
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sqlalchemy.engine

PyODBCConnector

sqlalchemy.connectors

MySQLDialect

MySQLDialect_pyodbc

sqlalchemy.dialects.mysql

Figure 20.4: Common DBAPI behavior shared among dialect hierarchies

An ORM or data access layer needs to provide programmatic access to the SQL language; at the
base is a programmatic system of describing tables and columns. This is where SQLAlchemy offers
the first strong division of Core and ORM, by offering the Table and Column constructs that describe
the structure of the database independently of a user’s model class definition. The rationale behind
the division of schema definition from object relational mapping is that the relational schema can be
designed unambiguously in terms of the relational database, including platform-specific details if
necessary, without being muddled by object-relational concepts—these remain a separate concern.
Being independent of the ORM component also means the schema description system is just as
useful for any other kind of object-relational system which may be built on the Core.

The Table and Column model falls under the scope of what’s referred to as metadata, offering
a collection object called MetaData to represent a collection of Table objects. The structure is
derived mostly from Martin Fowler’s description of “Metadata Mapping” in Patterns of Enterprise
Application Architecture. Figure 20.5 illustrates some key elements of the sqlalchemy.schema
package.

Table represents the name and other attributes of an actual table present in a target schema.
Its collection of Column objects represents naming and typing information about individual table
columns. A full array of objects describing constraints, indexes, and sequences is provided to fill in
many more details, some of which impact the behavior of the engine and SQL construction system.
In particular, ForeignKeyConstraint is central to determining how two tables should be joined.

Table and Column in the schema package are unique versus the rest of the package in that they are
dual-inheriting, both from the sqlalchemy.schema package and the sqlalchemy.sql.expression
package, serving not just as schema-level constructs, but also as core syntactical units in the SQL
expression language. This relationship is illustrated in Figure 20.6.

In Figure 20.6 we can see that Table and Column inherit from the SQL world as specific forms of
“things you can select from”, known as a FromClause, and “things you can use in a SQL expression”,
known as a ColumnElement.
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Figure 20.5: Basic sqlalchemy.schema objects
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Figure 20.6: The dual lives of Table and Column

20.5 SQL Expressions
During SQLAlchemy’s creation, the approach to SQL generation wasn’t clear. A textual language
might have been a likely candidate; this is a common approach which is at the core of well-known
object-relational tools like Hibernate’s HQL. For Python, however, a more intriguing choice was
available: using Python objects and expressions to generatively construct expression tree structures,
even re-purposing Python operators so that operators could be given SQL statement behavior.

While it may not have been the first tool to do so, full credit goes to the SQLBuilder library
included in Ian Bicking’s SQLObject as the inspiration for the system of Python objects and operators
used by SQLAlchemy’s expression language. In this approach, Python objects represent lexical
portions of a SQL expression. Methods on those objects, as well as overloaded operators, generate
new lexical constructs derived from them. The most common object is the “Column” object—
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SQLObject would represent these on an ORM-mapped class using a namespace accessed via the .q
attribute; SQLAlchemy named the attribute .c. The .c attribute remains today on Core selectable
elements, such as those representing tables and select statements.

Expression Trees
A SQLAlchemy SQL expression construct is very much the kind of structure you’d create if you were
parsing a SQL statement—it’s a parse tree, except the developer creates the parse tree directly, rather
than deriving it from a string. The core type of node in this parse tree is called ClauseElement, and
Figure 20.7 illustrates the relationship of ClauseElement to some key classes.

ClauseElement

FromClause

ColumnClause

ColumnElement

Select CompoundSelect

SelectBase

Join

Alias

TableClause

_Label

_BinaryExpression

ClauseList

_BindParam

_UnaryExpression

UpdateBase

ValuesBase

Insert Update

Delete

Figure 20.7: Basic expression hierarchy

Through the use of constructor functions, methods, and overloaded Python operator functions, a
structure for a statement like:

SELECT id FROM user WHERE name = ?

might be constructed in Python like:

from sqlalchemy.sql import table, column, select
user = table(’user’, column(’id’), column(’name’))
stmt = select([user.c.id]).where(user.c.name==’ed’)

The structure of the above select construct is shown in Figure 20.8. Note the representation of
the literal value ’ed’ is contained within the _BindParam construct, thus causing it to be rendered
as a bound parameter marker in the SQL string using a question mark.
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Figure 20.8: Example expression tree

From the tree diagram, one can see that a simple descending traversal through the nodes can
quickly create a rendered SQL statement, as we’ll see in greater detail in the section on statement
compilation.

Python Operator Approach
In SQLAlchemy, an expression like this:

column(’a’) == 2

produces neither True nor False, but instead a SQL expression construct. The key to this is to
overload operators using the Python special operator functions: e.g., methods like __eq__, __ne__,
__le__, __lt__, __add__, __mul__. Column-oriented expression nodes provide overloaded Python
operator behavior through the usage of a mixin called ColumnOperators. Using operator overloading,
an expression column(’a’) == 2 is equivalent to:

from sqlalchemy.sql.expression import _BinaryExpression
from sqlalchemy.sql import column, bindparam
from sqlalchemy.operators import eq

_BinaryExpression(
left=column(’a’),
right=bindparam(’a’, value=2, unique=True),
operator=eq

)

The eq construct is actually a function originating from the Python operator built-in. Representing
operators as an object (i.e., operator.eq) rather than a string (i.e., =) allows the string representation
to be defined at statement compilation time, when database dialect information is known.
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Compilation
The central class responsible for rendering SQL expression trees into textual SQL is the Compiled
class. This class has two primary subclasses, SQLCompiler and DDLCompiler. SQLCompiler handles
SQL rendering operations for SELECT, INSERT, UPDATE, and DELETE statements, collectively
classified as DQL (data query language) and DML (data manipulation language), while DDLCompiler
handles various CREATE and DROP statements, classified as DDL (data definition language).
There is an additional class hierarchy focused around string representations of types, starting at
TypeCompiler. Individual dialects then provide their own subclasses of all three compiler types to
define SQL language aspects specific to the target database. Figure 20.9 provides an overview of this
class hierarchy with respect to the PostgreSQL dialect.

Compiled

DDLCompilerSQLCompiler

PGCompiler

GenericType
Compiler

PGDDLCompilerPGTypeCompiler

TypeCompiler

sqlalchemy.engine

sqlalchemy.sql.compiler

sqlalchemy.dialects.postgresql

Figure 20.9: Compiler hierarchy, including PostgreSQL-specific implementation

The Compiled subclasses define a series of visit methods, each one referred to by a particular
subclass of ClauseElement. A hierarchy of ClauseElement nodes is walked and a statement is
constructed by recursively concatenating the string output of each visit function. As this proceeds,
the Compiled object maintains state regarding anonymous identifier names, bound parameter names,
and nesting of subqueries, among other things, all of which aim for the production of a string SQL
statement as well as a final collection of bound parameters with default values. Figure 20.10 illustrates
the process of visit methods resulting in textual units.

label_select_columns()

SELECT   id   FROM  user  WHERE       name      =            ?

visit_table()

visit_select()

visit_binary()

visit_column() visit_bind_param()

Figure 20.10: Call hierarchy of a statement compilation
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A completed Compiled structure contains the full SQL string and collection of bound values.
These are coerced by an ExecutionContext into the format expected by the DBAPI’s execute
method, which includes such considerations as the treatment of a unicode statement object, the type
of collection used to store bound values, as well as specifics on how the bound values themselves
should be coerced into representations appropriate to the DBAPI and target database.

20.6 Class Mapping with the ORM
We now shift our attention to the ORM. The first goal is to use the system of table metadata we’ve
defined to allow mapping of a user-defined class to a collection of columns in a database table.
The second goal is to allow the definition of relationships between user-defined classes, based on
relationships between tables in a database.

SQLAlchemy refers to this as “mapping”, following the well known Data Mapper pattern de-
scribed in Fowler’s Patterns of Enterprise Architecture. Overall, the SQLAlchemy ORM draws
heavily from the practices detailed by Fowler. It’s also heavily influenced by the famous Java relational
mapper Hibernate and Ian Bicking’s SQLObject product for Python.

Classical vs. Declarative
We use the term classical mapping to refer to SQLAlchemy’s system of applying an object-relational
data mapping to an existing user class. This form considers the Table object and the user-defined class
to be two individually defined entities which are joined together via a function called mapper. Once
mapper has been applied to a user-defined class, the class takes on new attributes that correspond to
columns in the table:

class User(object):
pass

mapper(User, user_table)

# now User has an ".id" attribute
User.id

mapper can also affix other kinds of attributes to the class, including attributes which correspond to
references to other kinds of objects, as well as arbitrary SQL expressions. The process of affixing
arbitrary attributes to a class is known in the Python world as “monkeypatching”; however, since we
are doing it in a data-driven and non-arbitrary way, the spirit of the operation is better expressed
with the term class instrumentation.

Modern usage of SQLAlchemy centers around the Declarative extension, which is a configura-
tional system that resembles the common active-record-like class declaration system used by many
other object-relational tools. In this system, the end user explicitly defines attributes inline with the
class definition, each representing an attribute on the class that is to be mapped. The Table object,
in most cases, is not mentioned explicitly, nor is the mapper function; only the class, the Column
objects, and other ORM-related attributes are named:

class User(Base):
__tablename__ = ’user’
id = Column(Integer, primary_key=True)
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It may appear, above, that the class instrumentation is being achieved directly by our placement of
id = Column(), but this is not the case. The Declarative extension uses a Python metaclass, which
is a handy way to run a series of operations each time a new class is first declared, to generate a new
Table object from what’s been declared, and to pass it to the mapper function along with the class.
The mapper function then does its job in exactly the same way, patching its own attributes onto the
class, in this case towards the id attribute, and replacing what was there previously. By the time the
metaclass initialization is complete (that is, when the flow of execution leaves the block delineated
by User), the Column object marked by id has been moved into a new Table, and User.id has been
replaced by a new attribute specific to the mapping.

It was always intended that SQLAlchemy would have a shorthand, declarative form of configura-
tion. However, the creation of Declarative was delayed in favor of continued work solidifying the
mechanics of classical mapping. An interim extension called ActiveMapper, which later became the
Elixir project, existed early on. It redefines mapping constructs in a higher-level declaration system.
Declarative’s goal was to reverse the direction of Elixir’s heavily abstracted approach by establishing
a system that preserved SQLAlchemy classical mapping concepts almost exactly, only reorganizing
how they are used to be less verbose and more amenable to class-level extensions than a classical
mapping would be.

Whether classical or declarative mapping is used, a mapped class takes on new behaviors that
allow it to express SQL constructs in terms of its attributes. SQLAlchemy originally followed
SQLObject’s behavior of using a special attribute as the source of SQL column expressions, referred
to by SQLAlchemy as .c, as in this example:

result = session.query(User).filter(User.c.username == ’ed’).all()

In version 0.4, however, SQLAlchemy moved the functionality into the mapped attributes them-
selves:

result = session.query(User).filter(User.username == ’ed’).all()

This change in attribute access proved to be a great improvement, as it allowed the column-
like objects present on the class to gain additional class-specific capabilities not present on those
originating directly from the underlying Table object. It also allowed usage integration between
different kinds of class attributes, such as attributes which refer to table columns directly, attributes
that refer to SQL expressions derived from those columns, and attributes that refer to a related class.
Finally, it provided a symmetry between a mapped class, and an instance of that mapped class, in
that the same attribute could take on different behavior depending on the type of parent. Class-bound
attributes return SQL expressions while instance-bound attributes return actual data.

Anatomy of a Mapping
The id attribute that’s been attached to our User class is a type of object known in Python as a
descriptor, an object that has __get__, __set__, and __del__ methods, which the Python runtime
defers to for all class and instance operations involving this attribute. SQLAlchemy’s implementation
is known as an InstrumentedAttribute, and we’ll illustrate the world behind this facade with
another example. Starting with a Table and a user defined class, we set up a mapping that has just
one mapped column, as well as a relationship, which defines a reference to a related class:

user_table = Table("user", metadata,
Column(’id’, Integer, primary_key=True),

Michael Bayer 303



)

class User(object):
pass

mapper(User, user_table, properties={
’related’:relationship(Address)

})

When the mapping is complete, the structure of objects related to the class is detailed in Fig-
ure 20.11.
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ClassManager

sqlalchemy.orm.strategies
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Figure 20.11: Anatomy of a mapping

The figure illustrates a SQLAlchemy mapping defined as two separate layers of interaction
between the user-defined class and the table metadata to which it is mapped. Class instrumentation
is pictured towards the left, while SQL and database functionality is pictured towards the right.
The general pattern at play is that object composition is used to isolate behavioral roles, and object
inheritance is used to distinguish amongst behavioral variances within a particular role.

Within the realm of class instrumentation, the ClassManager is linked to the mapped class,
while its collection of InstrumentedAttribute objects are linked to each attribute mapped on the
class. InstrumentedAttribute is also the public-facing Python descriptor mentioned previously,
and produces SQL expressions when used in a class-based expression (e.g., User.id==5). When
dealing with an instance of User, InstrumentedAttribute delegates the behavior of the attribute
to an AttributeImpl object, which is one of several varieties tailored towards the type of data being
represented.
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Towards the mapping side, the Mapper represents the linkage of a user-defined class and a
selectable unit, most typically Table. Mapper maintains a collection of per-attribute objects known
as MapperProperty, which deals with the SQL representation of a particular attribute. The most
common variants of MapperProperty are ColumnProperty, representing a mapped column or SQL
expression, and RelationshipProperty, representing a linkage to another mapper.

MapperProperty delegates attribute loading behavior—including how the attribute renders in a
SQL statement and how it is populated from a result row—to a LoaderStrategy object, of which
there are several varieties. Different LoaderStrategies determine if the loading behavior of an
attribute is deferred, eager, or immediate. A default version is chosen at mapper configuration
time, with the option to use an alternate strategy at query time. RelationshipProperty also
references a DependencyProcessor, which handles how inter-mapper dependencies and attribute
synchronization should proceed at flush time. The choice of DependencyProcessor is based on the
relational geometry of the parent and target selectables linked to the relationship.

The Mapper/RelationshipProperty structure forms a graph, where Mapper objects are nodes
and RelationshipProperty objects are directed edges. Once the full set of mappers have been
declared by an application, a deferred “initialization” step known as the configuration proceeds. It is
used mainly by each RelationshipProperty to solidify the details between its parent and target
mappers, including choice of AttributeImpl as well as DependencyProcessor. This graph is a
key data structure used throughout the operation of the ORM. It participates in operations such as
the so-called “cascade” behavior that defines how operations should propagate along object paths, in
query operations where related objects and collections are “eagerly” loaded at once, as well as on
the object flushing side where a dependency graph of all objects is established before firing off a
series of persistence steps.

20.7 Query and Loading Behavior
SQLAlchemy initiates all object loading behavior via an object called Query. The basic state Query
starts with includes the entities, which is the list of mapped classes and/or individual SQL expressions
to be queried. It also has a reference to the Session, which represents connectivity to one or more
databases, as well as a cache of data that’s been accumulated with respect to transactions on those
connections. Below is a rudimentary usage example:

from sqlalchemy.orm import Session
session = Session(engine)
query = session.query(User)

We create a Query that will yield instances of User, relative to a new Session we’ve created.
Query provides a generative builder pattern in the same way as the select construct discussed
previously, where additional criteria and modifiers are associated with a statement construct one
method call at a time. When an iterative operation is called on the Query, it constructs a SQL
expression construct representing a SELECT, emits it to the database, and then interprets the result
set rows as ORM-oriented results corresponding to the initial set of entities being requested.

Query makes a hard distinction between the SQL rendering and the data loading portions of the
operation. The former refers to the construction of a SELECT statement, the latter to the interpretation
of SQL result rows into ORM-mapped constructs. Data loading can, in fact, proceed without a SQL
rendering step, as the Query may be asked to interpret results from a textual query hand-composed
by the user.
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Both SQL rendering and data loading utilize a recursive descent through the graph formed by the
series of lead Mapper objects, considering each column- or SQL-expression-holding ColumnProperty
as a leaf node and each RelationshipProperty which is to be included in the query via a so-called
“eager-load” as an edge leading to another Mapper node. The traversal and action to take at each
node is ultimately the job of each LoaderStrategy associated with every MapperProperty, adding
columns and joins to the SELECT statement being built in the SQL rendering phase, and producing
Python functions that process result rows in the data loading phase.

The Python functions produced in the data loading phase each receive a database row as they
are fetched, and produce a possible change in the state of a mapped attribute in memory as a result.
They are produced for a particular attribute conditionally, based on examination of the first incoming
row in the result set, as well as on loading options. If a load of the attribute is not to proceed, no
callable function is produced.

Figure 20.12 illustrates the traversal of several LoaderStrategy objects in a joined eager load-
ing scenario, illustrating their connection to a rendered SQL statement which occurs during the
_compile_context method of Query. It also shows generation of row population functions which
receive result rows and populate individual object attributes, a process which occurs within the
instances method of Query.

LOAD TIMEQUERY TIME

ColumnLoader

SELECT
 
    user.id 
             as user_id, 

    address.id 
            as address_id, 

    address.user_id 
            as address_user_id,
 
    address.street 
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FROM user 
    LEFT OUTER JOIN address 
    ON user.id=
       address.user_id
WHERE user.id =5 

name="id"
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Figure 20.12: Traversal of loader strategies including a joined eager load
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SQLAlchemy’s early approach to populating results used a traditional traversal of fixed object
methods associated with each strategy to receive each row and act accordingly. The loader callable
system, first introduced in version 0.5, represented a dramatic leap in performance, as many decisions
regarding row handling could be made just once up front instead of for each row, and a significant
number of function calls with no net effect could be eliminated.

20.8 Session/Identity Map
In SQLAlchemy, the Session object presents the public interface for the actual usage of the ORM—
that is, loading and persisting data. It provides the starting point for queries and persistence operations
for a given database connection.

The Session, in addition to serving as the gateway for database connectivity, maintains an active
reference to the set of all mapped entities which are present in memory relative to that Session. It’s
in this way that the Session implements a facade for the identity map and unit of work patterns,
both identified by Fowler. The identity map maintains a database-identity-unique mapping of all
objects for a particular Session, eliminating the problems introduced by duplicate identities. The
unit of work builds on the identity map to provide a system of automating the process of persisting
all changes in state to the database in the most effective manner possible. The actual persistence step
is known as a “flush”, and in modern SQLAlchemy this step is usually automatic.

Development History
The Session started out as a mostly concealed system responsible for the single task of emitting a
flush. The flush process involves emitting SQL statements to the database, corresponding to changes
in the state of objects tracked by the unit of work system and thereby synchronizing the current
state of the database with what’s in memory. The flush has always been one of the most complex
operations performed by SQLAlchemy.

The invocation of flush started out in very early versions behind a method called commit, and
it was a method present on an implicit, thread-local object called objectstore. When one used
SQLAlchemy 0.1, there was no need to call Session.add, nor was there any concept of an explicit
Session at all. The only user-facing steps were to create mappers, create new objects, modify
existing objects loaded through queries (where the queries themselves were invoked directly from
each Mapper object), and then persist all changes via the objectstore.commit command. The pool
of objects for a set of operations was unconditionally module-global and unconditionally thread-local.

The objectstore.commit model was an immediate hit with the first group of users, but the
rigidity of this model quickly ran into a wall. Users new to modern SQLAlchemy sometimes lament
the need to define a factory, and possibly a registry, for Session objects, as well as the need to keep
their objects organized into just one Session at a time, but this is far preferable to the early days
when the entire system was completely implicit. The convenience of the 0.1 usage pattern is still
largely present in modern SQLAlchemy, which features a session registry normally configured to
use thread local scoping.

The Session itself was only introduced in version 0.2 of SQLAlchemy, modeled loosely after
the Session object present in Hibernate. This version featured integrated transactional control,
where the Session could be placed into a transaction via the begin method, and completed via
the commit method. The objectstore.commit method was renamed to objectstore.flush, and
new Session objects could be created at any time. The Session itself was broken off from another
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object called UnitOfWork, which remains as a private object responsible for executing the actual
flush operation.

While the flush process started as a method explicitly invoked by the user, the 0.4 series of
SQLAlchemy introduced the concept of autoflush, which meant that a flush was emitted immediately
before each query. The advantage of autoflush is that the SQL statement emitted by a query always
has access on the relational side to the exact state that is present in memory, as all changes have been
sent over. Early versions of SQLAlchemy couldn’t include this feature, because the most common
pattern of usage was that the flush statement would also commit the changes permanently. But when
autoflush was introduced, it was accompanied by another feature called the transactional Session,
which provided a Session that would start out automatically in a transaction that remained until
the user called commit explicitly. With the introduction of this feature, the flush method no longer
committed the data that it flushed, and could safely be called on an automated basis. The Session
could now provide a step-by-step synchronization between in-memory state and SQL query state by
flushing as needed, with nothing permanently persisted until the explicit commit step. This behavior
is, in fact, exactly the same in Hibernate for Java. However, SQLAlchemy embraced this style of
usage based on the same behavior in the Storm ORM for Python, introduced when SQLAlchemy
was in version 0.3.

Version 0.5 brought more transaction integration when post-transaction expiration was intro-
duced; after each commit or rollback, by default all states within the Session are expired (erased),
to be populated again when subsequent SQL statements re-select the data, or when the attributes on
the remaining set of expired objects are accessed in the context of the new transaction. Originally,
SQLAlchemy was constructed around the assumption that SELECT statements should be emitted as
little as possible, unconditionally. The expire-on-commit behavior was slow in coming for this reason;
however, it entirely solved the issue of the Session which contained stale data post-transaction with
no simple way to load newer data without rebuilding the full set of objects already loaded. Early on,
it seemed that this problem couldn’t be reasonably solved, as it wasn’t apparent when the Session
should consider the current state to be stale, and thus produce an expensive new set of SELECT
statements on the next access. However, once the Session moved to an always-in-a-transaction
model, the point of transaction end became apparent as the natural point of data expiration, as
the nature of a transaction with a high degree of isolation is that it cannot see new data until it’s
committed or rolled back anyway. Different databases and configurations, of course, have varied
degrees of transaction isolation, including no transactions at all. These modes of usage are entirely
acceptable with SQLAlchemy’s expiration model; the developer only needs to be aware that a lower
isolation level may expose un-isolated changes within a Session if multiple Sessions share the same
rows. This is not at all different from what can occur when using two database connections directly.

Session Overview
Figure 20.13 illustrates a Session and the primary structures it deals with.

The public-facing portions above are the Session itself and the collection of user objects, each
of which is an instance of a mapped class. Here we see that mapped objects keep a reference to a
SQLAlchemy construct called InstanceState, which tracks ORM state for an individual instance
including pending attribute changes and attribute expiration status. InstanceState is the instance-
level side of the attribute instrumentation discussed in the preceding section, Anatomy of a Mapping,
corresponding to the ClassManager at the class level, and maintaining the state of the mapped
object’s dictionary (i.e., the Python __dict__ attribute) on behalf of the AttributeImpl objects
associated with the class.
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Figure 20.13: Session overview

State Tracking
The IdentityMap is a mapping of database identities to InstanceState objects, for those objects
which have a database identity, which are referred to as persistent. The default implementation
of IdentityMap works with InstanceState to self-manage its size by removing user-mapped
instances once all strong references to them have been removed—in this way it works in the same
way as Python’s WeakValueDictionary. The Session protects the set of all objects marked as
dirty or deleted, as well as pending objects marked new, from garbage collection, by creating strong
references to those objects with pending changes. All strong references are then discarded after the
flush.

InstanceState also performs the critical task of maintaining “what’s changed” for the attributes
of a particular object, using a move-on-change system that stores the “previous” value of a particular
attribute in a dictionary called committed_state before assigning the incoming value to the object’s
current dictionary. At flush time, the contents of committed_state and the __dict__ associated
with the object are compared to produce the set of net changes on each object.

In the case of collections, a separate collections package coordinates with the
InstrumentedAttribute/InstanceState system to maintain a collection of net changes to a par-
ticular mapped collection of objects. Common Python classes such as set, list and dict are
subclassed before use and augmented with history-tracking mutator methods. The collection system
was reworked in 0.4 to be open ended and usable for any collection-like object.

Transactional Control
Session, in its default state of usage, maintains an open transaction for all operations which is
completed when commit or rollback is called. The SessionTransaction maintains a set of
zero or more Connection objects, each representing an open transaction on a particular database.
SessionTransaction is a lazy-initializing object that begins with no database state present. As a
particular backend is required to participate in a statement execution, a Connection corresponding
to that database is added to SessionTransaction’s list of connections. While a single connection
at a time is common, the multiple connection scenario is supported where the specific connection
used for a particular operation is determined based on configurations associated with the Table,
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Mapper, or SQL construct itself involved in the operation. Multiple connections can also coordinate
the transaction using two-phase behavior, for those DBAPIs which provide it.

20.9 Unit of Work
The flushmethod provided by Session turns over its work to a separate module called unitofwork.
As mentioned earlier, the flush process is probably the most complex function of SQLAlchemy.

The job of the unit of work is to move all of the pending state present in a particular Session out
to the database, emptying out the new, dirty, and deleted collections maintained by the Session.
Once completed, the in-memory state of the Session and what’s present in the current transaction
match. The primary challenge is to determine the correct series of persistence steps, and then to
perform them in the correct order. This includes determining the list of INSERT, UPDATE, and
DELETE statements, including those resulting from the cascade of a related row being deleted or
otherwise moved; ensuring that UPDATE statements contain only those columns which were actually
modified; establishing “synchronization” operations that will copy the state of primary key columns
over to referencing foreign key columns, at the point at which newly generated primary key identifiers
are available; ensuring that INSERTs occur in the order in which objects were added to the Session
and as efficiently as possible; and ensuring that UPDATE and DELETE statements occur within a
deterministic ordering so as to reduce the chance of deadlocks.

History
The unit of work implementation began as a tangled system of structures that was written in an ad hoc
way; its development can be compared to finding the way out of a forest without a map. Early bugs
and missing behaviors were solved with bolted-on fixes, and while several refactorings improved
matters through version 0.5, it was not until version 0.6 that the unit of work—by that time stable,
well-understood, and covered by hundreds of tests—could be rewritten entirely from scratch. After
many weeks of considering a new approach that would be driven by consistent data structures, the
process of rewriting it to use this new model took only a few days, as the idea was by this time well
understood. It was also greatly helped by the fact that the new implementation’s behavior could be
carefully cross-checked against the existing version. This process shows how the first iteration of
something, however awful, is still valuable as long as it provides a working model. It further shows
how total rewrites of a subsystem is often not only appropriate, but an integral part of development
for hard-to-develop systems.

Topological Sort
The key paradigm behind the unit of work is that of assembling the full list of actions to be taken into
a data structure, with each node representing a single step; this is known in design patterns parlance
as the command pattern. The series of “commands” within this structure is then organized into a
specific ordering using a topological sort. A topological sort is a process that sorts items based on
a partial ordering, that is, only certain elements must precede others. Figure 20.14 illustrates the
behavior of the topological sort.

The unit of work constructs a partial ordering based on those persistence commands which must
precede others. The commands are then topologically sorted and invoked in order. The determination
of which commands precede which is derived primarily from the presence of a relationship that
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Figure 20.14: Topological sort

bridges two Mapper objects—generally, one Mapper is considered to be dependent on the other, as
the relationship implies that one Mapper has a foreign key dependency on the other. Similar rules
exist for many-to-many association tables, but here we focus on the case of one-to-many/many-to-one
relationships. Foreign key dependencies are resolved in order to prevent constraint violations from
occurring, with no reliance on needing to mark constraints as “deferred”. But just as importantly,
the ordering allows primary key identifiers, which on many platforms are only generated when an
INSERT actually occurs, to be populated from a just-executed INSERT statement’s result into the
parameter list of a dependent row that’s about to be inserted. For deletes, the same ordering is used
in reverse—dependent rows are deleted before those on which they depend, as these rows cannot be
present without the referent of their foreign key being present.

The unit of work features a system where the topological sort is performed at two different levels,
based on the structure of dependencies present. The first level organizes persistence steps into buckets
based on the dependencies between mappers, that is, full “buckets” of objects corresponding to a
particular class. The second level breaks up zero or more of these “buckets” into smaller batches,
to handle the case of reference cycles or self-referring tables. Figure 20.15 illustrates the “buckets”
generated to insert a set of User objects, then a set of Address objects, where an intermediary
step copies newly generated User primary key values into the user_id foreign key column of each
Address object.

In the per-mapper sorting situation, any number of User and Address objects can be flushed
with no impact on the complexity of steps or how many “dependencies” must be considered.

The second level of sorting organizes persistence steps based on direct dependencies between
individual objects within the scope of a single mapper. The simplest example of when this occurs
is a table which contains a foreign key constraint to itself; a particular row in the table needs to be
inserted before another row in the same table which refers to it. Another is when a series of tables
have a reference cycle: table A references table B, which references table C, that then references
table A. Some A objects must be inserted before others so as to allow the B and C objects to also be
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Figure 20.15: Organizing objects by mapper

inserted. The table that refers to itself is a special case of reference cycle.
To determine which operations can remain in their aggregated, per-Mapper buckets, and which

will be broken into a larger set of per-object commands, a cycle detection algorithm is applied to
the set of dependencies that exist between mappers, using a modified version of a cycle detection
algorithm found on Guido Van Rossum’s blog1. Those buckets involved in cycles are are then broken
up into per-object operations and mixed into the collection of per-mapper buckets through the addition
of new dependency rules from the per-object buckets back to the per-mapper buckets. Figure 20.16
illustrates the bucket of User objects being broken up into individual per-object commands, resulting
from the addition of a new relationship from User to itself called contact.

The rationale behind the bucket structure is that it allows batching of common statements as
much as possible, both reducing the number of steps required in Python and making possible more
efficient interactions with the DBAPI, which can sometimes execute thousands of statements within
a single Python method call. Only when a reference cycle exists between mappers does the more
expensive per-object-dependency pattern kick in, and even then it only occurs for those portions of
the object graph which require it.
1http://neopythonic.blogspot.com/2009/01/detecting-cycles-in-directed-graph.html
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20.10 Conclusion
SQLAlchemy has aimed very high since its inception, with the goal of being the most feature-rich and
versatile database product possible. It has done so while maintaining its focus on relational databases,
recognizing that supporting the usefulness of relational databases in a deep and comprehensive way
is a major undertaking; and even now, the scope of the undertaking continues to reveal itself as larger
than previously perceived.

The component-based approach is intended to extract the most value possible from each area of
functionality, providing many different units that applications can use alone or in combination. This
system has been challenging to create, maintain, and deliver.

The development course was intended to be slow, based on the theory that a methodical, broad-
based construction of solid functionality is ultimately more valuable than fast delivery of features
without foundation. It has taken a long time for SQLAlchemy to construct a consistent and well-
documented user story, but throughout the process, the underlying architecture was always a step
ahead, leading in some cases to the “time machine” effect where features can be added almost before
users request them.
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The Python language has been a reliable host (if a little finicky, particularly in the area of
performance). The language’s consistency and tremendously open run-time model has allowed
SQLAlchemy to provide a nicer experience than that offered by similar products written in other
languages.

It is the hope of the SQLAlchemy project that Python gain ever-deeper acceptance into as wide a
variety of fields and industries as possible, and that the use of relational databases remains vibrant
and progressive. The goal of SQLAlchemy is to demonstrate that relational databases, Python, and
well-considered object models are all very much worthwhile development tools.
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[chapter21]

Twisted
Jessica McKellar

Twisted is an event-driven networking engine in Python. It was born in the early 2000s, when the
writers of networked games had few scalable and no cross-platform libraries, in any language, at
their disposal. The authors of Twisted tried to develop games in the existing networking landscape,
struggled, saw a clear need for a scalable, event-driven, cross-platform networking framework and
decided to make one happen, learning from the mistakes and hardships of past game and networked
application writers.

Twisted supports many common transport and application layer protocols, including TCP, UDP,
SSL/TLS, HTTP, IMAP, SSH, IRC, and FTP. Like the language in which it is written, it is “batteries-
included”; Twisted comes with client and server implementations for all of its protocols, as well as
utilities that make it easy to configure and deploy production-grade Twisted applications from the
command line.

21.1 Why Twisted?
In 2000, glyph, the creator of Twisted, was working on a text-based multiplayer game called Twisted
Reality. It was a big mess of threads, 3 per connection, in Java. There was a thread for input that
would block on reads, a thread for output that would block on some kind of write, and a “logic” thread
that would sleep while waiting for timers to expire or events to queue. As players moved through the
virtual landscape and interacted, threads were deadlocking, caches were getting corrupted, and the
locking logic was never quite right—the use of threads had made the software complicated, buggy,
and hard to scale.

Seeking alternatives, he discovered Python, and in particular Python’s select module for multi-
plexing I/O from stream objects like sockets and pipes1; at the time, Java didn’t expose the operating
system’s select interface or any other asynchronous I/O API2. A quick prototype of the game in
Python using select immediately proved less complex and more reliable than the threaded version.

An instant convert to Python, select, and event-driven programming, glyph wrote a client and
server for the game in Python using the select API. But then he wanted to do more. Fundamentally,
he wanted to be able to turn network activity into method calls on objects in the game. What if you
could receive email in the game, like the Nethack mailer daemon? What if every player in the game
1The Single UNIX Specification, Version 3 (SUSv3) describes the select API.
2The java.nio package for non-blocking I/O was added in J2SE 1.4, released in 2002.



had a home page? Glyph found himself needing good Python IMAP and HTTP clients and servers
that used select.

He first turned to Medusa, a platform developed in the mid-’90s for writing networking servers
in Python based on the asyncore module3. asyncore is an asynchronous socket handler that builds
a dispatcher and callback interface on top of the operating system’s select API.

This was an inspiring find for glyph, but Medusa had two drawbacks:
1. It was on its way towards being unmaintained by 2001 when glyph started working on Twisted

Reality.
2. asyncore is such a thin wrapper around sockets that application programmers are still re-

quired to manipulate sockets directly. This means portability is still the responsibility of the
programmer. Additionally, at the time, asyncore’s Windows support was buggy, and glyph
knew that he wanted to run a GUI client on Windows.

Glyph was facing the prospect of implementing a networking platform himself and realized that
Twisted Reality had opened the door to a problem that was just as interesting as his game.

Over time, Twisted Reality the game became Twisted the networking platform, which would do
what existing networking platforms in Python didn’t:

• Use event-driven programming instead of multi-threaded programming.
• Be cross-platform: provide a uniform interface to the event notification systems exposed by
major operating systems.

• Be “batteries-included”: provide implementations of popular application-layer protocols out
of the box, so that Twisted is immediately useful to developers.

• Conform to RFCs, and prove conformance with a robust test suite.
• Make it easy to use multiple networking protocols together.
• Be extensible.

21.2 The Architecture of Twisted
Twisted is an event-driven networking engine. Event-driven programming is so integral to Twisted’s
design philosophy that it is worth taking a moment to review what exactly event-driven programming
means.

Event-driven programming is a programming paradigm in which program flow is determined by
external events. It is characterized by an event loop and the use of callbacks to trigger actions when
events happen. Two other common programming paradigms are (single-threaded) synchronous and
multi-threaded programming.

Let’s compare and contrast single-threaded, multi-threaded, and event-driven programming
models with an example. Figure 21.1 shows the work done by a program over time under these three
models. The program has three tasks to complete, each of which blocks while waiting for I/O to
finish. Time spent blocking on I/O is greyed out.

In the single-threaded synchronous version of the program, tasks are performed serially. If
one task blocks for a while on I/O, all of the other tasks have to wait until it finishes and they are
executed in turn. This definite order and serial processing are easy to reason about, but the program
is unnecessarily slow if the tasks don’t depend on each other, yet still have to wait for each other.

In the threaded version of the program, the three tasks that block while doing work are performed
in separate threads of control. These threads are managed by the operating system and may run
3http://www.nightmare.com/medusa/
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Figure 21.1: Threading models

concurrently on multiple processors or interleaved on a single processor. This allows progress to
be made by some threads while others are blocking on resources. This is often more time-efficient
than the analogous synchronous program, but one has to write code to protect shared resources that
could be accessed concurrently from multiple threads. Multi-threaded programs can be harder to
reason about because one now has to worry about thread safety via process serialization (locking),
reentrancy, thread-local storage, or other mechanisms, which when implemented improperly can
lead to subtle and painful bugs.

The event-driven version of the program interleaves the execution of the three tasks, but in a
single thread of control. When performing I/O or other expensive operations, a callback is registered
with an event loop, and then execution continues while the I/O completes. The callback describes
how to handle an event once it has completed. The event loop polls for events and dispatches them
as they arrive, to the callbacks that are waiting for them. This allows the program to make progress
when it can without the use of additional threads. Event-driven programs can be easier to reason
about than multi-threaded programs because the programmer doesn’t have to worry about thread
safety.
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The event-driven model is often a good choice when there are:
1. many tasks, that are. . .
2. largely independent (so they don’t have to communicate with or wait on each other), and. . .
3. some of these tasks block while waiting on events.
It is also a good choice when an application has to share mutable data between tasks, because no

synchronization has to be performed.
Networking applications often have exactly these properties, which is what makes them such a

good fit for the event-driven programming model.

Reusing Existing Applications
Many popular clients and servers for various networking protocols already existed when Twisted was
created. Why did glyph not just use Apache, IRCd, BIND, OpenSSH, or any of the other pre-existing
applications whose clients and servers would have to get re-implemented from scratch for Twisted?

The problem is that all of these server implementations have networking code written from scratch,
typically in C, with application code coupled directly to the networking layer. This makes them very
difficult to use as libraries. They have to be treated as black boxes when used together, giving a
developer no chance to reuse code if he or she wanted to expose the same data over multiple protocols.
Additionally, the server and client implementations are often separate applications that don’t share
code. Extending these applications and maintaining cross-platform client-server compatibility is
harder than it needs to be.

With Twisted, the clients and servers are written in Python using a consistent interface. This
makes it is easy to write new clients and servers, to share code between clients and servers, to share
application logic between protocols, and to test one’s code.

The Reactor
Twisted implements the reactor design pattern, which describes demultiplexing and dispatching
events from multiple sources to their handlers in a single-threaded environment.

The core of Twisted is the reactor event loop. The reactor knows about network, file system, and
timer events. It waits on and then handles these events, abstracting away platform-specific behavior
and presenting interfaces to make responding to events anywhere in the network stack easy.

The reactor essentially accomplishes:

while True:
timeout = time_until_next_timed_event()
events = wait_for_events(timeout)
events += timed_events_until(now())
for event in events:

event.process()

A reactor based on the poll API4 is the current default on all platforms. Twisted additionally
supports a number of platform-specific high-volume multiplexing APIs. Platform-specific reactors
include the KQueue reactor based on FreeBSD’s kqueue mechanism, an epoll-based reactor for
systems supporting the epoll interface (currently Linux 2.6), and an IOCP reactor based onWindows
Input/Output Completion Ports.

Examples of polling implementation-dependent details that Twisted takes care of include:
4The Single UNIX Specification, Version 3 (SUSv3) describes the poll API.
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• Network and filesystem limits.
• Buffering behavior.
• How to detect a dropped connection.
• The values returned in error cases.
Twisted’s reactor implementation also takes care of using the underlying non-blocking APIs

correctly and handling obscure edge cases correctly. Python doesn’t expose the IOCP API at all, so
Twisted maintains its own implementation.

Managing Callback Chains
Callbacks are a fundamental part of event-driven programming and are the way that the reactor
indicates to an application that events have completed. As event-driven programs grow, handling
both the success and error cases for the events in one’s application becomes increasingly complex.
Failing to register an appropriate callback can leave a program blocking on event processing that
will never happen, and errors might have to propagate up a chain of callbacks from the networking
stack through the layers of an application.

Let’s examine some of the pitfalls of event-driven programs by comparing synchronous and
asynchronous versions of a toy URL fetching utility in Python-like pseudo-code:

Synchronous URL fetcher:

import getPage

def processPage(page):
print page

def logError(error):
print error

def finishProcessing(value):
print "Shutting down..."
exit(0)

url = "http://google.com"
try:

page = getPage(url)
processPage(page)

except Error, e:
logError(error)

finally:
finishProcessing()

Asynchronous URL fetcher:

from twisted.internet import reactor
import getPage

def processPage(page):
print page
finishProcessing()

def logError(error):
print error
finishProcessing()

def finishProcessing(value):
print "Shutting down..."
reactor.stop()

url = "http://google.com"
# getPage takes: url,
# success callback, error callback
getPage(url, processPage, logError)

reactor.run()

In the asynchronous URL fetcher, reactor.run() starts the reactor event loop. In both the syn-
chronous and asynchronous versions, a hypothetical getPage function does the work of page retrieval.
processPage is invoked if the retrieval is successful, and logError is invoked if an Exception is
raised while attempting to retrieve the page. In either case, finishProcessing is called afterwards.

The callback to logError in the asynchronous versionmirrors the except part of the try/except
block in the synchronous version. The callback to processPagemirrors else, and the unconditional
callback to finishProcessing mirrors finally.
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In the synchronous version, by virtue of the structure of a try/except block exactly one of
logError and processPage is called, and finishProcessing is always called once; in the asyn-
chronous version it is the programmer’s responsibility to invoke the correct chain of success and
error callbacks. If, through programming error, the call to finishProcessing were left out of
processPage or logError along their respective callback chains, the reactor would never get
stopped and the program would run forever.

This toy example hints at the complexity frustrating programmers during the first few years
of Twisted’s development. Twisted responded to this complexity by growing an object called a
Deferred.

Deferreds

The Deferred object is an abstraction of the idea of a result that doesn’t exist yet. It also helps
manage the callback chains for this result. When returned by a function, a Deferred is a promise
that the function will have a result at some point. That single returned Deferred contains references
to all of the callbacks registered for an event, so only this one object needs to be passed between
functions, which is much simpler to keep track of than managing callbacks individually.

Deferreds have a pair of callback chains, one for success (callbacks) and one for errors (errbacks).
Deferreds start out with two empty chains. One adds pairs of callbacks and errbacks to handle
successes and failures at each point in the event processing. When an asynchronous result arrives,
the Deferred is “fired” and the appropriate callbacks or errbacks are invoked in the order in which
they were added.

Here is a version of the asynchronous URL fetcher pseudo-code which uses Deferreds:

from twisted.internet import reactor
import getPage

def processPage(page):
print page

def logError(error):
print error

def finishProcessing(value):
print "Shutting down..."
reactor.stop()

url = "http://google.com"
deferred = getPage(url) # getPage returns a Deferred
deferred.addCallbacks(processPage, logError)
deferred.addBoth(finishProcessing)

reactor.run()

In this version, the same event handlers are invoked, but they are all registered with a single
Deferred object instead of spread out in the code and passed as arguments to getPage.

The Deferred is createdwith two stages of callbacks. First, addCallbacks adds the processPage
callback and logError errback to the first stage of their respective chains. Then addBoth adds
finishProcessing to the second stage of both chains. Diagrammatically, the callback chains look
like Figure 21.2.
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Figure 21.2: Callback chains

Deferreds can only be fired once; attempting to re-fire them will raise an Exception. This gives
Deferreds semantics closer to those of the try/except blocks of their synchronous cousins, which
makes processing the asynchronous events easier to reason about and avoids subtle bugs caused by
callbacks being invoked more or less than once for a single event.

Understanding Deferreds is an important part of understanding the flow of Twisted programs.
However, when using the high-level abstractions Twisted provides for networking protocols, one
often doesn’t have to use Deferreds directly at all.

The Deferred abstraction is powerful and has been borrowed by many other event-driven
platforms, including jQuery, Dojo, and Mochikit.

Transports
Transports represent the connection between two endpoints communicating over a network. Trans-
ports are responsible for describing connection details, like being stream- or datagram-oriented, flow
control, and reliability. TCP, UDP, and Unix sockets are examples of transports. They are designed
to be “minimally functional units that are maximally reusable” and are decoupled from protocol
implementations, allowing for many protocols to utilize the same type of transport. Transports
implement the ITransport interface, which has the following methods:
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write Write some data to the physical connection, in sequence, in a
non-blocking fashion.

writeSequence Write a list of strings to the physical connection.
loseConnection Write all pending data and then close the connection.
getPeer Get the remote address of this connection.
getHost Get the address of this side of the connection.

Decoupling transports from procotols also makes testing the two layers easier. A mock transport
can simply write data to a string for inspection.

Protocols
Procotols describe how to process network events asynchronously. HTTP, DNS, and IMAP are
examples of application protocols. Protocols implement the IProtocol interface, which has the
following methods:

makeConnection Make a connection to a transport and a server.
connectionMade Called when a connection is made.
dataReceived Called whenever data is received.
connectionLost Called when the connection is shut down.

The relationship between the reactor, protocols, and transports is best illustrated with an example.
Here are complete implementations of an echo server and client, first the server:

from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
def dataReceived(self, data):

# As soon as any data is received, write it back
self.transport.write(data)

class EchoFactory(protocol.Factory):
def buildProtocol(self, addr):

return Echo()

reactor.listenTCP(8000, EchoFactory())
reactor.run()

And the client:

from twisted.internet import reactor, protocol

class EchoClient(protocol.Protocol):
def connectionMade(self):

self.transport.write("hello, world!")

def dataReceived(self, data):
print "Server said:", data
self.transport.loseConnection()

def connectionLost(self, reason):
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print "connection lost"

class EchoFactory(protocol.ClientFactory):
def buildProtocol(self, addr):

return EchoClient()

def clientConnectionFailed(self, connector, reason):
print "Connection failed - goodbye!"
reactor.stop()

def clientConnectionLost(self, connector, reason):
print "Connection lost - goodbye!"
reactor.stop()

reactor.connectTCP("localhost", 8000, EchoFactory())
reactor.run()

Running the server script starts a TCP server listening for connections on port 8000. The server
uses the Echo protocol, and data is written out over a TCP transport. Running the client makes a TCP
connection to the server, echoes the server response, and then terminates the connection and stops
the reactor. Factories are used to produce instances of protocols for both sides of the connection.
The communication is asynchronous on both sides; connectTCP takes care of registering callbacks
with the reactor to get notified when data is available to read from a socket.

Applications
Twisted is an engine for producing scalable, cross-platform network servers and clients. Making it
easy to deploy these applications in a standardized fashion in production environments is an important
part of a platform like this getting wide-scale adoption.

To that end, Twisted developed the Twisted application infrastructure, a re-usable and configurable
way to deploy a Twisted application. It allows a programmer to avoid boilerplate code by hooking an
application into existing tools for customizing the way it is run, including daemonization, logging,
using a custom reactor, profiling code, and more.

The application infrastructure has four main parts: Services, Applications, configuration man-
agement (via TAC files and plugins), and the twistd command-line utility. To illustrate this infras-
tructure, we’ll turn the echo server from the previous section into an Application.

Service

A Service is anything that can be started and stopped and which adheres to the IService interface.
Twisted comes with service implementations for TCP, FTP, HTTP, SSH, DNS, and many other
protocols. Many Services can register with a single application.

The core of the IService interface is:

startService Start the service. This might include loading configuration data,
setting up database connections, or listening on a port.

stopService Shut down the service. This might include saving state to disk,
closing database connections, or stopping listening on a port.
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Our echo service uses TCP, so we can use Twisted’s default TCPServer implementation of this
IService interface.

Application

An Application is the top-level service that represents the entire Twisted application. Services register
themselves with an Application, and the twistd deployment utility described below searches for
and runs Applications.

We’ll create an echo Application with which the echo Service can register.

TAC Files

When managing Twisted applications in a regular Python file, the developer is responsible for
writing code to start and stop the reactor and to configure the application. Under the Twisted
application infrastructure, protocol implementations live in a module, Services using those protocols
are registered in a Twisted Application Configuration (TAC) file, and the reactor and configuration
are managed by an external utility.

To turn our echo server into an echo application, we can follow a simple algorithm:
1. Move the Protocol parts of the echo server into their own module.
2. Inside a TAC file:

(a) Create an echo Application.
(b) Create an instance of the TCPServer Service which will use our EchoFactory, and

register it with the Application.
The code for managing the reactor will be taken care of by twistd, discussed below. The

application code ends up looking like this:
The echo.py file:

from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
def dataReceived(self, data):

self.transport.write(data)

class EchoFactory(protocol.Factory):
def buildProtocol(self, addr):
return Echo()

The echo_server.tac file:

from twisted.application import internet, service
from echo import EchoFactory

application = service.Application("echo")
echoService = internet.TCPServer(8000, EchoFactory())
echoService.setServiceParent(application)
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twistd

twistd (pronounced “twist-dee”) is a cross-platform utility for deploying Twisted applications. It
runs TAC files and handles starting and stopping an application. As part of Twisted’s batteries-
included approach to network programming, twistd comes with a number of useful configuration
flags, including daemonizing the application, the location of log files, dropping privileges, running
in a chroot, running under a non-default reactor, or even running the application under a profiler.

We can run our echo server Application with:

$ twistd -y echo_server.tac

In this simplest case, twistd starts a daemonized instance of the application, logging to
twistd.log. After starting and stopping the application, the log looks like this:

2011-11-19 22:23:07-0500 [-] Log opened.
2011-11-19 22:23:07-0500 [-] twistd 11.0.0 (/usr/bin/python 2.7.1) starting up.
2011-11-19 22:23:07-0500 [-] reactor class: twisted.internet.selectreactor.SelectReactor.
2011-11-19 22:23:07-0500 [-] echo.EchoFactory starting on 8000
2011-11-19 22:23:07-0500 [-] Starting factory <echo.EchoFactory instance at 0x12d8670>
2011-11-19 22:23:20-0500 [-] Received SIGTERM, shutting down.
2011-11-19 22:23:20-0500 [-] (TCP Port 8000 Closed)
2011-11-19 22:23:20-0500 [-] Stopping factory <echo.EchoFactory instance at 0x12d8670>
2011-11-19 22:23:20-0500 [-] Main loop terminated.
2011-11-19 22:23:20-0500 [-] Server Shut Down.

Running a service using the Twisted application infrastructure allows developers to skip writ-
ing boilerplate code for common service functionalities like logging and daemonization. It also
establishes a standard command line interface for deploying applications.

Plugins

An alternative to the TAC-based system for running Twisted applications is the plugin system.
While the TAC system makes it easy to register simple hierarchies of pre-defined services within
an application configuration file, the plugin system makes it easy to register custom services as
subcommands of the twistd utility, and to extend the command-line interface to an application.

Using this system:
1. Only the plugin API is required to remain stable, whichmakes it easy for third-party developers

to extend the software.
2. Plugin discoverability is codified. Plugins can be loaded and saved when a program is first run,

re-discovered each time the program starts up, or polled for repeatedly at runtime, allowing
the discovery of new plugins installed after the program has started.

To extend a program using the Twisted plugin system, all one has to do is create objects which
implement the IPlugin interface and put them in a particular location where the plugin system
knows to look for them.

Having already converted our echo server to a Twisted application, transformation into a Twisted
plugin is straightforward. Alongside the echomodule from before, which contains the Echo protocol
and EchoFactory definitions, we add a directory called twisted, containing a subdirectory called
plugins, containing our echo plugin definition. This plugin will allow us to start an echo server and
specify the port to use as arguments to the twistd utility:
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from zope.interface import implements

from twisted.python import usage
from twisted.plugin import IPlugin
from twisted.application.service import IServiceMaker
from twisted.application import internet

from echo import EchoFactory

class Options(usage.Options):
optParameters = [["port", "p", 8000, "The port number to listen on."]]

class EchoServiceMaker(object):
implements(IServiceMaker, IPlugin)
tapname = "echo"
description = "A TCP-based echo server."
options = Options

def makeService(self, options):
"""
Construct a TCPServer from a factory defined in myproject.
"""
return internet.TCPServer(int(options["port"]), EchoFactory())

serviceMaker = EchoServiceMaker()

Our echo server will now show up as a server option in the output of twistd --help, and running
twistd echo --port=1235 will start an echo server on port 1235.

Twisted comes with a pluggable authentication system for servers called twisted.cred, and a
common use of the plugin system is to add an authentication pattern to an application. One can use
twisted.cred AuthOptionMixin to add command-line support for various kinds of authentication
off the shelf, or to add a new kind. For example, one could add authentication via a local Unix
password database or an LDAP server using the plugin system.

twistd comes with plugins for many of Twisted’s supported protocols, which turns the work of
spinning up a server into a single command. Here are some examples of twistd servers that ship
with Twisted:
twistd web --port 8080 --path .

Run an HTTP server on port 8080, serving both static and dynamic content out of the current
working directory.

twistd dns -p 5553 --hosts-file=hosts
Run a DNS server on port 5553, resolving domains out of a file called hosts in the format of
/etc/hosts.

sudo twistd conch -p tcp:2222
Run an ssh server on port 2222. ssh keys must be set up independently.

twistd mail -E -H localhost -d localhost=emails
Run an ESMTP POP3 server, accepting email for localhost and saving it to the emails
directory.

twistd makes it easy to spin up a server for testing clients, but it is also pluggable, production-
grade code.
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In that respect, Twisted’s application deployment mechanisms via TAC files, plugins, and twistd
have been a success. However, anecdotally, most large Twisted deployments end up having to rewrite
some of these management and monitoring facilities; the architecture does not quite expose what
system administrators need. This is a reflection of the fact that Twisted has not historically had
much architectural input from system administrators—the people who are experts at deploying and
maintaining applications.

Twisted would be well-served to more aggressively solicit feedback from expert end users when
making future architectural decisions in this space.

21.3 Retrospective and Lessons Learned
Twisted recently celebrated its 10th anniversary. Since its inception, inspired by the networked game
landscape of the early 2000s, it has largely achieved its goal of being an extensible, cross-platform,
event-driven networking engine. Twisted is used in production environments at companies from
Google and Lucasfilm to Justin.TV and the Launchpad software collaboration platform. Server
implementations in Twisted are the core of numerous other open source applications, including
BuildBot, BitTorrent, and Tahoe-LAFS.

Twisted has had few major architectural changes since its initial development. The one crucial
addition was Deferred, as discussed above, for managing pending results and their callback chains.

There was one important removal, which has almost no footprint in the current implementation:
Twisted Application Persistence.

Twisted Application Persistence
Twisted Application Persistence (TAP) was a way of keeping an application’s configuration and state
in a pickle. Running an application using this scheme was a two-step process:

1. Create the pickle that represents an Application, using the now defunct mktap utility.
2. Use twistd to unpickle and run the Application.
This process was inspired by Smalltalk images, an aversion to the proliferation of seemingly ad

hoc configuration languages that were hard to script, and a desire to express configuration details in
Python.

TAP files immediately introduced unwanted complexity. Classes would change in Twisted without
instances of those classes getting changed in the pickle. Trying to use class methods or attributes
from a newer version of Twisted on the pickled object would crash the application. The notion of
“upgraders” that would upgrade pickles to new API versions was introduced, but then a matrix of
upgraders, pickle versions, and unit tests had to be maintained to cover all possible upgrade paths,
and comprehensively accounting for all interface changes was still hard and error-prone.

TAPs and their associated utilities were abandoned and then eventually removed from Twisted
and replaced with TAC files and plugins. TAP was backronymed to Twisted Application Plugin, and
few traces of the failed pickling system exist in Twisted today.

The lesson learned from the TAP fiasco was that to have reasonable maintainability, persistent
data needs an explicit schema. More generally, it was a lesson about adding complexity to a project:
when considering introducing a novel system for solving a problem, make sure the complexity of that
solution is well understood and tested and that the benefits are clearly worth the added complexity
before committing the project to it.

Jessica McKellar 327



web2: a lesson on rewrites
While not primarily an architectural decision, a project management decision about rewriting the
TwistedWeb implementation has had long-term ramifications for Twisted’s image and the maintainers’
ability to make architectural improvements to other parts of the code base, and it deserves a short
discussion.

In the mid-2000s, the Twisted developers decided to do a full rewrite of the twisted.webAPIs as
a separate project in the Twisted code base called web2. web2 would contain numerous improvements
over twisted.web, including full HTTP 1.1 support and a streaming data API.

web2 was labelled as experimental, but ended up getting used by major projects anyway and
was even accidentally released and packaged by Debian. Development on web and web2 continued
concurrently for years, and new users were perennially frustrated by the side-by-side existence of
both projects and a lack of clear messaging about which project to use. The switchover to web2 never
happened, and in 2011 web2 was finally removed from the code base and the website. Some of the
improvements from web2 are slowly getting ported back to web.

Partially because of web2, Twisted developed a reputation for being hard to navigate and struc-
turally confusing to newcomers. Years later, the Twisted community still works hard to combat this
image.

The lesson learned from web2 was that rewriting a project from scratch is often a bad idea, but if
it has to happen make sure that the developer community understands the long-term plan, and that
the user community has one clear choice of implementation to use during the rewrite.

If Twisted could go back and do web2 again, the developers would have done a series of backwards-
compatible changes and deprecations to twisted.web instead of a rewrite.

Keeping Up with the Internet
The way that we use the Internet continues to evolve. The decision to implement many protocols
as part of the core software burdens Twisted with maintaining code for all of those protocols.
Implementations have to evolve with changing standards and the adoption of new protocols while
maintaining a strict backwards-compatibility policy.

Twisted is primarily a volunteer-driven project, and the limiting factor for development is not
community enthusiasm, but rather volunteer time. For example, RFC 2616 defining HTTP 1.1 was
released in 1999, work began on adding HTTP 1.1 support to Twisted’s HTTP protocol implementa-
tions in 2005, and the work was completed in 2009. Support for IPv6, defined in RFC 2460 in 1998,
is in progress but unmerged as of 2011.

Implementations also have to evolve as the interfaces exposed by supported operating systems
change. For example, the epoll event notification facility was added to Linux 2.5.44 in 2002, and
Twisted grew an epoll-based reactor to take advantage of this new API. In 2007, Apple released
OS 10.5 Leopard with a poll implementation that didn’t support devices, which was buggy enough
behavior for Apple to not expose select.poll in its build of Python5. Twisted has had to work
around this issue and document it for users ever since.

Sometimes, Twisted development doesn’t keep up with the changing networking landscape,
and enhancements are moved to libraries outside of the core software. For example, the Wokkel
project6, a collection of enhancements to Twisted’s Jabber/XMPP support, has lived as a to-be-
merged independent project for years without a champion to oversee the merge. An attempt was
5http://twistedmatrix.com/trac/ticket/4173
6http://wokkel.ik.nu/
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made to add WebSockets to Twisted as browsers began to adopt support for the new protocol in 2009,
but development moved to external projects after a decision not to include the protocol until it moved
from an IETF draft to a standard.

All of this being said, the proliferation of libraries and add-ons is a testament to Twisted’s flexibility
and extensibility. A strict test-driven development policy and accompanying documentation and
coding standards help the project avoid regressions and preserve backwards compatibility while
maintaining a large matrix of supported protocols and platforms. It is a mature, stable project that
continues to have very active development and adoption.

Twisted looks forward to being the engine of your Internet for another ten years.
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[chapter22]

Yesod
Michael Snoyman

Yesod is a web framework written in the Haskell programming language. While many popular web
frameworks exploit the dynamic nature of their host languages, Yesod exploits the static nature of
Haskell to produce safer, faster code.

Development began about two years ago and has been going strong ever since. Yesod cut its
teeth on real life projects, with all of its initial features born out of an actual, real-life need. At first,
development was almost entirely a one-man show. After about a year of development the community
efforts kicked in, and Yesod has since blossomed into a thriving open source project.

During the embryonic phase, when Yesod was incredibly ephemeral and ill-defined, it would
have been counter-productive to try and get a team to work on it. By the time it stabilized enough to
be useful to others, it was the right time to find out the downsides to some of the decisions that had
been made. Since then, we have made major changes to the user-facing API to make it more useful,
and are quickly solidifying a 1.0 release.

The question you may ask is: Why another web framework? Let’s instead redirect to a different
question: Why use Haskell? It seems that most of the world is happy with one of two styles of
language:

• Statically typed languages, like Java, C# and C++. These languages provide speed and type
safety, but are more cumbersome to program with.

• Dynamically typed languages, like Ruby and Python. These languages greatly increase produc-
tivity (at least in the short run), but run slowly and have very little support from the compiler
to ensure correctness. (The solution to this last point is unit testing. We’ll get to that later.)

This is a false dichotomy. There’s no reason why statically typed languages need to be so clumsy.
Haskell is able to capture a huge amount of the expressivity of Ruby and Python, while remaining a
strongly typed language. In fact, Haskell’s type system catches many more bugs than Java and its ilk.
Null pointer exceptions are completely eliminated; immutable data structures simplify reasoning
about your code and simplify parallel and concurrent programming.

So why Haskell? It is an efficient, developer-friendly language which provides many compile-time
checks of program correctness.

The goal of Yesod is to extend Haskell’s strengths into web development. Yesod strives to
make your code as concise as possible. As much as possible, every line of your code is checked for
correctness at compile time. Instead of requiring large libraries of unit tests to test basic properties,
the compiler does it all for you. Under the surface, Yesod uses as many advanced performance
techniques as we can muster to make your high-level code fly.



22.1 Compared to Other Frameworks
In general terms, Yesod is more similar to than different than the leading frameworks such as Rails
and Django. It generally follows the Model-View-Controller (MVC) paradigm, has a templating
system that separates view from logic, provides an Object-Relational Mapping (ORM) system, and
has a front controller approach to routing.

The devil is in the details. Yesod strives to push as much error catching to the compile phase
instead of runtime, and to automatically catch both bugs and security flaws through the type system.
While Yesod tries to maintain a user-friendly, high-level API, it uses a number of newer techniques
from the functional programming world to achieve high performance, and is not afraid to expose
these internals to developers.

The main architectural challenge in Yesod is balancing these two seemingly conflicting goals. For
example, there is nothing revolutionary about Yesod’s approach to routing (called type-safe URLs1.
Historically, implementing such a solution was a tedious, error-prone process. Yesod’s innovation is
to use Template Haskell (a form of code generation) to automate the boilerplate required to bootstrap
the process. Similarly, type-safe HTML has been around for a long while; Yesod tries to keep the
developer-friendly aspect of common template languages while keeping the power of type safety.

22.2 Web Application Interface
A web application needs some way to communicate with a server. One possible approach is to bake
the server directly into the framework, but doing so necessarily limits your options for deployment
and leads to poor interfaces. Many languages have created standard interfaces to address this issue:
Python has WSGI and Ruby has Rack. In Haskell, we have WAI: Web Application Interface.

WAI is not intended to be a high-level interface. It has two specific goals: generality and
performance. By staying general, WAI has been able to support backends for everything from
standalone servers to old school CGI and even works directly with Webkit to produce faux desktop
applications. The performance side will introduce us to a number of the cool features of Haskell.

Datatypes
One of the biggest advantages of Haskell—and one of the things we make the most use of in Yesod—
is strong static typing. Before we begin to write the code for how to solve something, we need to
think about what the data will look like. WAI is a perfect example of this paradigm. The core concept
we want to express is that of an application. An application’s most basic expression is a function that
takes a request and returns a response. In Haskell lingo:

type Application = Request -> Response

This just raises the question: what do Request and Response look like? A request has a number
of pieces of information, but the most basic are the requested path, query string, request headers,
and request body. And a response has just three components: a status code, response headers and
response body.

How do we represent something like a query string? Haskell keeps a strict separation between
binary and textual data. The former is represented by ByteString, the latter by Text. Both are
1http://www.yesodweb.com/blog/2012/01/aosa-chapter#file1414-routes
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Figure 22.1: Overall structure of a Yesod application

highly optimized datatypes that provide a high-level, safe API. In the case of a query string we store
the raw bytes transferred over the wire as a ByteString and the parsed, decoded values as Text.

Streaming
A ByteString represents a single memory buffer. If we were to naively use a plain ByteString for
holding the entire request or response bodies, our applications could never scale to large requests
or responses. Instead, we use a technique called enumerators, very similar in concept to generators
in Python. Our Application becomes a consumer of a stream of ByteStrings representing the
incoming request body, and a producer of a separate stream for the response.

We now need to slightly revise our definition of an Application. An Application will take a
Request value, containing headers, query string, etc., and will consume a stream of ByteStrings,
producing a Response. So the revised definition of an Application is:

type Application = Request -> Iteratee ByteString IO Response

The IO simply explains what types of side effects an application can perform. In the case of IO, it
can perform any kind of interaction with the outside world, an obvious necessity for the vast majority
of web applications.

Builder
The trick in our arsenal is how we produce our response buffers. We have two competing desires here:
minimizing system calls, and minimizing buffer copies. On the one hand, we want to minimize system
calls for sending data over the socket. To do this we need to store outgoing data in a buffer. However,
if we make this buffer too large, we will exhaust our memory and slow down the application’s
response time. On the other hand, we want to minimize the number of times data is copied between
buffers, preferably copying just once from the source to destination buffer.
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Haskell’s solution is the builder. A builder is an instruction for how to fill a memory buffer, such
as: place the five bytes "hello" in the next open position. Instead of passing a stream of memory
buffers to the server, a WAI application passes a stream of these instructions. The server takes the
stream and uses it to fill up optimally sized memory buffers. As each buffer is filled, the server makes
a system call to send the data over over the wire and then starts filling up the next buffer.

(The optimal size for a buffer will depend on many factors such as cache size. The underlying
blaze-builder library underwent significant performance testing to determine the best trade-off.)

In theory, this kind of optimization could be performed in the application itself. However, by
encoding this approach in the interface, we are able to simply prepend the response headers to the
response body. The result is that, for small to medium-sized responses, the entire response can be
sent with a single system call and memory is copied only once.

Handlers
Now that we have an application, we need some way to run it. In WAI parlance, this is a handler. WAI
has some basic, standard handlers, such as the standalone server Warp (discussed below), FastCGI,
SCGI and CGI. This spectrum allows WAI applications to be run on anything from dedicated servers
to shared hosting. But in addition to these, WAI has some more interesting backends:
Webkit: This backend embeds a Warp server and calls out to QtWebkit. By launching a server, then

launching a new standalone browser window, we have faux desktop applications.
Launch: This is a slight variant on Webkit. Having to deploy the Qt and Webkit libraries can be a

bit burdensome, so instead we just launch the user’s default browser.
Test: Even testing counts as a handler. After all, testing is simply the act of running an application

and inspecting the responses.
Most developers will likely use Warp. It is lightweight enough to be used for testing. It requires

no config files, no folder hierarchy and no long-running, administrator-owned process. It’s a simple
library that gets compiled into your application or run via the Haskell interpreter. Warp is an
incredibly fast server, with protection from all kinds of attack vectors, such as Slowloris and infinite
headers. Warp can be the only web server you need, though it is also quite happy to sit behind a
reverse HTTP proxy.

The PONG benchmark measures the requests per second of various servers for the 4-byte response
body "PONG". In the graph shown in Figure 22.2, Yesod is measured as a framework on top of
Warp. As can be seen, the Haskell servers (Warp, Happstack and Snap) lead the pack.

Most of the reasons for Warp’s speed have already been spelled out in the overall description of
WAI: enumerators, builders and packed datatypes. The last piece in the puzzle is from the Glasgow
Haskell Compiler’s (GHC’s) multithreaded runtime. GHC, Haskell’s flagship compiler, has light-
weight green threads. Unlike system threads, it is possible to spin up thousands of these without
serious performance hits. Therefore, in Warp each connection is handled by its own green thread.

The next trick is asynchronous I/O. Any web server hoping to scale to tens of thousands of
requests per second will need some type of asynchronous communication. In most languages, this
involves complicated programming involving callbacks. GHC lets us cheat: we program as if we’re
using a synchronous API, and GHC automatically switches between different green threads waiting
for activity.

Under the surface, GHC uses whatever system is provided by the host operating system, such as
kqueue, epoll and select. This gives us all the performance of an event-based I/O system, without
worrying about cross-platform issues or writing in a callback-oriented way.
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Figure 22.2: Warp PONG benchmark

Middleware
In between handlers and applications, we have middleware. Technically, middleware is an applica-
tion transformer: it takes one Application, and returns a new one. This is defined as:

type Middleware = Application -> Application

The best way to understand the purpose of middleware is to look at some common examples:
• gzip automatically compresses the response from an application.
• jsonp automatically converts JSON responses to JSON-P responses when the client provided
a callback parameter.

• autohead will generate appropriate HEAD responses based on the GET response of an
application.

• debug will print debug information to the console or a log on each request.
The idea here is to factor out common code from applications and let it be shared easily. Note

that, based on the definition of middleware, we can easily stack these things up. The general workflow
of middleware is:

1. Take the request value and apply some modifications.
2. Pass the modified request to the application and receive a response.
3. Modify the response and return it to the handler.
In the case of stacked middleware, instead of passing to the application or handler, the in-between

middleware will actually be passing to the inner and outer middleware, respectively.

Wai-test
No amount of static typing will obviate the need for testing. We all know that automated testing is a
necessity for any serious applications. wai-test is the recommended approach to testing a WAI
application. Since requests and responses are simple datatypes, it is easy to mock up a fake request,
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pass it to an application, and test properties about the response. wai-test simply provides some
convenience functions for testing common properties like the presence of a header or a status code.

22.3 Templates
In the typical Model-View-Controller (MVC) paradigm, one of the goals is to separate logic from the
view. Part of this separation is achieved through the use of a template language. However, there are
many different ways to approach this issue. At one end of the spectrum, for example, PHP/ASP/JSP
will allow you to embed any arbitrary code within your template. At the other end, you have systems
like StringTemplate and QuickSilver, which are passed some arguments and have no other way of
interacting with the rest of the program.

Each system has its pros and cons. Having a more powerful template system can be a huge
convenience. Need to show the contents of a database table? No problem, pull it in with the template.
However, such an approach can quickly lead to convoluted code, interspersing database cursor
updates with HTML generation. This can be commonly seen in a poorly written ASP project.

While weak template systemsmake for simple code, they also tend towards a lot of redundant work.
You will often need to not only keep your original values in datatypes, but also create dictionaries of
values to pass to the template. Maintaining such code is not easy, and usually there is no way for a
compiler to help you out.

Yesod’s family of template languages, the Shakespearean languages, strive for a middle ground.
By leveraging Haskell’s standard referential transparency, we can be assured that our templates
produce no side effects. However, they still have full access to all the variables and functions available
in your Haskell code. Also, since they are fully checked for both well-formedness, variable resolution
and type safety at compile time, typos are much less likely to have you searching through your code
trying to pin down a bug.

Why the Name Shakespeare?
The HTML language, Hamlet, was the first language written, and originally based its syntax on
Haml. Since it was at the time a "reduced" Haml, Hamlet seemed appropriate. As we added
CSS and Javascript options, we decided to keep the naming theme with Cassius and Julius. At
this point, Hamlet looks nothing like Haml, but the name stuck anyway.

Types
One of the overarching themes in Yesod is proper use of types to make developers’ lives easier. In
Yesod templates, we have two main examples:

1. All content embedded into a Hamlet template must have a type of Html. As we’ll see later,
this forces us to properly escape dangerous HTML when necessary, while avoiding accidental
double-escaping as well.

2. Instead of concatenating URLs directly in our template, we have datatypes—known as type-
safe URLs—which represent the routes in our application.

As a real-life example, suppose that a user submits his/her name to an application via a form.
This data would be represented with the Text datatype. Now we would like to display this variable,
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called name, in a page. The type system—at compile time—prevents it from being simply stuck into
a Hamlet template, since it’s not of type Html. Instead we must convert it somehow. For this, there
are two conversion functions:

1. toHtml will automatically escape any entities. So if a user submits the string <script
src="http://example.com/evil.js"></script>, the less-than signs will automatically
be converted to &<.

2. preEscapedText, on the other hand, will leave the content precisely as it is now.
So in the case of untrusted input from a possibly nefarious user, toHtml would be our recom-

mended approach. On the other hand, let us say we have some static HTML stored on our server that
we would like to insert into some pages verbatim. In that case, we could load it into a Text value
and then apply preEscapedText, thereby avoiding any double-escaping.

By default, Hamlet will use the toHtml function on any content you try to interpolate. Therefore,
you only need to explicitly perform a conversion if you want to avoid escaping. This follows the
dictum of erring on the side of caution.

name <- runInputPost $ ireq textField "name"
snippet <- readFile "mysnippet.html"
return [hamlet|

<p>Welcome #{name}, you are on my site!
<div .copyright>#{preEscapedText snippet}

|]

The first step in type-safe URLs is creating a datatype that represents all the routes in your site.
Let us say you have a site for displaying Fibonacci numbers. The site will have a separate page for
each number in the sequence, plus the homepage. This could be modeled with the Haskell datatype:

data FibRoute = Home | Fib Int

We could then create a page like so:

<p>You are currently viewing number #{show index} in the sequence. Its value is #{fib index}.
<p>

<a href=@{Fib (index + 1)}>Next number
<p>

<a href=@{Home}>Homepage

Then all we need is some function to convert a type-safe URL into a string representation. In our
case, that could look something like this:

render :: FibRoute -> Text
render Home = "/home"
render (Fib i) = "/fib/" ++ show i

Fortunately, all of the boilerplate of defining and rendering type-safe URL datatypes is handled
for the developer automatically by Yesod. We will cover that in more depth later.

Michael Snoyman 337



The Other Languages
In addition to Hamlet, there are three other languages: Julius, Cassius and Lucius. Julius is used for
Javascript; however, it’s a simple pass-through language, just allowing for interpolation. In other
words, barring accidental use of the interpolation syntax, any piece of Javascript could be dropped
into Julius and be valid. For example, to test the performance of Julius, jQuery was run through the
language without an issue.

The other two languages are alternate CSS syntaxes. Those familiar with the difference between
Sass and Less will recognize this immediately: Cassius is whitespace delimited, while Lucius uses
braces. Lucius is in fact a superset of CSS, meaning all valid CSS files are valid Lucius files. In
addition to allowing text interpolation, there are some helper datatypes provided to model unit sizes
and colors. Also, type-safe URLs work in these languages, making it convenient for specifying
background images.

Aside from the type safety and compile-time checks mentioned above, having specialized lan-
guages for CSS and Javascript give us a few other advantages:

• For production, all the CSS and Javascript is compiled into the final executable, increasing
performance (by avoiding file I/O) and simplifying deployment.

• By being based around the efficient builder construct described earlier, the templates can be
rendered very quickly.

• There is built-in support for automatically including these in final webpages. We will get into
this in more detail when describing widgets below.

22.4 Persistent
Most web applications will want to store information in a database. Traditionally, this has meant
some kind of SQL database. In that regard, Yesod continues a long tradition, with PostgreSQL as
our most commonly used backend. But as we have been seeing in recent years, SQL isn’t always
the answer to the persistence question. Therefore, Yesod was designed to work well with NoSQL
databases as well, and ships with a MongoDB backend as a first-class citizen.

The result of this design decision is Persistent, Yesod’s preferred storage option. There are really
two guiding lights for Persistent: make it as back-end-agnostic as possible, and let user code be
completely type-checked.

At the same time, we fully recognize that it is impossible to completely shield the user from all
details of the backend. Therefore, we provide two types of escape routes:

• Back-end-specific functionality as necessary. For example, Persistent provides features for
SQL joins and MongoDB lists and hashes. Proper portability warnings will apply, but if you
want this functionality, it’s there.

• Easy access to performing raw queries. We don’t believe it’s possible for any abstraction to
cover every use case of the underlying library. If you just have to write a 5-table, correlated
subquery in SQL, go right ahead.

Terminology
The most primitive datatype in Persistent is the PersistValue. This represents any raw data that can
appear within the database, such as a number, a date, or a string. Of course, sometimes you’ll have
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somemore user-friendly datatypes you want to store, like HTML. For that, we have the PersistField
class. Internally, a PersistField expresses itself to the database in terms of a PersistValue.

All of this is very nice, but we will want to combine different fields together into a larger picture.
For this, we have a PersistEntity, which is basically a collection of PersistFields. And finally,
we have a PersistBackend that describes how to create, read, update and delete these entities.

As a practical example, consider storing a person in a database. We want to store the person’s
name, birthday, and a profile image (a PNG file). We create a new entity Person with three fields:
a Text, a Day and a PNG. Each of those gets stored in the database using a different PersistValue
constructor: PersistText, PersistDay and PersistByteString, respectively.

There is nothing surprising about the first two mappings, but the last one is interesting. There is
no specific constructor for storing PNG content in a database, so instead we use a more generic type
(a ByteString, which is just a sequence of bytes). We could use the same mechanism to store other
types of arbitrary data.

(The commonly held best practice for storing images is to keep the data on the filesystem and
just keep a path to the image in the database. We do not advocate against using that approach, but
are rather using database-stored images as an illustrative example.)

How is all this represented in the database? Consider SQL as an example: the Person entity
becomes a table with three columns (name, birthday, and picture). Each field is stored as a different
SQL type: Text becomes a VARCHAR, Day becomes a Date and PNG becomes a BLOB (or BYTEA).

The story for MongoDB is very similar. Person becomes its own document, and its three fields
each become a MongoDB field. There is no need for datatypes or creation of a schema in MongoDB.

Persistent SQL MongoDB
PersistEntity Table Document
PersistField Column Field
PersistValue Column type N/A

Type Safety
Persistent handles all of the data marshaling concerns behind the scenes. As a user of Persistent, you
get to completely ignore the fact that a Text becomes a VARCHAR. You are able to simply declare
your datatypes and use them.

Every interaction with Persistent is strongly typed. This prevents you from accidentally putting
a number in the date fields; the compiler will not accept it. Entire classes of subtle bugs simply
disappear at this point.

Nowhere is the power of strong typing more pronounced than in refactoring. Let’s say you have
been storing users’ ages in the database, and you realize that you really wanted to store birthdays
instead. You are able to make a single line change to your entities declaration file, hit compile, and
automatically find every single line of code that needs to be updated.

In most dynamically-typed languages, and their web frameworks, the recommended approach to
solving this issue is writing unit tests. If you have full test coverage, then running your tests will
immediately reveal what code needs to be updated. This is all well and good, but it is a weaker
solution than true types:

• It is all predicated on having full test coverage. This takes extra time, and worse, is boilerplate
code that the compiler should be able to do for you.

• You might be a perfect developer who never forgets to write a test, but can you say the same
for every person who will touch your codebase?
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• Even 100% test coverage doesn’t guarantee that you really have tested every case. All it’s done
is proven you’ve tested every line of code.

Cross-Database Syntax
Creating an SQL schema that works for multiple SQL engines can be tricky enough. How do you
create a schema that will also work with a non-SQL database like MongoDB?

Persistent allows you to define your entities in a high-level syntax, and will automatically create
the SQL schema for you. In the case of MongoDB, we currently use a schema-less approach. This
also allows Persistent to ensure that your Haskell datatypes match perfectly with the database’s
definitions.

Additionally, having all this information gives Persistent the ability to perform more advanced
functions, such as migrations, for you automatically.

Migrations
Persistent not only creates schema files as necessary, but will also automatically apply database
migrations if possible. Database modification is one of the less-developed pieces of the SQL standard,
and thus each engine has a different take on the process. As such, each Persistent backend defines its
own set of migration rules. In PostgreSQL, which has a rich set of ALTER TABLE rules, we use those
extensively. Since SQLite lacks much of that functionality, we are reduced to creating temporary
tables and copying rows. MongoDB’s schema-less approach means no migration support is required.

This feature is purposely limited to prevent any kind of data loss. It will not remove any columns
automatically; instead, it will give you an error message, telling you the unsafe operations that are
necessary in order to continue. You will then have the option of either manually running the SQL it
provides you, or changing your data model to avoid the dangerous behavior.

Relations
Persistent is non-relational in nature, meaning it has no requirement for backends to support relations.
However, in many use cases, we may want to use relations. In those cases, developers will have full
access to them.

Assume we want to now store a list of skills with each user. If we were writing a MongoDB-
specific app, we could go ahead and just store that list as a new field in the original Person entity.
But that approach would not work in SQL. In SQL, we call this kind of relationship a one-to-many
relationship.

The idea is to store a reference to the "one" entity (person) with each "many" entity (skill). Then
if we want to find all the skills a person has, we simply find all skills that reference that person. For
this reference, every entity has an ID. And as you might expect by now, these IDs are completely
type-safe. The datatype for a Person ID is PersonId. So to add our new skill, we would just add the
following to our entity definition:

Skill
person PersonId
name Text
description Text
UniqueSkill person name
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This ID datatype concept comes up throughout Persistent and Yesod. You can dispatch based on
an ID. In such a case, Yesod will automatically marshal the textual representation of the ID to the
internal one, catching any parse errors along the way. These IDs are used for lookup and deletion
with the get and delete functions, and are returned by the insertion and query functions insert
and selectList.

22.5 Yesod
If we are looking at the typical Model-View-Controller (MVC) paradigm, Persistent is the model and
Shakespeare is the view. This would leave Yesod as the controller.

The most basic feature of Yesod is routing. It features a declarative syntax and type-safe dispatch.
Layered on top of this, Yesod provides many other features: streaming content generation, widgets,
i18n, static files, forms and authentication. But the core feature added by Yesod is really routing.

This layered approach makes it simpler for users to swap different components of the system.
Some people are not interested in using Persistent. For them, nothing in the core system evenmentions
Persistent. Likewise, while they are commonly used features, not everyone needs authentication or
static file serving.

On the other hand, many users will want to integrate all of these features. And doing so, while
enabling all the optimizations available in Yesod, is not always straightforward. To simplify the
process, Yesod also provides a scaffolding tool that sets up a basic site with the most commonly used
features.

Routes
Given that routing is really the main function of Yesod, let’s start there. The routing syntax is very
simple: a resource pattern, a name, and request methods. For example, a simple blog site might look
like:

/ HomepageR GET
/add-entry AddEntryR GET POST
/entry/#EntryId EntryR GET

The first line defines the homepage. This says "I respond to the root path of the domain, I’m
called HomepageR, and I answer GET requests." (The trailing "R" on the resource names is simply a
convention, it doesn’t hold any special meaning besides giving a cue to the developer that something
is a route.)

The second line defines the add-entry page. This time, we answer both GET and POST requests.
You might be wondering why Yesod, as opposed to most frameworks, requires you to explicitly state
your request methods. The reason is that Yesod tries to adhere to RESTful principles as much as
possible, and GET and POST requests really have very different meanings. Not only do you state
these two methods separately, but later you will define their handler functions separately. (This is
actually an optional feature in Yesod. If you want, you can leave off the list of methods and your
handler function will deal with all methods.)

The third line is a bit more interesting. After the second slash we have #EntryId. This defines
a parameter of type EntryId. We already alluded to this feature in the Persistent section: Yesod
will now automatically marshal the path component into the relevant ID value. Assuming an SQL
backend (Mongo is addressed later), if a user requests /entry/5, the handler function will get called
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with an argument EntryId 5. But if the user requests /entry/some-blog-post, Yesod will return
a 404.

This is obviously possible in most other web frameworks as well. The approach taken by Django,
for instance, would use a regular expression for matching the routes, e.g. r"/entry/(+.)". The
Yesod approach, however, provides some advantages:

• Typing "EntryId" is much more semantic/developer-friendly than a regular expression.
• Regular expressions cannot express everything (or at least, can’t do so succinctly). We can use
/calendar/#Day in Yesod; do you want to type a regex to match dates in your routes?

• Yesod also automatically marshals the data for us. In our calendar case, our handler function
would receive a Day value. In the Django equivalent, the function would receive a piece of
text which it would then have to marshal itself. This is tedious, repetitive and inefficient.

• So far we’ve assumed that a database ID is just a string of digits. But what if it’s more
complicated? MongoDB uses GUIDs, for example. In Yesod, your #EntryId will still work,
and the type system will instruct Yesod how to parse the route. In a regex system, you would
have to go through all of your routes and change the \d+ to whatever monstrosity of regex is
needed to match GUIDs.

Type-Safe URLs

This approach to routing gives birth to one of Yesod’s most powerful features: type-safe URLs.
Instead of just splicing together pieces of text to refer to a route, every route in your application can
be represented by a Haskell value. This immediately eliminates a large number of 404 Not Found
errors: it is simply not possible to produce an invalid URL. (It is still possible to produce a URL that
would lead to a 404 error, such as by referring to a blog post that does not exist. However, all URLs
will be formed correctly.)

So how does this magic work? Each site has a route datatype, and each resource pattern gets its
own constructor. In our previous example, we would get something that looks like:

data MySiteRoute = HomepageR
| AddEntryR
| EntryR EntryId

If you want to link to the homepage, you use HomepageR. To link to a specific entry, you would
use the EntryR constructor with an EntryId parameter. For example, to create a new entry and
redirect to it, you could write:

entryId <- insert (Entry "My Entry" "Some content")
redirect RedirectTemporary (EntryR entryId)

Hamlet, Lucius and Julius all include built-in support for these type-safe URLs. Inside a Hamlet
template you can easily create a link to the add-entry page:

<a href=@{AddEntryR}>Create a new entry.

The best part? Just like Persistent entities, the compiler will keep you honest. If you change any
of your routes (e.g., you want to include the year and month in your entry routes), Yesod will force
you to update every single reference throughout your codebase.
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Handlers
Once you define your routes, you need to tell Yesod how you want to respond to requests. This is
where handler functions come into play. The setup is simple: for each resource (e.g., HomepageR)
and request method, create a function named methodResourceR. For our previous example, we
would need four functions: getHomepageR, getAddEntryR, postAddEntryR, and getEntryR.

All of the parameters collected from the route are passed in as arguments to the handler function.
getEntryR will take a first argument of type EntryId, while all the other functions will take no
arguments.

The handler functions live in a Handler monad, which provides a great deal of functionality,
such as redirecting, accessing sessions, and running database queries. For the last one, a typical way
to start off the getEntryR function would be:

getEntryR entryId = do
entry <- runDB $ get404 entryId

This will run a database action that will get the entry associated with the given ID from the
database. If there is no such entry, it will return a 404 response.

Each handler function will return some value, which must be an instance of HasReps. This is
another RESTful feature at play: instead of just returning some HTML or some JSON, you can return
a value that will return either one, depending on the HTTP Accept request header. In other words, in
Yesod, a resource is a specific piece of data, and it can be returned in one of many representations.

Widgets
Assume you want to include a navbar on a few different pages of your site. This navbar will load up
the five most recent blog posts (stored in your database), generate some HTML, and then need some
CSS and Javascript to style and enhance.

Without a higher-level interface to tie these components together, this could be a pain to implement.
You could add the CSS to the site-wide CSS file, but that’s adding extra declarations you don’t always
need. Likewise with the Javascript, though a bit worse: having that extra Javascript might cause
problems on a page it was not intended to live on. You will also be breaking modularity by having to
generate the database results from multiple handler functions.

In Yesod, we have a very simple solution: widgets. A widget is a piece of code that ties together
HTML, CSS and Javascript, allowing you to add content to both the head and body, and can run any
arbitrary code that belongs in a handler. For example, to implement our navbar:

-- Get last five blog posts. The "lift" says to run this code like we’re in the handler.
entries <- lift $ runDB $ selectList [] [LimitTo 5, Desc EntryPosted]
toWidget [hamlet|
<ul .navbar>

$forall entry <- entries
<li>#{entryTitle entry}

|]
toWidget [lucius| .navbar { color: red } |]
toWidget [julius|alert("Some special Javascript to play with my navbar");|]

But there is even more power at work here. When you produce a page in Yesod, the standard
approach is to combine a number of widgets together into a single widget containing all your page
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content, and then apply defaultLayout. This function is defined per site, and applies the standard
site layout.

There are two out-of-the-box approaches to handling where the CSS and Javascript go:
1. Concatenate them and place them into style and script tags, respectively, within your

HTML.
2. Place them in external files and refer to them with link and script tags, respectively.
In addition, your Javascript can be automatically minified. Option 2 is the preferred approach,

since it allows a few extra optimizations:
1. The files are created with names based on a hash of the contents. This means you can place

cached values far in the future without worries of users receiving stale content.
2. Your Javascript can be asynchronously loaded.
The second point requires a bit of elaboration. Widgets not only contain raw Javascript, they also

contain a list of Javascript dependencies. For example, many sites will refer to the jQuery library
and then add some Javascript that uses it. Yesod is able to automatically turn all of that into an
asynchronous load via yepnope.js.

In other words, widgets allow you to create modular, composable code that will result in incredibly
efficient serving of your static resources.

Subsites
Many websites share common areas of functionality. Perhaps the two most common examples of
this are serving static files and authentication. In Yesod, you can easily drop in this code using a
subsite. All you need to do is add an extra line to your routes. For example, to add the static subsite,
you would write:

/static StaticR Static getStatic

The first argument tells where in the site the subsite starts. The static subsite is usually used
at /static, but you could use whatever you want. StaticR is the name of the route; this is also
entirely up to you, but convention is to use StaticR. Static is the name of the static subsite; this is
one you do not have control over. getStatic is a function that returns the settings for the static site,
such as where the static files are located.

Like all of your handlers, the subsite handlers also have access to the defaultLayout function.
This means that a well-designed subsite will automatically use your site skin without any extra
intervention on your part.

22.6 Lessons Learned
Yesod has been a very rewarding project to work on. It has given me an opportunity to work on a
large system with a diverse group of developers. One of the things that has truly shocked me is how
different the end product has become from what I had originally intended. I started off Yesod by
creating a list of goals. Very few of the main features we currently tout in Yesod are in that list, and a
good portion of that list is no longer something I plan to implement. The first lesson is:

You will have a better idea of the system you need after you start working on it. Do not tie yourself
down to your initial ideas.
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As this was my first major piece of Haskell code, I learned a lot about the language during
Yesod’s development. I’m sure others can relate to the feeling of "How did I ever write code like
this?" Even though that initial code was not of the same caliber as the code we have in Yesod at this
point, it was solid enough to kick-start the project. The second lesson is:

Don’t be deterred by supposed lack of mastery of the tools at hand. Write the best code you can,
and keep improving it.

One of the most difficult steps in Yesod’s development was moving from a single-person team—
me—to collaborating with others. It started off simply, with merging pull requests on GitHub,
and eventually moved to having a number of core maintainers. I had established some of my own
development patterns, which were nowhere explained or documented. As a result, contributors found
it difficult to pull my latest unreleased changes and play around with them. This hindered others both
when contributing and testing.

When Greg Weber came aboard as another lead on Yesod, he put in place a lot of the coding
standards that were sorely lacking. To compound the problems, there were some inherent difficulties
playing with the Haskell development toolchain; specifically in dealing with Yesod’s large number
of packages. One of the goals of the entire Yesod team has since been to create standard scripts and
tools to automate building. Many of these tools are making their way back into the general Haskell
community. The final lesson is:

Consider early on how to make your project approachable for others.
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[chapter23]

Yocto
Elizabeth Flanagan

The Yocto Project is an open source project that provides a common starting point for developers of
embedded Linux systems to create customized distributions for embedded products in a hardware-
agnostic setting. Sponsored by the Linux Foundation, Yocto is more than a build system. It provides
tools, processes, templates and methods so developers can rapidly create and deploy products for the
embedded market. One of the core components of Yocto is the Poky Build system. As Poky is a
large and complex system, we will be focusing on one of its core components, BitBake. BitBake is a
Gentoo-Portage-inspired build tool, used by both the Yocto Project and OpenEmbedded communities
to utilize metadata to create Linux images from source.

In 2001, Sharp Corporation introduced the SL-5000 PDA, named Zaurus, which ran an embedded
Linux distribution, Lineo. Not long after the Zaurus’s introduction, Chris Larson founded the
OpenZaurus Project, a replacement Linux distribution for the SharpROM, based on a build system
called buildroot. With the founding of the project, people began contributing many more software
packages, as well as targets for other devices, and it wasn’t long before the build system for OpenZaurus
began to show fragility. In January 2003, the community began discussing a new build system to
incorporate the community usage model of a generic build system for embedded Linux distributions.
This would eventually become OpenEmbedded. Chris Larson, Michael Lauer, and Holger Schurig
began work on OpenEmbedded by porting hundreds of OpenZaurus packages over to the new build
system.

The Yocto Project springs from this work. At the project’s core is the Poky build system, created
by Richard Purdie. It began as a stabilized branch of OpenEmbedded using a core subset of the
thousands of OpenEmbedded recipes, across a limited set of architectures. Over time, it slowly
coalesced into more than just an embedded build system, but into a complete software development
platform, with an Eclipse plugin, a fakeroot replacement andQEMUbased images. AroundNovember
2010, the Linux Foundation announced that this work would all continue under the heading of the
Yocto Project as a Linux Foundation-sponsored project. It was then established that Yocto and
OpenEmbedded would coordinate on a core set of package metadata called OE-Core, combining the
best of both Poky and OpenEmbedded with an increased use of layering for additional components.

23.1 Introduction to the Poky Build System
The Poky build system is the core of the Yocto Project. In Poky’s default configuration, it can provide
a starting image footprint that ranges from a shell-accessible minimal image all the way up to a Linux
Standard Base-compliant image with a GNOME Mobile and Embedded (GMAE) based reference



user interface called Sato. From these base image types, metadata layers can be added to extend
functionality; layers can provide an additional software stack for an image type, add a board support
package (BSP) for additional hardware or even represent a new image type. Using the 1.1 release
of Poky, named “edison”, we will show how BitBake uses these recipes and configuration files to
generate an embedded image.

From a very high level, the build process starts out by setting up the shell environment for the
build run. This is done by sourcing a file, oe-init-build-env, that exists in the root of the Poky
source tree. This sets up the shell environment, creates an initial customizable set of configuration
files and wraps the BitBake runtime with a shell script that Poky uses to determine if the minimal
system requirements have been met.

For example, one of the things it will look for is the existence of Pseudo, a fakeroot replacement
contributed to theYocto Project byWindRiver Systems. At this point, bitbake core-image-minimal,
for example, should be able to create a fully functional cross-compilation environment and then
create a Linux image based on the image definition for core-image-minimal from source as defined
in the Yocto metadata layer.

Figure 23.1: High-level overview of Poky task execution

During the creation of our image, BitBake will parse its configuration, include any additional
layers, classes, tasks or recipes defined, and begin by creating a weighted dependency chain. This
process provides an ordered and weighted task priority map. BitBake then uses this map to determine
what packages must be built in which order so as to most efficiently fulfill compilation dependencies.
Tasks needed by the most other tasks are weighted higher, and thus run earlier during the build process.
The task execution queue for our build is created. BitBake also stores the parsed metadata summaries
and if, on subsequent runs, it determines that the metadata has changed, it can re-parse only what
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BitBake recipe for grep

DESCRIPTION = "GNU grep utility"
HOMEPAGE = "http://savannah.gnu.org/projects/grep/"
BUGTRACKER = "http://savannah.gnu.org/bugs/?group=grep"

SECTION = "console/utils"

LICENSE = "GPLv3"
LIC_FILES_CHKSUM = "file://COPYING;md5=8006d9c814277c1bfc4ca22af94b59ee"

PR = "r0"

SRC_URI = "${GNU_MIRROR}/grep/grep-${PV}.tar.gz"
SRC_URI[md5sum] = "03e3451a38b0d615cb113cbeaf252dc0"
SRC_URI[sha256sum]="e9118eac72ecc71191725a7566361ab7643edfd3364869a47b78dc934a357970"

inherit autotools gettext

EXTRA_OECONF = "--disable-perl-regexp"

do_configure_prepend
() {
rm
-f ${S}/m4/init.m4
}

do_install () {
autotools_do_install
install -d ${D}${base_bindir}
mv ${D}${bindir}/grep ${D}${base_bindir}/grep.${PN}
mv ${D}${bindir}/egrep ${D}${base_bindir}/egrep.${PN}
mv ${D}${bindir}/fgrep ${D}${base_bindir}/fgrep.${PN}

}

pkg_postinst_${PN}() {
update-alternatives --install ${base_bindir}/grep grep grep.${PN} 100
update-alternatives --install ${base_bindir}/egrep egrep egrep.${PN} 100
update-alternatives --install ${base_bindir}/fgrep fgrep fgrep.${PN} 100

}

pkg_prerm_${PN}() {
update-alternatives --remove grep grep.${PN}
update-alternatives --remove egrep egrep.${PN}
update-alternatives --remove fgrep fgrep.${PN}

}
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has changed. The BitBake scheduler and parser are some of the more interesting architectural
designs of BitBake and some of the decisions surrounding them and their implementation by BitBake
contributors will be discussed later.

BitBake then runs through its weighted task queue, spawning threads (up to the number defined
by BB_NUMBER_THREADS in conf/local.conf) that begin executing those tasks in the predetermined
order. The tasks executed during a package’s build may be modified, prepended- or appended-to
through its recipe. The basic, default package task order of execution starts by fetching and unpacking
package source and then configuring and cross-compiling the unpacked source. The compiled source
is then split up into packages and various calculations are made on the compilation result such as
the creation of debug package information. The split packages are then packaged into a supported
package format; RPM, ipk and deb are supported. BitBake will then use these packages to build the
root file system.

Poky Build System Concepts
One of the most powerful properties of the Poky build system is that every aspect of a build is
controlled by metadata. Metadata can be loosely grouped into configuration files or package recipes.
A recipe is a collection of non-executable metadata used by BitBake to set variables or define
additional build-time tasks. A recipe contains fields such as the recipe description, the recipe version,
the license of the package and the upstream source repository. It may also indicate that the build
process uses autotools, make, distutils or any other build process, in which case the basic
functionality can be defined by classes it inherits from the OE-Core layer’s class definitions in
./meta/classes. Additional tasks can also be defined, as well as task prerequisites. BitBake also
supports both _prepend and _append as a method of extending task functionality by injecting code
indicated by using prepend or append suffix into the beginning or end of a task.

Configuration files can be broken down into two types. There are those that configure BitBake
and the overall build run, and those that configure the various layers Poky uses to create different
configurations of a target image. A layer is any grouping of metadata that provides some sort of
additional functionality. These can be BSP for new devices, additional image types or additional
software outside of the core layers. In fact, the core Yocto metadata, meta-yocto, is itself a layer
applied on top of the OE-Core metadata layer, meta which adds additional software and image types
to the OE-Core layer.

An example of how one would use layering is by creating a NAS device for the Intel n660
(Crownbay), using x32, the new 32-bit native ABI for x86-64, with a custom software layer that adds
a user interface.

Given the task at hand, we could split this functionality out into layers. At the lowest level we
would utilize a BSP layer for Crownbay that would enable Crownbay-specific hardware functionality,
such as video drivers. As we want x32, we would use the experimental meta-x32 layer. The NAS
functionality would be layered on top of this by adding the Yocto Project’s example NAS layer,
meta-baryon. And lastly, we’ll use an imaginary layer called meta-myproject, to provide the
software and configuration to create a graphical user interface for configuration of the NAS.

During the setup of the BitBake environment, some initial configuration files are generated by
sourcing oe-build-init-env. These configuration files allow us quite a bit of control over how
and what Poky generates. The first of these configuration files is bblayers.conf. This file is what
we will use to add additional layers in order to build our example project.
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Here’s an example of a bblayers.conf file:

# LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
# changes incompatibly
LCONF_VERSION = "4"
BBFILES ?= ""
BBLAYERS = " \
/home/eflanagan/poky/meta \
/home/eflanagan/poky/meta-yocto \
/home/eflanagan/poky/meta-intel/crownbay \
/home/eflanagan/poky/meta-x32 \
/home/eflanagan/poky/meta-baryon\
/home/eflanagan/poky/meta-myproject \
"

The BitBake layers file, bblayers, defines a variable BBLAYERS that BitBake uses to look for
BitBake layers. In order to fully understand this, we should also look at how our layers are actually
constructed. Using meta-baryon 1 as our example layer, we want to examine the layer configuration
file. This file, conf/layer.conf, is what BitBake parses after its initial parsing of bblayers.conf.
From here it adds additional recipes, classes and configuration to the build.

Figure 23.2: Example of BitBake layering

Here’s meta-baryon’s layer.conf:

# Layer configuration for meta-baryon layer
# Copyright 2011 Intel Corporation
# We have a conf directory, prepend to BBPATH to prefer our versions
BBPATH := "${LAYERDIR}:${BBPATH}"

# We have recipes-* directories, add to BBFILES
BBFILES := "${BBFILES} ${LAYERDIR}/recipes-*/*/*.bb ${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "meta-baryon"
BBFILE_PATTERN_meta-baryon := "^${LAYERDIR}/"
BBFILE_PRIORITY_meta-baryon = "7"

1git://git.yoctoproject.org/meta-baryon
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All of the BitBake configuration files help generate BitBake’s datastore which is used during
the creation of the task execution queue. During the beginning of a build, BitBake’s BBCooker
class is started. The cooker manages the build task execution by baking the recipes. One of the
first things the cooker does is attempt to load and parse configuration data. Remember, though,
that BitBake is looking for two types of configuration data. In order to tell the build system where
it should find this configuration data (and in turn where to find recipe metadata), the cooker’s
parseConfigurationFiles method is called. With few exceptions, the first configuration file that
the cooker looks for is bblayers.conf. After this file is parsed, BitBake then parses each layer’s
layer.conf file.

Once layer configuration files are parsed, parseConfigurationFiles then parses bitbake.conf
whose main purpose is to set up global build time variables, such as directory structure naming
for various rootfs directories and the initial LDFLAGS to be used during compile time. Most end
users will never touch this file as most anything needed to be changed here would be within a recipe
context, as opposed to build wide or could be overridden in a configuration file such as local.conf.

As this file is parsed, BitBake also includes configuration files that are relative to each layer in
BBLAYERS and adds the variables found in those files to its data store.

Here is a portion of a bitbake.conf showing included configuration files:

include conf/site.conf
include conf/auto.conf
include conf/local.conf
include conf/build/${BUILD_SYS}.conf
include conf/target/${TARGET_SYS}.conf
include conf/machine/${MACHINE}.conf

23.2 BitBake Architecture
Before we delve into some of BitBake’s current architectural design, it would help to understand
how BitBake once worked. In order to fully appreciate how far BitBake has come, we will consider
the initial version, BitBake 1.0. In that first release of BitBake, a build’s dependency chain was
determined based on recipe dependencies. If something failed during the build of an image, BitBake
would move on to the next task and try to build it again later. What this means, obviously, is that
builds took a very long time. One of the things BitBake also did is keep each and every variable that
a recipe used in one very large dictionary. Given the number of recipes and the number of variables
and tasks needed to accomplish a build, BitBake 1.0 was a memory hog. At a time when memory
was expensive and systems had much less, builds could be painful affairs. It was not unheard of for
a system to run out of memory (writing to swap!) as it slugged through a long running build. In
its first incarnation, while it did the job (sometimes), it did it slowly while consuming an enormous
amount of resources. Worse, as BitBake 1.0 had no concept of a data persistence cache or shared
state, it also had no ability to do incremental builds. If a build failed, one would have to restart it
from scratch.

A quick diff between the current BitBake version used in Poky “edison” 1.13.3 and 1.0 shows
the implementation of BitBake’s client-server architecture, the data persistence cache, its datastore, a
copy-on-write improvement for the datastore, shared state implementation and drastic improvements
in how it determines task and package dependency chains. This evolution has made it more reliable,
more efficient and more dynamic. Much of this functionality came out of necessity for quicker, more
reliable builds that used fewer resources. Three improvements to BitBake that we will examine are
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the implementation of a client-server architecture, optimizations around BitBake’s data storage and
work done on how BitBake determines its build and task dependency chain.

BitBake IPC
Since we now know a good deal about how the Poky build system uses configurations, recipes and
layers to create embedded images, we’re prepared to begin to look under the hood of BitBake and
examine how this is all combined. Starting with the core BitBake executable, bitbake/bin/bake,
we can begin to see the process BitBake follows as it begins to set up the infrastructure needed to
begin a build. The first item of interest is BitBake’s Interprocess Communications (IPC). Initially,
BitBake had no concept of a client-server. This functionality was factored into the BitBake design
over a period of time in order to allow BitBake to run multiple processes during a build, as it was
initially single-threaded, and to allow different user experiences.

Figure 23.3: Overview of BitBake IPC

All Poky builds are begun by starting a user interface instance. The user interface provides a
mechanism for logging of build output, build status and build progress, as well as for receiving
events from build tasks through the BitBake event module. The default user interface used is knotty,
BitBake’s command line interface. Called knotty, or “(no) tty”, since it handles both ttys and non-ttys,
it is one of a few interfaces that are supported. One of these additional user interfaces is Hob. Hob
is the graphical interface to BitBake, a kind of “BitBake commander”. In addition to the typical
functions you would see in the knotty user interface, Hob (written by Joshua Lock) brings the ability
to modify configuration files, add additional layers and packages, and fully customize a build.

BitBake user interfaces have the ability to send commands to the next module brought up by
the BitBake executable, the BitBake server. Like the user interface, BitBake also supports multiple
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different server types, such as XMLRPC. The default server that most users use when executing
BitBake from the knotty user interface is BitBake’s process server. After bringing up the server, the
BitBake executable brings up the cooker.

The cooker is a core portion of BitBake and is where most of the particularly interesting things
that occur during a Poky build are called from. The cooker is what manages the parsing of metadata,
initiates the generation of the dependency and task trees, and manages the build. One of the functions
of BitBake’s server architecture is allowing multiple ways of exposing the command API, indirectly,
to the user interface. The command module is the worker of BitBake, running build commands and
triggering events that get passed up to the user interface through BitBake’s event handler. Once the
cooker is brought up from the BitBake executable, it initializes the BitBake datastore and then begins
to parse all of Poky’s configuration files. It then creates the runqueue object, and triggers the build.

BitBake DataSmart Copy-on-Write Data Storage
In BitBake 1.0, all BitBake variables were parsed and stored in one very large dictionary during
the initialization of that version’s data class. As previously mentioned, this was problematic in
that very large Python dictionaries are slow on writes and member access, and if the build host
runs out of physical memory during the build, we end up using swap. While this is less likely in
most systems in late 2011, when OpenEmbedded and BitBake were first starting up, the average
computer’s specification usually had less than one or two gigabytes of memory.

This was one of the major pain points in early BitBake. Two major issues needed to be worked
out in order to help increase performance: one was precomputation of the build dependency chain;
the other was to reduce the size of data being stored in memory. Much of the data being stored
for a recipe doesn’t change from recipe to recipe; for example, with TMPDIR, BB_NUMBER_THREADS
and other global BitBake variables, having a copy of the entire data environment per recipe stored
in memory was inefficient. The solution was Tom Ansell’s copy-on-write dictionary that “abuses
classes to be nice and fast”. BitBake’s COW module is both an especially fearless and clever hack.
Running python BitBake/lib/bb/COW.py and examining the module will give you an idea of how
this copy-on-write implementation works and how BitBake uses it to store data efficiently

The DataSmart module, which uses the COW dictionary, stores the data from the initial Poky
configuration, data from .conf files and .bbclass files, in a dict as a data object. Each of these
objects can contain another data object of just the diff of the data. So, if a recipe changes something
from the initial data configuration, instead of copying the entire configuration in order to localize it,
a diff of the parent data object is stored at the next layer down in the COW stack. When an attempt is
made to access a variable, the data module will use DataSmart to look into the top level of the stack.
If the variable is not found it will defer to a lower level of the stack until it does find the variable or
throws an error.

One of the other interesting things about the DataSmart module centers around variable expansion.
As BitBake variables can contain executable Python code, one of the things that needs to be done
is run the variable through BitBake’s bb.codeparser to ensure that it’s valid Python and that it
contains no circular references. An example of a variable containing Python code is this example
taken from ./meta/conf/distro/include/tclibc-eglibc.inc:

LIBCEXTENSION = "${@[’’, ’-gnu’][(d.getVar(’ABIEXTENSION’, True) or ’’) != ’’]}"

This variable is included from one of the OE-Core configuration files,
./meta/conf/distro/include/defaultsetup.conf, and is used to provide a set of default op-
tions across different distro configurations that one would want to lay on top of Poky or OpenEmbed-
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ded. This file imports some eglibc-specific variables that are set dependent on the value of another
BitBake variable ABIEXTENSION. During the creation of the datastore, the Python code within this
variable needs to be parsed and validated to ensure tasks that use this variable will not fail.

BitBake Scheduler
Once BitBake has parsed the configuration and created its datastore, it needs to parse the recipes
required for the image and produce a build chain. This is one of the more substantial improvements
to BitBake. Originally, BitBake took its build priorities from a recipe. If a recipe had a DEPENDS, it
would try to figure out what to build in order to satisfy that dependency. If a task failed because it
lacked a prerequisite needed for its buildout, it was simply put to the side and attempted later. This
had obvious drawbacks, both in efficiency and reliability.

As no precomputed dependency chain was established, task execution order was figured out
during the build run. This limited BitBake to being single-threaded. To give an idea of how painful
single-threaded BitBake builds can be, the smallest image “core-image-minimal” on a standard
developer machine in 2011 (Intel Core i7, 16 gigabytes of DDR3 memory) takes about three or four
hours to build a complete cross-compilation toolchain and use it to produce packages that are then
used to create an image. For reference, a build on the same machine with BB_NUMBER_THREADS at
14 and PARALLEL_MAKE set to “-j 12” takes about 30 to 40 minutes. As one could imagine, running
single-threaded with no precomputed order of task execution on slower hardware that had less
memory with a large portion wasted by duplicate copies of the entire datastore took much longer.

Dependencies

When we talk of build dependencies, we need to make a distinction between the various types. A
build dependency, or DEPENDS, is something we require as a prerequisite so that Poky can build the
required package, whereas a runtime dependency, RDEPENDS, requires that the image the package is
to be installed on also contains the package listed as an RDEPENDS. Take, for example, the package
task-core-boot. If we look at the recipe for it in

meta/recipes-core/tasks/task-core-boot.bb

we will see two BitBake variables set: RDEPENDS and DEPENDS. BitBake uses these two fields
during the creation of its dependency chain.

Here is a portion of task-core-boot.bb showing DEPENDS and RDEPENDS:

DEPENDS = "virtual/kernel"
...

RDEPENDS_task-core-boot = "\
base-files \
base-passwd \
busybox \
initscripts \
...

Packages aren’t the only thing in BitBake with dependencies. Tasks also have their own depen-
dencies. Within the scope of BitBake’s runqueue, we recognize four types: internally dependent,
DEPENDS dependent, RDEPENDS dependent and inter-task dependent.
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Internally dependent tasks are set within a recipe and add a task before and/or after another
task. For example, in a recipe, we could add a task called do_deploy by adding the line addtask
deploy before do_build after do_compile. This would add a dependency for running the
do_deploy task prior to do_build being started, but after do_compile is completed. DEPENDS and
RDEPENDS dependent tasks are tasks that run after a denoted task. For example, if we wanted to run
do_deploy of a package after the do_install of its DEPENDS or RDEPENDS, our recipe would include
do_deploy[deptask] = ’do_install’ or do_deploy[rdeptask] = ’do_install’. For inter-
task dependencies, if we wanted a task to be dependent on a different package’s task we would add, us-
ing the above example of do_deploy, do_deploy[depends] = “<target’s name>:do_install”.

RunQueue

As an image build can have hundreds of recipes, each with multiple packages and task, each with its
own dependency, BitBake is now tasked with trying to sort this out into something it can use as an
order of execution. After the cooker has gotten the entire list of packages needed to be built from the
initialization of the bb.data object, it will begin to create a weighted task map from this data in order
to produce an ordered list of tasks it needs to run, called the runqueue. Once the runqueue is created,
BitBake can begin executing it in order of priority, tasking out each portion to a different thread.

Within the provider module, BitBake will first look to see if there is a PREFERRED_PROVIDER
for a given package or image. As more than one recipe can provide a given package and as tasks are
defined in recipes, BitBake needs to decide which provider of a package it will use. It will sort all
the providers of the package, weighting each provider by various criteria. For example, preferred
versions of software will get a higher priority than others. However, BitBake also takes into account
package version as well as the dependencies of other packages. Once it has selected the recipe from
which it will derive its package, BitBake will iterate over the DEPENDS and RDEPENDS of that
recipe and proceed to compute the providers for those packages. This chain reaction will produce a
list of packages needed for image generation as well as providers for those packages.

Runqueue now has a full list of all packages that need to be built and a dependency chain. In
order to begin execution of the build, the runqueue module now needs to create the TaskData object
so it can begin to sort out a weighted task map. It begins by taking each buildable package it has
found, splitting the tasks needed to generate that package and weighing each of those tasks based
on the number of packages that require it. Tasks with a higher weight have more dependents, and
therefore are generally run earlier in the build. Once this is complete, the runqueue module then
prepares to convert the TaskData object into a runqueue.

The creation of the runqueue is somewhat complex. BitBake first iterates through the list of task
names within the TaskData object in order to determine task dependencies. As it iterates through
TaskData, it begins to build a weighted task map. When it is complete, if it has found no circular
dependencies, unbuildable tasks or any such problems, it will then order the task map by weight and
return a complete runqueue object to the cooker. The cooker will begin to attempt to execute the
runqueue, task by task. Depending upon image size and computing resources, Poky may take from
a half-hour to hours to generate a cross-compilation toolchain, a package feed and the embedded
Linux image specified. It is worth noting that from the time of executing bitbake <image_name>
from the command line, the entire process up to right before the execution of the task execution
queue has taken less than a few seconds.
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23.3 Conclusion
In my discussions with community members and my own personal observations, I’ve identified a few
areas where things should, perhaps, have been done differently, as well as a few valuable lessons. It
is important to note that “arm chair quarterbacking” a decade-long development effort is not meant
as a criticism of those who’ve poured their time and effort into a wholly remarkable collection of
software. As developers, the most difficult part of our job is predicting what we will need years down
the road and how we can set up a framework to enable that work now. Few can achieve that without
some road bumps.

The first lesson is to be sure to develop a written, agreed-upon standards document that is well
understood by the community. It should be designed for maximum flexibility and growth.

One place where I’ve personally run into this issue is with my work in OE-Core’s license manifest
creation class, especially with my experiences working with the LICENSE variable. As no clearly
documented standard existed for what LICENSE should contain, a review of the many recipes
available showed many variations. The various LICENSE strings contained everything from Python
abstract syntax tree-parsable values to values that one would have little hope of gaining meaningful
data from. There was a convention that was commonly used within the community; however, the
convention had many variations, some less correct than others. This wasn’t the problem of the
developer who wrote the recipe; it was a community failure to define a standard.

As little prior work was actually done with the LICENSE variable outside of checking for its
existence, there was no particular concern about a standard for that variable. Much trouble could
have been avoided had a project-wide agreed-upon standard been developed early on.

The next lesson is a bit more general and speaks to an issue seen not only within the Yocto Project
but in other large scale projects that are systems-design specific. It is the one of the most important
things developers can do to limit the amount of effort duplication, refactoring and churn their project
encounters: spend time—lots of time—on front-end planning and architectural design.

If you think you’ve spent enough time on architectural design, you probably haven’t. If you think
you haven’t spent enough time on architectural design, you definitely haven’t. Spending more time on
front end planning won’t stop you from later having to rip apart code or even do major architectural
changes, but it will certainly reduce the amount of duplicated effort in the long run.

Designing your software to be as modular as possible, knowing that you will end up revisiting
areas for anything from minor tweaks to major rewrites, will make it so that when you do run into
these issues, code rewrites are less hair-raising.

One obvious place where this would have helped in the Yocto Project is identifying the needs of
end users with low memory systems. Had more thought been put into BitBake’s datastore earlier,
perhaps we could have predicted the problems associated with the datastore taking up too much
memory and dealt with it earlier.

The lesson here is that while it is nearly impossible to identify every pain point your project will
run into during its lifetime, taking the time to do serious front-end planning will help reduce the
effort needed later. BitBake, OE-Core and Yocto are all fortunate in this regard as there was a fair
amount of architectural planning done early. This enabled us to be able to make major changes to the
architecture without too much pain and suffering.
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[chapter24]

ZeroMQ
Martin Sústrik

ØMQ is a messaging system, or “message-oriented middleware”, if you will. It’s used in environments
as diverse as financial services, game development, embedded systems, academic research and
aerospace.

Messaging systems work basically as instant messaging for applications. An application decides
to communicate an event to another application (or multiple applications), it assembles the data to
be sent, hits the “send” button and there we go—the messaging system takes care of the rest.

Unlike instant messaging, though, messaging systems have no GUI and assume no human beings
at the endpoints capable of intelligent intervention when something goes wrong. Messaging systems
thus have to be both fault-tolerant and much faster than common instant messaging.

ØMQ was originally conceived as an ultra-fast messaging system for stock trading and so the
focus was on extreme optimization. The first year of the project was spent devising benchmarking
methodology and trying to define an architecture that was as efficient as possible.

Later on, approximately in the second year of development, the focus shifted to providing a
generic system for building distributed applications and supporting arbitrary messaging patterns,
various transport mechanisms, arbitrary language bindings, etc.

During the third year the focus was mainly on improving usability and flattening the learning
curve. We’ve adopted the BSD Sockets API, tried to clean up the semantics of individual messaging
patterns, and so on.

Hopefully, this chapter will give an insight into how the three goals above translated into the
internal architecture of ØMQ, and provide some tips for those who are struggling with the same
problems.

Since its third year ØMQ has outgrown its codebase; there is an initiative to standardise the
wire protocols it uses, and an experimental implementation of a ØMQ-like messaging system inside
the Linux kernel, etc. These topics are not covered in this book. However, you can check online
resources123 for further details.

24.1 Application vs. Library
ØMQ is a library, not a messaging server. It took us several years working on AMQP protocol,
a financial industry attempt to standardise the wire protocol for business messaging—writing a
1http://www.250bpm.com/concepts
2http://groups.google.com/group/sp-discuss-group
3http://www.250bpm.com/hits



reference implementation for it and participating in several large-scale projects heavily based on
messaging technology—to realise that there’s something wrong with the classic client/server model
of smart messaging server (broker) and dumb messaging clients.

Our primary concern at the time was with the performance: If there’s a server in the middle,
each message has to pass the network twice (from the sender to the broker and from the broker to the
receiver) inducing a penalty in terms of both latency and throughput. Moreover, if all the messages
are passed through the broker, at some point it’s bound to become the bottleneck.

A secondary concern was related to large-scale deployments: when the deployment crosses
organisational boundaries the concept of a central authority managing the whole message flow
doesn’t apply any more. No company is willing to cede control to a server in different company; there
are trade secrets and there’s legal liability. The result in practice is that there’s one messaging server
per company, with hand-written bridges to connect it to messaging systems in other companies. The
whole ecosystem is thus heavily fragmented, and maintaining a large number of bridges for every
company involved doesn’t make the situation better. To solve this problem, we need a fully distributed
architecture, an architecture where every component can be possibly governed by a different business
entity. Given that the unit of management in server-based architecture is the server, we can solve the
problem by installing a separate server for each component. In such a case we can further optimize
the design by making the server and the component share the same processes. What we end up with
is a messaging library.

ØMQ was started when we got an idea about how to make messaging work without a central
server. It required turning the whole concept of messaging upside down and replacing the model of
an autonomous centralised store of messages in the center of the network with a “smart endpoint,
dumb network” architecture based on the end-to-end principle. The technical consequence of that
decision was that ØMQ, from the very beginning, was a library, not an application.

In the meantime we’ve been able to prove that this architecture is both more efficient (lower
latency, higher throughput) and more flexible (it’s easy to build arbitrary complex topologies instead
of being tied to classic hub-and-spoke model).

Figure 24.1: ØMQ being used by different libraries

One of the unintended consequences, however, was that opting for the library model improved
the usability of the product. Over and over again users express their happiness about the fact that
they don’t have to install and manage a stand-alone messaging server. It turns out that not having a
server is a preferred option as it cuts operational cost (no need to have a messaging server admin)
and improves time-to-market (no need to negotiate the need to run the server with the client, the
management or the operations team).

The lesson learned is that when starting a new project, you should opt for the library design if
at all possible. It’s pretty easy to create an application from a library by invoking it from a trivial
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program; however, it’s almost impossible to create a library from an existing executable. A library
offers much more flexibility to the users, at the same time sparing them non-trivial administrative
effort.

24.2 Global State
Global variables don’t play well with libraries. A library may be loaded several times in the process
but even then there’s only a single set of global variables. Figure 24.1 shows a ØMQ library being
used from two different and independent libraries. The application then uses both of those libraries.

When such a situation occurs, both instances of ØMQ access the same variables, resulting in
race conditions, strange failures and undefined behaviour.

To prevent this problem, the ØMQ library has no global variables. Instead, a user of the library
is responsible for creating the global state explicitly. The object containing the global state is called
context. While from the user’s perspective context looks more or less like a pool of worker threads,
from ØMQ’s perspective it’s just an object to store any global state that we happen to need. In the
picture above, libA would have its own context and libB would have its own as well. There would
be no way for one of them to break or subvert the other one.

The lesson here is pretty obvious: Don’t use global state in libraries. If you do, the library is
likely to break when it happens to be instantiated twice in the same process.

24.3 Performance
When ØMQ was started, its primary goal was to optimize performance. Performance of messaging
systems is expressed using two metrics: throughput—how many messages can be passed during a
given amount of time; and latency—how long it takes for a message to get from one endpoint to the
other.

Which metric should we focus on? What’s the relationship between the two? Isn’t it obvious?
Run the test, divide the overall time of the test by number of messages passed and what you get is
latency. Divide the number of messages by time and what you get is throughput. In other words,
latency is the inverse value of throughput. Trivial, right?

Instead of starting coding straight away we spent some weeks investigating the performance
metrics in detail and we found out that the relationship between throughput and latency is much
more subtle than that, and often the metrics are quite counter-intuitive.

Imagine A sending messages to B. (See Figure 24.2.) The overall time of the test is 6 seconds.
There are 5 messages passed. Therefore the throughput is 0.83 msgs/sec ( 56 ) and the latency is 1.2
sec ( 65 ), right?

Have a look at the diagram again. It takes a different time for each message to get from A to
B: 2 sec, 2.5 sec, 3 sec, 3.5 sec, 4 sec. The average is 3 seconds, which is pretty far away from our
original calculation of 1.2 second. This example shows the misconceptions people are intuitively
inclined to make about performance metrics.

Now have a look at the throughput. The overall time of the test is 6 seconds. However, at A it
takes just 2 seconds to send all the messages. From A’s perspective the throughput is 2.5 msgs/sec
( 52 ). At B it takes 4 seconds to receive all messages. So from B’s perspective the throughput is 1.25
msgs/sec ( 54 ). Neither of these numbers matches our original calculation of 1.2 msgs/sec.

To make a long story short, latency and throughput are two different metrics; that much is obvious.
The important thing is to understand the difference between the two and their mutual relationship.
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Figure 24.2: Sending messages from A to B

Latency can be measured only between two different points in the system; There’s no such thing
as latency at point A. Each message has its own latency. You can average the latencies of multiple
messages; however, there’s no such thing as latency of a stream of messages.

Throughput, on the other hand, can be measured only at a single point of the system. There’s a
throughput at the sender, there’s a throughput at the receiver, there’s a throughput at any intermediate
point between the two, but there’s no such thing as overall throughput of the whole system. And
throughput make sense only for a set of messages; there’s no such thing as throughput of a single
message.

As for the relationship between throughput and latency, it turns out there really is a relationship;
however, the formula involves integrals and we won’t discuss it here. For more information, read the
literature on queueing theory.

There are many more pitfalls in benchmarking the messaging systems that we won’t go further
into. The stress should rather be placed on the lesson learned: Make sure you understand the problem
you are solving. Even a problem as simple as “make it fast” can take lot of work to understand properly.
What’s more, if you don’t understand the problem, you are likely to build implicit assumptions and
popular myths into your code, making the solution either flawed or at least much more complex or
much less useful than it could possibly be.

24.4 Critical Path
We discovered during the optimization process that three factors have a crucial impact on performance:

• Number of memory allocations
• Number of system calls
• Concurrency model
However, not every memory allocation or every system call has the same effect on performance.

The performance we are interested in in messaging systems is the number of messages we can transfer
between two endpoints during a given amount of time. Alternatively, we may be interested in how
long it takes for a message to get from one endpoint to another.
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However, given that ØMQ is designed for scenarios with long-lived connections, the time it
takes to establish a connection or the time needed to handle a connection error is basically irrelevant.
These events happen very rarely and so their impact on overall performance is negligible.

The part of a codebase that gets used very frequently, over and over again, is called the critical
path; optimization should focus on the critical path.

Let’s have a look at an example: ØMQ is not extremely optimized with respect to memory alloca-
tions. For example, when manipulating strings, it often allocates a new string for each intermediate
phase of the transformation. However, if we look strictly at the critical path—the actual message
passing—we’ll find out that it uses almost no memory allocations. If messages are small, it’s just one
memory allocation per 256 messages (these messages are held in a single large allocated memory
chunk). If, in addition, the stream of messages is steady, without huge traffic peaks, the number of
memory allocations on the critical path drops to zero (the allocated memory chunks are not returned
to the system, but re-used over and over again).

Lesson learned: optimize where it makes difference. Optimizing pieces of code that are not on
the critical path is wasted effort.

24.5 Allocating Memory
Assuming that all the infrastructure was initialised and a connection between two endpoints has been
established, there’s only one thing to allocate when sending a message: the message itself. Thus, to
optimize the critical path we had to look into how messages are allocated and passed up and down
the stack.

It’s common knowledge in the high-performance networking field that the best performance is
achieved by carefully balancing the cost of message allocation and the cost of message copying4. For
small messages, copying is much cheaper than allocating memory. It makes sense to allocate no new
memory chunks at all and instead to copy the message to preallocated memory whenever needed.
For large messages, on the other hand, copying is much more expensive than memory allocation.
It makes sense to allocate the message once and pass a pointer to the allocated block, instead of
copying the data. This approach is called “zero-copy”.

Figure 24.3: Message copying (or not)

ØMQ handles both cases in a transparent manner. A ØMQ message is represented by an opaque
handle. The content of very small messages is encoded directly in the handle. So making a copy of
4For example, http://hal.inria.fr/docs/00/29/28/31/PDF/Open-MX-IOAT.pdf. See different handling of “small”,
“medium” and “large” messages.
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the handle actually copies the message data. When the message is larger, it’s allocated in a separate
buffer and the handle contains just a pointer to the buffer. Making a copy of the handle doesn’t result
in copying the message data, which makes sense when the message is megabytes long (Figure 24.3).
It should be noted that in the latter case the buffer is reference-counted so that it can be referenced by
multiple handles without the need to copy the data.

Lesson learned: When thinking about performance, don’t assume there’s a single best solution. It
may happen that there are several subclasses of the problem (e.g., small messages vs. large messages),
each having its own optimal algorithm.

24.6 Batching
It has already been mentioned that the sheer number of system calls in a messaging system can
result in a performance bottleneck. Actually, the problem is much more generic than that. There’s a
non-trivial performance penalty associated with traversing the call stack and thus, when creating
high-performance applications, it’s wise to avoid as much stack traversing as possible.

Figure 24.4: Sending four messages

Consider Figure 24.4. To send four messages, you have to traverse the entire network stack
four times (i.e., ØMQ, glibc, user/kernel space boundary, TCP implementation, IP implementation,
Ethernet layer, the NIC itself and back up the stack again).

However, if you decide to join those messages into a single batch, there would be only one
traversal of the stack (Figure 24.5). The impact on message throughput can be overwhelming: up to
two orders of magnitude, especially if the messages are small and hundreds of them can be packed
into a single batch.

Figure 24.5: Batching messages

On the other hand, batching can have negative impact on latency. Let’s take, for example, the
well-known Nagle’s algorithm, as implemented in TCP. It delays the outbound messages for a certain

364 ZeroMQ



amount of time and merges all the accumulated data into a single packet. Obviously, the end-to-end
latency of the first message in the packet is much worse than the latency of the last one. Thus, it’s
common for applications that need consistently low latency to switch Nagle’s algorithm off. It’s even
common to switch off batching on all levels of the stack (e.g., NIC’s interrupt coalescing feature).

But again, no batching means extensive traversing of the stack and results in low message
throughput. We seem to be caught in a throughput versus latency dilemma.

ØMQ tries to deliver consistently low latencies combinedwith high throughput using the following
strategy: when message flow is sparse and doesn’t exceed the network stack’s bandwidth, ØMQ turns
all the batching off to improve latency. The trade-off here is somewhat higher CPU usage—we still
have to traverse the stack frequently. However, that isn’t considered to be a problem in most cases.

When the message rate exceeds the bandwidth of the network stack, the messages have to be
queued—stored in memory till the stack is ready to accept them. Queueing means the latency is
going to grow. If the message spends one second in the queue, end-to-end latency will be at least
one second. What’s even worse, as the size of the queue grows, latencies will increase gradually. If
the size of the queue is not bound, the latency can exceed any limit.

It has been observed that even though the network stack is tuned for lowest possible latency
(Nagle’s algorithm switched off, NIC interrupt coalescing turned off, etc.) latencies can still be
dismal because of the queueing effect, as described above.

In such situations it makes sense to start batching aggressively. There’s nothing to lose as the
latencies are already high anyway. On the other hand, aggressive batching improves throughput and
can empty the queue of pending messages—which in turn means the latency will gradually drop as
the queueing delay decreases. Once there are no outstanding messages in the queue, the batching
can be turned off to improve the latency even further.

One additional observation is that the batching should only be done on the topmost level. If the
messages are batched there, the lower layers have nothing to batch anyway, and so all the batching
algorithms underneath do nothing except introduce additional latency.

Lesson learned: To get optimal throughput combined with optimal response time in an asyn-
chronous system, turn off all the batching algorithms on the low layers of the stack and batch on the
topmost level. Batch only when new data are arriving faster than they can be processed.

24.7 Architecture Overview
Up to this point we have focused on generic principles that make ØMQ fast. From now on we’ll have
a look at the actual architecture of the system (Figure 24.6).

The user interacts with ØMQ using so-called “sockets”. They are pretty similar to TCP sockets,
the main difference being that each socket can handle communication with multiple peers, a bit like
unbound UDP sockets do.

The socket object lives in the user’s thread (see the discussion of threading models in the next
section). Aside from that, ØMQ is running multiple worker threads that handle the asynchronous part
of the communication: reading data from the network, enqueueing messages, accepting incoming
connections, etc.

There are various objects living in the worker threads. Each of these objects is owned by exactly
one parent object (ownership is denoted by a simple full line in the diagram). The parent can live
in a different thread than the child. Most objects are owned directly by sockets; however, there are
couple of cases where an object is owned by an object which is owned by the socket. What we get is
a tree of objects, with one such tree per socket. The tree is used during shut down; no object can
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Figure 24.6: ØMQ architecture

shut itself down until it closes all its children. This way we can ensure that the shut down process
works as expected; for example, that pending outbound messages are pushed to the network prior to
terminating the sending process.

Roughly speaking, there are two kinds of asynchronous objects; there are objects that are not
involved in message passing and there are objects that are. The former have to do mainly with
connection management. For example, a TCP listener object listens for incoming TCP connections
and creates an engine/session object for each new connection. Similarly, a TCP connector object
tries to connect to the TCP peer and when it succeeds it creates an engine/session object to manage
the connection. When such connection fails, the connector object tries to re-establish it.

The latter are objects that are handling data transfer itself. These objects are composed of two
parts: the session object is responsible for interacting with the ØMQ socket, and the engine object
is responsible for communication with the network. There’s only one kind of the session object,
but there’s a different engine type for each underlying protocol ØMQ supports. Thus, we have TCP
engines, IPC (inter-process communication) engines, PGM5 engines, etc. The set of engines is
extensible—in the future we may choose to implement, say, a WebSocket engine or an SCTP engine.

The sessions are exchanging messages with the sockets. There are two directions to pass messages
in and each direction is handled by a pipe object. Each pipe is basically a lock-free queue optimized
for fast passing of messages between threads.
5Reliable multicast protocol, see RFC 3208.

366 ZeroMQ



Finally, there’s a context object (discussed in the previous sections but not shown on the diagram)
that holds the global state and is accessible by all the sockets and all the asynchronous objects.

24.8 Concurrency Model
One of the requirements for ØMQ was to take advantage of multi-core boxes; in other words, to scale
the throughput linearly with the number of available CPU cores.

Our previous experience with messaging systems showed that using multiple threads in a classic
way (critical sections, semaphores, etc.) doesn’t yield much performance improvement. In fact,
a multi-threaded version of a messaging system can be slower than a single-threaded one, even if
measured on a multi-core box. Individual threads are simply spending too much time waiting for
each other while, at the same time, eliciting a lot of context switching that slows the system down.

Given these problems, we’ve decided to go for a different model. The goal was to avoid locking
entirely and let each thread run at full speed. The communication between threads was to be provided
via asynchronous messages (events) passed between the threads. This, as insiders know, is the classic
actor model.

The idea was to launch one worker thread per CPU core—having two threads sharing the same
core would only mean a lot of context switching for no particular advantage. Each internal ØMQ
object, such as say, a TCP engine, would be tightly bound to a particular worker thread. That, in turn,
means that there’s no need for critical sections, mutexes, semaphores and the like. Additionally, these
ØMQ objects won’t be migrated between CPU cores so would thus avoid the negative performance
impact of cache pollution (Figure 24.7).

Figure 24.7: Multiple worker threads

This design makes a lot of traditional multi-threading problems disappear. Nevertheless, there’s
a need to share the worker thread among many objects, which in turn means there has to be some
kind of cooperative multitasking. This means we need a scheduler; objects need to be event-driven
rather than being in control of the entire event loop; we have to take care of arbitrary sequences of
events, even very rare ones; we have to make sure that no object holds the CPU for too long; etc.

In short, the whole system has to become fully asynchronous. No object can afford to do a
blocking operation, because it would not only block itself but also all the other objects sharing the
same worker thread. All objects have to become, whether explicitly or implicitly, state machines.
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With hundreds or thousands of state machines running in parallel you have to take care of all the
possible interactions between them and—most importantly—of the shutdown process.

It turns out that shutting down a fully asynchronous system in a clean way is a dauntingly complex
task. Trying to shut down a thousand moving parts, some of them working, some idle, some in the
process of being initiated, some of them already shutting down by themselves, is prone to all kinds of
race conditions, resource leaks and similar. The shutdown subsystem is definitely the most complex
part of ØMQ. A quick check of the bug tracker indicates that some 30–50% of reported bugs are
related to shutdown in one way or another.

Lesson learned: When striving for extreme performance and scalability, consider the actor model;
it’s almost the only game in town in such cases. However, if you are not using a specialised system
like Erlang or ØMQ itself, you’ll have to write and debug a lot of infrastructure by hand. Additionally,
think, from the very beginning, about the procedure to shut down the system. It’s going to be the
most complex part of the codebase and if you have no clear idea how to implement it, you should
probably reconsider using the actor model in the first place.

24.9 Lock-Free Algorithms
Lock-free algorithms have been in vogue lately. They are simple mechanisms for inter-thread
communication that don’t rely on the kernel-provided synchronisation primitives, such as mutexes
or semaphores; rather, they do the synchronisation using atomic CPU operations, such as atomic
compare-and-swap (CAS). It should be understood that they are not literally lock-free—instead,
locking is done behind the scenes on the hardware level.

ØMQ uses a lock-free queue in pipe objects to pass messages between the user’s threads and
ØMQ’s worker threads. There are two interesting aspects to how ØMQ uses the lock-free queue.

First, each queue has exactly one writer thread and exactly one reader thread. If there’s a need
for 1-to-N communication, multiple queues are created (Figure 24.8). Given that this way the queue
doesn’t have to take care of synchronising the writers (there’s only one writer) or readers (there’s
only one reader) it can be implemented in an extra-efficient way.

Figure 24.8: Queues

Second, we realised that while lock-free algorithms were more efficient than classic mutex-based
algorithms, atomic CPU operations are still rather expensive (especially when there’s contention
between CPU cores) and doing an atomic operation for each message written and/or each message
read was slower than we were willing to accept.

The way to speed it up—once again—was batching. Imagine you had 10 messages to be written
to the queue. It can happen, for example, when you received a network packet containing 10 small
messages. Receiving a packet is an atomic event; you cannot get half of it. This atomic event results
in the need to write 10 messages to the lock-free queue. There’s not much point in doing an atomic
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operation for each message. Instead, you can accumulate the messages in a “pre-write” portion of the
queue that’s accessed solely by the writer thread, and then flush it using a single atomic operation.

The same applies to reading from the queue. Imagine the 10 messages above were already
flushed to the queue. The reader thread can extract each message from the queue using an atomic
operation. However, it’s overkill; instead, it can move all the pending messages to a “pre-read”
portion of the queue using a single atomic operation. Afterwards, it can retrieve the messages from
the “pre-read” buffer one by one. “Pre-read” is owned and accessed solely by the reader thread and
thus no synchronisation whatsoever is needed in that phase.

Figure 24.9: Lock-free queue

The arrow on the left of Figure 24.9 shows how the pre-write buffer can be flushed to the queue
simply by modifying a single pointer. The arrow on the right shows how the whole content of the
queue can be shifted to the pre-read by doing nothing but modifying another pointer.

Lesson learned: Lock-free algorithms are hard to invent, troublesome to implement and almost
impossible to debug. If at all possible, use an existing proven algorithm rather than inventing your
own. When extreme performance is required, don’t rely solely on lock-free algorithms. While they
are fast, the performance can be significantly improved by doing smart batching on top of them.

24.10 API
The user interface is the most important part of any product. It’s the only part of your program visible
to the outside world and if you get it wrong the world will hate you. In end-user products it’s either
the GUI or the command line interface. In libraries it’s the API.

In early versions of ØMQ the API was based on AMQP’s model of exchanges and queues6. I
spent the end of 2009 rewriting it almost from scratch to use the BSD Socket API instead. That was
the turning point; ØMQ adoption soared from that point on. While before it was a niche product
used by a bunch of messaging experts, afterwards it became a handy commonplace tool for anybody.
In a year or so the size of the community increased tenfold, some 20 bindings to different languages
were implemented, etc.

The user interface defines the perception of a product. With basically no change to the functionality—
just by changing the API—ØMQ changed from an “enterprise messaging” product to a “networking”
product. In other words, the perception changed from “a complex piece of infrastructure for big
banks” to “hey, this helps me to send my 10-byte-long message from application A to application B”.
6See the AMQP specification at http://www.amqp.org/specification/1.0/amqp-org-download. From a historical
perspective it’s interesting to have a look at the white paper from 2007 that tries to reconcile AMQP with a brokerless model
of messaging. The white paper is at http://www.zeromq.org/whitepapers:messaging-enabled-network.

Martin Sústrik 369



Lesson learned: Understand what you want your project to be and design the user interface
accordingly. Having a user interface that doesn’t align with the vision of the project is a 100%
guaranteed way to fail.

One of the important aspects of the move to the BSD Sockets API was that it wasn’t a revolutionary
freshly invented API, but an existing and well-known one. Actually, the BSD Sockets API is one of
the oldest APIs still in active use today; it dates back to 1983 and 4.2BSD Unix. It’s been widely
used and stable for literally decades.

The above fact brings a lot of advantages. Firstly, it’s an API that everybody knows, so the
learning curve is ludicrously flat. Even if you’ve never heard of ØMQ, you can build your first
application in couple of minutes thanks to the fact that you are able to reuse your BSD Sockets
knowledge.

Secondly, using awidely implementedAPI enables integration of ØMQwith existing technologies.
For example, exposing ØMQ objects as “sockets” or “file descriptors” allows for processing TCP,
UDP, pipe, file and ØMQ events in the same event loop. Another example: the experimental project
to bring ØMQ-like functionality to the Linux kernel7 turned out to be pretty simple to implement.
By sharing the same conceptual framework it can re-use a lot of infrastructure already in place.

Thirdly and probably most importantly, the fact that the BSD Sockets API survived almost three
decades despite numerous attempts to replace it means that there is something inherently right in
the design. BSD Sockets API designers have—whether deliberately or by chance—made the right
design decisions. By adopting the API we can automatically share those design decisions without
even knowing what they were and what problem they were solving.

Lesson learned: While code reuse has been promoted from time immemorial and pattern reuse
joined in later on, it’s important to think of reuse in an even more generic way. When designing a
product, have a look at similar products. Check which have failed and which have succeeded; learn
from the successful projects. Don’t succumb to Not Invented Here syndrome. Reuse the ideas, the
APIs, the conceptual frameworks, whatever you find appropriate. By doing so you are allowing users
to reuse their existing knowledge. At the same time you may be avoiding technical pitfalls you are
not even aware of at the moment.

24.11 Messaging Patterns
In any messaging system, the most important design problem is that of how to provide a way for the
user to specify which messages are routed to which destinations. There are two main approaches,
and I believe this dichotomy is quite generic and applicable to basically any problem encountered in
the domain of software.

One approach is to adopt the Unix philosophy of “do one thing and do it well”. What this means
is that the problem domain should be artificially restricted to a small and well-understood area. The
program should then solve this restricted problem in a correct and exhaustive way. An example of
such approach in the messaging area is MQTT8. It’s a protocol for distributing messages to a set of
consumers. It can’t be used for anything else (say for RPC) but it is easy to use and does message
distribution well.

The other approach is to focus on generality and provide a powerful and highly configurable
system. AMQP is an example of such a system. Its model of queues and exchanges provides the
7https://github.com/250bpm/linux-2.6
8http://mqtt.org/
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user with the means to programmatically define almost any routing algorithm they can think of. The
trade-off, of course, is a lot of options to take care of.

ØMQ opts for the former model because it allows the resulting product to be used by basically
anyone, while the generic model requires messaging experts to use it. To demonstrate the point, let’s
have a look how the model affects the complexity of the API. What follows is implementation of
RPC client on top of a generic system (AMQP):

connect ("192.168.0.111")
exchange.declare (exchange="requests", type="direct", passive=false,

durable=true, no-wait=true, arguments={})
exchange.declare (exchange="replies", type="direct", passive=false,

durable=true, no-wait=true, arguments={})
reply-queue = queue.declare (queue="", passive=false, durable=false,

exclusive=true, auto-delete=true, no-wait=false, arguments={})
queue.bind (queue=reply-queue, exchange="replies",

routing-key=reply-queue)
queue.consume (queue=reply-queue, consumer-tag="", no-local=false,

no-ack=false, exclusive=true, no-wait=true, arguments={})
request = new-message ("Hello World!")
request.reply-to = reply-queue
request.correlation-id = generate-unique-id ()
basic.publish (exchange="requests", routing-key="my-service",

mandatory=true, immediate=false)
reply = get-message ()

On the other hand, ØMQ splits the messaging landscape into so-called “messaging patterns”.
Examples of the patterns are “publish/subscribe”, “request/reply” or “parallelised pipeline”. Each
messaging pattern is completely orthogonal to other patterns and can be thought of as a separate tool.

What follows is the re-implementation of the above application using ØMQ’s request/reply pattern.
Note how all the option tweaking is reduced to the single step of choosing the right messaging pattern
(“REQ”):

s = socket (REQ)
s.connect ("tcp://192.168.0.111:5555")
s.send ("Hello World!")
reply = s.recv ()

Up to this point we’ve argued that specific solutions are better than generic solutions. We want
our solution to be as specific as possible. However, at the same time we want to provide our customers
with as wide a range of functionality as possible. How can we solve this apparent contradiction?

The answer consists of two steps:
1. Define a layer of the stack to deal with a particular problem area (e.g. transport, routing,

presentation, etc.).
2. Provide multiple implementations of the layer. There should be a separate non-intersecting

implementation for each use case.
Let’s have a look at the example of the transport layer in the Internet stack. It’s meant to provide

services such as transferring data streams, applying flow control, providing reliability, etc., on the
top of the network layer (IP). It does so by defining multiple non-intersecting solutions: TCP for
connection-oriented reliable stream transfer, UDP for connectionless unreliable packet transfer, SCTP
for transfer of multiple streams, DCCP for unreliable connections and so on.
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Note that each implementation is completely orthogonal: a UDP endpoint cannot speak to
a TCP endpoint. Neither can a SCTP endpoint speak to a DCCP endpoint. It means that new
implementations can be added to the stack at any moment without affecting the existing portions of
the stack. Conversely, failed implementations can be forgotten and discarded without compromising
the viability of the transport layer as a whole.

The same principle applies to messaging patterns as defined by ØMQ. Messaging patterns
form a layer (the so-called “scalability layer”) on top of the transport layer (TCP and friends).
Individual messaging patterns are implementations of this layer. They are strictly orthogonal—the
publish/subscribe endpoint can’t speak to the request/reply endpoint, etc. Strict separation between
the patterns in turn means that new patterns can be added as needed and that failed experiments with
new patterns won’t hurt the existing patterns.

Lesson learned: When solving a complex and multi-faceted problem it may turn out that a
monolithic general-purpose solution may not be the best way to go. Instead, we can think of the
problem area as an abstract layer and provide multiple implementations of this layer, each focused on
a specific well-defined use case. When doing so, delineate the use case carefully. Be sure about what
is in the scope and what is not. By restricting the use case too aggressively the application of your
software may be limited. If you define the problem too broadly, however, the product may become
too complex, blurry and confusing for the users.

24.12 Conclusion
As our world becomes populated with lots of small computers connected via the Internet—mobile
phones, RFID readers, tablets and laptops, GPS devices, etc.—the problem of distributed computing
ceases to be the domain of academic science and becomes a common everyday problem for every
developer to tackle. The solutions, unfortunately, are mostly domain-specific hacks. This article
summarises our experience with building a large-scale distributed system in a systematic manner. It
focuses on problems that are interesting from a software architecture point of view, and we hope that
designers and programmers in the open source community will find it useful.
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