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We numerically investigate the role of mechanical stress in modifying the conductivity

properties of cardiac tissue, and also assess the impact of these effects in the

solutions generated by computational models for cardiac electromechanics. We follow

the recent theoretical framework from Cherubini et al. (2017), proposed in the context

of general reaction-diffusion-mechanics systems emerging from multiphysics continuum

mechanics and finite elasticity. In the present study, the adapted models are compared

against preliminary experimental data of pig right ventricle fluorescence optical mapping.

These data contribute to the characterization of the observed inhomogeneity and

anisotropy properties that result from mechanical deformation. Our novel approach

simultaneously incorporates two mechanisms for mechano-electric feedback (MEF):

stretch-activated currents (SAC) and stress-assisted diffusion (SAD); and we also identify

their influence into the nonlinear spatiotemporal dynamics. It is found that (i) only specific

combinations of the two MEF effects allow proper conduction velocity measurement; (ii)

expected heterogeneities and anisotropies are obtained via the novel stress-assisted

diffusion mechanisms; (iii) spiral wave meandering and drifting is highly mediated by

the applied mechanical loading. We provide an analysis of the intrinsic structure of the

nonlinear coupling mechanisms using computational tests conducted with finite element

methods. In particular, we compare static and dynamic deformation regimes in the onset

of cardiac arrhythmias and address other potential biomedical applications.

Keywords: cardiac electromechanics, stress-assisted diffusion, stretch-activated currents, finite elasticity,

reaction-diffusion

1. INTRODUCTION

Cardiac tissue is a complex multiscale medium constituted by highly interconnected units,
cardiomyocytes, that conform a so-called syncitium with unique structural and functional
properties (Pullan et al., 2005). Cardiomyocytes are excitable and deformable muscular cells that
present themselves an additional multiscale architecture in which plasma membrane proteins and
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intracellular organelles all depend on the current mechanical
state of the tissue (Salamhe and Dhein, 2013; Schönleitner et al.,
2017). Dedicated proteic structures, such as ion channels or
gap junctions, rule the passage of charged particles throughout
the cell as well as between different cells and they are usually
described mathematically through multiple reaction-diffusion
(RD) systems (Cabo, 2014; Dhein et al., 2014; Kleber and Saffitz,
2014). All these coupled nonlinear and stochastic dynamics,
emerge then to conform the coordinated contraction and
pumping of the heart (Augustin et al., 2016; Land and et.
al., 2016; Quarteroni et al., 2017). During the overall cycle,
the mechanical deformation undoubtedly affects the electrical
impulses that modulate muscle contraction, also modifying the
properties of the substrate where the electrical wave propagates.
These multiscale interactions have commonly been referred in
the literature as the mechano-electric feedback (MEF) (Ravelli,
2003). Experimental, theoretical and clinical studies have been
contributing to the systematic investigation of MEF effects,
already for over a century; however, several open questions
still remain (Quinn et al., 2014; Quinn and Kohl, 2016; Land
et al., 2017; Sack et al., 2018). For example, and focusing on the
cellular level, it is still now not completely understood what is
the effective contribution of stretch-activated ion channels and
which is the most appropriate way to describe them. In addition,
and focusing on the organ scale, the clinical relevance of MEF in
patients with heart diseases remains an open issue (Orini et al.,
2017), and more specifically, how MEF mechanisms translate
into ECGs (Meijborg et al., 2017) and what is the specific role of
mechanics during cardiac arrhythmias (Christoph et al., 2018).

The theoretical and computational modeling of cardiac
electromechanics has been used to investigate some key aspects
of general excitation-contraction mechanisms. For instance,
the transition from cardiac arrhythmias to chaotic behavior,
including the onset, drift and breakup of spiral/scroll waves
(Panfilov and Keldermann, 2005; Bini et al., 2010; Keldermann
et al., 2010; Dierckx et al., 2015), pinning and unpinning
phenomena due to anatomical obstacles (Cherubini et al., 2012;
Hörning, 2012; Chen et al., 2014), as well as the multiscale
and stochastic dynamics both at subcellular, cellular and tissue
scale (Trayanova and Rice, 2011; Hurtado et al., 2016; Land
et al., 2017). However, the formulation of MEF effects into
mathematical models has been primarily focused on accounting
for the additive superposition of an active and passive stress
to stretch-activated currents (Panfilov and Keldermann, 2005).
Recent contributions have advanced an energy-based framework
for the comparison of active stress, stretch-activated currents and
inertia effects (Cherubini et al., 2008; Ambrosi and Pezzuto, 2012;
Rossi et al., 2014; Costabal et al., 2017). These works further
highlight the role of mechanics into the resulting heart function
at different temporal and spatial scales.

In order to further motivate our theoretical developments, we
provide an experimental representative example of the strong
MEF coupling in cardiac tissue, observable on the macroscale.
The data shown in Figure 1 were obtained via dedicated
fluorescence optical mapping applied on a pig right ventricle
(the experimental procedure has been previously described in
Fenton et al., 2009; Gizzi et al., 2013; Uzelac et al., 2017).

After motion suppression via blebbistatin, the perfused tissue
was electrically stimulated via an external bipolar stimulator
with strength twice diastolic threshold. An excitation pulse
with constant pacing cycle length of 1 s was delivered within
the field of view (red spot in Figure 1) for several seconds
(reaching a steady-state configuration) and for three different
mechanical loading conditions on the same wedge: (a) free
edges, (b) static uniaxial horizontal stretch, (c) static uniaxial
vertical stretch with respect to a prescribed tissue orientation.
The figure displays the underlying structure with clear evidence
of the deformed tissue architecture, isochrones of electrical
activation for a representative stimulus, and a sequence of spatial
activation maps, where the colors indicate the level of activation–
Action Potential (AP). Since in this proof of concept setup
active contraction is inhibited by blebbistatin, these experiments
clearly indicate that an additional degree of heterogeneity and
anisotropy appears in the tissue and affects the AP excitation
wave due to the intensity and direction of the externally applied
deformation. In addition, this behavior does not correspond
to a mere linear mapping from the reference to the deformed
configuration (as a visual scaling of the image would easily show),
but one observes that mechanical deformations induce higher,
nonlinear and non-trivial anisotropies and heterogeneities in the
tissue.

To better characterize such features, in Figure 2we provide an
extended analysis of the local conduction velocity (CV) thorough
histogram plots measured as follows:

• we identify wavefront isochrones at 50% of depolarization
for eleven consecutive frames at 2ms each (this produces ten
consecutive measures of CV per direction selected);

• we compute the contour normal direction and the
corresponding distance between consecutive isochrones;

• we measure the local CV for all the computed normal
directions, along the isochrone path and for seven consecutive
action potential activations at constant pacing cycle length of
1 s;

• we exclude the extreme values from the histogram to take out
spurious results, e.g., boundary effects.

The chosen methodology allows to represent tissue
heterogeneity, provides a robust measure of the local CV
distribution characterizing the underlying ventricular structure,
and homogenizes physiological beat-to-beat variabilities. We
summarize the results of such an extended analysis in Table 1,
distinguishing between the three loading cases as described in
Figure 1, providing sample size and statistical features of the
computed CV histogram distribution, i.e., mean and median.
We also provide the box plot representation of the obtained
distributions for the three stretch states, respectively, to further
highlight dispersion of the measured velocities. Every single
feature in the study confirms a slower conduction velocity
under stretch, and this behavior is full agreement with previous
studies (Ravelli, 2003).

Also, in Figure 3 we demonstrate that the tissue is at steady-
state for the selected stimulation rate providing a quantitative
comparison of the spatial and temporal activation sequences.
In particular, after several activations (> 5), beat n and beat
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FIGURE 1 | MEF observed in pig right ventricle via fluorescence optical mapping. From top to bottom, we provide: underlying tissue structure in reference (A) and

deformed (B,C) states; activation isochrones each 4ms originating from the stimulation point (red spot in the field of view–the bar indicates a length of 1 cm), and

activation sequences. The three cases refer to no-stretch (A), static horizontally (B), and vertical (C) stretch in the directions indicated by the yellow arrows. The

sequence of spatial activation uses the color code scaled to the AP level (yellow/green–high/low). Selected frames highlight the anisotropy induced by stretch. The

outer black region is the noisy area not useful for the field of view.
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FIGURE 2 | CV histograms measured on tissue wedges for three different loading states overlapping local measures for seven consecutive activations at constant

pacing cycle length of 1 s. All the normal directions to the AP propagation are considered as indicated by orange arrows on a representative isochrone contour. The

box plot of the distribution is provided as inset for the three histogram, respectively, highlighting the amount of dispersion and the reduction of CV under stretch (see

Table 1 for details). Cut-off of spurious values is set at 0.05 and 1.3 m/s.

TABLE 1 | Summary of the local CV measurement, indicating histogram sample

size and representative statistical features of the computed distribution: mean and

median.

No-Stretch Horizontal stretch Vertical stretch

Sample size 28,760 20,645 18,746

Mean [m/s] 0.42 0.36 0.38

Median [m/s] 0.36 0.31 0.32

n + 10 are shown for a selected frame in terms of normalized
AP distribution and its spatial difference, as well as comparing
the time course of two consecutive activations (B1, B2) for a
representative pixel under the field of view. In both cases, the
spatio-temporal differences recorded are within the physiological
variability of a ventricular wedge, and the tissue shows a steady-
state regime which is considered at resting state for the numerical
model.

Clear MEF effects evidenced in the previous experimental
exercise suggest the incorporation of deformation and stress
into the conduction properties of the cardiac tissue itself. The
preliminary character of the proposed minimal model implies
that we do not take into account the intrinsic structural variability
of the tissue, but we stress that these effects will be investigated in
future validation works. Accordingly, as a base line model, in the
present study we will adapt the formulation recently proposed
in Cherubini et al. (2017) and designed for general purpose
stress-diffusion couplings. Doing so will allow us to readily and
selectively incorporate two main MEF-related mechanisms into
the computational modeling of cardiac electromechanics: (i)

stretch-activated currents (SAC) and (ii) stress-assisted diffusion
(SAD). The first paradigm relates the deformed mechanical
state to the excitability of the medium via additional reaction
functions (ionic-like currents); whereas the second one collects
the homogenized effects of the deformation field on the
diffusion processes originating the spatio-temporal patterns of
the membrane voltage.

Within such a framework, we expect stretch-activated currents
and stress-assisted diffusion to counterbalance each other by
locally enhancing tissue excitability as well as smoothing the
excitation wave according to the mechanical state of the tissue.
In particular, since an external loading activates SAC at locations
where the stretch is high and, at the same time, induces
an heterogeneous and anisotropic diffusion tensor via the
SAD mechanisms, our study focuses on the role of different
mechanical boundary conditions in affecting action potential
propagation and onset of arrhythmias. Accordingly, these two
MEF mechanisms will be studied numerically in terms of
three basic lines. First, by conducting a parametric analysis
of the competing nonlinearities such to identify the limits of
applicability of the proposed models. In particular, we select
in the SAD mechanisms the most reliable modeling approach
able to reproduce the experienced conduction velocity reduction
upon an applied static loading state. Then, by performing
a selective investigation of spiral onset protocols we will
characterize the additional nonlinearities that arise due to MEF.
Here we identify the different time span of the vulnerable window
obtained via an S1S2 excitation protocol. Finally, by means of
long-run analyses of arrhythmic scenarios, we compare and
contrast static and dynamic displacement and traction loadings

Frontiers in Physiology | www.frontiersin.org December 2018 | Volume 9 | Article 17149

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Loppini et al. Competing Mechanisms in Cardiac Electromechanics

FIGURE 3 | Spatial and temporal comparison of ventricular activation at constant pacing cycle length of 1 s under different mechanical loadings [free (A), horizontal

(B) and vertical (C) stretch as in Figure 1]. The first two rows show the spatial distribution of the normalized voltage for beat n and beat n+ 10 with the corresponding

difference in the third row (color code is indicated). The last row indicates the time course of a representative pixel in the center of the field of view for two consecutive

beats n and n+ 10 with the corresponding difference provided in the red trace.

on a two-dimensional, idealized tissue slab. In this regard, we
show how spiral core meandering results highly affected by the
mechanical state and becomes unstable when SAC and SAD
parameters are stronger.

Our results highlight several interesting conclusions regarding
the propagation of the excitation wave in the presence of
two competing MEF effects. These findings call for novel
and additional experimental investigations. Finally, we provide
a thorough discussion of the applicability of the proposed
modeling approach and its extensions toward more realistic and
multiphysics scenarios.

2. METHODS

The classical stress-assisted formulation proposed in Aifantis
(1980) was developed in the context of dilute solutes in a solid.
A similarity exists between this fundamental process and the
propagation of membrane voltage within cardiac tissue. Indeed,
on a macroscopically rigid matrix, the propagating membrane
voltage can be regarded as a continuum field undergoing slow
diffusion. Here we consider a similar approach (developed in
Cherubini et al., 2017) which generalizes Fick’s diffusion by using
the classical Euler’s axioms of continuously distributed matter.
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In particular, the balance of momentum can be imposed such
to ensure frame invariance, a property of high importance in
mechanical applications (Tadmor et al., 2012). We also assume
quasi-static conditions for the continuum body, such that its
macroscopic response is, in principle, independent from the
diffusion process. On the contrary, the diffusion process will
strongly depend on the mechanical state of the tissue.

2.1. Continuum Electromechanical Model
We will assume that the body is a hyperelastic material and its
motion will be described using finite kinematics. We will adopt
an indicial notation where repeated indices indicate summation.
We identify the relationship between material (reference), XI ,
and spatial (deformed), xi, coordinates via the smooth map
xi(XI). The deformation gradient tensor FiI = ∂xi/∂XI allows
to determine further properties of the continuum’s motion. We
indicate with J = det FiI the Jacobian of the map and with
CIJ = FkIFkJ and Bij = FiKFjK the right and left Cauchy-Green
deformation tensors, respectively. We assume that the generic
myocardial fiber direction (the unit vector characterizing the
microstructural property of the continuum body) in the material
configuration, aI , is mapped to the deformed configuration as
ai = FiJaJ such that we can define the current fiber ai =

aI/λ. Following the standard frame indifference mechanical
framework (Spencer, 1989), these quantities are related to the
invariants of the deformation in the following manner

I1 = CII , I2 =
1

2

[

(CII)
2 − CIJCJI

]

, I3 = detCIJ = J2 ,

I4 = CIJaIaJ . (1)

The principal invariants I1 and I2 rule the deviatoric response of
the medium, the third invariant I3 quantifies volumetric changes
of the material, while the fourth pseudo-invariant I4 measures
the directional fiber stretch, λ. This last entity is intrinsically
directional, so for two-dimensional models, we will simply assign
a horizontal myocardial direction (1, 0)T . In what follows, the
symbol δij denotes the second-order identity tensor.

As anticipated above, we will base our model on the stress-
assisted diffusion formulation from Cherubini et al. (2017). We
do however, generalize the governing equations adopting a more
accurate nondimensional three-variable model of cardiac action
potential (AP) propagation introduced in Fenton and Karma
(1998b), and we will account for SAC (Panfilov and Keldermann,
2005), that were not considered in Cherubini et al. (2017). Even
though several more physiological assumptions could be made,
here we will focus on a purely phenomenological approach.

In the deformed configuration, the electrophysiological model
consists of three variables: the membrane potential u, and a
fast and slow transmembrane ionic gates v,w. They satisfy the
following RD system

∂u

∂t
=

∂

∂xi

(

dij(σij)
∂u

∂xj

)

− Iion(u, v,w)+ Isac(λ, u)+ Iext ,

(2a)

dv

dt
= (1−Hc)

(

1− v

τ−v

)

−Hc
v

τ+v
, (2b)

dw

dt
= (1−Hc)

(

1− w

τ−w

)

−Hc
w

τ+w
, (2c)

where Neumann zero-flux boundary conditions are imposed
for Equation (2a), i.e., [dij∂u/∂xj]ni = 0, where ni is the
outward normal on the domain boundary. System (2) describes
the propagation of a normalized dimensionless membrane
potential, which can be mapped to physical quantities as u =

(Vm − Vo) /
(

Vfi − Vo

)

(see Fenton and Karma, 1998b for details
as modified Beeler-Reuter fit) where Vm stands for the physical
transmembrane potential, Vo is the resting membrane potential
and Vfi represents the Nernst potential of the fast inward current.
In Equation (2a), the total transmembrane density current,
Iion(u, v,w), is the sum of a fast inward depolarizing current,
Ifi(u, v), a slow rectifying outward current, Iso(u), and a slow
inward current, Isi(u,w), given by

Ifi(u, v) = − v
τd
Hc (1− u) (u− uc) ,

Iso(u) = u
τo
(1−Hc)+

1
τr
Hc ,

Isi(u,w) = − w
2τsi

(

1+ tanh
[

k
(

u− usic
)])

,

where τ−v (u) = Hvτ
−
v1 + (1−Hv) τ

−
v2 is the time constant

governing the reactivation of the fast inward current, and Hx =

Hx (u− ux) is the standard Heaviside step function. Iext is the
space and time-dependent external stimulation current with
amplitude Imax

ext . All model parameters are collected in Table 2.
The mechanical problem, stated also on the current

configuration and occupying the domain �(t), respects the
balance of linear momentum and mass, written in terms of
displacement, ϕϕϕ, and pressure, p, and set in a quasi-static form.
The problem is complemented with displacement and traction
boundary conditions set on two different parts of the boundary
ŴD or ŴN :

∂σij

∂xi
= 0 and ρdv̂ = ρ0dV̂ , in �(t), (3a)

ϕϕϕ = ϕ̃ϕϕ(t), on ŴD(t), (3b)

σiknk = t̃i(t), on ŴN(t), (3c)

where ρ0, ρ and dV̂ , dv̂ are the densities and volumes of the solid
in the undeformed and deformed configurations, respectively.

TABLE 2 | Model parameters for the electromechanical three-variable model,

considered as in Fenton and Karma (1998b) and Cherubini et al. (2017).

ḡfi 4 τd Cm/ḡfi τ+w 667 ǫ0 0.1 uinit = 0

τr 50 Cm 1 µF/cm2 τ−w 11 kTa 9.58 vinit = 1

τsi 45 Vo −85 uc 0.13 c1 6 winit = 1

τo 8.3 Vfi 15 uv 0.055 c2 2 ϕϕϕ init = 0

τ+v 3.33 D0 1 · 10−3 usic 0.85 Gs [0; 0.25] pinit = 0

τ−
v1 1000 D1 [−1.5; 0] · 10−4 k 10 usac 0.4 T inita = 0.2

τ−
v2 19.6 D2 1 · 10−5 Imax

ext 2 tmax 9

Time units are ms, length is cm, the term ḡfi is in mS/cm2, dimensional voltages are in

mV, and stiffness in MPa. Square brackets indicate range of parameter variability, and the

rightmost column specifies initial conditions for a resting tissue.
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In Equation (3b), ϕ̃ϕϕ(t) is a known (possibly time-dependent)
displacement and in Equation (3c), t̃i(t) is a (possibly time-
dependent) traction force. In both cases, the tissue is stretched
up to a maximum level of 20% of the resting length such to
activate all MEF components. In addition, the time-variation
of the imposed boundary conditions is much slower than the
governing dynamic physical processes, and therefore a quasi-
static mechanical equilibrium is maintained.

The two sub-problems (Equations 2, 3) are completed via
the followingmixed constitutive prescriptions for incompressible
isotropic hyperelastic materials (J = 1):

σij = 2c1Bij − 2c2B
−1
ij − pδij + Taδij , (4a)

∂Ta

∂t
= ǫ(u)(kTau− Ta) , (4b)

dij(σij) = D0δij + D1σij + D2σikσkj , (4c)

Isac(λ, u) = GsHsac(λ− 1)(usac − u) . (4d)

Equation (4a) specifies a constitutive form for the Cauchy
stress tensor (total equilibrium stress in the current deformed
configuration) highlighting two multiscale contributions on the
tissue deformation. First, the passive material response follows
that of an incompressible Mooney-Rivlin hyperelastic solid and
it is characterized by two stiffness parameters c1 and c2; and
secondly, the active component contributing to the total stress
in the form of an additional hydrostatic force with amplitude
Ta. The dynamics of Ta are described by Equation (4b), where
the constant kTa modulates the amplitude of the active stress
contribution, while ǫ(u) is a contraction switch function: ǫ(u) =
ǫ0 if u < 0.005, and ǫ(u) = 10ǫ0 if u ≥ 0.005.

Equation (4c) characterizes the stress-assisted diffusion
contribution describing the effect of tissue deformation on the
AP spreading. The parameter D0 represents the usual diffusion
coefficient for isotropic media, i.e., diffusivity = [L2 T−1], while
D1 and D2 introduce the impact of mechanical stress through
linear and nonlinear contributions, respectively, on the diffusive
flux. Accordingly, D1 and D2 have units of [L2 T−1 P−1] and
[L2 T−1 P−2], respectively. We also remark that Equation (4c)
reduces to the characterization of the classical diffusion equation
for D1 ≡ D2 = 0.

Finally, Equation (4d) describes the stretch-activated current
contribution (which is usually adopted as the sole MEF effect).
The term Isac(λ, u) affects the ionic (reaction) currents in the
electrophysiological system and is formulated as a linear function
of the membrane potential u and the fiber stretch λ. Here,
Gs modulates the amplitude of the current, usac represents a
referential (resting) potential while, Hsac is a switch activating
this additional reaction current only when the myocardial fiber
is elongated, i.e., Hsac = 1 for λ ≥ 1 and Hsac = 0 for λ < 1.

We also introduce the definition of spiral tip (core of the spiral
wave) as the point with instantaneous null velocity (see Fenton
and Karma, 1998b for details). In practice, for two-dimensional
domains, we choose an isopotential line of constant membrane
voltage, u(RI , t) = uiso, where RI = xtipXI + ytipYI represents
the position vector in the reference undeformed configuration
identifying the boundary between depolarized and repolarized

regions. Accordingly, the spiral tip can be defined as the point
in space where the excitation front meets the repolarization
waveback of the action potential, conforming with the operative
definition:

u(RI , t)− uiso =
∂u(RI , t)

∂t
≡ 0 . (5)

We numerically identify the tip coordinates (xtip, ytip) by
considering uiso = 0.5 with tolerance of 10−4.

2.2. Numerical Approximation
The electromechanical problem is rewritten in the undeformed
configuration and subsequently computationally solved via a
finite element method. Even if the model originates as an
extension of our contribution in Cherubini et al. (2017), the
numerical method employed here is simpler, as we do not solve
for stresses explicitly but rather postprocess them from the
computed discrete displacements. The overall numerical scheme
for active stress electromechanics with SAC is therefore not
precisely novel, but we will still provide a few details for sake
of completeness of the presentation and future reproducibility
of results. Further details could be found in e.g., Ruiz-Baier
(2015). We discretize displacements with vectorial piecewise
quadratic and continuous polynomials, and the pressure field
using piecewise linear and discontinuous elements. All remaining
unknowns (associated to the electrophysiology and to the active
tension) are approximated using piecewise linear and continuous
elements. Let us then consider a regular, quasi-uniform partition

Th of �(0) into triangles T of diameter hT , where h =

max{hT : T ∈ Th} is the meshsize. The finite element spaces
mentioned above are defined as (see e.g., Quarteroni and Valli,
1994)

Hh := {ψ ∈ H1(�(0)) :ψ |T ∈ [P2(T)]
2 ∀T ∈ Th, and

ψ = 0 on ŴD(0)},

Qh := {q ∈ L2(�(0)) : q|T ∈ P1(T) ∀T ∈ Th},

Wh := {ψ ∈ H1(�(0)) :ψ |T ∈ P1(T) ∀T ∈ Th},

for the case of clamped boundaries at ŴD(0).
Let us also construct an equispaced partition of the time

domain 0 = t0 < t1 = 1t < · · · < tM =

tmax. The coupled problem is solved sequentially between the
mechanical and electrochemical blocks. A description of the
needed computations at each time step tn is as follows:
Step 1: From the known values un

h
, vn

h
,wn

h
,Tn

a,h
,Dn

h
, λn

h
, find

un+1
h

, vn+1
h

,wn+1
h

,Tn+1
a,h

such that

∫

�(0)

un+1
h

1t
ψu
h +

∫

�(0)
Dn
h∇un+1

h
· ∇ψu

h

=

∫

�(0)

[

un
h

1t
+ Iion(u

n
h, v

n
h ,w

n
h)+ Isac(λ

n
h, u

n
h)+ Iext

]

ψu
h ,

1

1t

∫

�(0)
vn+1
h

ψv
h =

∫

�(0)

[

1

1t
vnh + fv(u

n
h, v

n
h)

]

ψv
h ,
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1

1t

∫

�(0)
wn+1
h

ψw
h =

∫

�(0)

[

1

1t
wn
h + fw(u

n
h,w

n
h)

]

ψw
h ,

1

1t

∫

�(0)
Tn+1
a,h

ψ
Ta
h

=

∫

�(0)

[

1

1t
Tn
a,h + fTa (u

n
h,T

n
a,h)

]

ψ
Ta
h
,

for all (ψu
h
,ψv

h
,ψw

h
,ψ

Ta
h
) ∈ [Vh]

4. This scheme for the
electric/activation system is given in a first-order semi-implicit
form: the nonlinear reaction terms and the coupling stress-
assisted diffusion are taken explicitly, while the linear part of
diffusion is advanced implicitly. Here

Dn
h = D0C

−1(ϕn
h)+

D1

J(ϕn
h
)
S(ϕn

h)+
D1

J(ϕn
h
)2
S(ϕn

h)
2,

λnh =
√

C11(ϕ
n
h
),

are the explicit approximation of the stress-assisted diffusivity
and of the stretch in the fiber direction, all in the reference
configuration.
Step 2: Given the activation value Tn+1

a,h
computed in Step 1 of

this iteration, solve the nonlinear elasticity equations

∫

�(0)
F(ϕn+1

h
)S(ϕn+1

h
, pn+1

h
,Tn+1

a,h
) :∇ψh = 0 ∀ψh ∈ Hh,

∫

�(0)
qh[J(ϕ

n+1
h

)− 1] = 0 ∀qh ∈ Qh,

where

S = 2[c1 + c2tr (C(ϕ
n+1
h

))]I− 2c2C(ϕ
n+1
h

)

− pn+1
h

J(ϕn+1
h

)C−1(ϕn+1
h

)+ Tn+1
a,h

C−1(ϕn+1
h

),

is the second Piola-Kirchhoff stress tensor.
Step 3: The solution of the problem in Step 2 uses a Newton-
Raphsonmethodwhose iterations are terminated once the energy
residual drops below the relative tolerance of 10−6. The solution
to each linear tangent problem is conducted with the BiCGSTAB
method preconditioned with an incomplete LU(0) factorization.
The iterations of the Krylov solver are terminated after reaching
the absolute tolerance 10−5. The residual computation for the
mechanical problem also contains the terms arising from time-
dependent displacement or traction boundary conditions, which
also need to be assigned at each timestep. For instance, in an
uniaxial test (denoted dynamic displacement in the examples
below), the left segment of the boundary is clamped (zero
displacements are imposed), the bottom and top edges are subject
to zero normal stress, and the right edge is pulled according to the

displacement ϕ̃ϕϕ(t) =
[

0.2L sin2(π/400 t), 0
]T
.

All tests are conducted using a two-dimensional slab of
dimensions L × L = 6.2 × 6.2 cm2, which is the same
configuration used to produce the dynamics analyzed in Fenton
and Karma (1998b). The computational domain is discretized
with a structured triangular mesh of 10,000 elements. After
a mesh convergence test involving conduction velocities and
reproducing the expected values for planar excitation waves
reported in Fenton and Karma (1998b), we proceeded to fix the

temporal and spatial resolutions to 1t = 0.1ms, h = 0.062 cm,
respectively. A representative example of the mesh is provided
in Figure 4, plotted in the deformed configuration under both
traction and displacement boundary conditions and highlighting
the spiral wave resolution. All numerical tests were carried out
using the open-source finite element library FEniCS (Alnæs et al.,
2015).

3. RESULTS

In the following, we adopt a parametric setup fitted for the
modified Beeler-Reuter model (Equation 2), while selectively
changing MEF parameters (D1,Gs). This choice provides a
reference, unloaded, model configuration with constant CV of
0.42 m/s and a circular meandering for a free spiral on a
homogeneous and isotropic domain. Such values deviate as the
MEF coupling is activated.

3.1. Conduction Velocity Analysis
We start analyzing the parameter space associated to the two
MEF contributions in our model. That is, the stress-assisted
coefficients D1,D2 and the SAC amplitude Gs. The study will be
restricted to a static homogeneous stretched state (e.g., a uniaxial
Dirichlet boundary condition ϕ = [0.2L, 0]T set on the right edge
of the domain). All remaining material and electrophysiology
parameters will be kept constant, except that we fix the relative
influence of the nonlinear contribution in the stress-assisted
diffusion, by settingD2 to be one order of magnitude smaller than
D1. This configuration will highlight MEF effects in a minimal,
but still comprehensive manner.

Figure 5 portrays the conduction velocity obtained for all
combinations of (D1,Gs) on the parameter space. The quantity
is measured as the wave-front velocity of a planar excitation wave
along its propagation. The plot illustrates the variability of the
recorded CV amplitude (in the range 0.25–0.5 m/s) according to
the MEF coupling intensity variation and to histogram measures
in Figure 2. In particular, starting from a physiological baseline
of 0.42 m/s, when neither SAC nor SAD is present (D1 = 0,Gs =

0), we observe a net increase of CV for (D1 = 0,Gs > 0) while
we recover CV decrements for (D1 < 0,Gs = 0). This specific

FIGURE 4 | Example of structured mesh employed in the computational

results. The grid is displayed on the deformed configuration when the domain

is subject to traction (arrows) and fixed displacement (lines) boundary

conditions, and a zoom exemplifies the mesh resolution for a rather coarse

spiral front.
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aspect reproduces what is expected from experimental evidence,
i.e., MEF decreases the CV of the excitation wave (Ravelli, 2003).

Besides, for higher values of Gs, we obtain two unexpected
results. First, for Gs > 0.15 we observe a decrement of CV for
different values of D1. Second, for the particular combination
(D1 < −10−4,Gs > 0.15) the wave disappears from the
domain or annihilates due to excessive activation (see e.g., side
panels in Figure 5 or the top row in Figure 8). Consequently,
we are not able to measure any propagation (which reflects
in the combinations with × of the figure). This last result
is somehow counterintuitive since, as evidenced by Figure 1,
we experimentally experience a complete depolarization of the
tissue with AP propagation, in the case of fixed stretch. To
support this point, in Figure 6 we provide a representative
sequence of point-wise activations delivered on our simplified

2D domain and mimicking the experimental protocol conducted
in Figure 1 for a selected parameter choice, i.e., (D1,Gs) =

(−0.75 · 10−4, 0). In this case, the AP excitation wave propagates
differently according to the applied stretch state, both horizontal
and vertical displacement and traction. In addition, the computed
CVs change similarly to what observed in Figure 2. We remark
that such a comparison with experimental observations is purely
qualitative and does not represent a definitive validation of the
model.

3.2. S1-S2 Excitation Protocol
We further investigate the strength of MEF coupling effects.
In particular, we want to determine which specific contribution
(stretch-activated currents or stress-assisted diffusion) exhibits
a better match against experimental evidence, and for this we

FIGURE 5 | MEF parameter space associated to the conduction velocity measured on the propagating front of a planar excitation wave (stimulation on the left edge

and propagation toward the right boundary) elicited on a static uniaxially stretched domain (CV in [m/s]). Four selected combinations of MEF parameters (A,B,C,D, in

Table 3) are highlighted together with two additional cases in which CV was not recorded. On the right, three consecutive time frames of the activation are selected.

FIGURE 6 | Point-wise activation frame for five different static boundary conditions qualitatively reproducing ventricle wedge preparation measurements considering

the parameter combination (D1,Gs) = (−0.75 · 10−4, 0): (A) free edges, (B) horizontal displacement, (C) vertical displacement, (D) horizontal traction, (E) vertical

traction. Color code refers to the normalized action potential.
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assess changes in the S1-S2 stimulation protocol. In practice,
in order to induce a spiral wave on an excitable tissue, one
typically generates a planar electrical excitation (S1), followed by
a second broken stimulus (S2) during the repolarization phase of
the S1 wave, the so called vulnerable window (Karma, 2013). In

TABLE 3 | Parameter calibration associated to the S1-S2 protocol.

D1 Gs CV [m/s] tmin
S2

− tmax
S2

[ms]

A: 0 0 0.45 225–240

B: −0.75 · 10−4 0 0.36 243–255

C: 0 0.125 0.52 133–147

D: −0.75 · 10−4 0.125 0.42 143–157

Combination of MEF parameters (D1,Gs ), corresponding CV, minimum, tmin
S2

, and

maximum, tmax
S2

, stimulation time required for spiral wave onset (vulnerable window).

our case, we selected a reduced set of MEF parameters (D1,Gs)
indicated in Table 3 as A,B,C,D. These values are motivated
by the results from Figure 5. In particular, we select only the
parameter combinations that produce either a unique decrement
or increment of CV.

Figure 7 shows the different dynamics obtained via the S1-
S2 protocol for the four different sets of MEF parameters.
The first column is set at 100ms from the S1 stimulus for all
the combinations, while the remaining frames are selected to
highlight the elicited behavior. As a result, we observe that the
deformation state of the tissue influences the overall dynamics
differently. The first column highlights the variability in the AP
wavelength, representing the spatial extension of the activation
wave, which is due to the different repolarization states of the
tissue induced by stress-assisted diffusion and stretch-activated
currents. In particular, the AP wavelength varies as > 6.2 cm
for case A, = 6.2 cm for case B, and < 2 cm for cases C, D.

FIGURE 7 | S1-S2 stimulation protocol applied on a static uniaxial stretched configuration for different combinations of MEF parameters (D1,Gs) as provided in

Table 3. The color code refers to normalized dimensionless membrane potential, u, (blue-red mapped to [0–1]). Selected time frames are provided in the subpanels.
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In fact, when the Gs contribution is present, the excitation wave
is much reduced with respect to the profiles generated with the
electrophysiological three-variable model (2) and fine-tuned on
experimental data. Such an effect is not present when Gs = 0.

Secondly, cases A and B (that is, where only D1 is activated)
provide a similar behavior for spiral onset and case B shows
the expected reduction in CV. Contrariwise, cases C and D
(where also the contribution of Gs is present) induce much more
complex dynamics, not expected in an isotropic medium. In
particular, case C leads to a wave break and multiple spirals
generation at the S2 stimulus that eventually collide and result
in a single spiral wave. On the other hand, case D shows a more
stable behavior generated by the presence of D1.

In addition, Table 3 also provides the minimum and
maximum delay for the S2 stimulation (vulnerable window)
allowing to induce a spiral wave in the uniaxially stretched tissue.
It is evident that the presence of SAC reduces the minimum S2
stimulation time, tmin

S2
, by about 100ms with respect to the other

cases and slightly increase the overall time span of the vulnerable
window. Such a variation is motivated on the additional reaction
current induced by the presence of Isac(λ, u) everywhere in the
medium, but it is not expected from the experimental isochrones
provided in Figure 1.

To further corroborate this analysis, we provide in the top
panels of Figure 8 an additional sequence referring to the
combination (D1,Gs) = (−1.5 · 10−4, 0.25) in the case with
static displacement boundary conditions, which falls in the range
where no CV wave was measured. As anticipated, an excessive
contribution due to SAC elicits extra activations where the stretch
is maximum, i.e., at the corners of the domain. This particular
behavior is not obtained when the stress-assisted contributionD1

is very high. Next, the bottom panels of Figure 8 show results

using the combination (D1,Gs) = (−0.75 · 10−4, 0.125), which
allows the quantification of CV but can eventually lead to spiral
breakup and non-sustainability of the arrhythmic patterns due
to the mechanical state of the tissue (corresponding to the case
of dynamic traction, described below). This is a representative
example of the key importance of boundary conditions and how
MEF effects could be effectively translated into clinical studies.

3.3. Spiral Drift and Effects due to
Boundary Conditions
Finally, we turn to the analysis of meandering for the spiral tip
for long run simulations (4 s of physical time) comparing the
four selected sets of parameters A,B,C,D in combination with
static/dynamic–displacement/traction boundary conditions. In
particular, we initiate the spiral wave via the S1-S2 stimulation
protocol as discussed in the previous section, in absence of any
mechanical loading such to start from the same initial conditions
for each selected case. After spiral onset and stabilization
(namely, for t > t2 = 250ms), we apply the following four
different loadings:

• Static displacement: uniaxial displacement ϕ̃ϕϕ = [0.1L, 0]T

applied on the right boundary while keeping the left one
clamped (Figure 9A).

• Dynamic displacement: uniaxial time-dependent

displacement ϕ̃ϕϕ(t) =
[

0.1L sin2(π/400 t), 0
]T

applied on
the right boundary while keeping the left one clamped
(Figure 9B).

• Static traction: uniaxial sigmoidal time-dependent force
t̃i(t) = tmax

[

1.0− exp(−(t − t2)/5)
]

applied on the left
and right boundaries while keeping the bottom side clamped
(Figure 9C).

FIGURE 8 | Example of different propagation patterns according to different mechanical boundary conditions and parameter space. First row shows the uniaxial static

displacement configuration for which the selected parameters induce additional activations from the corners of the domain due to the excessive level of SAC (Gs).

Second row shows the dynamic traction configuration for which the initiated spiral wave goes through breakup due to the effect of mechanical loading.

Frontiers in Physiology | www.frontiersin.org December 2018 | Volume 9 | Article 171416

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Loppini et al. Competing Mechanisms in Cardiac Electromechanics

• Dynamic traction: uniaxial time-dependent force t̃i(t) =

tmax sin
2(π/400 t) applied on the left and right boundaries

while keeping the bottom side clamped (Figure 9D).

For each mechanical loading, panels in Figure 9 show the

trajectories of the spiral tip for the four MEF parameters

combinations. Two important aspects are worthy of
attention.

First, for each combination of the mechanical loading, the
presence of the stress-assisted conductivity D1 tends to stabilize
the meandering (see black and green traces). This behavior is
particularly evident in Figure 9C where the combination D1 =

−0.75 · 10−4,Gs = 0 results into a localized core, while the
case D1 = 0,Gs = 0 presents a circular, but slightly drifting
core. Consequently, local stress-based heterogeneities appear
in the medium when D1 is different from zero, leading to

FIGURE 9 | Tip trajectories for four combinations of MEF parameters (D1,Gs) (see Table 3), applying static/dynamic–displacement/traction boundary conditions as

indicated in the corresponding inset. Inset color code refers to the magnitude of the displacement field. (A) The last second of simulation is shown for the four cases

with localized cores. (B) The last 3 s of simulations are shown highlighting the differences of the meandering. (C) Different times are shown for the four cases since for

Gs > 0 the spirals exit the domain soon after initiation. (D) The last 3 s are shown for the case Gs > 0 highlighting the different meandering obtained with respect to

Gs = 0. Minor discontinuities are due to the frame resolution for post processing analysis and are not linked to the accuracy of the numerical solution.
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pinning-like phenomena also observed in Cherry and Fenton
(2008), Cherubini et al. (2012), Jiménez and Steinbock (2012),
and Liu et al. (2013). Moreover, these conditions are associated
with an ellipsoidal shape of the core underlying the effective
anisotropy induced by the stress-assisted coupling. All these
observations agree with the conclusions from the extended
analysis conducted on the chosen AP model in the original work
from Fenton and Karma (1998b).

Secondly, when also SAC is present, the spiral meandering is
unpredictable and strongly dependent on the applied boundary
conditions (see blue and red traces). In this scenario, it

is interesting to note that static loading induces a simple
meandering which eventually pushes the spiral wave out from
the domain (see Figure 9C), whereas dynamic conditions dictate
a chaotic behavior that makes the spiral either to explore
the whole domain, or to exit it. These patterns seem to be
extreme conditions of hyper-excitability not expected in a two-
dimensional isotropic medium (Fenton and Karma, 1998a;
Fenton et al., 2002).

Finally, we highlight the symmetry of the observed behavior
according to the clockwise or counterclockwise rotation of the
spiral. This particular analysis is provided in Figure 10 and

FIGURE 10 | (A) Clockwise (blue) and counterclockwise (red) tip trajectories obtained in a dynamic uniaxially stretched case with MEF parameters

D1 = 0,Gs = 0.125 and initiated via the S1-S2 stimulation protocol. (B) Counterclockwise spiral initiation from top (red) or bottom (blue) boundary. Side panels show

progressive spiral frames for the two cases.
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further links the excitation dynamics to the mechanical features.
The different traces refer to the spiral core meandering observed
for a dynamic uniaxially stretched case with MEF parameters
D1 = 0,Gs = 0.125 and initiated via the S1-S2 stimulation
protocol: case (a) compares a clockwise and counterclockwise
spiral propagation; case (b) shows a counterclockwise spiral
core initiated from the top (red) and bottom (blue) case.
Corresponding sequences are also shown as side panels. This
result is limited to the simplified nature of the domain adopted,
i.e., 2D isotropic. A more realistic computational domain,
embedding fiber directionality and tissue thickness, would show
more involved dynamics in a complex spatiotemporal and
clinical relevant perspective.

4. CONCLUSION

We have advanced a minimal model for the electromechanics
of cardiac tissue, where the mechano-electrical feedback is
incorporated through two competing mechanisms: the stretch-
activated currents commonly found in the literature, and the
stress-assisted diffusion (or stress-assisted conductivity) recently
proposed by Cherubini et al. (2017). Both the electrophysiology
and the mechanical response adopt a phenomenological
simplified description, but a preliminary validation is
provided through a set of numerical simulations that agree
qualitatively with a set of experimental data for pig right
ventricle.

The implications of the intensity and degree of nonlinearity
assumed for the stress-assisted diffusion effect are studied
from the viewpoint of changes in the conduction velocity
and the dynamics of spiral waves in simplified 2D domains.
Multiple electrical stimulations protocols and non-trivial
mechanical loadings have been investigated highlighting the
strong coupling due to the different MEF contributions. The
analysis supports the hypothesis that the simplistic formulation
adopted for stretch-activated currents seems to deviate from
the experimental evidence, in line with recent contributions
addressing the coupled modeling of SACs and stretch-induced
myofilament calcium release at the myocyte level (Timmermann
et al., 2017). On the other hand, in a homogenized
setting, the stress-assisted diffusion formulation produces
a series of interesting phenomena that qualitatively match
heterogeneities and anisotropies observed during mechanical
stretching of pig right ventricle via fluorescence optical
mapping.

Limitations of the present work are partially linked to the
phenomenological approach adopted to describe the complex
multiscalemechanisms intrinsic in the cardiac tissue and partially
due to the simplified computational domain. In this regards,
we aim at investigating more reliable stretch-activated current
formulations leading to alternans behaviors (Galice et al., 2016)
within a multiscale mechanobiology perspective (Nava et al.,
2016; Stålhand et al., 2016; Cyron and Humphrey, 2017) and
tacking into account the intracellular calcium cycling influenced
by mechanical stretch, because all these effects have been
proposed as concurring mechanisms of arrhythmogenesis within

the heart. From the mechanical point of view, we mention as
main limitation the adoption of a simplified isotropic hyperelastic
material model which can be generalized to more complex and
reliable formulations. This will include, for example, active strain
anisotropies, muscular and collagen fiber distributions in an
orthotropic mechanical framework that the authors have been
extensively developing during the last decade (Cherubini et al.,
2008; Nobile et al., 2012; Gizzi et al., 2015, 2016, 2018; Pandolfi
et al., 2016). Such a generalization will maintain the nature of
the present theoretical framework in terms of MEF competing
effects. In this line, we also aim to generalize our theoretical
and computational approach toward intrinsic multiscale and
multiphysics mechano-transduction problems (Weinberg et al.,
2017; Lenarda et al., 2018), e.g., the uterine smooth muscle
activity (Young, 2016; Yochum et al., 2017) or the intestine
biomechanics activity (Pandolfi et al., 2017; Brandstaeter et al.,
2018) by implying the usage of network approaches (Giuliani
et al., 2014; Robson et al., 2018) and data assimilation
procedures (Barone et al., 2017). In addition, the investigation
of the complex spatiotemporal dynamics, chaos control and
multiphysics couplings in excitable systems (see e.g., Hörning
et al., 2017; Christoph et al., 2018) can be emphasized within
the proposed electromechanical framework by using realistic
three-dimensional cardiac structures (Lafortune et al., 2012).
We also mention implications of the proposed models in the
mathematical study of general stress-assisted diffusion problems,
as recently carried out in Gatica et al. (2018). Finally, we
hope that the present contribution may open new experimental
studies to translate the complex MEF phenomena into the
clinical practice (Meijborg et al., 2017; Orini et al., 2017)
identifying novel risk indices for cardiac arrhythmias (Gizzi et al.,
2017).
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The field of computational cardiology has steadily progressed toward reliable and

accurate simulations of the heart, showing great potential in clinical applications such

as the optimization of cardiac interventions and the study of pro-arrhythmic effects

of drugs in humans, among others. However, the computational effort demanded by

in-silico studies of the heart remains challenging, highlighting the need of novel numerical

methods that can improve the efficiency of simulations while targeting an acceptable

accuracy. In this work, we propose a semi-implicit non-conforming finite-element scheme

(SINCFES) suitable for cardiac electrophysiology simulations. The accuracy and efficiency

of the proposed scheme are assessed by means of numerical simulations of the electrical

excitation and propagation in regular and biventricular geometries. We show that the

SINCFES allows for coarse-mesh simulations that reduce the computation time when

compared to fine-mesh models while delivering wavefront shapes and conduction

velocities that are more accurate than those predicted by traditional finite-element

formulations based on the same coarse mesh, thus improving the accuracy-efficiency

trade-off of cardiac simulations.

Keywords: non-conforming finite elements, computational cardiology, cardiac electrophysiology, conduction

velocity, nonlinear finite elements

1. INTRODUCTION

Computer simulations of the electrical activity of the heart have increasingly gained attention
in the medical community, as they have steadily shown potential in the study of cardiac
diseases and in the design of novel cardiac therapies. Current models of the human heart are
able to represent the complex three-dimensional anatomical structure of the heart chambers,
incorporating key functional features such as the Purkinje network and the cardiomyocyte
orientation (Vadakkumpadan et al., 2009). Such advanced representation of the heart has enabled
novel in-silico studies of undesired pro-arrhythmic effects of drugs in patients (Sahli Costabal
et al., 2018), potentially reducing the number of subjects needed in a clinical trial by aiding the
experiment design. Computational models of the heart have also shown promise in assisting the
design of effective therapies for terminating atrial fibrillation (Trayanova et al., 2018). While these
examples can only confirm the tremendous relevance of computational models in advancing the
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field of cardiology, they share the fundamental challenge of
being highly demanding in terms of wall-clock time needed in
computer simulations.

Mathematical models of the heart require the computer
implementation of spatio-temporal discretization techniques in
order to obtain a sequence of numerical representations of
the physiological fields under study. Two fundamental aspects
directly responsible for the computation time (CT) in a heart
simulation are the ionic model used to account for subcellular
electrochemical mechanisms, and the level of spatio-temporal
discretization in terms of time-step size and mesh size (Sundnes
et al., 2006). The choice of the mesh size typically faces a well-
known trade-off problem of accuracy vs. efficiency, as decreasing
the mesh size in a simulation results in more accurate numerical
approximations, at the cost of increasing the number of degrees
of freedom (DOFs), which drives the CT. Indeed, current
simulations of the heart typically employ mesh sizes in the range
of tens to hundreds of micrometers for domains with lengths in
the order of centimeters, which ultimately translates into large
systems of equations with several millions of DOFs that need to
be solved at each time step. Such high dimensionality renders the
solution of heart simulations extremely challenging for personal
computers, and calls for improving their implementation in high-
performance computing (HPC) platforms (Niederer et al., 2011a;
Vazquez et al., 2011).

In the particular case of cardiac electrophysiology simulations,
a common criterion to select the mesh size is the ability of
the numerical simulation to recover an accurate conduction
velocity (CV) and wavefront shape (Pathmanathan et al., 2010;
Krishnamoorthi et al., 2013; Dupraz et al., 2015). It has been
shown that both the wavefront shape and the CV suffer from
a strong dependence on the spatial discretization, which for
the case of finite-element (FE) discretization using linear basis
functions results in a significant loss of accuracy for the case
of mesh sizes > 0.1mm (Pezzuto et al., 2016). In order to
achieve larger mesh sizes, higher-order FE formulations have
been proposed, which show that FE Lagrange basis functions
of order 2 and 3 result in accurate CV for coarser meshes
(Arthurs et al., 2012; Pezzuto et al., 2016). It should be noted,
however, that higher-order FE schemes based on Lagrange
basis functions necessarily increase the total number of DOFs
in simulations when compared to linear-element formulations,
as well as they require an additional computational effort
for quadrature procedures, as higher-order basis functions
demand the use of more quadrature-point evaluations (Cantwell
et al., 2014). Recently, Hurtado and Rojas (2018) introduced
a non-conforming finite-element scheme (NCFES) for the
spatial discretization of the monodomain equation of cardiac
electrophysiology that allows for the use of coarsemeshes without
significant loss of accuracy measured in terms of CV and
wavefront shape. More specifically, hexahedral trilinear elements
(Q1) were enhanced with non-conforming basis functions
of degree 2 to create a non-conforming element (Q1NC)
that is capable of representing a second-order polynomial
within the element domain, a concept widely employed in
the context of solid mechanics FE simulations (Wilson et al.,
1973; Taylor et al., 1976). Further, they showed that the DOFs

associated to the non-conforming basis functions can be solved
at the element level, and therefore the number of global
DOFs of the Q1NC scheme equals that of a standard Q1
FE scheme. As a result, Q1NC simulations delivered a CV
and wavefront shape similar to that of second-order Lagrange
formulations (Q2) at the computational cost in the order of a Q1
formulation.

During the development of the NCFES for cardiac
electrophysiology, a fully-implicit (FI) backward-Euler time-
stepping method was considered (Hurtado and Rojas, 2018).
While FI schemes have important advantages in delivering a
larger time-step stability region in cardiac simulations (Ying
et al., 2008; Hurtado and Henao, 2014), they require the solution
of a large system of non-linear equations at each time step that
can be very costly in computational terms, and may not be well-
suited to parallel-computing platforms when compared to other
numerical schemes. To improve the computational efficiency,
the semi-implicit integration method has been proposed in
the literature for solving the semi-discrete equations resulting
from standard FE discretizations, showing a relevant decrease
in the CT of cardiac simulations, as well as being amenable to
HPC platforms (Whiteley, 2006; Pathmanathan et al., 2010).
Consequently, the scientific question that motivates this work
is: Can we further improve the efficiency-accuracy trade-off in
cardiac simulations by combining non-conforming FE spatial
discretizations with semi-implicit time-integration schemes? To
answer such question, in the following we develop the numerical
framework and present an algorithm for the implementation
of a semi-implicit non-conforming FE scheme to solve the
monodomain electrophysiology equations, and investigate the
numerical consequences and potential contributions to cardiac
simulations.

2. METHODS

2.1. Monodomain Model of Cardiac
Electrophysiology
Let � ∈ R

3 be the heart domain where electrical impulses travel
during the time interval [0,T], and Vm :� × [0,T] → R be the
transmembrane potential. A local statement of current balance
yields the monodomain equation (Pullan et al., 2005)

Am

(

Cm
∂Vm

∂t
+ Iion(Vm, r)

)

−div(σ∇Vm) = 0, in �×(0,T],

(1)
where Am,Cm are the surface-to-volume ratio and membrane
capacitance, respectively, σ is the conductivity tensor, Iion is the
ionic current depending on the transmembrane potential Vm,
and r :� × (0,T] → R

m is a vector field of state variables that
include gating variables and ion concentrations. For convenience,
we consider the normalized transmembrane potential field

φ(x, t) =
Vm(x, t)− Vr

Vp − Vr
,

where Vp and Vr are the peak and resting voltages, respectively.
Based on this normalization, we obtain the non-dimensional
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monodomain equation,

∂φ

∂t
− div(D∇φ)− f (φ, r) = 0 in � × (0,T], (2)

where D = 1
AmCm

σ is the normalized conductivity tensor, and

f (φ, r) = −
Iion(Vm(φ),r)
Cm(Vp−Vr)

is the normalized ionic current. The time

evolution of state variables is governed by kinetic equations of the
form

∂r

∂t
= g(φ, r) in � × (0,T]. (3)

The expressions for f (φ, r) and g(φ, r) will depend on the choice
of ionic model representing the transmembrane ionic current in
a single cell. Equations (2, 3) are complemented with Dirichlet
and Neumann boundary conditions,

φ = φ̄, on ∂�φ × (0,T], (4)

q · n = q̄, on ∂�q × (0,T], (5)

respectively, as well as initial conditions

φ(x, 0) = φ0(x), x ∈ �,

r(x, 0) = r0(x), x ∈ �.

To state the weak form of the cardiac electrophysiology problem,
we consider trial spaces Sφ ,Sr and test spaces Vφ ,Vr defined as

S
φ = {φ ∈ L2((0,T];H1(�,R)) : φ = φ̄ on ∂�φ × (0,T]} (6)

S
r = {r ∈ L2((0,T]; L2(�,Rm))} (7)

V
φ = {ν ∈ H1(�,R) : ν = 0 on ∂�φ} (8)

V
r = {η ∈ L2(�,Rm)} (9)

Multiplying (2) and (3) by appropriate test functions, integrating
over � and applying the divergence theorem yields the weak
equations, and the statement of the weak formulation reads: ∀ t ∈
(0,T], find (φ, r) ∈ Sφ × Sr such that

Gφ[(φ, r), (ν, η)] :=

∫

�

ν
∂φ

∂t
dx+

∫

�

∇ν ·D∇φ dx

−

∫

�

νf (φ, r) dx+

∫

∂�q

νq̄ ds

= 0, ∀ ν ∈ V
φ (10)

Gr[(φ, r), (ν, η)] :=

∫

�

η

{

∂r

∂t
− g(φ, r)

}

dx

= 0, ∀ η ∈ V
r (11)

2.2. Spatial Discretization Using a
Non-conforming Finite-Element Scheme
A Galerkin finite-element scheme to solve the weak formulation
of the monodomain problem can be stated as follows. Let �h =

∪
Nel
e=1�e be a domain discretization where Nel is the number of

elements, and all elements comply with the condition�i∩�j = ∅

for i 6= j. We construct finite-dimensional subspaces S
φ

h
⊂ Sφ ,

S
r
h
⊂ Sr and V

φ

h
⊂ Vφ , Vr

h
⊂ Vr , to solve the following FE

problem (Göktepe and Kuhl, 2009; Hurtado and Kuhl, 2014):

∀ t ∈ (0,T], find (φh, rh) ∈ S
φ

h
× S

r
h
such that

Gφ[(φh, rh), (νh, ηh)] = 0, ∀νh ∈ V
φ

h

Gr[(φh, rh), (νh, ηh)] = 0, ∀ηh ∈ V
r .

A traditional discretization FE scheme is the hexahedral
isoparametric finite-element space,

V
φ

h
: =

{

νh ∈ C0(�h,R) : νh|�e ∈ Qk(�e), e = 1, . . . ,Nel

}

where Qk(�e) represents the space of isoparametric functions
resulting from n-tensor product of 1-D Lagrange polynomials
of order k, which are defined over the standard (isoparametric)
domain �̂ = [−1, 1]n and mapping to a hexahedral element. We

expand an element νh ∈ V
φ

h
as

νh(x) =

Ndofs
∑

A=1

NA(x)νA,

where {NA}a=1,Ndofs
are the basis functions, Ndofs is the number

of element nodes with unknown degrees of freedom, and
{νA}a=1,Ndofs

are the nodal coefficients. Using the same element
basis functions, we expand the trial functions as

φh(x, t) =

Ndofs
∑

A=1

NA(x)uA(t)+ uBC(x, t), (12)

where {uA(t)}A=1,Ndofs
correspond to the nodal values of the

transmembrane potential field, and uBC ∈ Sφ is a function
that satisfies the boundary conditions (4), i.e., uBC = φ̄ in
∂�φ × (0,T]. For simplicity, and without loss of generality, in
the following we assume that uBC = 0. To construct the elements
of Vr

h
, we write

ηh(x) =

Nel
∑

e=1

Nq
∑

q=1

Me
q(x)η

e
q, (13)

whereMe
q is a characteristic function defined by

Me
q(x) =

{

1, x ∈ �e,q

0, x /∈ �e,q
(14)

and �e,q ⊂ �e is the subdomain containing the q−quadrature

point xq, and is such that
⋃Nq

q=1 �e,q = �e and �e,q ∩ �e,q′ = ∅

whenever q 6= q′. Analogously, we expand an element rh ∈ S
r
h
as

rh(x, t) =

Nel
∑

e=1

Nq
∑

q=1

Me
q(x)r

e
q(t), (15)

where req :(0,T] → R
m represents the time evolution of the state

variables at the q-quadrature point.
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In this work, we consider a non-conforming spatial-
discretization scheme for the monodomain equations (Hurtado
and Rojas, 2018). To this end, we rewrite the residuals as

Gφ[(φ, r), (ν, η)] =

Nel
∑

e=1

{∫

�e

ν
∂φ

∂t
dx+

∫

�e

∇ν ·D∇φ dx

−

∫

�e

νf (φ, r) dx+

∫

∂�e,q

νq̄ ds

}

, (16)

Gr[(φ, r), (ν, η)] =

Nel
∑

e=1

{∫

�e

η

{

∂r

∂t
− g(φ, r)

}

dx

}

, (17)

and note that in such form, integrability of the trial and test
functions and their weak derivatives is required only at the

element level. We enhance the polynomial basis of V
φ

h
at the

element level by adding polynomial terms not included in
Qk(�e). To this end, we consider the non-conforming space

E
φ

h
: =

{

βh
:βh|�e ∈ Pk+m(�e)\Qk(�e)

}

wherem ∈ Z+ and Pk+m(�e) is the space of polynomial functions
of degree k + m defined on the standard domain �̂. We then
consider enhanced test functions νh which we expand as

νh(x) =

Ndofs
∑

A=1

NA(x)νA +

Nel
∑

e=1

Nnc
∑

c=1

We
c (x)β

e
c (18)

where βe
c ∈ R are coefficients, We

c are non-conforming element
basis functions, and it holds that We

c = 0, x /∈ �e. Analogously,

we enhance S
φ

h
with the time-dependent non-conforming space

F
φ

h
, and expand the enhanced trial functions as

φh(x, t) = uh(x, t)+ αh(x, t) (19)

where

uh(x, t) :=

Ndofs
∑

B=1

NB(x)uB(t) (20)

αh(x, t) :=

Nel
∑

e=1

Nnc
∑

d=1

We
d(x)α

e
d(t). (21)

and αe
d
:(0,T] → R is a time-dependent coefficient that

scales the non-conforming basis functions We
d
. Substitution of

approximations Equations (13 15, 18, and 19) into the residuals
Equations (16) and (17) yields the following semi-discrete

problem: ∀ t ∈ (0,T], find (uh,αh, rh) ∈ S
φ

h
× F

φ

h
× S

r
h
such

that
∫

�
NA{u̇

h + α̇h}dx+

∫

�
∇NA ·D∇{uh + αh}dx−

∫

�
NAf (u

h

+ αh, rh)dx+

∫

∂�q

NAq̄ ds = 0, A = 1, . . . ,Ndofs, (22)

∫

�e
We

c {u̇
h + α̇h}dx+

∫

�e
∇We

c ·D∇{uh + αh} dx

−

∫

�e
We

c f (u
h + αh, rh)dx = 0, e = 1, . . . ,Nel; c = 1, . . . ,Nnc,

(23)
∫

�e
Me

q{ṙ
h − g(uh + αh, rh)}dx = 0, e = 1, . . . ,Nel; q = 1, ...,Nq (24)

2.3. Semi-implicit Temporal Discretization
To integrate (22), (23) and (24) in time, we consider partitioning
the time interval into [0, . . . , tn, tn+1, . . . ,T], and approximate
the time-dependent coefficients �(tn) ≈ �n. For a generic time
interval [tn, tn+1] we define 1t : = tn+1 − tn. We further group
the expansion coefficients into vectors, and write

un = [un,1, . . . , un,Ndofs
]T , αe

n = [αe
n,1, . . . ,α

e
n,Nnc

]T ,

ren = [ren,1, . . . , r
e
n,Nq

]T
(25)

Following a semi-implicit (SI) time-integration approach
(Whiteley, 2006), time derivatives are replaced by the
finite-difference approximation

�̇(tn+1) ≈
�n+1 −�n

1t
. (26)

Diffusive terms in Equations (22) and (23) are evaluated at t =

tn+1 and the reaction terms are evaluated at t = tn. Evolution
Equation (24) were integrated using an explicit Forward-Euler
scheme. As a result, the incremental time update for t = tn+1

reads: Given un, {α
e
n, r

e
n}e=1,...,Nel

, find un+1, {α
e
n+1, r

e
n+1}e=1,...,Nel

such that

Ndofs
∑

B=1

{∫

�

NANB

1t
+

∫

�

∇NA ·D∇NB

}

un+1,B

+

Nel
∑

e=1

Nnc
∑

d=1

{∫

�

NAW
e
d

1t
+

∫

�

∇NA ·D∇We
d

}

αe
n+1,d

−

{∫

�

NA

1t
{uhn + αh

n} +

∫

�

NAf (u
h
n + αh

n , r
h
n)

}

= 0,

A = 1, . . . ,Ndofs, (27)

Nen
∑

b=1

{∫

�e

We
cN

e
b

1t
+

∫

�e
∇We

c ·D∇Ne
b

}

︸ ︷︷ ︸

=: Le
cb

uen+1,b

+

Nnc
∑

d=1

{∫

�e

We
cW

e
d

1t
+

∫

�e
∇We

c ·D∇We
d

}

︸ ︷︷ ︸

=:Ke
αcd

αe
n+1,d

−

{∫

�e

We
c

1t
{uhn + αh

n} +

∫

�e
We

c f (u
h
n + αh

n , r
h
n)

}

︸ ︷︷ ︸

=: peαc

= 0

e = 1, . . . ,Nel; c = 1, . . . ,Nnc (28)

∫

�e
Me

q







Nq
∑

s=1

Me
s

ren+1,s − ren,s

1t
− g(uhn + αh

n , r
h
n)







dx = 0,
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e = 1, . . . ,Nel; q = 1, ...,Nq, (29)

where Ne
b
: = NB

∣

∣

∣

�e
is the restriction of the basis function

to the local element domain, and ue
b
is the corresponding

nodal value, where lowercase letters indicate the local degree of
freedom b corresponding to its global counterpart B. At this
point, we note that Equation (28) can be written in matrix
form as

Leuen+1 + Ke
ααe

n+1 − pe(uen,α
e
n, r

e
n) = 0,

for e = 1, . . . ,Nel, from where we define the time update for the
element non-conforming coefficient vector as

α
e,∗
n+1(u

e
n+1; u

e
n,α

e
n, r

e
n) :=

{

Ke
α

}−1
peα(u

e
n,α

e
n, r

e
n)

−
{

Ke
α

}−1
Leuen+1 (30)

which is computed exclusively using element-level variables,
given the element vector uen+1. To update the gating-variable
field, we note fromEquation (14) that Equation (29) can be solved
point-wise at each quadrature point xq inside an element, and
thus is equivalent to writing

req,n+1 − req,n

1t
− g(uhn(xq)+ αh

n(xq), r
e
q,n) = 0,

e = 1, . . . ,Nel; q = 1, ...,Nq,

from which the (explicit) time update for the gating variables can
be solved at the quadrature-point level as

re,∗q,n+1(u
e
n,α

e
n, r

e
n) : = req,n + 1t g(uhn(xq)+ αh

n(xq), r
e
q,n). (31)

We now turn to residual Equation (27), and note that it can
be constructed by assembling element-level nodal contributions
defined by

Ru,ea :=

Nen
∑

b=1

{∫

�e

NaNb

1t
+

∫

�e
∇Na ·D∇Nb

}

︸ ︷︷ ︸

:=Ke
uab

uen+1,b

+

Nen
∑

b=1

{∫

�e

NaWd

1t
+

∫

�e
∇Na ·D∇Wd

}

︸ ︷︷ ︸

LeT
ad

αe
n+1,d

−

{∫

�e

Na

1t
{uhn + αh

n} +

∫

�e
Naf (u

h
n + αh

n , r
h
n)

}

︸ ︷︷ ︸

:=peua

, (32)

which can also be written in matrix form at the element level as

Ru,e = Ke
uu

e
n+1 + LeTαe

n+1 − peu(u
e
n,α

e
n, r

e
n). (33)

Substituting update Equation (30) into Equation (33), we obtain
an element residual that only depends on uen+1 that reads

Ru,e =
(

Ke
u − LeT

{

Ke
α

}−1
Le

)

︸ ︷︷ ︸

Ae

uen+1

+ LeT
{

Ke
α

}−1
peα(u

e
n,α

e
n, r

e
n)− peu(u

e
n,α

e
n, r

e
n)

︸ ︷︷ ︸

ben(u
e
n ,α

e
n ,r

e
n)

(34)

As a consequence, solving residual Equation (27) is equivalent to
solving the matrix linear system

Aun+1 + bn = 0 (35)

where A and bn are the global matrix and vector assembled from
element contributions defined in Equation (34). We note that
Equation (35) defines the time update for the global potential
vector

u∗n+1(un, {α
e
n, r

e
n}e=1,...,Nel

) : = −A−1bn (36)

We remark that matrix A does not depend on the coefficient
vectors, and therefore will take the same values for all time steps.
Thus, it can be computed on a initialization stage, inverted and
stored for later use in updating the potential vector. For the sake
of clarity, the steps for the solving the semi-implicit scheme are
summarized in Algorithm 1.

2.4. The Q1NC Element
We materialize the non-conforming scheme defined in the
previous section using incompatible-modes basis functions
(Wilson et al., 1973; Taylor et al., 1976), which enhance Q1
elements. We recall that the isoparametric basis functions for Q1
3D (solid) elements are

N̂1 =
1

8
(1− ξ1)(1− ξ2)(1− ξ3), N̂2 =

1

8
(1+ ξ1)(1− ξ2)(1− ξ3),

N̂3 =
1

8
(1+ ξ1)(1+ ξ2)(1− ξ3), N̂4 =

1

8
(1− ξ1)(1+ ξ2)(1− ξ3),

N̂5 =
1

8
(1− ξ1)(1− ξ2)(1+ ξ3), N̂6 =

1

8
(1+ ξ1)(1− ξ2)(1+ ξ3),

N̂7 =
1

8
(1+ ξ1)(1+ ξ2)(1+ ξ3), N̂8 =

1

8
(1− ξ1)(1+ ξ2)(1+ ξ3),

where (ξ1, ξ2, ξ3) ∈ �̂ : = [−1, 1]3, and

Ne
a = N̂a ◦ x̂

−1

with

x̂ =

8
∑

a=1

N̂ax
e
a,

where xea is the vector with nodal coordinates. Incompatible
modes enhance the Q1(�e) element basis by adding basis
functions {Me

c}c=1,2,3, withMe
c = M̂c ◦ x̂

−1, where

M̂1 = 1− (ξ1)
2, M̂2 = 1− (ξ2)

2, M̂3 = 1− (ξ3)
2

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 151326

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Jilberto and Hurtado SINCFES for Cardiac Electrophysiology

Algorithm 1: Solution algorithm

/* initialization */

u0 = 0

r0 = rinit
αe = 0

A = 0

for e = 1 to Nel do
Compute Ke

α , K
e
u and Le (Equations (28) and (32)) and

store
Compute Ae (Equation (34)) and assemble contribution
to A

end

Compute A−1 and store
/* time integration loop */

for n = 0 to Nsteps do

for e = 1 to Nel do
Compute be(uen,α

e
n, r

e
n) (Equation (34)) and assemble

contribution to bn
end

Update un+1 = u∗n+1(un, {α
e
n, r

e
n}e=1,...,Nel

) = −A−1bn
for e = 1 to Nel do

Update αe
n+1 = α

e,∗
n+1(u

e
n+1; u

e
n,α

e
n, r

e
n) (see Equation

30)
for q = 1 to Nq do

Update req,n+1 = re,∗q,n+1(u
e
n,α

e
n, r

e
n) (see Equation

31)
end

end

end

TABLE 1 | Element DOFs and quadrature rules employed in numerical integration

of residuals and tangents.

Element DOFs Quadrature rule

Q1 8 DOFs 2× 2× 2 = 8-point

Q1NC 8 DOFs + 3 IMs 2× 2× 2 = 8-point

Q2 27 DOFs 3× 3× 3 = 27-point

DOFs, degrees of freedom; NC, incompatible mode (internal variable).

for (ξ1, ξ2, ξ3) ∈ �̂. Table 1 details the number of DOFs
used for the 3D elements considered in this work. Integrals
have been approximated using Gaussian quadrature on the
standard domain. Table 1 reports the quadrature rules employed
in the numerical integration of Q1, Q1NC and Q2 element
implementations.

2.5. The Modified Aliev-Panfilov Model for
Transmembrane Ionic Current
All simulations considered the modified Aliev-Panfilov
model, which accounts for physiological voltage upstroke
slopes and conduction velocities (Aliev and Panfilov, 1996;
Hurtado et al., 2016), whose expressions are described below for

TABLE 2 | Parameter values for the modified Aliev-Panfilov model.

α c1 c2 µ1 µ2 b γ Vr[mV] Vp[mV]

0.05 52 8 0.1 0.3 0.25 0.002 −85 15

completeness:

f (φ, r) = c1φ(φ − α)(1− φ)− c2rφ (37)

g(φ, r) =

(

γ +
µ1r

µ2 + φ

)

(

−r − c2φ(φ − b− 1)
)

(38)

where c1, c2, α, γ , µ1, µ2 and b are constants, whose values are
included in Table 2, and are the same employed by Hurtado and
Rojas (2018). To account for a steady-state regime, initial values
of the recovery value where set to r = 0.1146.

3. RESULTS

Finite-element simulations using Q1, Q2, and Q1NC element
formulations were implemented for the FI and SI time-
integration schemes described in the previous section in an
enhanced version of FEAP (Taylor, 2014).

3.1. Plane-Wave Tests on CV and CT
A 3D cardiac rod with a total length of 25 mm was discretized
using regular hexahedral elements with a uniform element size,
with the exception of elements adjacent to the boundary where
the size was at times smaller to fit the geometry. To study the
effect of the element size, simulations were carried out with mesh
sizes ranging from h = 2mm to h = 0.0156mm. A zero-flux
boundary condition was assumed for all boundary surfaces, with
exception of the left end of the rod which was stimulated with
a normalized external current of 20mV/ms, which corresponds
to 28, 000µA/cm3, for 2ms to elicit a plane traveling wave
along the direction of the rod. A time-step size of 0.001ms
was set for all simulations, which is small when compared to
standard cardiac simulations using the selected ionic model
(Hurtado et al., 2016). Such small time-step size is chosen to
minimize the contribution of the temporal discretization error
to the overall numerical error. To compute the CV, we tracked
the voltage evolution on x1 = 18mm and x2 = 22mm
and recorded the activation time, which is defined as the time
when the φ > 0.5 for the first time at a certain point. Then,
the CV was calculated as the difference between x2 and x1
divided by the difference in the activation time. The results
for the CV for different element sizes are shown in Figure 1A.
All formulations converged to a CV = 36.9 cm/s as the mesh
size approached h = 0.0156mm. CV monotonically decreased
as mesh size was decreased for Q1 and Q2 formulations. The
computational effort of simulations in terms of CT is reported
in Figure 1B. We observe that the computational demand of
simulations monotonically increases as the mesh size decreases,
independently of the element formulation. We do observe,
however, that the FI time-integration scheme always results in
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FIGURE 1 | CV tests for plane-waves propagating on a 3D bar for FI and SI schemes on different element formulations. (A) Convergence study of CV as a function of

the mesh size h. (B) Computational effort in terms of CT as a function of h.

FIGURE 2 | Accuracy-efficiency analysis: Computation time vs. conduction-velocity error for the different spatial discretization schemes using (A) fully-implicit time

integration, and (B) semi-implicit time integration. Dashed gray line displays the Pareto frontier, which encompasses optimal cases. Suboptimal combinations are

shown in transparent color.

higher CT than the SI scheme for all element formulations
considered.

To facilitate the analysis of the accuracy-efficiency trade-off
of the different schemes studied, Figure 2 shows the CT vs. the
error in CV for the Q1, Q2, and Q1NC formulations for both
the implicit and semi-implicit time updates. Since we seek to
minimize two objective functions, namely the CT and the CV
error, the Pareto frontier, defined as the set of choices that are
Pareto-efficient, is included in each subfigure. The subset of the
Pareto-efficient cases that correspond to the Q1NC formulation
are {1.2, 1.5}[mm] and {1.0, 1.2, 1.5, 2.0}[mm] for the FI and SI
cases, respectively.

3.2. Benchmark Simulations on a Cardiac
Cuboid
We studied the behavior of the SINCFES using as a second test
case the benchmark study on a cardiac cuboid developed by

Niederer et al. (2011b), and adapted to the case of the Aliev-
Panfilov model by Hurtado et al. (2016). To this end, we consider
a cuboid domain with dimensions of 20 × 7 × 3mm with
cardiac fibers oriented in the longest axis direction. A subdomain
with dimensions 1.5 × 1.5 × 1.5mm located at one of the
corners of the cuboid was stimulated with an electrical current
density of 50, 000/cm3 for 2ms. The normalized longitudinal
and transversal conductivities were 0.0952 and 0.0126mm2/ms,
respectively. Figure 3A shows the activation map and isochrones
obtained on a plane that contains opposite corners in the
diagonal, as defined inNiederer et al. (2011b), for a fine (Baseline)
and coarse discretization using Q1 elements, and for the same
coarse discretization using Q1NC elements. We note that the
Q1NC case with mesh size h = 0.8mm resulted in an activation
map and isochrones similar to the baseline case, defined as a Q1
model with mesh size h = 0.1mm. In contrast, the activation
map delivered by the Q1 coarse-mesh case with mesh size h =

0.8mm largely differed from the baseline case, delivering a less
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FIGURE 3 | Numerical simulations on cuboid benchmark test (A) Meshes and activation maps, and (B) Activation time profile along the cuboid diagonal.

FIGURE 4 | Numerical simulations on human biventricular idealized geometries. The Q1NC model displays a propagating wave similar to the baseline case during the

ventricular activation sequence, whereas the Q1 model hastens the electrical stimulation ahead of the baseline case.

curved wave-front profile. Figure 3 displays the activation time
values along the diagonal of the cuboid for the three cases
under study. We observe that the Q1NC case closely follows
the baseline case, whereas the Q1 coarse-mesh case resulted in
shorter activation times at all locations along the diagonal. As a
reference, the CT for the Baseline (Q1 fine), Q1NC and Q1 cases
were 122, 341 , 344, and 184 s, respectively, which is equivalent to
a CT ratio of 665 : 2 : 1.

3.3. Biventricular Human Heart Simulations
To study the potential of the Q1NC-SI formulation in whole-
heart cardiac simulations, we modeled the propagation of an

action potential on an idealized human biventricular domain
stimulated at the atrio-ventricular node. The heart biventricular
geometry was generated from two truncated ellipsoids (Streeter
and Hanna, 1973), and later discretized using non-regular
hexahedral elements. For the baseline case, a size-varying mesh
with average characteristic length of 0.48mm was employed. A
coarse mesh with average element length of 1.0mm was also
considered for two additional cases with Q1 and Q1NC element
formulations, see left column of Figure 4 for a representation
of the biventricular meshes. All three cases considered the same
initial boundary conditions and time step size of 0.001ms.
The transmembrane potential distribution at different time
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FIGURE 5 | Spiral generation simulation in a 2D slab. Due to the higher CV, the Q1 case (coarse mesh) cannot capture the genesis of the spiral wave.

instants during ventricular activation is depicted in Figure 4. We
clearly observe that, as time elapses, the action-potential wave
front of the Q1NC case is very similar to the Baseline case,
whereas the Q1 case results in a wave front that propagates
faster than the other two models due to the artificially high
CV. The last column in Figure 4 shows the activation maps,
where we observe that isochrones for the Baseline and Q1NC
cases are very similar, and they both differ from the Q1 case.
Biventricular simulations were ran in a HPC cluster with 128
GB of RAM memory using 32 processors using the parallel
implementation of the code FEAP (Taylor, 2014). The CT for
the baseline, the Q1NC and the Q1 simulation were 1805, 452
and 154 min respectively, which is equivalent to a CT ratio of
18 : 3 : 1.

3.4. Spiral Wave Simulations
To assess the performance of the proposed non-conforming
scheme in the simulation of spiral waves, we considered a 50 ×

50mm cardiac domain excited by means of an S1–S2 stimulation
protocol. To this end, we first applied a surface stimulus (S1) of
12mV/(msmm2) for 2ms on the border defined by x = 0 to
create a plane wave. After 280ms, we applied a second stimulus
(S2) of 15mV/(msmm3) in the quadrant x < 25, y < 25mm for
5ms, which resulted in the formation of a spiral wave (Costabal
et al., 2017). This S1–S2 model was solved using three numerical
models: a fine mesh with element size h = 0.1mm using Q1
elements (Baseline), a coarse mesh with element size h = 1mm
using Q1 elements (Q1), and a coarse mesh with h = 1mm using

the proposed non-conforming element formulation (Q1NC). In
all cases, we considered a semi-implicit time update with time-
step size 1t = 0.005ms. Figure 5 shows the distribution of the
transmembrane potential of the three models under study for
several time instants. We note that at early times (t = 110ms)
the Q1 case displays a wave front that advanced considerably
faster than the baseline and Q1NC cases. At t = 400ms a spiral
wave formed in the Baseline and Q1NC cases, whereas for the
Q1 case a curved wave front propagated in the outward direction
but did not create a spiral. At a later instant (t = 600ms),
a spiral was steadily rotating in the Baseline and Q1NC cases,
constantly reexciting tissue, whereas in the Q1 case cardiac tissue
was found under complete rest, and no electrical activity was
observed.

4. DISCUSSION

In this work we have studied the features and advantages of a
novel SINCFES in the solution of the monodomain model of
cardiac electrophysiology. From plane-wave CV tests we note
that the FI and SI schemes yield similar results for the conduction
velocity for the time-step size employed, see Figure 1A. This
is expected, as the time-step size considered here is small
compared to standard values employed in numerical simulations
(Krishnamoorthi et al., 2013). Interestingly, we observe that in
the case of mesh sizes h < 0.6mm, the Q1, Q2, and Q1NC
element formulations delivered very similar results in terms of
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CV error. For the cases where h > 0.6mm, the CV error incurred
by the Q1 formulation grows at a much faster rate than the
Q2 and Q1NC formulations. An interesting result that deserves
further study is the convergence trend of the Q1NC formulation,
as it is not monotonically convergent in the whole range of
mesh sizes studied, and it reverts the sign of the CV error in a
bounded interval of mesh sizes. A similar convergence trend has
been reported in the literature for standard FE discretizations, in
the context of mass-lumping techniques (Pezzuto et al., 2016),
which suggest as future work a more detailed study of the effect
of NC spatial discretization schemes on the stiffness and mass
matrices that govern the dynamics of the problem. To better
analyze the accuracy-efficiency trade-off for each scheme, we
constructed CT vs CV-error plots, where the Pareto frontier
has been identified. We conclude that the SINCFES delivers
Pareto-optimal results for cases with mesh size in the range
of {1.0, 1.2, 1.5, 2.0}[mm]. For smaller mesh sizes, traditional
Q1 formulations deliver better combinations of CT and CV-
error than Q1NC and Q2. It is interesting to note that, in
general, Q2 elements are less efficient than the Q1 and Q1NC
elements from a Pareto-optimality viewpoint for the whole range
of mesh sizes studied. We also note that these conclusions are
particular to a plane-wave propagation case, where anisotropy
of conductivity and curvature of propagating wavefronts are
absent.

We further studied the performance of Q1NC elements
using a benchmark problem on a cuboid cardiac domain
(Niederer et al., 2011b). Our simulations showed that the
Q1NC formulation on a coarse mesh (h = 0.8mm) can
result in activation maps that are similar to those obtained on
fine meshes using Q1 (h = 0.1mm) , adequately capturing
the anisotropic conduction of the propagating waves, see
Figure 3A. An analysis of the activation-time profile along
the cuboid diagonal shows that the Q1NC scheme delivers
an accurate conduction velocity, which is comparable to Q1
meshes with mesh sizes that are 8 times smaller, see Figure 3B.
This result confirms the ability of Q1NC elements to capture
the propagation of electrical waves in anisotropic media with
good accuracy at significantly reduced CTs. In contrast, Q1
coarse-mesh simulations resulted in markedly higher conduction
velocity profiles, and did poorly in capturing the anisotropic
propagation of wavefronts when compared to the Q1NC
formulation.

Numerical simulations on a biventricular domain showed
that our non-conforming scheme can be effectively used in
unstructured meshes of idealized anatomical geometries of
the heart, see Figure 4. Similarly to the cardiac rod case,
a coarse mesh using Q1NC elements performs much better
than a simulation using standard Q1 elements on the same
discretization level, as it predicts more accurately the wavefront
propagation pattern, when compared to the baseline case. This
conclusion is also reached from observing the resulting activation
maps, where the spatial distribution and curved shape of
isochrones in the Q1NC and baseline are similar, whereas the
Q1 formulation delivers an isochrone distribution with lower

activation-time values. We note here that this study considered
an idealized and smooth geometrical representation of the
ventricles of the human heart, useful for numerical verification
purposes. It is important to note that such idealized domain
does not include important anatomical structures such as the
intricate endocardial surface, papillary muscles, and Purkinje
network, that are currently included in advanced heart models
(Ponnaluri et al., 2016; Sahli Costabal et al., 2016). Future
work should focus in understanding how non-conforming
formulations can handle such fine-scale anatomical details and
structures.

The performance of the SINCFES was studied in the
simulation of spiral waves. Remarkably, a very coarse mesh using
Q1NC elements is capable to correctly produce, and sustain in
time, a spiral wave, whereas a standard Q1 formulation using
the same mesh size results in no activation of cardiac tissue.
The ability of SINCFES to reproduce spiral wave formation
and dynamics is a key result of this work, as it shows
that the method is physically more accurate than standard
FE formulations for coarse discretizations. This result can
be explained by the reduced dependance of the CV on the
mesh size, and highlights the potential of the SINCFES in
the simulation of cardiac arrhythmias, the main clinical focus
of cardiac electrophysiology simulations. While spiral patterns
and dynamics obtained with the Q1NC formulation are very
similar to the baseline results, a time delay is observed for the
former, which resulted in differences in the spatial distribution
of the transmembrane voltage, see last column of Figure 5. Such
delay, which can ultimately be attributed to differences in the
local CV, has also been observed in studies employing very
high-order space-time formulations (Coudière and Turpault,
2017), confirming that state-of-the-art simulations of spirals
using standard values of mesh size and time step are also
affected by this time delay. Despite this persistent numerical
error, we believe that the focus of future studies should be
in recovering the overall dynamical features of spirals, i.e.,
spiral tip trajectories (Fenton and Karma, 1998; Gizzi et al.,
2013).

We close by noting that while whole-heart simulations
reported in the literature predominantly employ tetrahedral
discretizations, effective methods for generating patient-
specific hexahedral meshes are currently available (Lamata
et al., 2011). Further, hexahedral meshes have gained great
attention in the context of cardiac simulations, as the
numerical performance of hexahedral elements is superior
to tetrahedral elements when solving mechanics of the heart,
particularly under the assumption of incompressible and
quasi-incompressible regimes (Hadjicharalambous et al.,
2014). As a conclusion, a natural continuation of this
work is the application of non-conforming schemes in the
solution of electromechanical models of the heart (Nash and
Panfilov, 2004). One important reason for mesh-coarsening
FE models of the heart is to reduce the number of DOFs,
which in the case of electromechanical cardiac models is
much larger than in pure electrophysiological simulations,
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as displacement, fiber stretch/stress variables, and the non-
linearity of tissue constitutive models drastically increase the
dimensionality and computational effort needed to solve the
governing equations (Göktepe and Kuhl, 2010; Hurtado et al.,
2017).
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Electroanatomical mapping is currently used to provide clinicians with information about

the electrophysiological state of the heart and to guide interventions like ablation. These

maps can be used to identify ectopic triggers of an arrhythmia such as atrial fibrillation

(AF) or changes in the conduction velocity (CV) that have been associated with poor cell

to cell coupling or fibrosis. Unfortunately, many factors are known to affect CV, including

membrane excitability, pacing rate, wavefront curvature, and bath loading, making

interpretation challenging. In this work, we show how endocardial conduction velocities

are also affected by the geometrical factors of muscle thickness and wall curvature.

Using an idealized three-dimensional strand, we show that transverse conductivities

and boundary conditions can slow down or speed up signal propagation, depending

on the curvature of the muscle tissue. In fact, a planar wavefront that is parallel to

a straight line normal to the mid-surface does not remain normal to the mid-surface

in a curved domain. We further demonstrate that the conclusions drawn from the

idealized test case can be used to explain spatial changes in conduction velocities in a

patient-specific reconstruction of the left atrial posterior wall. The simulations suggest that

the widespread assumption of treating atrial muscle as a two-dimensional manifold for

electrophysiological simulations will not accurately represent the endocardial conduction

velocities in regions of the heart thicker than 0.5 mm with significant wall curvature.

Keywords: cardiac electrophysiology, bidomain model, conduction velocity, bath-loading conditions, left atrial

posterior wall, electroanatomical mapping, atrial fibrillation

1. INTRODUCTION

Atrial fibrillation (AFib) is the most common cardiac arrhythmia, and symptoms can range
from being nonexistent to severe, possibly leading to stroke, heart failure, sudden death, and
cardiovascular morbidity (January et al., 2014; Kirchhof et al., 2016). Electroanatomic mapping,
which involves acquiring extracellular signals (electrograms) at multiple locations using catheter-
based electrode, is often used in clinical procedures to identify triggers of the AF and to characterize
the electrophysiological health of the tissue. One outcome of this mapping is a display of the
pattern of the spread electrical activation obtained by identifying the local activation time from
the electrograms. These activation maps can be used to estimate the conduction velocity and
help to localize regions of slow conduction associated with cellular decoupling and fibrosis
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(King et al., 2013; Grossi et al., 2016). Several approaches can
be used to evaluate CVs from the measured electrophysiological
data, such as polynomial surface-fitting algorithms, finite-
difference techniques, and triangulation, among many
others (Cantwell et al., 2015). Because of the paucity of data
that can be acquired at high resolution in a clinical procedure,
accurate CV estimates are difficult to obtain, particularly in
regions of the heart with significant curvature. In addition,
it is well known that conduction velocity is very sensitive to
membrane excitability, tissue conductivity, fiber orientation,
wavefront shape, and even the properties of the adjoining blood,
making interpretation of CV measurements challenging at best.

To better understand the various factors affecting both
normal and abnormal conduction, computer models of the atria
have been developed (Harrild and Henriquez, 2000; Seemann
et al., 2006; Muñoz et al., 2011; McDowell et al., 2012;
Rossi and Griffith, 2017). Because of the high computational
cost required by these simulations, the atria are sometimes
simplified as a single two-dimensional manifold (Harrild and
Henriquez, 2000; Seemann et al., 2006; Muñoz et al., 2011;
McDowell et al., 2012; Rossi and Griffith, 2017). However, this
surface representation of the atria cannot be used to describe
the endo-epicardial electrical dissociation taking place during
AFib (Gharaviri et al., 2012). To overcome this limitation, bilayer
models have been proposed (Gharaviri et al., 2012; Labarthe
et al., 2014; Coudière et al., 2017). Although these models
have a reduced computational cost with respect to fully three-
dimensional simulations, they fail to capture the loading of
the muscle thickness and adjoining blood layer. The complete
effects of the geometric factors on conduction can only be
determined in a volumetric model of the atria. The goal of this
work is to investigate how wall thickness and curvature affect
conduction velocity and whether these geometric factors need to
be considered in modeling relatively thin tissue such as the atria.
In addition, we investigate how the thickness of the adjoining
blood layer affects the CV and the resulting extracellular signals.
Simulations are performed on idealized geometries and a patient
specific geometry of the posterior wall of the atria. The results
show that variations of more than 10% in CV can derive from
the atrial geometry even without considering changes in the
transmural properties.

The blood is the natural volume conductor that bathes the
cardiac wall (Trayanova, 1997). Since endocardial bipolar signals
measured by electroanatomical mapping systems are influenced
by the presence of blood, our computational model is augmented
with a perfusing endocardial bath (Henriquez et al., 1996). The
role of muscle thickness on the CV in the presence of a bath
has been studied only on a thick strand of muscle without
curvature (Roth, 1991). Although the role of the perfusing bath
has been extensively studied (Roth, 1991, 1996; Henriquez et al.,
1996; Trayanova, 1997; Srinivasan and Roth, 2004; Vigmond
et al., 2009; Bishop et al., 2011; Colli-Franzone et al., 2011),
and methods have been proposed to reduce the computational
demands of these simulations (Bishop and Plank, 2011), the
minimum depth of the bath that adequately accounts for the
bath-loading conditions on CV is not currently known. For this
reason, we investigate the role of the bath thickness on the

CVs and bipolar signals. Our results show that a bath thickness
of at least 1.5 mm is needed to capture endocardial CVs with
good accuracy. The same thickness of the intracardiac bath layer
also guarantees a satisfactory representation of the endocardial
bipolar signals.

2. THE BIDOMAIN MODEL

Most common tissue-scale models of cardiac electrophysiology
consider the myocardium to be composed of continuous
intracellular and extracellular compartments, coupled via a
continuous cellular membrane. This study considers such
a model; specifically, we consider the bidomain model of
the propagation of the action potential in cardiac muscle.
The bidomain model of the propagation of the action
potential in cardiac muscle formulated by Tung (1978) is a
continuum model derived from a homogenized description of
excitation propagation in the cardiac microarchitecture (Neu and
Krassowska, 1993; Keener and Sneyd, 1998; Griffith and Peskin,
2013).

The bidomain equations describe the dynamics of a local
average of the voltages in the intracellular and extracellular
compartments over a control volume. One of the assumptions
required by the homogenization procedure is that the control
volume is large compared to the scale of the cellular micro-
architecture, but small compared to any other important spatial
scale of the system, such as the width of the action potential
wavefront. Although the validity of this model has been
questioned, for example by Bueno-Orovio et al. (2014), this
approach has been extremely successful, and at present, most
organ-scale simulations of cardiac electrophysiology use such
a model. For a detailed review of the bidomain model and
other models of cardiac electrophysiology, we refer to other
references (Griffith and Peskin, 2013; Franzone et al., 2014).

In our model, we also consider a conductive blood cavity
adjacent to the tissue. In the bidomain model, current flow
is restricted to the intracellular (denoted by subscript i),
extracellular (denoted by subscript e), and bath (denoted by
subscript b) compartments and is described by a set of coupled
partial differential equations. Referring to Figure 1A,�m denotes
the muscle region and �b denotes the perfusing bath. From
charge conservation, the bidomain equations can be written in
the muscle region �m as

∇ · (Di∇V) +∇ · (Di∇Ve) = χ (Cm∂tV + Iion) − Ivi , (1)

∇ · (Di∇V) +∇ · ((Di + De)∇Ve) = Ivtotal, (2)

in which Vi and Ve are the potentials of the homogenized
intracellular and extracellular compartments, respectively, such
that V = Vi − Ve is the transmembrane potential difference,
Di and De are the intracellular and extracellular conductivity
tensors, Cm is the membrane capacitance, χ is membrane
area per unit volume of tissue, and Ivi and Ive are the
volumetric intracellular and extracellular applied currents such
that Iv

total
= Ivi + Ive . The dynamics of the transmembrane

current Iion, accounting for charged ionic species moving from
the intracellular compartment to the extracellular compartment
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FIGURE 1 | (A) Schematic representation of the configurations of the muscle and blood bath. Inside the heart, blood acts as a low resistance conductor. Outside the

heart, between the epicardium and the epicardial sac, an interstitial fluid can also act as a conductor. (B) Schematic representation of the idealized left atrial posterior

wall. A rectangular strand of muscle (green) of length L = 2.3 cm and thickness ℓm is adjacent to an endocardial bath (blue) of thickness ℓb. The thickness of the muscle

ℓm and of the bath ℓb are varied to study their influence on endocardial CVs. Curvature is applied to the top part of the rectangle such that the curved endocardial

length Le is fixed at 2 cm. The corresponding curvature κ is defined as the inverse of the endocardial radius. The curvature is positive if the muscle is bent to the left

and it is negative if it is bent to the right. Endocardial CVs are measured using the activation times at x1 (yellow circle) and x2 (red circle). In the straight geometry, x1
and x2 correspond to the points X1=(0 cm, 1 cm) and X2=(0 cm, 1.5 cm) , fixed at distance 5 mm. As described by equation (7), endocardial CVs are defined as the

distance between these two points divided by the difference of the respective activation times. Unipolar extracellular signals V1e and V2e are recorded at 1 kHz at p1
and p2, corresponding to the points P1=(0 cm, 1.75 cm) and P2=(0 cm, 1.95 cm) in the straight geometry. Bipolar signals were computed as the difference V2e − V1e .

and vice-versa, are described by a set of ordinary differential
equations, called the ionic model. More precisely, the ionic model
introduces the additional variables w, satisfying ∂tw = g (V ,w),
such that Iion = Iion(V ,w).

In the blood region, the bath potential Vb satisfies the
Poisson’s equation

∇ · (Db∇Vb) = Ib, (3)

in which Db represents the blood conductivity tensor and Ib is a
volumetric applied current in the blood domain.

The anisotropic nature of the muscle is accounted for in the
bidomain model through the conductivity tensors Di and De.
Denoting with f the local direction of the fiber field, we assume
axial symmetry relative to f, such that the conductivity tensors

can be written as Di = σ t
i I +

(

σ f
i − σ t

i

)

f ⊗ f, and De = σ t
eI +

(

σ f
e − σ t

e

)

f⊗ f. Here, σ f
i and σ t

i denote the tissue conductivities

along and across the fiber direction in the intracellular space,
σ f
e and σ t

e denote the extracellular conductivities, and I is the
identity tensor. The blood conductivity is assumed isotropic,
so that Db = σbI. Representative values of the intracellular,
extracellular, and blood conductivities are taken from the work of
Roth (1996). Specifically, we set σ f

e = σ f
i = 4.5 mS/cm, σ t

e = 1.8
mS/cm, σ t

i = 0.45 mS/cm, and σb = 20 mS/cm.
The boundary conditions for the tissue are those derived for

a spatially periodic cellular syncytium by Krassowska and Neu
(1994). Referring to Figure 1A, at the muscle boundaries Ŵm,
current fluxes in the intracellular and extracellular compartments
depend on externally applied surface currents,

n · (Di∇Vi) = n · (Di∇ (V + Ve)) = Isi , (4)

n · (De∇Ve) = Ise, (5)

in which the vector n is the outward unit normal to the boundary
of the tissue domain. In the following, we shall assume that the

intracellular and extracellular surface currents, Isi and Ise, are
zero. At the bath boundary Ŵb, we enforce no current flux in
the blood domain n · (Db∇Vb) = 0. Along the muscle-blood
interface Ŵi, we require continuity of the extracellular and
bath potentials Ve = Vb, continuity of the normal currents
n · (De∇Ve) = n · (Db∇Vb) and zero intracellular current
density n · (Di∇Vi). We refer to the Supplementary Material

for more details on the model and its numerical
discretization.

A modified version of the Courtemanche et al. (1998) ionic
model available on Model DB (Carnevale and Hines, 2006;
McDougal et al., 2017), defining the ionic current Iion and gating
variable dynamics g (V ,w), is chosen to represent human atrial
action potential.

2.1. Idealized Model of the Atrial Left
Posterior Wall
To study the effects of muscle thickness, muscle curvature, and
bath-loading conditions on the measured conduction velocities,
we devised a simple idealized test case. Although our main
interest is to understand measurements of endocardial CVs in
the posterior wall of the left atrium, which has overall positive
curvature, our study is not limited to that application. For this
reason, we also consider negative curvatures. Although those
cases are not representative of the left atrial posterior wall, the
relationships between negative curvature and CV can be easily
explored in our idealized model.

A strand of muscle is connected to a bath as depicted in
Figure 1B. This simplified model represents a piece of atrial
tissue where the endocardial surface Ŵi separates the blood from
the muscle. We consider a straight strand of tissue of length 2.3
cm. To study the influence of curvature, the strand of tissue is
then bent on both sides keeping the length of the endocardial
interface fixed. The epicardial boundary is instead allowed to
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change in length. For this reason, curved domains with opposite
curvature are not symmetric.

Consider Figure 1B. The initial muscle domain is a rectangle
of length L = 2.3 cm and thickness ℓm, such that �m =

[0 cm, ℓm] × [−0.3 cm, 2 cm]. Denote with Le=2 cm the length
of the rectangle where curvature will be varied. We set the
“endocardial” surface Ŵi = {0 cm} × [−0.3 cm, Le] on the left
edge of the muscle. The length Le = 2 cm denotes the length of
the endocardial surface where curvature will be imposed. A bath
is added adjacent to the interface Ŵi with thickness ℓb, such that
�b = [−ℓb, 0 cm] × [−0.3 cm, Le]. These geometrical settings
represent the straight domain with zero curvature. We denote
with (X,Y) the coordinates of a point in this straight domain.
Given an angle θ ∈ (0,π], we bend the domain, keeping the
measure Le of the top part of the endocardial interface Ŵi fixed
at 2 cm. The transformation from the straight rectangle to the
curved one is performed using the relations

x =







X if Y ≤ 0,

c

(

R0 − R cos

(

θ
Y

Ymax

))

if Y > 0,

(6)

y =







Y if Y ≤ 0,

cR sin

(

θ
Y

Ymax

)

if Y > 0,

in which the parameter c specifies in which direction the bending
is performed, that is, c = −1 means bending to the right whereas
c = 1 means bending to the left. The radius of curvature of Ŵi is
given by R0 = Ymax/θ , such that R = R0 + cX, in which Ymax

is the maximum Y coordinate. We define the curvature of the
interfaceŴi by κ = 1/ (cR0) , such that the curvature is negative if
c is negative (bend to the right) and positive if c is positive (bend
to the left). Given such construction, geometries with opposite
curvature will not be symmetric even though the length and the
magnitude of the curvature of the endocardial interface are the
same. For any possible curvature, the region defined by the points
{(

x, y
)

∈ R
3
: y ≤ 0

}

is the same in all cases. Applying the same
initial conditions and the same initial stimulus in this region, we
can compare the effects of curvature on the conduction velocity.

Before applying any curvature, the domain � is discretized
using a structured triangular mesh with mesh size hY = 50 µm
in the longitudinal fiber direction and hX = 25 µm in the
transversal fiber direction. Denoting with vX the conduction
velocity in the longitudinal fiber direction, we used the CFL
condition hX/vX ≤ 1 to determine the timestep (Rossi and
Griffith, 2017). We chose the largest negative power of 2 such
that the CFL condition was satisfied, which led to the timestep
1t = 0.03125 ms. This choice is also sufficient to ensure the
stability of the time integrator used for the ionic model.

To quantify the changes in endocardial conduction velocity
with respect to the curvature, we use a simple finite difference
method: measuring the activation times t1 and t2 on the
endocardial surface Ŵi at two locations x1 and x2, corresponding
to the points X1 = (0 cm, 1 cm) and X2 = (0 cm, 1.5 cm) in
the straight domain (no curvature), we define the conduction

velocity as

v =
‖x2 − x1‖Ŵi

t2 − t1
=

‖X2 − X1‖

t2 − t1
=

0.5 cm

t2 − t1
, (7)

where ‖ · ‖Ŵi represents the distance between x1 and x2 on the
endocarial surface. Referring to Figure 1B, the points x1 and x2
correspond to the position on the muscle-bath interface Ŵi of the
yellow and red circles, respectively.

An equal and opposite stimulus is applied in the interior
and exterior compartments of the muscles such that Ive =

100 µA/cm3 for the first 2 ms if y was smaller than –0.2797
mm. This choice generates a plane wave propagating in the
longitudinal direction whenever the domain is straight (no
curvature) and no bath region is considered.

Unipolar signals V1
e and V2

e were recorded at 1 kHz on the
endocardial surface at p1 and p2 corresponding to the points
P1 = (0 cm, 1.75 cm) and P2 = (0 cm, 1.95 cm) of the straight
domain. Referring to Figure 1B, the points p1 and p2 correspond
to the position on the muscle-bath interface Ŵi of the light
blue and pink red stars, respectively. Bipolar signals were then
computed taking the difference V2

e − V1
e .

2.2. Left Atrial Posterior Wall
A detailed geometry of the whole left atrium was collected
by fast anatomical mapping (FAM) with a 2-5-2 PentaRay
catheter. High-density maps of the left atrial posterior wall
(LAPW) endocardial surface were created using the Carto3
electroanatomic mapping system (Biosense Webster, Diamond
Bar, CA). The LAPW was mapped following pulmonary vein
isolation by wide antral circumferential ablation (WACA). The
region was defined as the area of the posterior left atrium
between WACA lesion sets encircling the bilateral pulmonary
veins and extending from their inferior margin to their superior
margin. The LAPW surface was extracted from the reconstructed
geometry of the left atrium and its geometrical representation was
generated using SOLIDWORKS (Dassault Systèmes, Waltham,
MA). The surface was then thickened outward to obtain a
uniform 1.5 mm LAPW thickness. The bath region was created
thickening in the opposite direction for 2.85mm. We used the
Trelis software (Computational Simulation Software, American
Fork, UTAmerican Fork, Utah) to generate a simplexmesh of the
LAPW with bath. The mesh size for muscle domain was selected
to yield 16 elements through themuscle thickness. As the solution
in the bath is smooth, a larger mesh size was used in the bath
domain. Still, on the muscle-bath interface Ŵi, the two meshes
are conforming.

To investigate the role of muscle thickness and curvature
on the LAPW, we used SOLIDWORKS to flatten the LAPW
endocardial surface. The same procedure as for the curved LAPW
was then used to thicken and mesh the resulting geometry. The
resulting geometries are shown in Figure 2A.

The fiber field was created by assuming the existence of a
harmonic potential ϕ (x) such that f = ∇ϕ. In practice, we
solve numerically the equation 1ϕ = 0 with mixed boundary
conditions. In particular, we set ϕ = 0 on the surface Ŵ0 and ϕ =

1 on Ŵ1, and ∂nϕ = 0 on ∂�m\ (Ŵ0 ∪ Ŵ1), where the surfaces Ŵ0,
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FIGURE 2 | (A) Reconstructed model of the left atrial posterior wall (LAPW) and its flattened representation. The muscle domain of thickness 1.5 mm is represented in

green, and the intracardiac bath of thickness 2.85 mm is presented in light blue. (B) Fiber field of the posterior wall generated by a rule-based method based on

Poisson interpolation. The fibers fields are defined only in the muscular region of the computational domain. The color scheme, representing the z-component of the

fiber vector field, is chosen to highlight the direction in which the muscle fibers are aligned. (C) Graphical representation of the initial condition of the simulation: an

intracellular potential of 30 mV is set at the bottom edge of the left atrial posterior wall. In the bath the transmembrane potential is not defined, and the whole bath is

represented in dark yellow.

andŴ1 are the boundaries delimiting the LAPW from the top and
from the bottom. The resulting fiber field, depicted in Figure 2B,
qualitatively matches the anatomical structures of the LAPW
shown by Markides et al. (2003). Referring to Figure 2B, Ŵ0 and
Ŵ1 are the boundaries orthogonal to the fiber field. Similarly, a
fiber field was generated for the flattened geometry.

The simulations were initiated by imposing an initial
condition for the transmembrane potential V . As shown in
Figure 2C, the potential was set to 30 mV on Ŵ0 and to its resting
value of −81.2 mV everywhere else. Similarly, we imposed the
initial condition on the flattened geometry.

For both the LAPW and the flattened LAPW, we solved the
bidomain equations in three scenarios: (1) considering only the
endocardial surface (referred to as 2D); (2) considering only
the muscle domain (referred to as 3D); and (3) considering
the muscle with bath-loading conditions (referred to as Bath).
In all cases, we registered the activation times At (x), as the
earliest time when the transmembrane potential was larger
than −5 mV. The endocardial conduction velocities were then
reconstructed on each node of the triangulation in the following
way. For each triangleK on the endocardial surface, we define the
elemental conduction velocity vK = ∇At/ (∇At · ∇At). Since At

is interpolated between the nodes using linear basis functions on
each element, its gradient∇At and the conduction velocity vK are
constant on each triangle. For each vertex q, we define the patch
5q as the set of triangles K surrounding the node q. The averaged
nodal velocity is then given as

vq =

∑

K∈5q
|K| vK

∑

K∈5q
|K|

, (8)

in which |K| denotes the area of the triangle K.

3. NUMERICAL RESULTS

The bidomain model was discretized in space using linear finite
elements (Plank et al., 2005; Franzone et al., 2006; Pathmanathan

et al., 2010; Bishop and Plank, 2011; Landajuela et al., 2018).
The intracellular, extracellular, and bath potentials are solved
monolithically (Bernabeu and Kay, 2011), using IMEX temporal
schemes. We use the C++ implementation of the model of
Courtemanche et al. (1998) provided by Hsing-Jung Lai and
Sheng-Nan Wu on Model DB (McDougal et al., 2017), which
includes the modifications by Ingemar Jacobson (Carnevale
and Hines, 2006) needed for ion concentrations to be stable
at a pacing rate of 1 Hz. Since the Courtemanche ionic
model contains many discontinuous parameters that negatively
influence the expected optimal rate of convergence of the finite
element discretization (Arthurs et al., 2012), we rely on the simple
IMEX BDF1 method. We refer to the Supplementary Material

for more details on the numerical methods used. Unless explicitly
stated, we used the same set of parameters for all the numerical
tests presented below. The parameters are reported in Table 1.

The code developed in this work, BeatIt (available at
github.com/rossisimone/beatit), relies on the parallel C++ finite
element library libMesh (Kirk et al., 2006) and on PETSc (Balay
et al., 1997, 2017) and HYPRE linear solvers (Falgout and
Yang, 2002). More specifically, we used the FieldSplit
preconditioner (Brown et al., 2012) provided by PETSc to
solve the system using the block Gauss-Seidel method, and each
sub-block is preconditioned using BoomerAMG (Falgout et al.,
2010). More details about the algorithmic implementation can
be found in the Supplementary Material. Using a uniform
structured grid for the muscle and bath domain, simulations
of the two-dimensional idealized test case were run in serial
on a Linux workstation. Simulations on the patient-specific
left atrial posterior wall used a fine discretization in the muscle
domain and a coarse one in the bath domain. A boundary layer
in the mesh of the bath was created to correctly resolve the bath
potential close to the muscle interface. Simulations were run on a
single node (44 processors) of the Dogwood Linux cluster at the
University of North Carolina at Chapel Hill. The visualization
of the results and their analysis have been carried out using
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TABLE 1 | Bidomain model parameters used in the numerical simulations.
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FIGURE 3 | (A) Endocardial CVs as a function of the curvature when no bath-loading conditions are considered (ℓb = 0 mm) for muscle thicknesses ℓbm = 0.25 µm,

0.5, 1, 1.5, and 2 mm. Note that the construction of the domain leads to different geometries for positive and negative curvatures. This is because we keep the

endocardial length fixed, but we allow the epicardial surface to become shorter or longer. When a planar wave travels on a curved domain, endocardial CV are faster

for negative curvatures and slower for positive curvatures. Since the left atrial posterior wall has mostly positive curvature, endocardial CVs are expected to be slower

than in a flat piece of muscle. The case of mucles thickness 25 µm correspends to the case of two-dimensional manifolds in three-dimensional simulations.

(B) Relative change in conduction velocities (with respect to CVs in a straight muscle) as a function of curvature for three selected values of the longitudinal

conductivity coefficients but fixed transveral conductivities. Muscle thickness was fixed at 1.5 mm. Relative changes in CVs are not influenced by longitudinal

conductivities. (C) Relative change in conduction velocities (with respect to CVs in a straight muscle) as a function of curvature for four selected values of the

transversal conductivity coefficients but fixed longitudinal conductivities. Muscle thickness was fixed at 1.5 mm. Even for isotropic conditions (purple) endocardial CVs

change depending on the curvature. Relative changes in CVs are only slightly influenced by transversal conductivities.

Paraview (Ahrens et al., 2005) and MATLAB The Mathworks,
Inc., Natick, MA.

3.1. Without Bath-Loading Conditions
Endocardial CVs Depend on
Tissue-Thickness and Curvature
We start investigating how muscle thickness influences the
endocardial conduction velocities when no bath-loading
conditions are considered. For this test, we consider muscles of
thicknesses ℓm = 0.025, 0.5, 1, 1.5, and 2 mm. The thickness
ℓm = 0.025 mm corresponds to the case where the atrial tissue
is considered to be so thin that can be approximated with a
bidimensional manifold.

Figure 3A shows the evaluation of the conduction velocities
on the endocardial surface for the considered muscle thicknesses.
When the curvature is zero, the conduction velocity is
independent of muscle thickness. If the muscle thickness is small
enough, say of the order of a handful of cardiomyocytes, the
conduction velocities are also independent of the curvature.
On the other hand, when curvature is imposed on a thicker
muscle the endocardial conduction velocities can change quite
drastically. For positive curvatures (bending to the left) the
endocardial CVs become slower, while for negative curvatures
(bending to the right) the endocardial CVs become faster.

We also test if the relative changes in the CVs are influenced
by the anisotropy ratio (AR) for muscle thickness of 1.5
mm. In a first test we have increased and decreased the
longitudinal conductivities σ f

e = σ f
i by 50%, keeping fixed the

transversal conductivities. As shown in Figure 3B, variations in
the longitudinal conductivities do not affect the relative changes
in CVs with respect to curvature. Clearly, the magnitude of the
CVs is different. For κ = 0 cm−1, if σ f

e = σ f
i = 4.5 mS/cm,

the CV is measured to be 73.7 cm/s; if σ f
e = σ f

i = 6.75 mS/cm

(+50% case), the CV is measured to be 90.4 cm/s; if σ f
e = σ f

i =

2.25 mS/cm (–50% case), the CV is measured to be 51.8 cm/s.
These values are in accordance with the expected dependence on
the CVs on the square root of the conductivities. In a second test,
we have increased and decreased the transversal conductivities
σ f
e = σ f

i by 50%, keeping fixed the longitudinal conductivities.
The relative changes in CVs are shown in Figure 3C, where we
have also included the results for isotropic propagation. Although
some differences can be found at different anisotropy ratios,
changes in the ARs seem to only have a minor effect on the
relative changes in CVs. In all these cases for which κ = 0 cm−1,
the endocardial CV was measured to be about 73.7 cm/s.

Although, we have found that the AR does not influence the
relative changes in the CVs, AR does influence the shape of
the wavefront in the curved domains. We show in Figure 4

the shapes of the wavefronts at different internal and external
anisotropic ratios (ARi and ARi) for κ = π/2. Specifically,
fixing the longitudinal conductivity coefficients σ f

e = σ f
i = 4.5

mS/cm, we show the activation times (black lines are iscochrones
separated by 1 ms increments) in various cases changing the
transversal conductivities. As shown in Figure 4A, the initial
condition creates a plane wave in the straight region of the
domain. Figure 4A shows the rectangular region where we look

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 134439

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Rossi et al. Geometry Influences Atrial Conduction Velocities

FIGURE 4 | (A) Transmembrane potential wavefront at t = 4 ms without bath-loading conditions for curvature κ = π/2 cm−1. The initial stimulus generates a plane

wave in the straight part of the muscle for any anisotropy ratio (AR). (B–F) Shape of the wavefronts at 1ms distance (zoom of the rectangular region in A) for several

external (ARe) and internal (ARi) anisotropy ratios. The longitudinal conductivity σ f
e = σ f

i is fixed for all cases and the transversal condcitivities are changed. While in the

isotropic case (B) the fronts remain almost planar, in all other cases, the wavefronts become curved.

FIGURE 5 | (A) Activation times at about 3.3 ms distance at different curvatures without bath-loading conditions for a muscle thickness of 1.5 mm. The change in

shape of the wavefronts in the curved domains is clearly noticeable. The shapes depend on the sign and magnitude of the curvature κ. Note that the construction of

the domain leads to different geometries for positive and negative curvatures. This is because that we keep the endocardial length fixed, but we allow the epicardial

surface to become shorter or longer. (B) Endocardial CVs as a function of the curvature for several muscle thicknesses when an intracardiac bath of size ℓb =6 mm is

considered. (C) Endocardial CVs as a function of the curvature for several muscle thicknesses when intracardiac and extracardiac baths of size ℓb =3 mm are

considered. As for the case with no bath-loading conditions conduction endocardial CVs speed up for negative curvatures and slow down for positive curvatures

(B,C). The case of mucles thickness 25 µm correspends to the case of two-dimensional manifolds in three-dimensional simulations. When the muscle thickness ℓm is

very small (25 µm), the CVs are independent of the curvature. In this case, the signal speed is strongly influenced by the bath conductivities. If ℓm >1 mm, then

muscle thickness does change much endocardial CVs but curvature does.

at the wavefronts. Under isotropic conditions, the wavefronts
remain straight even in the curved domain. This is shown in
Figure 4B, where the isochrones are radial. Under anisotropic
conditions, Figures 4C–F, the wavefronts have a different
orientation with respect to the radial direction. Additionally, the
boundary conditions induce wavefront curvatures close to the
boundaries.

Finally, we show in Figure 5A the activation times at different
curvatures for ℓm = 1.5 mm, using the parameters specified in
Table 1. The black isolines are at distance 3.3 ms. The marked
solid black line represents the endocardial surface where we
measure the conduction velocities. As it can be seen, curvature
greatly influences the activation times: the endocardial activation
is slower for positive curvature (bending on the left) and faster

for negative curvature (bending on the right) than in the straight
case.

3.2. Endocardial CVs Depends on
Muscle-Thickness and Curvature With
Bath-Loading Conditions
Here, we investigate the role of muscle thickness and curvature
in presence of a bath. We consider a fixed intracardiac bath
thickness ℓb = 6 mm and we test muscle thicknesses ℓm = 0.025,
0.5, 1, 1.5, and 2 mm. In Figure 5B, we show the endocardial CVs
evaluated for the different muscle sizes. It can be noted here that
in the case of muscle thickness ℓm = 25 µm, the conduction
velocities are mainly dictated by the conductivity of the bath.
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FIGURE 6 | Transmembrane potentials in the muscle region and extracellular potentials in the bath regions at time t = 32 ms for a muscle thickness of 2 mm. (A)

When the domain is straight (κ = 0 cm−1 ) and both intracardiac and extracardiac bath-loading conditions are considered, the wavefront takes the characteristic "V”

shape. (B) When the domain is curved, the wavefront does not take the characteristic "V"-shape. (C) If we consider only the intracardiac bath, the endocardial CVs

are still in good agreement with the case of intracardiac and extracardiac baths.)

FIGURE 7 | Bipolar signals V2e − V1e recorded at 1 kHz for three selected curvatures κ = π/2 cm−1(A), 0 cm−1(B), and π/2 cm−1(C) for bath size ℓb = 6 mm and

varying muscle thickness ℓm. The case of mucles thickness 25 µm correspends to the case of two-dimensional manifolds in three-dimensional simulations. When the

muscle thickness is small (25 µm) the peak of the signal is shifted because the wavefront propagates faster. In that case, the amplitude of the signal is also extremely

small. Substantial differences in the amplitude of the signals can be found at larger muscle thicknesses. The curvature of the domain does not play a major role in the

recorded signals.

A small thickness is sufficient to reveal the dependence onmuscle
curvature.

We also consider the case of intracardiac and extracardiac
baths of thickness ℓb = 3 mm, testing again muscle thicknesses
ℓm = 0.025, 0.5, 1, 1.5, and 2 mm. The corresponding CVs are
shown in Figure 5C. Once again, if ℓm = 25 µm, the CVs are
independent of the curvature. As expected, the extracardiac bath
mainly influences endocardial CVs for muscle thickness smaller
than 1 mm.

We can conclude that if we are interested only in
capturing endocardial CVs, using only an intracardiac bath
is sufficient if the muscle thickness is greater than 1 mm.
We show this in Figure 6, which shows the wavefront and
the extracellular potential at time t = 32 ms for muscle
thickness of 2 mm. As a reference, we show in Figure 6A

the characteristic V-shaped wavefront when intracardiac and
extracardiac bath are both considered in a straight domain. In
the curved domain, Figure 6B, the front loses the characteristic
V-shape. When only the intracardiac bath is considered,
Figure 6C, the epicardial details of the front are lost, but

the endocardial CVs are about the same. This can be
noted by comparing the position of the endocardial fronts
in Figures 6B,C.

Finally, in Figure 7, we plot the bipolar signals measured
on the endocardial surface, as explained in section 2.1, on
three selected curvature: κ = π/2 cm−1, κ = 0 cm−1, and
κ = −π/2 cm−1. Once again, if the muscle thickness is not
accounted for, the peak of the signal is out of phase due to
the increased CVs. Moreover, the amplitude of the signal is not
accurate. Nonetheless, we can appreciate that the amplitude of
the signals is greatly affected by the thickness of the muscle.
No major differences in the signals can be noted for different
curvatures.

3.3. Endocardial CVs Depends on
Bath-Size and Curvature at Fixed Muscle
Thickness
In this test, we evaluate the size of the bath that is needed
to correctly capture the endocardial CVs. Fixing the muscle
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FIGURE 8 | (A) Extracellular potential on selected curvatures for ℓm =1.5 mm and ℓb =6 mm at time t = 15 ms. The curvature of the domain changes the

endocardial CVs as well as the shape of the wavefront. The wavefront is located at the sharp transition between negative (blue) and positive (red) voltages.

(B) Endocardial CVs as a function of the curvature for muscle thickness ℓm =1.5 mm and several thicknesses of the intracardiac bath. As expected the presence of

bath-loading conditions increases the speed at which the wavefronts propagate. Positive (negative) curvature of the muscle decreases (increases) the endocardial

CVs. A bath size of at least 1.5 mm was need to correctly capture the effects of the intracardiac bath-loading conditions.

thickness ℓm = 1.5 mm, we vary the bath thickness
ℓb.

We show in Figure 8A the extracellular potential Ve at t = 20
ms for some selected curvatures and ℓb = 6 mm. The solid black
line corresponds to the endocardial interface. The front of the
wave is localized in the muscle region where we have an abrupt
change in the polarity of Ve. We can appreciate from these plots
the differences in the wavefront curvatures which depends both
on the curvature of the domain and on the imposed boundary
and interface conditions.

Figure 8B shows the dependence of the endocardial CVs on
the curvature of the domain. We note here that for baths larger
than 1.5 mm we measure the same CVs. This suggests that the
bath should be at least of the size of the muscle to correctly
capture the magnitude of the CVs.

Similarly to the simplified case studied above, the conduction
velocities strongly depend on the muscle curvature. Still,
curvature has small effects on the bipolar signals. In Figure 9,
we show the bipolar signals recorded at 1 kHz for the different
bath sizes at three selected curvatures. Specifically, we show in
Figures 9A–C the bipolar signals recorded for bath sizes between
0 and 2 mm, and in Figures 9D–F the bipolar signals recorded
for bath sizes between 1.5 and 6 mm. These plots also suggest
that a bath size of at least 1.5 mm is needed to correctly capture
the bipolar signals.

3.4. Patient-Specific Left Atrial Posterior
Wall
In Figure 10, we show the solutions of the bidomainmodel on the
patient-specific LAPW. More specifically, we show Figure 10A,
the endocardial activation times (black isochrones at about 10
ms) when using the bath-loading conditions. In Figure 10B, we
show the extracellular potential in the muscle and in the bath
regions at time t = 40 ms. In Figure 10C, we show the shape
of the wavefront at time t = 80ms without a bath. The wavefront
is highlighted in white, and the corresponding straight wavefront
is depicted in the dashed green line. The corresponding results
in the flattened LAPW are shown in Figures 10D–F. While in

the flat geometry the wavefront remains straight, in the curved
domain transversal conductivity and boundary conditions lead
to a transmurally curved wavefront.

Finally, we show in Figure 11 the distributions of the
endocardial CV evaluated using (8). The CV of the LAPW and of
the flattened LAPWhave the same distribution if a bidimensional
manifold is considered, where the most frequent conduction
velocities are around 74–76 cm/s; see Figure 11A. Additionally,
in the flattened LAPW, the thickness of the muscle does not
influence the endocardial CV distribution; see Figure 11B. In the
curved LAPW, the small thickness of the muscle is sufficient to
slow down the endocardial conduction velocities; see Figure 11C.
This is represented by the broader distribution of the 3D
simulation in the CVs smaller than 70 cm/s. Additionally,
the peak of the three-dimensional distribution corresponds to
slightly slower CVs of about 72–75 cm/s. A similar difference
can be noted also when comparing the distributions of the
endocardial CVs for the flat and curved three-dimensional
domains; see Figure 11D. When the bath-loading effects are
considered; see Figure 11E, the differences are smaller but still
noticeable: the peak of the distribution slows down from 85
to 84 cm/s and CVs smaller than 80 cm/s are more frequent
throughout the domain.

4. CONCLUSIONS

Measurements of endocardial CVs can be used to characterize
the electrophysiological health of the tissue substrate in patients
with atrial fibrillation (AFib). CV is known to be affected
by membrane excitability, front curvature, fiber orientation,
and tissue anisotropy (Roberts et al., 1979; Rogers and
McCulloch, 1994; Kléber and Rudy, 2004). In patients with
persistent AFib, the morphological structure of the left atrium
is correlated with pro-arrhythmic wave dynamics (Song et al.,
2018). Heterogeneous atrial wall thickness is believed to
contribute spiral wave localization or drift (Yamazaki et al., 2012;
Biktasheva et al., 2015) and to support scroll waves underlying
AFib maintenance (Yamazaki et al., 2012). The regional left
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FIGURE 9 | Bipolar signals V2e − V1e recorded at 1 kHz for three selected curvatures κ = π/2 cm−1, 0 cm,π/2 cm−1 for different bath sizes and muscle thickness

ℓm = 1.5 mm using the modified version of the Courtemanche atrial ionic model. (A–C) Bipolar signals for bath sizes between 0 and 2 mm. (D–F) Bipolar signals for

bath sizes between 1.5 and 6 mm. An overlap of the data has been used between the top and bottom rows to better understand the differences in signals for different

bath sizes. The curvature of the domain does not play a major role in the recorded signals. Large differences in the signal amplitudes can be found for bath sizes

smaller than 2 mm. Although minor differences can also be noted for bath larger than 1.5 mm, the amplitude of the signals is well captured for baths of size at least

3 mm.

FIGURE 10 | (A–C) Solution on the flattened posterior wall. (D–F) Solution on the patient-specific left atrial posterior wall. (A,D) Comparison of the endocardial

activation times for a muscle size of 1.5 mm and the bath size of 2.85 mm. The curved geometry has slower conduction velocities. (B,E) Comparison of the

extracellular potential Ve at t = 40 ms. (C,F) Comparison of the wavefront when no bath is considered. The front in the curved geometry deviates from being straight

through the thickness of the muscle. We show in the dashed green line the straight profile.
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FIGURE 11 | Distributions of the nodal endocardial CVs for the patient-specific LAPW. Simulations were run considering 2D (neglecting thickness) and 3D

representations of the posterior wall (PW). To investigate the role of curvature, simulation were run on a flattened version of the posterior wall (flat). We also considered

the case the of intracardiac bath-loading conditions (bath). The 2D simulations resulted in very similar distributions (A), where the most frequent conduction velocities

are around 74–76 cm/s. The conduction velocity distributions are also very similar when one considers a 2D and 3D flattened posterior wall (B). On the contrary, in the

actual curved posterior wall, the thickness of the tissue influences the distributions of the conduction velocities: the thickness of the muscle leads to a broader

distribution of slower conduction velocities (C). Similarly, the broader distribution of slower conduction velocities can be noted comparing the thick flattened and the

actual posterior wall simulations (D). When the bath is added to the simulation (E) the endocardial conduction velocities are substantially increased and the differences

between the curved and the flattened geometries are reduced although they can still be appreciated.

atrial wall thickness has been strongly correlated with the
dominant frequency, Shannon entropy, and the presence of
complex fractionated atrial electrogram, associated with diseased
tissue (Song et al., 2018). In addition, it has been shown
that electrical dissociation between the epicardial layer and the
endocardial layer during AFib increases stability and complexity
of the AFib and is more pronounced in regions of thicker
atrial wall (Eckstein et al., 2010). Along with wall thickness,
curvature changes in wall geometry can also contribute to the
initiation and maintenance of reentries by promoting wave-
breaks (Rogers, 2002). Rogers showed that an expansion of
the diffusive term of the monodomain model in terms of
curvilinear coordinates reveals the role of curvature and muscle
thickness on CVs (Rogers, 2002). For a spiral wave on a spherical
manifold, an analytical expression for the angular velocities as a
function of the curvature can be derived (Davydov and Zykov,
1991). These findings suggests that even under spatially uniform
electrical and membrane properties, the complex geometry of
the heart can destabilize wavefronts, causing fragmentation
and complex activation patterns (Rogers, 2002). Rogers found
that propagation was only affected by surface curvature when
curvature was present in two directions (Rogers, 2002). In our
simulations of an initially planar wave, we also found that that
surface curvature in one direction does not influence propagation
if the muscle is represented by a surface in three dimensions.
Our simulations on a surface representation of a patient-specific
left atrial posterior wall (LAPW) showed that the distributions

of CVs are not influenced by the Gaussian curvature (curvature
in two directions). As soon as muscle thickness is incorporated,
curvature in one direction is sufficient to affect wavefront
propagation speed.

We started our investigation by considering the role of
thickness and curvature without bath-loading conditions. As
expected, CVs are not influenced by muscle thickness if no
curvature is imposed on the domain. Additionally, CVs are
not influenced by curvature whenever the muscle thickness is
negligible (e.g., 25 µm). This situation corresponds also to the
manifold representation of the atria in some computational
models (Vigmond et al., 2001; Zemlin et al., 2001; Virag et al.,
2002; van Dam and van Oosterom, 2003; Weiser et al., 2010;
Patelli et al., 2017). For larger muscle thicknesses, geometrical
curvature influences the propagation of the electrical signal. For
negative curvatures, the signal propagates faster, whereas for
positive curvatures, the signal propagates with decreased CVs.
For thin muscles (up to about 1 mm), the thicker the muscle
the slower (faster) the CVs for positive (negative) curvatures.
This relationship between curvature, muscle thickness, and CV is
analogous to the well-known dependence of propagation efficacy
on wavefront curvature (Tyson and Keener, 1988; Rogers and
McCulloch, 1994; Rogers, 2002). We have shown that these
changes in CV take place even without considering variations in
the transmural properties of the muscle.

Under conditions with uniform transmural properties one
might assume that a planar wavefront remains planar for any
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curvature. The term planar wavefront is used in analogy with the
theory of plates, in which straight lines normal to the mid-surface
remain normal to the mid-surface after deformation. In a similar
sense, we understand that a planar wavefront is a front that is
parallel to a straight line normal to the mid-surface and remains
normal for any curvature of the domain. We have demonstrated
in our tests that this assumption holds only under isotropic
conditions. When anisotropy is introduced, the wavefront in
curved domains does not remain planar. The transmural shape
of the wavefront depends on two factors: (i) the anisotropy ratio
and (ii) the boundary conditions. Even in more refined versions
of the surface-based models of atrial electrophysiology (Chapelle
et al., 2013), derived from asymptotic analysis averaging through
the thickness, these factors are not well captured. For example,
the surface-based models cannot represent the dissociation of
endocardial and epicardial electrical activities during fibrillation.
Single layer surface models have been improved by introducing a
second layer to account for a more three-dimensional character
of the fibrillatory conduction (Gharaviri et al., 2012; Labarthe
et al., 2014; Coudière et al., 2017). Comparisons of these bilayer
models with three-dimensional simulations are very limited and
do not consider the possible influence of geometrical curvature
on the electrical propagation. We have also shown that even
under isotropic conditions where the fronts remain planar in
curved domains, the endocardial CVs depend on the curvature.
These results show that the fully three-dimensional atrial models
are necessary to accurately capture the propagation of electrical
signals and the corresponding conduction velocities on the
endocardial surface.

A number of studies have shown that bath-loading conditions
can increase conduction velocities (Roth, 1991, 1996; Henriquez
et al., 1996; Srinivasan and Roth, 2004; Bishop et al., 2011).
Comparing Figures 3 and 5, the CV for a muscle thickness
of 25 µm increases from 74 to 104 cm/s in the presences
of a bath. But as in the cases that omit the bath, curvature
does not play a major role in determining the velocities. For
muscle thicknesses between 0.5 and 2 mm, we have found that
curvature in the presence of a bath acts to increase endocardial
conduction velocities, but, in accordance with Roth (1991), the
differences between the various thicknesses are smaller than they
are without a bath. For positive curvatures, we have found that
when no bath is considered, changes up 10% of the planar CVs
can be measured. Although the curvature effect is smaller with
bath-loading conditions, changes of up to 6% were found. These
variations in CVs can actually be measured by electroanatomic
mapping systems. We also found that changes in CVs for
negative curvatures were more pronounced. For large negative
curvature, we found variations of more than 10 cm/s. Even if
these results may not be applied directly to the measurements of
the CVs on the LAPW, which has mostly positive curvature, they
highlight the strong correlation between structure and speed of
propagation. We conclude that in the presence of bath-loading,
three-dimensional atrial models are still necessary to accurately
capture the propagation of electrical signals and their conduction
velocities. To reduce the computational cost when bath-loading
conditions are considered, and the main interest is the evaluation
of endocardial conduction velocity during normal propagation,

it could be possible to consider a uniform atrial thickness of
about 1 mm. On the other hand, this approximation may fail to
correctly represent endo-epicardial dissociation and transmural
breakthrough during Afib. In accordance to the results shown
by Bishop and Plank (2011), in our simplified test case, fixing
the muscle thickness at 1.5 mm, a bath size larger than 1.5 mm
was necessary to correctly capture endocardial CVs. The effects
of curvature on CVs are important for all bath sizes and the same
considerations as in the case with no bath-loading conditions
described above hold.

The above considerations, drawn from a simple two-
dimensional test case, were found to also hold in realistic
geometries. Specifically, we have reconstructed a humanmodel of
the LAPW, assuming a uniform fiber field, in which the direction
of anisotropy was obtained from a scalar harmonic potential. We
solved the anisotropic bidomain model considering: (i) only the
endocardial surface; (ii) only the atrial muscle with thickness 1.5
mm; and (iii) the atrial muscle with an intracardiac bath of 2.85
mm of thickness. Additionally, in patient-specific geometries, it
is not possible to precisely control the direction of propagation.
Therefore, to study the role of curvature, we recreated a flattened
version of the LAPW. Endocardial conduction velocities were
computed at each vertex of the triangulation of the domain
using weighted averages based on the gradients of the activation
times. Comparing the distributions in the various scenarios, we
have concluded that curvature and muscle thickness can strongly
influence the measured conduction velocities. In fact, we have
found a shift in the peak CVs, with a reduction of about 2–4
cm/s, when comparing the distributions of the three-dimensional
patient-spceific geometry with those of a manifold or a flattened
representation of the LAPW. More importantly, when muscle
thickness and curvature are included, the overall distributions
have slower decays on the left and faster decays on the right. A
two-sample t-test (Snedecor and William, 1989) has determined
that the difference in two distributions means is statistically
significant (p value = 0). This behavior, shown in Figure 11, leads
to an overall slow down of the propagation of the electrical signal.

Because clinical CV maps are derived from extracellular
electrograms, we also investigated how bipolar signals are
affected by muscle thickness, curvature, and bath size. To mimic
clinical conditions, the unipolar signals were sampled at 1 kHz at
two points on the endocardial surface at a distance of 2 mm. We
found that curvature does not play any substantial role on the
electrogram morphology. On the other hand, muscle thickness
and bath size can influence the amplitude of the signals. Still, the
differences for a bath size larger than 1.5 mmwere small. A major
difference was found when approximating the muscle thickness
with a bidimensional manifold. This corresponds to the test with
a muscle thickness of 25µm. In this case, the amplitude and the
shape of the signals were very different from the cases in which
the muscle thickness was between 0.5 and 2 mm. In particular,
we recorded a maximum peak smaller than 1 mV for 25 µm
muscle thickness, while for thicker muscles the peak was greater
than 1 mV. Given the faster CVs for the thin muscle case, the
maximum peak was recorded earlier than for thicker muscles.
We also note that, accordingly to the discussion above on CVs,
the time at which the peak bipolar signal is recorded depends
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on the muscle curvature. This finding suggests the use of three-
dimensional models for atrial electrophysiology for accurately
simulating surface electrogarms.

To verify that our findings were not largely affected by the
numerical methods used, we also solved the bidomain model
with a cubic reaction term in place of the Courtemanche ionic
model. This simple reaction model can be used to represent a
propagating front guaranteeing a second order convergence of
the numerical method used herein (Rossi and Griffith, 2017).
The details of this model and the results can be found in the
Supplementary Material. Except for some differences in the
details of the registered bipolar signals due to the different
shape of the propagating pulse, the same qualitative behavior
with respect to muscle thickness, curvature, and bath size was
found. This suggests that our findings obtained using numerical
methods with a suboptimal order of convergence are correct.

In conclusion, we have found evidence that even under
homogeneous conditions, a surface-based model of the atria is
not accurate in capturing the endocardial CVs and magnitude
of the endocardial bipolar signals. In general, the change in
CV for different curvatures is a function of muscle thickness
(Figure 3). This effect is reduced in the presence of an adjoining
bath. For the left atrial posterior wall with positive curvature,
the electrical signal propagates more slowly on the endocardial
surface than it would on a flat region. It has been shown
in the ventricles that regions of slow conduction regions are
correlated with anatomical sites critical for tachycardia (Irie et al.,
2015). This slowing seen during curvature may be exacerbated
under compromised electrophysiological conditions. The effects
of geometry and bath-loading on conduction is important if CV
is to be used as an index to indicate regions with fibrosis or poor
conductivity. From the computational point of view, the findings
suggest that models of atrial electrophysiology used to guide and
understand endocardial catheter measurements should be fully
three-dimensional and account for bath-loading effects with a
simulated bath size of at least 1.5 mm was necessary for our
simulation to get consistent CV measurements.

5. LIMITATIONS

Our simulations had several limitations. First, we considered
uniform muscle thicknesses between 0.5mm and 2mm and
uniform curvatures. The atrial wall (Bishop et al., 2015) thickness
varies and has been shown to affect wavefront dynamics in
atrial fibrillation (Rogers, 2002; Biktasheva et al., 2015; Song
et al., 2018). Although the cases we considered are within
the range of left atrial wall thicknesses (Bishop et al., 2015),
measurements of the LAPW have shown that the muscle
thickness can be as large as 5,mm superiorly and 8 mm

inferiorly (Platonov et al., 2008). Additionally, the average
the atrial wall thickness is about 2.73 mm (Pashakhanloo
et al., 2016). We have shown that the thicker the muscle,
the more important is to consider a three-dimensional
model of cardiac electrophysiology, but the endocardial CVs
are captured with good accuracy even when loading-bath
conditions are considered and a thickness of about 1.5
mm is used. Introducing non-uniform wall thickness in
the patient-specific simulations can be challenging because a
description of the epicardial surface is not readily available
by endocardial electroanatomical maps or easily discernable
from standard imaging. Finally, we have mainly considered
propagation along a strand of tissue without considering
transmural propagation. In fact, we have shown that in an
anisotropic domain with no bath, a planar wavefront becomes
curved if the domain has curvature. A more detailed study
should be carried out to have proper insights on transmural
propagation.
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Cardiac contraction is coordinated by a wave of electrical excitation which propagates

through the heart. Combined modeling of electrical and mechanical function of the heart

provides the most comprehensive description of cardiac function and is one of the latest

trends in cardiac research. The effective numerical modeling of cardiac electromechanics

remains a challenge, due to the stiffness of the electrical equations and the global

coupling in the mechanical problem. Here we present a short review of the inherent

assumptions made when deriving the electromechanical equations, including a general

representation for deformation-dependent conduction tensors obeying orthotropic

symmetry, and then present an implicit-explicit time-stepping approach that is tailored

to solving the cardiac mono- or bidomain equations coupled to electromechanics of the

cardiac wall. Our approach allows to find numerical solutions of the electromechanics

equations using stable and higher order time integration. Our methods are implemented

in a monolithic finite element code GEMS (Ghent Electromechanics Solver) using the

PETSc library that is inherently parallelized for use on high-performance computing

infrastructure. We tested GEMS on standard benchmark computations and discuss

further development of our software.

Keywords: cardiac arrhythmias, electromechanics, cardiac modeling, ionic models, anatomical models

1. INTRODUCTION

The heart is an electromechanical pump whose mechanical contraction is initiated by electrical
activation, in a process called excitation-contraction coupling. In normal circumstances,
contraction is highly synchronized, resulting in an efficient throughput of oxygenated blood to the
body. Failure in doing so can lead to sudden cardiac death. The contraction also affects excitation
via the process called mechano-electrical feedback. An example of mechano-electrical feedback
that has fatal consequences is commotio cordis (Maron and Estes, 2010), a long-known (Akenside,
1763; Meola, 1879; Nesbitt et al., 2001) phenomenon where a blow to the chest (even without
damaging the heart) may cause ventricular fibrillation. Commotio cordis is still an important cause
of sudden cardiac death in young athletes (Maron, 2003). The underlying mechanism of mechano-
electrical feedback is caused by several factors, including stretch-activated ionic channels (Kohl
et al., 2001). Although much is already known about the subcellular contributions to mechano-
electrical feedback (Quinn et al., 2014), it is still unclear how these translate to macroscopic scales.
Computational models can further help understand the mechanisms and consequences of cardiac
mechano-electrical feedback up to the organ level.
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The heart is mostly modeled as a continuum via partial
differential equations (PDEs). For the spatial coupling between
cells, the cardiac mono- or bidomain equations (Keener and
Sneyd, 2009) are commonly used, in which any specific
model for individual cardiac cells can be inserted. For the
mechanical problem, the most commonly used are the PDEs
of finite (hyper)elasticity (Nash and Hunter, 2000). The joint
solution of these equations is a considerable numerical challenge.
The difficulties largely originate from the different physical
interactions that occur on a wide range of spatial and temporal
scales (Plank et al., 2008; Keyes et al., 2013). The multiphysics
nature makes it impossible to use a general-purpose black-box
solver for this task. Solvers can only be optimal if they use as
much information as possible about the problem. For example,
implicit/explicit integrators need to know which processes are
fast or slow, field-split preconditioners (Brown et al., 2012; Liu
and Keyes, 2015) need to be able to extract fields belonging to
different physics, and multigrid (Briggs et al., 2000; Trottenberg
et al., 2000) and domain decomposition (Quarteroni and Valli,
1999; Smith et al., 2004) solvers need information about the
meshes and discretizations.

In recent years, computational modeling of cardiac
electromechanics has become an active field of research see
e.g., (Göktepe and Kuhl, 2010; Lafortune et al., 2012; Land
et al., 2012; Fritz et al., 2014; Rossi et al., 2014; Franzone et al.,
2015; Augustin et al., 2016). However, different groups often use
different descriptions for the same problems with different forms
for deformation-dependent conduction tensors and sometimes
convective terms in the undeformed configuration. In addition,
current electromechanics codes are often the result of ad hoc
coupling methods between the electrophysiology and finite
elasticity codes, limiting time integration to only first order
numerical schemes and poor stability, although some approaches
are known to address these stability issues (Niederer and Smith,
2008; Pathmanathan and Whiteley, 2009). This problem is
common in other fields that use multiphysics (Keyes et al., 2013).

Our contributions in this paper are the following. First,
we give a consistent derivation of the continuum equations
of coupled electromechanics of the heart based on basic
principles from geometry and physics and the clarification of the
constitutive equations used. From this we show that there are
no convective terms in the undeformed configuration and that
the variety of deformation-dependent conduction tensors from
literature are all special cases of a more general form that we
present here. Second, we generalize Euler-based implicit-explicit
schemes for electromechanics to higher order implicit-explicit
Runge-Kutta schemes, based on the knowledge of fast/slow
dynamics. Third, we explain on how to solve the resulting non-
linear implicit equations from a general multiphysics perspective.

This paper is structured as follows. In section 2 we introduce
the necessary notations and concepts and present the strong
and weak form for the continuum electromechanics equations,
followed by a brief discussion on how to discretize the weak form
equations using finite elements in section 3. Next, we discuss on
how to discretize the electromechanics equations in time using
implicit-explicit schemes and how to solve the resulting non-
linear equations in 4. Finally, in section 5 we explain how we

implemented this using PETSc (Balay et al., 1997, 2016a,b) in our
GEMS (Ghent ElectroMechanics Solver) code, and give examples
of numerical results in section 6.

2. PHYSICS

In this section we introduce the mathematical basis for physical
modeling in the moving domain, distinguishing between the
Eulerian and Lagrangian viewpoints. Then we show how the
balance equations (i.e., physical conservation laws) need to be
closed by constitutive equations. By imposing symmetry (e.g.,
a locally uniaxial medium), the constitutive equations involving
tensors cannot be chosen freely, but need to be of certain form
which we here propose and discuss. We conclude by splitting the
equations in fast and slow components, which will be respectively
treated implicitly and explicitly during time stepping in section
4. At the end of this section, we will have cast the modeling
equations in variational form, suitable for use in the finite
element approach.

2.1. Definitions and Notation for
Geometrical Concepts
To formulate the problem of electromechanics, it is important
to understand the underlying geometry. Since we will consider
continuum equations here, it is natural to consider them on a
manifold, i.e., a “curved” space which locally resembles Euclidean
space. For additional background material we refer to Marsden
and Hughes (1994) and Frankel (2012).

Let B be the material manifold of dimension m. This is a
reference manifold for our body. For an excitable surface,m = 2
and for a three-dimensional tissue, m = 3. On every patch of B,
we define material coordinates XI , I = 1, ..,m.

The space in which the body moves is given by the spatial
manifold S (which is sometimes called the ambient or target
manifold), of dimension n. For example, if an excitable surface
is restricted to move in a plane, n = 2. However, in the general
case where the tissue can move in 3D, n = 3. On every patch of
S , we define spatial coordinates xi.

We will assume that we have a metric for these manifolds,
which we denote by resp. G and g, so that we have Riemannian
manifolds. In the simplest case (which we will use further) S

will be n-dimensional Euclidean space, such that xi are Cartesian
coordinates x, y, z, and B will be an open subset of Euclidean
m-dimensional space. However, a non-Euclidean metric on B

can be important in growth and remodeling phenomena (Ozakin
and Yavari, 2010), e.g., hypertrophy and thermoelasticity (Yavari,
2010).

A configuration of B is a mapping φ :B → S which represents
the deformation of the body and we will often use the notation
xi = φi. The set of all configurations of B is called the
configuration space C and is an infinite-dimensional manifold.

The tangent map Tφ :TB → TS ,Tφ(X,V) = (φ(X),Dφ(V))

is called the deformation gradient F and is FiI =
∂φi

∂XI in
components. This tells us how a tangent vector at a point X ∈ B

transforms under φ.
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Another important concept is the deformation tensor C, which
is the pullback of the metric g: C = φ∗g, or in components CIJ =

FiIgijF
j
J . Note that the squared infinitesimal distance between

nearby points with coordinates XI and XI+dXI or xi and xi+dxi

is ds2 = gijdx
idxj = CIJdX

IdXJ , showing that CIJ is a measure for
how length and angles between fixed pairs of points in the tissue
change under a deformation. If we pull back the volume form dv
on S to B, we get φ∗dv = JdV , where dV is the volume form on

B and J =

√
det g

√
detG

det F the Jacobian of the deformation.

The strain in the tissue will depend on how the current length
and angles relate to the reference case, which is quantified by the

strain tensor E =
φ∗g−G

2 . Since φ is an isometry only if φ∗g = G,
E measures the deviation between the current deformation and
an isometry.

In cardiac contraction, the configuration (or deformation) φ
is time-dependent, which can be represented by a curve C in
configuration space, i.e., a mapping R → C; t → φt , called the
motion. The material velocity and acceleration are then defined
to be respectively the first and second time derivatives of the

motion. Their components are given by V i =
∂φi

∂t and Ai =
∂V i

∂t + (γ i
jk
◦ φ)V jVk, where γ i

jk
are connection coefficients on S .

Since we use Euclidean space for S , we have γ i
jk
= 0.

At this point, it is useful to discuss the Eulerian and
Lagrangian viewpoints. Given the above definitions, any objects
that are defined on B are called Lagrangian or material, while
the concepts defined on S are called Eulerian or spatial. The
Lagrangian and Eulerian point of view are equivalent, because
anything that is defined in one can be transformed to the other.
For cardiac tissue it is natural to use the Lagrangian framework.
This has the advantage that we do not need convective derivatives
in the description.

To model the cardiac microstructure, i.e., the fiber, sheet and
normal direction, we will use frame fields, which are also called
vielbeins in physics. Frame fields are a set of orthonormal vector
fields. They span at each point of a manifold a basis for the
tangent space. If G is the metric of our (material) manifold and
{EA}

m
A=1 the frame field, the orthonormality condition is

G(EA,EB) = δAB. (1)

The dual of the frame field is denoted EA (with upper indices) and
called the coframe field. It is defined to obey EA(EB) = δAB , such
that it can be used to write the metric in the simple form

G =

m
∑

A=1

EA ⊗ EA. (2)

We will denote the components of the frame field EA in the
coordinate basis by EIA and of the coframe field EA by EAI .

2.2. Balance Equations
Although the bidomain and elasticity equations are well-
known, we will still derive for consistency the equations of
cardiac electromechanics here starting from basic continuum
balance laws. This will allow us explicitly mention assumptions

and approximations made, and to emphasize that cardiac
electromechanics is more than just the sum of bidomain and
elasticity equations, giving rise to more complicated constitutive
equations (such as deformation-dependent conduction tensors).

Our starting point are physical conservation laws: balance of
charge in the intra- and extracellular domains, no accumulation
of total charge, balance of momentum, and the dynamics
of the internal variables (such as gating variables and ionic
concentrations):

∂Qi

∂t
+ DIV Ji = −Iion, (3a)

∂Qe

∂t
+ DIV Je = Iion, (3b)

∂(Qi + Qe)

∂t
= 0, (3c)

ρRefA− DIVP − ρRefB = 0, (3d)

∂Ŵ

∂t
= R, (3e)

where Qi and Qe are the intra- and extracellular charge densities,
Ji and Je are the intra- and extracellular current densities, ρRef is
the reference mass density, A is the acceleration, P the first Piola-
Kirchhoff stress tensor, B is the body force (e.g., gravity), Ŵ is a
column matrix of the internal variables and R are their reaction
rates. Note that all quantities live on the material manifold B and
DIV is the divergence operator on B.

The assumptions in the bidomain formulation are the
following. First, the cell membrane can bemodeled as a capacitor:
Qi − Qe = 2CmVm, where Cm is the capacitance per volume and
Vm = Vi − Ve the transmembrane voltage. Second, the intra-
and extracellular space are ohmic conductors, with intra- and
extracellular conductivities6i and6e . Thus we get the following
set of equations:

∂(CmVm)

∂t
+ DIV (6i · GRADVm)+ DIV (6i · GRADVe) = −Iion,

(4a)

DIV (6i · GRADVm)+ DIV ((6i+e) · GRADVe) = 0,

(4b)

∂Ŵ

∂t
= R,

(4c)

ρRefA− DIVP − ρRefB = 0.

(4d)

An assumption often made in cardiac mechanics is the neglect
of the inertial term ρRefA. This is justified because sound waves
occur on a much faster time scale than the electrical waves in
cardiac tissue: the ratio of the speed of sound to conduction
velocity is around 25. This was also validated numerically in an
electromechanical model of a 1D fiber (Whiteley et al., 2007).

2.3. Constitutive Equations
To close Equations (4) we need to specify constitutive equations
for6i,6e, Iion, R, and P. We will only consider the dependencies
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as pointwise functions of material position X, transmembrane
potential Vm, internal variables Ŵ and deformation C:

6i = 6̂i(X,C), (5a)

6e = 6̂e(X,C), (5b)

Iion = Îion(X,Vm,Ŵ,C), (5c)

R = R̂(X,Vm,C) (5d)

P = FŜ(X,Ŵ,C). (5e)

Instead of working with a function P̂ for the first Piola-Krichhoff
stress tensor, we directly work with a function Ŝ for the second
Piola-Kirchhoff stress tensor, because it is symmetric. It is also
possible that the material capacitance depends on deformation,
and therefore we write Cm = Ĉm(X,C). Based on the symmetries
of the material we can deduce more specific representations for
the scalar (Îion, R̂, and Ĉm) and symmetric second order tensor
functions (6̂i, 6̂e, Ŝ). Because of the specific microstructure of
cardiac tissue, we only focus on orthotropic materials, but more
general symmetries based on crystal groups are possible (Smith,
2012). For the following we will use the notation {EA}A∈{F,S,N} for
the local fiber, sheet and sheet normal directions.

Let us start with the scalar functions. It can be shown
(Itskov, 2013) that every scalar-valued function of a symmetric
rank-2 tensor M, such as the deformation tensor C, the second
Piola-Kirchhoff stress tensor S and the conduction tensors
6i,6e, which is invariant under orthotropic symmetries
can be written as a function of the seven invariants
{MFF ,MSS,MNN , (MFS)

2, (MFN)
2, (MSN)

2,MFSMSNMNF}. If
det(M) = 1, (e.g., when M is the deformation tensor of
an incompressible material), these seven invariants are not
independent anymore and we can leave out the last one. In that
case our scalar constitutive equations would be a function of
the six invariants {MFF ,MSS,MNN , (MFS)

2, (MFN)
2, (MSN)

2}.
Often Îion and R̂ are taken to be a function of the fiber stretch
λ =

√
CFF only, see for example Niederer et al. (2006) and

Panfilov et al. (2007).
Orthotropic tensor-valued functions T of a symmetric tensor

M can be shown to be of the form (Itskov, 2013)

T̂(M) =
∑

A∈{F,S,N}

[

α̂A (EA ⊗ EA) (6)

+
β̂A

2
(M · EA ⊗ EA + EA ⊗ EA ·M)

+
γ̂A

2

(

M2 · EA ⊗ EA + EA ⊗ EA ·M2
)

+
δ̂A

2
(M · EA ⊗ EA − EA ⊗ EA ·M)

+
ǫ̂A

2

(

M2 · EA ⊗ EA − EA ⊗ EA ·M2
)

]

,

where α̂, β̂ , γ̂ , δ̂, and ǫ̂ are now scalar-valued functions of M.
Note that for T̂(M) symmetric δ̂A = ǫ̂A = 0 while for T̂(M)
antisymmetric α̂A = β̂A = γ̂A = 0.

When we write out this expression in components of the EA
frame (A, B ∈ {F, S,N}, no summation implied) we get:

T̂AB(M) =
α̂A + α̂B

2
δAB +

β̂A + β̂B + δ̂A − δ̂B

2
MAB

+
γ̂A + γ̂B + ǫ̂A − ǫ̂B

2
(M2)AB. (7)

The second Piola-Kirchhoff stress tensor S is symmetric and

in the case that it is hyperelastic (such that ŜIJ(C) = 2 ∂ψ̂
∂CIJ

,

where ψ̂ is a function of the invariants), the constitutive equation
simplifies to

Ŝ(C) =
∑

A∈{F,S,N}

[

α̂A (EA ⊗ EA)+
β̂A

2
(C · EA ⊗ EA

+EA ⊗ EA · C)

]

+ γ̂C2. (8)

For ventricular cardiac tissue, the Guccione (Guccione et al.,
1995) and Holzapfel-Ogden (Holzapfel and Ogden, 2009)
constitutive equations are popular choices.

Throughout the literature on cardiac electromechanical
modeling, several deformation-dependent conduction tensors
have been proposed. The simplest form is obtained by making
the conduction coefficients 6A dependent on the stretch along
the principal material directions: with λA =

√
C(EA,EA),

6̂(C) =
∑

A∈{F,S,N}

6̂A(λA)EA ⊗ EA (9)

Examples for these are 6̂A(λA) = 6A, i.e., deformation-
independent or “gap-junction based” conduction(Bakir and
Dokos, 2015) or 6̂A(λA) =

6A

λ2A
(Colli Franzone et al., 2016). Yet

another form for the conduction tensor can be found in Bakir and
Dokos (2015), which they call “spatially based” conduction:

6̂(C) = JU−1 ·





∑

A∈{F,S,N}

6A(λA)EA ⊗ EA



 · U−T , (10)

where U is the right stretch tensor, i.e., U =
√
C. A related form

is (Sachse, 2004):

6̂(C) = W ·





∑

A∈{F,S,N}

6A(λA)EA ⊗ EA·



WT , (11)

where W = U−1
(

1+ θ(U − 1)
)

and θ ∈ [0, 1] is a parameter
which reduces this conduction tensor to the “spatial based”
conduction for θ = 0 (apart from the Jacobian factor) and to
a “gap-junction based” conduction for θ = 0.

In Göktepe and Kuhl (2010) and Göktepe et al. (2013) the
following transversely isotropic form

6̂(C) = 6isoC
−1 +6aniEF ⊗ EF (12)
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was used and in Plank et al. (2013):

6̂(C) =





∑

A∈{F,S,N}

6AEA ⊗ EA



 · C−1. (13)

This variety of deformation-dependent conduction tensors is
mostly a consequence of the assumptions that were made about
the conduction coefficients, for example one assumes that the
conduction coefficients are constant in the spatial or in the
material frame. However, nothing says a priori if these should
even be constant. So to have realistic deformation-dependent
conduction tensors relationships, the conduction coefficients
should be based on measurements with different deformations.

2.4. Variational Formulation
In view of the time-integration methods which will be presented
in section 4.1, let us split R in fast processes (to be treated
implicitly) and slow processes: R = RI + RE. Furthermore, let
Pappl denote the applied pressure on the pressure boundary of

the deformation φ (e.g., the fluid pressure at the endocardial
surfaces). Writing the fast processes on the left-hand side and
the slow processes at the right-hand side, the weak or variational
form for electromechanics can be written as: find Vm,Ve,Ŵ,φ
such that

∫

B

δVm
∂Vm

∂t
dV +

∫

B

δVm|I (6i)
IJ

(

Vm|J + Ve|J
)

dV = −

∫

B

δVmIiondV

(14a)
∫

B

δVe|I
(

(6i)
IJ Vm|J + (6i+e)

IJ Ve|J
)

dV = 0 (14b)

∫

B

δŴ

(

∂Ŵ

∂t
− RI

)

dV =

∫

B

δŴREdV

(14c)
∫

B

δφi
∣

∣

I
PIidV +

∫

∂NB

δφiPapplJ
(

F−1
)

I
iNIdS = 0, (14d)

for all test functions δVm, δVe, δŴ, δφ. The notation |I was
introduced for the I’th component of the covariant derivative, i.e.,

δVe|I =
∂Vm

∂XI and δφi
∣

∣

I
=

∂(δφi)
∂XI +γ i

jk
δφjFkI (again, for Euclidean

S the connection γ vanishes).
Note that we can write any left-hand side of (14) in the

following form:

∫

B

(

v · f0 +∇v : f1
)

dV +

∫

∂NB

v · g0dS (15)

where v represents any of the test functions and f0, f1, and g0 are
general functions of Vm, Ve, Ŵ, and φ, their gradients and time
derivatives, time and spatial coordinates. More specifically, we
can summarize all the fast physics by pointwise functions in the
following table:

f0 f1 g0
Vm

∂Vm
∂t 6i · ∇Vm +6i · ∇Ve

Ve 6i · ∇Vm + (6i+e) · ∇Ve

Ŵ ∂Ŵ
∂t − RI

φ P PapplJF
−T · N

(16)

For implicit time integration we will also need the Jacobian of the
left-hand side. Its action on the increments 1Vm, 1Ve, 1Ŵ, and
1φ is given by

∫

B

δVmγ1VmdV +

∫

B

δVm|I (6i)
IJ 1Vm|J dV (17a)

∫

B

δVm|I (6i)
IJ 1Ve|J dV (17b)

∫

B

δVe|I (6i)
IJ 1Vm|J dV (17c)

∫

B

δVe|I (6i+e)
IJ 1Ve|J dV (17d)

∫

B

δŴ

(

γ −
∂RI

∂Ŵ

)

1ŴdV (17e)

∫

B

δφi
∣

∣

I
A I J
i j 1φ

j
∣

∣

J
dV +

∫

∂NB

δφiPapplB
J

ij 1φ
j
∣

∣

J
dS (17f)

where γ is the shift factor determined by the numerical
integration scheme (for example, for backward Euler with time
step h, γ = h−1) and

B J
ij =

∂

(

J
(

F−1
)I

i
NI

)

∂F
j
J

= JNI

(

(

F−1
)I

i

(

F−1
)J

j

−
(

F−1
)I

j

(

F−1
)J

i

)

, (18)

and

A I J
i j =

∂P I
i

∂F
j
J

(19)

is called the first elasticity tensor (Marsden and Hughes, 1994).
The expressions (17) can generally be written as

∫

B

[

vT ∇vT
]

[

f0,0 f0,1
f1,0 f1,1

] [

w

∇w

]

dV +

∫

∂NB

[

vT
] [

g0,0 g0,1
]

[

w

∇w

]

dS

(20)

and the pointwise Jacobians can be summarized as

f0,0 f1,1 g0,1
(Vm,Vm) γ 6i

(Vm,Ve) 6i

(Ve,Vm) 6i

(Ve,Ve) 6i+e

(Ŵ,Ŵ) γ − ∂RI
∂Ŵ

(φ,φ) A PapplB

(21)

where for example (Vm,Ve) refers to the derivative of the weak
equation for Vm w.r.t. Ve.

3. DISCRETIZATION

In this section we apply standard methods to express the
variational equations in a finite element basis, to obtain a
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large non-linear system to solve instead of continuum partial
differential equations.

We will use the finite element method (Ciarlet, 2002; Brenner
and Scott, 2007; Zienkiewicz et al., 2013) to spatially discretize
the weak forms (14). Let the manifold B be triangulated into
E m-simplices {Ke}Ee=1 (cells/elements), each diffeomorphic to

the standard m-simplex K̂ (with coordinates ξ Î): for each e
there is a coordinate map X̂e

: K̂ → Ke for which their

element Jacobians (Je) I
Î
= ∂X̂I

∂ξ Î
and their inverse exist (and are

continuous). If we also choose a function space P and a basis
for the dual space 6 over each element, the triple (K, P,6)
defines the finite element (Ciarlet, 2002). Here we will only use 1st

order Lagrange elements (Brenner and Scott, 2007). Let {ϕp}
dim P
p=1

denote the basis functions for P and let {ξq}
Q
q=1 and {wq}

Q
q=1 be

the quadrature points of a quadrature rule with Q quadrature
points (e.g., Gauss-Jacobi in the case of simplices Karniadakis and
Sherwin, 2013). Then we can define the element basis evaluation,
derivative and integration matrices as (Be)qp = ϕp(ξq),

(

De
I

)

qp
=

∂ϕp

∂ξ Î
(ξq)

(

(Je)−1
)

Î
I and (W

e)qp = δqpwq det (Je)

Following (Brown, 2010; Knepley et al., 2013) we discretize the
volume terms

∫

B

(

v · f0 +∇v : f1
)

dV (22)

as

∑

e

E
T
e

[

(Be)TWe3e(f0)+
∑

I

(De
I)
TWe3e(f I1 )

]

, (23)

where Ee is the element restriction operator and 3e transforms a
function into function evaluations at the quadrature points. Note
that evaluation of a field u at the quadrature points are evaluated
as ue = BeEeu and their derivatives as ∇Iu

e = De
IEeu.

The boundary integrals

∫

∂NB

v · g0dS (24)

are discretized as

∑

f

E
T
e(f )

[

(Be(f ))TWf3e(f )(g0)
]

, (25)

where e(f ) refers to the neighboring element of f , i.e., we evaluate
at the quadrature points of the face using the neighboring
element’s basis functions and field coefficients.

4. ALGORITHMS

In this section we present IMEX integration schemes, the
resulting non-linear equations and approaches to solve them
numerically for the specific structure of the electromechanical
equations.

4.1. Time Integration Using IMEX Schemes
For systems that havemultiple time scales that are well-separated,
we have to choose a time scale that we are interested in. In
studying the long term or slowly varying behavior, the fast
transient processes don’t need to be fully resolved, as these decay
rapidly. These systems are called stiff (see Söderlind et al., 2015
for a discussion on stiffness). Note that in discretized PDEs,
the fastest time scale often comes in the form of a Courant-
Friedrichs-Levy limit (Courant et al., 1928), making it mesh-
dependent.

Explicit schemes require the time step to be of the same order
as the fastest process for stability, so they are very inefficient for
stiff systems. Implicit schemes can step over those fast processes,
but the downside is that they produce large fully coupled non-
linear systems. Implicit-Explicit (IMEX) schemes combine the
best of both worlds: they integrate the fast processes implicitly
and the slow processes explicitly. A class of IMEX methods
are Additive Runge-Kutta Implicit-Explicit (ARKIMEX) schemes
(Ascher et al., 1997; Kennedy and Carpenter, 2001; Giraldo et al.,
2013). They combine two s-stage methods (ERK and (ES)DIRK),
summarized by two Butcher tableaus (Butcher, 2016)

cE1 aE11 · · · 0
...

...
...

cEs aEs1 · · · 0

bE1 · · · bEs

cI1 aI11 · · · 0
...

...
...

cIs aIs1 · · · aIss
bI1 · · · bIs

, (26)

additively to integrate equations of the following form

Mẏ = f I(y, t)+ f E(y, t), (27)

where y : I → R
N describes the evolution of the discretized

state, f I and f E are resp. the implicitly and the explicitly treated
functions andM is a mass matrix. The implicit function contains
the fast or stiff physics, whereas the explicit function contains the
slow or non-stiff physics. Often f I is linear and fE non-linear. The
i-th stage value Yi can then be computed as

Yi = yn + h

i−1
∑

j=1

aEijẎ
E
j + h

i
∑

j=1

aIijẎ
I
j , (28)

where the implicit and explicit stage derivates are given by ẎI
i =

M−1f I(Yi, tn+ cih) and Ẏ
E
i = M−1f E(Yi, tn+ cih). The difference

between both terms is that the stage Yi depends on only previous
stages for the explicit part, but also on the current stage for the
implicit part. The numerical constants aIij, a

E
ij follow from the

chosen integration scheme, see the Butcher tableaus (26).
After rearranging, Equation (28) produces a non-linear

equation in Yi, if the a
I
ii 6= 0:

Mγ (Yi − Zi)− f I(Yi, tn + cih) = 0, (29)

where γ is the shift factor determined by the numerical
integration scheme (for example, for backward Euler with time
step h, γ = h−1). The Jacobian for this equation is

γM −
∂f I

∂y
(Yi, tn + cih) (30)
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and is used while iteratively solving Equation (29) for Yi.
Thereafter, the implicit stage derivative can be simply found as

ẎI
i = γ (Yi − Zi) (31)

and the explicit stage derivative by evaluating the explicit
function

ẎE
i = M−1f E(Yi, tn + cih). (32)

The solution at the next time step is then calculated as

yn+1 = yn + h

s
∑

i=1

bEi Ẏ
E
i + h

s
∑

j=1

bIi Ẏ
I
i . (33)

Note that if f I = 0 we have a purely explicit scheme and if
f E = 0 we have a purely implicit scheme. In order to avoid the
need to invert M, we will only use schemes for which aIsi = bIi
and aEsi = bEi , the so-called globally stiffly accurate schemes
(Boscarino et al., 2013). Then, the completion step (33) can be
skipped. For amore thorough discussion on the technical aspects,
we refer to Kennedy and Carpenter (2001). In the context of
electrophysiology they were previously applied only to single
cell models, where they have been shown to outperform other
integration schemes (Spiteri and Dean, 2008).

4.2. Non-linear Solvers
The IMEX schemes allow us to put some of the complicated
non-linear dependencies in the right-hand sides, making the
implicit solve easier. If we make the following assumptions, we
can essentially solve the whole non-linear system by solving each
subproblem one after another: the ionic current, the stretch-
dependent terms in the cell models and dependence of the
tension variables on Cai or Vm must be in the RHS. Now
we can solve for the stage values by doing the following:
first solve the active tension internal variable equations, then
solve the mechanical equations (14d), then solve the bidomain
equations ((14a) and (14b)) together and finally solve the
electrophysiological internal variable equations (14c). This
approach is nothing more than the non-linear Gauss-Seidel
method applied to the fields:

Algorithm 1 Nonlinear Gauss-Seidel

Given initial u = (u1, · · · , un)
T

for k = 1, · · · , n do

Solve Fk(u
∗
1 , · · · , u

∗
k
, · · · , un) = 0 for u∗

k
end for

During this process, we solve the bidomain and, if possible,
the implicit internal variables equations with a linear solver (to
be specified below), while we solve the non-linear mechanical
equations with Newton’s method. If for some reason some of the
above assumptions do not hold and coupling between variables is
strong enough, more Gauss-Seidel sweeps are done to converge.
Alternatively, one could use the above algorithm as a non-linear
preconditioner (Liu and Keyes, 2015).

4.3. Linear Solvers and Preconditioners
4.3.1. Bidomain

We solve the discretized bidomain equations with conjugate
gradients preconditioned by block preconditioners (Sundnes
et al., 2002; Pennacchio and Simoncini, 2009; Bernabeu et al.,
2010; Pavarino and Scacchi, 2011). For this we use PETSc’s
FieldSplit preconditioner, allowing us to flexibly choose between
different strategies (Brown et al., 2012) from the command
line. Both blocks are preconditioned with one V-cycle of
PETSc’s native algebraic multigrid preconditioner (GAMG). If
no Dirichlet boundary conditions are given for the extracellular
voltage, we also provide the constant nullspace vector to the
respective block solve.

4.3.2. Mechanics

We solve the linearized elasticity equations arising fromNewton’s
method with conjugate gradients, preconditioned with PETSc’s
algebraic multigrid preconditioner. The difference here with
previous work (Franzone et al., 2015; Gurev et al., 2015; Augustin
et al., 2016) is that this algebraic multigrid preconditioner uses
smoothed aggregation (Vaněk et al., 1996), which ismore efficient
for elasticity problems (Van et al., 2001; Adams, 2002). We
provide the rigid body modes to PETSc’s GAMG preconditioner
to obtain more accurate coarse spaces, resulting in a significant
drop in iterations. Here we use a full multigrid cycle as this also
helps in lowering the number of iterations of the linear solver at
the expense of only a small percentage more work than a single
V-cycle.

4.3.3. Internal Variables

As the internal variables on different points are completely
decoupled these can be solved easily as small linear systems. Very
often these systems are even diagonal, for example when most of
the stiffness comes from the gating variables.

5. IMPLEMENTATION: GEMS

5.1. Source Code in C Using PETSc
We implemented our code in C using the PETSc library (Balay
et al., 1997, 2016a,b). This allows us to have a large choice
of scalable and efficient algorithms and data structures for the
solution of time-dependent PDE’s, which can be easily changed
or finetuned through command line options. By using PETSC’s
unstructured mesh data structure, we can easily read and write
commonmesh formats, (re)distributemeshes and associated data
and we have access to powerful solvers which need access to mesh
and field information (e.g., multigrid and block preconditioners).
More specifically, we used DMPlex (Isaac and Knepley, 2015;
Knepley et al., 2015; Lange et al., 2015) for mesh management
and PetscFE for finite element technology, TS (Abhyankar, 2014)
for time stepping, SNES for non-linear solvers and KSP/PC for
linear solvers and preconditioners. Input and output routines
are coupled to PETSc. Meshes can be read in through DMPlex
if it is of the ExodusII (Schoof and Yarberry, 1994), Gmsh
(Geuzaine and Remacle, 2009), CGNS (Poirier et al., 1998), MED
(Open CASCADE, 2017), Fluent Case (Fluent, 2006), or PLY
(Wikipedia, 2017) file format. Alternatively, meshes can also

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 143155

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Arens et al. GEMS: An Integrated Solver for Coupled Cardiac Electromechanics

be created by giving the vertex numbers per cell and vertex
coordinates. Output can be generated using the builtin PETSc
viewers. For example, DM (mesh) and Vec (representing discrete
fields) objects can be stored as HDF5 (The HDF Group, 1997-
2017) data, which can be read by ParaView (Ayachit, 2015)
or VisIt (Childs et al., 2012) with XDMF metadata (Kitware,
2017). The extensible nature of PETSc also makes it possible
to implement new solvers and use them through PETSc. This
way we implemented a SNES solver called SNESFieldSplit, which
is the non-linear block Gauss-Seidel solver we discussed in 4.2.
Once this solver knows about the field layout and the equations
per field through the DM, it can automatically do the subsolves.
This is the non-linear equivalent to PCFieldSplit (Brown et al.,
2012), already in PETSc.

5.2. Main GEMS Classes and Usage
The most important part of our GEMS library is the GEMSModel
class. It is responsible for providing all the model-dependent
information such as pointwise residuals and Jacobians,
discretizations, null spaces, and initial guess/conditions
to the appropriate PETSc classes. Current subclasses
include GEMSModelMonodomain, GEMSModelBidomain,
GEMSModelElasticity, GEMSModelElectromechanics (combining
monodomain and quasi-static elasticity), and GEMSModelFibres
(to create rule-based fiber directions based on solving Laplace
equations, following Bayer et al., 2012).

Typical usage for a non-linear problem is illustrated in 1.
Note that nothing should be done extra to run simulations
in different dimensions besides changing the mesh, which can
be as simple as just changing the filename of the mesh. The
...FromOptions(...) functions aremeant to be configured from the
command line or options file. For example, if the GEMSModel
should be changed to GEMSModelMonodomain, the option -
gemsmodel_type monodomain would be added to the command
line or options file.

Listing 1 | Typical usage of the GEMSModel class

MPI_Comm comm ;
SNES sn e s ;
DM dm;
Vec u ;
GEMSModel model ;

/∗ I n i t i a l i z e GEMS, PETSc , MPI , r ead
o p t i o n s ∗ /

GEMS In i t i a l i z e (& argc , &argv , NULL , h e l p ) ;
comm = PETSC_COMM_WORLD;

/∗ Cr e a t e a DMPlex u s in g , e . g . ,
DMPlexCrea t eFromFi l e ( ) ∗ /
DMPlexCreate . . . ( comm, . . . , &dm ) ;

/∗ Cr e a t e and c o n f i g u r e a GEMSModel ∗ /
GEMSModelCreate (comm, &model ) ;
GEMSModelSetFromOptions ( model ) ;
/∗ S e t model− s p e c i f i c d i s c r e t i z a t i o n s and
e q u a t i o n s i n t h e DM ∗ /

GEMSMode lSe tUpDiscre t i za t ion ( model , dm ) ;
/∗ Cr e a t e model− s p e c i f i c near−n u l l s p a c e

( t h i s i s u s ed by GAMG) ∗ /
GEMSModelCreateNearNul lSpace ( model , dm,

NULL ) ;

/∗ Cr e a t e and i n i t i a l i z e t h e s o l u t i o n
v e c t o r ∗ /

DMCreateGloba lVector (dm, &u ) ;
Pe t s cOb j e c t S e tName ( ( P e t s cOb j e c t ) u ,

" s o l u t i o n " ) ;
M o d e l I n i t i a l i z e S o l u t i o nV e c t o r ( model , dm,

u ) ;

/∗ Use DMPlex ’ s i n t e r n a l FEM r o u t i n e s ∗ /
DMSNESSetBoundaryLocal (dm,

DMPlexSNESComputeBoundaryFEM , NULL ) ;
DMSNESSetFunct ionLocal (dm,

DMPlexSNESComputeResidualFEM , NULL ) ;
DMSNESSet JacobianLoca l (dm,

DMPlexSNESComputeJacobianFEM , NULL ) ;

/∗ Cr e a t e and c o n f i g u r e t h e n o n l i n e a r
s o l v e r and s o l v e ∗ /

SNESCreate (comm, &sne s ) ;
SNESSetDM( snes , dm ) ;
SNESSetFromOptions ( s n e s ) ;
SNESSolve ( snes , NULL , u ) ;

/∗ View t h e mesh ∗ /
DMViewFromOptions (dm, NULL , "−dm_view " ) ;

/∗ View t h e s o l u t i o n ∗ /
VecViewFromOptions ( u , NULL , "−s o l _ v e c _
v iew " ) ;

/∗ Clean up ∗ /
SNESDestroy (& sne s ) ;
VecDes t roy (&u ) ;
ModelDestroy (&model ) ;
DMDestroy(&dm ) ;
GEMSFina l ize ( ) ;

Further we have a class for the electrophysiological 0D cell
models called GEMSCellModel. Its only function is to give
the pointwise implicit and explicit functions, Jacobian and
initial conditions. Currently implemented cell models include
FitzHugh-Nagumo (FitzHugh, 1961; Nagumo et al., 1962) and
Ten Tusscher-Panfilov 2006 (ten Tusscher and Panfilov, 2006)
models.

5.3. Comparison to Other Cardiac Solvers
One of the main features of GEMS is, that it uses PETSc (and
other third party packages it interfaces) as much as possible and
not just as a linear algebra solver. In particular it uses the DM
object prominently, which makes it easy to input/output meshes
and field data in various formats, feed field and mesh data to
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various advanced (non)linear, often consisting of combinations
of subsolvers, etc (for example, the block preconditioners for
bidomain or incompressible elasticity in which each field has a
different preconditioner and linear iterative solver). These solvers
(and their subsolvers) can then be configured just from command
line options, without recompiling. Thus it strives for maximal
flexibility and easy experimentation. Other cardiac solvers such
as Chaste (Mirams et al., 2013) or Continuity (Continuity, 2018)
have already existed for many years and have functionalities
such as reading generic cell models through CellML and solving
mechanics. But the typical approach to electromechanics is first
order operator splitting with separate codes for mechanics and
electrophysiology. Our library was built with a flexible approach
to coupling between different physics from the beginning. To
specify a problem we start with a coupled set of equations
(defined by pointwise residuals, right hand sides and Jacobians)
and through command line options we can configure the solvers.
This makes experimentation with different combinations of
solvers a whole lot easier and also makes it possible to use higher
order integration schemes.

6. NUMERICAL RESULTS

6.1. Electrophysiology
As a first test we did the benchmark for electrophysiology with
the cardiac monodomain equations as described in Niederer
et al. (2011), with the suggested spatial resolutions of 0.5, 0.2,
and 0.1 mm (using linear tetrahedral elements) and temporal
resolutions of 0.05, 0.01, and 0.005 ms. We did the benchmark of
propagation in a 3D slab with three different integration schemes:
with FBE111 (forward-backward Euler), the ARS222 (Ascher
et al., 1997), and the BPR353 schemes (Boscarino et al., 2013)

(the numbers in the names of these integration scheme names
reflect the number of explicit and implicit stages and the order
of accuracy). As an extra, we also ran the benchmark using
a large time step of 0.5 ms at a spatial resolution of 0.1
mm, to showcase the stability and temporal convergence of
the used methods. The internal variables were stored at the
quadrature points. In Figure 1 we display the activation times
along the diagonal of the bar geometry. We see that increasing
spatial and temporal resolutions have opposite effects on arrival
times: increasing spatial resolution raises the arrival time, while
increasing the temporal resolution lowers the arrival time. The
faster convergence rate of the arrival time for higher order
time integration is also noticeable. For example, for the BPR353
scheme the arrival times for the time steps of 0.05, 0.01, and 0.005
are almost indistinguishable. In Niederer et al. (2011) different
codes were found to have arrival times between 37.8 and 48.7
ms at the highest spatial and temporal resolutions. Our arrival
times are within those bounds at these highest resolutions. (It is
inevitable that at lower resolutions the arrival time will deviate
more.) Execution times for the simulations can be found in
Table 1.

6.2. Electromechanics
At this stage of development of our package we decided just
to illustrate the solution of electromechanical equations using
the most simple tools. The comparison of various integration
methods and constitutive relations will be done at a later stage. As
an illustration for the fully coupled electromechanical equations
we simulated the contraction of an idealized biventricular
geometry that was stimulated at the apex. The mesh for this
geometry was created using Gmsh (Geuzaine and Remacle,
2009) with a resolution of 0.2 mm resulting in a tetrahedral

FIGURE 1 | Activation times calculated with the FBE111, ARS222, and BPR353 integration scheme with several spatial and temporal resolutions along the diagonal

of the bar geometry.
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Table 1 | Execution times for Niederer’s electrophysiology benchmark.

Scheme 1x (mm) 1t (ms) Execution time (s)

FBE111 0.1 0.5 4.20 · 103

FBE111 0.1 0.05 1.27 · 104

FBE111 0.1 0.01 6.34 · 104

FBE111 0.1 0.005 1.24 · 105

FBE111 0.2 0.05 1.81 · 103

FBE111 0.2 0.01 9.00 · 103

FBE111 0.2 0.005 1.82 · 104

FBE111 0.5 0.05 2.94 · 102

FBE111 0.5 0.01 1.48 · 103

FBE111 0.5 0.005 3.10 · 103

ARS222 0.1 0.5 5.40 · 103

ARS222 0.1 0.05 2.51 · 104

ARS222 0.1 0.01 1.25 · 105

ARS222 0.1 0.005 2.48 · 105

ARS222 0.2 0.05 3.48 · 103

ARS222 0.2 0.01 1.77 · 104

ARS222 0.2 0.005 3.44 · 104

ARS222 0.5 0.05 4.30 · 102

ARS222 0.5 0.01 2.19 · 103

ARS222 0.5 0.005 4.40 · 103

BPR353 0.1 0.5 1.10 · 104

BPR353 0.1 0.05 5.27 · 104

BPR353 0.1 0.01 2.59 · 105

BPR353 0.1 0.005 5.22 · 105

BPR353 0.2 0.05 7.28 · 103

BPR353 0.2 0.01 3.57 · 104

BPR353 0.2 0.005 7.12 · 104

BPR353 0.5 0.05 7.45 · 102

BPR353 0.5 0.01 3.67 · 103

BPR353 0.5 0.005 7.15 · 103

Simulations were run on 32 nodes of Intel E5-2670 CPUs, using 1 core per node. See

section 6.1 for details.

mesh consisting of 1529230 cells and 312888 vertices. We used
the algorithm from Bayer et al. (2012) to generate myofiber
orientations. The fiber angle varied from −45◦ (epi) to 75◦

(endo). We used the monodomain formulation and the TNNP06
(ten Tusscher and Panfilov, 2006) model for electrophysiology,
with the same parameters as in Niederer et al. (2011). For the
passive hyperelastic equations we used the Guccione constitutive
equations (Guccione et al., 1995), where a penalty term κ/2(J −
1)2 was added to the strain energy and for the active tension
generation we used the Niederer-Hunter-Smith model (Niederer
et al., 2006). Parameters were taken from Keldermann et al.
(2010) and κ was taken as 350 kPa. Here we used a timestep of
0.5 ms with the FBE111 scheme and we used linear elements for
the transmembrane voltage and deformations, while the internal
variables were stored at the quadrature points. The resulting
activation and contraction sequence can be seen in Figure 2. The
simulation took 7.5 h on 32 nodes of Intel E5-2670 CPUs, using
1 core per node. The electromechanical testing will be continued
in subsequent studies.

7. DISCUSSION AND OUTLOOK

In this paper we presented an overview of the methodology used
in cardiac electromechanics and our numerical approach to these
challenging problems. In particular, in section 2 we presented
a short derivation of the main equations of electromechanics
from basic principles (i.e., geometry and balance equations)
in strong and weak form. We discussed constitutive equations
to close these equations and clearly list all assumptions
made. We derived a general representation of a deformation-
dependent conduction tensor, assuming orthotropic symmetry
and pointwise dependence on deformation and showed that
previous deformation-dependent conduction tensors found in
literature are all special cases of this. Note however, that the
scalar functions in this representation still need to be determined
from experiment. In section 3 we applied standard finite element
methods to express the variational equations in a finite basis,
which can then be solved by the numerical methods in section 4.
There we discussed additive implicit-explicit Runge-Kutta time
integration methods and how with appropriate partitioning of
fast and slow physics the non-linear implicit equations can be
solved more easily by solving smaller problems belonging to
different fields one after another. Efficient (non-)linear solvers
for these problems were also discussed. Further we reviewed the
structure and possibilities of the GEMS library in section 5 and
how PETSc gives us a wide range of tools to solve our PDE’s,
including meshes, I/O and solvers. In section 6 we presented
some numerical results as verification and illustration of the
GEMS library.

Our main conclusion is that additive implicit-explicit Runge-
Kutta time integration methods, combining the advantages
of implicit and explicit integration, work very well for
electromechanical problems. This method allows larger time
steps, with limited complication of Jacobians and non-linear
solves. Our numerical implementation uses the PETSc library
extensively, which gave us access to powerful and scalable mesh
management, time stepping and (non)linear solvers which may
need mesh and field information. One of the things which could
be further researched is whether we can get much advantage
of anistropic mesh adaptation through the PRAgMaTIc library
(Rokos and Gorman, 2013), which has been recently interfaced
to PETSc (Barral et al., 2016). This could also be used to build
mesh hierarchies in a geometric multigrid approach.

The GEMS package is still in the process of further
development. Although the user can access and set all solver
options through the command line, a graphical user interface
may be desirable in the future, both for input and visualization.
Regarding modeling, we currently hard-coded two cell models
(FHN and TP06) and foresee to import more models of cardiac
electrophysiology in a semi-automated way via the CellML
repository (www.cellml.org). We are currently using pressure
boundary conditions on the endocardial surface, which can be
extended with physical models for circulation and valve action.

Our method has been designed to enable strong coupling
between the electrical and mechanical subsystems at every time
step of the simulation, and at the same high spatial resolution,
both for the electrical and mechanical equations. One possible
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FIGURE 2 | Time sequence of electromechanical contraction of a full 3D biventricular cardiac geometry. Color coding shows transmembrane potential.

speed-up factor is the following: currently all field values and
gradients at the quadrature points are calculated for each residual
or Jacobian belonging to some field(s), for maximum flexibility.
Thus, one may avoid unnecessary interpolation in order to
accelerate the computation of the residuals: if the residual of field
A is independent of field B, the value or gradient of field B at the
quadrature points is not needed.

The use of PETSc enables to parallelize the computation on
high-performance computing clusters (HPC). Smaller (test) runs,
can be run on a desktop computer, requiring about 32GB of
RAM memory to run the biventricular model in Figure 2 with
the TP06 cell model. There is no significant difference in memory
cost between mono- and bidomain equations, since the latter
introduces only few new state variables (extracellular potential,
extracellular conductivities).

In this paper we have chosen to illustrate our approach using
simple standard problems: the benchmark for electrophysiology
(Niederer et al., 2011) and simple illustration of electromechanics
for the fully coupled equations an idealized biventricular
geometry. This is because we mainly wanted to describe of the
methodology and place it to the existing environment and did

not focus on specific scientific applications. Such simulations
can definitely be performed using our methodology and will be
presented in subsequent papers.
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NOTATION

A acceleration
B body force
B material manifold
C deformation tensor
E strain tensor
{EA}A∈{F,S,N} material fiber directions
F deformation gradient
G material metric
g spatial metric
J Jacobian of deformation
P first Piola-Kirchhoff stress tensor
Pappl applied pressure

R reaction rates for internal variables
S second Piola-Kirchhoff stress tensor
S spatial manifold
6e extracellular conduction tensor
6i intracellular conduction tensor
V velocity
Ve extracellular voltage
Vm transmembrane voltage
X material coordinates
x spatial coordinates
Ŵ internal variables (i.e., ionic concentrations,

gating variables, tensions variables)
φ deformation field
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Diabetic retinopathy (DR) is a leading cause of vision loss worldwide. Microaneurysms

(MAs), which are abnormal outpouchings of the retinal vessels, are early and hallmark

lesions of DR. The presence and severity of MAs are utilized to determine overall DR

severity. In addition, MAs can directly contribute to retinal neural pathology by leaking

fluid into the surrounding retina, causing abnormal central retinal thickening and thereby

frequently leading to vision loss. Vascular perfusion parameters such as shear rate

(SR) or wall shear stress (WSS) have been linked to blood clotting and endothelial cell

dysfunction, respectively in non-retinal vasculature. However, despite the importance

of MAs as a key aspect of diabetic retinal pathology, much remains unknown as to

how structural characteristics of individual MAs are associated with these perfusion

attributes. MA structural information obtained on high resolution adaptive optics scanning

laser ophthalmoscopy (AOSLO) was utilized to estimate perfusion parameters through

Computational Fluid Dynamics (CFD) analysis of the AOSLO images. The HemeLB flow

solver was used to simulate steady-state and time-dependent fluid flow using both

commodity hospital-based and high performance computing resources, depending on

the degree of detail required in the simulations. Our results indicate that WSS is lowest

in MA regions furthest away from the feeding vessels. Furthermore, areas of low SR are

associated with clot location in saccular MAs. These findings suggest that morphology

and CFD estimation of perfusion parameters may be useful tools for determining the

likelihood of clot presence in individual diabetic MAs.
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INTRODUCTION

As the worldwide prevalence of diabetes mellitus continues to
increase, diabetic retinopathy (DR) remains the most common
vascular complication in diabetic patients (Kempen et al.,
2004; Klein, 2007; Ko et al., 2012). The chronic hyperglycemic
state of diabetes results in pathological alterations of retinal
microvascular structures and blood flow (Curtis et al., 2009).
Retinal microaneurysms (MAs), which are outpouchings of the
retinal capillary walls, are one of the earliest clinical signs
in the diabetic eye and are among the key lesions for DR
severity classification (ETDRS_No10, 1991; ETDRS_No12, 1991;
Wilkinson et al., 2003; Hirai et al., 2007). Whereas some MAs
do not appear to affect vision, other MAs can be associated
with abnormal vascular leakage caused by the local loss of
endothelial barrier function. In some cases, this may lead to
subsequent retinal edema and associated vision loss (Nunes et al.,
2009; Murakami et al., 2011). MA leakage affecting the local
neural retina can often be detected by fluorescein angiography
(FA), and treated by intraocular injections of anti vascular
endothelial growth factor agents or steroids, as well as macular
laser photocoagulation (Duh et al., 2017).

Several studies have evaluated the pathogenesis and natural
history of MAs using ex vivo (e.g., transmission electron
microscopy and scanning electron microscopy) and in
vivo (scanning laser ophthalmoscopy and optical coherence
tomography) imaging approaches to characterize pericyte loss,
basement membrane thickening, and endothelial proliferation
and disruption (Wise, 1957; Cogan et al., 1961; de Oliveira, 1966;
Ashton, 1974; Moore et al., 1999). One study (Ezra et al., 2013)
proposed using MA-to-vessel radius ratio as a potential marker
for assessing risk of leakage, and suggested that shear stress at the
MA wall may lead to endothelial dysfunction.

Advances in adaptive optics scanning laser microscopy
(AOSLO) have recently enabled non-invasive investigation of the
living human retina with single cell level resolution (∼2µm)

(Tam et al., 2010; Chui et al., 2012, 2013), allowing detailed
characterization of MA features (wall hyper-reflectivity, wall
deformability), morphology (saccular, fusiform, focal bulge,
irregular) and perfusion status (fully/partially perfused or non-
perfused). One recent study (Dubow et al., 2014), which
combined high resolution AOSLO with FA to provide a high-
resolution and high-contrast view of individual MAs, extended

the qualitative morphologic classification into six morphology
groups.

Retinal MAs are known to be highly dynamic lesions.

Over the course of the disease, some lesions will disappear
(possibly due to thrombus formation and revascularization)
while others will either stabilize or grow. A series of studies
(Goatman et al., 2003; Bernardes et al., 2009; Ribeiro et al.,
2013) have characterized MA turnover (defined as the sum of
the MA formation and disappearance rates Ribeiro et al., 2013)
and found this metric to be a predictor of macular edema
progression. However, these studies were limited in their ability
to fully characterize MAs and did not include perfusion status
or morphological characteristics of individual MAs in their
analysis.

In a recent study, we demonstrated the feasibility of
computational fluid dynamics (CFD) analysis to characterize
the hemodynamic environment of the diabetic eye (Lu et al.,
2016). Comparable approaches have been extensively used for
the characterization of larger scale vascular lesions, such as
intracranial aneurysms (IA) (Dhar et al., 2008; Chien et al.,
2011). Morphological parameters, such as aneurysm aspect
ratio and non-sphericity index (Chien and Sayre, 2014) have
been identified as risk factors for rupture of IA. Perfusion
parameters, such as velocity, wall shear stress (Tarbell, 2010),
and shear rate have been proposed to study IA progression
and resolution. In particular, a relationship between shear
rate and IA thrombosis has been established (Ribeiro de
Sousa et al., 2016), leading to a better understanding of IA
progression.

In this study, morphological and CFD analyses of individual
diabetic MAs were performed based on high resolution AOSLO
technology. Our aim is to develop a method capable of
establishing which MA characteristics are associated with a
higher risk of leakage or clotting. We propose two novel
morphological indices to quantify MA shape and aspect ratio.
In addition, we introduce two CFD-based perfusion parameters
to predict areas with higher risks of endothelial dysfunction and
blood clotting. Finally, we demonstrate how to account for the
pulsatile nature of blood flow in the models development and
investigate the previous indices throughout the cardiac cycle.

METHODS

Imaging Instrument
The AOSLO used in this study was a modified version of
the Indiana system described previously (Burns et al., 2007).
A near infrared superluminesent diode (SLD) with a central
wavelength of 830 nm (BLM-S-830, Superlum, Ireland) was
used for imaging. Another SLD with a central wavelength of
780 nm (BLM-S-780, Superlum, Ireland) was used for wavefront
sensing. A micro-electro-mechanical system deformable mirror
(DM, Multi-DM, Boston Micromachines Corp., Cambridge,
MA, USA) provided wavefront correction. The DM has an
active area of 4.95 × 4.95mm and 12 × 12 actuators with a
maximum stroke of 5.5µm. The system uses doubler mirrors
to amplify the usable stroke of the DM (Webb et al., 2004).
The maximum beam size at the exit pupil is 6.5mm. Based
on theoretical calculations, this AOSLO system is capable
of compensating for over 90% of the optical aberrations
from an eye with clear media and a dilated pupil, achieving
∼2.5µm resolution. With such resolution, MA structural and
perfusion information can be characterized in much greater
detail than previously achievable with standard techniques
such as fundus photography or fluorescein angiography
(Figure 1).

Image Processing and Morphological
Analysis
MA Segmentation and Skeletonisation
The body and feeding/draining vessels of the MAs under study
were manually segmented from AOSLO images. The MA outline
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FIGURE 1 | Three MAs imaged by AOSLO superimposed on a digital fundus photograph from an eye with diabetic retinopathy.

FIGURE 2 | Segmentation of a partially clotted MA, (a) delineation of the MA body and feeding/draining capillaries against AOSLO movie frame, (b) same delineation

against perfusion map, (c) MA body (red) and MA feeding/draining capillaries (black) were independently segmented, (d) using AOSLO video files for reference, the

perfused (blue) vs. clotted regions (green) within the MA body were also segmented.

was created by using the Fiji/ImageJ “Polygon Selections” tool
to define series of line segments along the MA wall. The outline
was adjusted based on both the scattered light images (Figure 2a)
and their corresponding “perfusion map” (standard deviation
map) images calculated from the AOSLO frames (Figure 2b).
The “Create Mask” function was used to turn the segmentation
file into a binarized figure file. In the segmentation process,
the length of each feeding/draining capillary was taken to be
roughly equal to the MA body length along the flow direction
axis (see section Hemodynamic Analysis for more details). The
region representing the MA body was differentiated from the
feeding/draining vessels (Figure 2c). In the subset of MAs in
which we could identify blood clots, the perfused versus clotted
areas within the MA body were also segmented (Figure 2d).
Direction of flow was recorded from the AOSLO videos of
each MA. Binary masks defining the two-dimensional projection

of the MA body along with feeding/draining capillaries were
prepared for further processing. In the cases where clots were
present, the clotted area was also included in the binary
mask. We employed the methodology described previously
(Bernabeu et al., 2014) to calculate the MA centerline and
radii along the centerline from the Voronoi diagram of the
pixels defining the boundary of each binary mask (Attali and
Montanvert, 1997). Briefly, the centerline is the subset of the
Voronoi diagram defining the medial axis of the mask. For any
point along the centerline, its radius is given by the largest
circle centered on that point and inscribed within the mask
(Figure 3).

Morphological Analysis
In this work, we propose two novel indices to describe the
morphology of a retinal MA: the body-to-neck ratio (BNR)
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FIGURE 3 | BNR is defined as the largest caliber registered along the

centerline of the MA body (blue arrows) divided by the narrowest caliber along

the feeding/draining vessels (red arrows).

and the asymmetry ratio (AR). BNR provides a measure
of how dilated the MA body is in relation to the caliber
of the feeding/draining capillaries. BNR is defined as the
quotient between the MA body width and the caliber of the
feeding/draining vessels (see Figure 3). Chien et al. employed
a similar measure to characterize arterial brain aneurysms and
found a trend for increases in this index when comparing
aneurysms before and after rupture (Chien and Sayre, 2014).
BNR is computed based on the skeleton/radii analysis described
in sectionMA Segmentation and Skeletonisation. Briefly, theMA
width and feeding/draining vessel caliber are defined to be the
largest and smallest radii registered along the skeleton of the MA,
respectively.

AR quantifies the degree of asymmetry of the MA body.
AR is defined as the ratio between the larger (A1) and smaller
(A2) areas in the MA body mask to each side of the centerline
(A1 divided by A2 in Figure 4, respectively, where A1>A2).
Vorp et al. proposed a comparable measure of asymmetry for
idealized aortic abdominal aneurysm (AAA) geometries and used
it to characterize mechanical wall stress (Vorp et al., 1998).
In subsequent work, Finol et al. studied the impact of AAA
asymmetry on their hemodynamics and found that asymmetry
tends to increase the maximum wall shear stress at peak flow and
to induce the appearance of secondary flows in late diastole in
idealized AAA geometries (Finol et al., 2003). AR is computed
based on the MA body segmentation and centerline. Briefly, the
polygon approximating the MA body is split into two along the
MA centerline and the area of each sub-polygon is subsequently
calculated. Custom Python scripts were developed to calculate
BNR and AR.

Hemodynamic Analysis
Based on the MA skeletonisation previously described and
assuming rotational symmetry, we reconstructed the three-
dimensional luminal surface of each MA under study (Figure 5).
This surface encloses the approximate MA volume including

FIGURE 4 | AR is defined as the projected area on one side of the centerline

(A1) divided by the area on the other side of the centerline (A2), where A1 >

A2. This definition applies to both saccular (left) and fusiform (right) MAs as

shown in this figure.

its body and feeding/draining capillaries. The CFD package
HemeLB (Bernabeu et al., 2014) was used to simulate both steady-
state and time-dependent flow of a shear-thinning fluid modeled
with the Carreau-Yasuda rheology model parametrized for
human blood (Boyd and James, 2007). HemeLB uses the Lattice
Boltzmann Method for the numerical simulation of blood flow.
The interested reader can refer to (Aidun and Clausen, 2010;
Krüger et al., 2017) for a complete presentation. The velocity
field at the inlet was assumed to be parabolic (Poiseuille flow)
for a given centerline peak velocity. To define this velocity, we
took advantage of recent measurements of blood flow velocities
in parafoveal capillaries by de Castro et al. (2016). Figure 4b of de
Castro et al. (2016) reports velocity values over 4 cardiac cycles
(equivalent to 3.13 s), which we used in the time-dependent flow
simulations, with a mean capillary velocity of 1.69mm/s, which
we used in the steady-state flow simulations. Furthermore, no-
slip velocity was imposed at the walls and a reference pressure was
set at the outlet. To ensure that the flow field in the MAs is not
affected by the finite length of the feeding/draining capillaries, we
take them to be longer than the entrance length, Le, required for
laminar flow to fully develop in a circular straight pipe. This is
given by the expression Le = 0.035 ∗D ∗Re (Bird et al., 2002),
where D and Re are the diameter and Reynolds number of the
feeding vessel, respectively. In all the MAs studied Le can be
shown to be shorter than D. Therefore, the feeding/draining
capillaries were segmented to be of length comparable to the
MA body length along the flow axis for statistical purposes in
the hemodynamic analyses that follow. Steady-state HemeLB
simulations were run inexpensively in a four-core commodity
hospital-based workstation, while time-dependent simulations
made use of ARCHER, the UK National Supercomputing
Service (http://www.archer.ac.uk). Typical execution times for
the latter ranged between 4 and 10 h using 312 cores. All
computational domains were discretized as a regular grid
ensuring a minimum of 8 lattices sites across the narrowest point
in the domain (Bernabeu et al., 2014) and comprised between
45,000 and 520,000 fluid lattices sites.

Our computer simulations generated a description of
the velocity, shear rate, and pressure fields in the whole
computational domain as well as the wall shear stress on the
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FIGURE 5 | The image series shows the process for hemodynamic analysis. (A) The MA is imaged using AOSLO multiply scattered light imaging modality; (B) a

perfusion map of the MA is created (calculated based on pixel-by-pixel standard deviation method) highlighting blood flow; (C) a binary mask of the MA is generated

using the outline of the MA and its feeding and draining vessels; (D) a 3-D model of the MA is created under the assumption that it is rotationally symmetric; (E) flow

streamlines, colored according to velocity magnitude, are plotted to show the paths followed by blood inside the MA, arrow indicates direction of flow.

FIGURE 6 | All MAs numbered according to decreasing AR. Images not to

scale.

model surface. In this study, we decided to characterize the
changes in shear rate (SR) and wall shear stress (WSS) present
in the MAs. Low SR has been associated with blood cell
aggregation and clotting (Runyon et al., 2007) and abnormal
WSS levels have been linked to endothelial cell dysfunction
and changes in permeability (Tarbell, 2010). To reduce the
dimensionality of the data and facilitate further statistical
analysis we propose two indices for the characterization of
the hemodynamic state of an MA: the shear rate mean drop
(SRMD) and the wall shear stress mean drop (WSSMD). SRMD
reports the ratio between the mean of the SR field in the
MA feeding/draining vessels and the same measurement inside
the MA body. Similarly, WSSMD indicates the ratio between
the mean of the WSS on the MA feeding/draining vessels
surface and the same measurement on the surface of the
MA body. SRMD and WSSMD are dimensionless quantities.
Finally, in the case of MA displaying clots, we also estimated
SRMD for the clotted and perfused parts of the MA separately.
Custom Python scripts were developed to calculate SRMD
andWSSMD.

Study Cohort
In this study, 20 MAs were imaged from 13 eyes of 11
diabetic patients with varying severity of DR. The patient
and MA characteristics are given in Supplementary Table 1.
In this cohort, 9 of 11 patients had Type 1 diabetes, mean
diabetes duration was 25 years and mean HbA1c was 8.1%.
Informed written consent was obtained from each subject
prior to the performance of any study procedures. This study
adhered to the tenets of the Declaration of Helsinki and was
approved by the institutional review board of the Joslin Diabetes
Center.

Imaging Protocol and Light Safety
Mydriasis and cycloplegia were achieved by instillation of 1
drop each of 1% tropicamide (Akorn, Inc., Lake Forest, IL) and
2.5% phenylephrine hydrochloride (Akorn, Inc., Lake Forest,
IL). Prior to AOSLO imaging, eye axial length (IOL Master,
Zeiss, Germany) was measured to determine the magnification
factor on AOSLO images. Ultrawide field, 200◦ digital fundus
sphotographs (Optos 200Tx and Optos California, UK) were
taken to determine MA location. During imaging, the subject’s
head was placed on a chin rest, and a head rest was used
against the forehead for secure positioning. Precise head position
adjustment and pupil alignment were achieved using a three-
axis motorized stage (MT3-Z8 Thorlabs, NJ). MAs were imaged
using AOSLO confocal imaging mode and multiply scattered
light imaging mode with 75-frame videos. A 500µm and 150µm
pinhole was used for forward scattering image and confocal
imaging, respectively. Two SLDs were used for for imaging
(830 nm) and wavefront sensing (780 nm). Output power at
the cornea was 200 µW for the imaging SLD, and 70 µW
for the wavefront sensing SLD. The light power was checked
periodically to ensure compliance with the ANSI laser safety
standard (American National Standards Institute, 2014).

Statistical Analysis
The segmentation of all the MAs and clotted regions are
performed by at least 2 trained graders. For agreement between
graders, <10% area variation for each MA and sub-region is
ensured. All statistical analyses are completed using custom
Python scripts and the Statistics package of the SciPy library
(https://www.scipy.org). The Wilcoxon rank-sum test is used
to test for significance in the comparison between groups.
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FIGURE 7 | AOSLO images of the 5 MAs where a clot was identified.

FIGURE 8 | Asymmetry ratio index separated by MA groups.

A p < 0.05 is used to reject the null hypothesis that two
sets of measurements are drawn from the same distribution.
Associations between continuous variables are evaluated using
Pearson’s correlation coefficient.

RESULTS

Morphological and Hemodynamic Indices
Twenty MAs were imaged from 13 eyes of 11 diabetic
subjects as shown in Figure 6, 10 were classified as saccular
(5 partially clotted) and 10 as fusiform (none was clotted).
For each MA, projected MA body size, asymmetry ratio (AR),
body-to-neck ratio (BNR), shear rate mean drop (SRMD),
and wall shear stress mean drop (WSSMD) are shown in
Supplementary Table 2.

Analysis of Partially Perfused Mas
In the 5 partially perfusedMAs (Figure 7), which had evidence of
clot within theMA body, we calculated the hemodynamic indices
within the perfused and clotted regions of the MA separately
(Table 1).

Among the partially clotted MAs, the SRMD and WSSMD
values in the perfused regions were lower (mean ± SD: 63.36 ±

39.66 and 29.02 ± 16.74, respectively) than the values (211.85 ±
118.22 and 82.94± 30.91, respectively) in the clotted regions.

FIGURE 9 | MA body size by MA groups.

Asymmetry Ratio Predicts Manual MA
Morphology Classification
All of theMAs in the study were qualitatively classified as saccular
or fusiform according to the taxonomy proposed by Dubow et al.
(2014). AR was calculated for all MAs and was found to be lower
on average in the fusiform group compared to the saccular group
(p < 0.001, Figure 8). Our data indicate that an AR threshold
of ∼1.5 reliably distinguishes fusiform from saccular MAs in
this cohort. However, given the degree of overlap between both
groups in terms of AR, it may not be advisable to define a unique
cutoff value for automatic classification. Instead we propose a
semi-automatic approach were MA with an AR below 1.4 and
above 1.8 are automatically classified as fusiform and saccular,
respectively, while those in the 1.4-1.8 region are labeled for
manual classification by graders.

Association of MA Morphology and Size
The area defined by the MA body segmentation, which is
determined from an en face projection (xy plane) of the MA
volume, was calculated for all the MAs in the study and used
as a surrogate measure of MA size. Saccular MAs were found to
be smaller than fusiform MAs (p = 0.004, Figure 9) with some
saccular outliers having comparable size to the fusiform group.
Moore et al. (1999) measured the extent of saccular and fusiform
MAs in the direction perpendicular to the en face projection
(z axis) and found no statistically significant difference. Taken
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FIGURE 10 | Asymmetry ratio index in saccular MAs by clot presence.

TABLE 1 | Perfusion indices of the 5 MA within perfused versus clotted areas.

MA# Region SRMD WSSMD

MA1 Perfused 34.93 16.82

MA1 Clotted 321.68 93.13

MA6 Perfused 125.94 56.72

MA6 Clotted 352.52 132.08

MA7 Perfused 33.09 14.91

MA7 Clotted 173.48 58.41

MA14 Perfused 43.51 26.87

MA14 Clotted 112.18 72.41

MA20 Perfused 79.35 29.80

MA20 Clotted 99.41 58.66

together these results could indicate that size variability is more
likely to be observed along the en face cross section compared to
the transverse direction.

Shear Rate Mean Drop Is Higher in MA
Regions Likely to Clot
In the current study, all the MAs containing clots were of
saccular type. MAs presenting clots appeared to have a higher AR
approaching statistical significance in the comparison (p= 0.061,
Figure 10).

Clots were always identified in contact with the MA
wall. We performed hemodynamics analysis of the MAs to
understand the relationship between flow and clot formation.
The flow models were defined to include both the perfused
and clotted portions of any given MA. In the 5 partially
perfused MAs, we found that SRMD and WSSMD were higher
in the regions where the clots were present compared to those
that had not developed clots (p = 0.028 and p = 0.009,
respectively, Figure 11). This speaks in favor of a model where
MA thrombosis occurs in regions adjacent to the wall that
experience low shear rates (hence high SRMD). In agreement
with our results, low SR has been associated with blood
clotting in vitro (Runyon et al., 2007) and with thrombus

formation in intracranial aneurysms (Ribeiro de Sousa et al.,
2016). Indeed, despite the obvious structural and hemodynamic
differences between the macro and microcirculation, flow
diverters, which rely on the principle of flow reduction from
the parent circulation into the aneurysm body (hence SR
reduction), are an established treatment for brain aneurysms
(Jiang et al., 2016) to promote progressive intra-aneurysmal
thrombosis.

Body-to-Neck Ratio Correlates With
Perfusion Changes in the MA Body
Both saccular and fusiform MAs are characterized by a sudden
and non-uniform expansion of the vascular lumen. This change
is most asymmetrical in the saccular class of MAs. This abnormal
morphological configuration has a profound impact on the
hemodynamics of the MA. We propose BNR as a simple metric
for the quantification of hemodynamic abnormalities. Our results
demonstrate that BNR is a good surrogate marker of SRMD
(Pearson’s r = 0.9, Figure 12) and WSSMD (Pearson’s r = 0.83,
Figure 12). Furthermore, mean WSSMD in this cohort was 35.2
with values as high as 78.4 (compared to a theoretical value of
∼1 in the absence of MAs) showing the highly abnormal level
of WSS experienced by endothelial cells lining the MA body wall
compared to those in neighboring vessels.

Hemodynamic Changes Throughout the
Cardiac Cycle
Blood flow displays pulsatile characteristics throughout the
cardiac cycle. In our flow models, we can account for this
property by defining a time-dependent inlet boundary condition
based on the velocity traces measured by de Castro et al. (2016).
Based on these simulations, we investigate the changes in velocity
and shear rate throughout the cardiac cycle and their potential
link with MA perfusion status and MA progression.

As expected, we find velocity and shear rate to be
largest during systole, with regions that have developed clots
experiencing reduced velocity and shear rate. We hypothesize
that clots will form in areas of slow flow (i.e., low velocity) due to
a sustained reduction in shear rate throughout the cardiac cycle
(i.e., a low shear rate threshold). This is in agreement with in vitro
studies looking at clot formation and propagation (Runyon et al.,
2007). We calculate this threshold for the clotted region of MA1
to be ∼1 s−1 on the previously described AOSLO delineation. In
Supplementary Movie 1, we show the variation in the velocity
field inside MA1 throughout the cardiac cycle and, color-coded
in yellow, the regions of the MA experiencing a shear rate smaller
or equal to 15 s−1. Interestingly, we observe how MA regions
adjacent to the clotted part will fall below the threshold following
systole (hence the yellow color disappear/appear in this region)
when flow in the MA slows down.

Based on this observation, we postulate that a clot can
propagate over time in areas where shear rate remains under
threshold.We selected twoMAs from the same eye for follow-up,
one partially clotted at the time of baseline imaging (MA1) and
another fully perfused (MA4). After 15 months of follow-up, the
body of MA1 appeared to become non-perfused with persistent
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FIGURE 11 | Shear rate mean drop (SRMD, left) and wall shear stress mean drop (WSSMD, right) in partially perfused MAs by clotted/unclotted regions.

FIGURE 12 | Scatterplot of body-to-neck ratio vs wall shear stress mean drop index (left) and body-to-neck ratio vs. shear rate mean drop index (right) for each of the

MAs studied. Regression lines and associated correlation coefficients are given to demonstrate the good correlation between the pairs of variables. The marginal

histograms in each of the plots present the distribution of each of the variables studied.

blood flow through a central vessel (Figure 13). Interestingly, the
shape of MA4 remained unchanged and no clot development was
observed.

DISCUSSION AND CONCLUSIONS

In the current work, we propose 4 novel indices for the
classification and study of retinal MAs. Two of them are
structural (asymmetry ratio, AR and body-to-neck ratio, BNR),
and the other two describe the hemodynamic environment of
the MA (shear rate mean drop, SRMD and wall shear stress

mean drop, WSSMD). The limitations of the CFD methodology
include the assumption of rotational symmetry in theMA surface
reconstruction and the use of non-patient-specific boundary
conditions. We calculated these indices in a set of 20 retinal MAs
imaged with AOSLO. Our aim is to develop a method capable
of establishing which MA characteristics are associated with a
higher risk of leakage or clotting.

The data demonstrate that the proposed AR index is highly
correlated with the qualitative MA classification of being either
saccular or fusiform as performed by trained graders. The area
calculated from the en face AOSLO projection of the MA body
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FIGURE 13 | Saccular (A) and fusiform (B) MAs from the same eye of a patient with severe NPDR. The shape and the perfusion status of the saccular MA changed

dramatically, whereas the fusiform MA’s shape and perfusion status was maintained during the 15-month non-treatment period.

volume was found to be smaller in the saccular MAs studied
compared to fusiform MAs.

It remains elusive why only some MAs are associated with
retinal edema due to the disruption of endothelial cell barrier
function. Previous work has linked abnormal WSS levels to
endothelial cell dysfunction and changes in permeability (Tarbell,
2010). In the current work, we have proposed a method
for the quantification of the changes in WSS experienced
by the cells lining the MAs. Our results show a consistent
WSS reduction with up to one order of magnitude difference
among all cases (7- vs. 78-fold reduction). In future work, we
will investigate the association between WSSMD and clinically
observed MA leakage in longitudinal datasets. Furthermore, we
shall investigate associations between the changes in WSSMD
throughout the cardiac cycle and MA outcomes as changes in
hemodynamic frequency have been shown to regulate pathologic
phenotypes in endothelial cells (Feaver et al., 2012).

Previous studies have described and quantified the dynamic
turnover of MAs in retinal vasculature (Goatman et al., 2003,
Bernardes et al., 2009). In the current work, we took advantage of
high resolution AOSLO imaging to observe partially clottedMAs.
Five out of 20 MAs presented clots. All the partially clotted cases
were of saccular type. Therefore asymmetry appeared to play a
role in clotting. In one occasion, we could observe thrombosis
of the MA body and remodeling of the affected capillary. Based
on previous reports of the relationship between hemodynamics
and blood clotting (Runyon et al., 2007) and thrombosis of
vascular lesions (Ribeiro de Sousa et al., 2016), we studied
SRMD and WSSMD in the MAs prior to clot development
and identified a statistically significant reduction of both indices
in the regions that would subsequently develop clots. Taken
together, these results are consistent with the hypothesis that
MA asymmetry promotes MA thrombosis through the well-
characterized mechanism of blood clotting at low shear stress.

We anticipate that this work will shed light on the assessment
of the dynamic processes of retinal MA development, clotting,
and regression. We believe the proposed indices can be exploited
as biomarker for vascular stability and DR disease progression.
In future work, we will quantify this relationship and establish
WSSMD/SRMD thresholds that facilitate the prediction of MA
progression on a lesion-specific basis, as well as their relationship
with MA leakage.
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Cardio/cerebrovascular diseases (CVD) have become one of the major health issue in

our societies. Recent studies show the existing clinical tests to detect CVD are ineffectual

as they do not consider different stages of platelet activation or the molecular dynamics

involved in platelet interactions. Further they are also incapable to consider inter-individual

variability. A physical description of platelets deposition was introduced recently in

Chopard et al. (2017), by integrating fundamental understandings of how platelets

interact in a numerical model, parameterized by five parameters. These parameters

specify the deposition process and are relevant for a biomedical understanding of

the phenomena. One of the main intuition is that these parameters are precisely the

information needed for a pathological test identifying CVD captured and that they capture

the inter-individual variability. Following this intuition, here we devise a Bayesian inferential

scheme for estimation of these parameters, using experimental observations, at different

time intervals, on the average size of the aggregation clusters, their number per mm2,

the number of platelets, and the ones activated per µℓ still in suspension. As the

likelihood function of the numerical model is intractable due to the complex stochastic

nature of the model, we use a likelihood-free inference scheme approximate Bayesian

computation (ABC) to calibrate the parameters in a data-driven manner. As ABC requires

the generation of many pseudo-data by expensive simulation runs, we use a high

performance computing (HPC) framework for ABC to make the inference possible for

this model. We consider a collective dataset of seven volunteers and use this inference

scheme to get an approximate posterior distribution and the Bayes estimate of these five

parameters. The mean posterior prediction of platelet deposition pattern matches the

experimental dataset closely with a tight posterior prediction error margin, justifying our

main intuition and providing a methodology to infer these parameters given patient data.

The present approach can be used to build a new generation of personalized platelet

functionality tests for CVD detection, using numerical modeling of platelet deposition,

Bayesian uncertainty quantification, and High performance computing.

Keywords: platelet deposition, numerical model, Bayesian inference, approximate Bayesian computation, high

performance computing
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1. INTRODUCTION

Blood platelets play a major role in the complex process
of blood coagulation, involving adhesion, aggregation, and
spreading on the vascular wall to stop a hemorrhage while
avoiding the vessel occlusion. Platelets also play a key role
in the occurrence of cardio/cerebro-vascular accidents that
constitute a major health issue in our societies. In 2015,
Cardiovascular diseases (CVD), including disorders of the heart
and blood vessels, were the first cause of mortality worldwide,
causing 31% of deaths (Organization, 2015). Antiplatelet therapy
generally reduces complications in patients undergoing arterial
intervention (Mehta et al., 2001; Steinhubl et al., 2002). However,
the individual response to dual antiplatelet therapy is not uniform
and consistent studies reported that even under platelets therapy
there were recurrences of atherothrombotic events (Matetzky
et al., 2004; Gurbel et al., 2005; Geisler et al., 2006; Hochholzer
et al., 2006; Marcucci et al., 2009; Price et al., 2008; Sibbing
et al., 2009). In most cases, a standard posology is prescribed to
patients, which does not take into account the inter-individual

variability linked to the absorption or the effectiveness of these
molecules. This was supported by a recent study (Koltai et al.,
2017), reporting the high patient-dependency of the response
of the antithrombotic drugs. We should also note that the
evaluation of the response to a treatment by the existing tests is
test-dependent.

Nowadays, platelet function testing is performed either
as an attempt to monitor the efficacy of anti-platelet drugs
or to determine the cause of abnormal bleeding or pro-
thrombotic status. The most common method consists of using

an optical aggregometer that measures the transmittance of
light passing through plasma rich in platelets (PRP) or whole
blood (Born and Cross, 1963; Harrison, 2009), to evaluate how
platelets tend to aggregate. Other aggregometers determine the
amount of aggregated platelets by electric impedance (Velik-
Salchner et al., 2008) or luminescence. In specific contexts,
flow cytometry (Michelson et al., 2002) is also used to assess
platelet reactivity (VASP test; Bonello et al., 2009). Determination
of platelet functions using these different existing techniques
in patients undergoing coronary stent implantation have been
evaluated in Breet et al. (2010), which shows the correlation

between the clinical biological measures and the occurrence of
a cardiovascular event was null for half of the techniques and
rather modest for others. This may be due to the fact that no
current test allows the analysis of the different stages of platelet
activation or the prediction of the in vivo behavior of those
platelets (Picker, 2011; Koltai et al., 2017). It is well-known that
the phenomenon of platelet margination (the process of bringing
platelets to the vascular wall) is dependent on the number and
shape of red blood cells and their flow (Piagnerelli et al., 2007),
creating different pathologies for different diseases (e.g., diabetes,
End Renal Kidney Disease, hypertension, sepsis). Further, platelet
margination is also known to be influenced by the aspect ratio
of surrogate platelet particles (Reasor et al., 2013). Although
there is a lot of data reported by recent research works (Maxwell
et al., 2007) on the molecules involved in platelet interactions,
these studies indicate that there is a lack of knowledge on

some fundamental mechanisms that should be revealed by new
experiments.

Hence, the challenge is to find parameters connecting the
dynamic processes of adhesion and aggregation of platelets
to the data collected from the individual patients. Recently,
by combining digital holography microscopy (DHM) and
mathematical modeling, (Chopard et al., 2015; Boudejltia et al.,
2015; Chopard et al., 2017) provided a physical description
of the adhesion and aggregation of platelets in the Impact-
R device. A numerical model is developed that quantitatively
describes how platelets in a shear flow adhere and aggregate on
a deposition surface. This is the first innovation in understanding
the molecular dynamics involved in platelet interactions. Five
parameters specify the deposition process and are relevant for
a biomedical understanding of the phenomena. One of the
main intuition is that the values of these parameters (e.g.,
adhesion and aggregation rates) are precisely the information
needed to assess various possible pathological situations and
quantify their severity regarding CVD. Further, it was shown
in Chopard et al. (2017) that, by hand-tuning the parameters
of the mathematical model, the deposition patterns observed
for a set of healthy volunteers in the Impact-R can be
reproduced.

Assuming that these parameters can determine the severity
of CVD, how do we estimate the adhesion and aggregation
rates of given patients by a clinical test? The determination of
these adhesion and aggregation rates by hand-tuning is clearly
not a solution as we need to search the high-dimensional
parameter space of the mathematical model, which becomes
extremely expensive and time consuming. We further notice,
this has to be repeated for each patient and thus requires a
powerful numerical approach. In this work, we resolve the
question of estimating the parameters using Bayesian uncertainty
quantification. Due to a complex stochastic nature, the numerical
model for platelet deposition does not have a tractable likelihood
function. We use Approximate Bayesian Computation (ABC),
a likelihood-free inference scheme, with an optimal application
of HPC (Dutta et al., 2017a) to provide a Bayesian way to
estimate adhesion and aggregation rates given the deposition
patterns observed in the Impact-R of platelets collected from
a patient. Obviously, the clinical applicability of the proposed
technique to provide a new platelet function test remains
to be explored, but the numerical model (Chopard et al.,
2017) and the proposed inference scheme here, bring the
technical elements together to build a new class of medical
tests.

In section 2 we introduce the necessary background
knowledge about the platelet depositionmodel, whereas section 3
recalls the concept of Bayesian inference and introduces the HPC
framework of ABC used in this study. Then we illustrate the
results of the parameter determination for platelet deposition
model using ABC methodology, collectively for seven patients
in section 4. Clearly, the same methodology can be used to
determine the parameter values for each individual patients in
a similar manner for a CVD clinical test. Finally, in section 5
we conclude the paper and discuss its impact from a biomedical
perspective.
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2. BACKGROUND AND SCIENTIFIC
RELEVANCE

The Impact-R (Shenkman et al., 2008) is a well-known platelet
function analyzer. It is a cylindrical device filled in with whole
blood from a donor. Its lower end is a fixed disk, serving as
a deposition surface, on which platelets adhere and aggregate.
The upper end of the Impact-R cylinder is a rotating cone,
creating an adjustable shear rate in the blood. Due to this shear
rate, platelets move toward the deposition surface, where they
adhere or aggregate. Platelets aggregate next to already deposited
platelets, or on top of them, thus forming clusters whose size
increase with time. This deposition process has been successfully
described with a mathematical model in Chopard et al. (2015);
Chopard et al. (2017).

The numerical model (coined M in what follows) requires
five parameters that specify the deposition process and are
relevant for a bio-medical understanding of the phenomena.
In short, the blood sample in the Impact-R device contains
an initial number Nplatelet(0) of non-activated platelets per µℓ

and a number Nact−platelet(0) of pre-activated platelets per µℓ.
Initially both type of platelets are supposed to be uniformly
distributed within the blood. Due to the process known as shear-
induced diffusion, platelets hit the deposition surface. Upon such
an event, an activated platelets will adhere with a probability
that depends on its adhesion rate, pAd, that we would like to
determine. Platelets that have adhered on the surface are the
seed of a cluster that can grow due to the aggregation of the
other platelets reaching the deposition surface. We denote with
pAg the rate at which new platelets will deposit next to an
existing cluster. We also introduce pT the rate at which platelets
deposit on top of an existing cluster. An important observation
made in Chopard et al. (2015); Chopard et al. (2017) is that
albumin, which is abundant in blood, compete with platelet for
deposition. This observation is compatible with results reported
in different experimental settings (Sharma et al., 1981; Remuzzi
and Boccardo, 1993; Fontaine et al., 2009). As a consequence, the
number of aggregation clusters and their size tends to saturate
as time goes on, even though there are still a large number of
platelets in suspension in the blood.

To describe this process in the model, two extra parameters,
pF , the deposition rate of albumin, and aT , a factor that accounts
for the decrease of platelets adhesion and aggregation on
locations where albumin has already deposited, were introduced.
The numerical model is described in full detail in Chopard et al.
(2015); Chopard et al. (2017). Here we simply repeat the main
elements. Due to the mixing in the horizontal direction, it was
assumed that the activated platelets (AP), non-activated platelets
(NAP) and albumin (Al) in the bulk can be described by a 1D
diffusion equation along the vertical axis z

∂tρ = D∂2z ρ J = −Dgradρ (1)

where ρ is the density of either AP, NAP or Al, J and D are
correspondingly the flux of particles and the shear induced
diffusion. Upon reaching a boundary layer above the deposition

substrate, adhesion and aggregation will take place according to

Ṅ = −J(0, t)1S− pdN(t) (2)

where N is the number of particles in the boundary layer,
1S a surface element on the deposition surface, and pd is the
deposition rate, which evolves during time and varies across the
substrate, according to the deposition history. For the deposition
process, particles are considered as discrete entities that can
attach to any position of the grid representing the deposition
surface, as sketched in Figure 1. In this figure, the gray levels
illustrate the density of albumin already deposited in each cell.
The picture also illustrates the adhesion, aggregation, and vertical
deposition along the z-axis. On the left panel, activated platelets
(gray side disks) deposit first. Then in the second panel, non-
activated platelets (white side disks) aggregate next to an already
formed cluster. Both pre-activated and non-activated platelets
can deposit on top of an existing cluster.

The deposition rules are the following. An albumin that
reaches the substrate at time t deposits with a probability P(t)
which depends on the local density ρal(t) of already deposited Al.
We assume that P is proportional to the remaining free space in
the cell,

P(t) = pF(ρmax − ρal(t)), (3)

where pF is a parameter and ρmax is determined by the constraint
that at most 100,000 albumin particles can fit in a deposition
cell of area 1S = 5 (µm)2, corresponding to the size of a
deposited platelet (obtained as the smallest variation of cluster
area observed with the microscope).

An activated platelet that hits a platelet-free cell deposits with
a probability Q, where Q decreases as the local concentration ρal
of albumin increases. We assumed that

Q = pAd exp(−aTρal), (4)

where pAd and aT are parameters. This expression can be justified
by the fact that a platelet needs more free space than an albumin
to attach to the substrate, due to their size difference. In other
words, the probability of having enough space for a platelet,
decreases roughly exponentially with the density of albumin in
the substrate. This can be validated with a simple deposition
model on a grid, where small and large objects compete for
deposition.

Once an activated platelet has deposited, it is the seed of a
new cluster that grows further due to the aggregation of further
platelets. In our model, AP and NAP can deposit next to already
deposited platelets. From the above discussion, the aggregation
probability R is assumed to be

R = pAg exp(−aTρal), (5)

with pAg another parameter.
The above deposition probabilities can also be expressed as

deposition rate over the given simulation time step 1t = 0.01 s
(see Chopard et al., 2017 for details), hence giving a way to couple
the diffusion Equation (1) with the 2D discrete deposition process
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FIGURE 1 | Sketch of the deposition substrate, discretized in cells of area equal to the surface of a platelet.

FIGURE 2 | The deposition surface of the Impact-R device after 300 s (Left) and the corresponding results of the deposition in the mathematical model (Right).

Black dots represent the deposited platelets that are grouped in clusters.

sketched in Figure 1. Particles that did not deposit at time t are
re-injected in the bulk and contribute to boundary condition of
Equation (1) at z = 0.

To the best of our knowledge, except for Chopard et al. (2015);
Chopard et al. (2017) there is no model in the literature that
describes quantitatively the proposed in-vitro experiment. The
closest approach is that of Affeld et al. (2013) but albumin is not
included, and the role of pre-activated and non-activated platelets
is not differentiated. Also, we are not aware of any other study
than ours that reports both the amount of platelets in suspension
as a function of time and those on the deposition surface.

The validity of the proposed numerical model has been
explored in detail in Chopard et al. (2017). This validation is
based on the fact that the model, using hand-tuned parameters
can reproduce the time-dependent experimental observations
very well. We refer the readers to Chopard et al. (2017) for a
complete discussion. Here we briefly recall the main elements
that demonstrate the excellent agreement of the model and the
simulations. We reproduce Figure 2 from Chopard et al. (2017),
showing the visual similarity between the actual and simulated
deposition pattern. In the validation study, the evolution of the
number of clusters, their average size and the numbers of pre-
activated and non-activated platelets still in suspension matched
quantitatively with the experimental measurements at times 20,
60, 120, and 300 s. In addition, a very good agreement between
the simulated deposition pattern and the experiment was also

found by comparing the distributions of the areas and volumes
of the aggregates.

To be noticed, the validation reported in Chopard et al. (2017)
was done using manually estimated parameters. As the main
goal of this research is to propose an inference scheme to learn
the parameters in a data-driven manner, a validation for the
model and the inference scheme is reported in Figure 6 below,
using the inferred posterior distribution which also includes a
quantification of prediction error.

For the purpose of the present study, the model M is
parametrized in terms of the five quantities introduced above,
namely the adhesion rate pAd, the aggregation rates pAg and pT ,
the deposition rate of albumin pF , and the attenuation factor aT .
Some additional parameters of the model, specifically, the shear-
induced diffusion coefficient and the thickness of the boundary
layer (Chopard et al., 2017), are assumed here to be known.
Collectively, we define

θθθ = (pAg , pAd, pT , pF , aT).

If the initial values for Nplatelet(0) and Nact−platelet(0), as well as

the concentration of albumin are known from the experiment, we
can forward simulate the deposition of platelets over time using
modelM for the given values of these parameters θθθ = θθθ∗:

M[θθθ = θθθ∗] →
{(

Sagg−clust(t),Nagg−clust(t),Nplatelet(t),Nact−platelet(t)
)

,

t = 0, . . . ,T} . (6)
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where Sagg−clust(t),Nagg−clust(t),Nplatelet(t) , and Nact−platelet(t)
are correspondingly average size of the aggregation clusters, their
number per mm2, the number of non-activated and pre-activated
platelets per µℓ still in suspension at time t.

The Impact-R experiments have been repeated with the whole
blood obtained from seven donors and the observations were
made at time, 0 , 20 , 60 , 120, and 300 s. At these five time
points,

[

Sagg−clust(t),Nagg−clust(t),Nplatelet(t),Nact−platelet(t)
]

are
measured. Let us call the observed dataset collected through
experiment as,

x0x0x0 ≡ {(S0
agg−clust(t),N

0
agg−clust(t),N

0
platelet(t),N

0
act−platelet(t)) :

t = 0 s., . . . , 300 s.}. (7)

By comparing the number and size of the deposition aggregates
obtained from the in-vitro experiments with the computational
results obtained by forward simulation from the numerical model
(see Figure 2 for an illustration), the model parameters were
manually calibrated by a trial and error procedure in Chopard
et al. (2017). Due to the complex nature of the model and high-
dimensional parameter space, this manual determination of the
parameter values are subjective and time consuming.

However, if the parameters of the model could be learned
more rigorously with an automated data-drivenmethodology, we
could immensely improve the performance of these models and
bring this scheme as a new clinical test for platelet functions. To
this aim, here we propose to use ABC for Bayesian inference of
the parameters. As a result of Bayesian inference to this context,
not only we can automatically and efficiently estimate the model
parameters, but we can also perform parameter uncertainty
quantification in a statistically sound manner, and determine if
the provided solution is unique.

3. BAYESIAN INFERENCE

We can quantify the uncertainty of the unknown parameter θθθ by
a posterior distribution p(θθθ |xxx) given the observed dataset xxx = x0x0x0.
A posterior distribution is obtained, by Bayes’ Theorem as,

p(θθθ |xxx) =
π(θθθ)p(xxx|θθθ)

m(xxx)
, (8)

where π(θθθ), p(xxx|θθθ) and m(xxx) =
∫

π(θθθ)p(xxx|θθθ)dθθθ are
correspondingly the prior distribution on the parameter θθθ , the
likelihood function, and the marginal likelihood. The prior
distribution π(θθθ) ensures a way to leverage the learning of
parameters with prior knowledge, which is commonly known
due to the availability of medical knowledge regarding cardio-
vascular diseases. If the likelihood function can be evaluated, at
least up to a normalizing constant, then the posterior distribution
can be approximated by drawing a sample of parameter values
from the posterior distribution using (Markov chain) Monte
Carlo sampling schemes (Robert and Casella, 2005). For the
simulator-based models considered in section 2, the likelihood
function is difficult to compute as it requires solving a very high
dimensional integral. In next subsection 3.1, we illustrate ABC to
perform Bayesian Inference for models where the analytical form

of the likelihood function is not available in closed form or not
feasible to compute.

3.1. Approximate Bayesian Computation
ABC allows us to draw samples from the approximate posterior
distribution of parameters of the simulator-based models in
absence of likelihood function, hence to perform approximate
statistical inference (e.g., point estimation, hypothesis testing,
model selection etc.) in a data-driven manner. In a fundamental
Rejection ABC scheme, we simulate from the model M(θθθ) a

synthetic dataset xsimxsimxsim for a parameter value θθθ and measure the

closeness between xsimxsimxsim and x0x0x0 using a pre-defined discrepancy

function d(xsimxsimxsim,x0x0x0). Based on this discrepancy measure, ABC

accepts the parameter value θθθ when d(xsimxsimxsim,x0x0x0) is less than a
pre-specified threshold value ǫ.

As the Rejection ABC scheme is computationally inefficient,
to explore the parameter space in an efficient manner, there exists
a large group of ABC algorithms (Marin et al., 2012). As pointed
in (Dutta et al., 2017a), these ABC algorithms, consist of four
fundamental steps:

1. (Re-)sample a set of parameters θθθ either from the prior
distribution or from an already existing set of parameter
samples;

2. For each of the sample from the whole set or a subset, perturb
it using the perturbation kernel, accept the perturbed sample
based on a decision rule governed by a threshold or repeat the
whole second step;

3. For each parameter sample calculate its weight;
4. Normalize the weights, calculate a co-variance matrix and

adaptively re-compute the threshold for the decision rule.

These four steps are repeated until the weighted set of parameters,
interpreted as the approximate posterior distribution, is
“sufficiently close” to the true posterior distribution. The steps
(1) and (4) are usually quite fast, compared to steps (2) and (3),
which are the computationally expensive parts.

These ABC algorithms can be generally classified into
two groups based on the decision rule in step (2). In the

first group, we simulate xsimxsimxsim using the perturbed parameter

and accept it if d(xsimxsimxsim,x0x0x0) < ǫ, an adaptively chosen
threshold. Otherwise we continue until we get an accepted
perturbed parameter. For the second group of algorithms,
we do not have this “explicit acceptance” step but rather a
probabilistic one. Here we accept the perturbed parameter with
a probability that depends on ǫ; if it is not accepted, we keep
the present value of the parameter. The algorithms belonging
to the “explicit acceptance” group are RejectionABC (Tavaré
et al., 1997) and PMCABC (Beaumont, 2010), whereas
the algorithms in the “probabilistic acceptance” group are
SMCABC (Del Moral et al., 2012), RSMCABC (Drovandi and
Pettitt, 2011), APMCABC Lenormand et al. (2013), SABC (Albert
et al., 2015), and ABCsubsim Chiachio et al. (2014). For an
“explicit acceptance” to occur, it may take different amounts of
time for different perturbed parameters (more repeated steps
are needed if the proposed parameter value is distant from
the true parameter value). Hence the first group of algorithms
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are inherently imbalanced. We notice that an ABC algorithm
with “probabilistic acceptance” do not have the similar issue of
imbalance as a probabilistic acceptance step takes approximately
the same amount of time for each parameter.

The generation of xsimxsimxsim from the model, for a given parameter
value, usually takes up huge amounts of computational resources
(e.g., 10 min for the platelets deposition model in this paper).
Hence, we want to choose an algorithm with faster convergence
to the posterior distribution with minimal number of required
forward simulations. For this work we choose Simulated
Annealing ABC (SABC) which uses a probabilistic decision rule
in Step (2) and needs minimal number of forward simulation
than other algorithms as shown in Albert et al. (2015). As all tasks
of SABC in Step (2) can be run independently, in our recent work
Dutta et al., 2017a, we have adapted SABC for HPC environment.
Our implementation is available in Python package ABCpy and
shows a linear scalability.

We further note that the parallelization schemes in ABCpy
were primarily meant for inferring parameters from models, for
which forward simulation takes almost equal time for any values
of θθθ . Due to the complex stochastic nature of the numerical
model, forward simulation time for different values of θθθ , can be
quite variable. To solve this imbalance in the forward simulation,
additionally to the imbalance reported for ABC algorithms, we
use a new dynamic allocation scheme forMPI developed in Dutta
et al. (2017b).

3.2. Dynamic Allocation for MPI
Here we briefly discuss how a dynamic allocation strategy
for map-reduce provides better balancing of ABC algorithms
compared to a straightforward allocation approach.

In the straightforward approach, the allocation scheme
initially distributesm tasks to n executors, sends themap function
to each executor, which in turn applies the map function, one
after the other, to its m/n map tasks. This approach is visualized
in Figure 3, where a chunk represents the set of m/n map
tasks. For example, if we want to draw 10, 000 samples from the
posterior distribution and we have n = 100 cores available, at
each step of SABC we create groups of 100 parameters and each
group is assigned to one individual core.

On the other hand, the dynamic allocation scheme initially
distributes k < m tasks to the k executors, sends the map
function to each executor, which in turn applies it to the single
task available. In contrast to the straightforward allocation, the
executor requests a new map task as soon as the old one is
terminated. This clearly results in a better balance of the work.
The dynamic allocation strategy is an implementation of the
famous greedy algorithm for job-shop scheduling, which can be
shown to have an overall processing time (makespan) up to twice
as better than the best makespan (Graham, 1966).

This approach is illustrated in Figure 3, reproduced from
Dutta et al. (2017b). The unbalanced behavior is apparent if
we visualize the run time of the individual map tasks on each
executor. In Figure 4, the individual map tasks processing time is
shown for an ABC algorithm performing inference on a weather
prediction model, reported in Dutta et al. (2017b). Each row
corresponds to an executor (or rank) and each bar corresponds

to the total time spent on all tasks assigned to the respective
rank (row) for one map call. For the straightforward allocation
strategy, one can easily verify that most of the ranks finish their
map tasks in half the time of the slowest rank. This clearly leads
to large inefficiencies. Conversely, using the dynamic allocation
strategy, the work is more evenly distributed across the ranks.
The unbalancedness is not a problem that can be overcome
easily by adding resources, rather speed-up and efficiency can
drop drastically compared to the dynamic allocation strategy with
increasing number of executors. For a detailed description and
comparison, we direct readers to Dutta et al. (2017b).

3.3. Posterior Inference
Using SABC within HPC framework implemented in ABCpy
(Dutta et al., 2017a), we draw Z = 5000 samples approximating
the posterior distribution p(θθθ |x0x0x0), while keeping all the tuning
parameters for the SABC fixed at the default values suggested in
ABCpy package, except the number of steps and the acceptance
rate cutoff, which was chosen respectively as 30 and 1e−4. The
parallelized SABC algorithm, using HPC makes it possible to
perform the computation in 5 h [using 140 nodes with 36-
core of Piz Daint Cray architecture (Intel Broadwell + NVidia
TESLA P100)], which would have been impossible by a sequential
algorithm. To perform SABC for the platelets deposition model,
the summary statistics extracted from the dataset, discrepancy
measure between the summary statistics, prior distribution of
parameters, and perturbation Kernel to explore the parameter
space for inference are described next.

Summary Statistics
Given a dataset, xxx ≡ {(Sagg−clust(t),Nagg−clust(t),Nplatelet(t),
Nact−platelet(t)) : t = 0 s., . . . , 300 s.}, we compute an array of
summary statistics.

F : xxx → (µµµ,σσσ ,acacac, ccc, cccccc)

defined as following,

- µµµ = (µ1,µ2,µ3,µ4), mean over time.
- σσσ = (σ1, σ2, σ3, σ4), variance over time.
- acacac = (ac1, ac2, ac3, ac4), auto-correlation with lag 1.
- ccc = (c1, c2, c3, c4, c5, c6), correlation between different pairs of

variables over time.
- cccccc = (cc1, cc2, cc3, cc4, cc5, cc6), cross-correlation with lag 1

between different pairs of variables over time.

The summary statistics, described above, are chosen to capture
the mean values, variances, and the intra- and inter- dependence
of different variables of the time-series over time.

Discrepancy Measure
Assuming the above summary statistics contain the most
essential information about the likelihood function of the
simulator-based model, we compute Bhattacharya-coefficient
(Bhattachayya, 1943) for each of the variables present in the time-
series using their mean and variance and Euclidean distances
between different inter- and intra- correlations computed over
time. Finally we take a mean of these discrepancies, such that,
in the final discrepancy measure discrepancy between each of
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FIGURE 3 | Comparison of work-flow between MPI (Left) and dynamic-MPI backend (Right).

FIGURE 4 | Imbalance of ABC algorithms using MPI(straight-forward) (Left) and MPI(dynamic-allocation) backend (Right).

the summaries are equally weighted. The discrepancy measure
between two datasets, xxx1 and xxx2 can be specified as,

d(xxx1,xxx2) ≡ d(F(xxx1),F(xxx2))
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is the Bhattacharya-coefficient (Bhattachayya,

1943) and 0 ≤ exp(−ρ(•)) ≤ 1. Further, we notice the value of
the discrepancy measure is always bounded in the closed interval
[0, 1].

Prior
We consider independent Uniform distributions for the
parameters with a pre-specified range for each of them, pAg ∼

U(5, 20), pAd ∼ U(50, 150), pT ∼ U(0.5e − 3, 3e − 3), pF ∼

U(.1, 1.5), and aT ∼ U(0, 10).

Perturbation Kernel
To explore the parameter space of θθθ = (pAg , pAd, pT , pF , aT) ∈

[5, 20]×[50, 150]×[0.5e−3, 3e−3]×[.1, 1.5]×[0, 10], we consider
a five-dimensional truncated multivariate Gaussian distribution
as the perturbation kernel. SABC inference scheme centers the
perturbation kernel at the sample it is perturbing and updates the
variance-covariance matrix of the perturbation kernel based on
the samples learned from the previous step.

3.4. Parameter Estimation
Given experimentally collected platelet deposition dataset x0x0x0,
our main interest is to estimate a value for θθθ . In decision
theory, Bayes estimator minimizes posterior expected loss,
Ep(θθθ |x0x0x0)(L(θθθ , •)|x

0x0x0) for an already chosen loss-function L. If we

have Z samples (θθθ i)
Z
i=1 from the posterior distribution p(θθθ |x0x0x0),

the Bayes estimator can be approximated as,

θ̂θθ = argmin
θθθ

1

M

M
∑

i=1

L(θθθ i,θθθ). (9)

As we consider the Euclidean loss-function L(θθθ , θ̂θθ) = (θθθ − θ̂θθ)2 as
the loss-function, the approximate Bayes-estimator can be shown

to be θ̂θθ = Ep(θθθ |x0x0x0)(θθθ) ≈
1
Z

∑Z
i=1 θθθ i.
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FIGURE 5 | Marginal posterior distribution (black-dashed) and Bayes Estimate (back-solid) of
(

pAd ,pAg,pT ,pF , aT
)

for collective dataset generated from of seven

patients. The smoothed marginal distribution is created by a Gaussian-kernel density estimator on 5000 i.i.d. samples drawn from the posterior distribution using

SABC. The (gray-solid) line indicates the manually estimated values of the parameters in Chopard et al. (2017).

4. INFERENCE ON EXPERIMENTAL
DATASET

The performance of the inference scheme described in section 3
is reported here, for a collective dataset created from the
experimental study of platelets deposition of seven blood-donors.
The collective dataset was created by a simple average of
(

Sagg−clust(t),Nagg−clust(t),Nplatelet(t),Nact−platelet(t)
)

over seven
donors at each time-point t. In Figure 5, we show the Bayes
estimate (black-solid) and the marginal posterior distribution
(black-dashed) of each of the five parameters computed using
5000 samples drawn from the posterior distribution p(θθθ |x0x0x0) using
SABC. For comparison, we also plot the manually estimated
values of the parameters (gray-solid) in Chopard et al. (2017).
We notice that the Bayes estimates are in a close proximity of
the manually estimated values of the parameters and also the
manually estimated values observe a significantly high posterior
probability. This shows that, through the means of ABC we
can get an estimate or quantify uncertainty of the parameters
in platelets deposition model which is as good as the manually
estimated ones, if not better.

Next we do a Posterior predictive check to validate our
model and inference scheme. The main goal here is to analyze
the degree to which the experimental data deviate from the
data generated from the inferred posterior distribution of the
parameters. Hence we want to generate data from the model
using parameters drawn from the posterior distribution. To
do so, we first draw 100 parameter samples from the inferred
approximate posterior distribution and simulate 100 data sets,
each using a different parameter sample. We call this simulated
dataset as the predicted dataset from our inferred posterior
distribution and present the mean predicted dataset (blue-solid)
compared with experimental dataset (black-solid) in Figure 6.
Note that since we are dealing with the posterior distribution,
we can also quantify uncertainty in our predictions. We plot
the 1/4-th quantile, 3/4-th quantile (red-dashed), minimum
and maximum (gray-dashed) of the predicted dataset at each
timepoints to get a sense of uncertainty in the prediction. Here
we see a very good agreement between the mean predicted
dataset and the experimentally observed one, while the 1/4-
and 3/4-th quantile of the prediction being very tight. This
shows a very good prediction performance of the numerical
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FIGURE 6 | Posterior Prediction Check: To validate the numerical model of the platelet deposition and the inference scheme we perform a posterior prediction check

by simulating 100 datasets, each using a different parameter sample drawn from the posterior distribution. Here, we plot the experimental dataset (black-solid) used

for inference, mean predicted dataset (blue-solid), 1/4-th and 3/4-th quantile (red-dashed), minimum and maximum (gray-dashed) of the predicted datasets at each

timepoints.

model of platelet deposition and the proposed inference
scheme.

Additionally, to point the strength of having a posterior
distribution for the parameters we compute and show the
posterior correlation matrix between the five parameters in
Figure 7, highlighting a strong negative correlation between
(pF , aT), strong positive correlations between (pF , pAg)
and (pF , pT). A detailed investigation of these correlation
structure would be needed to understand them better, but
generally they may point toward: (a) the stochastic nature
of the considered model for platelet deposition and (b)
the fact that the deposition process is an antagonistic or
synergetic combination of the mechanisms proposed in the
model.

Note finally that the posterior distribution being the joint
probability distribution of the five parameters, we can also
compute any higher-order moments, skewness etc. of the
parameters for a detailed statistical investigation of the natural
phenomenon.

5. CONCLUSIONS

Here, we have demonstrated that approximate Bayesian
computation (ABC) can be used to automatically explore

FIGURE 7 | Posterior correlation matrix of
(

pAd ,pAg,pT ,pF , aT
)

computed

from the 5000 i.i.d. samples drawn from the posterior distribution using SABC.

the parameter space of the numerical model simulating the
deposition of platelets subject to a shear flow as proposed in
Chopard et al. (2015); Chopard et al. (2017). We also notice
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the good agreement between the manually tuned parameters
and the Bayes estimates, while saving us from subjectivity
and a tedious manual tuning. This approach can be applied
patient per patient, in a systematic way, without the bias of a
human operator. In addition, the approach is computationally
fast enough to provide results in an acceptable time for
contributing to a new medical diagnosis, by giving clinical
information that no other known method can provide. The
clinical relevance of this approach is still to be explored and
our next step will be to apply our approach at a personalized
level, with a cohort of patients with known pathologies.
The possibility of designing new platelet functionality
test as proposed here is the result of combining different
techniques: advanced microscopic observation techniques,
bottom-up numerical modeling and simulations, recent
data-science development and high performance computing
(HPC).

Additionally, the ABC inference scheme provides us with
a posterior distribution of the parameters given observed
dataset, which is much more informative about the underlying
process. The posterior correlations structure shown in
Figure 7 may not have a direct biophysical interpretation,
though it illustrates some sort of underlying and unexplored
stochastic mechanism for further investigation. Finally we
note that, although the manual estimates achieve a very
high posterior probability, they are different from the
Bayes estimates learned using ABC. The departure reflects
a different estimation of the quality of the match between
experimental observation and simulation results. As the ABC
algorithms are dependent on the choice of the summary
statistics and the discrepancy measures, the parameter
uncertainty quantified by SABC in section 4 or the Bayes
estimates computed are dependent on the assumptions in
section 3.3 regarding their choice. Fortunately there are
recent works on automatic choice of summary statistics and
discrepancy measures in ABC setup (Gutmann et al., 2017),
and incorporating some of these approaches in our inference
scheme is a promising direction for future research in this
area.
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Patient specific models of ventricular mechanics require the optimization of their many

parameters under the uncertainties associated with imaging of cardiac function. We

present a strategy to reduce the complexity of parametric searches for 3-D FE models

of left ventricular contraction. The study employs automatic image segmentation and

analysis of an image database to gain geometric features for several classes of patients.

Statistical distributions of geometric parameters are then used to design parametric

studies investigating the effects of: (1) passive material properties during ventricular

filling, and (2) infarct geometry on ventricular contraction in patients after a heart attack.

Gaussian Process regression is used in both cases to build statistical models trained

on the results of biophysical FEM simulations. The first statistical model estimates

unloaded configurations based on either the intraventricular pressure or the end-diastolic

fiber strain. The technique provides an alternative to the standard fixed-point iteration

algorithm, which is more computationally expensive when used to unload more than 10

ventricles. The second statistical model captures the effects of varying infarct geometries

on cardiac output. For training, we designed high resolution models of non-transmural

infarcts including refinements of the border zone around the lesion. This study is a

first effort in developing a platform combining HPC models and machine learning to

investigate cardiac function in heart failure patients with the goal of assisting clinical

diagnostics.

Keywords: LV mechanics, FEM, infarct model, unloaded configuration, kriging, inverse optimization, statistical

learning

1. INTRODUCTION

Multi-scale models of cardiac mechanics, although are promising (e.g., Kerckhoffs et al., 2007;
Nordsletten et al., 2011; Gurev et al., 2015; Land et al., 2017), have found limited applications for
diagnosis and treatment. To reach the levels of accuracy needed to assist clinical decisions, models
need to overcome major complications related to accessing clinical data, constraining unknown
parameters, and coping with computational complexity. Some of the uncertainties associated to
patient-specific cardiac models can be partially addressed with increased public access to large
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clinical datasets (Fonseca et al., 2011) and to high performance
computing resources (Towns et al., 2014). Sophisticated finite
element (FE) biomechanical simulations can be combined with
machine learning techniques to translate parametric studies into
efficient statistical models of virtual patient populations. Once
an upfront computational cost is paid for training, the coupled
effects of varying model parameters can be explored almost in
real time, facilitating the solution of the optimization and inverse
estimation problems that are required to personalize models for
specific patients.

This paper discusses statistical models based on a machine
learning technique called Gaussian Process (GP) regression, also
known as kriging (Rasmussen andWilliams, 2006). After training
a “surrogate” of the more expensive FE models, GP regression
can be used to assist optimization algorithms, even in complex
cases where objective functionals cannot be easily differentiated
(Booker et al., 1999; Abramson et al., 2009). More recently,
GP regression has also been used in cardiovascular modeling,
where it has found application in both fluid and solid mechanics
(Marsden et al., 2008; Sankaran and Marsden, 2011; Pérez et al.,
2016).

Recent developments in medical imaging techniques have
opened new opportunities for cardiac modeling to augment
image-based biomarkers from CT, MRI, and ultrasound scans
(Lamata et al., 2014). As accuracy and availability of imaging
modalities continues to improve, there is a growing need for
novel strategies that exploit the capabilities of multi-scale models
to enhance diagnostic tools. We present a systematic analysis
of the Sunnybrook Cardiac MRI database, a public collection
of cine-MRIs (Radau et al., 2009). Statistics gathered from the
database were used to design two parametric studies investigating
the passive behavior of the myocardium upon inflation and the
effects of infarct on cardiac performance.

In the first parametric study, we developed a novel strategy
to estimate the unloaded configuration (needed to initialize
both passive and active FEM simulations) given either the
end-diastolic intraventricular pressure, or the end-diastolic fiber
strain. The new method relies on solving multiple forward
problems to train a regression model from which unloaded
configurations can be inferred for ventricles with arbitrary
shapes. Despite such a problem could be alternatively solved with
the fixed point iteration method (Sellier, 2011; Genet et al., 2015),
our approach has some advantages. Specifically, our method can
be easily applied in situations where the intraventricular pressure
is not directly known (but could be inferred, for example, from
the fiber strain), or where the unloaded geometry is one of the
unknown parameters of an optimization problem.

The second example integrates machine learning and multi-
scale modeling in a systematic parametric study investigating the
effects of infarct on simulated cardiac performance. Location,
size, and transmural depth of the infarct were chosen as
input variables of a GP regression model predicting changes in
simulated stroke volume due to the scar. This work exploited
the capabilities of our in-house solver and an automatized
workflow to run 40 simulations of infarct with varying shapes
and locations. After training on results of FE simulations, the GP
regression model provides a useful representation for the analysis

of complex effects. Non-transmural infarcts were simulated with
a high numerical accuracy.

2. METHODS

2.1. Cine-MRI Segmentations and
Parameterization via Idealized Models
Publicly available imaging datasets from the Sunnybrook Cardiac
MRI database (Radau et al., 2009) were systematically processed
to establish boundaries and proper feature distribution for
parametric exploration. The Sunnybrook database gathered 45
cine-MRI scans collected from healthy subjects (N, n = 9),
patients with ventricular hypertrophy (HYP, n = 12), and
patients affected by heart failure both in presence and absence
of myocardial infarction (HF-I, n = 12 and HF-NI, n = 12,
respectively). For each scan, we considered only the short axis
stack series, which provided ∼10–15 axial slices per left ventricle
(LV) and 20 frames per cardiac cycle. Average voxel sizes were
(1.36 ± 0.057 mm) × (1.36 ± 0.057 mm) × (8.8 ± 1.0 mm)
in the left-right, anterior-posterior, and apical-basal directions,
respectively.

An in-housemulti-atlas image processing technique (Xie et al.,
2015) was used to co-register the axial slices of each dataset
and then segment the LV boundaries. The first 2 columns
of Figure 1A show the procedure applied to a representative
3-D image from the database. Outputs were labeled voxels
marking the LV blood pool (shown in white semi-transparent
overlay) and the ventricular wall (shown in red). The low
resolution in the apical-basis direction typical of cine-MRI short
axis views introduced segmentation artifacts that prevented
direct use in FEM models. We therefore performed a further
parameterization step (see third column) to approximate LV
geometries as truncated prolate spheroids, as initially proposed
by Streeter and Hanna (1973) and more recently revisited by
Pravdin et al. (2014). According to such a scheme, the endocardial
and epicardial profiles of an idealized axisymmetric LV were
described by the following relations

ρepi = Rb
[

e cosψ + (1− e)(1− sinψ)
]

ζepi = Z (1− sinψ)
ρend = (Rb − L)

[

e cosψ + (1− e)(1− sinψ)
]

ζend = (Z −H)(1− sinψ)+H

(1)

linking the radial (ρ) and axial (ζ ) coordinates of the epicardial
and endocardial boundaries to the angle variable ψ ∈ [ψ0,π/2].
In the equations above, the idealized geometry is defined by
6 parameters: the outer radius at base, Rb; the length of the
longitudinal semi-axis of the outer spheroid, Z; the ventricular
wall thicknesses at base and apex, L and H, respectively; the
sphericity/conicity of the spheroid, e ∈ [0, 1]; and, finally, the
truncation angle,ψ0. Figure 1B shows a schematic of an idealized
LV annotated with geometric descriptions of the parameters.

In order to describe the segmentation results in terms of
the idealized models described above, we implemented an ad
hoc optimization procedure to find sets of parameters ξ =

{Rb,Z, L,H, e,90} that would best match the MRI segmentations
(IMR). Each iteration involved first generating a binary 3-D image
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FIGURE 1 | Automatic processing of cine-MRI images from the Sunnybrook Cardiac MRI database and fitting of idealized geometric model. (A) Complete processing

of a representative short axis view frame from patient I-01 in the database. This Cine-MRI modality showed sufficient in-plane resolution, but significantly lower detail in

the long axis view (e.g., compare first and second row of the first column). An atlas-based image processing algorithm was employed to extract LV boundaries for

each patient. Segmented pixels are shown marked in red in the second and third column. Finally, an idealized 6-parameter model of LV geometry was fitted to the

segmentation results, partially correcting for the artifacts introduced by the low resolution in the long axis (see model cross-section rendered in white in the third

column). (B) Geometric meaning of idealized LV model parameters. Radial and axial coordinates are indicatd by ρ and ζ , respectively. Rb = outer radius at base, L =

wall thickness at base, Z = distance from center of the ventricle to apex of outer wall, H = wall thickness at apex, 90 = truncation angle. Not shown is the e

parameter, which governs the curvature of the LV external and internal walls. More details on analytical expressions of the LV geometric profile are provided in the text.

(C) Top and lateral 3-D views of overlapped segmentation (rendered as a red surface) and best-fit idealized model (rendered as a gray transparent overlay) for a

representative case (I-01 at beginning of diastole).

Iξ marking the LV volume defined by ξ , and then evaluating an
objective function J defined as

J(Iξ , IMR) = 1−
1

2

(

Cξ ∩ CMR

Cξ ∪ CMR
+

Wξ ∩WMR

Wξ ∪WMR

)

, (2)

where Cξ and CMR indicate the ventricular cavity regions in
the idealized and MR segmentation images, respectively; and
Wξ and WMR similarly indicate corresponding ventricular wall
volumes. In other words, J ∈ [0, 1] provides a measure of
similarity between a “synthetic” segmentation Iξ generated for
any given ξ and the actual MRI processing results IMR. The
“Nelder-Mead” algorithm available in SciPy was used to carry
out the optimization up to convergence for every image dataset
included in the database.

The relations in (1) do not include any parameters accounting
for the rigid translation and rotations that LVs normally
experience during a cardiac cycle. To overcome such limitation
and to improve fitting results, each objective function evaluation
was preceded by a rigid transformation step aimed at aligning the
idealized model to the target segmented geometry. Specifically,
we first estimated the main longitudinal axis of the segmented
ventricle as the best-fit direction aligning the centers of gravity
of the LV segmented axial slices. We then rigidly transformed
the idealized models to let the longitudinal axes and the
centers of gravity of the two geometries coincide. Figure 1C
shows overlapped optimization results and corresponding MRI
segmentation for a representative cine-MRI frame after rigid
motion correction.

2.2. Passive Material Properties
To assess whether the inverse esimation method presented in this
work would generalize to describe other constitutive behaviors

(e.g., from future experiments on animal and human tissues,
or from novel modeling developments), we considered 3 sets
of material parameters (and related functional formulations)
from the literature that describe experimental findings on
canine, swine, and human ventricle biomechanics. Usyk et al.
(2000) fitted a Fung-type orthotropic strain energy function to
experiments on canine models

WU =
C

2

(

exp(Q)− 1
)

, Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn

+bfs
(

E2fs + E2sf
)

+ bfn
(

E2fn + E2nf
)

+bns
(

E2ns + E2sn
)

, (3)

where Eij (i, j = f , s, n) are components of the Green-Lagrange
strain tensor expressed in a reference frame locally aligned along
the fiber direction (f ), the orthogonal direction spanning the
myocardial sheet (s), and the cross-fiber direction (n). Values for
the C and bij (i, j = f , s, n) coefficients are reported in Table 1.

The remaining 2 constitutive behaviors here considered
followed the constitutive law based on the invariants of the right
Cauchy-Green strain tensor C proposed by Holzapfel and Ogden
(2009),

WHO =
a

2b

{

exp
[

b(I1 − 3)
]}

+
∑

i = ff,ss

ai

2bi

{

exp
[

bi(I4i − 1)2
]

− 1
}

+
afs

2bfs

{

exp
[

bfsI
2
8fs

]

− 1
}

, (4)

where I1=tr C is the first invariant of C, here applied as the
argument of an exponential term; I4i = vi · (C · vi), i =

ff, ss is the fourth invariant of C, which corresponds to the
squared stretch of a line element oriented along the fiber (vff)
or sheet (vss) directions; finally, I8fs = f0 · (C · s0) is the eighth

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 100287

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Di Achille et al. GP Regressions in LV Mechanics Models

TABLE 1 | Sets of material properties considered in the study.

Reference C, a b aff bff ass bss afs bfs bn[n,f,s]

(species) (kPa) (kPa) (kPa) (kPa)

WU Usyk et al. (2000)

(canine)

0.88 8.00 6.00 12.00 3.00

WW
HO

Wang et al. (2013)

(swine)

0.24 10.81 20.04 14.2 3.72 5.16 0.41 11.30

WG
HO

Gültekin et al.

(2016)

(human)

0.4 6.55 3.05 29.05 1.25 36.65 0.15 6.28

WU is expressed in terms of components of the Green-Lagrange strain tensor E, while W
{W,G}
HO

depends on invariants of the right Cauchy-Green tensor C.

invariant of C, which captures the effects of strain coupling.
Equation (4) has been shown to describe well experiments on pig
ventricles (Dokos et al., 2002), and more recently the biaxial and
triaxial tests conducted on human myocardial tissue by Sommer
et al. (2015). Among best-fit values reported in literature, we
selected materials parameters for (4) from Wang et al. (2013)
(WW

HO, fitted to experiments on swine models) and Gültekin
et al. (2016) (WG

HO, fitted to experiments on human tissue). The
coefficients for all considered material properties are reported in
Table 1.

2.3. FEM Models of LV Passive
Biomechanics
High-resolution FEM simulations of LV biomechanics are at
the core of the parameter exploration and inverse estimation
strategies presented in this work. To cope with the complexities
of the mechanical behavior of the myocardium, we employed
a recently validated numerical solver suitable for dealing
with incompressible hyperelastic material laws such as those
in (3) and (4) (Gurev et al., 2015), and extended to use
stabilized P1/P1 finite elements. The capabilities are necessary
for infarct simulations, where capturing sufficient detail at
the border zone region around the lesion is pivotal (see
section 2.6). The solution algorithm also allows multi-scale
effects, and we used the TriSeg ODE-based model with
parameters for human to drive myofilament active contraction
(Lumens et al., 2009; Gurev et al., 2015). Coupling between
cellular and tissue mechanics occurred at the Gauss point
level.

To handle the relatively large number of simulations needed
to train statistical models, we developed an automatic workflow
to construct high-resolution computational domains from any
given sets of geometric parameters ξ describing LV anatomy.
In this pipeline, analytical models built according to (1)
were first converted to 3-dimensional triangulated surfaces,
and then to solid meshes of several hundred thousands of
tetrahedral elements. Nodes at the base of the ventricle were
prevented to move axially, while epicardial nodes in the vicinity
of the base (i.e., closer than 3 mm) were fully locked to
prevent rigid motions. Boundary traction effects from the
pericardial membrane and the right ventricle were neglected,
and intraventricular pressure was uniformly applied at the

endocardial surface in quasi-static steps. The vector vff of
alignment of myocardial fibers varies heterogeneously along
the radial direction of the myocardium (McCulloch, 1999;
Humphrey, 2002). Without specific measurements for the
patients in the database, we relied on a rule-based approach
to assign fiber directions linearly varying their angle with
respect to the circumferential direction from 90◦ at the
endocardial surface (i.e., longitudinally aligned) to -60◦ at the
epicardium.

The mechanical equilibrium equations were solved in
parallel on the Cognitive Computing Cluster (CCC), a
hybrid high performance shared resource developed at IBM
Research deploying both Intel and Power8 nodes. Active infarct
simulations required ∼10 times more resources than passive
models, and were run on the Uran Supercomputer hosted by UB
RAS and Ural Federal University. Outputs of the simulations
were nodal displacement vector fields, and components of stress
and strain tensors defined at the element Gauss points. To
relate predictions also to strain dependent length activation of
the sarcomere, we also evaluated stretch in the fiber direction,
defined as

λff =
√

vff · C · vff, (5)

where vff is the vector aligned along the myofiber direction (as
described above), and C is the right Cauchy-Green strain tensor.
As a representative scalar of each loading state, we also averaged
λff at midwall, which we defined as a tissue slab located between
40 and 60% of the LV wall thickness and between 45 and 55% of
the apex-base distance.

2.4. Parameterization of FEM Results
A key aspect of the inverse unloading method presented in this
work is the re-parameterization of FEM simulation results in
terms of the same geometric parameters employed to process
the Sunnybrook database. A 2-step optimization procedure
was implemented to fit idealized models of LV anatomy to
the deformed configurations predicted by the FEM analyses
upon varying loading conditions. First, optimal values for
Rb, Z, e, and 90 were found to minimize average nodal
distance between the profile of an idealized epicardium and
the corresponding boundary obtained from a FE mesh warped
according to the simulations results. Second, a similarly defined
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nodal distance measure was used to quantify discrepancies
between endocardial profiles in order to adjust the remaining
L and H parameters. The 2 steps were re-iterated until
reaching convergence. An alternative monolithic approach
where the 6 parameters were optimized at the same time
was also evaluated, but proved to be less computationally
efficient.

2.5. Statistical Learning of LV Unloading
Bulk processing the Sunnybrook cine-MRI image datasets
provided information on expected anatomical variability among
patients. As part of our inverse unloading estimation strategy,
we leveraged database statistics to define a 6-D parameteric
space that enclosed all likely LV unloaded configurations. More
specifically, we reasoned that the parametric study should
conservatively admit and explore large variations in ventricle

geometries, since the unloaded state might differ significantly
from any of the imaged configurations. Limits of the parametric
space were therefore defined to encompass variations of more
than 3 standard deviations from the average beginning of diastole
(BoD) state, which we chose as most reasonable guess lacking
the measurements needed for better estimates (e.g., Xi et al.,
2013). More details on the subdivision of the cardiac cycle into
its phases are reported in the Supplemental Material. Figure 2A
shows pairs of limit parameter values and corresponding LV
cross-sections representing maximum allowed variations of each
of the 6 geometric features. In drawing the profiles, only one
of the 6 parameters was changed while keeping the remaining
5 at corresponding mid-range values. Unloaded configurations
admitted to our study were, therefore, intermediate states of
the low- and high-parameter geometries shown in Figure 2A in
gray and black tones, respectively. The statistical distribution of

FIGURE 2 | Design of training sets for the 2 statistical models: LV unloading (A–C) and infarct shape effects (D–F). (A) Pairs of LV cross-sections representing

extreme geometries limiting parameter space dimensions. Gray (black) cross-sections correspond to extreme negative (positive) variations of one of the geometric

parameters, with the remaining 5 parameters kept at mid-range values. (B) Projection of the 6-D parametric space onto a 3-D cube obtained by neglecting the last 3

dimensions (H, e, and 90). Spherical glyphs indicate locations of 600 sampling points chosen via latin hypercube sampling from a normal distribution centered on the

average LV geometry and with a doubled standard deviation compared to that of the complete Sunnybrook database. (C) Cross-section of the parameter space for

LV unloading showing combined variations of Rb and Z parameters. (D) Similar to (A), but showing pairs of FE meshes including infarct regions with extreme shapes.

The lightest tone of gray indicates the healthy region, the darkest tone indicates the infarct, and the intermediate one marks the refined border zone. (E) 3-D projection

of the 4-D parameter space defining infarct shape obtained neglecting the 1Long. dimension. Similarly to (B), spheres indicate locations of 40 sampling points

chosen uniformly in the allowed range parameters. (F) Mid-range slice of the 3-D projection showing representative FE meshes accounting for combined variations of

longitudinal location and transmural depth of the infarct.
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BoD states was also used to design an efficient probing scheme
for the parametric space defined above. As is common now
(Marsden, 2014), we used latin hypercube sampling to select 600
points (i.e., 100 times the number of parameters) from a normal
distribution centered on the average BoD state and with doubled
standard deviation compared to that of the Sunnybrook database.
Samples falling beyond the limits defined in Figure 2A were
projected onto the closest admissible point. A cloud of chosen
probing locations is shown within a unitary 3-D projection of
the parameter space in Figure 2B. For this representation, the
H, e, and 90 dimensions were neglected. Figure 2C further
shows a mid-slice of the parametric cube exploring geometries
corresponding to coupled variations of the Rb and Z parameters.

For each of the 600 sampled ventricle geometries we ran
passive inflation simulations for inner LV pressures ranging
between 0 and 5 kPa. Results were processed as described
in section 2.4 to find optimal geometric parameters for 100
intermediate loading configurations (i.e., differing by 0.05
kPa). These best-fit parameters constituted the training set
for GP regression models mapping loaded configurations to
their corresponding unloaded state. Overall, we optimized 100
statistical models (one for each considered inner pressure), and
fitted 2 additional GP regressions for unloading the inflated
configurations for which the midwall fiber stretch reached the
values of 10 and 15%.

2.6. Statistical Learning of Infarct Shape
and Size on LV Performance
With our solver capable of handling high-resolution tetrahedral
meshes, we explored the effects of different infarct shapes and
locations on simulated LV cardiac cycles. The lesions were
parameterized according to 4 features: longitudinal position
(Long. ∈ [0, 1]), indicating whether an infarct was closer to
the base (Long.=0) or apex (Long.=1); circumferential extension
(1Circ. ∈ [0,π]), indicating the portion of circumference
(measured in radians) occupied by the infarct; longitudinal
extension (1Long. ∈ [0, 1]) indicating the fraction of
longitudinal cross section harboring a lesion; and wall depth
(Depth ∈ [0, 1]), indicating the transmural extension of the
infarct, with the maximum value of 1 indicating a fully
transmural lesion. Figure 2D shows computational domains
reconstructed from limit cases of the infarct parameterization.
Similar to that presented in section 2.5, latin hypercube sampling
was used to efficiently probe the parameter space. Our sample
size was of 40 points, (i.e., 10 times the number of parameters),
and we assumed a uniform distribution of parameters across
the admissible range. Also, to restrict our attention to the
effects of infarct without the added complications introduced by
changing LV geometry, all lesions were inserted into the same
baseline LV from patient I-02. Infarct effects were simulated
by deactivating active contraction in the lesion regions, while
maintaining the same passive material properties. Similar to
Figures 2B,C,E,F show projections of selected samples onto the
considered parameter space of infarct lesions. More details on the
general procedure followed to mesh infarcted regions of arbitrary
shapes are available in the Supplemental Material.

3. RESULTS

Once enhanced with rigid motion correction, the 6-parameter
description of LV geometry was able to capture anatomical and
kinematic features from the Sunnybrook MRI scans. Median
values of the similarity functional J(Iξ , IMR) averaged for each
category of patients were 0.29 for N, 0.30 for HYP, 0.23 for
HF-NI and 0.19 for HF-I, respectively. Figure 3 shows average
group traces of best-fit geometric parameters (see Equation
1) over the course of a normalized cardiac cycle. Certain
trends agreed well with known morphologic features of cardiac
disease. Patients affected by heart failure (i.e., from the HF-I
and HF-NI categories) presented on average the most dilated
ventricles, as indicated by the largest Rb values, and the
smallest cyclical variations in both e and 90, probably due to
myocardial dysfunction. Hypertrophic patients, on the other
hand, maintained highest L values throughout the cycle (L = 12
mm on average) and showed a large systolic thickening (L = 15
mm at peak systole for HYP patients). Only N subjects contracted
more visibly, with an average 54% increase in L from diastole
to systole. N and HYP subjects overall exhibited the largest
changes in truncation angles. Other parameterization findings
were less intuitive. For all LVs, contraction in the longitudinal
direction was captured mainly by varying 90 rather than Z,
which instead remained close to constant throughout the cycle.
Also, the dynamic pattern of e observed in HF patients was
peculiar. For example, 10 out of 12 HF-I subjects exhibited
increased e at systole compared to diastole, while the opposite
was typically observed in the N and HYP categories of patients.
Combined behavior of e and90 differed also among the 2 classes
of HF patients: in presence of an infarct, both e and 90 were
smaller in magnitude, indicating that HF-NI ventricles tended to
be more spherical than the HF-I ones. Table 2 reports best fit sets
of geometric parameters for all 45 patients at both beginning and
end of diastole (BoD and EoD, respectively).

The distribution of LV shapes at BoD (see Table 2) was pivotal
to design our admissible parameter space, both for establishing
range limits and for choosing the frequency of allowed variations.
Figure 4A shows 3 representative unloaded configurations out
of the 600 selected to probe the space. Each geometry was
first discretized into a computational domain (see meshes below
the idealized profiles) and then inflated with inner pressures
up to 5 kPa. Shown also are color coded distributions of the
first invariant of the Green-Lagrange strain tensor (I1E). Strain
fields were visibly larger in the LVs endowed with WU material
properties (i.e., those on the first row of each subgroup) than in
those endowed with WG

HO (i.e., those on the second row of each
subgroups). While the parameteric study extensively explored
combined effects of LV geometric features on deformation, the
subsequent processing step converted results back to the 6-
parameter description (see profiles in gray above and below strain
results). Out of the chosen 600 probing profiles, 67 exhibited
incompatible features that prevented completion of the FEM
simulations (e.g., a disproportionately large L and negative 90

in a ventricle with minimum Rb), and were therefore excluded
from the analysis. Figure 4B shows violin plots of geometric
parameter distributions for ventricles at the BoD configuration
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FIGURE 3 | Kinematics of LV motion during a normalized cardiac cycle described by changes over time to the 6 parameters of an idealized model of LV geometry.

Traces show averages (marked solid line) over the 4 patient groups (N, normal; HYP, hypertrophic; HF-NI, heart failure without infarct; HF-I, heart failure with infarct)

plus or minus standard deviations (shown as semi-transparent overlays). Each subplots shows results for one of the geometric parameters. Results were obtained by

custom procedure to fit idealized model to segmentation results. See text for more detail.

from the database, at the assumed unloaded configuration, and
at 10 deformed configurations for pressures ranging from 0.5
to 5.0 kPa. The BoD distributions (see plots in black tone,
leftmost sector) clearly reflected the categories of the database.
For example, the violin plot of the Rb parameter (first row)
indicated a bimodal distribution, as expected given the sharp
differences in ventricle radius between HF patients and the
others. By design, the sampled unloaded configurations followed
a normal distribution allowing large variations (see plots in
lightest gray tone, second sector from the left). Some hard limits
on admissible parameter values were enforced to reduce the
number of incompatible geometries selected (see section 2.5).
The effects of these hard limits were noticeable particularly within
the L, e, and 90 distributions (see last 3 rows), the tails of which
were thickened by assimilating parameters beyond allowed range.

Finally, the distributions of loaded configurations (see plots in
intermediate gray tones, three rightmost sectors) showed the
evolution of geometric parameters upon pressurization, which
followed the expected behavior for incompressible hyperelastic
materials. For example, the Rb parameter increased relatively
fast at low pressures, but then dilation progressively stopped
accounting for the exponential increase in stiffness. The thickness
parameters L andH decreased upon pressurization (also ensuring
incompressibility), while the90 parameter distributions were the
most sensitive to pressure. Finally, the material properties could
be ranked in order of increasing stiffness asWU ,W

G
HO, andW

W
HO,

as shown by changes in mean values from the distributions (see
white lines inside the violin plots).

The computational cost of optimizing a GP regression to a few
hundred training points (∼1 CPU min) is negligible compared

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 100291

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Di Achille et al. GP Regressions in LV Mechanics Models

TABLE 2 | Best-fit geometric parameters for all patients in correspondence of beginning and end of diastole configuration (BoD, and EoD, respectively).

Rb (mm) L (mm) Z (mm) H (mm) e 90 (◦)

EoD BoD EoD BoD EoD BoD EoD BoD EoD BoD EoD BoD

N-02 33 29 8.1 11 49 49 8.4 7.9 0.71 0.64 −74 −77

N-03 33 30 7.5 13 46 45 5.4 5.6 0.75 0.78 −79 −56

N-05 30 26 8.1 12 43 44 6.9 6.3 0.7 0.71 −61 −48

N-06 32 29 7.3 11 44 44 5.6 5.2 0.87 0.8 −69 −58

N-07 34 30 9.3 12 54 55 11 12 0.7 0.6 −60 −44

N-09 38 32 8.2 12 47 51 9.1 13 0.72 0.54 −78 −66

N-10 33 30 10 17 56 63 5.4 11 0.73 0.69 −80 −56

N-11 34 31 8.7 14 48 49 6.6 7.2 0.8 0.68 −50 −52

N-40 29 26 8.1 11 49 50 9.7 10 0.87 0.81 −40 −34

HYP-01 32 27 7.1 12 39 40 5.3 6.4 0.64 0.46 −79 −70

HYP-03 34 33 9.5 18 42 47 6.1 8.0 0.6 0.55 −72 −43

HYP-06 34 29 9.3 12 38 37 6.4 5.6 0.75 0.68 −76 −76

HYP-07 39 35 12 18 53 57 7.9 7.3 0.96 0.89 −50 −47

HYP-08 44 41 14 20 65 64 11 9.6 0.82 0.93 −61 −42

HYP-09 35 32 7.9 13 54 45 7.5 9.6 0.82 0.7 −76 −68

HYP-10 40 36 9.0 13 46 45 5.3 5.1 0.69 0.56 −61 −56

HYP-11 31 29 9.7 14 37 33 6.6 5.1 0.83 0.98 −79 −79

HYP-12 28 24 7.1 12 49 52 8.3 11 0.7 0.43 −66 −49

HYP-37 36 32 11 17 51 54 13 12 0.67 0.55 −33 −28

HYP-38 34 30 13 17 68 64 19 16 0.66 0.52 −45 −53

HYP-40 32 30 13 16 50 50 10 10 0.8 0.85 −41 −39

HF-NI-03 46 44 11 13 52 54 6.3 6.5 0.88 0.96 −78 −60

HF-NI-04 42 40 8.4 13 49 49 5.9 5.2 0.71 0.69 −73 −58

HF-NI-07 39 37 8.8 11 64 62 12 10 0.69 0.75 −68 −73

HF-NI-11 44 42 9.7 10 59 56 5.7 5.2 0.69 0.67 −79 −77

HF-NI-12 47 44 8.7 11 62 61 7 6.7 0.79 0.87 −78 −74

HF-NI-13 41 40 9.7 12 62 64 8.4 9.5 0.9 0.88 −80 −79

HF-NI-14 40 37 11 12 53 55 7.6 10 0.79 0.82 −68 −62

HF-NI-15 36 32 9.3 9.7 56 57 12 12 0.81 0.92 −64 −58

HF-NI-31 40 35 9.4 11 49 49 5.8 5.2 0.84 0.98 −78 −79

HF-NI-33 37 34 9.2 12 57 55 6.7 6.2 0.7 0.64 −80 −77

HF-NI-34 40 39 9.4 13 58 63 5.1 10 0.71 0.72 −71 −49

HF-NI-36 43 41 8.5 9.3 45 44 5.2 5.4 0.79 0.77 −77 −79

HF-I-01 38 36 8.3 9.4 54 54 5.1 5.1 0.84 0.95 −64 −67

HF-I-02 44 40 9.5 10 52 53 5.7 5.9 0.65 0.65 −75 −75

HF-I-04 41 40 8.8 11 50 51 5.7 5.3 0.66 0.66 −63 −55

HF-I-05 41 38 9.4 11 48 54 8.9 11 0.68 0.83 −67 −48

HF-I-06 39 38 8.5 11 54 57 5.3 5.3 0.7 0.84 −77 −75

HF-I-07 38 37 10 14 42 43 6.8 8.1 0.57 0.46 −71 −70

HF-I-08 42 41 9.4 11 54 54 5.4 5.2 0.77 0.77 −59 −57

HF-I-09 51 50 10 11 65 64 5.4 5.2 0.74 0.73 −72 −69

HF-I-10 49 47 9.2 10 53 58 5.1 9.0 0.74 0.83 −73 −79

HF-I-11 40 39 7.2 9.4 55 54 5.9 5.0 0.68 0.81 −59 −61

HF-I-12 36 34 8.4 15 54 56 7.6 7.2 0.69 0.74 −67 −50

HF-I-40 33 31 8.2 12 54 51 13 10 0.76 0.88 −80 −78

Avg. N 33 ± 3 29 ± 2 8.4 ± 0.9 13 ± 2 48 ± 4 50 ± 6 7.6 ± 2.1 8.7 ± 2.9 0.76 ± 0.07 0.69 ± 0.09 −66 ± 14 −55 ± 12

Avg. HYP 35 ± 4 32 ± 5 10 ± 2 15 ± 3 49 ± 10 49 ± 10 8.9 ± 4.0 8.8 ± 3.2 0.74 ± 0.10 0.67 ± 0.19 −62 ± 16 −54 ± 16

Avg. HF-NI 41 ± 3 39 ± 4 9.4 ± 0.9 11 ± 1 56 ± 6 56 ± 6.2 7.3 ± 2.4 7.7 ± 2.5 0.77 ± 0.08 0.81 ± 0.12 −74 ± 6 −69 ± 11.0

Avg. HF-I 41 ± 5 39 ± 5 8.9 ± 0.8 11 ± 2 53 ± 5 54 ± 5 6.7 ± 2.3 6.9 ± 2.2 0.71 ± 0.07 0.76 ± 0.13 −69 ± 7 −65 ± 11
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FIGURE 4 | Generation of training dataset for the unloading problem. (A) Passive inflation and subsequent parameterization results for selected sample of 3 out of

600 left ventricle geometries considered to build the training datasets for the unloading problem. Idealized geometries, chosen via latin hypercube sampling to probe

the parameter space, were discretized and subjected to passive inflation using 3 different sets of material properties. Shown in the panel are results for 2 sets of

material properties (WU and WG
HO

) and 2 loading pressures (1 and 5 kPa). Shown also are color-coded distributions of strain expressed as the first invariant of the

Green-Lagrange tensor. (B) Violin plots depicting changes in geometric parameter distributions upon inflation for all the 533 LV geometries included in the training

datasets, and for the 3 sets of material properties. Black tone plots indicate distributions of geometric parameters at the BoD configuration. Lightest gray tone plots

correspond to distributions synthesized via latin hypercube sampling from a normal distribution constructed based on the BoD configuration, but allowing 2-times

larger variations. White segments close to the center of the distribution indicate mean values. See text for more details.
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FIGURE 5 | Unloading via kriging and comparison to the fixed point iteration

method. (A) Unloading procedure is shown applied to a representative case

(NI-14, unloading pressure P = 1 kPa, and WG
HO

material properties) for which

a statistical model trained on 75 arbitrary ventricles matched best unloading

results via fixed point iteration method. While the fixed point iteration method

required meshing of the ventricles in the loaded configuration and iterative

updates (middle row), the statistical method allowed to infer the unloaded

geometry directly from the 6 parameters describing the end-diastolic (loaded)

configuration (bottom row). Top row is similar to bottom row, but shows result

obtained after training a statistical model on results from the full parametric

study of 500+ LVs. The rightmost column shows overlapped cross-sections of

unloaded LVs obtained via the fixed point iteration method (dashed boundary)

and 2 statistical models (solid gray tones). (B) Similar to (A), but applied to

another representative case (I-07, unloading pressure P = 2 kPa, and WU

material properties) for which the statistical learning method (with ntrain = 75)

yielded the worst overlap to fixed point iteration results (Dice score of 0.90). In

this case, increasing the training set size led to improved results (Dice score of

0.96).

to that of running even only a single passive high resolution
simulation. To optimize the use of computational resources, we
sought, therefore, the minimum training set size that ensured

satisfactory accuracy in estimating the unloaded configurations
for all patients in the dataset. Figures 5A,B show cases where
predictions by GP regression compared best (see Figure 5A) and
least well (see Figure 5B) to the configurations predicted via fixed
point iteration for a relatively small training size (ntrain=75). As
starting (loaded) configurations, we chose geometries from the
database at EoD (see first column in both panels), and from these
we inferred corresponding unloaded configurations assuming
inner LV pressures of either 1 or 2 kPa. Comparison between
results from the 2 methods were evaluated in terms of Dice
score between unloaded profiles (see Supplemental Material for
details on Dice score computations). According to our analysis,
ntrain=75 was the minimum training set size ensuring Dice scores
larger or equal than 0.90 for all cases considered (i.e., including
all the LV geometries, both EoD inner pressures, and the 3 sets
of material properties). From the last column of Figure 5B one
can appreciate how even a Dice score of 0.90 corresponds to a
visibly good match between the GP regression prediction (see
LV in gray tone) and corresponding geometry obtained via fixed
point iteration (see overlapped dashed line). Small mismatches
could be observed even in cases with high Dice score in regions
close to the base of the LV (e.g., see last column of Figure 5A).
These artifacts could be attributed to the zero-displacement
boundary condition applied to epicardial elements within 3 mm
from the base in the fixed point optimizations. Note that the
fixed point iteration method required discretization of the EoD
domain and repeated mesh deformation steps (see middle row
in both panels). In contrast, after GP regression training the
unloaded configurations could be inferred almost in real time,
and as another advantage, the GP regression method eliminates
potential issues introduced by iteratively warping the mesh (e.g.,
element degeneration) in the fixed point iteration method. The
top row in both panels shows unloaded profiles inferred from GP
regressions trained on the full set of simulation results. In the best
match case shown in panel A results were essentially the same
for ntrain=75, while the Dice score increased by 0.06 when we
expanded the training dataset from ntrain=75 to 533 in the worst
match case (see Figure 5B).

Figure 6 plots average Dice scores comparing GP regressions
to fixed point iteration. The 3 rows in Figure 6A show results
for different sets of material properties at an unloading pressure
of 1 kPa (first column) or 2 kPa (second column). As expected,
increasing training sizes generally yielded better Dice scores,
although little improvement was observed beyond ntrain=75. Also
reported are average Dice scores quantifying the overlap between
fixed point iteration and the BoD or EoD configurations, as well
as the average overlap with the OptD configuration, which was
chosen as the imaged diastolic configuration that matched best
the unloaded geometry. White dashed lines overlapped to the
bars indicate the lower 10th-percentile Dice score observed for
predictions from GP regressions.

Additional GP regression models were trained to handle
situations where intraventricular pressure is unknown, but
can be estimated by indirect measurements such as the fiber
strain at midwall (see section 2.3). Table 3 reports unloaded
geometries for all patients in the Sunnybrook database under
the assumptions of WU material properties and end-diastolic
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FIGURE 6 | Accuracy of unloading via GP regression compared to unloading via fixed point iteration method. (A) Barplots of average Dice scores comparing

beginning of diastole (BoD), end of diastole (EoD), the best-matching diastolic configuration (OptD), and unloaded configurations obtained via kriging with different

ntrain to unloaded configurations predicted via the fixed point iteration method. Subplots show results for combinations of considered material properties (WU , WG
HO

,

orWW
HO

) and unloading pressures (P = 1 kPa or 2 kPa). (B) Similar to (A), but unloaded configurations are estimated prescribing average midwall strain at end diastole

(λ
ff10%

on the left, λ
ff15%

in the right column). In both panels the dashed white lines drawn on kriging-related bars indicate lower 10th-percentile Dice score for each

subcategory.

fiber strains of either 1.10 (λ10%
ff

) or 1.15 (λ15%
ff

). Outputs
of the procedure included end-diastolic LV pressure values
corresponding to the target fiber strains in the loaded
configurations. Figure 6B reports accuracy of GP regression
predictions measured in terms of Dice score with predictions via
fixed-point iteration method.

Other than being used for inverse problems, GP regressions
are ideal as tools for rapidly exploring multi-dimensional
parameter spaces. As a proof of concept for the usage, we
show preliminary results for a parametric study of the effect
of infarct location and shape on cardiac performance as
assessed by stroke volume (SV). Figure 7A shows color maps
of simulated SV over 2-D slices of the 4-D parameteric space.
Also shown, are projections onto each slice of the probing
locations composing the full training set (see black dots). Each
plot isolates the combined effects of 2 out of the 4 parameters
used to define infarct shape and location. As expected, increases

in lesion sizes yielded significant drops in SV. Maximum
combined effect was reached by increasing both circumferential
and transmural extension. Starting from a baseline failing LV
with SV = 49 ml, GP regression predicted a drop down
to SV = 21 mL at maximum depth and circumferential
extension. Figure 7B shows 5-fold cross-validation for evaluating
progressive convergence of GP regression for increasing training
sizes. Average relative discrepancies between SV values from
simulations and corresponding predictions from GP regression
progressively decreased to 6% for a maximum training size of 40
simulations.

Figure 8A compares in detail 2 simulations from the training
set characterized by different infarct morphologies. While INF16
(on the left) harbored a non-transmural basal infarct, the lesion
in INF30 was larger, more apical, and fully transmural. The high
level of mesh refinement within and surrounding the infarct
(see regions in darkest and intermediate gray tones, respectively)
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TABLE 3 | Unloaded geometries inferred via GP regression assuming EoD fiber stretches at midwall of either 1.10 (λ10%
ff

) or 1.15 (λ10%
ff

) and WU set of material

properties.

Rb (mm) L (mm) Z (mm) H (mm) e 90 (◦)

Pat. λ10%
ff

λ15%
ff

λ10%
ff

λ15%
ff

λ10%
ff

λ15%
ff

λ10%
ff

λ15%
ff

λ10%
ff

λ15%
ff

λ10%
ff

λ15%
ff

N-02 30 30 9.3 10 50 51 9.1 9.8 0.65 0.65 −68 −60

N-03 30 29 8.4 9.4 47 47 6 6.5 0.70 0.71 −74 −66

N-05 28 28 9.3 10 45 46 7.6 8.1 0.65 0.65 −53 −45

N-06 29 29 8.4 9.3 45 45 6 6.6 0.86 0.89 −60 −53

N-07 32 32 11 12 56 58 12 13 0.63 0.63 −53 −45

N-09 35 34 9.6 11 54 55 12 13 0.70 0.70 −53 −45

N-10 30 30 11 12 58 58 5.6 6.1 0.69 0.71 −75 −68

N-11 32 32 10 11 49 50 7.4 7.9 0.76 0.78 −43 −35

N-40 28 28 9.5 10 51 52 10 11 0.83 0.84 −33 −27

HYP-01 30 30 7.9 8.9 39 39 6.2 6.8 0.57 0.56 −73 −64

HYP-03 32 32 11 12 43 43 6.9 7.6 0.54 0.54 −64 −55

HYP-06 32 32 11 12 38 39 7.4 8.1 0.73 0.75 −64 −57

HYP-07 37 36 14 15 56 57 8.8 9.3 1.00 1.00 −37 −31

HYP-08 41 41 16 17 68 70 11 12 0.82 0.84 −51 −44

HYP-09 33 32 9 9.7 55 55 8 8.7 0.80 0.81 −70 −63

HYP-10 36 35 9.5 10 46 46 6.2 6.9 0.58 0.57 −75 −66

HYP-11 29 29 12 13 38 39 7.3 7.9 0.83 0.86 −67 −60

HYP-12 26 26 8.1 9.1 51 51 8.7 9.4 0.65 0.65 −60 −53

HYP-37 31 32 11 12 53 54 13 14 0.55 0.55 −48 −40

HYP-38 32 33 14 15 71 72 17 17 0.61 0.60 −38 −32

HYP-40 31 31 15 16 53 54 11 12 0.78 0.80 −31 −24

HF-NI-03 43 42 12 13 52 53 7.2 8 0.89 0.91 −60 −53

HF-NI-04 39 38 9.3 10 49 49 6.9 7.7 0.66 0.66 −73 −64

HF-NI-07 36 35 9.4 10 66 67 14 14 0.59 0.58 −61 −54

HF-NI-11 40 39 11 12 60 60 6.4 7 0.63 0.63 −76 −68

HF-NI-12 43 41 9.6 10 63 63 8.4 9.2 0.77 0.77 −73 −67

HF-NI-13 38 37 11 11 63 63 9 9.6 0.89 0.90 −74 −68

HF-NI-14 37 36 12 14 54 55 8.3 9.1 0.77 0.79 −58 −50

HF-NI-15 34 34 11 12 60 61 13 14 0.85 0.86 −48 −41

HF-NI-31 37 36 11 12 50 50 6.6 7.2 0.84 0.86 −69 −62

HF-NI-33 34 33 10 11 58 58 7.3 8 0.64 0.64 −76 −69

HF-NI-34 37 36 10 11 59 60 5.6 6.3 0.65 0.65 −67 −59

HF-NI-36 40 39 9.4 10 45 46 5.9 6.6 0.82 0.83 −65 −58

HF-I-01 35 34 9.4 10 55 56 5.5 6 0.82 0.84 −57 −50

HF-I-02 41 39 11 12 53 53 6.6 7.3 0.59 0.58 −70 −61

HF-I-04 38 38 9.8 11 50 51 6.6 7.3 0.59 0.58 −57 −49

HF-I-05 39 38 11 12 49 50 10 11 0.61 0.60 −59 −50

HF-I-06 36 35 9.4 10 55 55 5.9 6.5 0.64 0.64 −74 −66

HF-I-07 36 36 12 14 42 43 7.8 8.6 0.50 0.50 −62 −53

HF-I-08 39 38 10 12 55 55 5.6 6.3 0.74 0.75 −58 −50

HF-I-09 47 45 10 12 74 74 13 14 0.73 0.73 −68 −62

HF-I-10 46 44 10 11 52 53 5.9 6.7 0.70 0.70 −66 −58

HF-I-11 36 35 7.1 7.8 54 54 5.7 6.4 0.60 0.59 −67 −59

HF-I-12 33 33 9.4 10 55 56 8.3 9 0.63 0.63 −62 −54

HF-I-40 31 30 9.6 10 55 56 13 14 0.71 0.70 −73 −65

N-avg 30 30 9.6 11 51 51 8.4 9.1 0.72 0.73 −57 −49

(±σ ) (2) (2) (1.0) (1) (5) (5) (2.5) (2.7) (0.08) (0.09) (14) (14)

HYP-avg 32 32 12 12 51 52 9.3 10 0.71 0.71 −56 −49

(±σ ) (4) (4) (3) (3) (11) (11) (3.2) (3) (0.14) (0.15) (15) (14)

HF-NI-avg 38 37 10 11 57 57 8.2 8.9 0.80 0.76 −67 −59

(±σ ) (3) (3) (1) (1) (7) (7) (2.7) (2.6) (0.1) (0.12) (9) (9)

HF-I-avg 38 37 9.9 11 54 55 7.8 8.6 0.66 0.65 −64 −56

(±σ ) (5) (4) (1.2) (2) (7) (7) (2.8) (2.9) (0.09) (0.09) (6) (6)

See text for more details
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FIGURE 7 | Statistical model of infarct shape and location effects on simulated

SV. (A) Color-coded distribution of SV as predicted by kriging on 6 slices of the

4-D parametric hyperspace. Each plot shows combined effects of variations of

2 parameters on simulated SV, as shown by scale bar (values outside the

range are truncated). Darker (lighter) color tones indicate stronger (weaker)

impairment due to infarct. Dots represent projections of the probing points

onto the slice plane. (B) 5-fold cross-validation to assess performance of the

statistical model for varying training sizes ntrain. Relative error on simulated SV

predictions approached 6% for the maximum training set size (ntrain = 40).

required the capability of our solver of handling high resolution
tetrahedral meshes. Figure 8B compares simulated PV loops
for the 2 models described above. As expected, INF30 (see
dashed line), which harbored a larger lesion, exhibited a stronger
impairment in simulated cardiac performance. The PV loops

FIGURE 8 | Comparison between 2 select simulations (out of the 40

considered). (A) On the left, the INF16 model has a smaller basal infarct

(volume of 8.8 ml, Long. = 0.43, 1Circ. = 1.22, 1Long. = 0.40, Depth =

0.40). On the right, INF30 presents a larger transmural lesion (volume of 16 ml,

Long. = 0.79, 1Circ. = 1.57, 1Long. = 0.46, Depth = 1.0). (B) Simulated PV

loops showing smaller SV for the largest lesion INF30 (dashed line), as

expected.

show the weaker contraction generated by INF30 despite an
increase in end-diastolic volume (i.e., SV = 40 ml and SV = 32
ml for INF16 and INF30, respectively).

4. DISCUSSION

Numerous computational models of LV mechanics have been
developed over the years to understand better LV function in
normal and diseased hearts with the ultimate goal of assisting
personalized diagnostics and treatment. Available models differ
both in terms of enclosed biophysical detail and of anatomical
representation. In the simplest form, left ventricular function can
be captured by a time-varying elastance model, where a single
time-varying ODE couples the evolution of intraventricular
pressure and volume over the course of a cycle (Suga and Sagawa,
1972; Stergiopulos et al., 1996). At the other end of the complexity
scale, models of LV mechanics incorporate phenomenological
or biophysical descriptions of muscle contraction at the
microscopic level, while at the same time capturing in detail
the cardiac anatomy on high-resolution computational domains
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(e.g., Guccione et al., 1995; Kerckhoffs et al., 2007; Göktepe
and Kuhl, 2010; Baillargeon et al., 2014; Sundnes et al., 2014;
Gurev et al., 2015; Augustin et al., 2016). Although these highly
refined 3D models provide valuable information, they entail
high computational costs. To improve computational efficiency,
models with intermediate levels of complexity have been based on
simplifying assumptions on ventricular geometry and structure
(Arts et al., 1979; Beyar and Sideman, 1984; Lumens et al.,
2009). For prolate spheroid geometries and passive mechanics
simulations, distributions of stress in other low order models
can match well FEM results despite running faster than in
real-time (Moulton and Secomb, 2013, 2014; Moulton et al.,
2017).

Significant reductions in computational costs can be similarly
achieved by training machine learning models on the results
of opportunely sampled biophysical simulations. As a proof of
concept, in this paper we applied GP regression, a popular
supervised learning technique, to 2 problems of interest in
cardiac mechanics modeling. First, 600 LV geometries described
by a 6-parameter (Rb, L, Z, H, 90, e) prolate spheroid were
extracted randomly from a conservatively defined parameter
space. For each geometry, a forward simulation was run to
trace ventricle geometries upon inflation at progressively larger
intraventricular pressures. GP regression models then allowed
to infer unloaded configurations given sets of 6 parameters
defining the loaded geometries and either their corresponding
intraventricular pressure or their fiber strain at midwall.
For the second statistical model, we built a GP regression
between parameters characterizing the location and shape of
an infarct and corresponding stroke volumes predicted by
high-resolution simulations accounting for the presence of the
lesion.

4.1. Ventricular Shape Analysis
The Sunnybrook Cardiac MRI database was the primary source
of imaging data for this study. Conventional analyses of the
segmentations from such a database have employed methods to
either extract features directly from images (e.g., Chumarnaya
et al., 2016), or have used finite element models to analyze
ventricular shapes and build statistical classifiers of patient
disease (e.g., Piras et al., 2017). A geometric description with
fewer parameters is better suited for parameterizing the geometry
of ventricles in regressions trained on biophysical simulation
results. Therefore, instead of finite element models, we adopted
a 6-parameter description (Streeter and Hanna, 1973; Pravdin
et al., 2014) to approximate ventricular geometry. In spite
of its simplicity, this approach was able to capture some of
the shape features and biomarkers that have been previously
extracted using the conventional finite element models (e.g.,
Zhang et al., 2014). In particular, ventricular sphericity (e)
separated ventricles with and without myocardial infarction
in patients with heart failure (see HF-I and HF-NI traces
in Figure 3). The 6-parameter model analysis also captured
higher average wall thickness in hypertrophic hearts and highest
relative dynamic thickening in normal patients. To partially
compensate for the limits of considering a fully axisymmetric
parameterization, we accounted for eventual rigid rotations

and translations to better align parameterized and segmented
ventricles throughout the cardiac cycle. This ensured us overall
good fitting results, especially for the failing hearts, which
proved to be more symmetric. Nonetheless, the methods here
presented could be promptly extended also to non-axisymmetric
parameterizations such as those based on non-uniform rational
B-splines at the expense of extending the parameter space to
additional dimensions.

Out of the several field views provided in the Sunnybrook
database, we restricted our analyses to short-axis stack series,
which have the disadvantage of providing relatively low
resolution in the coronal planes. As a result, some artifacts
were particularly evident close to the apex of the ventricle,
where the segmentation and subsequent parameterization
were sometimes not able to resolve correctly the apical
thickness, especially in the thinner failing LVs. Not surprisingly
then, the H parameter showed the largest relative standard
deviations within the same cardiac cycle for all patients,
indicating that apex parameterization accuracy could be
likely corrected by registering and merging multiple MRI
views.

4.2. Ventricular Unloading
Standard FE simulations need to be initialized from an unloaded
state, which cannot be directly extracted from images because
ventricles are pressurized in all of the configurations imaged
by cine-MRI or CT scans. Given material properties and
inner LV pressure, iterative approaches such as the fixed point
iteration method allow to estimate the unloaded configuration
by progressively correcting a loaded state (Sellier, 2011; Genet
et al., 2015). Nonetheless, due to their large computational
cost and added complexity, these techniques are not typically
incorporated into sophisticated optimization schemes proposed
to estimate model parameters from images (Asner et al.,
2016, 2017; Nasopoulou et al., 2017). To ensure feasibility,
many modeling studies tend instead to use representative
loaded configurations (i.e., at beginning or end of diastole) as
approximations for the unknown unloaded state. As shown by
our analyses, this could significantly bias results, since BoD
and EoD configurations tend to match poorly to the profiles
of unloaded geometries (see Figure 6). GP regression models
of unloading can help circumvent some of the limitations
associated with iterative methods and enable larger parameter
search studies. Somewhat surprisingly, even a training set of
ntrain=75 forward simulations was sufficient to ensure good
inverse estimation results. LV profiles inferred from the statistical
model matched those obtained via fixed point iteration with
Dice scores always larger than 0.90 under 2 loading pressures
and for 3 different sets of material properties. Considering
that in our experience 7–10 iterations are needed to reach
convergence via fixed point iteration, the preparation of an
accurate statistical model might then require a computational
cost comparable to unloading 7–10 ventricles with the standard
method. Unlike fixed point iteration our strategy requires
also an additional step of re-parameterizing simulation results
in a format that can be handled by the machine learning
model. The computational cost of reparameterizing is often
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negligible (on the order of few CPU mins), and after
training the statistical model can be further interrogated to
unload additional geometries at essentially no computational
cost.

In addition to morphology, estimating the unloaded
configuration relies on the knowledge of loading conditions
and of the material properties of the myocardium. To fully
characterize the material behavior of cardiac tissue, sophisticated
experiments are required to reproduce in vitro the principal
strain modes experienced by the heart during the cycle. The
most extensive dataset on the passive behavior of the human
myocardium is provided by Sommer et al. (2015). This work
confirms how the micro-architecture of myocardial sheets
leads to complex nolinear anisotropic behavior combined to a
persisting viscoelastic response. Although viscoelastic effects
were neglected in this work, we considered material properties
based on the triaxial experiments of Sommer et al. (2015) as well
as 2 other sets of constitutive behaviors based on experiments
on animal models (Usyk et al., 2000; Wang et al., 2013; Gültekin
et al., 2016). Our unloading procedure proved to work well for
all of these sets of material properties.

In the form presented herein, our method for ventricular
unloading required building a new training dataset and
subsequently a new GP regression model for each set of material
properties considered. Nonetheless, for future applications,
the input parametric space could be extended to additional
dimensions to account also for variations in material properties.
While more training simulations would likely be needed to reach
the desired convergence, the presented approach could still prove
to be convenient for material property identification based on
strain energy functions with reduced number of parameters (e.g.,
Nasopoulou et al., 2017), and especially in cases where large
high performance machines are available to tackle the required
computational cost in a distributed fashion.

The diastolic fiber strain at midwall, the constitutive law,
and the shape of the ventricles at end-diastole are sufficient to
uniquely unload geometries either via fixed-point iteration or GP
regression. In this paper, we proposed to constrain end-diastolic
fiber stretch to account for scenarios where diastolic pressure in
the ventricles is not known. Animal model experiments suggest
that end-diastolic fiber strain varies within a relatively small range
in several circumstances (e.g., see Ross et al., 1971). Inspired
by studies on inverse stress identification (Miller et al., 2010;
Miller and Lu, 2013), we therefore tried to find the unloaded
ventricular shape without solving for ventricular pressure. This
was also motivated by the fact that unloading by strain would
yield the same unloaded configuration independently from a
homogeneous scaling of the constitutive law (i.e., predicted end-
diastolic pressures would scale accordingly). To illustrate the
potential of such approach, we additionally computedDice scores
between unloaded ventricles with 10% diastolic fiber strain using
different constitutive laws. Our results (Dice scores of 0.90±0.05
forWU vs.WG

HO, 0.85± 0.03 forWU vs.WW
HO and 0.96± 0.03 for

WG
HO vs. WW

HO, respectively) suggested strong similarity between
unloaded ventricles endowed with umlaut Gultekin and Wang
material behaviors, which followed the same Holzapfel-Ogden
functional formulation.

4.3. Modeling of Infarct Mechanics
Two main factors increase the complexity of ischemia and
myocardial infarction models. The first one is the need to
account for the progressive changes in passive and active material
properties that are triggered by the lesion and driven by tissue
damage recovery and remodeling (Holmes et al., 2005). The
second one is the more complex numerical framework required
to handle the large finite element meshes needed to accurately
capture realistic infarct shapes. In the past, only few studies have
simulated non-transmural infarcts (Leong et al., 2015; Duchateau
et al., 2016; Leong et al., 2017), while most models have either
simulated infarct with simplified morphologies, or have allowed
infarct/ischemic regions crossing the finite element boundaries
(e.g., Mazhari et al., 2000; Jie et al., 2010; Wenk et al., 2011;
Mojsejenko et al., 2015). Here, we present a model of non-
transmural infarct that has refined elements in the border region
of infarct. To handle large finite element meshes that result
from such a refinement, we use an iterative solver for the large
system of linearized equations with an efficient preconditioner
(Gurev et al., 2015). To quickly summarize our results, the 2
main parameters affecting simulated SV were the transmural
and circumferential extensions of the lesion, while location of
the infarct played a minor role. Our models of infarct and the
corresponding statistical model are still at a preliminary stage of
development, and were here presentedmainly to demonstrate the
concept of integration between statistical and physical models.

4.4. Summary
This work shows 2 applications of GP regression in modeling
ventricular heart mechanics. First, we present a strategy to
estimate the ventricular unloaded configuration given material
properties and intraventricular pressure (or alternatively fiber
strain at midwall). Once an upfront computational cost
(amounting to ∼10 applications of a conventional iterative
method) is paid for training, GP regression models allow the
estimation of unlimited unloaded geometries at no additional
cost. The method is therefore suitable to be used in analyses
involving large number of patients such as those collected in
publicly available databases. Second, we use GP regression as
a convenient tool to explore results of a parametric study
investigating coupled effects of infarct shape and location.
While just a proof of concept study, these preliminary results
demonstrate the power of the approach. That is, we were able
to characterize a large variation in infarct location and size,
including non-transmural infarcts with highly complex meshes
that are computationally demanding to solve.
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A recent advance in understanding stem cell differentiation is that the cell is able to

translate its morphology, i.e., roundish or spread, into a fate decision. We hypothesize

that strain states in the nuclear envelope (NE) cause changes in the structure of the

nuclear pore complexes. This induces significant changes in the NE’s permeability to the

traffic of the transcription factors involved in stem cell differentiation which are imported

into the nucleus by passive diffusion. To demonstrate this, we set up a numerical model of

the transport of diffusive molecules through the nuclear pore complex (NPC), on the basis

of the NPC deformation. We then compared the prediction of the model for two different

cell configurations with roundish and spread nuclear topologies with those measured on

cells cultured in both configurations. To measure the geometrical features of the NPC,

using electron tomography we reconstructed three-dimensional portions of the envelope

of cells cultured in both configurations. We found non-significant differences in both the

shape and size of the transmembrane ring of single pores with envelope deformation. In

the numerical model, we thus assumed that the changes in pore complex permeability,

caused by the envelope strains, are due to variations in the opening configuration of

the nuclear basket, which in turn modifies the porosity of the pore complex mainly

on its nuclear side. To validate the model, we cultured cells on a substrate shaped

as a spatial micro-grid, called the “nichoid,” which is nanoengineered by two-photon

laser polymerization, and induces a roundish nuclear configuration in cells adhering

to the nichoid grid, and a spread configuration in cells adhering to the flat substrate

surrounding the grid. We then measured the diffusion through the nuclear envelope of

an inert green-fluorescent protein, by fluorescence recovery after photobleaching (FRAP).

Finally, we compared the diffusion times predicted by the numerical model for roundish

vs. spread cells, with the measured times. Our data show that cell stretching modulates

the characteristic time needed for the nuclear import of a small inert molecule, GFP,

and the model predicts a faster import of diffusive molecules in the spread compared to

roundish cells.

Keywords: nuclear pore complex, passive diffusion, nuclear envelope permeability, stem cell differentiation, finite

element modeling, scanning transmission electron microscopy, confocal microscopy
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INTRODUCTION

The mechanobiological cues guiding stem cell fate are currently
being intensely explored in vivo (Rompolas et al., 2013) and in
vitro (Nava et al., 2012). In vitro, they can be modulated through
substrate stiffness, surface nanotopography, microgeometry, and
extracellular forces. For example, the culture of mesenchymal
stem cells (MSCs) on substrates with tuned elasticity (Swift et al.,
2013), or with a size and geometry constraint (Nathan et al.,
2011; Tseng et al., 2012), results in an alteration in cell spreading,
leading to major remodeling of the cellular cytoskeleton. This
remodeling, in turn, alters the nuclear shape, mediated by
the traction transmitted to the nucleus by the filamentous
actin cytoskeleton (Badique et al., 2013). However, exactly how
alterations in nuclear shape are transduced into stem cell fate are
unknown.

Here, we hypothesize that strain states in the nuclear envelope
(NE) cause changes in the structure of the nuclear pore
complex (NPC). This would lead to a significant change in
the permeability of the nuclear envelope to the traffic of those
transcription factors involved in stem cell differentiation which
are very small and thus imported in the nucleus through the
NPCs by simple passive diffusion. The molecular weight of these
diffusive molecules has been estimated to be lower than 40 kDa
(Paine et al., 1975; Ribbeck and Görlich, 2001) but can reach
dimensions up to 70 kDa (Wei et al., 2003; Cardarelli and
Gratton, 2010; Bizzarri et al., 2012).

The multiprotein structure of a NPC is detailed in Figure 1.
NPCs are a substructure assembly composed of several coaxial
rings and 8-fold rotational (Goldberg and Allen, 1996; Beck et al.,
2004; Löschberger et al., 2012) symmetrical structures named
according to their spatial location: (1) The cytoplasmic ring (CR)
and filaments in the cytoplasmic side; (2) The spoke ring (SR)
and transmembrane ring, which provide stiffness and stability
to the complete NPC, in the nuclear envelop; (3) The nuclear
ring (NR), which is attached to the lamina, the nuclear basket,
and the distal ring (DR) in the nuclear side. For a detailed
description of the structure of the NPC, see the review paper
(Garcia et al., 2016).

NPCs pose efficient barriers to big inert objects (Mohr
et al., 2009) and regulate the protein translocation between the
cytoplasm and cell nucleus, thus suppressing an intermixing
of the contents of the two compartments in order to control
cell life and regulate gene expression, as in cell differentiation.
Small proteins and molecules can pass unassisted through the
NPC by passive diffusion. This translocation process becomes
increasingly restricted as the particle size increases (Paine et al.,
1975; Wei et al., 2003). Passive diffusion becomes very inefficient
approaching an upper molecular weight limit of around 40–
70 kDa. Thus, larger proteins are let into the nucleus by a
NPC selective receptor on the FG-domain, which recognizes
a specific import motif (called the nuclear localization signal)
expressed by the cargos. This process of protein translocation,
named facilitated translocation, is often associated with an input
of metabolic energy, thus enabling transport also against a
concentration gradient (Paine et al., 1975; Ribbeck and Görlich,
2001; Naim et al., 2007).

According to the basic principles of mass transport, the
nuclear flux of small transcription factors occurring by passive
diffusion should be proportional to their concentration gradient
across the NPC, by a coefficient related to the dimension of the
pore lumen. Variable diameters have been observed in the NPC,
likely made possible by large-scale rearrangements of double-
ring protein subcomplexes (Bui et al., 2013). Such large-scale
rearrangements are now believed to be biologically significant
only for the transport of huge macromolecular cargoes.

To the best of our knowledge, no one has yet hypothesized
a role for the pore dimensional variations in regulating the
purely diffusive nuclear fluxes of signaling molecules, such
as transcription factors, including those involved in stem cell
differentiation. This work defines one of these mechanisms using
an advanced mechanobiology model based on the integration of
a computational model of protein nuclear diffusion with nuclear
deformation, with direct measurements on the cells of nuclear
import flows of small diffusive proteins.

Computational modeling of nuclear diffusion-deformation
phenomena entails coupling structural mechanics models for
the NE and NPC with diffusion equations for the transcription
factors, which is an essentially unexplored field. Few published
examples of numerical simulations address the mechanics of the
NPC and its effect on nucleocytoplasmic transport (reviewed
in Garcia et al., 2016). At the cell scale, our group developed
a finite element simulation of passive diffusive fluxes from the
cytoplasm to the nucleus, accounting for nuclear deformation
(Nava et al., 2015a). This model coupled nuclear diffusion with
local NE deformation in transient conditions, through a strain-
dependent diffusion coefficient. At the nanoscale, numerical
simulations based on molecular dynamics predicted a cargo
trajectory through an NPC by interaction with the FG-domain
of an NPC selective receptor (Moussavi-Baygi et al., 2011). This
model also supports the hypothesis that the mechanical response
of the NPC may affect the diffusion of cargos and smaller
molecules through the nuclear pore.

A major challenge in calibrating these numerical models
is the direct measurement of small diffusive proteins in cells
of the nuclear import flows. The study of protein mobility
or translocation of protein between different compartments
of live cells (such as nucleocytoplasmic translocation) was
made possible by the discovery and development of fluorescent
proteins (FPs) (Chalfie, 1994; Tsien, 1998). FPs are a class of
genetically encodable proteins derived from sea organisms and,
in particular, from the jellyfish Aequorea victoria.

Using molecular biology techniques and commercial scanning
microscopes, FPs can be tagged to any protein of interest. In
addition, fluorescent microscopy can visualize, localize and track
proteins in live cells and also reveal the extensive networks
of protein-protein interactions that regulate cell processes
(Lippincott-Schwartz et al., 2003). Fluorescence recovery after
photobleaching (FRAP) is particularly useful in assessing the
dynamic and biochemical properties of intracellular proteins in
a single or multiple cell compartment (Sprague and McNally,
2005). FRAP was originally conceived in 1974 by Peters et al.
(1974) and is very useful for studying protein mobility because
it is only based on the change in optical properties, whereas
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FIGURE 1 | The nuclear pore complex. (A) From micro (STEM cell) to nanoscale (nuclear pore complex structure). (B) Main sub-structural groups (rings, filaments,

and basket) that make up an NPC. (Reproduced from Garcia et al., 2016 with permission from the Royal Society of Chemistry).

the dynamics and biochemistry of the molecules of interest
are not perturbed. FRAP, along with other optical fluorescence
microscopy techniques, has been widely used to study and
understand passive and active diffusion mechanisms through the
NPC (Wei et al., 2003; Yang et al., 2004; Cardarelli and Gratton,
2010; Bizzarri et al., 2012).

In this work, we hypothesized that strain states in the NE
cause changes in the structure of the NPC, thus in turn causing a
significant change in the permeability of the NE to the traffic of
transcription factors that are imported into the nucleus by passive
diffusion. To quantify this effect, we set up a numerical model
of the interaction between the NPC and the NE. We measured

geometrical parameters of the NPC size/shape on reconstructed
three-dimensional (3D) portions of the NE, in both roundish and
spread cell configurations, by applying electron tomography (ET)
analysis on cultured cells.We set up a computational model of the
NPC-NE mechanical interaction in which the changes in NPC
permeability due to the NE strains are caused by variations in
the opening configuration of the nuclear basket, which in turn
modifies the porosity of the NPC nuclear side in the NE.

To validate this model, we cultured cells in a substrate
nanoengineered by two-photon laser polymerization which can
maintain roundish cell nuclei due to the isotropic adhesion of
cells to a 3Dmicro-lattice, called the “nichoid” (Raimondi, 2013).
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Cells adhering to the flat substrate surrounding the individual
nichoids adhered in standard spread conditions to the flat 2D
surface and showed spread nuclei. We transfected untagged
GFP protein into MSCs grown in both roundish and spread
conditions.

Our aim was to quantify, with FRAP experiments, how cell
morphology affects the nuclear envelope permeability and hence
the nucleocytoplasmic exchange of transcription factors. Finally,
we compared the diffusion time constants predicted by the
numerical model for roundish vs. spread cells with the constants
measured by FRAP.

MATERIALS AND METHODS

Experimental Protocols for NE
Reconstruction by Scanning TEM (STEM)
Cell Culture
MSCs were isolated from the bone marrow of adult rats (Zoja
et al., 2012). Cells were isolated and cultured in alpha-MEM
medium supplemented with 20% fetal bovine serum (FBS), 1%
L-glutamine (2mM), penicillin (10 units/ml), and streptomycin
(10µg/ml) at 37◦C and in 5%CO2 (Euroclone, Italy). The culture
medium was changed every 2–3 days and cells were used at
stages 1–3 after thawing. The animal protocols used in this study
comply with the institutional protocols for ethical use currently
in force.

Sample Preparation for STEM Analysis
MSCs were plated (20,000 cells/cm2, n = 3) on glass coverslips
(13mm diameter) or 35 mm-Petri dishes. One day after plating,
the culture medium was removed and cells were washed with
phosphate buffered saline. To model the deformed (spread)
configuration, MSCs were fixed for 2 h at room temperature
with 1.5% glutaraldehyde in 0.1M sodium cacodylate (pH 7.2),
detached by scraping, centrifuged to recover the pellet, kept
overnight at 4◦C in 1.5% glutaraldehyde in 0.1M sodium
cacodylate and finally rinsed in 0.1M sodium cacodylate (pH
7.2). To model the undeformed (roundish) configuration, MSCs
were detached with trypsin, centrifuged to recover the pellet,
fixed overnight with 1.5% glutaraldehyde in 0.1M sodium
cacodylate, and rinsed in 0.1M sodium cacodylate.

FIGURE 2 | TEM image of the NE with NPCs (in circles).

STEM Analysis
After chemical fixation, MSCs cells in the spread and roundish
configurations were washed several times in 0.1M sodium
cacodylate (pH 7.2), post-fixed in 1% osmium tetroxide in
distilled water for 2 h and stained overnight at 4◦C in an
aqueous 0.5% uranyl acetate solution. After several washes in
distilled water, the samples were dehydrated in a graded ethanol
series, and embedded in EPON resin. Sections of about 70 nm
were cut with a diamond knife (DIATOME) on a Leica EM
UC6 ultramicrotome. Transmission electron microscopy (TEM)
images were collected with an FEI Tecnai G2 F20 (FEI Company,
The Netherlands). EM tomography was performed in scanning
TEM (STEM) mode, using a high angular annular dark field
(HAADF) detector on 400 nm thick sections of MSCs cells in
both spread and roundish configurations. The tilt series were
acquired from a ±60◦ tilt range. The resulting images had a
pixel size of 1.85 nm as shown in Figure 2. The tomograms
were computed with IMOD (version 4.8.40) (Kremer et al.,
1996). Isosurface based segmentation and three-dimensional
visualization on unbinned and unfiltered tomograms were
performed using Amira (FEI Visualization Science Group,
Bordeaux, France).

Nuclear Envelope 3D Reconstruction
Open source image processing software, IMOD (Kremer et al.,
1996), specialized in tomographic reconstruction developed
by the University of Colorado was used to segment STEM
images. Segmentation was performed manually on each slice.
This process was guided by first locating the heterochromatin
which is located very close to the membrane on the nuclear
side (Figure 2). Figure 3A shows a typical slice segmentation
detailing the location of several nuclear pores in the membrane.
This process was followed for each slice as shown in
Figure 3B. The nuclear envelope was then reconstructed by
linear interpolation of the segmentation between consecutive
slices (Figure 3C).

When the 3D reconstruction of the NE had been modeled,
the geometrical data of the pores were measured directly using
IMOD. Since the pore section is slightly elliptical, in order
to obtain the area of each NPC, the two main diameters
were obtained by measuring the pixel-by-pixel distances using
IMOD. Additional post-processing regarding pore dimensions
was performed in Matlab R2017b. Since we were measuring the
main distances of the pixels between the mounted segmented
slices, the main diameters were the closest approximations to
the real diameters, due to the limited resolution of the STEM
images. In order to obtain an accurate approximation of the pore
area, a total of 16 and 19 pores were found in the reconstruction
and measured for both spread and roundish configurations,
respectively.

Experimental Protocols to Analyse the
Diffusive Process on Cells
Cell Culture on Flat and 3D Substrates
To recreate the two spread and roundish cell morphologies, cells
were seeded on a chambered 160µm-thick cover glass (Lab-
Tek II, Thermo Scientific-Nunc) patterned with 3D “nichoid”
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FIGURE 3 | STEM Cell segmentation of the Nuclear Envelope and Pores. (A) Cell electron tomography with Nuclear Envelope segmentation (green). (B) Segmented

cell tomographies for 3D reconstruction. (C) 1-slide segmentation of the NE (blue-left). 3D reconstruction (blue-right).

structures fabricated using an organic-inorganic photoresist
(SZ2080) by two-photon laser polymerization (Raimondi, 2013).
In each chamber well, three niches were arranged in a triangular
pattern, at a relative distance of 200 µm. Individual niches were
30 µm high and 90 × 90µm2 in transverse dimensions. They
consisted of a lattice with interconnected lines, comprising a
complex structure with pores of a graded size (Figure 4). The
lines had a uniform spacing of 15 µm in the vertical direction,
and a graded spacing of 10, 20, and 30 µm in the transverse
direction. Each niche was surrounded by four outer confinement
walls, made up of horizontal rods spaced by 7.5 µm, resulting in
small gaps of 2 µm, which allow the diffusion of nutrients, but
prevent the cells from escaping outside the niche (Nava et al.,
2015b).

Before cell seeding, samples were washed three times in
deionized water, incubated overnight in ethanol 70%, washed
three times in sterile deionized water and irradiated with UV
light for at least 1 h. The samples were then treated with
0.01% of Poly-L-lysine solution (Sigma-Aldrich, Italy) to improve

the cell adhesion, and again washed three times with sterile
deionized water. Once dry, 20 · 103 MSCs cells were seeded
on each chamber. The day after, the cells were transient
transfected with untagged GFP protein (pmaxGFP, Lonza,
Switzerland).

Cell Transfection
Cells were transiently transfected with GFP plasmid (pmaxGFP,
Lonza, Switzerland) using the jet PRIME reagent (Polyplus,
USA). A solution consisting of 0.5 µg of DNA, 25 µl of jet
PRIME buffer and 1.12µl of jet PRIME reagent was prepared and
kept at RT for 15min. Cells were incubated with the transfection
solution added to 400µl of antibiotic-free medium (alpha-MEM,
20% (FBS), 1% L-Glutamine; Euroclone, Italy). After 4 h, the
solution was replaced with the complete medium. The day after,
the mediumwas replaced with a DMEMphenol-red free medium
(Lonza, Switzerland) containing 10% FBS, 1% Pen/Strep, 1% L-
Glutamine. Nuclei were stained with 1 µM DRAQ5 fluorescent
probe (ThermoFisher, Italy) 10min before the measurements.
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FIGURE 4 | A representative sample. (A) one SEM image of the NICHE produced with the two-photon laser polymerization technique, and two images acquired in

fluorescence confocal microscopy; (B) spread MSCs cells grown on the flat part of the sample; and (C) roundish MSCs cells grown in the NICHE. MSCs were seeded

on the samples, transfected with GFP protein (green), and their nuclei were marked with the DRAQ5 dye (red). In the images of roundish cell, the niche is also

visible—this is because the photoresist, SZ2080, is auto-fluorescent.

Fluorescence Recovery After Photobleaching (FRAP)
FRAP measurements were performed with a confocal Laser
Scanning microscope (Leica SP8, Germany) equipped with an
Argon laser and a white laser, a 63X PlanApo oil-immersion
objective (NA 1.4) and the incubator chamber. To identify the
cell nucleus and choose the best plane to perform the FRAP
measurement, DRAQ5 dye was detected using 8% of the Leica
white-light laser (excitation 633 nm, emission 650–750 nm). For
each cell, a region of interest identifying the section of the nucleus
on which the FRAP measurement was later taken, was recorded
to calculate the area. To acquire GFP protein emission, 0.2% of
the 70% full power argon laser (excitation wavelength 488 nm,
emission wavelength 500–580 nm) was used. Photobleaching
of nuclear GFP was achieved by a single-point bleach (non-
scanning) near the center of the nucleus with the 488 nm laser
at full (100%) power. The time required to photobleach most
of the nuclear fluorescence, without destroying too much of
the cytosolic fluorescence, in flat cells was 3–5 s. In the case of
cells grown in the niche, the maximum photobleaching time
was 100ms to avoid bleaching the GFP protein present in the
cytoplasm.

Fluorescence recovery was measured starting a time-lapse
acquisition within a few hundred milliseconds (382ms) after

the bleaching, acquiring 20 images every 191ms and then 90
images every 6 s. Image size was 256 × 256 pixels and
the scan speed was 700Hz. Pinhole size was set to the value
of 3.0 Airy, corresponding to a z resolution of 2.3 µm. Ten
acquisitions were performed for cells grown on a flat surface
(spread cells) and cells grown in the 3D scaffold (roundish cells),
respectively. The recovery of the fluorescence was evaluated for
about 10min, which is enough time to observe a fluorescence
intensity plateau for a few minutes in the recovery curve. This
plateau means that the exchange of dark and bright protein
from the cytosol and the nucleus is indistinguishable. The curves
associated with the image background was subtracted from
each acquisition. To remove the intrinsic loss of fluorescence
due to the imaging process, the nuclear fluorescence data were
normalized to the total cell GFP-fluorescence intensity calculated
with a ROI located on the cell edge (Figures 5A,B). Data were
also normalized by the average value of the nuclear fluorescence
intensity calculated over the last 30 s of the measurement. The
curves obtained were then shifted to start at zero of the graph.

The fluorescence signal was assumed as being proportional to
the GFP concentration and described by the function:

F (t) = F∞ (t) + (F0 (t) − F∞ (t) )e
t
t1 (1)
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FIGURE 5 | Example of a FRAP experiment. (A,B) Representative images of

the nuclear fluorescence recovery in a spread and a roundish MSC. In red is

highlighted the nucleus, in yellow the cell edge. The bolt represents the

fluorescence bleaching performed with the high-power Argon laser at 488 nm.

(C) Representative graphs of the FRAP curve in one spread cell (blue line) and

in one roundish cell (red line). The GFP protein ratio bleached during the

measurement and the ratio of fluorescent GFP protein recovered into the cell

nucleus are highlighted.

This average and normalized fluorescence recovery in the cell
nucleus of the spread and roundish cells was calculated and was
fitted (Origin Pro software) to a single exponential function using
the following equation:

y = y0 + A1e
t
t1 (2)

where t1 is the characteristic time (time constant) of the
protein translocation from the cytosol to the nucleus,
A1, is the difference between the nuclear fluorescence
after the bleaching and the nuclear fluorescence at the
end of the recovery, which corresponds to the fraction of
protein involved, and y0 is the fluorescence background (see
Table 2).

Numerical Modeling of the Passive
Diffusion Stretch Dependency Through the
NE
Mechanical stretching of the nuclear lamina network (LN) plays
a vital role in our hypothesis of stretch-dependent passive
diffusion along the NE through the NPCs. This cytoplasmic fiber
remodeling of the cytoskeleton (i.e., actin-myosin contraction)
induces lamina deformation, therefore the NPC structure
deforms at the nuclear ring (since it is directly linked to the
lamina), and thus opening and closing the NR depending on
the nuclear deformation. This effect causes an increase in flux in
the case of the NR opening, since the effective area through the
nuclear basket will become larger and thus leads to an increment
on the velocity exchange of solutes. In addition, the flux of
calcium released from the endoplasmic reticulum increasing
through the NPCs, also increases the effective area of the distal
ring (Stoffler et al., 1999a).

It thus seems logical to suggest that the permeability of the NE
increases due to the increase in the NPC’s effective transport area
(because of the mechanotransduction to the lamina network-
NPC assembly) in the nuclear basket and the distal ring (DR).
In this section, we propose a stretch-dependent model of the NE
permeability, φNEi . The model depends upon the local Green-
Lagrange deformation tensor of the NE. Figure 6 summarizes the
main aspects of the calculation of the local permeability, and thus
the local diffusion coefficient.

The local diffusion coefficient DNEi along the NE shown in
Fick’s Laws is calculated as a product of the Diffusion Coefficient
of the GFP in the cytoplasm (assumed to be free diffusion)
Dcyto and the local permeability φNEi . To calculate the local
permeability, as shown in Figure 6, we first calculated the local
deformation at every point of the NE surface assuming that the
nuclear envelope was isotropic and subject to a biaxial plane-
stress distribution. We then used these values to calculate the
effective transport area through the NPC by modifying the
surface area of the basket. Finally, the local permeability is the
ratio between the effective area of transport and the total area
corresponding to a single NPC. The results predicted with this
numerical model are compared with experiments described in
section Confocal Analysis and Results of the GFP Transport
Measurement.

Numerical simulations of the diffusion of GFP between
the nucleus and cytoplasm were carried out in two different
ellipsoidal configurations of the nucleus, roundish (cells
proliferating in the niche) and flat (cells growing out in flat
environment outside the niche), see Figure 4. The dimensions of
the ellipsoidal main axis are taken from the experimental analysis
previously reported by our group (Nava et al., 2015a).

Multiscale Numerical Model of Stretch-Dependent

Diffusion for the Nucleocytoplasmic Exchange of

Solutes
In order to determine the strain field in the NE, it is assumed that
nucleus deformation occurs at a constant volume, as reported in
(Nava et al., 2015a). In addition, it is assumed that the stress-free
configuration of the nucleus corresponds to a sphere, whereas the
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FIGURE 6 | Stretch-dependent permeability model. Local permeability of the nuclear membrane varies according to the degree of deformation of the nuclear envelop

separating the cytoplasm (gray) from the nucleus (light violet). The orange arrows in the biaxial stretching illustration shows the Lamina Network. The bottom panel

depicts a typical nuclear envelope permeability distribution for cells with roundish and spread shapes.
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deformed configuration is an ellipsoid. The mapping between the
sphere and the ellipsoid surfaces can be written as

x = a
RX,

y = b
RY ,

z = c
RZ,

(3)

where R is the radius of the reference sphere, a, b, and c, are the
semi-axes of the deformed ellipsoid, X, Y , Z are the coordinates
of the points in the nucleus in the reference sphere, and x, y, z
are the coordinates of the points in the nucleus in the deformed
configuration. This mapping can be parametrized in terms of
spherical coordinates θ (polar angle) and ϕ (azimuthal angle)

x = a cos θ sinϕ, X = R cos θ sinϕ,
y = b sin θ sinϕ, Y = R sin θ sinϕ,

z = c cosϕ, Z = R cosϕ.
(4)

As already noted, the parametrization in Equation (4) provides
a one-to-one mapping between the reference and deformed
configuration.

The in-plane deformation of the nuclear envelope between the
reference sphere and the deformed ellipsoid can be calculated
using standard continuum mechanics theory from the exact
mapping described in Equations (3) and (4). In this regard, the
principal in-plane Green-Lagrange deformations are given as

E1 = tθ · (E·tθ ) ,

E2 = tϕ ·
(

E·tϕ
)

,
(5)

where tθ and tϕ are tangent vectors along the polar and azimuthal
direction in the reference sphere, respectively

tθ=





− sin θ

cos θ
0



 , tϕ =





cos θ cosϕ
sin θ cosϕ
− sinϕ



 , (6)

and E is the Green-Lagrange deformation tensor

E =
1

2

(

FtF− I
)

, (7)

with F = ∂x
∂X the deformation gradient obtained from the

mapping in Equation (3). Substituting in Equation (5) results
in the following expression for the principal in-plane Green-
Lagrange deformations

E1 =
(

a2

R2
− 1

)

cos2 θ cos2 ϕ +
(

b2

R2
− 1

)

sin2 θ cos2 ϕ

+
(

b2

R2
− 1

)

sin2 ϕ,

E2 =
(

a2

R2
− 1

)

sin2 θ +
(

b2

R2
− 1

)

cos2 θ .

(8)

Figure 7 shows the “Lamina-NR-basket-DR” assembly
considered in the model. Since the radius of curvature of
the NE is larger than the nuclear pore dimensions (radius of
a curvature ratio of 100:1), the pore in the nuclear lamina can
be modeled as a plate with a circular hole under biaxial stress

FIGURE 7 | Lamina Network-Nuclear Ring-Nuclear Basket-Distal Ring

(LN-NR-NB-DR assembly) illustration of the equibiaxial stress configuration of

a single NPC.

which allows for an analytic solution (Mal and Singh, 1991).
We also assume that the NE deformation induces an equibiaxial
state of stress/deformation on every pore in which the stress
is proportional to the trace of the in-plane Green-Lagrange
deformation i.e., tr (Ei) = E1 + E2. Note that, in the case of
plane-stress, the trace of the in-plane Green-Lagrange tensor in
small deformations is proportional to the relative area change.
Following the solution in Mal and Singh (1991), the change in
the nuclear ring radius (see Figure 7), r, is given by

1r = 2
tr(Ei)

(1− ν)
r0, (9)

where tr (Ei) is the trace of the local in-plane Green-Lagrange
deformation tensor, ν is the Poisson ratio of the lamina, assumed
as 0.3, and r0 is the undeformed NR radius. Hence, the radius of
the deformed NR after deformation is

rnpci = r0 + 1r = r0

(

1+ 2
tr(Ei)

(1− ν)

)

. (10)

With these calculated radii of the NR in the deformed
configurations, it is possible to obtain the lateral surface of the
nuclear basket, Sconei , (see Figure 7) and thus the effective area of
the transport of solutes through one single pore as

Anpci (Ei) = ADR +
[

Sconei (Ei) − (1− Ae) Scone0
]

, (11)

where ADR is the area of the Distal Ring, Scone0 is the value
of the lateral surface of the nuclear basket in the undeformed
configuration, and Ae is a surface correction factor accounting
for the pillars connecting the NR and DR which reduce the
effective area of transport. In the model, Ae is set to 0 which
implies that the lateral surface of the basket is closed in the
undeformed configuration. Once the effective transport surface
area has been computed, the local permeability and the local
Diffusion Coefficient can be readily calculated as:

φNEi =
Anpci (Ei)

Ai
=

Anpci (Ei)

ANE
NP =

Anpci (Ei)

ANE
ρnpcANE0 .(12)

where Ai = ANE
NP

is the area ratio corresponding to a single
NPC, ANE is the total area of the nuclear envelope, NP is the
total number of pores, ρnpc = NP/ANE0 is the pore density
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(number of pores per unit area), and ANE0 is the zero-stress
(spherical) surface area of the NE. With the expression of the
permeability in Equation (12), the effective nuclear membrane
diffusion coefficient can be calculated as:

DNEi = RφNEiDcyto, (13)

where Dcyto is the GFP-FRAP free diffusion coefficient and R
is a “traffic resistance” parameter that takes into account the
resistance to the trafficking of high molecular weight cargos
through the pore (pores are always full of molecules passing
through them). Therefore, the final permeability is reduced due
to the resistance. Note, however, that R is considered to be the
same for the roundish and spread configurations. In our case, we
found that 96.1% flux resistance was optimal to fit the numerical
model to the experimental results.

The presented model is used to compute local values of
diffusion DNEi to be included in a finite element model of the
passive nuclear transport (see Figure 6, bottom panel). As can
be seen, the finite element models of diffusion consist in a
symmetric octant of a solid ellipsoidal stem cell (created using
Comsol Multiphysics), one for a roundish and another for spread
configurations. Such models were meshed with a total of 2,91,420
hexahedral elements and 3,02,236 nodes for the roundish cell,
and 4,62,264 elements with 4,77,468 nodes for the spread cell. We
divided the FE models in three main parts: (i) an external thin
layer of elements that represents the nuclear envelope, in which
the different calculated values of DNEi were added in each of the
elements (accounting for the permeability of the NE-NPC). (ii)
The full nucleus and cytoplasm volumes in which free diffusion
was considered. The model simulates (run in Abaqus 6.14-1) the
transport of GFP from the cytoplasm to nucleus through the NE
until equilibrium is reached. (iii) Finally, a post-process of the
simulation results is performed suing Python-Matlab to calculate
the total concentration in the nucleus vs. time.

Since the numerical finite element model is meant to be able to
fit the experimental results, the different parameters in the model
were selected to be of the same order of magnitude as reported in
the literature (Stoffler et al., 1999b; Beck et al., 2004; Moussavi-
Baygi et al., 2011; Maimon et al., 2012; Adams and Wente, 2013;
Bui et al., 2013; Eibauer et al., 2015). In particular, the SR radius
was taken as 0.01 µm, the initial NR radius was 0.04 µm, the DR
radius as 0.0 µm (since the DR is assumed not to be influenced
by mechanical deformations of the NE), and a basket length of
0.075 µm. In addition, the value of GFP-FRAP free diffusion

coefficient was taken as Dcyto = 31 m2

s (Baum et al., 2014), and

the nuclear pore density ρnpc = 10
pores

µm2 (Bizzarri et al., 2012),

with which we obtain a total of 2908 NPCs/nucleus.

RESULTS

Nuclear Envelope 3D Reconstruction
Table 1 shows the pore diameters and areas obtained from the
3D reconstruction. It is worth mentioning that in line with the
STEM, the diameters measured correspond to the distance at the
SR level since it is only possible to visualize the NE rather than the
NPC itself. The mean diameter values show a higher deformation

FIGURE 8 | (A) Elliptical principal measured diameters of the SR of the NPCs.

(B) Box plot of the resulting areas of the NPCs. The average area values for

both cell configurations are plotted in light blue (for spread cells) and dark

green (for roundish cells).

of the pore area in the spread cells compared to the roundish cells.
These differences in diameter between the spread and roundish
configurations are shown in Figure 8A. Despite this change in
diameter, both the spread and roundish configurations show
similar pore areas values, see Table 1, with a higher dispersion of
values in the spread cells as shown in Figure 8B. The difference
in the pore area between the roundish and spread configurations
was tested with a paired, two-sided signed rank test that founded
no statistical differences (p = 0.19). These results reinforce the
strong hypothesis that the effective area of diffusive transport
relies on the NR-basket-DR assembly due to the deformation of
the NE-Lamina Network (directly linked to the NR). Thus, the
SR and the transmembrane ring become the main substructures
on which the main stiffness of the whole NPC depends.

Confocal Analysis and Results of the GFP
Transport Measurement
One day after MSC transient transfection with GFP protein,
FRAP experiments on cell nuclei were performed. GFP-
transfected cell images are reported in Figures 4B,Cwhich shows
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TABLE 1 | Diameters of the NPCs of both roundish and spread configurations.

Spread Roundish

d1 (nm) d2 (nm) NPC area d1 (nm) d2 (nm) NPC area

Mean 92.17 64.83 4723.40 85.31 69.78 4690.60

Std 9.07 9.12 944.33 6.21 6.60 696.93

Data are reported as mean and standard deviations.

TABLE 2 | Parameters of the mono-exponential function used to fit the

fluorescence recovery curve on spread and roundish cells: t1 is the characteristic

time of the GFP protein translocation from cytosol to the nucleus; A1 corresponds

to the fraction of protein involved in the exchange; and y0 is the fluorescence

background.

Sample y0 (a.u) A1 (a.u) t1 (s) σy0 (a.u) σA1
σt1 (s)

Roundish cells 0.6 −0.6 26 0.004 0.008 2.6

Spread cells 0.4 −0.3 56 0.003 0.007 2.5

images acquired before the FRAP experiment of a cell grown
in the niche, and of a spread cell adhered to the glass substrate
shown in Figure 4A. The pictures show that the cell morphology
drastically changes depending on the environment, flat glass
substrate-−2D— or the NICHEs-−3D—, in which the cell is
grown.

FRAP experiments were performed as reported in the
Materials and Methods (see section entitled FRAP) and
representative images of the nuclear fluorescence recovery are
shown in Figures 5A,B. The graph in Figure 5C shows the
relative curves of the fluorescence recovery in the cell nucleus.
Each of these functions shows the initial value of nuclear
fluorescence, on which the curves were normalized, the bleaching
time and the recovery of the nuclear fluorescence over time. As
shown in the graph, despite the GFP being a non-interacting
protein with other cellular components, the recovery of the
fluorescence does not reach the initial intensity because, during
the bleaching time, many GFP-proteins (in and outside the
nucleus) are irreversibly bleached. In particular, in the 3D cell
configuration, it is not possible to reach very low level (80% of
bleaching) of fluorescence in the nucleus without destroying the
cellular fluorescence. The bleaching time needs to be reduced
from a few seconds (for the spread cells) to 100ms and the
total recovery is calculated considering only 30% of the initial
fluorescence.

Figure 9 shows the fit of the recovery curves of the spread and
roundish cells. The bleached area in the two populations is on
average Aspread = 123 ± 34 µm2, ARoundish = 40 ± 13 µm2.
The curves are well fitted with a monoexponential function,
as demonstrated by the statistical analysis (reduced-χ2 spread
cells= 0.979 reduced-χ2 roundish cells= 0.946). The parameters
extracted from the fits are reported in Table 2, which highlights
the characteristic diffusion time of the GFP translocation between
the cytosol and cell nucleus of the spread and roundish cells
(tspread = 56 ± 2.6 s, and troundish = 26 ± 2.5 s).

FIGURE 9 | Fit of the experimental recovery of GPF protein in MSCs grown in

different conformations.

Numerical Simulations of Stretch
Dependent Diffusion of GFP
Figure 10 shows the finite element simulation results of the
recovery of GFP by the stretch-dependent diffusion model
previously described for both spread (blue) and roundish (red)
configurations of the nucleus. The faster recovery of the spread
compared to the roundish nucleus is clear, since the level of
deformation in the NE of the spread nucleus is larger than
in the roundish nucleus, and therefore more permeable (see
Figure 6 bottom panel). According to the results in Figure 10,
the corresponding characteristic time for both spread and
roundish configurations were found to be t1spread = 17.2 s

and t1roundish = 25.4 s which were very similar to those
obtained experimentally. These results were obtained using the
aforementioned structural/dimensional values of the pores and
the corresponding permeability. The difference in recovery times
is only due to the degree of modulation that the deformation of
the NE exerts on the NE permeability.

DISCUSSION

To the best of our knowledge, there are no papers in the
literature that specifically use computational mechanics and
numerical analyses to demonstrate strain-dependent passive
diffusion through the NE. Instead the focus has been on the
mechanisms that lead with the active transport of cargoes
through the NPCs, see for example (Moussavi-Baygi et al., 2011;
Azimi and Mofrad, 2013; Mahboobi et al., 2015). The work
by Nava et al. (2015b) treated the passive diffusion of solutes
between the nucleus and the cytoplasm as strain-dependent. In
their analysis, the whole nucleus is deformed and assumed as a
permeable material. In our literature search we found no other
studies on this topic.
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FIGURE 10 | Computational simulation of the recovery of GFP transcription

factor in spread vs. roundish configuration.

The multiscale numerical model presented in this paper, is
thus the first attempt to directly analyse the passive diffusion
of small molecules through the deformed NPCs (nano-level) at
the nuclear envelope scale (micro-level) by including a strain-
dependent variable permeability barrier in the NE. Our results
highlight the potential of our numerical model to describe the
passive transport through the nuclear membrane, that is, the
passive diffusive flux of small molecular weight particles. Note
that, since the DR diameter is a variable parameter of the
numerical model, it may also account for calcium effects on distal
ring opening. However, in our numerical simulations, we set
the DR diameter to 0 µm in order to only analyze the passive
diffusion mechanical dependency. This is because the DR is
chemically opened/activated by a calcium flux through the NPC
(Stoffler et al., 1999a; Wang and Clapham, 1999).

An important limitation regarding our model is the use
of small deformation theory for the NPC and isotropic linear
elastic behavior for the NE-lamina network. We assumed such
mechanical properties due to the lack of available data for the NE-
lamina-NPC assembly. We also consider this numerical model as
a first attempt to demonstrate our hypothesis, and we believe that
more complexmaterial properties should not greatly qualitatively
modify our final results. However, these assumptions require
further research in order to obtaining more accurate results that
would reinforce our final hypothesis.

Fluorescence recovery after photobleaching belongs to a class
of measures based on photoperturbation. This means that only
the optical properties of the protein of interest are changed
and, after the perturbation, the protein redistribution in space is
monitored in time-lapse. This class of measures is also known as
ensemble-averaging, in fact it is possible to obtain results over a
relatively long time (from hundreds of milliseconds to minutes)
and they are the result on average of the behavior of many
molecules. This means that the measure masks the fast diffusion

process or hides the properties of sub-populations. In general,
their results need to be coupled with a mathematical model to
help in the data interpretation.

Usually, in FRAP experiments, a high concentration of the
protein of interest is expressed in a live cell fused with a
fluorescent protein (GFP protein for example). A small area,
in a single cell compartment, i.e., the region of interest, is
permanently bleached by a strong laser illumination, and the
redistribution of the fluorescence in the entire cell is monitored
by low intense excitation (as in Figures 5A,B). If the protein
of interest is immobile, the bleached area will remain dark. On
the other hand, if it is mobile, then a redistribution between the
fluorescent and bleached protein happens between the region of
interest and the rest of the cell.

In order to study the mobility of a nuclear protein, due to the
confocal\ wide field microscopy set up, the bleaching takes place
in a cylindrical volume of a few microns along the z axis, which
include the cell nucleus and also the cytoplasm. This involves the
destruction of the fluorescence of a small portion of the protein
in the cell cytoplasm. However, this does not affect the measure
because in cells grown on a 2D flat surface (like our spread cells),
these cytosolic bleached volumes were very small, because the
nucleus generally fills the space between the upper and lower
plasma membranes.

This technique has been used to evaluate the protein
redistribution between two different cell compartments i.e.,
between the cell cytoplasm and nucleus. In this experimental
configuration, as in our experiments, a wide as possible
photobleached area within the nucleus was used, to ensure
that the entire nucleus was photobleached, and the nuclear
intensity recovery, as a consequence of the protein transport
between the cytoplasm and the nucleus, was monitored. In this
case, the prolonged GFP fluorescence recovery of the nuclear
compartment (tens of seconds), compared to the GFP free
diffusion in the nucleus or in the cell cytoplasm (2 s) (Lippincott-
Schwartz et al., 2001;Wei et al., 2003; Sprague andMcNally, 2005;
Bizzarri et al., 2012), is due to the restricted diffusion across the
nuclear envelope, which is in line with the diffusion through the
open NPCs (∼0.01 of total NE surface area,Wei et al., 2003). This
is also shown in our work, from the graphs in Figure 5C.

Our results also show that our experimental conditions—
the long bleaching time performed on spread cells, and the
large volume of cytoplasm above and below the nucleus in the
roundish cells—induced a high ratio of fluorescence protein
disruption. This is also supported by the fact that we are working
with a single GFP which is a non-toxic inert protein that
does not interact with nuclear and cytosolic components, and
therefore which does not show an immobile fraction during
the FRAP measures. As is evident from our results on the GFP
translocation, the characteristic time between the cytoplasm and
the nucleus of the spread cells is comparable with those of the
literature performed on cells grown on a standard flat substrate
such as a glass coverslip (Wei et al., 2003; Sunn et al., 2005;
Bizzarri et al., 2012). At the same time, we were unable to
compare the results obtained on roundish cells because in the
literature there are no similar experiments performed on cells
grown on 3D scaffolds.
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A comparison of the characteristic recovery time of the
nuclear fluorescence of these two cell populations, led to the
unexpected result: the fluorescence recovery was faster for the
round cells than the spread cells. A careful evaluation revealed
that we were evaluating the fluorescence recovery on a single
(3 µm in thickness) plane of the cell, in which the area of
the nucleus differed greatly between spread cells and roundish

cells (
Aspread

Aroundish
= 3). This means that a larger number of

particles have to translocate and therefore it takes a longer time
for the GFP to diffuse over the area of the spread cell nucleus.
However, an experimental analysis performed on MSCs cells
grown on a glass flat substrate and in the nichoid did not show
a significant difference in the nuclear volume (Nava et al., 2015a),
which suggests that the number of proteins that translocate from
the cytosol to the cell nucleus in FRAP experiments does not
strongly influence the measure. Other factors therefore need to
be considered that may affect the recovery time, such as a strong
modulation of the number of pores, or a reduction/increment in
the effective nuclear surfaces.

None of the results presented in this manuscript i.e., the NPC
spoke ring area via STEM analysis, the numerical parametric
finite element diffusion model and FRAP experiments with
the confocal microscopy, contradict the hypothesis that the
deformation/strain of the nuclear envelope induces structural
modifications in the NPCs and thus directly affects the passive

diffusion of molecules. These results can be directly linked to the

existence of small diameter secondary channels through the NPC
that may allow small molecules such as ions to pass from the

cytosol to the nucleus. In the case of a full blockage of the NPC

due to high trafficking and deformation, it therefore allows the
ions to open the distal ring and thus, to increase the flux through

the NPC. We already mentioned this in a previous paper (Garcia

et al., 2016) and referenced the works of (Maimon et al., 2012;
Eibauer et al., 2015) which showed such secondary channels.

A major limitation of the work discussed in the present paper

is that we were forced to use two different techniques to maintain

roundish cells in the experiments. The cells were fixed in
suspension to keep them roundish for the STEM reconstructions

used to estimate the NPC dimensions, and they were cultured

in the nichoid substrate for the FRAP measurement of the GFP

nuclear import. In fact, the nichoid substrate is made of a fragile
polymer that cannot be sectioned for STEM preparation without

it being destroyed. Moreover, cells cannot be measured by FRAP

for nuclear import flows while in suspension.
Reducing the cell adhesion sites by limiting the area

of the adhesion substrate available for integrin binding,
which is a similar approach to suspension culture, is a
widely-accepted method used to induce a roundish cell
morphology in mechanobiological studies (Badique et al.,
2013). However, reducing the adhesion sites to maintain
cells in a roundish morphology is likely to down-regulate
the activation of mechanobiological transcription factors and
other signaling molecules linked to the pathways activated
by focal adhesions. Thus, inducing cell adhesion to a 3D
scaffold is preferable to limiting the cell adhesion sites, for
mechanobiology investigations. However, here we did not

measure the activation or nuclear imports of transcription factors
or signaling molecules, we only measured the nuclear imports
of the GFP protein, expressed in the cell following transfection
regardless of the cell morphology. In designing the experiments,
we basically assumed that nuclear pore activation was primarily
affected by NE local strains induced by nuclear deformation,
regardless of the means used by the cell to adhere to its
environment.

Another important limitation of our study is that in the
nichoid culture model, the mechanical properties of the adhesion
substrate were different for the spread and roundish cells. Spread
cells adhered to glass, with a Young’s modulus of around 80
GPa, while the photo-polymerized nichoid micro-lattice has a
Young’s modulus in the order of 0.138 GPa, i.e., three orders
of magnitude less stiff than glass. The stiffness of a substrate to
which the cell adheres is known to correlate significantly with
the fate of several stem cell types, including MSCs, thanks to
pioneering demonstrations by the research groups of Discher and
Engler. It could thus be argued that the differences between the
roundish and spread cells that we measured by FRAP in terms of
nuclear flows are related to differences in the adhesion substrate
stiffness. However, our previous findings using the nichoid cell
culture model (Nava et al., 2015b) suggest, in addition to the
stiffness theory, that the substrate stiffness combines with the
substrate architecture in generating an adhesion configuration
for the cell, which can be either isotropic (roundish) or very far
from isotropic (spread), which correlates with the shape of the
cell’s nucleus.

We deduced that the level of nuclear isotropy induced by
the combination of stiffness and architecture of the adhesion
substrate, and not the substrate stiffness itself, was indeed the
primary parameter correlating with the cell fate. In order to move
from correlation to causation, in this work we introduced the
hypothesis that, when the cell spreads, a primary mechanism
activating the master switch between cell programs is the NPC
stretch activation leading to a sudden increase in the permeability
of the NE to purely diffusive signaling molecules. Our modeling
approach, far from negating the primary role of substrate stiffness
on cell fate, integrates substrate stiffness with its 3D architecture,
thus providing a mechanistic interpretation of this effect, which
is well corroborated by in vivo measurements of changes in
diffusive nuclear flows due to nuclear morphology.

In future works, we will test our hypothesis on the key
transcription factors involved in MSC differentiation. Many of
these are molecules are in the range 40–70 kDa, which can
diffuse freely (without consuming chemical energy) through
NPCs. For example, the molecular weight of MyoD, a key
myogenic transcription factor, is in the range 34–45 kDa. The
molecular weight of Cbfa1 (also called Runx2), a transcriptional
activator of osteoblast differentiation, is 55 kDa. Thus, these
key transcription factors may diffuse freely through the NPCs.
Thanks to the mechanobiology model developed here, we will be
able to computationally predict their nuclear import flows on the
basis of their molecular weight, and we will be able to interpret
and validate these predictions with FRAP measurements on cells
cultured in the nichoid model. To perform FRAP measurements,
we will fuse the transcription factors with an inert fluorescent
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protein, such as GFP which is only 27 kDa in size, enabling us to
still fall within the 70 kDa limit in the overall molecular weight
of the fused protein, for NPC translocation based on passive
diffusion. In fact, we selected GFP in this work because of its very
limited size, as it falls well below the 40 kDa lower limit known
for the passive diffusion of molecules through NPCs.

We also plan to characterize, in cells of a different
morphology, the activation of gene expression induced by the
nuclear translocation of the transcription factors of interest.
However, a quantitative correlation betweenNE permeability and
the up-regulation of gene expression is not expected, because
up-regulation very much depends on the degree of chromatin
packing influencing DNA accessibility to the chemical binding
of the transcription factors.

In conclusion, here we have proposed a fundamental
mechanism which uses nuclear mechanics to orchestrate the
response of progenitor cells to the architectural properties of
the extracellular environment. Our data show that cell stretching
modulates the characteristic time needed for the nuclear import
of a small inert molecule, GFP. What still needs to be proven is
whether this modulation effect is due to an opening of the distal
ring. We also still need to prove that a transcription factor with
a comparable size to GFP would be subjected to the modulation
effect that we found for GFP.

If further verified on specific transcription factors involved
in MSC differentiation, this idea could thereby contribute
directly to the definition of better differentiation protocols for
MSCs, primarily based on guiding the spontaneous tendency
of stem cells to differentiate in culture, by the mechanical
cues provided by “physically” biomimetic culture niches. A
new research field that could be impacted by our hypothesis
is the fate control of induced pluripotency stem (iPS) cells.
The iPS technology consists in converting adult somatic cells,
usually fibroblasts or epithelial cells, to a pluripotent phenotype
using genetic engineering. Despite the high potential of iPS to
revolutionize medicine, to date there are very few successful
re-differentiation protocols regarding mature phenotypes for
these cells. Neurobiology is the only field where there are
stable differentiation protocols. Our hypothesis could produce
the knowledge and technology, the nichoid culture substrate, to
direct the differentiation of iPS to lineages other than neural and
potentially enable iPS to be applied in the clinical field.

The mechanobiological model of this work could also be used
to compare the different nuclear mechanosensing responses in
physiological vs. pathological states. For example, in cancer, it is
believed that the expression of the malignant phenotype is due, at
least in part, to a malfunctioning of the cell mechanoregulatory
circuit. If our central hypothesis is verified, unconventional cell
properties correlating the nuclear membrane structure to its
permeability (including structural proteins of the cytoskeleton,
the nucleus, the nuclear membrane, and the nuclear pore
complexes) could become crucial new targets in cancer research.
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Realistic simulations of detailed, biophysics-based, multi-scale models often require

very high resolution and, thus, large-scale compute facilities. Existing simulation

environments, especially for biomedical applications, are typically designed to allow for

high flexibility and generality in model development. Flexibility and model development,

however, are often a limiting factor for large-scale simulations. Therefore, new models

are typically tested and run on small-scale compute facilities. By using a detailed

biophysics-based, chemo-electromechanical skeletal musclemodel and the international

open-source software library OpenCMISS as an example, we present an approach to

upgrade an existing muscle simulation framework from a moderately parallel version

toward a massively parallel one that scales both in terms of problem size and in terms

of the number of parallel processes. For this purpose, we investigate different modeling,

algorithmic and implementational aspects. We present improvements addressing both

numerical and parallel scalability. In addition, our approach includes a novel visualization

environment which is based on the MegaMol framework and is capable of handling large

amounts of simulated data. We present the results of a number of scaling studies at the

Tier-1 supercomputer HazelHen at the High Performance Computing Center Stuttgart

(HLRS). We improve the overall runtime by a factor of up to 2.6 and achieve good

scalability on up to 768 cores.

Keywords: skeletal muscle mechanics, biophysical modeling, multi-scale modeling, scalability, high-performance

computing, numerical efficiency, visualization

1. INTRODUCTION

Even “simple” tasks like grabbing an object involve highly coordinated actions of our
musculoskeletal system. At the core of such coordinated movements are voluntary contractions
of skeletal muscles. Understanding the underlying mechanism of recruitment and muscle force
generation is a challenging task and subject to much research (e.g., Kandel et al., 2000; MacIntosh
et al., 2006). One of the few non-invasive and clinically available diagnostic tools to obtain insights
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into the functioning (or disfunctioning) of the neuromuscular
system are electromyographic (EMG) recordings, i. e., measuring
the activation-induced, resulting potentials on the skin
surface (e.g., Merletti and Parker, 2004). Conclusions on
the neuromuscular system are often drawn from results obtained
through signal processing, although such signal processing
techniques typically ignore the underlying muscular structure.
Further limitations of (surface) EMG measurements are, for
example, that they only capture activity from muscle parts
close to the surface. This leads to difficulties in identifying,
for example, cross-talk (e.g., Farina et al., 2005). Moreover, an
EMG often only records weak signals due to layers of adipose
tissue, and, in some cases, is restricted to isometric contractions.
Hence, to obtain more holistic insights into the neuromuscular
system, computational models can be employed (for a review
see e.g., Mesin, 2013). Such models need to capture much
of the electro-mechanical properties of skeletal muscle tissue
and the interaction between neural recruitment and muscular
contraction.

The contractile behavior of skeletal muscle tissue has been
extensively modeled using lumped-parameter models such as
Hill-type skeletal muscle models (e.g., Zajac, 1989), continuum-
mechanical skeletal muscle models (e.g., Johansson et al., 2000;
Blemker et al., 2005; Röhrle and Pullan, 2007; Böl and Reese,
2008), or multi-scale, chemo-electromechanical skeletal muscle
models (e.g., Röhrle et al., 2008, 2012; Hernández-Gascón et al.,
2013; Heidlauf and Röhrle, 2013). To predict the resulting
EMG of a particular stimulation, there exist analytical models
(e.g., Dimitrov and Dimitrova, 1998; Farina and Merletti,
2001; Mesin and Farina, 2006) with short compute times, or
numerical approaches (e.g., Lowery et al., 2002; Mesin and
Farina, 2006; Mordhorst et al., 2015, 2017). For realistic muscle
geometries, however, numerical methods are almost unavoidable.
The chemo-electromechanical models as proposed by Röhrle
et al. (2012), Heidlauf and Röhrle (2013, 2014), or Heidlauf
et al. (2016) are particularly well-suited to incorporate many
structural and functional features of skeletal muscles. They
embed one-dimensional computational muscle fibers within a
three-dimensional skeletal muscle model and associate themwith
a particular motor unit. Moreover, those models can be directly
linked to motor neuron models either phenomenologically
(e.g., Heckman and Binder, 1991; Fuglevand et al., 1993) or
biophysically (e.g., Cisi and Kohn, 2008; Negro and Farina,
2011) to further investigate the relationship between neural and
mechanical behavior. The desired degree of detail and complexity
within these models requires the coupling of different physical
phenomena on different temporal and spatial scales, e.g., models
describing the mechanical or electrical state of the muscle tissue
on the organ scale and the bio-chemical processes on the cellular
scale (cf. section 2.1).

Being able to take into account all these different processes
on different scales requires a flexible multi-scale, multi-physics
computational framework and significant compute power. The
availability of computational resources restricts the number of
individual muscle fibers that can be considered within a skeletal
muscle. The chemo-electromechanical models as implemented
within the international open-source libraries OpenCMISS (e.g.,

Bradley et al., 2011; Heidlauf and Röhrle, 2013; Mordhorst
et al., 2015) allow general muscle geometries with about
1,000 embedded computational muscle fibers. As most skeletal
muscles, however, have significantly more fibers (ranging from
several thousands to more than a million McCallum, 1898;
Feinstein et al., 1955), the embedded muscle fibers geometrically
represent only a selection from the actual muscle fibers located in
its geometrical vicinity. While simulations with 1,000 fibers and
less can potentially provide some insights into the neuromuscular
system, some effects, such as the motor unit recruitment over the
full range of motor units and muscle fibers and their implication
on the resulting EMG, can not be estimated unless a detailed
and realistic model with a realistic number of muscle fibers is
simulated. This full model allows us to estimate the accuracy
of “reduced” models by comparing them to the output of the
detailed full “benchmark” model. Unless such comparisons are
carried out it is hard to make predictions on how additional
details such as, for example, more fibers or functional units
(motor units) affect the overall outcome—both in terms of
muscle force generation and in terms of computed EMG signals.

Highly optimized and highly parallel software exist in the
community for biomechanical applications, e.g., for chemo-
electromechanical heart models (Xia et al., 2012; Lafortune
et al., 2012; Gurev et al., 2015; Colli Franzone et al., 2015).
Skeletal muscle tissue and cardiac muscle tissue share many
similarities with respect to the underlying microstructure.
Therefore similar simulation techniques can be utilized both for
heart models and skeletal muscle models. However, significant
differences exist with respect to recruitment and action potential
propagation between cardiac and skeletal muscle tissue. Whilst
there is a homogeneous and continuous spreading of the
action potential across a three-dimensional myocardium, the
behavior of skeletal muscle exhibits highly heterogeneous
recruitment and action potential propagation—essentially each
muscle fiber can be recruited independently leading to complex
potential fields. Moreover, there exist feedback mechanisms,
e.g., afferent feedback, that directly modulate recruitment. To
simulate such complex physiological behavior, one requires
flexible computing frameworks and a careful analysis of different
parallelization strategies for specific applications like skeletal
muscle recruitment.

Most multi-purpose computational frameworks for
biomedical applications such as OpenCMISS, for example,
are developed to provide flexibility using parallel simulation
environments, but are typically not designed for highly parallel
simulations on Tier-1 supercomputers. This flexibility is
achieved through standards like CellML (e.g., Lloyd et al.,
2004) and FieldML (e.g., Christie et al., 2009). The respective
frameworks are utilized to enhance existing multi-physics
models for a wide range of (bioengineering) applications.
Most computational frameworks are designed to be run by
biomedical researchers on small-sized compute clusters. While
they typically can be compiled on large-scale HPC compute
clusters such as HazelHen at the HLRS in Stuttgart, they often
are not capable of exploiting the full potential of the hardware
for a number of reasons. Moreover, simulation run time is
typically considered less important than model complexity and

Frontiers in Physiology | www.frontiersin.org July 2018 | Volume 9 | Article 816118

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Bradley et al. Skeletal Muscle Models on HPC Systems

output. Hence, typical simulations of biomedical applications
are not necessarily optimized for numerical efficiency, parallel
scalability, the exploitation of novel algorithms, or file I/O. In
this paper, we demonstrate how one can exploit analysis tools,
suitable numerical techniques, and coupling strategies to obtain
an efficient chemo-electro-mechanical skeletal muscle model
that is suitable to be run on a large-scale HPC infrastructure.
The model is thus capable of running with a sufficient resolution
and number of muscle fibers to provide the required high-
resolution details. Once large-scale simulations of biomedical
applications have been solved with a high degree of detail, most
specialized visualization tools such as OpenCMISS-Zinc can no
longer handle the large amount of simulation data. Dedicated
visualization tools for large-scale visualizations are required. In
this work, the MegaMol framework (Grottel et al., 2015) has
been adapted to visualize the different biophysical simulation
parameters and the resulting EMG.

2. MODEL AND METHODS

2.1. The Multi-Scale Skeletal Muscle Model
Before outlining our the model in its full detail, we first
provide a brief overview on some anatomical and physiological
characteristics of skeletal muscles that are relevant. From an
anatomical point of view, skeletal muscles are a hierarchical
system. Starting from its basic unit, the so-called sarcomere,
several sarcomeres arranged in-series and in-parallel constitute
a cylindrically shaped myofibril. Several myofibrils arranged in-
parallel make up a skeletal muscle fiber and multiple muscle
fibers form a fascicle. All the fascicles together constitute an
entire muscle and these fascicles are connected together through
the extracellular matrix (ECM). From a physiological point of
view, several fibers are controlled by a single lower motor neuron
through nervous axons. The entire unit consisting of the lower
motor neuron, the axons and the respective fibers that are
innervated by the axons, is referred to as a motor unit. The
motor unit is the smallest unit within a skeletal muscle that can
voluntarily contract. The lower motor neuron sends rate-coded
impulses called action potentials (AP) to all fibers belonging to
the same motor unit (neural stimulation). Moreover, motor units
are activated in an orderly fashion, starting from the smallest, up
to the largest (recruitment size principle). After a motor neuron
stimulates a muscle fiber at the neuromuscular junction, an AP
is triggered and propagates along the muscle fiber, resulting in
a local activity (contraction). For more comprehensive insights
into muscle physiology and anatomy, we refer to the book of
MacIntosh et al. (2006).

As the focus of this research is on enabling the simulation
of biophysically detailed skeletal models on HPC architectures,
this section provides an overview of the multi-scale modeling
framework of our chemo-electromechanical skeletal muscle
model that is based on the work by Röhrle et al. (2012),
Heidlauf and Röhrle (2013, 2014), and Heidlauf et al. (2016).
These models can account for the main mechanical and electro-
physiological properties of skeletal muscle tissue, including a
realistic activation process and resulting force generation. These
results are realized by linking multiple sub-models, describing

different physical phenomena on different length and time scales.
To reduce the computational costs, the different sub-models are
simulated using different discretizations, i. e., spatial resolution
and time-step size. Data are exchanged between the sub-models
using homogenization and interpolation techniques. The link
to neuromuscular recruitment, i.e., an entire neuromuscular
model, is modeled using predefined stimulation trains for the
fibers associated with individual motor units. This recruitment
assumption can be replaced without any modifications with a
biophysical motor neuron model (e.g., Cisi and Kohn, 2008;
Negro and Farina, 2011).

2.1.1. The 3D Continuum-Mechanical Muscle Model
The physiological working range of skeletal muscles includes
large deformations. Therefore, we use a continuum mechanical
modeling approach that is based on the theory of finite elasticity
to simulate the macroscopic deformations and stresses in the
muscle tissue. In continuum mechanics, the placement function
χ describes the motion of a material point, i. e., it assigns every
material point with position X in the reference (non-deformed)
domain �0 ⊂ R

3 at a time t0 to a position x = χ(X, t) in the
actual (deformed) domain�t ⊂ R

3 at time t. The deformation of
the body at a material point can be described by the deformation

gradient tensor F : =
∂χ
∂X = ∂x

∂X , which is defined as the
partial derivative of the placement function χ with respect to the
reference configuration. The local displacement is defined by the
vector u = x− X.

The governing equation of the continuum mechanical model
is the balance of linear momentum. Under the assumption of
no acceleration (i.e., inertia forces vanish) and neglecting body
forces, the balance of linear momentum in its local form can be
written as

divP = 0 in �t for all t, (1)

where div(·) denotes the divergence operator and P is the first
Piola-Kirchhoff stress-tensor. To solve the balance of linear
momentum, one needs to define a constitutive equation that
relates P to deformation. The constitutive equation describes the
overall mechanical behavior of the muscle and can be divided
into a passive and an active component. The latter represents the
muscle’s ability to contract and produce forces. In this work, we
assume a superposition of the active and passive behavior, i. e., an
additive split of P.

Passive skeletal muscle tissue is assumed to be hyperelastic
and transversely isotropic. Consequently, the passive part to
the first Piola-Kirchhoff stress tensor Ppassive(F,M) depends
on the deformation gradient tensor F and a structure tensor
M = a0 ⊗ a0, which is defined by the muscle fiber direction
a0. The isotropic part of the passive stress-tensor assumes a
Mooney-Rivlinmaterial. It is enhanced by an additive anisotropic
contribution accounting for the specificmaterial properties in the
muscle fiber direction a0.

The active force is generated on a microscopic scale, i.e.,
within a half-sarcomere (the smallest functional unit of a muscle)
consisting of thin actin and thick myosin filaments. Based on
geometrical considerations of the half-sarcomere structure, it
is known that the active muscle force depends on the actual
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half-sarcomere length lhs (force-length relation) (Gordon et al.,
1966). When a half-sarcomere is activated by calcium as a
secondary messenger, actin andmyosin filaments can form cross-
bridges and produce forces (cross-bridge cycling). The active
force state of the microscopic half-sarcomere is summarized
in an activation parameter γ that enters the macroscopic
constitutive equation. Furthermore, we assume that the active
stress contribution acts only along the fiber direction a0. When
considering only isometric or slow contractions, the active stress
tensorPactive(F,M, γ ) can be defined as a function of the lumped
activation parameter γ , the deformation gradient tensor F, and
the structure tensor M. An additional force-length relationship
needs to be included within Pactive.

Finally, we assume skeletal muscle tissue to be incompressible,
which implies the incompressibility constraint det F = 1. The
resulting first Piola-Kirchhoff stress tensor reads

P(F,M, γ ) = Ppassive(F,M)+ Pactive(F,M, γ )− pF−T , (2)

where p is the hydrostatic pressure, which enters the equation as
a Lagrange multiplier enforcing the incompressibility constraint.
The material parameters of the continuum-mechanical skeletal
muscles are fitted to experimental data (Hawkins and Bey, 1994),
and can be found in Heidlauf and Röhrle (2014).

2.1.2. The 1D Model for Action Potential Propagation
The electrical activity of skeletal muscles resulting from the
local activity of all muscle fibers can be analyzed by measuring
the extracellular potential. The bidomain-model is a framework
widely used in continuum mechanics to simulate the electrical
activity of living tissues (Pullan et al., 2005). It is based on
the assumption that the intracellular and extracellular spaces
homogeneously occupy the same domain. The intracellular and
extracellular spaces are electrically coupled by an electrical
current Im flowing across the cell membrane, i. e.,

− div qi = div qe = AmIm,

where qi and qe denote the current density in the intracellular and
extracellular space, respectively, and Am is the fiber’s surface to
volume ratio. The muscle fiber membrane is nearly impermeable
for ions and serves as a capacitor. However, ions can be
transported through the membrane by ion channels and active
ion pumps. This process can be mathematically described by
the biophysically motivated modeling approach proposed by
Hodgkin and Huxley (1952) which leads to the constitutive
equation

Im = Cm
∂Vm

∂t
+ Iion(y,Vm, Istim) , (3)

where Vm is the transmembrane potential, Cm is the capacitance
of the muscle fiber membrane (sarcolemma) and Iion is
the transmembrane-potential-dependent ionic current flowing
through the ion-channels and -pumps. Further state variables are
summarized in y, e. g., the states of different ion channels. Istim is
an externally applied stimulation current, e. g., due to a stimulus
from the nervous system. Assuming that the intracellular space

and extracellular space show the same anisotropy, which is the
case for 1D problems, the bidomain equations can be reduced
to the monodomain equation. We thus use the one-dimensional
monodomain equation in the domain Ŵt ⊂ R:

∂Vm

∂t
=

1

AmCm

(

∂

∂x

(

σeff
∂Vm

∂x

)

− AmIion
(

y,Vm, Istim
)

)

in Ŵt .

(4)
Here, x denotes the spatial coordinate along a one-dimensional
line, i.e., the fiber, and σeff is the effective conductivity.

2.1.3. The 0D Sub-cellular Muscle Model
The model proposed by Shorten et al. (2007) provides a basis to
compute the lumped activation parameter γ , which is the link
to the 3D continuum-mechanical muscle model. Its evolution
model is steered by the ionic current Iion of the 1D model. In
more detail, the 0D sub-cellular muscle model contains a detailed
biophysical description of the sub-cellular excitation-contraction
coupling pathway. Specifically, it models the depolarization of
the membrane potential in response to stimulation, the release
of calcium from the sarcoplasmic reticulum (SR) which serves
as a second messenger, and cross-bridge (XB) cycling. To
do so, the Shorten model couples three sub-cellular models:
A Hodgkin-Huxley-type model is utilized to simulate the
electrical potentials and ion currents through the muscle-fiber
membrane and the membrane of the T-tubule system. For
calcium dynamics, a model of the SR membrane ryanodine
receptor (RyR) channels (Ríos et al., 1993) is coupled to the
electrical potential across the T-tubule membrane and models
the release of calcium from the SR. Additionally, the calcium-
dynamics model describes diffusion of calcium in the muscle
cell, active calcium transport through the SR membrane via
the SERCA pump (sarco/endoplasmic reticulum Ca2+-ATPase),
binding of calcium to buffer molecules (e. g. , parvalbumin or
ATP), and binding of calcium to troponin enabling the formation
of cross-bridges. The active force generation is simulated by
solving a simplified Huxley-type model (Razumova et al., 1999),
which is the basis for calculating the activation parameter γ .

All incorporated sub-cellular processes are modeled with a set
of coupled ordinary differential equations (ODEs)

∂y

∂t
= Gy

(

y,Vm, Istim
)

, (5)

where Gy summarizes the right-hand-side of all the ODEs
associated with the state variables y which number, in the case
of the Shorten et al. model, more than 50.

The final activation parameter γ is computed from the state
variable vector y and the length and contraction velocity of
the half-sarcomere, lhs and l̇hs. For isometric or very slow
contractions, the contraction velocity can be neglected. Hence,
following Razumova et al. (1999) and Heidlauf and Röhrle
(2014), the activation parameter is calculated as

γ
(

y, lhs
)

= ff-l
(

lhs
) A2 − Amin

2

Amax
2 − Amin

2

. (6)

Here, the function ff-l
(

lhs
)

is the force-length relation for a
cat skeletal muscle by Rassier et al. (1999), A2 ∈ y is the
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concentration of post power-stroke cross-bridges, Amax
2 is the

concentration of post power-stroke cross-bridges for a tetanic
contraction (100 Hz stimulation after 500 ms stimulation) and
Amin
2 is an offset parameter denoting the concentration of post

power-stroke cross-bridges in the resting state.

2.1.4. Summary of the Full Model
In summary, the chemo-electromechanical behavior of a skeletal
muscle is described by the following coupled equations:

0 = divP
(

F,M, γ (y, lhs)
)

in �t forall t, (7a)

∂Vm

∂t
=

1

AmCm

(

∂

∂x

(

σeff
∂Vm

∂x

)

−AmIion
(

y,Vm, Istim
)

)

on all fibers Ŵt , (7b)

∂y

∂t
= Gy

(

y,Vm, Istim
)

at all sarcomere positions. (7c)

Realistic material parameters and muscle fiber directions,
appropriate boundary and initial condition (i.e., Dirichlet
boundary conditions for the three-dimensional, continuum-
mechanical model to describe the displacement of a tendon and,
hence, of the skeletal muscle tissue, as a result of motion, or the
stimulus train, Istim(t)) for all fibers, need to be chosen (cf. section
3.1 for a particular example).

2.2. Numerical Methods
To enable multi-scale skeletal muscle models, e.g., such as the
ones described in section 2.1, to run efficiently and scalably on
(large-scale) clusters, we first present the numerical methods
as implemented in Heidlauf and Röhrle (2013) (section 2.2.1)
followed by algorithmic optimizations aiming to achieve efficient
and scalable code (section 2.2.2). To distinguish between the
implementation of Heidlauf and Röhrle (2013) and the new
optimized implementation, we denote the former as the baseline
implementation.

2.2.1. Discretization and Solvers

2.2.1.1. Spatial discretization
The sub-models of the multi-scale skeletal muscle model have
significantly different characteristic time and length scales.
To solve the overall model efficiently, different discretization
techniques and resolutions are required for the sub-models. In
Heidlauf and Röhrle (2013), as in this work, the continuum-
mechanics model is solved via the finite element method using
Taylor-Hood elements (i. e., a mixed formulation of tri-quadratic
and tri-linear Lagrange basis functions to approximate the
displacements and the hydrostatic pressure respectively). The
one-dimensional muscle fibers are represented by embedded,
one-dimensional finite element meshes with linear Lagrange
basis functions. Figure 1 (left) shows the embedding of ny ×

nz discretised 1D fibers within the 3D muscle domain �0

discretised with ex × ey × ez tri-quadratic finite elements, where
ex, ey, and ez are the number of elements in the x, y, and z
direction respectively. Each node of the 1D fiber mesh serves as
sarcomere position where one instance of the sub-cellular model
is calculated.

The different discretizations of the coupled multi-physics
problem require data to be transfered between the different
spatial discretizations. Within our model, the transfer of
information from the microscopic scale to the macroscopic scale
is realized via the activation parameter γ . The microscopic
sarcomere forces γ provided by the monodomain model are
projected to the macroscopic three-dimensional continuum-
mechanics model (γ → γ̄ ). This homogenization is performed
for all Gauss points in the 3D model by averaging the
γ values of all monodomain model nodes nearest to the
respective Gauss point. Similarly, the node positions of the one-
dimensional computational muscle fibers are updated from the
actual displacements u of the three-dimensional, continuum-
mechanicsmodel by interpolating the node positions via the basis
functions of the three-dimensional model. Based on this step, the
microscopic half-sarcomere lengths lhs(x) can be calculated.

2.2.1.2. Time discretization
To compute an approximate solution for Equation (7), the
different characteristic time scales of the 3D, 1D and 0D
problems can be exploited. The action potential propagates faster
than the muscle deformation, and the sub-cellular processes
evolve considerably faster than the diffusive action potential
propagation. From a computational point of view, it is desirable
to have common global time steps. To achieve this, we choose
dt3D/N = dt1D = K · dt0D with N, K ∈ N. Then, each discrete
time is uniquely defined as tm,n,k := m · dt3D+ n · dt1D+ k · dt0D,
with M ∈ N, n = 0, ..,N − 1 and k = 0, ..,K − 1. Moreover, state
values associated with time tm,n,k are denoted with the superscript
(·)m,n,k. Employing different time steps requires a time splitting
scheme. The baseline implementation in Heidlauf and Röhrle
(2013) uses a first-order accurate Godunov splitting scheme, for
which one time-step of the three-dimensional equation including
all sub-steps for the one-dimensional monodomain equation is
given by:

1. For n = 0, . . . ,N − 1 do

a. For k = 0, . . . ,K − 1 perform explicit Euler steps for
Equation (7c) and the 0D portion of Equation (7b).

b. Set Vm,n,0
m := Vm,n,K

m and ym,n+1,0
:= ym,n,K .

c. Perform one implicit Euler step for the 1D portion of
Equation (7b) to compute Vm,n+1,0

m .

2. Set Vm+1,0,0
m := Vm,N,0

m and ym+1,0,0
:= ym,N,0.

3. Calculate γ (ym+1,0,0, lm,0,0
hs

) and compute the homogenized
values γ̄ at the Gauss points of the 3D finite element mesh.

4. Calculate the activation parameter γ (ym+1, lm
hs
).

5. Solve Equation (7a).
6. Interpolate the actual configuration xm+1,0,0 to the fibers’

nodes for computing the local half-sacromere length lm+1,0,0
hs

.

Figure 1 (right) schematically depicts this algorithm.

2.2.1.3. Linear solvers
The coupled time stepping algorithm described above contains
two large systems of equations that need to be solved. The first
one results from the 3D elasticity problem (7a) and the second
one stems from an implicit time integration of the linear 1D
diffusion problem of the fiber (7b). In Heidlauf and Röhrle (2013)
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FIGURE 1 | (Left) Schematic view of a 3D muscle domain that contains a given number of nx × ny muscle fibers per 3D partition, ex × ey × ez finite elements for the

3D model (7a), and sx nodes per fiber for (7b) and (7c). (Right) Schematic view of the multi-scale time stepping scheme based on a Godunov splitting of the

monodomain equation.

the linear systems are obtained by applying Newton’s method to
the 3D and 1D problems and are solved using GMRES (Saad and
Schultz, 1986) as implemented within the PETSc library (Balay
et al., 1997, 2015).

2.2.2. Algorithmic Optimizations
While section 2.2.1 describes the implementation as in
Heidlauf and Röhrle (2013), in the following paragraphs we
propose some algorithmic optimizations to improve numerical
efficiency.

2.2.2.1. Spatial discretization
We optimize the interpolation and homogenization routines,
and leave the spatial discretization as described in section 2.2.1
unchanged in this work: interpolation and homogenization steps
involve the transfer of information between values at Gauss
points of the 3D elements to nodes of the 1D fibers. To allow for a
general domain decomposition later on, a mapping between the
respective 3D and 1D finite elements is necessary. In Heidlauf
and Röhrle (2013), the homogenization was achieved using
a naive search over all locally stored fibers. This search was
performed for each 3D element. We replace this approach,
which exhibits quadratic complexity (in terms of the number of
involved elements), with a calculation of linear complexity. This
is achieved by calculating – in constant time – the indices of the
1D elements that are located inside a 3D element.

2.2.2.2. Second-order time stepping
To reduce computational cost, we replace the first-order
Godunov splitting with a second-order Strang splitting as
proposed by, e.g., Qu and Garfinkel (1999). A higher order means
that we advance from an O(dt) approach to an O(dt2) for a
given steplength dt in time. Second-order time-stepping schemes
reduce the discretization errormuch faster with a decreasing time
step size dt and thus, the required accuracy might be achieved

using larger time steps. Along with the change of the splitting
approach, we replace the explicit Euler method for Equation (7c)
and the 0D portion of Equation (7b) with the method of Heun
and employ an implicit Crank-Nicolson method for the diffusion
part of Equation (7b). In contrast to the simpler Godunov
splitting, Strang splitting uses three sub-steps per time step: a first
step with length dt1D/2 for the 0D part, a second step with length
dt1D for the diffusion, and a third step with length dt1D/2 again
for the 0D part. The modified algorithm at time tm,0,0 is given
by:

1. For n = 0, . . . ,N − 1 do

a. For k = 0, . . . ,K/2 − 1 perform explicit Heun steps for
Equation (7c) and the 0D portion of Equation (7b).

b. Set Vm,n,0
m := V

m,n,K/2
m .

c. Perform one implicit Crank-Nicolson step for the 1D
portion of Equation (7b).

d. Set V
m,n,K/2
m := Vm,n+1,0

m .
e. For k = K/2, . . . ,K − 1 perform explicit Heun steps for

Equation (7c) and the 0D portion of Equation (7b).
f. Set Vm,n+1,0

m := Vm,n,K
m and ym,n+1,0

:= ym,n,K .

2. Set Vm+1,0,0
m := Vm,N,0

m and ym+1,0,0
:= ym,N,0.

3. Calculate γ (ym+1,0,0, lm,0,0
hs

) and compute the homogenized
values γ̄ at the Gauss points of the 3D finite element mesh.

4. Solve Equation (7a).
5. Interpolate the displacements um+1,0,0 to the fibers’ nodes for

computing the local half-sacromere length lm+1,0,0
hs

.

The explicit Heun step in 1.a. and 1.d. (see above) is given by:

[

y

Vm

]pre

=

[

y

Vm

]m,n,k

+ dt0D
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In 1.b., we solve the system resulting from the Crank-Nicolson
time discretization of the diffusion part in Equation (7b):

Vm,n+1,0
m = Vm,n,0

m +
dt1D

2AmCm

(

∂

∂x

(

σeff
∂Vm,n,0

m

∂x

)

+
∂

∂x

(

σeff
∂Vm,n+1,0

m

∂x

))

, (9)

2.2.2.3. Optimal complexity linear solver
The GMRES solver is a robust choice for general sparse systems
of linear equations but it does not exploit the symmetry, positive
definiteness and tri-diagonal structure of the 1D diffusion system.
For symmetric matrices the conjugate gradient (CG) solver
(Hestenes and Stiefel, 1952) is an appropriate iterative solver. For
tri-diagonal matrices one could even employ the most simple
Thomas algorithm (Thomas, 1949). To maintain flexibility, we
currently replace the GMRES solver by a direct solver from
the MUMPS library (Amestoy et al., 2001, 2006) that exploits
the structure and exhibits optimal complexity for tridiagonal
systems.

2.3. Domain Partitioning and Parallelization
For parallelization, the computational domains must be
partitioned appropriately. This is particularly challenging
for multi-scale problems, as considered in this work, as the
parallelization induces communication due to dependencies of
local data on data in neighboring partitions. To motivate the
discussion below, we briefly outline the main challenges in the
scope of this work:

1. Solving for the propagation of Vm, i. e., using an implicit
Euler or Crank-Nicolson method (equation 9) to solve the
monodomain equation (equation 4), requires communication
of data along a single fiber. The resulting communication cost
per process is thus linear in the number of fibers that are
split in the global 3D partitioning, and whose parts are thus
assigned to different partitions.

2. Computing the muscle displacements u of the 3D model
involves all processes. This is a result of using a finite
element discretization, which inherently requires peer-to-
peer communication between processes which share partition
boundaries. These costs are proportional to the surface area of
the 3D partitions.

3. Interpolating the muscle displacements u of the 3D muscle
mesh to 1D fiber mesh node positions and calculating lhs,
requires ghost layers at the partition boundaries containing
one layer of 3D elements. Note that for the reverse transfer,
the accumulation of the activation parameter γ from the 0D
model at the Gauss points of the elements in the 3D mesh,
i. e., computing γ̄ , does not involve communication since the

process is completely local as all 0D points are contained
within the respective 3D element and reside on the same
process.

2.3.1. Pillar-Like Domain Decomposition
In the baseline implementation by Heidlauf and Röhrle (2013),
the domain decomposition for parallel execution was hard-coded
for only four processes, following a partitioning ensuring that
entire fibers remain within the same partition at all times, which
is anatomically motivated. Since all skeletal muscle fibers are,
from an electrical point of view, independent of each other, this
is also computationally attractive as no quantities in the 0D and
1D sub-models need to be exchanged between fibers. We extend
the approach to an arbitrary number of processes, and keep the
structure of partitioning the 3D and 1D meshes in the same way,
such that quantities in the 3D, 1D and 0D models corresponding
to the same spatial location are stored on the same process.
This avoids unnecessary inter-process volume-communication
between the sub-models.

2.3.2. New Spatial Domain Decomposition
In addition to the extension of the pillar-like domain partitioning,
we investigate a second approach with nearly cube-shaped
partitions, cf. Figure 2. In contrast to partitioning strategies
based on space-filling curves such as Schamberger and Wierum
(2005), graph partitioning such as Miller et al. (1993) and Zhou
et al. (2010), or problem-specific approaches such as the pillar-
shaped partitioning, a cuboid partition has the advantage that the
interaction of one cuboid partition with others is guaranteed to
be planar and bounded by the maximum number of neighboring
partitions, i. e., 33 − 1 = 26. This allows communication with
reduced complexity and cost.

However, we cannot completely avoid obtaining sub-domains
at the boundary of the computational domain that have
less elements than other domains. Given a fixed number of
available cores, we thus maximize the number of employed
processes by adapting the number of sub-divisions in each axis
direction corresponding to a factorization of the total number of
processes. By carefully choosing the factorization, we reduce the
impact on sub-optimal load-balancing in these ‘nearly cuboid’
partitioning cases. By introducing the additional constraint
that each generated partition has to be larger than a specified
“atomic” cuboid of elements, we can easily ensure that each
process contains only entire fibers (pillar-like partition), a fixed
number of fiber subdivisions (cube-like partition), or anything in
between.

In summary, based on the communication dependencies 1
and 2 as described at the beginning of this section, we enhance the
original pillar-like domain partitioning in two ways: (i) we allow
for an arbitrary number of processes instead of a fixed number of
four processes and (ii) we introduce a new partitioning concept
with nearly cuboid partitions that minimize the partitioning’s
surface area.

Note, when considering the simulation of realistic muscle
geometries that cannot be discretized using rectangular elements,
e.g., using unstructured meshes, a domain decomposition into
pillar-like or nearly cuboid partitions is generally no longer
feasible. The same is true for a skeletal muscle with complex
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FIGURE 2 | Visualization of pillar-like (Left) and cuboid (Right) domain decomposition approaches. Both depicted approaches partition the same domain into 16

subdomains with px , py , and pz subdivisions in x-, y-, and z-direction, respectively.

muscle fiber distributions. In such a case, one cannot ensure that
fibers are always contained within a single partition when using
a pillar-like domain decomposition. However, the strategy to aim
for minimal surface domains is always possible as it inherently
involves cutting fibers at process boundaries.

Within this work, we assume that it is possible to create nearly
optimal cube-shaped partitions.

2.4. Visualization of Muscle Simulations
Performing large scale simulations is only the first step to
gain an improved insight into the musculoskeletal system.
Visual analysis and interactive exploration of the simulation
data gives the opportunity to investigate every facet of large
and complex systems. General-purpose visualization tools like
ParaView (Ahrens et al., 2005) or VisIt (Childs et al., 2012a)
can only provide a first glimpse of such data sets. However, for
the above-mentioned in-depth analysis, a tailored visualization
tool is necessary. The standard visualization framework within
the OpenCMISS software project is OpenCMISS-Zinc. This
framework already offers a range of visualization techniques
for muscle fiber data, for example, a convex hull calculation to
construct a mesh geometry from point cloud data. However,
OpenCMISS-Zinc lacks important features that are required to
develop efficient visualizations intended to run on HPC systems.
These missing features are, for example, a suitable platform for
fast visualization prototyping, distributed rendering, or CPU-
based visualization. The open-source visualization framework
MegaMol (Grottel et al., 2015) fulfills these criteria and offers
additional functionality and features that are valuable for this
project. Therefore, we use MegaMol as the basis for improved
musculoskeletal visualizations. For example, one additional
feature is the infrastructure for brushing and linking that allows
for developing interactive visual analytics applications. MegaMol
also offers a built-in headless mode and a remote control
interface, which is crucial for HPC-based in-situ rendering.

In-situ visualization is an alternative approach to traditional
post-hoc data processing. The key idea is to process and
visualize data on the HPC system while the simulation is
running. Consequently, writing raw data to disk can be avoided
completely. Since our new visualization tool is intended to cope

with the visual analysis of large-scale muscle simulations, we
require an architecture that allows us to employ this approach
in the future. There are three different approaches that are
considered as in-situ visualization, identified by Childs et al.
(2012b). The first one is known as co-processing, where the
visualization tool runs simultaneously with the simulation and
accesses the simulations memory for further processing and
visualization. In the second approach, the visualization runs
on separate nodes and communicates data via a network. This
method is known as concurrent-processing. The last possibility,
the hybrid technique, directly accesses the simulation’s memory
and reduces the data for less network load while sending the
data to visualization nodes. We are planning to add the first
two methods—co-processing and concurrent processing—into
our implementation. However, we cannot completely disregard
the hybrid technique as we might need to identify the workload
of each node and the network traffic of a running large-scale
simulation with in-situ visualization first.

Interactive visualization typically uses graphics APIs like

OpenGL to employ the GPU for rendering. GPU-accelerated

rendering uses polygon rasterization, i. e., large numbers of

triangles can be processed and rendered in parallel. All geometric

objects that are rendered thus have to be represented by triangle
meshes. This visualization approach is, for example, also used
by OpenCMISS-Zinc. An alternative rendering approach to
GPU-accelerated rasterization is ray tracing. Here, one or more
view rays are computed for each pixel. Each ray is tested for
intersection with the objects in the scene in order to find out
which objects are visible at this pixel. Note that this approach
can not only render triangles but also all objects that have a
mathematical representation that can be used for computing the
ray-object intersection (e. g., spheres or cylinders). Ray tracing is
usually computed on the CPU and was traditionally only used
for high-quality offline rendering due to its higher computational
complexity. The combination of modern hardware and improved
algorithms, however, enables interactive ray tracing, even on
single desktop workstations.

MegaMol offers GPU rendering (rasterization) and CPU ray
tracing via a thin abstraction layer. The GPU rendering uses
the OpenGL API, whereas the CPU rendering is based on the
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ray tracing engine OSPRay (Wald et al., 2017). In particular
the CPU-based ray tracing enables image synthesis on any
computer, regardless of the availability of dedicated GPUs. This
is especially important for HPC clusters, which are typically
not equipped with GPUs: Currently, only two of the top-ten
HPC systems in the Top500 list GPU systems. Since ray tracing
simulates the transport of light, it offers advanced rendering
and shading methods (e. g., global illumination and ambient
occlusion) that enhance the perception of depth. MegaMol is
currently not optimized for HPC usage. However, it provides the
necessary basic infrastructure for enabling distributed rendering
on an HPC system. Furthermore, MegaMol is already capable
of rendering discretized muscle fibers as continuous geometry.
The visual quality and scalability obtained by MegaMol using
integrated OSPRay ray tracing are discussed in section 3.4.

3. RESULTS

Before simulating realistic and complex models on HPC systems,
it is essential to first analyse numerical complexity, i. e., scalability
in terms of the size of the problem both for the baseline methods
described in section 2.2.1 and our optimized methods presented
in section 2.2.2. To avoid any geometrical effects stemming
from realistic geometries, we perform the analysis on a test
example introduced in section 3.1. As the old parallel code used
4 cores, only, in section 3.3 we restrict our analysis of the parallel
scalability to the proposed new parallelization strategies.

3.1. Test Scenario
As a test scenario, we use a generic cubic muscle geometry
(1 × 1 × 1 cm). The muscle fibers are aligned in parallel to
one cube-edge (the x-direction). The discretization in space and
time is as carried out as described in sections 2.2.1 and 2.2.2.
The discretization parameters will be specified for the respective
experiments. For the material parameters for the continuum-
mechanics model, the effective conductivity σeff, the surface-to-
volume ratio Am, and the membrane capacity Cm, we use exactly
the same values as reported in Heidlauf and Röhrle (2014).

To constrain the muscle, Dirichlet boundary conditions (zero
displacement) are used to fixate the following faces of the muscle
cube: the left and the right faces (faces normal to the x-direction),
the front face (face normal to the y-direction) and the bottom
face (face normal to the z-direction). Further, no current flows
over the boundary of the computational muscle fibers, i. e., zero
Neumann boundary conditions are assumed at both muscle fiber
ends. As far as the skeletal muscle recruitment is concerned, we
consider an isometric single-twitch experiment by stimulating
all fibers at their mid-points for t ∈ [0, 0.1ms] with Istim(t) =

1200µA/cm2. For all other t, Istim(t) is assumed to be 0.

3.2. Numerical Investigations
In the following, we present numerical experiments
demonstrating, in particular, the increase in efficiency with
the new second-order time discretization method. All runtimes
are measured in serial, on an Intel R© CoreTM i5-4590 CPU
(3.3 GHz, 32 GB RAM) for Secs. 3.2.1 and 3.2.2, and an
Intel R© XeonTM E7-8880 v3 CPU (2.3 GHz, 504 GB RAM) for
Secs. 3.2.3, 3.2.4, using the OpenCMISS implementation.

3.2.1. Time Discretization for the Sub-cellular Model
In a first step, we verify the convergence order of Heun’s method
experimentally. Therefore, we restrict ourselves to the reaction
term, i. e., step 1.a of the Godunov algorithm, but use Heun’s
method for Equation (7c) and the 0D portion of Equation (7b).
The diffusion term is thus completely neglected. We use the test
setup as presented in Sect. 3.1. To compare the accuracy of Heun’s
method with an explicit Euler method, we compare the values of
Vm and Iion at a stimulated material point on a muscle fiber while
varying the time step size dt0D. As a reference solution, we use the
solution calculated with Heun’s method for a very high resolution
(K : = dt1D/dt0D = 4096). We restrict ourselves to the time
interval [0, dt1D], with dt1D = 0.5µs. To compare the methods
in terms of efficiency, we measure the related compute times.
Figure 3A depicts the relative error depending on the number K
of 0D time steps while on the right the necessary CPU-times to
reach a certain accuracy for the different solvers are compared.

FIGURE 3 | (A) Relative error dependency on the number K of 0D time steps in [0,dt1D]. The error of Euler’s and Heun’s method shows the expected O(K−1) and

O(K−2) behavior. (B) Dependency of the runtime on the required accuracy for explicit Euler and Heun. We varied the time step dt0D between 5 · 20 and 5 · 2−12
µs

for Euler and between 5 · 20 and 5 · 2−11
µs for Heun.
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Figure 3A shows the expected first-order convergence for
the explicit Euler method and second-order convergence for
Heun’s method. From an application point of view, however,
efficient computation (“Which accuracy can be achieved in which
runtime?”) is more important than the order of convergence.
Therefore, in order to reveal the potential of Heun’s method in
decreasing the runtime for a given required accuracy, we take into
account the different computation time per step of the methods.
Figure 3B shows that two Heun steps with dt0D = 2.5µs replace
50 forward Euler steps yielding a theoretical speedup of 12.5 for
the 0D-solver. At the same time, the error decreases by a factor
of approximately 3. All times are normalized with respect to the
CPU-time of a single step of the Euler method (K = 1).

3.2.2. Time Discretization for the Muscle Fibers
In a second experiment, we verify the convergence order of
the Strang splitting scheme, i. e., we couple 0D reaction and
1D diffusion. Again, the same test setup as above is considered
except that we use a larger time interval [0, 0.1ms] and vary the
number, N, of 1D time steps. Based on the previous results for the
isolated 0D problem, we choose K = 2 for the Strang-splitting
scheme and K = 5 for the Godunov-splitting scheme. This
ensures a comparable relative error for the 0D sub-problem while
saving computational time. The reference solution is computed
using a Strang-splitting scheme with dt1D = 0.25µs, yielding
Vm(0.1ms) ≈ −23.5219mV.

Figure 4A shows the relative errors of Vm (0.1ms) at a
stimulated sub-cell for the Godunov- and Strang-splitting
schemes. Comparable relative errors as for the Godunov scheme
with dt1D = 0.5µs are achieved for the Strang splitting
scheme with dt1D = 2 or 4µs. Qu and Garfinkel (1999) applied
the Strang splitting scheme on the monodomain equation in
cardiac conduction, using a different reaction term than in this
work. However, it is not entirely clear whether second order
convergence is exhibited by their numerical experiments. For
an electrocardiogram simulation Sundnes et al. (2005) used the
same scheme on the more general bidomain equation, achieving
a nearly second order scheme. In contrast to these works our
results show a true second-order error dependency. The resulting
speedups are depicted in Figure 4B by arrows pointing from

Godunov to Strang data points. There, the compute times are
normalized with respect to the compute time of the Godunov
scheme for dt1D = 0.5µs.

Based on a relative error in Vm of about 2 ·10−3, the improved
time stepping scheme achieves a speedup of 7.54, if the accuracy
requirement is weakened slightly. If the error constraint is not
weakened, we still obtain a speedup of 3.89. Note that, for more
restrictive error limits, the speedup achieved with a second-order
scheme will be even higher due to the higher convergence order.

3.2.3. Solving the Linear Systems of Equations in the

1D Model
In a further experiment, which solves a 1D diffusion problem,
we consider a single fiber inside one 3D element for the
time interval t ∈ [0, 3ms]. The Godunov splitting scheme
is employed with time step sizes dt1D = 5 · 10−3ms and
dt0D = 10−4ms, as the experiment is largely independent
of the splitting scheme. We compare the GMRES solver with
30 restarts against the CG solver and a direct solver from
the MUMPS library. Figure 5 shows the expected reduction
in the runtime for the CG and direct solvers. Although the
direct solver has a higher runtime for a small number of 1D
elements, it requires the lowest runtime for finer discretizations
and shows a linear complexity with the number of 1D
elements.

3.2.4. Runtime Analysis During Serial Execution of

the Full Model
In previous sections we considered subproblems of the
computational model. In this section we measure the overall
effect of the combined improvements. A complete single-twitch
scenario as described in section 3.1 is simulated for a time
span of [0, 1ms]. We compare all numerical and algorithmic
improvements of this paper against the baseline setting of
Heidlauf and Röhrle (2013).

The 3D spatial discretization comprises 8 Taylor-Hood finite
elements containing 36 muscle fibers (nx = ny = 6) in total.
For the baseline setting using the Godunov splitting scheme the
time steps are set to dt3D = 1ms, dt1D = 5 · 10−4ms and
dt0D = 10−4ms, i. e., N = 2000 and K = 5. For the Strang

FIGURE 4 | (A) Relative error dependency on the 1D time step size dt1D. The error of the Godunov- and Strang-splitting scheme shows the expected O(dt1D) and

O(dt21D) behavior, respectively. (B) Efficiency of different splitting schemes. Each scheme is performed for dt1D = 0.5, 1, 2 and 4µs.
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splitting scheme the values are dt3D = 1ms, dt1D = 4 · 10−3ms
and dt0D = 2 · 10−3ms, i. e., N = 250 and K = 2. For the
baseline setting the linear system of equations arising from the
1D problem is solved using a restarted GMRES solver with a
restart after 30 iterations and relative residual tolerance of 10−5.
The improved simulation uses the direct solver as described in
section 2.2.2.3. To solve the 3D problem, Newton’s method from
the PETSc library is used with a relative and absolute tolerance of
10−8 and a backtracking line search approach with a maximum
number of 40 iterations.

FIGURE 5 | Comparison of the runtime for different linear solvers. A single

fiber is considered for the time t ∈ [0, 3ms].

To assess problem size scalability, we vary the number of 1D
elements along each muscle fiber and measure the runtimes of
the simulation components. Note that the number of sub-cellular
model instances is changed accordingly.

The results depicted in Figure 6 provide the following
insights: (i) The majority of the runtime is spent solving the
0D problem. (ii) The portion of runtime spent solving the 3D
problem is negligible. This is due to the low number of 3D
finite elements for the mechanics problem. Realistic models
would, however, require a finer resolution of the 3D problem.
(iii) The runtime for the other computational components
increases approximately linearly with the number of fiber
elements. This indicates a good scaling behavior with respect
to problem size. (iv) The computations of the macroscopic
variable lhs from the fiber nodes, the homogenized activation
parameter γ̄ (homogenization), as well as lhs (interpolation)
have almost no impact on the overall computational time.
However, interpolation is more time consuming as it involves
simultaneously traversing the fiber and the 3D meshes, whereas
homogenization requires only a single averaging operation for
each Gauss point of the 3D elements.

3.3. Parallel Scaling Experiments
In the following we conduct parallel scalability experiments to
investigate the behavior of the simulation on highly parallel
compute clusters. All experiments are conducted on HazelHen,
the Tier-1 supercomputer at the High Performance Computing
Center Stuttgart (HLRS). A dual-socket node of this Cray
XC40 contains two Intel R© Haswell E5-2680v3 processors with
base frequency of 2.5 GHz, maximum turbo frequency of 3.3
GHz, 12 cores each and 2 hyperthreads per core, leading to a

FIGURE 6 | Runtime for a simulated time interval t ∈ [0, 1ms] with a varying number of elements per fiber. 2× 2× 2 3D elements, 6× 6 1D fibers. Solid lines: baseline

implementation, Dashed lines: implementation with improvements of this paper.
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total number of 48 possible threads per node. We present the
results of a strong scaling (Experiment #1) and weak scaling
experiments (Experiments #2 and #3) as well as an investigation
of partitioning strategies (Experiment #4).

3.3.1. Strong Scaling Measurements—Experiment #1
Strong scaling investigates the runtime for a fixed problem size
with respect to different process counts. Figure 7 depicts strong
scaling results for the specified problem with 13,824 1D elements.
Taking the first runtime measurement with 12 processes (T12) as
reference, the parallel efficiency for a process count p is computed
from the runtime Tp as Ep = (T12/Tp) · (p/12) and visualized in
the bottom plot of Figure 7. It can be seen that the 0D model
solver shows a good parallel efficiency of more than 80% whereas
the parallel efficiencies for the 3D solver and the 1D solver drop
below 50 and 30%, respectively. This matches the fact that the
half-sarcomere sub-models (0D) are completely independent of
each other whereas the solutions of 3D and 1D problems require
communication.

3.3.2. Weak Scaling Measurements—Experiment #2
For weak scaling, the problem size is increased proportional to
the number of processes. Thus, invariants are the number of

elements per process and the overall shape of the computational
domain. Here, we show weak scaling for both partitioning
strategies: partitioning only in y- and z-direction, i.e., pillar-like
partitioning, and cuboid partitioning. We start with 24 processes
on a single node of HazelHen with an initial partition consisting
of px× py× pz = 1× 6× 4 = 24 subdivisions for both pillar-like
and cuboid partitioning. Each partition contains ex × ey × ez =

2 × 2 × 2 = 8 3D elements per MPI rank. Further, we ensure
that each 3D element contains 2 × 2 fibers in x-direction with
three 1D elements per fiber, i.e., 12 1D elements per 3D element.
Hence, the initial problem is made up of 24 × 8 = 192 elements
and 12× 8× 4 = 384 fibers.

In the series of measurements for the two partitioning
strategies, further subdivisions are defined such that the
pillar-like or cuboid partitioning structure is maintained. The
refinements are obtained by first refining by a factor of 2 in
the x-direction, in the z-direction and then in the y-direction
before repeating the process. For the cuboid partitioning, we fix
the number of 3D elements that each MPI rank contains to be
2 × 2 × 2. For the pillar-like partitioning, the constraint is that
each sub-domain spans over all three-dimensional elements in
the x-direction, whose number varies with increasing problem
size. Therefore, the number of elements per MPI rank in y- and

FIGURE 7 | Strong scaling measurements—Experiment #1: Scenario with 12× 12× 8 = 1,152 3D elements, 24× 24 fibers (i.e., 13,824 1D elements), the cube

shaped partitioning strategy computed with 1–4 nodes with 12 processes per node. (Top) Total runtime and runtimes of solvers for the 0D, 1D and 3D problem, Tp,

(solid lines); projected runtimes for optimal scaling, Tp,opt = T12 · p/12 (dashed thin lines). (Bottom) Parallel efficiency Ep = Tp,opt/Tp.
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z-direction is halved for each refinement in an alternating way.
This way, we double the number of partitions while maintaining
the constant number of eight 3D elements per MPI rank.
By allocating 24 processes on the 24 cores of each node (no
hyperthreading), we scale from 1 to 32 nodes, i. e., from 24
to 768 cores. Table 1 provides the details on the partitioning
and the number of three-dimensional and one-dimensional
elements.

Results are shown in Figure 8, and show that the solver

for the 3D model has a slightly higher computational time for
the pillar-like partitioning compared to the cuboid partitioning.
This is expected as the partition boundaries are larger and
induce more communication. For the 1D problem solver, pillars
are better as fibers are not subdivided between multiple cores
and no communication is needed. The reduced benefit from a
cuboid partitioning is due to the fact that the time spent on
communication is rather dominant compared to the time needed
to solve the rather small problem, e. g., only 3 ex = 6 1D
elements of a fiber are locally stored in each partition. This should
improve as one chooses larger sub-problem sizes, i. e., increases
the number of nodes per fiber.

Theoretically, the time needed to solve the 0D problem should
not be affected by the domain decomposition. However, due to
cache effects, the runtime for a cuboid partitioning is slightly
higher. Overall, this leads to a higher total computational time
for cuboid partitioning compared to the pillar-like partitioning.
This conclusion is, however, only valid for the chosen scenario
and for the relatively low number of cores. Note that extending
this scaling experiments to a larger numbers of cores is currently
limited due to memory duplications in the current code. This
needs to be first eliminated before conducting further scaling
studies.

3.3.3. Weak Scaling Measurements – Experiment #3
While the somewhat artificial setting in experiment #2 yields
perfect pillar-like or cuboid partitions, experiment #3 addresses a
more realistic setup, where we increase the number of processes
more smoothly, i.e., by less than a factor of two in each
step. With this, it is not possible anymore to choose perfect
cuboid or pillar-like partitions. Thus, we identify reasonable
parameters by solving an optimization problem that trades the
targeted aspect ratio of sub-domain shape against process counts.

TABLE 1 | Weak scaling measurements–experiment #2: Problem and partition sizes for 1 to 32 nodes with 24 processes per node, i.e., 24–768 cores of HazelHen.

Nodes 3D Elements 1D El. Pillars Cubes

pxex × pyey × pzez px × py × pz ex × ey × ez px × py × pz ex × ey × ez

1 2× 12× 8 2,304 1× 6× 4 2× 2× 2 1× 6× 4 2× 2× 2

2 4× 12× 8 4,608 1× 6× 8 4× 2× 1 2× 6× 4 2× 2× 2

4 4× 12× 16 9,216 1× 12× 8 4× 1× 2 2× 6× 8 2× 2× 2

8 4× 24× 16 18,432 1× 12× 16 4× 2× 1 2× 12× 8 2× 2× 2

16 8× 24× 16 36,864 1× 24× 16 8× 1× 1 4× 12× 8 2× 2× 2

32 8× 24× 32 73,728 1× 24× 32 8× 1× 1 4× 12× 16 2× 2× 2

FIGURE 8 | Weak scaling measurements–experiment #2: Total runtime as well as individual runtimes (solver for the 0D, 1D, and 3D problem) for the cuboid partitioning

(solid lines) and pillar-like partitions (dashed lines). The error bars indicate estimated standard deviation of runtimes on all involved processes of a single simulation run.
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Note that the combination of the number of processes and
the number of elements leads to partitions at the boundary of
the computational domain that potentially have less elements
than interior partitions. Compared to the previous example, the
number of 3D elements per process is here only approximately
constant, with the pillar-like partitions getting closer to constant
size than the cuboid ones. The numbers of processes and the
dimensions of the computational domain are listed in Table 2.
Figure 9 presents the runtime results.

As already discussed above, the ODE solver for the 0D-
problem (yellow line) requires themajority of the runtime. This is
followed by the solution times for the 1D (red line) and 3D (green
line) sub-problems. The blue lines depict the duration of the
interpolation and homogenization between the node positions
of the 1D fibers and the 3D mesh. It can be seen that the
computational times stay nearly constant for increasing problem
size. As in the previous experiment, the 3D solver performs better
for cuboid partitioning whereas the 1D solver is faster for pillar-
like partitions. In this scenario, the cuboid partitioning slightly
outperforms the pillar-like partitioning, as expected.

As before, the memory consumption appears to be a
weakness. Therefore, additional tests investigating the memory

consumption per process at the end of the runtime were carried
out. The memory consumption for the presented scenario is
plotted in Figure 10 with respect to the overall number of 1D
elements. Also the average number of ghost layer elements
per process is depicted. Ghost layer elements are copies of
elements adjacent to the partition of a process, i.e., they belong
to the subdomain of a neighboring process. They are used as
data buffers for communication. We observe that the average
number of ghost elements per process for the 3D problem is
higher for pillar-like partitions (dashed black line) than for
the cuboid partitions (solid black line). A sharp increase of
memory consumption (magenta lines) is observed independent
of the partitioning scheme. This is due to duplications of global
data on each process, which will be eliminated in future work.
Compared to this effect, the difference between the number
of ghost elements needed for the two partitioning strategies is
negligible.

3.3.4. Dependency Between Runtime and Partition

Shape – Experiment #4
In our fourth scaling test, the dependency of the solver of the
3D continuum-mechanical problem on the partitioning strategy

TABLE 2 | Weak scaling measurements—experiment #3: Number of elements, number of fibers and partition sizes.

Nodes, 3D Elements 1D El. Pillars Cubes

Cores pxex × pyey × pzez px × py × pz ex × ey × ez px × py × pz ex × ey × ez

1, 24 16× 11× 7 14,784 1× 6× 4 16× 2× 2 4× 3× 2 4× 4× 4

2, 40 18× 19× 7 28,728 1× 10× 4 18× 2× 2 4× 5× 2 5× 4× 4

3, 60 18× 19× 11 45,144 1× 10× 6 18× 2× 2 4× 5× 3 5× 4× 4

4, 84 17× 27× 11 60,588 1× 14× 6 17× 2× 2 4× 7× 3 5× 4× 4

6, 140 38× 20× 7 63,840 1× 20× 7 38× 1× 1 10× 7× 2 4× 3× 4

8, 192 45× 16× 12 103,680 1× 16× 12 45× 1× 1 12× 4× 4 4× 4× 3

FIGURE 9 | Weak scaling measurements—experiment #3: Runtimes for different model components. The results for cuboid and pillar-like partitions are depicted by

solid and dashed lines, respectively. Different runtime components are encoded in colors, i. e., the total runtime in black, 0D solver in yellow, the 1D solver in red, the

3D solver in green, the interpolation in light blue and the homogenization in dark blue.
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FIGURE 10 | Weak scaling measurements—experiment #3: Total memory consumption per process at the end of the runtime. The total memory consumption is

depicted in magenta and the average number of 3D ghost layer elements per process in black. Again, the solid lines represent cuboid partitioning and the dashed line

piller-like partitioning.

FIGURE 11 | Dependency between runtime and partition shape—experiment #4: Runtime in dependence on the average boundary area of the partitions. We show

the accumulated total computational time and the runtimes of the sub-problems as in the previous studies.

is investigated. We analyse how different domain decomposition
approaches, in particular approaches other than the previously
discussed pillar-like and cuboid partitioning schemes, affect the
runtime. A test case with 144 × 12 × 12 three-dimensional
elements is considered. The setup, otherwise, is as described
in section 3.1. To reduce the contributions of the 0D/1D sub-
problem and focus on the performance of the 3D components,
we include in each 3D element only two 1D fiber elements. The
domain is decomposed into a constant number of 144 partitions
by axis-aligned cutplanes in all possible ways. To distinguish
between the different partitioning variants, we compute the
average boundary surface area between the partitions for each
variant and relate this to runtime. The results are presented

in Figure 11. The smallest average surface area between the
partitions, which corresponds to the first data point in Figure 11,
is obtained for a partitioning with 144 partitions with 4 ×

6 × 6 elements each. The highest average surface area between
the partitions, which is the last data point within Figure 11, is
obtained for 144 partitions with 1 × 12 × 12 elements each. All
experiments are run on 12 nodes of Hazel Hen with 12 processes
per node. It can be seen that only the time needed to solve
the 3D continuum-mechanical problem increases monotonically
with respect to the average surface area between the partitions,
i. e., depends on the partitions’ shape. This is expected. Further,
the runtime ratio of the 3D solver between the partitioning with
the smallest and largest average surface area is 1 : 4.3.
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3.4. Visualization Results
In this section, we describe the results obtained using our
new ray-tracing-based visualization within the MegaMol system.
Our goal is to demonstrate the capabilities of our rendering
approach for the interactive visualization of complex, real-world
simulation data sets. Therefore, we used data from previous
simulations to showcase these visualization capabilities, in
particular, data from the Tibialis Anterior simulation performed
by Heidlauf and Röhrle (2013). Analyzing and optimizing
existing code for HPC infrastructures is best performed with test
cases for which the geometry has a minimal influence. Under
this consideration, the cuboid muscle test case introduced in
section 2.1.4 would have been an obvious choice. However,
in contrast to the Tibialis Anterior data, the cuboid muscle
test case is too small and simple to demonstrate the full
capabilities of our new visualization approach for complex
geometries.

Our test data set consists of 3,600 fibers, which are discretized
into a total of 144,000 1D elements. The consecutive elements
along each fiber are connected via tubes to visualize the fibers.
Figure 12 shows a rendering created by MegaMol (Grottel et al.,
2015) using our integration of the CPU ray tracing engine
OSPRay (Wald et al., 2017). Color is used to illustrate values

of the elements, in this case the local membrane potential. The
interactive ray tracing offers very high image quality, including
global illumination effects that increase the perception of spatial
details. This is especially visible with the shadows between
fibers, which help to perceive the distance between them as
well as deformations of the individual fibers with respect to
their neighbors. That is, our visualization approach not only
delivers publication-quality images, which is often not possible
for interactive visualization of large data using classical rendering
approaches, but it is also beneficial for the visual analysis of
local details as well as the overall spatial impression of the
data.

To test the scaling behavior of our OSPRay integration into
MegaMol, we measured the rendering performance of four
different-sized systems. We used synthetic data sets ranging from
106 to 1.4 · 109 elements rendered as sphere geometries. Spheres
are the most basic visualization primitive and can be rendered
very fast, therefore, they are typically used as a baseline case for
performance tests using large data sets. We also compare the
CPU ray tracing performance with a GPU-based ray casting,
which is a fast and efficient way to render large numbers of
particles ( e.g., Reina and Ertl, 2005). The CPU ray tracing uses
a P-k-d tree by Wald et al. (2015) for fast ray traversal. This

FIGURE 12 | The discretized 1D muscle fibers are rendered as continuous tubes to show the characteristics and implicit geometry (with the distinct fiber directions of

the superficial and deep part of the Tibialis Anterior) of the individual strands. The color coding shows the distribution of parameter values along the fibers (local

membrane potential; red: low, blue: high).

FIGURE 13 | Average rendering performance (frames per second, FPS) for four different data sets measured on four different CPU architectures (blue, green, red,

cyan; triangle markers). For reference, the rendering performance of a GPU-based ray casting measured on a high-end GPU is provided (violet; circle marker).
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tree is a memory-efficient hierarchical data structure used for
space partitioning. All measurements were executed on a single
desktop PC at a resolution of 1280× 720 pixels. Figure 13 shows
the results obtained by different Intel CPUs for the OSPRay
rendering compared to the GPU rendering on a high-end Nvidia
consumer graphics card (Nvidia Titan XP). As observable, the
GPU-based rendering outperforms the CPU-based ray tracing
only for the smallest test case. For more than 107 spheres, the
OSPRay ray tracing clearly outperforms the GPU rendering. This
result agrees with our earlier findings presented in (Rau et al.,
2017).

In summary, the CPU-based ray tracing approach that we
chose is superior to classical GPU-based rendering not only
in terms of image quality but also in terms of scalability for
very large data sets. This is important for the visual analysis
of HPC simulation data, which constantly increases in size as
well as complexity due to improvements in simulation codes
as well as the availability of faster HPC hardware. Our results
demonstrate that real-time ray tracing is a viable solution
nowadays for rendering large muscle fiber simulation data sets
compared to classical rasterization-based approaches. It delivers
not only superior image quality, which is beneficial for visual
analysis, but also higher rendering performance even on single
desktop PCs.

4. DISCUSSION

Using models to gain new insights into the complex physiological
or anatomical mechanisms of biological tissue, or to better
interpret and understand experimentally measured data, requires
accurate and detailedmodels of the underlyingmechanisms. This
can lead very quickly to highly complex and computationally
extremely demanding models. Software packages such as
OpenCMISS are designed to build up computational models for
a variety of complex biomechanical systems, e.g., for the chemo-
electromechanical behavior of skeletal muscles after recruitment,
the mechanics of the heart, the functioning of the lung, etc. Such
software packages might already run within a parallel computing
environment, but are not necessarily optimized to run large-
scale simulations on large-scale systems such as HazelHen, the
Tier-1 system in Stuttgart. Thus, before being able to exploit
the full capabilities of supercomputers, they have to be analyzed
and optimized to achieve good scaling properties—ideally perfect
scaling meaning that the simulation of a twice as large problem
on twice as many nodes/cores requires the same runtime as the
original setup.

Within this paper, we have demonstrated that the chemo-
electromechanical multi-scale skeletal muscle model as
introduced in section 2.1 and implemented in OpenCMISS
is capable of running significant large-scale model setups
in a parallel compute environment. We have simulated the
deformation of a skeletal muscle in which 34, 560 randomly
activated fibers are discretized with 103, 680 1D elements.
Due to the algorithmic optimizations a meaningful compute
time reduction was achieved. Further, by utilizing a standard
test case, we have been able to show good strong and weak

scaling properties for a small number of compute nodes. For
the partitioning of the domain, two different approaches have
been considered: a pillar-like partition along fiber directions
and a minimal-surface partitioning. The solution times of
the 3D and the 1D solver mainly depend on the domain
partitioning. The 1D solver profits from pillar-like partitions,
while the 3D solver exhibits lower runtimes for cube-like
minimal-surface partitions. In addition to its advantage in
terms of communication complexity for large numbers of
parallel processes, the minimal-surface domain decomposition
strategy investigated here is generalizable to arbitrary geometry
settings even for unstructured meshes based, for example, on
graph-partitioning methods.

However, for more realistic large-scale simulations, further
aspects concerning the model, algorithms, implementation,
and visualization need to be considered: a more complicated
chemo-electromechanical model that includes, for example, the
mechanical behavior of titin (Heidlauf et al., 2016, 2017) and
further important biophysical details such as metabolism, a
biophysical recruitment model (Heidlauf et al., 2013), and a
feedback mechanism from the spindles and the golgi-tendon
organs to the neuromuscular system; simulation and visualizing
of the surface EMG to further test motor unit decomposition
algorithms; novel or custom-tailored efficient numerical schemes
for new model components and coupling with the existing ones;
or integrating chemo-electro-mechanical modeling approaches
to extend forward simulations using continuum-mechanics
musculoskeletal system models Röhrle et al. (2017) in order
to drive them not only through optimization Valentin et al.
(2018) but also by means of neural recruitment, and hence
obtain a deeper insight into neuromuscular recruitment
principles.

Our goal is to set up large-scale simulations for a single
chemo-electromechanical skeletal muscle model with a realistic
number of fibers (e. g., about 300,000) of realistic length.
The results of these simulations need to be visualized and
analyzed for which we extend MegaMol to offer novel,
comprehensive visualizations that allow users to interactively
explore the complex behavior of muscle fiber simulation
data. We will validate our simulation by comparisons of the
simulated surface EMG of a muscle with experimental data
obtained via non-invasive and clinically available diagnostic
tools. Finally, our simulations can serve as a new tool
to investigate the interplay of the underlying complex and
coupled mechanisms leading from neural stimulation to force
generation.
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This paper deals with fast simulations of the hemodynamics in large arteries by

considering a reduced model of the associated fluid-structure interaction problem, which

in turn allows an additional reduction in terms of the numerical discretisation. The

resulting method is both accurate and computationally cheap. This goal is achieved

by means of two levels of reduction: first, we describe the model equations with a

reduced mathematical formulation which allows to write the fluid-structure interaction

problem as a Navier-Stokes system with non-standard boundary conditions; second, we

employ numerical reduction techniques to further and drastically lower the computational

costs. The non standard boundary condition is of a generalized Robin type, with a

boundary mass and boundary stiffness terms accounting for the arterial wall compliance.

The numerical reduction is obtained coupling two well-known techniques: the proper

orthogonal decomposition and the reduced basis method, in particular the greedy

algorithm. We start by reducing the numerical dimension of the problem at hand with

a proper orthogonal decomposition and we measure the system energy with specific

norms; this allows to take into account the different orders of magnitude of the state

variables, the velocity and the pressure. Then, we introduce a strategy based on a greedy

procedure which aims at enriching the reduced discretization space with low offline

computational costs. As application, we consider a realistic hemodynamics problem with

a perturbation in the boundary conditions and we show the good performances of the

reduction techniques presented in the paper. The results obtained with the numerical

reduction algorithm are compared with the one obtained by a standard finite element

method.The gains obtained in term of CPU time are of three orders of magnitude.

Keywords: fluid-structure interaction, Navier-Stokes equations, reduced order modeling, proper orthogonal

decomposition, reduced basis method, hemodynamics

1. INTRODUCTION

When modeling hemodynamics phenomena in big arteries, the resulting model is a complex
unsteady fluid-dynamics system, usually coupled with a structural model for the vessel wall. In
specific cases, suitable assumptions can be made to reduce the complexity of the model equations.
In particular, when the displacement is small, the moving domain can be linearized around a
reference steady configuration and the dynamics of the vessel motion can be embedded in the
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equations for the blood flow. In such way we obtain a Reduced
Fluid-Structure Interaction (RFSI) formulation where a Navier-
Stokes system in a fixed fluid domain is supplemented by a Robin
boundary condition that represents a surrogate of the structure
model.

Although the RFSI model is faster with respect to fully three-
dimensional (3D)models where the structure is solved separately,
the numerical computation of one heartbeat is still expensive:
the resolution of an entire heartbeat, that typically lasts one
physical second, takes orders of hours of computational time
on a supercomputer. A big challenge in realistic applications is
to achieve a real time resolution of fluid-structure interaction
problems. In particular, in hemodynamics applications, this
would grant the possibility to perform real time diagnosis.
Nevertheless, the great variability of patient-specific data requires
the parametrization of the model with respect to many physical
and geometrical quantities. Moreover, as we have recalled above,
the complexity of the hemodynamics phenomena requires a
mathematical description with complex unsteady models that are
difficult to be solved in real time. The RFSI model is already a
simpler version of the fully 3D FSI system; a further reduction
of the physical model would result in an inaccurate estimation of
specific outputs, like e.g., the wall shear stress when using a rigid
wall model [1, 2]. Thus, to further reduce numerical costs, in this
work, we focus on the reduction of the discretization space. In
realistic applications, the finite element space has order of 106

degrees of freedom. The aim is to construct a discretization space
such that the number of degrees of freedom is reduced to less than
100 and then to be able to solve one heartbeat in 1 s.

In the past few years, due to their relevance in realistic
applications, a lot of interest has been devoted to discretization
reduction techniques for parametrized Partial Differential
Equation (PDE) problems (e.g., [3–6]). These techniques aim
to define a suitable reduced order model which can be solved
with marginal computational costs for different values of the
model parameters. Reduced order models are then important
in the many query context, when a parametrized model has
to be solved for different values of the parameter, and in the
real time problems, when the solution has to be computed with
marginal computational costs. To obtain a suitable reduced order
model, we typically start from a problemwritten in a high-fidelity
approximation framework, e.g., using the finite element method.
The dimension of the discretized system is then drastically
reduced through suitable projection operators. The construction
of these projection operators is the core of the reduced order
technique. Another key concept in the reduction framework
is the subdivision of the computational costs into two stages:
an offline stage, expensive but performed once, and an online
stage, real time and performed each time new values of the
model parameters are considered. During the offline stage the
projection space is generated by a reduced basis of functions of
the high-fidelity approximation space.

Reduced order models applied to the Burgers equation
parametrized with respect to the Péclet number is considered in
Yano et al. [7] andNguyen et al. [8]. Other applications of reduced
basis techniques applied to fluid problems can be found (e.g., in
[9–18] and in the recent volume [6]).

The aim of this work is indeed to propose a suitable
discretization reduction algorithm that can be applied to a RFSI
problem. The work is organized as follows. In section 2 we
present the partial differential equations that we are interested in
solving. We propose a possible parametrization of the unsteady
equations with respect to temporal varying data and with respect
to a perturbation of the boundary data. In section 3 we then
present how the standard proper orthogonal decomposition
algorithm can be applied to the problem at hand in order
to generate a suitable reduced space. Moreover, we propose
a way to improve the quality of the reduced approximation
based on a greedy procedure. Finally, in section 4 we apply
the reduction algorithms presented to a realistic hemodynamic
problem. Conclusions follow.

2. MODEL EQUATION

Blood is in large vessels can be modeled as an incompressible
viscous fluid the well-known Navier-Stokes equations (e.g., [19,
20]). Being [0, T] the temporal interval of interest the Navier-
Stokes system reads as follows:







ρf
∂u

∂t
+ ρf (u · ∇)u−∇ · σ nS = 0 in � × [0, T],

∇ · u = 0 in � × [0, T]

where u and p are the velocity and pressure of the blood,
respectively, and ρf is its density. We denote by σ nS the Cauchy
stress tensor

σ nS = µf (∇u+ (∇u)T)− pI,

with I being the identity tensor and µf the blood dynamic
viscosity. � denote the domain of interest, in our case, the lumen
of the vessels where we are interested in computing the dynamics
of blood. Due to the compliant vessel wall, � should be time
dependent. Considering that the wall displacement is relatively
small with respect to the arterial diameter, we assume � as
fixed which allows us to reduce the computational complexity
otherwise generated from a moving domain. Nevertheless, to
retrieve the physical effect of the wall compliance we introduce a
non-rigid boundary condition on the lateral surface of the lumen.
The condition is derived by a three dimensional linear isotropic
elastic model condensed as a two dimensional membrane [1, 21].
Denoting Ŵ the lateral surface (i.e., the fluid-structure interface),
5Ŵ(ds), the stress-strain relation of this membrane, can be
written as:

5Ŵ(ds) = hs
Esνs

(1− 2νs)(1+ νs)
tr

(

∇Ŵds + (∇Ŵds)
T

2

)

+hs
Es

2(1+ νs)
(∇Ŵds + (∇Ŵds)

T).

where ∇Ŵds is the tangential gradient of ds, Es is the structural
Young modulus, νs is the Poisson’s ratio and hs is the material
thickness. All the physical parameters of the structure are
assumed homogeneous in space.
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Let us now suppose that the boundary ∂� is divided into three
non intersecting parts such that ∂� = Ŵ ∪ ŴD ∪ ŴN . ŴD is
the Dirichlet boundary, typically the inflow of a vessel, ŴN is
the Neumann boundary, typically the outflows.We introduce the
Hilbert space V = H1(�;Ŵ) = {v ∈ H1(�) v|Ŵ ∈ H1(Ŵ)} and
the correspondent vectorial spaces V = [V]3 and V = [V]3.
Moreover, we introduce a suitable couple standard finite element
spaces Vh and Qh such that Vh ⊂ V and Qh ⊂ L2(�) and they
represent a stable coupled of finite element spaces for the Navier-
Stokes equations. We set Xh := Vh ×Qh. We define [t0 T] a time
interval of interest and we divide it into subintervals [tn tn+1] for
n = 0, ..,NT − 1 such that t0 < t1 < t2 < . . . < tNT = T
and tn+1 − tn = 1t; let us define NT = {0, 1, . . . ,NT ,NT} the
collections of all the temporal indexes n. For a generic function
φ(t) we use φn

:= φ(tn). Finally, we define the operators D(·) and
DŴ(·) as follows:

D(v) =
∇v+ (∇v)T

2
and DŴ(v) =

∇Ŵv+ (∇Ŵv)
T

2
∀v ∈ V,

where ∇(·) is the standard gradient operator and ∇Ŵ(·) is the
tangential component of the gradient with respect to the surface
Ŵ.

The RFSI model as presented in Colciago et al. [1] is an
unsteady Navier-Stokes model set on a fixed domain with
generalized Robin boundary conditions (For similar models
see e.g., [21–24]). Let us introduce the velocity and pressure
unknowns [uh, ph] and the corresponding test functions [vh, qh].
Although the RFSI model lives in a fixed domain, it is
necessary to define an auxiliary variable which stands for the
displacement of the arterial wall ds,h. Using a backward Euler
finite difference method for the time derivatives, the fully discrete
weak formulation of the RFSI problem is written as follows:

for each n = 0, ..,NT − 1, find [un+1
h

, pn+1
h

] ∈ Xh such that

un+1
h

= gn+1
D on ŴD and

a0([u
n+1
h

, pn+1
h

], [vh, qh])+ a1(u
n
h, u

n+1
h

, vh) = F0(vh; h
n+1)

Fu(vh;u
n
h)+ Fds (vh; d

n
s,h) ∀[vh, qh] ∈ Xh, (1)

where

a0([u
n+1
h

, pn+1
h

], [vh, qh]) =

∫

�

(

ρf
un+1
h

1t
· vh + (2µD(un+1

h
)

−pn+1
h

I) :∇vh + qn+1
h

∇ · uh

)

d�

+

∫

Ŵ

(

hsρs

1t
un+1
h

· vh

+hs1t5Ŵ(u
n+1
h

) :∇Ŵvh

)

dŴ,

a1(u
n
h, u

n+1
h

, vh) =

∫

�

ρf (u
n
h · ∇)un+1

h
· vhd�,

F0(vh; h
n+1) =

∫

ŴN

gn+1
N · vhdŴN ,

Fu(vh; p
n
h)=

∫

�

ρf

1t
unh · vhd�+

∫

Ŵ

hsρs

1t
unh · vhdŴ,

Fds (vh; d
n
s,n) = −

∫

Ŵ

hs5Ŵ(d
n
s,h) :∇ŴvhdŴ, (2)

with dn+1
s,h

= dn
s,h

+ 1tun+1
h

and ρs represents the density of the
solid. The functions gN(x, t) and gD(x, t) are sufficiently regular
functions that stand for the Dirichlet and Neumann boundary
data, respectively. Finally the problem should be equipped with
suitable initial condition that, without any loss of generality, we
suppose to be equal to zero.

As said before, the RFSI problem (1) is indeed a linearized
Navier-Stokes on a fixed domain with a non standard boundary
condition on the interface Ŵ. In particular is a generalized Robin
boundary condition that contains both a mass and a stiffness
boundary term to mimic the presence of a compliant arterial wall
surrounding the fluid domain (see [25] for more detailed on the
analysis of partial differential equations with generalized Robin
boundary condition). We remark that dn

s,h
does not represents a

problem unknown since it is indeed reconstructed as a weighted
sum of the velocities at different time instants

2.1. Boundary Condition
Problem (1) is endowed with Dirichlet velocity boundary
condition on the inlet surface ŴD . Given the inlet velocity data
gD(x, t), at the time instant tn+1 we impose:

un+1
h

= gn+1
D on ŴD. (3)

The Neumann boundary condition D(un+1
h

)n = gN is imposed
weakly on ŴN . The solution of problems (1)–(3) depends on the
time variable t through the inlet and outlet data: gN(x, t) and
gD(x, t). We suppose that

gD(x, t) = σ1(t)̃gD(x) and gN(x, t) = σ2(t)̃gN(x), (4)

that is we separate the contribution of the space and temporal
variables in the inlet and outlet data. In realistic applications, the
separation of variables (4) often derives directly from modeling
choices. If at the outlet we prescribe an average normal stress, no
spatial variability is involved in the boundary condition data gN .
At the inlet, the Dirichlet data is imposed by means of a velocity
profile; typically Poiseuille or Womersley profiles are chosen in
hemodynamics applications [20]. The separation of variables in
gD(x, t) in this case is straightforward.

Assumption (4) allows to write an affine decomposition of the
operators in problem (2) with respect to σ1(t) and σ2(t). With
respect to the latter we have:

F0([vh, qh]; σ
n+1
2 , gN) = σ n+1

2

∫

ŴN

g̃N · vhdŴout .

The non homogeneous Dirichlet boundary condition (3) is not
directly included in the variational form (1). In order to write
the affine decomposition with respect to the parameter σ1(t),
a suitable choice to embed condition (3) into the variational
formulation has to be made. In the literature two possible
approaches are proposed: a strong imposition, using a lifting
function or suitable Lagrange multipliers [17], and a weak
imposition adding suitable penalty variational terms [2, 26]. Due
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to the fact that the Dirichlet data can be written in the form (4), a
single time independent lifting function can be constructed and
properly weighted by a scalar in order to represent the lifting at
each temporal instant.

We explain how problem (1) is modified when a lifting
function for the Dirichlet condition (3) is introduced. Let us
directly consider the fully discretized formulation (1). We define
the time independent lifting function R̃g : R

3 7→ R
3 such that

R̃g ∈ Vh and

R̃g(x) = g̃D(x) on ŴD and R̃gD(x) = 0 on ∂�\ŴD.

At the time level tn+1, the lifting function of the data gn+1
D =

σ n+1
1 g̃D reads Rgn+1

D = σ n+1
1 R̃gD. Then, for each tn+1, we

introduce the following change of variable:

ũn+1
h

= un+1
h

− Rgn+1
D . (5)

We define the space Xh,ŴD
as Xh,ŴD

:= Vh ∩ [H1
ŴD

(�)]d ×Qh and

we observe that dn+1
s,h

=
∑n+1

s=0 1tus
h
=

∑n+1
s=0 1t̃us

h
on Ŵ.

2.1.1. Affine Decomposition
Using the definitions of the functionals as in (2), we are now ready
to write the affine decomposition of problem (1) with respect
to the temporal parameters σ1(t) and σ2(t). We remark that the
lifting function R̃gD does not depend on the time variable, thus
the problem parameter at a fixed time level can be gathered in the
following vector:

(µn+1)T := [µ0,µ1,µ2] := [σ n+1
1 , σ n+1

2 , σ n
1 ]. (6)

One single time step of finite element approximation of the RFSI
problem can be written under the form:

for each n = 0, ..,NT − 1, find ˜Un+1
h

∈ Xh,ŴD
such that

a(˜Un+1
h

,Wh;˜U
n
h ,µ

n+1) = F(Wh;˜U
n
h ,D

n
h ,µ

n+1) ∀Wh ∈ Xh,ŴD
,

(7)
where

a(˜Un+1
h

,Wh;˜U
n
h ,µ

n+1) := a0(˜U
n+1
h

,Wh)

+ µ2a1(R̃gD,˜U
n+1
h

,Wh)

+ a1(˜U
n
h,

˜Un+1
h

,Wh),

F(Wh;˜U
n
h , d

n
s,h,µ

n+1)) := µ1F0(Wh;˜h)+ Fu(Wh;˜U
n
h)

+ µ2Fu(Wh; R̃gD)+ Fds (Wh; d
n
s,h)

− µ0a0(R̃gD,Wh)

− µ0a1(˜U
n
h, R̃gD,Wh)

− µ2µ0a1(R̃gD, R̃gD,Wh).
(8)

Due to the fact that we use a semi-implicit treatment of the
convective term the formulation of the RFSI problem at one
single time instant tn+1 can be interpreted as a linear steady
problem parametrized with respect to µn+1,˜Un

h
and dn

s,h
.

Furthermore, we can introduce a parameter in the inlet flow
rate function representing a small perturbation with respect to a
reference value: the inlet flow rate function (4) is thenmodified as

g(x, t;α) = θ(α, t)σ1(t)̃gD(x), (9)

where α ∈ D, being D the set of the admissible value of α. The
same affine decomposition 8, with the following modification:
the parameter becomes (µn+1)T : = [µ0,µ1,µ2,µ3] : =

[σ n+1
1 , σ n+1

2 , σ n
1 , θ

n(α)] and in (8) we substitute µ0 with µ3µ0

and µ2 with µ2µ3.

3. NUMERICAL REDUCTION

In this section we briefly introduce some of the basic concepts
of the reduced basis method that are useful to our purpose.
For more details on the reduced basis theory we address the
interested reader to e.g., Rozza et al. [5], Hesthaven et al. [27],
and Quarteroni et al. [28]. We already introduced ˜Un+1

h
that,

at each time instant is the a high-fidelity approximation of the
exact solution and is computed as a finite element solution with
a sufficiently fine mesh. The solutions ˜Un+1

h
of problem (7) are,

in general, expensive to obtain from the computational point
of view, since in realistic applications the finite element spaces
has order of 106 degrees of freedom and the complexity of the
geometrical domain does not always allow for the generation of
structured meshes. We conclude that due to the magnitude of
the finite element problem a real time computation would be
impossible to achieve.

As in the standard reduced basis theory, we state the following
assumption: the family of solutions ˜Un+1

h
= ˜Un+1

h
(µn+1)

obtained for different realizations of the parameters belongs to
a low dimensional manifold M

µ

h
. The aim of the reduction

techniques is to find a suitable approximation of the manifold
M

µ

h
through the construction of a low dimensional space XN ⊂

Xh,ŴD
. The dimension of the reduced space N needs to be orders

of magnitude lower that the dimension of the finite element
space. The reduced approximation of RFSI problem reads:

given ˜U0
N = ˜U0

h
, for each n = 0, ..,NT − 1, find ˜Un+1

N ∈ XN

such that

a(˜Un+1
N ,WN;˜U

n
N ,µ

n+1) = F(WN;˜U
n
N ,D

n
N ,µ

n+1) ∀WN ∈ XN ,
(10)

where a(·, ·) and F(·) are defined as in (8).

3.1. Proper Orthogonal Decomposition
We apply a discretization reduction to the RFSI problem (7) and
the Proper Orthogonal Decomposition (POD) method. In the
context of this work we only detail the specific choices performed
in relation to the problem at hand, for more details about POD
applied to fluid problems we address the reader to e.g., Rowley
[29] and Willcox and Peraire [30].

We define a subset of temporal indexes NS ⊂ NT with
cardinality NS and consider the solutions of problem (1) at the
time instants tnS for nS ∈ NS. The solutions˜U

nS
h
, called snapshots,

represent our starting point for the POD analysis. Since the RFSI
problem (7) is a saddle point problem in two variables (velocity
and pressure) with different characteristic order of magnitude,
we split the POD into two eigenvalue decompositions: one for
the velocity variable and another for the pressure one [31].
We measure the energy associated to the snapshots using the
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following scalar products: for the velocity, we set

(uh, vh)V :=(uh, vh)H1(�) + (uh, vh)H1(Ŵ),

∀uh, vh ∈ Vh ⊂ V(= H1
ŴD

(�;Ŵ)), (11)

and for the pressure,

(ph, qh)Q := (ph, qh)L2(�), ∀ph, qh ∈ Qh ⊂ Q := L2(�). (12)

Then, we compute the two Gramian matrices

Gu
ij = (uih, u

j

h
)V and G

p
ij = (pih, p

j

h
)Q ∀j, i ∈ NS, (13)

and we perform the eigenvalue decomposition of Gu and the one
of Gp, obtaining the pairs (λu

k
, ζ u

k
) and (λ

p

k
, ζ

p

k
) where λu

k
, λ

p

k
∈ R

and ζ u
k
, ζ

p

k
∈ R

NS are the k − th eigenvalues and eigenvectors
of the velocity and pressure Gramian matrices, respectively, for
k ∈ NS. Fixing the same tolerance for both the velocity and
pressure decompositions, we select the firstNu andNp eigenpairs
such that:

∑Nu

j=1 λuj
∑NS

k=1
λu
k

≥ 1− tol and

∑Np

j=1 λ
p
j

∑NS

k=1
λ
p

k

≥ 1− tol, (14)

respectively. The j−th velocity eigenfunction φuj ∈ Vh is
reconstructed using the linear combination:

φuj =
1

λj

∑

nS∈NS

[ζ uj ]nSu
nS
h
, for j = 1, ..,Nu.

Similarly for φ
p
j ∈ Qh for j = 1, ..,Np. We remark that, since the

velocity basis are linear combinations of solutions of problem (7),
they all verify

∫

�
qh∇ · φuj = 0, ∀qh ∈ Qh for j = 1, ..,Nu. Thus,

the linear system induced by the bilinear form a(·, ·) as in (2)
would be singular if we consider the functional spaces generated
from the velocity functions φuj and the pressure modes φ

p
j . One

of the possibilities often employed in the context of Navier-Stokes
equations is to restrict the system and to solve the problem only
for the velocity unknown (see e.g., [32]). Unfortunately, this
is not possible when considering problem (2). The generalized
boundary condition applied onŴ derives from a structural model
which solution is driven by the pressure condition set on the
external boundary in the structural model (see [1, 22]). If we
solve the reduced system not taking into account the pressure
variable, we cannot recover the velocity on the boundary Ŵ and
the output functionals that depends on these values (e.g., wall
shear stress). For these reasons, following Rozza and Veroy [33],
for each selected pressure mode φ

p
j , we define the corresponding

supremizer function σ j ∈ Vh as the solution of the following
problem:

(σ j, vh) =

∫

�

φ
p
j ∇ · vhd� ∀vh ∈ Vh, for j = 1, ..,Np. (15)

We then add them to the POD basis. The POD reduced space
XPOD
N associated to the RFSI model is composed by the basis

functions {ψ j}
Nu+2×Np

j=1 , ξ j ∈ Xh defined as follows:

ψ j = [φuj , 0]
T for j = 1, ..,Nu

ψNu+j = [0, φ
p
j ]

T for j = 1, ..,Np and

ψNp+Nu+j = [φσj , 0]
T for j = 1, ..,Np,

(16)

where φσj for j = 1, ..,Np represent the orthonormalization

of the supremizer functions σ j, obtained with a Gram-Schmidt
algorithm with respect to the scalar product (·, ·)V.

3.2. Greedy Enrichment
The bottleneck of the POD procedure is the computation of
the high-fidelity solutions ˜Un

h
necessary to build the correlation

matrix: we have to solve a finite element problem NT times.
Moreover if we choose NS = NT , the Gramian matrix becomes
too large and its eigenvalue decomposition gets too much
expensive. We can envision two situations where we would like
to improve the quality of the approximation obtained with the
POD reduced space without changing the snapshots sample. For
example, if NS is five times smaller than NT , the information
carried by the snapshots sample refers to only the 25% of the
entire set of the truth solutions. Is it possible to improve the
quality of the reduced approximation, without increasing the
number of snapshots selected? In another scenario, suppose
that a perturbation parameter α is introduced in the unsteady
problem (7), as proposed in (9), and that the snapshots are
computed for a specific value of α = α1. We would like to
generate a reduced space that suitably approximates also the
truth solutions for other values of α without recomputing all the
high-fidelity snapshots.

With these two scenarios in mind, we propose a strategy to
improve the quality of the reduced approximation based on a
greedy algorithm. For references to standard greedy algorithms
applied to parametrized PDEs see e.g., Hesthaven et al. [27] and
Quarteroni et al. [28].

We introduce another solution Un
N,h

that belongs to an
intermediate problem between (7) and (10): find Un

N,h
∈ Xh such

that

a(Un+1
N,h

,Wh;˜U
n
N ,µ

n+1) = F(Wh;˜U
n
N ,D

n
N ,µ

n+1) ∀Wh ∈ Xh,ŴD
,

(17)
We notice that problem (17) is set in the high-fidelity
approximation framework but the right hand side and the
advection field are defined by (10). In fact, in (7), these terms are
evaluated using the truth solution˜Un

h
, while in (17) it is evaluated

using the reduced solution ˜Un
N , as in problem (10). Considering

the error between ˜Un
N and ˜Un

h
in a generic norm ‖ · ‖∗, the

following triangular inequality holds:

‖˜Un+1
N − ˜Un+1

h
‖∗ = ‖˜Un+1

N − Un+1
N,h

+ Un+1
N,h

− ˜Un+1
h

‖∗

≤ ‖˜Un+1
N − Un+1

N,h
‖∗ + ‖Un+1

N,h
− ˜Un+1

h
‖∗
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The greedy procedure that we propose focuses on the first
contribution ‖˜Un+1

N − Un+1
N,h

‖∗. Subtracting problem (10) from
(17) allows to state a result of Galerkin orthogonality:

a(Un+1
N,h

− ˜Un+1
N ,Wh;˜U

n
N ,µ

n+1) = 0.

We assume that the dual norm of the residual can be used as an
indicator of the error ‖Un+1

N −Un+1
h

‖X. In particular, at each time
level tn+1, we consider

rn+1
N (Wh) := F(Wh;˜U

n
N ,D

n
N ,µ

n+1)− a(˜Un+1
N ,Wh;˜U

n
N ,µ

n+1)
(18)

and its associated dual norm ‖rn+1
N (Wh)‖X′ .

We now have defined all the necessary quantities, we can
proceed presenting the steps to be performed when we want to
enrich the POD basis with a greedy algorithm. First, perform
a POD on the snapshots ˜U

nS
h
, for nS ∈ NS and we construct

the reduced space XPOD
N . Then, we start the greedy enrichment

setting XN = XPOD
N :

1. Generate the reduced basis solutions ˜Un
N , n ∈ NT , by solving

the reduced order problem (10).
2. Compute the dual norms of the residuals ‖rnN(Wh)‖X′ , n ∈

NT , which are used as error indicators.
3. Select n∗ such that

n∗ = arg max
n∈NT

‖rnN(Wh)‖X′ .

4. Compute theUn∗

N,h
by solving the reduced order problem (17).

5. Split Un∗

N,h
into its velocity and pressure components, un

∗

h
and

pn
∗

h
, respectively. Compute the supremizer σ n∗ associated with

the pressure component.
6. Compute φu representing the orthonormalization of the

velocity function un
∗

h
with respect to the reduced space XN ,

obtained with a Gram-Schmidt algorithm considering the
scalar product (·, ·)V; similarly for φp and pn

∗

h
.

7. Build XN+2 = XN ⊕ {ψu,ψp} defined as is (16).
8. Compute φσ representing the orthonormalization of the

velocity function σ n∗ with respect to the reduced space XN+2,
obtained with a Gram-Schmidt algorithm considering the
scalar product (·, ·)V.

7. Build XN+3 = XN+2 ⊕ {ψσ } defined as is (16).
8. Update the structures for the online computation of the

reduced solutions and the dual norms of the residuals.
9. Set N = N + 3 and XN = XN+3. Repeat until a predefined

stopping criterion is satisfied.

Remark. We remark that the functions that are added to the
space XN in step 5 are derived from Un∗

N,h
and not the truth

solution ˜Un∗

h
. We have no guarantee that Un∗

N,h
is close to ˜Un∗

h
or

that it belongs to the low dimensional manifoldM
µ

h
of the truth

solutions. We would like also to remark that even if we are trying
to reduce the error ˜Un+1

N − Un+1
N,h

, to date we have no proof that
the algorithm converges. In fact, we cannot theoretically prove
that

‖|˜Un+1
N − ˜Un+1

h
‖|∗ ≤ ‖|˜Un+1

N−1 −
˜Un+1
h

‖|∗. (19)

For this lack of theoretical convergence results, to stop the
greedy enrichment procedure, we rather opt for a fixed number
of solutions Nmax chosen a priori, instead of using a certain
tolerance on the a posteriori error estimator. Nevertheless, in
the next section we will show some numerical evidence that
the greedy enrichment is able to improve the quality of the
approximation space.

4. APPLICATION TO A
FEMOROPOPLITEAL BYPASS

4.1. Application and Motivation
Atherosclerotic plaques often occur in the femoral arteries. The
obstruction of the blood flow results in a lower perfusion of the
lower limbs and the most common symptom of this disease is
an intermittent claudication, which affects the 4% of people over
the age of 55 years [34]. In order to restore the physiological
blood circulation, different medical treatments are possible. In
critical cases, the stenosis is treated with surgical intervention
that bypasses the obstruction using a graft and providing an
alternative way where blood can flow. The bypass creates a side-
to-end anastomosis between the graft and the upstream artery
(before the occlusion) and an end-to-side anastomosis with the
distal downstream part. In particular, the design of end-to-
side anastomosis affects the flow downstream the bypass and
provokes remodeling phenomena inside the arterial wall. The
arteries adapt their size in order to maintain a certain level of
shear stress, which results in a thickening of the intima layer
and in an increasing risk of thrombi formation. The arterial wall
remodeling is in fact linked with hemodynamic factors such as
the wall shear stress magnitude and direction. Moreover, velocity
profiles and separation of flows have been investigated when
studying the bypass end-to-side anastomosis [35, 36]. Studies
with idealized geometrical models have been proposed in order to
define an optimal design for the anastomosis [37]. Nevertheless,
the geometry of the vessel is one of the most important factors
that affect the pattern of the wall shear stress. Further, patient
specific data would be required in order to analyse each particular
case.

We focus our attention on the patient-specific femoropopliteal
bypass performed with a venous graft bridging the circulation
from the femoral artery to the popliteal one. As a domain of
interest we select the end-to-side anastomosis (see Figure 1). The
geometry was reconstructed by CT-scan images as it is detailed
in Marchandise et al. [38] and inlet and outlet flow rates are
provided from the experimental data in Marchandise et al. [38].

We compute the Reynolds number as Re =
4ρfQin

πDµ
, being ρf the

blood density, Qin the inlet flow rate, D the vessel diameter and
µ the blood viscosity. The average Reynolds number ranges from
144 and 380 (at the systolic peak), in agreement with the values
provided in Loth et al. [36].

4.2. Test Case
4.2.1. Application of the POD Algorithm
In this section we investigate the behavior of the POD and
the greedy enriched POD algorithms on a case representing
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FIGURE 1 | Realistic geometry of the end-to-side anastomosis. Graph of the inlet and outlet boundary conditions. (A) End-to-side geometry. (B) Inlet flow rate. (C)

Outlet pressure.

the femoropopliteal bypass application where the finite element
resolution is performed on a coarse mesh. The usage of a coarse
grid allows us to lower the offline computational costs and,
thus, to test and compare several reduced basis approximations.
Since we are interested in the realistic application of the
femoropopliteal bypass, the physical parameters and boundary
data are patient-specific. The coarse mesh is composed by
5,823 tetrahedra and 1.309 vertices. To obtain the high fidelity
solutions of the RFSI model we use standard P

1+Bubble-P1 finite
elements for a total of 22,702 degrees of freedom. The boundary
conditions are periodic with period of 0.8 s (one heartbeat). We
set the solutions at time t = 0 equal to zero. To get rid of the
dependence of these initial condition we perform the simulation
of an entire heartbeat and we focus on the solutions obtained
for the subsequent heartbeat. Thus, to test the POD reduction
algorithm, we compute the high fidelity numerical solutions for a
time lapse corresponding to the second heartbeat, from t0 = 0.8
s to tNT = 1.6 s with a time step 1t = 0.001 for a number of
time intervalsNT = 800. We denote with the superscript n ∈ NT

varying from 0 to NT the sequence of computed solutions:

Un
h ≈ Uh(tn) where t0 = 0.8, t1 = t0 + 1t, t2 = t0 + 21t,

t3 = t0 + 31t, .., tNT = 1.6s.

We save the finite element solutions every five time steps and we
use the apex nS ∈ NS, nS = 5k, with k = 0, ..,NS (NS = 160) to
address the stored functions, that represent the snapshot sample:

U
nS
h

≈ Uh(tnS ) where t5 = 0.805, t10 = 0.810, t15 = 0.815,

t20 = 0.820, .., tnNS = 1.6s.

Indeed, we compute the POD starting from the 160 snapshots
U
nS
h
, nS ∈ NS, which represent the 25% of the finite element

solutions computed for the second heartbeat. To check the
quality of the reduced space approximations, we monitor the
following errors:

• relative error of the velocity at time tnS and correspondent
space-time error:

εN(u
nS ) :=

‖u
nS
N − u

nS
h
‖V

‖u
nS
h
‖V

and

EN(u) :=

(

∑

nS∈NS

(

‖u
nS
N − u

nS
h
‖V

)2
)1/2

(

∑

nS∈NS

(

‖u
nS
h
‖V

)2
)1/2

; (20)

• relative error of the pressure at time tnS and correspondent
space-time error:

εN(p
nS ) :=

‖p
nS
N − p

nS
h
‖L2(�)

‖p
nS
h
‖L2(�)

and

EN(p) :=

(

∑

nS∈NS

(

‖p
nS
N − p

nS
h
‖L2(�)

)2
)1/2

(

∑

nS∈NS

(

‖p
nS
h
‖L2(�)

)2
)1/2

; (21)

• space-time dual norm of the residual scaled with respect to the
space-time norm of the global solution

RN(U) :=

(

NS

NT

)1/2

(

∑

n∈NT
‖rnN(Wh)‖

2
X′

)1/2

(

∑

nS∈NS
‖U

nS
h
‖X

)2
)1/2

; (22)

We build a sequence of POD reduced spaces with decreasing
values of the tolerance tol and we compute the aforementioned
indicators for each one of the reduced spaces generated.
The space-time errors are reported in Table 1. In particular,
we show: the number of selected velocity modes (#u basis);
the number of selected pressure modes (#p basis); the total
number of basis functions composing the reduced space ( #
basis = #u basis + 2 × #p basis ); the space-time errors
and residuals as defined above. Since the problem at hand
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is unsteady and the solution at a time instant tn depends
on the solutions at the previous instants, the POD model
errors EN(u) and EN(p) are bounded from above by the fixed
tolerance but they are however of the same order of magnitude
(see Table 1). We notice that, even if ‖rnN(Wh)‖X′ does not
represent an upper bound for the error, nevertheless, from
experimental results, we can use it as an indicator of ‖U

nS
N −

U
nS
h
‖X (see Figure 2). The apparent strong correlation between

the dual norm of the residual and the global error norm is
probably due to the strong contribution of the mass term
in the unsteady formulation. Indeed, if we choose a time
step of 0.001, the mass matrix is multiplied for a factor of
103. We remark that the magnitudes of the absolute errors
for the velocity span from 10−1 to 102 and the associated
velocity solutions norms are of order of 102 − 103. For
the pressure, we have absolute errors of order 100 − 103,
while their solutions norms are of order 103−5. Indeed, in
absolute terms the global error is mostly related with the
pressure one.

4.2.2. Application of the Greedy Enriched POD

Algorithm
The POD algorithm provided satisfactory results and we were
able to reduce the approximation space dimension from 105

to 10 − 100. In this section we aim at comparing the greedy
enrichment algorithm with the POD one, in order to understand
if using different basis functions than POD modes provides the
same quality of reduced approximations. Thus, we compare the
magnitude of the reduced approximation errors obtained using
a reduced space generated through a standard POD algorithm

with the ones obtained using the POD coupled with the greedy
enrichment as introduced in section 3.2. We recall that the
snapshots sample represents a subset of the time instants we solve
in the unsteady simulation: indeed we store only the 25% of the
time instants solutions computed. As there is no error bound
available, we use the dual norm of the residual as surrogate. This
is a rough approximation, also because the real error includes
time integration, while the dual norm of the residual can only
represent a space error. Of course we do not expect the greedy
enriched POD to perform better, on the contrary it can have (and
actually has) limitations.

Remark We are interested to simulate a fluid-dynamics
phenomena with cyclic inputs. Typically in hemodynamics
applications, we are interested in several heartbeats. Thus, instead
of performing the greedy research only on one single heartbeat,
we exploit as much as we can the information on the truth
solutions coming from the snapshots. For each single snapshot
˜U
ns
h
, we perform a simulation that starts from the initial time

tns and ends at tns+NT = tns + 0.8. We define a vector index
n = (nT , nS) with nT = nS + n such that ˜Un

h
= ˜U

nS ,nT
h

being the approximate solution at time tnT obtained starting
from the initial condition ˜U

ns
h
. We define the set of indexes

N = {(nT , nS) : nT = nS + n, n ∈ N and nS ∈ NS}. The
generalization of the greedy enrichment presented in Section
3.2 is straightforwards substituting n with n. In particular, the
selection of the worst approximated index n∗ in the greedy
enrichment can be generalized as follows:

n∗ = argmax
n∈N

‖rnN(Wh)‖X′ .

TABLE 1 | Number of basis functions and space-time errors for the velocity and pressure.

tol tol1/2 #u basis #p basis # basis EN(u) EN(p) RN(U)

1e− 2 1e− 1 8 1 10 2.34e-1 3.73e-2 4.17e-2

1e− 3 3.16e− 2 16 1 18 2.16e-1 4.50e-2 4.92e-2

1e− 4 1e− 2 28 2 32 6.83e-2 1.32e-2 9.92e-3

1e− 5 3.16e− 3 44 3 50 9.09e-3 1.89e-3 1.42e-3

1e− 6 1e− 3 64 5 74 4.60e-3 8.46e-4 5.50e-4

1e− 7 3.16e− 4 88 8 104 1.04e-3 2.65e-4 2.14e-4

FEM solutions obtained on a coarse mesh, bypass application. Second column: number of selected velocity modes (#u basis). Third column: number of selected pressure modes (#p

basis). Forth column: total number of basis functions composing the reduced space (# basis = #u basis + 2× #p basis).

FIGURE 2 | Dual norms of the residuals and norms of the global errors with respect to time for different choices of the POD tolerance tol. (A) tol = 1e-5. (B) tol =

1e-6. (C) tol = 1e-7.
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In order to initialize the greedy enrichment algorithm we
compute a POD basis fixing the tolerance tol = 1e−5 (50 velocity
modes, 3 pressure modes, 3 supremizers). To compare the POD
approximation with the greedy enriched one, we augment the
initial reduced space with two strategies. On one side, we apply
the greedy enrichment and, at each iteration, we add the triplet
of functions selected by the largest dual norm of the residual
in space. On the other side, we augment the basis by adding, at
each algorithm iteration, one POD mode for the velocity and
one POD mode for the pressure with its associated supremizer.
In both cases, at each iteration, we increase the reduced space
dimensions of three units. The results obtained using only POD
modes are displayed in black and addressed with the label POD,
while the results obtained with the greedy enrichment are shown
in red and addressed with the label Greedy enriched POD (see
Figure 3).

From Figure 3, we note that the decrements of the errors

in the greedy enrichment algorithm are slower than when

adding POD modes. Nevertheless, we notice that both the
space-time pressure error and residuals are comparable

when adding POD modes or greedy basis functions (see
Figures 3B,C). On the contrary the decrements of the

velocity is much slower when we use the greedy enrichment
with respect to adding POD modes. We recall, however,

than the residual is mostly related to the pressure error
component.

4.3. Realistic Case
4.3.1. Application of the POD Algorithm
In this section we perform a discretization reduction of the
RFSI model applied to the femoropopliteal bypass case, where
the high fidelity approximations are computed using a fine
mesh. As before, a parabolic velocity profile is imposed at the
inlet section and a mean pressure condition at the outlet. The
P
1+Bubble-P1 discretization yields 1,410,475 degrees of freedom

on the fine mesh. We first test the discretization reduction
using a standard POD procedure: we compute the high fidelity
numerical solutions for two heartbeats with a time step 1t =

0.001 and we store the ones related to the second heartbeat
every five time steps. Thus, NT = 1, 2, 3, . . . , 800 and NS =

5, 10, 15, .., 800. We compute the Gramian matrices associated
to the 160 snapshots U

nk
h
, separating the velocity and pressure

components. We denote λu
k
and λ

p

k
for k = 1, ..NS the eigenvalues

associated to the decomposition of the correlation matrices
of the velocity and pressure, respectively (see section 3.1). In
both cases they decrease exponentially fast. The eigenvalues λ

p

k
associated to the pressure snapshots (Figure 4B) decrease faster
than the ones associated to the velocity (Figure 4A). Thus, by
fixing the same tolerance, we expect that a fewer number of
pressure modes will be selected with respect to the velocity
ones.

We compute the POD reduced spaces using three different
values for the tolerance: tol ∈ {1e − 4, 1e − 5, 1e − 6}. As

FIGURE 3 | Space-time errors vs. the number of basis, comparison between the standard POD and the greedy enriched POD, starting from 50 POD basis functions.

FEM solutions obtained on a coarse mesh, bypass application. (A) Space-time velocity error. (B) Space-time pressure error. (C) Space-time dual norm of the residuals.

FIGURE 4 | Velocity and pressure eigenvalues computed with 160 snapshots sampled every 0.005 s. (A) Velocity eigenvalues, λu
k
. (B) Pressure eigenvalues, λ

p
k
.
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it was done in section 4.2, in Table 2, we record the selected
number of modes and we compute the space-time errors EN(u)
and EN(p) of the velocity and pressure, respectively. By taking
advantage of the generated reduced space, at each time iteration
we solve the reduced system and we compute a linear functional
of the approximate solution that evaluates the outlet flow rate.
We record the computational time associated with the offline
and online computations in Table 3. We can appreciate that the
resolution of the reduced problem combined with the evaluation
of a linear output functional is performed in almost real time:
using 35 basis functions we solve 1.6 physical seconds in 0.8
computational seconds, while a ten heartbeats simulation (8
physical seconds) selecting the POD space with 54 basis functions
takes 12.6 s on a notebook. Performing the same simulation
with the high fidelity model would have taken around 40 h
on 256 processors of a supercomputer. The offline costs of the
POD reduction (without the snapshots generation) are reported
in the third column of Table 3. We remark that most of this

TABLE 2 | Number of basis functions and space-time errors for the velocity and

pressure.

tol #u

basis

#p

basis

# tot

basis

EN(u) EN(p) RU
N

1e− 4 31 2 35 5.505e-2 1.188e-2 8.599e-3

1e− 5 48 3 54 9.840e-3 1.910e-3 1.441e-3

1e− 6 68 5 78 5.074e-3 9.131e-4 6.264e-4

FEM solutions obtained on a fine mesh, bypass application.

TABLE 3 | CPU time XPOD
N

: offline computations costs for the generation of the

POD reduced spaces (without the finite element computations) on 512

processors; CPU time 2HB - RB: online computational time corresponding to the

simulation of 2 heartbeats (2HB) on a personal laptop; CPU time 2HB - FE: finite

element computational time corresponding to the simulation of 2 heartbeats (2HB)

on 256 processes on a supercomputer.

tol # tot

basis

CPU time XPOD
N

CPU time

2HB - RB

CPU time

2HB - FE

1e− 4 35 ∼ 38 min 0.84 s ≈ 28,800 s (8 h)

1e− 5 54 ∼ 85 min 2.49 s ≈ 28,800 s (8 h)

1e− 6 78 ∼ 172 min 6.84 s ≈ 28,800 s (8 h)

time is spent in the generation of the structures for the residual
evaluation.

Note that the POD model errors EN(u) and EN(p)
decrease significantly when increasing the number
of basis functions, as it is reported from both the
values of Table 2. Once again, we notice that the
dual norm of the residual ‖rn+1

N (Wh)‖X′ is a good
indicator of the approximation error ‖U

nk
N − U

nk
h
‖X (see

Figure 5).
In the femoropopliteal bypass application, we are interested in

measuring also the errors on the output of interests. Being σ nS

the stress tensor and n the normal vector to the surface Ŵ, we
compute the wall shear stress as τnS := σ nSn − (σ nSn · n)n and
we also consider the averaged wall shear stresses on a generic
area A: τ

nS
A = 1/A

∫

A |τnS |dA. We remark that to properly
estimate the selected output of interest we need accurate high
fidelity solutions with a mesh refined at the wall, as shown by
Marchandise et al. [38]; the fine mesh used in this work is similar
to the fine one used in that paper. Reducing the dimension
of the finite element space does not lead to the same results
that we obtain reducing the degrees of freedom using the POD
decomposition. In fact, the wall shear stress values computed
using a coarse finite element space underestimate considerably
the values obtained with the fine grid (see Figure 6), while the
results obtained with the POD reduced approximation mostly
overlapped with the ones computed with the finite element
discretization.

4.3.2. Percentage of Flow Coming From the

Occluded Artery
In many cases, the artery is not completely occluded but
a residual flow is still provided by the original vessel.
Studying the distribution of fluid-dynamic quantities could
be important to identify, for example, whether it would be
better or not to surgically close the original artery. Our
approach allows to study the variation of the flow and
wall shear stress for different values of flow percentage
coming from the occluded artery with low computational
costs.

Here the percentage of flow coming from the occluded artery
is an additional parameter. We solve the high fidelity model for
two extreme cases: µ1 = 0% (full occlusion) and µ2 = 50%
of flow. Using a POD algorithm with tol = 10−5, we construct

FIGURE 5 | Dual norm of the residuals and X-norm of the errors with respect to the time instant for different choices of the POD tolerance tol. FEM solutions obtained

on a fine mesh, bypass application. (A) tol = 1e-4. (B) tol = 1e-5. (C) tol = 1e-6.
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FIGURE 6 | Averaged wall shear stress (in [g/cm s]) computed in different location of the interface. Comparisons between the values obtained with the finite element

discretization on the fine mesh (FEM Fine), the coarse one (FEM Coarse) and the reduced basis approximation (POD tol = 1e-5). (A) Areas location. (B) Wss absolute

values - Area 1. (C) Wss absolute values - Area 2.

FIGURE 7 | Velocity profiles for two time instants of the diastolic phase. Comparisons between finite element and reduced approximations. Femoropopliteal bypass

application in which the high fidelity solutions are obtained using a finite element approximation on a fine mesh. (A) Systole, 0.9 s. (B) Peak systole, 1 s. (C) Diastole,

1.1 s. (D) Diastole, 1.2 s.
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the reduced space X
POD,µ1
N1

of dimension N1, associated with
the snapshots computed with µ1. We obtain N1 = 54, where
48 basis functions are velocity modes, 3 pressure modes and 3
supremizers. Then, we consider the snapshots associated with

µ2, we build a second POD reduced space X
POD,µ2
N2

of dimension

N2, also fixing tol = 10−5. We obtain N2 = 55 where 47 basis
functions are velocity modes, 4 pressure ones and 4 supremizers.
Finally, we check that the basis functions are linear independent

and orthonormalize the basis of X
POD,µ2
N2

with respect toX
POD,µ1
N1

.
Indeed, none of the basis functions obtained for µ2 = 0.5 is as
a linear combination of the basis related to µ1 = 0 and the final
reduced space XN has dimension N = N1 + N2 = 109.

We then choose a parameter µ3 = 25% of flow coming
from the occluded artery. We focus on the velocity profiles near
the systolic peak and in the early diastole (see Figure 7) and
the averaged wall shear stress (see Figure 8). We compare the
target outputs obtained using the finite element approximation
(label: FEM 25%) and the reduced ones (label: POD 25%).
Moreover, we display the selected quantities also for the high
fidelity solutions obtained with µ1 = 0 (label: FEM 0%),
µ2 = 0.5 (label: FEM 50%) in order to clarify how the system
dynamics changes when different values of the percentage are
considered.

During the systolic phase the reduced solutions well reproduce
the high fidelity ones, while during the diastole, the differences
are more visible, in particular in some locations as, for example,
near the anastomosis between the arterial vessel and the bypass
graft (see Figure 7). We remark that the velocity profiles for
different values of the parameter are significantly different
between themselves. Our reduced solution approximates well the
value of the wall shear stress associated to µ3 (see Figure 8). We
can appreciate the good agreement between the reduced and the
high fidelity results, even when the values of wall shear stress
associated to µ3 are not berween those associated to µ1 and
µ2 (see Figure 8B). Moreover, the approximation of the wall
shear stress using a finite element approximation with a coarse

FIGURE 8 | Averaged wall shear stress computed in the location A1, cf.

Figure 6. Comparisons between finite element (corse and fine meshe) and

reduced approximations.

grid leads to a consistent underestimation of their values (see
Figure 8C).

4.3.3. Application of the Greedy Enriched Algorithm

With Perturbed Data
In this section we apply the greedy enrichment in the case of
perturbed boundary data. In particular, as in (9), we introduce
a parameter in the inlet flow rate function representing a small
perturbation with respect to a reference value. The perturbation
function θ(α, t) is define as follows:

θ(α, t) = 1+ α sin

(

2π t

0.8

)

where α is supposed to vary between 0 and 0.2. Thus, the
maximum relative difference with the original flow rate is equal
to the 20%. We denote with ˜Un

∗(α) with ∗ = {h}, {N} or {N, h}
the numerical solutions at the time instant tn that depend on the
parameter α and with rnN(Wh;α) the residuals. In the perturbed
case, the algorithm steps in section 3.2 are modified as follows.
First we perform a POD algorithm fixing α = α1 = 0.0; the

resulting reduced space is addressed with X
α1 ,POD
N , where the

apex α1 denotes the choice of the α parameter. Then, we set
α2 = 0.2:

1. Generate the reduced basis solutions ˜Un
N(α2), n ∈ N by

solving the reduced order problem (10).
2. Compute the dual norms of the residuals ‖rnN(Wh;α2)‖X′ ,

n ∈ N , which are used as error indicators.
3. Select n∗ such that n∗ = argmaxn∈N ‖rnN(Wh;α2)‖X′ .

4. Compute the Un∗

N,h
(α2) by solving the reduced order problem

(17).
5. Split Un∗

N,h
(α2) into its velocity and pressure components, un

∗

h

and pn
∗

h
, respectively. Compute the supremizer σ n∗ associated

with the pressure component.
6. Compute φu representing the orthonormalization of the

velocity function un
∗

h
with respect to the reduced space XN ,

obtained with a Gram-Schmidt algorithm considering the
scalar product (·, ·)V; similarly for φp and pn

∗

h
.

7. Build XN+2 = XN ⊕ {ψu,ψp} built as is (16).
8. Compute φσ representing the orthonormalization of the

velocity function σ n∗ with respect to the reduced space XN+2,
obtained with a Gram-Schmidt algorithm considering the
scalar product (·, ·)V.

7. Build XN+3 = XN+2 ⊕ {ψσ } built as is (16).
8. Update the structures for the online computation of the

reduced solutions and the dual norms of the residuals.
9. Set N = N + 3 and XN = XN+3. Repeat until a predefined

stopping criterion is satisfied.

The real modification is indeed related to the fact that the
initial POD is computed for α = α1 = 0, while the
greedy enrichment is performed fixing α = α2 = 0.2. The
resulting reduced space XN aims to represent a suitable space
of approximation for both values of α. In the parametrized
case, by using greedy enrichment we aim at saving a part
of the offline computational costs: indeed, in a standard
POD-Greedy procedure (see [39]), each new evaluation of
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the parameter α requires the computation of the associated
finite element solutions for each time instant n ∈ NT .
In our application, this would require about 8 h on 256
processors. Instead, during the greedy enrichment, we perform
only one finite element resolution for a single time step, while
the remaining computations are dedicated to reduced basis
structures.

We test the greedy enrichment algorithm by initializing it
with two different starting POD reduced spaces: in one case
we consider the modes selected with tol = 1e − 4 (35 POD
basis functions) and in the other one we consider the POD
modes corresponding to tol = 1e − 5 (54 POD basis functions).

In the first case, we enrich the space X
α1 ,POD
35 by adding 8

triplets selected by the greedy algorithm; we obtain the reduced

space X59. In the second case, starting from X
α1 ,POD
54 , we enrich

the space adding 12 triplets, obtaining X90. All the errors and
residuals computed and shown below are referred to the solutions
obtained with α2 = 0.2. In particular, in Table 4 we report the
velocity and pressure errors generated by the greedy enriched
reduced spaces as well as the ones obtained with the standard
POD ones. Moreover, we compute the space-time dual norm
of the residual, scaled by the solution norm (sixth column of
Table 4).

We note that the space-time velocity error does not decrease
significantly neither when adding greedy basis functions nor

TABLE 4 | Number of basis functions and space-time errors for the velocity and

pressure.

#u basis

(Greedy)

#p basis

(Greedy)

# tot basis EN(u) EN(p) RU
N

31 (0) 2 (0) 35 1.403e-01 1.256e-02 1.284e-02

48 (0) 3 (0) 54 1.301e-01 3.878e-03 7.125e-03

39 (8) 10 (8) 59 1.326e-01 2.966e-03 3.048e-03

68 (0) 5 (0) 78 1.217e-01 3.239e-03 6.594e-03

60 (12) 15 (12) 90 1.261e-01 1.748e-03 1.630e-03

Femoropopliteal bypass application in which the high fidelity solutions are obtained using

a finite element approximation on a fine mesh.

when augmenting the number of selected POD modes. If we
look at the pressure, using the greedy enrichment we manage
to decrease its error more than if we use POD modes. Also the
space-time dual norm of the residual is smaller when considering
the greedy enriched space than the POD ones.

Regarding the offline costs, to generate the space X59

starting form the X0,POD
35 , we perform 8 iterations of the

greedy enrichment algorithm: this takes 82 min on 512
processors where the most of the time is devoted to the
generation of the reduced structures for the residual evaluation.
We remark that computing a standard POD reduced space
for the parameter evaluation corresponding to α = 0.2
would require about 8 h on 256 processors for the finite
element computation of two periods, plus about 1 h on
512 processors for the generation of the reduced space
itself.

To explain why we obtain better results for the pressure
than for the velocity, we investigate the absolute values of
velocity, pressure and global solutions errors and we compare
them to the dual norms of the residuals (see Figure 9). Since
the velocity and pressure norms have two different magnitudes
(10 − 102 for the velocity and 103 − 105 for the pressure), the
corresponding absolute values of the pressure errors are bigger
than the velocity ones, even if the relative errors are lower. The
greedy procedure selects the worst approximated time instant
based on the dual norms of the residuals and these quantities
are indicators of the global absolute errors. Since the latter is
mostly due to the pressure error, this can explain why the greedy
enrichment provides better results for the pressure than for the
velocity.

5. CONCLUSIONS

In this work we presented an application of reduced order
modeling to a RFSI problem that is indeed an unsteady Navier-
Stokes problem with generalized Robin boundary conditions.
We detailed how an affine decomposition with respect to
boundary data varying in time can be obtained under suitable
hypothesis. Moreover, we presented and detailed how the POD
can be applied to the RFSI problem in order to take into

FIGURE 9 | Dual norms of the residuals and norms of the global errors with respect to time for different choices of the POD tolerance tol. Femoropopliteal bypass

application in which the high fidelity solutions are obtained using a finite element approximation on a fine mesh. (A) 54 Basis - POD. (B) 78 Basis - POD. (C) 90 Basis -

Greedy enriched POD.
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account the different order of magnitudes of the variables.
We discussed the introduction of the supremizer functions
inside the reduced basis, necessary to include the pressure in
the reduced system. Afterwards, we proposed an enrichment
of the POD reduced basis based on a greedy algorithm. All
the algorithms presented were then numerically tested on a
realistic hemodynamics problem. We tested the POD and greedy
enrichment algorithm on two cases: a test case, where the
finite element solution is obtained with a coarse grid, and
a fine case, where the finite element space has order of 106

degrees of freedom. The results showed the good performances
of the POD reduction algorithm on the RFSI problem, also
with respect to the evaluation of specific hemodynamics target
output (wall shear stress). Moreover we provided numerical
evidence of how the reduced approximation can be improved
using the greedy enrichment algorithm, in particular regarding
the pressure error. The different behavior of the velocity and
pressure errors is due to the use of the dual norm of the
residual as an indicator of the global solution error. Indeed,
since we do not have suitable a-posteriori error estimators, one
for the velocity and one for the pressure variables, we measure
the dual norm of the residual as a surrogate estimator. Being
the pressure variable and the correspondent error two order
of magnitudes grater that the velocity ones, the residual is
indeed an indicator of the pressure errors. Nevertheless, even
in lack of theoretical results, numerical experiments showed

that the greedy enrichment is able to improve the quality of

the reduced approximation allowing us to save computational
time. The development of suitable a-posteriori error estimators
for the pressure and velocity in the case of RFSI problem
would be required to improve the performances of the greedy
enrichment.
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We present a validation study comparing results from a patient-specific lattice-Boltzmann

simulation to transcranial Doppler (TCD) velocity measurements in four different planes

of the middle cerebral artery (MCA). As part of the study, we compared simulations

using a Newtonian and a Carreau-Yasuda rheology model. We also investigated the

viability of using downscaled velocities to reduce the required resolution. Simulations

with unscaled velocities predict the maximum flow velocity with an error of less than 9%,

independent of the rheology model chosen. The accuracy of the simulation predictions

worsens considerably when simulations are run at reduced velocity, as is for example

the case when inflow velocities from healthy individuals are used on a vascular model

of a stroke patient. Our results demonstrate the importance of using directly measured

and patient-specific inflow velocities when simulating blood flow in MCAs. We conclude

that localized TCD measurements together with predictive simulations can be used to

obtain flow estimates with high fidelity over a larger region, and reduce the need for more

invasive flow measurement procedures.

Keywords: lattice-Boltzmann, middle cerebral artery, computational fluid dynamics, transcranial Doppler, high

performance computing, blood flow, validation study

1. INTRODUCTION

Computational fluid dynamics (CFD) has been widely applied by researchers to model blood
flow in cerebral arteries and specifically within aneurysms (Cebral et al., 2011; Miura et al., 2013;
Mountrakis et al., 2013; Byrne et al., 2014; Ouared et al., 2016). There is considerable interest in
exploring the correlation between the dynamical properties of blood flow and clinical outcomes,
with the long-term aim to provide a personalized, predictive simulation approach for aneurysm
formation, growth, and/or rupture (Jou et al., 2008; Bernabeu et al., 2013; Xiang et al., 2014). When
performing such simulations it is essential that computational models are able to deliver a realistic
prediction of patient-specific flow velocities.
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A range of simulation studies have been performed using
patient-specific flow measurements derived from phase contrast
magnetic resonance angiography (pc-MRA, see e.g., Boussel
et al., 2008). However, Marzo et al. (2011) found that using
this type of measurement provides limited accuracy benefits
in comparison with modeled boundary conditions. The use
of CFD in combination with transcranial Doppler (TCD)
velocity measurements has been less extensively researched
(see e.g., Hassan et al., 2004), primarily because reliable TCD
measurements can only be made in a limited subset of the
cerebral arteries. In addition, TCD measurements with hand-
held devices may contain errors if held at an incorrect angle
(e.g., an underprediction of approximately 1.6% if the angle is
off by 10 degrees). However, the excellent time resolution of
TCD allows for a more reliable detection of peak velocities, and
helps to establish more precise pulsatile flow profiles. Indeed, the
maximum velocity values found by TCD are frequently around
30% higher than those found through pc-MRA (Chang et al.,
2011; Meckel et al., 2013). In addition, TCD is non-invasive,
unlike pc-MRA, and both are widely applied in clinical settings
today.

Blood consists of blood cells which reside within a liquid
medium known as blood plasma. Blood has a viscosity which
decreases under shear flow (shear-thinning), unlike water which
exhibits a constant Newtonian viscosity regardless of shear strain
rate. Many well-known CFD studies of cerebrovascular blood
flow are performed using a Newtonian fluid model (e.g., Cebral
et al., 2011; Miura et al., 2013; Byrne et al., 2014), though
recent research has found that such an assumption could lead
to over-estimation of wall shear stresses (WSS) in cerebral
arteries and aneurysms (Bernsdorf and Wang, 2009; Xiang et al.,
2011; Khan et al., 2016). As a result, it can also alter the
outcome of related diagnostic techniques such as three-band
diagram analysis (Bernabeu et al., 2013), a technique proposed
by Chatzizisis et al. (2008) to compare WSS at a specific location,
over a period of time, to a set of pathological threshold values.

Existing CFD studies of cerebrovascular flow frequently derive
inflow velocities not from the specific patient of interest, but
from healthy subjects (e.g., Miura et al., 2013; Byrne et al.,
2014) or idealized pulsatile profiles (Womersley flow, e.g., Castro
et al., 2006; Alnæs et al., 2007; Cebral et al., 2011). However,
blood flow velocities in middle cerebral arteries (MCA) from
healthy subjects are typically much lower than those from
stroke patients or patients suffering from hypertension. In this
context Venugopal et al. (2007) found that mean WSS properties
of simulations at Reynolds numbers (Re) below 200 do not
correspond in any linear way to WSS properties of simulations
at Re = 340–675. Itani et al. (2015) investigated how the mean,
maximum, and minimum wall shear stress changes when a
patient is subject to different levels of exercise intensity. They also
found a non-linear relation between maximum inflow velocity
and extracted WSS.

In this work, we simulate blood flow in a patient-specific
MCA model using patient-specific TCD measurements as inflow
boundary conditions, and compare our predictions against
clinical measurements at four locations. Our simulations employ
the lattice-Boltzmann method at high resolution, a technique

which has been shown by Jain et al. among others, to
be particularly well-suited for simulating cerebrovascular and
aneurysmal blood flow Jain et al. (2016). We perform simulations
imposing the measured velocity from the individual patients at
the inlet, and investigate how the choice of rheologymodel affects
the predicted flow velocities throughout the MCA. In addition,
we report on the accuracy of velocity predictions when running
simulations with downscaled inlet velocities, and rescaling the
velocities obtained from the measurement planes.

2. MATERIALS AND METHODS

To perform our simulations, we use theHemeLB software (Groen
et al., 2013; Nash et al., 2014) for lattice Boltzmann simulations
of blood flow in cerebral arteries. The lattice Boltzmann method
(LBM) is a highly scalable simulation approach which uses
a discretized kinetic model on a regular lattice to reproduce
the dynamics of incompressible fluid flow. The LBM can be
interpreted as a numerical solver for the Navier-Stokes equation
with the advantage that it algorithmically separates the non-
linearity from the non-locality. Specific boundary conditions are
applied to create accurate representations of fluid flow near vessel
walls, as well as inflow and outflow boundaries. In our case, we
adopt a 3-dimensional LBM which propagates fluid flow in 19
directions per grid point (D3Q19) using a BGK collision operator
(see e.g., Succi, 2001 for details). For the boundary conditions,
we used the Bouzidi (Bouzidi et al., 2001) model to represent
flow interactions with the vessel walls. Patient-specific inflow
conditions were obtained from TCDmeasurements performed at
the National Hospital for Neurology and Neurosurgery (NHNN)
using the Doppler BoxX (with a handheld device) from the DWL
company, and used rotational angiography data from NHNN to
obtain imaging data from the same patient. TCD measurements
were recorded for at least six cardiac cycles each in the right
MCA, consecutively at depths of 49, 54, 57, 59, and 63 mm
away from the temple area (see Figure 1 for the location of the
TCD validation planes in the 3D model, Table 1 for the velocity
measurements, and Figure 2 for the TCD image measurement
at the inflow boundary). The Doppler BoxX provides a flow
direction indication at all depths whenever a measurement is
made. In our case, this feature enabled us to hold the TCD
device such that the flow was observable in the right MCA, as
well as the right Anterior Communicating Artery (ACA). This is
important, because retaining such a tight orientation minimizes
TCD measurement errors caused by holding the device at a
wrong angle. In addition, to align the TCD measurements
precisely with the corresponding planes of flow direction in
the simulation domain, we performed a triangulation and an
angle correction with respect to the perpendicular flow direction
(see Table 2 for our triangulation results). The maximum
velocity at the inflow boundary, extracted from the TCD data,
was 1.50m/s.

Extracted cardiac cycle lengths vary for each cardiac cycle and
each measurement. The patient is known to have an existing
aneurysm in the MCA on the opposite (left) side, within which
the velocity magnitudes could not be clearly resolved using TCD
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FIGURE 1 | Overview of the overall patient vasculature in the medical images (A), and the patient-specific 3D model used in our simulations (B). As part of the

simulation model overview, we indicate the four TCD measurement planes used for validation. Both the inlet and the 63 mm TCD measurement plane are at the right

hand side of the image.

TABLE 1 | Overview of measured and simulated flow characteristics in the MCA,

as well as relative differences between measurement and simulation.

Depth [mm] 49 54 57 59 63 (inflow)

Mean cycle length [s] 0.930 0.786 0.906 0.804 0.894

Maximum cycle length [s] 0.972 0.822 0.972 0.822 0.978

Minimum cycle length [s] 0.870 0.708 0.828 0.786 0.816

vTCDmax [m/s] 1.43 1.61 1.32 1.26 1.50

v
sim,Newton
max [m/s] 1.32 1.50 1.27 1.37 1.50*

dNewtonr −7.7% −6.8% −3.8% +8.7% −

v
sim,CY
max [m/s] 1.32 1.51 1.27 1.37 1.50*

dCYr −7.7% −6.2% −3.8% +8.7% −

In rows 1, 2, and 3 we report the mean, maximum and minimum cardiac cycle length

extracted from the TCD velocity measurements, respectively. In row 4 we provide the

maximum velocity (vmax ) as measured in the TCD data, and in rows 5 and 7 we present

vmax for our (full velocity) HemeLB simulations with the Newtonian and the CY rheology

models, respectively. Relative differences (dr ) between the TCD measurements and each

of the respective two HemeLB simulations are in rows 6 and 8. We use the velocity

obtained from TCD as the inflow condition for our simulation. *Indicates simulation values

which are preset (boundary conditions).

due to its unfavourable orientation. We segmented the images
using VMTKlab (vmtklab.orobix.com), and voxelized the 3D
model using the HemeLB setup tool. The resulting geometry has
one inflow region and five outflow regions—two small ones at the
top near the inflow boundary, two larger ones at the bottom, and
the largest one left of the 49mm plane (see Figure 1B).

The 2D inflow profiles were reconstructed from the 1D TCD
data by mapping a parabolic profile to the non-circular inlets.

This parabolic inlet profile has the original velocity from the 1D
TCD data mapped to the centre of the inlet (the lattice site which
is furthest from any wall), and 0 velocity values mapped to wall
boundary sites. The velocity magnitude of a given lattice site is
then calculated using a parabolic equation, which depends on the
distance of the lattice site to the nearest vessel wall site in the inlet
plane (0 for wall sites, 1 for the site in the centre, and values in
between for other sites).

The boundary conditions in the lattice Boltzmann method
were implemented as follows. To set the reconstructed velocity
profile EuTCD(Exin, t) at the inlet, we use a method introduced
by Ladd (1994). A simple bounce-back boundary condition
is augmented with a momentum term that results in a time-
dependent Dirichlet condition for the velocity

Eu(Exin, t) = EuTCD(Exin, t). (1)

At the outlet, we employed an open boundary condition in terms
of a mixed Dirichlet-Neumann boundary condition (Nash et al.,
2014)

Eup(Exout, t) = 0, (2)

n̂ · ∇Eun(Exout, t) = 0, (3)

where n̂ is the normal vector of the outlet plane, and Eup and Eun
are the in-plane and normal components of the outlet velocity,
respectively. The gradient in Equation (3) is taken as the first-
order finite difference approximation on the lattice Boltzmann
grid. In the implementation by Nash et al. (2014), the density
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FIGURE 2 | Raw TCD input image of the measured velocity at a depth of 63 mm (inflow boundary plane). The measured velocity at the selected depth (63 mm) is

given at the top, while the general flow direction at all depths is given at the bottom, either toward the device (red) or away from it (blue). We observe a change in flow

direction around a depth of 67 mm, which is at the junction between the right MCA and the right ACA.

TABLE 2 | Triangulation points, input, output, and measurement plane locations (and orientations where applicable) in the simulation domain, used to calculate the angle

correction.

Distance from

TCD device (mm)

Location (4 d.p.) Normal (4 d.p.)

Triangulation point 1 45 [35.5,−203.8,−154.658] −

Triangulation point 2 50 [22.3,−209.8,−156 ] −

Triangulation point 3 66 [35.3,−203.8,−154.658] −

Measurement plane 1 49 [21,−210.2,−156.5] [0.9474,0.2650,0.1796]

Measurement plane 2 54 [25.4,−207.8,−154.9] [0.6700,0.6437,0.3699]

Measurement plane 3 57 [27.5,−205.8,−154] [0.8412,0.5309,0.1031]

Measurement plane 4 59 [29.6,−204.5,−154] [0.7632,0.6017,0.2357]

Input plane 63 [32.6847,−203.4475,−154.6588] [−0.9440,−0.0722,0.3220]

Output plane 1 – [0.0316,−0.2009,−0.1520] [0.2656,0.0262,−0.9637]

Output plane 2 – [0.0298,−0.2102,−0.1618] [−0.0834,0.8633,0.4977]

Output plane 2 – [0.0240,−0.2143,−0.1570] [0.1206,0.6726,0.7301]

Output plane 2 – [0.0196,−0.2107,−0.1569] [0.9685,0.2220,0.1124]

ρ(Exout, t)=ρ0 at the outlet is prescribed in order to determine the
unknown fluid variables. It is worth noting that prescribing the
density at the outlet fixes the static pressure through the ideal gas
equation of state. However, this does not constrain the dynamic
pressure which varies over a cardiac cycle as shown in Figure 3.

The shear-thinning behavior of blood is modeled using the
Carreau-Yasuda (CY) model which employs the expression
(Boyd et al., 2007; Bernabeu et al., 2013)

η(γ̇ )− η∞

η0 − η∞
=

(

1+ (λγ̇ )a
)
n−1
a (4)

to account for the dependence of the dynamic viscosity η on
the shear rate γ̇ . Here, η0 and η∞ are the asymptotic values at
zero and infinite shear rate, and a, n, λ are empirical materials
parameters that describe the shear-thinning curve. The CYmodel
represents a smooth transition betweenNewtonian behavior at η0
and η∞.

The HemeLB simulations were performed on the ARCHER
supercomputer at EPCC in Edinburgh, United Kingdom, and the
SuperMUC supercomputer at LRZ in Garching, Germany. We
used between 1,536 and 24,768 cores, depending on the chosen
resolution.
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FIGURE 3 | Differential pressure at the main outlet plane, relative to the ideal

gas pressure for average density in the simulation. The maximal pressure

found in the plane is given by the red dashed line, while the minimal pressure

found in the plane is given by the blue dotted line. The average pressure in the

plane is given by the black line.

2.1. Choice of Lattice Boltzmann
Parameters
Our lattice Boltzmann model uses a D3Q19 lattice with
the Lattice Bhatnagar-Gross-Krook (LBGK) collision
model (Bhatnagar et al., 1954). The relaxation parameters
are set to yield the dynamic viscosity of blood of η = 0.004 Pa·s.
The parameters used in the CY model are η0 = 0.16 Pa·s, η∞
= 0.0035 Pa·s, λ = 8.2 s, a = 0.64 and n = 0.2128 as given by
Boyd et al. (2007) and previously adopted by Bernabeu et al.
(2013). In our full-resolution, full-velocity simulations, we used
a voxel size of 10 µm, a time step size of 0.28 µs, and a geometry
consisting of 174,738,326 fluid sites. The simulations ran for
21.43 million time steps, which corresponds to 5 s of simulated
time following a one-second “warmup” period (during which
the inlet flow speed is increased gradually from rest in order
to avoid flow instability or shockwaves resulting from a step
change). The Reynolds number of our full-velocity simulation is
approximately 966, based on a characteristic diameter of 24 mm
with the highest measured peak velocity of 1.61 m/s.

We also performed simulations at reduced velocity and
resolution, multiplying the velocities by 50 or 25%, as well as
with increased voxel sizes of 20 and 40 µm. We discuss the
implications of using this type of velocity scaling in detail in the
next subsection.

2.2. Velocity Scaling
The LBM is valid in the incompressible regime and introduces
compressibility errors that scale quadratically in the Mach
number Ma = U/cs, where U is the flow velocity and cs
the speed of sound. The cardiac flow is characterized by the
Reynolds number Re = UD/ν and the Womersley number
α = (ωD2/ν)1/2, where D is the vessel diameter, ν = η/ρ

is the kinematic viscosity, and ω is the angular frequency of

the oscillating flow due to the cardiac cycle. In terms of the
simulation parameters, the kinematic viscosity of the lattice BGK
model and the speed of sound are given by

ν =
1

3

(

τ̂ −
1

2

)

(1x)2

1t
, (5)

cs =
1
√
3

1x

1t
, (6)

where τ̂ is the dimensionless relaxation parameter of the BGK
model, and 1x and 1t are the discrete lattice spacing and time
step, respectively. Based on the Reynolds and Mach numbers,
we have the following relation for the dimensionless relaxation
parameter

τ̂ −
1

2
=

√
3
D

1x

Ma

Re
. (7)

Linear stability requires τ̂ > 0.5 which guarantees a positive
viscosity. However, it is mandatory to keep the Mach number
small in order to reduce compressibility errors and make the
system less prone to instabilities due to density fluctuations.
In the standard diffusive scaling, convergence is achieved by
reducing the Mach number while keeping the Reynolds number
constant. This implies (1x)2 ∼ 1t. Thus, reducing the
Mach number by means of increasing resolution results in
an increase in computational costs due the cubic scaling of
volume.

Therefore, some authors have been tempted to use lower flow
velocities, e.g., from healthy subjects (Miura et al., 2013; Byrne
et al., 2014), in order to maintain stable simulations at a larger
voxel size 1x. The ratio of the reduced velocity U ′ and the
original velocity U is denoted by a scaling factor s. This leads to a
scaling relation

s =
U ′

U
=

ν′Re′D

νReD′
=

α2ω′D′Re′

α′2ωDRe
, (8)

where the prime denotes the quantities associated with the scaled
velocity U ′. If one insists on a fixed system size D′ = D and
cardiac cycle length ω′ = ω, it is not possible to fix both
the Womersley number and the Reynolds number at the same
time such that the simulation is performed in a flow regime
different to that of the full velocity simulation. In section 3.2, we
demonstrate that this can significantly impact the simulated flow
patterns.

3. RESULTS AND DISCUSSION

We present results from three types of simulation. First, we
compare our full velocity and full resolution (10 micron voxel
size) simulations against the TCD measurements on the same
patient. Second, we present the results from simulations at
reduced velocity and reduced resolution, and compare them both
with results from our full-scale simulations and with the TCD
measurements. Third, we compare the results of simulations
using a Newtonian rheology model to simulations using a non-
Newtonian (Carreau-Yasuda) rheology model (Abraham et al.,
2005).
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FIGURE 4 | Comparison of the maximum velocity using both TCD (blue line) HemeLB (green line), given for the planes at 49 mm (Top left), 54 mm (Top right), 57

mm (Bottom left), and 59 mm (Bottom right). HemeLB results presented here are for the run at 100% velocity and with Newtonian rheology. The phase has been

shifted to align both results with the start of the first cardiac cycle.

3.1. Validating Full Velocity
Haemodynamics Predictions Against
Measurements
In Table 1 we present the maximum velocity vmax as measured
with TCD and the simulation results for all four measurement
planes. Our simulations predict the flow velocity with a relative
error of less than 9% in all cases. In Figure 4 we present a
direct comparison of our TCD measurements in the four planes
over time, and our velocity predictions derived using HemeLB
at the same locations. We observe good agreement between
the simulation results and the measured TCD profile. The
differences can be ascribed to the limitations of our approach (see
section 3.4) and uncertainties in the measurements, including
phase misalignments due to the sequential nature of the TCD
measurement.

In Figures 5A–D, we present the two-dimensional velocity
profiles extracted from the simulation at the four measurement
planes. These profiles were extracted at the peak systole of
the second cycle, corresponding to a velocity at the inlet of
approximately 1.42 m/s. The figures show how the profile
changes along the flow through the MCA. Compared to
the inflow profile, the velocity profile at 59 mm is already
substantially different, as a high velocity region is visible on the
left side of the artery. The profiles at 57 and 54 mm show a
strong concentration of (high) velocity near the top, which is
presumably due to the bend present in that region of the artery,
while a bend in the opposite direction just before the 49 mm

plane is the likely cause of the more evenly distributed velocities
there at peak systole (Figure 5E). In Figures 5E,F we show the
calculated wall shear stress (WSS) across the MCA at peak systole
and diastole (at 2.18 s). The front in Figures 5E,F corresponds to
the left side in Figures 5A–D.We observe aWSS of >40 Pa during
the systole in at least three locations. The WSS at the subsequent
diastole (Figure 5F) remains relatively high at the location near
the second outlet at the top, which indicates that this location
could be susceptible to the formation of a new aneurysm.

3.2. Full vs. Reduced Velocity Simulations
In this section we compare the velocity profiles at peak systole
from simulations at 10 µm voxel size and full velocity with those
at reduced velocity and/or increased voxel size. Reduced velocity
and resolution runs are attractive because they are cheaper, faster
to run, and more likely to become computationally tractable in
a clinical setting. For example, at time of writing, a full velocity
run across five cardiac cycles costs approximately £4200 on the
ARCHER supercomputer (EPCC, 2017), whereas a run at 50%
velocity and the same resolution costs £2100 and a run at 50%
velocity and 20 µm voxel size costs £500 to perform. However,
reduced velocity simulations have a lower Reynolds number
which affects a wide range of flow properties. In this study we
have performed runs at 50% velocity (Re∼ 483) and 25% velocity
(Re∼ 242).

We compare our simulation results at full velocity and
resolution with those at reduced velocity and resolution in
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FIGURE 5 | Calculated flow velocity magnitude, in the direction along the vessel center lines, at the second peak systole (at 1.44 s) inm/s for each of the four TCD

validation planes. We show the velocity profiles in (A–D) for planes at a depth at 49, 54, 57, and 59mm, respectively (run at 100% velocity, Newtonian rheology). We

present the calculated wall shear stress (WSS) at peak systole in (E), and at diastole (at 2.18 s) in (F) (using the same scale).

Figure 6 and Table 3. When we reduce the inflow velocity by
50%, the maximum inflow velocity at the inlet is 0.75 m/s (not
an uncommon value for healthy volunteers) (Bishop et al., 1986)
instead of 1.50 m/s (not an uncommon value for stroke patients)
(Manno et al., 1998). We multiply the extracted velocities from
our reduced velocity runs by two for simulations at 50% inflow
velocity, and by four for simulations at 25% velocity. When
comparing the runs with full inflow velocity runs with those
at 50%, we already observe major differences in the extracted
velocities. Here the comparisons at all four locations feature
velocity differences of more than 0.4 m/s, and more than
30% of the maximum absolute flow velocity extracted in the
corresponding plane. For the planes at 49 and 57 mm we see
very large velocity differences near the vessel wall. This is likely
due to the much higher Reynolds number of the flow in the
full velocity run. When we compare the rescaled 50% velocity
runs to the TCD measurements, the velocities differ by up to
15.5%, which is almost twice as large as the 8.8% maximum
difference between TCD measurements and full velocity
runs.

The results of the 50% velocity run with 20 µm voxel size are
almost identical to the one with 10 µm voxel size, with only very

small differences in all the velocity planes. However, the run with
25% velocity is considerably less accurate, with absolute velocity
differences up to 0.75 m/s, in particular close to the vessel walls.
These errors are still smaller close to the inflow boundary at 59
mm, but dominate the overall result in the validation planes that
are beyond the bifurcation with lenticulostriate arteries.

We conclude that simulations with reduced velocities affect
the accuracy of the results significantly. This is particularly
important because realistic velocities close to the wall are
essential to obtain accurate wall shear stress estimates. We find
that no such estimates can be reliably made for half velocity runs.

3.3. Comparing Rheology Models
To compare different rheology models, we performed
simulations on our MCA geometry using a Carreau-Yasuda
(CY) rheology model (Abraham et al., 2005). When the CY
model was adopted, Bernabeu et al. found important differences
in the WSS and Three-Band-Diagram analysis outcome for the
MCA under “healthy human” flow conditions. Here we focus on
differences in velocities obtained from the two rheology models,
as we are interested in comparing simulation predictions to TCD
measurements.
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FIGURE 6 | Absolute difference in flow velocity, between the run with Newtonian rheology at 10 µm resolution and 100% velocity and other runs for each of the four

validation planes. Comparisons are made with runs at 10 µm and 50% velocity (Left column), 20 µm and 50% velocity (Middle), and 20 µm, and 25% velocity

(Right) respectively. The velocities in reduced velocity runs are multiplied by 2 (for the 50% velocity runs) or 4 (for the 25% velocity runs). The snapshots were made at

the second peak systole (at 1.44 s), with differences in m/s.

The difference in flow velocity between the Newtonian
rheology model and the CY rheology model at peak systole
is shown in Figure 7. We observe differences in velocity of
up to 0.12 m/s in three of the four validation planes, and a
difference of up to 0.21 m/s in a highly concentrated central
region in the 54 mm measurement plane. In all cases the
velocity differences are largest in regions where the absolute
velocity is relatively small in the Newtonian rheology results,
cf. Figure 5, while only smaller differences exist in regions
where the velocity is relatively large. These results suggest
that the choice of using either a CY or Newtonian rheology

model has little effect on vsimmax in all our comparisons (see
Table 3).

The difference between the Newtonian and the CY rheology
model for 50% reduced velocity is shown in Figure 8 at peak
systole. As noted above, velocity extractions from runs at 50%
velocity are multiplied by 2 to enable a direct comparison with
full velocity runs. The difference in velocities between the 50%
runs is considerably smaller than for 100% velocity runs, reaching
at most 0.05 m/s in any of the measurement planes. The velocity
difference is largest close to the arterial wall, but is in all cases
much smaller than the velocity mismatch introduced by the
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TABLE 3 | Comparison of full and reduced velocity simulations against TCD velocity measurements.

v scaling Rheology Voxel size vsimmax at depth [mm] dr [%] at depth [mm]

(%) [µm] 49 54 57 59 49 54 57 59

100 Newton 10 1.32 1.50 1.27 1.37 −7.7 −6.8 −3.8 +8.7

100 CY 10 1.32 1.51 1.27 1.37 −7.7 −6.2 −3.8 +8.7

50 Newton 10 1.26 1.36 1.22 1.34 −11.9 −15.5 −7.6 +6.3

50 Newton 20 1.25 1.36 1.22 1.34 −12.6 −15.5 −7.6 +6.3

50 CY 20 1.25 1.36 1.22 1.34 −12.6 −15.5 −7.6 +6.3

25 Newton 20 1.26 1.22 1.15 1.27 −11.9 −24.2 −12.9 +0.8

TCD measurement 1.43 1.61 1.32 1.26 − − − −

We present the velocity scaling used in each run in column 1 (100% for a full velocity run), the rheology model used in column 2, the voxel size used in column 3 (10 µm for a full

resolution run), the extracted peak velocity in each of the measurement planes in columns 4 to 7, and the relative difference in peak velocity compared to TCD measurements for each

plane in columns 8 to 11. As a reference, we provide vTCDmax for each of the planes in the bottom row.

velocity reduction (see Figure 6, left row). This is in line with the
finding that the choice of the rheology model has a small effect,
and in the reduced velocity runs the impact of scaling down the
velocity on accuracy is the dominating factor.

3.4. Limitations of our Study
The main limitations of our validation study are related
to data acquisition, model construction and simulation
constraints.

Regarding TCD measurements, phase misalignments are
common when directly comparing simulation results to these
measurements, due to differences in apparent cardiac cycle length
between the consecutively measured TCD planes (see Figure 4).
Furthermore, due to the proprietary nature of the TCDnumerical
data, numerical velocity values were extracted semi-automatically
from JPEG images obtained with the Doppler BoxX software,
which may introduce small transcription errors of up to 0.0064
m/s due to the resolution of the images. The measurement
quality and level of background noise can vary with different
measurements, as different depths are subject to varying levels
of occlusion and wave propagation interference.

In the area of segmentation it is particularly challenging
to accurately reproduce the small lenticulostriate arteries
originating near the origin of the MCA (Kang et al., 2012). These
arteries are not always clearly captured in the medical imaging
data, and many existing haemodynamics models of MCAs do
not include them, while our geometry contains two of these
arteries. However, omitting them altogether can lead to velocity
overestimations in the remainder of the MCA. In our model we
were able to resolve the lenticulostriate arteries to a limited extent
after extensive segmentation efforts.

Due to the one-dimensional nature of the TCDmeasurement,
we used a parabolic inflow velocity profile and fitted it to
the non-circular shapes of the inflow boundaries (see section
2). Real inflow velocity profiles can vary depending on the
morphology of the arterial network, as shown for example
by Takeuchi and Karino (2010). Regarding the outlets, a
more physiologically accurate choice of boundary condition
would take into account the downstream peripheral resistance.

However, such an approach introduces additional patient-
specific parameters. For the purposes of the validation conducted
in this study we intentionally limit the complexity of the model
and thus use a simple mixed Neumann-Dirichlet boundary
condition.

Furthermore, our simulation model is based on a rigid
geometry and does not include elastic deformations of the vessel.
In the case of blood flow in cerebral aneurysms, Dempere-Marco
et al. (2006) found that incorporating wall motion has relatively
little effect on the WSS. Understanding the dynamical response
of arterial walls in the MCA, on a patient-specific level, is a
particularly challenging area of research. However, recent studies
show promising results that should soon allow us to examine
these processes (Oubel et al., 2010; Vanrossomme et al., 2015).

3.5. Future Work
There are a range of factors that we seek to incorporate in
our model as part of our future research. Firstly, we aim to
develop techniques to create more realistic inflow profiles by
using simulation data of arteries upstream from the patients
MCA. Secondly, we seek to enhance our model by incorporating
mechanisms for arterial wall deformations and damage. Such
mechanisms are highly complex and very difficult to measure
experimentally, and therefore modelling them is a particularly
challenging area of research. Thirdly, we seek to provide more
realistic outflow properties by extending our geometry to arteries
further downstream. This could be accomplished for example
by investigating how existing (1D) resistance models could be
accurately applied within the context of complex 3D simulation
models, or by attempting to simulate the full human brain in
3D over realistic time scales, and using patient-specific flow
conditions.

4. CONCLUSIONS

We have conducted a validation study comparing flow velocities
from patient-specific lattice-Boltzmann simulations to clinical
TCD measurements in the MCA. As part of the study, we
analyzed simulation results obtained at reduced velocities and
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FIGURE 7 | Absolute difference in flow velocity, between the run with Newtonian rheology and run with CY rheology. Both of these runs were performed at 100% of

the full velocity. The snapshots were made at the second peak systole (at 1.44 s), with differences in m/s, for each of the four TCD validation planes.

FIGURE 8 | Absolute difference in flow velocity, between the run with Newtonian rheology and run with CY rheology. Both of these runs were performed at 50% of the

full velocity, with the differences rescaled by a factor 2. The snapshots were made at the second peak systole (at 1.44 s), with differences in m/s, for each of the four

TCD validation planes.

variable resolution. Moreover, we investigated the impact of
using the Carrueau-Yasuda rheology model compared to a
Newtonian rheology model.

We achieved very good agreement of the maximum velocity
between our full patient-specific velocity simulation results
and TCD measurements, with an error of less than 9%
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independent of the choice of rheology model. Simulating blood
flow at reduced velocities, for example by scaling down the
velocity or using velocity measurements from healthy subjects,
is attractive because the simulation runs are computationally
cheaper and deliver results faster. However, we found that scaling
down the flow velocities leads to substantially larger errors,
and an accurate comparison between simulations and TCD
measurements is no longer achieved. Adopting a CY rheology
model instead of a Newtonian one results in small changes
in maximum velocities in the planes and in our validation,
whereas substantial flow velocity differences are observed near
the arterial wall and in the resulting WSS. However, the CY
rheology model does not enable a significant improvement
when the velocity is already scaled down (e.g., by using inflow
profiles of healthy volunteers or reduced velocity Womersley
profiles), as errors caused by this velocity scaling then dominate
the overall accuracy. Figures 7, 8 suggest that a Newtonian
rheology model may be a justifiable approximation for MCA
simulations at lower (i.e., < 0.75 m/s) peak flow, but that
this could quickly become problematic for the higher flows
typically recorded in unhealthy patients (in which 1.5 m/s is not
unusual).

Computational haemodynamics predictions that accurately
match patient-specific TCD measurements are likely to become
an important asset in clinical settings and pave the way to
using computer models in the process of clinical decision
making (Fenner et al., 2008; Sadiq et al., 2008). Compared to
clinical measurements alone, patient-specific simulations allow
us to obtain information about a much wider range of flow
properties, such as detailed flow velocity characteristics and wall
shear stress estimates. In addition, simulations can help predict
flow velocity in areas that have not been directly measured,
and thereby help reduce the number and intensity of invasive
measurements that need to be performed. Here we have shown
that a combination of non-invasive TCD measurements with
haemodynamics simulations can lead to accurate predictions
of blood flow velocity throughout the MCA. The ability to
make these accurate predictions constitutes an important step
in making computational haemodynamics a viable approach for
assessing intracranial blood flow.
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Intracranial aneurysms manifest in a vast variety of morphologies and their growth and

rupture risk are subject to patient-specific conditions that are coupled with complex,

non-linear effects of hemodynamics. Thus, studies that attempt to understand and

correlate rupture risk to aneurysm morphology have to incorporate hemodynamics,

and at the same time, address a large enough sample size so as to produce reliable

statistical correlations. In order to perform accurate hemodynamic simulations for a large

number of aneurysm cases, automated methods to convert medical imaging data to

simulation-ready configuration with minimal (or no) human intervention are required. In the

present study, we develop a highly-automatedmethod based on the immersed boundary

method framework to construct computational models from medical imaging data which

is the key idea is the direct use of voxelized contrast information from the 3D angiograms

to construct a level-set based computational “mask” for the hemodynamic simulation.

Appropriate boundary conditions are provided to the mask and the dynamics of blood

flow inside the vessels and aneurysm is simulated by solving the Navier-Stokes equations

on the Cartesian grid using the sharp-interface immersed boundary method. The present

method does not require body conformal surface/volume mesh generation or other

intervention for model clean-up. The viability of the proposed method is demonstrated

for a number of distinct aneurysms derived from actual, patient-specific data.

Keywords: cerebral aneurysm, hemodynamics, computational fluid dynamics, immersed boundary method,

automatic segmentation

INTRODUCTION

An aneurysm is a pathological, localized, balloon-like bulge in the wall of a blood vessel. Although
aneurysms can occur in any vessel, intracranial aneurysm (ICA) (or cerebral aneurysm) and
abdominal aortic aneurysm (AAA) are most common and clinically significant. Intracranial
aneurysms can present incidentally (i.e., unruptured) or may present in the form of aneurysmal
subarachnoid hemorrhage (aSAH) following intradural rupture. The overall incidence of aSAH
in the Western world is 6–8 per 100,000 people per year (Zacharia et al., 2010) and mortality rates
from aSAH are nearly 50%. Of the patients who do survive, less than 60%will return to a neurologic
baseline allowing them to function independently (Zacharia et al., 2010). Given the complexity of
treatment, and the care required for survivors with devastating neurologic injury, the cost of aSAH
is staggering.

Aneurysms considered to be at high risk of rupture are usually treated by surgical intervention
such as clipping of the aneurysm itself or implementation of a prosthetic graft to prevent rupture.
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Such surgical interventions, however, bring their own risks
such as bleeding, stroke, and vessel spasms (Raaymakers et al.,
1998; Tomasello et al., 1998). Introduction of rupture-prevention
devices (e.g., stent graft) can cause thrombosis and increase
thrombo-embolic risk (International Study of Unruptured
Intracranial Aneurysms Investigators, 1998; Song et al., 2004).
Thus, prompt and accurate stratification of risk is the key to
making sound clinical decisions about surgical intervention.
Significant hurdles however exist in developing accurate risk
stratification metrics that are grounded in the biomechanics
of aneurysm growth and these have stymied not only our
ability to understand aneurysm growth, but also, effective clinical
interventions for this devastating condition.

Aneurysmsmanifest in a vast variety of morphologies (shapes,
sizes, orientations and locations) and their growth is also
subject to patient-specific conditions of age, gender, flow rate,
blood pressure, heart rate, etc. Thus, any statistical correlation
that is used for risk stratification should be based on large,
likely, O(104) sample size that can cover the vast parameter
space associated with aneurysms and generate reliable statistical
correlations. While patient specific morphology and conditions
are the primary determinants of growth and rupture risk, the
connection between these factors and risk is highly complex
due to the intervening non-linear effects of hemodynamics
and vessel wall structural dynamics. Thus, current clinical
guidelines for aneurysm treatment, which are based primarily on
morphology (e.g., aneurysm diameter, Desai et al., 2010), have
low sensitivity and specificity (Juvela et al., 1993; International
Study of Unruptured Intracranial Aneurysms Investigators, 1998;
Wiebers, 2003; Desai et al., 2010). Risk stratification approaches
that go beyondmorphology, and incorporate biomechanics could
transform the treatment of aneurysms.

Physics-based computational models of aneurysm
biomechanics (Cebral et al., 2005a; Valencia et al., 2008;
Castro et al., 2009; i.e., hemodynamics and/or structural
mechanics) hold great promise in this context. In particular,
hemodynamics is essential to the estimation of aneurysm rupture
risk not only because hemodynamics is the key intermediary
between morphology and vessel wall mechanics but also because
hemodynamic metrics are very sensitive to the geometrical
and flow conditions (Cebral et al., 2005b; Valencia et al.,
2013). Fortunately, modern imaging modalities [Computational
Tomography Angiography (CTA) and 3D Rotating Angiogram
(3DRA)] provide inputs that are suitable and generally sufficient
for computational fluid dynamics modeling. The primary
limitation of the current approaches however is that they are
not designed to scale to large sample sizes that are necessary for
developing insights and reliable statistical correlations/metrics.

In order to perform hemodynamic simulations for large
number of aneurysm cases, pipe-lined (Cebral et al., 2005a)
and automated methods to convert medical imaging data to
simulation-ready configuration with minimal (or no) human
intervention are required. Currently, most simulations of
aneurysm hemodynamic are performed with the finite-volume
or finite-element methods (Shojima et al., 2004; Cebral et al.,
2005b, 2015; Valencia et al., 2008, 2013; Castro et al., 2009;
McGah et al., 2014; Valen-Sendstad and Steinman, 2014) that

require surface and volume meshes. Commercial CFD software
based on the finite volume/element method are also often
employed (Meng et al., 2006; McGah et al., 2014; Valen-
Sendstad and Steinman, 2014), for which the segmented
vessel/aneurysm geometry and surface/volume meshes need to
be provided. Most of the current segmentation and simulation
methods that involve surface and volume mesh generations
necessitate substantial human intervention. The traditional
approach consists of the following steps; (i) segmentation of
lumen from the angiogram data, (ii) 3D model generation,
(iii) cleaning-up and truncation of the model (e.g., cutting out
the vessels outside the region of interest), (iv) surface mesh
generation, and (v) volume mesh generation. An open source or
commercial software can be employed for each step, but it still
requires substantial human intervention to interface each step
and determine the parameters. Thus, the traditional approach
may not be adequate to deal with large number of individual cases
envisioned here. Furthermore, conventional computational fluid
dynamics simulation methodologies can be quite sensitive to the
quality of the segmentation and grid generation, and this may
necessitate attention to the quality of the segmented geometry
and computational grid (Valen-Sendstad and Steinman, 2014).
In the present study, a highly-automated method based on
the immersed boundary method (Mittal and Iaccarino, 2005)
framework is proposed to construct computational models
directly and rapidly from medical imaging data. The key idea
is the direct use of voxelized contrast information from the 3D
angiograms to construct a level-set based computational “mask”
for the simulation. In this way, 3D, simulation-ready models
of the vessel of interest can be constructed automatically and
rapidly, and no body-conformal grids (surface and volume) need
to be generated for the flow simulation.

An immersed boundary method based on the “masking
function” on the Cartesian grid has previously been applied to
the aneurysm hemodynamics (Mikhal and Geurts, 2014), but
the method employed a simple volume penalization, and the
geometry was represented by set of Cartesian voxels. Better
representation of the aneurysm/vessel geometry on the Cartesian
grid can be achieved by using a level-set function. The level-set
function based methods have been used for the simulation of
aneurysm hemodynamics on the Cartesian grid using a lattice
Boltzmann method (LBM) (He et al., 2009; Závodszky and
Paál, 2013) and a boundary data immersion method (Otani
et al., 2018). The latter method, however, still employed a
surface mesh to construct the level-set function. In the present
study, we employ the masking function for the automatic
segmentation of vessel/aneurysm from the medical imaging
data. The vessel/aneurysm boundaries are then represented
by the level-set function constructed directly by using the
contrast information. A previously developed and validated
hemodynamic flow solver based on the sharp-interface immersed
boundary method (Mittal et al., 2008) is adopted for modeling
aneurysm hemodynamics on the Cartesian grid. In this paper, we
report the key components of the highly automated simulation
procedure using the immersed boundary method such as a 3D,
region-growing technique for automatic vessel segmentation and
cleaning, a level-set based, immersed boundary flow simulation
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module, and a suitable method for post-processing the data.
The present method has been tested with small sample set of
patient-data.

MATERIALS AND METHOD

Procedure of Highly-Automated
Hemodynamic Modeling
The overall procedure of the highly-automated hemodynamic
modeling using the 3D angiogram data is the following:

1. For a given angiogram of the vasculature around a cerebral
aneurysm, a user specifies the subset of the 3D angiogram
for the region of interest (ROI) around the target aneurysm,
and identifies the inflow vessel. The user also set a seed point
for the region growing operation and a threshold contrast
intensity (I0) for the identification of the lumen. The inflow
condition (flowrate and heart rate) can also be set by the user,
if patient-specific information is available. These are the only
manual operations required for the present method.

2. The region growing operation is performed from the seed
point, which identifies the lumen region in the ROI and
generates a masking function (M) with value of 1 in the lumen
and 0 otherwise.

3. A Cartesian grid is generated automatically in the ROI, and a
level-set function (φ) is defined by the contrast intensity and
the given threshold value. The level-set function is used to find
the location of the lumen wall.

4. A vessel centerline is identified automatically by using the
masking function and the inflow spatial velocity profile is
prescribed per the given flow condition.

5. Flow simulation is performed on the Cartesian grid. The flow
equations are only solved for the lumen region using the
masking function, and the wall boundary condition is applied
by using the level-set function.

6. As a post-processing, wall shear stresses and other metrics are
calculated.

Each of these steps are described in detail in the following
sections.

Region of Interest and Boundary
Conditions
The first step required for the hemodynamic modeling is to
specify the region of interest (ROI) around the target aneurysm.
By visualizing the angiogram, the user should identify the target
aneurysm of interest and set the Cartesian ROI around it (see
Figure 1). This can be done by specifying the range of spatial
indices (i, j, k) for the Cartesian ROI domain, for example,
imin≤i≤imax, jmin≤j≤jmax, and kmin≤k≤kmax. Once the ROI is
set, there could be number of vessels that intersect with the ROI
boundaries. Boundaries of flow domain can easily be identified
during the automatic segmentation phase using the spatial index
of Cartesian ROI domain. For example, the voxels masked for
the flow domain at the Cartesian ROI boundaries (imin, imax, jmin,
jmax, kmin, kmax) generate the boundaries of the flow domain. The
flow direction (inflow or outflow) in each of these intersecting

vessels needs to be identified. For inflow vessels, the user can
specify the flow rate and/or flowrate wave form if available. The
user also sets a seed point in the lumen region which is connected
to the target aneurysm and a threshold contrast intensity (I0) for
the region growing operation.

Automatic Segmentation and Cleaning
Once the seed point and the threshold intensity (I0) are set,
the 3D region growing operation is performed to automatically
segment the lumen of interest and perform clean-up. The region
growing runs on the Cartesian voxel space of the 3D angiogram
data and each voxel of the imaging data serves as a Cartesian
fluid cell. Starting from the seed point, the edge cells grow to
neighboring Cartesian cells if the intensity of the cell (I) satisfies
the criteria, I>I0. Additional criteria based on the gradient of
intensity, e.g., 1I<1Imax can also be employed. The choice of
threshold can affect the size of the segmented vessel/aneurysm,
and subsequently, the simulation results. The user may reset
the threshold by checking the morphology of the segmented
vessel/aneurysm. For this reason, the threshold value may need
to be chosen by a trained expert. The mask function (M) is
set to 1 for the growing region and 0 otherwise (see Figure 2).
The process continues until no further growth is possible, and
the connected lumen region is segmented based on the masking
function (M = 1). The flow simulation is performed only for
the volume where M = 1, and thus the other region where M
= 0 including lumen volumes that are not connected to the
target aneurysm is automatically cleaned-up. A key element in
the present method is that, unlike other conventional body-
conformal numerical methods (finite-difference, finite-volume,
or finite-element) that are commonly used in hemodynamic
simulations (Soto et al., 2004; Updegrove et al., 2017), no surface
mesh is generated for the segmented lumen. This alleviates
complexities associated with mesh quality, and enhances the
automation and robustness of the simulation tool.

Level-Set Function and Wall Boundary
Condition
The Cartesian grid based on the voxel space of the 3D angiogram
also serve as the grid for the flow simulation. In order to define
the lumen wall boundary which is not conformal to the Cartesian
grid, a level-set function, φ is defined by using the intensity (I)
information:

φ0(i, j, k) = I(i, j, k)− I0, (1)

where (i, j, k) are grid indices. If the angiogram is noisy, a low-
pass, spatial filtering can be employed as a preprocessing step to
smooth out the level set function, φ. A filtering scheme for 3× 3
×3 stencils is given by

φ(i, j, k) =

1
∑

p=−1

1
∑

q=−1

1
∑

r=−1

(

1

2

)3(1

2

)(|p|+|q|+|r|)

φ0(i+ p, j+ q, k+ r). (2)

The lumen wall surface is defined by φ = 0, and φ > 0 for the
hemodynamic flow region (Figure 3A). To apply the boundary

Frontiers in Physiology | www.frontiersin.org June 2018 | Volume 9 | Article 681166

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Seo et al. Automated Method for Aneurysm Hemodynamics

FIGURE 1 | Preparation of angiogram data for the automated flow simulation. (Left) 3D angiogram of vessels with a target aneurysm identified. (Right) Cartesian ROI

set around the target aneurysm with the inflow vessel identified. Green dots represent the center of each face of the Cartesian ROI.

FIGURE 2 | Identifying lumen region by a region growing algorithm. (Left) Original grayscale image with the intensity (I). (Right) Identified lumen with the threshold

intensity, I0 = 500. The region for which intensity, I, greater than the threshold, I0 is identified as lumen and the masking function value M is set to 1; otherwise M = 0.

condition on the lumen wall, the distance from the Cartesian
grid point to the wall location is required and this is computed
automatically as shown in Figure 3B by

dx =
φ

∂φ/∂x
, dy =

φ

∂φ/∂y
, dz =

φ

∂φ/∂z
, (3)

where dx, dy, and dz are the distances to the wall in x,
y, and z directions, respectively. Once these distances are
calculated, the wall boundary condition for the flow simulation
is imposed by the following way. Since the flow equations are
solved on the Cartesian grid, the boundary conditions for the
flow velocities are applied by imposing the cell face velocity,
UBC as shown in Figure 4. The value of UBC is obtained by
interpolation/extrapolation with the velocity on the wall uw, and
on the flow region, ui. In the x-direction, for example, for the no-
slip, stationary wall (uw = 0), if the distance from the Cartesian

grid point to the wall, dx, is smaller than the half of grid spacing,
1x/2, UBC is given by the linear interpolation:

UBC = ui

(

1−
1x

2dx

)

. (4)

If dx>1x/2, UBC is calculated by a ghost fluid method (Fedkiw
et al., 1999). First, the adjacent grid point outside the flow region
is identified and marked as a ghost point. To find the velocity on
the ghost point, uGC, the image point in the flow region is found
by mirroring the ghost point with respect to the wall position.
Note that the distance from the ghost point to the wall is the
same with the distance from the wall to the image point. For the
no-slip, stationary wall (uw = 0), therefore, uGC is given by

uGC = −uIM, (5)
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FIGURE 3 | (A) Level-set function φ defined by the image intensity. The lumen wall surface is defined by φ = 0. (B) Distance from the Cartesian grid point to the lumen

wall location.

FIGURE 4 | A schematic describing the imposition of wall boundary condition.

The rectangle with dashed line represents a computational cell. Triangle

symbol indicates the cell face center where the boundary velocity, UBC is

imposed. Detailed description is provided in the text.

where uIM is the velocity on the image point, which can be
found by interpolation using flow velocities on the Cartesian grid
points;

uIM = ui +
ui+1 − ui

∆x
(∆x− 2dx). (6)

Finally, UBC is given by

UBC =
1

2
(uGC + ui) =

ui − ui+1

∆x

(

∆x

2
− dx

)

. (7)

Inflow Velocity Profile
The flow simulations in the proposed method are performed by
imposing the flow velocity in the inflow vessels. It is assumed that
the inflow velocity is aligned with the vessel centerline. Also, the
radial distribution of the velocity profile is in general specified as
a combination of a steady parabolic and an oscillatoryWomersley
profile as follows

u(r, t) = uparabolic(r)+ uoscillatory(r, t;Wo). (8)

where the steady flow profile is prescribed as uparabolic(r) =

U0(1− r2/R2) and the oscillatory profile uoscillatory is determined

in terms of theWomersley numberWo = R
√

ρ2πf0/µ, (Loudon
and Tordesillas, 1998) where f0 is the heart rate (Hz), R is the
radius of the vessel and µ is the Newtonian viscosity of blood.
The oscillatory profile can also be constructed by superposing
a number of Fourier modes at harmonics of f0 to model more
realistic inflow profiles (Cebral et al., 2005a; Valencia et al.,
2008). The radius of the artery is available directly from the
segmentation. The other parameters needed are U0 and the heart
rate f0. Both of these may either be provided by the user based on
patient-data, or in the absence of this information, simulations
may be carried out for a range of these parameters.

Because the inflow vessels are not always normal to the
boundary of the ROI, the following prescription is applied.
First, the local, unit vessel centerline vector, Es is determined by
calculating the vessel center point, Exc using the masking function,
M(i, j, k). For example, if the inflow boundary is at the ROI
boundary, k= kmin, the vessel center points are calculated at each
k index near the boundary by;

Exc(k) =

imax
∑

i=imin

jmax
∑

j=jmin

M(i, j, k) · Ex(i, j, k)

imax
∑

i=imin

jmax
∑

j=jmin

M(i, j, k)

, (9)
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where Ex is the grid center coordinates. The local centerline vector,
Es is then obtained byEs = Exc(kmin+1k)−Exc(kmin). Once the vessel
center point is found at the inflow boundary, in-plane radius
vector, ER can be defined on any grid points inside the inflow vessel
lumen (see Figure 5) by ER = Ex−Exc. To prescribe a radial velocity
profile, the radius vector normal to the vessel centerline vector is
computed by a vector rejection:

ER′(i, j, k) = ER(i, j, k)− (ER(i, j, k) · Es)Es. (10)

The radial inflow velocity profile can be specified using this radius
vector. For example, a fully developed, parabolic profile for steady
flow is given by

EU(i, j, k) = U0



1−

(

|ER′|

R′
max

)2


Es, (11)

where R′
max is the maximum value of |ER′| over the inflow

boundary. More realistic, time dependent velocity profile can also
be employed by using Equation (8).

Immersed Boundary Flow Solver
The hemodynamic simulation is performed by solving the
incompressible Navier-Stokes equations on the Cartesian grid
using the immersed boundary method (Mittal and Iaccarino,
2005). In the present study, a Newtonian fluid assumption is
employed and the governing equations for the hemodynamic
flow are given by

∇ · EU = 0, ρ
∂ EU

∂t
+ ρ( EU · ∇) EU+∇P = µ∇2 EU, (12)

FIGURE 5 | Vessel center line (Es) and radius ( ER′) vectors. The vessel/aneurysm

geometry is automatically segmented in the Cartesian ROI. The center line

vector is defined by the vessel center points (red circle symbols) and the vessel

radius vector is calculated from the in-plane radius vector (ER).

where EU is the flow velocity vector, P is the pressure, ρ and µ are
the density and dynamic viscosity of the blood. The equations are
discretized by using the second-order finite-difference methods
in time and space. The flow solver used in this study is a modified
version of the immersed boundary, incompressible flow solver,
ViCar3D (Mittal et al., 2008). The solver has been extensively
validated for a variety of laminar/turbulent flows (Mittal et al.,
2008; Vedula et al., 2014), and employed for a wide range of
studies of cardiac hemodynamics, including modeling of left
ventricular (LV) hemodynamics with natural (Zheng et al., 2012;
Seo et al., 2014) and prosthetic mitral valves (Choi et al., 2014),
role of ventricular trabeculae on LV hemodynamics (Vedula et al.,
2016), and LV thrombus formation (Seo et al., 2016). The solver
is also fully parallelized by using a message passing interface
(MPI) library, and the performance scales well up to O(1000)
processors. As mentioned above, Cartesian voxel space of the
3D angiogram can directly be used as a Cartesian grid for the
flow simulation. For 3D angiograms, the voxel size is about
0.2∼0.3mm, and this is adequate as the grid spacing for the flow
simulation. The flow equations are solved only for the lumen
region identified by the masking function, M, and the lumen
wall boundary condition is prescribed by the level-set function
method shown in section Level-Set Function andWall Boundary
Condition. The procedure of solving Equation (12) is as follows:
the second equation of Equation (12) (momentum equation)
is discretized on the Cartesian grid using the second-order
finite difference method without the pressure gradient term,
and integrated in time using the second-order Crank-Nicolson
method to obtain the intermediate velocity fields. Applying the
continuity equation (the first equation of Equation 12), one can
obtain the Poisson equation for the pressure, and this is solved
by using a parallelized bi-conjugate gradient method. Finally, the
intermediate velocity field is corrected by adding the pressure
gradient term to advance the solution over one time-step. More
detailed solution procedure can be found in Mittal et al. (2008).

Post-processing
Flow-induced forces on the lumen wall (pressure and viscous
shear stress) are considered important factor for characterizing
the aneurysm rupture risk. Since the pressure gradient in the wall
normal direction is usually set to 0 (∂P/∂n = 0), the pressure on
the lumen wall can easily be calculated by simple interpolation
using the values on Cartesian fluid cells near the wall. The viscous
shear stress involves velocity gradients, and thus is calculated by
the following way. On the Cartesian fluid cell adjacent to the
wall, the velocity gradients are calculated by using the boundary
velocities at the cell faces as shown in Figure 6.

∂u
∂x ≈

Ui+1/2(1−Mi+1,j,k)+Ui−1/2(1−Mi−1,j,k)+(Mi+1,j,k−Mi−1,j,k)ui,j,k
1x/2 ,

∂u
∂y ≈

Uj+1/2(1−Mi,j+1,k)+Uj−1/2(1−Mi,j−1,k)+(Mi,j+1,k−Mi,j−1,k)ui,j,k
1y/2 ,

∂u
∂z ≈

Uk+1/2(1−Mi,j,k+1)+Uk−1/2(1−Mi,j,k−1)+(Mi,j,k+1−Mi,j,k−1)ui,j,k
1z/2 ,

(13)

where 1x, 1y, 1z are the grid spacing, Mi,j,k is the masking
function value, and subscripts denote grid indices. The wall
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FIGURE 6 | Schematic describing of the calculation of velocity gradient near

the wall. Solid line: Vessel wall boundary identified by the level-set function.

Rectangle with dashed line: A computational cell adjacent to the wall. Triangle

symbol: The cell face center where the boundary velocity is imposed.

normal vector is given by the gradient of the level-set function
as

En =
∇φ

|∇φ|
. (14)

For the incompressible flow, the normal gradient of the wall
normal velocity component on the stationary wall is supposed
to be zero. It is found however that this is not guaranteed
numerically for the present method, because the normal gradient
is not directly calculated on the wall. This numerical error scales
with the grid spacing (1x). The viscous wall shear stress is then
calculated by using the tangential velocity gradient in the wall
normal direction as

Eτw = µ
∂Eut

∂n
= µ

(

∂Eu

∂n
−

∂Eun

∂n

)

= µ {∇Eu · En− ((∇Eu · En) · En) En} ,

(15)

where ∇Eu is the velocity gradient tensor, and t and n are the
direction tangent and normal to the wall, respectively. The wall
shear stress value is stored on the nearest Cartesian fluid cell to
the wall, and in the post-processing, the value is projected onto
the wall.

Patient-Specific Cases
The developed simulation method is tested with patient-specific
angiogram data. A total of seven anonymized patient-specific
cases are selected from the Johns Hopkins University Intracranial
Aneurysm Database (JHUIAD) so as to provide a range of
aneurysm morphologies. The 3D angiograms for these cases are
shown in Figure 7. The aneurysms are categorized into 3 types

(fusiform, saccular, sidewall), and the size parameter, SR (size
ratio: the ratio of aneurysm maximal length to the parent vessel
diameter; Rahman et al., 2010) is listed in Table 1 for these cases.

RESULTS

The developed method has been applied to the set of seven
patient-specific cases shown in Figure 7. The cases include 1
fusiform (case A) at a branching, 2 saccular (cases C and D)
type aneurysms located at bifurcation, and 4 sidewall saccular
aneurysms (cases B,E–G). For the given angiogram data, an
experienced neurosurgeon has performed themanual procedures
described in section Region of Interest and Boundary Conditions.
The neurosurgeon set the appropriate threshold intensity value
and ROI, and provided the region growing seed point and the
flow direction. The threshold intensity values are different for
each case based on the overall contrast of the images, and chosen
for the best representation of the morphology. The Cartesian
ROI is determined to include sufficient length of the vessels both
upstream and downstream from the target aneurysm. For cases
with strong curvature of the vessel upstream of the aneurysm,
the ROI is extended to include the upstream curved vessels. This
is done so as to incorporate the effects of complex upstream
flow on the aneurysm, and to minimize the artifacts due to
the truncation of the domain. The lumen regions are then
automatically identified by using the region-growing algorithm
described in section Automatic Segmentation and Cleaning and
the results are presented in Figure 8 for the sample cases. This
shows that the present algorithm is capable of identifying the
aneurysm and connected vessels for various types of the cerebral
aneurysms.

The proposed simulation procedure and level-set based,
immersed boundary flow solver have been applied to the
prepared patient-specific aneurysm data shown in Figure 8. The
computational domain covers the ROI and the 3D voxel space
is directly used as the Cartesian grid for the flow simulations.
The computation employed up to about 2 million Cartesian
grid points with isotropic resolution of 0.2∼0.27mm depending
on the ROI size and the voxel resolution. For the present flow
simulations, a steady inflow velocity of 0.5 m/s, which is in
the range of patient-specific blood flow speed reported in the
previous study (Valencia et al., 2008), is applied to all cases.
Flow simulations are performed for 5 s of real time which
takes about 3 h. with 48 CPU cores on the MARCC (Maryland
Advanced Research Computing Center) cluster for each case.
The flow simulation results are presented in Figure 9, where
the flow patterns are visualized via streamlines. Overall, the
streamlines are tangent to the axial direction of the vessels,
but as one can see in the figure, the curved vessels generate
swirling flow patterns in the streamwise direction, i.e. streamwise
vorticity (see Figures 9B,D–G). The wall shear stress (WSS)
is then computed by the method described in section Post-
Processing as a post-processing. The computed magnitude of
WSS on the lumen wall surface is shown in Figure 10. Note
that the boundary is not represented by the surface mesh but
by the iso-contour of the level set function, φ = 0. Since
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FIGURE 7 | 3D angiograms of patient-specific intracranial aneurysm cases (A–G).

TABLE 1 | Types and size parameters for the patient-specific aneurysm cases.

Case A B C D E F G

Type Fusiform Saccular Saccular Saccular Saccular Saccular Saccular

Location Branching Sidewall Bifurcation Bifurcation Sidewall Sidewall Sidewall

SR 1.28 1.5 1.87 1.33 0.77 1.29 1.7

SR, the ratio of aneurysm maximal length to the parent vessel diameter.

FIGURE 8 | Automatically segmented aneurysm and vessel geometries using the present region-growing algorithm for the sample cases (A–G). Target aneurysm and

inflow direction are marked.

the simulations are not performed with patient-specific inflow
conditions, the overall magnitude of the WSS results may
be outside the physiological range. Thus, only a comparative

analysis of the WSS for the various cases is appropriate here.
For most cases, the WSS magnitude is low on the aneurysm
wall, and high on the aneurysm neck and walls of the parent
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FIGURE 9 | The results of automated hemodynamic simulations using the present immersed boundary, level-set method for the sample cases (A–G). Streamtraces

colored by the normalized velocity magnitude,|Eu|/U0. The color contours are truncated at the range shown in the color bar for the best visualization of local

distributions.

FIGURE 10 | The results of automated hemodynamic simulations using the present immersed boundary, level-set method for the sample cases (A–G). Iso-surfaces of

φ = 0 are plotted and colored by the calculated magnitude of wall shear stress (unit in kPa). The color contours are truncated at the range shown in the color bar for

the best visualization of local distributions.

vessel. For some cases however, (cases E–G), locally high WSS
values are observed on the aneurysm wall. The results show that
the present level-set based immersed boundary flow solver can
resolve the hemodynamics for cerebral aneurysms with a wide
range of shapes.

The hemodynamic metrics normalized suitably with the
inflow velocity are listed in Table 2 for all cases. The WSS on

the aneurysm wall is normalized by the inflow velocity, and its
maximum (max), average over the aneurysm wall (avg), and
variation (var) are calculated. In order to assess the overall flow
strength inside the aneurysm, the normalized velocity magnitude
is averaged over the volume inside the aneurysm and presented
in Table 2 as well. The results are discussed in the following
section.
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DISCUSSION

In the present study, a highly-automated method to perform
hemodynamic modeling of cerebral aneurysms using the patient-
specific angiogram data has been proposed. The key idea is
the direct use of voxelized contrast information from the
3D angiograms to construct a level-set function for the flow
simulation with the immersed boundary method on a Cartesian
grid. In this approach, the target aneurysm and vessels of
interest can be segmented automatically, and no body-conformal
surface/volume meshes need to be generated for the flow
simulation. The Cartesian grid methods for the simulation of
aneurysm hemodynamics were reported in the previous studies
for the simple volume penalization method using the masking
function (Mikhal and Geurts, 2014), the lattice Boltzmann
method (He et al., 2009; Závodszky and Paál, 2013), and the
boundary data immersion method (Otani et al., 2018). In
the present study, we employ the masking function approach
for the automatic segmentation of vessel/aneurysm from the
medical imaging data, and the wall boundaries are represented
by the level-set function constructed directly by using the
image intensity information. For the simulation of aneurysm
hemodynamics on the Cartesian grid, a well validated, “sharp-
interface” immersed boundary method (Mittal et al., 2008) is
adopted, and this solver can provide high resolution, high fidelity
flow simulation results because the boundary conditions are
imposed on the identified wall location precisely. By employing
the present method, manual operations by a user to conduct
hemodynamic simulations with the patient-specific angiogram
data can be minimized, and this should in principle, enable us
to scale up the hemodynamic modeling to very large number of
sample cases.

The method developed in this study has been tested for
a set of seven patient-specific cases picked from the Johns
Hopkins Intracranial Aneurysm Database (JHUIAD). Although
the sample size is in the current study is small, the cases involve
a variety of aneurysm morphologies, sizes, and locations (see
Figure 7 and Table 1). The developed algorithm successfully
segmented various types of aneurysm and connected vessels
within the ROI automatically as shown in Figure 8. The
hemodynamic simulations for each case are then also performed
automatically by the level-set based immersed boundary flow
solver, and the results are presented in Figures 9, 10 and Table 2.

The present simulation results show that the values and the
distribution of the wall shear stress (WSS) are very different
for each patient-specific case. It should be noted that, although
the peak WSS values in Figure 10 are in the range of reported
values (Shojima et al., 2004), the current simulations are not
performed with the patient-specific inflow conditions, and thus
the WSS values could be over-predicted (McGah et al., 2014).
Thus, comparative analysis of the WSS is warranted here. The
present simulation results show that the aneurysms formed
around the vessel branching/bifurcation (A,C,D) are exposed to
low WSS in general. On the other hand, for the aneurysms on
the sidewall of high curvature vessels (B,E–G), a higher WSS
is observed, especially in the local region of the aneurysm wall.
These observations are in-line with the previous computational

TABLE 2 | Normalized hemodynamic metrics.

Case A B C D E F G

τw
∗
,max 0.0096 0.061 0.0075 0.031 0.062 0.11 0.09

τw
∗
,avg 0.0024 0.012 0.00062 0.0047 0.02 0.025 0.021

τw
∗
,var 0.0015 0.0081 0.00094 0.0039 0.012 0.017 0.013

(∣

∣Eu
∣

∣ /U0
)

avg 0.003 0.13 0.007 0.04 0.18 0.2 0.2

τw
∗ = |Eτw| /(ρU0

2 ): wall shear stress normalized by inflow into the artery. Subscripts,

max, avg, and var denote the maximum, average, and variation over the aneurysm wall,

respectively.
(∣

∣Eu
∣

∣ /U0

)

avg
: normalized magnitude of velocity averaged over the aneurysm

volume.

studies (Castro et al., 2009; Valen-Sendstad and Steinman, 2014;
Cebral et al., 2015). For bifurcation aneurysms, the flow inside
the aneurysm is relatively weak (normalized average velocity
magnitude: 0.003∼0.04), and high values of WSS are observed
only around the aneurysm neck and on the walls of the parent
vessels (see Figures 10A,C,D; Shojima et al., 2004; Valencia et al.,
2008; Castro et al., 2009). The WSS values on the aneurysm wall
are consistently higher for the sidewall aneurysms as compared
to ones at a bifurcation. This is because the high curvature
of the vessel upstream the aneurysm results in more complex
flow pattern and allows the stronger flow inside the aneurysm
as one can see in Figures 9B,E–G. The locally high WSSs are
observed at the location where the flow is impinging on or
attaching to the aneurysm wall (Shojima et al., 2004; Castro
et al., 2009; Cebral et al., 2015). The average velocity magnitude
inside the aneurysm listed in Table 2 clearly shows this trend.
The normalized average velocity magnitude for the sidewall
aneurysms (0.13∼0.2) are about an order-of-magnitude higher
than the ones for the bifurcation aneurysms. The increase of flow
strength and WSS for the saccular aneurysm on the sidewall of
curved vessel was reported in the previous study (Meng et al.,
2006). The present simulations show that the strong curvature of
the upstream vessel can also affect the aneurysm hemodynamics
(see Figures 9B,E,G). This implies that the ROI for the aneurysm
hemodynamics simulation needs to be carefully chosen to include
the effects of upstream vessel.

For all the cases (A–G), WSSs vary significantly over the range
of an order-of-magnitude due to the different flow characteristics
(normalized average WSS: 0.00062∼0.025). For the present
cases, the WSS is not correlated with the size parameter
(SR). However, once the aneurysms are categorized by type or
location, the WSSs in the same category show a similar order-of-
magnitude. For example, the saccular aneurysms on the sidewall
(cases B,E–G) present higher average WSS values (0.012∼0.025),
while the bifurcation aneurysms (A,C,D) show lower values
(0.00062∼0.0047). This suggests that a proper categorization
of aneurysm morphology is essential for the reliable statistical
analysis, and it also emphasizes the need for a large number
of samples. Automation of the processes from patient imaging
to hemodynamic modeling and post processing, such as is
presented here would enable the scaling up of these models to
very large sample sizes. Quantitative information regarding the
hemodynamics of aneurysms obtained and analyzed for tens of
thousands of cases could lead to fresh insights and new metrics
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regarding the factors that are responsible for aneurysm growth
and rupture.

While the present study demonstrates that the method
described here is capable of conducting simulations of aneurysm
hemodynamics with very limited human intervention, the
method has some limitations. First, there are still a significant
number of user-defined features and actions such as the
determination of segmentation criteria and the ROI size and
the identification of inflow/outflow vessels, and these should
be reduced to further automate the process. This could
be accomplished by employing advanced image processing
algorithms and methods such as machine learning. Second, the
current method employs a fully developed inflow velocity profile,
but if the upstream vessel has high curvature, a fully developed
profile may not be valid. This issue could be addressed in a
number of ways including by setting the ROI to avoid high
curvature at the inflow boundary. For the outflow boundary
condition, a traction-free condition is used in the present
simulations. For more realistic hemodynamic modeling, the
downstream boundary could employ a lumped-element model,

which are quite well established in cardiovascular modeling
(Esmaily-Moghadam et al., 2013; Min et al., 2015). Finally, in

the present method, the voxel spacing of the angiogram data is
directly used as a Cartesian grid spacing for the flow simulation.
However, this grid resolution may not be enough especially
for the smaller vessels. A simple resampling method based on
the subdivision of the voxel can be employed to increase the
Cartesian grid resolution for the flow simulation.
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Computational fluid dynamics (CFD) models of blood flow in the left ventricle (LV)

and aorta are important tools for analyzing the mechanistic links between myocardial

deformation and flow patterns. Typically, the use of image-based kinematic CFD

models prevails in applications such as predicting the acute response to interventions

which alter LV afterload conditions. However, such models are limited in their ability

to analyze any impacts upon LV load or key biomarkers known to be implicated in

driving remodeling processes as LV function is not accounted for in a mechanistic

sense. This study addresses these limitations by reporting on progress made toward

a novel electro-mechano-fluidic (EMF) model that represents the entire physics of LV

electromechanics (EM) based on first principles. A biophysically detailed finite element

(FE) model of LV EM was coupled with a FE-based CFD solver for moving domains using

an arbitrary Eulerian-Lagrangian (ALE) formulation. Two clinical cases of patients suffering

from aortic coarctations (CoA) were built and parameterized based on clinical data

under pre-treatment conditions. For one patient case simulations under post-treatment

conditions after geometric repair of CoA by a virtual stenting procedure were compared

against pre-treatment results. Numerical stability of the approach was demonstrated by

analyzing mesh quality and solver performance under the significantly large deformations

of the LV blood pool. Further, computational tractability and compatibility with clinical

time scales were investigated by performing strong scaling benchmarks up to 1536

compute cores. The overall cost of the entire workflow for building, fitting and executing

EMF simulations was comparable to those reported for image-based kinematic models,

suggesting that EMF models show potential of evolving into a viable clinical research

tool.

Keywords: cardiac mechanics, computational fluid dynamics, finite element model, arbitrary Lagrangian-Eulerian

formulation, patient-specific modeling, translational cardiac modeling, total heart function

176

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00538
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00538&domain=pdf&date_stamp=2018-05-28
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:elias.karabelas@medunigraz.at
mailto:gernot.plank@medunigraz.at
https://doi.org/10.3389/fphys.2018.00538
https://www.frontiersin.org/articles/10.3389/fphys.2018.00538/full
http://loop.frontiersin.org/people/425956/overview
http://loop.frontiersin.org/people/559198/overview
http://loop.frontiersin.org/people/425088/overview
http://loop.frontiersin.org/people/559246/overview
http://loop.frontiersin.org/people/541179/overview
http://loop.frontiersin.org/people/527907/overview
http://loop.frontiersin.org/people/509864/overview
http://loop.frontiersin.org/people/24950/overview


Karabelas et al. CoA Impact Upon LV Load

1. INTRODUCTION

CFD models of blood flow in the LV and aorta are important
tools for analyzing the mechanistic links between myocardial
deformation and flow patterns. Typically, such models are either
driven by prescribed flow profiles measured in the LV outflow
tract or the aortic root (Goubergrits et al., 2013; Ralovich et al.,
2015; Andersson et al., 2017), or by image-based kinematic
models (Doenst et al., 2009; Schenkel et al., 2009; Mihalef
et al., 2011; Seo et al., 2013; Chnafa et al., 2014; Su et al.,
2016) built from segmentation of 4D medical imaging datasets.
While such models have proven to be valuable for analyzing
the hemodynamic status quo of a patient or for predicting
changes in hemodynamics in the aorta secondary to intervention
such as aortic valve repair (Kelm et al., 2017) or stenting of
a coarctation (Goubergrits et al., 2015), they are inherently
limited in their ability to assess cardiac function as the biophysics
driving myocardial activation and deformation is not taken
into consideration in the model formulation. EMF models that
capture the entire physics of a heartbeat based on first principles
show promise to overcome this limitation (Crozier et al., 2016a)
by rendering feasible the assessment of all essential myocardial
parameters, which are known to be key factors driving ventricular
remodeling and disease progression. Thus EMF models may
offer, in principal, the potential of predicting longer term
outcomes beyond changes in the acute response to therapies.

However, due to a number of factors such as the inherent
complexity of multiphysics models, the large-scale motion and
complex deformation of the myocardial walls as well as the
significant computational burden, these models pose substantial
methodological challenges. For LV EMF models and similar
applications, methods to overcome the problem of large-scale
deformations can be roughly classified into two categories: ALE
formulations using a moving fluid mesh (Tang et al., 2008, 2010;
Nordsletten et al., 2011; Vázquez et al., 2015; de Vecchi et al.,
2016) and immersed boundary (IB) methods (Vigmond et al.,
2008a; Seo and Mittal, 2013; Choi et al., 2015). While ALE
formulations often rely on severe simplifications or automatic
remeshing strategies (Long et al., 2013), IB methods are more
versatile as the moving wall of the ventricle is not explicitly
tracked. However, IBs and all related non-boundary-fitting
methods have a reduced accuracy for the solution near the fluid-
solid structure interface due to interpolation errors, pose severe
challenges on the implementation, and additional degrees of
freedom have to be introduced on interface cut elements, which
all contributes to significantly higher computational costs (van
Loon et al., 2007).

In this study, we report on the progress made toward a novel
EMF model of the human LV that is entirely based on first
principles and that copes with significantly large defomations,
i.e., ejection fractions (EFs) beyond 60%, without requiring
remeshing or IB principles. Validated in silico models taken
from a recent clinical modeling study where a cohort of in
silico EM LV and aorta models of patients suffering from aortic
valve disease (AVD) and/or CoA (Augustin et al., 2016a) were
built, served as kinematic driver to a computational model of
hemodynamics in the LV cavity and aorta. A hybrid two stage

modeling approach was adopted with regard to hemodynamics.
First, the afterload imposed by the circulatory system onto the
LV was represented by a lumped model of afterload and coupled
to an EM model of LV and aorta to compute LV kinematics.
Subsequently a full-blown CFD model with moving domain
boundaries based on an ALE formulation was unidirectionally
or weakly coupled to the EM model using the kinematics of its
endocardial surface as input. We show validation results for two
selected clinical CoA cases under pre-treatment conditions and
compare pre-treatment and post-treatment simulation results for
one patient case in which the CoA was geometrically repaired by
a virtual stenting procedure. Further, we demonstrate numerical
feasibility of the implemented approach by analyzing changes in
mesh quality and its impact upon solver performance under the
significantly large deformations of the LV blood pool mesh and
also provide strong scaling benchmarking results for a range of
96–1,536 compute cores. The overall cost of the entire workflow
for building, fitting and execution of EMF simulations is ≈ 48
h which is comparable to plain image-based kinematic driver
models (Mittal et al., 2016).

2. METHODS

The methodology to develop a coupled model of cardiac and
cardiovascular hemodynamics based on an ALE formulation is
structured as follows.

i) We begin in section 2.1 by describing MRI data acquisition
and anatomical FE model generation of the LV and aorta for
two patients suffering from CoA.

ii) Then, a brief summary of all model components is
given comprising an electrophysiology (EP) model to drive
electrical activation and repolarization (section 2.2.1); an
EM model describing passive biomechanics as well as the
generation of active stresses (section 2.2.2); afterload models
to provide appropriate boundary conditions on the LV
endocardium during the ejection phase (section 2.2.3); and
a CFD model with moving domain boundaries representing
blood flow in the LV and aorta during ejection. The EM and
CFD model are weakly coupled in a forward fluid structure
interaction (FSI) framework, where the EMmodel is used as a
kinematic driver to move the fluid domain (section 2.3).

iii) The solution procedure and software implementation details
are outlined in section 2.4.

iv) Finally, procedures implemented for the patient-specific
parameterization of themajormodel components is described
in section 2.5.

2.1. Clinical Data Acquisition and Model
Generation
Hemodynamic data of two patients with clinical indication for
catheterization due to CoA—all preceding a cardiac magnetic
resonance study—were acquired before and after CoA treatment
by stent implant, see Table 1. CoA treatment indicators included
an echocardiographic measured, peak systolic pressure gradient
across the stenotic region of > 20mmHg and/or arterial
hypertension. The study was approved by the institutional
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TABLE 1 | CoA patient characteristics from MRI and invasive catheter pressure recordings including end-diastolic volume (EDV), end-systolic volume (ESV), stroke

volume (SV), ejection fraction (EF), heart rate (HR), cardiac output (CO), diastolic and systolic pressures recorded in the aorta or estimated from cuff measurements

(Pao/cuff,dia and Pao/cuff,sys), mean arterial pressure (MAP) computed from pressure recorded invasively in the aorta or estimated from Pcuff,dia and Pcuff,sys, and aortic

valve open pressure Popen determined from invasive pressure recordings.

Sex Age EDV ESV SV EF HR CO Pdia
ao/cuff

P
sys
ao/cuff

MAP Popen

(ml) (ml) (ml) (%) (bpm) (ml/s) (mmHg) (mmHg) (mmHg) (mmHg)

28-Pre F 9 88.2 30.6 57.54 65.3 91 87.46 71.1/62 122.7/138 88.3/87.3 71.33

44-Pre M 12 91.7 31.6 60.09 65.5 76 76.31 74.6/120 125.2/154 91.5/131.3 74.78

research ethics committee following the ethical guidelines of the
1975 Declaration of Helsinki. Written informed consent was
obtained from the participants’ guardians. Acquired data are
summarized in Table 1.

2.1.1. MRI Acquisition and Post Processing
MR imaging was done with a whole body 1.5 Tesla MR scanner
Achieva R 3.2.2.0 using a five-element cardiac phased-array
coil (Philips Medical System, Best, Netherlands). Three MRI
sequences were used further in our study: (i) flow-sensitive four-
dimensional (4D) velocity-encoded magnetic resonance imaging
(4D VEC-MRI), (ii) three-dimensional (3D) anatomical imaging
of the whole heart (3DWH) during diastasis, and (iii) 4D gapless
short axis Cine MRI.

4D VEC-MRI of the thorax was performed using an
anisotropic 4D segmented k-space phase contrast gradient echo
sequence. Retrospective electrocardiographic gating without
navigator gating of respiratory motion in order to minimize
acquisition time was used. Sequence parameters were: acquired
voxel 2.5 × 2.5 × 2.5mm; reconstructed voxel 1.7 × 1.7 ×

2.5mm; repetition time 3.5ms; echo time 2.2ms; flip angle
5°; 25 reconstructed cardiac phases; number of signal averages
1; High velocity encoding (3–6 m/s) in all three directions
was used in order to avoid phase wraps in the presence of
coarctation and associated secondary flow. Flow measurements
were completed with automatic correction of concomitant phase
errors. Postprocessing for analysis of flow rates across the aortic
valve was carried out with GTFlow 1.6.8 software1 (Gyrotools,
Zurich, Switzerland).

The 3DWH exemplary sequence parameters were: acquired
voxel 0.66 × 0.66 × 3.2mm; reconstructed voxel 0.66 × 0.66 ×

1.6mm; repetition time 4.0ms; echo time 2.0ms; flip angle 90°;
and number of signal averages 3.

Short axes Cine imaging data were acquired with sequence
parameters: 16 slices, with an acquisition resolution of 0.86 ×

0.86 × 6.0 mm, repetition time 4.24 ms, echo time 2.12 ms,
flip angle 60◦ and 25 automatically reconstructed cardiac phases
which were used to determine LV volume traces. The non-
compact myocardium as well as papillary muscles were counted
toward blood pool volume.

MRI based pressure mapping allowing to assess non-
invasively the relative pressures in a vessel by solving Pressure

1http://www.gyrotools.com/products/gt-flow.html

Poisson equation (PPE) was done with MevisFlow2. Briefly, the
PPE can be derived from the Navier–Stokes equations by taking
the divergence of the momentum Equation (26), see Gresho
and Sani (1987) and Krittian et al. (2012) for more details. For
more details we refer to Krittian et al. (2012). The processing
and analysis pipeline of the pressure mapping consists of the
following four steps.

i) Semi-automatic segmentation (labeling) of the aortic domain
from 3DWH data generating 3D mask of the aorta.

ii) Background phase correction and phase-unwrapping of
the 4D VEC-MRI data and generation of a sequence of
volumetric velocity vector fields.

iii) Coarse semi-automatic segmentation of the aorta based on
magnitude and phase contrast of the 4D VEC-MRI data and
registration with 3DWH based mask of the aorta.

iv) Solving (PPE) at each time step having 4D VEC-MRI data as
input. Furthermore, a 5% mask size reduction is applied in
order to avoid numerical inconsistencies close to the vessel
wall as suggested earlier (Meier et al., 2010).

Relative pressuremaps are represented with zero pressure located
at the center of the CoA (narrowest location). 3D mask based
on 3DWH data was used due to its better spatial resolution
compared to 4D VEC-MRI data. Correction of velocity data (step
ii) was done in order to minimize noise and aliasing artifacts
originating from multiple sources.

2.1.2. Invasive Catheter Recordings
During catheterization, pressure was recorded over the
cardiac cycle in the ascending aorta and the LV before
treatment and repeated in the ascending aorta after an
interventional treatment procedure was performed. Pressures
were recorded simultaneously at three predefined locations (LV,
ascending aorta, and descending aorta) and the femoral artery
during catheterization. Patients were sedated by intravenous
administration of a bolus of midazolam (0.1–0.2mg/kg,
max. 5 mg), followed by a bolus of propofol (1–2mg/kg, as
needed) and continuous infusion of propofol (1–2mg/kg,
as needed). Pressure measurements were taken with senior
cardiologists present. Pigtail catheters (Cordis, Warren, NJ,
USA) of 5-6F were connected to pressure transducers (Becton-
Dickinson, Franklin Lakes, NJ, USA). Routinely, patients
received balloon angioplasty with or without additional

2https://www.mevis.fraunhofer.de/en/solutionpages/mevisflow-non-invasive-

interactive-exploration-of-in-vivo-hemodynamics.html
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placement of a stent in order to treat a given stenosis by
removing the narrowing of the vessel and thus the pressure
gradient. To reduce duration of catheterization, pressures
were measured post-treatment only in the ascending aorta.
The Schwarzer hemodynamic analysis system (Schwarzer,
Heilsbronn, Germany) was used to amplify, acquire, and analyze
pressure signals.

2.1.3. Anatomical FE Model Generation
Multi-label segmentation of the LV myocardium, LV blood pool,
left atrium (LA) and aortic cavities was done at the DHZB
using 3DWH data and the ZIB Amira software3 (Stalling et al.,
2005). The segmentations were smoothed and upsampled to
a 0.1mm isotropic resolution using a variational smoothing
method (Crozier et al., 2016a). The resulting high resolution
multi-label segmentation was meshed using CGAL4 (The CGAL
Project, 2017), giving a global mesh �0

s,total
consisting of

tetrahedral elements. Here, (•)0 denotes themechanical reference
configuration at end-diastolic pressure. Themesh was subdivided
into various subdomains corresponding to predefined labels
which are summarized in Equation (3). We write

�0
s,total =

⋃

i∈I

�0
s,i, (1)

with the index set

I := {lv, ao, cushion, av,mv, lvbp, aobp}, (2)

see Figures 1E–G for illustration. The elements in the index set
are abbreviations for the following labels

lv ↔ Myocardium,

ao ↔ Aortic wall,

cushion ↔ Elastic cushion,

av ↔ Aortic valve,

mv ↔ Mitral valve,

lvbp ↔ Left ventricular bloodpool,

aobp ↔ Aortic bloodpool.

(3)

With this, we define the following submeshes

�0
s := �0

s,total\
(

�0
s,lbvp ∪ �0

s,aobp

)

, (4)

�0
s,bp = ˜�0

f
:= �0

s,av ∪ �0
s,lvbp ∪ �0

s,aobp, (5)

where �0
s is the solid domain and �0

s,bp
is the unsmoothed blood

pool domain used for extracting a smoothed CFD mesh, see
Figures 1E,F. For later use, we define the following surfaces

Ŵ0
s,N := ∂

((

�0
s,lv ∪ �0

s,av ∪ �0
s,mv

)

∩ �0
s,lvbp

)

, (6)

Ŵ0
s,H := ∂�0

s\
(

Ŵ0
s,N ∪ Ŵ0

s,D

)

, (7)

Ŵ0
s,bp

:= ∂�0
s,bp\Ŵ

0
s,D, (8)

3https://amira.zib.de
4http://www.cgal.org

where Ŵ0
s,D denote the cutoff faces as indicated by blue lines

in Figure 1; Ŵ0
s,N are surfaces subject to pressure; and Ŵ0

s,H are
surfaces with homogeneous Neumann boundary conditions. In
order to avoid numerical difficulties with non-smooth, jagged
boundaries, the surface of the mechanical blood pool domain
Ŵ0
s,bp

was extracted and smoothed using the VMTK toolbox5

(Antiga et al., 2008). The smoothed surface, Ŵ0
f,wall

, was used to
define the boundary of the fluid domain reference configuration,
�0

f
, for volumetric FE meshing using ANSYS ICEM CFD6.

Refined boundary layers were included in this process to better
resolve sharp gradients in the vicinity of Ŵ0

f,wall
occurring during

simulation of hemodynamics. The various processing stages for
building EM and CFD models are illustrated in Figures 1, 4,
respectively.

2.2. Electromechanical Model
2.2.1. Electrophysiology of the LV
A recently developed reaction-eikonal (R-E) model (Neic et al.,
2017) was employed to generate electrical activation sequences
which serve as a trigger for active stress generation in cardiac
tissue. The hybrid R-E model combines a standard reaction-
diffusion (R-D) model based on the monodomain equation with
an eikonal model. Briefly, the eikonal equation is given as

{
√

∇Xt⊤a V∇Xta = 1 in �0
s,lv

,

ta = t0 on Ŵ0
s,∗,

(9)

where (∇X) is the gradient with respect to the end-diastolic
reference configuration �0

s,lv
; ta is a positive function describing

the wavefront arrival time at location X ∈ �0
s,lv

; and t0 are

initial activations at locations Ŵ0
s,∗ ⊆ Ŵ0

s,N. The symmetric
positive definite 3 × 3 tensor V(X) holds the squared velocities
(

vf(X), vs(X), vn(X)
)

associated to the tissue’s eigenaxes, referred
to as fiber, f0, sheet, s0, and sheet normal, n0, orientations. The
arrival time function ta(X) was subsequently used in a modified
monodomain R-D model given as

βCm
∂Vm

∂t
= ∇X · σ i∇XVm + Ifoot − βIion, (10)

where an arrival time dependent foot current, Ifoot(ta), was
added which is designed to mimic subthreshold electrotonic
currents to produce a physiological foot of the action potential.
The key advantage of the R-E model is its ability to compute
activation sequences at much coarser spatial resolutions that
are not afflicted by the spatial undersampling artifacts leading
to conduction slowing or even numerical conduction block as
it is observed in standard R-D models. Ventricular EP was
represented by the tenTusscher–Noble–Noble–Panfilov model
of the human ventricular myocyte (ten Tusscher et al., 2004).
As indicated in Equations (9, 10), activation sequences and
electrical source distribution in the LV were computed in
its end-diastolic configuration �0

s,lv
, that is, any effects of

5http://www.vmtk.org
6http://www.ansys.com/Services/training-center/platform/introduction-to-

ansys-icem-cfd-Hexa
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FIGURE 1 | Mechanics model generation: Starting from a patient specific MRI scan (A) a segmentation was performed (B) which was then upsampled and smoothed

(C). Myocardial fibers were generated in the tissue according to Bayer et al. (2012) (D). A labeled FE geometry �0
s,total including the blood pool was generated (G).

The geometry has been sliced to reveal the blood pool and valves and has been color coded according to the labels defined in Equation (3). Boundaries Ŵ0
s,D used for

prescribing homogeneous Dirichlet boundary conditions are sketched as blue curves. From this mesh the EM submesh �0
s (E) and the unsmoothed blood pool (F)

were extracted. Boundary Ŵ0
s,N was used to prescribe pressure boundary conditions inside the LV and Ŵ0

s,bp is the surface of the blood pool.

deformation upon electrotonic currents remained unaccounted
for.

2.2.2. Active and Passive Mechanics in the LV and

Aorta
The deformation of the heart is governed by imposed external
loads such as pressure in the cavities or from surrounding tissue
and active stresses intrinsically generated during contraction.
Tissue properties of the LV myocardium and the aorta
are characterized as a hyperelastic, nearly incompressible,
anisotropic material with a non-linear stress-strain relationship.
Mechanical deformation was described by Cauchy’s equation of
motion under stationary equilibrium assumptions leading to a
quasi-static boundary value problem

−∇X · FS(ds, t) = 0 in �0
s , (11)

for t ∈ [0,T], where ds is the unknown displacement; F

is the deformation gradient; S is the second Piola–Kirchhoff
stress tensor; and (∇X ·) denotes the divergence operator in
the Lagrange reference configuration. Homogeneous Dirichlet
boundary conditions

ds = 0 on Ŵ0
s,D, (12)

homogeneous Neumann boundary conditions

FS(Eds, t) = E0 on Ŵ0
s,H, (13)

and inhomogeneous Neumann boundary conditions

FS(ds, t)ns,0 = p(t)J F−⊤(ds, t)ns,0 on Ŵ0
s,N (14)

were imposed, where ns,0 is the outward unit normal vector; p(t)
is the pressure; and J = det F. For sake of clarity, boundary
conditions are illustrated in Figure 1C.

The total stress S was additively decomposed according to

S = Spas + Sact, (15)

where Spas and Sact refer to the passive and active stresses,
respectively. Passive stresses were modeled based on the
constitutive equation

Spas = 2
∂9(C)

∂C
(16)

given a hyper-elastic strain-energy function 9 and the right
Cauchy–Green strain tensor C = F⊤F. Two different strain-
energy functions were used for characterizing passive mechanical
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behavior in the LV and the aorta. In the LV, where the underlying
mesh �0

s,lv
and fiber orientations (f0, s0,n0) are the same as for

the EPmodel, section 2.2.1, the transversely isotropic constitutive
relation

9Guc(C) =
κ

2

(

log J
)2

+
CGuc

2

[

exp(Q)− 1
]

. (17)

by Guccione et al. (1995) was employed. Here, the term in the
exponent is

Q = bf(f0 · Ef0)
2 + bt

[

(s0 · Es0)
2 + (n0 · En0)

2 + 2(s0 · En0)
2
]

+ 2bfs
[

(f0 · Es0)
2 + (f0 · En0)

2
]

(18)

and E = 1
2 (C − I) is the modified isochoric Green–Lagrange

strain tensor, where C := J−2/3
C. Default values of bf = 18.48,

bt = 3.58, and bfs = 1.627 were used. The parameter CGuc

was varied for the different cases, see Table 2. In the aorta �0
s,ao,

unlike in previous studies (Augustin et al., 2014), we refrained
from assigning fiber structures, since our efforts were primarily
focused on modeling the biomechanics of the LV and, to a lesser
degree, the aorta. Thus, in absence of information on structural
anisotropy, an isotropic model due to Demiray (1972) was used

9Dem(C) :=
κ

2

(

log J
)2

+
a

2 b

{

exp
[

b
(

tr(C)− 3
)]

− 1
}

. (19)

The parameter ˜C = a
2b

was chosen such that ˜C = 3,000 kPa in

the aorta, ˜C = 30,000 kPa for valves, and ˜C = 300 kPa for the
elastic cushion. The bulk modulus κ , which serves as a penalty
parameter to enforce nearly incompressible material behavior,
was chosen as κ = 650 kPa in both Equations (17, 19). For the
elastic cushion a value of κ = 100 kPa was used.

A simplified phenomenological contractile model was used to
represent active stress generation (Niederer S. A. et al., 2011).
Owing to its small number of parameters and its direct relation
to clinically measurable quantities such as peak pressure, plv, and
the maximum rate of rise of pressure, dplv/ dtmax, this model is
fairly easy to fit and thus very suitable for being used in clinical
EM modeling studies. Briefly, the active stress transient is given
by

Sa(t, λ) = Speak φ(λ) tanh2
(

ts

τc

)

tanh2
(

tdur − ts

τr

)

,

for 0 < ts < tdur, (20)

with

φ = tanh(ld(λ−λ0)), τc = τc0 + ldup(1−φ), ts = t− ta − temd
(21)

and ts is the onset of contraction; φ(λ) is a non-linear length-
dependent function in which λ is the fiber stretch and λ0 is the
lower limit of fiber stretch below which no further active tension
is generated; ta is the local activation time from Equation (9); temd

is the EM delay between the onsets of electrical depolarization
and active stress generation; Speak is the peak isometric tension;
tdur is the duration of active stress transient; τc is time constant
of contraction; τc0 is the baseline time constant of contraction;
ldup is the length-dependence of τc; τr is the time constant of
relaxation; and ld is the degree of length dependence. Thus, active
stresses in this simplified model are only length-dependent, but
dependence on fiber velocity, λ̇, is ignored. Unlinke in previous
studies (Niederer S. A. et al., 2011) we set the nonlinear length-
dependent function φ(λ) = 1 for the whole simulation. The
active stress tensor in the reference configuration �0

s,lv
induced

in fiber direction f0 is defined as

Sa = Sa (f0 · Cf0)
−1 f0 ⊗ f0, (22)

with Sa defined in Equation (20). This active stress involves a
scaling by λ2 = f0 · Cf0, see Pathmanathan and Whiteley (2009)
for details.

2.2.3. Mechanical and Hemodynamic Afterload

Models
Hydrostatic pressures in the LV, plv, and the proximal aorta, pao,
were modeled using a 3-element Windkessel model (Westerhof
et al., 1971), and the system of PDEs (11) was linked to this
lumped model of the arterial system, see Figure 2. The models
were coupled by a diode (aortic valve) which opens at the end of
the isovolumetric contraction (IVC) phase when the pressure in
the LV cavity, plv, exceeds the pressure in the proximal aorta, pao,
and closes at the end of ejection when plv drops below pao and
the flow qlv starts to reverse. In its open state the aortic valve was
modeled as a linear resistor, Rav, in series with the characteristic
impedance of the aorta, Zc. During ejection, the pressure in the
LV was then computed by the Windkessel equation

dplv

dt
=

1

C

(

1+
Zc + Rav

R

)

qlv + (Zc + Rav)
dqlv

dt
−

1

RC
plv,

(23)

TABLE 2 | Fitted parameters for EM Model.

EM fitting

Speak tdur τc0 τr temd CGuc R Z C

(kPa) (ms) − − (ms) (kPa) (kPa ms/ml) (kPa ms/ml) (ml/kPa)

28-Pre 60.0 380 30.0 30.0 15.0 0.48 170.65 12.00 6.75

28-Post 55.0 380 30.0 30.0 15.0 0.48 170.65 12.00 6.75

44-Pre 90.0 400 50.0 50.0 15.0 0.48 166.65 13.33 7.42
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FIGURE 2 | Lumped circuit representation of the coupled EM PDE model of the LV with the cardiovascular system. The time-varying compliance of the LV is

represented as a PDE model which was coupled through the aortic valve (Rav) to a 3-element Windkessel model representing aortic impedance, Zc, and peripheral

arterial compliance, C, and resistance, R, during ejection, and through the mitral valve (Rmv) to a constant pressure pla in the left atrium during filling. Negative flows

−qla and −qlv mean the respective cavity is ejecting, while positive flow means cavity is being filled.

which predicts the rate of change of pressure in the LV as a
function of flow qlv out of the LV into the aorta. The resistor R
represents peripheral arterial resistance placed in parallel with a
capacitor C, representing vascular compliance.

A similar form of Equation (23) was also used to estimate
the pressure in the aorta, pao. In this case, there is no additional
resistance due to an outlet valve and hence Rav is omitted.
Balancing of the PDE (11) and the ODE (23) was achieved by
recasting Equation (11) as a saddle point problem, see Gurev et al.
(2015) and Hirschvogel et al. (2017).

For CFD simulations, hydrostatic pressures at artificial aortic
fluid outlets, were modeled using a similar 3-element Windkessel
model as in Equation (23) that was rewritten in the form of the
following differential algebraic equations for outlet i

Ci
dpd,i

dt
+

pd,i

Ri
= qi, (24)

pwk,i = Ziqi + pd,i, (25)

see Fouchet-Incaux (2014) and Bertoglio et al. (2017) for more
details. During ejection the Windkessel pressure pwk at an outlet
was then applied as an outflow boundary condition for the fluid
flow model, see section 2.5.5. In Equations (24, 25), Ci represents
compliance, Zi impedence, and Ri resistance of the peripheral
arteries for the respective aortic outlet and qi denotes the flux
through this outlet. Fitting of the parameters involved will be
discussed in section 2.5.5.

2.3. Fluid Flow Model
Human blood in larger vessels such as the LV or the aorta
complies with the assumptions of an incompressible, isothermal,
Newtonian and single-phase liquid (Nichols et al., 2011). Let
�f ( R3 denote the fluid domain, then the evolution of flow
is governed by the incompressible Navier–Stokes equations

ρf

(

∂

∂t
uf + uf · ∇xuf

)

−∇x · σ f(uf, pf) = 0 in �f, (26)

∇x · uf = 0 in �f, (27)

uf = 0 on Ŵnoslip,

(28)

uf = gf on Ŵinflow,
(29)

σ fnf − ρfβ (uf · nf)− uf = hf on Ŵoutflow,
(30)

uf
∣

∣

t=0
= u0, (31)

where uf denotes fluid velocity inm/s; pf is fluid pressure in Pa; ρf
is the density of blood, given as 1.060 kg/m3; σ f is the fluid stress
tensor in, Pa, defined as−pfI+µf

(

∇xuf +∇xu
⊤
f

)

, with dynamic
viscosity of blood µf given as 0.004 Pa s; gf, in m/s is a velocity
inlet; pwk, in Pa, is the Windkessel pressure solution to Equations
(24, 25); u0, in m/s, refers to the initial condition; nf is the
outward unit normal of the fluid domain; and (∇x) is the gradient
and (∇x·) is the divergence operator in the fluid domain �f.
The sets Ŵnoslip, Ŵinflow, and Ŵoutflow denote the complementary
subsets of Ŵf := ∂�f and we assume that |Ŵoutflow| > 0. Note
that Equation (29) is given only for the sake of completeness but
was not used in this study, as the inflow of blood into the aorta
is driven by the motion of the LV thus avoiding the need for
prescribing an inflow profile as it is necessary in models which
consider the aorta in isolation. For pwk ≡ 0, boundary condition
Equation (30) is referred to as directional do-nothing boundary
condition, see Esmaily Moghadam et al. (2011) and Braack et al.
(2014), and the term

(uf · nf)− :=
1

2
(uf · nf − |uf · nf|) (32)

is added for backflow stabilization. A value of β > 1
2 was

assumed to guarantee stability of the system. However, in
practical applications values of β ≤ 1

2 were also used without
causing numerical issues, see Esmaily Moghadam et al. (2011).
In presence of multiple outlets outflow boundary conditions as
given in Equation (30) were prescribed at each of the outlets.

2.3.1. Extension to Moving Geometries
For time-dependent fluid domains, i.e., �f = �t

f
,

Equations (26–31) need to be modified to account for the
domain movement. This requires the linking of the equations
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governing fluid dynamics—posed in an Eulerian coordinate
frame—with the structural mechanics equations—posed in a
Lagrangian reference frame. This is achieved by using the ALE
formulation which combines both Lagrangian and Eulerian
formulation in a generalized description, see Bazilevs et al.
(2013, section 1.3) and Hirt et al. (1974). Similar to structural
mechanics, a reference fluid configuration �0

f
( R3 is used

which we identify with the mesh been generated at end-
diastolic state, see section 2.1.3. The coordinate system of the
Eulerian frame is denoted by x and the reference coordinate
system is denoted by X. Their relation is given by the ALE
mapping x = X + df(t,X). Here, df(t,X) refers to an arbitrary,
not necessarily physical, displacement of points to track the
deformation of the fluid domain. Using this ALE mapping the
time-dependent moving fluid domain is represented as

�t
f
:=

{

x : x = X+ df(t,X), ∀X ∈ �0
f

}

. (33)

Further, we define the fluid domain velocity wf as

wf :=
∂

∂t
df

∣

∣

X
, (34)

where ∂
∂t (·)

∣

∣

X
is the derivative with respect to t withX being fixed,

and the moving interface between fluid and solid domain as

Ŵt
f,mov

:= ∂�t
f \

noutlets
⋃

i=1

Ŵt
f,outflow,i, (35)

where Ŵt
f,outflow,i

are the individual aortic outlets. The fluid
displacement at this point remains unknown and will be specified
in section 2.3.3. Combining these concepts, an ALE description
of the Navier–Stokes equations can be derived, see e.g., Bazilevs
et al. (2013) and Förster et al. (2006),

ρf

(

∂

∂t
uf

∣

∣

X
+ (uf − wf) · ∇xuf

)

−∇x · σ f(uf, pf) = 0 on �t
f , (36)

∇x · uf = 0 on �t
f , (37)

uf = gmov on Ŵt
f,mov, (38)

σ f(uf, pf)nf − ρfβ((uf − wf) · nf)−uf = −pwk,inf on each Ŵt
f,outflow,i, (39)

uf
∣

∣

t=0
= u0 in �0

f . (40)

Along Ŵt
f,mov

we imposed equality between fluid velocity
and the velocity of the moving surfaces. Boundary condition
(Equation 39) is the ALE equivalent of the outflow stabilization
in Equation (30), see Bazilevs et al. (2013, section 8.4.2.3). Details
on how domain movement and velocity were chosen in our
application will be discussed later in sections 2.3.3 and 2.5.5.

2.3.2. Variational Formulation of the Navier–Stokes

Equations
Following Bazilevs et al. (2007), Bazilevs et al. (2013), and Pauli
and Behr (2017), the discrete variational formulation of the ALE
Equations (36)–(40) can be stated in the following abstract form:

find uh
f

∈ [S1
h,g

(TN)]
3, ph

f
∈ S1

h
(TN) such that for all vh ∈

[S1
h,0
(TN)]

3 and for all qh ∈ S1
h
(TN)

ANS(v
h, qh;uhf , p

h
f )+ SVMS(v

h, qh;uhf , p
h
f ) = FNS(v

h), (41)

with the classical bilinear form of the Navier–Stokes equations

ANS(v
h, qh;uhf , p

h
f ) := ρf

∫

�t
f

vh ·

(

∂

∂t
uhf +

(

uhf − wh
f

)

· ∇xu
h
f

)

dx

+

∫

�t
f

ε(vh) : σ f(u
h
f , p

h
f ) dx

+

∫

�t
f

qh∇x · u
h
f dx− ρfβ

noutlets
∑

i=1

∫

Ŵt
f,outflow,i

((uhf − wh
f ) · nf)−v

h · uhf dsx, (42)

the bilinear form SVMS, which is explained later in Equation (45),
and the right-hand side contribution

FNS(v
h) := −

noutlets
∑

i=1

pwk,i

∫

Ŵt
f,outflow,i

vh · nf dsx. (43)

In Equation (42), ε is the strain-rate tensor and wh
f
is the discrete

counterpart of the fluid domain velocity wf, i.e.,

wh
f (t

n+1,X) =
df(t

n+1,X)− df(t
n,X)

1t
. (44)

The FE function space S1
h,∗

(TN) is the conformal trial space
of piecewise linear, globally continuous basis functions over a
decomposition TN of �t

f
into N simplicial elements constrained

by vh = ∗ on essential boundaries. The FE function space S1
h
(TN)

denotes the same space without constraints. For further details
we refer to Brenner and Scott (2007) and Steinbach (2007).

From a mathematical point of view, the Navier–Stokes
equation can be seen as a multidimensional convection–diffusion
equation with pressure acting as a Lagrangian multiplier of
the incompressibility constraint. In the common case where
velocity and pressure are retained as unknowns, as above,
the Ladyzhenskaya–Babuška–Brezzi (LBB) condition has to
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be satisfied by the velocity and pressure spaces (Donea and
Huerta, 2003). A violation of the LBB condition may lead
to pressure oscillations. Stabilization techniques allowing the
circumvention of the LBB condition exist and have been
extensively studied (see for example Hughes et al., 1986; Franca
and Hughes, 1988; Douglas and Wang, 1989; Bochev et al.,
2006). However, with increasing Reynolds number the Navier–
Stokes equations become convection dominated. This requires
increasingly finer mesh resolutions to accurately resolve finer
flow details which, eventually, renders numerical solution in this
form computationally intractable. As a remedy, one can resort to
using turbulence models. In particular, in this study the residual
based variational multiscale turbulence model (RBVMS), see
Hughes (1995), Bazilevs et al. (2007), Bazilevs et al. (2013), and
Pauli and Behr (2017) was employed which acts as a stabilization
and a turbulence model. The underlying main idea is to split
the unknown solution into resolvable (coarse) and unresolvable
(fine) scales by the FE approximation, where the finer scale details
are taken into account based on element residuals. For details
on the derivation we refer to elsewhere (Bazilevs et al., 2007).
The term SVMS in Equation (41) denotes the bilinear form of the
RBVMS formulation and reads as

SVMS(v
h, qh; uhf , p

h
f ) :=

1

ρf

nel
∑

l=1

∫

τℓ

τMOM

(

ρf

(

uhf − wh
f

)

· ∇xv
h + qh

)

· rMOM(uhf , p
h
f ) dx

+

nel
∑

l=1

∫

τℓ

τCONT∇x · v
h∇x · u

h
f dx

−

nel
∑

l=1

∫

τℓ

τMOMvh ·
(

∇xu
h
f rMOM(uhf , p

h
f )

)

dx

−
1

ρf

nel
∑

l=1

∫

τℓ

τ2MOMε(vh) : (rMOM(uhf , p
h
f )⊗ rMOM(uhf , p

h
f )) dx,

(45)

where the vector rMOM is defined as

rMOM(uhf , p
h
f ) := ρf

(

∂

∂t
uhf +

(

uhf − wh
f

)

· ∇xu
h
f

)

−∇x ·σ f(u
h
f , p

h
f ).

(46)

The definition of the parameters τMOM, τCONT according to Pauli
and Behr (2017) is given by

τMOM := min

{

(

4

1t2
+ (uhf − wh

f ) · G(uhf − wh
f )

)− 1
2

,
ρfCM

µf

√
G :G

}

,

(47)

with 1t being the time step size and G :=
∂ξ
∂x

⊤
K ∂ξ

∂x , where
∂ξ
∂x

denotes the Jacobian of the mapping from a physical FE to the
reference FE, the tensor K is defined as

K :=
1

2 3
√
2





3 −1 −1
−1 3 −1
−1 −1 3



 (48)

and the constant CM = 0.0285. Further, the stabilization
parameter τCONT is defined as

τCONT :=
1

τMOMgf · gf
, (49)

gf,i :=

3
∑

j=1

(

∂ξ

∂x

)

ji

. (50)

2.3.3. EM-Based Kinematic Driver Model
Displacements computed with the EM model were used to
prescribe the kinematics of the blood pool mesh which in turn
was used for simulating hemodynamics in the CFD model. This
was achieved by imposing gmov = ∂

∂tds in Equation (38). Since

the surface of the reference CFD blood pool mesh, ∂�0
f
, is not

conformal with the surface of the reference EM blood pool mesh,
�0

s,bp
, and the overlap of the two surfaces is imperfect due to

smoothing of ∂�0
f
and remeshing of �0

f
, a direct transfer of

displacements between the two surfaces is not readily feasible.
As a remedy, we proceeded as follows. After solving the EM
problem the subset of displacements˜ds that form the endocardial
interface with the blood pool, Ŵ0

s,bp
, were extracted from the

solution ds defined at �0
s . Since the mesh interface between �0

s

and�0
s,bp

is conformal the extracted displacements can be applied

as inhomogeneous time-varying Dirichlet boundary conditions
to the blood pool mesh �0

s,bp
to solve a linear elastic problem

given as

−∇X · σ (ds(t)) = 0 in �0
s,bp, (51)

ds(t) =˜ds(t) on ∂�0
s,bp, (52)

where stress and strain tensor are

σ (ds) :=
E

1+ ν

(

ν

1− 2ν
∇X · dsI + ε(ds)

)

, (53)

ε(ds) :=
1

2

(

∇Xds + (∇Xds)
⊤
)

, (54)

the constant E is Young’s modulus in kPa and the constant ν is
Poisson’s ratio which is dimensionless in the range of [−1, 0.5).
Combining the solutions ds computed for �0

s and �0
s,bp

yields

displacements ds for �0
s,total

. Since ∂�0
f
is fully embedded in this

domain, �0
s,total

�0
s,total

can be used as a hanging background
mesh for interpolating displacements onto the blood pool mesh,
�0

f
, used for CFD simulations. However, for reasons of mesh

quality, interpolation is solely applied on the boundary �0
f
itself,

and to find the interior displacement field the exact same linear
elastic problem 51–54, is solved for df instead of ds.

In both patient cases studied, ejection fractions were large
leading to a substantial deformation of the blood pool mesh �t

f
.

To maintain mesh quality under such large deformations the
parameters E and ν governing stiffness and incompressibility of
the material were altered accordingly. Initially, a fixed E0 and ν0
was chosen while the subsequent modification of E and ν was
guided by a combination of the two following strategies.
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i) Quality based stiffening: For each element τℓ in the fluid mesh
a tetrahedral quality indicator κ(τℓ) based on the movement
from the previous time step was calculated, see Freitag and
Knupp (2002) and Kanchi and Masud (2007), and rescaled
such that for elements of good quality κ is close to 1,
while for elements with poor quality κ tends toward infinity.
Eventually, the parameter E was multiplied by κ within each
element.

ii) ν-Volume based stiffening: For larger deformation elements in
the fluid mesh may collapse or even invert, yielding a zero
or negative volume. When solving Equations (51)–(54), the
current element volumes were tracked and a volume ratio
relative to an undeformed reference element was computed
as |τℓ|

|τ̂ℓ|
. For ratios below a predefined critical value the

parameter ν was set close to 0.5 to make this element nearly
incompressible.

2.4. Numerical Solution
Spatio-temporal discretization of all PDEs and the solution
of the arising systems of equations relied upon the Cardiac
Arrhythmia Research Package (CARP), see Vigmond et al.
(2003). Numerical details on FE discretization (Rocha et al., 2011)
and solution of EP (Vigmond et al., 2008b; Neic et al., 2012,
2017) and EM (Augustin et al., 2016b) have been discussed in
detail elsewhere. FE discretization and solution of the Navier–
Stokes equations were implemented recently using the same
numerical framework which was extended to account for non-
linear saddle-point problems arising from the discretized CFD
equations.

Two time discretization schemes were implemented and
compared for the applications in mind, and a computationally
cheap semi-implicit scheme, modified from Forti (2016, section
1.4.2), showed similar results to the more expensive fully-implicit
generalized-α method (Jansen et al., 2000). Hence, all results
in section 3 were obtained using the semi-implicit scheme; to
advance from time step tn to tn+1, only a linear block system
needs to be solved, where each block depends on data from
the previous time step only. Solvers for the block system were
taken from the PETSc library (Balay et al., 1997, 2016a,b).
We used a right preconditoned flexible GMRES method with
PETSc fieldsplit preconditioning (Silvester et al., 2001; Elman
et al., 2008) which in turn uses BoomerAMG (Van Emden and
Yang, 2002) to approximate sub-block inverses. While the time
step size for mechanics and CFD was the same, 1tmech =

1tCFD = 0.5ms, it was significantly smaller for EP, where
1tEP = 25 µs.

The implementation of the CFD solvers has been subjected to
various validation procedures against standard CFD benchmarks
(Schäfer et al., 1996). All simulations were executed at the
national HPC computing facility ARCHER in the United
Kingdom using 384 and 768 cores for EM and CFD simulations,
respectively.

2.5. Model Parameterization
2.5.1. Electrophysiology
Electrical activation sequences were indirectly parameterized
using the QRS complex of a given patient’s ECG as guidance.

Unlike in previous studies (Augustin et al., 2016a), we refrained
from a detailed parameterization which aimed at reproducing
the QRS complex of the ECG for a given patient by finding
appropriate locations and timings for the main fascicles of the
cardiac conduction system in the LV. Rather, default locations
and timings were used which yielded a total activation time
within the physiological range.

2.5.2. Passive Biomechanics
The LV myocardium was characterized as a hyperelastic, nearly
incompressible, transversely isotropic material with a nonlinear
stress–strain relationship (Guccione et al., 1995). Orthotropic
material axes were aligned with the local fiber, sheet and sheet
normal directions. To remove rigid body motion, homogeneous
displacement boundary conditions were applied by fixing the
terminal rims of the clipped brachiocephalic, left common
carotid and left subclavian arteries as well as the clipped rim
of the aorta descendens, see Figure 1. The model was stabilized
by resting the LV apex on an elastic cushion of which the
bottom face was rigidly anchored also by applying homogeneous
displacement boundary conditions.

The constitutive model was fitted to recorded clinical data as
previously reported with minor modifications (Augustin et al.,
2016a). The passive biomechanical model governed by the strain-
energy function given in Equation (17) was fitted to approximate
the end-diastolic pressure-volume relation (EDPVR). Due to
limitations in the recorded data we refrained from directly fitting
the model to the recorded pressure and volume data. Rather,
only one data pair—EDV and end-diastolic pressure (EDP)—
was used to fit the stress-free residual volume to the empiric
Klotz relation (Klotz et al., 2007) by adjusting the isotropic
scaling parameter CGuc in Equation (17). As the model anatomy
was built from a segmented 3DWH MRI scan—acquired during
diastasis—the FE model was inflated to increase the volume of
the cavity by the difference between the volume at mid diastasis
and the EDV. Using the end-diastolic geometry, default material
parameters and the recorded EDP, an initial guess of the stress-
free reference configuration was computed by unloading the
model using a backward displacement method (Sellier, 2011;
Bols et al., 2013; Krishnamurthy et al., 2013). The unloading
procedure was repeated with varying trial material parameters,
CGuc, until the difference between the unstressed LV volume
of the model and the prediction of the Klotz relation was less
than 5%.

2.5.3. Active Stresses
Parameters of the active stress model were fitted during IVC and
ejection phase. During IVC the LV volume was held constant
(Gurev et al., 2015) and the parameters of the active stress given
in Equation (20) rate of contraction, τc, and peak active stress,
Speak, were manually adjusted to fit the maximum rate of rise of
pressure, (dP/dt)max, and peak pressure, plv.

2.5.4. Afterload
When the LV pressure plv exceeded the aortic pressure, pao,
ejection was initiated by connecting the LV model with the
lumped 3-element Windkessel model (Westerhof et al., 1971).
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Volume traces recorded from a given patient during ejection
were used as input to compute aortic pressure traces by
solving Equation (23). Both types of data were not recorded
simultaneously as volume traces were computed from Cine MRI
scans and pressure traces were recorded later invasively by
catheterization. Volume and pressure traces were synchronized
in time by aligning the onset of ejection of the volume traceVlv(t)
with the instant of opening of the aortic valve in the pressure
trace pao(t). In those cases where heart rates were markedly
different between the two measurements, volume traces were
scaled in time to adjust LV ejection time (LVET) to the duration
of ejection in the pressure traces, that is, the time elapsed between
opening and closing of the aortic valve as these two instants in
time were clearly identifiable in all traces pao(t), see Figure 3.
Moreover, volume traces were offset to ensure that the model
volume based on the segmentation of the 3DWH scan acquired
during diastasis matched up with the Cine-MRI based volume
trace at mid diastasis. The parameter space of the Windkessel
model comprising characteristic impedance of the aorta, Zc, as
well as resistance, R, and compliance, C, of the arterial systemwas
sampled using a recently developed stochastic sampling approach
(Crozier et al., 2016b).

Numerous box constraints were used to constrain the
search space of parameter sweeps. In particular, we used
reported measurements in humans to define the mean values
and restricted the search space for each parameter to fall
within ±20% around the mean. Due to high frequency errors
introduced by the pressure transducer we refrained from
computing norms ||pao,meas − pao,fit|| to quantify the deviations

of fitted from measured pressure and opted for manual selection
using three criteria, aortic peak pressure, pao, closing pressure of
aortic valve and exponential decay of pao during diastole. For
the sake of fitting Zc we assumed pao ≈ plv since transvalvular
pressure gradients in all patients were very minor.

2.5.5. CFD Boundary Conditions
The validated EMmodels yield the time-dependent displacement
fields, ds, which were transferred onto the fluid domain to
drive simulations of blood flow in LV and aorta as described in
section 2.3.3 yielding df(t, x) defined on the whole CFD mesh.
Figure 4G shows a summary of the boundary conditions. On
the boundary Ŵt

f,mov
a Dirichlet boundary condition enforcing

the mesh velocity wh
f

is applied. On each aortic outlet
Ŵf,outflow,i(t) a 3-Element Windkessel model as described in
section 2.2.3 is attached. Further, the stabilization parameter
β in Equation (39) was set to 0.2. Estimation of the input
parameters for the hemodynamical Windkessel equations relied
on an extension of the simple hydraulic analog of Ohm’s law.
Given the patient specific MAP, CO, and a percentage αi of
total CO running through the outlet the resistance Ri was
estimated as

Ri ≈
MAP

αiCO
. (55)

The percentages αi were obtained either by measurement or by
applying Murray’s law (Murray, 1926). The impedances Zi were
chosen as 5% of Ri, and the compliances Ci were chosen such
that RiCi ≈ 1, 000ms. To keep the semi-implicit character of the

FIGURE 3 | (A) Invasive clinical recordings from cases 28-Pre and 44-Pre. Top: Recorded aortic pressure Pao (black curve) and recorded LV pressure PLV (blue

curve). Marked with dashed lines are Systolic pressure Psys, mean arterial pressure MAP, and diastolic pressure Pdia; Center: Volume change in the LV, VLV, in red

ranging from end-diastolic volume EDV to end-systolic volume ESV. Bottom: LV flow QLV in orange with marked peak flow Qpeak. (B) Comparison of EM simulations

and clinical data. Upper part shows a comparison of the LV model in end-diastolic (colored opaquley blue) and end-systolic configuration (colored by displacement).

Lower part shows comparison of clinical (colored blue) and simulated PV loops (colored red). The dashed orange curve shows the ideal Klotz curve, while the green

curve shows the simulated Klotz curve, with volume of stress-free unloaded configuration marked as V0.
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FIGURE 4 | Processing workflow used for generating blood pool FE models: (A,B) Elements labeled as blood pool or valve were extracted from the mesh used for EM

modeling. (C) Surfaces of extracted meshes were smoothed to avoid numerical instabilities due to reentrant corners resulting from a jagged surface. A closeup view of

the smoothing effect is displayed in the upper right. The smoothed surface is then used as input for the fluid mesh generation. (D,E) Comparison of the smoothed and

unsmoothed blood pool mesh immersed in the original EM mesh. (F) Closeup view of the generated boundary layer mesh. (G) Boundary conditions used for CFD.

Moving wall boundary Ŵtf,mov colored in orange, outlet boundaries Ŵtf,outflow,i colored in blue with attached illustration of the 3-element Windkessel models.

CFD system the Windkessel equations were solved with a semi-
implicit backward Euler method using the flow qni through the
aortic outlet, from the previous time step as input.

3. RESULTS

3.1. Building Electromechanical Kinematic
Driver Models
Using a previously developed automated workflow (Crozier et al.,
2016a), anatomical FE models of LV and aorta were built for
patient cases 28-Pre and 44-Pre based on segmented imaging data
acquired under pre-treatment conditions. Figure 1 illustrates the
key processing steps and the resulting FE model for case 28-
Pre. For the case 28-Pre the CoA was repaired by a virtual
dilatation procedure applied to the segmented image data with
the aim to restore normal cross sectional areas. Subsequently, a
new FE mesh was generated referred to as 28-Post, which was
essentially identical to 28-Pre, with the only difference being the
anatomical adjustment of the CoA in the aortic arch to the target
post-treatment anatomy after stenting, see Figure 5.

Passive biomechanical properties, afterload and active stress
models of cases 28-Pre and 44-Pre were parameterized using
clinically recorded pressure and volume data under pre-
treatment conditions, see Figure 3A. The fitted final parameters
used are summarized in Table 2. The goodness of fit of both
integrated EM models was verified by standard PV loop analysis
as shown in Figure 3B. Results of a quantitative comparison with

FIGURE 5 | CoA anatomy of case 28 before and after virtual stenting

procedure. CoA location is indicated with a red circle.

clinically derived metrics including EF, EDV and ESV, CO, and
peak systolic pressure are summarized in Table 3.

3.2. Blood Pool FE Modeling for CFD
Conformal FE blood pool meshes were extracted from EM
FE meshes, surfaces were smoothed and used for volumetric
remeshing with increased spatial resolution including boundary
layers. The corresponding workflow is illustrated in Figure 4.

Kinematics of the EM model were transferred to the CFD
blood pool mesh and the result is illustrated in terms of
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TABLE 3 | Comparison of clinical indicators and indicators computed from simulation for the EM models.

EM comparison

EDVcl,sim ESVcl,sim SVcl,sim EFcl,sim COcl,sim P
sys
cl,sim

(ml) (ml) (ml) (%) (ml/s) (mmHg)

28-Pre 88.16/87.47 30.62/31.02 57.54/57.14 65.27/64.81 87.46/86.85 146.037/139.362

44-Pre 91.68/91.67 31.59/30.95 60.10/60.72 65.54/66.24 76.31/76.32 158.413/135.236

rel. error [%] 0.78/0.01 1.3/2.0 0.69/1.03 0.70/1.07 0.69/0.013 4.57/14.63

FIGURE 6 | (I) shows quality analysis for case 28-Pre. Spatial locations of elements of poor quality > 0.8 (in red) are shown at the top for different snapshots of

deformation (green lines in graph). The graph below shows linear iterations per time step (in blue) and percentage of elements with poor quality > 0.8 (in red). (II)

shows the processing stages of kinematic transfer for the 28-Pre case at maximum displacement. (A) Displacement ds on EM mesh �0
s . (B) Displacement ds

extended to conformal EM blood pool mesh �0
s,total which serves as hanging background mesh for the kinematic transfer onto the CFD blood pool mesh �0

f . (C)

Displacement ds on �0
s superimposed with fluid mesh displacement df on �0

f .

displacements ds, df in Figure 6II. Due to the large EF of about
65% for both 28-Pre and 44-Pre, the blood pool underwent
a significant deformation. However, using a combination of
element quality and ν-Volume based stiffening with an initial
Young’s Modulus E0 = 100 kPa and Poisson’s ratio ν0 = 0.3,
sufficient element quality was preserved throughout the entire
ejection phase and numerical instabilities could be avoided.
Figure 6I shows the 80th-percentile of bad element quality
against the number of linear iterations required for convergence
for the 28-Pre case. The quality of elements was calculated with
the same quality inidcator (Freitag and Knupp, 2002; Kanchi and
Masud, 2007) as described in section 2.3.3 but was rescaled to
the interval [0, 1], with the best element quality being 0 and the
worst element quality being 1. The modest increase in iteration
numbers of the iterative preconditioned GMRES solver provides
indirect evidence of sufficiently preserved mesh quality (see
Figure 6). Spatially, most lower quality elements were located in
the CFD boundary layer.

3.3. Numerical CFD Benchmarks
The implementation of the Navier–Stokes solver was verified
by solving a set of standardized benchmark problems, see

Schäfer et al. (1996). Computational performance was evaluated
by performing strong scaling experiments by repeating the
post-treatment hemodynamics simulation of case 28-Post with
varying numbers of cores ranging from 96 to 1.536. Details on
computational complexity and costs are summarized in Table 4.
For temporal discretization a time step of 1t = 0.5ms was
used to simulate the ejection phase lasting for 208ms. The
overall discrete system comprised 5,177,056 degrees of freedom,
which was solved over 416 time steps. Strong scaling results
are summarized in Figure 7. Efficient strong scaling behavior
was observed up to 768 cores with parallel efficiency slowly
degrading from 100% at 96 cores down to 55% at 768 cores.
Scalability stalled when doubling the core count to 1,536 which
reduced the degrees of freedom per parallel partition down to
3,386. Parallel efficiency dropped to 27% which is attributed
due to the unfavorable ratio between local compute work and
communication.

3.4. Simulating Cardiac and Cardiovascular
Hemodynamics
Hemodynamics in the LV and aorta was simulated using the EM
simulations as a kinematic driver. Flow rates through various
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TABLE 4 | Discretization details for the studied cases.

Electromechanics model CFD model

NE NV h [µm] DOF NE NV h [µm] DOFU DOFP

28-Pre 747,266 167,509 897 502,527 1,943,060 352,006 746.5 1,056,018 352,006

28-Post 632,635 149,174 954 447,522 7,405,128 1,294,264 531.6 3,882,792 1,294,264

44-Pre 727,194 168,804 997 506,412 2,285,005 412,728 717 1,238,184 412,728

Shown are the number of elemens (NE), number of vertices (NV), average edge length h in µm, degrees of freedom for displacement (DOF), degrees of freedom for velocity (DOFU),

degrees of freedom for pressure (DOFP).

FIGURE 7 | Results of strong scaling benchmark based on case 28-Post with

5.2 million overall degrees of freedom. TAvgSolv is the total solving time divided

by the total amount of linear iterations per simulation run.

aortic cross sections and outflow orifices were calculated as
the integral over measured fluxes through the cross-sectional
plane for both 4D VEC MRI and simulated flow data. At
locations of interest which were εDSC, εBCA, εLCA, and εLSCA
denoting cross sections in the aorta descendens and the
orifices of brachocephalic, left carotid and left subclavian artery,
respectively, relative flows were computed from 4D VEC MRI
data as fractions αi expressed in percent of the total peak
flow through the aorta ascendens as determined over the plane
εASC. For those planes of interest where measurements were
not feasible due to noise, flow percentages were estimated based
on Murray’s law. Flow curves during ejection at selected cross
sections are shown in Figures 8A,E. MAP and computed mean
flow through each outlet orifice were used to determine the
parameters of the coupled Windkessel models of afterload in
Equations (24, 25), see Table 5. In the 28-Pre case this resulted
in flow splits of αi ≈ 23, 51.3, 12.83, and 12.83% whereas in the
44-Pre case the flow split ratios were αi ≈ 5.68, 57.45, and 34.01%
for εDSC, εBCA, εLCA, and εLSCA, respectively.

For the CFD analysis a time step of 1t = 0.5ms was
used. The ejection phases of the EM simulations were chosen

as time horizons for the CFD simulation which lasted from
t = 90ms to t = 302ms in the 28-Pre case and from
t = 70ms to t = 329ms in the 44-Pre case, yielding 424
and 518 time steps, respectively. The Windkessel parameters
for each outlet, calculated as described in section 2.5.5, are
summarized in Table 5. Pressure pf along the centerline sc and
fluxes through the planes εDSC, εLSC, εBCA, and εASC were
computed at the instant of peak flow in the aorta ascendens and
compared against measured data, which were pressures derived
from Pressure–Poisson mapping (see Figure 8D) and 4D VEC
MRI fluxes. For case 28-Pre pressure drops were calculated from
the pressure values on the intersection of the centerline and εDSC,
εASC respectively. Further, we calculated the average pressure
over the aforementioned planes as well. Both ways yielded a
simulated pressure drop across the CoA of ≈ 29.2mmHg
which agreed well with the clinically estimated pressure drop
of ≈ 30mmHg. Furthermore, we calculated the flux through
the various planes and compared them against the clinically
estimated fluxes. A quantitative comparison of fluxes is given
in Table 6. Figures 8C,G,H show velocity profiles at peak flow
condtions. Figures 8B,F show the pressure along the centerlines,
the velocity field Evf through the plane εASC, and the position of
all planes used for evaluating fluxes. Supplementary Materials 1,
2 contain videos of the time evolution of the velocity distribution
for cases 28-Pre and 44-Pre.

3.5. Post-treatment Simulations
Simulations of case 28-Pre were repeated on geometry of case
28-Post using almost the same set of parameters, see Table 2.
Only Speak was slightly adjusted, which resulted in a better peak
pressure value in the LV. The geometry of case 28-Post was almost
identical to case 28-Pre with the only exception being the virtual
repair of CoA anatomy. In this scenario only pre- and post-
treatment simulations were compared to evaluate their relative
differences in terms of pressure and flow velocities. Figure 9
shows results. Pressure drops were calculated as in section 3.4 for
both scenarios. For 28-Pre we calculated a pressure drop of ≈
29.2mmHg while for 28-Post a pressure drop of ≈ 14.15mmHg
was calculated.

4. DISCUSSION

In this study, we report on the progress made toward a novel
EMF model of the human LV that is entirely based on first
principles and as such, in principle, is able to represent all
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FIGURE 8 | CFD results. (A,E) show the given clinical measurements for flow through different planes. The planes are depicted in (B,F). (B,F) also depict the pressure

along the centerlines at peak flow conditions at t = 167ms and t = 142ms respectively. (C) shows velocity streamlines at peak flow. (D) shows the relative pressure

map from the Pressure–Poisson mapping used for validating the pressure drop in our simulations. (G,H) show velocity streamlines at peak flow and t = 200ms for

case 44-Pre.

TABLE 5 | Windkessel parameters for each outlet of cases 28-Pre and 44-Pre.

28-Pre 44-Pre

DCA BCA RSC LSC DCA BCA RSC LSC

R [kPams/ml] 590.46 264.6 1, 058.24 1, 058.24 2, 480.07 276.01 466.23 7, 440.2

Z [kPams/ml] 29.52 13.23 52.91 52.91 124.003 13.9 23.31 372.01

C [ml/kPa] 1.69 3.78 0.944 0.944 0.403 3.62 2.14 0.134

TABLE 6 | Comparison of clincal estimated flow rates and simulated flow rates through the various planes for cases 28-Pre and 44-Pre.

Flux comparison

28-Pre 44-Pre

Unit εDCA εASC εASC εBCA εLSC

Qpeak,sim ml/s 85.5073 286.056 316.713 160.493 132.540

Qpeak,cl ml/s 70.3071 290.719 352.114 171.571 109.290

rel. error % 21.62 1.604 10.054 6.46 21.27

cause-effect relationships with full biophysical detail. Unlike in
the majority of cardiac CFD studies where the use of image-
based kinematic driver models prevails, EM LV and aorta
models of CoA patients were employed to serve as a kinematic
driver to a computational model of hemodynamics in the LV
cavity and aorta. A hybrid two stage modeling approach was
adopted with regard to hemodynamics where EM and CFD
model are executed sequentially. First, in the EM simulations
the afterload imposed by the circulatory system upon the LV
was represented by a lumped model to compute LV kinematics.
These EMmodels were carefully fitted to available clinical data to

replicate important clinical metrics characterizing hemodynamic
and biomechanical work performed by the LV (Gsell et al.,
under review). In a subsequent step, a full-blownALE-based CFD
model with moving domain boundaries was unidirectionally or
weakly coupled to the EMmodel. Themotion of the fluid domain
was driven by the kinematics of the EM model. Kinematics was
transferred from EM mesh onto the CFD blood pool mesh by
generating a combined kinematic model comprising LV, valve,
aortic structure and a conformal blood pool mesh which served
as a hanging background mesh for interpolation. The higher
resolution blood pool CFD mesh with refined boundary layers
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FIGURE 9 | Comparison of cases 28-Pre and 28-Post. Shown on the left are the pressures along the centerline at peak flow. Depicted in the middle are the slices

used for calculating the pressure drops. Shown on the right are velocity streamlines at peak flow.

was fully immersed in the EM background mesh. Kinematics was
transferred by interpolation only onto the surface of the CFD
blood pool mesh and extended into the volume of the blood pool
by solving a linear solid mechanics problem.

We show validation results for two selected clinical CoA
cases under pre-treatment conditions and compare between pre-
treatment and post-treatment for one patient case in which
the CoA was anatomically modified by a virtual stenting
procedure. Further, we demonstrate numerical tractability of the
implemented approach by providing strong scaling benchmark
results. The overall cost of the entire work flow for building,
fitting and execution of EMF simulations is comparable to
plain image-based kinematic driver models (Mittal et al., 2016),
suggesting that the proposed methodology may be, in principle,
compatible with clinical time scales.

4.1. Biomechanical Modeling vs.
Image-Based Kinematics
Modalities such as CMR and Cardiac CT on the other hand,
provide excellent spatial resolution. CMR has an in-plane
resolution of 1.5 × 1.5mm, but more limited through-plane
resolution (typically about 8mm) while CT is capable of isotropic
spatial resolution on the sub millimeter scale (≈ 0.5mm) and
clear delineation of trabeculae and lumen boundaries. CMR has
the advantage of higher temporal resolution (30–50 ms) while
temporal resolution in CT depends on the scanning system (50–
200 ms). This is orders-of-magnitude lower than the temporal
resolution required for the flow simulation (≈ 1, 000 phases per
cardiac cycle) and appropriate interpolation methods need to
be employed to create CFD-ready models. This stage of model
generation has been very difficult to automate, and remains the
biggest bottleneck for patient-specific cardiac flow modeling.
Compared to pure image-based kinematic approaches our model
is able to compute, e.g., the spatio-temporal distribution of wall

stresses, power density, the length of diastolic intervals available
for myocardial perfusion, O2 consumption, and metabolic
supply/demand ratios. The variations of all these parameters in
response to a changed afterload and many other biomarkers of
physiological interest can be derived, which is not feasible with
image-based models.

4.2. Kinematic Transfer to CFD Blood Pool
Model
Both patients modeled in this study featured healthy EFs of
> 60%, that is, EF was ≈ 65% in both cases. At a such
high EFs the wall motion of the LV is significant, leading to
substantial reductions in the LV blood pool volume. IB methods
(Vigmond et al., 2008a; Seo and Mittal, 2013; Choi et al.,
2015) are known to be more convenient to cope with the large
deformation of the CFD blood pool (Quarteroni et al., 2017).
IB methods and other non-boundary-fitting methods rely on a
fixed fluid mesh and the moving wall of the ventricle is not
explicitly tracked. The coupling between the CFD mesh and the
structure is performed via Dirac Delta functions (IB) or Lagrange
multipliers (fictitious domain methods) and is usually realized
by introducing additional degrees of freedom on interface cut
elements. While mesh generation is only necessary prior to
computation fixedmeshmethods typically require adaptive mesh
refinement or modifications (Wang and Liu, 2004) to obtain
reasonable accuracy for the solution near the fluid-solid interface.

In contrast, ALE algorithms capture the fluid-solid interface
more accurately, are in general stable and easy to implement,
no extra degrees of freedoms are introduced, and computational
costs are low in comparison (Tallec and Mouro, 2001; van Loon
et al., 2007). However, it is often assumed that unstructured FE
approaches, as implemented in this paper, critically depend on
automatic remeshing strategies (Long et al., 2013) to keep mesh
quality within acceptable bounds (Mittal et al., 2016). Our study
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demonstrates that this may not necessarily be the case. While
the mesh quality decreased with deformation over the course
of ejection, the linear elastic deformation of the CFD blood
pool mesh combined with the quality-based stiffening approach
prevented the degeneration of any elements. The number of
elements in which element quality degraded noticeably was
very small. As illustrated in Figure 6, virtually all elements of
reduced quality were located in the higher resolution boundary
layer of the CFD blood pool mesh. According to the element
quality metric used, an element quality of 1 refers to a fully
degenerated element of zero volume. Despite the significant
compression of the blood pool mesh, not a single element was
deformed to this degree. Even when applying a stricter threshold
where element quality is deemed poor if the quality indicator is
>0.8, which is not critical from a numerical point of view, the
number of elements in this range remained small with < 0.8%
(Figure 6). The worst element quality observed in the entire
mesh was 0.9994. Using a threshold of >0.95 where element
quality may be sufficiently poor to impact more notably on solver
performance, only 24 out of 2,506,987 elements were found.
Nonetheless, an increase in number of linear iterations required
for convergence was observed which is likely to be linked to the
gradual degradation of element quality. The number of iterations
per solver step increased from around ≈17 iterations during
early ejection up to ≈80 iterations during late ejection. While
the more than fourfold increase in linear iterations negatively
impacted overall solver performance and rendered simulations
computationally more expensive, the complexity of automatic
remeshing was avoided. We consider this a pivotal importance
as automatic remeshing in combination with a MPI parallel FE
solver is definitely feasible, but highly non-trivial to implement
robustly and efficiently.

4.3. Computational Feasibility
Computational feasibility of human scale cardiac simulations
by using strongly scalable numerical implementations has been
demonstrated previously for electrophysiology (Niederer S. et al.,
2011) and mechanics (Augustin et al., 2016b). More recently, we
reported on a novel reaction-eikonal model which reduces the
cost of EM simulations significantly by alleviating constraints
imposed by reaction-diffusion models upon mesh resolution
(Neic et al., 2017). In this study, this recent reaction-eikonal
approach was used for simulating EM using the same FE grid
with an average resolution of≈1 mm for both EP andmechanics.
Such lower resolutions suffice for solving for mechanics with
sufficient accuracy (Land et al., 2015). The overall reduction in
terms of nodes and degrees of freedom reduces the compute cost
substantially, rendering simulations in desktop environments
feasible. Using 96 cores, EM simulations of a full cardiac
cycle only lasted ≈180min which facilitated sufficiently short
simulation cycles for efficient model fitting. The entire workflow
for building and parameterizing one patient-specific EM model
is feasible within a day.

Owing to the higher resolution of the blood pool mesh and
the presences of a refined boundary layer the number of nodes
and degrees of freedom were higher than for EM simulations,

around 350,000/1,500,000 nodes/degrees of freedom for case 28-
Pre and 400,000/1,700,000 nodes/degrees of freedom for case 44-
Pre, respectively. To assess strong scaling properties of our CFD
solver implementation, the resolution was further increased to
1,300,000/5,000,000 nodes/degrees of freedom for case 28-Post
to cover a wider range of core counts. Strong scaling efficiency
leveled off when doubling from 768 to 1,536 cores. Local compute
load with 1,536 was 900/2,600 nodes/degrees of freedom per
core. The patient simulations were performed using 384 cores,
resulting in a load per core of about 900/2,700 nodes/dofs,
respectively. At these resolutions CFD simulations were executed
in ≈ 40min, suggesting that compatibility with clinical time
frames will be achievable.

4.4. Limitations
In the presented modeling approach numerous simplifying
assumptions were made which may affect the biophysical fidelity
of the model. In particular, while the aorta was taken into account
as a solid structure in the EM simulations, its biomechanical
description was simplified by assuming isotropic behavior, that
is, the fibrous organization of aortic walls remained unaccounted
for (Augustin et al., 2014). Further, as our main focus was on
the EM of the LV and, to a much lesser degree, on the aorta,
the aortic lumen remained unpressurized and, in absence of
distensibility measurements of the aortic wall, parameters of the
passive biomechanics model used for the aortic wall were not
fitted. Thus the model of the aorta does not respond to the rise
in pressure during ejection with an adequate distension 1V of
its lumen. In the CFD simulations 1V ≈ 0 translates into a
stiff aorta of low compliance which may cause a bias toward
overestimation of the computed pressure fields. Further, the
influence of the aortic valve upon blood flow was not taken into
account. Rather, it was assumed that with the start of ejection the
aortic valve is in its full open configuration, which allows blood
flow over the entire orifice area and in which the valve does not
influence the blood flow out of the LV in a significant way. Since
only CoA patients were modeled which showed no indications of
AVD this simplifying assumption may be well justified.

A potential main strength of the presented modeling
approach—the ability to predict the biomechanical response
of the LV to changed flow patterns in the aorta—was not
exploited. Due to the weak FSI coupling the immediate feedback
of altered flow or changed pressure gradients in the aorta on LV
biomechanics was ignored. In our current modeling approach
any such feedback must be mediated through changes in the
parameterization of the lumped afterloadmodel. However, owing
to regulatory mechanism of the circulatory system level this is not
directly predictable with the modeling setup used in this study
as flow distribution through the four outlets will be influenced
by factors which cannot be accounted for in a model comprising
only LV, aorta and lumped outflow impedances. In any case, one
cannot assume that the computed changes in pressure gradients
across a CoA translate directly into a reduction in LV peak
pressure. Independently of the modeling approach taken—be it
a strongly or weakly coupled FSI model—a lumped model of
systemic regulation is likely to be necessary to predict altered
LV loading under post-treatment conditions (Arts et al., 2005;
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Lumens et al., 2009). Compared to a fully coupled FSI model
our approach is limited in the sense that CFD simulations do
not influence the behavior of the EM model. However, in many
clinical settings CFD simulations in the aortic arch and LV with
image based kinematics prevail.

Image based kinematic models can only depict the status quo
of a patient. With our personalized EM model, based on first
principles, we can do simulations altering the motion, simply by
changing input paramters. The altered motion is then reflected
in the CFD simulation. Examples would include changes in heart
beats, infarcts or LBBB conditions.

In this work, the effect of stenting was only accounted for
by a geometric change in the computational geometry and an
ad hoc adjustement of the lumped model parameters. In future
studies, we intend to use a 1-D model of the arterial tree coupled
to a 0-D lumped model at the aortic outlets, thus being able to
account for the effect of stenting in a more detailed fashion, see
for example Quarteroni et al. (2017). As a first step toward our
ultimate goal of a fully coupled FSI model, that is based entirely
on first principles, we will add the dynamic fluid pressure ρf

2 |uf|
2

to the pressure of the lumped model (0-D or 1-D). This results
in a spatio-temporal pressure inside the LV and the aorta, and to
incorporate the dynamic feedback of fluid upon structure we will
iterate between a CFD solving step and a EM solving step within
each timestep to guarantee a converged solution.

5. CONCLUSION

Biophysically detailed models of LV EM can be efficiently built
and parameterized with clinical data to be considered a viable
option for patient-specific simulation. Similar to image-based
kinematic models such biophysics-based EM models can be
used as a kinematic driver for simulating cardiac and vascular
hemodynamics. The cost of model building and execution
is comparable between the two approaches. Biophysical EM
models offer the significant advantage of being based entirely

on first principles and as such, may allow to make predictions
of interventions altering pressure and flow patterns onto LV
performance. In contrast, image-based kinematics modeling may
provide a more accurate representation of blood pool motion,
at least under pre-treatment conditions or post-treatment
conditions secondary to interventions which do not influence LV
kinematics in a significant way.
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Cochlear implantation (CI) is a complex surgical procedure that restores hearing in

patients with severe deafness. The successful outcome of the implanted device relies

on a group of factors, some of them unpredictable or difficult to control. Uncertainties

on the electrode array position and the electrical properties of the bone make it

difficult to accurately compute the current propagation delivered by the implant and the

resulting neural activation. In this context, we use uncertainty quantification methods to

explore how these uncertainties propagate through all the stages of CI computational

simulations. To this end, we employ an automatic framework, encompassing from

the finite element generation of CI models to the assessment of the neural response

induced by the implant stimulation. To estimate the confidence intervals of the simulated

neural response, we propose two approaches. First, we encode the variability of the

cochlear morphology among the population through a statistical shape model. This

allows us to generate a population of virtual patients using Monte Carlo sampling and to

assign to each of them a set of parameter values according to a statistical distribution.

The framework is implemented and parallelized in a High Throughput Computing

environment that enables to maximize the available computing resources. Secondly, we

perform a patient-specific study to evaluate the computed neural response to seek the

optimal post-implantation stimulus levels. Considering a single cochlear morphology, the

uncertainty in tissue electrical resistivity and surgical insertion parameters is propagated

using the Probabilistic Collocation method, which reduces the number of samples to

evaluate. Results show that bone resistivity has the highest influence on CI outcomes.

In conjunction with the variability of the cochlear length, worst outcomes are obtained

for small cochleae with high resistivity values. However, the effect of the surgical

insertion length on the CI outcomes could not be clearly observed, since its impact

may be concealed by the other considered parameters. Whereas the Monte Carlo

approach implies a high computational cost, Probabilistic Collocation presents a suitable

trade-off between precision and computational time. Results suggest that the proposed

framework has a great potential to help in both surgical planning decisions and in the

audiological setting process.

Keywords: cochlear implant, surgical outcomes prediction, automatic framework, uncertainty analysis, finite

element models, computational modeling, monte carlo, probabilistic collocation method
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1. INTRODUCTION

Computational models have shown the potential to predict
the performance of implantable devices, providing valuable
information to guide pre-operative decisions, assisting surgical
planning and supporting implant optimization processes.
Although they are not yet used in the daily clinical practice, they
have provided promising results for the prediction of cochlear
implantation (CI) outcomes (Kalkman et al., 2014; Ceresa et al.,
2015; Malherbe et al., 2015; Nogueira et al., 2016). CI is a
surgical procedure that aims at restoring functional hearing via
an implanted device that electrically stimulates the auditory
nerves. Over the last decades, technological advances have helped
to significantly improve speech perception in implanted patients.
Yet, some cases show suboptimal results, andwe contend that this
is partly due to a lack of appropriate surgical planning tools.

Advanced computational modeling and simulations could

help to guide and assist pre and post-operative decisions to

optimize the surgical outcome. However, computational studies
that consider a set of pre-defined parameters may lead to
inaccurate results since they do not account for the inherent
uncertainty of model parameters, or the large inter-patient
variability. This uncertainty and parameter variability have been
shown to affect CI outcomes (Finley et al., 2008; van der
Marel et al., 2014). Patient-specific cochlear anatomy has been
identified as one of the main factors that determine intra-
cochlear electrode array (EA) position (van der Marel et al.,
2014). However, it presents a large variability across patients,
leading to a high variation in the EA intra-cochlear position
(Finley et al., 2008; van der Marel et al., 2014; Venail et al., 2015)
and a broad range of post-operative speech perception scores
(Yukawa et al., 2004). Low scores may be the consequence of
confused pitch perception or loss of some frequency range due
to a mismatch of the alignment between the electrode location
and the frequency distribution of the adjacent auditory nerve
fibers (ANF) (Rebscher et al., 2008). This causes a harder CI
adaptation of the patient, and consequently, a reduction of the
possible implant benefits (Rebscher et al., 2008; van der Marel
et al., 2014).

Geometrical aspects, such as surgical insertion depth, are not
the only factors affecting the CI success. Both geometry and
electrical properties of the tissues determine the voltage spread
throughout the inner ear. A change in these parameters alters
the potential distribution, which is critical to evoke the desired
neural response. Tissue electrical resistivity values employed in
computational CI models were originally obtained from animal
data, and they are still used nowadays (Hanekom and Hanekom,
2016). Nonetheless, electrical properties of bone tissue exhibit the
largest variability in humans (Hanekom and Hanekom, 2016).
Specifically, bone electrical resistivity has shown to be easily
modified by changes of density, which is affected by the chemical
composition or some diseases, such as osteosclerosis (Mens et al.,
1999). Although the electrical resistivity of the bone has been
adapted to amore precise value according to recent studies (Mens
et al., 1999; Rattay et al., 2001a; Malherbe et al., 2015), its value
cannot be obtained accurately in patients. Hence, the effect of
bone tissue on neural excitation profiles remains uncertain.

Despite the large number of techniques employed to study
parameter variability and uncertainties in finite element (FE)
models (Mangado et al., 2016b), Monte Carlo (MC) method is
the most popular because it easily allows generating a set of
models – computing for each of them a FE analysis. However,
in some studies the associated computational cost is unfeasible
when a large set of samples is evaluated, and thus, methods
less expensive in terms of computational time are required. In
this work, we propose to reduce the computational cost of our
study using the Probabilistic Collocation method (PCM), which
without modifying the numerical formulation of the FE model,
allows evaluating the system outcomes with a reduced number of
samples.

Our aim is to study the outcomes of CI computational
models considering parameter uncertainty and variability for the
prediction of neural response to support optimization processes
for surgical planning and implant design. To this end, we make
use of our framework for the complete functional assessment of
CI (Mangado et al., 2016a), and we combine it with uncertainty
quantification methods. First, we study the CI outcomes in a
virtual population using theMCmethod. Due to the high amount
of time required for such uncertainty quantification study, a
High Throughput Computing (HTC) environment is used to
considerably reduce the overall time of computational analysis.
Second, we focus on the implant performance in a patient-
specific case using PCM. This reduction of the time required for
the study allows us to seek the optimal stimulus levels delivered
by the implanted electrode – a highly time-consuming process–,
providing thus the favorable set up for the implant programming
in the given patient during the post-intervention procedure.

2. MATERIALS AND METHODS

In this section, first a brief description of the computational
framework employed for the evaluation of CI models is
introduced (section 2.1). The automatic framework consists of
three main blocks: (1) the generation of the computational
models, (2) their functional assessment and (3) the evaluation of
their outcome. Then, the identification and characterization of
the different sources of uncertainty and variability are presented
(section 2.2). Finally, uncertainty quantification methods to
propagate parameter variability and uncertainty through the CI
simulations to the system output are described (section 2.3).

2.1. Computational Framework for CI
Assessment
2.1.1. CI Computational Model Generation
The first block of the framework is composed of a statistical
shape model (SSM), a virtual insertion algorithm and a three
dimensional full model of the head. The SSM is a compact
representation learned from a training population of the shapes
extracted from imaging data. It encodes the shape variability
in the population by a small set of weights modulating the
contribution of the main modes of variation around the
mean shape (Cootes and Taylor, 1995) (Figure 1 Step 1). By
modulating these weights within a limited range, the mean

Frontiers in Physiology | www.frontiersin.org May 2018 | Volume 9 | Article 498197

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mangado et al. Uncertainty in CI Computational Models

FIGURE 1 | CI evaluation framework. Input variables, for which uncertainty and variability are assessed, are shown at the top level. Their respective arrows indicate

the step in which the uncertainty is introduced. Blue arrows show the workflow path of the framework for the two main blocks: model generation and functional

evaluation. The evaluated output variables are shown at the bottom level.

FIGURE 2 | Illustration of the changes of the cochlear morphology by varying the three first modes of variation of the SSM, mean shape, and ± 3 standard deviation

(SD) from the mean.

shape of the cochlea is deformed so that anatomically plausible
cochlear morphologies are obtained (further implementation
details shown by Mangado et al., 2016a; Gerber et al., 2017).
Therefore, we can obtain a set of cochlear surfaces, each of
them created from a different combination of the scalar weights
(Figure 2). Here, this set of surfaces is referred to as population
of virtual patients. The surgical trajectory of the EA insertion
is computed via our surgical planning software based on the
open source simulation framework SOFA (Allard et al., 2007).
This surgical trajectory is matched to the centerline of the EA
mesh by using a parallel transport frame algorithm (Mangado
et al., 2016a). It allows adapting geometrically the EAmesh to the
obtained insertion trajectory for a given virtual patient (Figure 1
Step 2). The parametrization of the virtual EA insertion allows

having control over the insertion depth (Mangado et al., 2016a).
Cochlear anatomies of two virtual patients with two different
insertion depths are shown in Figures 3A,B. The EA is based on
Med-EL Flex28 design, with 12 electrodes numbered from 1 to 12
as E1 to E12. The virtual patient’s cochlea and the array virtually
inserted are coupled with a generalized model of the brain, scalp
and skull. To further conduct the computational FE simulations,
all the elements are transformed into a single volumetric mesh of
approximately 2 · 106 tetrahedral elements free of intersections.
(Figure 1 Step 3) (Mangado et al., 2017a).

2.1.2. CI Functional Assessment
The second block encompasses the simulations of the electrical
field and the ANF model for the assessment of the evoked
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FIGURE 3 | Example of two virtual patients with different cochlear sizes, both with the shortest and longest EA insertion depth allowed by the model morphology.

(A,B) 3D model of the cochlea. (C–F) Potential created by the fourth electrode (E4) on the EA. (G–J) Evoked neural response on all ANF when each electrode delivers

the stimulus.

neural response. The potential distribution is computed by the FE
method (Figure 1 Step 4) considering a monopolar configuration
according to the stimulation strategy used by the implant design:
one intra-cochlear electrode is set as active source, while the
return is defined as the reference electrode located on the scalp
(Mangado et al., 2017a). In the current work, the intra-cochlear
electrode delivers a biphasic cathodic-first pulse of 100µs, similar
to previous reported studies (Rattay et al., 2001a,b), with an
intensity of 350 µA.

The neural response provoked by the activation of the intra-
cochlear electrodes is computed by the ANF model (Figure 1
Step 5). This multi-compartment fiber model reproduces the
active behavior of the neural cell membrane according to ionic
channel kinetics (Hodgkin and Huxley, 1952), adjusted to the
human temperature to fit the temporal behavior of the human
ANF (Rattay et al., 2001a, 2013). The neural activity is considered
as a single spike induced by the depolarization of the neuron,
which generates an action potential that is propagated through
the ANF. The external stimulation used to initiate this neural
response corresponds to the potential value obtained by the FE
simulation at the specific spatial location (Rattay et al., 2001a,b).
These locations are equal to the ANF compartment coordinates,

modeled according to the 3D model of the patient’s cochlea and
considering the human ANFmorphology (Mangado et al., 2016a,
2017a). The model includes 334 nerve fiber bundles. As the
human cochlea has approximately 30,000 nerve fibers, each fiber
bundle represents 90 neural fibers, retaining enough frequency
resolution. Figures 3G–J shows examples of four different neural
responses for the presented examples.

2.1.3. CI Outcome Evaluation
The third block of the framework assesses the implant
performance. Here, the patient’s neural response is evaluated
by an activation map (Mangado et al., 2017a), where rows
represent the frequency bandwidth of each ANF bundle
and columns the electrode delivering the stimulus (see
Figure 4). A target activation map (Figure 4A) describes
the ideal excitation according to the tonotopic map of
the cochlea, selectively stimulating the desired ANF.
This tonotopic map provides a specific pitch perception
according to the location of the evoked ANF–capturing
high frequencies at the base and low frequencies at the
apex of the cochlea (Greenwood, 1990; Stakhovskaya et al.,
2007).

Frontiers in Physiology | www.frontiersin.org May 2018 | Volume 9 | Article 498199

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mangado et al. Uncertainty in CI Computational Models

FIGURE 4 | Activation maps for (A) the desired and (B) the actual neural response, and (C) mismatch map computed in a randomly generated virtual patient. Each

electrode on the array is numbered, from the tip (E1) to the base of the array (E12). The actual activation map is split and evaluated according to the stimulation found

in the half turn of the cochlea where the mid target frequency is located at the middle of the cochlea section evaluated (D). The activation at the rest of the cochlea (E)

is considered as cross-turn stimulation. Local performance score for E6 (F) and local cross-turn score for E2 (G). Activation profiles of both electrodes are highlighted

in blue in their corresponding maps.
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The actual activation map computed by the computational
framework (Figure 4B) is then compared with this target map,
which leads to a mismatch map (Figure 4C). We propose
a set of measures using this mismatch map to quantify the
neural response to assess the final CI outcome of the patient.
We evaluate the global implant performance by the neural
activation specificity –true negative rate. We also evaluate
two local effects: the frequency selectivity and the cross-turn
stimulation (Figures 4D,E). The frequency selectivity defines the
mismatch between excited frequencies due to a non-focused
current stimulation. We refer to this measure as the local
performance score. Cross-turn stimulation corresponds to the
excitation of the ANF that are located half turn further from
the desired frequency bandwidth. Therefore, the second local
measure, named cross-turn stimulation score, evaluates the non-
selective ANF activation (Figures 4F,G).

To compute these two scores, the activation map is split
into two–one analyzing the half turn of the cochlea where the
center corresponds to the mid target frequency, and another
representing the activation at the rest of the cochlea (i.e.,
cross-turn stimulation) (see Figures 4D,E, respectively). We
consider that the target bandwidth of each electrode has a
modified Gaussian distribution and, given an activation map,
assigns positive and negative values to acceptable (up to 3 mm
of bandwidth) and non-acceptable activation, respectively (see
Figure 4F). A frequency bandwidth broader than 3 mm would
imply a change in tone and a confusing pitch for the patient
(Mistrík and Jolly, 2016). Therefore, cross-turn stimulation areas
are penalized. This leads to a performance measure, one for
each electrode, where the mid value corresponds to a zero
stimulation, the maximum to the ideal activation profile and the
minimum to the inverse profile, i.e., the activation of all non-
desired ANF exclusively. The described performance measure
is applied to both maps obtaining for each virtual patient a
value of local performance and cross-turn stimulation score for
each electrode (Figures 4F,G). For interpretation, both scores
are mapped between (0, 100)% (for further details, see Mangado
et al., 2017a).

Post-implantation stimulus comprises the stimulation
threshold, T-level, and the maximum amplitude of stimulation,
C-level. T-level defines the amplitude at which the first neural
response within the desired target bandwidth is obtained. The
desired target bandwidth is defined according to the EA design.
C-level is here considered to be reached when the maximum
recruitment of ANF within the desired target bandwidth is
accomplished, while minimizing the cross-turn stimulation and
avoiding frequency overlap. Therefore, C-level corresponds to
the stimulation level of each electrode that provides the highest
values of both specificity and sensitivity of the mismatch map.

2.2. Uncertainty and Variability
Characterization
Uncertainty and variability sources considered in the current
study were the insertion depth of the EA, the cochlear anatomy
and the bone electrical resistivity. The EA insertion depth
was characterized by a normal distribution with mean µ =

27mm and standard deviation σ = 1mm to cover the possible
range found in the population. This mean value was reported
previously in our computational model—with this cochlear
anatomy—to be the most reliable to obtain the best CI outcome,
and therefore, considered as the target depth (Mangado et al.,
2017b). For the patient-specific study, we considered a standard
deviation of 0.5mm related to the inherent uncertainty due to the
surgical insertion procedure.

Since the active stimulation range of the EA design is 23.1mm,
the minimum insertion depth was defined as 24.1 mm (active
stimulation range plus 1 mm of the tip of the EA) to ensure a
full insertion –all electrode contacts of the EA inside the cochlea.
The insertion depth was measured from the round window. We
took the deepest insertion allowed by the cochlear duct in cases
of large values of insertion depth in cochlear anatomies with
small dimensions. Figure 3 shows an example of a small (Virtual
patient A) and large cochlea (Virtual patient B)—with 5.5 mm
of difference between their Organ of Corti length—with their
shortest and longest possible insertions.

We characterized the variability of the cochlear anatomy by
modifying the weights of the first three principal components
of the SSM (see section 2.1.1). These weights were sampled
from normal distributions with mean and standard deviation
of 0 and 1, respectively, with maximum values of ±3. This
avoids obtaining unrealistic shapes with high deformations,
while ensuring plausibility of the shape anatomy. For higher
standard deviation values, the generated cochlea presents a larger
deformation (see Figure 2). The size of the cochlea was described
by the length of the osseous spiral lamina, an inner structure
located between the Organ of Corti (around 33 mm) and the
modiolus wall (around 15 mm) (Stakhovskaya et al., 2007; Rask-
Andersen et al., 2012; Venail et al., 2015), visible on our model
andµCT images (Rask-Andersen et al., 2012; Martin et al., 2016).
In the patient-specific study, the morphology was considered a
known factor, defined as themean shape of the SSM, with a length
of the osseous spiral lamina of 25.3 mm.

Based on recent studies reporting the influence of bone
resistivity in CI models (Malherbe et al., 2016) , we defined the
bone resistivity parameter as normally distributed, with values
µ = 65.0 �· m and σ = 21.6 �· m. These values were obtained
matching electric field profiles to clinical data in a small number
of computational models considering a broad range of bone
resistivity values (Nelson et al., 2008; Tang et al., 2012; Malherbe
et al., 2016).

2.3. Uncertainty and Variability Propagation
and Quantification
We considered two different non-intrusive approaches, which
did not modify the described CI framework. The first study
used MC sampling to generate a population of virtual patients
according to the variability of the cochlear anatomy and the
uncertainty sources described in section 2.2. The second study
used bothMC sampling and PCM to evaluate the neural response
in a patient-specific case.

The analysis via MC was performed by a set of individual
evaluations that did not depend on each other, so it is easily
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parallelizable. This allowed us to use a HTC environment called
HTCondor, which enables to easily create a grid of computers,
maximizing the amount of available computing resources (Thain
et al., 2005). MC sampling was implemented in a HTCondor (8
nodes and 40 cores), in both Windows and Linux platforms, to
evaluate a large set of patients using our automatic framework
(section 2.1). Nonetheless, the MC sampling technique still
required to deal with a large number of simulations—leading
to a high computational cost—to obtain a satisfactory accuracy.
For this reason, to drastically reduce the number of samples,
the second study explored the use of PCM to assess the neural
response in a patient-specific case, while accounting for the
uncertainty sources.

PCM (Loeven and Bijl, 2008) is a numerical technique to solve
stochastic differential equations using (Lagrange) polynomial
interpolation and Gaussian quadrature. We used PCM to
approximate our model’s response—treated as a random field—
as a weighted sum of Np Lagrange polynomial functions of
the uncertain input parameters. Let f (x,ω) be a the random
field, a function of (deterministic) x and the random variable ω,
expanded as:

f (x,ω) ≈

Np
∑

i=1

fi(x) · Li(ξ (ω)) (1)

where fi(x) is the value of f (x,ω) evaluated at the interpolation
point ωi—called collocation point—, ξ is the random basis
(chosen so that the uncertain input parameter is a linear
transformation of ξ ) and Li the Lagrange interpolating
polynomial chaos of order n = Np − 1 corresponding to ωi

(i.e., Li(ξ (ω)) passes through the Np collocation points, with
Li(ξ (ωj) = δij)) (Loeven et al., 2007).

The statistics (mean and variance) are obtained by a Galerkin
projection on the polynomial basis, with the collocation points
calculated as the points of the Gaussian quadrature (i.e., for
each uncertain parameter, the Np collocation points correspond
to the Np roots of the polynomial basis) (Webster et al., 1996;
Loeven and Bijl, 2008). When multiple uncertain parameters
are considered, the collocation points are obtained from tensor
products of one dimensional points and a total of (n + 1)p runs
(rather than n + 1) are needed, where n is the order of the
approximation and p the number of uncertain parameters. The
mean and variance in the case of two stochastic variables are
approximated as:

µ =

Np
∑

i=1

Np
∑

j=1

fij(x) · ki · kj (2)

σ 2 =

Np
∑

i=1

Np
∑

j=1

(fij(x)− µ)2 · ki · kj, (3)

where ki and kj are the weights of the corresponding collocations
points ωi and ωj that compound the random event ω, being fij(x)

the solution of f (x,ω) evaluated atωi andωj. Here, we considered
a second order polynomial for the Gaussian quadrature and,
therefore, three collocation points (n + 1) for each random
variable were required. Two sources of uncertainty were defined,
and thus, Np

2 = 9 model runs were computed. The same
uncertainty characterization was employed using MC sampling
to create a set of 250 samples and evaluate the accuracy obtained
with PCM.

3. RESULTS

3.1. Virtual Population Study
Preliminary results obtained from a population of 300 virtual
patients showed a high impact of the bone resistivity variability,
which hindered the impact of the variability and uncertainty
of other parameters on the patient’s neural response. Very low
global performance values were related to the activation of (1) all
ANF due to the vast spread of excitation or (2) very few ANF due
to a highly focused potential distribution. No relevant effects were
found regarding the rest of uncertainty and variability sources.
These widespread CI outcomes are likely due to the wide range
of variability in bone resistivity (Kalkman et al., 2015; Malherbe
et al., 2016).

We created thus a second population of 1,000 virtual patients,
divided in three groups. Each of them considered the bone
resistivity as a fixed input parameter. The first group (Group 1)
comprised 500 virtual patients with a bone resistivity equal to the
mean value 65.0 �· m (section 2.2). The two other groups, with
250 virtual patients each, had a resistivity of − σ (Group 2) and
+ σ (Group 3) from the mean, with σ = 4.5· m according to
previous reported values (Mens et al., 1999; Rattay et al., 2001a;
Frijns et al., 2009; Kalkman et al., 2014; Malherbe et al., 2015).We
also used this mean and standard deviation to characterize bone
resistivity uncertainty in the patient-specific study (section 3.2).

The population of virtual patients had an average length of
25.3± 1.1mm and the final insertion depths were 26.7± 0.8, 26.9
± 0.8, and 26.9± 0.9 mm for the Group 1, 2, and 3, respectively.
Figure 5 shows the CI outcomes for the three virtual populations
of patients, with a global performance score (specificity) of 0.75
± 0.06 (Group 1), 0.71± 0.05 (Group 2), and 0.67± 0.06 (Group
3).

Figure 6 represents the global performance according to the
shape variability of all virtual patients. The graphics show a clear
effect of the bone resistivity on the outcome. In general, lower
bone resistivity values led to better global performance measures.
Group 3 presented no clear variation related to the morphology.
Although the impact of each mode of variation individually was
not evident, global performance slightly increased as the second
mode took values above the mean. Better results were obtained
when the value of the first mode was above 1 standard deviation
from the mean, and the third mode, below the mean.

The relation between the global performance and the cochlear
length was almost linear: the longer the cochlea, the higher the
performance (see Figure 7). The effect of the bone resistivity
can also be seen; results improved for longest cochleae with low
resistivity values (Figure 7A). Although the insertion depth did
not seem to have as large impact as the bone resistivity, some
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FIGURE 5 | Histograms of global performance of a population of virtual patients. (A) All virtual population, (B) Group 2 (−1 standard deviation) (C) Group 1 (mean

value) and (D) Group 3 (+1 standard deviation).

groups with similar behavior were identified (see Figure 7B).
Short cochleae with short insertion depth showed the worst
results (Figure 7C). Although deepest insertions did not provide
the best results in all anatomies, the best outcomes—with global
performance score above 0.8—were obtained for insertions
deeper than 26 mm in cochleae with a length of the spiral lamina
larger than 26.5 mm.

Figure 8 presents the neural response of the three sets of
populations of virtual patients with regard to local effects.
Apical electrodes performed worse than basal ones, in terms of
higher non-focal and non-selective activation, with higher spread
of excitation and cross-turn stimulation (Figure 8A). Medial
electrodes showed similar cross-turn scores than apical ones,
while they presented better local performance scores – more
focused ANF recruitment. 34% of all electrodes presented a local
performance score higher than 80%, # while less than 9% of all
cases obtained a score below 50% and none less of 45%. Cross-
turn stimulation scores were 80% of the cases within [70, 95%].
Some outliers (2%) presented the lowest scores below 60 and 13%
obtained scores above 95%.

On average, Group 3 obtained the worst performance values
due to the higher non-desired ANF excitation and broader

spread. Group 2 presented better results in terms of cross-turn
stimulation and slightly better in local performance than Group
1. However, for the apical electrodes, Group 2 presented worse
local performance score due to the high non-focused activation
andmissed target frequencies. Group 2 showed slightly narrowed
bandwidth, but less non-focused activation, obtaining an overall
better performance.

The impact of the insertion depth was also evaluated in
terms of local effects. Insertions deeper than 27 mm obtained
the best results for apical electrodes (highest values above 90%
in E1–E4), although they did not provide such good outcomes
in the basal part, missing some target frequencies due to
the misaligned electrodes. Group 1 did not show a relevant
relationship between the insertion and the local performance.
Likewise, cross-turn stimulation was not clearly influenced
by the insertion depth, although some of the better results
corresponded to insertions between 27 and 28 mm. Some
outliers – lowest scores – were identified to correspond to the
smallest cochleae (below 24 mm), where the short distances
between turns provided a large amount of evoked ANF at
non-desired locations. Results of local effects according to the
length of the spiral lamina provided similar information, as
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FIGURE 6 | Effect of the cochlear morphology on implant global performance of a population of virtual patients. From left to right, first to third mode of variation. From

top to bottom, from low to high bone resistivity values.

shown in Figure 7; the smaller the cochlea, the worse the
results.

Regarding the computational cost, each patient took 5.1 ±

1.2 h. However, using theHTC environment allowed parallelizing
the simulations so that the whole population took <1,010 h (i.e.,
effective average of 1 h per patient).

3.2. Patient-Specific Case Study
Figures 9A,B shows the global behavior of the patient’s neural
response using the MC approach. In line with the results
presented above, as the bone resistivity decreases, the spread
of excitation is narrowed. This causes more focused activation
and avoids non-desired stimulation (high specificity values).
However, if the spread is too narrow, it may not be able to activate
the desired bandwidth (low sensitivity values– see Figure 9C).
Bone electrical resistivity has a effect on the neural response,
while the impact of the insertion depth is not observed.

CI global specificity and sensitivity measures were 0.72± 0.36
and 0.74± 0.35 for the PCM approach, and 0.72± 0.04 and 0.75
± 0.08 for MC. Similarly to the population study, Tables 1, 2
show worst results on the basal and medial electrodes, in terms
of local performance and cross-turn stimulation. Both scores
showed similar patterns to the ones found in the population
study (Figures 8A,B). Despite the higher standard deviation
obtained when using PCM, mean values did not differ more
than 3 %, providing an acceptable approximation of the mean
behavior. Although the MC approach showed less variance, the
computational time reached 1,100 h, while PCM took 96 % less
(36 h). The use of higher order polynomials was also evaluated.

Results from second to sixth order polynomials – from 9 to 49
samples, respectively – obtained specificity values that differed
<1%.Mean values obtained were 0.723, 0.724, 0.724, 0.725, 0.719,
0.720, from 2 to 6 order polynomial, while the mean value using
MC was 0.727. Local score values differed depending on their
position on the array, however overall differences were <5.5%,
being the minimum equal to 0.01%. The required computational
time increased exponentially: from 15 to 218 h for first and sixth
order, respectively.

Results showed that mean T-levels were approximated with

values 240 ± 59 µA and 251 ± 32 µA computed by PCM

and MC, respectively. Both approaches presented similar trends

regarding each electrode’s T-level: lower threshold at the apex
(E1–E4) and higher at the first turn (E8–E11). Threshold mean
values differed at most 55 µA, in the worst case (E4), while the
best approximation was <5 µA (E1, E2, E3, E12). Likewise, C-
levels presented lower values at the apex of the cochlea, while
highest values were obtained at the medial part.

Mean C-level was 355 ± 71 µA for the PCM approach, in
concordance with the behavior observed in Figure 8B, where in
order to avoid cross-turn stimulation at the apex and medial
part, lower amplitudes are required. This post-implantation
level could not be computed for the MC approach, due to
the unfeasible required computational time. Post-implantation
stimulus levels—mean values—for a patient-specific case are
shown in Table 3. Mean values for the C-level stimulus were
evaluated in an average patient (mean cochlear shape, insertion
and bone resistivity), obtaining global performance measures of
0.80 and 0.72 for sensitivity and specificity, respectively.
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FIGURE 7 | Relation between the global performance and the length of the cochlea (A,B) in all the virtual population and (C) in each group of patients.

FIGURE 8 | CI outcomes in a population of virtual patients. (A) Local performance score, (B) Cross-turn stimulation score.

4. DISCUSSION AND CONCLUSIONS

This work aimed at the assessment of parameter variability and
uncertainty using a computational framework for the modeling
and the evaluation of CI. To this end, we employed uncertainty

quantification methods and the developed automatic framework
to functionally evaluate the implant in terms of neural excitation.
We used a HTC environment to reduce the computational effort
of the uncertainty study while evaluating the range of variability
on the population.

Frontiers in Physiology | www.frontiersin.org May 2018 | Volume 9 | Article 498205

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mangado et al. Uncertainty in CI Computational Models

FIGURE 9 | CI global performance of a patient-specific case in terms of (A) specificity, (B) sensitivity, and (C) global performance (specificity vs. sensitivity).

TABLE 1 | Local performance score.

Mean PCM Mean MC SD PCM SD MC

E12 81.0 80.6 37.8 2.9

E11 68.5 68.3 32.0 1.7

E10 76.3 75.7 35.7 4.6

E9 83.8 82.6 8.8 4.6

E8 86.0 85.6 40.2 3.3

E7 83.0 83.0 40.5 4.3

E6 72.3 71.6 35.8 3.8

E5 61.7 63.3 30.0 11.6

E4 87.8 90.2 42.9 6.8

E3 55.3 53.1 25.4 5.8

E2 49.2 49.6 23.1 1.1

E1 58.8 58.0 26.3 4.0

TABLE 2 | Cross-turn stimulation score.

Mean PCM Mean MC SD PCM SD MC

E12 92.6 92.4 44.1 2.6

E11 97.8 95.9 45.7 6.1

E10 91.8 90.7 44.0 5.1

E9 85.2 86.5 40.5 3.1

E8 75.3 76.6 36.4 5.0

E7 70.2 71.1 35.0 6.7

E6 82.7 83.4 39.8 4.2

E5 78.8 78.9 37.5 4.1

E4 74.6 77.2 35.4 4.1

E3 82.3 83.3 39.9 3.4

E2 80.0 79.4 37.7 3.8

E1 95.4 95.4 45.4 1.5

Initial results showed that 53% of the virtual population
obtained global performance measures in terms of specificity
within the range [0.70, 0.80], and almost 10% above 0.80. This
performance was related to a low rate of false positives, highly
desirable in order to avoid confusing pitch for the patients.

Specificity values below 0.5 were related to wider spread of
excitation and ANF recruitment due to an increase of bone
resistivity, which combined with small cochlear dimensions,

caused a considerable amount of non-selective stimulation. This
is in line with the findings presented by Tang et al. (2012) and
Malherbe et al. (2015). Indeed, results showed the large impact
of the bone resistivity over the neural response: as it increases,
CI outcomes worsen (i.e., lower performance measure, higher
cross-turn stimulation and broader excited pitch). This behavior
can be explained by the tendency of the currents to leak from
the cochlear structure when the surrounding bone presents a low

resistivity value. In those cases, a reduction of the current density

and a narrower spread of excitation are observed (Malherbe et al.,
2015). As the current leaks, higher post-implantation stimulus

levels are required to reach the desired excited pitch (Frijns

et al., 2009). In agreement with the findings reported by Tang

et al. (2012) and Malherbe et al. (2015), our results showed
that consequently, for high resistivity values (absence of bone

conduction) lower stimulus intensity should be employed.
Morphology of the cochlea has also shown an impact over the

neural response, as suggested by (van der Marel et al., 2014). The

first modes of variation of the SSM can be roughly related to the

morphology of the inner ear: the variation in general size, the

dimension of the spiral radius and the rotation of the cochlea over
the rest of the inner ear (the vestibular canals), for the first, second
and third mode, respectively (see Figure 2). The second mode is
the most influential to the CI outcomes. When it increases, the
electrodes are further from the ANF (basal part distances from
the modiolus), obtaining a more selective ANF recruitment and
better performance measures (Figure 6).

The surgical length of insertion has always been a
controversial aspect of the CI procedure. In the clinical
practice a high variability of insertion depth has been reported
(Gstoettner et al., 2004; Rebscher et al., 2008; Franke-Trieger
et al., 2014; Kalkman et al., 2014; van der Marel et al., 2014),
which varies according to the implant design, target intra-
cochlear position (closer to the modioulus or the lateral wall)
and target frequencies (shorter EAs focus on high frequencies,
while longer ones cover the whole frequency range). Despite
the wide range of reported results, some authors found no
significant influence on the patient speech perception (Van Der
Marel et al., 2015), while others remarked the insertion depth
as a key factor, since it directly affects the alignment between
frequency and cochlear location (Dorman et al., 1997; Finley
et al., 2008; Mangado et al., 2017b). We found that the impact

Frontiers in Physiology | www.frontiersin.org May 2018 | Volume 9 | Article 498206

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mangado et al. Uncertainty in CI Computational Models

TABLE 3 | Post-implantation stimulus levels for a patient-specific case using PCM.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

T-level (µA) 221 185 123 226 234 192 272 298 326 317 265 221

C-level (µA) 268 266 302 301 310 372 410 420 460 420 336 284

of the insertion depth was subtle, and mainly observed at the
base of the cochlea. This was caused by the narrow spread of
excitation, which missed some target frequencies.

Although the computational quantification of the implant
performance has not been attempted before, local effects have
been previously reported. As suggested by Frijns et al. (2001) and
Briaire and Frijns (2006), we observed that electrode contacts
in the last cochlear turn presented cross-turn stimulation at the
base of the cochlea – caused by the tightly coiled geometry of
the cochlea at the apex. In addition, medial and basal electrodes
showed cross-turn stimulation, identified to be related to the
excitation of lower pitches. This could be explained by the use
of a high impulse intensity, which combined with the low bone
conduction, generates wider current fields that excite a high
amount of non-selective ANF. Indeed, we observed that a wider
excitation area tends to appear at the apex, as indicated by van der
Beek et al. (2012) and Biesheuvel et al. (2016), which limits the
spatial selectivity at the apex (Briaire and Frijns, 2006). Results
agreed with reported excited pitches for similar computational
conditions: lateral electrodes produced similar excitation pitch
for bandwidths of 4 mm, i.e., E7 and E10 generated a pitch of
800–1,500Hz and 2,100–4,400Hz, respectively, in concordance
with 900–1,700Hz, and 2,000–4,000Hz reported by Kalkman
et al. (2014). These variations could be explained by a slight
difference of the angular insertion depth. However, frequency
bandwidth wider than 3 mm should be avoided since it implies a
change of one octave in frequency, causing a high confusing pitch
and therefore a large impact in CI outcomes (Mistrík and Jolly,
2016). To avoid this, in the clinical practice optimal stimulus
amplitudes are sought to reach the desired pitch at each electrode
location.

Results showed that lower amplitudes were required at apical
electrodes, in line with Brill et al. (2009), Malherbe et al.
(2013), Kalkman et al. (2014), and van der Beek et al. (2016).
Predicted levels tended to decrease on the first electrodes, while
increasing toward the base (Malherbe et al., 2013; van der
Beek et al., 2016). Obtained T-levels can be compared with
experimental measurements (eCAP thresholds): from 190 µA
at the apex to 460 µA at the base for a Med-EL Flex28 array
(Brill et al., 2009). These findings are also in agreement with
previous computational studies, which found T-levels from 150
to 400 µA (Kalkman et al., 2014). However, they also reported
relevant differences on these levels according to the geometrical
description of the ANF, defined either as radial or oblique
trajectories (Kalkman et al., 2014, 2015). The latter provided a
better representation of the ANF by relating more accurately the
peripheral process of each ANF with the position of its cell body
in the spiral ganglion (Stakhovskaya et al., 2007; Kalkman et al.,
2015).We believe that the improvement of such trajectories could

explain some discrepancies of our results with the clinical data. In
addition, previous studies defined the T-level and C-level as the
stimulus required to evoke a bandwidth of 1 and 4 mm along
the basilar membrane, respectively (Briaire and Frijns, 2006;
Kalkman et al., 2014), based on experimental findings reported by
Snel-Bongers et al. (2013). Although our proposed performance
measures penalized the occurrence of cross-turn stimulation,
including this information into our description could provide
more reliable post-implantation levels.

The developed framework has a high cost, specifically
when a large set of samples needs to be evaluated. The
parallelization of the framework to conduct the population
study using a HTC environment allowed processing all data
more efficiently (4.9 times faster). Still, there is room for
improvement. While providing a detailed description of the
neural behavior in CI models, the implemented ANF model
implied a high computational effort (Hanekom and Hanekom,
2016). Less-expensive neural models, such as analytical or single-
compartment models, could provide an alternative to reduce the
required time of simulation. Although these models have been
also used for the generation of the action potential (Brette, 2015),
they are less realistic and they could imply some limitations on
the CI assessment in patient-specific studies, such as in cases of
ANF degeneration (Rattay et al., 2001a,b).

As for the uncertainty propagation approach, other sampling
techniques could be used instead of MC to reduce the number of
runs needed and, therefore, the overall required computational
time (Berthaume et al., 2012). The appropriate number of
samples to evaluate depends on each case study (Sarrazin
et al., 2017), fact that makes it difficult to ensure the desired
accuracy without conducting a prior dimensional analysis. The
computational effort of the implemented framework hampers
such analysis. However, our results are in line with previous
findings, thus we consider the set of 250 samples evaluated an
acceptable approximation.

Whereas PCM provided a trade-off between computational
time and precision in the patient-specific case –compared
to the mean obtained by the MC sampling approach–, the
population study involved more uncertainty sources, which
implied an exponential increment on the computational time.
For this reason, PCM is recommended only for studies with
few uncertain parameters, since otherwise the benefit of using
a considerably lower number of runs than MC would be
reduced. Results using PCM had a larger standard deviation.
Polynomials of order higher than 6 should be used to gain in
accuracy. However, the required computational time increases
exponentially, and therefore, the advantage of using PCM to
obtain the mean response of the system would be drastically
reduced.
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Additionally, other approaches for the uncertainty analysis
can be employed, for instance, intrusive methods, which
reformulate and solve the stochastic version of the deterministic
FE model (Mangado et al., 2016b). They have been implemented
successfully in electrical simulations considering sources of
uncertainty the tissue electrical properties (Geneser et al., 2008)
or the behavior of the ionic channels that control cardiac
contractions (Du and Du, 2016). Despite their limitation
when considering geometrical aspects, they may provide faster
solutions to assess patient-specific cases.

Although implant performance in CI has been rarely
quantified computationally due to the several involved
physiological effects, results suggest that the proposed
framework provides reliable information regarding the
behavior of the implanted cochlea and in concordance with
previous computational and experimental findings. Further
improvements include the use of trains of pulses as electrical
stimulus inducing then a temporal neural response, as well
as the evaluation of different stimulation protocols in terms
of current focusing and selective neural recruitment. This
study has analyzed the influence of EA insertion and bone
resistivity uncertainty according to the variation of the cochlear
morphology among the population. This information can help
surgeons to select the surgical parameters to achieve the optimal
outcome of CI (Finley et al., 2008; van der Marel et al., 2014).
Moreover, this work may provide a powerful computational
tool for implant design optimization purposes, as well as for the

implant programming to establish the most suitable stimulation
setting. Overcoming the limitations mentioned above would lead
to a more precise and highly accurate computational tool for its
use in the clinical practice.
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Realistic macro-level finite element simulations of the mechanical behavior of trabecular

bone, a cellular anisotropic material, require a suitable constitutive model; a model

that incorporates the mechanical response of bone for complex loading scenarios

and includes post-elastic phenomena, such as plasticity (permanent deformations) and

damage (permanent stiffness reduction), which bone is likely to experience. Some such

models have been developed by conducting homogenization-based multiscale finite

element simulations on bone micro-structure. While homogenization has been fairly

successful in the elastic regime and, to some extent, in modeling the macroscopic

plastic response, it has remained a challenge with respect to modeling damage.

This study uses a homogenization scheme to upscale the damage behavior from the

tissue level (microscale) to the organ level (macroscale) and assesses the suitability

of different damage constitutive laws. Ten cubic specimens were each subjected to

21 strain-controlled load cases for a small range of macroscopic post-elastic strains.

Isotropic and anisotropic criteria were considered, density and fabric relationships were

used in the formulation of the damage law, and a combined isotropic/anisotropic law with

tension/compression asymmetry was formulated, based on the homogenized results,

as a possible alternative to the currently used single scalar damage criterion. This

computational study enhances the current knowledge on the macroscopic damage

behavior of trabecular bone. By developing relationships of damage progression with

bone’s micro-architectural indices (density and fabric) the study also provides an aid for

the creation of more precise macroscale continuum models, which are likely to improve

clinical predictions.

Keywords: trabecular bone, multiscale modeling, parameter estimation, continuum damage, finite element

method, homogenization, biomechanics, high performance computing

1. INTRODUCTION

The growth of older population around the world in the last few decades has caused an increase
in problems which can be associated to deteriorated mechanical properties of bone; osteoporosis is
the clearest example of one such condition.

Computer models have been extensively employed to evaluate the mechanical response of
bone and bone-implant systems under a range of loading scenarios (Pankaj, 2013). Previous
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studies have assumed bone to be homogeneous (Completo et al.,
2009; Conlisk et al., 2015), i.e., its properties do not vary from
point to point in space or heterogeneous (Helgason et al., 2008;
Schileo et al., 2008; Tassani et al., 2011), i.e., its properties vary
with location (these are typically assigned on the basis of grey-
scale values observed in micro-computed tomography scans).
However, in the large majority of studies, bone is assumed to be
linear elastic and isotropic, i.e. its properties at a certain point in
space are the same in all directions. It is well- recognized that the
cellular microstructure of trabecular bone renders it anisotropic
(Turner et al., 1990; Odgaard et al., 1997), i.e., properties at a
point in space vary in different directions. Finite element (FE)
analysis of the bone microstructure, in which the solid and pore
phases are explicitly modeled, has been used to evaluate the
homogenized anisotropic linear elastic properties of bone in the
past two decades. Morphology-elasticity relationships that use
bone density and fabric have also been established, with fabric
typically measured through the mean intercept length (MIL)
fabric tensor (Harrigan and Mann, 1984). These relationships
establish links between density, fabric, and the components of
the stiffness tensor (Zysset, 2003). More recently, some studies
have attempted the evaluation of homogenized yield behaviour
(Cowin, 1986; Wolfram et al., 2012; Levrero-Florencio et al.,
2016).

Homogenized FE models of the whole bone can include
microstructural information at the continuum (macroscopic)
level and can thus improve the assessment of the behavior of bone
and bone-implant systems in clinical scenarios. Homogenization
relies on averaging the strains and stresses over a representative
volume element (RVE) of the considered material; it is the
most widely used multiscale approach to study the macroscopic
behavior of trabecular bone. Homogenization of an RVE in
the post-elastic regime requires examining its response to a
wide range of loading scenarios (Bayraktar et al., 2004; Levrero-
Florencio et al., 2016, 2017a). It is important to note that,
in experiments, it is not possible to test multiple load cases
after a certain load threshold has been surpassed because
permanent deformations and/or damage caused during the first
loading case will affect the behavior in subsequent loading
cases. Therefore, computational means provide an attractive
alternative. Nonetheless, the need for fine resolution to recreate a
biofidelic geometry of the bone microstructure leads to micro-FE
(µFE) systems of several tens of millions of degrees of freedom.
The need to undertake multiple load cases each in non-linear
regime requires the usage of high performance computing (HPC)
platforms and software which can take advantage of them.

Although the damage behavior of bone has been considered in
a few studies (Keaveny et al., 1994a; Garcia et al., 2009; Shi et al.,
2010; Schwiedrzik and Zysset, 2013; Lambers et al., 2014), there
are apparent limitations to most of the employed mathematical
formulations. For example, most macroscopic damage models
of trabecular bone employ an isotropic damage evolution, i.e.,
a “basic,” or single scalar isotropic formulation, as mentioned
in Carol et al. (2002), and do not take into account that the
development of damage may be related to the load case being
considered (Levrero-Florencio et al., 2017a). The authors have
previously conducted a series of uniaxial simulations which show

that damage develops differently in tension−compression, and in
normal−shear (Levrero-Florencio et al., 2017a).

This study has a number of aims. Firstly, it extends the
study performed in Levrero-Florencio et al. (2017a) by adding
12 biaxial macroscopic cases in the normal strain space. The
second aim is to examine the suitability of certain damage
mechanisms by fitting different damage laws to the damaged
macroscopic stiffness tensors. The study then investigates the
possible relationships between the macroscopic damage behavior
of trabecular bone and its density and fabric description,
by including these micro-architectural indices as additional
data in the fitting procedure. The data for these formulations
is obtained computationally through homogenization-based
multiscale simulations run on a HPC platform with an in-house
developed parallel implicit FE code.

2. NOTATION

The mathematical operators defined in this section largely follow
the notation used in Wu and Li (2008), Schwiedrzik et al. (2013),
and Levrero-Florencio et al. (2016). Compact tensor notation is
used throughout this study, with indicial notation within brackets
being used in this section to clarify certain tensorial operations, or
in specific sections where further clarification might be required.

As a general rule, scalars are denoted with Greek or Latin
italic characters (e.g., λ or a, respectively); vectors, or first-order
tensors, are denoted by Latin bold lower-case characters (e.g.,
a); second-order tensors are denoted with Greek or Latin bold
upper-case characters (e.g., σσσ or A, respectively); and fourth-
order tensors are denoted by Latin double-barred upper-case
characters (e.g., A).

Tensorial operations are denoted as follows. Single
contraction of tensorial entities may appear as a · b (aibi),
a · B (aiBij), Ab (Aijbj), or AB (AikBkj), note that the scalar
product symbol (·) only appears when the first entity to be
contracted is a first-order tensor; double contraction of tensorial
entities may appear as A :B (AijBij), A :B (AijklBkl), A :B

(AijBijkl), or A :B (AijmnBmnkl). Different tensor products have
been defined, which include a ⊗ b (aibj), A ⊗ B (AijBkl),

A⊗B (AikBjl), A⊗B (AilBjk), or A⊗B = 1
2 (A⊗B + A⊗B)

( 12 [AikBjl + AilBjk]).
Curly brackets {·} are used to represent vector projections of

second-order tensors, such as

{A} =
{

A11 A22 A33 A12 A13 A23

}T
. (1)

Square brackets [·] are used, in conjunction with parentheses (·),
to indicate priority in the order of mathematical operations; an
important exception occurs when square brackets are used to
represent the matrix projection of a fourth-order tensor, such as

[A] =

















A1111 A1122 A1133 A1112 A1113 A1123

A2211 A2222 A2233 A2212 A2213 A2223

A3311 A3322 A3333 A3312 A3313 A3323

A1211 A1222 A1233 A1212 A1213 A1223

A1311 A1322 A1333 A1312 A1313 A1323

A2311 A2322 A2333 A2312 A2313 A2323

















. (2)
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Double vertical bars ‖(·)‖ are used to represent the Frobenius
norm of the matrix (·), such as the Frobenius norm of the
following 3× 3 symmetric matrix,

‖[A]‖ =

√

A2
11 + A2

22 + A2
33 + 2A2

11 + 2A2
13 + 2A2

23. (3)

3. MATERIALS AND METHODS

3.1. Computational Methods
This section follows the “Materials and Methods” section in
Levrero-Florencio et al. (2017a). The authors used µCT images
of trabecular bone samples to create detailed FE models, which
ranged from 10 to 30 million elements, representing the
solid phase of bone for a cubic trabecular bone samples (which
includes both solid phase and pores) of size 5 mm. In the
study conducted by Levrero-Florencio et al. (2017a), plasticity
and damage were considered for the solid phase post-elastic
properties and nine uniaxial strain cases were investigated (load
cases 1 to 9 of Table 1) representing: three tensile cases (+ε11,
+ε22, and+ε33), three compressive cases (−ε11,−ε22, and−ε33),
and three shear cases (ε12, ε13, and ε23). Themacroscopic damage
behavior was studied by using an appropriate homogenization-
based multiscale technique, which is explained later.

Trabecular bone is an anisotropic material; its anisotropy
may be quantified with a fabric tensor, which indicates how
directionally distributed amaterial is. TheMean Intercept Length
(MIL) fabric tensor is used in this study because it is widely
used in trabecular bone studies, and it performs slightly better
than other fabric measures (Kabel et al., 1999; Zysset, 2003). The
magnitude of an eigenvalue of the MIL fabric tensor denotes
the proportion of material which is aligned in the direction
expressed in the correspondent eigenvector. The fabric tensors
are normalized by a trace equal to 3 (Zysset, 2003).

In this study, 10 out of the 12 samples employed in Levrero-
Florencio et al. (2017a) were subjected to 12 additional biaxial
strain cases in the normal strain space (Table 1, cases 10–21).
Kinematic uniform boundary conditions (i.e., conditions in
which displacements, or macroscopic strains, are controlled)
were used for all analyses; these are known for providing an upper
bound for the macroscopic stiffness tensor andmacroscopic yield
surface of trabecular bone (Wang et al., 2009; Panyasantisuk et al.,
2015). An example of how boundary conditions are implemented
can be seen in Figure 1, which corresponds to load case 4 in
Table 1. The morphological indices of these samples are shown
in Table 2. BV/TV stands for bone volume over total volume and
it is a surrogate for density, DOA stands for degree of anisotropy
and it is the ratio of the highest to the lowest eigenvalues of
the MIL fabric tensor, and SMI stands for structure model index
and it ranges from rod- (SMI = 3) to plate-shaped (SMI = 0)
microstructure.

The 10 samples were aligned with the MIL fabric tensor
eigenvectors, with the eigenvalues sorted in descendent order
(m1 > m2 > m3). The samples were then meshed with
trilinear hexahedra and subjected to the aforementioned strain-
controlled load cases; the largest mesh consisted of∼27Mdegrees
of freedom, leading to square sparse stiffness matrices of up
to 27M×27M elements. The considered constitutive law at the

TABLE 1 | Description of the performed strain-controlled load cases.

Load case Description

1
ε11 > 0; ε22 = ε33 = 0

ε12 = ε13 = ε23 = 0

2
ε22 > 0; ε11 = ε33 = 0

ε12 = ε13 = ε23 = 0

3
ε33 > 0; ε11 = ε22 = 0

ε12 = ε13 = ε23 = 0

4
ε11 < 0; ε22 = ε33 = 0

ε12 = ε13 = ε23 = 0

5
ε22 < 0; ε11 = ε33 = 0

ε12 = ε13 = ε23 = 0

6
ε33 < 0; ε11 = ε22 = 0

ε12 = ε13 = ε23 = 0

7
ε11 = ε22 = ε33 = 0

ε12 > 0; ε13 = ε23 = 0

8
ε11 = ε22 = ε33 = 0

ε13 > 0; ε12 = ε23 = 0

9
ε11 = ε22 = ε33 = 0

ε23 > 0; ε12 = ε13 = 0

10
ε11 = ε22 > 0; ε33 = 0

ε12 = ε13 = ε23 = 0

11
ε11 > 0; ε22 < 0; ε33 = 0

ε12 = ε13 = ε23 = 0

12
ε11 < 0; ε22 > 0; ε33 = 0

ε12 = ε13 = ε23 = 0

13
ε11 = ε22 < 0; ε33 = 0

ε12 = ε13 = ε23 = 0

14
ε11 = ε33 > 0; ε22 = 0

ε12 = ε13 = ε23 = 0

15
ε11 > 0; ε33 < 0; ε22 = 0

ε12 = ε13 = ε23 = 0

16
ε11 < 0; ε33 > 0; ε22 = 0

ε12 = ε13 = ε23 = 0

17
ε11 = ε33 < 0; ε22 = 0

ε12 = ε13 = ε23 = 0

18
ε22 = ε33 > 0; ε11 = 0

ε12 = ε13 = ε23 = 0

19
ε22 > 0; ε33 < 0; ε11 = 0

ε12 = ε13 = ε23 = 0

20
ε22 < 0; ε33 > 0; ε11 = 0

ε12 = ε13 = ε23 = 0

21
ε22 = ε33 < 0; ε11 = 0

ε12 = ε13 = ε23 = 0

tissue level was isotropic with coupled plasticity and damage
(the former captures irrecoverable deformations while the latter
takes accounts for stiffness reduction), meaning that damage and
plasticity interact with each other and evolve at the same time;
the considered yield surface was Drucker-Prager (Tai et al., 2006;
Carnelli et al., 2010; Panyasantisuk et al., 2015) with yield values
corresponding to 0.41% strain in tension and 0.83% strain in
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FIGURE 1 | (Left) Three-dimensional graphical depiction of the strain-controlled compressive load case in direction 1 (load case 4 in Table 1). (Right) Rendered

image of one of the used trabecular bone specimens; this particular sample led to a FE mesh of ∼21M degrees of freedom.

TABLE 2 | Morphological indices of the 10 used specimens.

Specimen BV/TV (%) DOA SMI

1 30.3 2.67 0.52

2 18.1 3.47 1.33

3 14.8 2.65 1.59

4 16.5 2.13 1.37

5 17.7 2.59 1.40

6 22.2 3.47 0.84

7 24.6 2.85 0.88

8 20.3 1.61 1.16

9 23.1 2.10 0.98

10 26.9 2.55 0.79

compression (Bayraktar and Keaveny, 2004). Linear isotropic
hardening corresponding to 5% of the undamaged elastic slope
(Wolfram et al., 2012; Sanyal et al., 2015) was used. At the
tissue level, damage evolution was assumed to be isotropic and
it was obtained from Schwiedrzik and Zysset (2013, 2015). The
maximum damage was capped at 0.9 (90% isotropic stiffness
reduction) to avoid numerical difficulties related to the loss of
positive-definiteness of the stiffness matrix; this was performed
by using

D(εp) = Dmax

(

1− e−kpε
p
)

(4)

where εp = ‖εεεp‖ is the accumulated plastic strain, Dmax is
the maximum damage, and kp is a parameter obtained from
Schwiedrzik and Zysset (2015).

The µFE simulations were run on a Cray XC30
supercomputer hosted by ARCHER (UK National
Supercomputing Service), with an in-house version of ParaFEM
(Smith et al., 2013; Levrero-Florencio et al., 2017b) which solves

implicit quasi-static finite strain elastoplasticity problems in a
highly scalable message passing interface-based (MPI) parallel
fashion. Each simulation took from 40 to 120 min when using
1,920 cores, depending on the considered load case, with biaxial
compression-compression load cases taking the longest. In order
to improve the convergence aspect of the local (constitutive
level, i.e., at each integration point) Newton–closest-point
projection method (Newton-CPPM), two additional schemes
were implemented: (a) a line search as in the primal-CPPM
scheme described in Pérez-Foguet and Armero (2002) and (b)
an improved trial predictor (Bićanić and Pearce, 1996; de Souza
Neto et al., 2008). In the latter scheme, if the first Newton-CPPM
fails to converge, it is restarted but this time with the initial
guess for stress as σσσ proj, which is the stress returned to the
frozen yield surface, i.e., no hardening or damage evolution. If
these two mechanisms do not work, to ensure that a possible
local lack of convergence does not influence the results of the
µFE simulations, lack of convergence of the CPPM scheme
is broadcasted to all MPI processes in order to cut down the
time increment to half of its value. The initial, and maximum,
step size corresponded to 0.1% macroscopic strain Frobenius
norm and was allowed to decrease to a minimum of 0.001%,
if global (structural level, i.e., the global stiffness matrix) or
local convergence was not achieved. The global solution scheme
employed was Newton-Raphson, and a Jacobi, or diagonally,
preconditioned conjugate gradients method was used as the
linear algebraic solver.

The macroscopic elastic stiffness tensor was calculated at
each time increment by using the homogenization procedure
described by van Rietbergen et al. (1995, 1996), in which the
macroscopic elastic stiffness tensor E is

E =
1

V

∫

�

(1− Dµ)Eµ :M dV , (5)
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which, in a FE setting, is equivalent to

E =
1

V

nels
∑

i=1

nips
∑

j=1

(1− Dµ ij)Eµ ij :Mij det(Jij)wj, (6)

and where V is the volume of the cubic region (5×5×5 = 125
mm3), Dµ is the damage at the solid phase, Eµ is the solid phase
undamaged stiffness tensor, nels is the total number of elements in
the considered mesh, nips is the number of integration points in
a trilinear hexahedron, det(Jij) is the determinant of the Jacobian
of the transformation from normal to natural coordinates, wj is
the weight of the corresponding integration point, and M is the
local structure tensor, which relates the solid phase strain εεεµ to
the average strain tensor εεε, such that

εεεµ = M :εεε. (7)

This tensorMwas determined by solving six completely linear FE
systems for six macroscopic uniaxial strain cases (three tensile or
compressive and three shear). For each of these cases, the tissue
strains calculated represent one of the six columns of the matrix
projection of M (Hollister and Kikuchi, 1992). The assumption
made was that the samples are aligned in their orthotropic axes
as they were aligned with the MIL fabric tensor eigenvectors
(Odgaard et al., 1997). Macroscopic strain points were defined
by using the 0.2% strain criterion (Wolfram et al., 2012; Levrero-
Florencio et al., 2017a), and it was extended to define further
0.3, 0.4, and 0.5% strain levels. The corresponding damaged
slope to calculate these strain points is determined at each time
step, depending on the load case. The following is an example
for the biaxial tensile case ε11 = ε22 > 0 (load case 10 in
Table 1). Since the macroscopic strains are small, the assumption
of linear kinematics can be considered at the macroscale; thus,
the homogenized infinitesimal stress can be obtained through the
macroscopic infinitesimal strain and the macroscopic stiffness
tensor, such as































σhom,11

σhom,22

σhom,33

σhom,12
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σhom,23
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E1111 E1122 E1133 E1112 E1113 E1123
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0
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E2211ε11 + E2222ε22

0
0
0
0































,

(8)

where σσσ hom is the homogenized stress tensor, leading to

‖σσσ hom‖ =

√

E21111ε
2
11 + E21122ε

2
22 + E22211ε

2
11 + E22222ε

2
22, (9)

with the damaged slope being (note that in the considered biaxial
cases |εii| =

∣

∣εjj
∣

∣)

Kdam =

√

E21111 + E21122 + E22211 + E22222. (10)

3.2. Theoretical Framework of Damage
The previously described µFE simulations, together with the
homogenization-based multiscale procedure, were used to derive
the damaged macroscopic stiffness tensors of the considered
samples, for different load scenarios (Table 1) and load levels
(0.2, 0.3, 0.4, and 0.5% strain norm). These stiffness tensors
were used as data points for a minimization procedure
(described in the following subsections), which was used to
fit the macroscopic damage behavior to several theoretical
damage models: single scalar isotropic formulation, three scalars
anisotropic formulation, and isotropic/anisotropic combined
formulation with tension/compression asymmetry.

Coupled damage and plasticity were considered for the
µFE simulations. However, the focus of this study is on the
macroscopic damage behavior of trabecular bone and therefore
no plasticity is assumed at the macroscale. This is why, in the
following, the total strain εεε is used instead of the elastic strain εεεe.

3.2.1. Basic Concepts and Description of the

Baseline Model
Let us consider the theoretical framework of elastic degradation
by using state variables, from which the different damage
constitutive models are derived (Carol et al., 1994, 2002;
Murakami, 2012). The starting point of the theoretical framework
is the assumption of a Helmholtz free energy potential per unit
reference volume ψ of the considered material, from which the
state equations are derived. The free energy potential may be
expressed as

ψ(εεε,Dk,Rk) = ψe(εεε,Dk)+ ψ
D(Rk)

=
1

2
εεε :E(E0,Dk) :εεε +

1

2

l
∑

k=1

KkR
2
k, (11)

where εεε is the infinitesimal strain tensor, E and E0 are,
respectively, the damaged and undamaged stiffness tensors, Dk

are a set of l scalar damage variables; Rk and Kk are, respectively,
a set of l variables and l parameters controlling the size and
hardening of the (damage) dissipation potential functions Fk
(Equation 16).

Time derivative of Equation (11) yields

ψ̇ =
∂ψ

∂εεε
: ε̇εε +

l
∑

k=1

∂ψ

∂Dk
Ḋk +

l
∑

k=1

∂ψ

∂Rk
Ṙk, (12)

which, when used in the Clausius-Duhem inequality for
isothermal processes

σσσ : ε̇εε − ρ ψ̇ ≥ 0, (13)
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gives rise to the dissipation inequality

φ =

(

σσσ − ρ
∂ψ

∂εεε

)

: ε̇εε −

l
∑

k=1

ρ
∂ψ

∂Dk
Ḋk −

l
∑

k=1

ρ
∂ψ

∂Rk
Ṙk

=

l
∑

k=1

YkḊk +

l
∑

k=1

BkṘk ≥ 0, (14)

where ρ is the density of the considered material, σσσ = ρ
∂ψ
∂εεε

,

Yk = −ρ
∂ψ
∂Dk

, and Bk = −ρ
∂ψ
∂Rk

= KkRk.

The evolution equations of Dk and Rk are derived from the
corresponding dissipation potential functions Fk, leading to

Ḋk = γ̇k
∂Fk

∂Yk
; Ṙk = γ̇k

∂Fk

∂Bk
, (15)

where γ̇k are indeterminate multipliers. Since Fk also delimit
the undamaged region of the considered material, the non-
negativeness of Equation (14) is assured (Murakami, 2012).
Linear, a priori uncoupled, criteria for Fk are considered in this
study (each Dk is related to a single Fk), such that

Fk(Yk,Bk) = Yk − (Bk + Bk,0) = Yk − (KkRk + Bk,0) ≤ 0, (16)

where Bk,0 are the initial sizes of Fk, i.e., when Rk = 0. These
linear functions are considered for the sake of simplicity and also
because data on additional strain points is needed so that more
complex, non-linear, evolution expressions of the dissipation
potentials may be taken into account.

Energy equivalence is adopted here since it automatically
induces major symmetry in the stiffness and compliance tensors.
This leads to

ψe(εεε,Dk) =
1

2
εεε :E(E0,Dk) :εεε =

1

2
εεε :M

T(Dk) :E0 :M(Dk) :εεε

=
1

2
εεεeff(εεε,Dk) :E0 :εεεeff(εεε,Dk), (17)

whereM is the fourth-order damage effect tensor which depends
on the considered damage formulation, andAT is defined so that
A
T ≡ AT

ijkl
= Aklij.

3.2.2. Numerical Solution of the Damage Models
Equations (15, 16) are integrated with Backward Euler. Residual
equations for each of the variables to be sought can be
formulated, with a format similar to that of CPPM equations
of computational plasticity (Armero and Pérez-Foguet, 2002;
Pérez-Foguet and Armero, 2002), so that
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∣

n+1
Yk,n+1 − (KkRk,n+1 + Bk,0)















(18)

where n stands for the nth time increment, and the vertical bar
means “evaluated at”.

The resulting set of non-linear equations (Equation 18) can be
solved with a numerical scheme, for instance a Newton-Raphson
approach. The first step is to calculate the Jacobian of the system,
and therefore the residuals (Equation 18) are linearized, leading
to (time subscripts are dropped for convenience from now
onwards)
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− d1γk
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+ dRk
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. (19)

where δij =

{

0 if i 6= j

1 if i = j
is the Kronecker delta. The specific

expressions for the derivatives of the Jacobian are presented for
each of the considered damage models in the following sections.

The resulting Newton-Raphson scheme to solve for Dk, Rk,
and1γk is
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(20)

where m stands for the mth iteration of the Newton-Raphson
scheme.

3.2.3. Damage Models
This section describes the three main models, and their variants,
used in this study. The first two models, single scalar isotropic
model (section 3.2.3.1) and three scalars anisotropic model
(section 3.2.3.2) are mainly used to assess the BV/TV and
fabric eigenvalue dependencies of macroscopic damage models
of trabecular bone. The proposed model (section 3.2.3.3),
we believe, is a considerable improvement upon the usually
employed single scalar isotropic formulation.

3.2.3.1. Single scalar isotropic formulation
In this simple damage formulation a single scalar damage variable
D equally affects all the components of the stiffness tensor, i.e.,
all directions are equally affected by damage. The damage effect
tensor is

M = (1− D)Isym, (21)

where Isym = I⊗ I.
The Helmholtz free energy potential for this model is

ψ(εεε,D,R) =
1

2
εεε : (1− D)2E0 :εεε +

1

2
KR2, (22)

which leads to the following expressions for the conjugate
thermodynamic associated variables

σσσ = (1− D)2E0 :εεε

Y = −
1

2
εεε :

∂E

∂D
:εεε = εεε :(1− D)E0 :εεε

B = KR

(23)
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and to the following expressions for the derivatives in Equation
(20)

∂

∂D

∂F

∂Y
= 0

∂F

∂Y
= 1

∂F

∂D
=
∂Y

∂D
= −

1

2
εεε :

∂2E

∂D2
:εεε = −εεε :E0 :εεε

∂F

∂R
= −K.

(24)

BV/TV dependence is included in this model by defining K =

K0,iso ρ
o and B = B0,iso ρ

p, where ρ is the BV/TV of the
considered sample, and o and p are the exponents expressing the
BV/TV dependency.

3.2.3.2. Three scalars anisotropic formulation
In the anisotropic damage formulation a damage scalar for each
principal direction of the sample is considered (D1, D2, and D3),
meaning that each of these three orthogonal directions has a
different damage behavior (as previously stated, these orthogonal
directions are parallel to the axes of the cubic sample). Since the
range of post-elastic strains applied to the sample is relatively
small, it is assumed that no rotation of the orthotropic axes
occurs. The damage effect tensor is

M = (Isym − D), (25)

where

∂D

∂D1
=

















1 α α 0 0 0
α 0 0 0 0 0
α 0 0 0 0 0
0 0 0 β 0 0
0 0 0 0 β 0
0 0 0 0 0 0

















;
∂D

∂D2
=

















0 α 0 0 0 0
α 1 α 0 0 0
0 α 0 0 0 0
0 0 0 β 0 0
0 0 0 0 0 0
0 0 0 0 0 β

















;

∂D

∂D3
=

















0 0 α 0 0 0
0 0 α 0 0 0
α α 1 0 0 0
0 0 0 0 0 0
0 0 0 0 β 0
0 0 0 0 0 β

















. (26)

in which α and β are parameters which determine how the
components of the stiffness tensor are affected by the different
damage scalars.

The Helmholtz free energy potential is

ψ(εεε,Dk,Rk) =
1

2
εεε :E(E0,Dk) :εεε +

1

2

3
∑

k=1

KkR
2
k, (27)

which leads to the following expressions for the conjugate
thermodynamic associated variables

σσσ = E :εεε = [(Isym − D) :E0 :(Isym − D)] :εεε

Yk = −
1

2
εεε :

∂E

∂Dk

:εεε

Bk = KkRk

(28)

and to the following expressions for the derivatives in Equation
(20)

∂

∂Dj

∂Fk

∂Yk
= 0

∂Fk

∂Yk
= 1

∂Fk

∂Dj
=
∂Yk

∂Dj
= −

1

2
εεε :

∂

∂Dj

∂E

∂Dk

:εεε

∂Fk

∂Rk
= −Kk

∂E

∂Dk
= −

[

∂D

∂Dk

:E0 :M+M :E0 :

∂D

∂Dk

]

∂

∂Dj

∂E

∂Dk
=
∂D

∂Dk

:E0 :

∂D

∂Dj
+
∂D

∂Dj
:E0 :

∂D

∂Dk

(29)

Fabric eigenvalue dependencies are included in this model by
defining Kk = K0,anisom

q

k
and Bk = B0,anisom

r
k
, where mk is

the MIL fabric eigenvalue corresponding to the kth orthotropic
direction of the sample; and q and r are the exponents expressing
the fabric eigenvalue dependency.

3.2.3.3. Combined formulation with tension/compression

asymmetry
We propose a combined isotropic/anisotropic damage
formulation, which consists of four damage scalars: a single
scalar defines the isotropic part of the model (Diso); and three
scalars define the anisotropic part of the model, one for each
of the three orthotropic directions (D1, D2, and D3). As in the
previous cases, the isotropic damage scalar equally affects all
directions, while each of the three orthotropic damage scalars
only affect their corresponding orthogonal direction. It is
assumed that there is no rotation of the orthotropic axes. The
tension/compression asymmetry is included in the damage effect
tensor, such that

M = Isym − Diso −

3
∑

i=1

[1+ ηH(−mi · εεεmi)Daniso,i], (30)

where

Diso = (1− D)Isym, (31)

Daniso,i =
∂D

∂Di
Di (32)

with ∂D
∂Di

being defined in Equation (26), η is the parameter

governing the tension/compression asymmetry, mi is the ith

fabric tensor eigenvector, and H(·) is the Heaviside function
defined as

H(·) =

{

1 if (·) > 0

0 if (·) ≤ 0
. (33)
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The Helmholtz free energy potential for this model is

ψ(εεε,Dk,Rk) =
1

2
εεε :E(E0,Dk) :εεε +

1

2

4
∑

k=1

KkR
2
k, (34)

BV/TV and fabric eigenvalue dependencies are included in this
model by defining Kiso = K0,iso ρ

o; Kk,aniso = K0,aniso ρ
tm

q

k
, k ∈

{1, 2, 3}; Biso = B0,iso ρ
p; and Bk,aniso = B0,aniso ρ

umr
k
, k ∈

{1, 2, 3}, where o and p are the exponents expressing BV/TV
dependency of the isotropic part of the model; and t, u, q, and
r are, respectively the exponents expressing BV/TV and fabric
eigenvalue dependencies of the anisotropic part of themodel. The
rest of expressions in the model are the same to those in section
3.2.3.2.

3.3. Fitting of the Different Damage Laws
The different damage constitutive models described in the
previous section are fitted to the macroscopic damage response
obtained from the homogenization-based multiscale µFE
simulations. The constitutive laws were fitted by using a particle
swarm optimization scheme (particleswarm, MATLAB
R2017b, MathWorks Inc.), followed by a gradient-based scheme
(fmincon, MATLAB R2017b, MathWorks Inc.) to enhance
the final tuning of the parameters, as it is assumed that when
particleswarm finishes, the solution is already within the
proximity of a minimum. The minimization problem is thus
defined as

min

n
∑

i=1

(

‖[Epred(θs)− EµFE]‖i

)2
, (35)

where n is the number of samples×load cases×strain levels,
which means that the damage results for each sample, each
considered load case, and each considered strain level (i.e., 0.2,
0.3, 0.4, and 0.5%) are used in the parameter fitting procedure;
‖[Epred]‖ is the Frobenius norm of the matrix projection of the
damaged stiffness tensor predicted by the considered theoretical
damage model, ‖[EµFE]‖ is the Frobenius norm of the matrix
projection of the damaged stiffness tensor calculated through
homogenization, and θ are the s different parameters of the
considered damage model.

This minimization problem (Equation 35) involves the fitting
of parameters which govern the size of the damage dissipation
potentials (i.e., the surface containing the elastic regime, in
which damage does not develop; it is the damage analog to
the yield surface in plasticity), and therefore the solution of
the CPPM scheme may involve negative 1γk, which are not
physical solutions. The CPPM scheme is used in computational
plasticity and/or damage contexts to solve the corresponding
non-linear equations (Equation 20). If the loading state of a
sample is found within the elastic regime (i.e., inside of the
yield surface in a plasticity context, or inside the damage
dissipation potential in a damage context), no equations need
to be solved as plasticity and/or damage related quantities
would not further develop. Thus, these undesired values of
1γk will arise only if the loading state of the considered
sample is not outside of the damage dissipation potential. In

order to avoid these, the minimization problem is modified
with a penalty term to avoid such unwanted situations, such
that

min

n
∑

i=1

[(

‖[Epred(θs)−EµFE]‖i

)2
+

l
∑

k=1

H(−1γi,k)Kpen(e
|1γi,k|−1)

]

,

(36)

where Kpen is a large (penalty) constant.
The initial choice of a solver not based on gradients is because

the addition of this penalty term breaks the C1 continuity of
the functional to be minimized, and its global non-convexity
is assumed a priori. The specific choice of particle swarm
optimization over other methods not based on gradients, such as
genetic algorithm, is established on the superior computational
efficiency of particle swarm optimization over the genetic
algorithm (Panda and Padhy, 2008).

The goodness of the fitting procedure was analyzed with the
standard error of the estimate (SEE). This is calculated as

SEE(%) = 100

√

∑n
i=1(‖[Epred − EµFE]‖i)2

√

∑n
i=1(‖[Epred − E0]‖i)2

. (37)

4. RESULTS

4.1. Evaluation of the µFE Results
For all load cases in Table 1, the considered samples were
subjected to several strain levels, leading to different damage
levels. The resulting macroscopic damaged stiffness tensors
and the macroscopic strain Frobenius norms were measured
at 0.2, 0.3, 0.4, and 0.5% strain levels by using the 0.2%
strain criterion (Wolfram et al., 2012). This theoretically leads
to damage and macroscopic strain Frobenius norms being
evaluated, respectively, at 0–0.3% (with 0% being considered as
macroscopic yield) macroscopic plastic strain Frobenius norms.
The macroscopic strain Frobenius norms at 0.5% strain level for
each load case are shown in Figure 2 in the form of boxplots. It
can be seen from this figure that within each group (T, C, S, or
MA), higher macroscopic strain Frobenius norms correspond to
compression-dominated load cases (load cases 4–6, 13, 17, and
21 in Figure 2).

Damage is evaluated by subtracting the damaged stiffness
tensor from the undamaged stiffness tensor and calculating the
Frobenius norm of its matrix projection (‖[E0 − Edam]‖). The
values of these norms for each of the considered load cases
are shown in Figure 3; the damage shown corresponds to the
0.5% strain level. Due to the alignment of the samples and
ordering of their fabric eigenvalues (m1 > m2 > m3), it
can be seen from this figure that within each group (T, C,
S, or MA), higher damage values are seen where the fabric
tensor eigenvalues are the largest (i.e., load cases 1, 4, 7,
and 10–13 in Figure 3). Moreover, higher damage values are
also seen in load cases that are compression-dominated (load
cases 4–6, 13, 17 and 21). These higher damage values in
uniaxial compression, or in compressive-dominated multi-axial
load cases, compared to tension load cases indicate a possible
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FIGURE 2 | Boxplots showing the Frobenius norms of the macroscopic strain (‖εεε0‖) at 0.5% strain level, for each load case: uniaxial tension (T), uniaxial compression

(C), shear (S), and multi-axial in the normal strain XY plane (MAXY).

FIGURE 3 | Boxplots showing ‖[E0 − Edam]‖ at 0.5% strain level, for each load case: uniaxial tension (T), uniaxial compression (C), shear (S), and multi-axial in the

normal strain XY plane (MAXY).

tension/compression asymmetry in the damage behavior at the
macroscopic level. It is important to mention that, although
damage values were measured at the same strain levels according
to the 0.2% strain criterion, the macroscopic strain Frobenius
norms (Figure 2) were considerably larger in compression than
in tension.

Multi-linear regressions in log-log space were performed to
establish possible relationships between damage and the micro-
architectural indices of the considered samples. These regressions
were between ‖[E0 − Edam]‖ at 0.5% strain level, BV/TV,

fabric eigenvalues andmacroscopic strain Frobenius norms, such
as

log(‖[E0 − Edam]‖) = A+ B log(BV/TV)+ C log(m1)

+D log(m2)+ E log(‖εεε0‖) (38)

where m1 and m2 are the fabric eigenvalues corresponding to
directions 1 and 2 (only shear andmulti-axial load cases have two
directions); A, B, C, D, and E are the constants in the regression.
These regressions were performed separately for the following
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TABLE 3 | Results from the multi-linear regressions between ‖[E0 − Edam]‖ at

0.5% strain level, BV/TV, fabric eigenvalues, and macroscopic strain Frobenius

norms, in log-log space.

Load case B (MPa) C (MPa) D (MPa) p-value (BV/TV) p-value (mk ) R2

T 1.50 0.31 → 0 0.004 0.91

C 2.03 0.36 → 0 0.002 0.90

T∪C 1.76 0.66 → 0 → 0 0.90

S 1.99 0.53 0.45 → 0 0.001 0.79

MA 1.71 0.62 0.15 → 0 0.001 0.63

Regressions were performed for uniaxial tension (T), uniaxial compression (C), combined

uniaxial tension and uniaxial compression (T∪C), shear (S), and multi-axial (MA) in normal

strain space.

sets of load cases: uniaxial tension, uniaxial compression,
combined uniaxial tension and uniaxial compression, shear, and
multi-axial load cases in normal strain space. The results from
these regressions can be seen in Table 3. Table 3 shows that
both BV/TV and fabric eigenvalues have a significant effect
(p ≤ 0.05), and that damage expressed as per Equation (38)
is directly proportional to the micro-architectural indices, with
the slopes for BV/TV being substantially larger than those for
the fabric eigenvalues. The coefficients of determination (R2)
show that only the multi-linear model of the multi-axial load
cases in normal strain space behaves poorly in comparison to
the rest.

The component-wise fraction between the matrix projection
of E0 − Edam at 0.5% strain level and the matrix projection of
E0 (i.e., the i-th and j-th component of E0 − Edam is divided by
the i-th and j-th component of E0) leads to the 6× 6 matrix with
components

[D]ij =
[E0 − Edam]ij

[E0]ij
. (39)

This matrix depicts the component-wise ratio of the damaged
and undamaged coefficients for each sample and load case.
The component-wise mean of [D]ij over all the considered
samples was calculated and then normalized from 0 to 1 for
each of the considered load cases, forming another 6 × 6 matrix
(e.g., the new matrix i-th and j-th component is the mean
of the Dij components of all the samples); the components
in E0 which are zero are ignored and not considered in
the normalization, i.e., the non-orthotropic coefficients. The
resulting 21 normalized matrices are shown in Figure 4. These
plots suggest that macroscopic damage in trabecular bone is
actually anisotropic and dependent on the considered load case.
In uniaxial tensile and compressive load cases, it can be observed
that the normal components of the stiffness tensor which are
related to the considered load case are the most affected ones
(e.g., in the load case ε11 > 0, components E1111, E1122,
E1133, and the corresponding symmetric counterparts are more
affected than the rest). In shear load cases, the corresponding
shear component is the most affected one. Considering multi-
axial load cases in normal strain space we find that in tension-
tension and compression-compression load cases, the most

affected components are in the off-diagonals of the matrix—
the components that are related to the plane which is being
loaded (e.g., in the load case ε11 = ε22 > 0, components
E1122 and E2211 are more affected than the rest); in tension-
compression/compression-tension load cases, the most affected
components are in the matrix diagonal - the components that are
related to the plane which is being loaded (e.g., in the load case
ε11 = −ε22 > 0, components E1111 and E2222 are more affected
than the rest).

4.2. Effect of BV/TV and MIL Fabric Tensor
on the Damage Behavior
The effect of BV/TV and fabric on the macroscopic damage
behavior of trabecular bone was assessed by (1) considering the
single scalar isotropic damage model in section 3.2.3.1 with and
without considering the effect of BV/TV and then comparing
the respective values of SEE; and (2) considering the anisotropic
damage model in section 3.2.3.2 with and without considering
the effects of BV/TV and fabric eigenvalues and then comparing
the respective values of SEE. In the anisotropic scenario, in
the case in which fabric eigenvalues were not included, the
order of fabric eigenvalues was randomized to maximise the
effect of including fabric in the comparison (the ordering no
longer corresponds to m1 > m2 > m3; the corresponding
stiffness and strain tensors were reordered accordingly). The
minimization scheme was run for five times to ensure that a
suboptimal solution was not chosen. This comparison is shown in
Table 4.

Note that the values of SEE of the anisotropic cases are
not considerable lower than those of the isotropic cases. This
is because even if the damage is higher in the components
related to the considered load case, all the components of the
stiffness tensor are damaged, and ‖[E0 − Edam]‖ takes into
account the reduction of all the components of the stiffness
tensor. The exponents that express BV/TV dependency are
considerably larger than those expressing fabric eigenvalue
dependency.

4.3. Macroscopic Damage Model for
Trabecular Bone
A damage model which incorporates both isotropic/anisotropic
damage progression and tension/compression asymmetry was
implemented and its efficacy in evaluating the macroscopic
damage behavior of trabecular bone was assessed. BV/TV
and fabric eigenvalue dependencies were considered; BV/TV
dependency was included in the isotropic part of the model while
both BV/TV and fabric eigenvalue dependencies were included
in the anisotropic part. Tension/compression asymmetry was
included as shown in section 3.2.3.3. The SEE and the value of
the parameters of the model are shown in Table 5.

This considered model reduces the SEE in more than
15% with respect to the single scalar isotropic model (SEE
= 37.03%). Despite the 13 parameters, a considerably larger
number in comparison with the two parameters of the
isotropic model, the values of some of these parameters
suggest that not all of them need to be considered. For
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FIGURE 4 | Graphical representation of the normalized component-wise means of [D]ij . The represented load cases are shown in Table 1: (A–C) correspond to

uniaxial tension, (D–F) correspond to uniaxial compression, (G–I) correspond to shear, and (J–U) correspond to multi-axial in normal strain space.

instance, the value of B0,aniso is very small, which means that
these parameters, together with the corresponding exponents
expressing BV/TV and fabric eigenvalue dependencies (u and
r) could be ignored, reducing the number of parameters to
10. It is important to point out the negative values of η and
B0,iso.

5. DISCUSSION

The macroscopic damage behavior of trabecular bone has been
researched in a few studies, but these are usually restricted to

uniaxial load scenarios which only permit the assessment of
stiffness reduction in the direction of loading (Keaveny et al.,
1994b; Zioupos et al., 2008; Garcia et al., 2009). Consequently
these studies are unable to provide a comprehensive constitutive
model that can be included in whole-bone simulations. This
study investigated the possible relationship between damage
at the tissue level and the macroscopic multi-axial damage
behavior, by employing a homogenization-based multiscale
approach to samples with a relatively wide range of BV/TV
and fabric tensor eigenvalues, subjected to multiple loading
scenarios. The macroscopic damage behavior of trabecular
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TABLE 4 | SEEs, BV/TV, and fabric eigenvalue exponents for the isotropic and

anisotropic models.

Model SEE (%) Exp K0 · BV/TVk Exp B0 · BV/TVk Exp K0 ·mk
2 Exp B0 ·mk

1

1 37.03

2 33.03 1.71 1.35

3 35.21

4 32.05 1.71 2.35

5 34.06 0.51 0.37

Models 1 and 2 are isotropic with and without BV/TV dependency, respectively; models

1, 2, and 3 are anisotropic and: (1) without BV/TV and fabric eigenvalue dependencies,

(2) with BV/TV dependency only, and (3) with fabric eigenvalue dependency only.

TABLE 5 | Value of the parameters and SEE of the combined isotropic/anisotropic

model with tension/compression asymmetry.

Parameter Value

K0,iso 211.59

B0,iso −1.77

p 1.98

l 1.31

α 0.12

β 0.29

η −0.25

B0,aniso 0.00

K0,aniso 160.62

u 4.01

r 3.70

t 1.75

q 0.94

SEE (%) 21.68

bone was approximated via different continuum damage
models: isotropic and anisotropic; with and without BV/TV
and fabric eigenvalue dependencies; and with and without
tension-compression asymmetry. From the results, it can
be concluded that the macroscopic damage behavior of
trabecular bone has the following features: BV/TV and fabric
eigenvalue dependencies; tension/compression asymmetry;
a combined isotropic/anisotropic behaviour. The first two
of these features are not unexpected as they play a key
role in the evaluation of elastic stiffness (Odgaard et al.,
1997; Zysset, 2003), however, the previously unexplored,
last feature indicates that damage in trabecular bone is
best represented by using both isotropic and anisotropic
damage variables. This is likely to be true for most cellular
materials.

This study assumed an isotropic model with coupled
damage and plastic behavior at the tissue level, which was
deemed appropriate as the isotropy assumption at this level
is known to result in little to no error in macroscopic
results (Cowin, 1997). Isotropic damage at the solid phase
level leads to an anisotropic macroscopic damage response
with a dependency on the considered load case (Levrero-
Florencio et al., 2017a). The variation in the components of the

stiffness tensor shows anisotropic damage which depends on
the considered load case (Figure 4). Shi et al. (2010) suggested
that there is a larger proportion of damaged tissue in the
longitudinal trabeculae (direction of loading) for uniaxial load
cases, which is in agreement with the results presented here,
as the most damaged components of the macroscopic stiffness
tensor are always the on-axis components. An issue which
may make validation of these results very challenging is the
use of kinematic uniform boundary conditions; these boundary
conditions are extremely difficult, not to say impossible, to
reproduce experimentally, especially for the more complex load
cases. Most previous studies involving damage in trabecular bone
have used isotropic models (Garcia et al., 2009; Schwiedrzik
and Zysset, 2013), which may be acceptable for proportional
loading scenarios, but not for changing loads or cyclic
loading scenarios, such as those arising during physiological
activities.

The results show that the macroscopic strain Frobenius
norms were considerably larger in macroscopic compression
than in macroscopic tension. This is important in the considered
context of damage modeling as the thermodynamic stress-like
variables governing damage evolution (Yk) directly depend
on the macroscopic strain values, which could explain the
higher damage values in compression without the explicit
need of modeling tension/compression asymmetry. However,
this asymmetry is taken into account because it still leads
to a better fit of the damage model and it only consists of
one additional parameter. The fact that damage values are
higher in compression-dominated load cases compared to
tension load cases could be related to the more heterogeneous
stress distributions at the solid phase level occurring during
macroscopic compression, which includes tensile stresses at
the tissue level due to bending and buckling of trabeculae
(Stölken and Kinney, 2003). Another important factor
to take into account is that the considered model at the
tissue level is ductile (i.e., fracture is not incorporated).
If fracture was considered at a critical damage threshold,
the tension/compression asymmetry would probably be
different as tissue damage is more diffused in compression
than in tension (Lambers et al., 2014), and therefore a
significant decrease of load carrying capacity would occur
in tension.

The variation in the components of the stiffness tensor
shows anisotropic damage which depends on the considered
load case (Figure 4). Shi et al. (2010) suggested that there
is a larger proportion of damaged tissue in the longitudinal
trabeculae (direction of loading) for uniaxial load cases, which
is in agreement with the results presented here, as the
most damaged components of the macroscopic stiffness tensor
are always the on-axis components. An issue which may
make validation of these results very challenging is the use
of kinematic uniform boundary conditions; these boundary
conditions are extremely difficult, not to say impossible, to
reproduce experimentally, especially for the more complex load
cases. Most previous studies involving damage in trabecular bone
have used isotropic models (Garcia et al., 2009; Schwiedrzik
and Zysset, 2013), which may be acceptable for proportional
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loading scenarios, but not for changing loads or cyclic
loading scenarios, such as those arising during physiological
activities.

Multi-linear regressions between ‖[E0 − Edam]‖, BV/TV,
fabric eigenvalues and macroscopic strain Frobenius norms
(from Table 3). It shows that both BV/TV and fabric eigenvalues
are statistically significant. The coefficients of determination
suggest that only the regression of ‖[E0 − Edam]‖ of the
multi-axial load cases in normal strain space behaved poorly in
comparison to the others. The slopes of BV/TV are significantly
higher than those of fabric eigenvalues, suggesting that BV/TV
plays a more important role in these regressions; they also
suggest that the higher the BV/TV and fabric eigenvalues,
the higher the damage is. Results in Levrero-Florencio et al.
(2017a) showed that the damage in the orthotropic coefficients
of the macroscopic stiffness tensors do not have significant
dependencies on BV/TV or fabric, for each of the considered
load cases. In this study the Frobenius norm ‖[E0 − Edam]‖
is used instead, which takes into account the damage of all the
components of the macroscopic stiffness tensor. Therefore, the
slopes and p-values in Table 3 suggest that lower BV/TV samples
have a more anisotropic damage behaviour in the sense that the
longitudinal trabeculae are more damaged than the oblique, and
that higher BV/TV samples have a more isotropic behavior, or
are more damaged in general. Even if fabric eigenvalues have a
significant effect on ‖[E0−Edam]‖, the considerably lower slopes
suggest that their relevance is significantly lower than that of
BV/TV.

The standard errors of the estimate (SEE) and the exponents
with respect to BV/TV and fabric eigenvalues of five different
damage models indicate that the SEEs are not substantially
different in all these considered models, this is because, despite
the anisotropic damage behavior, all the components of the
stiffness tensor are damaged (Levrero-Florencio et al., 2017a),
suggesting that while a combined isotropic and anisotropic
model is most suitable for simulating the macroscopic damage
behavior of trabecular bone, an isotropic model is not necessarily
poor. The SEEs of the models with dependencies are not
substantially lower to those without the dependencies, suggesting
that the considered BV/TV and fabric eigenvalue dependencies
may not be needed. Nonetheless, the results of the multi-linear
regressions (Table 3) show significance of BV/TV and fabric
eigenvalues when modeling damage. Furthermore, since these
five assessed damage formulations only partially model some of
the features of the macroscopic damage behavior of trabecular
bone mentioned earlier, the dependencies are maintained in the
combined isotropic/anisotropic model with tension/compression
asymmetry.

It is apparent that the model with a combined
isotropic/anisotropic behavior and tension/compression
asymmetry is a substantial improvement over the single scalar
damage formulation since the SEE is reduced by more than
15% (Table 5). Nonetheless, it is important to mention that
this model has 13 parameters instead of 2, though the value
of the parameter B0,aniso indicates that this parameter and the
associated exponents expressing BV/TV and fabric eigenvalue
dependencies can be ignored. The negative value of η suggests

that if tension-dominated cases had similar strains to those in
compression-dominated cases, the damage values would be
higher in tension, as a negative value of η implies crack-closure,
which is expected as bone could be considered a quasi-brittle
material (Hambli, 2013; Mayya et al., 2016). The negative value
of B0,iso suggest that, when modeling the damage progression
with a linear model, there is an initial presence of damage, which
has been previously observed in Levrero-Florencio et al. (2017a)
(the intercepts of the y-axis of the damage-accumulated plastic
strain plots are not zero).

This study has a number of limitations. As previously
mentioned, bone at the solid phase level is assumed to be ductile,
i.e., while reduction in stiffness due to damage is included,
fracture is not. This is perhaps appropriate for the considered
level of loading, but it is indeed not applicable if large strains are
applied, as complete fracture of trabeculae can occur. Nawathe
et al. (2013) shows that ductile tissue behavior overestimates
the experimental yield properties. Another limitation, previously
stated in Levrero-Florencio et al. (2017a), is that although there
is plenty of experimental data on uniaxial load cases (Keaveny
et al., 1997; Bayraktar and Keaveny, 2004; Sanyal et al., 2012;
Manda et al., 2016), these physical experiments do not allow
evaluation of stiffness for samples subjected to different load cases
and the effect of loading in one direction on the behavior in
the others. Therefore, a study completely based on numerical
simulations is the only alternative even though the results cannot
be currently validated experimentally. The use of kinematic
uniform boundary conditions in the µFE analyses could also
be considered a limitation, as they are known for providing an
upper bound of the stiffness tensor (Pahr and Zysset, 2008; Wang
et al., 2009) or macroscopic yield (Panyasantisuk et al., 2015), and
may also affect the damage morphology when compared to the
in situ case (Daszkiewicz et al., 2017). We also assume that the
orthotropic directions do not rotate during loading, which may
be a valid assumption for the considered range of strains.

Use of a large number of load cases (21) and samples (10)
shows that the evolution of the damaged macroscopic stiffness
tensor is based on the loading history. By examining relationships
between bone microstructural indices (such as BV/TV and
fabric) with macroscopic damage constitutive laws, we show that
the proposed combined isotropic/anisotropic damage law with
tension/compression asymmetry is a viable superior alternative
to the widely used single scalar isotropic damage formulation
as it reduces the fitting error from 37 to 22%; it does, however,
require specification of a larger number of material parameters.
The relationships of damage progression with bone’s micro-
architectural indices (density and fabric) developed in this study
provide an approach for the creation of macroscale continuum
models that incorporate damage and will, therefore, improve
clinical predictions of the behavior of bone and bone-implant
systems.
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Left Ventricular Trabeculations
Decrease the Wall Shear Stress and
Increase the Intra-Ventricular
Pressure Drop in CFD Simulations
Federica Sacco 1,2*, Bruno Paun 2, Oriol Lehmkuhl 1, Tinen L. Iles 3, Paul A. Iaizzo 3,

Guillaume Houzeaux 1, Mariano Vázquez 1,4, Constantine Butakoff 2 and

Jazmin Aguado-Sierra 1*

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain, 2 PhySense, ETIC, Universitat Pompeu Fabra, Barcelona,

Spain, 3 Visible Heart Laboratory, Department of Surgery, University of Minnesota, Minneapolis, MN, United States,
4 IIIA - CSIC, Bellaterra, Spain

The aim of the present study is to characterize the hemodynamics of left ventricular

(LV) geometries to examine the impact of trabeculae and papillary muscles (PMs)

on blood flow using high performance computing (HPC). Five pairs of detailed and

smoothed LV endocardium models were reconstructed from high-resolution magnetic

resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair

is characterized only by the PMs and few big trabeculae, to represent state of art

level of endocardial detail. The other four detailed models obtained include instead

endocardial structures measuring ≥ 1 mm2 in cross-sectional area. The geometrical

characterizations were done using computational fluid dynamics (CFD) simulations

with rigid walls and both constant and transient flow inputs on the detailed and

smoothed models for comparison. These simulations do not represent a clinical or

physiological scenario, but a characterization of the interaction of endocardial structures

with blood flow. Steady flow simulations were employed to quantify the pressure drop

between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent

structures were analyzed using the Q-criterion for both constant and transient flow

inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure

drop, reduce the WSS and disrupt the dominant single vortex, usually present in

the smoothed-endocardium models, generating secondary small vortices. Given that

obtaining high resolution anatomical detail is challenging in-vivo, we propose that the

effect of trabeculations can be incorporated into smoothed ventricular geometries by

adding a porous layer along the LV endocardial wall. Results show that a porous layer of

a thickness of 1.2 · 10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium

ventricle models approximates the pressure drops, vorticities and WSS observed in the

detailed models.

Keywords: trabeculae, papillary muscles, left ventricular modeling, left ventricular hemodynamics, porosity
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1. INTRODUCTION

Computational cardiac modeling has become important as a
non-invasive modality to study the overall cardiac function
(Trayanova, 2011; Taylor et al., 2013). Recently, regulatory
bodies are encouraging and supporting the use of in-silico
modeling to reduce animal experimentation.Within this context,
models of cardiac hemodynamics have yet to be improved. The
majority of the hemodynamic cardiac computational simulations
consider simplified geometries with smoothed endocardial
surfaces (Doost et al., 2015; Khalafvand et al., 2015; Imanparast
et al., 2016), mostly due to a lack of high-resolution, fast and
safe in-vivo imaging techniques. It is also true that solving highly
detailed models require computationally expensive simulations
that can only be carried out using HPC.

In reality the heart anatomy is complex and all individuals
have their own unique anatomies. The interior of the cardiac
chambers is not smooth: it is populated by PMs, trabeculae of
different sizes and false tendons (Gao et al., 2014). In the LV,
PMs are the muscles responsible for properly positioning the
chordae tendinae during systole to optimize mitral valve leaflet
coaptation. Trabeculae are complex muscular structures that are
unique to a given human heart, mostly consisting of myocytes,
that protrude from the endocardial wall into the interior of the
ventricle and present a sponge-like structure. The primary role of
the trabeculae in the overall cardiac function remains unknown,
but they are often associated with the Purkinje network.

State of the art LV CFD simulations, employing detailed
endocardial structure models, have been created from either
MRI or computed tomography (CT) in-vivo modalities (Chnafa
et al., 2016; Lantz et al., 2016; Vedula et al., 2016), but
they only incorporated PMs and a few large trabeculae. In
previously reported studies, Chnafa et al. (2016) used 4D MR
images to reconstruct the LV geometry, characterized only by
PMs, and prescribe physiological deformations using numerical
treatments. In this way the author could study blood flow
instabilities within the ventricular cavity and found out that
high-frequency flow fluctuations can be common in normal LVs.
Both Vedula et al. (2016) and Lantz et al. (2016) added also
few big trabeculae together with the PMs in their LV geometries
and studied the impact of these endocardial structures on the
blood flow by comparing simulations results with smoothed-
endocardium ventricles. Vedula et al. (2016) reconstructed the
LV geometry from high-resolution 4D CT scans and applied
prescribed mesh deformation based on immersed boundary
method. The authors observed a “scrambling” of blood flow
vortices produced by PMs and trabeculae, which caused the
generation of deeper and more complex vortices that were not
present in the smoothed model. In this way, trabeculations help
diastolic filling and, during systole, they help ventricular washout
by wringing out the blood flow out from the apex. Lantz et al.

Abbreviations: LV, Left Ventricle; PMs, Papillary Muscles; HPC, High

Performance Computing; MRI, Magnetic Resonance Imaging; CFD,

Computational Fluid Dynamics; WSS, Wall Shear Stress; CT, Computed

Tomography; BSC, Barcelona Supercomputing Center; PBS, Phosphate Buffered

Saline; FE, Finite Element; FSI, Fluid Structure Interaction.

(2016) extracted the LV endocardial surface and wall motion over
time from 4D CT data. In contrast with Vedula et al. (2016) and
Lantz et al. (2016) did not observe any deep penetration of the
mitral inflow jet toward the apex: the jet strongly interacted with
the PMs and was diverted toward the outflow tract. However,
both papers have demonstrated that the detailed anatomies of LV
endocardium have important influences on blood flow dynamics:
in particular, particle tracking used by Lantz et al. (2016)
demonstrated that blood flow interacted with trabeculae and
PMs, creating vortices around the endocardial spaces between
the trabeculations. More vortices appeared during diastole in
the detailed LV as compared to the smoothed one, and PMs
redirected blood flow and generated a large vortex, which was
not present in the smoothed model. Finally, it was shown that
the presence of trabeculations created a region where the flow
appeared to be stagnant during five cardiac cycles, which is
impossible to reproduce with smoothed endocardium models.
While Vedula et al. (2016) and Lantz et al. (2016) considered the
PMs and few trabeculae, the level of detail and the amount of
trabecular structures in LV geometry reconstructions was not as
high as in Kulp et al. (2011), who segmented detailed endocardial
structures from high-resolution 4D CT data. The authors studied
the interaction between trabeculations and the blood flow by
deforming the initial 3D mesh in each following frame. Results
showed how the complex endocardial surface caused the blood to
move through the empty spaces between the trabeculations and
fill these cavities during diastole.

In this paper we used highly detailed anatomical LV
endocardium models to characterize the effects of trabeculae and
PMs on the blood flows using CFD simulations. Four detailed LV
geometries were reconstructed fromhigh resolution imaging data
of perfusion fixed human hearts (2 male and 2 female), which
were obtained at the Visible Heart R© Laboratory (Atlas of Human
Cardiac Anatomy, RRID:SCR_015734). Detailed and smoothed
endocardial models were reconstructed for each of the four hearts
to quantify the differences between these two cases and thus
characterize the impacts of PMs and trabeculae on ventricular
hemodynamics. The level of detail in these reconstructions of
the endocardial structures was, to the best of our knowledge, the
highest ever achieved for this kind of study: the average size of
the smallest structures reconstructed measures about 1 mm2 in
cross-sectional area.

A fifth (male) LV geometry, named control LV, was
reconstructed from the human hearts high resolution images
dataset, together with its smoothed equivalent. This model was
only characterized by PMs and few large trabeculae: in this way
we could compare simulation results obtained from the highly
detailed models described previously to the ones from an LV
geometry which is similar in detail to those present in literature
(Kulp et al., 2011; Chnafa et al., 2016; Lantz et al., 2016; Vedula
et al., 2016).

Through CFD simulations we aim to characterize the
hemodynamics inside detailed vs. smoothed human ventricular
anatomies by quantifying the trabecular volume, intra-
ventricular pressure drop, WSS and vorticity within the LV
cavities. Furthermore, we propose that a porous layer can be
added to the LV endocardium to compensate for the absence of
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trabeculae within smoothed ventricular hemodynamic models.
Our main findings show that the presence of trabeculae alters
significantly the blood flow by increasing intra-ventricular
pressure drop, reducing the shear stress at the ventricular walls
and generating multiple secondary vortices, absent in smooth-
walled ventricle simulations. Furthermore, our results show
that indeed a porous layer can compensate for the absence of
trabeculations inside simplified ventricular models by increasing
the intra-ventricular pressure drop, by reducing the wall shear
stress at the interface of the porous layer and by increasing the
amount of vortex structures within the LV.

2. MATERIALS AND METHODS

2.1. Left Ventricular Models
The five LV models used in this work were reconstructed from
high-resolution MR images obtained from in vitro perfusion of
fixed human hearts. The research uses of these heart specimens
have received appropriate approval from both the University of
Minnesota’s Institution Review Board and LifeSource Research
Committee (Minnesota’s non-profit procurement donation
organization). The hearts were recovered from organ donors
whose hearts were not viable for transplantation. Written and
informed consents were obtained from the donors families which
follow the wishes of the donor. The database is open to public
access.

DICOM data sets were acquired utilizing a 3T Siemens
scanner with 0.44 × 0.44 mm in-plane resolution and slice
thickness of 1 to 1.7mm. The hearts were fixed with 10% formalin
in phosphate buffered saline (PBS) solution for at least 24 h under
40–50 mmHg of pressure and then stored in 10% formalin. The
five hearts DICOM datasets are shown in Figure 1.

Image segmentation was carried out with Fiji software
(Fiji, RRID:SCR_002285), using the maximum entropy-based
thresholding algorithm (Qi, 2014), followed by endocardial
surface reconstruction using marching cubes algorithm in Seg3D
(Seg3D, RRID:SCR_002552). The relative high contrast of the
images guaranteed that the thresholding produced detailed
endocardial models. The smoothed models were generated from
the detailed geometries by manually deleting trabeculae and
PMs and closing holes on associated surfaces using ReMESH
software (ReMESH, RRID:SCR_015735). Autodesk Meshmixer
(Autodesk Meshmixer, RRID:SCR_015736) sculpting software
was then used to adjust the smoothed endocardial surface as to
maintain the same outline for both the smoothed and detailed
geometries.

The control LV, as a representative of a state of the art
anatomical model, was reconstructed using a regularized region
growing algorithm of ITK-SNAP (ITK-SNAP Medical Image
Segmentation Tool, RRID:SCR_002010) to get only large scale
anatomical detail from the images. The algorithm allowed
controlling the smoothness of the extracted contour making it
easier to obtain the smoothed surface with just the PMs and a few
large trabeculae (approximately 5 mm2 in cross-sectional area).
The obtained level of detail for the control LV was similar to
the reported models used in recent publications on blood flow

analysis in LV such as Vedula et al. (2016) and Chnafa et al.
(2016).

In order to let the flow develop, a 50 mm long tube was
attached at the inlet (corresponding to the mitral valve orifice)
and a 70 mm tube at the outlet (corresponding to the aortic
valve orifice). Each tube base matched exactly the corresponding
valvular ring plane. Tubes were created for every given LV model
using ParaView (ParaView, RRID:SCR_002516).

The resulting surface meshes were uniformly remeshed
using Remesh and then volumetric tetrahedral meshes were
generated using an isosurface-stuffing-based algorithm (Labelle
and Shewchuk, 2007) with an in-house mesher developed at
the Barcelona Supercomputing Center (BSC). The volumetric
meshes had adaptive element size, with volumes varying from
10−7 mm3 to 1.9 · 10−2 mm3, with an average size of 5.7 · 10−5

mm3. Wireframe zoomed images of the tetrahedral meshes can
be found in Figure S1.

The five LV anatomies, both smoothed and detailed, are
shown in Figure 2. A more detailed view is reported in Figure S2.
The medical histories and related information can be found in
Table 1 of the Supplementary Materials. The ventricular volume
of each mesh is reported in Table 2 of the Supplementary
Materials.

2.2. Hemodynamic Simulations
To carry out CFD simulations the walls were defined as rigid, no-
slip boundary conditions. For the outlet, a stabilizing boundary
condition employed a baseline pressure of 10.7 kPa (80 mmHg, a
normal end-diastolic arterial pressure) plus an outflow resistance
(Bazilevs et al., 2009). Blood viscosity was set to 0.0035 kg/(m · s)
and density to 1,060 kg/m3.

Hemodynamic simulations solving continuity and
Navier-Stokes equations for incompressible flows
were run on the MareNostrum 4 supercomputer
(MareNostrum, RRID:SCR_015737) and on Archer (ARCHER,
RRID:SCR_015854), UK supercomputer, using Alya, the BSC’s
in-house, parallel multi-physics, HPC solver (Houzeaux et al.,
2009; Vazquez et al., 2016).

Simulations were carried out using a low dissipation finite
element (FE) strategy described below. The Navier-Stokes
equations for a fluid domain � bounded by Ŵ = ∂� within
the time interval (t0, tf ) reside in calculating a velocity u and a
kinematic pressure p so that Equations (1, 2) are satisfied; where
ν is the kinematic viscosity, f is the vector of external body forces
and S(u) is the rate-of-strain tensor.

∂tu+ (u · ∇)u− 2ν∇ · S(u)+∇p− f = 0 in � × (t0, tf )

(1)

∇ · u = 0 in � × (t0, tf ) (2)

To obtain weak or variational formulation of the Navier-Stokes
equations Equations (1, 2), we introduced the spaces of vector
functions VD= H1

D (�), V0= H1
0 (�) and Q=L2 (�) /ℜ. L2 (�)

is the space of square-integrable functions, H1 (�) is a subspace
of L2 (�) formed by functions whose derivatives belong also to
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FIGURE 1 | Five human hearts high resolution MRI datasets. Shown is the short axis view at mid-cavity height. (A–D) LV models with smoothed (left) and detailed

(right) endocardial surfaces along with the control LV (E).

FIGURE 2 | (A–D) LV models with smoothed (left) and detailed (right) endocardial surfaces along with the control LV (E). Below each LV, the reciprocal ventricular

cavity section, viewed from top, is shown.
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L2 (�), H1
D (�) is a subspace of H1 (�) which satisfies Dirichlet

boundary condition on Ŵ. H1
0 (�) is a subspace of H1 (�) whose

functions are zero on Ŵ; and H1
D (�) and H1

0 (�) are their
vector counterparts in a two- or three-dimensional space. (·, ·)
determines the standard L2 inner product. For the evolutionary
case, Vt≡L2

(

t0, tf ;VD

)

and Qt≡D′
(

t0, tf ;Q
)

were introduced,

where Lp
(

t0, tf ;X
)

is the space of time dependent functions in

a normed space X so that
∫ tf
t0

∥

∥f
∥

∥

p

X
dt < ∞, 1 ≤ p < ∞ and

Qt consists of mappings whose Q-norm is a distribution in time.
The weak form of problem (Equations 1, 2) with the boundary
conditions is then: Find u ∈ Vt , p ∈ Qt such that Equation (3) is
satisfied for every

(

v, q
)

∈ V0 × Q.

(∂tu, v) + (u · ∇u, v) + 2ν(Su,∇v)−
(

p,∇ · v
)

+
(

q,∇ · u
)

− (f, v) = 0, (3)

Moreover, in the previous equations the non-linear term
convective form reported in Equation (4) was used, which
is the most frequent choice in computational practice. Using
Equation (2), other non-linear term forms can be derived, which
are the same at the continuous level but do have different
properties at the discrete level. In Equation (5) we consider the
energy, momentum and angular momentum conserving form
recently proposed in Charnyi et al. (2017). A non-incremental
fractional-step method was used for pressure stabilization. This
allows the use of finite element pairs which do not satisfy the
inf-sup conditions, like the equal order interpolation for the
velocity and pressure used in this work. An energy conserving
Runge-Kutta explicit method lately proposed by Capuano et al.
(2017) along with an eigenvalue based time-step estimator (Trias
and Lehmkuhl, 2011) were used in order to time integrate
the set of equations. This methodology, recently proposed by

FIGURE 3 | Synthetic transmitral E-A wave input function, wave parameters (blue) and the six time instants shown in Figure 10 (red).

FIGURE 4 | (Left) Porous layer (in light red) on subject A LV wall and corresponding detailed model. (Right) Vorticity estimated using the Q-criterion, thresholded at

5,000 s−2, for constant inflow simulations with smoothed, detailed and smoothed with porous layer geometries. Vortices are colored by velocity magnitude [m/s].
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Lehmkuhl et al. (2017), follows the principles of Verstappen
and Veldman (2003), generalized for unstructured finite volumes
by Jofre et al. (2013) and Trias et al. (2014) but in a FEM
framework. The presented methodology has been successfully
validated and benchmarked vs. other popular CFD approaches
and experimental data in the bioengineering flows environment
in Koullapis et al. (2017).

NLconv (u) = u · ∇u (4)

NLemac (u) = 2S (u)u+ (∇ · u)u (5)

We performed the following simulations:

1. Constant inflow. This was done to characterize purely the
influences of the geometries on the hemodynamics. A
constant, flat-profile, blood flow velocity of 0.55 m/s (peak
normal transmitral inflow velocity Fernández-Pérez et al.,
2012) was applied at the inlet of all models.

2. Synthetic E-A wave mitral valve inflow. A synthetic E-A wave
was created as a combination of two cosine functions as
in Equation (6). A was the maximum amplitude of the wave,
t0,E, t0,A, and t1,E, t1,A were the initial and final time of E and A
waves respectively. tp,E and tp,A were the time corresponding
to the peaks of E and A waves and t was the simulation
duration. The parameters of the wave were chosen to represent
a standard E-A wave of a healthy individual (Fernández-Pérez
et al., 2012); their values and the corresponding function are
shown in Figure 3.

3. Constant inflowwith a porous layer.A layer with the properties
of a uniform porous material was added to the interior
walls of the smoothed-endocardium models (see Figure 4).
The motivation is that a porous layer is easy to implement
and may provide similar hemodynamic characteristics than
the irregular endocardial wall. The initial permeability value
considered was the minimum of well graded gravel (5 · 10−4

m/s), that yields a porosity of 7 kg/m2 (Standard, 1999).
The thickness and permeability of the porous material were
empirically selected for model A so that the smoothed-
endocardium model with this layer generates similar intra-
ventricular pressure drop as the corresponding detailed
model. In order to solve the CFD with the porous material,
the momentum conservation equation was stated in the form
of Darcy’s law (Equation 6), where µ is the dynamic viscosity,
k is the permeability, u is the velocity and p is the pressure,
and added to the Navier-Stokes equations. To find the optimal
combination of thickness and porosity of the porous layer, we
did a sensitivity analysis varying the thickness from 1 · 10−2

to 1.2 · 10−2 m with porosities of 7, 20, 40, and 70 kg/m2.
The parameters of the porous layer selected for model A was
applied to models B, C, and D to verify if a single porous layer
approximation can reproduce the hemodynamic behavior in
the rest of the models.

v (t) =















AE
2

(

1+ cos
(

2π(t−tp,E)
t1,E−t0,E

))

t0,E ≤ t ≤ t1,E

0 t1,E < t < t0,A
AA
2

(

1+ cos
(

2π(t−tp,A)
t1,A−t0,A

))

t0,A ≤ t ≤ t1,A

(6)

u = −
1

µ
k(∇p) (7)

2.3. HPC Characteristics
HPC characteristics for both constant and transient inflow
simulations in terms of cores, total simulation time and time step
are reported in Tables 1, 2. Every simulation, with both constant
and transient inflow, was run up to 800 ms. Information on the
scalability of the incompressible flow module within Alya multi-
physics solver can be found in the works of Houzeaux et al.
(2009) and Vazquez et al. (2016). The elements-per-core ratio
that was used to run these hemodynamic simulations was about
25,000.

2.4. Geometric Markers
The following geometrical markers were used:

Trabecular volume was calculated as a difference between the
volume of the convex hull of the detailed-endocardium LVmodel
and the volume of the model itself.

The angle between inlet and outlet was the angle between the
vectors normal to the two valvular planes (mitral and aortic). An
illustration can be seen in Figure 5.

The distance between inlet and outlet was the distance between
the mitral and aortic valves centers. An illustration can be seen in
Figure 5.

2.5. Hemodynamic Analysis
2.5.1. Intra-ventricular Pressure Drop
The pressure distributions were analyzed within 15 mm long
volumes of both inlet and outlet tubes. The sections were chosen
right at the inlet of the mitral and at the outlet of the aortic
valves. The histograms were normalized to unit area under
the curve and bin width was calculated using the Freedman-
Diaconis rule. As the pressure distributions were non-Gaussian
(Figure 6), the intra-ventricular pressure drop was calculated as
the difference between the inlet and outlet pressure mode. The
pressure difference was then averaged over the ten last time
frames (approximately 50 ms of simulations), during steady flow.
From these results, we calculated the intra-ventricular pressure
drop difference (1Pdiff ) as the difference of the detailed and
smoothed pressure drops for every studied LV.

2.5.2. WSS on the Ventricular Walls
WSS histograms were computed for every LV cavity (Figure 7)
and normalized using the Freedman-Diaconis rule to choose the
width of the bins. Given that these distributions were upward
skewed, the median was used to analyze the WSS of each model.
The total magnitude range and the mode are also reported for
each case. In the case of the porous layer simulations, the median
and mode WSS were calculated on the interface between the
porous layer and the blood flow.

2.5.3. Vorticity
Coherent structures were analyzed in both steady and transient
inflow simulations applying the Q-criterion method (Hunt et al.,
1988; Chakraborty et al., 2005). The applied thresholds for
vortex visualization were 5,000 s−2 and 1,000 s−2 for steady and
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transient inflow simulations respectively. Vortex quantification
was done in Paraview, by integrating the contours of the vortices
to estimate the total surface area.

3. RESULTS

3.1. Constant Inflow
The results of constant inflow quantification for the five LVs are
shown in Table 1. In all LVs, the intra-ventricular pressure drops
(1Pdiff ) increased in the detailed geometries by an average 0.2
kPa, except for subject D, that elicited the highest 1Pdiff of 2.7
kPa. Also the detailed E LV, exhibited a similar pressure drop to
models A, B, and C, regardless of the low percentage of trabecular
volume within its geometry. The geometrical markers do not
indicate a direct correlation to the pressure drop (see Table 1).
The pressure drop in models A, B, C, and E correlated best with
the distance between their inlet and outlet, however, when model
D is included, any good correlation disappears. The pressure drop
is not correlated either to the Reynolds number at the inlet of each
model.

Themagnitudes of theWSS for each case is shown in Figure 7.
The WSS histograms are shown in Figure 8; they were cropped
at 3 Pa for visualization purposes, but the maximum values are
included in each plot. The median WSS decreased in the detailed
geometries on all subjects, except for subject D, as shown in
Table 1. Notice that in model D, in Figure 7, high WSS regions
are markedly localized on the PMs and the outflow region.
In model D the WSS median values remain relatively similar
between the smoothed and detailed models, even though the
mode values are significantly lower for the detailed geometry. It
is important to point out that the peak WSS was higher on the
detailed models in comparison with the smoothed geometries,
except for model E.

The vortical structures shown in Figure 9 are thresholded at
5,000 s−2 and color coded according to the velocity magnitude
[m/s]. The smoothed geometries generated fewer and larger
vortices, while the detailed LVs showed the disruption of larger
structures breaking down into a multitude of small scale vortices.
To quantify them, the vortex contour surface area was calculated
(shown in Table 3). The total surface area of the vortices was
smaller in the smoothed (with a mean of 31.6 ± 8.9 · 10−3 m2)
compared to the detailed LVs (with a mean of 43.5 ± 10.8 · 10−3

m2).

3.2. E-A Wave Mitral Valve Inflow Results
From the E-A wave transmitral inflow function 6 time instants
were selected, as highlighted in Figure 4: early E wave (1), E wave
peak (2), late E wave (3), early A wave (4), A wave peak (5) and
late A wave (6). Figure 10 shows the vortices in model D. The
Q-criterion values were thresholded at 1,000 s−2 and colored
according to the velocity magnitude [m/s]. Figure 10 and Table 3
show that the presence of trabeculae created secondary vortices
at the early E wave (time instants 1), increasing the total vortex
surface from 9.4 · 10−3 m2 in the smoothed to 14.8 · 10−3 m2 in
the detailed geometry. The secondary vortices in the detailed LV
penetrated deeper between the trabeculations during the late E
wave (time instant 3). During the early and peak Awave, a second
weaker vortex ring was formed and it mixed with the vortices

TABLE 2 | Constant inflow simulations results for A-D LVs with the porous layer of

thickness 1.2 · 10−2 m and porosity 20 kg/m2, along with the corresponding HPC

information.

Hearts A B C D

1P [kPa] 1.5 ± 0.04 3.9 ± 0.4 0.78 ± 0.04 2.6 ± 0.3

WSS mode [Pa] 0.003 0.47 0.23 0.25

WSS median [Pa] 0.36 0.32 0.51 0.55

Total vortex surface [m2] 36.8 ·10−3 61.3 · 10−3 40 ·10−3 54.6 ·10−3

Cores 144 144 96 96

Simulation time [hh:mm] 46:51 47:30 47:30 47:30

Initial time step [s] 5.5 ·10−05 6.39 ·10−06 7.68 ·10−06 2 ·10−06

P, mode of the pressure distribution at inlet and outlet.

1P, intra-ventricular pressure drop from inlet to outlet.

1Pdiff = 1Pd − 1Ps, differences between detailed and smoothed pressure drops.

FIGURE 5 | Angle (α) and distance (d) between the mitral and aortic valvular

planes definition.

generated during the early filling (time instants 4–5). Here, for
both smoothed and detailed geometries, the total surface of the
vortices increased due to the mixing vortices but the amount
was still higher in the detailed compared to the smoothed LV
(25.5− 22.5 · 10−3 m2 vs. 29.2− 25.9 · 10−3 m2 respectively).

3.3. Constant Inflow With a Porous Layer
The proposed porous layer produces energy dissipation,
which increases the intra-ventricular pressure drop and adds
complexity to the blood flow. The results of the sensitivity
analysis of the effect on the intra-ventricular pressure drops for
each thickness-porosity combination are reported in Table 4.
By adding a layer of 1.2 · 10−2 m thickness and a porosity of
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FIGURE 6 | Normalized pressure histograms for each smoothed and detailed LV pair, at inlet (Pin) and outlet (Pout ), for constant inflow simulations. (A–D) LV models

with smoothed (left) and detailed (right) endocardial surfaces along with the control LV (E).

20 kg/m2 to the smoothed subject A, we obtained the intra-
ventricular pressure drop equal to the one of its detailed case
(1.5 kPa). Additionally, the vortex visualization using the Q-
criterion thresholded at 5,000 s−2 demonstrates that the amount
of vortices in the smoothed LV with the porous layer are similar
to the ones in the detailed case (see Figure 3), presenting a
total vortex surface area of 36.8 · 10−3 m2. This may indicate
that the roughness interacts with the boundary layer as a sand-
grain roughness does, without prioritizing any particular flow
direction, being then the proposed porous layer model very
effective. The presence of the porous layer could also approximate
the WSS calculated for the detailed geometry A as can be
observed in Table 2, providing a relative error of only 0.076.

The same layer with a thickness of 1.2 · 10−2 m and a porosity
of 20 kg/m2 was then applied to all the other cases (subjects B, C,
D). In subject B and C, the presence of the porous layer increased
the intra-ventricular pressure drop to values similar to the ones
obtained within the detailed cases (see Table 2) providing a
relative error of just 0.2 and 0.02 respectively. In subject D,
the intra-ventricular pressure drop increased slightly with the

presence of the porous layer, but in this case the thickness and
porosity values of the porous layer were not able to reproduce the
high values of pressure drop obtained inside the detailed model
(relative error is 0.46). However, in all the models with the porous
layer the WSS was reduced as shown in Table 2 with the biggest
relative error being 0.23 in model D. This table also shows how in
all the cases the total vortex surface increased with the presence
of the porous layer by providing values slightly higher than those
of the detailed geometries in all cases, with the maximum relative
error being−0.12 for model D.

4. DISCUSSION

LV endocardiums of humans present a highly trabeculated
appearance, which is often ignored in ventricular hemodynamic
studies. Even though a few studies have been done to analyze the
effect of papillaries and trabeculae on blood flow, no study to our
knowledge has ever included small trabeculae of cross-sectional
area of 1 mm2.

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 458233

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Sacco et al. Detailed LV CFD Simulations

FIGURE 7 | Magnitude of the WSS during constant inflow simulations on all cases. All geometries are clipped and aligned to the upper left axes in the figure. The

septum is pointed out for spatial reference. (A–D) LV models with smoothed (left) and detailed (right) endocardial surfaces along with the control LV (E).

In this study we focused on characterizing solely the effects
of the geometries on the hemodynamics using CFD simulations.
The fact that the walls are rigid makes it impossible to extapolate
any of the findings to a clinical or physiologically relevant
scenario. This study provides an engineering-like approach
to a very complex biological system, by quantifying and
characterizing the interaction between endocardial structures
and blood flow and providing a potential model to include the
effect of the complex structures within the heart without the
need of segmenting an extremely complex structure and running
large simulations every time. Therefore the absence of the mitral
valvemay constitute a limitation if we were drawing physiological
conclusions, however it is not the case for the kind of study
presented in this manuscript.

Given the different metrics analyzed, there appears to be no
direct correlation between the volume of trabeculae and the
intra-ventricular pressure drop. For the geometrical markers,
subject D, for example, presented the highest 1Pdiff and is
characterized by the smallest angle between the valvular planes
(43.3◦). We hypothesize that the 1Pdiff obtained in model D
is a result of the location of the PMs, which were positioned
right below the inlet, disturbing the blood flow at the inlet,
which led to a higher energy dissipation, not observable in the
other cases. There is no direct correlation between the angle
or distance of inlet and outlet and the 1Pdiff . It is clear that
the existence of rugosities along the endocardial walls alter the
hemodynamics by creating flow recirculation regions, vortex
disruption into secondary vortices, which increase the energy
dissipation, hence increasing the intra-ventricular pressure drop
in complex ways. A key observation is that the location and
orientation of the mitral and aortic valvular rings influence the
direction of the flow, and hence, the high WSS visible either
on trabeculated regions or on the PMs. We hypothesize that

this observation is responsible for the high maximum WSS
magnitude on the detailed geometries. Given the surface area
of trabeculae or papillaries, WSS tends to be concentrated in
small regions (Figure 7), increasing its maximum magnitude.
This fact may have high implications on local tissue remodeling.
However, regardless of the range of WSS, in Figure 8 it can
be observed that in the smoothed geometries the mode WSS
was of 0.5–1 Pa, while in detailed meshes the mode drops to
approximately 0 Pa. PMs and trabeculae reduced the WSS in LV
about 23.5–66.7%. Wall shear stress is an important parameter
in biology in general. Mechano-transduction is an important
mechanism in biology. Even though it is practically impossible
to measure it in-vivo in the LV, and it has never been reported
before, the fact that WSS is reduced in the presence of trabeculae
may provide an insight of the reason of why such endocardial
structures exist. The presence of trabeculae and PMs generated
a multitude of secondary vortices that were not present in the
smoothed geometries, as shown in Figure 9. The overall vortex
area decreased in the smoothed LVs (Table 1), with a mean
of 31.6 ± 8.9 · 10−3 m2. The presence of detailed endocardial
structures increased the amount of vortices with a mean area
of 43.5 ± 10.8 · 10−3 m2. Subject D was intriguing. The effect
of trabeculae and PMs led to a higher WSS median. This is
because this LV is characterized by large PMs (noticeable in
Figures 1, 8), which led to higher WSS concentrated on the
PMs. A 4.8% higher WSS was indeed observed in the detailed
D case. We hypothesize that the high pressure drop in case D
was due to the prominent PMs, which disturbed flow markedly,
increasing the energy dissipation within the intra-ventricular
volume, and thus, generating a high intra-ventricular pressure
drop (see Figure S3). The analysis of more geometries is required
to further understand and characterize the effect of endocardial
structures on hemodynamics.
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FIGURE 8 | Normalized WSS histograms for smoothed and detailed LVs cavities under constant inflow. WSS medians are indicated with dashed lines. The range 0–3

Pa is highlighted for visualization purposes, but the maximum WSS values are included in each plot. (A–D) LV models with smoothed (left) and detailed (right)

endocardial surfaces along with the control LV (E).

The results from the control subject E demonstrated that
the presence of only the PMs led to a low 1Pdiff (0.2 kPa),
however the main impact appears to be the WSS distributions in
comparison with the more detailed geometries. In other words,
having only PMs and a few big trabeculae does not significantly
modify the WSS.

Using a transient inflows (E-A wave) allowed the study
of vortex formations following physiological inputs. In the
smoothed LV vortices were nominal and the generation of the
vortex rings was clearly visible during the E waves (see the
example in Figure 10). On the other hand, in the trabeculated
ventricles, the vortex rings were disrupted, generating a
multitude of secondary vortices. The vortex surface areas are
provided inTable 3. It can be observed that the total surface areas
of the vortices were larger in the trabeculated, in comparison
to the smoothed geometry. Furthermore, in the anatomically
detailed LV the secondary vortices penetrated deeper between
the trabeculations during the late E wave (time instant 3). Notice
that the A wave seems to produce higher vorticity in this model.

We hypothesize that the reason for this is that we are starting
our simulation with an organized zero flow all throughout the
model. Recirculation within the cavity at zero flow (diastasis)
would create higher vorticity in the second inflow wave. In
the smoothed case vortices were more compact, while in the
anatomically detailed LV there were multiple vortices that tended
to be pushed toward the apex during the late A wave (time instant
6). This finding is in accordance with the results from the work
of Vedula et al. (2016), in which the authors suggests that the
observed behavior may help increasing LV washout. On the other
side, the main vortex ring disruption and secondary vortices
formation due to LV trabeculations was not seen in the work of
Lantz et al. (2016), where they noticed that the presence of PMs
and trabeculae generates a large vortex in the middle of the LV
cavity.

Preliminary results from replacing the trabeculae with a
porous layer show that it is possible to obtain an intra-ventricular
pressure drop similar to those generated by the detailed
endocardial models. Only for subject D, the intra-ventricular
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FIGURE 9 | Vorticity estimated using the Q-criterion, thresholded at 5,000 s−2, for constant flow simulations in LVs with smoothed (Top) and detailed (Bottom)

geometries. Vortices are colored by velocity magnitude [m/s]. (A–D) LV models with smoothed (left) and detailed (right) endocardial surfaces along with the control

LV (E).

TABLE 3 | Total vortex surface [m2] for the six instants (1−6) of the synthetic E-A wave in subject D.

Geometry 1 2 3 4 5 6

Smoothed 9.4 · 10−3 16.7 · 10−3 17.4 · 10−3 25.5 · 10−3 22.5 · 10−3 23.7 · 10−3

Detailed 14.9 · 10−3 18.1 · 10−3 24.4 · 10−3 29.2 · 10−3 25.9 · 10−3 26.6 · 10−3

pressure drop was not as high as the one observed in the detailed
model. This is due to the presence of big PMs right below
the mitral valve inlet, which, as explained previously, highly
disturbed the flow and increased the energy dissipation.

Moreover, the addition of a porous layer on the smoothed
geometries helped to reduce the WSS median in all the
models providing small relative errors 0.07, 0.05, 0.23, and 0.16
respectively. Again, for model D, the median WSS had a bigger
relative error mostly due to the large impinging of flow on the
PMs, which increase the WSS median for that specific case.
Finally, the presence of the porous layer disrupted the main
vortices into smaller ones, increasing the total vortex surface to
values slightly higher than the observed in the detailed cases,
however, the relative errors range from −0.1 to −0.12, therefore
reproducing the hemodynamic behavior in terms of vorticity.

4.1. Limitations
The main limitation of this study is the use of CFD, without
fluid-structure interaction (FSI), valves or moving walls. The lack
of motion prevents us from comparing any measured value to
in-vivo heart function, however, as was mentioned before, this
study attempts to characterize solely the geometry effects on

hemodynamics. Future work involves the use of FSI to compare
our findings to in-vivo measurements. Another limitation is the
small sample size, which limits the generalization and statistical
significance of our results.

The generation of smoothed ventricles from the trabeculated
ones provides a degree of variability in the geometries created.
We removed the trabeculae keeping the overall shape of the
ventricle and the volume unchanged. This however is observer
dependent and requires a fair amount of user interaction. In
models A–D, the smoothing procedure led to slightly smaller
estimated LV volumes due to the elimination of the trabeculae.
In the case of model E, the ventricular surface was primarily
characterized by PMs, presenting just a few trabeculae, which led
to a larger volume in the smoothed heart.

An important limitation is that valves were not considered
in our simulations. The presence of the mitral valve will direct
the blood flow jet to create impinging and this will have some
influence on the interaction between the flow and the detailed
endocardial structures. The valves have also been reported to
create a vortex ring right below its leaflets, as observed in
previous studies (Töger et al., 2012; Vedula et al., 2016), which
is impossible to capture in this study.
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FIGURE 10 | Vortices comparison in E-A wave inflow simulations with smoothed (Left) and detailed (Right) LV (D). Shown is the Q-criterion thresholded at 1,000

s−2. Vortices are colored by velocity magnitude [m/s]. 1–6 are the time instants selected from the EA wave represented in Figure 3.

TABLE 4 | Porous layer sensitivity analysis results for subject A.

Geometry Porous layer

Porous layer thickness [m] 1 · 10−2 1.2 · 10−2

Porosity [kg/m2] 7 20 40 70 7 20 40 70

1P [kPa] 1.46 1.45 1.45 1.44 1.56 1.5 1.47 1.45

WSS median [Pa] 1.3 1.26 1.11 1.1 1.27 1.32 1.2 1.18

Total vortex surface [m2] 38.5 · 10−3 36.4 · 10−3 32 · 10−3 31.4 · 10−3 36.3 · 10−3 36.8 · 10−3 35.7 · 10−3 32.9 · 10−3

Constant inflow simulations.
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5. CONCLUSIONS

The highly anatomically detailed LV models developed in
this study present a level of geometric information that was
never achieved before. The simulations performed highlight the
differences between blood flow CFD simulations in detailed vs.
smoothed human ventricular models. The presence of detailed
structures increase the intra-ventricular pressure drop, create
multiple secondary vortices and decrease the WSS within the LV
cavity. The amount of trabeculations have no direct correlation
with the 1Pdiff , which was noted highest in the female LV D
case. To the best of our knowledge, our study analyzed for
the first time intra-ventricular pressure drops to investigate the
effects of trabeculae and PMs on LV hemodynamic modeling.
LV hemodynamics in detailed geometries are more complex than
we anticipated, hence, a detailed study with more subjects is
necessary and ongoing. Furthermore, our results confirm that
neglecting detailed endocardial structures prevent computational
models from recreating the complex blood flow behavior within
the ventricles. Given that HPC simulations and high resolution
MRI data are not always accessible, we propose that a simulated
porous layer on the endocardial wall of smoothed LV models can
potentially substitute the highly detailed geometries. Finally, we
demonstrated that by adding a layer of 1.2 · 10−2 m thickness
and 20 kg/m2 porosity to the smoothed cases we obtained
pressure drops and WSS similar to the ones in the detailed
LVs. The porous layer also increased the amount of secondary
vortices, close to the amount observed inside the trabeculated
models.
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Realistic electrocardiogram (ECG) simulation with numerical models is important for

research linking cellular and molecular physiology to clinically observable signals, and

crucial for patient tailoring of numerical heart models. However, ECG simulation with

a realistic torso model is computationally much harder than simulation of cardiac

activity itself, so that many studies with sophisticated heart models have resorted to

crude approximations of the ECG. This paper shows how the classical concept of

electrocardiographic lead fields can be used for an ECG simulation method that matches

the realism of modern heart models. The accuracy and resource requirements were

compared to those of a full-torso solution for the potential and scaling was tested up to

14,336 cores with a heart model consisting of 11 million nodes. Reference ECGs were

computed on a 3.3 billion-node heart-torso mesh at 0.2mm resolution. The results show

that the lead-field method is more efficient than a full-torso solution when the number of

simulated samples is larger than the number of computed ECG leads. While the initial

computation of the lead fields remains a hard and poorly scalable problem, the ECG

computation itself scales almost perfectly and, even for several hundreds of ECG leads,

takes much less time than the underlying simulation of cardiac activity.

Keywords: numerical modeling, electrocardiogram, high-performance computing, reaction-diffusion model,

bidomain model, lead fields

1. INTRODUCTION

The electrocardiogram (ECG) is one of the most common tools in present-day medicine, yet its
relation with the molecular biology of the heart is still poorly understood. The ECG witnesses the
collective activity of about a million current-generating transmembrane proteins in each of the
heart’s muscle cells (Hille, 2001). Many of these proteins have been identified and their actions have
been captured in mathematical models that predict their collective behavior on the scale of a cell
(Noble and Rudy, 2001). By coupling millions of these membrane models one can create a model
of whole-heart electrophysiology. Such models generate crucial insights in the functional effects of
molecular-level changes, allowing for example to predict dangerous side effects of new drug designs
(Passini et al., 2017) or to understand how cardiac ion-channel mutations influence cardiac rhythm
disorders (Gima and Rudy, 2002). Moreover, from their results one can compute the corresponding
ECG and predict how lab results on subcellular components would translate to everyday practice
(Hoogendijk et al., 2010; Keller et al., 2012; Zemzemi et al., 2013).
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Such realistic models are large and, when run on a single
processor, would take days to simulate just one heartbeat.
Fortunately the problem can be expressed in such a way that
the work may be spread over many processors with little
communication between them. Therefore, these computations
are said to scale very well, meaning that they run almost twice
as fast every time the number of processors is doubled (Vázquez
et al., 2011). This makes them suitable for use on large-scale
parallel computers, allowing models to run in nearly real time
(Niederer et al., 2011b; Richards et al., 2013).

Simulation of a realistic ECG from the results of such a
numerical heart model is much harder, because the electrical
current generated by the heart meets a different conductivity at
each point in the torso. As a result, each point influences the
potential everywhere else, so to find the potential anywhere one
must solve it everywhere at the same time.

Numerically this means that a large system of linear equations
must be solved, one for each point in the torso model. These
problems are harder when they are larger and require frequent
communication between the processors in a parallel computer.
This means that they cannot be solved much faster by using
more processors. Therefore, ECG computation is becoming a
bottleneck, limiting both the speed and the spatial resolution of
our models.

To avoid this problem many researchers have used simplified
torso models, resulting in a less accurate ECG. A solution that
can avoid such a sacrifice is to simulate the ECG using an
electrocardiographic concept named a lead field. This allows the
problem to be split into a hard (poorly scaling) part and an
easy (well scaling) part. The hard part is solved only once for
each ECG lead, while the easy part is run repeatedly for each
time step in a simulation and for multiple simulations on the
same geometry. This approach has been used by several authors,
but generally with simplified heart models (Pezzuto et al., 2017)
or, again, with simplified torso models (Horacek, 1973; Miller
and Geselowitz, 1978; Mailloux and Gulrajani, 1982; Aoki et al.,
1987).

The purpose of this paper is to show that a lead-field
approach can greatly improve scalability in a high-performance
computing (HPC) context without sacrificing accuracy. This
is not obvious, because the method requires a large set of
transfer coefficients (the lead field) to be stored between the
two phases of the computation. The efficiency of the method
depends on the accuracy with which the lead field must be
computed and the degree to which it can be downsampled
without affecting the accuracy of the ECG too much. Finally, to
provide answers to these questions an accurate reference solution
is needed.

Using a reference solution computed on a full torso
model at 0.2mm resolution this study shows that the
lead field can indeed be downsampled enough to achieve
an efficient and scalable computation, providing roughly
two orders of magnitude speedup with negligible loss in
accuracy.

The results of this studymake it possible to buildmore realistic
heart models with higher spatial resolution, without spending
much more time to compute the ECG.

2. METHODS

2.1. Model Equations
The methods in this study are based on the bidomain model of
cardiac electrophysiology (Miller and Geselowitz, 1978; Tung,
1978), on which most of the current modeling work in this area
is based (Niederer et al., 2011a; Henriquez, 2014). The bidomain
model is a continuum approximation of the heart muscle, which
in reality consists of a network of interconnected muscle cells
embedded in an extracellular matrix and other structures such
as fibroblasts and capillaries. The bidomain model approximates
this as two co-located spaces: the intracellular domain, consisting
of the interior of the cells and the gap junctions that connect
them, and the extracellular domain, consisting of everything else.

The two domains are characterized by conductivity tensors
Gi and Ge, respectively. Their values at each point in the model
depend on the fiber direction and account for the partial volume
occupation of the two domains. In addition the parameters Cm

and β determine the capacitance of the cell membrane and
the amount of membrane per unit volume, respectively. The
state variables of the model are the potential fields φi in the
intracellular and φe in the extracellular domain, and a set of
variables Ey describing the state of the membrane model at each
location. Using the auxiliary variable Vm = φi − φe and agreeing
that all variables are functions of time and position we can express
the bidomain model compactly as

β−1∇ · (Gi∇φi) = Cm∂tVm + Iion(Vm, Ey) (1)

β−1∇ · (Ge∇φe) = −Cm∂tVm − Iion(Vm, Ey) (2)

∂tEy = F(Vm, Ey) (3)

where the term Cm∂tVm represents the capacitive
transmembrane current, the function Iion the density of
ionic current flowing between the two domains, and F is a
nonlinear vector-valued function describing how the membrane
state evolves. The pair of functions Iion and F constitutes the
membrane model. Suitable boundary conditions are

Gi∇φi · ∂�A = 0 (4)

on the boundary �A of the cardiac muscle and

Ge∇φe · ∂�T = 0 (5)

on the torso boundary �T (Tung, 1978; Krassowska and Neu,
1994).

The electrical activity of the heart can then be simulated
by integrating Equations (1), (2), and (3) under the boundary
conditions (4) and (5) (Vigmond et al., 2002). This is known as
a bidomain reaction-diffusion model. In this study a simplified
version, a “monodomain” reaction-diffusion model, was used.
This model can be derived by assuming that Gi and Ge are
proportional (Leon and Horácek, 1991). Although this is a gross
simplification the effect of this assumption is negligible for most
purposes if the model parameters are well chosen (Potse et al.,
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2006; Nielsen et al., 2007; Bishop and Plank, 2011; Coudière et al.,
2014). The monodomain model reads

{

Cm∂tVm = β−1∇ ·
(

Gm∇Vm)− Iion(Vm, Ey)
∂tEy = F(Vm, Ey)

(6)

The “monodomain conductivity tensor”Gm was computed as the
series conductivity of the two domains, Gm = GiGe/(Gi + Ge).
With this choice the resistance encountered by a current loop
through the cell membrane is the same as in a bidomain model,
so that also the conduction velocity of a propagating activation
wavefront is almost the same.

An ECG potentialV(t) at time t is the difference in φe between
two locations on the body surface or, more generally, a linear
combination

V(t) =
∑

i

ciφ
i
e (7)

where ci are the relative contributions of the two or more
electrodes and φi

e are the potentials at the corresponding
positions. The coefficients ci must fulfill charge conservation,
∑

ci = 0.
To compute φe we must return to the bidomain model.

Equations (1) and (2) can be combined and reorganized to yield

∇ · ((Gi + Ge)∇φe) = −∇ · (Gi∇Vm). (8)

This equation can be solved for φe in the whole torso at once
from a given distribution of Vm. However, for the ECG we
need to know φe at a few locations only. Therefore, it can
be more efficient to use a Green’s function of the operator
∇ · ((Gi + Ge)∇ .) for each of these locations. Since an ECG
lead is a linear combination of φe at two or more points it
can also be represented directly by a linear combination of
Green’s functions. In electrocardiology such linear combinations
of Green’s functions are named lead fields (McFee and Johnston,
1953; Geselowitz, 1989; Colli-Franzone et al., 2000). A lead field
is computed once for each ECG lead. It is then used to evaluate
the ECG at each time step of the reaction-diffusion model and,
as long as the conductivity parameters are not changed, can be
re-used for multiple simulations. In terms of a lead field Z(Ex) the
ECG potential V(t) at time t is

V(t) =

∫

∇Z(Ex) · Gi∇Vm dEx (9)

where the integration is over the myocardium. In contrast to
the solution of the full system (8) this calculation is simple
and a priori highly scalable. The lead field can be computed as
the potential field resulting from a unit current applied at the
electrode locations Exi (Geselowitz, 1989):

∇ · ((Gi + Ge)∇Z(Ex)) =
∑

i

ci δ(Ex− Exi) (10)

where the coefficients ci are as in Equation (7) and δ is Dirac’s
delta function. To avoid a scaling factor in (9) the total injected
current must be unitary,

∑

|ci| = 2.

2.2. Model Geometry
In order to run tests on a relevant geometry a model of the
heart and torso was used that had been created for a previous
study (Kania et al., 2017). The methods to build this geometry,
only tersely described before, were as follows. High-resolution
cardiac and thoracic computed tomography (CT) images were
obtained from a female patient in her thirties. Images were
segmented automatically using the MUSIC software (IHU Liryc,
Université de Bordeaux and Inria Sophia Antipolis, France),
under supervision of an expert operator. The boundaries of
the segmented volumes were expressed as triangulated surfaces
and meshing errors were manually corrected using Blender
(The Blender Foundation, Amsterdam, The Netherlands). The
resulting surface mesh defined the volumes of the ventricular
myocardium, left and right cavities with parts of the great vessels,
lungs, and the whole body. To define hexahedral meshes for
the computations the surfaces were overlaid with a 3D cartesian
mesh whose elements were assigned types according to the
surfaces in which they were contained. The bones were also
segmented and meshed but not included in the simulations. The
atrial myocardium was not segmented.

The heart mesh was processed to define subendocardial and
subepicardial layers and fiber directions using the rule proposed
by Beyar and Sideman (1984), as previously described (Potse
et al., 2006). The torso mesh was similarly processed to define a
layer of 1 cm thickness directly under the skin as skeletal muscle
and to define a sheet direction in this layer. Since the true fiber
directions of the skeletal muscle layer are too complex to account
for the model muscle simply had a low conductivity in the radial
direction and a high conductivity in all circumferential directions
(Table 1).

During the thoracic scan the patient was wearing a vest with
252 embedded electrodes (Tilt et al., 2013; Cochet et al., 2014).
The locations of these electrodes were extracted from the CT
data using software provided by the manufacturer of the vest.
In addition the locations of the 9 standard ECG electrodes were
determined by referring to the bone mesh, and two electrode
locations on the hips were chosen. The surface mesh with
electrode positions is illustrated in Figure 1.

2.3. Spatial Discretization
Spatial discretization was done using a finite-difference method.
Differential operators of the form ∇ · (G∇ .), where G is any of
the conductivity tensor fields employed, were computed using an

TABLE 1 | Tissues used in the simulations together with the volumes they occupy

in the torso model, the conductivity parameters σ (in mS/cm), and β (cm−1); the

subscript “i” stands for intracellular, “e” for extracellular, “L” for longitudinal, “T” for

transverse (within a tissue sheet), and “C” for across-sheet.

Material Volume (mL) σiL σiT σiC σeL σeT σeC β

Myocardium 110 3.0 0.3 0.3 3.00 1.20 1.20 800

Body 16,482 0 0 0 2.00 2.00 2.00 0

Blood 236 0 0 0 6.00 6.00 6.00 0

Lung 4,352 0 0 0 0.50 0.50 0.50 0

Muscle 5,605 0 0 0 3.55 3.55 0.44 0
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FIGURE 1 | Model geometry and electrode positions. (A) Torso model. The smaller electrodes with a gray cap belong to the vest; those with a red cap are the

standard ECG electrodes. (B) Surfaces representing the two cardiac cavities and the ventricular epicardium.

expression proposed by Saleheen and Ng (1997). This expression
assumes that G is constant on elements and that potentials are
defined on the nodes of the mesh. It produces a 19-point stencil
that takes anisotropy and inhomogeneities into account. The
simulation code read its geometry in terms of elements, and
created a node mesh, assigning node types such that all corners
of a myocardial element would have myocardial nodes. In order
to treat myocardial boundaries correctly, the β value of each
node was the average of those associated with the 8 elements
around it, which was zero for non-myocardium (Potse et al.,
2006).

2.4. Simulation of Cardiac Activity
To prepare input data for ECG simulation propagating activation
was simulated using the monodomain reaction-diffusion model
(6) using the membrane model of Ten Tusscher and Panfilov
(2006) for the functions F and Iion. A uniform time step of 10 µs
was used. At each time step the code

1. evaluated the diffusion current β−1∇ ·
(

Gm∇Vm),
2. communicated the diffusion current across domain

boundaries,
3. integrated the membrane status variables Ey,
4. evaluated Iion(Vm, Ey), and
5. integrated Vm.

After each 100 time steps results were written to file. Simulations
were run on a heart mesh at 0.2mm resolution. Tissue parameters
determiningGm and β are listed inTable 1. Gating variables were
integrated with the method of Rush and Larsen (1978) and all
other variables with a forward Euler method.

Activation was started with a single stimulus at one location, at
the beginning of the simulation. Seven simulations were run, each

timewith the stimulus at a different location. Simulations covered
500ms to include the full depolarization and repolarization of the
ventricles.

2.5. ECG Simulation
The ECG was computed with several methods:

FSF, the fine-mesh full solution solved the full system (8) for
given Vm on a heart-torso mesh with 0.2mm resolution.
This was an exceptionally large computation requiring
3.3 · 109 mesh nodes and 12 TB memory. It was
combined in a single run with the integration of the
monodomain reaction-diffusion model (6). Solutions for φe

were computed after each 100 time steps.

FSC, the coarse-mesh full solution solved an alternate form of
Equation (8) on a heart-torso mesh with 1mm resolution
(Potse and Kuijpers, 2010). In this case the equation read

∇ · ((Gi + Ge)∇φe) = −Iw (11)

where Iw is a projection of the term ∇ · (Gi∇Vm) from a
0.2mm resolution heart mesh onto a 1mm resolution torso
mesh. Each coarse-mesh node received contributions from
a cube-shaped area including all fine-mesh nodes within the
up to 8 coarse-mesh elements around it, with higher weights
attributed to nearby nodes, as in a trilinear interpolation: Let
1x, 1y, 1z be the number of fine-mesh edges between a
coarse-mesh node and a fine-mesh node along the x, y, and
z axis, respectively. Then the contribution of the fine-mesh
node to the coarse-mesh node was

w =

{

0, if 1x ≥ 5 ∨ 1y ≥ 5 ∨ 1z ≥ 5

(5− 1x)(5− 1y)(5− 1z)/56, otherwise.
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The coarse mesh was constructed such that a myocardial
fine-mesh node was always surrounded by 8 coarse-mesh
nodes. Therefore, w added up to unity for each fine-mesh
node and charge conservation was ensured.

For the FSC method the monodomain reaction-diffusion
model (6) was integrated in a separate run which saved Iw to
file. This method has been used routinely in several studies
(Nguyên et al., 2015; Meijborg et al., 2016; Duchateau et al.,
2017; Kania et al., 2017). The torso mesh in this case
consisted of 2.7 · 107 nodes.

LF, the lead-field method evaluated the integral expression (9)
in its discretized form. This took place during the reaction-
diffusion simulation and on the same mesh, i.e., at 0.2mm
resolution, after each 100 time steps. Each component
of ∇Vm was evaluated on model elements as an average
of the differentials along 4 edges of the element. The
conductivity tensor Gi was also evaluated on each element.
For testing purposes the lead vector field ∇Z was evaluated
at different resolutions. For this purpose the field was
first downsampled by an external program, using a simple
averaging of n × n × n elements, where n could be 2, 5, 10,
or 25.

LFS, the lead-field method with selective downsampling was
identical to the lead-field method except that the
downsampling program took the tissue types of the
elements into account. If any of the fine-mesh elements
inside a coarse-mesh element E had a myocardial type, only
fine-mesh elements with myocardial type were used in the
average for E. The idea behind this was that ∇Z undergoes
abrupt changes at the myocardial boundaries, and that it
is more accurate to mix in a contribution from another
myocardial area than, for example, one from the lung.

The notations LF(C, S) and LFS(C, S) will be used for the LF
and LFS methods, respectively, with lead fields computed at a
resolution of Cmillimeters and downsampled to a resolution of S
millimeters.

2.6. Computation of Lead Fields
To prepare the lead fields Z for the ECG computation the system
(10) was solved for each lead. This was done once with a torso
model at 1mm resolution and once with a torso model at 0.2mm
resolution. Like the FSF, the latter calculation was exceptionally
large and was only intended to provide reference values, to test
the hypothesis that 1mm resolution suffices for such calculations.

In either case 266 lead fields were computed: the 12 standard
ECG leads, and one lead for each of the 252 vest electrodes and
2 hip electrodes referenced against Wilson’s central terminal (the
average of the two arm electrodes and the left leg electrode).

The computed lead fields Z were stored in files. A dedicated
program computed ∇Z and downsampled it using the two
methods described in section 2.5, i.e., with and without
consideration of the tissue types of the elements. The field
computed at 0.2mm resolution was downsampled by the factors
2, 5, 10, and 25 to obtain resolutions of 0.4, 1, 2, and 5mm.

The field computed at 1mm resolution was downsampled by the
factors 2 and 5 to obtain resolutions of 2 and 5mm.

2.7. Testing Protocol
ECGs were simulated using each of the 4 methods described in
section 2.5 and, for the methods based on lead fields, at each of
the resolutions mentioned in section 2.6.

The ECG potentials V were compared to a reference ECG
Vref in terms of three measures: maximum, root-mean-square
(RMS), and relative difference (RelDif) (van Oosterom, 2001;
Tysler et al., 2007), defined as

RelDif =

√

∑

t

∑

n(Vtn − Vref
tn )2

∑

t

∑

n(V
ref
tn )2

(12)

where the index t ranges over all 500 samples and the index n
ranges over all 266 leads. For the 252 vest leads the dependence
of the error values on the position of the positive electrode was
investigated.

The effect of the ECG computation on the run time of a
reaction-diffusion model was investigated and the scalability of
the 4methods was investigated by running tests on 16, 32, . . . , 512
nodes of a Bull cluster. Each of these nodes was equipped with
two 14-core Intel Xeon E5-2690 processors with 2.6GHz clock
frequency and 64GB memory. Accuracy results are reported
as averages over the 7 activation sequences. Performance tests
were carried out 5 times to report average values and standard
deviations of run time.

2.8. Numerical Methods
Simulations were performed using the Propag-5 software (Krause
et al., 2012), to which new code was added to compute a lead
field-based ECG on the fly during a simulation of the heart, and
to facilitate the computation of the lead fields themselves. Like
its predecessor Propag-4 (Potse et al., 2006), the software uses a
structured mesh, but stores information only for elements and
nodes that are relevant for the computation: only myocardium
for a monodomain model, and only conducting material for a
bidomain model. As discussed by Krause et al. (2012) Propag-
5 uses a hybrid MPI/OpenMP parallellization scheme. Using
a naive temporary partitioning of the domain the code reads
the geometry in terms of elements and creates a node mesh
using rules that ensure consistency with the scheme discussed
in section 2.3. It then uses the ParMetis library to partition this
mesh in parallel and creates a definitive domain partitioning for
the computations. This fully parallel workflow allowed it to load
and partition a mesh with over 3 billion nodes.

Because in some of the computations the model size exceeded
the maximum value of a signed 32-bit integer, Propag was
compiled with a 64-bit integer type for global indices. The PetSC
(Balay et al., 2017) and Parmetis libraries which Propag uses were
compiled entirely with 64-bit integers because they do not have a
distinct type for global indices.

The linear systems (8), (10), and (11) were solved with a
biCGStab solver (van der Vorst, 1992) with a BoomerAMG
preconditioner from the Hypre package (Henson and
Meier Yang, 2002; Falgout et al., 2017). The solver terminated
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when the norm of the error term was 10−8 times smaller than
the norm of the right-hand side. Multigrid preconditioners such
as BoomerAMG are very powerful and well-suited for large
bidomain problems (Sundnes et al., 2002; Weber dos Santos
et al., 2004; Austin et al., 2006) so that the solver typically needs
only a handful of iterations, in contrast to the problematic
convergence observed on large models with an incomplete-LU
preconditioner (Potse et al., 2006).

3. RESULTS

An example of a computed lead field is shown in Figure 2. This
field was computed and stored at 1-mm resolution. The figure
shows how the field suddenly changes direction and magnitude
at lung boundaries. There is a slight left-right asymmetry because
the highly conductive cardiac cavities concentrate the field on the
left side of the thorax.

The computed depolarization sequences of the 7 simulated
heart beats that were used for ECG computation are shown in
Figure 3.

Potentials computed with a full-torso solution from beat 5
are shown in Figure 4. They are about 10 times larger in the
myocardium than near the body surface.

3.1. Lead-Field ECG Compared to Full
Solution
To establish that the lead-field and full solution methods produce
the same results, simulated ECGs were compared between the
LF(1, 1) and FSC methods. Averaged over the 7 simulations,
RelDif was 0.0016, RMS error 0.3 µV, and maximum error 4.6 µV,
while ECG amplitudes were in the order of 1mV.

Analogously, a single ECG was compared between the
LF(0.2, 0.2) and FSF methods. In this case the differences were
slightly smaller: RelDif was 0.0014, RMS error 0.2 µV, and
maximum error 2.6 µV.

3.2. Effect of Resolution
To determine the effect of lead-field resolution on ECG
accuracy, 7 different activation sequences were simulated
with a monodomain reaction-diffusion model and ECGs were
simulated on the fly using a lead field. This was done for the
lead fields computed at 0.2 and at 1.0mm and all downsamplings
thereof, both with the LF and with the LFS method. The resulting
ECGs were compared to a reference ECG.

The results are shown in Figure 5. In Figure 5A errors
are shown using the ECG computed with LF(0.2, 0.2) as the
reference. For the fields subsampled from those computed at
0.2mm resolution, differences are seen to increase roughly
linearly with the stepsize of the lead field. The LFS method
resulted in smaller differences. Results obtained with the field
computed at 1.0mm resolution and downsamplings differed
from the reference solution with little dependence on the
sampling level. Figure 5B shows that this dependency is
recovered when ECGs computed with LF(1, 1) are used as the
reference.

The relatively large influence of the spatial stepsize in the lead-
field computation suggests that differences in model geometry

FIGURE 2 | (A) Computed lead field for standard lead I (between the two arm

electrodes) shown using streamlines that represent the direction of ∇Z. Note

that they do not represent the current (Gi +Ge)∇Z. For a clear visualization the

lines were seeded at a selection of points in and near the heart; variations in

field strength perpendicular to the lines cannot be read from this figure. A

rotating display is provided in a Supplementary File. (B) Close-up of the lead

field on a grid in a frontal plane crossing the heart. The arrow length shows the

strength of the field, |∇Z|, at the tail of the arrow. Field strength is small in the

highly conductive blood inside the ventricles, and very large in the

low-conductivity lungs, while it has an intermediate value in the cardiac muscle

and in the abdomen. (C) Superior view of the heart showing the location of the

grid.

dominate the error. Indeed, the difference between full solutions
at 0.2 and 1.0mm, computed only for one simulation, had a
RelDif of 0.10, RMS error 12 µV, and maximum error 0.15mV,
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FIGURE 3 | Depolarization order in the 7 monodomain reaction-diffusion simulations from which ECGs were computed; anterior view. The scale is in milliseconds.

FIGURE 4 | (A) Full-torso solution for the potential field φe 40ms after the start of the simulation in beat 5 (see Figure 3), shown in a cross section of the torso and on

the surface of the cardiac cavities. A movie showing the potential field throughout the heart beat is provided in a Supplementary File. (B) ECG lead I, which is

measured between the two arm electrodes, from the same simulation. (C) φe at 6 positions in the cross-sectional plane of (A). The first position was inside the left

ventricular cavity and the second in the left-ventricular free wall. The other four are marked with green spheres. These potentials are referenced against Wilson’s

central terminal (the average potential of the three limb electrodes).

which are very similar to the differences between LF(1, 1) and
LF(0.2, 1) in Figure 5A.

To find out at which locations in the model the lead fields
computed with LFS(0.2, 1) and LF(1, 1) differed, the L2 norm of
the difference between the two vector fields was computed for
all elements. Large differences were found to occur at locations
where the fiber direction was highly variable. One such location,

at the inferior septal junction, is illustrated in Figure 6. It is
compared with a measure of variability in fiber direction in the
underlying anatomy files, computed as

1−
1

N

N
∑

i=1

∣

∣EP · Epi
∣

∣

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 370246

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Potse Scalable ECG Simulation

FIGURE 5 | ECG computation error expressed as RelDif, RMS difference, and maximum difference. In each panel dots indicate average values and the whiskers

indicate standard deviations of each statistic over the 7 activation sequences. (A) Error for the LF and LFS methods with fields downsampled from those computed at

0.2 and 1.0mm resolution, using the field at the full 0.2mm resolution as the reference. (B) Error for the LF and LFS methods with only fields downsampled from the

one computed at 1.0mm resolution, using the field at 1.0mm resolution as the reference.

FIGURE 6 | (Left) Norm of the difference between the lead vector fields computed with LFS(0.2, 1) and LF(1, 1). Brighter colors indicate higher values; the units are

arbitrary. The cross section is through the inferior septal junction, parallel to the standard long-axis plane. The cavity on the left side of the image is the bulbus region of

the right ventricle. (Right) Variability in fiber direction, also in arbitrary units, in the same cross section. The scales are in millimeters.

where EP is the fiber direction in the coarse-mesh element
and Epi are the fiber directions in the corresponding fine-mesh
elements. The absolute value, denoted as |.|, was taken because
the orientation of the direction vector is irrelevant.

In Figure 7 a few ECG leads are compared between different
computation methods. In Figure 7A full solutions at 0.2 and

1.0mm are compared. At the coarser resolution the ECG appears
more fractionated; this is particularly visible in lead III. As
discussed above, the RelDif between these ECGs was 0.10.
In Figure 7B the same full solution at 0.2mm is compared
with an ECG computed with LFS(0.2, 2). Despite the 10-fold
downsampling of the lead field the traces are visually identical;
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FIGURE 7 | Comparison of ECGs between different computation methods. (A) Full solutions at 0.2mm (orange) and 1.0mm (black). (B) Full solution at 0.2mm

(orange) and LFS(0.2, 2). The standard limb leads I, II, and III as well as three standard precordial leads V1, V4, and V6 are shown. Vertical grid lines are 40ms apart

and horizontal grid lines are 0.1mV apart.

the RelDif was 0.02. Thus, an ECG computed with a lead field
downsampled to 2mm resolution is more faithful than a full
solution at 1mm resolution, when compared to a solution at
0.2mm.

3.3. Performance
Table 2 shows how ECG computation with lead fields at different
resolutions affects the run time of a typical simulation. The data
in each row were obtained from 5 simulations of 500ms activity
with a reaction-diffusion model at 0.2mm resolution, run on
32 compute nodes (896 cores). The table separates initialization
time, ECG computation time, and simulation time (including
ECG computation but excluding initialization). For lead fields at
0.2 and 0.4mm resolution the initialization time is of the same
order of magnitude as the simulation time, due to the time it
takes to read the lead fields from file (141 and 53GB in these
cases). The time for ECG computation itself ranges between 4
and 5% of the simulation time, slightly reducing with the lead-
field resolution. At 1mm resolution the memory accesses related
to ∇Z (for 266 leads) are similar to those for Gi∇Vm so a further
reduction would not be expected. At 0.2mm resolution the ECG
computation is faster than at 0.4mm, likely because in this case
the lead field has the same resolution as the reaction-diffusion
model and the code then avoids an index conversion.

Figure 8A, shows how the computation times scale with the
number of cores used for a single lead-field resolution of 1.0mm.
The reaction-diffusion simulation and the ECG computation
scale well. Initialization time increases with the number of cores,
due to increasing communication for mesh distribution and data
input. Tests with higher and lower lead-field resolutions, not

TABLE 2 | Time required for LF-based ECG computation during a

reaction-diffusion simulation of 500ms.

res sim ECG init

0.2 172.6 ± 0.7 8.3 ± 0.0 216.2 ± 3.6

0.4 179.2 ± 0.4 9.8 ± 0.1 103.3 ± 1.9

1.0 173.5 ± 1.8 8.1 ± 0.1 28.2 ± 1.5

2.0 171.8 ± 1.4 6.9 ± 0.3 25.8 ± 1.0

5.0 171.3 ± 2.2 6.2 ± 0.2 14.5 ± 0.7

res, lead-field resolution in mm; sim, total simulation time; init, initialization time. Time is

given as average ± standard deviation over 5 simulations, in seconds.

presented in the figure, showed that the initialization time was
highly variable and had no clear relation with the resolution (and
thus the storage size) of the field. Rather, the number of collective
read operations seemed to be determining.

The black trace in Figure 8A shows the scaling of a full
solution (FSC method). It is over 2 orders of magnitude slower
than the lead-field ECG and stops scaling at 7,168 cores.

Figure 8B shows how the ECG computation time scales with
the number of nodes for all tested values of lead-field resolution.
Lead-field resolution is seen not to affect the scaling with the
number of cores. Generally the time decreases slightly with
decreasing resolution but, as in Table 2, the computation at
0.2mm was faster than the one at 0.4mm.

4. DISCUSSION

This study shows that a lead-field approach is an attractive
solution for ECG simulation on (large) parallel computers
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FIGURE 8 | (A) Scaling of propagation, lead-field ECG, and full solution. The blue, green, and red traces show average simulation time, ECG computation time, and

initialization time for reaction-diffusion simulations run on 16–512 nodes (448–14,336 cores) with 4 threads per process, with ECG computation based on a lead field

at 1.0mm resolution. The black trace shows the time for a full bidomain solution. Each data point represents an average over 5 simulations. (B) As (A), but showing

only ECG computation time, for all lead-field resolutions.

whenever the number of ECG leads is smaller than the number of
samples. It is about 100 times faster than a full solution, scalable
to more than 104 cores, and does not cause a significant loss in
accuracy. Lead fields can be stored at a resolution as low as 2mm,
meaning that they do not use excessive disk space even for a few
hundred leads.

4.1. Previous Work on Lead Fields
The concept of lead fields was initially proposed by McFee and
Johnston (1953) as a method to understand how ECG leads
“view” the heart. Their purpose was in the first place to design
leads that would be better in the sense that their fields would
be more uniform inside the heart muscle (McFee and Johnston,
1954). Later the idea has been adopted for the purpose of accurate
numerical simulation of the ECG (Geselowitz, 1989) and even
local electrograms inside the heart (Colli-Franzone et al., 2000;
Western et al., 2015).

The idea to use lead-field methods for ECG simulation has
been widely adopted. While the very earliest studies did not use
them, for example because they computed only a small number of
potential distributions (Gelernter and Swihart, 1964) or because
a full solution required less memory (Barr et al., 1966; Barnard
et al., 1967), numerous studies are based on some form of lead
fields or transfer coefficients between Vm in the heart and φe on
the body surface (Horacek, 1973; Miller and Geselowitz, 1978;
Mailloux and Gulrajani, 1982; Aoki et al., 1987; Lorange and
Gulrajani, 1993; Trudel et al., 2004).

Mailloux and Gulrajani (1982) and further work from the
same group (Lorange and Gulrajani, 1993; Trudel et al., 2004)
used transfer coefficients that are mathematically identical to lead
fields. Their transfer coefficients were computed with a boundary
element model (BEM) which accounted for heterogeneity of
the torso, but not for anisotropy. They found that they needed
<100 regions to define these coefficients, likely because their

model was isotropic. In the anisotropic model used here the lead
field changed considerably through the wall, requiring a much
higher though not prohibitive resolution. Jacquemet (2015, 2017)
evaluated the performance of the same (BEM-based)method on a
reaction-diffusionmodel of the human atria and found that 1,000
regions sufficed for a 1% accuracy.

Boulakia et al. (2010) reported that an ECG simulation based
on a transfer matrix was 60 times faster than solving a coupled
heart-torso problem. They were using a finite-element model
with about 1 million tetrahedra whose sizes gradually increased
from the heart to the torso surface, and a serial code. Despite the
obvious differences in methods the speedup was very similar to
what was found in the current study.

Electrocardiographic inverse modeling studies that used
volumetric transmembrane potentials or current dipoles as their
source models have also used transfer coefficients that are similar
to lead fields (Liu et al., 2006; Wang L. et al., 2013).

4.2. Other Methods to Compute the ECG
Many other studies have used full torso solutions to obtain
the ECG from a reaction-diffusion model using finite-difference
(Potse et al., 2009; Hoogendijk et al., 2010; Meijborg et al.,
2016; Chamorro-Servent et al., 2017) or finite-element models
(Lines et al., 2003; MacLachlan et al., 2005; Boulakia et al., 2010;
Keller et al., 2010; Zemzemi et al., 2015; Janssen et al., 2017).
In some cases this was done because intracardiac electrograms
in a torso-coupled heart were also simulated (Hoogendijk et al.,
2010; Meijborg et al., 2016). The ECG is then a free by-
product.

An interesting alternative is a mixed approach in which
anisotropic regions such as the heart and skeletal muscle are
handled with finite elements and isotropic regions with boundary
elements (Pullan and Bradley, 1996), resulting in fewer degrees of
freedom than a complete volume discretization.
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There is a considerable body of literature dedicated to the
problem of solving body-surface potentials from epicardial
(extracellular) potentials (Barr et al., 1977; Pilkington et al., 1987;
Stenroos and Haueisen, 2008), which has found an application
in cardiac inverse modeling (Greensite and Huiskamp, 1998;
Ramanathan et al., 2004; Shou et al., 2008). A formulation
in terms of transmembrane potentials on the (endocardial
and epicardial) surface of the cardiac muscle is possible if
equal anisotropy of the intracellular and extracellular domain is
assumed (Geselowitz, 1989; van Oosterom and Jacquemet, 2005)
and is also used to solve cardiac inverse problems (Oosterhoff
et al., 2016).

4.3. Strengths and Limitations
ECG simulation based on lead fields is very fast and as scalable as
a monodomain reaction-diffusion model. This makes it suitable
for inclusion in the same model run on a large-scale parallel
computer or a GPGPU, in contrast to full solutions, which would
limit the scalability of the entire computation. This advantage is
present whenever the number of ECG samples to be simulated
exceeds the number of leads.

Lead-field methods can also be used to compute local
electrograms in the heart but this may require a higher spatial
resolution at least near the electrode (Colli-Franzone et al., 2000).

For detailed spatial mapping of potentials, either in the heart
or on the torso surface, lead-field methods are less advantageous,
as the number of locations might exceed the number of samples
and may even be so large that the storage of the lead fields
becomes a performance bottleneck. In such cases full solutions
remain the method of choice and a relatively long solution
time will have to be accepted. Although new developments in
scalable preconditioners may improve the situation somewhat
(Munteanu et al., 2009; Ottino and Scacchi, 2015), it is unlikely
that full solvers will ever scale as well as an ECG computation
based on lead fields.

It would also be challenging to use a lead-field approach
in an electromechanical, deforming heart model. A lead field
that would be deformed with the mesh might be a reasonable
approximation but this has not been tested here.

The results of this study also suggest further improvements,
in the first place the use of non-uniform mesh density for
lead-field computation. Comparison of ECGs computed at 0.2
and 1.0mm resolution showed that the latter had artefactual
notches of about 0.05mV amplitude in the QRS complex, due
to misrepresentation of fiber orientation at locations where this
orientation changed rapidly. This applied to both full solutions
and lead-field ECGs. To avoid such artifacts one could try to
ensure a smooth fiber orientation throughout the model (Bayer
et al., 2012), but this can be challenging at the interventricular
junctions, or whenever measured fiber orientations rather than
rule-based orientations are used. The only alternative seems
to be computation of the lead field with a mesh at the same
resolution as the reaction-diffusion model inside the heart, and
for improved efficiency a lower resolution elsewhere in the torso
(Pullan and Bradley, 1996; Boulakia et al., 2010). While the
computations could still be hard on a mesh with a wide variation
in element size, the memory requirements would be much lower
than the 12 TB reported here for the reference torso model.

Another possible improvement that would be relevant for
very accurate computations with high-resolution lead fields is to
develop suitable compression methods for lead-field data. Very
likely the regularity of the field could be exploited by using fixed-
point numbers in combination with spatial differentiation and a
variable-length encoding.

In Figure 8A, a particularly unfavorable scaling of the
initialization phase was shown for the propagation model with
lead-field ECG. This was probably due to an issue with the
collective reading operation in the MPI library that was used,
but also to the fact that for this feasibility study little care had
been taken to organize this efficiently—after all the specifications
for this code depended on the outcome of the study. With these
results in hand it should be possible to avoid this problem by
using a more efficient storage format and organizing the read
operation in a different way. The figure also shows that the FSC
method takes an order ofmagnitudemore time than the reaction-
diffusion model. This difference is partly due to the small solver
tolerance that was chosen for this study.

4.4. Applications
The use of lead-field methods simplifies the workflow for large-
scale cardiac simulations, as it allows the ECG to be computed
on the fly with very little overhead during a reaction-diffusion
simulation on a mesh of the heart alone. Moreover, its high
scalability allows the resolution of the models to be increased
without causing a disproportional increase in the time needed for
ECG computation.

The results of this study are not only relevant for work
on large-scale computers but also for simulations on general-
purpose graphics processing units (GPGPU). Reaction-diffusion
simulations on GPGPUs have been reported by several groups
(e.g., Bartocci et al., 2011; Neic et al., 2012; Mena et al., 2015;
Kudryashova et al., 2017), recently even for a whole human
heart model run on a desktop computer (Vandersickel et al.,
2016). The strength of a GPGPU is that it provides thousands
of parallel processors for the price of a single CPU. However,
communication between these processors is a distinct weakness.
With a method based on lead fields it is nevertheless possible to
add rapid ECG computation to a model running on a GPGPU.
Pezzuto et al. (2017) have recently reported such a method,
though in combination with an eikonal model rather than a
reaction-diffusion model.

In the context of ECG inverse models and model
personalization a variety of methods has been reported
ranging from infinite-medium potentials (Giffard-Roisin et al.,
2017; Neic et al., 2017) to full-torso bidomain solutions (Wang
D. et al., 2013). A lead-field approach could offer a solution that
combines the speed of the former (if the computation of the
lead field itself is excluded) with the accuracy of the latter. Only
methods based on equivalent double layers (Geselowitz, 1992;
van Oosterom and Jacquemet, 2005) offer more efficiency as
they need to evaluate only the surface of the heart, but the price
for this efficiency is that these methods neglect anisotropy. A
lead-field approach combined with an eikonal-diffusion model
for cardiac propagation (Konukoglu et al., 2011; Jacquemet,
2012; Neic et al., 2017) could soon be a practical solution for
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ECG inverse problems with an accuracy very close to the state of
the art in forward modeling of the ECG.

5. CONCLUSION

Lead fields are a practical alternative for full-torso solutions when
the number of ECG leads that need to be simulated is smaller than
the total number of samples that will be calculated. The method
is fast and highly scalable. Lead fields can be stored at a resolution
as low as 2mm without unacceptable loss of accuracy.
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Chronic Obstructive Pulmonary Disease (COPD) is a disabling respiratory pathology, with

a high prevalence and a significant economic and social cost. It is characterized by

different clinical phenotypes with different risk profiles. Detecting the correct phenotype,

especially for the emphysema subtype, and predicting the risk of major exacerbations

are key elements in order to deliver more effective treatments. However, emphysema

onset and progression are influenced by a complex interaction between the immune

system and the mechanical properties of biological tissue. The former causes chronic

inflammation and tissue remodeling. The latter influences the effective resistance or

appropriate mechanical response of the lung tissue to repeated breathing cycles. In

this work we present a multi-scale model of both aspects, coupling Finite Element (FE)

and Agent Based (AB) techniques that we would like to use to predict the onset and

progression of emphysema in patients. The AB part is based on existing biological models

of inflammation and immunological response as a set of coupled non-linear differential

equations. The FE part simulates the biomechanical effects of repeated strain on the

biological tissue. We devise a strategy to couple the discrete biological model at the

molecular /cellular level and the biomechanical finite element simulations at the tissue

level. We tested our implementation on a public emphysema image database and found

that it can indeed simulate the evolution of clinical image biomarkers during disease

progression.

Keywords: COPD, emphysema, chronic bronchitis, finite element methods, agent-based models, biophysical

modeling, multiscale modeling, supercomputing

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is estimated to affect more than 500million people
worldwide, causing significant disability, loss of quality of life and social burden, with costs in excess
of e 56 billion per year in the European Union (Decramer et al., 2012). The disease has a lifetime
prevalence of about 28% and cigarette smoking is commonly considered to be the principal risk
factor (Gershon et al., 2011). Recent projections suggest that COPD will be the third cause of global
mortality by the year 2030.

The pathogenesis of COPD is still not completely understood (Larsson, 2007; Yoshida
and Tuder, 2007) and involves a number of multi-scale cellular processes, including airways
inflammation, adaptation and innate immunity to cigarette smoking, sensitivity to self and not-self
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antigens, accelerated senescence, and deregulation of
mechanisms of cell repair (Repapi, 2010; Pavord et al., 2012).
Interactions between the environment and a selected group of
candidate genes is also considered very important (Akinbami
et al., 2012; Mizuno et al., 2017; Zhao et al., 2017).

Clinical management of COPD involves consistent use of
inhaled corticosteroids that help reducing COPD mortality.
However, their efficacy is limited (Faner and Agustí, 2016) and
many patients experience exacerbations and poor symptoms
control (Brightling et al., 2012).

As a matter of fact, the clinic presentation of COPD is
not homogeneous, but presents two main clinical phenotypes,
emphysema and chronic bronquitis, each with many sub-types,
different comorbidities and risk profiles (Martinez et al., 2012).
Even if there is no therapeutic target that can reverse the
decline of lung function over time (Vestbo et al., 2013), a
broader recognition of markers associated with adverse risk
(Partridge et al., 2006) and therapies that specifically target
different phenotypes specifically reduce exacerbations and
improve patient’s life (Castro et al., 2010; Holgate, 2012).

An additional problem is that it is extremely challenging to
do an early detection and staging of COPD. This is because
the gold standard for clinical diagnosis is Pulmonary Function
Tests (PFTs) which is not sensitive enough to detect any disease
progression before a large part of the lung has been compromised
(Cooper et al., 2017). It is also not sensitive enough to detect
different subtypes and elucidate different mechanisms of actions.

Specifically in emphysema, the continued inflammation of
lung parenchyma eventually leads to a loss of collagen and
elastin in the alveoli (Sharafkhaneh et al., 2008; Goldklang and
Stockley, 2016). As a result of this sustained damage the septa
become increasingly compliant and eventually fail mechanically
during normal breathing. This reduces the area available for gas
exchange causing dyspnea and shortness of breath. In addition,
the mechanical damage due to emphysema is likely to stimulate
tissue repair mechanisms at cellular level, that result in the
production of type I collagen (Crosby and Waters, 2010). As a
matter of fact, alveolar fibrosis is observed in emphysematous
spaces, in the form of thickened and stiffened alveoli, which most
likely contributes to shortness of breath (Yousem, 2006).

Faced by this complexity in the mechanisms and the lack
of a simple clinical tests, it is important to assess the patient
by integrating information from heterogeneous sources such
as molecular data and medical imaging, in order to adapt
the treatment options with the phenotype and risk profile. A
promising option is to include information from computational

models of biological systems that can account for causative
effects, otherwise difficult to apprehend in clinics. These models
have the potential to predict complex behaviors, elucidate
regulatory mechanisms, and inform experimental designs to
eventually point out specific factors to control or therapeutic
targets, in order to improve patient management (Di Ventura
et al., 2006).

Cancer research has already exploited computational models
over different spatial and temporal scales as a promising way

to describe complex diseases (Deisboeck et al., 2009, 2011;
Wang et al., 2015). There, multiscale models interact with clinical

data to generate and test different hypotheses, facilitating drug
development (Clancy et al., 2016) and optimizing delivery and
therapeutic effect (Cristini et al., 2017). We refer the interested
reader to the detailed review by Wang and Maini (2017).

Recent interdisciplinary advances contributed to unravel the
complex pathophysiological mechanisms that occur in COPD
on both the macroscopic and microscopic scale. In case of
macroscopic model of the respiratory system, for example
Bordas et al. (2015) describes how to obtain a specific mesh of the
patient for CFD simulations and Berger et al. (2016) discuss the
application of a poroelastic deformation model for pulmonary
ventilation. Chernyavsky et al. (2014) proposes a theoretical
model of the possible effect of inflammation on the restriction
of small airways. The reader can also refer to the review of COPD
multi-scale modeling by Burrowes et al. (2013).

Among others, the “Protective Artificial Respiration” initiative
fundamentally contributed to the understanding of COPD. We
would like to cite Wiechert et al. (2011) for their multiscale
model of respiratory system that coupled large bronchi and small
alveoli, as well as Roth et al. (2017a,b) respectively for a study
of the essential interactions between flow and deformation in
the lungs and a simplified model of lung microstructures. Also
Verdugo et al. (2017) reported on efficient solvers for respiratory
mechanics. Among the works devoted to particle deposition we
recall the work of Freitas and Schröder (2008) for a numerical
study of 3D flows in a human lung model, and Lintermann and
Schröder (2017) for the simulation of aerosol particle deposition
and Calmet et al. (2016) for their model and simulations of
particle deposition based on High-Performance Computing.
Very recently, an experimental characterization of the nonlinear
compressible behavior of the parenchyma is reported in Birzle
et al. (2018).

For the microscopic modeling, literature contains numerous
works on the modeling of the immune system at the molecular
level. For instance, Folcik et al. (2007) developed an agent-based
model for the innate and adaptive immune system while (An,
2008) contributed an agent-based model of the epithelium. A
model of inflammation with interactions between macrophages
and fibroblasts capable of simulating scarring, tissue damage and
fibrosis is presented in Brown et al. (2011). Most of the studies
on AB modeling of COPD focus on emphysema, and mainly
study the resulting destruction of the tissue. The most common
method uses a 2D network of springs to represent alveolar tissue
(Mishima et al., 1999). These modeling studies have the merit
to highlight the redistribution of forces within the tissue during
the progression of emphysema. This simulated progression was
found to produce experimentally observed emphysema patterns
(Suki et al., 2003) and was extended to 3D by Parameswaran
et al. (2011) through the use of cuboidal cells to represent the
alveoli. The European AirProm project has initiated the study of
multi-scale models for the study of COPD (Burrowes et al., 2013).

In the INSPIRE project1, we would like to give a multi-scale,
multi-physics description of the phenomena that cause the onset
of emphysema and the possibility to predict the risk profile of

1INSPIRE - Personalized computational models of COPD progression for patient

phenotyping. FIS2017-89535-C2-2-R
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the patient. Accordingly, the main purpose of the presented

work is to propose a multi-scale model, able to integrate known
interactions among inflammation, remodeling and parenchyma
destruction, with particular attention to the role played by
the immune system. We extended our previous work Ceresa
et al. (2017) to couple the dynamics of the biological events
captured through agent cooperation in an agent-based (AB)
model with a biomechanical simulation of the tissue captured by
a coupled Finite Element (FE) Model that iteratively predicts the
evolution of the mechanical cues transmitted to the cells inside
the lungs. We hope that such model could, once properly refined
and validated, add to the interpretation of the specific disease
phenotype toward the prediction of personalized risk profiles.
We think our model builds nicely on the previous cited literature
for the microscopic models because we use a less simplified
model of the molecular interactions. In addition, we explicitly
take into account the mechanical forces the tissue is subjected to
using a well-vetted FE model, while others have worked more on
connection models with elastic spring.

In the following sections we will discuss the coupled AB
and FE model that we contribute (section Methods), and the
experimental setup designed to validate the model on a public
CT dataset of emphysema images (section Experimental Setup).
We then present the results of the experiments, their discussion
(section Results and Discussion) and the conclusions and future
works (section Conclusions and Future Works).

METHODS

As we commented before, research and clinical practice suggest
that emphysema development happens along two different time-
scales: a slow molecular one due to the inflammatory response
to solid particles (Cosio et al., 2009), and a rapid one, caused
by sudden rupture of the alveolar walls due to mechanical forces
which act on lung tissue during respiration (Suki et al., 2003).

In the following sections, first we present a dynamic model
of inflammatory response using ordinary differential equations
(ODE) taken from literature that does not account for spatial
and mechanical effects (section Well-Mixed Molecular Model of
Inflammation and Tissue Remodeling). This is followed by an
AB molecular model for inflammation and remodeling coupled
with a FE model of biomechanical tissue that supersedes those
limitations (section Agent Based Model of Inflammation and
Coupling to the Finite Element Model).

Well-Mixed Molecular Model of
Inflammation and Tissue Remodeling
In order to prepare the implementation of the AB model and
define the rules thereof, we performed a large bibliographical
study to obtain relevant information about:

• cytokines IL1, IL8, IL10, TNFα and TGFβ production,
• macrophage migration, activation and differentiation into M1

and M2 types,
• feedback loops in the production of pro- and anti-

inflammatory cytokines

• the role of MMPs on collagen cleavage and fibroblast
deposition which are important terms for elastin degradation
and remodeling.

This literature (Ignotz and Massagué, 1986; Onozaki et al.,
1988; Oliver et al., 1993; Bellingan et al., 1996; Tsutsumi et al.,
1996; Darby et al., 1997; Meng and Lowell, 1997; Hehenberger
et al., 1998; Horio et al., 1998; Cobbold and Sherratt, 2000;
Steinmüller et al., 2000; Eberhardt et al., 2002; Huang et al.,
2002; Maass et al., 2002; Zhang et al., 2003; Mantovani et al.,
2004; Porcheray et al., 2005; Tanaka et al., 2005; Edwards et al.,
2006; Lenga et al., 2008; Marino et al., 2008; Moro et al.,
2008; Jin and Lindsey, 2010; Wang et al., 2012) is reported in
Reference section and it is associated to the different biological
parameteres considered in Table 1. We focus mainly on the well-
vetted interactions between different types of macrophages, pro-
and anti-inflammatory cytokines, fibroblasts, collagen deposition
and degradation, neutrophils and elastase production. Those
interactions were already described by Brown et al. (2011), Jin
et al. (2011), and Wang et al. (2012) and our main contribution
was to integrate all the available information of the different
biological processes and adapt them for the specific case of
emphysema modeling. The final model we used is composed by
two algebraic equations and thirteen coupled non-linear ordinary
differential equations (ODE). This model belongs to the category
of well-mixed (WM) systems in the sense that no spatial effects
are considered.

These equations are presented below (Equations 1–15) and
the biology they reflect can be schematically represented in an
integrated picture of the main molecular and cellular actors
that regulate the chronic immune response and the consequent
changes in tissue properties (Figure 1), after initial particle
deposition on the lung tissue.

The aforementioned particle deposition causes sustained
inflammation of the tissues with a fast secretion of Tumor
Necrosis Factor alpha (TFNα-Tα in the equations for brevity) and
a slow secretion of Transforming Growth Factor beta (TGFβ-Tβ

in the equations for brevity) respectively by monocytes (M) and
epithelial cells. These cytokines attract monocytes, according to
the model proposed by Wahl et al. (1987) (Equation 1):

M(Tα) = 0.335T3
α − 6.309T2

α + 32.281Tα + 57.302 (1)

and further govern the differentiation between inactivated
macrophages (Mun) and the specific sub-types M1 and M2,
according to Equations (2–4):

Ṁun = M(Tα)− k2Mun
IL1

IL1 + cIL1
− k3Mun

Tα

Tα + cTα

−k4Mun
IL10

IL10 + cIL10
− µMun (2)

Ṁ1 = k2Mun
IL1

IL1 + cIL1
+ k3Mun

Tα

Tα + cTα

+ km21M2

−km12M1 − µM1 (3)

Ṁ2 = k4Mun
IL10

IL10 + cIL10
− km21M2 + km12M1 − µM2 (4)

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 388256

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ceresa et al. Immunological and Biomechanical Model of Emphysema Progression

TABLE 1 | Parameters of the AB model.

S References + biological meaning Value

km12 [est] Transition rate M1-M2 0.075 day−1

k2 (Porcheray et al., 2005) Activation rate of IL1 for M1 0.1 ml/pg/day

k3 (Porcheray et al., 2005) Activation rate of TNFα for M1 1 ml/pg/day

k4 (Porcheray et al., 2005) Activation rate of IL10 for M2 0.3 ml/pg/day

k5 (Edwards et al., 2006) Secretion rate of IL10 by M2 5e−4 pg/cell/day

k6 (Wang et al., 2012) Secretion rate of TNFa by M1 7e−4 pg/cell/day

k7 (Meng and Lowell, 1997; Mantovani et al., 2004)

Secretion rate of IL1 by M1

5e−4 pg/cell/day

k8 (Huang et al., 2002) Secretion rate of TGFβ by M2 0.07 pg/cell/day

k9 (Cobbold and Sherratt, 2000) Secretion rate of TGFβ

by F

0.04 pg/cell/day

k10 (Hehenberger et al., 1998) Fibroblast growth rate 0.924 cell/day

k11 (Ignotz and Massagué, 1986) Collagen deposition rate

by F

20 µg/cell/day

k12 [est] Secretion rate of MP9 by M1 3 pg/cell/day

k13 [est] Secretion rate of IL8 by M2 5e−4 pg/cell/day

k14 [est] Recruit. of neutrophils by IL8 8 pg/ml

k15 [est] Secretion rate of elastase by N 3 pg/cell/day

km21 (Steinmüller et al., 2000) Transition rate M2-M1 0.05 day−1

µ (Bellingan et al., 1996) Macrophage emigration rate 0.2 day−1

µN [est] Neutrophils emigration rate day−1

cIL1 (Onozaki et al., 1988) IL1 promotion on M1 10 pg/ml

cTα (Onozaki et al., 1988) TNFa promotion on M1 10 pg/ml

cIL10 (Onozaki et al., 1988) IL10 promotion on M2 5 pg/ml

c1 (Wang et al., 2012) IL10 inhibition on IL10 100 pg/ml

c (Marino et al., 2008) IL10 inhibition on IL1 TNFα 25 pg/ml

dIL10 (Jin and Lindsey, 2010) Decay rate of IL10 2.5 day−1

dTa (Oliver et al., 1993; Tsutsumi et al., 1996) Decay rate

of TNFa

55 day−1

dIL1 (Lenga et al., 2008) Decay rate of IL1 0.2 day−1

dTb (Zhang et al., 2003) TGFβ degradation rate 15 day−1

dFC (Darby et al., 1997) Fibroblast apoptosis rate 0.12 day−1

dM (Eberhardt et al., 2002; Moro et al., 2008) MMP

degradation rate

0.875 day−1

λ (Horio et al., 1998; Maass et al., 2002) Sec. rate TGFβ

by Mc

5e−6 pg/c/d

Apart from the indicated sources, also Jin et al. (2011) and Wang et al. (2012).

We see that all attracted monocytes will become inactivated
macrophages first, and then switch to one of the two sub-
types depending on constants k2−4 and the concentration of
pro-inflammatory cytokines IL1, TFNα and anti-inflammatory
cytokine IL10. The pro-inflammatory cytokines will promote
differentiation to M1 and the anti-inflammatory ones to M2. The
promotion effect of the cytokines is mediated by the Hill equation
for a cooperative binding type (Stefan and Le Novère, 2013) with
coefficients cIL1, cTα, and cIL10. In time, the transition from M1

toM2 can be reversed, with constants km12 and km21. Eventually,
the macrophages will be removed through the lymphatic system
with rate µ.

Continuing our discussion of Figure 1, we see that each
macrophage type will now secrete cytokines with a dynamic

expressed by Equations (5–7):

İL10 = k5M2
c1

IL10 + c1
− dIL10IL10 (5)

Ṫα = k6M1
c1

IL10 + c1
− dTαTα (6)

İL1 = k7M1
c1

IL10 + c1
− dIL1IL1 (7)

Here we see in Equation (5) that IL10 is secreted by M2

proportionally to k5 and regulated by self-inhibition with
effectiveness c1. Eventually, it is degraded with half-time decay
rate dIL10.

In Equations (6, 7) we have an analogous process for the
secretion of TFNα and IL1 by theM1macrophages subtype.

Additional TGFβ is secreted from fibroblasts (F) and M2 to
increment deposition of collagen in the composition:

Ṫβ = k8M2 + k9F − dTβTβ (8)

Fg(Tβ ) = 0.05T3
β − 0.98T2

β + 6.54Tβ + 7.11 (9)

Ḟ = k10Fg(Tβ )F − dFF (10)

Ċ = k11F − dFCMMP C (11)

˙MMP = k12M1 − dFCMMP C − dMMMP (12)

whereK8 is the secretion rate byM2, k9 the one by fibroblasts and
dTb the decay rate in Equation (8). Fibroblasts proliferates from
the population of already existing cells proportionally to TGFβ in
Equations (9–10) and emigrate with rate df. Collagen deposition
is governed by Equation (11), where we have to consider the
deposition rate kFC, and the degradation effect of matrix-metallo-
proteinases (MMP). Those are enzymes produced by M1 that
degrade the collagen, as described in Equation (12).

Finally, macrophages attract neutrophils to the wound site by
secreting IL8, and those release the elastase enzyme that cleaves
the elastin bonds in the fibers:

İL8 = k13M2
c2

IL8 + c2
− dIL8IL8 (13)

Ṅ = k14(1−
N

Nmax
)

IL8

IL8 + cIL8
− µNN (14)

Ė = k15N − dEE (15)

IL8 secretion (Equation 13) is similar to Equation (5), with
constant k13, a self-inhibition term with efficacy c2 and
a degradation constant of dIL8. Equation (14) governs the
recruitment of neutrophils up until their maximum value Nmax

with a cooperative effect of IL8 and an emigration rate of µN .
Finally the density of elastase is dependent upon the number of
neutrophils and the inactivation rate, dE.

The final proportion of elastase and collagen density is directly
used in our biomechanical model to calculate the properties of
the lung tissue for the FEM simulation as discussed at the end of
the next section.

All the values for the discussed parameters are presented in
Table 1 and the related literature is listed in Reference section.
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FIGURE 1 | Agent based model of tissue destruction in emphysema progression. Particles coming from inhaled smoke cause secretion of cytokines such as TNFα

and TGFβ by the epithelial cells. Those act, at first, as chemotactic factors and attract undifferentiated alveolar macrophages and fibroblasts. and the alveolar

macrophages. Secondly, they induce the activation of the macrophages and their differentiation in the M1 and M2 subtypes. Those will create a delicate dynamical

balance between inflammatory and anti-inflammatory signals such as IL1, IL8, and IL10 that affect the activation of protease such as MMPs, the recruitment of

neutrophils and fibroblasts. MMPs directly cleavage the collagen from the tissue and are responsible for the deposition of abnormal collage that leads to fibrosis,

together with fibroblasts. Elastase destroys the elastin in the tissue. Both abnormal collagen deposition and reduction in elastin deteriorate the mechanical properties

of the tissue.

Agent Based Model of Inflammation and
Coupling to the Finite Element Model
In order to add spatial effects to the molecular model of
inflammation and tissue remodeling, an AB model is created,
using Equations (1–15) as a basis for the behavior of the agents.
The first important difference is that the simulation of the agents
happens on a grid. This gives the model an inherent spatial aspect
and allow us to consider additional details w.r.t. the WB model.
For instance, now the composition of the alveolar unit (AU) -
which includes among others epithelial cells, collagen, elastin and
basement membrane (Zemans et al., 2015)- becomes relevant. In
our case, every cell of the grid represents a small portion of the
AU with different variables accounting for the content of elastin,
collagen, the cytokines and the structural integrity of the cells
(called “tissue-life” in the following).

During the simulation a “smoking” signal determines whether
we introduce particles into the simulated AU or not. This signal
is a periodic square wave with frequency f s and intensity es. The
intensity quantifies the exposure, that is, the number of particles
inhaled in each cycle. The signal starts from zero and last for
a total smoking time of Ts. By varying frequency, intensity and
total time, we can study the effect of particles on the model as

detailed in experiment of section Experiment to Characterize
Parameter Sensitivity. After the end of the total smoking time, the
model is allowed to run for some additional time steps in order
to reach equilibrium again.

The initial, unperturbed, dynamic of the system includes a

small number of inactivated macrophages that move randomly,
“patrolling” the tissue and searching for solid particles, similarly

to the mononuclear cells behavior described by Auffray et al.
(2007). When the smoking signal is active, inhaled particles

deposit and cause an initial rapid rise of TFNα that attracts

inactive macrophages to the deposition site according to

Equation (2). From there, according to the dynamics described
in Equations (3–4), macrophages differentiate in M1 or M2
subtypes which respectively govern the production of pro-
inflammatory (Equations 6, 7, 12) and anti-inflammatory
cytokines (Equations 5, 8, 13).

As previously indicated in Brown et al. (2011), at sites with
high levels of pro-inflammatory cytokines, tissue is damaged by
a complex network of interconnected factors called Damage-
associated Molecular Patterns (DAMPS) (Matzinger, 2002; Lotze
et al., 2007). This aspect was not included in the WM model
because of its specific spatial nature, but it is implemented
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in the AB model where the tissue life of the AU is reduced
proportionally to the inflammation level. Damaged tissue (i.e.,
with reduced tissue-life) in turn, start secreting TFGβ to recruit
fibroblasts for wound healing as in Equations (9, 10).

The model tracks separately the amount of collagen and
elastin in the tissue and their equilibrium varies depending on
the concentration of fibroblasts, neutrophils, elastase and MMPs
as in Equations (11, 12, 14, 15).

The cellular death caused by DAMPS and the amount of
collagen and elastin, all affect the mechanical properties of the
tissue used in the FE simulations. In this first version we use an
elastic, isotropic material implemented in Elmer FEM software
(Råback, 2013). Now, on the one hand, when a cell dies, we
reduce its Young’s modulus (ETissue) to 1 Pa, to account for the
fact that it contributes no more to the elastic properties, but
without changing the topology of the mesh. On the other hand,
if the cell is not dead, its Young’s modulus is calculated as a
linear mixture of the corresponding concentration of elastin and
collagen as in Equation (16). The initial values are Eel =0.1 kPa
and Ecl =20 kPa, as described by Suki et al. (2011).

ETissue = δelcelEel + δclcclEcl (16)

δel = 0.7; δcl = 0.3, cel ∈ [0, 1]; ccl ∈ [0, 1];

The material properties are calculated and loaded in the solver as
continuous static field using a custom made Fortran code.

Apart from the molecular damages caused by DAMPS, the
tissue can also die because it was subjected to too much strain
during the mechanical simulations. While elastin withstands
deformation as high as 100%, the maximum tensile strain of pure
collagen fibrils with low cross-link density is considered to be
around 10% of the initial length (Depalle et al., 2015; Sherman
et al., 2015). Accordingly, the maximum tensile strain for each
cell is calculated weighting the previous values for the amount of
elastin and collagen contained.

We present in Figure 2 the indirect coupling strategy used
for the AB and FE models. At each step the former simulate
additional particle deposition that accounts for continued
smoking; release of inflammatory cytokines and degradation
of mechanical properties. Periodically the AB model is frozen
and the calculated tissue properties are imported in the AB-FE
coupler code which will reconstruct a topologically equivalent
geometry, recover the contours of the damaged zones and assign
new material properties taking into account the final amount
of collagen and elastin from the AB model. The resulting
information is passed to the FE solver that runs until convergence
and then export the strain results for further processing. After
the FE solver has run, the second coupler code, FE-AB is run to
import the strain field and calculate which fibers, if any, have been
destroyed in the simulation. It thus updates the AB status and
restarts it with the updated state.

EXPERIMENTAL SETUP

The next sections deal with the more experimental part of our
work. First, we explain the inner working of the coupling between
AB and FEM solvers (section Procedure to Couple AB and FEM).

Then, we present the meshing process (section Mesh Creation
and Sensitivity). In the central part of this section we detail
the two main experiments that validate our implementation:
the first is an initial exploration of the sensitivity of the
model to initial parameters (section Experiment to Characterize
Parameter Sensitivity), while the second is the validation on
a public CT image dataset of emphysematous lungs (section
Experiment to Study the Emphysema Progression in Clinical
Images). Finally, we briefly discuss the High Performance
Computing infrastructure we used to run the studies (section
High Performance Computing).

Procedure to Couple AB and FEM
In a typical execution cycle, the AB model is stopped at regular
intervals and control is transferred to the FE model for analysis
of the mechanical strains. After each interruption of the AB
simulation, the latest iteration of this simulation is saved to
disk and the AB-FE coupling code first calculates the percentage
of damaged tissue area, as predicted by the AB model, and
evaluates whether there is enough healthy tissue to proceed with
the mechanic simulation. If this is the case, the saved status of
the AB model is inspected to retrieve the last topology of the
computational grid and the amount of collagen and elastin is used
to calculate the new Young modules of the tissue according to
Equation (16). This information is used together with connected
component analysis, morphological operators and k-Nearest
Neighbors (kNN) classifiers, to extract the contours of the broken
tissue, define a 2Dmesh and assignmechanical properties to each
element. Materials, boundary conditions and solver parameters
are adjusted if necessary and a case directory is created for the
FE solver. The FE model runs asynchronously until convergence
of the steady state and deformation and displacement fields are
saved in a vtk compatible format (vtu). After that, the FE-AB
coupling code is executed again. It reads back the strain fields
from the solver status files and determines which, if any, nodes of
the mesh have exceeded their maximum strain. Those are added
to the damaged zone and the agent simulation is restarted. Cycle
by cycle the coupled simulations continue until tissue damage
is above 80% of the area or until the desired simulated time is
reached.

A detailed view of typical results for the inflammation,
meshing and mechanical process is shown in Figures 3, 4.

Mesh Creation and Sensitivity
We use 2D FE meshes with topologies equivalent to the AB
simulation grids. The exact size and topology of each mesh is
thus very dependent on the current state of the simulation.
In addition, an optimization step is run after the first mesh
creation using Gmsh2. The average mesh contains around 50,000
polygons with four nodes. We manually refined the parameters
of the mesh creation to ensure a quick convergence of the FE
simulations, while keeping a low computational cost, necessary
to ensure reasonably fast and smooth interactions between the
AB and the FE models.

2Open source: gmsh.info
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FIGURE 2 | Full coupled model. Original patches from a public emphysema database are segmented to separate the parenchyma from the vessels and airways and

seed deposition is simulated. For each seeded pixel and for all its neighbors we run a simulation job that represent the evolution of 130 alveoli. In each job there is a

cyclic sequence between the agent and finite element model. At each step the former simulate additional particle deposition that accounts for continued smoking;

release of inflammatory cytokines and degradation of mechanical properties. Periodically the AB model is frozen and the calculated tissue properties are imported in

the AB-FE coupler code which will reconstruct a topologically equivalent geometry, recover the contours of the damaged zones and assign new material properties

taking into account the final amount of collagen and elastin from the AB model. The resulting information is passed to the FE solver that runs until convergence and

then export the strain results for further processing. After the FE solver has run, the second coupler code, FE-AB is run to import the strain field and calculate which

fibers, if any, have been destroyed in the simulation. It thus updates the AB status and restarts it with the updated state.

FIGURE 3 | Progression of parenchyma destruction in Agent Based Model. From left to right we see the effect of increased inflammation, tissue damage and final

destruction. (A) Concentration of proteases in a small sample of the tissue during model execution. (B) Due to the continued effect of the high proteases levels the

tissue is damaged. (C) Snapshot of the damaged tissue as sent to the FEM model. Tissue in foreground (white) has greatly diminished mechanical properties.

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 388260

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ceresa et al. Immunological and Biomechanical Model of Emphysema Progression

FIGURE 4 | Detail of the meshing process for a patch with initial emphysema formation. (A) The geometry is automatically generated and meshed by gmsh using our

code taking into account Agent Based Model. (B) The resulting mesh has an adaptive size to ensure fast convergence and is able to capture complex shape for the

destroyed tissue. (C) The generated mesh is then connected to our FEM solver and simulated until convergence is reached. In this image, the displacement field is

shown.

Experiment to Characterize Parameter
Sensitivity
We studied several possible parameters to characterize the
model’s behavior. First, we varied the quantity of particles and
the frequency with which they are added. We varied the number
of particles inhaled in each smoking step from 0 to 20 and the
smoking time from 10 to 90 simulation steps, for a total of 25
experiments. This will be referred to as the “exposure” experiment
in the results section.

In order to asses the sensitivity to the parameters, we selected
and varied six main parameters of the model as described in
Table 2. This resulted in a total of 26−2 = 16 experiments
following a fractional factorial analysis. We will refer to this as
the “parameters” experiment in the results section.

Experiment to Study the Emphysema
Progression in Clinical Images
One of the main objective of this model was to predict the
development of emphysema in time. We devised an initial way to
test our hypothesis using a public lung image dataset. We explain
our approach in the following sections.

Dataset
We test our system against the public CT Emphysema database
(Sorensen et al., 2010). We use 168 square patches manually
annotated in a subset of the 115 high-resolution CT (HRCT)
slices. As explained in the previous reference, CT scanning was
performed using General Electric (GE) equipment (LightSpeed
QX/i; GE Medical Systems, Milwaukee, WI, USA) with four
detector rows. The acquisition protocol was: in-plane resolution
0.78 × 0.78mm, slice thickness 1.25mm, tube voltage 140 kV,
and tube current 200 mAs. The slices were reconstructed by
using a high-spatial-resolution (bone) algorithm. The data comes
from a study group of 39 subjects, including 9 never-smokers, 10

smokers, and 20 smokers with COPD. Figure 2 shows a sample
of each of the three categories of images.

Pre-processing
All slices were automatically segmented and reviewed to create
a mask of only parenchyma tissue. In order to prepare the
computational model, we first segmented the pulmonary tissue
in the lung patches, using a fixed threshold of −750 HU.
Stereological analysis of the lung parenchyma revealed a mean
of 500 million alveoli per double lung in the normal population,
with a mean alveolar volume of around 4.2 × 106 µm3 and, on
average, 170 alveoli per cubic millimeter (Ochs et al., 2004). In
our case, with an anisotropic spacing of 0.78× 0.78× 1.25 mm3,
this corresponds to roughly 130 alveoli per voxel. For each voxel
of this binary mask we generate a planar grid of the 130 alveoli
that is used as a computational mesh.

Particle Deposition and Simulation
As detailed in Figure 2, once the patch has been segmented,
random pixels of the parenchyma and their neighbors aremarked
as “affected” and, for each one, a new simulation of the AB and
FE models is run. Final results are mapped back into the main
image patch and the updated mechanical properties calculated by
the coupled AB-FE model are linearly translated back into HU
values. In this way, we simulate the typical darkening of the CT
scan caused by emphysema progression.

High Performance Computing
Among many different frameworks available for AB modeling
(Abar et al., 2017), we chose to use Pandora (Rubio-Campillo,
2014), for its ease of programming and superb scalability.
The model is implemented in an in-house version, specifically
modified to allow biological model developments and available
online3.

3https://bitbucket.org/mrceresa/pandora
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TABLE 2 | Parameters experiments.

Experiment K8 (pg/cell/day) dIL10 (2.5 day−1) K12 (pg/cell/day) K13 (10−3) (pg/cell/day) dFC (day−1) dM (day−1)

1 0.7 2.5 3 0.5 0.12 0.875

2 0.14 2.5 3 0.5 0.24 0.875

3 0.7 5 3 0.5 0.24 1.75

4 0.14 5 3 0.5 0.12 1.75

5 0.7 2.5 6 0.5 0.24 1.75

6 0.14 2.5 6 0.5 0.12 1.75

7 0.7 5 6 0.5 0.12 0.875

8 0.14 5 6 0.5 0.24 0.875

9 0.7 2.5 3 1 0.12 1.75

10 0.14 2.5 3 1 0.24 1.75

11 0.7 5 3 1 0.24 0.875

12 0.14 5 3 1 0.12 0.875

13 0.7 2.5 6 1 0.24 0.875

14 0.14 2.5 6 1 0.12 0.875

15 0.7 5 6 1 0.12 1.75

16 0.14 5 6 1 0.24 1.75

Values of the parameters used in the 26−2 = 16 experiments.

In order to satisfy the high demand in computational
resources, we run the simulations on our institution’s
supercomputing SNOW Linux cluster. The cluster is currently
composed by 20 computing nodes and a total of 840 cores with
a theoretical calculation capacity of 8.49 Tflops. Highly relevant
for agents simulations were six GeForce GTX TITAN X GPU
with 12 Gb of memory.

RESULTS AND DISCUSSION

In this section we present the results of the twomain experiments
that we have used to validate our implementation. Those
experiments were previously discussed in detail respectively in
sections Experiment to Characterize Parameter Sensitivity and
Experiment to Study the Emphysema Progression in Clinical
Images.

Parameter Sensitivity and Model Analysis
The results of the Exposure experiment are shown in
Figures 5A,B. Figure 5A illustrates the effect of changing
the number of particles inhaled for each simulated smoking
exposure and the total time spent smoking. When exposure is
zero, the model is able to capture that the tissue should remain
healthy no matter how long the simulation runs. However, as
both the exposure and total time spent smoking increase, the
tissue starts getting damaged, independently on the values of
the rate constants. For lower to medium exposures, the implicit
stochasticity of the AB model and the variability of the rate
constants lead to some the fluctuations of the results in function
of the smoking time, but tissue life is always reduced by at least
50%. For higher exposure, tissue damage is irreversible and
continues even after smoking cessation is simulated, as shown

in Figure 5B. These outcomes nicely reflect the fact that smoke
frequency and exposure are considered as one of the main risk
factors for the development of COPD and emphysema (Yoshida
and Tuder, 2007; Liu et al., 2008).

In the model, the mechanical damage largely depends on
the regulation of the collagen content, because the stiffness of
this macromolecule is two orders of magnitude the stiffness
of elastin. The degradation of collagen is heavily affected by
TNFα through the recruitment of monocytes (Equation 1)
and the activation of macrophages into M1 type (Equation 3)
with positive feedback loops generated through IL1 (Equations
3, 7) and TNFα (Equation 6). In contrast, the activation of
macrophages into M2 type is promoted by the anti-inflammatory
cytokine IL10 (Equation 4), the production rate of which is
positively retro-alimented by M2 macrophages (Equation 5).
While IL10 inhibits TNF-alpha and IL1 (Equations 6, 7), it is
also self-inhibited (Equation 5). Hence, the anti-inflammatory
effect of IL10 is limited compared to the strong inflammatory
effects of TNFα and IL1, because less positive feedback in favor
of the promotion of type M2 activated macrophages. In the
Parameters experiment, the exposure and total smoking time
parameters were set to respectively 10 particles and 50 time
steps to ensure that the system would be in a medium damage
situation. Results were all very similar and the tissue life in each
time step only varied with an average standard deviation of 0.166
units, revealing that the above interpretation of the model holds
true regardless the variation of the rate constants within the
considered ranges of values.

According to the analysis of the model equations, the
promotion of the anabolic TGFβ (Equation 8) should be limited
compared to the promotion of the catabolic MMP (Equation
12), and the persistent inflammation induced by particles should
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FIGURE 5 | (A) Effect of changing the number of particles inhaled for each simulated smoking (exposure) and the total time of the simulation spent smoking (Smoking

time). The value of each cell is the residual tissue life in % after the simulation stopped. (B) Emphysema progression in time. The parameters of the experiments are in

figure (A): starting from experiment 0 in the lowest left corner to experiment 24 in the upper right.

promote the unequivocate destruction of collagen (Equation 11).
Nevertheless, we sometimes saw an increase in the mean amount
of collagen. This outcome can be due to the mechanical feedback
and mechanical tissue damage that promotes the secretion of
TGF-beta and provides additional weight to collagen anabolism
(Equations 9, 10). In our model emphysema progression, was
indeed related to sustained inflammation that continued after
smoking cessation (Willemse et al., 2005), but required the
additional effect of DAMPS to relate inflammation, altered
tissue turnover and tissue mechanics to cell endothelial death.
This phenomenon needs to be further explored in a more
mechanistic way, but our approximation of DAMPS effects
allows qualitative validation of the simulated mechanisms for
emphysema progression against clinical data (see below).

Emphysema Progression in Clinical Images
To test whether our model is able to produce images similar to
those seen by clinicians, we use the public emphysema database
described in section Experiment to Study the Emphysema
Progression in Clinical Images. Images of some of the patches
representative of the data we used in the experiment are
presented in Figure 6. Parenchyma destruction in emphysema
is strongly associated with decreased HU absorption value
in CT images, and many image descriptors are commonly
used to (semi-)automatically detect emphysema progression in
CT images (Stern and Frank, 1994; Gevenois and Yernault,
1995; Madani et al., 2006). In the present study, emphysema
progression is quantified through the well-known Mean Lung
Density (MLD) (Heremans et al., 1992).

We quantify all the patches from the database and group by
the different degrees of emphysema severity. As it can be seen
from Figure 7, images with increasing emphysema severity have
also a lower MLD score. Differences of more than 40–60 HU

between groups (1) and (2), (3) are significant with p-value of less
than 0.01.

Once the association between emphysema progression and
MLD score is determined, we take all the 69 patches annotated
with low or no emphysema affectation and use them as input
for our model. Images are quantified with MLD before and
after model execution and the results are tested with t-test for
statistical significance of the differences.

As we can see in Figure 8, there is a statistically significant
difference of about 30 HU between the baseline and progression
groups with a p-value of less than 0.001. We thus conclude that
our implemented model is able to simulate changes that are in
agreement with the progression of emphysema in clinical images
quantified by MLD.

Scaling
The parallelization strategy for the AB part consists in assigning
a job for each patch, as they were completely independent from
each other, then recursively create a new job per voxel, which is
the smaller unit we can parallelize for now. With 69 patches to
process and 200 seeds per patch plus their four closest neighbors,
this resulted in 69,000 jobs. The AB code uses OpenMP to
parallelize the execution of the agents. For the FE part, we use
the MPI capability of Elmer solver to partition the mesh and
distribute the computation on 5 MPI processes per job. Finally,
the coupling between AB and FE is executed in a sequential
way with a python script. Most of the code executions for the
coupling use libraries for which C code bindings were available
(numpy, scipy, and skimage) and, thus, simulations run at almost
native speed. During a single job execution, the computational
time is taken mostly by the AB model (54%), then by the FE
solver (37%) and finally by the coupling part (9%). Each job took
about 40min on the cluster and 1 h on a workstation computer
(Intel i7 with 32 GB of RAM). A significant amount of time
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FIGURE 6 | Database patches samples for the three categories of low (up), medium (middle) and severe (down) emphysema affectation. We see how the

affectation is related to the appearance of bigger cluster of low attenuation areas from top to bottom.

of the coupled simulations was spent on writing the files to
disk to share data between the solvers. This could be reduced
in future works by using faster SSD disk or in-memory access.
All jobs would have taken months to be processed sequentially
on the abovementioned workstation, but required 8 days on our
cluster, by using a maximum of 256 simultaneous jobs. The use
of the HPC resulted, therefore, in several orders of magnitude of
computational time reduction, making the present study actually
feasible. All jobs in the cluster use Sun Grid engine.

CONCLUSIONS AND FUTURE WORKS

In this paper we conceived, developed and tested a high
performance multi-scale agent-based model of lung parenchyma
evolution after repeated exposure to solid irritants such as the
particles that arrive to the lung while smoking. We modeled
the simplified behavior of immune system cells such as alveolar

macrophages and neutrophils, and also cells in charge of wound
healing mechanisms such as fibroblasts. Finally, the tissue
behavior under the forces present in the lung during respiration
was modeled using a FE elastic model. An initial analysis of
sensitivity of the model to parameter variations confirmed (i)
the ability of the model to point out particle inhalations as a
major risk factor in emphysema pathogenesis, and (ii) the strong
inertia of the catabolic shift of cell activity due to sustained
inflammation that resulted in sustained damage to most of the
tissue. A preliminary validation of the capacity of the model
to cause a significant change was performed against clinical
images on 69 cases of a public database of CT images affected
by emphysema progression.

To the best of our knowledge, this model advances the state of
the art because: (1) it includes a more detailed molecular model
of inflammation and tissue remodeling (2) uses a FE solver to
calculate the response to mechanical solicitations thus allowing
for future extensions where arbitrary complex tissue constitutive
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FIGURE 7 | Relation between Mean Lung Density and emphysema progression. We used Mean Lung Density (MLD) to quantify patches belonging to the three

emphysema classification levels. The figure shows that emphysema progression is associated with a mean lowering of the MLD values, due to the destruction of

parenchyma and the diminishing of the CT attenuation value.

equations could be used. (3) has a bi-directional coupling
between AB and FE models (4) exploits HPC technologies so
that enough tissue can be simulated to start validating against
imaging data (5) uses clinical CT images to perform an initial
validation of the capacity of the model. The implementation
of a system of coupled ODEs into AB has the great advantage
over a well-mixed model to take into account the spatial aspect,
and the formation of self-sustaining spatial patterns that affect
substantially the equilibrium points of the system (Brown et al.,
2011).

The present model has, of course, several limitations.
Simplifications were still made in the immune response and
the mechanical model. In particular, the relative importance of
DAMPS in the validated model suggest that more mechanistic
development of this biological phenomenon are necessary.
Additionally, while in this implementation of the model we used
a 2D mapping between the alveolar exchange surface and the
computational grid, in following works we will explore the effect
of extending the connectivity of the tissue to 3D. On top of that,
we do not account for heterogeneous tissue structures such as
airways or blood vessels. However, we plan to do so in a following
extension as the relevant information is already present in the CT
images used to initialize the model. Effect of the mesh size and
topology should be further explored. In a follow-up study we plan
to automatically find the best parameters and better characterize
the impact of the mesh on the stability of the solution with a
convergence study.

Also, the validation is still somehow limited, as no histological
comparison with ex-vivo animal models could be performed

and the one on CT clinical images is limited to one clinical
descriptor, namely the MLD score. As a future work, we are
planning a retrospective study with COPD patients with 1-
year follow-up. Of course, the real ground truth should be
histology, which is unfortunately very difficult to obtain in
human subjects. A promising alternative is to use mice models of
emphysema.

We suggest that such a model, once properly extended and
calibrated with histological and clinical data, could be useful to
improve patient classification and prediction of exacerbations
and thus contribute to the selection of a personalized
therapy.
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Drug targeting promises to substantially enhance future therapies, for example through

the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the

exposure of healthy tissue to unwanted damage. Promising work on the steering of

medication in the human body employs magnetic fields acting on nanoparticles made

of paramagnetic materials. We develop a computational tool to aid in the optimization of

the physical parameters of these particles and the magnetic configuration, estimating the

fraction of particles reaching a given target site in a large patient-specific vascular system

for different physiological states (heart rate, cardiac output, etc.). We demonstrate the

excellent computational performance of our model by its application to the simulation

of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an

MRI scan. The results suggest a strong dependence of the particle density at the target

site on the strength of the magnetic forcing and the velocity of the background fluid flow.

Keywords: magnetic drug targeting, particle suspension, blood flow, lattice-Boltzmann method, multiscale,

HemeLB

1. INTRODUCTION

The accurate targeting of drugs toward specific regions of the human body promises to enhance
future therapies and improve patient quality of life. The adverse effects of medications, such as
those caused by chemotherapeutic drugs, may be minimized, while lower dosage requirements may
decrease costs (Torchilin, 2000).

Drug targeting can be classified by the means as well as the level at which it is performed
(Schleich et al., 2014). Viable mechanisms to enhance selective absorption include, but are not
limited to, control of particle (drug carrier) size, addition of biochemical markers to drug carriers,
and release of drug payloads within magnetized particles guided by external magnetic fields.
Depending on the method employed, the term drug target may designate a certain type of tissue,
specific cell type, or a location in space, such as the site of a tumor (Lockman et al., 2002).

Advances in technology have facilitated the production of micro- and nano-structures with
great precision (Champion et al., 2007). In addition to the spherical particle carriers used in early
experiments, state-of-the-art drug delivery systems incorporate bundles of nanotubes to encase
biochemically active components. Such carrier structures can be designed to various specifications
(Berry and Curtis, 2003; Tartaj et al., 2003), while a viable compromise between competing
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requirements may need to be found. For example, larger
magnetic particles with micrometre radii are easier to manipulate
via external fields, as the forces acting on them are proportional
to their volume. On the other hand, the use of smaller particles
(with dimensions of order tens of nanometres) has been found
to enhance bioavailability and drug lifetime in vivo (Pankhurst
et al., 2003; Nacev et al., 2012). Furthermore, the emergence
of super-paramagnetic behavior, a finite-size effect that occurs
for particle sizes below ∼40 nm (Ulbrich et al., 2016), can
substantially increase magnetic susceptibility, and hence enhance
the response of particles to an external magnetic field. The use of
such nanoparticles has received much attention in recent years,
and the purpose of this paper is to report on the simulation of
these, so as to inform on their design and aid future efforts.

The optimization of carriers and functionalization for
drug targeting typically involves in vivo experiments and the
immolation of animals. In this context, computational models
can help to reduce the experimentation required. Within
personalized medicine, the simulation, ahead of treatment, of
magnetized particle suspensions in patient-specific geometries of
vasculature derived frommedical imaging data, would permit the
selection of magnetic fields to control drug targeting.

There is significant interest in using magnetic drug targeting
(MDT) for the treatment of diseases such as cancer (Tietze et al.,
2012), due to the need tomaximize damage to tumor cells (via the
injection of highly toxic chemotherapeutic drugs) while keeping
the exposure to healthy tissue in the remainder of a patient’s body
within tolerable levels. There have been several preclinical studies
(Lübbe et al., 1996a; Goodwin et al., 1999; Alexiou et al., 2000),
with a phase I clinical human trial carried out by Lübbe et al.
using a single permanent magnet to concentrate epidoxorubicin-
coated magnetic nanoparticles within shallow, inoperable tumors
(Lübbe et al., 1996b, 2001), but with a number of issues identified
(Shapiro et al., 2015). A major goal of MDT is to reach targets
(e.g. tumors) deeper within the body, but different locations can
require very different magnetic nanoparticle properties. In vitro
experiments with flow phantoms can be used to determine the
behavior of magnetic nanoparticles with different physiological
and physical parameters (Radon et al., 2017). Simulation work
by Nacev et al. suggests the use of a feedback control algorithm
that modifies the applied magnetic field based on accurate real-
time information on the distribution of particles (in principle
obtainable from imaging) to focus the particles (on average) at
a particular site (Nacev et al., 2012).

To be of most value in real world systems, MDT simulations
must include a range of physical phenomena. Furthermore,
so as to be able to resolve processes on relevant time and
length scales, the simulation tools used must be computationally
efficient. The ideal model would account for the mechanical
properties of vessel walls, the complex rheological behavior of
blood and its particulate nature, external magnetic fields and
gravity etc. However, careful evaluation and control of the errors
arising from different modeling assumptions and simplifications
should enable reduced (and computationally efficient) models
to be used with accuracy and reliability in clinical decision
support. Moreover, multiscale models can inform coarse grained
parametrization by quantifying effective parameter values.

There has been considerable development of models for MDT,
focussing on the various scales and features of interest. Significant
effort has been expended in modeling the MDT-relevant
properties of the nanoparticle cores themselves (Winkler, 2017),
e.g. through the use of the generalized finite element method
(Plaks et al., 2003). The behavior of such nanoparticles in
blood flow through simplified geometries has been explored
using computational fluid dynamics (CFD) techniques such as
the lattice-Boltzmann method (LBM) (in a simple channel)
(Kandelousi and Ellahi, 2015), or the finite volume method
(in a vessel bifurcation) (Larimi et al., 2014). Kenjereš and
Righolt (2012) apply the conservation equations of mass and
momentum (with an additional model describing a very dilute
particle phase) for the simulation of blood flows carrying
magnetic drug particles. Rukshin et al. modeled the motion of
super-paramagnetic nanoparticles in a Poiseuille flow under the
influence of an external magnet, taking into account the effects
of Brownian motion and interactions with red blood cells, to
determine particle arrival at the designated tumor site (found to
depend dominantly on particle size, Rukshin et al., 2017).

In this work we aim to tackle comparatively much larger
systems, with the exemplar case of a patient-specific vascular
system (the circle of Willis) in a three-dimensional vascular
system, concerning ourselves with determining the fraction of
injected particles that reach a defined target site under varying
physical parameters (of the nanoparticles) and physiological
states (of the patient). We do not consider absorption into tissue
at the target site, magnetically induced heating, biochemical
reactions, or any other aspects specific to local treatment. Our
strategy for the simulation of such a system relies on the
LBM, which boasts extreme efficiency on massively parallel
architectures, i.e. utilizing many compute units in an efficient
manner (in section 4.2.1 we demonstrate strong scaling to
approximately 100,000 cores). Through exploitation of its
outstanding parallel performance, we use the LBM to reach a new
level of understanding.

In this article we report on the integration of paramagnetic
particles into HemeLB, an open-source lattice-Boltzmann code
that is optimized for the large-scale simulation of sparse
geometries on high performance computing resources (Mazzeo
and Coveney, 2008). HemeLB is used for blood flow analysis
(Bernabeu et al., 2013; Nash et al., 2014), and has been applied to
gain insight into angiogenesis (Bernabeu et al., 2014) and vascular
flow under different boundary conditions (Itani et al., 2015).
Here, we assess the potential of HemeLB to evaluate magnetic
drug targeting strategies in the context of personalized medicine.
We develop, implement and validate a model for the simulation
of magnetic particles in the circle of Willis, the central blood
distribution system in the brain.

2. MATERIALS AND METHODS

2.1. Blood Flow by the Lattice-Boltzmann
Method
We simulate the flow of blood by the lattice-Boltzmann method
(LBM), and assume incompressible flow at low Mach numbers.
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Our current approach approximates blood as a Newtonian fluid
at a characteristic viscosity; for the systems presented herein, this
provides a good approximation, and minimizes computational
effort. Note that HemeLB allows for the simulation of non-
Newtonian behavior, which may be used in conjunction with the
particle model (Bernabeu et al., 2013).

The lattice-Boltzmann method describes fluid dynamics via a
mesoscale approach. This replaces the single-particle distribution
function f (x, c, t) (at a position x, continuous velocity c, and
time t) of the Boltzmann equation with a distribution function
fi(x, t), where velocity space is reduced to a discrete set {ci}. After
discretization in space and time, we have the lattice-Boltzmann
equation (LBE),

fi(x+ciδt , t+δt)−fi(x, t) = −�i(fi(x, t), f
0
i (x, t))+δtFi(x, t) (1)

which describes the evolution of fi by the streaming (left-
hand terms) and collision terms. The last term in Equation (1)
reproduces the effects of a hydrodynamic body force. Time is
incremented by δt during each propagation step, and the discrete
equilibrium distribution function f 0 approximates the Maxwell-
Boltzmann equilibrium distribution function to second order.
The full derivation of the second-order accurate integration
scheme for the forced LBE can be found in Nash et al. (2008).

Like the Bhatnagar-Gross-Krook (BGK) model of kinetic
theory, the lattice Bhatnagar-Gross-Krook (LBGK) model
describes particle collisions as a relaxation toward a local
equilibrium, i.e.

�i =
1

τ

[

fi − f 0i
]

(2)

Herein, relaxation toward equilibrium on a single time scale τ

is assumed. It can be shown that this approach approximates
the Navier-Stokes equations (NSE) to second order (Qian and
Orszag, 1993). For the purposes of this study, the LBGK collision
model is used exclusively due to its simplicity.

2.1.1. Parametrization and Scaling
The lattice-Boltzmann method, as presented here, is athermal.
The equation of state for a single fluid component, analogous
to that of an ideal gas, relates the pressure to the lattice density
ρ: p = ρc2s . The lattice speed of sound cs for D3Q19, the three-
dimensional 19 velocity lattice, which is used throughout, is equal
to 1/

√
3. The simulation parameters δx (spatial discretization, i.e.

the lattice spacing), δt (temporal discretization, i.e. the time-step
length), and δm (the lattice mass) scale length, time and mass,
respectively, such that the physical speed of sound is equal to
csδx/δt and energy is non-dimensionalized by

δm · δ2x · δ
−2
t (3)

Despite the athermal nature of the fluid model (by the LBM,
which can be extended to give a thermal lattice-Boltzmann
model), thermal energy kBT (where kB is the Boltzmann constant
and T is temperature) is considered in the calculation of a noise
term, to be discussed in section 2.2, emulating the Brownian
motion of particles (specifically, kBT appears in our calculation

of particle diffusion by the Stokes-Einstein equation). True to
the parametrization of blood flow we choose a temperature of
310.15K or 37 ◦C.

To ensure consistent viscous behavior for a given set of scaling
parameters, the dynamic viscosity

µ = 0.004 Pa s (4)

and density of blood plasma

ρb = 1000 kgm−3 (5)

are used to calculate relaxation parameters for the collision
process. Note that, strictly speaking, µ is a function of the
hematocrit (Pries et al., 1992). The lattice (kinematic) viscosity
ν is related to the relaxation time τ by

ν = c2s

(

τ −
δt

2

)

or, in our case, ν =
1

3

(

τ −
1

2

)

(6)

For numerical stability, the viscosity must be sufficiently large,
i.e. τ > 0.5 (the limit of inviscid flow). In addition to this, the
flow velocity must remain low relative to the speed of sound.
We impose the Mach number limit Ma = u/c2s < 1/30,
corresponding to a maximum velocity of umax ≈ 0.02 in lattice
units.

2.2. Magnetized Particles
Our strategy for the computationally-efficient simulation of
paramagnetic particles suspended in blood combines an
approach for the simulation of point-like particles (accounting
for particle-fluid interaction) with a dipolar model. This pairing
enables users of HemeLB, including clinicians and medical
scientists, to study the efficacy of magnetic nanoparticles as a
drug delivery system under the influence of an external magnetic
field. We are particularly interested in understanding how such
particles can be directed to problem sites, e.g. to the location of
an inaccessible (by invasive procedures) tumor.

2.2.1. Model for Suspended Particles
Our approach for the simulation of dilute suspensions, with
particle sizes that are orders of magnitude smaller than the
lattice spacing δx, was developed with computational efficiency in
mind; we aim to inform clinical decision-making, a time-critical
process. Themodel is parameterized by particle radius a, position
xp and velocity up. An efficient coupling mechanism is employed
by neglecting particle inertia.

We list the source of forces that can be, by our
implementation, applied to a paramagnetic particle (if, for
a particular configuration, a forcing mechanism has a negligible
impact on particle dynamics, it is deactivated to minimize
computational effort): (1) a constant gravitational field; (2)
hydrodynamic (Stokes’) drag, due to the viscosity of the fluid
(blood); (3) a (generally attractive) magnetic force due to
paramagnetism; (4) a lubrication force, introduced to satisfy the
wall-boundary condition on vessel walls and prevent the overlap
of interacting particles; and (5) a stochastic force FR (Brownian
noise). For a paramagnetic particle under the action of these
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forces, we obtain (by balance of forces) the following for its
motion:

mu̇p = −6πµa[up − v(xp)]+ F+ FR (7)

where F is the combined sum of forces 1, 3, and 4 (excepting drag
and FR), and v is the (interpolated) fluid velocity at the location
xp. By neglecting particle inertia, the left-hand side vanishes, and
the hydrodynamic drag must balance the external forces on the
particle. With the mobility β = 1/(6πµa), the motion of a
non-inertial particle in a dilute suspension can be expressed as

up = v(xp)+ β(F+ FR) (8)

which is dependent on the interpolated fluid velocity v(xp) and
the associated force terms. Note, in Equation (8), the effects
of Brownian noise are only introduced through FR – the fluid
velocity v is deterministic. Noise is computed (by applying
the fluctuation—dissipation theorem) to model the effects of
Brownian motion.

In general, where the particle size is large relative to the lattice
spacing δx, a correction to the radius of the particle is required
(Ladd, 1994; Nguyen and Ladd, 2002). Because we restrict our
attention to the simulation of particles that aremuch smaller than
the lattice spacing δx (the largest radius we consider is 0.5 µmwith
δx = 25 µm), we do not concern ourselves with the calculation of
this correction. We similarly neglect the Faxén contributions in
the particle equation of motion (Boivin et al., 1998; Horwitz and
Mani, 2016), Equation (8) (discussed in section 5).

2.2.2. Dipolar Model
Since the calculation of inter-particle interactions can be costly,
we exploit the dilute approximation and employ a simple
dipolar model (DM) (Yung et al., 1998; Du and Biswal, 2014)
to determine the (attractive) magnetic force between particles
(dipoles) i and j, which we assume to be identical. The force on
particle i due to particle j is

FM =
3µ0

4πr5

[

(mi · rij)mj + (mj · rij)mi + (mi ·mj)rij

−5r−2(mi · rij)(mj · rij)rij

]

whereµ0 is the permeability, rij is the connecting vector from j to
i, andmi = 4πa3χvH/3 (and similarly for j). Note that we neglect
variations in the magnetic field H over the size of a particle, and
that χv is the effective volumetric susceptibility. We calculate H
at the position of the interaction by Yung et al. (1998)

H =
1

4π

[

(m0 · r0)
3r0

r50
−

m0

r30

]

(9)

where m0 is the magnetic moment of a permanent magnet, and
r0 is the vector connecting the magnet and a particle. For the
results presented in section 4, m0 is imposed in the x-direction,
i.e. perpendicular to the sagittal plane (see Figure 2). Equation
(9) also gives the force exerted by the magnet on a particle.

We demonstrate the effects of this model by following the
trajectories of 5 paramagnetic particles in a three-dimensional

Poiseuille flow, as shown in Figure 1. A permanent magnet
(on the yz-plane passing through the center of the vessel) is
placed 0.0022mm from the centerline. A magnetic moment
of m0 = {0.0, 3000.0, 0.0}Am2 is imposed. The pressure at
the inlet (at z = 0) is 0.01mmHg or 1.33 Pa, resulting in a
pressure gradient of 103.9 Pam−1. Initially, the evenly-spaced
particles follow the pressure-induced flow, with the particle on
the centerline at maximum (flow) velocity. As they approach
the magnet, the particles experience a significant force that
disrupts their motion; the particle closest to the magnet (i.e. the
outermost) is significantly affected, with its streamwise velocity
reduced such that it remains near to the wall of the vessel for
a considerable time (relative to the other particles). Because the
force exerted by the magnet on the particles is larger than the
force experienced between particles (owing to paramagnetism),
we do not see the trajectories of the particles converge. Note
that to avoid divergence of the attractive forces, a lubrication
force between particles is applied, ensuring that particles do not
overlap.

2.2.3. Lubrication Forces
The wall-boundary interaction of particles is modeled by a
lubrication force (ten Cate et al., 2002)

FL = 6πµa2(up · r̂w)

[

1

h
−

1

he

]

(10)

with the particle-wall separation h = ‖rw‖− a (rw is the particle-
to-wall vector), a cut-off distance he (for numerical efficiency,
and dependent on the strength of interactions), and the velocity
of the particle up. In ten Cate et al. (2002), the force from
Equation (10) is compared to experimental data. In section 3.1,
our implementation of the boundary condition is validated by
comparison with the analytical predictions of Maude (1961).

The lubrication force between two identical particles is
similarly given by Nguyen and Ladd (2002)

FL =
6π

4
µa2(uij · r̂ij)

[

1

h
−

1

he

]

(11)

with the relative velocity between particles uij = ui − uj, the
separation between particles h = ‖rij‖ − 2a, and a cut-off
distance he, which is not necessarily equal in value to that used
for particle-wall lubrication.

2.3. Flow Geometry
Acting as the central blood distribution system in the
brain, the circle of Willis (coW) connects the inflow from
the basilar and internal carotid arteries to the cerebral
arteries via a circular system closed by communicating
arteries. Studies have found considerable variation in
the structure of this system (Kayembe et al., 1984;
Eftekhar et al., 2006). Its inherent redundancy allows it
to function despite the presence of deformed or missing
subsystems.

Figure 2 depicts a volume rendering of the structure of a
complete coW (with lateral dimensions of order cm), obtained
from a magnetic resonance imaging (MRI) scan. For details on

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 331273

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Patronis et al. Patient-Specific Magnetic Drug Targeting

FIGURE 1 | Trajectories of five paramagnetic nanoparticles (initially placed at the inlet of a three-dimensional Poiseuille flow) as they approach a permanent magnet

that is external to the flow (represented by a circle). Deviation from the pressure-induced flow occurs once the magnetic attraction experienced by the particles is

sufficiently large; the magnetic field is imposed in the y-direction (indicated by the arrow). The coloring of the trajectories represents the evolution of time. The force

exerted by the magnet on each particle far exceeds that experienced between particles; hence, the particles do not converge.

FIGURE 2 | Volume rendering of the circle of Willis, constructed from an MRI

scan of a human subject. The circle of Willis is the main blood distribution

system in the brain, and is located roughly in the center of the head. The

numbering of the inlet/outlet is to be cross-referenced with Table 1.

the generation of this particular geometry, see Coogan et al.
(2013). The geometry is used exclusively throughout, and is
prepared for use by HemeLB using Palabos’ (http://www.palabos.
org) fully-parallelized voxelizer (indispensable when voxelizing
large geometries with billions of lattice sites); our “common
vascular pipeline” allows HemeLB and Palabos to share the same
pre-processing workflow.

Table 1 lists the names of the modeled arteries with the
boundary conditions employed. Boundary conditions at the
inlet are approximated by a parabolic flow profile with a
maximum flow speed informed by a 1DNavier-Stokes simulation
(performed using PyNS, Manini et al., 2015) of the complete

TABLE 1 | The validation geometry is a magnetic resonance imaging (MRI) scan

of the circle of Willis, with lateral dimensions of order cm.

Index Artery Boundary condition

1 Basilar Neumann (inlet)

2 Internal carotid (left) Neumann (inlet)

3 Internal carotid (right) Neumann (inlet)

4 Anterior cerebral (left) Dirichlet (outlet)

5 Anterior cerebral (right) Dirichlet (outlet)

6 Middle cerebral (left) Dirichlet (outlet)

7 Middle cerebral (right) Dirichlet (outlet)

8 Posterior cerebral (left) Dirichlet (outlet)

9 Posterior cerebral (right) Dirichlet (outlet)

10 Anterior communicating Not applicable

11 Posterior communicating (left) Not applicable

12 Posterior communicating (right) Not applicable

The inlet boundaries 1, 2, and 3 (see text for details) are parameterized by 1D Navier-

Stokes solutions for the full arterial network (Itani et al., 2015; Manini et al., 2015). At the

outlet boundaries 4–9, a vanishing pressure gradient is enforced approximating constant

pressure. The communicating arteries (10, 11, and 12) close the circular structure; no

boundary conditions are applied to the limits of these arteries. The numbering of the

inlet/outlet is to be cross-referenced with Figure 2, which shows the full circle of Willis.

arterial network. The maximum velocity observed in the left
internal carotid artery is umax ≈ 0.63m s−1 (see Figure 3). This
value, in conjunction with the stability requirements introduced
in section 2.1.1 and the spatial discretization δx = 25 µm
(resulting in a simulation domain of 1.66× 108 lattice sites),
leads to a time-step of 7.8× 10−7 s. We use this lattice spacing
(δx = 25 µm) throughout, with the exception of section 4.2.1,
where we use δx = 15 µm to produce approximately 7.77× 108

lattice sites for our assessment of application scalability. Outlet
boundary conditions assume a vanishing pressure gradient.
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FIGURE 3 | Peak inlet velocity for a resting patient (blood pressure: 80mmHg,

volumetric flow rate: 4.8 lmin−1, heart rate: 68 bpm) in (1) the basilar artery

(- - -), (2) the left internal carotid artery (—), and (3) the right internal carotid

artery ( ). For each of the three inlets, the complete inlet-velocity profile is

obtained by assigning weighting factors (of the peak velocity) to lattice sites

that lie on the boundaries.

3. IMPLEMENTATION AND VALIDATION

HemeLB is a lattice-Boltzmann implementation optimized
for the simulation of sparse geometries by means of indirect
addressing of lattice sites. The code is written in C++ and
makes use of static polymorphism to allow the efficient
selection of different lattice discretizations, collision models
and boundary conditions. Parallelization is implemented
via MPI. The HemeLB application relies on several external
libraries for standardized tasks, such as XML processing,
domain decomposition and unit testing (Groen et al.,
2013). External tools are available for the creation of input
files (including the previously mentioned voxelizer) and
the post-processing and evaluation of extracted data. The
code is open-source, licensed under the GNU Lesser Public
License (LGPL), and is available at https://github.com/UCL/
hemelb.

HemeLB supports D3Q15, D3Q19, and D3Q27 lattice
discretizations, that is three dimensions comprising Q discrete
lattice velocities; in this work we limit ourselves to D3Q19.
Collision processes can be modeled either by the lattice
Bhatnager-Gross-Krook (LBGK) scheme (as is the case in
this work), relying on a single relaxation time, or by
invoking a multi relaxation time (MRT) model. Furthermore
a non-Newtonian approximation of a shear thinning fluid is
available. The code supports various wall boundary conditions,
including simple bounce-back, Guo-Zheng-Shi (Guo et al., 2002),
Bouzidi-Firdaouss-Lallemand (BFL) (Bouzidi et al., 2001) (used
exclusively, for its superior accuracy, in this work) and Junk and
Yang (2005) (see Nash et al., 2014 for discussion of these).

Figure 4 illustrates the algorithm which implements the
paramagnetic particle model. After the LBM lattice velocity
update, the particle update procedure begins. Firstly, particles are
communicated between ranks; a particle is only communicated if
(by the update of its position at the end of the previous step) it
has moved to another rank, or its 3DMoore neighborhood spans
multiple ranks (so that the interpolation of the fluid velocity
can occur correctly; we refer to these as ghost particles). Once
particles have been communicated, we zero the force on each and
accumulate the new value as the sum of any external forces. As
the fluid velocity is only calculated at lattice sites, interpolation
is used to find v at xp, as required by Equation (8). When
mass and volume loading are sufficient (Birzer et al., 2012), the
influence of the particles on the flow cannot be neglected. In
this case, we enable two-way coupling and the forces exerted
on the fluid by locally owned particles are then interpolated
onto local lattice sites. The memory of particle momentum is
carried by the fluid model, allowing the computational cost to be
dramatically reduced (Ahlrichs and Dünweg, 1999; Nash et al.,
2008).

3.1. Lubrication Boundary Condition
Wall-boundary conditions for the point-like particle model
are implemented by introducing an additional force, Equation
(10). We use a constant body force to drive monodisperse
particles (of radii a = 25 nm and a = 500 nm) into a wall
that is perpendicular to the instantaneous direction of motion.
We record the resulting lubrication force experienced by each
particle. Figure 5 shows the lubrication force imposed by the
boundary condition as a function of the separation h (the distance
of the particle to the wall). Themeasured lubrication force FL and
h are non-dimensionalized by the drag force F0 = 6πµaup and
the particle radius a, respectively. A theoretical expression for the
lubrication force,

FL = F0

(

9

8

a

h
+ 1

)

(12)

has been formulated by Maude (1961). For verification, we
compare this to the simulated FL. As can be seen in Figure 5,
the lubrication boundary condition approximates the theory
well. The observed deviations are a result of the finite size
of the simulation time-step, and the particle’s non-continuous
motion.

3.2. Inter-Particle Interactions in an
External Magnetic Field
The dipolar model (DM) is evaluated by comparison of the
simulated interaction force (obtained from Equation 9 as
implemented in HemeLB) between two identical paramagnetic
particles (oriented parallel and perpendicular to a constant
external field) with solutions of the Laplace equation. Figure 6
clearly illustrates the isotropy of the approximation of the DM,
which neglects contributions of the particle orientation. Note, the
force FM is normalized by the force encountered for touching
particles of separation h = 2a; we refer to this maximum force as
F0. As expected, the error increases as h/2a → 1. For separations
exceeding h = 3a the approximation becomes more accurate, to
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FIGURE 4 | Illustration of the algorithm steps implementing the magnetic particle model in HemeLB. Arrows represent the progression of a time-step. Dashed arrows

represent the progression of the time-step outside of the algorithm responsible for updating the paramagnetic particles, i.e. simulation is evolving according to the

standard LBM procedure. Steps in boldface involve communication between processes. The italicized step is only performed if two-way coupling is enabled.

within a few percent of the analytical solution. As h is increased
further, we observe excellent agreement between the simulated
result and theory. As our model requires the suspension to be
dilute, the latter case, where h > 3a, will be most likely.

4. RESULTS

In this section we present two simulations of paramagnetic
particles suspended in blood while circulating in the circle of
Willis: (1) a permanent magnet, assumed to be a pure dipole with
m0 = {3000, 0.0, 0.0}Am2, is held at a distance of 3 cm from
the geometric center of the circle of Willis (shown in Figure 2),
causing the particles to experience an attractive force that brings
them together and toward the external magnet (source of the
magnetization); (2) the magnet is removed and no attraction
exists between any dipoles (paramagnetic particles). In both of
these simulations, all other body forces listed in section 2.2.1 are
active. The captured flow will first be presented, with illustrations
revealing the behavior of particles through the coW, followed by
an analysis of the computational performance of HemeLB when
simulating such flows.

4.1. Simulations of Paramagnetic Particle
Suspensions
Figure 7 shows the transport of nanoparticles through the circle
of Willis; initially, particle positions are randomly distributed
(without overlap) within a sphere (colored orange in Figure 7,
and shown only for illustrative purposes; it is not present in
the simulation) at inlet 2 of Figure 2. Particles are colored
by the x component of the magnetic force they experience
as they travel. In Figure 7, the cyan sphere represents the
permanent magnet that is responsible for the magnet field
(with magnetic moment m0 = {3000.0, 0.0, 0.0}Am2). The
region of interest (RoI), colored pink, is a three-dimensional
volume that we are attempting to target (e.g. the site of
a tumor) using the nanoparticles. We simulate three cases,
varying particle radius a (= 65, 105, and 500 nm) to
study the efficacy of the magnet to direct the paramagnetic
particles toward a site. Note that although particles are
monodispersed (i.e. all of the same size) in all reported
simulations, our method fully supports polydispersity (to
be exploited in future studies). The visualizations shown
here are for a = 65 nm, but particles are not shown to
scale.
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FIGURE 5 | Non-dimensionalized lubrication force imposed by the lubrication

boundary condition as a function of the particle’s distance to the wall (the

separation between the particle’s surface and the wall). Measurements were

taken for particle radius a = 25 nm ( ) and 500 nm ( ). The simulation

results approximate Equation (12) ◦ well. Deviations arise due to the

discretization of movement within the LB time-step.

Figure 8 presents a comparison of the magnetic force
experienced by particles of radius a = 65 nm (top) and
a = 500 nm (bottom) at 0.3549 s (smallest and largest radii
considered). The maximum force in the case of a = 65 nm is
FM = −1.144× 10−6N, whereas the maximum force in the
case of a = 500 nm is FM = −5.928× 10−4N; two orders of
magnitude separate the maximum force observed in these cases.

Beyond the small region shown in Figure 7, the particles
continue to travel through the circle of Willis before exiting
through the left anterior cerebral artery (outlet 4), the left middle
cerebral artery (outlet 6), and the posterior cerebral artery (outlet
8). Figure 9 shows the progress of the nanoparticles as they
approach the outlets; particles are colored by their velocities.
These results demonstrate that we are able to simulate tens of
thousands of particles in complex (and sparse) geometries.

4.2. Computational Performance
The strengths of the LBM, in regards to clinical simulation, lie in
three key areas: pre-processing, parallel efficiency of simulation
(to be discussed in detail in the following), and predictability of
time-to-solution.

As a contributor to the time-to-solution, the time required
to prepare a geometry for simulation must be factored into the
cost of a simulation. Generally speaking, traditional CFD relies
on an unstructured-mesh generation procedure to produce a
discrete representation of a geometry; complex geometries tend
to require high levels of user intervention and considerable
CPU time to ensure mesh quality. In comparison, preparation
of a geometry for simulation by the LBM requires it to be

FIGURE 6 | Non-dimensionalized forces acting on pairs of particles oriented

parallel (according to theory and the simulation ) or orthogonal (according

to theory * and the simulation ) to a homogeneous magnetic field. Our

simple dipolar model assumes the field is undisturbed by the inter-particle

interaction. The validity of this simplification can be justified by considering the

disparity in time scales of hydrodynamic and magnetic interactions (the latter

can be assumed to occur instantaneously). As expected, the deviation caused

by neglect of the rotational contribution is most pronounced as h/2a → 1,

where a is the particle radius (of monodispersed particles), and h is the

separation between interacting particles.

voxelized: a relatively rapid and simple process that requires
little to no user interaction, and only a small fraction of the
time-to-solution (since only structured grids are produced). As
mentioned previously, we make use of Palabos’ voxelization
procedure. We use a lattice spacing δx = 25 µm to showcase
the capabilities of the drug targeting model, but in practice
significantly higher resolution may be required to meet stringent
clinical and regulatory standards (e.g. decreasing lattice spacing
from 25 to 12 µm results in approximately a 9-fold increase
in lattice sites); we benefit greatly from the relative simplicity
of voxelization in such instances. Furthermore, because the
computational intensity of LBM is predictable (i.e. the variance
in the wall-clock time to complete a time-step is minimal), the
time-to-solution can be estimated with a high degree of certainty.

Since the LBM is highly parallelizable (and because HemeLB
boasts good performance characteristics relative to other codes,
as reported in Groen et al., 2013), we have been able to
successfully simulate systems consisting of over 1.5× 109 lattice
sites on meaningful time-scales (sufficiently long for most
of the particles to have evacuated the geometry), i.e. three
cardiac cycles in the case of a resting patient with a heart
rate of 68 bpm (using 5,600 ranks of Blue Waters, a petascale
supercomputer). In the following section, we present a scalability
study of HemeLB using a case consisting of 7.77× 108 lattice
sites.
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FIGURE 7 | Particles (with radius a = 65 nm) traveling from the left internal carotid artery through the circle of Willis. Particles are colored by the magnetic force (in the

x-direction) that they experience. The cyan sphere represents a permanent (and fixed) magnet. All particles are initially confined to the interior of the orange sphere, in

which particle positions are randomly distributed. The pink volume (internal to the coW) represents some region of interest, e.g. a site requiring therapeutic attention,

to which we force particles by virtue of the magnetic field; we record the instantaneous particle count in this region. (A) Particle positions at 0.078 s. (B) Particle

positions at 0.273 s. (C) Particle positions at 0.351 s. (D) Particle positions at 0.39 s.

4.2.1. Scalability
We demonstrate that our memory-optimized version of HemeLB
is capable of efficiently simulating large problems on hundreds
of thousands of cores, highlighting its potential on petaflops
(and beyond) computers; the large-scale simulation of the human
arterial tree requires such performance (Grinberg et al., 2009).
Our efforts to reduce the memory footprint of the Initialize
phase (involves the reading of input files, the decomposition of
the domain over multiple ranks, and the creation of large data
structures that the Simulate phase operates on) have allowed for
the simulation of flow problems consisting of O(109) lattice sites
on Blue Waters. Further work is needed to initialize problems
with tens of billions of lattice sites.

Strong scalability of HemeLB (without any particles present,
since scalability would be strongly affected by the potential load
imbalance caused by the varying distribution of particles) was
investigated with the coW15 (15 µm resolution) circle of Willis
dataset with 7.77× 108 lattice sites, executed on the ARCHER
Cray XC30 system and built using system GCC 5.1.0 compilers.

ARCHER has dual 12-core Intel Xeon E5-2697v2 (Ivy Bridge)
2.7 GHz processors joined by two QPI links, connected via
proprietary Cray Aries interconnect in a dragonfly topology.
Some compute nodes have 128 GB of shared memory; however,
most have only 64 GB. Executions were performed using fully-
populated compute nodes, i.e. each node is assigned 24MPI ranks
(one process per core).

The substantial memory requirements of HemeLB with the
coW15 test case meant that the smallest configuration required
125 compute nodes (3,000 MPI processes), and progressively
larger configurations were run with up to 4,000 compute
nodes (96,000 MPI processes). Ten thousand simulation time-
steps were executed with periodic writing of the simulation
data disabled to reduce variability. The simulation wall-
clock execution time and speed-up relative to the smallest
execution configuration are shown in Figure 10. Almost a 20-
fold speed-up is obtained using 4,000 compute nodes, with
80% parallel efficiency up to 2,000 compute nodes. Note, by
exploiting Streaming SIMD Extensions (SSE), which HemeLB
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FIGURE 8 | The x component of the magnetic force experienced by particles of radius a = 65 nm (A) and a = 500 nm (B) at 0.3549 s. To highlight the significant

difference in force between cases, the inset figure in the top visualization applies the color scale limits for a = 65 nm on the case where a = 500 nm. The maximum

force in the case of a = 65 nm is FM = −1.144× 10−6 N, whereas the maximum force in the case of a = 500 nm is FM = −5.928× 10−4 N.

fully supports, we observe a significant ∼15% reduction in
simulation time.

Performance auditing of HemeLB was done with the open-
source Scalasca tool-set (Geimer et al., 2010) for scalable
performance analysis of large-scale parallel application
executions. Scalasca 2.3.1 with the community-developed

Score-P 3.1 instrumentation and measurement infrastructure
was used on ARCHER. An instrumented version of HemeLB
was prepared with only the main application program
and SimulationMaster class selectively instrumented
by the GCC compiler, and combined with MPI library
interposition. Profiles generated from measured executions
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FIGURE 9 | Particles (with radius a = 65 nm) traveling from the left internal carotid artery through the circle of Willis; particles leave through outlets 4, 6, and 8 (see

Figure 2). Particles are colored by their velocity. The cyan sphere represents a permanent (and fixed) magnet. All particles are initially confined to the interior of the

orange sphere, in which particle positions are randomly distributed. The pink volume (internal to the coW) represents some region of interest, e.g. a site requiring

therapeutic attention, to which we force particles by virtue of the magnetic field; we record the instantaneous particle count in this region. (A) Particle positions at

0.468 s. (B) Particle positions at 0.546 s.

were post-processed to derive additional metrics and
interactively examined using the Scalasca analysis report
explorer.

While the Initialize phase of a simulation (when simulation
configuration and domain decomposition occurs) requires a

roughly constant time to load and distribute the dataset, our
primary focus is on the Simulate phase (when time-stepping is
performed) with its 10,000 time-steps. Also MPI rank 0, which
monitors the execution and does not process any part of the
simulation data, could be excluded.
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FIGURE 10 | (Top) plot shows strong scaling of wall-clock execution time (in seconds) of 10,000 time-steps of Simulate phase of HemeLB with coW15 (15 µm

resolution) dataset on ARCHER Cray XC30 (24 MPI ranks per compute node) up to 4,000 compute nodes ( ); plotted on log-log scale, with dash-dotted line

( ) representing perfect scaling. (Bottom) plot presents speed-up of HemeLB Simulate phase on ARCHER Cray XC30 (24 ranks per node) compared to base

configuration using 125 compute nodes ( ). Again, dash-dotted line ( ) represents perfect scaling and dashed line ( ) is 80% of perfect.

A breakdown of the Simulate phase CPU time for each
execution configuration is shown in Figure 11, along with
associated efficiencies. There is a negligible amount of MPI
collective communication, and the amount of non-blocking
point-to-point communication for data exchange decreases in
proportion to computation time. Therefore communication
efficiency remains above 0.89. Load balance, however, starts
at 0.86 and progressively deteriorates to 0.76, such that the
overall parallel efficiency degrades to 0.72 using 96,000 cores.
This computational load imbalance will be addressed in future
optimization work.

4.2.2. Load Balance
As stated in the previous section, the distribution of particles
affects the load balance. Here, we analyse the imbalance
during various stages of a full-scale simulation with δx =

25 µm on 350 nodes (5,600 cores) of Blue Waters, a petascale
supercomputer at the National Centre for Supercomputing
Applications (NCSA). Figure 12 presents the performance of
HemeLB under a simulation of 73,215 nanoparticles injected
through the left and right internal carotid arteries, and the basilar
artery (all three inlets to the circle ofWillis, as shown in Figure 2).
Load imbalance due to the accumulation of particles on few
ranks (as seen in frame a of the figure) results in an average of
33.4 time-steps per second. As the simulation progresses, and
particles become more uniformly distributed across ranks (as
seen in frames c and d), the code achieves approximately 37.5
time-steps per second. The same system containing no particles

runs at an average of 39 time-steps per second. For comparison,
from Figure 10 the code is capable of 23 time-steps per second
when δx = 15 µm (and no particles are present) on 250 nodes
(6,000 cores) of ARCHER; on 96,000 cores, we compute 232
time-steps per second. Note that because no particles are present
in the system, there is no overhead associated with file output.
Therefore, in the case presented, the performance degradation is,
even in the worst case of load imbalance (33.4 steps per second),
not particularly severe.

5. DISCUSSION

The application of our magnetic drug targeting model to a
patient-specific geometry has allowed us to explore the relevance
of various physical properties and design parameters to the
manipulation of paramagnetic iron oxide nanoparticles in
cerebral blood flow. The physiological environment (e.g. flow
and heart rate) determines which forces dominate, and hence
the optimum choice of particle properties and magnetic field
configuration will vary between patients and target site location.
Our computational model intends to facilitate the optimization
of these properties for a particular patient, or to predict the
percentage of injected particles that will reach a given target site
under a fixed configuration (thus potentially advising on themost
appropriate dosage or carrier type for that patient).

We demonstrate the use of our model with a test case:
modeling magnetically steered nanoparticles in a human circle
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FIGURE 11 | Breakdown of metrics and efficiencies for HemeLB Simulate

phase (operating on a voxelized representation of the circle of Willis model

previously described) on ARCHER Cray XC30 (24 ranks per node). Bars

represent, in seconds, the collective communication time, point-to-point

communication time, and computation time. Note that the time required for

collective operations is negligible; for this reason, the data is not presented.

Lines represent communication efficiency ( ), load balance efficiency

( ), and parallel efficiency ( ). The proportion of computation vs. MPI

communication time remains roughly the same (with primarily point-to-point

communication and negligible collective communication), with communication

efficiency remaining above 0.89. Load balance efficiency starts at 0.86 and

progressively deteriorates to 0.76, such that the overall parallel efficiency

degrades to 0.72 using 96,000 cores.

of Willis, with the target site (referred to as the region of interest,
RoI) located on a bend in the left internal carotid artery (inlet
2 in Figure 2); an (invasive) magnet placed 0.9 cm from the
geometric center of the RoI is used to steer the particles. We
study the effects of particle radius on targeting efficiency at the
RoI. Figure 7 shows the trajectory of 17,077 particles in the
LICA under the influence of a point dipolar magnet of moment
m0 = {3000.0, 0.0, 0.0}Am2. Figure 13 shows the percentage
of particles (of radius a = 65, 105, 250, and 500 nm) passing
through the target region. In physical terms, we find the behavior
of the particles to be largely governed by hydrodynamic and
dipolar interactions with little contribution from diffusive effects,
most likely due to the high flow rates in the given arterial section
(∼0.8m s−1 peak velocity), which requires a strong magnetic
field gradient to overcome drag.

To provide additional insight into the optimization of the
particles, we investigate the effect of coating thickness. In the
context of drug delivery, for example, the (organic or inorganic)
coating surrounding the magnetic core is loaded with the drug.
Our implementation of the model can accept a coating thickness
ac (previously assumed to be zero). The application of a coating
only affects the drag experienced by the particle, and is assumed
to have a negligible effect on the magnetic forcing (i.e. provides
no magnetic shielding). With the core radius (a =)65 nm, which
is used in all calculations pertaining to themagnetic forcing, three
coating thicknesses are considered: ac = 16.25, 32.5, and 65 nm.
For the configurations considered, our simulations suggest that

particle motion is unaffected by the additional drag due to the
coating. On inspection of Equation (8), it is clear that if the
local fluid velocity v(xp) at the particle’s location xp is much
greater than the velocity modification resulting from any external
forcing, i.e.

v(xp)≫ β(F+ FR) (13)

then any realistic coating will have little influence (since only the
mobility β = 1/[6πµ(a+ac)] is modified). Because the magnetic
field can only (strongly) influence particles within the proximity
of the magnet (it falls off as 1/r3), the current configuration is
such that no discernible difference is seen.

By modifying the velocity profiles of the inlet boundary
conditions, we are able to study the impact of three physiological
parameters (mean blood pressure, volumetric flow rate, and heart
rate at the opening) on particle behavior, demonstrating that our
model can handle patient specificity (down to a patient’s current
physiological state). As a function of these parameters, the values
for which we take from the experimental work of Sugawara et al.
(2003), the peak inlet velocity is obtained from 1D Navier-Stokes
simulations using our multiscale framework (Itani et al., 2015),
and introduced to the 3D solver (HemeLB) as scaled parabolic
profiles. All simulations presented to this point use the heart rate
of a resting patient (80mmHg, 4.8 lmin−1, 68 bpm; see Figure 3)
to derive inlet boundary conditions. Here, we consider three
other cases with greater heart rates (see Figure 14): 112mmHg,
10.7 lmin−1, 113 bpm (—); 116mmHg, 11.9 lmin−1, 120 bpm
(—); 122mmHg, 13.2 lmin−1, 134 bpm (—). For a fixed particle
radius a = 65 nm, Figure 13 shows how particle concentration in
the RoI is affected. Relative to the case of resting heart rate (—),
we see fewer particles in the RoI for higher-flow-rate cases. This
is an unsurprising result; as discussed, the relative contribution
of magnetic forcing to particle motion is reduced when the fluid
velocity is increased. The reduced arrival time of the particles at
the RoI is simply due to the greater fluid velocity.

The central parameter controlling hydrodynamic interactions,
mediated by frictional coupling, is the particle radius. For particle
radius a in the range of 65 to 500 nm thermal diffusivity was
observed to be negligible. However, diffusive terms introduced
by the interaction of the particles with blood cells may well play
a significant role. Our current model does not include blood
cells in the suspension, but can take into consideration the bulk
shear thinning effect resulting from the presence of blood cells; a
comparison of Newtonian and non-Newtonian bloodmodels has
shown little observable difference in mass flow (Bernabeu et al.,
2013).

The effect of gravity (and other homogeneous accelerations)
was modeled via a body force term. Our evaluations have found
contributions of gravity (buoyancy of the particle, caused by
the blood, is also considered) to the dynamics of the particles
to be negligible in the test cases presented here. However, with
increasing particle size or when considering larger capillary
numbers gravity may become significant.

The magnetic properties of the paramagnetic particles are
largely determined by the size and crystallinity of their magnetite
(or maghemite) core. For simplicity, in the above simulations
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FIGURE 12 | Performance of magnetic drug targeting simulation (all body forces listed in section 2.2.1, including those derived from dipolar interactions, are in effect)

in the circle of Willis measured in time-steps per second of wall-clock time (neglecting output steps for clarity). Simulation frames (top) illustrate the particle distribution

at four time points in the simulation, indicated on the plot by the tags a, b, c, and d.

we have chosen to model particles of pure magnetite. In reality,
the magnetite content is expected to be lower, thus reducing
the effective magnetic susceptibility χv of a particle. Volumetric
magnetic susceptibility, as reported in the literature, varies widely
(i.e. 1.0 to 5.7 m−3) with the preparation, means of creation,
and grain size of the nanoparticles (Hunt et al., 2013); for
greatest effect we have chosen the maximum reported value. The
size of the particle itself can also affect the susceptibility, as a
finite size effect in small particles (e.g. for particle radius a .

25 nm Ulbrich et al., 2016) induces super-paramagnetic behavior
which manifests as a vastly increased magnetic susceptibility
(relative to that of paramagnets). With a > 65 nm in the
simulations presented here, we neglect to consider the super-
paramagnetic regime. Note that our model is able to capture
super-paramagnetic behavior, but values for χv would need to
be determined experimentally. It is expected that the magnetic
susceptibility will be known for any super-paramagnetic iron
oxide nanoparticles (SPIONs) used in a clinical context. We have
additionally approximated the magnetic permeability inside the
brain as that of a classical vacuum, i.e.µ0 = 4π ×10−7Hm−1. In
general, the presence of iron rich tissues may cause the magnetic

permeability of the surrounding brain matter to deviate from this
value.

The initial distribution of the particles, and the invasive
proximity of the magnet (both indicated in Figure 7), are clearly
unrealistic, and were chosen for illustrative and performance
testing purposes. Furthermore, the (single) permanent magnet
here is modeled as a pure point dipole, effectively overestimating
the field gradient. In future work, particles will be introduced
via a timed release at inlets in a manner more closely modeling
the concentration profile of an intravenous delivery. In addition,
future implementations will model particle function in the target
region (such as the absorption of particles into target tissue, or
magnetically induced heating of nanoparticles and subsequent
drug release). Furthermore, an external electromagnetic field
solver will be used to recreate a complex and realistic field (such
as may be induced in a clinical context). As stated previously,
the input flow velocities for each inlet were obtained using a
multiscale approach (to represent the rest of the human arterial
tree, Itani et al., 2015), whereas we may wish to consider that in
an unhealthy patient the blood pressure and flow rates may be
much higher.
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FIGURE 13 | The percentage of particles found in the region of interest (see

Figure 7) during simulation. We present results for 2 studies; particle radius a

is varied in the first, and set to 65 nm ( ), 105 nm ( ), 250 nm ( ),

and 500 nm ( ). For the second study, particle radius a = 65 nm is

constant, and the inlet velocity is varied: 10.7 lmin−1 at 113 bpm ( ),

11.9 lmin−1 at 120bpm ( ), and 13.2 lmin−1 at 134 bpm ( ).The

position of the permanent magnet does not change between cases (held at

0.9 cm from the geometric center of the RoI). A negligible difference is seen

when increasing a from 65 to 105 nm.

Segmentation of the clinical images necessary to construct
the three-dimensional vascular geometry is in practice difficult
to automate consistently, often needing human intervention to
identify artifacts to be filtered out. As a result of this, and other
uncertainties in the input data, a number of replica simulations
may be required to capture the full statistics of the system, and
allow uncertainty quantification of the results. Computational
efficiency is therefore very important to the practicality of
this model. Currently, the most significant influence on
computational performance comes via the distribution of
particles across computational subdomains, with large numbers
of particles on any single computational subdomain causing
load imbalance. While the dilute requirement of our model
largely mitigates the problem in high performance computing
environments (where core counts of high scaling codes can
be increased with relative ease), the transition to smaller
workstations using accelerators may require the implementation
of sophisticated load balancing techniques. Nevertheless, in the
most extreme case of imbalance observed in our simulations,
using 5,600 cores (350 nodes) on Blue Waters, the performance
was degraded by around ∼15% relative to the case where no
particles are present—a manageable reduction in performance
that can be alleviated through further development of the load
balancing techniques employed. To simulate 20,377 particles
over three cardiac cycles and with lattice spacing δx = 25 µm
using 5,820 cores (220 nodes) on ARCHER requires 20 wall-
clock hours. Therefore, based on the scalability study presented

FIGURE 14 | Peak inlet velocity for (1) the basilar artery (- - -), (2) the left

internal carotid artery ( ), and (3) the right internal carotid artery ( ).

For each of the three inlets, the complete inlet-velocity profile is obtained by

assigning weighting factors (of the peak velocity) to lattice sites that lie on the

boundaries. The top plot (red) is for 10.7 lmin−1 at 113 bpm (red line in

Figure 13), the middle plot (green) is for 11.9 lmin−1 at 120bpm (green line in

Figure 13), and the bottom plot (blue) is for 13.2 lmin−1 at 134bpm (blue line

in Figure 13).

in section 4.2.1, and the encouraging results of the load-
balance testing involving 73,215 particles, we postulate that our
method can simulate tens of thousands of particles over multiple
cardiac cycles in geometries consisting of O(109) lattice sites in
approximately a day. Such performance allows us to address flow
problems that previously could not be approached, and will lead
to new a level of understanding.

In order to achieve the necessary computational performance,
a number of approximations were implemented. As our particle
sizes are significantly smaller than the scale of the lattice
discretization (1/25th in the case of the largest particle radius),
and with sufficiently low particle density (1–5 particles per
lattice volume), we permit ourselves the use of a one-way
coupling strategy (no feedback from particles to fluid). Another
consequence of the dilute approximation is the use of the
much cheaper pairwise expression for the dipolar force (see
Equation 9); in practice this would break down for non-dilute
fluids. We also assume that particles align instantaneously with
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the local magnetic field, as the time scale for rotation is extremely
rapid (Ulbrich et al., 2016) (relative to the characteristic time-
scale of hydrodynamic processes).

6. CONCLUSION

We present an efficient computational model for simulating
magnetic drug targeting in patient specific brain geometries,
via the steering of paramagnetic nanoparticles with an external
magnetic field. The model couples the dynamics of spherical
particles to a lattice-Boltzmann hydrodynamics simulation,
taking into account body forces (e.g. gravity), diffusivity, and
dipolar interactions. A study of the model’s computational
performance found favorable results, with a performance drop
of ∼15% (relative to a simulation of the hydrodynamics alone,
i.e. in the absence of any particles) in the most extreme case
of load imbalance (all particles clustered in one region). We
demonstrated the use of the model to predict the particle density
(as a function of time) near a target site for a specific patient
circle of Willis vascular system and heart rate, using a single
point dipolar magnet. Through a multiscale coupling with a 1D
representation of the wider vascular system, we obtained inlet
velocity profiles for a patient in a range of physiological states
(varying heart rate, cardiac output and mean blood pressure).
Initial results allow confidence in the viability of the model to
answer a wide range of questions relating to the design and
manipulation of iron oxide nanoparticles in a clinical context.
Comparison to phantom flow results and medical imaging
research will allow further tuning of system parameters to further
increase the accuracy of the model. A next step toward using
the simulation technique in a more realistic manner will involve
coupling of the flow solver to a comprehensive electromagnetic
simulation. This will allow for the investigation of particle
behavior when exposed to more complex magnetic fields created
by a combination of multiple electromagnets.
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Due to advances in medical imaging, computational fluid dynamics algorithms and

high performance computing, computer simulation is developing into an important tool

for understanding the relationship between cardiovascular diseases and intraventricular

blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary.

We apply a computational framework for automated solutions of partial differential

equations using Finite Element Methods where any mathematical description directly

can be translated to code. This allows us to develop a cardiac model where specific

properties of the heart such as fluid-structure interaction of the aortic valve can be

added in a modular way without extensive efforts. In previous work, we simulated the

blood flow in the left ventricle of the heart. In this paper, we extend this model by

placing prototypes of both a native and a mechanical aortic valve in the outflow region

of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve

offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis

(narrowing of the valve opening) or regurgitation (leaking) and to optimize the design

of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction

and contact problem are formulated in a unified continuummodel using the conservation

laws for mass and momentum and a phase function. The discretization is based on an

Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion

stabilization, and it is implemented in the open source software Unicorn which shows

near optimal scaling up to thousands of cores. Computational results are presented to

demonstrate the capability of our framework.

Keywords: fluid-structure interaction, finite element method, Arbitrary Lagrangian-Eulerian method, parallel

algorithm, blood flow, patient specific heart model

1. INTRODUCTION

The World Health Organization (WHO, 2014) has identified cardiovascular disease as the major
cause for death in the world. Therefore, developing new ways to support early diagnosis of
cardiac dysfunction is of vital importance. In vivo and in vitro studies offer valuable information
on the relationship between the blood flow (hemodynamics) and cardiac disease, and advances
in computational fluid dynamics (CFD) and high performance computing (HPC) enable the
usage of computer simulation as an important tool to further enhance our understanding of this
relationship.
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The field of cardiac modeling is extensive, and highly
interdisciplinary. It is therefore important to be clear on what
the research is aiming for. Our goal is to develop a framework
for simulating the intraventricular blood flow, where specific
properties such as fluid-structure interaction (FSI) of the aortic
valve can be implemented in a modular way without extensive
efforts. In Spühler et al. (2015) we focus on the aspect of fluid
mechanics, and present a computational model of the blood
flow in the left ventricle (LV) of the heart. The movement of
the wall is based on ultrasound measurements and an Arbitrary
Lagrangian-Eulerian (ALE) space-time finite element method is
used to simulate the blood flow by solving the incompressible
Navier-Stokes equations. The opening and closing of the mitral
and aortic valves are modeled by time-dependent velocity and
pressure boundary conditions. In this paper, we present an
extension of this work by embedding different geometrical
models of aortic valves in the LV and the aorta. Prototypes of
a biological valve and bileaflet mechanical heart valve (BMHV)
are modeled. While surgical treatments of valvular diseases are
firmly established, many decisive factors for the performance of
the implant are not fully understood yet. Numerical simulations
provide an important insight to the interaction between the
blood flow and the leaflets which can be applied to optimize
the design of BMVHs or improve technologies as transcatheter
aortic valve replacement (Wu et al., 2016). The fluid-structure
interaction problem is described by a unified continuum model,
using the conservation laws for mass andmomentum and a phase
function, which is a novel approach for simulating valve motions.
The Navier-Stokes equations are solved by an ALE space-time
finite element method with streamline diffusion stabilization
implemented in Unicorn (Hoffman et al., 2012), which is part
of the open source software framework FEniCS-HPC (Jansson,
2013).

This paper is structured as follows. In section 2 we describe
the different components and functions of an anatomical aortic
valve. section 3 explains the mathematical equations and the
numerical method. In section 4, we specify the mechanical and
biological aortic valve model we use in our simulations. The
numerical results are presented in section 5 and we conclude
our paper in section 6 by summarizing our findings and discuss
possible steps of future work.

2. MODELING THE AORTIC VALVE

The left ventricle possesses a mitral and an aortic valve, each
of them consisting of two and three leaflets respectively. The
valves ensure unidirectional flow and prevent the blood to flow
back. The opening and closing of the valves are mainly controlled
by the pressure gradient between the ventricle and the adjacent
chamber. One edge of the biological leaflet is completely attached
to the inner wall of the heart. The free edge of the mitral valve
is connected to the papillary muscles by the chordae tendineae.
The aortic leaflets do not have such fibrous tissue connections
and they open and close passively due to the flow.

The nomenclature of the different components of the aortic
root can vary remarkably as revealed by Sievers et al. (2012). We

apply the definitions proposed in Sievers et al. (2012), as indicated
in Figure 1. The aortic root is situated between the left ventricle
and the ascending aorta, and is bordered by the annulus and the
sinotubular junction. The three bulges just above the annulus
are referred as sinus of Valsalva. The aortic valve contains three
leaflets which are attached to the aorta wall. The point of contact
where two leaflets meet at the root wall is called commissure and
the surface of contact at the free edge is known as coaptation.

3. MATHEMATICAL MODEL AND
NUMERICAL METHOD

In order to put our approach in context, we review different
models for simulating the FSI of the blood flow around the
aortic valve. Usually, the structure model is formulated in the
Lagrangian coordinate system whereas fluid flow is described in
the Eulerian coordinate system. At the common interface of the
two models, the following kinematic and dynamic constraints
have to be satisfied by the velocity u and the stress τ :

uf = us (kinematic constraint, continuity of the velocity), (1)

τ s · n = τ f · n (dynamic constraint, continuity of the normal stresses).

(2)

The subscript indicates whether the variable is defined in the solid
(s) or in the fluid (f ) part respectively, while n is a unit vector
normal to the interface. We denote vectors and matrices with
bold letters. FSI simulations can roughly be categorized asmoving
or fixed mesh methods and partitioned or monolithic approach as
presented in Borazjani et al. (2008).

3.1. Discretization of the Coupled Problem
For fixed mesh methods, the fluid and structure domains are
discretized in a non-boundary conforming matter. Since the
structure is spatially disconnected from the fixed background
mesh, it is crucial to efficiently trace and move the interface
between the solid and the fluid domain. The interface can be
discretized with a set of markers and tracked by a Lagrangian
method (front tracking) or represented by contours or level sets
of a scalar function (front capturing). Fixed mesh methods were
pioneered by Peskin and McQueen (Peskin, 1972; McQueen and
Peskin, 2000) introducing the concept of immersed boundary
methods, where body forces are imposed on the fluid domain to
account for the interaction between the fluid and the structure.
Large structural deformations are manageable, but the solution
at the interface can be diffuse. This disadvantage can be lessened
by e.g., increasing the mesh resolution in the vicinity of the
immersed boundary as done by Griffith (2012), or by treating the
boundary as a sharp interface as in e.g., Borazjani et al. (2008);
Udaykumar et al. (1999); Mittal and Iaccarino (2005); Gilmanov
and Sotiropoulos (2005), and Xia et al. (2009). Fictitious domain
methods is a another class of fixed mesh methods where Lagrange
multipliers account for the kinematics constraints between the
fluid and solid domain, see e.g., Glowinski et al. (1999); van
Loon et al. (2005); De Hart et al. (2003), and Astorino et al.
(2009).

Inmovingmeshmethods, the computationalmesh conforms to
the deformation of the solid domain, and is typically represented
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by an Arbitrary Lagrangian Eulerian formulation. The strength
of the moving grid methods can be found in its accuracy and
clearly defined coupling condition, as themesh is aligned with the
fluid-structure interface. A good smoothing algorithm or local
remeshing is needed to keep the quality of the computational
mesh.

Reviewing the literature of aortic valve simulations, we came
across the following work which apply an ALE approach: Bolger
et al. (2007) and Penrose and Staples (2002) simulate the flow
past a geometrically reduced mechanical valve prosthesis taking
advantage of its symmetrical form; in Dumont et al. (2007)
two commercially available bileaflet mechanical heart valves
are compared regarding hemodynamics and thrombogenic
performance; Guivier-Curien et al. (2009) employs particle
image velocity measurements to quantitatively and qualitatively
compare experiments and numerical simulations; the FSI model
of Choi and Kim (2009) provides detailed flow information and
leaflet behavior of a BMHV; Morsi et al. (2007) analyzes the fluid
dynamics of a trileaflet heart valve but only for the initial opening
phase.

3.2. Coupling Strategies
Depending on whether the structure and fluid problems are
solved simultaneously or separately, the FSI solver can be
classified as monolithic or partitioned. The FSI approach is called
monolithic if the fluid and solid problems are solved as one single
system where no matching of the data is required at the interface.

In a partitioned approach, there are two different solvers
simulating the fluid and the solid part respectively. If the coupling
between the solvers is explicit in time then the coupling is
loose. The loose coupling has low computational cost, but the
simulation may become unstable. To overcome these instability
issues, the partitioned problem can be formulated implicit in
time, introducing an iteration loop at each time step until a
dynamic equilibrium between the fluid and solid is achieved.

Data exchange between the fluid and solid part in this implicit
algorithm is called a strong coupling.

3.3. Unified Continuum Model
We now specify our ansatz, which corresponds to a monolithic,
moving mesh method. An elaborate description can be found in
Jansson et al. (2011) at full length. Here, we only describe the
main features.

Where the size of the vessel is much larger than the
size of a red blood cell, the blood flow can be modeled as
an incompressible Newtonian fluid (Quarteroni et al., 2014).
The governing equations are the Navier-Stokes equations. The
dynamic viscosity is chosen as µ = 0.0027Pa · s and the blood
density ρ = 1, 060kg/m3 (Di Martino et al., 2001). In small
domains, as the region around the revolute joints of a mechanical
heart valve, non-Newtonian effectsmight have to be incorporated
in the model, but these flow features are not targeted in this work.

With the aim of establishing a framework that allows
for general formulation and implementation of different
models, while applying adaptive error control for realistic 3D
applications, a so-called unified continuum model for FSI was
developed. The model is described by the conservation laws of
mass and momentum for an incompressible continuum, where a
stress and phase variable define the properties of the continuum.

Let �t ⊂ R
3 be a time-dependent domain with t ∈ I : =

[0, t̂]. Our goal is to determine u(x, t) :�t → R
3, where �t

encompasses both the solid and the fluid domain and u defines
the fluid velocity in the fluid part and the deformation velocity in
the structure part:

ρ(u̇+ ((u−m) · ∇)u) = ∇ · τ (u, p) (x, t) ∈ �t × I, (3a)

∇ · u = 0 (x, t) ∈ �t × I. (3b)

Here τ is the stress tensor and m identifies the mesh
velocity in the ALE formulation. In the solid, we choose

FIGURE 1 | Glossary of the aortic root, author’s own drawing based on Sievers et al. (2012). Annulus, leaflets, leaflet attachment, sinotubular junction, interleaflet

triangle and sinus of Valsalva are the different components of the aortic root. The aortic valve consists of the three leaflets only.
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m to be the material velocity of the structure. In the
remaining part of the mesh, m is determined by the mesh
smoothing algorithm applied to uphold the quality of the
mesh.

The constitutive laws are defined via the stress term, where the
phase function θ is set to zero in the solid domain and to one in
the fluid domain:

τ = τD − pI, (4)

τD = θτf + (1− θ)τs, (5)

τf = 2µf ǫ(u), (6)

Dtτs = 2µsǫ(u)+∇uτs + τs∇uT , (7)

ǫ(u) =
1

2
(∇u+∇uT). (8)

The kinematic constraint uf = us is satisfied implicitly by the
continuity of the velocity field u for the unified continuum. The
dynamic constraint is weakly enforced by applying integration
by parts on the stress term and setting it to zero in the weak
formulation.

This approach allows us to use the same discretization
method, stabilization technique andmesh deformation algorithm
as for a pure fluid problem.

3.4. Time and Space Discretization
Let 0 := t0 < t1 < · · · < tN := t̂ be a sequence of discrete time
steps, with associated time intervals In : = (tn−1, tn] of length
kn := tn − tn−1.

We introduce the space-time slab Sn : = �tn × In, and let
Tn = {K} denote the spatial discretization of �tn . Un is the
discrete velocity, Pn is the discrete pressure, and hn specifies the
maximal diameter of the cells K ∈ Tn.

We choose the finite element function space of piecewise
linear functionsWn ⊂ H1(�tn ), where

H1(�tn ) := {v ∈ L2(�tn )|
∂v

∂xk
∈ L2(�tn ) , k = 1, 2, 3}, (9)

Wn
:= {v ∈ C(�tn )|v ∈ P1(K), ∀K ∈ Tn}, (10)

Wn
0 := {v ∈ Wn|v = 0 on ∂�tn}, (11)

Wn
0 := [Wn

0 ]
3. (12)

We identify the discrete solution for velocity and pressure as
Û = (U, P), the discrete stress for both the fluid and the solid
as T , the discrete mesh velocity as M, and the test function as
v̂ = (v, q). In time, we choose U to be piecewise linear, and P, v
and q to be piecewise constant.

Based on these definitions and assuming homogeneous
Dirichlet boundary condition for the velocity, the spatially and
temporally discretized variational formulation of Equation (3)
reads as follows: for each space-time slab Sn, find (Un, Pn) : =

(U(tn), P(tn)) with Un ∈ Wn
0 and Pn ∈ Wn, such that:

(ρk−1
n (Un − Un−1)+ (ρ(Ūn −Mn) · ∇)Ūn, v)+ (T n

:∇v)
(13)

+ SDδ(Ū
n,Mn, Pn, v, q, ρ) = 0,

for ∀(v, q) ∈ Wn
0 × Wn, where Ūn = 1

2 (U
n + Un−1) and (., .)

denotes the L2(Sn)-inner product.
To stabilize the convection dominated problem (3), we use a

simplified Galerkin/least-square method, where we drop the time
derivative and the diffusion term, and we define SDδ as

SDδ(Ū
n, Pn, v, q, ρ) = (14)

(δ1ρ(((Ū
n −Mn) · ∇)Ūn +∇Pn), ρ((Ūn −Mn) · ∇)v+∇q)

+ (δ2∇ · Ūn,∇ · v).

FIGURE 2 | To detect collision we calculate the distance dij between the leaflets Lj and Li for i, j = 1, 2, 3 (A). As soon as the minimal distance is below a certain

threshold, the valve opening is closed. A 2D-surface (blue) is included to model a proper closure (B) and the geometric model of the valve opening is closed by

marking the cells directly attached to the 2D-surface as solid (C).
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The stabilization parameters are chosen as δ2 = κ2ρh
n|Un−1|

and δ1 = κ1ρ
−1(k−2

n + |Un−1 −Mn−1|2h−2
n )−1/2, where κ1, κ2

are problem independent positive constants of order O(1). By

TABLE 1 | Model parameters used for generating the native aortic root geometry.

Model parameters Parameter Value [mm]

Inner base radius at the annulus RA 20

Inner radius at the sinotubular junction RS 22

Leaflet height hl 20

Height of commissure hc 6

Thickness of leaflet tl 1

applying the midpoint quadrature rule in time, we obtain a
Crank-Nicolson time-stepping scheme.We use Bi-CGStab with a
block Jacobi preconditioner where each sub-block is solved with
ILU(0).

3.5. Smoothing Algorithms
Due to the fluid-structure interaction of the aortic valve and
the pumping blood flow from the left ventricle, it is crucial for
an ALE-method to have a suitable method to adjust an existing
mesh. There are different ways to enhance and optimize the
quality of the mesh, which may involve e.g., swapping faces and
edges, or changing the number of vertices.

Meshing algorithms, which involve change of topology or
the number of mesh cells, are not suitable for time-dependent,

FIGURE 3 | A CAD model of an idealized native aortic root (A) and its parameters in top down view (B) and side view (C) are depicted. The creation of the surface of

one leaflet is illustrated in (D).
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parallel computing. Therefore, it is preferable to use a mesh
adaptivitymethod which omits the necessity or at least minimizes
the frequency of remeshing.

To keep a goodmesh quality, while limiting the computational
cost, our solver combines a linear and a nonlinear mesh
smoothing algorithm. The linear smoother accounts for the
rough overall re-distribution of the vertices, while the nonlinear
smoother optimizes locally the mesh based on the quality of the
cells.

3.5.1. Linear Smoother
The linear smoother solves a linear elastic equation in the
fluid domain for the mesh velocity, which corresponds to a
Poisson equation with Dirichlet boundary conditions given by
the structure velocity on the fluid-structure interface, where the
vertices are diffusively relocated over the domain. Although it is a
simple and fast method, there is no guarantee that improvement
is achieved since the equation does not take into consideration
the quality of the cells in the mesh.

3.5.2. Nonlinear Smoother
To locally enhance distorted cells, we describe the deformation
of the mesh using a nonlinear elasticity problem, and weight the
stiffness of the model by a quality measure Q(K) of each cell K in
the mesh Tn:

Q(K) :=
||F||2F

det(F)2/dd
, (15)

where d specifies the dimension of the spatial domain
and ||.||F the Frobenius norm. F denotes the deformation
gradient between K ∈ Tn and a scaled equilateral reference
cell.

By weighting the equation by Q(K) and advancing
the partial differential equation toward its equilibrium,
the mesh is improved toward its goal of optimal
shape. A more detailed description is elaborated in
Jansson et al. (2011).

To limit the computational cost, the nonlinear smoother is

stopped after a certain number of “pseudo” time steps k̃ before
a stationary solution is obtained. Depending on the quality of the
mesh Tn, the total number of pseudo time steps can be adapted
to achieve a desired quality.

3.6. Modeling of Contact
In order to simulate the closing of a heart valve, an algorithm
needs to be implemented to both detect collision and to
simulate contact. Our approach is derived from the idea to
describe the fluid-structure interaction as a unified continuum.
We model contact implicitly by switching fluid cells to solid
cells as soon as contact is detected. Collision is detected by
solving an Eikonal equation for the distance between two solid
surfaces.

In order to detect contact between two leaflets of a native
valve, we calculate the minimal distance dmin : = minij,i6=j{d

ij}

between the leaflets Lj and Li for i, j = 1, 2, 3, as illustrated
in Figure 2A. To model a proper closure of the leaflets, we
include a 2D-surface in our volumemesh, which covers the entire
valve opening, and as soon dmin is below a certain threshold,
all cells directly attached under the 2D-surface are marked as
solid, as shown in Figures 2B,C. Since the closing moment of
a healthy valve is very short, we argue that it is acceptable to
cover the whole opening at once. The contact is released at the
beginning of the subsequent contraction phase (systole) of the left
ventricle.

FIGURE 4 | Initial and boundary conditions for the native valve: starting configuration for the simulation (A) and the magnitude of the inflow plotted against time (B).
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3.7. Computational Tools
Nowadays high performance computing is an essential part of
computational science. The Heart-FSI solver is implemented in
the HPC branch (Jansson, 2013) of the open source FEM library
DOLFIN (Logg and Wells, 2010) and the adaptive flow solver
Unicorn (Hoffman et al., 2012). Both libraries have successfully
been used to efficiently solve large scale industrial problems as
described in e.g., Jansson et al. (2011) and Vilela de Abreu et al.
(2016).

The simulations were performed on Beskow, a Cray XC40
system, where each node has two CPUs (Intel E5-2698v3) with
16 cores. All volume meshes are created in ANSA (2014), a
computer-aided engineering tool for pre-processing.

4. VALVE MODELS

In the subsequent paragraphs, we describe how we model native
and bileaflet mechanical heart valves (BMHV) embedded in the
left ventricle and ascending aorta. For each case, we detail the
geometry and specify the material as well as the initial and
boundary conditions.

4.1. Native Valve
4.1.1. Geometry
The geometry of the aortic root has been studied, where
geometrical parameters are optimized to resemble the function of
a trileaflet valve (Swanson and Clark, 1974). Our model is based
on such an optimized geometry proposed by Thubrikar (1990).

We generate a computer-aided design (CAD) model of an
idealized native aortic root based on a small set of parameters
which can be personalized to a particular patient. The aortic
root generator is a set of Python scripts for Rhinoceros 5

(Rhinoceros, 2016) that outputs an aortic root in a fully open
valve configuration, as presented in Figure 3A. The model
parameters are illustrated in Figures 3B–D.

We assume that the aortic root has a threefold symmetry
around the z-axis and label the rotational angle by β as depicted
in Figure 3B. The plane PA at the annulus and the plane at the
sinotubular junction PS are assumed to be parallel. The inner
radius at the annulus RA, the inner radius at the sinotubular
junction RS and the length of the leaflet in the open position hl,
are used to define a truncated cone as shown in Figure 3C. To
find the leaflet attachment and the leaflet surface the cone is cut
by the plane Pc, which is defined by three points P1c , P

2
c , and P3c ,

see Figures 3C,D. These points are determined by the height of
the commissure hc and the opening angle β . We attach a cylinder
with radius RS to the aortic root to model the beginning of the
ascending aorta. Geometrical parameters for the sinus of Valsalva
are not considered as modifiable yet. The thickness is acquired by
copying, scaling and translating surfaces. The parameter values
used in the simulations are listed in Table 1.

4.1.2. Material
The leaflets are made of a very thin, flexible and inextensible
material. The fibers in an aortic leaflet are aligned in the
circumferential direction (Swanson and Clark, 1974), and the
mechanical properties vary in different parts of the aortic valve
(Kasyanov et al., 1985). In the framework of this work, it is
sufficient to assume the solid material to be homogeneous.
As material model we choose an incompressible, neo-Hookean
material. At this point of development, the material parameters
are set to µs = 3.3 · 103MPa and ρ = 1, 000kg/m3. Although
these parameters do not conform with realistic values yet, typical
characteristics of the flow and valve dynamics can be captured.

FIGURE 5 | The geometry of a bileaflet mechanical heart valve. (A) Shows a typical bileaflet mechanical heart valve which is used as an artificial implant, and (B) is a

simplified BMHV embedded in an idealized aorta used in our simulations.
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4.1.3. Initial and Boundary Conditions
Even though in the initial geometry the valve is in a fully open
position, the leaflets are pushed into a starting configuration
to facilitate the movement of the leaflets. In order to remove
excessive leaflet material resulting from the deformation, we
prescribe a constant, initial stress in radial direction such that the
material behaves like a contracting balloon which was stretched.
The starting position for our simulations with initial radial stress
4 Pa is shown in Figure 4A. The stress is reset for the FSI
simulation.

We only consider the two major phases, systole and diastole,
and one heart cycle lasts for 1.124 s. The inflow profile is flat and
the magnitude is adopted from the left ventricle flow simulations
presented in Spühler et al. (2015). At the end of systole, the
direction of the inflow is inverted to create a backflow which is
physiologically consistent and helps the valve to close. The time-
dependent inflow magnitude is plotted in Figure 4B. Diastole
starts when the valve is closed and the inflow is set to zero. A
homogeneous Dirichlet boundary condition for the pressure is
set at the outlet.

4.2. Bileaflet Mechanical Heart Valve
4.2.1. Geometry
Pathological conditions caused by valvular dysfunction in the
form of a narrowing of the valve opening (stenosis) or insufficient
closing of the leaflets, reduce the efficiency of the heart. To
restore the hemodynamics function, the native heart valve
may need to be repaired or even replaced by an artificial
implant. Since the first clinical implantation of an artificial
valve by Dr. Charles A. Hufnagel in 1952, many different
mechanical and bioprosthetic valves have been developed. Due
to their wear resistance, the bileaflet mechanical heart valves
(BMHV) are most widely favored as aortic valve replacement.

FIGURE 6 | All 2-D images are visualized using these 2-D cuts in Paraview

(Ahrens et al., 2005). The plane for the BMHV (A) is defined by its origin in

(0.278,−1.65, 1.05) and normal (0, 1, 0), and the plane for the native valve

(B) by its origin in (−0.179, 0.0, 1.05) and normal (0, 1, 0).

As can be seen in Figure 5A, a typical BMHV is made
of a circular housing and two semicircular discs, which are
mounted in the housing through a hinge mechanism. Both
leaflets are rotating passively in response to the fluid dynamics
resulting from the periodic contraction and expansion of the left
ventricle.

Since feasibility, but not clinical validation is the focus
of this paper, a detailed geometric model of a mechanical
valve is secondary at this stage of investigation. Therefore, the
BMHV models are reduced to the leaflets only, embedded in
an idealized aorta as depicted in Figure 5B. The geometry is
simplified in such a way that no contact between the leaflets
occurs.

To use numerical simulations in order to study the flow
through a mechanical prosthetic heart valve began in the early
1970s. Since then, many simulations of the flow dynamics around
a BMHV have been conducted with the aim to elucidate and
eliminate complications as thromboembolism. Simulating flow
dynamics in the vicinity of a heart valve is a challenging task.
The flow is pulsative and undergoes transition to turbulence.
Patient-specific framework and the computational models should
account for the multi-scale nature of the flow and deformability
of the wall.

4.2.2. Material
We apply the same material model as for the native valve and
set the material parameters to µs = 6.5 · 105MPa and ρ =

1, 000kg/m3.

4.2.3. Initial and Boundary Conditions
Contrary to the native valve, we simulate the fluid-structure
interaction of the leaflets and the hemodynamics of the left
ventricle (LV) conjointly. A detailed description of the boundary
conditions for the numerical simulation of the blood flow in the
LV can be found in Spühler et al. (2015). We define a rotational
axis by fixing two edge points of each leaflet. The hinges on which

FIGURE 7 | The geometric orifice area is plotted against time.
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FIGURE 8 | The instantaneous vector field of the velocity using arrows and line integral convolution (LIC), the pressure field and the aortic valve position during RVOT

[t = 0.05 (A), 0.08 (B), 0.1 s (C)].
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FIGURE 9 | The instantaneous vector field of the velocity using arrows and line integral convolution (LIC), the pressure field and the aortic valve position in the phases

of gradual closure [t = 0.25 (A), 0.3 (B)] and RVCT [t = 0.4 s (C)].
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the leaflets are placed limit the rotational angle so that the BMHV
is properly opened and closed. To mimic this mechanism, we set
a threshold for the opening and closing angles respectively. As
soon as a leaflet exceeds this angular barrier during systole or
diastole, its position is locked. The leaflets are released from the
fully open position if the mean pressure above the valve exceeds
the mean pressure under the valve, and is disengaged from the
closed position as soon as a new heart cycle starts. The maximal
angular opening is set to 45◦.

5. RESULTS

In this section we present the numerical results for the native and
bileaflet mechanical valves. The 2-D cuts for the native valve and
the BMHV are specified in Figure 6. Since we do not model the
coronary arteries, which originate from the sinus of Valsalva, and
the flowwithin the aortic root is almost quiescent during diastole,
the results are based on the first heart cycle. The results for the
native and mechanical valve are presented from meshes with
248′980 and 783′823′ vertices respectively. At the beginning of
the simulation and during diastole, the time step size kn is set such
that the Courant-Friedrichs-Lewy (CFL) number is 0.5. During
systole, we have to reduce kn such that the mesh smoothing
algorithms can maintain the mesh quality. No remeshing is
required but in the worst case the CFL number had to be reduced
to 0.01 to bypass a sensitive phase of large and fast deformation of
the leaflets. To advance the solver one time step, the momentum
and continuity equation, the Eikonal equation for contact
detection, and the linear and non-linear elasticity equations for
mesh smoothing have to be solved. When distributing ∼ 2, 000
vertices per core, each sub-problem is solved in less than 0.5 s
but its total time is about 5 s. The latter can slightly vary
depending on the quality of the mesh since the cost of the
non-linear elastic smoother is higher when the mesh quality
is low.

FIGURE 10 | A small vortex is formed at the tip of the backside of the leaflet at

t = 0.25 s as the flow starts to decelerate.

5.1. Simulation Results of the Native Valve
First, we examine the opening and closing movement of the
aortic valve, which can be divided into four phases (Bellhouse
and Talbot, 1969; Labrosse et al., 2010). A rapid valve opening
time (RVOT) is followed by a period when the valve stays widely
opened (quasi-steady phase). The valve first closes steadily and
then rapidly due to reversed flow (RVCT) in the very end of
systole. All these stages can be observed in our simulations by
measuring the geometric orifice area (GOA), which is calculated
by determining the area of the surface used for closing the valve.
The time-dependent GOA is depicted in Figure 7 and matches
well the dynamics captured in Labrosse et al. (2010). The rapid
opening phase takes about 0.05 s and the valve stays open for
about 0.15 s. Three-quarters of the valve closure is taking place
when the flow is still flowing forward (∼0.15 s) and a total closure
is obtained by a small amount of reversed flow (∼0.05 s).

To study the flow dynamics, in Figures 8, 9 the velocity and
pressure fields together with the valve position are visualized
at six time instances during the different phases: RVOT (t =

0.05, 0.08, 0.1 s), the phase of gradual closure (t = 0.25, 0.3 s) and
RVCT (t = 0.4 s).

During RVOT, the fluid is accelerated over the whole domain
flowing toward the outlet. As observed in De Hart et al. (2003),
even the blood residing in the sinus cavity is washed out as shown
in Figures 8A–C.

During the subsequent period, as the valve reaches and
stays in the fully opened position, the flow is dominated by a
strong, central jet. The flow starts to decelerate at about t =

0.2 s when the valve is still completely opened, and at about
t = 0.25 s the flow in the sinus cavity does not flow toward
the outflow anymore, see Figure 9A. A small vortex starts to
form at the tip of the backside of the leaflet, as depicted in
Figure 10. Computing Lagrangian coherent structures, (Shadden
et al., 2010) can distinguish two flow domains in this phase
of deceleration. They observe a boundary between the strong

FIGURE 11 | During the phase of deceleration a boundary between the

outflowing jet (A) and regions with recirculating flow (B,C) can be observed.

The figures show the velocity field at t = 0.3 s.
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FIGURE 12 | Two different vortices can be located during valve closure. Velocity field at t = 0.35 s (A) and t = 0.4 s (B).

FIGURE 13 | The von Mises Stress τv (Pa) is plotted at instantaneous time points during the acceleration phase, systole and deceleration phase: Leaflet position at

t = 0.05 s (A), t = 0.08 s (B), t = 0.1 s (C), t = 0.3 s (D), t = 0.4 s (E), t = 0.442s (F).
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outflowing jet and the regions with recirculating flow. These
features can also be observed in our simulations as visualized in
Figure 11.

During the closing phase, two different vortices can be
observed, as shown in Figures 9B,C, 12. One vortex is located
just above the leaflet and the other one within the sinus cavity.
Although they are rotating in counter directions, both of them
drive the valve to close. The vortex within the sinus cavity merges
to a streamline flow and only the vortex at the tip of the leaflet
is left. A fully reversed flow in the ascending aorta is modeled by
altering the inflow condition and a complete closure of the valve
is achieved.

High stress has been connected to leaflet damage and failure.
To analyze the stress distribution in the leaflets of our model,
the von Mises stress τv in logarithmic scale is computed for
the same time instances as the velocity and pressure fields in
Figures 8, 9,

τ 2v :=

3
∑

i,j=1

|τ ij − δij
1

3
tr(τ )|2. (16)

We also visualize the stress distribution at the moment when
the valve has just been closed at t = 0.442. As can be observed
in Figure 13, regions with high stress can be localized to the
attachment lines, commissure and leaflet belly. However, due to
the low mesh resolution, this is only a qualitative analysis of the
stress distribution.

No elaborated studies to analyze mesh sensitivity have been
conducted yet. So far, we have only investigated to what extent the
point of contact is affected by mesh refinement. For this purpose,
the mesh is uniformly refined in the vicinity of the aortic root and
we observe that the point of contact does slightly differ as listed
in Table 2.

5.2. Simulation Results of the BMHV
To examine the valvular kinematics, we calculate the opening
and closing angle as well as the rotational velocity of the leaflets.
The rotational angle of the right and left leaflet is defined
as depicted in Figure 14A, and the results are presented in
Figure 14B. We observe that both leaflets are slightly open
at first and accelerate and decelerate linearly while opening.
The right leaflet precedes the left leaflet in the opening phase.
This kinematic variation is of course strongly influenced by
the geometry of the aorta. They then stay in their fully
opened position until they close very rapidly, mainly due to
backflow.

The geometry of a BMHV generates three jets, namely one
central jet flowing through the gap between the leaflets and
two side jets. During the end of the rapid opening phase,
vortex rings are shed from the tip of the leaflets due to the
difference in the velocity magnitude of the central jet and
the two side jets. The vortex rings travel downstream a short
distance before they vanish. Snapshots of the velocity field using
line integral convolution (LIC) are visualized in Figure 15A.
Figure 15B provides a closer view of the recirculation areas
We use the open source code Saaz to calculate λ2 for our

simulations (King et al., 2011). The threshold 2λ2 is manually
adjusted until we can differentiate coherent vortex structures
as shown in Figure 15C. The velocity vectors are added to
indicate the rotational direction. The vortex observed at t =

0.1 at the right leaflet merges after a very short time into
a recirculating flow with opposite direction (t = 0.11) and
separates from the leaflet (t = 0.115). Meanwhile, a clockwise
vortex is developed at the outer part of the left leaflet (t =

0.12), which eventually entails a neighboring, counter-clockwise
rotating flow (t = 0.124). The former is swept off downstream,
while the latter stays attached to the leaflet. When the valve
has reached the fully opened position, no further vortices are
developed.

6. CONCLUSION

The aim of our research is to develop an open source modular
framework for modeling and simulating the blood flow in the
heart. In the present work we place prototypes of a native
and mechanical aortic valve between the left ventricle and the
aorta.

We model both the fluid-structure interaction of the valve
and the contact problem in the framework of a unified
continuum. This approach to simulate the valvular dynamics
is unique and has the advantageous properties that the whole
problem can be described by a set of partial differential
equations for which the same numerical methods are applicable.
Furthermore, no instability issues due to the fluid-structure
coupling is encountered. All algorithms are implemented in
the FEniCS-HPC software framework optimized for parallel
computing.

We generated a CAD model of an idealized native aortic root
based on a small set of parameters, where we leave for future work
to adapt the geometry to patient-specific data, and to connect the
native aortic root to the left ventricle. The bileaflet mechanical
heart valve is reduced to the leaflets only, which are embedded
in a simplified geometric model of the aorta. In contrast to the
native valve, we simulate the fluid-structure interaction of the
leaflets and the hemodynamics of the left ventricle conjointly.
The next step is a more realistic geometric model of the
BMHV.

The weak point of our approach is the degradation of the
mesh quality under large mesh deformations. All the simulations
were conducted without remeshing, but we usually had to reduce
the time step such that the mesh smoothing algorithms could
comply with the deformation. The small time step size increased
the computational time. Remeshing the volume mesh is an
alternative, but not ideal for parallel computing. Thus, this
limitation has to be addressed.

TABLE 2 | Mesh sensitivity regarding the point of contact.

Mesh Mesh size Point of contact in time (s)

Mesh 1 37′631 vertices 0.440

Mesh 2 73′147 vertices 0.442

Mesh 3 248′980 vertices 0.434
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FIGURE 14 | The definition of the rotational angle α is illustrated in (A) and the simulation results of the rotational angle and velocity are plotted in (B).

FIGURE 15 | Snapshots of the velocity field and vortex structure of a BMHV at (from left to right) t = 0.1, 0.11, 0.115, 0.120, 0.124 s: Velocity field using LIC are

depicted in (A). The marked areas are enlarged and a close up view of circulations areas is shown in (B). Three-dimensional vortex structures are visualized in (C) by

using the λ2-criterion.

Although the material properties of both valves do not
conform with realistic values yet, typical characteristics of
the flow can be identified. Based on the simulation results,
we conclude that our approach for simulating the fluid
dynamics around aortic valves is feasible. More anatomically
accurate models are targeted as a next step in order to
not only examine the hemodynamics but also to test and

optimize the design of valve implants. Simulations on
larger meshes with higher resolution are to be performed
to examine and strengthen the accuracy and robustness
of our approach. Extension of the BMVH model, and
connecting the native aortic root to a LV geometry, as well
as simulations with much larger meshes, are aimed in our future
work.
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Fast and accurate computational biology models offer the prospect of accelerating

the development of personalized medicine. A tool capable of estimating treatment

success can help prevent unnecessary and costly treatments and potential harmful

side effects. A novel high-performance Agent-Based Model (ABM) was adopted to

simulate and visualize multi-scale complex biological processes arising in vocal fold

inflammation and repair. The computational scheme was designed to organize the

3D ABM sub-tasks to fully utilize the resources available on current heterogeneous

platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further

parallelized and convolution-based diffusion is used to enhance the performance of the

ABM simulation. The scheme was implemented using a client-server protocol allowing

the results of each iteration to be analyzed and visualized on the server (i.e., in-situ) while

the simulation is running on the same server. The resulting simulation and visualization

software enables users to interact with and steer the course of the simulation in real-time

as needed. This high-resolution 3D ABM framework was used for a case study of surgical

vocal fold injury and repair. The new framework is capable of completing the simulation,

visualization and remote result delivery in under 7 s per iteration, where each iteration of

the simulation represents 30min in the real world. The case studymodel was simulated at

the physiological scale of a human vocal fold. This simulation tracks 17 million biological

cells as well as a total of 1.7 billion signaling chemical and structural protein data points.

The visualization component processes and renders all simulated biological cells and

154 million signaling chemical data points. The proposed high-performance 3D ABM

was verified through comparisons with empirical vocal fold data. Representative trends

of biomarker predictions in surgically injured vocal folds were observed.

Keywords: high-performance computing, agent-based modeling, biosimulation, inflammation, wound healing,

vocal fold, in situ visualization
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1. INTRODUCTION

1.1. Agent-Based Modeling (ABM)
Agent-basedmodeling is a widely used approach to quantitatively
simulate dynamical systems (Macal, 2016). The popularity of
ABMs can be observed in the variety of ABM frameworks
developed in the past decade (for reviews, please see An
et al., 2009; Gorochowski, 2016; Hellweger et al., 2016;
Macal, 2016). Each ABM is defined by a set of autonomous
agents whose interactions among themselves and with their
environment are governed by a number of stochastic or
deterministic rules (Hellweger et al., 2016; Macal, 2016). In
contrast to equation-based approaches, ABMs are decentralized.
That is, the system’s behavior is determined by the collective
behavior of each individual agent in the system. Although a
universal definition of ABMs remains debatable (Macal, 2016),
fundamental components of ABM typically include: agent set,
agent relationship set, and agents’ environment (Macal and
North, 2010).

Firstly, a set of agents includes the agents themselves,
their attributes and their behavioral rules. Agents’ behavioral
rules govern their decisions and actions. In ABM, agents
can represent a wide spectrum of individual entities such as
consumers, markets, and geographic regions in economic models
(Tesfatsion, 2006; Caiani et al., 2016), animals in ecosystems
(McLane et al., 2011, 2017), and biological cells and proteins
in systems biology models (D’Souza et al., 2009; Krekhov et al.,
2015; Shi et al., 2016). Secondly, the set of “agent relationships
and methods of interactions” (Macal and North, 2010) defines
the criteria of a group of entities each agent is bound to interact
with, and how these interactions are carried out. For instance,
some ABMs may allow agents to interact only directly with
other agents, some may allow only indirect interactions while
some may allow both (Ausloos et al., 2015). A direct interaction
represents an immediate impact one agent leaves on another.
Particle collision is an example of a direct interaction, where
colliding particle agents affect the states of each other directly.
On the other hand, indirect interactions have been used to
mimic the lingering effects of transmitted signals (Godfrey et al.,
2009; Crandall et al., 2010; Richardson and Gorochowski, 2015;
Gorochowski and Richardson, 2017). An example of indirect
agent interaction includes chemical secretion as a form of inter-
cellular communication. This chemical secretion example is
classified as indirect because the agents alter the states of the
environment to communicate, rather than altering the states
of the recipient agents directly. Lastly, the agents’ environment
houses the autonomous agents. This space can be discrete lattice-
based (Wilensky and Evanston, 1999), continuous lattice-free
(Van Liedekerke et al., 2018), or hybrid (Chooramun et al., 2012).
The environmentmaymaintain local attributes depending on the
application and underlying implementation (Drasdo et al., 2018).

Our first published ABM (Li et al., 2008) was programmed
on the platform of Netlogo and thus most of the terminology
used herein was adopted from the dictionary of NetLogo
(Wilensky, 2015). In our implementation, the 3D environment,
also known as the ABM world, represents a human tissue. The
3D environment is spatially discretized into rectangular volumes

called 3D patches. Each mobile agent represents an inflammatory
cell that can move from one patch to an adjacent patch and make
decisions to perform certain actions at discrete time steps. Agents
make decisions based on the state of the patches, which allow
them to alter their environment to interact indirectly with other
agents. Chemokines and extracellular matrix (ECM) proteins are
associated with the states of the patches.

1.2. Computational Challenges
The simulation of high-resolution ABMs in biology (Bio-ABM)
often deals with large data sets. Processing a large amount of
data demand significant computational resources. To address the
challenges of the significant computational demands of large-
scale ABMs, multiple high-performance computing (HPC) ABM
tools have been developed over the years. These tools have also
been used to parallelize bio-ABMs. For example, FLAME (Kiran
et al., 2010; Coakley et al., 2012) is an implementation of an
ABM framework for parallel architectures based on stream X-
machines. FLAME has been used to speed up the simulation
of ecological systems in various fields including systems biology
(Richmond et al., 2010). FLAME GPU (Richmond et al., 2009;
Richmond and Chimeh, 2017) and SugarScape on steroid
(D’Souza et al., 2007) represent efforts to support ABM
acceleration on GPU platforms. These tools have demonstrated
their applicability to biological system simulations such as tissue
wound and disease modeling (D’Souza et al., 2009; Richmond
et al., 2010; de Paiva Oliveira and Richmond, 2016). Repast HPC
(Collier and North, 2013) was developed as an MPI extension
to its predecessors, Rapast and Repast Symphony (Collier, 2003;
North et al., 2005). Repast HPC was adopted to accelerate the
simulation of bone tissue growth (Murphy et al., 2016).

Multiple HPC ABM tools have also been developed
specifically for systems biology applications. An example
includes a Repast-based framework for single-cells and
bacterial population called AgentCell (Emonet et al., 2005).
The AgentCell framework provides support for running
multiple non-interacting single-cell instances concurrently on
massively parallel computers. More examples include HPC
ABM frameworks for multi-core CPUs such as CompuCell3D
(Swat et al., 2012a,b), CellSys (Hoehme and Drasdo, 2010),
and Morpheus (Starruß et al., 2014). These frameworks target
multi-core CPU acceleration on a single compute node using
OpenMP. In addition, other techniques have been proposed
to accelerate specific biological models on multi-core CPUs
or GPUs (Christley et al., 2010; Falk et al., 2011; Zhang et al.,
2011; Cytowski and Szymanska, 2014). However, none of the
aforementioned HPC ABM techniques or tools exploit the
computing power of both CPUs and GPUs simultaneously,
resulting in a sub-optimal resource utilization.

Another significant challenge in systems biology modeling lies
in the multi-scale nature of the model (Dallon, 2010; Eissing
et al., 2011; Cilfone et al., 2014; Schleicher et al., 2017). To
ensure optimal performance, it is important for differences in
spatiotemporal scales between cellular and chemical interactions
to be handled in a cost-effective manner. Cellular movements
occur at a rate of micrometers per hour (µm/h), while cytokine
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diffusion in tissue occurs at a rate of micrometers per second
(µm/s). A naive approach would be to iteratively simulate
the model at the smallest temporal scale required. However,
this approach would result in a prohibitive increase in the
computational cost. A possible solution is to use coarse-graining
techniques to lower the computational intensity (Qu et al.,
2011). The concept of coarse-graining in ABM refers to the
simulation of super-agents whose rules represent aggregated
behaviors of smaller units (Chang and Harrington, 2006; Maus
et al., 2011; Sneddon et al., 2011). Our earlier 2D framework uses
a mechanism that captures the behavior of multiple iterations of
the finer-scale processes, i.e., chemical diffusion, over a coarse
time window using convolution (Seekhao et al., 2016). This
intensive computation is then offloaded to a single GPU while
the CPU cores focus on coarse-grain cellular processes.

An effective visualization component is essential for
understanding the progress of the simulation and emerging
trends. However, with billions of data points being produced
after each iteration, implementing real-time visualization is not
trivial. Usually, visualization is performed on pre-simulated/pre-
processed data that are stored on disk. Such amethod is known as
post-hoc visualization. On the other hand, large simulation data
sets have prompted work on coordinating the simulation and
visualization simultaneously, also known as in situ visualization
(Rivi et al., 2012; Nvidia, 2014). In situ visualization allows the
outputs to be analyzed on the same machine that produced
them. The ability to perform on-site data analysis reduces the
amount of data movements between the server and remote
users. This property makes in situ visualization an ideal way
to visualize simulations that produce large data sets such as
our case. Paraview Catalyst (Bauer et al., 2013; Ayachit et al.,
2015) and work reported in Kuhlen et al. (2011) are examples
of libraries developed to enable in situ processing of simulation
output on popular existing visualization frameworks such as
Paraview (Henderson et al., 2004) and VisIt (Childs et al.,
2005). A bitmap-based and a quadtree-based ABM approach
(Krekhov et al., 2015; Su et al., 2015) were proposed respectively
to analyze the numerical output in situ and reduce non-essential
simulation data. Most of these strategies were able to reduce
the disk loads, but still required disk storage for the remaining
essential data. In the present work, similar to (Seekhao et al.,
2016, 2017), VirtualGL was employed as a tool for developing
in situ visualization of an ABM that circumvents disk storage
and directly visualize simulated outputs written on to a RAM.
This real-time visualization feature would assist researchers in
tracking the progress and steering the course of the simulation.

1.3. Case Study—Vocal Fold Inflammation
and Repair
1.3.1. Problem Background
In the United States, voice problems were estimated to affect
one in 13 adults annually (Bhattacharyya, 2014). In one study,
nearly one third of the sampled population has experienced
voice disorder symptoms at some point in their lifetime (Roy
et al., 2004). In particular, voice disorders constitute a major
occupational hazard in many professions such as salespeople,

teachers, performing artists, attorneys, and sport coaches, due to
the intensive vocal demand of the job (Vilkman, 2000; Verdolini
and Ramig, 2001; Jones et al., 2002; Fellman and Simberg, 2017).
The estimated lifetime prevalence of voice disorders is as much as
80% in occupational voice users (Cutiva et al., 2013;Martins et al.,
2015). Human vocal folds are under continuous biomechanical
stress during voice production. Excessive phonatory stress can
induce a cell-mediated inflammatory response and structural
tissue damage, leading to a pathological condition (Gunter, 2004;
Li et al., 2013; Kojima et al., 2014). Patients with phonotraumatic
lesions are usually prescribed behavioral voice therapy (Johns,
2003; Misono et al., 2016) or surgical excision of the lesion in
combination with various adjunctive treatments (Hansen and
Thibeault, 2006; Hirano et al., 2013; Ingle et al., 2014;Moore et al.,
2016). Unfortunately, the healing outcome of voice treatments
often depend on the lesion, the treatment dose, and the patient’s
vocal needs (Abbott et al., 2012; Roy, 2012; Li N.Y. et al., 2014).
The success rate of voice treatment varies extensively between
30 and 100% (MacKenzie et al., 2001; Zeitels et al., 2002; Wang
et al., 2014; Vasconcelos et al., 2015), making the treatment
planning process difficult for voice therapists and surgeons.
The unpredictable treatment outcome is axiomatic and takes
a huge toll on a person’s career, a clinician’s decision-making
process and society’s healthcare costs. A computational tool that
can estimate voice treatment success would spare patients from
unnecessary and costly treatments and potentially harmful side
effects.

Computer simulations have become central to personalized
medicine (Deisboeck, 2009; Chen and Snyder, 2012; Li et al.,
2016; Canadian Institutes of Health, 2017). This approach
involves the creation of computational models to estimate
treatment outcome and identify the best possible treatment for
a given patient. Simulation modeling involves the integration
of the best available knowledge into a computer platform to
represent the real-world problem. The process involves an
abstraction of causal relationships between patient variables
and health outcomes followed by a rigorous and iterative
protocol of model calibration and validation (Galea et al.,
2009; Marshall and Galea, 2014; O’Donnell et al., 2016).
The property that sets numerical simulation models apart
from standard statistical models is the observability of the
evolution of patient behaviors and health conditions in the
computer model as time passes during simulation. Such an
approach provides a computational tool for clinicians to evaluate
the impact of intervention or other modifiable variables on
health outcomes in advance or along any point during the
intervention.

Computer models have been developed for complex health
conditions, including sepsis (Clermont et al., 2004; Kumar et al.,
2004; Vodovotz et al., 2006), traumatic brain injury (Vodovotz
et al., 2010), acute liver failure (Wlodzimirow et al., 2012),
diabetes (Boyle et al., 2010; Day et al., 2013), obesity (El-Sayed
et al., 2013; Hammond and Ornstein, 2014), and cardiovascular
disease (Hirsch et al., 2010; Li Y. et al., 2014; Li et al., 2015). In
our case, a series of ABMs have been developed to numerically
simulate the essential biology underlying vocal injury and repair
with the goal of helping clinicians to better tailor treatments for
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patients with voice disorders (Li et al., 2008, 2010a,b, 2011; Miri
et al., 2015; Seekhao et al., 2016).

In the current study, an existing high-performance 2D ABM
(Seekhao et al., 2016) is substantially enhanced to a much larger
3D model in an attempt to faithfully capture the physiological
dimension of human vocal folds. A diffusion kernel reduction
technique is used to enhance the performance and ensure that
all necessary 3D data required for diffusion fits within the
GPU global memory. A scheduling scheme for a heterogeneous
compute node, which consists of multi-core CPU and many-
core GPUs, is then used to completely mask the execution
time of the computationally intensive diffusion and visualization
tasks. This low-cost, high-resolution, and high-performance
computing ABM platform with real-time visualization capability
is an original concept in diseasemodeling, and canmake complex
disease models practical in clinical settings.

1.3.2. Modeling Vocal Fold Repair With ABM

(VF-ABM)
In the vocal fold ABM (VF-ABM) used in this work, the
inflammatory cells were implemented as agents (Li et al.,
2008, 2010b, 2011). The chemokines and ECM proteins were
implemented as states of the patches. The aggregation of these
components yields the state of the vocal fold (ABMworld) at each
given point in simulated time. Table 1 summarizes the roles that
each type of cell agent plays in the healing process. At the time of
acute injury, the traumatized mucosal tissue within the damaged
area triggers platelet degranulation. Different chemokines get
secreted resulting in vasodilation stimulation and attraction of
inflammatory cells, namely, neutrophils and macrophages to
the wound site. Activated neutrophils and macrophages at the
wound area further secrete chemokines to attract fibroblasts and
remove cell debris. To repair the wound, activated fibroblasts
proliferate and deposit ECM proteins such as collagen, elastin,
and hyaluronan. These ECM proteins then form a scaffold for
supporting fibroblasts in wound contraction, cell migration,
and other wound repair activities (Bainbridge, 2013). The flow
diagram of the interactions between all the components in the
model is shown in Figure 1 (modified from Li et al., 2008). In
each iteration, the VF-ABM executes the following major steps:

• Seed Cells—Cell recruitment from surrounding native tissues
to the damaged area.
• Cell Function—Cell migration, proliferation, cytokine

production and ECM production (Table 1).
• ECM Function—Tissue repair. Fragments of ECM protein

acting as danger signals.
• ECM Fragmentation—Fragmentation of ECM proteins if

TNF-α or MMP is beyond a threshold.
• Chemical Diffusion—Mass diffusion of each of the chemical

signals including TNF-α, TGF-β , FGF, MMP8, IL-1β , IL-6,
IL-8, and IL-10.

2. MATERIALS AND METHODS

The 3D ABM simulation suite includes both computation
and visualization components. The computational tasks can be

TABLE 1 | Summary of agent rules.

Agent Actions

Platelets Secrete TGF-β1 and IL-1β to attract other cells and regulate

ECM protein production.

Secret MMP8 to promote collagen fragmentation.

Neutrophils Secrete TNF-α to attract and promote activation of other

neutrophils and macrophages. TNF-α also plays a role in

regulating the production and fragmentation of ECM proteins.

Secrete MMP8 to promote collagen fragmentation.

Macrophages Secrete TNF-α, TGF-β1, FGF, IL-1β, IL-6, IL-8, IL-10 to

attract cells, regulate cell activation, fibroblast proliferation,

ECM protein production, and ECM protein fragmentation.

Clean up cell debris.

Fibroblasts Secrete TNF-α, TGF-β1, FGF, IL-6, IL-8 to attract cells,

promote cell activation and regulate fibroblast activation, and

promote ECM fragmentation and regulate ECM production.

Secrete ECM proteins to repair tissue damage.

ECM Managers Manages ECM functions and conversion. One manager per

patch.

TABLE 2 | Summary of NVIDIA Tesla M40 GPU specifications.

GPU Tesla M40

SMs (per Device) 24

CUDA Cores per SM 128

Registers per SM 64k

L2 cache size 3.0MB

Global memory (per device) 22.4GB

Max clock rate 1.11GHz

Memory clock rate 3.0GHz

Memory bandwidth 288GB/s

Compute capability 5.2

categorized as coarse- or fine-grain. Coarse grain tasks include
inflammatory cell and ECM functions, which involve more
complex control structures and relatively small data movements.
On the other hand, fine-grain tasks include the diffusion of the
different chemicals, which involves relatively simple operations
applied to large amounts of data. In this section, we start
by describing our hardware and software environment. We
will then discuss how task assignments and coordination are
performed to ensure correct synchronization and maximize
load balance. Finally, we will describe how each task category
underwent optimization specific to its computational and data
access characteristics. The model size and configuration details
are summarized in Table 3. The source code of the VF-ABM
prototype with optimizations described in this work can be found
at https://github.com/VF-ABM/hpc-abm-vf-version_0_6.

2.1. Hardware and Software Environment
Our high-performance VF-ABM was tested and benchmarked
on a compute node with a 44-core Intel(R) Xeon(R) CPU
E5-2699 v4 @ 2.20GHz host and two attached accelerators,
NVIDIA Tesla M40. Table 2 summarizes the GPU specifications.
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FIGURE 1 | Flowchart of vocal fold inflammation and healing events in the ABM. This diagram is modified from Li et al. (2008).

Each Tesla M40 GPU consisted of 3,072 cores per device with
24 GB of global memory. C++, a lightweight programming
language, was used to implement the program to ensure
fast and efficient simulation. To utilize the multiple CPU
cores available, Open Multi-Processing (OpenMP) was used
to parallelize coarse-grain cellular processes. OpenMP is a
highly portable Application Programming Interface (API) that
supports multi-threading on shared-memory platforms via a
set of platform-independent compiler directives (Dagum and
Enon, 1998). OpenMP was further used to allocate separate
threads to communicate and launch tasks on the GPUs. Chemical
diffusion tasks were offloaded to the GPUs due to their high
computational needs. These tasks were programmed using
the NVIDIA Compute Unified Device Architecture (CUDA)
(Nvidia, 2007) model. CUDA is a parallel computing platform
and programming model, which allows general purpose multi-
threaded programming of GPUs via C-like language extension
keywords. In the CUDA language, a GPU is presumed to be
attached to the host (CPU), which controls data movement
to/from the GPU. The CPU is responsible for launching kernels,
which are functions to be executed by all threads launched
on the GPU. Open Graphics Library (OpenGL) was used
to implement the visualization component of the simulation.
OpenGL is an open standard, cross-language API for 2D and 3D
rendering. OpenGL is widely used over a broad range of graphics
applications due to its portability and speed.

2.2. Scheduling and Coordination of
CPU-GPU Computation and Visualization
The 3D VF-ABM consisted of an environment with 154
million patches (Table 3). Each patch stored information

TABLE 3 | Summary of human simulation configurations.

Item Unit Size

World

Size Patches × patches × patches 1,390 × 1,006 × 110

mm × mm × mm 20.85 × 15.09 × 1.65

Patch size µm × µm × µm 15 × 15 × 15

Total number of patches Unit 154 million

ECM data Types 3

Data points 461 million

Chemical data Types 8

Data points 1.2 billion

Inflammatory cells (initial)

Neutrophils Cells 1.72 million

Macrophages Cells 0.97 million

Fibroblasts Cells 12.20 million

Simulated time-step Minutes 30

of ECM proteins and chemical data. In addition, around
17 million mobile agents, representing the inflammatory
cells, resided in this ABM world. The model simulated
the dynamic biological processes pertinent to vocal fold
inflammation and repair at 30 min time intervals. At each
model iteration, the operations corresponding to ECM
functions, chemical diffusion, and cell (agent) functions
were executed followed by the update of the ABM world.
Given the computational complexity and the amount of
data involved, each iteration required a careful mapping and
scheduling of these operations on the available hardware
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resources. In addition, the visualization provides essential spatial
information of ECM proteins, chemicals, and inflammatory
cells during the simulation. The overall goal was to simulate
and visualize the 3D VF-ABM as fast as possible for each
iteration.

The typical approach to tackle such computational complexity
has been to use multi-core CPUs and many-core GPUs.
Accelerators such as GPUs need a CPU host, and each of
the GPU and CPU has a number of cores that can be
exploited using parallel programming techniques. However,
GPUs have received much more attention in general whenever
accelerated performance is the main goal due to their
extremely high performance in data parallel computations.
Often, this hardware preference results in idle CPUs, waiting
for GPUs to perform all the work after the dispatch of the
computing tasks to the GPUs. In this work, the aim was to
exploit the resources available on both the CPU and GPU
simultaneously so as to achieve the best possible performance.
In fact, a host-device computation overlap technique was
used in our earlier work, resulting in much improved
performance for the 2D ABM framework (Seekhao et al.,
2016). However, the 3D ABM framework was substantially
more computationally demanding. The previous methods were
thus further developed to achieve the desired high speed
simulation and visualization necessary for the 3D ABM
framework.

To achieve optimal resource utilization, it is important to
address the challenges of load balancing, minimizing data
movements between the CPU and GPU, and coordinating the
tasks on various devices. As we moved from 2D (Seekhao et al.,

2016) to 3D, the computational complexity of the simulation
and the amount of data involved increased substantially.
Furthermore, the execution time of the visualization component,
which was negligible in the 2D simulation, became significant.
Therefore, the issues of task assignment, load balancing,
and device coordination need to be revisited and addressed
properly.

Figure 2 illustrates the workflow of the 3D ABM simulation
during each iteration. Specifically, it describes the task allocation
on a platform consisting of a single multicore CPU with NGPU

GPUs attached to it. For our specific setup consisting of 2 GPUs,
the simulation started on the CPU host, and then split into three
paths: coarse-grain, fine-grain/visualization, and fine-grain. Each
of the paths was run on separate hardware resources. The first
path spawnedmultiple CPU threads to execute coarse-grain tasks
on CPU cores. The second path was responsible for visualization
and some of the fine-grain tasks that execute on a single GPU
resource. The remaining fine grain tasks executed on the rest of
the GPUs. All paths met at the end to exchange and update the
ABM world.

The overlap of visualization and computational components
required a careful device coordination as these components
now shared computing resources. Algorithm 1 describes,
at a high-level, how to map tasks and perform host-
devices synchronization. Each GPU task, computational or
visualization, has its own CPU thread for data management
and communication with the GPUs. Nested CPU threads were
launched at three levels. At the first level, the driver started
the execution by initializing the simulation and launching two
threads, one for visualization and the other for computation.

FIGURE 2 | Diagram illustrating the workflow of the three main types of tasks; coarse-grain (CPU), fine-grain (GPU), and visualization. The number of GPUs is two in

this setup. However, this scheme can be extended to use more GPUs as demonstrated in the gray part of the diagram. One of the GPUs is used for diffusion (fine-grain

tasks), while the other is used for both visualization and diffusion. With p available CPU cores, p− NGPU − 1 or p− 3 threads are allocated for coarse-grain functions.

The other NGPU threads are in charge of managing data transfers and dispatching fine-grain tasks to the GPUs, and the last thread is spared for visualization.
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Algorithm 1: Pseudocode describing CPU-GPU
scheduling related functions in Driver, Computation
and Visualization class

Function Driver::run():

init()

launchCPUthreads(2)
if thread_id == 0 then

Visualization.start()

else

Computation.start()

return

Function Visualization::start():

while !simulationDone do
renderOnGPU()

visualizationDone← 1 // Notify

// Computation class of

// visualization completion

while computationDone 6= 1 do
// wait for computation on both

CPU and GPUs to complete

computationDone← 0 // reset

computation completion flag

return

Function Computation::start():

while !simulationDone do
launchCPUthreads(2)

if thread_id == 0 then
executeCPUtasks()

else

executeGPUtasks()

syncAndUpdateWorld() // Sync CPU

// and GPU chemical data

computationDone← 1 // Notify

// Visualization class of

// computation completion

return

The visualization rendered the current state of the ABM world
using an available GPU, and then broadcast the completion of the
rendering task. Concurrently with the visualization execution,
the computation started by launching two more threads at
the second level. Both threads at this level further launched
multiple threads at the third level, depending on the number
of cores available. More specifically, the first thread at level
2 was responsible for executing CPU tasks, which launched
parallel threads for coarse-grain task parallelization i.e., level 3.
The second thread at level 2 spawned NGPU level-2 threads to
launch fine-grain computation tasks on available GPUs. Note
that if the visualization was not yet completed, one of the GPUs

Algorithm 2: Pseudocode describing VF-ABM
operations and workflow

Procedure executeCPUtasks()

/* model computation */

launchCPUthreads(p− NGPU − 1)
// p denotes the number of

// available CPU cores

for each Patch pt ∈ 3Dworld do
if pt.conditionMet() then

pt.seedCell()

pt.ECMFunction()
pt.fragmentECMs()

for each Cell c ∈ InflammatoryCells do
c.cellFunction()

/* model update (excluding

chemical data update) */

for each Patch pt ∈ 3Dworld do
pt.updateECMs()
pt.updatePatch()

for each Cell c ∈ InflammatoryCells do
c.updateCell()

Procedure executeGPUtasks()

launchCPUthreads(NGPU)

gpu_id← thread_id
if gpu_id == gpu_idvis then

while visualizationDone 6= 1 do
// wait for visualization on

// GPU to complete

visualizationDone← 0 // reset

visualization completion flag

for each ChemicalType

ct ∈ ChemicalTypeSet[thread_id] do
diffuseChemicalOnGPU(ct, gpu_id)
// using GPU FFT library

// (i.e. NVIDIA cuFFT) for

// convolution computations

would not be available and the fine-grain tasks will have to wait
(Algorithm 2). If a fine-grain task had grabbed the same GPU
used for visualization, it would have to broadcast its completion
so that the visualization can proceed.

2.3. Computational Optimization of
Diffusion
Chemical diffusion was the most demanding computational
component of the model. As previously mentioned, its
computational demand was primarily a result of the extremely
small spatiotemporal scale and high rate at which chemical
diffusion occurs. To reduce the computational load, a

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 304309

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Seekhao et al. High-Performance 3D Agent-Based Bio-Simulations

convolution-based method was used to simulate the diffusion
process (Seekhao et al., 2016). A Fast Fourier transform
(FFT) was then used to reduce the complexity of convolution
computations. Lastly, kernel size reduction was achieved by
extracting the most dense segment of the Gaussian kernel to
optimize the diffusion performance. Note that, since we deal
with regular grids for the ABM world, finite difference method
(FDM) is used as opposed to the more computationally intensive
integral schemes.

2.3.1. FFT-Convolution-Based Diffusion
In 3D, the diffusion equation with decay can be written as

∂c

∂t
= D

(

∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2

)

− γ c, (1)

where c is the chemical concentration, D is the diffusion
coefficient and γ is the decay constant. Assuming that 1x =
1y = 1z, and using a Taylor expansion to discretize the
continuous 3D diffusion equation, we get

c
(

x, y, z, t +1t
)

=

(

1−
4D1t

1x2
− γ1t

)

c
(

x, y, z, t
)

+

D1t

1x2

[

c
(

x+1x, y, z, t
)

+ c
(

x−1x, y, z, t
)

+

c
(

x, y+1y, z, t
)

+ c
(

x, y−1y, z, t
)

+

c
(

x, y, z +1z, t
)

+ c
(

x, y, z −1z, t
)

] (2)

subject to the stability constraints

1t ≤
1x2

6D
. (3)

As shown in Table 4, the largest value of D in the set of

chemical types in VF-ABM is 900 µm2

min (Spiros, 2000), with patch
width 1x = 15µm. The condition 1t ≤ 2.5 s needs to
hold to meet stability constraints. Clearly, the complexity of the
simulation would be unnecessarily high if the model evolved at
1τ = 2.5 s rather than 1τ = 30 min or 1, 800 s.

By letting λ = D1t
1x2

, Equation (2) can be rewritten as

c
(

x, y, z, t +1t
)

= (1− 6λ− γ1t) · c
(

x, y, z, t
)

λ · c
(

x+1x, y, z, t
)

+ λ · c
(

x−1x, y, z, t
)

+

λ · c
(

x, y+1y, z, t
)

+ λ · c
(

x, y−1y, z, t
)

+

TABLE 4 | Effective diffusion coefficients used in 3D VF-ABM.

Effective Diffusitivity (µm2/minute)

TNF-α TGF-β1 FGF MMP8 IL-1β IL-6 IL-8 IL-10

900 780 780 780 900 810 900 900

TNF-α, TGF-β1, IL-1β, and IL-6 values are taken from Spiros (2000).

λ · c
(

x, y, z +1z, t
)

+ λ · c
(

x, y, z −1z, t
)

(4)

or,

c
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x, y, z, t +1t
)
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∑

j=y−1

z+1
∑

k=z−1
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(

i, j, k, t
)

· f
(
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)

, (5)

where

f
(

x, y, z
)

=































1− 6λ− γ1t x = 0
∧

y = 0
∧

z = 0

λ x = ±1
∧

y = 0,
∧

z = 0, or

y = ±1
∧

x = 0,
∧

z = 0, or

z = ±1
∧

x = 0,
∧

y = 0

0 otherwise.

Clearly, Equation (2) is equivalent to Equation (5), thus
c
(

x, y, z, t +1t
)

= c
(

x, y, z, t
)

∗ f (x), where ∗ represents the
convolution operation. To compute c

(

x, y, z, τ +1τ
)

, where
1τ = m · 1t, the chemical concentrations from the previous
step, c

(

x, y, z, τ
)

, is convolved with f
(

x, y, z
)

, m times. The
commutative property of convolution implies that convolving
f
(

x, y, z
)

with itselfm times results in fm
(

x, y, z
)

, and the diffused
concentrations at each iteration can be computed as

c
(

x, y, z, τ +1τ
)

= c
(

x, y, z, τ
)

∗ fm
(

x, y, z
)

. (6)

The diffusion computation can thus be accelerated by
computing Equation (6) at a large time step, 1τ , without
violating stability constraints. The effective diffusitivity of IL-1β

in tissue, for example, is 900 µm2

min (Spiros, 2000). In a 15 µm
patch world, a 30-min time step implies that the program has
to calculate c

(

x, y, z, τ
)

∗ f720
(

x, y, z
)

at each time step. In other
words, a chemical on a given patch (x,y,z) has a spatial diffusion
range of x ± 720, y ± 720 and z ± 720, within a window of
dimension 1, 441 × 1, 441 × 1, 441, which covers approximately
3 billion patches.

2.3.2. Kernel Reduction
The diffusion kernel was computed by convolving the initial
coefficient function, f (x, y, z), in Equation (5), with itself m =
1τ/1t times, where 1τ is the biological time step of 30 min and
1t = 1x2/6D is the diffusion time step subjected to the stability
constraints (Equation 3). As calculated earlier, the effective

diffusitivity of IL-1β of 900 µm2

min results in a 1, 441×1, 441×1, 441
kernel.

Note that f (x, y, z) is smoother as it gets convolved with itself,
thus a Gaussian shaped diffusion kernel is obtained. The values
in Gaussian distributions are highest at the center. These values
decrease and approach zero, the further they are from the center.
This observation enabled the reduction of the kernel size by
focusing on the center window, while keeping almost 100% of
kernel mass. The coverage levels of the kernel mass with respect
to extracted window sizes are plotted in Figure 3.
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FIGURE 3 | Diffusion kernel reduction mass vs. kernel width. This plot shows mass coverage with respect to extracted window width. The size of each kernel is

width3 patches. It is observed that by cutting down the size from 1, 4413 down to 1473, only a fraction of 0.0069 of the mass is lost in each iteration.

2.4. Visualization Optimization
The 3D VF-ABM processes at least 17 million agents in each
iteration while producing 1.23 and 0.46 billion chemical data and
ECM protein data points, respectively. The model currently does
not visualize the state of the ECM proteins on each individual
patch, but rather outputs the aggregated ECM protein statistics
at the end of the simulation. Due to the screen space, the user can
only select one out of eight types of chemicals to be visualized in
each frame. The visualization component is thus responsible for
visualizing 17 million biological cells and 154 million chemical
data points. To optimize the visualization of such a large amount
of data, sampling was used and its effects on output simulation
and corresponding performance enhancements were studied.
The performance evaluation is reported in section 3.1.2.

A client-server in situ visualization protocol was employed
to bypass the disk storage and provide users the ability to
steer computation in real-time. For a seamless simulation
and visualization experience, the latency of the server-client
visualization pipeline had to be kept as minimal as possible even
when a large amount of data is being simulated and visualized.
One possible approach is to redirect OpenGL commands to the
remote X server on the client side (Project, 2015). However,
this approach puts significant loads on the network due to the
transferring of both OpenGL calls and 3D data from the server to
the remote client. Moreover, this approach strains the client with
all of the rendering responsibilities, making the approach only
suitable for applications with small and static data or specifically
tuned OpenGL applications (Project, 2016). Another possible
approach would be to use remote display software. However,
some remote display software either lack the ability to run
OpenGL applications, or force OpenGL applications to use a
slow OpenGL software renderer (Project, 2016). Due to the size
of the data produced by the 3D VF-ABM, the most suitable

candidate is VirtualGL. The open source package, VirtualGL,
allows any Unix or Linux remote display software to display
OpenGL applications on the client’s machine, while taking full
advantage of the server’s 3D graphics accelerators (Project, 2015).
The OpenGL commands and 3D data are redirected to a 3D
graphics accelerator on the server by VirtualGL. Thus, instead
of sending a large amount of data points over the network, only
one single simulation image frame (shown in Figure 4), which
was visualized on the server, is sent to the client in each iteration.
Given that this protocol shifts most of the rendering loads to the
server, the client can take full advantage of the server’s hardware,
which is usually much more powerful than that of the client’s
machine. The employment of VirtualGL thus enhances the speed
of the visualization through the server’s accelerators without
costing the client much hardware overhead.

3. RESULTS

The simulation speed and accuracy are critical in making
any biological model clinically useful. This section starts by
examining the overall performance of the ABM simulation
for our case study of the 3D VF-ABM, thereby illustrating
the scalability of the model with respect to the number of
cores available. The impact on the simulation accuracy with
respect to the computational enhancement is then reported.
Section 3.1.3 analyzes the performance of the 3D VF-ABM
simulation suite and benchmarks its performance against existing
ABM frameworks. Finally, the verification of model outputs is
reported in section 3.2.

3.1. Performance Evaluation
To optimize the overall simulation suite, each simulation
component underwent aforesaid optimization techniques. Each
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FIGURE 4 | Screenshot of simulation suite captured at the client side. The top and bottom screenshots were taken from the simulations of rat and human vocal fold

injury and repair, respectively. In each iteration, only a compressed image is sent over the network instead of sending the whole output data set. This approach allows

a fast and efficient transfer of comprehensible outputs to the client. The image transfer costs are the same regardless of the simulation size. Clients only need to install

a thin client package to see the visualized results. The 2D charts show total chemical aggregated statistics. Left most 3D volume in human simulation displays the

distribution of one of the eight chemicals selected by the user. The second and third volumes show macrophage (brown) and neutrophil (red) distributions,

respectively. The last volume on the right displays the tissue damage distribution (pink) and the distribution of fibroblasts (blue). Cell color codes are the same for both

rat and human VF-ABM simulations.

technique was tailored to the specific computation and data
access patterns of the respective component. Thus, their effects
on performance were studied with respect to computation,
visualization, and coupled simulation-visualization.

3.1.1. Computational Component
Due to the efficiency of the FFT-based diffusionmethod, diffusing
1.2 billion point chemical data on two GPUs only took 2.5 s

per iteration. However, the set of coarse-grain tasks (excluding
updates) took about 4 s to execute. As a result, the coarse-grain
tasks became the performance bottleneck. That is, the time that
the VF-ABM takes to complete the computational component of
a single iteration depends on how long it takes to execute the
cellular tasks plus the time to synchronize the results. Figure 5A
shows the execution time for the compute component using
different numbers of CPU threads overlapping with two GPUs.
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These results indicate that the best performance using 32 threads
takes approximately 6.2 s per iteration on average. The average
speedup of the computational component as well as the speedups
of its two main sub-components across 240 iterations over
different numbers of threads are plotted in Figure 5B. Tasks were
grouped into model functions (cell/ECM/synchronization) and
update routines, and their speedups within each respective group
were averaged. Notice that the update tasks consisted mostly
of memory access operations. These operations were memory
bound, thus showing poor scalability. Memory bound refers to
the problem of memory speed not being able to keep up with

the processor speed (McKee, 2004). The memory speed thus
becomes the bottleneck of applications with low ratio of number
of computation operations to number of memory operations. In
contrast, other model function tasks involvedmore computation,
and thus these tasks showed good scalability, making the overall
speedup of the simulation reasonable.

3.1.2. Visualization Component
The coarse-grain tasks (excluding updates) took about 4.7 s
to complete on the CPU. On the other hand, the fine-grain
tasks on the GPUs only took 2.5 s. This difference in execution

FIGURE 5 | Computation-only performance scalability. Graphs showing (A) execution time and (B) speedup of the 3D VF-ABM for different number of threads. Notice

that the average speedup of model function routines (orange-dotted) is much higher than the average speedup of the update routines (gray-dotted). The model

function routines performed more computations than memory access operations, while the update routines performed more memory access operations than

computations. As a result, a good scalability in model function routines was obtained but the scalability of update routines were relatively poor. Despite the

memory-bound update functions, the overall speedup of the program (blue-solid) is still satisfactory.
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time resulted an idle period on the GPUs. If the visualization
component was fast enough, this window would allow us
to integrate visualization with the GPU computation without
increasing the total execution time.

The visualization component included the rendering of cell
migration, chemical diffusion, and tissue damage tracking. The
most time consuming component was the chemical diffusion,
which required an access of 154 million points of data during
each iteration. As discussed earlier, data sampling was used
to improve the visualization performance. Figure 6 shows the
execution time and screenshots of chemical visualization using
different sampling window widths. The visualization of the entire
world looked almost identical for up to 63 sampling windows.
Results showed that, looking at the entire simulation area, enough
visual information was retained by using a fixed 63 sampling
window. However, if the user needed to zoom in to highly active
areas, a more sophisticated adaptive sampling technique could
be used instead of the fixed sampling used here (Seekhao et al.,
2017).

3.1.3. Coupled Simulation and Visualization
Since the visualization execution time was reduced from 23 s
down to 0.4 s using data sampling for chemical diffusion, the
visualization execution could then be placed in the idle period
on one of the GPUs. By placing the visualization execution in a
GPU idle gap, the total execution time remained unchanged at
6.2 s per iteration on average. This fast execution time enabled the
simulation to execute remote computation, remote visualization,
remote transmission of the result frame, and frame rendering on
the client’s machine in under 7 s/frame. This performance, as far
as we know, is the fastest known complex ABM simulation and
visualization at a similar scale.

For benchmarking purposes, the 3D VF-ABM was compared
to our previous and other ABM works of similar nature
(Figure 7). The M. Tuberculosis (MTb) ABM (D’Souza et al.,
2009) was benchmarked on a system with an NVIDIA GeForce
8800M GTX GPU, while GeForce GTX Titan was used
for FLAME GPU immune system ABM (de Paiva Oliveira
and Richmond, 2016). Despite the differences in underlying

FIGURE 6 | Visualization-only performance. This chart shows visualization screenshots and corresponding execution time for different sampling resolutions. The stride

denotes the gap between two consecutive sampled points, thus the higher the stride the coarser the sampling. The visual appearance of the each sampling case

looks almost identical for up to stride 6 or 63 sampling windows. The visualization was able to retain sufficient information by using 63 sampling.
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FIGURE 7 | Processing power of 3D VF-ABM vs. existing work comparison. This bar chart compares workload and execution time in terms of number of patches

(i.e., lattice points, grid points, stationary cells) per ms between the 3D VF-ABM to other bio-simulation ABM work. Notice that the 3D VF-ABM is capable of

processing 25K patches/ms, or about 900x, 63x, 2.3x, and 2.4x more patch processing power than NetLogo, MTb ABM (D’Souza et al., 2009), FLAME GPU immune

system ABM (de Paiva Oliveira and Richmond, 2016), and the earlier 2D VF-ABM work (Seekhao et al., 2016).

TABLE 5 | Performance and scale comparison with existing high-performance ABM work of similar nature.

# Patches # Agents # Chemical types # ECM protein types Time step Average execution time per Iteration

2D MTb ABM 16.4 K 3.2 K 1 0 10 min 0.042

2D NetLogo VF-ABM 1.0 M 114.0 K 8 3 30 min 36.6

2D FLAME GPU 320.0 K 160.1 K 1 0 0.2 s 0.03

2D VF-ABM 1.9 M 228.0 K 8 3 30 min 0.19

3D VF-ABM 153.8 M 16.9 M 8 3 30 min 6.2

hardware, MTb ABM simulation is arguably one of the most
suitable works for performance comparison with the 3D VF-
ABM. The 2D MTb ABM simulated a complex multi-scale
biological system of agents that communicate via chemical
signals, which aligned inmost respects with the 3DVF-ABM. The
human immune system ABM was built on a widely used HPC
ABM platform, FLAME GPU (de Paiva Oliveira and Richmond,
2016). Although this ABM executed the immune system at
a much smaller timescale, the cell communication method is
similar to other ABMs included in this performance comparison,
i.e., communication via chemical signals. The FLAME GPU
immune system ABM thus served as a good performance
reference.

The 3D VF-ABM was simulated at a scale physiologically
representative of a human vocal fold. Such scale was not feasible
to be implemented on ABM freeware NetLogo (Wilensky and
Evanston, 1999). Furthermore, to our best knowledge, no similar
scale had been reported in any other publication. For a common
throughput unit, the simulation performance was measured in
terms of environment space unit per millisecond. The space units
represent the smallest granularity of the ABM environment.
Depending on the model, the space units can be patches

(Wilensky, 2015), grid points (D’Souza et al., 2009), or immobile
tissue cells (de Paiva Oliveira and Richmond, 2016). These
quantities determine the ABM environment size. Therefore, the
number of space units are proportional to the amount of work
required to simulate the ABM environment in each iteration.
For this reason, space unit per millisecond serves a reasonable
throughput measure. The 3D VF-ABM is capable of processing
25K patches/ms, which is about 900x, 63x, 2.3x, and 2.4x the
throughputs of NetLogo, MTb, FLAME GPU immune system
ABM and the 2D VF-ABM, respectively. The comparison of the
model scale, complexity and performances are in Table 5. Of
note, FLAME GPU can process roughly 1.9x more mobile agents
than 3D VF-ABM per time unit. The primary reason was that the
time step used in FLAME GPU immune system ABM are smaller
than that of our model in orders of magnitudes. This time scale
difference caused their agent rules to be much less complex. For
example, FLAMEGPU immune systemABMwould take roughly
18 h to complete a 5-day simulation while the 3D VF-ABM only
takes less than half an hour. In addition, the 3D VF-ABM offered
a much more rigorous data visualization in real-time at a scale
of over 100 times more mobile agents than that of FLAME GPU
immune system ABM.
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3.2. Verification
The trends of the 3D VF-ABM output were qualitatively verified
using the pattern-oriented analytical approach (Railsback, 2001;
Grimm et al., 2005; Li et al., 2010b). The purpose of qualitative
verification was to ensure that the dynamics of the model reflect
what is expected in the wound healing literature and the available
experimental data (Railsback, 2001; Grimm et al., 2005; Lim et al.,
2006; Welham et al., 2008).

Cell population and ECM protein trends were compared
against known patterns reported in wound healing literature
as summarized in Table 6 (Martin, 1997; Witte and Barbul,
1997; Robson et al., 2001; Cockbill, 2002; Tateya et al., 2005;
Dechert et al., 2006; Stern et al., 2006; Tateya I. et al., 2006;
Tateya T. et al., 2006; Jiang et al., 2007). Figure 8 shows
cellular and molecular outputs of the VF-ABM from a 7-day
simulation. The model predicted a peak neutrophil population
at the end of day 1 and significant decreases in day 2.
The model also reproduced a peak of macrophage population
around day 2 and a downward trend from the beginning
of day 3 onward. Furthermore, the fibroblast proliferation
started around the end of day 1 in the simulation. Trends
of these specific cell populations agreed well with the known
patterns in wound healing literature (Table 6). For ECM outputs,
the VF-ABM reproduced the trends of collagen but not of
hyaluronan. In particular, both empirical and ABM results
showed the accumulation of collagen starting from Day 3. The
ABM predicted an earlier accumulation of hyaluronan (Day
1) compared to empirical data (Day 3). This early hyaluronan
accumulation might be related to high levels of TNF-α, TGF-β ,
FGF, and IL-1β that stimulated the secretion of hyaluronan by
fibroblasts in the model. More data and calibration are needed
for further investigation.

Due to the data availability, only a subset of chemicals was
compared against the empirical data (Lim et al., 2006; Welham
et al., 2008). This subset includes measured mRNA levels of
three inflammatory mediators (TNF-α, TGF-β , and IL-1β) out
of 8 that are simulated by the model. The comparison of the
model outputs and the empirical data are shown in Figure 9.
The ABM generated a peak of TNF-α after 13 h (26 ticks)
of injury, whereas this peak occurred at hour 8 (tick 16) in
the empirical data. For IL-1β , the model generated a peak at
hour 12 (tick 24), where the peak was observed at hour 8
in the empirical data. Overall, the ABM-predicted peaks for
TNF-α and IL-1β lagged behind the experimentally observed
peaks by 4–5 h. The discrepancy between the model outputs
and literature data may be explained as follows. First, since
TNF-α and IL-1β were down-regulated by TGF-β and IL-
10 via macrophages and fibroblasts, a possible reason for the
peak delay could be an insufficient strength of TGF-β or IL-
10. Second, since no empirical data were reported between
hour 8 and 16, a peak between this interval might have been
missed experimentally. More empirical data are needed for
further investigation. For TGF, the model missed predicting
the spike at hour 1. However, the sub-linear upward trend
from hour 4 till the end of the simulation predicted by the
model matched with that of the empirical data. In sum, the
VF-ABM trajectories of inflammatory mediators showed a few

TABLE 6 | Summary of patterns used for qualitatively verify 3D VF-ABM (Li et al.,

2010b).

Validation patterns Source References

Neutrophils arrive at wound site in first few

hours

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002

Neutrophil number is at maximum by day

1 or 2

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002

Neutrophil number decreases rapidly

around day 3 or 4

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002

Macrophage number is at maximum by

days 2 to 4

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002

Fibroblasts start proliferation on day 1 Tateya I. et al., 2006

Fibroblast number decreases significantly

on day 7 and stays low until day 14

Martin, 1997; Witte and Barbul, 1997;

Robson et al., 2001; Cockbill, 2002;

Tateya I. et al., 2006

Hyaluronan is first seen on day 3 and

peaks at day 5 and starts to drop

significantly at day 7, and then remains at

low level until day 14

Tateya et al., 2005; Dechert et al.,

2006; Tateya T. et al., 2006; Jiang

et al., 2007

Peak of accumulated hyaluronan content

occurs at the same time as peak of

inflammatory cells (neutrophils and

macrophages)

Stern et al., 2006; Jiang et al., 2007

Hyaluronan level is generally lower than for

uninjured vocal folds after injury

throughout healing period

Tateya et al., 2005; Tateya T. et al.,

2006

Collagen type I curve is sigmoid-shaped Witte and Barbul, 1997; Robson

et al., 2001

Collagen type I is first seen on day 3 and

peaks on day 5

Tateya et al., 2005; Tateya T. et al.,

2006

Collagen type I level is generally higher

than for uninjured vocal folds after injury

throughout healing period

Tateya et al., 2005; Tateya T. et al.,

2006

discrepancies when comparing with the empirical vocal fold
data in literature. Despite these few discrepancies, the overall
dynamics of the VF-ABM outputs are consistent with those seen
in the empirical data. Note that for this VF-ABM to be clinically
ready, more experimental data is needed to calibrate the model.
Future directions of this line of work will be discussed later in
section 4.

4. DISCUSSION

This work presents novel 3D ABM implementation techniques
to tackle the heterogeneity of time scales in large-scale and
multi-scale computational biology modeling. This 3D ABM
for complex biological systems harnessed high-performance
computing techniques to accommodate high-resolution models
in simulating the model geometry and cellular components in
the full physiological dimension without having to scale down
the problem size. Kernel volume reduction was used to speed
up convolution-based fine-grain chemical diffusion tasks on the
GPUs. OpenMP was used to parallelize the coarse-grain cellular
tasks the CPU cores. A task scheduling scheme was then used
to overlap and synchronize the coarse-grain, fine-grain diffusion
and in situ visualization components. This approach incurred
optimal concurrent utilization of both multi-core CPUs and
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FIGURE 8 | Simulation outputs. (A) Tissue damage and cell populations. (B) ECM subtances.

GPUs, resulting in minimal hardware resource idle time. The
3D VF-ABM prototype demonstrated tremendous performance
improvements to high-resolution cellular-level models achieved

with the proposed scheme. The high-performance simulation
suite is capable of large-scale computing and remote visualization
in under an average of 7 s per iteration. The computational
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FIGURE 9 | Empirical data vs. simulation output plot. Qualitative verification of the model output (left) against empirical data (Lim et al., 2006; Welham et al., 2008)

(right). The set of verified chemicals includes TNF-α, TGF-β, and IL-1β.

component tracks 17 million cells and process 1.7 billion
signaling chemical and structural protein data points. The
remote visualization component renders 17 million cells and
154 million signaling chemical data points on the server then
send result frame to the user. Compared to related work of
similar nature, the 3D VF-ABM showed roughly 900x, 63x, and
23x data processing power over the NetLogo version of vocal
fold ABM, MTb ABM (D’Souza et al., 2009), and FLAME GPU
immune system ABM (de Paiva Oliveira and Richmond, 2016),
respectively.

Model verification of the VF prototype was perform
qualitatively against known patterns (Martin, 1997; Witte and
Barbul, 1997; Robson et al., 2001; Cockbill, 2002; Tateya et al.,
2005; Dechert et al., 2006; Stern et al., 2006; Tateya I. et al.,
2006; Tateya T. et al., 2006; Jiang et al., 2007), and against
rat vocal fold surgical data (Lim et al., 2006; Welham et al.,

2008). The model reproduced the overall dynamics of cellular
and molecular trajectories seen in surgical vocal fold injuries.
However, in a few cases, such as the trends of hyaluronan and
collagen, the model missed predicting their peaks. This mismatch
between the model and empirical trends was possibly caused
by imbalances in the levels of regulating substances. More data
and further calibration process are required to investigate this
matter.

As discussed earlier, our ABM world currently only supports
regular grids and thus FDM applies well to the diffusion
computation. An arbitrary shape world is a possible direction
of future work that is yet to be explored. A technique such
as indirect addressing (Randles et al., 2015) and advanced
data structures such as octrees or meshes are examples of
possible approaches to an ABM world geometry solution.
These techniques clearly offer a more realistic representation
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of the real-world geometries but will also increase the model
complexity. Simple FDM for diffusionmay not apply well to these
complex geometries. Variations of FDM (Hunt, 1978; Liszka and
Orkisz, 1980) and other PDE approximation schemes such as
finite element method (FEM) should thus be considered in future
ABM developments.

Ongoing work on parallelizable calibration automation is
being developed to refine the parameter values of the VF-ABM
with additional vocal fold data collected in our laboratory (Li
et al., 2012; Heris et al., 2015; Latifi et al., 2016; Li-Jessen et al.,
2017) and others (King et al., 2015; Kishimoto et al., 2016). Those
works are necessary to improve the biological representation
of the VF-ABM for the ultimate clinical application. High-
performance techniques are being expanded to facilitate more
complex data explorations such as active area resolution
enhancement (Seekhao et al., 2017), 3D volume rendering of
ECM protein content, tissue fiber orientation and structure,
while still maintaining real-time performance. This work focuses
on the application of surgical vocal fold injury and repair because
the empirical data (Lim et al., 2006; Welham et al., 2008) are
available for model verification. However, the host-accelerators
(CPU-GPUs) coordination, diffusion kernel reduction, and
other techniques proposed here can be generalized and applied
to other complex multi-scale biological system applications
to enhance their performance on heterogeneous HPC
platforms.
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High-performance computing approaches that combine molecular-scale and

macroscale continuum mechanics have long been anticipated in various fields.

Such approaches may enrich our understanding of the links between microscale

molecular mechanisms and macroscopic properties in the continuum. However, there

have been few successful examples to date owing to various difficulties associated

with overcoming the large spatial (from 1nm to 10 cm) and temporal (from 1 ns to

1ms) gaps between the two scales. In this paper, we propose an efficient parallel

scheme to couple a microscopic model using Langevin dynamics for a protein motor

with a finite element continuum model of a beating heart. The proposed scheme

allows us to use a macroscale time step that is an order of magnitude longer than the

microscale time step of the Langevin model, without loss of stability or accuracy. This

reduces the overhead required by the imbalanced loads of the microscale computations

and the communication required when switching between scales. An example of the

Langevin dynamics model that demonstrates the usefulness of the coupling approach

is the molecular mechanism of the actomyosin system, in which the stretch-activation

phenomenon can be successfully reproduced. This microscopic Langevin model is

coupled with a macroscopic finite element ventricle model. In the numerical simulations,

the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous

oscillation (15Hz) accompanied by quick lengthening due to cooperative movements

of the myosin molecules pulling on the common Z-line. Also, the coupled simulations

using the ventricle model show that the stretch-activation mechanism contributes to the

synchronization of the quick lengthening of the sarcomeres at the end of the systolic

phase. By comparing the simulation results given by the molecular model with and

without the stretch-activation mechanism, we see that this synchronization contributes

to maintaining the systolic blood pressure by providing sufficient blood volume without

slowing the diastolic process.

Keywords: multiscale method, Langevin equation, continuum mechanics, actomyosin, heartbeat, stretch

activation
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Washio et al. Coupling of Langevin and Continuum

INTRODUCTION

With the advances in computational science made possible by
improvements in hardware technology, it is now possible to
create multi-scale simulation models of the heart in which the
macroscopic behaviors of the beating heart can be reproduced
and analyzed based on molecular mechanisms of the excitation-
contraction coupling process (Kerckhoffs et al., 2007; Gurev et al.,
2011; Sugiura et al., 2012). These models are based on many
studies of cell models of cardiac electrophysiology (Luo and
Rudy, 1994; ten Tusscher et al., 2004; Grandi et al., 2010). We
also note that tissue modeling has provided deep insights into the
nature of coupling and other interactions among cells in the heart
wall (Clayton et al., 2011). Central to these in silico heart studies is
an accurate model of crossbridge kinetics, which not only forms
the basis of cardiac mechanics, but also has clinical relevance
in the light of the many reports showing the involvement of
sarcomeric proteins in the pathogenesis of cardiomyopathies
(Cahill et al., 2013).

Ideally, a molecular dynamics simulation of actomyosin
should be coupled with a macroscopic finite element model
of the heart because with such a model the impact of

FIGURE 1 | Coupling strategy for three scales. In the actomyosin system, x and ξ are variables representing the deformation of the bound myosin molecule. In

particular, ξ is the strain of the myosin rods, and Wrod (ξ) is its strain energy. These variables were updated by the time step 1t ∼ 0.25 ns, while the variables in the

half-sarcomere and the ventricle models were updated by the time step 1T = n1t ∼ 1 µs. The shortening of the half-sarcomere model is represented by the variable

z, which affected the Langevin dynamics of the bound myosin molecules through the constraint condition: 1ξ = 1x − 1z, while the sarcomeric contractile force
T,1TF on the time interval [T, T + 1T] was given by the sum of tensile forces T+k1tFi,j of the bound myosin rods averaged over the time interval (k = 1, · · · , n). The

half-sarcomere model of actomyosin complexes was imbedded into each tetrahedral element of the finite element ventricle model in the reference configuration along

the fiber direction f. The deformation at the time T of the ventricle is represented by the current position x = Tx (X) of the material point X, thus λ =

∥

∥

∥
∂Tx/∂X · f

∥

∥

∥
is

the stretch along the fiber orientation direction. This stretching was transferred to the shortening of the imbedded half-sarcomere model with the factor −SL0/2, while

the contractile tension T,1T T f was given along the fiber direction by scaling the sarcomeric contractile force T,1TF by taking the cross-sectional area per thin

filament (SA0), and the volume ratio of the sarcomere within the ventricle wall (RS) into account.

mutations in the myosin molecules on cardiac function can
be directly assessed. However, it is not possible to perform
such simulations even with the best available high-performance
computers, and current multi-scale heart simulators usually
adopt state-transition models of crossbridge cycling. In these
models, the rate constants for transitions between states are
governed by the energy of each state (Huxley and Simmons,
1971), but the minimum in the energy landscape corresponding
to each state ignores its width in the infinitely-sharp minimum
approximation, in which the angle of each lever arm is fixed in
the most stable configuration. Obviously, this is a simplification
of the behavior of real myosin molecules experiencing thermal
fluctuations, and we have recently reported that a model with
an energy landscape possessing wide minima can reproduce
experimental findings with higher accuracy (Marcucci et al.,
2016). However, in that paper, we only examined simple Langevin
dynamics with a single variable representing the free energy
potential during the power stroke, and solved it using a Monte
Carle (MC) simulation. In that case, the Kramers-Smoluchovski
approximation (Gardiner, 2004) was used to obtain the rate
constants of the transitions between the multiple states, which
were given by discretizing the one-dimensional range of the
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TABLE 1 | Parameters for the actomyosin dynamics.

Parameter Value Unit References

ATP HYDROLYSIS ENERGY

EATP 22kBT

kBT 4.278 pN · nm T = 310◦C

POWER STROKE FREE ENERGY ϕPS

s1 5.5 nm Equation 8

s2 5.5 nm Equation 8

EPre 0.8EATP Equation 8

EPS1 0.85EPre Equation 8

EPS2 0.0 Equation 8

kY 20 pN/nm Equation 8

FOR TRAP MODEL

Eb01 1.6EPre Equation 9

Eb02 1.2EPS1 Equation 10

Ctrap 200 pN/nm Equation 9

θtrap −0.25 nm Equation 9

1θ trap 5 nm Equation 9

FOR NO TRAP MODEL

Eb01 1.67EPre Equation 9

Ctrap 0 pN/nm Equation 9

Eb02 1.2EPS1 Equation 10

ATTACHMENT RATE CONSTANT

APre 3,000 1/s Figure 4

DETACHMENT RATE CONSTANT TO PXB

DPXB,Pre 3,000 1/s Equation 11

DETACHMENT RATE CONSTANT TO NXB

DNXB0 125 1/s Equation 12

amin 0.1 1/nm2 Equation 13

cmin 100 1/s Equation 13

dmin −16 nm Equation 13

amax 0.1 1/nm2 Equation 13

cmax 100 1/s Equation 13

dmax,Pre 5 nm Equation 14

dmax,PS1 9 nm Equation 14

dmax,PS2 9 nm Equation 14

DAMPING COEFFICIENT

γX 20 pN ns/nm Equation 1

γY 50 pN ns/nm Equation 1

γD 70 pN ns/nm Equation 2

angles of the lever arms. If we try to formulate amore realistic free
energy potential as a function of multiple variables, the number
of MC states increases explosively, and it is no longer possible
to find the rate constants between the MC states theoretically.
Therefore, it is desirable to establish a numerical scheme that
directly couples the Langevin dynamics of the molecules with the
macroscopic continuum dynamics.

Here, we report a novel numerical method to couple the
microscale simulation of crossbridge kinetics described by the
Langevin equation with the macroscopic mechanics simulations
using the finite element method, even though the time scales
differ considerably. In this method, the time step of the

FIGURE 2 | The half sarcomere model (A) and the attached myosin molecular

model composed of the myosin head (MH) and the lever arm (LA) and the rod

(B). In the half-sarcomere model, the Z-line was fixed and the shortening

distance of the left edge of the thick filaments is denoted by z. The

configuration of the attached myosin molecules is represented by two

variables x and y. The LA is decomposed into LA1 and LA2 to represent its

deflection around the point “P.” The degree of the deflection is given by

θ = y − x. The power stroke is given by the counter clockwise rotation of LA1

around the point “O.” The rod is a non-linear spring connecting the thick

filament and the point “Q” of LA2. The strain of the rod is denoted by ξ .

macroscopic model is set at a multiple of that from the
microscopic model to reduce computational overhead. The
validity of the method was confirmed with a comparison of
the simulation results with the recently reported experimental
findings on the spontaneous oscillation of cardiac sarcomeres
(Ishiwata et al., 2011), which can be reproduced only by correctly
handling the coupling of the motion of the sarcomeres with
the actomyosin dynamics. By applying this method, we also
show that a trapped crossbridge mechanism greatly facilitates
ventricular function through the stretch-activation of the cardiac
muscle (Stelzer et al., 2006). A notable feature of the stretch-
activation is a long-lasting increase in the contractile tension after
a small, rapid stretch is applied during activation. In the usual
stretch-activation experiments, the stretch is 1% of the muscle
length, which closely corresponds to the microscale size of lever
arm swing (10 nm). It is likely that the rapid stretching induces an
unusual persistent conformational change of the bound myosin
molecules. In this work, we introduce a free energy potential
for the power-stroke model in which some of the bound myosin
molecules become trapped in a deformed conformation when a
rapid stretch is applied. These trapped myosin molecules cannot
recover under normal thermal fluctuation unless their rods
become relaxed or extremely stretched by subsequent sarcomeric
movements. Through the beating-ventricle simulations, we show
how this mechanism contributes to improved blood circulation.

MATERIALS AND METHODS

Our strategy of coupling the different scales is summarized in
Figure 1. The stretch rates were transferred from the macro- to
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micro-scale while the contractile forces were transferred back
from the micro- to macro-scale. Finite element continuum
mechanics were applied to the ventricle model. The half-
sarcomere model of actomyosin complexes was imbedded into
each tetrahedral element of the finite element ventricle model
along the fiber direction. The molecular variables that represent
the deformation of bound myosin molecules were computed by
the Langevin dynamics. The shortening rate −λ̇ along the fiber
direction in the ventricle model was transferred to the sarcomeric
shortening velocity ż by scaling with the unloaded half-sarcomere
length SL0/2. The sarcomeric shortening velocity ż was applied
in the actomyosin model to slide the myosin thick filament.
The contractile force of the half-sarcomere model was given by
the sum of the tensile forces of the bound myosin rods. The
contractile force in the half-sarcomere model was transferred to
the macroscopic contractile tension along the fiber direction. In
our coupling approach, the computational time step size 1T of
the sarcomeric dynamics and the ventricle continuum dynamics
is given by an integer multiple of the time step size 1t of
the actomyosin Langevin dynamics (1T = n1t) to reduce
the computational and communication overheads. As will be
discussed in section Multiple Time Step (MTS) Method, such
a multiple time-step strategy can be applied without suffering
numerical instabilities by also transferring the stiffness given
by the bound myosin rods. Readers who are not interested in
the numerical schemes may skip sections Multiple Time Step











γX
t ẋi,j +

∂ϕ
∂x

(

txi,j,
tyi,j

)

+
dWrod
dξ

(

tξi,j
)

− tRX,i,j = 0

γY
t ẏi,j +

∂ϕ
∂y

(

txi,j,
t yi,j

)

− tRY ,i,j = 0
tξi,j −

tA,i,jξi,j −
(

txi,j −
tA,i,jxi,j

)

+ tz − tA,i,jz = 0

, tδA,i,j = 1
(

1 ≤ i ≤ nM , 1 ≤ j ≤ nF
)

(1)

γD
t ξ̇i,j +

dWrod

dξ

(

tξi,j
)

− tRD,i,j = 0, tδA,i,j = 0
(

1 ≤ i ≤ nM , 1 ≤ j ≤ nF
)

(2)

γZ
t ż + KZ

tz −
1

nF

nF
∑

j= 1

nM
∑

i= 1

tδA,i,j
dWrod

dξ

(

tξi,j
)

= 0 (3)

(MTS) Method and Coupling With the Finite Element Ventricle
Model.

Langevin Dynamics of a Single Sarcomere
The parameters adopted for the molecular dynamics are
summarized in Table 1. Here, the dynamic equations for a
half-sarcomere model composed of nF pairs of thick and thin
filaments (Figure 2A) are introduced. In this half-sarcomere
model, we assumed that the right ends of the thin filaments were
connected to the Z-line, which was fixed in microscopic space.
The shortening displacement of the left end of the thick filament
from the unloaded position was denoted by z. On each thick
filament, there were nM myosin molecules, which underwent
repeated attachment and detachment with the thin filament.
The value of nM = 38 was adopted from our previous work
(Washio et al., 2016). During the attached phase, the lever arm
(LA) of the myosin molecule rotated around the joint point “O”
of the myosin head (MH) under a given free energy potential
ϕ with additional random forces (Figure 2B). These rotations
were either the power stroke or the reversal stroke, depending
on the rotational direction. To represent the deflection of the

LA, it was decomposed into two rigid components, LA1 and
LA2, jointed at the point “P” (Figure 2B). As with the real
structure of a myosin molecule, LA1 may contain a series of
subdomains from the lower 50 kDa to the converter in the motor
domain because some conformational changes of these parts
were supposed to be accompanied by lever arm rotation. The
displacement of the point “P” of the filament direction given by
the rotation of LA1 from its pre-power stroke position around
the joint point “O” was represented by y. Here, the conformation
of the myosin molecule just after attachment was assumed to be
the same as the pre-power stroke conformation. Similarly, the
displacement about the joint point “Q” with the myosin rod was
represented by x. Thus, θ = y − x was the deflection of the
LA from the pre-power stroke conformation. The strain energy
of the myosin rod was given by a function Wrod (ξ), where ξ

was the strain (length change) in the filament direction from its
unloaded natural length ξ0. The rod strain energy was non-linear
with the generated force, as with our previous work (Washio
et al., 2016) for a rod with ξ < 0. For positive strain (ξ >

0), a constant stiffness with a spring constant 2.8 pN/nm was
used (Figure 3A). Under these assumptions, the dynamics of the
sarcomere was described by the following Langevin equations,
where the suffixes i and j represent the indexes of theMHs and the
thick filaments, respectively. Also, t is the time, and tδA,i,j is set to
one if theMHwas attached at time t to the thin filament, and zero
otherwise.

Here, the probabilistic rules for transitions between the attached
and detached states will be given below. At the time of
attachment, the myosin molecule was assumed to be in the
pre-power stroke state.

{

tA,i,jxi,j = xPre ≡ 0
tA,i,jyi,j = yPre ≡ 0

(4)

Here, tA,i,j is the time at which the attachment occurred.
The spring strain tξi,j was continuously updated at the
transitions.

In Equations (1–3), γX , γY , and γD were the damping
coefficients, and tRX,i,j,

tRY ,i,j, and
tRD,i,j were the random forces,

which fulfilled the condition:

{
〈

tRα,i,j

〉

= 0
〈

tRα,i,j,
t′ Rβ ,k,l

〉

= δαβδikδjl
√

2γαkBT
t−t′

δ
,

α,β = X,Y ,D, 1 ≤ i, k ≤ nM , 1 ≤ j, l ≤ nF (5)

where Boltzmann’s constant is kB and the temperature is T. In
this paper, the damping coefficient γD was set to 70 pN · ns/nm,
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following Howard (2001), while γX and γY were set to 20 and 50
pN · ns/nm, respectively. Since the rotation of LA1 may involve
structural changes in other parts in the MH, the drag coefficient
for LA1 was larger than that for LA2.

In Equation (3), γZ was the drag coefficient per length change
of a single thin filament of the sarcomere and KZ was the spring
constant for each thin filament of the sarcomere. Equation (3)
follows from the fact that the sarcomeric contractile tension is
just the sum of the tensile forces of the rods for all of the attached
myosin molecules. The third line in Equation (1) indicates the
constraint condition in the association state. This condition gives
the rod strain tξi,j in relation to the conformational change of the
myosin (txi,j) and the sarcomeric movement (tz).

Free Energy of a Myosin Molecule
We assume that the free energy of the myosin molecule ϕ in
the attached state can be decomposed into the power stroke free
energy ϕPS of LA1 and the deflection energy of the LA:

ϕ
(

x, y
)

= ϕPS

(

θ , y
)

+WLA (θ) , θ = y− x (6)

For the deflection energy of the LA, a simple quadratic potential
was assumed:

WLA (θ) =
1

2
Kθθ

2 (7)

Since there was no appropriate reference for setting the stiffness,
a comparable stiffness (Kθ = 4 pN/nm) to that of the rod strain
was adopted in our model. For the power-stroke free energy ϕPS,
the three local minima at y = 0, s1, and s1 + s2 for a fixed
deflection θ = y − x are given as shown in Figure 2B, which
is described by the following equations:

ϕPS

(

θ , y
)

=






















































EPre +
1
2 (Eb1 (θ) − EPre)
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4

EPS2 +
1
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+ 1
2kY

(
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5s2
4

)2
, y > 5s2

4

(8)

Here, EPre, EPS1and EPS2 were the three local minimum energy
values at y = 0, s1, ands1 + s2, respectively. These local minima
correspond to the configurations of the MH and LA1 in the
pre-power stroke state, and the states after the first two power
strokes. The power stroke step sizes, s1 and s2, and the energies
EPre − EPS1 and EPS1 − EPS2 consumed in the two strokes, are
given values (Table 1) similar to those used in the Monte Carlo
(MC) model in our previous work (Washio et al., 2016), in which
the ATP hydrolysis energy was set to EATP = 22KBT following
Saupe et al. (1999) at a body temperature of T = 310 K.

In Equation (8), Eb1 (θ) and Eb2 (θ) are the energy barriers
between the minima. The heights of the energy barriers were

adjusted so that enhanced beating performance was realized
in the coupled simulation for the ventricle model, which is
introduced below. In our model, the first barrier was assumed to
be a function of the LA deflection θ as:

Eb1 (θ) =











Eb01, θ ≤ θtrap

Eb01 + Ctrap
θ−θtrap
1θtrap

, θtrap < θ ≤ θtrap + 1θtrap

Eb01 + Ctrap, θ > θtrap + 1θtrap

(9)

This first energy barrier was introduced to reproduce the stretch-
activation of the cardiac muscle (Stelzer et al., 2006). In their
experiment, a small, rapid stretch of ∼1% of the sample length
was imposed to activated skinned myocardium. Then, a nearly
10% increase in the contractile tension persisted for a time on the
order of seconds compared with that of the steady state before the
stretch. This suggests the existence of a trapped conformation for
the MH and LA in an attached state that can be generated by the
rapid stretch. By experiencing a high barrier, as in Equation (9),
a myosin molecule that exhibits a large deflection θ and a large
strain ξ after the first power stroke can become trapped in that
state if the MH is strongly attached, since these myosin molecules
cannot make progress toward a larger forward stroke, which
would requires a large increment in either the deflection energy
of the LA [WLA (θ)], or the strain energy of the rod [Wrod (ξ)].
Such large LA deflections and rod strains can be generated when
the thick filament was pulled rapidly to the outside. In this
work, the values Ctrap = 200 pN/nm, θtrap = −0.25 nm, and
1θtrap = 5 nm were adopted (Figure 3B) so that the appropriate
response to the stretch-activation is reproduced, as shown in the
numerical simulation. The second energy barrier was assumed to
be a constant:

Eb2 (θ) ≡ Eb02. (10)

Control Model of Attachment and
Detachment
For the transition between the attached and detached states
(Figure 4), an MC model similar to the one in our previous
work (Washio et al., 2016) was used. In the half-sarcomere
model, the MHs were arranged on the thick filament at regular
intervals, and the thin filament was divided into segments called
troponin/tropomyosin (T/T) units. The transitions between the
states of a T/T unit were affected by the Ca2+ concentration,
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FIGURE 3 | Strain energy Wrod (ξ) of the myosin rod and the force given by its derivative (A). The details are described in Supplementary Material S1.2. The free

energy landscape of the myosin molecule ϕ in the attached state with respect to the molecular variables y and θ (B). This free energy consists of ϕPS (θ , y) and

WLA (θ). ϕPS (θ , y) is the energy source of the power stroke (rotation of LA1). WLA (θ) is the deformation energy of LA for its deflection. The pre-power stroke

configuration corresponds to the local minimum at y = 0. The other two local minima at y = s1 = 5.5 nm and at y = s1 + s2 = 11 nm correspond to the states after

the first and second power strokes, respectively. Between the pre-and the post first power stroke states, the high energy barrier is assumed for the positive deflection

(θ > 0) of LA.

[Ca], and by the states of the MHs below the T/T unit. In
this model, only the Ca-bound state increased the affinity of
the MHs for the thin filament. There are two detached state
of MHs - a nonbinding state NXB, and a weakly binding
state PXB. The affinity was adjusted by modifying the factor
Knp for the rate constant of the transition from NXB to PXB.
The relationship between the MHi,j location and the T/T
unit was determined from the offset position of the MHi,j

(tz + tξi,j −
txi,j) from its unloaded position (Figure 2A). A

cooperative mechanism with the nearest-neighbor MHs was
added by introducing the factors γ ng and γ−ng (γ = 40),
as in our previous work (Washio et al., 2016), in which
the integer ng (= 0, 1 or 2) was the number of neighboring
MHs in the weakly binding state PXB or the attached state
XB. The details of the transients of the T/T unit states
and between NXB and PXB are described in Supplementary
Material S1.1.

Attachment was possible only from state PXB with the rate
constant APre. Detachment from the attached state XB to the
weakly bound state PXB was allowed only from the pre-power
stroke state, as follows:

DPXB

(

y
)

=







DPXB,Pre, y ≤ s1/4

(1− ω)DPXB,Pre, y = (1/4+ ω/2) s1 : 0 < ω ≤ 1

0, y > 3s1/4

(11)

Here, the variable ω could take values between 0 and 1, and
was introduced to interpolate the rate constant between the
pre-power stroke state and the state after the first power stroke.

In this transition, no ATP molecules were consumed, whereas
detachment to NXB required one ATP molecule. This rate
constant is given as a function of both the rod strain ξ and the

power stroke displacement y:

DNXB

(

ξ , y
)

=














max
(

0,Dstrain

(

ξ , y
))

, y ≤ s1 + s2/4

max
(

ωDNXB0,Dstrain

(

ξ , y
))

, y = s1 + (1/4+ ω/2)

s2 : 0 < ω ≤ 1

max
(

DNXB0,Dstrain

(

ξ , y
))

, y > s1 + 3s2/4

(12)

Similar to before, the variable ω could take values between 0 and
1, and interpolated the rate constant between the states after the
first and second power strokes, while Dstrain indicates the forced
detachment due to the extreme strain of the myosin rod:

Dstrain

(

ξ , y
)

=
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exp
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amin

(

ξ − dmin

)2
)

− 1
)

, ξ ≤ dmin
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y
)

cmax

(

exp
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amax

(
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(

y
))2
)

− 1
)
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(

y
)

(13)

Here, the negative strain threshold dmin was a constant, and
the positive strain threshold dmax depended on the stroke
displacement y as

dmax

(

y
)

=







































dmax,Pre, y ≤ s1/4

(1− ω) dmax,Pre + ωdmax,PS1, y = (14+ ω/2)

s1 : 0 < ω ≤ 1

dmax,PS1, s31/4 < y ≤ s1 + s2/4

(1− ω) dmax,PS1 + ωdmax,PS2, y = s1 + (1/4+ ω/2)

s2 : 0 < ω ≤ 1

dmax,PS2, y > s1 + 3s2/4

(14)

In this study, the parameters dmax,Pre = 5 nm, dmax,PS1 =

9 nm, and dmax,PS2 = 9 nm were used. These values were
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FIGURE 4 | The state transition Monte Carlo model of the T/T unit and the

myosin molecule. The MHs in either the NXB or PXB states are assumed to be

detached. The rate constant factors Knp and Kpn between NXB and PXB are

affected by the state of T/T unit above it. The detachment rate constant DPXB
between PXB and XB are given as a function of y, so that the transition to PXB
is allowed only for the MHs in the pre-power stroke position. The detachment

rate constant DNXB to NXB is given as a function of y and ξ , so that the

detachment is allowed for the second post-power stroke state or the MHs

connected to the extremely stained myosin rods. The time-step strategy for

reducing the computational loads is shown by the arrows. The molecular

variables x, y, and ξ of the bound myosin molecules are updated by the finest

basic time step 1t (black arrow), while the rod strain ξ in the detached states

is updated by its multiples nD1t. The state transitions of the MHs and the T/T

units are calculated by the MC method with the time step nDA1t (red arrows).

adjusted so that the appropriate responses to stretch-activation
were reproduced. These choices did not conflict with the fact that
the binding affinity to the thin filament increased as the power
stroke proceeded (Llinas et al., 2015).

Multiple Time Step (MTS) Method
First, we consider a multiple time step (MTS) approach for a
single half-sarcomere model (Figure 2) in which different time
step intervals1t and1T were adopted, respectively, for updating
the molecular variables xi,j, yi,j, ξi,j and the sarcomeric shortening
displacement z, when solving Equations (1, 2) coupled with
Equation (3). Below, this approach will be extended to coupling
with a macroscopic finite element continuum model, in which a
single sarcomere model was imbedded into each finite element.

The time step1T was assumed to be an integer multiple of the
time step interval for the molecular variables 1t:

1T = n · 1t (15)

Such approaches reduce the computational overhead of
the shared-memory synchronization, as well as the data
communication needed in distributed parallel systems, if a
sufficiently large integer n can be applied. For our Langevin
dynamics model, the microscale time step t was set at 0.25 ns.
This choice was constrained by the relationships between the
magnitudes of the drag coefficients γX , γY with the curvature of

the potential ϕ. For example, in the case of a simple Langevin
equation:

γ tu̇+
dϕ

du

(

tu
)

− tR = 0 (16)

with a given free energy potential ϕ, a variable u, and the random
force that satisfies

{

〈

tR
〉

= 0
〈

tR t′R
〉

=
√

2γ kBT
t−t′δ

(17)

The stability of the explicit numerical integration scheme
required that

1t ≤
γ

Kmax
(18)

where Kmax was the maximum magnitude of the curvature of
ϕ
(
∣

∣

∣

∣d2ϕ/du2
∣

∣

∣

∣

)

over the range of u. Even if an implicit time
integration scheme was applied, Equation (18) must be satisfied
for the maximum magnitude value of the negative curvature
(d2ϕ/du2 < 0). In our case, as shown in Figure 3B, negative
curvatures were unavoidable on the ridge lines of the potential
landscape. For example, if 1t = 0.25 ns was used when γ =

50 pN · ns/nm, the allowable maximal curvature from Equation
(18) was Kmax = γ /1t = 200 pN/nm. This curvature value
implies an energy change of Kmax1u2 = 100 pN · nm for a
displacement 1u = 1 nm. Actually, values for the magnitude of
the curvature were observed near the high energy barrier between
the pre-power stroke state and the state after the first power
stroke in our model (Figure 3B).

Another limitation on practicable time step size comes from
considerations of fluctuations1u during each time interval1t. If
we ignore the potential ϕ in Equation (16), the standard deviation
of 1u given by a series of random forces in Equation (17) during
time 1t is

1tσ =

√

〈

1u2
〉

=
√

2kBT1t/γ (19)

At body temperature, we have kBT = 4.278 pN · nm. Thus, for
the case of γ = 50 pN · ms/nm and 1t = 0.25 ns, we have
1tσ ∼ 0.2 nm. These displacements are large enough to make a
noticeable difference in the landscape of the potential ϕ.

Compared with the dynamics of the molecules, the sarcomeric
movement in cardiac muscle is generally much slower, as shown
by the following argument. The shortening velocity of the
sarcomere model is related to the stretch rate λ̇ of the cardiac
muscle along the fiber direction by

ż = −
1

2
SL0λ̇ (20)

Here, SL0 = 2.1 µm is the unloaded sarcomere length. If we
assume the maximal shortening velocity of the cardiac muscle
(

−λ̇
)

max
= 5ML/s, where ML is the muscle length (Edman

et al., 1974), the maximal shortening velocity of a half-sarcomere
is żmax = 5.25µm/s = 5.25×10−6nm/ns. However, the previous
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consideration regarding the fluctuations during the time interval
1t = 0.25 ns gives the average magnitude of the molecular
velocity to be 1tσ/t ≈ 0.8 nm/ns. This comparison between
the sarcomeric and molecular velocities suggests the possibility
of applying a multi-valued time step approach, in which tens
of thousands of fine time steps of size 1t are calculated when
integrating the molecular variables xi,j, yi,j, ξi,j for each large one
step interval 1T used for integrating the sarcomeric variable z.

During the time integration process using the small time step
1t over the time interval [T :T + 1T], the LA conformation
variables xi,j, yi,j are updated explicitly, and then the rod strains
ξi,j are temporarily updated so that the constraint in Equation
(1) is fulfilled, using the most recently calculated shortening
velocity ż from time T. The temporarily updated variables are
denoted with bars over them, such as ξ i,j and z. When the process
switches to an implicit computation of the sarcomeric shortening
displacement z and its time derivative ż at time T + 1T for use
in Equation (3), the tensile forces exerted by the attached MHs
during the time interval [T :T + 1T] are computed by using the
corrected rod strain ξi,j, for which the shortening velocity ż over

the time interval [T :T + 1T] is replaced with T+1T ż. By doing
so, the stiffness due to the strained rods of the attached MHs is
involved in the implicit time integration of Equation (3). This
implicit strategy allows us to apply a time interval 1T which is
four orders of magnitude larger than 1t.

The molecular variable time integrations can be performed
using the temporal sarcomeric shortening displacement z on the
time interval [T :T + 1T] given by

T+1Tz = Tz + k1tT ż, k = 1, · · · , n (21)

The LA conformation variables for the attached MHs at time
t + 1t are explicitly updated from those at time t, so that the
following equations are satisfied:















γX
t+txi,j−

txi,j
1t +

∂ϕ
∂x

(

txi,j,
t yi,j

)

+
dWrod
dξ

(

tξ i,j

)

−tRX,i,j = 0,

γY
t+tyi,j−

tyi,j
1t +

∂ϕ
∂y

(

txi,j,
t yi,j

)

−tRY ,i,j = 0

tδA,i,j = 1

(22)

Then, the temporal rod strains
{

ξ i,j

}

at time t + 1 are updated

according to











γX
t + tξ i,j−

tξ i,j
t +

dWrod
dξ

(

tξ i,j

)

− tRD,i,j = 0, tδA,i,j = 0
t + tξ i,j −

tA,i,jξ i,j −
(

t+1txi,j −
tA,i,j xi,j

)

tδA,i,j = 1

+ t + 1tz − tA,i,jz = 0,

(23)

After performing the above time integrations for k = 1, · · · , n
over the interval [T :T + 1T], the true sarcomeric shortening
displacement z is implicitly computed by solving the following
equations:

{

γZ
T+1T ż + KZ

T+1Tz −T,1T F = 0
T+1Tz = Tz + 1T T+1T ż

(24)

In Equation (24), the mean total tensile force T,1TF over the time
interval [T :T + 1T] is found by applying the true rod strains
{

ξi,j
}

over the time interval [T :T + 1T] according to

T,1TF =T,1T F +
1

n · nF

n
∑

k=1

nF
∑

j=1

nM
∑

i=1

T+k1tδA,i,j
d2Wrod

dξ 2

(

T+k1tξ i,j

) (

T+k1tξi,j −
T+k1t ξ i,j

)

(25)

where the temporary total tensile force is evaluated using

T,1TF =
1

n · nF

n
∑

k=1

nF
∑

j=1

nM
∑

i=1

T+ktδA,i,j
dWrod

dξ

(

T+k1tξ i,j

)

(26)

from the temporary rod strain values
{

T+k1tξ i,j

}

. Note that

Equation (25) is a linear approximation of the tensile force for
the true rod strains about the temporary rod strains, for which
the differences are given by

T+k1tξi,j −
T+k1tξ i,j = −

(

k− kA,i,j
)

1t
(

T+1T ż − T ż
)

, k = 1, · · · , n

(27)

where kA,i,j is the most recent microscale step index for k for
whichMHi,j is attached. This number is initialized to zero before
starting the small time steps with k = 1. By substituting Equation
(27) into Equation (25), the mean total tensile force can be
rewritten as

T,1TF =T,1T F̃ − 1T T,1TKF
T+1T ż (28)

with total mean stiffness

T,1TKF =
1

n2 · nF

n
∑

k=1

nF
∑

j=1

nM
∑

i=1

T+k1tδA,i,j
(

k− kA,i,j
)

×
d2Wrod

dξ 2

(

T+k1tξ i,j

)

(29)

and extrapolated mean total tensile force using T ż

T,1T F̃ = T,1TF + 1T T,1TKF
T ż (30)

By substituting Equations (28–30) into Equation (24), the
implicit scheme is established as follows:

(

γZ + KZ1T + 1T T,1TKF

)

T+1T ż = −
(

KZ
Tz −T,1T F̃

)

(31)

To see the necessity of the above implicit coupling scheme,
consider the instability of the usual explicit scheme here. If an
explicit scheme for the total mean tensile force is used

{

γZ
T+1T ż + KZ

T+1Tz −T,1T F = 0
T+1Tz =T z + 1T T+1T ż

(32)
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instead of Equation (24), the time step size 1T is limited by the
total mean stiffness by

1T <
γZ + 1TKZ

T,1TKF
(33)

As an illustration, in the case of γZ = 104 pN ·ns/nm, as assumed
in our previous work (Washio et al., 2017), T,1TKF = 28 pN/nm,
20 attached MHs, the stiffness of each rod set to 2.8 pN/nm, and
KZ ≈ 0, the constraint in Equation (33) would be 1T < 360 ns.
However, the proposed algorithm is stable for any time step size,
as far as the linear approximation in Equation (28) is concerned.

In coupling with the macroscopic finite element model, a half-
sarcomere model is assigned to each element, for which Equation
(20) is applied based on the relationship between the stretching
along the fiber orientation f and the deformation gradient tensor:

Tλ =

∥

∥

∥

∥

∥

∂Tx

∂X
f

∥

∥

∥

∥

∥

(34)

Here, Tx = Tx (X) is the current position at time T of the
material point X in the unloaded condition. Specifically, the
following equation, obtained from Equation (34), is substituted
into Equation (20).

T λ̇ =
1
Tλ

(

∂T ẋ

∂X
f

)

·

(

∂Tx

∂X
f

)

(35)

From Equations (20, 28), the mean total tensile force of each thin
filament is given by

T,1TF = T,1T F̃ − 1T
T,1TKF

2
SL0

T+1T λ̇ (36)

Here, T ż in Equation (30) is also replaced with −SL0
T λ̇/2 to

determine T,1T F̃. Thus, the total active tension per unit area in
the unloaded configuration, the nominal stress, is given by

T,1TTf = 2
RS

SA0

T,1TF = 2
RS

SA0

(

T,1T F̃ + 1T
T,1TKF

2
SL0

T+1T λ̇

)

(37)

Here, SA0 is the cross-sectional area of a single thin filament and
RS denotes the volume ratio of the sarcomere. The factor of two in
Equation (37) comes from the fact that T,1TF is the total tensile
force given by the MHs surrounding one of the double spirals
along the thin filament.

Although a small time step on the order of 1 ns must be used
for the time integration of the molecular variables, a larger time
step can be applied to the MC state-transition phase. Thus, it
is reasonable to apply a much larger time step size, as long as
it is an integer multiple of 1t, to the computation of the MC
state-transitions. Furthermore, even for the time integration of
the molecular variables, a coarser time step than the one used for
the attached MHs can be applied to the detached MHs, since the
magnitudes of the curvatures are different for the potentialsWrod

and ϕ (Figure 3).

Coupling With the Finite Element Ventricle
Model
In the beating-ventricle simulation, the Ca2+ transient is given
for each element of the ventricle model (Figure 5). By referencing
the Ca2+ transients, together with the stretching λ and the
stretching rate λ̇ along the fiber direction, the molecular
variables were integrated using the small time step 1t, while
the macroscopic displacements of the continuumwere computed
using the large time step 1T. As derived in the Supplementary
Material S3, the active stress on the continuum at time T+1T is
represented by the first Piola–Kirchhoff stress tensor:

Πact =

T,1TTf

T+1Tλ
f ⊗ f ·

(

∂T+1Tx

∂X

)T

(38)

In the definition of the tension T,1TTf in Equation (37), the
stiffness due to the attachedMHs is implicitly included by the use
of T+1T λ̇ for T+1T ż in Equation (28). See also the explanation
of the stiffness in the Supplementary Material S3. Thus, the
proposed scheme is stable for any size of time step.

The governing equation in the macroscale to be solved can be
represented by

∫

�

δu̇ · ρü d� +

∫

�

δŻ :

(

Π + 2pJF−1
)T

d�

= PL

∫

ŴL

δu̇ · n dŴL + PR

∫

ŴL

δu̇ · n dŴR (39)

∫

�

δp
(

2 (J − 1) −
p

κ

)

d� = 0 (40)

Here, u = Tu (X)=Tx (X)−X is the displacement of the material
at point X ∈ � at time T, ρ is the density of the heart muscle,
F = ∂x/∂X is the deformation gradient tensor, Z = ∂u/∂X is the
displacement gradient tensor, J = det F is the Jacobian, p is the
hydrostatic pressure, κ is the bulkmodulus, and PL and PR are the
blood pressures in the left and right ventricles, respectively. � is
the muscle domain in the reference configuration, while ŴL and
ŴR are the blood–muscle interfaces of the left and right ventricles,
respectively, in the current configuration at time T, and n is
the normal unit vector directed from the cavity to the muscle
at these surfaces (Figure 5). The Dirichlet boundary condition
Tu (X)=0 is imposed on the boundary nodes around the valve
rings. The first Piola–Kirchhoff stress tensor Π consists of the
active, passive, and viscous stresses:

Π = Πact + Πpas + Πvis (41)

where Πact is given by Equation (38), and the others are,
respectively, the passive and viscous stresses, as described in our
previous work (Washio et al., 2016). The details of these two
stress tensors are given in the Supplementary Material S4.

The ventricle blood pressures PL and PR were determined
through their interactions with the circulatory system of the
body. These were modeled as electrical analog circuits, using the
same parameters described in our previous work (Washio et al.,
2016). The details of the circuit model that includes the atrial
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FIGURE 5 | Electrical analog circuits connected to the valve interfaces. The systemic circulation model represents blood flow from the left to the right ventricle through

the aortic (AO) and the tricuspid (TR) valves, while the pulmonary circulation model represents blood flow from the right to the left ventricle through the pulmonary (PU)

and the mitral (MI) valves. The boxed inset shows the Ca2+ transient profile with the delay time TD.

model are given in the Supplementary Material S5. In particular,
the flow rates at the inlets and the outlets were associated with the
rates of volume change in the cavity according to:

{
∫

ŴL
u̇ · n dŴL = FMI − FAO

∫

ŴR
u̇ · n dŴR = FTR − FPA

(42)

Here, FMI , FAO, FTR, and FPA were the flow rates, respectively,
through the mitral, aortic, tricuspid, and pulmonary valves
(Figure 5). These flow rates were determined by Ohm’s law while
taking the rectification of the valve into account.

F = H
(

F
)

F (43)

Here, F was the flow rate in the case of no rectification, andH was
the relaxed Heaviside function:

H
(

F
)

=







0, F < 0
(

F/F0
)2 (

3− 2F/F0
)

, 0 ≤ F ≤ F0
1, F > F0

(44)

In our simulation, the value F0 = 5 mL/s was used.
The macroscopic variables, including the acceleration ü,

velocity u̇, and displacement u at time T + 1T were found
using Newton–Raphson iteration until the equilibrium condition
was satisfied with the Newmark-beta time integration scheme

(Supplementary Material S6). During the iterations, the active
stress in Equation (38) was redefined with Equation (37), in
which the microscopic computational results T,1T F̃ and T,1TKF

were reused. Thus, switching between computations at the two
scales only happened once for each macroscopic time step.

RESULTS

Computer System
To perform the simulations, a distributed parallel system was
used. Each node consisted of two Intel R© Xeon R© E5-2670 (20MB
Cache, 2.6 GHz) processors, and each processor was composed
of 8 cores. In the single sarcomere simulations, only one node
was used for shared memory OpenMP parallelization. In the
beating-ventricle simulations, the elements of the ventricle wall
were equally distributed to the nodes, while the macroscopic
computations were performed only at the master node. In
the microscopic computations, the time integrations of the
molecular variables were parallelized using OpenMP by dividing
the filaments equally among the 16 cores.

Validation of the MTS Scheme via Single
Sarcomere Oscillation
The accuracy and computational efficiency of the MTS scheme
were validated by numerical experiments with a single half-
sarcomere model, in which 48 thin filaments were connected to a
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common Z-line (Figure 2A). In our previous work (Washio et al.,
2017), we showed that the spontaneous oscillatory behavior of the
sarcomere (Ishiwata et al., 2011) can be explained by the power
stroke principle after applying a simple ordinary differential
equation model. In this case, the collective reversal power strokes
induced quick sarcomeric lengthening. Here, we show that this
could also be reproduced by the Langevin dynamics model,
regardless of the choice of macroscale time step size in the MTS
scheme. In this numerical experiment, the spring constant KZ

was set to 1 pN/nm per thin filament, and the viscosity coefficient
γZ was set to 104 pN · ns/nm per thin filament. During the
simulations, the Ca2+concentration was kept at the constant
value of 1 µM.

In Figure 6, the shortening displacements obtained by using
a conventional single-scale integration scheme (1t = 1T =

0.25 ns) and the MTS scheme (1t = 0.25 ns,1T = 5,000 ns)
are compared for both the no-trap and trap models. In the no-
trap model, the dependence of the first energy barrier height
Eb1 (θ) on the LA deflection θ in Equation (9) was eliminated,
and the baseline of the energy barrier Eb01 was higher when
compared with the one in the trap model (Table 1), so that a
similar maximal tensile force is obtained in both models. Next,
the state-transitions were computed with 1t = 0.25 ns. In these
numerical experiments, the simulations started from an initial
state in which all of the MHs were in NXB, and an identical
series of random forces and pseudorandom numbers for the MC
state-transitions were applied to all the simulations. In case of
the no-trap model (Figure 6A), similar amplitudes and periods
were obtained for the shortening displacements, although there
were deviations in the timing of the sharp declines. In case of
the trap model (Figure 6B), the large dips in the displacements
disappeared. Instead, rapid small vibrations appeared. In this
case, similar initial rises, periods, and amplitudes of vibrations
were obtained for the both time step sizes of 1T.

As depicted in Figure 4, the attached MHs in the XB state
were classified according to their power stroke displacement y,
as follows:











Pre =
{

MHi,j ∈ XB : yi,j < s1/2
}

PS1 =
{

MHi,j ∈ XB : s1/2 ≤ yi,j < s1 + s2/2
}

PS2 =
{

MHi,j ∈ XB : yi,j ≥ s1 + s2/2
}

(45)

These states can be regarded as the pre-power stroke, the state
after the first power stroke, and the state after the second power
stroke, respectively. As suggested by our previous work (Washio
et al., 2017), a large pulsed flux of the reversal power strokes
from PS2 to Pre over PS1 generated the sharp decline in z for
the no-trap model (Figure 7A). In the trap model, this reversal
flux was trapped at PS1, so that the decline in z was stopped
at small changes, leading to 1z > −10 nm (Figure 7B), which
corresponds to the stroke size of the LA.

To test the stability of the MTS scheme, simulations using
the explicit scheme given by Equation (32) were performed
with a much smaller time step of 1T = 500 ns (Figure 8).
Although the explicit scheme also yielded good results at first,
the computational results became totally invalidated when the
active stiffness T,1TKF exceeded the threshold indicated by

FIGURE 6 | The shortening displacements obtained by the standard scheme

(blue: 1t = 1T = 0.25 ns) and the MTS scheme (red: 1t = 0.25 ns,

1T = 5,000 ns) for the spontaneous oscillations of the single half-sarcomere

model with nM = 38 and nF = 48. (A) The comparison for the no-trap model.

(B) The comparison for the trap model.

FIGURE 7 | The temporary change of the state ratios classified to the three

power stroke stages (Pre, PS1, and PS2) obtained by the standard scheme

(1T = 0.25 ns) for the spontaneous oscillations of the single half-sarcomere

with the no-trap model (A) and the trap model (B). In case of the no-trap

model (A), a large pulsed flux of the reversal power strokes from PS2 to Pre

through PS1 generates the sharp decline of z around T = 370 ms. In case of

the trap model (B), the flux of the reversal power strokes is trapped at PS1, so

that the decline of z is stopped within small changes 1z > −10 nm.

Equation (33), as estimated previously. Furthermore, oscillatory
behavior could not be reproduced with the explicit scheme.
This result suggests the drawback of explicitly using the active
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FIGURE 8 | The shortening displacements obtained by the standard scheme

(blue: 1T = 0.25 ns) and the explicit scheme (red: 1T = 500 ns) for the

spontaneous oscillations of the single half-sarcomere model with nM = 38 and

nF = 48. (A) The comparison for the no-trap model. (B) The comparison for

the trap model.

tensions, which occurs when solving a system of ordinary
differential equations with a finer time step in coupled
simulations. As shown in Figure 8A, the calculated force using
the explicit scheme did not diverge, although the oscillatory
behavior was completely lost. Thus, it is difficult to judge the
accuracy of numerical results by examining only one case. As
shown here, we must compare the results of different macroscale
time step sizes 1T to confirm the accuracy of the coupling
scheme.

The above simulations were executed on one node consisting
of 16 cores using shared memory in OpenMP parallelization.
Thus, in the parallelization, three filaments were assigned to
each core. The averaged elapsed times for the 1-ms time
integration were 125 and 97 s, with the standard integration
scheme (1t = 1T = 0.25 ns) and the MTS scheme
(1t = 0.25 ns,1T = 5,000 ns), respectively. The difference
in the elapsed times came from the machine synchronization
overhead, and the differences in the computational loads for
the various filaments. With the MTS scheme that lumps
20,000 steps, the differences in computational loads between
the filaments during each small time step were tremendously
diminished. For a single-sarcomere simulation, using a much
smaller time step size for 1T was sufficient to attain good
parallel efficiency because the overhead associated with updating
z was negligible. However, a large step size was necessary
when the sarcomere model was coupled with the macroscopic
ventricle model because the communication overhead between
the large number of nodes became greatly increased, along
with the computation time for updating the macroscopic
variables.

Validation of Basic Sarcomere Properties
The basic properties of the actomyosin trap model, which
includes the SL and [Ca] dependences of the contractile
force, the isometric twitch, the responses for the isotonic
contraction, and the quick shortening of the half-sarcomere,
along with the details of these numerical experiments, are
presented in the Supplementary Material S2. The results of
these numerical experiments confirm the validity of our half-
sarcomere model. Here, the force-velocity curve obtained at
a constant Ca2+ concentration ([Ca]= 1 µM) is examined
in context with the behavior of the bound myosin molecules
during the isotonic contractions at the various shortening
velocities (Figure 9). As the shortening velocity increased, the
state ratio of PS2 increased (Figure 9B), because the joint point
P was pushed forward (y increased) more strongly by the
deflection potential WLA (θ) in Equation (7) with the larger
negative deflection θ = y − x (Figure 9D). Note that the
negative averaged rod strain ξ at PS2 for a shortening velocity
larger than 1 µm/s (Figure 9C) does not imply a negative
contractile force, because dWrod/dξ (ξ) ≫ −dWrod/dξ (−ξ)

for any positive strain ξ>0, except for ξ∼0 as shown in
Figure 3A.

Stretch-Activation by Trapped Myosins
To see the effectiveness of the trapping mechanism in the state
after the first power stroke PS1 created by the energy barrier in
Equation (9), together with the zero detachment rates for PS1 in
Equations (11, 12), a stretch-activation test was performed for
the single half-sarcomere model consisting of 48 filament pairs
(Figure 10). Here, a 1% stretch was applied over the 1-ms time
interval starting at T = 150 ms, at which time the contractile
force had sufficiently matured. In the simulation, the time step
sizes were set at 1t = 0.25 ns and 1T = 25 ns. The state-
transitions were also computed using 1t = 0.25 ns. During
the simulations, the Ca2+ concentration ([Ca]) was kept at the
constant value of 10 µM.

A roughly 15% increase in the contractile force lasted at
least 2 s after the quick stretch (Figure 10A). This long-lasting
increase in the force compared with the pre-stretch steady state
was apparently due to the lasting increase in the population of
PS1 (Figure 10B: orange line). The persistent increase of the
averaged LA deflection, θ = y − x, for MHs in PS1 (Figure 10C)
indicates that it was generated by the MHs trapped by the higher
free energy barrier Eb1 (θ) defined by Equation (9). Compared
with the experimental results given in Stelzer et al. (2006), our
numerical result misses “Phase 2,” in which the force drops one
time to the steady state level before the stretch. However, the
magnitude of the force incrementation after that agrees with the
experimental facts.

Beating-Ventricle Simulations
Beating-ventricle simulations were performed using a finite
element ventricle model consisting of 7,600 tetrahedral elements.
In each element, a sarcomere model consisting of 8 filament
pairs was imbedded along the appropriate fiber orientation
f. The distribution of the fiber orientations (Figure 1) was
found by an optimization algorithm (Washio et al., 2016)
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FIGURE 9 | The force-velocity relation for [Ca] = 1 µM with the shortening velocity of the half-sarcomere in the horizontal axis (A). The state ratios of the pre-power

stroke (Pre) and the post-second power stroke state (PS2) are plotted with respect to the shortening velocities (B). Similarly, the averaged rod strains ξ in the states

Pre and PS2 (C), the averaged molecular variables x and y of the molecular deformation (F) in the states Pre and PS2 are also plotted, respectively, in (D,E).

based on the impulses given by the active tension, which
was computed using the MC crossbridge model instead of
the Langevin model to reduce the heavy computational loads.
Portions of the helical fiber structure are depicted in Figure 1.
As confirmed in our previous work (Washio et al., 2016), this
algorithm constructed a fiber distribution that was quite similar
to the one obtained by diffusion tensor magnetic resonance
imaging (DTMRI) measurements. The heart rate was set to 60
beats per minute, and the Ca2+ transient (Figure 5) generated
by the mid-myocardial cell model proposed by ten Tusscher
and Panfilov (2006) was applied. The transmural delays of
the Ca2+ transient determined by the distances from the
endocardial surfaces of the left and right ventricles under a
transmural conduction velocity of 52 cm/s, as measured by
Taggart et al. (2000), was adopted. The deformation of each
element was linked to the sarcomeric shortening displacement
using Equations (34, 35). In the simulations, the optimized
time step algorithm represented in Figure 4 was applied.
Essentially, the values 1t = 0.25 ns and T = 5,000 ns
were used, so that n = 20,000. However, the state-transitions
were computed every 2.5 ns (nDA = 10), and the time
integration for the detached MHs were performed every 1.25 ns
(nD = 5).

In the crossbridge model, the trap and the no-trap models
using the various power-stroke free energy potential functions
ϕPS were used, as with the simulations of the single sarcomere
oscillation (Table 1). By comparing it with the no-trap model
in Figure 11A, the trap mechanism can be seen as contributing
to maintaining the high pressure in the last half of the systolic
phase. As a result, the blood volume ejected from the left ventricle
in the trap model increased to 77 from 68mL, while the ATP
energy consumption of the left ventricular wall decreased to 5.9
from 6.4 J (Figure 11E). This implies that the trap mechanism
serves to increase the blood ejection, while also decreasing the
energy consumption. Note that the ATP consumption rates were
computed by counting the detachments of MHs in PS2 to those
in NXB, which was controlled by the rate constant DNXB defined
in Equation (12).

As shown in Figures 11B–D, two increases in the population
of MHs in state PS1 can be seen; one at the beginning of
the systolic phase, and one at the final half. These increases
correspond to reversals in the left ventricular pressures of the
trap and the no-trap models, as shown in Figure 11A. In the
systolic phase, the cardiac myocytes supported their contractile
tension along the shared fiber bundle, in which the active stress
in Equation (38) provided the great majority of the total stress
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FIGURE 10 | Numerical results of the stretch-activation simulation. A shift of

1z = −9 nm was applied over the time span of 1ms at T = 150 ms. (A) The

time courses of the contraction force per one thin filament (black) and the

applied shortening displacement z (blue) are shown. The dot-dash line

indicates the baseline of the force before the stretch. (B) The state ratios for

the three power stroke stages of the attached MHs. (C) The averaged

molecular variables x and y for the MHs at PS1.

in Equation (41). Therefore, from the mechanical equilibrium
condition along a fiber bundle, the active tensions must be
almost equal. If there was a delay in the provision of the active
tension, or a relaxation during the intermediate systolic phase
at one point of the fiber bundle, this portion quickly became
lengthened, and the sarcomeres in the remaining parts shortened
until reaching a mechanical equilibrium. Since this transition
accompanied decreases in the active tension of the sarcomeres,
stopping the process as early as possible was desirable. The trap
mechanism could achieve this goal, as shown in Figure 12, in
which the distributions of the population of MHs in states PS1
and PS2 at the end of the systolic phase (T = 0.25 s) were
compared. As shown in Figure 12B for the trap model, the
higher populations in the PS1 state were seen in the regions
where the populations in state PS2 were lower than in the other
regions. This indicates that the decrease in the population of
MHs at PS2 was sufficiently compensated for by the trapped
MHs in state PS1. However, although the population in PS2
for the no-trap model was similar to one of the trap model,
the active tension was nearly half that of the trap model for
the entire region (Figure 12A). In particular, the active tensions
with the no-trap model were much smaller than those with the
trap model, even in the regions with large PS2 populations. This
indicates the importance of maintaining the active tension along
the fiber bundle. The distributions of the active tension values
and the state populations over the entire cycle are shown in
Supplementary Video 1.

The importance of the trap for synchronizing contraction
and relaxation over the entire ventricle is further confirmed
by Figure 13, in which the behaviors of the sarcomere model

FIGURE 11 | Numerical results of the beating-ventricle simulation using the

FEM ventricle model. In each element, the sarcomere model consisting of 8

filament pairs was imbedded. (A) The time courses of the left ventricular

pressure (solid lines) and volume (broken lines) with the no-trap MH model

(red) and the trap model (black). (B–D) The time courses of the population

ratio of attached MHs in the left ventricular wall classified to the pre-power

stroke state (B: Pre), the first post-power stroke state (C: PS1), and the

second post-power stroke state (D: PS2). (E) The time courses of the

cumulative ATP energy consumption in the left ventricular wall.

with the no-trap and the trap model imbedded with identical
elements at the apical septal segment are compared. With the
no-trap model (Figure 13A), there was a prominent decline
in the sarcomere shortening displacement z that accompanied
the large drops in the active tension around T = 0.18 s.
This drop in the active tension was caused by shifts in the
population of MHs from PS2 to the pre-power stroke state
Pre, as indicated in Figure 13C. As shown previously in the
simulations of sarcomere oscillation, each sarcomere had the
ability to undergo quick lengthening after a certain duration
of contraction. However, the slow decline of LVP in the no-
trap model (Figure 11A) at the end of the systolic phase
indicates that this characteristic was not necessarily exploited
for the quick relaxation of the whole ventricle before the
next diastolic phase because the timing of the relaxation
changed depending on the Ca2+ transients and the sarcomeric
movements. Furthermore, a relaxation prior to a sufficient
drop in the Ca2+-concentration was followed by the next
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FIGURE 12 | The active tension (left), and the population of MHs in the first post-stroke state PS1 (center) and the second post-stroke state PS2 (right) at 0.25 s for

the no-trap model (A) and the trap model (B) in the three cross sections perpendicular to the longitudinal axis.

contraction, as shown in Figure 13C, around T = 0.2 s. This
contraction of the sarcomere did not efficiently contribute to
increasing the ejected blood volume, as indicated by LVV in
Figure 11A. However, the blood ejection lasted until T =

0.3 s in the trap model. Thus, maintaining the active tension
with the trapped MHs in PS1, which corresponded to a rise
in the population of PS1 during the time interval [0.23, 0.3]
(Figure 13D), substantially contributed to the ejected blood
volume.

Figure 14 compares the distributions of the attached MHs,
which are imbedded in 33 elements at the apical septal segment,
in the

(

y, θ
)

coordinate at T = 0.1, 0.2, and 0.3 s of the no-trap
and trap models. Although the distributions at the beginning of
the systolic phase (T = 0.1 s) were nearly the same for both
models, differences were found in regions of higher deflection
θ in the Pre and PS1 states at the peak of the systolic phase
(T = 0.2 s), and in PS1 and PS2 at the end of the systolic phase
(T = 0.3 s). Note that the large deflection (θ > 0) of the LA
created high strain (ξ > 0) in the rod due to the equilibrium
condition for the variable x in Equation (1). However, these MHs
in the Pre state of the no-trap model disappeared quickly due to
their large rate of detachment into state PXB in Equation (11) and
Table 1 (DPXB,Pre = 3,000 s−1), so that they did not contribute
to maintaining the active tension. However, the MHs in state PS1
were trapped there so long as these myocytes were strongly pulled
by the surrounding activated myocytes.

Finally, the computational load and the parallel efficiency were
examined. For the microscale computations, the elements of the
finite element model were equally distributed to the available
cores. But, for the macroscale finite element computations,
only one node consisting of 16 cores was used, and the
remaining nodes were in the waiting state, since the finite

element model was relatively small (7,700 elements). Thus, the
parallel efficiency came from the proportion of the macroscale
computational time, compared with the total computation
time. With the original setup (n = 20,000, nDA = 10,
nD = 5, 1t = 0.25 ns), the parallel computation with
1,920 cores required 105 h per heartbeat. Within this total
elapsed time, 16% was occupied by the macroscale computations.
Thus, good parallel efficiency was achieved. Further evaluations
of the parallel efficiency are given in the Supplementary
Material S7.

DISCUSSION

Accuracy, Stability, and Efficiency of the
MTS Scheme
The MTS scheme coupled the integration of the molecular
variables that use the small time step 1t with the integration
of the sarcomere shortening variable z that used the coarse time
step 1T, which is a large integer multiple of 1t. Since sarcomere
shortening is linked to the shortening of the continuum along
the fiber orientation by Equation (35), the same coupling
scheme can be applied to the coupling with the finite element
model. The key point of the proposed MTS scheme is that
the active tension at time T + 1T is implicitly determined
by combining the stretch rate of the continuum along the
fiber orientation at T + 1T, as given in Equation (37), in
which the stiffness of the attached myosin rods during the
time interval [T :T + 1T] given by Equation (29) is used.
By applying this implicit scheme, an appropriate time step
interval 1T can be chosen for the macroscale computation
to diminish the synchronization and communication overhead
in the distributed memory parallel system. The accuracy of
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FIGURE 13 | The behavior of the sarcomere in the systolic phase for the no-trap and the trap models imbedded in an identical element at the apical septal segment.

(A,B) The active tension (red) and the sarcomeric shortening Z (blue). (C,D) The population ratio of attached MHs.

FIGURE 14 | The distribution of the attached MHs at the initial time (T = 0.1 s), the peak (T = 0.2 s), and the end (T = 0.3 s) of the systolic phase for the trap model

(A) and the no-trap model (B) for the (y, θ) coordinate. The contours represent the landscape of the free energy ϕPS (θ , y) +WLA (θ). The plots are for the attached

MHs of the sarcomere models imbedded into the 33 elements in the apical septal segment.

the MTS scheme, in which the time step ratio was set
to 0.25 ns: 5 µs, was validated using a simulation of the
spontaneous oscillation of a single sarcomere, and by comparing
the numerical results with those computed using equal time
intervals.

Required Computational Power for the
Coupled Simulation
For the beating-ventricle simulation of ventriclemodel consisting
of 7,600 elements, 105 h were required for each beat using
1,920 cores and a 0.25-ns time step integration in the
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molecular computations, and a 5-µs time step integration
for the macroscopic finite element computation. Within this
computation, 84% of the total time was consumed by the
microscopic molecular computation. In this simulation, 4
elements were assigned to each core, in which the sarcomere
model consisted of 8 filament pairs imbedded in each element.
Therefore, the CPU time per filament pair was∼2.8 h. This is the
fastest case, not counting the macroscale computational case in
which one core was assigned to each filament. Even for the rather
coarse mesh model consisting of 7,600 elements, this fastest
computation required 60,800 (= 7, 600 × 8) cores. This shows
that our application still required huge computational power.

Potential of the Coupled Approach
In this paper, an effective utilization of the coupled approach
to explore the macroscopic effects of a molecular mechanism
was shown. Regarding the molecular mechanism, the power-
stroke free energy potential was constructed so as to reproduce
the stretch-activation for the single-sarcomere model. In this
model, the energy barrier between the pre-power stroke state
and the state after the first power stroke was made higher for
large positive lever arm deflections, which meant that large
loads were imposed on the myosin rods and heads. If the pre-
power stroke state and the state after the first power stroke
correspond to, respectively, the so-called “Pi-release state” and
“ADP state,” the forward and reversal power stroke transitions
accompany the release and the rebinding of inorganic phosphate
(Pi), respectively (Llinas et al., 2015). Thus, if the larger load
on the MH closes the channel in which Pi travels during the
transitions, the height of the free energy barrier could increase. In
the proposed numerical model, this hypothesis was reflected by
the landscape of the free energy ϕPS

(

θ , y
)

, as mentioned above.
The coupled approach revealed that the proposed mechanism for
the myosin molecule contributed to maintain the high systolic
blood pressure for the appropriate period by synchronizing
relaxations along the fiber bundles. Stelzer et al. (2006) discussed
the possibility of stretch-activation reinforcing regions where
stronger contractile tensions were required during the entire
systolic phase, while our numerical results suggest that its
function is to reinforce the regions that start relaxation earlier
than other regions. Of course, this is still just a hypothesis linking
the stretch-activation to the performance of the beating heart.
However, this function of stretch-activation function at the end
of the systolic phase has gone unnoticed until now.

Limitations
In the coupling approach, a single half-sarcomere model
was directly imbedded into each element of the macroscopic
ventricular mesh. This means that the periodically repeated
pattern of single sarcomere movement was imposed along
the filament direction within each element. Thus, the
synchronization of the sarcomeres within each element can
be assumed. In reality, relaxations of sarcomeres within the same
myofibril are not necessarily synchronized. Thus, even though
each of the sarcomeres was stretched quickly during relaxation,

as shown in the spontaneous oscillation simulation, the stretch
speed of the entire cardiac cell may be slowed due to time lags.
One way to account for such an effect in the simulation model
is to imbed a myofibril model, in which an adequate number of
sarcomeres are connected in series, into each element. Obviously,
such an approach requires even greater computational resources.

New Insights of Cardiac Muscle Relaxation
in a Beating Heart
Using the numerical experiments on the single-sarcomere model,
spontaneous oscillatory behavior was recovered via the Langevin
dynamics model with a simple power-stroke free energy, as in
Equation (8) with a constant energy barrier [Eb1 (θ) ≡ Eb01].
The prominent characteristic of this oscillation is the quick
lengthening induced by collective reversal strokes (Figure 7A).
At first glance, it appears that this mechanism operated by
quickly relaxing the muscle against the slow decline of the Ca2+

concentration (Inset in Figure 5). However the timing of the
lengthening events differ from those in the ventricle wall due to
the various feedback signals from the local muscle movements,
resulting in the slow decline of the LVP (Figure 11A). Using
the numerical experiments on the ventricular model, we see
that the trap mechanism contributes to the synchronization of
muscle relaxation by halting sarcomeric lengthening if it occurs
earlier than in the neighboring muscle. We also see that the same
trap mechanism causes the stretch-activation phenomenon at the
tissue level.
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We introduce and study some scalable domain decomposition preconditioners

for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance

Computing) architectures. The electro-mechanical model of the cardiac tissue is

composed of four coupled sub-models: (1) the static finite elasticity equations for

the transversely isotropic deformation of the cardiac tissue; (2) the active tension

model describing the dynamics of the intracellular calcium, cross-bridge binding and

myofilament tension; (3) the anisotropic Bidomain model describing the evolution of

the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic

membrane model describing the dynamics of ionic currents, gating variables, ionic

concentrations and stretch-activated channels. This strongly coupled electro-mechanical

model is discretized in time with a splitting semi-implicit technique and in space with

isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel

Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC

preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The

results of several 3D parallel simulations show the scalability of both linear and non-linear

solvers and their application to the study of both physiological excitation-contraction

cardiac dynamics and re-entrant waves in the presence of different mechano-electrical

feedbacks.

Keywords: domain decomposition preconditioners, cardiac electro-mechanics, bidomain model, scalable parallel

solvers, re-entrant waves, mechano-electric feedback

1. INTRODUCTION

In recent years, several areas of medicine, and in particular cardiology, have undergone a cultural
revolution generated by new findings that have emerged from molecular biology. This new
knowledge has helped to identify, for each disease and for each patient, the specific mechanisms
of the disease and the resulting medical treatments, leading to the so-called personalized medicine.
For example, the use of mathematical models with parameters for the individual patient-specific
characteristics could allow cardiologists to predict the effectiveness of anti-arrhythmic drug
treatments or the proper installation of implantable defibrillators (see e.g., Nordsletten et al., 2011;
Constantino et al., 2012; Lamata et al., 2015; Trayanova and Chang, 2016).

The spatio-temporal evolution of the electrical impulse in the cardiac tissue and the subsequent
process of cardiac contraction-relaxation are quantitatively described by the cardiac electro-
mechanical coupling model, which consists of the following four sub-models:
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• the static finite elasticity model describing the deformation
of cardiac tissue, derived from an anisotropic strain energy
function which characterizes the passive mechanical
properties of the myocardium;

• the active tension system of non-linear ordinary differential
equations (ODEs), describing the dynamics of the intracellular
calcium, cross-bridge binding and myofilament tension;

• the anisotropic Bidomain model of the cardiac tissue, which
is a non-linear system of two partial differential equations
(PDEs) of reaction-diffusion type, describing the spatio-
temporal evolution of the intra- and extracellular electric
potentials in the cardiac tissue;

• the ionic membrane model of the cardiac myocyte, a stiff
system of ODEs describing the dynamics of ionic currents,
gating variables, ionic concentrations and stretch-activated
channels.

The theoretical and numerical challenges posed by this complex
non-linear electro-mechanical model are very interesting.
Indeed, the theoretical analysis of the well-posedness of the
cardiac electro-mechanical coupling model is still an open
problem, as well as the convergence analysis of its finite element
approximation. On the numerical level, the very different space
and time scales associated with the electrical andmechanical sub-
models, as well as their non-linear and multiphysics interactions,
make the approximation and simulation of the cardiac electro-
mechanical coupling model a very demanding and expensive
computational task.

In the last decade, several groups have performed cardiac
computational studies based on three-dimensional electrical
and electro-mechanical simulations (see Pathmanathan and
Whiteley, 2009; Göktepe andKuhl, 2010; Keldermann et al., 2010;
Gurev et al., 2011; Trayanova et al., 2011; Land et al., 2012b;
Nobile et al., 2012; Rossi et al., 2012; Dal et al., 2013; Sundnes
et al., 2014; Favino et al., 2016). However, the computational costs
required by the solution of the mathematical models describing
the cardiac bioelectrical and mechanical activity are still too
high to allow their use in a clinical setting. Therefore, there is
a strong effort in the research community to develop effective
computational tools and to speedup the simulation of the
cardiac electro-mechanical activity (see e.g., Vázquez et al., 2011;
Lafortune et al., 2012; Washio et al., 2013; Aguado-Sierra et al.,
2015; Gurev et al., 2015; Land et al., 2015; Augustin et al., 2016).

Among the most efficient high-performance solvers for these
complex cardiac models are parallel iterative methods, such
as the Preconditioned Conjugate Gradient method (PCG) and
Generalized Minimal Residual Method (GMRES), accelerated
by proper scalable preconditioners. For the bioelectrical
component modeled by the Bidomain system, several types
of preconditioners have been proposed, such as Block Jacobi
(BJ) preconditioners employing an incomplete LU factorization
(ILU) for each block (Colli Franzone and Pavarino, 2004), other
kinds of block preconditioners (Gerardo-Giorda et al., 2009;
Chen et al., 2017). geometric multigrid (Sundnes et al., 2002;
Weber dos Santos et al., 2004), algebraic multigrid (Plank et al.,
2007; Pennacchio and Simoncini, 2009, 2011), and domain
decomposition preconditioners such as Multilevel Schwarz

(Pavarino and Scacchi, 2008; Scacchi, 2008, 2011; Munteanu
et al., 2009; Pavarino and Scacchi, 2011; Charawi, 2017),
Neumann-Neumann and BDDC (Zampini, 2013, 2014). For
a general introduction to Domain Decomposition methods
we refer the interested reader to the monograph (Toselli and
Widlund, 2005). More recently, the study of efficient parallel
solvers and preconditioners has been extended also to cardiac
electro-mechanical models (see e.g., Colli Franzone et al.,
2015; Gurev et al., 2015; Pavarino et al., 2015; Augustin et al.,
2016; Colli Franzone et al., 2016a,b, 2017) and to cardiac and
cardiovascular flow (see e.g., Quarteroni et al., 2017a,b).

The goal of this work is to study the performance of
our parallel electro-mechanical solver in three-dimensional
left-ventricular simulations on two different HPC (High
Performance Computing) architectures. The finite element
parallel solver we have developed is based on Multilevel Additive
Schwarz preconditioners accelerated by PCG for solving the
discretized Bidomain system and on Newton-Krylov methods
with Balancing Domain Decomposition by Constraints (BDDC)
preconditioners for solving the discretized non-linear finite
elasticity system. Extensive numerical simulations have shown
the scalability of both linear and non-linear solvers and their
effectiveness in the study of the physiological excitation-
contraction cardiac dynamics and of re-entrant waves in the
presence of different mechano-electrical feedbacks.

The paper is organized as follows. The main four electro-
mechanical cardiac sub-models are briefly introduced in section
2 and discretized in time and space in section 3, where the main
computational kernels, parallel solvers and preconditioners are
also described. Section 4 contains the main results of the paper
obtained in large-scale 3D simulations using high-performance
parallel architectures.

2. ELECTRO-MECHANICAL CARDIAC
MODELS

We conside a cardiac electro-mechanical coupling model
consisting of the following four coupled sub-models; see also
Figure 1.

2.1. Cardiac Tissue Mechanical Model
We assume a quasi-steady state regime and model the cardiac
tissue as a non-linear hyperelastic material satisfying the
equilibrium equation

Div(FS) = 0, X ∈ ̂�, (1)

with appropriate boundary conditions, where we denote by x =

x(X, t) the spatial coordinates of the deformed cardiac domain
�(t) at time t, by X = (X1,X2,X3)

T the material coordinates

of the undeformed cardiac domain ̂�, by F(X, t) =
∂x

∂X
the

deformation gradient and by u(X, t) = x− X the displacement
field. Following the active stress approach, the second Piola-
Kirchhoff stress tensor S is written as the sum of passive (pas),
volumetric (vol) and active (act) components, i.e.,

S = Spas + Svol + Sact . (2)

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 268342

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Colli Franzone et al. Cardiac Electro-Mechanical HPC Solvers

The passive and volumetric terms of S are defined as

S
pas,vol
ij =

1

2

(

∂Wpas,vol

∂Eij
+

∂Wpas,vol

∂Eji

)

i, j = 1, 2, 3,

where E = 1
2 (C − I) is the Green-Lagrange strain tensor and

Wpas is an exponential strain energy function describing the
myocardium as an hyperelastic material transversely isotropic
(derived form the orthotropic law proposed in Holzapfel and
Ogden, 2009; Eriksson et al., 2013)

Wpas =
a

2b

(

eb(I1−3) − 1
)

+
∑

i=l,n

ai

2bi

(

ebi(I4i−1)2 − 1
)

+
aln

2bln

(

eblnI
2
8ln − 1

)

, (3)

where a, b, a(l,n,ln), b(l,n,ln) are positive material parameters and

I4l = âTl C âl, I4n = âTnC ân, I8ln = âTl C ân.

We did not employ an isochoric-deviatoric decomposition of
the deformation gradient tensor. The volumetric term Wvol =

K (J − 1)2 is a penalization term added to enforce the nearly
incompressibility of the myocardium, where K is a positive bulk
modulus and J = detF. The model is closed by imposing
boundary conditions of mixed Dirichlet and traction type.

2.2. Mechanical Active Tension Model
The active tension generation model is based on calcium
kinetic and myofilament dynamics. Here we consider the model
proposed in Land et al. (2012a), where the active tension Ta

depends on the intracellular calcium concentration Cai, the fiber

stretch λ =

√

âT
l
Ĉal, the fiber stretch-rate dλ

dt
and auxiliary

variables included in vector z, i.e.,


















dz

dt
= Rz

(

z,Cai, λ,
dλ

dt

)

Ta = fTa

(

z, λ,
dλ

dt

)

.

The generated active force is assumed to act only along the fiber
direction, so the active Cauchy stress is

σ act(x, t) = Ta al(x)⊗ al(x),

where al is a unit vector parallel to the local fiber direction and
Ta is the active fiber stress associated to the deformed cardiac
tissue. In the deformed configuration, the unit vector parallel to
the local fiber direction can be written as

al =
F̂al

||F̂al||
=

F̂al
√

âT
l
Ĉal

, (4)

where âl is the fiber direction in the reference configuration. Then
the active stress component Sact of the second Piola-Kirchhoff
tensor is given by

Sact = J F−1σ actF−T = J Ta
âl ⊗ âl

âT
l
C âl

.

2.3. The Bioelectrical Bidomain Model
We denote by v, ue, w, c the transmembrane potential, the
extracellular potential, the gating and ionic concentrations
variables on the deformed configuration and by v̂, ûe, ŵ, ĉ
the same quantities on reference configuration. The Bidomain
model, written on the deformed configuration �(t) is given in
its parabolic-elliptic formulation by







cm
∂v

∂t
− div(Di∇(v+ ue))+ iion(v,w, c, λ) = iiapp

−div(Di∇v)− div((Di + De)∇ue) = iiapp + ieapp,
(5)

where cm and iion are the membrane capacitance and ionic
current per unit volume, respectively. We apply insulating
boundary conditions on ∂�(t), i.e.,

nTDi∇(v+ ue) = 0 and nTDe∇ue = 0,

with n being the normal to ∂�(t). In order to satisfty the

compatibility condition

∫

�(t)
(iiapp + ieapp)dx = 0, we choose

iiapp = −ieapp = iapp; see e.g., Colli Franzone et al. (2014). In

the Lagrangian framework, after the pull-back on the reference
configuration ̂� × (0,T), this system becomes















cmJ

(

∂ v̂

∂t
− F−T Grad v̂ · V

)

− Div(JF−1
̂DiF

−T Grad(̂v+ ûe))

+ Jiion (̂v, ŵ, ĉ, λ) = Ĵiapp,

−Div(J F−1
̂DiF

−T Grad v̂)− Div(J F−1(̂Di +̂De)F
−T Grad ûe) = 0,

(6)

whereV =
∂u

∂t
is the rate of deformation; see Colli Franzone et al.

(2016a) for the detailed derivation. These two partial differential
equations (PDEs) are coupled through the reaction term iion with
the ODE system of themembranemodel, given in�(t)×(0,T) by

∂w

∂t
− Rw(v,w) = 0,

∂c

∂t
− Rc(v,w, c) = 0. (7)

The bioelectrical system (Equations 6, 7) is completed by
prescribing initial conditions on v̂,w, c, insulating boundary
conditions on ûe, ûi = v̂ + ûe, and the intra- and extracellular
applied current ̂iapp = ̂iiapp = −̂ieapp. We recall that the
extracellular potential ûe is defined only up to a time dependent
constant in space R(t), which can be determined by choosing a
reference potential. Here we select as a reference potential the
average of the extracellular potential over the cardiac volume,

i.e., we require

∫

̂�

ûe(X, t)J(X, t)dX = 0. Assuming transversely

isotropic properties of the intra- and extracellular media, the
conductivity tensors on the deformed configuration are given by

Di,e = σ
i,e
t I + (σ i,e

l
− σ

i,e
t )al ⊗ al,

where σ
i,e
l
, σ

i,e
t are the the intra- and extracellular conductivity

coefficients measured along the fiber direction al and any cross
fiber direction, respectively. From Equation (4), it follows that the
tensors Di,e(x, t) written on the reference configuration are

̂Di,e(X, t) = Di,e(x(X, t), t) = σ
i,e
t I + (σ i,e

l
− σ

i,e
t )

F̂alâ
T
l
FT

âT
l
ĈaT

l

. (8)
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Therefore, the equivalent conductivity tensors appearing into the
bidomain model written in the reference configuration are given
by

JF−1
̂Di,e(X, t)F

−T = σ
i,e
t C−1 + (σ i,e

l
− σ

i,e
t )

âlâ
T
l

âT
l
ĈaT

l

. (9)

For the values of the conductivity coefficients of the Bidoman
model (see Colli Franzone et al., 2016a).

2.4. The Ionic Membrane Model and
Stretch-Activated Channel Currents
The ionic current in the Bidomain model (Equation 6) is given
by iion = χIion, where χ is the membrane surface to volume ratio
and the ionic current per unit area of the membrane surface Iion
is given by the sum Iion(v,w, c, λ) = Imion(v,w, c) + Isac of two
terms: the ionic term Imion(v,w, c) given by the ten Tusscher model
(TP06) (ten Tusscher et al., 2004; ten Tusscher and Panfilov,
2006), available from the cellML depository (models.cellml.org/
cellml), and a stretch-activated current term Isac. The TP06
ionic model also specifies the functions Rw(v,w) and Rc(v,w, c)
in the ODE system Equation (Equation 7), consisting of 17
ordinary differential equations modeling the main ionic currents
dynamics.

The stretch-activated current (SAC) is modeled as the sum of
a non-selective and a potassium selective currents

Isac = Ins + IKo,

as in Niederer and Smith (2007). The non-selective SAC current
is defined by

Ins = Ins,Na + Ins,K = gns γsl(λ) [ r (v− vNa) + (v− vK)],

with γsl(λ) = 10max(λ− 1, 0), gns = 4.13 · 10−3 mS/cm2 and the
value of r measures the relative conductance of the ions Na+ and
K+ and determines the reversal potential vns of Ins, varying the
degree of expression of the ions Na+ and K+. We have chosen
r = 0.2.

The K+ selective SAC current is defined by

IKo = gKo
γSL,Ko

1+ exp(−(10+ v)/45)
(v− vK),

where gKo = 1.2 · 10−2 mS/cm2 and γSL,Ko = 3max(λ − 1, 0) +
0.7.

3. NUMERICAL METHODS

3.1. Space and Time Discretization
3.1.1. Domain Geometry
We consider an idealized left ventricular geometry ̂� =

�(0) modeled as a truncated ellipsoid described in ellipsoidal
coordinates by the parametric equations







x = a(r) cos θ cosφ φmin ≤ φ ≤ φmax,
y = b(r) cos θ sinφ θmin ≤ θ ≤ θmax,
z = c(r) sin θ 0 ≤ r ≤ 1.

Here a(r) = a1 + r(a2 − a1), b(r) = b1 + r(b2 −

b1), c(r) = c1 + r(c2 − c1), and a1 = b1 = 1.5, a2 = b2 =

2.7, c1 = 4.4, c2 = 5 (all in cm) and φmin = −π/2, φmax =

3π/2, θmin = −3π/8, θmax = π/8. We will refer to the inner
surface of the truncated ellipsoid (r = 0) as endocardium
and to the outer surface (r = 1) as epicardium. Proceeding
counterclockwise from epicardium to endocardium, the cardiac
fibers rotate intramurally linearly with the depth, for a total
amount of 120◦. Considering a local ellipsoidal reference system
(eφ , eθ , er), the fiber direction al(x) at a point x is given by al(x) =
bl(x) cos(β)+ n(x) cos(β), where

bl(x) = eφ cosα(r)+ eθ sinα(r), with

α(r) =
2

3
π(1− r)−

π

4
, 0 ≤ r ≤ 1,

n(x) is the unit outward normal to the ellipsoidal surface at x and
β is the imbrication angle given by β = arctan(cosα tan γ ), with
γ = θ(1− r)60/π .

3.1.2. Time Discretization
The time discretization of the electromechanical model is
performed by the following semi-implicit splitting method,
where different electrical and mechanical time steps could be
used.

(a) given vn, wn, cn at time step tn, we compute the new
variables wn+1, cn+1 by solving the ODE system of the ionic
membrane model (Equation 7) with a first order implicit-explicit
(IMEX) method, i.e.,















wn+1 − wn

1t
− Rw(v

n,wn+1) = 0,

cn+1 − cn

1t
− Rc(v

n,wn+1, cn) = 0;

(b) given the calcium concentration Can+1
i , which is part

of the vector of concentration variables cn+1, we compute the
new deformed coordinates xn+1, providing the new deformation
gradient tensor Fn+1, by solving the variational formulation of
the mechanical problem (Equation 1) and the active tension
system, i.e.,



























zn+1 = zn + 1tRz

(

zn+1,Can+1
i , λn+1,

λn+1 − λn

1tn

)

Tn+1
a = fTa

(

zn+1, λn+1,
λn+1 − λn

1tn

)

Div(Fn+1Sn+1) = 0;

(c) given wn+1, cn+1, Fn+1 and Jn+1 = det(Fn+1), we
compute the new electric potentials vn+1, un+1

e by solving the
variational formulation of the Bidomain system (Equation 6)
with a first order IMEX and operator splitting method, consisting
of decoupling the parabolic from the elliptic equation, i.e.,
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−Div(Jn+1 F−1
n+1

̂DiF
−T
n+1 Grad v̂

n)− Div(Jn+1 F
−1
n+1(̂Di +̂De)F

−T
n+1 Grad û

n
e ) = 0,

cmJn+1

(

v̂n+1 − v̂n

1t
− F−T

n+1 Grad v̂
n · Vn+1

)

− Div(Jn+1F
−1
n+1

̂DiF
−T
n+1 Grad(̂v

n+1 + ûn+1
e ))+

Jn+1iion (̂v
n, ŵn+1, ĉn+1, λn+1) = Jn+1̂i

n+1
app .

In our simulations, we use the electrical time step size 1et =

0.05 ms, and a mechanical times step five times larger, 1mt =

0.25 ms. In order to approximate the convective term in the
variational formulation of Equation (6), an upwind discretization
strategy is employed. We refer to Colli Franzone et al. (2015) and
Colli Franzone et al. (2016a) for more details about the numerical
scheme.

3.1.3. Space Discretization
The cardiac domain is discretized with a structured hexahedral
grid Thm for the mechanical model (Equation 1) and The for
the Bidomain model (Equation 6), where The is a refinement
of Thm , i.e., the mechanical mesh size hm is an integer
multiple of the electrical mesh size he. We consider the
variational formulations of both mechanical and bioelectrical
models and then approximate all scalar and vector fields by
isoparametric Q1 finite elements in space. In all our simulations,
we employ an electrical mesh size he = 0.01 cm in order to
properly resolve the sharp excitation front, while the smoother
mechanical deformation allow us to use a coarse mechanical
mesh of size hm = 0.08 cm. The resulting electrical mesh
consists of Nφ × Nθ × Nk elements, whose values will
be specified in each numerical test reported in the Results
section.

3.2. Computational Kernels and Parallel
Solvers
At each time step of the space—time discretization described
above, the two main computational kernels are:

(a) the solution of a non-linear system arising from the
discretization of the mechanical problem (1); to this end, we use
a parallel Newton-Krylov-BDDC (NK-BDDC) solver, where the
Krylov method chosen is GMRES and the BDDC preconditioner
will be described in the next sections;

(b) the solution of two linear systems deriving from
the discretization of the elliptic and parabolic equations
in the Bidomain model (Equation 6); to this eand, we
use a parallel Preconditioned Conjugate Gradient (PCG)
method, with Multilevel Additive Schwarz preconditioner
for the very ill-conditioned elliptic system and with
Block-Jacobi preconditioner for the easier parabolic
system.

The parallelization of these two main computational kernels
of our electro-mechanical solver is based on the parallel library
PETSc (Balay et al., 2012) from the ArgonneNational Laboratory.
All the parallel simulations have been performed on high-
performance supercomputers and Linux clusters described in the
Result section. For the parallel implementation of the BDDC
preconditioner, see Zampini (2016).

3.3. Multilevel Additive Schwarz
Preconditioners
Wenow describe theMultilevel Additive Schwarz preconditioner
employed in the PCG solution of the elliptic kernel (b) associated
with the Bidomain system. Let �k, k = 0, ..., ℓ − 1 be a family of
ℓ nested triangulations of �, with finer mesh sizes from level 0 to
ℓ−1, and let Ak be the matrix obtained by discretizing the second
equation of Equation (6) on�k; we have Aℓ−1 = Abid, whereAbid

is the stiffness matrix related to the elliptic equation of Equation
(6) discretized on the fne mesh. Denote by Rk the restriction
operators from �ℓ−1 to �k. We decompose each grid �k, for
k = 1, ..., ℓ − 1, into Nk overlapping subgrids �k

i for i = 1, ...,Nk,

such that the overlap size δk at level k = 1, ..., ℓ − 1 equals the
mesh size hk of the grid �k. We denote by Rki the restriction

operator from �ℓ−1 to �k
i and define Ak

i : = Rk
iA

kRkT

i . The
Multilevel Additive Schwarz (MAS(ℓ)) preconditioner is given by

B−1
MAS := R0TA0−1

R0 +

ℓ−1
∑

k=1

Nk
∑

i=1

RkT

i Ak−1

i Rk
i .

The resulting PCG algorithm has a convergence rate independent
of the number of subdomains Nk (scalability), the number of
levels ℓ (multilevel optimality), while it depends linearly on the
ratio Hk/hk of subdomain to element size on level k (optimality);
see Pavarino and Scacchi (2008), Scacchi (2008), and Pavarino
and Scacchi (2011) for the theoretical details.

3.4. Iterative Substructuring, Schur
Complement System and BDDC
Preconditioners
We then turn to the BDDC preconditioner used in the
mechanical computational kernel (a) above, i.e., the Jacobian
system arising at each iteration of the Newton method applied
to the non-linear elasticity system (Equation 1). For sake of
simplicity, in the following sections we will denote the reference
domain by � instead of ̂�. We consider a decomposition of �

into N non-overlapping subdomains �i of diameter Hi

� =

N
⋃

i=1

�i,

and set H = maxHi. We first reduce the Jacobian system

Kx = f , (10)

arising at each Newton step of the mechanical solver, to the
interface

Ŵ :=
(

N
⋃

i=1

∂�i

)

\∂�,
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by eliminating the interior degrees of freedom (dofs) associated
with the basis functions having support in each subdomain’s
interior and obtaining the Schur complement system

SŴxŴ = gŴ . (11)

Here SŴ = KŴŴ − KŴIK
−1
II KŴI and gŴ = fŴ − KŴIK

−1
II fI are

obtained from the global system (Equation 10) by reordering
the finite element basis functions into interior (denoted by the
subscript I) and interface (denoted by the subscript Ŵ) basis
functions

(

KII KIŴ

KŴI KŴŴ

)(

xI
xŴ

)

=

(

fI
fŴ

)

. (12)

The Schur complement system (Equation 11) is solved iteratively
by the GMRES method, where only the action of SŴ on a given
vector is required and SŴ is never explicitly formed; instead,
a block diagonal problem on the interior dofs is solved while
computing thematrix vector product. Once the interface solution
xŴ has been determined, the internior dofs xI can be found by
solving local problems on each subdomain �i. We then solve
by the GMRES method the preconditioned Schur complement
system

M−1
BDDCSŴxŴ = M−1

BDDCgŴ , (13)

where M−1
BDDC is the BDDC preconditioner, defined in Equation

(17) below.
Balanced Domain Decomposition by Constraints (BDDC)

preconditioners where introduced by Dohrmann (2003) and first
analyzed by Mandel and Dohrmann (2003) and Mandel et al.
(2005). In these methods all local and coarse problems are treated
additively and the user selects the so-called primal continuity
constraints across the subdomains’ interface. Usual choices of
primal constraints are e.g., point constraints at subdomain
vertices and/or averages or moments over subdomains edges or
faces. Closely related to BDDC methods are FETI and FETI-
DP algorithms, as well as the previous balancing Neumann-
Neumann methods; for more details, we refer the ineterested
reader to the domain decomposition monograph (Toselli and
Widlund, 2005, Ch. 6). See also Brands et al. (2008) and Klawonn
and Rheinbach (2010) for FETI-DP algorithms applied in other
fields of computational biomechanics.

3.4.1. Subspace Decompositions
Let V be the Q1 finite element space for displacements and
V(i) be the local finite element space defined on subdomain �i

that vanish on ∂�i ∩ ∂�D. This local space can be split into a
direct sum of its interior (I) and interface (Ŵ) subspaces V(i) =

V
(i)
I

⊕

V
(i)
Ŵ and we can define the associated product spaces as

VI :=

N
∏

i=1

V
(i)
I , VŴ :=

N
∏

i=1

V
(i)
Ŵ .

While our finite element approximations are continuous across
the interface Ŵ, the functions of VŴ are generally discontinuous
across Ŵ, We then define the subspace

̂VŴ := {functions of VŴ that are continuous across Ŵ},

and the intermediate subspace

˜VŴ := V1

⊕

̂V5,

defined by further splitting the interface dofs (denoted by the
subscript Ŵ) into primal (subscript 5) and dual (subscript 1)
dofs. Here:

(a) the subspace ̂V5 consists of functions which are
continuous at selected primal variables. These can be e.g., the
subdomain basis functions associated with subdomains’ vertices
and/or edge/face basis functions with constant values at the nodes
of the associated edge/face. A change of basis can be performed
so that each primal variable correspond to an explicit dof.

(b) the subspace V1 =
∏N

i=1 V
(i)
1 is the product space of the

local subspaces V
(i)
1 of dual interface functions that vanish at the

primal dofs.

3.4.2. Restriction and Scaling Operators
The definition of our dual-primal preconditioners require also
the following restriction and interpolation operators, associated
with boolean matrices (with {0, 1} elements):

RŴ1 :˜VŴ −→ V1, RŴ5 :˜VŴ −→ ̂V5,

R
(i)
1

:V1 −→ V
(i)
1 , R

(i)
5

:̂V5 −→ ̂V
(i)
5 ,

(14)

where ̂V
(i)
5 is the local primal subspace. Moreover, we define the

pseudo-inverse counting functions δ
†
i (x), which are defined at

each dof x on the interface of subdomain �i by

δ
†
i (x) :=

1

Nx
, (15)

with Nx the number of subdomains sharing x. We finally define

scaled local restriction operators R
(i)
D,1 by scaling by by δ

†
i the only

nonzero element of each row of R
(i)
1 . We then define the scaling

matrix

RD,Ŵ := the direct sum RŴ5 ⊕ R
(i)
D,1RŴ1. (16)

3.4.3. Choice of Primal Constraints
The efficiency of BDDC (and more in general dual-primal)
preconditioners is strongly dependent of the choice of primal
contraints. The simplest choice of selecting the subdomains
vertices as primal dofs is not always sufficient to obtain scalable
and fast preconditioners. Therefore, richer (and computationally
more expensive) primal sets have been developed in order to
obtain faster preconditioners. These stronger preconditioners are
based on larger coarse problems employing also edge and/or face
based primal dofs, see e.g., Toselli and Widlund (2005).

3.4.4. Matrix Form of the BDDC Preconditioner
Analogously to the dual-primal splitting introduced before, we
partition the local dofs into interior (I), dual (1), and primal
(5) dofs, so that the local stiffness matrix K(i) associated to
subdomain �i can be written as

K(i) =

[

K
(i)
II K

(i)T

ŴI

K
(i)
ŴI K

(i)
ŴŴ

]

=







K
(i)
II K

(i)T

1I K
(i)T

5I

K
(i)
1I K

(i)
11 K

(i)T

51

K
(i)
5I K

(i)
51 K55






.
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The BDDC preconditioner is then defined as

M−1
BDDC = RTD,Ŵ˜S

−1
Ŵ RD,Ŵ , (17)

where the scaled restriction matrix RD,Ŵ has been defined in
Equations (14, 16), and

˜S−1
Ŵ = RTŴ1





N
∑

i=1

[

0 R
(i)T

1

]

[

K
(i)
II K

(i)T

1I

K
(i)
1I K

(i)
11

]−1
[

0

R
(i)
1

]



RŴ1+8S−1
558T .

(18)
The first term in Equation (18) represent the sum of local
problems on each subdomain �i, with Neumann data on the
local dual dofs and with zero Dirichlet data on the local primal
dofs. The second term in Equation (18) represents a coarse
problem for the primal variables involving the coarse matrix

S55 =

N
∑

i=1

R
(i)T

5



K
(i)
55 −

[

K
(i)
5I K

(i)
51

]

[

K
(i)
II K

(i)T

1I

K
(i)
1I K

(i)
11

]−1 [

K
(i)T

5I

K
(i)T

51

]



R
(i)
5

and a matrix 8 mapping primal to interface dofs

8 = RTŴ5 − RTŴ1

N
∑

i=1

[

0 R
(i)T

1

]

[

K
(i)
II K

(i)T

1I

K
(i)
1I K

(i)
11

]−1 [

K
(i)T

5I

K
(i)T

51

]

R
(i)
5 .

The columns of 8 are associated with coarse basis functions
defined as the minimum energy extension into the subdomains
with respect to the original bilinear form and subject to the
chosen set of primal constraints.

For compressible linear elasticity problems it can be shown
that the BDDC algorithm is scalable and quasi-optimal, satisfying
a condition number bound (see e.g., Toselli and Widlund, 2005,
Ch. 6.4) as

cond(M−1
BDDCSŴ) ≤ C

(H

h

)(

1+ log
H

h

)2
,

with C( H
hm

) = α constant if the primal space is sufficiently rich,

while C(H
h
) = αH

h
if the primal space is the minimal one spanned

by the dofs associated with the subdomain vertices. We recall
that H is the characteristic subdomain size and h = hm is the
characteristic mechanical mesh size defined in section 3.1. We
could not prove a similar bound for the convergence rate of our
non-symmetric NK-BDDC preconditioned operator, since our
complex non-linear elasticity problem (Equation 1) involves an
exponential strain energy function. Nevertheless, the numerical
results presented in the next section suggests that such a bound
holds also for our operator and demonstrate the effectiveness and
scalability of the NK-BDDC method.

4. RESULTS

In this section, we report the results of several 3D parallel
simulations with our electro-mechanical Bidomain solver, using
two HPC architectures:

• the Marconi-A2 supercomputer of the Cineca Lab (http://
www.hpc.cineca.it/hardware/marconi), an Intel OmniPath
cluster with 3,600 nodes, each with 68 1.40 GHz Intel Xeon
Phi 7250 Knights Landing (KNL) cores and 16 GB/node, for a
total 244.800 cores;

• the Mira BG/Q supercomputer of the Argonne National Lab
(https://www.alcf.anl.gov/mira), an IBM BG/Q machine with
49,152 nodes, each with 16 1.60 GHz PowerPC A2 cores and
16 GB/node, for a total 786,432 cores.

4.1. Test 1: Double Reentry Simulation With
the Electro-Mechanical Bidomain Model
(Figures 2, 3)
We start by studying the performance of our electro-mechanical
Bidomain solver on a closed ellipsoidal ventricular geometry
during a double reentry dyamics initiated by an S1–S2 protocol.
Figure 2 shows the snapshots of the transmembrane potential
and mechanical deformation time evolution every 50 ms,
computed on 256 KNL processors of Marconi-A2. At each time
instant, we report the epicardial lateral view (top panel) and
selected horizontal and vertical transmural sections (bottom
panel). After three S1 stimulations applied at the apex every 500
ms (not shown), an S2 cross-gradient stimulation (visible as a
vertical strip in the t = 0 panel) is applied 280 ms. after the last
S1 stimulus, and this instant is taken as the reference time t = 0
ms for this simulation. Two counter-rotating scroll waves are
generated by the S2 stimulus, with transmural filaments located
near the apex and rotation period of about 250 ms (see the panels
t = 0, 250, 500 ms). The lateral epicardial view of the upper
panels shows mostly one of the two scroll waves, but the second
almost-symmetric one is visible in the transmural sections of the
lower panels.

This reentry dynamics is visible also in Figure 3 that reports
the waveforms at epicardial sites P1, P2, P3 (shown in Figure 3A)
of the transmembrane potential V (Figure 3B), extracellular
potential ue (Figure 3C), fiber stretch λ (Figure 3D), active
tension Ta (Figure 3E), intracellular calcium concentration Cai
(Figure 3F).

4.2. Test 2: Weak Scalability of the Elliptic
Bidomain - TP06 Solver (Figures 4, 5)
Figures 4, 5 (left columns) report the results of weak scalability
tests on MIRA BG/Q for the elliptic solver (PCG-MAS(4))
required by the bioelectrical Bidomain - TP06 model on a half
ellipsoidal domain representing an idealized half left ventricle.
The number of processors is increased from 1K to 163K cores
of the Mira BG/Q supercomputer of the Argonne National Lab.
Figure 4A1 reports the condition number (blue), iteration counts
(red), solution times (yellow) of the PCG - MAS(4) solver.
Both a fixed half ellipsoidal domain (Figure 4A1, top plot) and
an increasing ellipsoidal domain (Figure 4A1, bottom plot) are
considered, where in both cases the local meshsize (hence the
local problem size on each processor) is kept fixed at H/h = 16.
The results clearly show the very good scalability of the PCG -
MAS(4) solver, since all quantities are bounded from above as
the processor count is increased from 1K to 163K cores (a factor
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FIGURE 1 | The four electro-mechanical submodels.

163) and therefore the global problem size increases from about
O(106) to O(108) degrees of freedom. In particular, we remark
that in spite of this problem size increase of a factor 163, the
CPU times are almost constant in the case of an increasing half
ellipsoid (Figure 4A1, bottom plot) or increase by only a factor
2–3 in the case of a fixed half ellipsoid (Figure 4A1, top plot),
while being almost constant between 16K and 128K cores.

Analogously, Figures 4, 5 (right columns) report the results
of weak scalability tests on Marconi - A2 for the elliptic solver
(PCG-MAS(4)) and also the non-linear mechanical solver (NK-
BDDC), described in section 4.3 below. As before, the results

clearly show the very good scalability of the PCG-MAS(4) solver,
since all quantities associated with the elliptic solver are bounded
from above.

In order to study more in detail the weak scalability test
on a fixed half ellipsoid (Figure 4A1, top plot), we report
in Figures 5A1,B1,C1 the percent summary (given by the
LogView PETSc subroutine) of the main PETSc functions
called by the PCG - MAS(4) elliptic solver. These PETSc
functions, shown in the legend of each plot, range from
inner products (VecTDoc) and vector norms (VecNorm)
to the whole PCG solver (KSPSolve) and application of
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FIGURE 2 | Test 1, double reentry simulation: snapshots (every 50 ms) of the transmembrane potential and mechanical deformation time evolution. At each time

instant, we report the epicardial view (Top) and selected horizontal and vertical transmural sections (Bottom).

the MAS(4) preconditioner (PCApply). In particular, we
report the percent of: CPU time as a fraction of the
KSPSolve time (Figure 5A1), flops (Figure 5B1), messages
(Figure 5C1). When one of these PETSc functions has a
negligible percentage, the corresponding legend shows it
equal to 0. After an initial increase in some cases, all

reported quantities are very scalable up to 64K cores, and
most up to 163K cores, except the VecTDot percent of
flops (in Figure 5B1). As expected, the percentage of time
(Figure 5A1) and flops (Figure 5B1) are dominated by the
PCG solver (KSPSolve), followed by matrix multiplications
(MatMult) and inner products (VecTDot). The percentage
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FIGURE 3 | Test 1, double reentry simulation: waveforms at epicardial sites P1, P2, P3 shown in (A) of the transmembrane potential V (B), extracellular potential ue
(C), fiber stretch λ (D), active tension Ta (E), intracellular calcium concentration Cai (F).

of messages (Figure 5C1) is dominated by vector scattering
(VecScatterBegin), matrix multiplications (MatMult) and PCG
(KSPSolve).

4.3. Test 3: Weak Scalability of the
Electro-Mechanical Solver (Figures 4, 5)
We then study the weak scalability of our electro-mechanical
solver from 128 to 2048 KNL processors of Marconi-A2, in
particular of the twomain computational kernerls: the non-linear
mechanical solver (NK-BDDC) and the linear elliptic Bidomain
solver (PCG - MAS(4)). Figure 4A2 reports the CPU times
and iteration counts for both solvers, while Figures 5A2,B2,C2
reports the percent summary of the main PETSc functions called
by the electro-mechanical solver.

In this weak scaling test, the local meshsize (hence the
local problem size on each processor) is kept fixed at H/h =

16, while the global problem size grows proportionally to the
processor count by assigning one subdomain to each processor.
Hence, the computational domain consists of increasing portions
or an ellipsoidal domain. The results in Figure 4A2 clearly
show the very good scalability of the PCG - MAS(4) elliptic
linear solver, since both its CPU times and iteration counts
are bounded from above as the processor count is increased
to 2,048 cores. On the other hand, the timings of the non-
linear SNES solver are not scalable beyond 512 processors,
even if the iteration counts are. This is due to the non-
scalability of the coarse solver (Mumps) employed in the BDDC
preconditioner.
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FIGURE 4 | (A1) Test 2, weak scalability on MIRA BG/Q from 1K to 163K processors of the elliptic solver of the decoupled Bidomain - TP06 model. Condition number

(blue), iteration counts (red), solution times (yellow) of PCG solver with Multilevel Additive Schwarz preconditioner. (A2) Test 3, weak scalability on Marconi-A2 from

128 to 2048 processors of the electro-mechanical solver (NK-BDDC). CPU times and iteration counts.

In order to study more in detail this scalability test, we
report in Figures 5A2,B2,C2 the percent summary (given
by the LogView PETSc subroutine) of the main PETSc
functions called by the electro-mechanical solver. These PETSc
functions, shown in the legend of each plot, range from
inner products (VecTDoc) and vector norms (VecNorm) to
the linear solvers (KSPSolve) and preconditioner applications
(PCApply) required by both the linear (PCG-MAS(4)) and
non-linear (NK-BDDC) solvers. In particular, we report the
percent of: CPU time (Figures 5A2), flops (Figure 5B2) and
messages (Figure 5C2). When one of these PETSc functions
has a negligible percentage, the corresponding legend shows it
equal to 0). All reported pertentages are very scalable, showing
quite flat plots, except the time percentages (Figure 5A2), where
the KSPSolve and PCApply percentages grow considerably
beyond 512 cores, due mostly to the growth of MatSolve
and PCSetUp, which we know already from Figures 5A1,A2

are due to the nonscalable direct coarse solve (Mumps) of
the BDDC preconditioner called by the non-linear SNES
solver. As expected, the percentage of time (Figure 5A2)
and flops (Figure 5B2) are dominated by the PCG solver
(KSPSolve), followed by PCApply and MatSolve. The percentage
of messages (Figure 5C2) is dominated by vector scattering
(VecScatterBegin), matrix multiplications (MatMult) and linear
solves (KSPSolve).

4.4. Test 4: Strong Scalability of the
Non-linear Electro-Mechanical Bidomain
Solver (Figures 6, 7)
Figure 6 reports the results of strong scalability tests onMarconi-
A2 for the non-linear electro-mechanical Bidomain model on an
ellipsoidal domain during the time interval [0 100] ms. We study
the time evolution of CPU times and iterations of the two main
computational kernels of our electro-mechanical model: the non-
linearmechanical solver (NK-BDDC) and linear Bidomain solver

(PCG -MAS(3) for the elliptic solve and PCG-BJ for the parabolic
solve).

The global mesh size is fixed to 384× 192× 48 finite elements
while the number of processors is increased from 32 = 8 × 4 × 1
(with local mesh 48 × 48 × 48) to 256 = 16 × 8 × 2 (with
local mesh 24 × 24 × 24). Figure 6A shows the timings of the
NK-BDDC solver: after an initial superlinear speedup from 32
to 64 cores, the timings still reduce when going to 128 and
256 cores but with worse speedups (see also Figure 7A) and
start to increase at 512 cores or more (not shown). Figure 7B
shows the number of Newton iterations for each NK-BDDC
solve, which remain constant at 4 iterations independently of
the number of processors. Figure 7C reports the cumulative
GMRES iterations for each NK-BDDC mechanical solve, which
increase in time since the Jacobian mechanical system becomes
increasingly ill-conditioned due to the spreading of the electrical
activation front and subsequent mechanical contraction. The
number of iterations is reduced when going from 64 to 128
and to 256 cores, but unexpectedly in the 32 core test we got
the lowest iteration counts after 20 ms. Figure 7D shows that
the number of PCG iterations for each Bidomain elliptic solve
are almost constant independently of the number of processors
used. The timings of each Bidomain elliptic (Figure 7E) and
parabolic (Figure 7F) solve show a reduction when the number
of processors is increased, but with reduced speedup when using
256 cores or more.

As before, we now study in Figure 7 the percent summary
(given by the LogView PETSc subroutine) of the main PETSc
functions in this strong scaling test for the electro-mechanical
solver. We report the percent of: flops (Figure 7C), CPU time
(Figure 7D), messages (Figure 7E), reductions (Figure 7F).
Again we find quite flat plots, except the time percentages
(Figure 7D), where the the KSPSolve percentage grows
considerably duemostly to the growth of PCApply andMatSolve,
which again we attribute mostly to the nonscalable direct coarse
solve (Mumps) of the BDDC preconditioner called by the
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FIGURE 5 | Left column Test 2, weak scalability on MIRA BG/Q from 1K to 163K processors of the elliptic solver of the decoupled Bidomain - TP06 model. Percent

summary of time (A1), flops (B1), messages (C1) of the nine main PETSc functions (from VecTDot to PCApply) called by the elliptic solver. Right column Test 3, weak

scalability on Marconi-A2 from 128 to 2048 processors of the electro-mechanical solver (NK-BDDC). Percent summary of time (A2), flops (B2), messages (C2) of the

nine main PETSc functions (from VecTDot to PCApply) called by the elliptic solver.

non-linear SNES solver. The percentage of time (Figure 7D),
flops (Figure 7C) and reductions (Figure 7F) are dominated
by the PCG solver (KSPSolve), but in Figure 7C the percent of
flops of KSPSolve and PCSetUp decreases when the processor
count increases, while the percentages of MatSolve, PCApply and
MatMult increase. The percentage of messages (Figure 7E) are
dominated by vector scattering (VecScatterBegin), linear solves
(KSPSolve) and matrix multiplications (MatMult).

5. DISCUSSION

We have developed a high-performance parallel solver for
cardiac electro-mechanical 3D simulations. After numerical

discretization in space with Q1 finite elements and IMEX
operator splitting finite differences in time, the main
computational kernels at each time step require: (a) the
solution of a non-linear system deriving from the discretization
of the cardiac mechanical problem (1) by a parallel Newton-
Krylov-BDDC (NK-BDDC) solver, where the Krylov method
chosen is GMRES; (b) the solution of the two linear systems
deriving from the discretization of the elliptic and parabolic
equations in the Bidomain model (Equation 6) by a parallel
PCG method with Multilevel Additive Schwarz and Block-Jacobi
preconditioners, respectively. The parallelization of our solver
has been based on simulations have been performed on the
parallel library PETSc (Balay et al., 2012) from the Argonne
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FIGURE 6 | Test 4: time evolution over the [0 100] ms interval of CPU times and iterations of the nonlinear mechanical solver (NK-BDDC) in strong scalability tests

from 32 to 256 processors of Marconi-A2. (A) timings of NK-BDDC solver. (B) Newton iterations for each NK-BDDC solve. (C) cumulative GMRES iterations for each

NK-BDDC solve. (D) PCG iterations for each Bidomain elliptic solve. (E) timings of each Bidomain elliptic solve. (F) timings of each Bidomain parabolic solve.

National Laboratory and large-scale 3D simulations have been
run on high-performance supercomputers.

We have investigated the performance of the parallel electro-
mechanical solver in both physiological excitation-contraction
cardiac dynamics and pathological situations characterized by
re-entrant waves.

5.1. Bidomain Solver
The results have shown that the electrical Bidomain solver
is scalable, in terms of both weak and strong scaling, and
is robust with respect to the deformation induced by the
mechanical contraction. Bidomain weak scaling tests have been

performed both on theMira BG/Q andMarconi-A2 clusters. The
two architectures and the number of cores used are different,
although the load per core is the same. Thus, we can not compare
fairly the performances obtained on the two architectures.
However, the CPU times reported in Figure 4A, bottom and
Figure 5A have the same order of magnitude, showing that the
solution of the Bodomain linear systems on the two architectures
exhibit comparable costs.

5.2. Mechanical Solver
The results have shown that also the mechanical NK-BDDC
solver is scalable in terms of non-linear and linear iterations
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FIGURE 7 | Test 4: strong scalability from 32 to 256 processors of Marconi-A2 of the nonlinear mechanical solver (NK-BDDC). (A) Average times and (B) associated

speedup over the [0 100] ms interval of the nonlinear SNES solver. (C–F) Percent summary of flops (C), time (D), messages (E), reductions (F), of the nine main

PETSc functions (from VecTDot to PCApply) called by the elliptic solver.

counts, but the CPU timings, especially in the weak scaling
test, do not present a scalable behavior. Our results seem to
indicate that this increase of CPU timings can be attributed
to the increase of computational costs required by the BDDC

coarse solver. A possible remedy would be to employ a multilevel
BDDC solver, where the coarse problem is solved recursively by
a BDDCmethod with additional local and coarse problems, or to
employ an adaptive selection of BDDC primal constraints. The
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nonscalability and ill-conditioning of the nonlinear mechanical
system could also be associated with: (a) the penalty formulation
employed to enforce the almost incompressibility of the cardiac
tissue; (b) the presence of the stress induced by the active tension
contraction model; (c) the particular mechanical boundary
condition enforcing zero displacements on a fixed endocardial
basal ring and fixed intracavitary endocardial pressure.

5.3. Comparison With Previous Studies
So far, only few studies have developed and investigated parallel
numerical solvers for cardiac electro-mechanics. Lafortune et al.
(2012) have proposed a fully explicit Monodomain-mechanical
solver, obtaining good strong scalability results up to 500 cores.
The advantage of our approach with respect to that presented in
Lafortune et al. (2012) is that our solver, resulting from a semi-
implicit time discretization of the electro-mechanical model,
allows larger time step sizes and time adaptivity. Augustin et al.
(2016) have developed a very effective electro-mechanical solver,
tested on highly accurate patient-specific geometric models and
based on Algebraic Multigrid (AMG) preconditioners for both
the Bidomain and mechanical systems. The strong scalability
results they have reported show a very good performance of
AMG applied to the non-linear mechanical system, whereas the
AMG preconditioner is less effective for the Bidomain linear
system. The advantage of our solver compared to that introduced
in Augustin et al. (2016) is that both Multilevel Additive
Schwarz and BDDC preconditioners should be more robust

than AMG when high order finite elements or isogeometric
analysis (see e.g., Charawi, 2017) discretizations are employed.
On the other hand, while BDDC preconditioners can be easily
constructed for unstructured meshes, Multilevel Additive
Schwarz methods are more difficult to implement in case of
such grids.

5.4. Future Work
In order to improve our mechanical solver, further studies could
consider the following issues: (a) mixed formulations of the
mechanical system based on inf-sup stable displacement-pressure
discrete spaces; (b) alternative active tension contraction models;
(c) alternative mechanical boundary conditions and pressure-
volume relationships involving multielement Windkessel
models.
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Atherosclerotic plaque rupture and erosion are the most important mechanisms

underlying the sudden plaque growth, responsible for acute coronary syndromes and

even fatal cardiac events. Advances in the understanding of the culprit plaque structure

and composition are already reported in the literature, however, there is still much

work to be done toward in-vivo plaque visualization and mechanical characterization

to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this

work, a methodology for the mechanical characterization of the vessel wall plaque

and tissues is proposed based on the combination of intravascular ultrasound (IVUS)

imaging processing, data assimilation and continuum mechanics models within a high

performance computing (HPC) environment. Initially, the IVUS study is gated to obtain

volumes of image sequences corresponding to the vessel of interest at different cardiac

phases. These sequences are registered against the sequence of the end-diastolic

phase to remove transversal and longitudinal rigid motions prescribed by the moving

environment due to the heartbeat. Then, optical flow between the image sequences is

computed to obtain the displacement fields of the vessel (each associated to a certain

pressure level). The obtained displacement fields are regarded as observations within a

data assimilation paradigm, which aims to estimate thematerial parameters of the tissues

within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed,

endowedwith a forward operator which amounts to address the solution of a hyperelastic

solid mechanics model in the finite strain regime taking into account the axially stretched

state of the vessel, as well as the effect of internal and external forces acting on the

arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence,

the data assimilation and computational solid mechanics computations are parallelized

at three levels: (i) a Kalman filter level; (ii) a cardiac phase level; and (iii) a mesh partitioning

level. To illustrate the capabilities of this novel methodology toward the in-vivo analysis of

patient-specific vessel constituents, mechanical material parameters are estimated using

in-silico and in-vivo data retrieved from IVUS studies. Limitations and potentials of this

approach are exposed and discussed.

Keywords: parameter identification, reduced order unscented Kalman filter, IVUS, coronary arteries, arterial wall

model, computational models, high performance computing
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1. INTRODUCTION

Cardiovascular diseases are the principal cause of death and
morbidity worldwide (Mathers et al., 2016). The two principal
causes of death, cardiac ischemia and stroke, are intrinsically
related with the onset and progress and destabilization
processes of atherosclerotic plaque, which are still largely
unknown (Crea and Liuzzo, 2013; Bentzon et al., 2014).
At the final stage of the destabilization process, the plaque
ruptures releasing thrombotic components into the blood stream
which in turn generate thrombi that block the vessel lumen
causing ischemia. Thus, the prediction of rupture events and
the identification of the so-called culprit plaques is of the
utmost importance for diagnostics and therapeutics. Through
computational simulations is it possible to study the arterial
wall stress state, which may compromise plaque integrity
and induce rupture. Moreover, computational models also
allow to recreate different physiological and pathophysiological
conditions (hypertension, hyperemia, exercise, stenosis) (Taylor
et al., 1999, 2013; Torii et al., 2007; Blanco et al., 2015), as well
as interventions (angioplasty balloon inflation, stent deployment,
stent-plaque interaction, among others) (Conway et al., 2012,
2014) that are valuable resources for diagnosis, treatment and
surgical risk assessment.

In order to accurately simulate patient specific conditions,
three kinds of input data are required: (i) patient-specific
anatomical models of the vasculature, (ii) the loads to which
the anatomical structures are subjected to, and (iii) the patient-
specific distribution of the arterial-wall constituents and their
corresponding material parameters. As far as anatomical data
of the arteries is concerned, it can be straighforwardly extracted
from different medical imaging modalities (Wahle et al., 1995;
Milner et al., 1998; Bulant et al., 2017). Regarding the force
exerted by the blood pressure, it can be accurately estimated from
cuff-pressure measurements (O’brien et al., 2001; Miyashita,
2012). Thus, we are left to the problem of setting patient-specific
material parameters for the models of the arterial wall. This has
long been the Achilles tendon in numerical simulations, most
of them relying in material parameters acquired from ex-vivo
material experimentation in cadaveric specimens (Walsh et al.,
2014; Karimi et al., 2015). In this sense, the in-vivo identification
of material parameters for the arterial-wall is still an open
research topic.

Toward covering the aforementioned gap, specifically in the
coronary artery disease domain, intravascular ultrasound (IVUS)
emerges as an suitable imaging modality to make the attempt to
retrieve the material parameters and distribution of the vessel
materials under in-vivo conditions due to its high temporal
and spatial resolution. The acquired images, when coherently
ordered, are capable of delivering the motion of the vascular
structures. Some works (Kawasaki et al., 2002; Nair et al.,
2002; Sathyanarayana et al., 2009) have successfully classified
the materials in few discrete categories (e.g., necrotic core,
fibrotic, fibro-fatty or lipid-pool, calcified) based on the acoustic
impedance response of the tissues in a determined frame of
the IVUS study. It has then been demonstrated that there is a
notorious variability of the stress-strain response of tissues within

the same category (Loree et al., 1994; Holzapfel et al., 2005;Walsh
et al., 2014) of such classification. Therefore, this information
is not specific enough for simulation purposes. As anticipated
above, the temporal resolution of the IVUS study can be exploited
to retrieve themotion (displacement field) of the vessel wall along
the cardiac cycle (for example by using optical flow techniques
or large deformation diffeomorphic metric mapping). Using the
displacement field as input, data assimilation techniques can be
supplied to estimate the material parameters.

Data assimilation techniques make use of measurable
quantities to adjust a physical model whose goal is to represent
the reality posed by the in-vivo scenario. In that manner, these
techniques permit not only to estimate specific quantities of
interest, but also to explore the underlying physical phenomena.
Also, measurement errors can be filtered by the physical model
being a quid pro quo benefit: the measurements instantiate the
model and the model filters the measurements. Such techniques
can be classified in two categories: (i) variational approaches and
(ii) sequential filtering approaches.

In the variational approach, a cost functional that measures
the difference between the observed measures and the model
prediction is constructed. The cost functional depends on the
parameters of interest (among other parameters required by the
model) to render a model prediction of the measured variable.
Then, the estimated parameters are those such that minimize
the cost functional. The more popular approach is to solve
the Karush-Kuhn-Tucker (KKT) necessary conditions which is
employed in several works for mechanical parameter estimation
(Lagrée, 2000; Martin et al., 2005; Sermesant et al., 2006; Perego
et al., 2011; D’Elia et al., 2012; Bertagna and Veneziani, 2014;
Ares, 2016). In Lagrée (2000), the viscoelastic parameters of large
arteries were estimated using displacement fields of the vessel
wall generated by computational models. Similarly, Martin et al.
(2005) explored the estimation of the vessel compliance in a
1D model using a 3D fluid-structure interaction (FSI) model to
generate the measured displacement of the vessel wall. Using
medical data of blood pressure and inner radius of the arteries,
Stålhand (2009) also used 1D models to estimate the material
parameters according to the model proposed in Holzapfel et al.
(2000). The works of Perego et al. (2011) and D’Elia et al. (2012)
formulate the inverse problem from 3D FSI models and analyze
the sensitivity in the identification of Young modulus to noise
in the measurements of arterial wall displacements. In the latter,
data assimilation is performed from flow velocity data as well.
The main drawback of these variational approaches is the large
number of evaluations of the cost functional (or its derivative)
which are required in the minimization problem (Lassila et al.,
2013). Furthermore, the use of more realistic models such as 3D
FSI models or complex heterogeneous anisotropic solid models
are many times mandatory to render accurate results, increasing
the computational effort. In some cases, reduced order strategies
combined with statistical approaches can be applied to reduce
the burden behind cost functional evaluations, as shown in
Lassila et al. (2013). Other approach is proposed in Bertagna and
Veneziani (2014), based on the application of model reduction
techniques coupled with a proper orthogonal decomposition to
accomplish the solution of 3D FSI in a computationally efficient
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way. Efficient implementations for solid mechanics problems
have also been proposed in Avril et al. (2010) and Pérez Zerpa and
Canelas (2016) using a virtual fields method and a constitutive
equation gap functional, respectively.

In turn, and for problems involving a small-to-
moderate number of unknown parameters, the sequential
filtering approach (also known as filtering methods) is
less computationally demanding and, at the same time,
embarrassingly parallel. These features make the filtering
approach an appealing strategy for the kind of problems
addressed in the present work. Conceptually, given a set
of observations, the method realizes a prediction for each
observation and, then, introduces corrections in the model
parameters based on the discrepancies between the model
estimation and the observed data. For each prediction-correction
step, several variations of the parameters are tested in the model
and, through statistical analysis of the model predictions, a
suitable correction is performed over the parameters. Several
methods based on the Kalman filter have been developed to deal
with linear and non-linear dynamic problems. As examples,
a non-linear extended Kalman filter (EKF) with collocation
feedback is applied to identify the Young modulus of different
regions of a heart model in Moireau et al. (2008), Moireau
et al. (2009), and Chapelle et al. (2009). The observations used
varied between the myocardium velocity (Moireau et al., 2008),
displacement (Moireau et al., 2009) and velocity of the heart
boundaries (Chapelle et al., 2009). The stability of such methods
was studied (Moireau et al., 2008) and in terms of accuracy it
is reported that Kalman filtering is optimal for linear systems
only, while extended algorithms based on linearized operators
may lead to efficient, albeit non-optimal, filtering procedures.
In Lipponen et al. (2010), the EKF is also applied to estimate
parameters of a reduced order Navier-Stokes model (through
an orthogonal decomposition of the velocity field) through
observations acquired from electrical impedance tomography.
In more recent works, Moireau and Chapelle (2011) presented a
reduced order Kalman filter based on the unscented transform
(abbreviated as ROUKF) that offers an interesting alternative
to the EKF method. Such an approach does not require neither
linearization nor calculation of the tangent operator of the
non-linear model, which substantially eases its implementation.
Noteworthy, the ROUKF features a higher order approximation
of the system states statistics, delivering more accurate outcomes
than EKF. In Bertoglio et al. (2012) and Bertoglio et al. (2014),
ROUKF was successfully applied for estimation of Young
modulus in arteries with tests in-vivo and in-vitro, showing a
simpler and more efficient implementation than EKF. Recently
in Caiazzo et al. (2017), terminal resistances and vessel wall
properties of a 1D vascular network were estimated via ROUKF
using blood flow and/or pressure measurements as observations.

In this work, we present a novel approach to construct patient-
specific mechanical models of the arterial wall using in-vivo data
from IVUS studies. In a nutshell, this approach integrates the
realms of image processing, optical flow, continuum mechanics,
and filtering data assimilation to effectively merge patient-
specific data with mechanical models, toward the in-vivo
estimation of material properties. From the IVUS study, a frame

of interest is selected and the corresponding arterial wall is
demarcated. For the mechanical model a finite strain framework
is considered, and the constituent tissues are assumed to behave
as isotropic Neo-Hookeanmaterials. Importantly, it is considered
that the arterial vessel corresponding to the diastolic phase is
at equilibrium with a certain diastolic pressure level, and it
is further subjected to a given axial stretch at that phase. By
using gating, registration and optical flow methods developed in
previous works (Maso Talou et al., 2015, 2017; Maso Talou, 2017),
the displacement field of the vessel wall is estimated along the
cardiac cycle. Then, the ROUKF is exploited as a data assimilation
procedure in which the previously obtained displacement field
is supplied as observational data, while the material parameter
of the Neo-Hookean models are the target parameters to be
estimated.

The manuscript is structured as follows. In section 2, the
proposed methodology is detailed, presenting image processing
techniques (section 2.1), the mechanical model for the arterial
wall (section 2.2), and, at last, the data assimilation process
for the estimation of the material parameters (section 2.3). In
section 3, the sensitivity of the data assimilation parameters
(section 3.1) and boundary conditions (section 3.2) and baseline
stress state (section 3.3) for the mechanical problems are studied
to assess their impact on the data assimilation outcomes. Hence,
the mechanical characterization is performed for four in-vivo
atherosclerotic lesions to analyze the performance of the method
in real case scenarios (section 3.4). Insights, strengths and
weaknesses of the methodology are then discussed in section 4
and final remarks are outlined in section 5.

2. METHODS

This section is divided in four parts. First, the IVUS imaging
processing methods are described, where we present the
procedures to obtain the displacement field of a specific
vessel cross-section along the cardiac cycle (see Figure 1).
Second, the mathematical model for the arterial mechanics
is formulated, defining the mechanical equilibrium and the
material constitutive behavior. Third, the data assimilation
algorithm is presented as a tool to estimate unknown material
properties in the mechanical models using the displacement
field retrieved from the IVUS images. Finally, an efficient three-
level parallelization scheme is described for high performance
computing environments.

2.1. Image Processing
The goal of the image processing stage is to deliver the
displacement field of the vessel wall along the cardiac cycle
at a particular site of interest within the artery. As this new
methodology is a proof of concept, the data from the in-vivo
cases will be extracted from a standard IVUS pullback as a
retrospective study. As the transducer is axially displaced from
frame to frame, only images corresponding to a single cardiac
cycle can be extracted for each cross-section to obtain small
topological variations between the images (spatial consistency).
Hence, the extraction of the frames at a particular location is
hindered due to the motion of the IVUS transducer exerted by
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FIGURE 1 | Proposed pipeline to estimate the patient-specific mechanical properties from IVUS medical images.

the myocardium contraction. To overcome this issue, gating and
registration procedures are performed using methods previously
presented in Maso Talou et al. (2015, 2017). To retrieve the
displacement field, a modified optical flow method is applied
to the extracted frames at the site of interest. As follows, the
treatment given to the IVUS images is briefly described.

2.1.1. Gating
The gating method aims to recover the cardiac phase at each
cross-sectional image of the study. To achieve this, a signal that
measures the total motion of each frame is generated as

s(n) = αg

[

1−

∑H
i=1

∑W
j=1

(

In(i, j)− µn

) (

In+1(i, j)− µn+1

)

σn σn+1

]

+ (1− αg)

H
∑

i=1

W
∑

j=1

−
∣

∣∇In(i, j)
∣

∣ , (1)

where In is the n-th image of the study with a resolution of
H × W pixels, µn and σn are the mean and standard deviation
of the intensity at In and αg a mixture parameter. The principal
frequency mode of the signal s(n) at the physiological heart-
frequency range (i.e., between 0.75 and 1.66 Hz) is extracted
to obtain the mean cardiac frequency of the study, fm. Then, a
low frequency signal sl(n) is generated by low-pass filtering s(n)
with cut-frequency fc = 1.4fm. If there is not severe arrhythmia
during the IVUS acquisition, sl presents one minimum per
cardiac cycle related to the end-diastolic phase, thus, all frames
for this phase are easily and directly extracted. Due to heartbeat
period variability along the study, some of these minima can
be displaced between s and sl, because of the lack of high
frequencies contributions. To avoid such inconsistencies, we
iteratively modify f kc = (k + 0.4)fm (k is the current iteration

number), recompute sk
l
with the new cut-frequency f kc and adjust

each minimum of iteration k − 1 to its nearest local minimum
in sk

l
. Interestingly, the iterative scheme aids in cases with mild

arrhythmia, i.e., where only few heartbeats of the study (not
contiguous) present delay or omission of the P-wave. In those
cases, the adjustment of the minima identified correctly the P-
waves or collapsed the twominima to the same time position (this
is the case when a P-wave did not occur and the heartbeat elapsed
twice its period). In both of the previous cases, the minima are
correct. In cases with severe arrhythmia, it is recommended the
use of ECG signal and manual segmentation of minima for a
proper gating. In the so-obtained phase, the cardiac contraction
is at its minimum, and so, it corresponds to the beginning of the
cardiac cycle, more precisely the beginning of the cardiac P-wave.

Since the heart frequency changes along the study, the
heartbeats are sampled with a variable amount of frames. This
variability in the heartbeat frequency affects mainly the relaxation
process of the heart and, consequently, the length of the T-P
interval. Despite this, the P-T interval remains almost invariant.
Taking this fact into consideration, the end-diastolic instant for
each cardiac cycle will be regarded as a reference for the definition
of S cardiac phases. Each available frame of the P-T interval
is then associated to a specific cardiac phase, obtaining phase-
coherent volume datasets. Further details of the gating method,
setup of the mixture parameter αg and validation with in-vivo
studies are described in Maso Talou et al. (2015).

2.1.2. Registration
All phase-coherent volumes are registered (axially and
transversally) against the volume dataset corresponding to
the end-diastolic phase. This procedure is performed for each
phase-coherent volume. The transversal registration is achieved
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by finding the in-plane rigid motion for each image in the current
phase that best matches the frame image in the end-diastolic
phase. To quantify the matching between two images, we use a
maximum likelihood estimator presented in Cohen and Dinstein
(2002) and Wachinger et al. (2008),

c(In, Im) =

H
∑

i=1

W
∑

j=1

[

In(i, j)− Im(i, j)− log
(

e2 (In(i,j)−Im(i,j)) + 1
)]

.

(2)
The rigid motion 4n for each cross-section is then estimated by
solving the following optimization problem

4n = arg max
4∗

c
(

IDn , I
s
n(x(4

∗), y(4∗))
)

, (3)

where Isn is the n-th cross-section of the phase-coherent volume
corresponding to the s-th phase, D denotes the end-diastolic
phase, and I(x(4∗), y(4∗)) is the image I after applying the rigid
transformation defined by 4∗ which is composed by an in-plane
translation plus a rotation with respect to the image center.

By virtue of the myocardium contraction, the same cross-
sections site at the different phases may be longitudinally
displaced. Therefore, it is necessary to perform an axial
registration to find the corresponding frames at different phases
for the same transversal site. Thus, after transversal registration of
all phase-coherent volumes, an axial registration against the end-
diastolic phase is applied. For each frame of each phase-coherent
volume (now transversally registered), the best matching frame
in the end-diastolic volume is sought out. To diminish the
computational burden, the search is limited to the 14 adjacent
frames in the end-diastolic volume which is within the range
of axial displacements of a transducer during the IVUS study
(Arbab-Zadeh et al., 1999). To quantify the matching between
two images, we use a neighborhood likelihood estimator defined
as

cw(I
s
n, I

D
m) =

w
∑

d=−w

φσG (d) c(I
s
n+d

, ID
m+d

)

w
∑

d=−w

φσG (d)

, (4)

where φσG is a Gaussian weight function with σG standard
deviation and w is the amount of adjacent frames used to
establish the matching between the two sites centered at Isn and
IDm respectively. It is important to note that w is not the search
range fixed at 14 frames, but is the size of the neighborhood used
for each comparison between two frames. Then, the position for
axial registration, i. e., frame of the end-diastolic phase that best
matches the current frame Isn is given by

m = arg max
k=n−7,...,n+7

cw(I
s
n, I

D
k ). (5)

Finally, given the site of interest at the n-th frame of the end-
diastolic phase volume, the set of frames that constitutes a
sequence along the cardiac cycle at this site is I = {Ĩsn, s =

1, . . . , S}, where Ĩsn is the n-th frame of the phase-coherent volume
corresponding to phase s after transversal and axial registration.

The reader is directed toMaso Talou et al. (2017) andMaso Talou
(2017) for further details of the registration methods.

2.1.3. Optical Flow
For a pair (or sequence) of images, optical flow techniques
aim at determining the displacement vector field that relates
the points of both images (Horn and Schunck, 1981). Because
optical flow strategies rely on the gray constancy assumption, a
denoising procedure is performed over the sequence. The applied
denoising method is a variation of the TV-L1 method (Rudin
et al., 1992; Chan et al., 1999) which modifies the data term
(absolute difference measurement of the images) by the negative
maximum likelihood estimator assuming one image with gamma
distributed noise and another noiseless image. Thus, the denoised
image I corresponding to the noisy image J is obtained as

I = arg min
Ĩ

∫

�

[

−γdνd(J− Ĩ)+δ
−γd
d

eγd(J−Ĩ)+αd|∇ Ĩ|
]

d�. (6)

where � is the image domain, γd, νd, δd are parameters of the
generalized gamma distribution that models the noise and αd the
regularization parameter for denoising.

Then, the optical flow is estimated for the denoised sequence
of images using the method proposed in Brox et al. (2004).
Particularly, the flow (i.e., the displacement field) is computed
between the end-diastolic frame of the sequence to the other
frames, corresponding to the different cardiac phases. Thus, the
displacement field uOF = (uOF, υOF) between the end-diastolic
frame ID and the s-phase frame Is is given by

uOF =

R
∑

r=1

δur , (7)

where δur is the flow component corresponding to the image
resolution r that is obtained as

δur = arg min
δu

∫

�

[

ψ

(∥

∥

∥

∥

∂Ir

∂t
+∇Ir · δu

∥

∥

∥

∥

2

Gρ

)

+ αo ψ
(∥

∥∇(ur−1 + δu)
∥

∥

2

F

)

]

d�, (8)

where ur−1 =
∑r−1

t=1 δu
t , ‖·‖F is the Frobenius norm, αo is the

regularization parameter for optical flow. The functionψ and the
weighted norm ‖·‖Gρ are defined by

ψ(x) = 2κ2
√

1+
x

κ2
,

∥

∥

∥

∥

∂Ir

∂t
+∇Ir · δu

∥

∥

∥

∥

2

Gρ

= Gρ ∗
( ∂Ir

∂x

)2
δu2 + Gρ ∗

( ∂Ir

∂y

)2
δυ2

+Gρ ∗
( ∂Ir

∂t

)2
+ 2Gρ ∗

( ∂Ir
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)

δu δυ

+2Gρ ∗
( ∂Ir
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∂Ir

∂t

)

δu+ 2Gρ ∗
(∂Ir

∂y

∂Ir

∂t

)

δυ,

where Gρ is the Gaussian kernel with ρ standard deviation
and ∗ is the convolution operator. Note that the flow uOF is
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the displacement field between ID and Is, then the temporal
derivative is estimated as the variation of the intensity between
such frames.

Such strategy defines all displacement fields along the cardiac
sequence at the same reference phase (the end-diastolic phase),
which eases the integrability of the data into the assimilation
process introduced in section 2.3.

2.1.4. Patient-Specific Geometric Model
Using an IVUS study gated at the end-diastolic phase, a
geometrical model for a frame of interest is constructed (see
Figure 2). First, the intima-media area is manually segmented
by a specialist from the image using cubic splines to obtain a
2D patient-specific geometry. Then, the 2D geometry is extruded
0.05 mm in the axial direction to render a 3D slice of the arterial
vessel. The mesh generation from this geometry is described later
in section 2.2.5 when the numerical scheme for the mechanical
problem is introduced.

2.2. Mechanical Setup for the Arterial Wall
In this section, the main ingredients from continuum mechanics
required to describe the mathematical models are briefly
summarized. For further details the reader may refer to Ares
(2016) and Blanco et al. (2016).

Let us consider the domain of a cross-sectional slice of the
vessel wall. Its spatial configuration in the Euclidean space is
denoted by�s, with boundary ∂�s = ∂�W

s ∪ ∂�E
s ∪ ∂�

A
s , where

∂�W
s represents the interface between the vessel and the blood,

∂�E
s the external surface, and ∂�A

s =
⋃2

i=1 ∂�
A,i
s stands for

the set of 2 cross-sectional (non-physical) axial boundaries for
the vessel slice (see Figure 3). The unit outward normal vector is
denoted by ns. The coordinates at this configuration are denoted
by xs. Amaterial configuration, used as a reference configuration,
is denoted by �m, with coordinates xm. In the present context,
�s stands for the configuration at which mechanical equilibrium
is achieved for a given load condition (diastolic, systolic or
any other loaded state of the arterial wall). Residual stresses
are neglected, therefore, the material configuration �m is both
load-free and stress-free.

The displacement field mapping points from the material into
the spatial configuration is denoted by u. Then, we characterize
the deformation mapping from �m onto �s and its inverse by
the following expressions,

xs = χm (xm) = xm + um, (9)

xm = χs (xs) = χ−1
m (xs) = xs − us, (10)

where subscripts m and s denote the descriptions of the fields
in the material and spatial configurations, respectively. Thus, the
displacement vector field is given by

us(xs) =
(

um(xm)
)

s
= um

(

χ−1
m (xs)

)

, (11)

and its gradients with respect to material and spatial coordinates
are, respectively, obtained as

Fm = ∇mχm = I+∇mum, (12)

fs = ∇sχs = ∇sχ
−1
m = I−∇sus. (13)

Observe that [F−1
m ]s = fs and [f−1

s ]m = Fm. Arterial wall tissues

are assumed to behave as incompressible materials, which is
mathematically represented by the following kinematic condition

det Fm = 1. (14)

In a general case the load state of the model of an arterial
cross-section is characterized as follows. Neumann boundary
conditions are considered to be given by the forces exerted
by the blood flow over ∂�W

s , i.e., through a traction field tWs
which is considered to be characterized as tWs = psns (here
we only consider the pressure load, and neglect the shear forces
imprinted by the blood flow on the vessel wall), and by the
tethering tractions tA,is acting over ∂�A,i

s , i = 1, 2. For ease
of notation, the tethering tractions are grouped into tAs , which
is defined over the whole ∂�A

s . The action of the surrounding
tissues is introduced as an elastic traction over the external
boundary, which is characterized by the elastic parameter τ and

FIGURE 2 | Vessel segmentation and geometric model generation: (Left) segmentation of the intima-media area over the IVUS image; (Middle) extruded volume of

the intima-media area; (Right) final 3D mesh.
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FIGURE 3 | Cross-sectional slice of an arterial vessel. Description of the spatial

domain �s and boundaries ∂�s = ∂�Ws ∪ ∂�Es ∪ ∂�As of the arterial wall.

depends on the displacement field at this boundary (see further
details in section 2.2.1). These tractions, representing the external
tissues influence, only act over the external surface ∂�E

s in the
physiological pressure range, i.e., at end-diastolic pressure or
higher. That is, during the preload problem (see section 2.2.2), the
boundary ∂�E is an homogeneous Neumann boundary (except
for a small region of arc length 1 = 0.1 mm which is fixed to
remove rigid motions).

The mechanical problem in variational form is framed as
a saddle-point problem to accommodate the incompressibility
constraint through the corresponding Lagrange multiplier, i.e.,
the pressure field in the solid domain.

Next, two variational formulations are presented which
formalize the concept of mechanical equilibrium for the
so-called preload and forward problems. In the preload
problem, the known configuration is that one at which
the body is at equilibrium (the spatial domain), and the
unknown configuration is the material configuration used to
define the constitutive equations. In the forward problem, the
known configuration is the material one, while the unknown
configuration is the one where equilibrium actually occurs.

2.2.1. Forward Problem
When the material (load- and stress-free) configuration �m is
known, the variational Equation (16) can be cast in the material
domain, yielding what we define as the forward problem. The
variational formulation then reads: given thematerial description
of the loads, pm and tA,im , find (um, λm) in Um × Lm such that

∫

�m

(1− det Fm)λ̂m d�m −

∫

�m

λm

(

F−T
m · ∇mûm

)

det Fm d�m

+

∫

�m

(Sm(Em)) · Ė
(

ûm
)

d�m

=

∫

∂�E
m

τ (um − (ud + uOF)m) · ûm |F−T
m nE0 | det Fm d∂�E

m

+

∫

∂�W
m

(

pmF
−T
m nW0 · ûm

)

det Fm d∂�W
m

+

2
∑

i=1

∫

∂�
A,i
m

(

tA,im · ûm
)

|F−T
m nA,i0 | det Fm d∂�A,i

m

∀(ûm, λ̂m) ∈ Vm × Lm, (15)

where Ė(ûm) = 1
2 [F

T
m(∇mûm) + (∇mûm)

TFm], n0 is the unit
outward normal vector in the material configuration. Recall that
τ is the elastic parameter characterizing the response of the
surrounding media, uOF is the displacement field which maps
the end-diastolic to the spatial configuration where equilibrium is
achieved (see Equation 7), and ud is the displacement field which
maps points from the material to the end-diastolic configuration.
Also, Um, Vm, and Lm are the counterparts of Us, Vs, and Ls,
respectively, with functions defined in�m.

Acceleration terms have also been neglected, since the stresses
associated to such inertial forces is much smaller than those of
constitutive origin (Ares, 2016; Blanco et al., 2016).

2.2.2. Preload Problem
Given the equilibrium configuration �s, the variational
formulation reads: given the loads tW,n

s and tAs , find
(us, λs) ∈ Us × Ls such that

∫

�s

[

−λs div ûs + σ s · εs
(

ûs
)]

d�s −

∫

�s

[1− det F−1
s ]λ̂s d�s =

∫

∂�W
s

tW,n
s ns · ûs d∂�

W
s +

2
∑

i=1

∫

∂�
A,i
s

tA,is · ûs d∂�
A,i
s

∀(ûs, λ̂s) ∈ Vs × Ls, (16)

where εs(û) = 1
2 (∇sû + ∇sû

T) is the strain rate tensor, Ls =

L2 (�s) and Us =
{

us ∈ H1 (�s) , us satisfies essential b.c.
}

are,
respectively, the linear space for pressures and the linearmanifold
for kinematically admissible displacements, and Vs =

{

ûs ∈

H1 (�s) , ûs satisfies homogeneous essential b.c.
}

is the space
of kinematically admissible variations. Also, σ s is related to the
second Piola-Kirchhoff stress tensor Sm through

σ s =
1

det Fs
Fs(Sm(Em))sF

T
s . (17)

where Sm is a function of the Green-Lagrange deformation
tensor Em = 1

2

(

FTmFm − I
)

via a constitutive equation (see
section 2.2.4).

In this work the preload problem is used to obtain the
material configuration that enables an appropriate calculation
of the stress field, which realizes the equilibrium in the end-
diastolic configuration. Note that in this case the action of
the surrounding media is omitted. This is due to the fact that
our hypothesis considers the end-diastolic configuration as a
reference configuration for the elastic response of the external
tissues.

2.2.3. Equilibrium Problems for a Given Set of

Material Parameters
The preload problem is a mandatory step toward characterizing
the mechanical state (the stress state) of the arterial wall in a
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geometry obtained from medical images (e.g., the end-diastolic
geometry) with given baseline hemodynamics loads. In this
context, these loads are given by the end-diastolic pressure,
also called preload pressure, and by the axial stretch caused by
tethering forces. The material configuration is required because
it is used to define constitutive equations, without which the
forward problem cannot properly be formulated. In our case,
such baseline geometry is obtained from IVUS study, while the
baseline hemodynamics loads (the blood pressure) are estimated
from patient specific data. Just after solving the preload problem,
the baseline mechanical state, that is the stress state due to
the preload pressure (i.e., pressure at diastole), is adequately
determined and the displacement field us—that maps the
material (load-free) configuration to the diastolic configuration–
is recalled as ud. Then, the forward problem is solved to determine
the equilibrium configuration for other hemodynamics loads
occurring during the cardiac cycle. In that manner both problems
are synergically coupled to solve a forward problem from an
adequately preloaded configuration.

In practice, a set of physiological loads for the vessel will
be given. Individualizing the diastolic pressure level as ps, a set
of pressure loads between diastole and systole can be listed as
{ps1 , . . . , psS}. Through the forward problem, each load psi will
be in correspondence with an unknown spatial configuration
�si , i = 1, . . . , S. Notice then that, for a given set of material
parameters, the preload problem is solved only once and so
the forward problem is solved for each load psi in the set of
physiological loads.

2.2.4. Constitutive Models
The main components of the atherosclerotic plaque, i.e., fibrotic,
lipidic and calcified tissues, are modeled as isotropic Neo-
Hookean materials. In Walsh et al. (2014), it is shown that
fibrotic tissue in illiac plaque presents a quasi isotropic behavior.
Different from the fibrotic tissue, the lipidic and calcified tissues
do not display any contribution of smooth muscle cells or
oriented fibers that may endow their structures with anisotropic
behavior, what suggests that an isotropic hypothesis for these
materials is reasonable.

The isotropic Neo-Hookean model is suitable for materials
under large deformations where the stress-strain relationship
behaves as non-linear, elastic, isotropic and independent of
strain rate. Also, the model assumes an ideal elastic material
at every strain level which, for physiological ranges, is satisfied
by many biological tissues. The stress-strain relationship for a
Neo-Hookean material derives from the strain energy function

ψ =
c

2
(I1 − 3), (18)

where c is the material parameter that characterizes the stiffness
of the material and I1 is the first isochoric invariant of the
Cauchy-Green tensor

I1 = Tr
(

Cm(det Fm)
−2/3

)

, (19)

withCm = FTm Fm. Then, the second Piola-Kirchhoff stress tensor
(and the σm through Equation 17) is obtained as

Sm(Em) =
∂ψ

∂Em
. (20)

2.2.5. Numerical Methods
The preload and forward problems are linearized using the
Newton-Raphson method. Linear tetrahedral finite elements for
both displacement and pressure fields are used for the spatial
discretization of the corresponding linearized problems. To
stabilize the problem in the sense of the inf-sup condition,
the linearized (forward and preload) problems are modified
adding a diffusive term in the pressure equation. For the analysis
of the proposed approach, four patient-specific 3D geometries
were obtained using the technique described in section 2.1.4.
These geometries were discretized using Netgen 3D using
a characteristic element size ranging from 10µm to 40µm,
resulting in meshes with 6,521, 7,516, 4,835, and 3,808 nodes for
the cases 1–4, respectively. All these steps are performed using
an in-house solver. The resulting systems of linear equations
are solved using a direct solver based on LU factorization from
the SuperLU library (Li and Demmel, 2003). Further details
regarding the linearization and numerical schemes can be found
in Ares (2016) and Blanco et al. (2016).

The Newton iterative scheme in both equilibrium problems
finishes when ‖um+1

s − ums ‖L∞ < 10−4 mm and ‖λn+1
s −

λns ‖L∞ < 1 Pa. Such convergence criterion was chosen to yield a
higher precision than the optical flow processing applied to IVUS
images (16 · 10−3 mm assuming pixel precision).

2.3. Data Assimilation
In the data assimilation process, the displacement field uOF

obtained using the optical flow technique as explained in
section 2.1 and the mechanical models presented in the previous
section (section 2.2) are integrated by an unscented Kalman filter.

Let us define a partition for the domain of analysis�s =
⋃M

j=1�
j
s

composed byM disjoint regions. Each region�i
s is characterized

by its own material parameter, say ci, see Equation (18). The axial
loads tA,nsi

, the pressure level psi and the displacement fields uOFsi
(obtained by optical flow techniques) are known at S cardiac
phases (i = 1, . . . , S). Since our mechanical problem is time-
independent, the time instants in the context of the Kalman
filter simply correspond to filter iterations, while at each iteration
all forward problems must be solved. By using the mechanical
constitutive models, the material parameters grouped as θ =

(c1, . . . , cM), are estimated such that

θ = arg min
θ̂

S
∑

i=1

‖uMO
si

(θ̂)− uOFsi ‖2L2 , (21)

where uMO
si

(θ̂) is the displacement field at the configuration si
obtained by solving the preload and forward problems (described
in section 2.2) with pressure level psi and material parameters θ̂ .

The solution of the parameter identification problem eqution
(21), satisfies the discrete dynamic nonlinear system presented as
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follows

Xa
k = f (Xa

k−1, tk−1)+Wk,

Zk = h(Xa
k , tk)+ Vk,

(22)

where Xa
k
is the augmented state vector

Xa
k = [uks1 (x), . . . , u

k
sS
(x), λks1 (x), . . . , λ

k
sS
(x), c1, . . . , cM]T , (23)

which contains the displacement usi and pressure λsi fields for all
forward problems i = 1, . . . , S, and the material parameters of all
regions of the domain θ = (c1, . . . , cM); f (Xa

k
, tk) is the operator

that sequentially solves the preload and all forward problems for
parameters and initial state conditions in Xa

k
at filter iteration

tk (recall that these problems are time-independent, and so the
dependence on time is ruled out in practice); Wk are the model
errors at the k-th step; h(Xa

k
, tk) = HXa

k
is a linear observation

operator represented by the block matrix

H =
[

Iuu 0uλ 0uθ
]

, (24)

where block matrix indexes indicate the corresponding
dimensions; Z is the set of optical flow observations at each
cardiac phase, described by the column vector

Z = [uOFs1 (x), . . . , uOFsS (x)]T , (25)

where uOFsi (x) is the displacement field obtained by the optical
flow technique for the cardiac phase i, i = 1, . . . , S (observe
that for the present case of static problems, the observations are
fixed concerning the dynamics of the data assimilation process);
V is the vector of optical flow and interpolation errors for the
observation vector Z.

To obtain an estimate of the parameters θ , a reduced ordered
unscented Kalman filter (ROUKF) (Julier and Uhlmann, 2002,
2004) is applied to the system described in Equation (22). The
filter comprises the following steps

1. Spherical sigma-points generation σ
(n)
i , i = 1, . . . ,M + 1

with their corresponding weights w(i) (see Julier, 2003) and
initialization of the variables

R0 = σOF Iuu; L0 =

[

LX0
Lθ0

]

=





Lu0
Lλ0
Lθ0



 =





0uθ
0λθ
Iθθ



 ;

U−1
0 =







σĉ1 . . . 0
...

. . .
...

0 . . . σĉM






, (26)

Xa
0 = [X̂+

0 , θ̂
+
0 ]T = [0u, 0λ, θ̂0]

T , (27)

P+0 = L0U
−1
0 LT0 , (28)

where σOF is the uncertainty of the computed optical flow
and σĉi is the uncertainty of the parameter ci, i = 1, . . . ,M.
The sensitivity analysis of the uncertainty value is studied in
section 3.1.

2. The prediction step

X̂
(i)
k−1

= X̂+
k−1

+ LXk−1

√

U−1
k−1

σ
(n)
i , i = 1, . . . ,M + 1,

θ̂
(i)
k−1

= θ̂+
k−1

+ Lθk−1

√

U−1
k−1

σ
(n)
i , i = 1, . . . ,M + 1,

[

(X̂
(i)
k
)

(θ̂
(i)
k
)

]

= f
(

[

(X̂
(i)
k−1

)

(θ̂
(i)
k−1

)

]

, tk−1

)

,

X̂−
k
=

M+1
∑

i=1

w(i)X̂
(i)
k
, θ̂−

k
=

M+1
∑

i=1

w(i)θ̂
(i)
k
, Ẑk =

M+1
∑

i=1

w(i)Ẑ
(i)
k
.

(29)

3. The correction step

LXk = X̂
(∗)
k
Dw(σ

(∗))T , Lθk = θ̂
(∗)

k Dw(σ
(∗))T ,

{HL}k = Ẑ
(∗)
k
Dw(σ

(∗))T ,

Pw = σ (∗)Dw(σ
(∗))T ,

Uk = Pw + {HL}TkR
−1
k

{HL}k,

X̂+
k
= X̂−

k
+ LXkU

−1
k

{HL}TkR
−1
k

(

Z − Ẑk

)

,

θ̂+
k

= θ̂−
k
+ LθkU

−1
k

{HL}TkR
−1
k

(

Z − Ẑk

)

.

(30)

The matrices σ (∗), X̂
(∗)
k
, Ẑ

(∗)
k
, θ̂

(∗)

k are theM× (M+1) matrices

whose columns are the vectors σ (i), X̂
(i)
k
, Ẑ

(i)
k
, θ̂

(i)
k

with i =

1, . . . ,M+1, respectively.Dw is the diagonal (M+1)×(M+1)
matrix with values Dii = w(i), i = 1, . . . ,M + 1, i.e., the
sigma-point weights.

4. If stop criteria is not achieved, go to step 2 and k = k+ 1.

In this iterative scheme, the model errors Wk (inaccuracies
in the solution of the preload and forward problems) have been
neglected. The stop criteria used in this work is a fixed number of
iterations that is reported for each study case in section 3.

In this work, c was reparametrized as c = 2θ̂ (this approach
was introduced in Bertoglio et al., 2012) allowing θ̂ to vary in the
whole R (as occurs in the presented formulation 29, 30) without
delivering invalid values for c.1

2.4. Parallelization Scheme
The data assimilation scheme is a computationally demanding
task. However, it presents many independent or low dependent
tasks. Firstly, notice that all sigma point predictions can be
computed in parallel. As the forward problem is static, all
forward problems (one per load, for S different loads) are
computed in parallel and an extended observation vector
Ẑ(i) = [Ẑ(i),1, . . . , Ẑ(i),S]T for the i-th sigma-point is created

by appending the predicted displacements Ẑ(i),j of the j-th
forward problem corresponding to the pressure load psj . In

1The reparametrization 2θ̂ modifies the assumed distribution of the parameter

from normal distribution to log-normal distribution. Mean and covariance of θ

are propagated in a different fashion than mean and covariance of c. Nevertheless,

there is a similar statistical interpretation for c using these descriptors in an

exponential space of coordinates. For example, a covariance of σ = 1 must be

understood as giving the same probability of c being half or twice its initial value.
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that manner, at each Kalman iteration, the observations of all
frames, are processed at once. In turn, the forward problem
itself is parallelized by partitioning the mesh and communicating
among subdomains the results of the local operations in both
assembling and solving stages. Partitioning is accomplished using
ParMETIS (Karypis and Kumar, 1998), and the solution is
achieved using the SuperLU library (Li and Demmel, 2003).
Following such parallelization scheme, and assuming there are
enough computational resources, the cost per iteration of the
data assimilation process equals the cost of the computation
of one preload problem plus one forward problem, regardless
the number of cardiac phases or sigma-points employed (i.e.,
regardless the number of parameters to be estimated). Note
that the cost of the Kalman filter increases as more parameters
are estimated, although when compared to the computations
required for solving the mechanical equilibrium problems this
increment is insignificant (only a few dozens of parameters will
be required in the worst case). In Figure 4, the activity diagram
for the proposed parallel scheme is presented. Thus, the data
assimilation process is HPC ready and, even, capable to handle
large scale FEM problems.

3. RESULTS

In what follows, sensitivity analyses are carried out to study
the variation of the parameter estimation with respect to:
the parameter uncertainties, boundary conditions and baseline
stress state of the mechanical model (sections 3.1, 3.2, and
3.3, respectively). From these analyses, a reasonable setup of
the data assimilation parameters and mechanical conditions is
obtained for the present context of material identification in
patient-specific models. Finally, in section 3.4, 4 patient-specific
mechanical models are derived from in-vivo IVUS studies and the
obtained displacement errors between the model predictions—
with its parameters adjusted by data assimilation—and the
optical flow observations are assessed.

3.1. Uncertainty Parameters Sensitivity
Let us define a homogeneous ring-shaped domain �s with Neo-
Hookean constitutive behavior (see Equation 18). The inner and
outer radius of the ring are 2 and 2.71 mm, respectively. The
size and proportions are chosen to approximate an idealized
coronary artery. Loads of tW,n = 80 mmHg and tW,n = 120
mmHg are applied over the inner surface for the preload and
forward problems, respectively, and tethering tractions tA,is are
considered such that an axial stretch of 10% is prescribed. At the
outer surface, homogeneous Neumann boundary conditions are
assumed (τ = 0 in Equation 16). To avoid rigid movements in
this idealized geometry, only radial displacement is allowed for 4
equidistant nodes at the luminar perimeter. The forward operator
f , which comprises the preload and forward problems (see
Equations 15, 16), is solved at each filter iteration with an iterative
scheme where a Newton-Raphson linearization procedure is
applied as described in section 2.2.5 (further details in Blanco
et al., 2016).

Using this setting, we create an in-silico experiment to analyze:
(i) the sensitivity of the parameter estimates θ̂ with respect to the

σZ (the observations uncertainty, previously referred to as σOF);
and (ii) the sensitivity of the parameter estimates θ̂ with respect
to the σθ (the estimate uncertainty). Thus, the observations are
generated by computing Z = h

(

f (Xt)
)

where Xt = [0u, 0λ, θ
t]

is the true augmented state vector with the solution parameters

ct = 2θ
t
for the experiment. In this particular case, the domain is

homogeneous and the constitutive model has only one parameter
(c), then, only one parameter is estimated.

To analyze the sensitivity of θ̂ with respect to the observation
uncertainty σZ , the estimation of the parameter is performed
assuming different values σZ , ranging from 10−1 to 10−5 mm.
Also, three different materials are used for the ring, mimicking:
cellular fibrotic tissue (ct = 5 · 105Pa), lipidic tissue (ct =

1 · 105Pa) and calcified tissue (ct = 4 · 106Pa). The estimation
of the Kalman filter for all the 15 cases is presented in
Figure 5. The results showed that in all cases the parameter

uncertainty interval
[

2
θ̂−

√

diag(U−1)
; 2
θ̂+

√

diag(U−1)]
encloses the

true parameter value ct . Even though, a closer estimate across
the three materials is obtained for σZ = 10−3 mm which seems
reasonable as it is the precision of the displacements delivered by
the convergence process in solving the nonlinear operator f .

Regarding the filter convergence, it is observed that as the
uncertainty in the observations decreases, the method converges
faster. In Figure 5, it is shown that as the σZ increases its value,
the convergence is slower. Note that the estimator gain matrix is
computed as Kk = Lθ

k
U−1
k

{HL}T
k
R−1
k

and the only operator that

varies in the first iteration of the presented cases is R−1
0 . As the

spectral radius ofR−1
0 diminishes as σZ increases thenK0 spectral

radius diminishes as well, yielding a smaller correction of θ̂+
k

as
presented in the plot. At the same time, since Pw is constant, the
update of Uk = Pw + {HL}T

k
R−1
k

{HL}k is damped by Rk. This
damping effect is evidenced in the evolution of the parameter
uncertainty intervals plotted in Figure 5. In statistical terms, the
lack of confidence in the new observations leads to reducing its
weight at the correction step.

An analogous analysis was performed to study the sensitivity
of θ̂ with respect to the parameter uncertainty σθ . The
uncertainty levels for σθ ranged from 0.25 to 4 and the
experiment was repeated for the three different ring materials
(fibrotic, lipidic and calcified tissues). The results showed that
the bigger σθ , the wider the search space for the parameter, and
the faster the method converges when the initial value is far
from the true parameter value (see Figure 6). On the other hand,
high values of σθ may cause an overshooting in the estimation
and a slower convergence. In this scenario, the reparametrization
deteriorates the convergence even more. The reparametrization
imposes an estimation bias to stiffer values due to the fact that
displacements are less sensitive with respect to small variations
in stiffer than softer materials. Then, the mean observation error
(used as correction term in Equation 30) is biased to the sigma
points associated with stiffer materials. This is clearly evidenced
in Figure 7, where the initial overshooting delays the estimation
of the parameter. Hence, note that the initial uncertainty interval
does not necessarily has to contain ct to estimate its correct
value. In fact, the uncertainty parameter values are also iteratively
updated and similar values are obtained for all three σθ illustrated
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FIGURE 4 | Activity diagram depicting the parallel workflow for data assimilation. The three levels of parallelism are highlighted on the right side: (i) Parallelization of the

sigma points that are solved at the same time without communication among the threads; (ii) Parallelization of each load state of the artery (i.e., one load per cardiac

phase) that is fully parallelized without communication among the threads; and (iii) Parallelization of the FEM problem by mesh partitioning.
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FIGURE 5 | Sensitivity analysis of the parameter estimation with respect to σZ for the experiment of the 1-material ring fixing the parameter uncertainty σθ = 2: (Top)

Estimate using observation uncertainties of σZ = 10i mm, i = −5, . . . ,−1 where each dot corresponds to a data assimilation process (after 200 iterations). The color

indicates the material of the ring at each experiment, the dashed line is ct value and the whiskers denote the parameter uncertainty interval. (Bottom) Convergence of

the Kalman filter using observation uncertainties of σZ = 10i mm, i = −3,−2,−1 for ct = 4 · 10−6 Pa. The dashed line is ct value, the solid line the Kalman filter

estimate 2θ̂ and the colored ribbon denotes the parameter uncertainty interval. In both cases, the uncertainty interval is estimated as [2
θ̂−

√

diag(U−1 )
; 2
θ̂+

√

diag(U−1 )
].

in Figure 6. The role of the initial value of σθ is the dispersion of
sigma points around the mean initial guess, and large values may
accelerate convergence when the initial guess ci is far from ct .

Overall, a good agreement is found in term of accuracy and
convergence for parameters σZ = 10−3 mm and σθ = 4. These

parameters identify clearly the three different kinds of tissues
in this idealized problem. Also, the observations generated in-
silico present an accuracy of similar order than the obtained
(assuming no error carried by the optical flow) through the
IVUS image processing. For this reason, σZ = 10−3 mm
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FIGURE 6 | Sensitivity analysis of the parameter estimation with respect to σθ for the experiment of the 1-material ring fixing the parameter uncertainty σZ = 10−2:

(Top) Estimate using parameter uncertainties of σθ = 0.25, 0.5, 1, 2, 4 where each dot corresponds to a data assimilation process (after 200 iterations). The color

indicates the material of the ring at each experiment, the dashed line is ct value and the whiskers denote the parameter uncertainty interval. (Bottom) Convergence of

the Kalman filter using parameter uncertainties of σθ = 0.25, 1, 4 and ct = 4 · 106 Pa. The dashed line is ct value, the solid line the Kalman filter estimate 2θ̂ and the

colored ribbon denotes the parameter uncertainty interval. In both cases, the uncertainty interval is estimated as [2
θ̂−

√

diag(U−1 )
; 2
θ̂+

√

diag(U−1 )
].

is used in cases analyzed in forthcoming sections. The value
of σθ cannot be straightforwardly assigned because parameter
overshooting using in-vivo complex geometries may lead to
excessively soft materials which could cause contact at the inner

surface in when solving the preload equilibrium, yielding non-
free material configurations. Since stress-free configurations have
been assumed, a more conservative value of σθ = 0.5 is used to
avoid such problem.
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FIGURE 7 | Convergence of the Kalman filter for the experiment of the 1-material ring using σθ = 4, 16, σZ = 10−2 mm and 2θ
t
= 1 · 105 Pa. The dashed line is 2θ

t

value, the solid line the Kalman filter estimate θ̂ and the colored ribbon denotes the parameter uncertainty interval [2
θ̂−

√

diag(U−1 )
; 2
θ̂+

√

diag(U−1 )
].

3.2. Boundary Conditions Sensitivity
As described in section 2.2.1, the observational datum uOF

is considered as an additional information over ∂�E through
a penalization factor τ (i.e., a Robin boundary condition).
This strategy is an attempt to incorporate the contribution
of surrounding tissues through a surrogate surface model.
Moreover, since uOF can be exposed to errors caused by
brightness variations, image artifacts or non-physical optical flow
regularization issues, the use of a Robin boundary condition
allows the model to naturally filter out the field uOF similarly
as a surface spring model. Then, a characterization of the
surrounding tissues provided by τ in the parameter estimation
is addressed in this section.

The in-silico study case used for this sensitivity analysis
was generated from the cross-section IVUS image depicted in
Figure 8 by considering the configurations corresponding to
two cardiac phases: end-diastole and systole. The geometrical
model was constructed for the end-diastolic configuration
following the pipeline described in sections 2.1 and 2.2.5. The
configurations at each one of the cardiac phases are related to
an end-diastolic load (i.e., the preload) of tW,n = 80 mmHg
and to a systolic load tW,n = 120 mmHg, accordingly.
The loads are applied over the inner surface of the vessel
in the preload and forward problems, respectively. Finally,
tethering tractions tA,is are considered such that an axial stretch
of 10% is prescribed in the end-diastolic configuration. The
remaining setup of boundary conditions is defined for each
of the following analyses: (i) parameter estimation sensitivity
as τ decreases from a large value (almost Dirichlet condition)
to a small value (almost Neumann condition); (ii) parameter

estimation robustness when observation uOF features errors at
the boundaries.

3.2.1. Test 1: Sensitivity of τ for Error-Free

Observations
For this analysis, the observations for the ROUKFwere generated
by solving the mechanical equilibrium with our model, avoiding
observational and modeling errors. Thus, a Robin boundary
condition was imposed at the outer surface in the forward
problem with τ = 106 (practically yielding a Dirichlet boundary
condition). This setting rendered a ground truth displacement
field uGT1 for this test. Using observations uGT1 , the data
assimlation algorithm was executed for τ ∈ {106, 104, 102}
(higher values of τ were not analyzed since τ = 106 is already
almost a Dirichlet boundary condition). The geometric model
was partitioned in sextants with two concentric layer yielding 12
regions each with its own material parameter ci.

The results are presented in Figure 9, depicting the parameter
estimation and predicted observations variations as the Robin
boundary condition moves toward a Neumann boundary
condition. The decrease of forces at the boundaries caused by
the decreasing value of τ is compensated by the estimation of
softer materials (which experiment higher strains) to match the
uGT1 observations. Particularly, the method recovers the correct
material parameters when the penalization value is the true value
used to generate the observations. i.e., τ = 106. For the parameter
estimation with τ = 104, a qualitatively similar distribution
of materials is observed with an uniform reduction in the
magnitude of the material parameter. The lowest penalization
value, τ = 102, delivers a totally different arrangement of
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FIGURE 8 | Optical flow and proposed ground truth for in-silico test: (Top) IVUS image at end-diastolic phase; (Bottom-left) optical flow uOF used in the data

assimilation process extracted from the in-vivo IVUS pair of images between end-diastole and systole phases; (Bottom-right) proposed ground truth u
GT
2 generated

using homogeneous Neumann boundary condition over the solid red line. The green dashed line indicates the position of the guidewire artifact in the image, and

therefore the area in which the optical flow displacement field can be largely affected.

materials. This result emphasizes the important contribution
of the surrounding tissues for a correct estimation of material
parameters, which is clearly retrieved when sufficient large values
of the penalization parameter τ are employed.

The observation error |εZ|, which is defined as the Euclidean
distance between the observations Z and mean filter observation
Ẑk at the last iteration, increases as τ is decreased. Specifically,
the mean values of εZ are 7.16 · 10−5, 1.03 · 10−3 and 9.79 · 10−3

for τ = 106, 104 and 102, respectively. Clearly, should the
observations uGT1 be error-free at the boundaries, a Dirichlet
boundary condition (a higher value for τ ) would be the correct
choice. Notwithstanding this, the observations from in-vivo
scenarios are degraded by diverse sources of errors and, as it will
be shown next, an excessively stringent boundary condition (of
Dirichlet type) may not be the best option.

3.2.2. Test 2: Sensitivity of τ for Realistic

Observations
The current analysis aims at assessing the robustness of the
parameter estimation process when the uOF at the outer
boundary differs from the real in-vivo displacements. For this
purpose, an allegedly ground truth uGT2 is generated by altering
the observation uOF in a certain region (untrusted region) using
the mechanical model with Neumann conditions. Finally, the
assimilation process is performed with the observation uOF and
different values of τ , to assess if it is capable to approximate uGT2
despite the observation errors.

Thus, an IVUS sequence with a swinging artifact (induced by
the guidewire) was chosen to perform our analysis. The IVUS
cross-section depicted in Figure 8 presents an image artifact from
the IVUS guidewire at the bottom-right quadrant of the frame.
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FIGURE 9 | Sensitivity of the parameter estimation with respect to the penalization factor τ . (Top) In-silico model with the ground truth ct parameters and boundary

condition model with τ = 106 for the generation of Z = h(f ([0u,0λ, θ
t ])). (Middle) Estimated parameters θ̂ from the observation Z by using τ = 106, 104, 102 (from

left to right) in the forward operator f during the data assimilation process. (Bottom) Displacement error (εZ = Z − Ẑk mm) for the parameter estimation process using

τ = 106, 104, 102 (from left to right) in the forward operator f .

The guidewire projects a shadow that hides the arterial wall and,
as consequence, the optical flow is polluted with a swinging
movement not related with the true arterial-wall motion. Thus,
a displacement field, denoted by uGT2 , is generated from the in-
vivo data removing the guidewire influence, with the purpose
of comparing this ground truth against the Kalman predictions

Ẑk when the polluted optical flow uOF is used as observations.
In that manner, the difference εGT = Ẑk − uGT2 can be

regarded as an estimate of the error in the Kalman prediction
due to the artifact in the image processing data. At last, εGT is
computed for different values of τ to assess the discrepancies
in the predictions as the external Robin boundary condition is
characterized differently.

The displacement uGT2 is generated by solving the equilibrium
problems with a model constituted by a single material. To
define a reasonable value for this constitutive property, a data
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assimilation process was performed using uOF as observation and
τ = 104, yielding to c = 33.52 kPa. Note that the c is biased by the
image artifact among other errors in the displacement field and it
cannot be regarded as an estimate of the real material, thus, it is
analyzed the ranges among which the estimated ĉ varies. At the
boundary ∂�E

m, a Neumann homogeneous condition (τ = 0)
was applied in the area affected by the guidewire (see red line
in Figure 8) and a Robin boundary condition with τ = 104

was applied to the remaining part of the boundary. The obtained
displacement field uGT2 is displayed in Figure 8.

The sensitivity of εGT with respect to τ is then studied. For
each value of τ ∈ {10i, i = 5, 4, . . . , 0}, the data assimilation
process is executed using uOF as observation. The relative
difference between the generated ground truth uGT2 and the
Kalman predicted observation Zk, for each τ , is reported in
Figure 10. For τ greater than 103, the Robin condition guarantees
that the artifact-related displacements are preserved regardless
the impact on the induced internal stresses. When τ varies from
103 to 102, the relative error difference significantly drops at the
guidewire locus, from 1.33 to 0.58. As τ decreases even more,
the resulting force induced by the Robin boundary condition
diminishes its magnitude, yielding lower internal stresses, and
spreading the error outside the region of the guidewire shadow.
For values lower than 102, the error in the displacement field is
concentrated at the bottom area of the artery. Particularly, this
concentration of the error is explained by the fact the continuum
model is enforced to behave as incompressible, while the optical
flow is not divergence-free. In terms of the parameter estimation,
the value of c was of 123.96, 33.52, 27.93, 68.51, 144.88, and
125.04 kPa for τ = 105, 104, 103, 102, 101, and 100 respectively,
presenting mean and standard deviation value of 87.31 ± 50.70
kPa, all close to a cellular fibrotic tissue. Moreover, there is a large
sensitivity in the estimated parameter with respect to the chosen
value of τ . In comparison with the ground truth, the closest
matching prediction in terms of the displacement field (i.e., the
prediction for τ = 102, see Figure 10) presents an estimation
of c two times higher. This is a clear demonstration of the large
sensitivity in the estimated parameter with respect to the setting
of models for the external tissues. Even more, it indicates that the
minimization of the displacement field is not directly related to
the best parameter estimation.

3.3. Effects of Preload and Axial Stretch
An appropriate baseline stress state of the vessel is key toward an
accurate characterization of the stress state in arterial tissues. In
fact, as reported in Ares (2016), a preloaded and axially stretched
artery features notoriously different stress patterns compared to
the case when such loads are neglected. Therefore, it is important
to quantify the change in the parameter estimation when the
initial stress state is either considered or not in the analysis. To
quantify such disagreement, the parameters of an in-vivo study
were estimated assuming three different conditions, namely:
(i) the diastolic configuration is neither preloaded nor axially
stretched; (ii) the diastolic configuration is preloaded but not
axially stretched; (iii) the diastolic configuration is preloaded
and 5% axially stretched; and (iv) the diastolic configuration is
preloaded and 10% axially stretched. The choice for the last two

cases is based on the experimental observations of Holzapfel et al.
(2005) where it is reported a physiological range for axial stretch
in coronary arteries ranging between 5 and 10%.

The geometrical model and the optical flow uOF used
for this study are the ones previously presented in Figure 8.
The geometric model was partitioned in sextants with a
unique concentric layer leading to the estimation of 6 material
parameters (the same partition used in Figure 12. The remaining
parameters for the mechanical problems and data assimilation
process are described in Table 1 along with the estimated values
ci. The results showed different trends for soft (c < 200 kPa,
i.e., c1, c2, c3, and c5) and stiff materials (c ≥ 200 kPa, i.e., c4
and c6). The obtained parameter c increases in the soft tissues
and decreases in stiff tissues as the baseline stress increases
from a preload-free to a preloaded state. Further increments
in the baseline stress due to the axial stretch result in material
stiffening for these two categories of tissues. Interestingly, the
increment of the parameter uncertainty σθ or the decrement of
the observation uncertainty σZ in the stiff tissues increases the
estimate of parameter cmore in the preload-free state than in the
preloaded cases. In fact, in the cases 2 and 3, the preloaded and
5% axially stretched model (cases 2.C and 3.C) featured lower c
values in the stiff tissues than the preload-free model (cases 2.A
and 3.A), contrarily to case 1. Some of these findings may appear
counter-intuitive at first glance because as the baseline stress state
increases it would be expected that all tissues soften to maintain
the same deformation for the given load. Thus, the following
paragraphs address the role of assimilation uncertainties, image
artifacts, and the very mechanical model in the assimilation.

Firstly, as the baseline stress at the diastolic configuration
rises, the parameter estimation is less sensitive with respect to
variations between the predicted and the observed displacements
i.e., Z− Ẑk. For the different baseline stress states, it was assumed
the same observation uncertainty which is analog to establish
an uncertainty interval for the observed strains. As the Neo-
Hookean model consists of a quadratic stress-strain relation,
the increment of the baseline stress yields an increase in the
uncertainty interval of the stresses. And because the stress is
linear to the material parameter c, the estimated parameters
undergo the same increase of their uncertainties diminishing the
accuracy of their estimation. Moreover, the estimated value of c
increased as the baseline state is subjected to a more significant
preload condition, turning the data assimilation process even less
sensitive. In short, this implies that dealing with the real problem
–for which preload is definitely a condition of the vessels– is even
more challenging than the case where initial stress conditions are
neglected.

Secondly, the gap between the observations and the
predicted displacements, hereafter simply discrepancy, in the
data assimilation process is in part given by some observed
displacement components generated by errors in the image
processing stage and by physical phenomena which is not
recoverable by the proposed mechanical and material models
(e.g., external tissues, off-plane displacements, compressible
materials or, even, misrepresentation of the constitutive law).
These discrepancies could be referred to as out-of-model
components, introducing a bias in the predicted displacement
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FIGURE 10 | Relative difference εGTr =
εGT

〈‖uGT
2 ‖〉

with respect to the boundary parameter τ . 〈·〉 Denotes the mean value in �s. From top-to-bottom and left-to-right,

εGTr is presented for τ = 105, 104, . . . , 100.The estimation of c was of 123.96, 33.52, 27.93, 68.51, 144.88 and 125.04 kPa for τ = 105, 104, 103, 102, 101, and 100

respectively, while the value of c in the generated ground truth is c = 33.52 kPa.

TABLE 1 | Sensitivity of the parameter estimation with respect to the baseline stress conditions and uncertainty parameters.

Case σθ σZ Preloaded Axial Estimated parameters (in kPa) εZ

(in mm) stretch% c1 c2 c3 c4 c5 c6

1.A 1 10−2 No 0 53 26 30 394 45 578 0.1562

1.B 1 10−2 Yes 0 59 29 37 384 51 582 0.1571

1.C 1 10−2 Yes 5 61 30 39 409 53 630 0.1572

1.D 1 10−2 Yes 10 65 32 41 413 59 634 0.1573

2.A 4 10−2 No 0 51 25 30 467 40 664 0.1562

2.B 4 10−2 Yes 0 57 28 37 442 48 620 0.1571

2.C 4 10−2 Yes 5 60 30 39 456 51 648 0.1572

2.D 4 10−2 Yes 10 63 32 41 476 55 676 0.1573

3.A 1 10−3 No 0 51 25 30 412 40 694 0.1562

3.B 1 10−3 Yes 0 58 28 37 394 48 669 0.1571

3.C 1 10−3 Yes 5 60 29 39 408 51 695 0.1572

3.D 1 10−3 Yes 10 63 31 41 424 55 721 0.1573

In all cases, the boundary condition was fixed with τ = 102 and the initial guess for the parameters was θ̂+0 = [c0, . . . , c6 ] with ci = 500 kPa ∀i. The estimated parameters are reported

for each case, as well as the observation error |εZ |= |Z − Ẑk | after the data assimilation process.
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field and in the parameter estimation as well. Comparing the
estimations with different baseline assumptions, it is observed
that the discrepancies of the identified parameter value remain
below 37% and 10% for soft and stiff tissues, respectively.
Particularly, we choose to use the more complex model
(preloaded and axially stretched) in the following in-vivo studies
because it endows the mechanical setting with more relevant
physical features when compared to the other models.

3.4. In-Vivo Cases
The proposed methodology is now applied to 4 in-vivo
cases featuring atherosclerotic lesions to derive their specific
mechanical models. The goal is to analyze the accuracy of the
mechanical models to predict the optical flow observations,
as well as, to assess the usage of multiple (more than
two) cardiac phases (and then more than one optical flow
displacement field as observational data) in the parameter
estimation. For each lesion, the IVUS frames that are involved
in the data assimilation correspond to end-diastole, 50%-
systole and full-systole, as dictated by the ECG signal of
the IVUS study. Optical flow was estimated between end-
diastole and 50%-systole frames and end-diastole and full-
systole frames, denoted by uOF1 and uOF2 respectively (see
Figure 12). Then, we compare the resulting estimated parameter
for two cases: when the assimilation is performed using a
single optical flow displacement field as observation (Z =

[uOF2 ]T); and when two optical flow displacement fields are
utilized as observations (Z = [uOF1 , uOF2 ]T). Note that
the observed displacement field for maximum load, i.e.,
uOF2 , is employed in both cases because the displacement
between end-diastole and systole is expected to yield higher
strains.

The geometric model was partitioned in sextants with a
unique concentric layer (see Figure 11). Each partition contains
only a single type of material leading to a data assimilation
process with 6 material parameters. The diastolic configuration
is preloaded and 10% axially stretched for all cases and the blood
pressure at each phase was assumed to be 80, 100, and 120mmHg
for the end-diastole, 50%-systole and full-systole, respectively.
The parameter τ was set to 100 for lesions 1, 3, and 4 and 50 in
case 2, the latter avoided contact at the luminar surfaces during
in the preload problem. The ROUKF uncertainties were fixed to
σθ = 1 and σZ = 10−2 mm.

The proposed data assimilation process rendered the results
depicted in Figure 12. The material parameters estimated in
all cases remained within the physiological range (between 1
kPa to 10 MPa, see Walsh et al., 2014). Also, the addition
of an extra displacement field as observation showed no
considerable effect for cases 2 and 3. The reliability of the
results can be assessed in terms of the model prediction error
presented in Table 2. Due to intrinsic sources of errors in
the observations (motion artifacts, spatial incoherence between
cross-sections in the cardiac cycle and optical flow model
artifacts), it is expected an observation error of few pixel
spacing units (recall that the image discretization spacing is
16µm). Thus, model prediction errors for cases 3 and 4, and
even case 1 for a single optical flow field per cardiac phase,

seems highly reliable in terms of our observation precision
since the error results 26 ± 14µm (1.625 ± 0.875 pixel
spacing units), while case 2 seems to be the less reliable
estimation with an average error of 43 ± 24µm. Overall,
the average model prediction error was below 43µm and
61µm for the observation with one or two observational data,
respectively.

In case 1, it is observed that the material parameters estimated
with 1 and 2 optical flow displacement data are significantly
different. The flow uOF1 presents larger displacements than uOF2 ,
which seems counter-intuitive since the blood pressure variation
is smaller for the former condition. However, the motion exerted
by the cardiac contraction is higher, in fact the larger component
of displacement is rigid (a rotation of the structures). Thus, as
uOF1 presents the observation components with higher norm,
it features a larger contribution than uOF2 during the data
assimilation process (see Equation 30). In that manner, the
parameters estimated with 1 flow datum minimize discrepancies
against uOF2 while the ones estimated with 2 flow data minimize
mainly discrepancies against uOF1 .

Conversely in cases 2 and 3, the observation uOF1 is the
one with smaller displacements (≈4 and 2 times smaller for
cases 2 and 3, respectively), yielding a small contribution
to the data assimilation. This implies that the minimization
of the discrepancies between the model predictions and the
observations (i.e., Ẑk − Z) related to uOF2 dominates over the
discrepancies associated to uOF1 . In fact, Figure 12 shows that
the discrepancies represented by εr for uOF2 remained almost
invariant using 1 or 2 flows in the observation.

In case 4, the discrepancies between the model predictions
and the observations related uOF2 also remained invariant using
1 and 2 flows data in the observation, although the parameters
estimated in the lower part of the geometry varied significantly
(see Figure 12). As previously studied in section 3.2.2, the
guidewire artifact in the lower part of these images features a
swinging movement not related with the arterial-wall motion.
To approximate the artifact’s rigid motion, the local tissue is
stiffened during the assimilation process when 1 single flow
was employed as observation. Conversely when uOF1 is added
to the observations, the spurious motion of the guidewire is
negligible, and the data assimilation is not affected by this
artifact.

To determine the applicability of the current approach in
clinical practice, we execute the in-vivo cases in a single server
with 2 Intel Xeon CPU E5-2620 at 2.00 GHz processor (each
with 12 threads) and Kingston 99U5471-031.A00LF at 1333
MHz (latency of 27 ns) RAM memory. For data assimilation of
these in-vivo cases, mesh (3 threads per mechanical problem)
and sigma parallelism (1 thread per sigma point) were applied
because it delivered the best speed up for our 24 threads
(actually only 21 were employed). The wall clock time reported in
Table 2 for each execution showed that the current methodology
is appropriate for offline medical applications because the
processing times elapsed from 0.5 to 3 days. The use of clusters
would allow further processing speed up exploiting the load
parallelism as well as a more massive parallelization at the mesh
level.
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FIGURE 11 | Optical flow estimated between end-diastole and 50%-systole frames, uOF
1 , and end-diastole and full-systole frames, uOF

2 for 4 in-vivo atherosclerotic

lesions: (row 1) IVUS end-diastolic frame depicting the atherosclerotic lesions; (row 2) displacement field u
OF
1 ; (row 3) displacement field u

OF
2 .

4. DISCUSSIONS

The presented methodology offers a workflow to estimate
material parameters for mechanical model of coronary arteries.
The strategy is composed by three key components: the image
processing, the mechanical model and the data assimilation
algorithm. The most appealing aspect of this proposal is that
the three components are loosely coupled as black boxes
which allowed us to modify, as required, each component
without the need for altering the remaining ones. In fact, the
image processing renders observations for the data assimilation,
regardless the imaging technique employed and the nature
of the displacement field. In turn, the mechanical model can
also be modified without influencing in the other components,
it simply must receive a set of parameters and return back
the internal state variables to the data assimilation strategy.
Due to this architectural design, this initial biomechanical
characterization approach can be further refined by improving

aspects of these individual components. Some identified hot-
spots for improvement are discussed in what follows.

The data assimilation showed high sensitivity with respect
to variations in the model boundary conditions which aimed
at mimicking the external tissues. As the displacement over the
boundary was increasingly constrained (large τ ) the model was
less sensitive to variations in the material parameters, hindering
the parameter estimation and, even, causing divergence of
the Kalman iterative process in some situations. Also, the
disagreement in the spatial arrangement of model forces and the
in-vivo (unknown) forces at the boundary notoriously affects the
outcome of the estimation. This was exposed in section 3.2.2
when an image artifact (the IVUS guidewire) induced a spurious
tangential displacement in the observation and the boundary
condition. It was also showed that if a homogeneous Neumann
condition is assumed at the site of such artifact, the parameter
estimation varies significantly (from 4 to 15 fold reduction of
parameter c). Improving the capabilities of themodel in this sense
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FIGURE 12 | Parameter estimation and discrepancies between the model prediction and observations for 4 in-vivo IVUS frames featuring atherosclerotic plaques (one

per column). (Row 1) Estimation of parameters ci using Z = [uOF
2 ]T ; (row 2) εr for the observations related to u

OF
2 ; (row 3) Estimation of parameters ci using

Z = [uOF
1 ,uOF

2 ]T ; (row 4) εr for the observations related to u
OF
1 ; (row 5) εr for the observations related to u

OF
2 . The relative displacement discrepancy between the

model predictions and the observations was defined as εr = ‖Ẑk − Z‖/〈‖Z‖〉 where Ẑk are the model predictions at the last Kalman iteration, Z are the optical flow

observations and 〈·〉 denotes the mean value in �s.

requires to incorporate the estimation of these forces exerted
by external tissues in the data assimilation process. In short,
parameter τ could be a further variable to be estimated.

It is also important to highlight that this approach can
be directly extended to account for more geometrically and
physically complex models. The set of here reported results

constitute a solid proof of concept toward the extension of this
methodology. Here, we derived a patient-specific mechanical
model for an orthogonal slice of the vessel assuming plane strain
state with an homogeneous axial traction force. However, there
are some assumptions that imply neglecting certain physical
components that may be necessary to increase the accuracy
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TABLE 2 | Model prediction error after data assimilation process for the 4 in-vivo cases using 1 or 2 loading conditions.

Case Amount of Observation Model prediction error Execution

different loads (S) component (Z
j
k
) Zj − ˆZ

j
k
(in mm) time (in hours)

Mean SD Max

1 1 Z1
k

0.023 0.014 0.122 18.32

2 1 Z1
k

0.043 0.024 0.155 35.78

3 1 Z1
k

0.026 0.014 0.094 12.20

4 1 Z1
k

0.021 0.014 0.069 9.17

1 2 Z1
k

0.061 0.016 0.271 33.37

Z2
k

0.029 0.041 0.113

2 2 Z1
k

0.032 0.022 0.111 77.37

Z2
k

0.043 0.024 0.155

3 2 Z1
k

0.012 0.008 0.071 41.07

Z2
k

0.026 0.014 0.094

4 2 Z1
k

0.015 0.010 0.064 16.39

Z2
k

0.021 0.015 0.074

The reported errors corresponds to the disagreement between mechanical model displacements (after estimate their material parameters with the proposed method) and the optical

flow observations. The execution time corresponds to the wall clock time elapsed for each case using only mesh parallelism (see Figure 4) with 24 CPUs.

of the estimated stress/strain state of the vessel. To list some
of them: (i) shear forces exerted by the blood flow which
are expected to be key in the study of plaque development
(Stone et al., 2003; Chatzizisis et al., 2008); (ii) out-of-plane
forces produced by the blood pressure due to the heterogeneous
constitution of the vessel wall and the tilting of the transducer
tip with respect to the cross-section; and (iii) variable axial
tractions along the cross-section due to the heterogeneous
composition of the vessel wall. These issues can be tackled
at once by making use of 3D models. In fact, the image
processing strategy allows the gating and registration of the
whole arterial 3D volume of the study. Also, the extension of
the optical flow techniques to 3D domains is straightforward by
a proper adaptation of the differential operators and Gaussian
kernel within the formulation. A further issue to address is
the spatial reconstruction to obtain the proper 3D geometrical
description of the vessel instead of its rectified representation
in intrinsic coordinates delivered by the IVUS study. The
integration of IVUS with angiographic images enabled us to
perform such 3D reconstruction, as reported in Maso Talou
(2013). These extensions imply in heavier computational cost
and complementary implementation aspects, yet, they present
no further conceptual differences regarding the methodology
presented in this work.

Extension to 3D problems discussed above, as said, becomes
computationally more demanding. Associated to the image
processing, the cost scales with the number of cross-sections
extracted from the IVUS dataset. However, the registration stage,
which is the most computationally intensive task, is fully parallel
(see Maso Talou et al., 2017) and gating cost is negligible. Thus,
the performance of the optical flow and the spatial reconstruction
process through the integration with angiographic images, turn
out to be key for the efficiency of the methodology in 3D cases.
Regarding the data assimilation procedure, the computational

cost continues to be the approximate solution of the mechanical
problem. As a significant increase in the number of degrees
of freedom is expected, the computational cost would raise as
well.

A first limitation in the present scheme is that the
displacement field retrieved from medical images is naively used
as observation from our model without further processing. This
implies that the performance of the method can be improved by
extracting the observation components that are spurious (such
as artifacts or unreliable regions of the optical flow displacement
field) or even incompatible with our model (e.g., use only the
divergence-free component of the field because the mechanical
model is incompressible).

Regarding the baseline stress state in our model, the
residual stresses produced during the arterial tissue genesis and
growth have clearly been neglected. In Wang et al. (2017), an
experimental test showed that the omission of these residual
stresses may produce a significant overestimation of internal
stresses (from 2- to 4-fold the actual stress). Furthermore,
it has been observed (Guo et al., 2017) that accounting for
residual stresses is also relevant for the proper material parameter
estimation. This seems to be natural, as residual stresses can
be considered as a subproduct of existing residual deformations
(that, in general, may not be kinematically compatible, i.e.,
they cannot be derived from continuous displacement fields) of
the elastin matrix. Consequently, not only the stresses are not
properly assessed, but the actual deformations observed at the
equilibrium states are misguided. These facts highlight the need
for further research to tackle simultaneously the estimation of
both material parameters and residual deformations in arterial
walls. In recent works (Ares, 2016; Ares et al., 2017), models
and methods for the estimation of such residual stresses were
proposed, with a similar spirit to the one developed in this
work.
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At last, it is worthwhile to remark that no validation
techniques are currently available for the assessment of stress-
strain state in in-vivo conditions. Even though, approaches
for an indirect in-vivo or ex-vivo validation can be discussed.
Techniques such as elastography and palpography (Ophir et al.,
1991; Shapo et al., 1996; Céspedes et al., 1997; de Korte et al., 1998;
Céspedes et al., 2000) deliver with some degree of reliability the
stresses in the innermost part of the vessel. In these cases a Bland-
Altman analysis can be applied to assess the similarity between
the prediction of our approach and elastographic solutions. A
more controlled experimental setup can be planned for ex-vivo
condition using coronary specimens. For each specimens, an
IVUS study can be acquired and a specimen-specific model can
be constructed employing the proposed methodology. Finally,
several mechanical tests can be carried out with the specimens
comparing their mechanical response with predictions given
by our specimen-specific models. Another in-vivo alternative
is to associate ranges of the estimated material parameters
to the underlying tissue composition, delivering a histological
description of the vessel (usually referred to as virtual histology).
As there are already methods that estimate the vessel histology
from IVUS images (e.g., Kawasaki et al., 2002; Nair et al.,
2002; Sathyanarayana et al., 2009), a comparative analysis can
be performed to evaluate the degree of agreement between the
proposed method and these virtual histologies. An appealing
aspect of this last validation is that the techniques presented
in those works are already validated with cadaveric specimens
of coronary arteries. The experimental settings suggested above
should serve to bridge the world of computational models and
methods with the experimental realm, toward gaining insight
into the complex mechanisms underlying the development of
cardiovascular diseases.

5. FINAL REMARKS

A data assimilation environment for analysis of arterial models
and material characterization was described. The proposed
methodology delivers the necessary tools to construct patient-
specific mechanical models of an arterial site using data from
standard IVUS studies. A complete sensitivity analysis of the

biomechanical characterization with respect to numerical and
physical parameters was reported to aid the methodology setup,
as well as the interpretation of data assimilation outcomes.

Validation in controlled scenarios was provided to demonstrate
the capabilities of the present approach.

The potential and limitations of this approach were exposed
and discussed in the previous section, delineating future research
to enhance the image processing stage and the mechanical model
of the arterial wall for this problem.

The applicability of this methodology on in-vivo scenarios
was proven in the characterization of the arterial tissue for 4 in-
vivo atherosclerotic lesions. After data assimilation, the obtained
mechanical models predicted the displacement field between
diastole and systole with errors below 43µm using frames of only
two cardiac phases. Although no validation was performed with
the in-vivo cases, the estimated material parameters remained
within the expected range for this kind of tissue.

The development of this tool for the biomechanical analysis
allows the indirect estimation of the internal stress state of
the arterial wall. Such information combined with the vessel
histology (that can be inferred from the material parameters
here estimated) enables the assessment of the structural integrity
of the atherosclerotic plaque to aid medical decisions and
research. In summary the proposed strategy provides an imaging-
assimilation-mechanics integrated environment to characterize,
within a truly in-vivo and patient-specific setting, the behavior
of the materials that compose the arterial vessels, specifically
coronary vessels, which is of the utmost importance in assessing
risk of plaque progress and rupture.
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Introduction: Chronic Thromboembolic Pulmonary Hypertension (CTEPH) results from

progressive thrombotic occlusion of the pulmonary arteries. It is treated by surgical

removal of the occlusion, with success rates depending on the degree of microvascular

remodeling. Surgical eligibility is influenced by the contributions of both the thrombus

occlusion and microvasculature remodeling to the overall vascular resistance. Assessing

this is challenging due to the high inter-individual variability in arterial morphology and

physiology. We investigated the potential of patient-specific computational flow modeling

to quantify pressure gradients in the pulmonary arteries of CTEPH patients to assist the

decision-making process for surgical eligibility.

Methods: Detailed segmentations of the pulmonary arteries were created from

postoperative chest Computed Tomography scans of three CTEPH patients. A

focal stenosis was included in the original geometry to compare the pre- and

post-surgical hemodynamics. Three-dimensional flow simulations were performed on

each morphology to quantify velocity-dependent pressure changes using a finite element

solver coupled to terminal 2-element Windkessel models. In addition to transient flow

simulations, a parametric modeling approach based on constant flow simulations is also

proposed as faster technique to estimate relative pressure drops through the proximal

pulmonary vasculature.

Results: An asymmetrical flow split between left and right pulmonary arteries was

observed in the stenosed models. Removing the proximal obstruction resulted in a

reduction of the right-left pressure imbalance of up to 18%. Changes were also observed

in the wall shear stresses and flow topology, where vortices developed in the stenosed

model while the non-stenosed retained a helical flow. The predicted pressure gradients

from constant flow simulations were consistent with the ones measured in the transient

flow simulations.
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Conclusion: This study provides a proof of concept that patient-specific computational

modeling can be used as a noninvasive tool for assisting surgical decisions in CTEPH

based on hemodynamics metrics. Our technique enables determination of the proximal

relative pressure, which could subsequently be compared to the total pressure drop to

determine the degree of distal and proximal vascular resistance. In the longer term this

approach has the potential to form the basis for a more quantitative classification system

of CTEPH types.

Keywords: CTEPH, HPC-based computational modeling, biophysical flow modeling, patient specific

computational modeling, computational physiology

INTRODUCTION

Chronic Thromboembolic Pulmonary Hypertension (CTEPH) is
a form of pulmonary hypertension that arises as a complication in
patients who suffered an acute embolic event (Pengo et al., 2004).
Formost patients this progressively fatal diseasemanifests several
months or years following the event. Over this asymptomatic
period, thromboembolic material in the pulmonary trunk is
incorporated into arterial walls, gradually narrowing the vessel
lumen and consequently increasing the peripheral pulmonary
vascular resistance (PVR) (McNeil and Dunning, 2007). This
raised PVR increases the right heart workload, leading to right
ventricular failure. Although a single unresolved event such as
the presence of a thrombotic occlusion in one of the pulmonary
arteries is usually responsible for the development of CTPEH, in
patients with the most severe forms of the disease small vessel
arteriopathy with microvasculature remodeling is often observed
(McNeil and Dunning, 2007). It is understood that these changes
in the peripheral vasculature have an important yet still unclear
functional role in further raising PVR (Ruiz-Cano et al., 2015).

While a number of risk factors for CTEPH have been
identified, none of these are sufficiently significant to be
used in creating scoring criteria, leaving CTEPH diagnosis
mostly down to clinical experience and expertise, aided by
anatomical knowledge derived from imaging data (Thistlethwaite
et al., 2008). Similar limitations are found when planning
surgical treatment, i.e., pulmonary thromboendarterectomy
(PTE), a complex procedure requiring median sternotomy,
cardiopulmonary bypass, and circulatory arrest to remove both
the thrombus and the inner layers of the affected artery (Jamieson
et al., 2003; Thistlethwaite et al., 2008). This procedure is usually
deemed appropriate if the obstruction to the flow is proximal
to the segmental branches, i.e., in the main or lobar pulmonary
arteries. When the peripheral microvasculature is compromised
by the disease progression, increased flow resistance results from
both proximal occlusion, and adverse remodeling of inaccessible
parts of the pulmonary vasculature and therefore PTE would not
necessarily lead to an improvement in PVR (Kim, 2006). As a
result, this type of surgery has higher rates of failure in CTEPH
patients where peripheral remodeling—and not a proximal
stenosis—is the major contributor to pulmonary hypertension
(van de Veerdonk et al., 2011). Given the challenges and risks
posed by this major procedure, PTE should only be performed if
strictly necessary. It is therefore of key importance to determine

the relative contribution of peripheral remodeling and proximal
occlusion to the increase in PVR in each CTEPH patient, and use
this information to derive robust selection criteria for PTE.

Computed Tomography (CT) pulmonary angiography is
the gold standard investigation tool for determining both
the presence and the extent of CTEPH in common clinical
practice (McNeil and Dunning, 2007). Ventilation-perfusion
scans are also performed to differentiate between various causes
of pulmonary hypertension, including CTEPH. In addition to
anatomical evaluation via imaging data, invasive assessment
of pulmonary arterial pressure via cardiac catheterization also
provides a diagnostic threshold for intervention. Specifically,
CTEPH is associated with a mean pulmonary artery pressure
above 25 mmHg and a pulmonary capillary wedge pressure of
no more than 15 mmHg, in conjunction with the presence of
chronic occlusive thrombi (Pepke-Zaba et al., 2011; Lau and
Humbert, 2015). More recently the diastolic pressure gradient
(DPG), a hemodynamic marker based on the difference between
the mean diastolic pulmonary artery pressure and the mean
pulmonary capillary wedge pressure, has been proposed as
an effective diagnostic index in pulmonary hypertension, with
DPG values >7 mmHg indicating adverse remodeling of the
pulmonary vasculature (Gerges et al., 2013;Mazimba et al., 2016).
The high inter-individual variability of patient morphologies
in CTEPH, in conjunction with the progressive nature of the
disease and its lack of specific symptoms, means that diagnosis
and prognosis must rely on both anatomical and functional
evaluations to be effective. However, due to risks associated
with catheterization, invasive pressure measurements cannot be
performed frequently in CTEPH patients and cardiac imaging
only allows for anatomical evaluations, without providing insight
into the patient hemodynamics. Further, there are currently no
well-defined criteria to differentiate between proximal and distal
forms of CTEPH (Galiè et al., 2009).

Such clinical context provides an ideal environment to test
the potential of more sophisticated biophysical computational
modeling to address the present difficulties in patient selection
for PTE (McLaughlin et al., 1998). Anatomically realistic
computational models of the arterial system can be tailored to
the individual pathophysiology of the pulmonary arteries via
patient-specific boundary conditions, providing a personalized
description of the disease that is particularly useful in this
type of pathologies, where the exclusive use of population-
based biomarkers for patient selection results in sub-optimal
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treatment strategies (Morris et al., 2016). Image-based three-
dimensional Computational Fluid Dynamics (CFD) or Fluid-
Structure Interaction (FSI) simulations of arterial flow can thus
provide a flexible and powerful tool to elucidate the driving
mechanism of disease progression (Taylor and Figueroa, 2009).
Personalized CFD modeling was applied to assist in treatment
planning by quantifying noninvasively hemodynamic parameters
such as pressure (Kheyfets et al., 2013) and wall shear stress
(WSS) (Tang et al., 2011, 2012). However, despite its clinical
potential, image-based modeling in the context of CTEPH is
still largely unexplored, with a limited number of studies based
on simplified models. The implications of PTE in patients with
different relative contribution of distal remodeling and proximal
stenosis to the total PVR has been investigated using a simplified
mathematical model based on the electrical analogy with two
resistors in parallel, representing the proximal and peripheral
resistances, respectively (Poullis, 2015). Similarly 1D models that
rely on the wave equation and 0D Windkessel models have also
been used to characterize pressure noninvasively in pulmonary
hypertension patients using Phase Contrast MRI data as input
(Lungu et al., 2014). However, these studies do not leverage on
the recent progress in 3D personalized CFD modeling that was
largely applied to a wide spectrum of cardiovascular diseases (de
Zélicourt et al., 2010; Ladisa et al., 2010; Les et al., 2010; Coogan
et al., 2011; Cebral et al., 2015; Numata et al., 2016; Arthurs et al.,
2017; Youssefi et al., 2017), leaving this clinical question largely
unexplored.

In this study, we investigated the potential of personalized
CFD simulations of the pulmonary arteries to provide a clinical
tool to better understand the role of patient-specific morphology
and hemodynamics in determining the major contributor to
raised PVR in CTEPH. All the simulations were carried out on
realistic, high-resolution anatomical models of the pulmonary
arteries by combining High-Performance Computing (HPC)
and high-resolution Finite Element Method (FEM) modeling
using the software package CHeart, which has been extensively
validated and applied to simulate cardiovascular hemodynamics
in a wide range of pathologies (de Vecchi et al., 2012,
2014a,b; McCormick et al., 2014; Lee et al., 2016; Hessenthaler
et al., 2017). Three CTEPH patients who underwent PTE
were modeled as a proof of concept that such an approach
can contribute to improve patient selection criteria for PTE,
reducing the need for more invasive pressure measurements
to inform clinicians on the likely prognosis post-intervention.
Special emphasis was placed on how to most accurately and
efficiently model pulmonary vasculature in order to obtain
the best compromise between anatomical and physiological
accuracy, and computational effort. This investigation shows the
potential of image-based personalized CFD modeling to support
and improve the clinical decision-making process in diseases
where “conventional” treatments derived from population-based
guidelines are less effective or, in some cases, inadequate.
Moreover, demonstrating that patient-specific models can be
generated and applied to a specific clinical question without
excessive computational demand, both in terms of time and
resources, further supports the potential for a targeted clinical
applicability of this technology.

MATERIALS AND METHODS

Finite-Element Model Generation From
Patient Data
The clinical data for this study was obtained from Royal
Papworth Hospital (Cambridge, UK) from three CTEPH patients
who had undergone PTE. Patient 1 and 3 presented a stenosis
on the right pulmonary artery (RPA), while in Patient 2 the
partial occlusion was located on the left pulmonary artery (LPA).
Further, in Patient 3 a large portion of the right lung had been
surgically removed in a previous intervention. The study was
approved by the local ethics review committees and all patients
had given written consent.

The modeling workflow for the generation and
personalization of the image-based models is illustrated in
Figure 1. All models in this study were made patient-specific
using anatomical information extracted from CT pulmonary
angiography (CTPA) data (Figure 1A). All CTPA scans were
performed using a combined chest dual energy (140–80 kV)
acquisition with 1mm slice thickness on a high-resolution
Siemens Somatom Force scanner. The morphological models
of the pulmonary arteries of each patient were initially based
on the post-operative scans. Each morphology was segmented
using the semi-automatic segmentation tool from the software
package CRIMSON (Cardiovascular Integrated Modeling and
SimulatiON), which was previously validated and used to
simulate hemodynamics in a variety of cardiovascular problems
(Lau and Figueroa, 2015; Arthurs et al., 2016, 2017; Khlebnikov
and Figueroa, 2016; CRIMSON, 2017). The segmentation
technique relies on the definition of paths along the centerline
of each vessel, followed by the manual segmentation of the
vessel cross sections at multiple locations along the centerline.
The contours are then interpolated to produce smooth NURBS
surfaces that approximate the vessel wall (Figure 1B). Interlobar
arteries were segmented from the main pulmonary artery (MPA),
as well as sub-segmental trunks until the third generation.Table 1
reports the number of outlets segmented from each morphology,
as well as information about the inlet and outlet surface areas
and mesh size of each model.

From these segmentations, tetrahedral volume meshes with
2.8–3.4 million elements were generated with minimum and
maximum edge length over the whole meshes of 5.9 and
0.0085mm, respectively. Regional curvature refinement was
applied to critical areas such as bifurcations and sudden changes
in the vessel diameter to ensure numerical accuracy in the
flow simulations (Figure 1D). A boundary layer made of three
concentric layers of refined tetrahedral elements, with total
thickness of 1mm, was also added near the wall to resolve near-
wall boundary layers. The effect of stenosis in the pulmonary
arteries was investigated by manipulating the post-operative
model to introduce a local narrowing in the proximal pulmonary
vessels (Figure 1E). Each original segmentation was therefore
modified to include a focal stenosis upstream of lobar divisions,
while all other contours were left untouched and the models
were subsequently meshed. The stenosis severity was then
calculated as the percentage reduction in diameter, i.e., the
ratio of the difference between the original and the stenotic
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FIGURE 1 | Pipeline for the generation of patient-specific models and

simulations in this study (Patient 2, posterior view). (A) Post-surgical CT

pulmonary angiography. (B) Segmentation of the stenosed model with surface

interpolation and arrow indicating stenosis on the LPA. (C,D) tetrahedral mesh

(C) with curvature refinement (D). (E) Prescription of boundary conditions at

the outlets (two-element Windkessel model) and at the inlet (Dirichlet condition

on flow velocity); (F) CFD simulation of blood flow visualized using streamlines

colored by velocity magnitude.

diameter over the original diameter. Patient 1 had a percentage
diameter reduction of 43.8% on the RPA, Patient 2 of 40.3%
on the LPA. The mesh from Patient 3 was first modified to
add a 37.1% diameter reduction (Patient 3a, moderate stenosis),
and then further manipulated to increase this value to 71.5%
(Patient 3b, severe stenosis). This latter “virtual” scenario was
motivated by the clinical context of this patient, where part
of the right lung vasculature had been surgically removed in
a previous intervention, increasing the likelihood of extensive
microvasculature remodeling on the right side. In all cases the
pulmonary obstruction values are within the ranges measured by
previous clinical studies (Azarian et al., 1997; Miniati et al., 2006).
Flow rates in the main pulmonary trunk were obtained from
relevant literature and the same inlet flow profile was used in all
models (Prakash et al., 2006; Forouzan et al., 2015). From these
measures, a physiological velocity profile with ventricular systole
from 0 to 380ms and diastole from 380 to 925ms was generated
and prescribed as inlet boundary condition to the model MPA,
as shown in Figure 1E. Two-element Windkessel models were
imposed on each of the outlet boundaries of the left and right
pulmonary branches (Figure 1E). In each model the vessels walls
were considered rigid.

CFD simulations were subsequently carried out using
CHeart, a finite-element software platform for personalized
cardiovascular simulations, by solving the Navier-Stokes
equations for a three-dimensional incompressible flow with a
blood density (ρ) of 1,056 kg/m3 and a dynamic viscosity (µ)
of 3.5 cP (Lee et al., 2016; Hessenthaler et al., 2017). Transient
flow simulations were performed on all pre- and post-operative
morphologies for comparison of hemodynamic behaviors
(Figure 1F). Three cardiac cycles were simulated in each case
to achieve a periodic steady-state. The changes in the peak
systolic, diastolic, and mean pressure gradients between inlet
and outlets, and in the percentages of flow going to the right
and left pulmonary arteries were then compared in the pre- and
post-operative models to determine the impact of the removal
of the proximal obstruction on each patient’s hemodynamics.
Variations in the WSS magnitude are also presented, whereby
the WSS magnitude was calculated based on the tangential
component of the traction vector t = σn, as:

WSS = |t − (t · n) n|

where σ is the Cauchy stress tensor and n is the normal to the
wall. This study was carried out using the High Performance
Computing (HPC) facility at King’s College London, which
comprises a 640 core SGI Altix-UV HPC with Nehalem-EX
architecture.

Windkessel Model for the Pulmonary
Microvasculature
The following 2-element Windkessel model was used to model
the behavior of the peripheral vasculature on the left and right
side (Muthurangu et al., 2005):

Q(t) =
p(t)

R
+ C

dp(t)

dt
(1)
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TABLE 1 | Anatomical parameters and mesh size of the segmented morphologies.

Patient Inlet surface area

(mm2)

LPA total outlet

surface area (mm2)

RPA total outlet

surface area (mm2)

Number of outlets in

the model

Mesh size (tetrahedral elements)

Patient 1 722.88 264.90 168.72 31 LPA, 29 RPA 3,468,196

Patient 2 550.24 131.90 105.36 29 LPA, 31 RPA 3,377,433

Patient 3 613.28 105.16 40.55 31 LPA, 12 RPA 2,812,081

LPA, left pulmonary artery; RPA, right pulmonary artery.

whereQ is the flow rate of blood from themain pulmonary artery,
p is the blood pressure, R the vascular resistance, and C the vessel
compliance (Muthurangu et al., 2005).

The outlet flow on the LPA and RPA was integrated directly
into the Windkessel equation by relating the flow rate Qi at the
relevant boundary ϒi to the fluid velocity, υ, i.e.,

∫

ϒi

υ · nidϒi = Qi (2)

where ni is the normal vector to the boundary plane ϒi.
An estimate based on the ratio between stroke volume and
pulse pressure was chosen for the vessel compliance, while
the resistance values on the RPA and the LPA were calculated
iteratively for each morphology starting with values derived from
in-vivo measurements (Muthurangu et al., 2005). These initial
values were then iteratively tuned using a multi-step procedure
to achieve the expected value of the percentage ratio of the
stenosed to the non-stenosed pulmonary arterial (i.e., flow ratio)
based on the ratios of the areas of the stenosed to the non-
stenosed pulmonary arteries (i.e., size ratio) in each patient.
First, physiological measurements of the flow splits for varying
size ratios were collected from previous studies on patients with
branch pulmonary stenosis and a mathematical relationship was
subsequently derived by fitting these data using an exponential
curve (Sridharan et al., 2006; Ordovás et al., 2007). Second, this
function was used to derive the expected flow ratio value given
the size ratio in each patient, where the LPA and RPA areas
were calculated in the proximal pulmonary branches from the
anatomy segmentations. Finally, a sweep study was performed in
each case by progressively varying the resistance of the stenosed
branch to identify the value that corresponded to the target flow
ratio, keeping the vessel compliance fixed. The final values of the
resistance in the LPA and RPA of each anatomy are reported
in Table 2, together with the degree of stenosis severity and its
anatomical location.

Parametric Modeling
Transient flow simulations over multiple cardiac cycles on high-
resolutionmeshes require significant computational resources on
HPC facilities, thus limiting the number of patients that can be
simultaneously modeled without compromising time efficiency.
To improve themodels potential for clinical translation, reducing
this simulation time is crucial. To achieve the necessary level
of time efficiency, an alternative modeling approach based on
constant flow simulations was proposed and tested in Patient 2,
in both the stenosed and non-stenosed morphologies.

TABLE 2 | Parameters for the two-element Windkessel model derived for each

mesh.

Patient Diameter

reduction (%)

Stenosed

branch

Optimized

resistance in

RPA (Pa*s/m3)

Optimized

resistance in

LPA (Pa*s/m3)

Patient 1 43.8 RPA 677.16E+06 169.29E+06

Patient 2 40.3 LPA 103.80E+06 509.59E+06

Patient 3a 37.1 RPA 152.36E+06 169.29E+06

Patient 3b 71.5 RPA 541.73E+06 169.29E+06

The vessel compliance was fixed at 1.035E-08 m3/Pa.

CFD simulations were performed on both stenosed and non-
stenosed models with constant values of inlet velocity υ equal
to 0.25υmax, 0.5υmax, and υmax (respectively corresponding to
0.1433, 0.2866, and 0.5732 m/s), where υmax is the maximum
inlet velocity of the transient inflow profile. All constant flow
simulations were launched in parallel on the HPC facility at
King’s College London until the solution reached an asymptotic
state. The pressure gradient between inlet and outlet, ∆p,
was then computed in each simulation and a curve was
obtained by fitting a 2nd degree polynomial to the data in the
parametric space (υn, ∆p), where the velocity υn represents
the constant inflow velocity normalized by υmax. The transient
pressure gradient ∆p (t) was finally predicted by substituting
the time varying inflow velocity profile υ (t) in the polynomial
fitting equation, without performing more computationally
intensive transient flow simulations. To assess the accuracy
of this method, the relative pressure drop obtained from
the transient flow simulation was compared to that derived
from the polynomial fitting equation using the same inflow
velocity profile of the transient flow simulation. Maximum
and mean errors between the two pressure curves were
calculated in both the stenosed and non-stenosed models for
Patient 2.

RESULTS

Changes in blood flow dynamics, including flow ratio and WSS
magnitude, and in the pressure gradients between the stenosed
and the non-stenosed model were analyzed in each set of
transient flow simulations. The same biomarkers were studied
in the constant flow simulations, and in this instance data was
extracted from the final time step simulated, representative of an
asymptotic state.
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Peak Systolic, Diastolic, and Mean
Pressure Gradients
Peak systolic, diastolic, and mean pressure gradients for each
morphology are reported in Table 3. As expected, in all patients
the stenosed model exhibited higher values in all pressure
gradients than the non-stenosed ones. Even though the values
reported in Table 3 are calculated based on the pressure transient
curves averaged across all outlets, rather than on the LPA and
RPA separately, this increase in pressure gradient was driven by
the large difference between the inlet and the outlet pressure
on the stenosed branch, as shown by the pressure magnitude in
Figure 2.

Overall, upon removal of the thrombotic occlusion, the peak
systolic pressure gradient decreased from 25.16 to 21.05 mmHg
in Patient 1 (16.3% reduction), from 32.08 to 18.77 mmHg in
Patient 2 (41% reduction), and from 61.02 and 70.45 mmHg
(in the mild and severe stenosis scenarios, respectively) to 57.36
mmHg in Patient 3, corresponding to a 6.0 and 18.6% reduction.
The mean pressure gradients decreased from 4.91 to 4.09 mmHg
in Patient 1 and from 5.71 to 3.55 mmHg in Patient 2, indicating
a reduction of 16.7 and 37.8%, respectively. In Patient 3 the mean
pressure gradient was reduced from 11.07 and 12.44 mmHg,
in the moderate and severe stenosis models, to 10.31 mmHg
once the stenosis was removed, corresponding to a percentage
reduction of 6.9 and 17.1%, respectively. Finally, the DPG was
also reduced upon removal of the stenosis. Patients 1 and 2
exhibited a reduction of 9.3% (from 4.73 to 4.29 mmHg) and
16.8% (from 4.10 to 3.41 mmHg), respectively. In Patient 3 the
decrease in DPG was 17.0 and 24.5% in the moderate and severe
stenosis models (from 8.63 and 9.48 to 7.16 mmHg, respectively).

Flow Split
To appreciate what proportion of the inflow was directed to the
stenosed and the non-stenosed branch, the percentage changes
in the flow ratio was calculated in both morphologies for each
patient and summarized in Table 4. The proportion of flow
directed to the formerly stenosed branch increased in all patients
upon removal of the stenosis, which resulted in a change in flow
ratio ranging from 10 to 60% approximately (Table 4). In Patient
1 the percentage of the total inflow from the main pulmonary
artery directed to the stenosed branch (RPA) increased from 22 to
28% upon removal of the occlusion, corresponding to an increase

TABLE 3 | Pressure gradients between inlet (main pulmonary artery) and outlets

(averaged across LPA and RPA) in mmHg for each patient.

Stenosed model Non-stenosed model

DPG Peak systolic

PG

Mean

PG

DPG Peak systolic

PG

Mean

PG

Patient 1 4.73 25.16 4.91 4.29 21.05 4.09

Patient 2 4.10 32.08 5.71 3.41 18.77 3.55

Patient 3a 8.63 61.02 11.07 7.16 57.36 10.31

Patient 3b 9.48 70.45 12.44 7.16 57.36 10.31

PG, pressure gradient at peak systole (time step 275); DPG, diastolic pressure gradient.

in the flow ratio of 39.3%. In Patient 2 the hemodynamics was
more balanced, with ∼46% of the total inflow directed to the
stenosed branch (LPA); this proportion increased to 48% when
the stenosed segment was removed, which corresponded to an
increase in the flow ratio of 8.2%. Patient 3 presented a moderate
hemodynamic benefit from the removal of the occlusion, with
the percentage of inflow to the stenosed branch (RPA) increasing
from 28 to 31% (15.4% increase in flow ratio). When the effect of
removing the stenosis was investigated in the model with a severe
stenosis (Patient 3b), the percentage of inflow to the stenosed
branch improved from 22 to 31%, corresponding to a change in
flow ratio of 60.7%.

Blood Flow Dynamics and Wall Shear
Stress
The blood flow velocity field and the distribution of WSS
magnitude were also analyzed and compared between the
models. The stenosed models of Patients 2 and Patient 3a were
chosen for comparison in Figure 3.

Patient 2 exhibited blood flow velocities of up to 3.025 m/s
at peak systole in the stenosed segment, where the WSS peaked
at 31 Pa before dropping to 2 Pa downstream of the stenosis
(Figures 3A,B). Small areas of slow recirculating blood flow are
visible downstream of the stenosis, where the WSS magnitude
decreased abruptly (Figure 3A, insert).

In Patient 3 the peak systolic blood flow velocity in the
stenosed segment reached 4.636 m/s, which corresponded to
an increase in WSS magnitude to 33 Pa (Figures 3C,D). Unlike
Patient 2, in this case dilated regions are observed downstream
of the occlusion and in the secondary branch originating from
the stenotic segment, where the magnitude of the WSS dropped
to<1 Pa (Figure 3D, insert). A large region of recirculating blood
flow and a low velocity helical flow developed in these regions and
was associated with lowWSS magnitude (Figures 3C,D, insert).

Constant Flow Simulations and Parametric
Modeling
Parametric modeling was then employed to investigate whether
one of the biomarkers of interest, pressure gradients, could
be calculated from discrete constant flow simulations. The
pressure gradient for each of the flow simulations with
constant inflow velocity was recorded in the stenosed and
the non-stenosed models of Patient 2. The polynomial
fitting equations for the stenosed and non-stenosed cases
are reported in Figures 4A,B. The corresponding predicted
curves of transient pressure gradients in the stenosed and
non-stenosed model, ∆pS (t) and ∆pNS (t), respectively,
were compared to the data from the transient flow
simulations with the same prescribed inflow velocity profile in
Figures 4C,D.

In the non-stenosed model, the maximum pressure gradient
at peak systole predicted using the constant flow approach
was 22.4 mmHg, which was 19% higher than the peak systolic
pressure gradient derived from the transient flow simulations.
In the stenosed mesh, the parametric modeling predicted
a peak systolic gradient of 41.8 mmHg, which compared
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FIGURE 2 | Pressure fields at the wall at peak systole for Patients 1, (A,B), 2 (C,D), and 3 (E–G), in the stenosed and non-stenosed morphologies, posterior view.

Patient 3a is illustrated in (E) and Patient 3b in (F).

to the transient flow simulation peak resulted in an error
of ∼30%. The constant flow approach overestimated the
mean pressure gradient by 24 and 47% in the stenosed and
non-stenosed models, respectively. Overall the mean absolute
error over the whole cycle is 1.51 mmHg for the stenosed
mesh, and 1.64 mmHg in the non-stenosed mesh, derived
by subtracting the two curves in time. For both models,

for 75% of the cycle, the absolute value of the difference
is below 5.5 mmHg. These results were obtained without
modifying the specific memory requirements in one third of
the computational time of the transient flow simulations on
the same HPC cluster, thus making the parametric modeling
approach less computationally intensive than the transient flow
simulations.
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DISCUSSION

This study provides a proof of concept on how high
performance computing, imaging data and numerical modeling
can be successfully integrated to address the specific clinical
questions posed by CTEPH. We performed patient-specific
CFD simulations on realistic models of the pulmonary
arteries in patients affected by CTEPH to help inform
patient selection criteria for surgical intervention by pulmonary

TABLE 4 | Flow ratios recorded at peak systole for each patient, and percentage

change in flow ratio following removal of stenosis.

Flow ratio in

stenosed model

Flow ratio in

non-stenosed model

% flow ratio

change

Patient 1 0.28 0.39 39.3

Patient 2 0.86 0.92 8.2

Patient 3

3a (mild stenosis) 0.39 0.45 15.4

3b (severe stenosis) 0.28 0.45 60.7

thromboendarterectomy. The additional information provided
by the models is particularly relevant for patient management
in CTEPH, which is an under-diagnosed progressive disease
whose stage at the point of intervention can vary significantly
from patient to patient. The success of surgery depends
on the degree of peripheral vascular remodeling that has
occurred in the lungs since the formation of the thrombotic

occlusion. Our approach allows to model the contribution

of the occlusion (proximal resistance) and of the pulmonary
vasculature remodeling (peripheral resistance) to the overall

pulmonary vascular resistance. By quantifying changes in clinical
biomarkers such as pressure gradients, WSS and flow balance
between LPA and RPA, this technique can help assessing

the hemodynamic effects introduced by the removal of a
proximal occlusion in each patient. Such information is very
challenging to obtain in-vivo, making pre-operative patient

selection one of the most problematic issues of CTEPH
management. By establishing if the main cause of the disease
in each individual is proximal or peripheral, our personalized
models can provide potentially decisive data to inform
treatment.

FIGURE 3 | Simulation results at peak systole. (A) Streamlines colored by velocity magnitude in Patient 2. (B) WSS magnitude in Patient 2. (C) Streamlines colored by

velocity magnitude in Patient 3a; (D) WSS magnitude in Patient 3a. The mild stenosis case was employed for Patient 3a. The inserts show the flow behavior and WSS

magnitude in the stenosed segment of the pulmonary arteries, highlighting the flow recirculation regions, and the helical flow (A,C) and the drop in the WSS

magnitude (B,D).
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FIGURE 4 | (A,B) Pressure gradients from constant flow simulations in the non-stenosed (A) and stenosed model (B), with fitted parametric curve. (C,D) Pressure

gradient over time in the non-stenosed (C) and stenosed (D) model. The solid line indicates the pressure gradient predicted by parametric modeling, while the dashed

line represents an average of the gradients obtained in LPA and RPA from the transient flow simulation.

Metrics for Patient Selection: Pressure
Gradients and Flow Ratio
In CTEPH, pressure gradients and flow ratio between RPA and
LPA provide extremely valuable information for characterizing
the disease progression. However, pressure and flow cannot
be directly quantified from standard imaging data, and even
when this assessment can be performed, e.g., using advanced
flow imaging techniques such as PC-MRI, its accuracy is
often hampered by low spatio-temporal accuracy. While the
gold standard for pressure and flow measurements is cardiac
catheterization, this technique is highly invasive and only
allows for measurement at discrete proximal locations in
the pulmonary trunk. Numerical flow simulations present
the advantage of providing noninvasive measurements for all
points in the morphology of interest, including peripheral
vessels.

Results showed that the removal of a proximal occlusion in
the left or right pulmonary artery led to a successful reduction
of the pressure gradients between the main pulmonary artery
and the peripheral vasculature in Patients 1 and 2, while in
Patient 3 the reduction was less significant. In this case, a pressure
gradient reduction similar to that of Patent 1 (16.9%) could
be achieved only when a more severe stenosis was introduced.
This suggests that in Patient 3 the degree of remodeling in the
peripheral vasculature represents a relatively larger contribution
to the overall pressure gradients than the localized proximal
resistance due to the thrombotic occlusion, thus implying that
the surgical removal of the stenosis might have a less beneficial
effect in this case than for Patients 1 and 2.

The removal of the stenosis also changed the flow ratio
between right and left pulmonary arteries, increasing the flow
rate to the repaired branch. While Patients 1 and 3a had a
similar reduction in diameter, removal of the segment resulted in
different levels of improvements in flow balance. The percentage
change in flow ratio was higher in Patient 1 (39.3%) than in
Patients 2 and 3a, where it reached 8.2 and 15.4%, respectively.
The small variation observed in Patient 2 can be related to the
fact that in this case the flow ratio is close to the values found in
normal subjects (Cheng et al., 2005). This suggests that for Patient
1 the removal of the proximal occlusion was more beneficial to
the balance of pulmonary flow than in Patients 2 and 3. For
this latter case, only when a severe stenosis was introduced in
the model and subsequently removed, the flow ratio increased
significantly by more than 60%. This result is in agreement with
the hypothesis that removal of the stenosis is less beneficial in
this case than in the other two. It is worth noticing that this
patient is the only one where the DPG value was above the critical
threshold for peripheral remodeling of 7 mmHg.

Constant Flow Simulations
The estimation of transient pressure gradients from constant flow
simulations provided a computationally efficient method for the
assessment of the peak systolic and mean pressure gradient.

During diastole, when changes in the inlet velocity magnitude
are very small, the pressure gradient curve from the constant flow
simulation was in agreement with the simulation results using
the time-varying inflow velocity profile. However, parametric
modeling resulted in significant differences in the peak systolic
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pressure gradients, with a 30% overestimation compared to
the transient inflow simulation result in the stenosed model.
Such overestimation is present in the non-stenosed case as well,
albeit of smaller magnitude (20%). When the percentage of
improvement in the peak systolic pressure gradient following
the removal of the stenosis is considered, however, both models
provide a similar result: the peak systolic pressure gradient was
reduced by ∼41% according to the transient inflow simulation
and by 46% in the results from parametric modeling.

Overall, parametric modeling provides an effective strategy to
reduce computation time and to estimate the expected change
in peak systolic pressure gradients post-operatively, albeit the
peak magnitude of the pressure gradient in each model is
overestimated by this simplified approach. While each transient
flow simulation took just under 5 h to complete, all three constant
flow simulations were launched at the same time and required
only 1 h of computations, effectively reducing the simulation
time. This is particularly relevant in clinical applications, where
the prompt availability of investigation is essential for an effective
clinical translation of the modeling results.

Wall Shear Stress
WSS is a biomarker that cannot be derived from standard
anatomical imaging data such as the CTPA scans used in this
study. Non-routine imaging techniques, such as PC-MRI, are
usually needed in order to reconstruct flow dynamics in time and
space, from which WSS can be calculated: however these type
of imaging data requires longer acquisition times to achieve the
necessary spatio-temporal resolution for an accurate estimation
of the WSS. WSS nevertheless is a significant metric in the
context of vascular pathology. It is well-known that endothelial
cells, when exposed to normal shear forces, produce agents
with antithrombotic properties, but when the wall shear stress
is outside of the normal ranges this mechanism is disrupted
and pathologies such as arteriosclerosis and thrombogenesis can
develop (Tang et al., 2012). Low wall shear stress is linked
to vasodilation, aneurysm formation, and the development
of atherosclerotic plaques (Jiang et al., 1999; Boussel et al.,
2008). In patients affected by pulmonary hypertension, WSS
is decreased in the pulmonary arteries, a phenomenon which
is associated with vasodilation, increased cardiac output, and
a subsequent decrease in pulmonary vascular resistance. The
compensatory effect resulting from vessel dilation can initially
counter the disease progression, however drug therapy based on
epoprostenol is necessary to maintain a long-term reduction in
pulmonary vascular resistance that can stabilize the disease, albeit
without reversing its progression (McLaughlin et al., 1998). Such
a mechanism can explain the results observed in Patient 3, where
themagnitude ofWSS downstream of the stenosis was lower than
in Patient 2 despite a similar diameter reduction in the stenotic
segment, but a much more dilated wall was observed in the same
region. The lower average magnitude of WSS in Patient 3 could
also be associated with hypertension, which was suggested by a
DPG value greater than 7 mmHg.

Understanding the relationship between lowWSS magnitude,
vessel dilation and PVR reduction can reveal key information
on the progression of pulmonary hypertension and the degree

of remodeling in the vasculature. Therefore, WSS may prove
an insightful biomarker to risk-stratify patients based on
hemodynamic features. Despite its importance, WSS calculations
are often not available to the clinician due to the difficulty in
reliably deriving this biomarker from imaging data alone. In
this context, CFD simulations can provide valuable insight into
patient assessment by quantifying the WSS magnitude and its
changes over time.

Limitations
Simulations for this study were based on a number of
assumptions. We prescribed that arterial walls were rigid, and
expressed the behavior of the peripheral vasculature below
subsegmental level using a lumped parameter model, i.e., a two-
element Windkessel model. The anatomical segmentation, even
if performed using a semiautomatic technique, could only be
carried out up to a limited degree of detail. The high spatial
and contrast resolution of dual energy CT acquisitions allow the
visualization of small diameter arterioles, making it possible to
trace pulmonary vasculature well beyond subsegmental level. A
cut-off generation or caliber beyond which no vessel is segmented
was defined since tracing every individual terminal branch would
become excessively time consuming and therefore unfeasible,
particularly if considering potential clinical applications. Besides
being an obvious trade-off between anatomical accuracy and
operational efficiency, defining such endpoint is a complex task
in itself, with no supporting literature available to guide the
decision. Overall, therefore, segmentation of the pulmonary
arteries is highly affected by operator variability, thus limiting
the reproducibility of the experiment. Future work to improve
this limitation could include development of fully automatic
segmentation techniques, like statistical shape models or atlas-
based approaches (Shikata et al., 2004; Buelow et al., 2005).

The models in this pilot study were also based on post-
operative scans due to unavailability of pre-operative datasets,
and the occlusion level and position was idealized based on
the clinical history of the patients. However, the aim of this
preliminary work was to define the methodology and technical
feasibility of the study and this limitation will be overcome in
future studies using pre-operative imaging acquisition protocols.
Similarly, due to limited availability of pre-surgical clinical
records for the patients examined, indexes and comparative data
for validation, e.g., comparable pressure and velocity fields, have
been chosen from relevant literature. Specifically, in all patients
the same idealized inflow velocity profile was employed in
both the stenosed and the non-stenosed models, while evidence
suggests that in CTEPH patients waveform diverges from the
standard and changes markedly between patients (Kim, 2006).
Rather than a methodological shortcoming, this limitation is
down to incomplete clinical datasets and thus can be addressed
in future studies by prospectively acquiring Color Doppler
ultrasound data in addition to morphological CTPA scans.

CONCLUSION

This study shows that patient-specific biophysical modeling
of pulmonary vasculature has a potential role in optimizing
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CTEPH patient selection for PTE and potentially become an
effective tool for a quantitative classification of CTEPH types
and treatment in the longer term. Specifically, providing a
quantitative prediction of the changes in pressure gradients in
the pulmonary tree and flow ratio between the RPA and LPA can
help identify patients in which chronic hypertension is mostly
due to peripheral remodeling, and therefore is not significantly
ameliorated by removal of a thrombotic occlusion. Our results
show that the improvement in both pressure gradients and flow
balance is different in patients with similar diameter reduction
in the stenotic segment, implying that such assessment goes
beyond the simple evaluation of the percentage of stenosis
present in the vasculature, which provides a purely anatomical
criterion for intervention. Linking the blood flow dynamics to
the patient morphology is thus a key step to determine whether
the hemodynamic benefits of the stenosis removal are sufficiently
significant to justify surgical intervention.

In addition to this application to CTEPH, this approach is
highly flexible and can be generalized to perform individualized
assessment of any disease characterized by a high degree of
morphological variability. Thanks to increasingly powerful HPC
resources, this additional information on the pathophysiological
mechanisms linking altered hemodynamics and disease
progression can now be computed in a timeframe compatible
with clinical needs, which represents a major step forward in the
clinical translation of mathematical modeling. To further address
this issue, we also presented a time-efficient approach based on
constant flow simulations and parametric curve fitting that has
the ability to reproduce transient pressure gradients for a given
inflow velocity profile, thus reducing computational demand
and optimizing the usage of HPC resources. By addressing a

specific clinical question, this study provides a proof of concept
that mathematical modeling combined with high performance
parallel computing holds significant potential for assisting the
clinical decision-making process for CTEPH patients who are
potential candidates to PTE.
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The fluid transport and mixing induced by beating cilia, present in the bronchial airways,

are studied using a coupled lattice Boltzmann—Immersed Boundary solver. This solver

allows the simulation of both single and multi-component fluid flows around moving solid

boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary

forces are computed onto these points in order to ensure the no-slip velocity conditions

between the cilia and the fluids. The cilia are immersed in a two-layer environment: the

periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as

well as the phase lag between two cilia in order to obtain a typical collective motion of

cilia, known as metachronal waves. The results obtained from a parametric study show

that antiplectic metachronal waves are the most efficient regarding the fluid transport. A

specific value of phase lag, which generates the larger mucus transport, is identified. The

mixing is studied using several populations of tracers initially seeded into the pericilary

liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from

the interface. We observe that each zone exhibits different chaotic mixing properties.

The larger mixing is obtained in the PCL layer where only a few beating cycles of the

cilia are required to obtain a full mixing, while above the interface, the mixing is weaker

and takes more time. Almost no mixing is observed within the mucus, and almost all

the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed

for specific locations to assess how the mixing is performed locally. Two time scales

are introduced to allow a comparison between mixing induced by fluid advection and

by molecular diffusion. These results are relevant in the context of respiratory flows to

investigate the transport of drugs for patients suffering from chronic respiratory diseases.

Keywords: mucus, cilia, transport, mixing, pulmonary flow, lattice Boltzmann method, immersed boundary

1. INTRODUCTION

Computational Fluid Dynamics (CFD) is becoming a powerful tool in the medical context. It
provides a good insight of physical phenomena occurring inside the human body without the need
of intrusive surgery methods, which often fail to observe the desired phenomenon as they introduce
perturbations. Many organs, such as the human heart, have already received a lot of attention from
scientists using numerical methods (Khalafvand et al., 2011). However, only few studies focused
on modeling the lungs entirely, as it is probably one of the most challenging organ to simulate due
to the different length scales involved, from microns for the mucociliary transport to centimeters
for the airflow in the upper airways. The transport of mucus depends on its interaction with cilia,
whose scale is of the order 10−6 m, but is also strongly affected by the numerous bifurcations (length
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and diameter of order 10−1 m in the upper airways) that form
the bronchial tree. Some authors have tried to study the entire
lung, at the price of severe simplifications: Inagaki et al. (2009)
looked at the pressure losses inside the full bronchial system,
but neglected the multi-component nature of the flow and the
mucociliary transport. Stylianou et al. (2016) looked at the impact
of bifurcation for the particle laden flow using Direct Numerical
Simulations (DNS), but considered only one bifurcation and
did not take into account all the phenomena occurring at the
microscale. Given the actual capacities of supercomputers, it
is prohibitive to model the entire system while accounting for
the multi-component and multi-scale nature of the flow, the
deformation of the bronchial tree during a breathing cycle, the
heat and mass transfer at the epithelium surface, etc. Hence,
many authors restrict their study to a given scale/phenomenon,
as it is the case in the present work. Before going any further, it
is also worth noticing that, in recent years, the need for efficient
methods able to perform the simulation of deformable moving
solids in multi-component flows has also been felt in other areas.
In this context, the aim of this paper is to present a numerical
tool, which can be used to study many biofluidic configurations,
such as the transport of nutrients in the brain (Siyahhan et al.,
2014), the displacement of ovules in the Fallopian tubes (Anand
and Guha, 1978), or even the simulation of industrial micro-
mixers (Chen et al., 2013).

In this paper, one considers the mucociliary clearance process
(MCC), which is the main defense mechanism developed by
the human body to protect itself against foreign particles (like
pollutants, allergens, bacteria, etc.) which are inhaled during the
breathing process. Its principle is simple: a layer of fluid called
Airways Surface Liquid (ASL) covers the surface of the airways.
The inhaled particles are deposited onto it, and then transported
to the stomach thanks to the combined motion of the cilia
tufts that cover the epithelial surface. In the two-phase model
adopted here, it is generally assumed that the ASL is in fact the
superposition of two different fluid layers: the periciliary liquid
(PCL), and the mucus phase above it (Knowles and Boucher,
2002). In this model, the PCL can be viewed as a Newtonian fluid
similar to water. However, the modeling of PCL remains an open
question in the literature, as its experimental characterization
is not yet fully understood. Hence, other models exist such as,
for example, the one of Button et al. (2012), where the mucus
is depicted as a gel made of reticulated mucins. The interesting
proposed idea being that, if the PCL is not thick enough and/or
has a low hydration, then the mucus-gel may squeeze the cilia
and prevent them to beat efficiently. The purpose of the PCL is
to act as a kind of lubricant which allows the mucus to slip onto
it (Puchelle et al., 1995). Its thickness is around 6 µm. The mucus
is composed of 95% of water, but also contains macromolecules
called mucins (Lai et al., 2009). It is a highly non-Newtonian fluid
which exhibits a plethora of complex properties such as visco-
elacticity and thixotropy. Its role is to act as a barrier against
the external environment and to trap the particles. Its depth
varies between 5 and 100 µm depending on the position in the
bronchial tree (Widdicombe andWiddicombe, 1995). One of the
main difficulties met for its characterization is the huge variability
of its rheological properties (Lafforgue et al., 2017). It can indeed

vary by several orders of magnitude during the same day within
a particular person (Kirkham et al., 2002).

In order to propel these two fluid layers, the epithelium is
covered by tufts of cilia (around 200–300 cilia per tuft) which are
cytoplasmic extensions put into motion by biochemical motors.
Theirmotion can be decomposed into two steps: the stroke phase,
which lasts around one third of the total beating period, where
cilia will be almost orthogonal to the flow in order to maximize
their pushing effect; and the recovery phase where cilia will
bend themselves and get closer to the epithelial surface in order
to minimize their impact on the flow. This spatial asymmetry
is essential in the context of creeping flows, as it is the only
mechanism that generates transport (Purcell, 1977; Khaderi et al.,
2010). Note that the recovery phase does not occur in the same
plane as the stroke phase, but instead occurs in a plane somehow
more inclined in regards to the vertical axis (Sleigh et al., 1988).
The cilia length is around 7 µm, thus allowing them to enter the
mucus during the stroke phase. Cilia diameter is estimated to be
around 0.2–0.3 µm according to Sleigh et al. (1988), and their
beating frequency is around 15 Hz.

MCC can only work if both the mucus production and
ciliary beating are fully functional. Indeed, diseases such as cystic
fibrosis (CF), asthma, or Chronic Obstructive Pulmonary Disease
(COPD), can all be related to abnormalities in the MCC process.
In the case of CF, the mucus secreted is very viscous and in large
quantities, which hinders the work of the cilia. Thus mucus flow
becomes almost null and mucus accumulates. It leads to severe
infections, which damage or destroy the cilia tufts. On the other
hand, people with asthma have less cilia, and the ones remaining
may be dysfunctional. The transport of mucus is obviously less
efficient than for healthy persons, which is balanced by cough for
instance.

Experimentally, it has been observed that cilia synchronize
their beatings accordingly to their neighbors with a small phase
lag (Sleigh, 1962). It results in metachronal waves (MCW) which
can be seen at the surface formed by the cilia tips. When the
phase lag 18 between two cilia is negative, the MCW are
called symplectic and move in the same direction as the flow.
On the contrary, when 0 < 18 < π , the MCW are called
antiplectic and move in the direction opposite to the flow. These
waves have been shown to greatly enhance the fluid transport
(Gueron and Levit-Gurevich, 1999; Gauger et al., 2009), but there
are still open questions on which kind of waves is the most
efficient for mucus transport and mixing. Most of them are either
experimental studies performed on living animals (Machemer,
1972), or numerical ones performed in a single fluid environment
(Khaderi et al., 2011; Ding et al., 2014). Only few addressed
the problem using a two-layer fluid (Chatelin and Poncet, 2016;
Chateau et al., 2017). The main result of these works is that
antiplectic MCW are found to be the most efficient, and that
particular phase lags between two cilia maximize the mucus
transport. Others authors (Sedaghat et al., 2016) have investigated
the role of mucus rheology using a similar methodology as
the one presented here, and found that the ratio of elastic
contribution of mucus viscosity to the total mucus viscosity
has a quite significant effect on the mucociliary transport. In
particular, the mucus velocity was observed to increase when
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decreasing the elastic part of the mucus viscosity. The study of
the mixing induced by beating cilia is also very important as it
provides information about the deposition rate of particles (such
as inhaled drugs) onto the epithelial cells. However, to the best of
the author’s knowledge, only Ding et al. (2014) studied themixing
properties of both symplectic and antiplecticMCWbut in a single
fluid layer. The objective of the present paper is to fill this gap by
having a deep insight into the transport and mixing properties of
MCW in a more realistic two-phase environment.

The article is organized as follow: the algorithm used to
model the MCC in a two-layer context is described in section 2.
Results regarding the transport of passive tracers are presented
in section 3, and a displacement ratio is introduced in order to
quantify the efficiency of the wave organization. In section 4,
the mixing capacities of the system are studied using tracers
advection and by computing a global mixing index. Lyapunov
exponents are also used in order to gain insight about how
the mixing is locally achieved. Two time scales are also defined
in order to compare the mixing induced by fluid advection to
the mixing induced by molecular diffusion. Finally, conclusions
summarize the main results of this work with some future views
in section 5.

2. NUMERICAL METHOD

The Boltzmann equation describes the behavior of a gas from
a microscopic point of view. The Lattice Boltzmann Method
(LBM) solves the discrete Boltzmann equation for an ensemble
of distribution functions f (x, t) on a discrete lattice. These
distribution functions describe the probability that ensembles
of particles, with velocity ei, collide and then stream along the
discrete velocity vectors ei. By doing a Chapman-Enskog analysis,
one can recover the Navier-Stokes equations as presented in
Kruger et al. (2016) for instance. This kind of fluid solver is now
considered as an efficient alternative to traditional Navier-Stokes
solvers.

2.1. Mathematical Description
2.1.1. Single-Component LB Model
In LBM, the fluid status is updated in time by resolving the
discrete Boltzmann equation (Chen and Doolen, 1998, and
references therein):

fi(x+ ei1t, t + 1t) = fi(x, t)−
1t

τ

[

fi(x, t)− f
(eq)
i (x, t)

]

(1)

where fi(x, t) represents the distribution function at time t and
position x in the ith direction of the lattice (D2Q9 in 2D, and
D3Q19 in 3D). Equation 1 uses the Single Relaxation Time (SRT)
Bhatnagar-Gross-Krook (BGK) (Bhatnagar et al., 1954) collision
operator. In this model, τ is the relaxation time, which is linked
to the lattice viscosity by τ = 3ν + 0.5 using the classical
normalization procedure, i.e., 1x = 1t = 1 (Kruger et al.,
2016). In this work, each phase is Newtonian, but has a different
viscosity. The distribution functions move along a set of discrete
velocity vectors ei, which depend on the lattice considered, as

shown in Figure 1. The local density and momentum at each
lattice node can be obtained by summing all the functions fi(x, t):

ρ(x, t) =

N
∑

i=0

fi(x, t) ρu(x, t) =

N
∑

i=0

fi(x, t)ei (2)

where N is the number of discrete velocities on the lattice.
The discrete equilibrium function f

(eq)
i (x, t), that appears in

equation 1, can be obtained by Hermite series expansion of the
Maxwell-Boltzmann equilibrium distribution (Chen and Doolen,
1998, and references therein):

f
(eq)
i = ρωi

[

1+
ei · u

c2s
+

(ei · u)
2

c4s
−

u2

c2s

]

(3)

where cs = 1/
√
3 is the speed of sound in lattice unit. The weight

coefficients ωi are ω0 = 4/9, ω1−4 = 1/9 and ω5−8 = 1/36 for
D2Q9 lattices, and ω0 = 1/3, ω1−6 = 1/18 and ω7−18 = 1/36
for D3Q19 lattices (Qian et al., 1992).

Body force effects are introduced by adding an extra term to
Equation (1):

fi(x+ei1t, t+1t) = fi(x, t)−
1t

τ

[

fi(x, t)− f
(eq)
i (x, t)

]

+1tFi(x, t)

(4)
where Fi is given by the following equation:

Fi =

(

1−
1t

2τ

)

ωi

[

ei − u

2c2s
+

ei · u

c4s
ei

]

· F (5)

Here, F represents the body force per unit volume. The
macroscopic velocity u must then be updated in order for the
system to recover the Navier-Stokes equation:

ρu =
∑

i

eifi +
1t

2
F (6)

More details on the LBM model can be found in (Kruger et al.,
2016, and references therein).

2.1.2. Multi-Component LB Model
When considering two ormore fluid components, the LB discrete
equation is written as follows:

f σi (x+ ei1t, t + 1t) = f σi (x, t)−
1t

τσ

[

f σi (x, t)− f
σ (eq)
i (x, t)

]

+1tFσ
i (x, t) (7)

where f σi (x, t) and τσ are the distribution functions and the

single relaxation time of the σ th component respectively. The
expression of the equilibrium distribution function now reads:

f
σ (eq)
i = ρσ ωi

[

1+
ei · u

(eq)
σ

c2s
+

(ei · u
(eq)
σ )2

2c4s
−

u
(eq)
σ · u

(eq)
σ

2c2s

]

(8)
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FIGURE 1 | Discrete velocities arrangement on a lattice cell: (A) D2Q9 lattice; (B) D3Q19 lattice.

where ρσ =
∑

i
f σi is the density of the σ th component. u

(eq)
σ

is the equilibrium velocity which is identical for the two fluid
components:

u
(eq)
σ = u∗ =

∑

σ

∑

i
eif

σ
i /τσ

∑

σ

∑

i
f σi /τσ

(9)

In Equation (7), the explicit forcing term Fσ
i is linked to the total

body force Fσ per unit volume exerted on the σ th component:

Fσ
i =

(

1−
1t

τσ

)

Fσ · (ei − u
(eq)
σ )

ρσ c2s
f
σ (eq)
i (10)

Now, based on the methodology developed by Martys and Chen
(2013), one adds a Shan-Chen-type fluid-fluid cohesion force
FSCσ in the total body force vector Fσ of Equation (10) in order
to model the two-component behavior. The expression of the
Shan-Chen type fluid-fluid cohesion force is (Shan and Chen,
1994):

FSCσ (x, t) = −Gcohρσ (x, t)
∑

i

ωiρσ ′ (x+ ei1t, t)ei (11)

where Gcoh is a parameter that controls the force of the cohesion
force, and where σ ′ represents a fluid different from σ . Note
that with a Shan-Chen-type fluid-fluid cohesion force, there is no
discontinuity of the fluid velocity at the interface, which is diffuse.

2.1.3. The Immersed Boundary Method
The aim of the IB method is to impose velocity boundary
conditions on the Eulerian fluid nodes that surround a solid,
by adding an extra body force FIBσ to the fluid equations, so
that the macroscopic fluid velocity can equal the velocity at the
Lagrangian points modeling the solid boundary. Hence, an IB
force FIBσ is also included in the total body force vector Fσ so that
Fσ = FIBσ + FSCσ . The macroscopic velocity uσ given by Porter
et al. (2012) writes:

ρσuσ =
∑

i

eif
σ
i +

1t

2
Fσ (12)

The immersed boundary method to derive the forcing term uses
the classical procedure which relies on two operators:

• The interpolation – In this step, the fluid velocity at the
Eulerian nodes are used to perform an interpolation of the
fluid velocity on the Lagrangian points.

• The spreading – An IB-related force is obtained as a
function of the difference between the solid velocity and
the interpolated fluid velocity. This force is spread to the
surrounding Eulerian nodes in order to ensure the no-slip
velocity condition at the fluid-solid boundary.

More details can be found in Li et al. (2016).

2.2. Modeling the MCC
The computational domain is a fixed rectangular box of size
(Nx = 385, Ny = 11, Nz = 34), as shown in Figure 2. The
computational domain has been chosen as it allows to study the
desired values of phase lags |18| (ranging from±π/6 up to±π)
without modifying the size of the domain and with a sufficiently-
fine cilia resolution to ensure grid-independent results. The fluid
part is solved on a Cartesian grid with a simple BGK collision
operator, and a D3Q19 scheme. Periodic boundary conditions
are used in the x and y-directions, while no-slip and free-slip
boundary conditions are used at the bottom and top walls,
respectively. The length L = 7 µm of the cilia is set to 11 lattice
units (lu). Cilia are modeled by a set of 200 Lagrangian points,
whose motion is governed by a differential 1D transport equation
along a parametric curve (Chatelin, 2013; Chatelin and Poncet,
2016). In the following, P(ζ , t) denotes the position of the curve
at time t and at a normalized distance ζ from the base point of a
cilium. With appropriate boundary conditions, a realistic beating
pattern is obtained :

∂P′

∂t
+E(t)

∂P′

∂ζ
= 0 BC:

{

P(0, t) = (0, 0, 0)
P′(0, t)= (2 cos(2π t/T), 0, cos(2π t/T))

(13)

with E2(t) = ([1 + 8 cos2(π(t + 0.25T)/T)]/T)
2
a term which

mimics elastic effects, T the beating period, and P′ = ∂ζP.
To ensure the stability of the IB method, there must be
approximatively one Lagrangian point per lattice cell where the
IB forces are computed. Thus only 10 Lagrangian points regularly
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FIGURE 2 | Schematic view of the domain. The length of the cilia is L, the cilia spacing in the x-direction is a = 1.44L, and in the y-direction is b = 0.4L. The ratio h/H

is set to 0.26.

spaced onto the cilia are chosen for the computation of the IB
forces. The spacing between two cilia is set to a = 1.44L in the
x-direction, and b = 0.4L in the y-direction. Their base point
is located at z = 0 which corresponds to the position of the
epithelial surface. The beating period is Tosc = Nit1t, where
Nit is the number of iterations for performing a full beating
cycle. The PCL fills the domain from z = 0 up to an altitude
z = h = 0.9L. In all simulations, Nz is fixed to 34 lu, leading to
a ratio h/H = 0.26. The wavelength of the imposed metachronal
waves varies from λ = 32 lu for a phase lag 18 = π , to λ = 192
lu for 18 = π/6.

The motion of the cilia is imposed to be in the x-direction
only. Note that, due to the inter-cilia spacing, no collision
between cilia occurs during their beatings. Since the only
mechanism to impose motion in creeping flow is the spatial
asymmetry (Purcell, 1977; Khaderi et al., 2010), no temporal
asymmetry is considered in the beating pattern. The viscosity
of the PCL is chosen to be νPCL = 10−3 m2/s, and the ratio
of viscosity rν between the mucus and PCL is set to 10. Since
the model of Porter et al. (2012) introduces a Shan-Chen fluid-
fluid repulsive force (Shan and Chen, 1994), surface tension
effects emerge intrinsically at the mucus-PCL interface. More
importantly, this also prevent the mixing of the mucus and
PCL. The equations of the cilia motion are taken from Chatelin
(2013) and reproduce a 2D beating pattern similar to the one
observed for real cilia. In particular, the angular amplitude of this
beating pattern is θ = 2π/3 as observed experimentally (Sleigh
et al., 1988). Thus, the velocity Ucil at the tips of the cilia can
be computed by Ucil = 2θL/Tosc, and an oscillatory Reynolds
number can be defined as:

Reosc =
UcilL

νmucus
=

ωL2

νmucus
(14)

where ω is the angular beating frequency of cilia. Using physical
quantities (Lphy ≈ 10−5 m, νmucus ≈ 10−3 m2.s−1, and

Ucil ≈ 10−3 m.s−1), the obtained Reynolds number is of the
order of 10−5. Thus, inertial effects do not play any role in

the phenomenon of MCC. Running simulations at such a low
Reynolds number would require a huge number of iterations
using a lattice Boltzmann scheme due to the coupling between
1x and 1t imposed by the normalization. Hence, we chose
higher Reynolds numbers: Reosc = 2.10−2, 5.10−2, and 10−1,
as it has been demonstrated in Chateau et al. (2017) that inertial
effects remain weak in this configuration up to Reynolds numbers
around 10. For Re = 10−2, inertia effects vanish. In creeping
flow, there should be no noticeable difference in the wave
structure even for a Reynolds number 1,000 times weaker. The
code is parallelized using MPI (Message Passing Interface) by
splitting the computational domain into 9 subdomains of size
(Nx/3,Ny/3,Nz).

3. MUCUS TRANSPORT

A common way to treat respiratory diseases is by the inhalation
of drugs, which flow into the airways until they are captured by
the mucus layer. To gain an insight into how drugs are dispersed
and advected into the mucus and PCL, the displacement field

d(x) =
∫ Tosc

0 u(x(t), t)dt is computed, where x is the position
vector and u is the fluid velocity. The component over the
x-direction of the displacement field is then averaged over 20
beating periods and denoted < dx >. It is plotted on Figure 3.
One can clearly see the importance of the phase lag, some
values being associated to larger displacement of fluid. One can
also observe that the particular case where all the cilia beat
synchronously (i.e., 18 = 0) results in a transport which
is similar to the action of fully desynchronized cilia (i.e., 18

between two neighboring cilia is random). Note that to test the
repeatability of the random motion, three simulations with an
initially different random pattern were performed. Each of them
gave almost identical results, with less than 3% of difference in
the fluid velocity. In order to understand why the presence of the
PCL layer is beneficial for the mucus transport, a simulation of a
single-fluid layer, representing mucus, has been run for a phase
lag 18 = π/4 (see the red curve in Figure 3). It results in a
weaker transport compared to the corresponding two-layer fluid
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FIGURE 3 | Normalized averaged displacement of fluid in the x-direction as a

function of z/L with a/L = 1.44 and b/L = 0.4, for a Reynolds number

Re = 10−1. λ is the wavelength of the MCW, and Nλ the number of cilia in one

wavelength. The “strong chaotic mixing” zone extends from 0 to 1.1L, the

“chaotic mixing” zone from 1.1 to 1.8L, and the “no mixing” zone from 1.8 to

3L. The mucus-PCL interface is located around z/L = 0.9 and indicated by a

dashed horizontal line. The red curve corresponds to a simulation performed in

a single layer fluid with a viscosity ν = νmucus. The blue curve corresponds to

a simulation where each cilium has been initially set in a random state of

beating: the phase of the cilia being uncorrelated. The black curves

correspond to antipleptic MCW (18 = π/4), symplectic MCW (18 = −π/4),

and synchronous beatings (18 = 0). More details regarding how the chaotic

zones were defined are given in section 4.

simulation with 18 = π/4, thus highlighting the importance
of having a layer of fluid with lower viscosity under the mucus
one as it allows the mucus to slip onto it (Puchelle et al.,
1995). In Figure 3, different areas, corresponding to different
mixing regimes, are also presented and will be introduced later
in section 4. These regions are similar to the “transport” and
“mixing” areas defined in Ding et al. (2014) and Chateau et al.
(2017). The displacement over the y and z-directions has also
been quantified. The displacement in the y-direction is small
everywhere, and thus can be neglected. On the contrary, the
displacement in the z-direction is small above the cilia tips, but
not under. It has been shown in Chateau et al. (2017) that a
peak in the stretching rate is present in this region. It will be
shown in section 4 that it is also the area where the mixing is
the strongest.

The total volume of fluid effectively displaced is computed in
order to determine which phase lag is more able to transport the
mucus. To do so, the global volumetric flow rate Qv over a unit
volume of size (1× 1× Nz) is defined by:

Qv = Nz
U∗1x2

L2
(15)

with U∗ = Uav/Uref , where Uref = λ/(NcilT) is the reference
velocity of the system, and Uav = (NxNyNz)

−1
∑

i,j,k Uijk is

the average fluid velocity inside the domain. The result for
the total displaced volume of fluid is plotted in Figure 4.

Metachronal motion, except for the cases where 18 = −π/6
and 18 = −π/4, induces a stronger displacement of fluid
compared to the synchronized motion (18 = 0). Note that
the results for 18 = −π/6 and 18 = −π/4 slightly differ
from what is found in Chateau et al. (2017) where, for Reynolds
numbers of the order of 10−2, symplectic MCW were found
to be more efficient than synchronized motion. This is a direct
consequence of the modified geometry: indeed, in Chateau et al.
(2017), the cilia spacing b in the y-direction was set to values
larger than 1.67L. Thus, during the stroke phase of symplectic
MCW (which corresponds to a moment where the cilia are being
clusterized), the fluid flow was simply expelled around the cilia.
In the present case, b is much smaller (b = 0.4L) in order to have
a higher density of cilia as observed in real epitheliums, and the
fluid is mainly pushed above the cilia. It results in a displacement
of the mucus-PCL interface above the cilia tips which never get
the chance to enter the mucus layer. On the contrary, the cilia
during the recovery phase are far away from each other. A suction
effect occurs, leading the mucus-PCL interface to be moved
downwards toward the cilia. Thus, the counter flow created by
the cilia during the recovery phase is almost as strong as the flow
created by the cilia during the stroke phase. As a consequence,
both the PCL and mucus flows are much smaller. The opposite
happens for antiplectic MCW with large wavelengths (i.e., small
18): the cilia are far from each other during the stroke phase,
which maximizes their pushing effect. The suction effect also
takes place, which results in the mucus-PCL interface moving
downwards. Hence, the cilia tips penetrate more deeply into
the mucus phase. During the recovery phase, the cilia are now
clusterized, and themucus-PCL interface is pushed far away from
the cilia tips. Hence, the induced counter flow is almost null,
while the cilia during the stroke phase creates a strong positive
flow. This result is interesting as it might be linked to the fact
that antiplectic MCW with very large wavelength (18 < π/6)
are usually observed in nature for living organisms evolving in
single layer fluid environments (Sleigh, 1962). This blowing and
suction mechanism is similar to the one observed in Dauptain
et al. (2008) on a similar configuration involving the swimming
of a jellyfish by ciliary propulsion. A maximum in the total
fluid displaced volume can be seen in Figure 4, and corresponds
to an antiplectic MCW with 18 ≈ π/6, which corroborates
the results found in Chateau et al. (2017) for antiplectic MCW
where a peak in the total displaced fluid volume was found for
18 ≈ π/4.

In order to characterize the system from an energy
perspective, the average power Pcil spent by the cilia during a
beating cycle is introduced:

Pcil =

∑

s,i
Vs
i · (F

i
m + FiPCL)

Ncil
(16)

where Vs
i is the velocity on the sth Lagrangian points of the ith

cilium, and Fim and FiPCL the interpolated IB forces, respectively
applied by the ith cilium onto the mucus and PCL. In order to
have a dimensionless power P∗, Pcil is normalized by P∞ the
power spent by an isolated cilium during a beating cycle (a/L =
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FIGURE 4 | Total dimensionless displaced flow volume generated by an array

of 24 × 2 cilia over a beating cycle for different phase lags 18 and Re = 10−1.

b/L = 5), such that P∗ = Pcil/P
∞. The displacement ratio η can

now be defined as the mean displacement over the x-direction
divided by themean power a cilium has to spend during a beating
cycle:

η =
< d∗x >

Ncil
λ

P∗
(17)

where < d∗x > is the mean displacement over the x-direction
during one period, taken on an arbitrary plane (z/L = 3.2)
near the top of the domain. The left axis of Figure 5 shows the
dimensionless power P∗ spent by the system. The synchronized
case requires less energy than other type of coordinated motion.
Note that MCW with a phase lag such that π/3 < |18| < π

result in the highest power spent, while smaller phase lags
(|18| < π/4) require less energy. On the right axis of Figure 5,
one can observe the variations of the displacement ratio η. For a
given power input, the synchronized motion of the cilia is almost
always more efficient than MCW for displacing fluids, except for
antiplectic MCW with 18 = π/6. This result can explain why
antiplectic MCW with large wavelengths are usually observed in
nature.

4. MIXING

4.1. Global Mixing
The mixing is quantified using the method developed in Stone
and Stone (2005): two populations of tracers of different colors
(black and white) are initially organized in a regular pattern; each
population occupying the same volume (see Figure 6 for a view
of the domain filled with tracers). They are released at t = t0
when the flow is fully-established, and a second order Runge-
Kutta (RK2) scheme is used to compute their advection, using the
interpolated fluid velocity given by the IB method. The mixing
is quantified by measuring the decay of the shortest distance
between tracers that belong to the different populations. Hence,

FIGURE 5 | Power P* spent by the system and displacement ratio η obtained

for different phase lags 18 and Re = 10−1.

the mixing numberm is defined as follows:

m = (

N
∏

i=1

min(|xi − xj|)
2)

1
N (18)

where xi and xj are the positions of tracers of different colors,
N is the total number of particles of the same color, and j =

1, 2, ...,N is the index for which the minimization is performed.
We chose to study the mixing in three different areas: area 1 is
located inside the PCL, and the tracers are set such that they
occupy the region between z = 0.2L and z = 0.8L; area 2 is
located above the PCL-mucus interface and the tracers occupy
the region between z = 1.2L and z = 1.8L; and area 3
is located far above the PCL-mucus interface, and the tracers
occupy the region between z = 2.5L and z = 3.1L (see
Figure 6 for a view of the different areas). The chosen pattern
consists in rectangular boxes of size (1.44L, 0.4L, 0.6L) regularly
distributed along the x-direction, each of them being centered
around the base of a cilium. This geometrical distribution has
been chosen in order to provide comparative results with Ding
et al. (2014). The density of tracers is not a critical factor here,
as pointed out by Stone and Stone (2005). Hence, in each area
one tracer is placed every 2 nodes along the three directions
of space. On Figure 7, the different mixing areas are displayed
after 60 beating cycles for a Reynolds number of Re = 5.10−2:
the tracers initially seeded into the PCL are significantly mixed,
contrarily to the tracers initially seeded far above the mucus-
PCL interface. Between these two populations, the tracers initially
seeded just above the mucus-PCL interface undergo a constant
shearing. It is worth noticing that tracers initially seeded into
the PCL (resp. mucus) stay in the PCL (resp. mucus). This
behavior is attributed to surface tension effects present at the
interface which prevent a mixing of the two fluid layers. This
shows that particles captured by the mucus layer will never
reach the PCL. However, note that the present model does not
take into account molecular diffusion effects, which may allow
drugs to penetrate the PCL area. Nevertheless, the effects of
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diffusion will be considered in section 4.3 using two different time
scales.

Figure 8A shows the time evolution of the mixing number
m/m0 in the PCL (area 1) for different metachrony;m0 denoting
the initial value of m when the tracers are not yet released. If the
mixing is chaotic, the mixing number m/m0 should be decaying
exponentially. It is indeed the case during the first beating cycles
(5–6 cycles). However, if only chaotic mixing was present, the
measures would simply converge toward a “plateau.” This is not
the case here as the cilia also impose a stretching to the generated

flow. Thus, the ratiom/m0 keeps on decaying and converge only
toward a “pseudo-plateau.” Since we are mainly interested by a
characterization of the chaotic mixing induced by cilia, we will
focus our attention to the first beating cycles. Figure 8B confirms
that the mixing in the mucus is very low. The mixing number
m/m0 is almost constant during all 60 beating cycles. The tracers
are transported as a solid block and keep their initial pattern,
as illustrated in Figure 7. On Figure 9A, the logarithm of the
dimensionless mixing numberm/m0 in area 1 is plotted. The fact
thatm decays rapidly means that the mixing in this area is strong:

FIGURE 6 | 2D view of the domain filled with 3 populations of tracers for Re = 5.10−2. The PCL is blue, and the mucus phase is red. Population 1 occupies the PCL

between z = 0.2L and z = 0.8L; Population 2 is located above the PCL-mucus interface and occupies the region between z = 1.2L and z = 1.8L; Population 3 is

located far above the PCL-mucus interface, and occupies the region between z = 2.5L and z = 3.1L. The size of the computational domain is

(Nx = 385,Ny = 11,Nz = 34).

FIGURE 7 | 3D view of the domain filled with 3 populations of tracers for Re = 5.10−2, 60 beating cycles after their release at t = t0 when the flow is fully-established.

The tracers in the PCL are significantly mixed, while the tracers in areas 2 and 3 still present coherent patterns.

FIGURE 8 | Mixing number m/m0 as a function of the number of cycles Ncycles for Re = 2.10−2 and different phase lags 18 in (A) area 1 (i.e., within the PCL) and

(B) in area 3 (far above the mucus–PCL interface).
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FIGURE 9 | Logarithm of the mixing number, ln(m/m0 ), as a function of the number of cycles Ncycles for Re = 5.10−2 and for different phase lags 18 corresponding

to antiplectic MCW in (A) the PCL region (area 1); and (B) above the mucus–PCL interface (area 2). (C,D) are similar to (A,B), but for symplectic MCW.

indeed, only 4 beating cycles are required to obtain a converged
state of mixing. During these first beating cycles, the decay of m
strongly depends on the value of the phase lag 18. The results
for symplectic MCW (18 < 0) are similar to those obtained for
antipleptic MCW (see Figure 9A,C). On Figure 9B,D, the same
quantities are plotted for area 2. One can observe the importance
of18, some phase lags being clearly more able tomix the tracers.
It is interesting to note that each curve presented in Figure 9A,B

exhibits the behavior of chaotic mixing. In other words, they can
be approximated by a function of form ln(m/m0) = −βNcycles,
where the fitted parameter β represents a mixing rate, which
depends on the local stretching rate (Weiss and Provenzale,
2007). Hence, it is possible to compare the mixing capabilities of
symplectic and antiplectic MCW, as shown in Figure 10A,B. The
mixing rates β obtained for three different Reynolds number (Re
= 10−1, Re = 5.10−2, and Re = 2.10−2) are plotted as a function
of18 for areas 1 and 2 respectively (see Figure 10A). The curves
follow the same trend for each value of tested Reynolds number.
There are always values of18 6= 0 such that the obtainedmixing
rate β is superior to the synchronized case; except for the case
Re = 0.1 where the value of 18 = 0 induces a mixing rate
β almost as strong as for 18 = π/2. As seen in section 3,
the values of 18 = −π/6, and 18 = −π/4 induce a weak
mixing. This is the direct consequence of the fact that the PCL-
mucus interface is pushed above the cilia tips during their stroke
phase, which hinders them to penetrate the mucus layer. As a
result, the fluid flow is weaker in both the PCL region and mucus

region. In Figure 10B two distinct peaks can be identified, one for
antiplectic MCWwith18 ≈ π/4, and the second for symplectic
MCW with 18 ≈ −π/4, indicating that these particular values
of phase lag are more efficient to mix the mucus. While the value
of 18 ≈ −π/4 induces a small transport of the PCL and mucus,
and a small mixing of the PCL, it is interesting to note that it
can generate a mixing as strong as the case 18 ≈ π/4 above
the PCL-mucus interface. In both cases (18 = ±π/4), this
can be attributed to the motion of the interface. Note that too
large values of 18 induce a mixing which is similar to the one
of synchronized beating cilia (18 = 0). Also, the y-scale of
Figure 10B is much smaller (100 times smaller) than the one of
Figure 10A. In both Figure 10A,B, the dashed lines represent the
mixing rates β obtained for cilia beating randomly. The mixing
rate obtained for such configuration may vary depending on
the initial conditions of the cilia, but not significantly, as it is
“averaged” over the random motion of 48 cilia. Interestingly, the
motion of randomly beating cilia produces an “averaged” mixing
rate: although never being in the highest values of β , it always
induces a mixing reasonably high.

The conclusion here is that the mixing induced by MCW in
area 1 is very similar to the mixing induced by synchronized
motion, except for the particular case of symplectic MCW with
very large wavelengths. In area 2, specific values of phase lags are
found to be more efficient to mix the mucus-PCL area compared
to synchronized or random beatings. Finally, in area 3, themixing
is weak and independent of the phase lag 18.
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FIGURE 10 | Mixing rate β for different Reynolds numbers (Re = 2.10−2, 5.10−2, and 10−1) as a function of the phase lag 18. (A) Mixing rate obtained in area 1

with a fit over the 4 first beating cycles. (B) Mixing rate obtained in area 2 with a fit over all 60 beating cycles. The dashed lines represent the values of the mixing rate

obtained for cilia beating randomly. Note that the y-scales used in (A,B) are different: the values of β corresponding to area 1 are of order 102 times greater than those

obtained in area 2. Also note that the repeatability of the random motion has been tested, and similar values for β with less than 2% of difference were found.

4.2. Local Mixing
Specific drugs, such as the propranolol (PPL) or β-adrenergic, act
on the cilia by modifying their beating frequency (Inoue et al.,
2013). Others, such as the anticholinergics or the corticosteroids,
act directly on the mucus secretion (Barnes, 2002). Each of
these drugs have specific targets, and must arrive precisely where
they will have the most effects. Hence, it is important to fully
understand how they will be mixed. However, many questions
remain open: Where are the drugs mainly mixed ? Where exactly
is the location of strongest mixing in the PCL ? To answer these
questions, a different method is now introduced in order to
measure locally the mixing, and gain a detailed insight into how
the particles are mixed depending on their location. To do so,
the methodology used in Cieplak et al. (1992) is adopted. The
principle is simple: one must follow the evolution of the distance
r between tracers initially separated by an infinitesimal distance
r0. In the particular case of chaotic mixing, a Lyapunov exponent
γ can be extracted using the following equation:

ln(
r

r0
) = γNcycles (19)

This exponent gives an indication on the strength of the mixing.
However, a sufficiently high number of measurements must be
performed to get rid of the noise inherent to this method. To do
so, a cubic set of (3× 3× 3) tracers, referred later as “fathers,” are
used. These fathers are initially set at a distance r0 = 0.01 lu apart
from each other. For each father, 6 tracers, referred from now
as “children,” are regularly initialized around the fathers along
the 3 directions of space at a distance of 0.001 lu. Thus, 162
pairs of tracers are considered and their average distance rmean

is regularly computed during several beating cycles.
Five typical positions are studied:

• Position A, located at (a/2, Ny/4, 0.45L), where the tracers are
in the middle of the PCL, and onto the trajectory of a cilium.

• Position B, located at (a/2, Ny/4, L), where the tracers are just
above the PCL-mucus interface, and above a cilia.

• Position C, located at (a/2, Ny/4, 2L), where the tracers are far
into the mucus layer (1L above the tracers of position B).

• Position D, located at (a/2, Ny/2, 0.45L), where the tracers
are in the middle of the PCL between two cilia along the
y-direction.

• Position E, located at (a/2, Ny/4, 0.1L), where the tracers are
just above the epithelial surface, and onto the trajectory of a
cilium.

The mean distance r for positions A, B, and C are given in
Figures 11–13. Note that the results for positions D and E are
not displayed in the following, as they are very similar to those
obtained for position A. In Figure 11A, one can see the evolution
of the average distance rmean as a function of the number of cycles
Ncycles for several phase lags 18. It takes around 10 cycles for the
distance between fathers and children to significantly increase.
One can see in Figure 11B that the evolution of ln(rmean/r0) is
linear during the first cycles, indicating chaotic mixing. Similar
results are obtained for positions C, D, and E (see Figure 13 for
position C). Thus, we can extract Lyapunov exponents for each
curve by considering only their linear parts. It is important to
note that, while the measures indicate chaotic mixing only during
the first beat cycles after the tracers release, the mixing is always
chaotic: indeed, the flow is well-established and its properties do
not change over time. For position B (see Figure 12A,B), the
tracers are initialized at 1L (thus 0.1L above the interface), and
no Lyapunov exponent can be extracted for this position. This is
due to the presence of the interface beneath them, which captures
the tracers due to its undulating motion. Different positions
above position B have also been tested (results not shown): we
observe that when the tracers are set further above position B
(i.e., further above the interface), Lyapunov exponents can be
extracted again, and lead to results similar to those of position
C. Our hypothesis is that the mixing is attenuated near the
interface since the direction of the flow follows the motion of the
interface. Thus, there is mainly a vertical shear in this area and the
distance between particles at the same altitude remains similar,
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FIGURE 11 | Results obtained for position A and Re = 5.10−2. (A) Average distance rmean between the fathers and the children as a function of the number of

cycles Ncycles. (B) Logarithm of the dimensionless average distance rmean/r0 as a function of the number of cycles Ncycles.

FIGURE 12 | Results obtained for position B and Re = 5.10−2. (A) Average distance rmean between the fathers and the children as a function of the number of

cycles Ncycles. (B) Logarithm of the dimensionless average distance rmean/r0 as a function of the number of cycles Ncycles.

only the evolution of the vertical distance measured between
particles matters. Figure 14 shows the Lyapunov exponents γ

obtained for positions A, C, D, and E. The highest values of γ

are obtained for the tracers located in position A, which are on
the trajectory of a cilium and at an altitude of 0.45L. The values
of γ corresponding to position E are smaller, which makes sense
as the tracers are on the trajectory of the same cilium, but much
closer to the epithelial surface. Thus, since the velocity of the
cilium is smaller near its base, the mixing is weaker. Interestingly,
the tracers of position D, which are in the middle of the PCL
but between two cilia along the y-direction, give values of γ

smaller that the ones of position E. This indicates that the mixing
in areas which are not on the trajectory of a cilium is much
weaker. Moreover, it takes also more time for the separation
distance between fathers and children to increase: around 25

cycles for tracers in position D against only 10 cycles for tracers
in position A. Finally, far above the mucus-PCL interface, the
values obtained for γ are very small: the mixing is almost null.
The trend of the curve for position E is the same as for positions
A, C, and D. It is worth noticing that the same trend is observed
for the Lyapunov exponents in Figure 14 and the total displaced
volume of fluids in Figure 4. Indeed, the mixing in the present
configuration is due to the combined action of mixing by chaotic
advection and by stretching. While the major contribution for
the obtained values of the Lyapunov exponents extracted comes
from their initial positions (A, B, C, D, or E), the shape of the
curves in Figure 14 is due to the combined action of these two
phenomena.It is however reasonable to think that the regions of
stronger stretching are also the regions where the chaotic mixing
is the strongest. Hence, the extracted Lyapunov exponents are

Frontiers in Physiology | www.frontiersin.org March 2018 | Volume 9 | Article 161405

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Chateau et al. Ciliary Transport and Mixing

FIGURE 13 | Results obtained for position C and Re = 5.10−2. (A) Average distance rmean between the fathers and the children as a function of the number of

cycles Ncycles. (B) Logarithm of the dimensionless average distance rmean/r0 as a function of the number of cycles Ncycles.

FIGURE 14 | Lyapunov exponent γ as a function of the phase lag 18 for Re

= 5.10−2 at positions A, C, D, and E.

suitable for a qualitative measure of the mixing as 18 varies.
More details on flow patterns associated to peculiar phase lags
can be obtained in Chateau et al. (2017).

4.3. Advective and Diffusive Time Scales
The aim of this part is to compare the mixing time scales
associated with chaotic advection to those associated with
molecular diffusion in the PCL and in the mucus. To do so, we
follow the procedure described in Ding et al. (2014) which is
recalled hereafter. Note that the main difference here, compared
to the work of Ding et al. (2014), is the use of two fluid layers
instead of just one, which allows us to investigate different mixing

behaviors between the PCL and mucus layers. First, as in section
4.1, we consider particles of different colors initially seeded at a
distance s0 apart at t = t0. At t > t0, the distance between these
two populations of particles has decreased by a ratio α, where
0 < α < 1. Assuming there is only fluid advection, it takes N
cycles for the separation distance between the particles to become
sN = (1 − α)s0. The definition of sN is thus equivalent to the
one of the mixing number m introduced in section 4.1. If the
mixing is chaotic, i.e., if the decay in particle separation distance
is exponential, one gets: s2N = s20 exp

−βN . Hence, the time scale
associated with mixing by fluid advection is :

tαmixing = Tosc ∗ N =
2πN

ω
= −

4π log(1− α)

βω
(20)

whereω is the cilia beating frequency. From amolecular diffusion
standpoint, particles moving on a distance αs0 by molecular
diffusion with a diffusivity coefficientD would have the following
characteristic time:

tdiffusion =
(αs0)

2

D
(21)

By equating the two time scales, one gets:

ω =
4π log(1− α)

(αs0)2β
D (22)

Thus, for given α, s0 and β , Equation (22) gives a linear
relationship between ω and D which allows to compare in
the parameter space (D,ω) the regions where the mixing is
dominated by advection or by molecular diffusion. In order to
compare our results to the ones of Ding et al. (2014), the same
values of α = 0.9 and s0 = L = 10 µm are used. Figure 15A,B
show the results obtained in the PCL (area 1) and in the mucus
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FIGURE 15 | Cilia beating frequency ω/2π as a function of the diffusivity coefficient D. The lines show when the time scale due to mixing by molecular diffusion is

equal to the time scale due to mixing by fluid advection. (A) Results obtained in area 1 (PCL region) for typical mixing rates β = 0.05, 0.15, and 0.25. The gray region

represents the typical beating frequencies of cilia. The dashed line indicate the diffusion coefficients for human IgG in mucus (Saltzman et al., 1994), GFP (Green

Fluorescent Protein) in aqueous saline (Swaminathan et al., 1997), and CO2 in water (Fridlyand et al., 1996). The phase diagram obtained is similar to the one of Ding

et al. (2014). (B) Results obtained in area 2 (above the PCL-mucus interface) for representative mixing rates β = 4.10−3, 5.10−3, and 6.10−3.

(area 2) respectively. One can see in Figure 15A that there is
a region compatible with typical cilia beating frequency where
mixing by fluid advection is dominant. This is in accordance
with the results found by Ding et al. (2014) who obtained similar
mixing rates in a single layer of fluid. Note that in Ding et al.
(2014), as only one phase was modeled, only two populations

of tracers were considered, which filled the whole computational
domain. No distinction in Ding et al. (2014) was made between
regions of strongmixing (around the cilia), and regions of weaker
mixing (far above the cilia). On the contrary, Figure 15B shows
that above the PCL-mucus interface, the mixing is dominated by
molecular diffusion. Hence, it shows that drugs deposited onto
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the mucus layer can only reach the PCL via molecular diffusion.
This can be confirmed by doing a simple calculus: according to
Morgan et al. (2004), the mucus velocity is around Vmucus =

1.72.10−4 m.s−1. Assuming that there are no bifurcations in the
airways, so that the mucus is transported in the same direction
on a total length of around 20 cm, and assuming that its velocity
Vmucus remains constant, one gets that it takes around 20 h
for the mucus to be expelled. This time has to be compared
with the time taken by particles for reaching the PCL layer by
molecular diffusion: assuming that the layer of mucus has a
thickness Lmucus = 70 µm, the time for a particle to diffuse
over this distance can be approximated using Equation (21):
t ≈ (αs0)

2/D = L2mucus/D. Using a diffusion coefficient D =

2.9.10−11 m2.s−1, corresponding to human immunoglobulin
G (IgG) in mucus (Saltzman et al., 1994), one gets a value of 169 s
for the IgG to reach the PCL-mucus interface. These results show
that drugs injected by nasal sprays and deposited onto the mucus
layermay always reach the PCL area throughmolecular diffusion.
There, the chaotic advection will further increase the mixing to
bring drugs near the epithelium. However, drugs composed of
large molecules will have smaller diffusion coefficients, andmight
not reach the PCL in time (for instance, for a value of diffusion
coefficient of the order of 10−14, it will take around 136 h to reach
the PCL). However, note that the conclusions drawn here result
from several hypothesis, which may limit the generality of our
simplified model of MCC. Other phenomena, such as chemical
reactions, osmosis, or unusual mucus properties associated to
peculiar pulmonary diseases might occur and should be taken
into account for a deeper understanding of the balance between
advective and diffusive mixing.

5. CONCLUSION AND PERSPECTIVES

By using a coupled lattice-Boltzmann/Immersed Boundary
solver, the transport and mixing induced by beating cilia were
studied in the context of MCC. Thanks to this numerical
approach, a stable two-phase system (mucus-PCL), allowing the
introduction of a viscosity ratio, can be studied. The mucus-
PCL interface is also naturally captured. Due to the local nature
of the LBM, the parallelization is straightforward, allowing the
simulations of large domains.

A detailed study of the transport induced by antiplectic and
symplectic MCW has been performed, and the results showed
that antiplectic MCW with large wavelengths (i.e., 18 < π/4)
are more able to transport the mucus. A displacement ratio has
also been introduced to quantify the capacity of a system to
transport particles for a given power input. The configuration
corresponding to an antiplectic MCW with 18 = π/6 has been
found to be the most energetically efficient. On the contrary,
symplectic MCW with large wavelengths result in a very poor
transport, due to the displacement of the mucus-PCL interface
above the cilia tips during their stroke phase.

Themixing capabilities of the system have also been studied in
three distinct areas. The results showed that the mixing is chaotic
in both the PCL region and above the PCL-mucus interface.
The stronger mixing is obtained in the PCL region where only

a few beating cycles are required to obtain a converged state of
mixing. On the contrary, far above the interface, the mixing is
almost null. The calculation of Lyapunov exponents in specific
locations of the domain has also shown that the mixing is
stronger when a cilium passes through the area of measurements,
and especially around the cilia tips because of their “whip-like”
motion. On the contrary, between two cilia along the y-direction,
the mixing takes more time and is weaker. At the interface,
particles are trapped and consequently follow the undulating
motion of the mucus-PCL interface. Two time scales can be
defined, one associated with advective mixing and the other one
with diffusive mixing. The results showed that in the mucus,
the mixing is always dominated by diffusion. Regions in the
ω-D phase diagram where mixing in the PCL is dominated by
advection also exist. These results show that drugs deposited
onto the mucus layer can only reach the PCL layer via molecular
diffusion. The two-layer character of the MCC allows a strong
chaotic mixing in the PCL while trapping the particles inside
thanks to the presence of a viscous layer of mucus. Above, the
mixing is also chaotic, but at a much lower rate, which allows the
mucus to be transported straightforwardly.

Future efforts toward more realistic simulations of the MCC
include:

• The implementation of a non Newtonian rheological behavior
for the mucus based on the experiments of Lafforgue et al.
(2017);

• to introduce a porous epithelial surface, to capture ions
transfer using the model developed by Pepona and Favier
(2016);

• the implementation of a more realistic 3D beating pattern for
the cilia (Gheber and Priel, 1997).
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Introduction: In the initial phase of hypovolemic shock, mean blood pressure (BP)

is maintained by sympathetically mediated vasoconstriction rendering BP monitoring

insensitive to detect blood loss early. Late detection can result in reduced tissue

oxygenation and eventually cellular death. We hypothesized that a machine learning

algorithm that interprets currently used and new hemodynamic parameters could

facilitate in the detection of impending hypovolemic shock.

Method: In 42 (27 female) young [mean (sd): 24 (4) years], healthy subjects central

blood volume (CBV) was progressively reduced by application of−50 mmHg lower body

negative pressure until the onset of pre-syncope. A support vector machine was trained

to classify samples into normovolemia (class 0), initial phase of CBV reduction (class 1)

or advanced CBV reduction (class 2). Nine models making use of different features were

computed to compare sensitivity and specificity of different non-invasive hemodynamic

derived signals. Model features included: volumetric hemodynamic parameters (stroke

volume and cardiac output), BP curve dynamics, near-infrared spectroscopy determined

cortical brain oxygenation, end-tidal carbon dioxide pressure, thoracic bio-impedance,

and middle cerebral artery transcranial Doppler (TCD) blood flow velocity. Model

performance was tested by quantifying the predictions with three methods: sensitivity

and specificity, absolute error, and quantification of the log odds ratio of class 2 vs. class

0 probability estimates.

Results: The combination with maximal sensitivity and specificity for classes 1 and 2

was found for the model comprising volumetric features (class 1: 0.73–0.98 and class 2:

0.56–0.96). Overall lowest model error was found for the models comprising TCD curve

hemodynamics. Using probability estimates the best combination of sensitivity for class

1 (0.67) and specificity (0.87) was found for the model that contained the TCD cerebral
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blood flow velocity derived pulse height. The highest combination for class 2 was found

for the model with the volumetric features (0.72 and 0.91).

Conclusion: The most sensitive models for the detection of advanced CBV reduction

comprised data that describe features from volumetric parameters and from cerebral

blood flow velocity hemodynamics. In a validated model of hemorrhage in humans these

parameters provide the best indication of the progression of central hypovolemia.

Keywords: cardiovascular modeling, cerebrovascular, hypovolemia, lower body negative pressure, machine

learning, support vector machine

INTRODUCTION

Hypovolemic shock is the hemodynamic response to a critically
reduced central blood volume (CBV) and its diagnosis has
challenged clinicians since the Second World War (Grant and
Reeve, 1941; Secher andVan Lieshout, 2016). Themain treatment
consists of intravenous volume administration (Secher and Van
Lieshout, 2005) to raise cardiac output (CO) and improve
microvascular blood flow (Vincent and De Backer, 2013; Perner
and De Backer, 2014; Secher and Van Lieshout, 2016) and
tissue oxygen delivery (Zollei et al., 2013; Simon et al., 2015).
However, detection of a clinically relevant blood volume deficit
remains difficult (Marik et al., 2011; Vincent and De Backer,
2013; Bronzwaer et al., 2015; Secher and Van Lieshout, 2016)
because the blood volume is not only characterized by its
magnitude but also by its function as preload to the heart
(Marik et al., 2011; Bronzwaer et al., 2015; Secher and Van
Lieshout, 2016). From that perspective, a functional definition
of “normovolemia” is by its ability to provide the heart with
an adequate CBV i.e., cardiac preload that maintains stroke
volume, cardiac output, and oxygen delivery (Harms et al., 2007;
Truijen et al., 2010). Direct measures of CBV are not routinely
available in the clinical environments of intensive care and
operating room. As a result, volume treatment during anesthesia
is generally planned according to a somewhat arbitrary fixed
volume regime (Bundgaard-Nielsen et al., 2009) or guided by
blood pressure (BP) and heart rate (HR). However, interpretation
of BP and HR changes in response to a reduction in CBV is
not straightforward since loss of 1 l of blood or fluid is not
reflected in changes in BP (Harms et al., 2003). Therefore,
optimization of tissue oxygen delivery cannot be conducted
by monitoring arterial pressure alone (Michard and Teboul,
2002; Convertino, 2012; Secher, 2015; Cannesson, 2016). It is
problematic that present hemodynamic monitoring techniques
do not allow detection and therefore early treatment of a
volume deficit before worsening of the cardio-cerebrovascular
condition compromising oxygenation of the brain (Secher and
Van Lieshout, 2005).

We hypothesized that the arterial pressure and transcranial
cerebral blood flow velocity waveforms contain subtle
information on the actual cardio-cerebrovascular condition
that is hard to interpret by human visual inspection. We set out
to investigate whether a machine learning model (Deo, 2015)
could be trained to detect hypovolemia using hemodynamic
signals during progressive reduction of CBV. This would allow

determination to what extent the cardiovascular system can
compensate hypovolemia, i.e., its compensatory reserve prior
to (impending) circulatory collapse (Convertino et al., 2016),
by classifying patients according to their actual need of fluid
therapy (Convertino and Sawka, 2017) and allow timely clinical
intervention. Given that the brain is highly susceptible to
hypoperfusion and hypoxia we hypothesized that the cerebral
flow velocity wave shape may disclose early alterations that
can be alleged to the hypovolemia induced onset of cerebral
hypoperfusion resulting in pre-syncope. Earlier machine learning
approaches based on BP waveforms (Moulton et al., 2013) and
beat-to-beat parameters (Bennis et al., 2017) showed that it can
detect a reduction in CBV. To that purpose, we parametrized
both the BP and TCD waveforms to make information about
curve dynamics available for statistical modeling during
progressive hemorrhagic shock and compared the BP features
to features from other non-invasive hemodynamic technologies.
We trained a model to recognize progressive hypovolemia
by means of supervised machine learning and tested it on a
human model of progressive hemorrhagic shock (lower body
negative pressure, LBNP). The goal was to create a model that
picks up on changing physiology during the transitional phase
from compensated to uncompensated circulatory shock by
classifying each heartbeat based on its accompanying feature
information and to check which non-invasive hemodynamic
monitor contributes the most sensitive information to solve this
problem.

METHODS

Subjects
Forty-two young, healthy volunteers [27 female; age: mean
(SD): 24 (4) years] with no history of fainting and/or cardiac
arrhythmia nor taking cardiovascular medication participated in
the study. They abstained from heavy exercise and caffeinated
beverages at least 12 h prior to the experiment. Before inclusion
subjects underwent a medical screening prior to the experiment
consisting of a medical interview, a physical examination
and a 12-lead ECG. The experiments were conducted in a
quiet, temperature-controlled laboratory (20–22◦C). This study
was carried out in accordance with the recommendations of
AcademicMedical Centre Amsterdammedical ethical committee
(#2014_310) with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
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medical ethical committee of the Academic Medical Centre,
Amsterdam.

Experimental Protocol
Measurements were performed with subjects in the supine
position. Following instrumentation, the lower body was
positioned inside a lower body negative pressure (LBNP) box
(Dr. Kaiser Medizintechnik, Bad Hersfeld, Germany) and sealed
at the level of the iliac crest (Goswami et al., 2009). To prevent
a downward shift of the body into the LBNP box disrupting
the airtight sealing with loss of sub-atmospheric pressure, the
LBNP box was equipped with a saddle (Bronzwaer et al., 2017a).
Subjects rested for 30min of which the final 10 were designated
as baseline segment, followed by application of a single step
continuous negative pressure (50 mmHg below atmospheric
pressure) to the lower part of the body. The pressure inside the
box wasmanually controlled and established within less than 20 s.

During the experiment, subjects were instructed to breathe
normally and to avoid movement and muscle flexing. In
compliance with our laboratory safety guidelines LBNP was
terminated in case of (pre-)syncopal symptoms including
sweating, light-headedness, nausea, blurred vision, and/or signs
meeting one or more of the following criteria: systolic arterial
pressure (SAP) below 80 mmHg, or rapid drop in BP [SAP by
≥25 mmHg·min−1, diastolic arterial pressure (DAP) by ≥15
mmHg·min−1], and drop in HR by ≥15 bpm·min−1. If none of
these criteria occurred within 30min, the protocol was ended.
The subjects were continuously monitored by an investigator
experienced in human studies and unoccupied by experimental
obligations.

Measurements
Continuous arterial BP was measured non-invasively by volume-
clamp finger plethysmography with the cuff placed around the
middle phalanx of the left hand placed at heart level (Nexfin,
Edwards Lifesciences BMEYE, the Netherlands) and sampled at
200Hz. Left ventricular stroke volume (SV) was determined by
a pulse contour method (Nexfin CO-trek, Edwards Lifesciences
BMEYE, Amsterdam, theNetherlands). Cardiac output (CO) was
calculated as the SV times HR and total peripheral resistance
(TPR) was the ratio of mean arterial pressure (MAP) to CO.
Changes in CBV were monitored using thoracic impedance
(TI) (Nihon Kohden, AI-601G, Japan) (Krantz et al., 2000;
van Lieshout et al., 2005). Cerebral blood flow velocity was
measured in the proximal segment of the middle cerebral artery
(MCA) by means of TCD (DWL Multidop X4, Sipplingen,
Germany). The left MCA was insonated through the temporal
window just above the zygomatic arch at a depth of 40–60mm
with a pulsed 2 MHz probe. After signal optimization, the
probe was fixed on a specially designed head-band (Marc 600,
Spencer Technologies, Redmond, Washington, USA). Changes
in oxygenated and deoxygenated hemoglobin (Hb) as well as
their summation were measured using continuous wave near-
infrared spectroscopy (NIRS) (Oxymon, Artinis, Zetten, The
Netherlands). NIRS tracks cortical cerebral oxygenation during
manipulation of CBF in parallel with the brain capillary oxygen
saturation (Rasmussen et al., 2007). A differential path length

factor was computed according to Gersten et al. (Gersten,
2015) to account for the scattering of light in the brain tissue.
NIRS signals were recorded at 10Hz. Optodes were fixed just
above the supraorbital ridge and below the hairline. Changes in
cutaneous perfusion may interfere with the accuracy of cerebral
oximetry, therefore the distance between the transmitter and
the receivers was 5 cm to assure deep enough penetration of
the near-infrared light into the brain to exclude substantial
contamination from the extra-cerebral circulation (Claassen
et al., 2006).

End-tidal CO2 partial pressure (ETCO2) was measured
through a nasal cannula connected to a capnograph (Hewlett
Packard 7834A, Wokingham, UK). All recorded signals were
analyzed offline (Matlab R2007b, Mathworks Inc. MA, USA)
and visually inspected for artifacts and noise. Invalid beats were
manually removed and interpolated.

MODELING APPROACH

Models were created by means of a support vector machine
algorithm [libsvm software package for Matlab (Chang and
Lin, 2011)]. We used a supervised learning approach to
detect worsening of the cardio-cerebrovascular condition
from cardiovascular stability at rest toward instability when
approaching pre-syncope. To this extent, we defined three
distinct classes of the hemodynamic condition (see “class
definition”). The algorithm then used one of 9 designated
feature sets (listed next) to detect patterns in an attempt to
classify each heartbeat in one of the three classes. For each
feature set a model was computed using a non-linear radial
basis function (Gaussian) kernel (Bishop, 2006). To find the
optimal model configuration for each respective feature set we
used 64 combinations of values for both kernel width (gamma)
and C-value (8 values for each). Using a randomly selected
30 subjects train vs. 1 test subject approach, this analysis was
deemed optimal once the sum of sensitivity and specificity was
maximal on average for all tested subjects.

Class Definition
Baseline rest as well as onset of LBNP and pre-syncope were
marked. Time points originating from data during baseline
were designated as class 0, samples from data during the
first 75% of LBNP as class 1 and samples belonging to the
last 25% of LBNP before onset of pre-syncope (i.e., end-
stage LBNP) were defined as class 2 (Figure 2). Multiclass
in libsvm is handled by a one-vs.-one approach (Hsu, 2002).
The corresponding feature values at these time points were
labeled with one of these three classes. Static features were
extracted on a beat-to-beat basis whereas dynamic features
(variation and trends over time) were extracted by a moving
windowing function of fixed size (see model specifications)
where each moved window was classified as one of three
classes. Due to how the class definitions were created, class
distribution was not homogenous. Around 33% of the dataset
was baseline data (class 0); 50% was class 1 and 18%
class 2.
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Feature Extraction
To test the viability of different measured parameters from non-
invasive measurement modalities we designed 7 models (named
model #1 through #7). All shared the BP curve dynamics features
(model #1, Figure 1, Table A1 in Supplementary material).

FIGURE 1 | In depth analysis of the blood pressure curve. Five primary points

are detected (A to E). From these points several parameters are estimated

(Table A1 in Supplementary material). Positions on the curve are indicated with

capital letters A through E. Their accompanying time points are described with

lower case letters. Tangent lines are described with roman numerals. Areas of

interest are shaded.

FIGURE 2 | Class definitions. The first part of the measurement is defined as

baseline rest (class 0), LBNP is defined as class 1, of which the last 25% is

defined as end-stage LBNP before pre-syncope (class 2).

Features were then appended for models #2 through #7 for
each investigated measurement modality to evaluate predictive
capability when adding features from ETCO2, TI, NIRS, or TCD
in modeling impending pre-syncope. All extracted features were
down sampled by a factor 10 to abridge calculation time. Two
models (namedmodels #8 and #9) stand on their own and do not
include the BP curve dynamics feature set.

DEFAULT MODEL: BP CURVE DYNAMICS
(MODEL #1)

From the arterial BP wave, beat-to-beat systolic, diastolic, mean,
pulse pressure (SAP, DAP, MAP, and PP), interbeat interval (IBI),
HR, stroke volume (SV), cardiac output (CO), left ventricular
ejection time (LVET), and TPR were extracted (10 features).
Four incrementally sized intervals during LBNP (30, 60, 90,
and 120 s) were used for calculating trends and variances of
SAP, DAP, HR, PP, and SV [4 intervals times 5 parameters
for 2 techniques (trend and variation) delivers 40 features].
Additional information from the BP wave shape was extracted by
wave segmentation and parametrization (Figure 1 and Table A1,
Appendix Supplementary material, 15 features) making a total of
65 parameters available for the BP curve dynamics model.

INCREMENTAL MODELS

Either beat-to-beat interpolated ETCO2 partial pressure or TI
were appended in models #2 and #3 respectively (each has 1
additional feature). Features extracted from the NIRS consisted
of the three concentrations of Hb: oxygenated, deoxygenated,
and their summation (total Hb). Ratios of oxygenated and
deoxygenated to total Hbwere added as well to this model (model
#4, 5 additional features).

Similar to the BP wave parametrization, the same points,
durations, tangents, and surface areas were derived from the
cerebral blood flow velocity wave. Further features comprised
systolic, diastolic, and mean flow velocity as well as the difference

TABLE 1 | Model description, numbering, and feature count.

Model names and

numbers

Amount of features (on top of base)

#1 BP curve dynamics 65: Basic hemodynamics (10 features), curve dynamics

(15 features) and trends and varations (40 features)

#2 ETCO2 66 (model#1 + ETCO2)

#3 TI 66 (model#1 + TI)

#4 NIRS 70 (model#1 +oxygenation parameters (5 features))

#5 TCD curve

dynamics

125 (model#1 +60: TCD trends and variation, cerebral

autoregulation)

#6 Mean MCAv 66 (model#1 +mean TCD MCAv)

#7 MCAv Pulse height 66 (model#1 +TCD pulse height)

#8 Volumetric 10: Basic hemodynamics (10 features)

#9 HR and BP 4: Systolic, diastolic, mean pressures and heart rate.

Models 2 through 7 contain the features from model #1 with device specific features.

Models 8 and 9 are smaller models, that contain features that are currently clinically used

and/or available.
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between systolic and diastolic flow velocity (flow velocity pulse
height) and their variation and trends over the same intervals
as described for model #1. Also included were the cerebral
autoregulatory computed gain and phase expressed as the
transfer function between MAP and MFV over a 3-min moving
window between BP and MFV (Zhang et al., 1998). The low
frequency band (0.06–0.15Hz) where covariation in both signals
was significant (coherence of at least 0.5) was averaged to get
respective gain and phase. Model #5 will further be referred to as
flow velocity curve dynamics model (FV curve dynamics). Model
6 and 7 had a single FV derived feature addition. Either the MFV
or flow velocity pulse height were appended to models #6 and #7,
respectively.

FURTHER MODELS (MODELS #8 AND #9)

Two separate models were created to check model performance
without newly introduced features. A model with the basic
hemodynamic output from the Nexfin device (SAP, DAP, MAP,
PP, IBI, HR,SV, CO, TPR, and LVET, model #8) was created
to evaluate their additional value compared to BP and HR. A

TABLE 2 | Optimal model configuration.

Feature Set C Gamma

#1 BP curve dynamics 0.13895 0.002683

#2 BP curve dynamics & ETCO2 0.13895 0.051795

#3 BP curve dynamics & TI 0.13895 0.051795

#4 BP curve dynamics & NIRS 0.517947 0.007197

#5 BP curve dynamics & TCD 100 0.019307

#6 BP curve dynamics & MCAv mean 0.037276 0.13895

#7 BP curve dynamics & MCAv pulse height 7.196857 0.001

#8 Volumetric 0.0100 0.001

#9 HR and BP 0.5179 0.0027

Optimal results following the 64-fold optimization steps for different incremental values for

regularization parameter C (misclassification penalty) and gamma (deviation of the radial

basis Kernel) for each feature set.

model comprising of mere BP (SAP, DAP, andMAP) and HR was
introduced as a basic model (#9).

The number of features in each model is summarized in
Table 1.

Parameters were transposed into a feature matrix, normalized
with respect to values during baseline and scaled so that all
features ranged between 0 and 1. Alongside, a corresponding
label vector that contained the appointed class per subject of each
feature row was appended.

Training and Testing Process
Integral data sets of subjects were included in the modeling
algorithm in order to prevent contaminating data from subjects
in both training and testing set. Training data consisted of
data from a subselection of 30 randomly chosen subjects which
changed each iteration. The resulting model was then tested on a
single subject who was not part of the training set. This process
was repeated for all 42 subjects. The subset of 30 subjects was
chosen to reduce total training time.

Model Selection
Classification success was defined as to what extent a model
correctly classifies individual samples. Each successive feature

TABLE 4 | Median mean squared errors per model.

Class/Model Class 0 Class 1 Class 2 Total error

#1 BP curve dynamics 0.11 0.06 0.82 1

#2 ETCO2 0.13 0.12 0.65 0.89

#3 TI 0.11 0.11 0.67 0.89

#4 NIRS 0.1 0.11 0.74 0.95

#5 FV curve dynamics 0.19 0.06 0.53 0.78

#6 MCAv mean 0.11 0.1 0.7 0.91

#7 MCAv PP 0.11 0.11 0.81 1.03

#8 Volumetric 0.03 0.07 0.71 0.82

#9 HR and BP 0.12 0.16 0.81 1.09

Expressed as difference between moving averaged prediction and the predefined class

line (Figure 3). Lowest error per class indicated in bold.

TABLE 3 | Median [25% 75%] sensitivity and specificity for different features sets for the three designated classes.

Feature set Sensitivity Specificity

Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

#1 BP curve dynamics 0.99 [0.98; 0.99] 0.63 [0.54; 0.72] 0.56 [0.37; 0.76] 0.81 [0.75; 0.87] 0.98 [0.93; 0.99] 0.95 [0.92; 0.97]

#2 BP curve dynamics & ETCO2 0.99 [0.98; 0.99] 0.62 [0.50; 0.72] 0.53 [0.31; 0.69] 0.81 [0.71; 0.85] 0.96 [0.93; 0.98] 0.96 [0.93; 0.98]

#3 BP curve dynamics & TI 0.99 [0.98; 0.99] 0.63 [0.54; 0.73] 0.51 [0.27; 0.69] 0.81 [0.74; 0.88] 0.96 [0.93; 0.98] 0.96 [0.93; 0.98]

#4 BP curve dynamics & NIRS 0.99 [0.98; 0.99] 0.64 [0.55; 0.70] 0.53 [0.35; 0.64] 0.81 [0.74; 0.90] 0.97 [0.93; 0.98] 0.96 [0.93; 0.97]

#5 BP curve dynamics & TCD 0.99 [0.99; 1.00] 0.58 [0.48; 0.66] 0.47 [0.26; 0.61] 0.72 [0.62; 0.83] 0.98 [0.90; 0.99] 0.96 [0.93; 0.98]

#6 BP curve dynamics & MCAv mean 0.99 [0.98; 0.99] 0.63 [0.54; 0.71] 0.50 [0.29; 0.69] 0.80 [0.73; 0.88] 0.96 [0.92; 0.98] 0.96 [0.93; 0.97]

#7 BP curve dynamics & MCAv Pulse height 0.99 [0.98; 0.99] 0.62 [0.57; 0.69] 0.52 [0.28; 0.71] 0.81 [0.72; 0.88] 0.97 [0.91; 0.98] 0.96 [0.91; 0.98]

#8 Volumetric 0.99 [0.98; 0.99] 0.73 [0.68; 0.81] 0.56 [0.40; 0.77] 0.93 [0.88; 0.97] 0.98 [0.91; 0.99] 0.96 [0.93; 0.97]

#9 HR and BP 0.97 [0.94; 0.98] 0.62 [0.43; 0.67] 0.49 [0.20; 0.73] 0.79 [0.60; 0.89] 0.94 [0.90; 0.97] 0.95 [0.92; 0.96]

Class 0: rest; class 1: during LBNP; class 2: final stage LBNP before pre-syncope per model structure. Highest cumulative sensitivity, specificity in that class is indicated in bold.
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addition returned a unique classification outcome that in-
or decreased model performance. Each model estimated the
probability of a new sample belonging to each of the three classes.
Since the classes were defined arbitrarily it is unlikely that the
trained models describe a relevant physiological paradigm. To
select the best model (and thus its corresponding feature set)
three methods were used to quantify model performance.

1. Actual model sensitivity and specificity
Sensitivity and specificity per class were the numbers as
classified by the trained models without taking into account
additional detail of probability estimates of each class.
Sensitivity and specificity were calculated on a 1-vs.-all
manner.
2. Individual model error
Model error was expressed as the difference between the
predefined classes and the moving average of the prediction
of each model.
3. Specificity and sensitivity by accounting for probability
estimates
Next to each model classifying every individual sample, all
models return a probability for the sample belonging to
each respective class. In method 1 the class with the highest
probability is selected as the prediction of the model for that
sample. To account for probability estimates we took the ratio
of the probability of a sample belonging to class 2 over its
probability belonging to class 0. The logarithm of this (odds)
ratio was taken and lower and upper cutoff values for this ratio
were determined by using stepwise incremental thresholds
to distinguish between classes 0, 1, and 2. The cutoffs were
defined as optimal when the sum of both sensitivity and
specificity was maximal.

RESULTS

The results of the search for the optimal C and gamma values per
model are given in Table 2. These optimal models were chosen
to compute both sensitivity and specificity (Table 3), the model

errors (Table 4) and to detect optimal cutoffs for the probability
estimate analysis (Table 5).

Actual Model Sensitivity and Specificity
Regarding classes 1 and 2, the combination with highest
sensitivity and specificity was found for the model comprising
volumetric features (#8) (class 1: sensitivity: 0.73; specificity:
0.98; class 2: sensitivity: 0.56; specificity: 0.96) (Table 3).
Adding variation, trends and BP curve dynamics (model
#1, Figure 1) did not improve the performance of the
model for classes 1 (sensitivity 0.63; specificity 0.98) and 2
(sensitivity 0.56; specificity 0.95). Sequentially adding features
of ETCO2, TI, or from NIRS or TCD devices also did not
improve classifying actual model sensitivity. Specificity was
maintained.

Individual Model Error
The FV curve dynamics model (#5) had the lowest error for
all three classes combined (Table 4). The median error of the
BP curve dynamics (#1) vs. FV curve dynamics model (#5)
was greater for class 2. The largest fraction of subjects (12/42)
benefited from the FV curve dynamics model (#5) since it
had the lowest overall error. Models with either mean MCAv
(model # 6) or pulse height of MCAv (model #7) accounted
for another 8/42 subjects. The BP curve dynamics model (#1)
had the lowest error for 10/42 subjects. Models including
ETCO2 (#2) or NIRS (#4) both performed best 5/42 times.
The TI model (#3) came in last as the best model for 2/42
subjects.

Specificity and Sensitivity by Accounting
for Probability Estimates
In general, all models had similar sensitivity for baseline (class
0) (range: [0.89; 0.95]) and specificity ([0.90; 0.96]) (Table 5).
Regarding class 1, the best combination of sensitivity and
specificity was found for the model that contained the FV derived
pulse height (model #7). The highest combination for class 2 was
found for the model with the volumetric features (model #8).
This model also had the highest combination for both class 1 and

TABLE 5 | Sensitivities and specificities of all models using two cutoffs on probability estimates.

Model NR Class 0 Class 1 Class 2 Cutoffs

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity low high

1 0.9047 0.9310 0.5453 0.8942 0.7301 0.9012 -1.01 7.19

2 0.8984 0.9310 0.5985 0.8803 0.6835 0.9181 -1.45 7.94

3 0.8980 0.9334 0.5886 0.8815 0.6952 0.9144 -1.51 7.79

4 0.8872 0.9421 0.6208 0.8687 0.6666 0.9199 -1.51 7.79

5 0.9457 0.9252 0.6272 0.9130 0.6066 0.9289 1.09 7.58

6 0.8898 0.9326 0.6351 0.8701 0.6469 0.9258 -1.28 8.01

7 0.9082 0.9341 0.6688 0.8779 0.5981 0.9370 -1.31 8.19

8 0.9536 0.9562 0.6007 0.9325 0.7239 0.9114 -1.52 8.17

9 0.8934 0.9000 0.6092 0.8697 0.6064 0.9298 -1.25 5.34

Model numbers indicate: 1, BP curve dynamics; 2, ETCO2; 3, TI; 4, NIRS; 5, TCD dynamics; 6, MCAv mean; 7, MCAv pulse height; 8, Volumetric; 9, HR and BP. Bold: highest cumulative

sensitivity, specificity in that class.
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FIGURE 3 | Output of six models compared to BP curve dynamics model (#1, top) in a single subject. Each subsequent graph shows the modulation of the addition

of the annotated feature(s). In this subject the model for MCAv pulse height (bottom left) had the lowest error. Note that all model outputs increase with increasing

duration of lower body negative pressure. ETCO2, end-tidal carbon dioxide pressure; TI, thoracic impedance; NIRS, near infrared spectroscopy; TCD, transcranial

Doppler; MCAv, middle cerebral artery velocity; MCAvpulse, middle cerebral artery velocity pulse height.

class 2 together. An overview of all classification samples can be
found in the confusion matrices (Stehman, 1997) in Appendix
2 Supplementary material. For both the actual models and after
accounting for probability estimates. In general it can be seen that
the models encounter most difficulty in the distinction between
class 1 and class 2 while the distinction between class 0 and either
class 1 or 2 is clearer.

DISCUSSION

The new findings of the present study are, first, that
distinguishing between normovolemia and considerable central
hypovolemia in healthy young adults requires information from
volumetric hemodynamic features beyond BP and HR, such as
IBI, SV, CO, LVET, and TPR. Second, the cerebral blood flow

velocity parameters reduced model error, possibly due to the
creation of a more easily separable solution.

Features derived from the BP curve, ETCO2, TI, and from
cerebral blood flow velocity and brain cortical oxygenation did
not improve the classification in terms of sensitivity to detect
advanced class 2 hypovolemia. In contrast, cerebral blood flow
velocity models (#5–7) outperformed the other models in terms
of absolute error from the predefined (artificially created) classes.
Models 2–4 [ETCO2, central blood volume (TI), and cerebral
cortical oxygenation (NIRS)] contributed to such an extent that
they were the best discriminative model for fewer subjects and
therefore in general seem less sensitive to the detection of CBV
depletion.

In machine learning or datamining approaches large datasets
are investigated to determine whether these features together
result in a better solution to the problem at hand. A mechanistic
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approach may not find such a solution in a multidimensional
space. The underlying physiological mechanisms can ideally
be described by such a mechanistic approach so that it can
explain the wide variety of pathophysiology as is seen in
different patients. Unfortunately, this is not easily achieved and
assumptions would have to bemade for many parameters, as they
cannot be measured in real time (or at all) resulting in a model
that is not very useful for individual cases. Due to the large natural
variation between subjects, some individuals increase peripheral
resistance to maintain adequate blood pressure, whereas others
increase heart rate at onset of LBNP, yet another group responds
in a mixed fashion. We do not think these subtleties can be
grasped by a mechanistic approach, unless the responses of a
patient would be assessed beforehand which is not feasible in
clinical practice.

It is possible that a unique set of features exists from
different devices that gives an even better solution. To assess
this possibility would require a feature selection process which
is cumbersome for this amount of models. We considered that
these devices are either connected as monitors to patients or not.
If so, they return a fixed array of features which was included in
the models here. This study therefore aimed to describe which
monitors deliver the most sensitive features and should therefore
be connected as a monitor for detecting changing CBV.

Limitations
By design the subjects were healthy individuals exposed to
simulated bleeding which restrains us from extrapolating the data
to elderly subjects, considering that with healthy aging brain
perfusion becomes increasingly dependent on cardiac output
(Bronzwaer et al., 2017b).

The current models require that its features are normalized
to a reference baseline condition. This will be required as well
for future use of the models. Future studies should therefore
be directed at finding similar model accuracy without baseline
normalization. We recognize that eliminating normalization will
increase intersubject scatter, inevitably reducing classification
performance.

We consider the possibility that adding a considerable
number of features introduced the phenomenon known as
overfitting. This would imply that the model is being too
specifically trained on training data and may not function
equally well on new data. Since the SVM method is a
regularization model, the introduction of large amounts of
features does not necessarily have to lead to worse performance
due to overfitting. However, we selected optimal gamma and
C on the held-out data, which could have led to a form
of overfitting, but due to the newly random selection of 30
subjects in the testing step as well, this is expected to be
marginal.

Classes were not distributed homogenously. Especially during
training this could have had a significant effect on the outcome as
the algorithm could have had relatively more examples of what is
considered class 2 with respect to the other classes.

Since the training was performed on a subset of subject
data, the reported numbers for sensitivity and specificity are
not absolute and will be different if the analysis is repeated.

In healthy subjects, variation in cardiovascular responses to
sympathetic stimulation evoked by submaximal lower body
negative pressure (LBNP) is considerable (Bronzwaer et al.,
2016). Differences in resting HR between subjects suggest
individually programmed reflex strategies of autonomic
blood pressure control which may contribute to the hitherto
unpredictable variance observed in cardiovascular reflex
responses to central hypovolemia (Bronzwaer et al., 2016).
Due to this large natural variation in subject responses we
considered that by using a random subset the models are not
focused on a fixed set but will vary with each iteration. Also
since not everyone experiences symptoms of pre-syncope in
the exact same way there may be a bias toward the point
that was defined as pre-syncope here. By using a random
subset of individuals the models were never trained on the full
set of this bias but included different subjects each training
iteration.

Classification and Tracking
The fact that feature sets from cerebral oxygenation, central
blood volume, or cerebral blood flow velocity data do not qualify
beats better than the volumetric features seems to suggest that
their capability to predict pre-syncope may be low or at least
not better than HR and BP combined with LVET, CO, TPR,
and SV. However, the probability estimation of class 2 shows a
notable increase indicating that in the large majority of subjects
the developed models all recognized the process of moving from
baseline, to CBV depleted, to pre-syncope.

One explanation for the limited difference in performance
between models #1 and #8 may be that the Nexfin built-in
algorithms in itself include a BP wave shape analysis (pulse
contour).

Any attempt to produce a complete clinical classification
of hemorrhagic shock for the individual patient can be only
provisional due to the complex interrelations in physiological
adaptive responses (McMichael, 1944; Michard and Teboul,
2002; Perner and De Backer, 2014). Similarly, between healthy
subjects the variation in cardiovascular responses to sympathetic
stimulation evoked by bleeding is considerable. Distinct
cardiovascular response patterns of preferential autonomic
blood pressure control appear consistent over time within
one subject but with considerable inter-individual variance in
tolerance to hypovolemia (Convertino et al., 2012; Ryan et al.,
2012; Bronzwaer et al., 2016). This explains the difference in
time until pre-syncope and thus differences in the number
of samples between subjects available to the models (Jellema
et al., 1996). The models are nevertheless requested to assign
one of the three classes to each individual subject through
the whole trajectory from normo- to hypovolemia. Also,
the large number of samples available for class 0 compared
to class 1 and 2 creates an unequal distribution of samples
between the three classes. This also explains the overall high
specificity, since classification of a sample not belonging to
the investigated class could mean either of two remaining
classes.

The translation from model output to underlying
physiological events is by no means straightforward. Defining
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the classes from normo- to hypovolemia served merely to create
an artificial distinction between the ongoing circulatory
adaptive responses to progressive central hypovolemia.
As a consequence, the underlying physiological adaptive
responses may not fit into the predefined classes and
reported sensitivity does neither reflect direct classification
of physiology. However, the actual sensitivity/specificity is
amenable for improvement by using the certitude of the
model by introducing a cut-off analysis on the probability
estimates as proposed in order to quantify model performance.
This better approaches a classification on a physiological
response as changing probabilities of the classes could
hint at progression toward cardiovascular instability
respectively a return to normovolemia that can be tracked
over time.

Ideally, model performance is described by the individual
(moving averaged) prediction line as they tend to increase
during progressive hypovolemia (Figure 3), as a visual
manifestation of the increasing probability of impending
circulatory collapse since it immediately visualizes into what
direction the patient’s hemodynamic condition is headed. We
attempted to overcome the fact that this measure is difficult
to express as a numeric error by implementing three different
ways of model performance quantification. This probability
estimate analysis increased model sensitivity and specificity
by taking into account the complexity of the output of the
model in the relative large variation of subject responses to
hypovolemia.

Classification of heart beats belonging to either class 0 or class
1 and 2 is straightforward, and appeared linearly separable using

only a few features. This may be due to the fact that this protocol
was executed in a controlled setting and due to the fact that the

data was normalized to a baseline value. Detecting whether a
particular beat should be classified to either the class 1 or class
2 state of being hypovolemic is more challenging, hence the use
of a non-linear Gaussian kernel. Due to the large inter-individual
variance and artificial nature of class creation, the data show a
considerable overlap for the currently presented features, which
hindered us into constructing models with a higher sensitivity.
Rather, the moving average during the classification process in
itself has the potential to function as a real-time visualization of
progress toward hypovolemia induced cardiovascular instability.
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Background: Turning is a challenging mobility task requiring coordination and postural
stability. Optimal turning involves a cranio-caudal sequence (i.e., the head initiates the
motion, followed by the trunk and the pelvis), which has been shown to be altered in
patients with neurodegenerative diseases, such as Parkinson’s disease as well as in fallers
and frails. Previous studies have suggested that the cranio-caudal sequence exhibits a
specific signature corresponding to the adopted turn strategy. Currently, the assessment
of cranio-caudal sequence is limited to biomechanical labs which use camera-based
systems; however, there is a growing trend to assess human kinematics with wearable
sensors, such as attitude and heading reference systems (AHRS), which enable recording
of raw inertial signals (acceleration and angular velocity) from which the orientation of the
platform is estimated. In order to enhance the comprehension of complex processes,
such as turning, signal modeling can be performed.

Aim: The current study investigates the use of a kinematic-based model, the sigma-
lognormal model, to characterize the turn cranio-caudal signature as assessed with
AHRS.

Methods: Sixteen asymptomatic adults (mean age=69.1±7.5 years old) performed
repeated 10-m Timed-Up-and-Go (TUG) with 180° turns, at varying speed. Head and
trunk kinematics were assessed with AHRS positioned on each segments. Relative
orientation of the head to the trunk was then computed for each trial and relative angular
velocity profile was derived for the turn phase. Peak relative angle (variable) and relative
velocity profiles modeled using a sigma-lognormal approach (variables: Neuromuscular
command amplitudes and timing parameters) were used to extract and characterize the
cranio-caudal signature of each individual during the turn phase.
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Results: The methodology has shown good ability to reconstruct the cranio-caudal
signature (signal-to-noise median of 17.7). All variables were robust to speed variations
(p>0.124). Peak relative angle and commanded amplitudes demonstrated moderate to
strong reliability (ICC between 0.640 and 0.808).

Conclusion: The cranio-caudal signature assessed with the sigma-lognormal model
appears to be a promising avenue to assess the efficiency of turns.

Keywords: turn, deficit, signature, inertial motion capture, IMU, attitude and heading reference system

INTRODUCTION

Functional mobility is a key component of the quality of life in
older adults. Basic daily activities involve the execution ofmobility
tasks, such as walking, turning, standing up and sitting down.
Turning, defined as a change in walking direction, is a specifically
challenging mobility task which requires inter-limb coordination
and postural stability to adequately follow the central nervous
system instructions (Mancini et al., 2015a; Mellone et al., 2016).
Turning must also be planned in advance to efficiently and safely
process and execute the information leading to the modified
trajectory (Patla et al., 1999). Deficits in postural transitions,
such as turning, have been identified in frails (Galán-Mercant
and Cuesta-Vargas, 2014) and persons with neurological deficits
(Salarian et al., 2009;Mancini et al., 2015a) and are associatedwith
a higher risk of falling (Mancini et al., 2016). It has also been shown
that objective turn metrics (e.g., number of steps while turning)
are able to identify individuals with mobility impairments bet-
ter than traditional gait speed and clinical measures of mobility
(Carpinella et al., 2007; Salarian et al., 2009; Zampieri et al., 2010;
King et al., 2012; Spain et al., 2012). Consequently, studies have
suggested an increased vulnerability to impairments during the
turn compared to straight-line walking due to the complexity of
the task and the neural systems involved (Herman et al., 2011).
Recently, Hulbert et al. (2015) have suggested categorizing turning
deficits into axial and perpendicular deficits, where perpendic-
ular deficits relates to suboptimal movement in the limbs while
axial deficits refers to inadequate movement of the head to trunk
rotational axis. Perpendicular deficits would, therefore, include:
an increased number of steps, related to the use of a compensatory
strategy; a reduced step length, tomaintain postural stability; and a
modified turn strategy. Alternatively, axial deficits would include
segment rigidity and segment rotation which would require the
adoption of compensatory strategies, and segment coordination
and timing, leading to overall uncoordinated movements. On a
global scheme, all of these deficits may be viewed inter-related
since full body control and coordination is required to safely
execute a turn. Thus, Hulbert suggests that axial deficits may lead
to altered control in perpendicular segments. If so, axial deficits
may appear first and early assessment of such deficits may lead to
better prevention.

In healthy individuals, it has been shown that efficient turning
involves a cranio-caudal sequence of movement where the head
initiates the motion, followed by the trunk and then the pelvis to
efficiently steer the body into the desired new direction (Fuller
et al., 2007; Hong et al., 2009). This sequence was shown to be
altered in people with neurodegenerative disease and those who

are recurrent fallers, exhibiting increased coupling of the segments
(Ferrarin et al., 2006; Crenna et al., 2007; Hong et al., 2009;Wright
et al., 2012; Spildooren et al., 2013). However, all of these obser-
vations were made in motion capture laboratories using camera-
based stereophotogrammetric systems. Although powerful, such
systems are expensive, complex to use, require a large dedicated
space and have a constrained volume of acquisition (Zhou and
Hu, 2008). As such, these systems are not well-adapted to clinical
settings. To efficiently be used in a clinical context, a system
must preferably be portable, configurable, relatively low-cost, easy
to use, and output information must be easily interpreted from
a clinical perspective (Ginsburg, 2005; Anderson et al., 2012;
Gaudreault et al., 2012). Advances in wearable technology offer
new possibilities for researchers and clinicians to assess mobility.
Inertial measurement systems are among promising wearable sen-
sors which have gathered an increasing interest in the past decade
because of their portability, autonomy, acquisition frequency, and
general form factor (size, and configuration) (Zhou and Hu, 2008;
Horak et al., 2015). Inertial measurement systems include attitude
and heading reference systems (AHRS), also referred to in the
literature as magnetic and inertial measurement unit (MIMU),
magnetic angular rate and gravity sensor, or Inertial and Meag-
netic Unit (MIMU). AHRS are comprised of 3-axes accelerom-
eters, gyroscopes, and magnetometers from which information
is fed into a fusion algorithm to estimate the orientation of the
module in a global reference frame based on gravity and magnetic
North. Therefore, using multiple AHRS affixed on contiguous
segments makes it possible to assess a person’s joints kinematics in
different contexts. The diversity of sensors included within AHRS
makes them good representative of commonly named movement
monitors. This measurement system allows not only the quantity
of activity performed to be monitored but also the quality of
that motion through spatiotemporal gait and turn characteristics
analysis as well as joint kinematics (Horak et al., 2015; Lebel et al.,
2016).

Although multiple studies have used AHRS to assess mobility,
the focus has always been on the raw sensors’ information (i.e.,
acceleration and/or segment angular velocity). Consequently, turn
duration and turn speed were identified as useful measures to
characterize age-related changes (Sheehan et al., 2014; Vervoort
et al., 2016), identify recurrent fallers from non-fallers (Greene
et al., 2010; Zakaria et al., 2015; Mancini et al., 2016), differ-
entiate between healthy controls and early Parkinson’s disease
patients (Salarian et al., 2009, 2010; Zampieri et al., 2010; El-
Gohary et al., 2013; Mancini et al., 2015a), and frails (Galán-
Mercant and Cuesta-Vargas, 2014). Although segment and joint
orientation information may provide information on a person’s
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functional capabilities that is more easily interpreted, it is far
less exploited. Validity studies have proven that the accuracy of
the orientation data is sufficient for coarse clinical kinematic
assessment (Ferrari et al., 2010; Zhang et al., 2013; Lebel et al.,
2017). However, literature also clearly highlights possible varia-
tions in accuracy with changing magnetic environment (Roeten-
berg et al., 2007; Palermo et al., 2014; Schiefer et al., 2014; Yadav
and Bleakley, 2014) while accuracy has also been shown to vary
across joints and tasks (Palermo et al., 2014; Lebel et al., 2016).
Recently, Lebel et al. (2017) suggested that this variation may
be partly linked to an optimal region of operation for segment
angular velocity. These uncertainties regarding orientation data
accuracy may explain the current underutilization of such data.
However, these limitations are mainly present in extremity kine-
matics, where segment velocities are higher and magnetic per-
turbations are more common (Palermo et al., 2014; Lebel et al.,
2017). During a turn, both the head and the trunk’s angular
velocity are within the optimal region of operation and mag-
netic perturbations can be assumed as minimal. Hence, the kine-
matic variation of the head relative to the trunk during a turn
appears to be a good candidate to investigate the added value
of AHRS orientation data analysis to derive meaningful clinical
outcomes.

Traditionally, cranio-caudal sequence is assessed in biome-
chanics laboratories using camera-based stereophotogrammetric
systems and analyzed in the temporal domain. Differences in
temporal sequences are interpreted to be linked to different turn-
ing strategies. Such interpretations suggest that the cranio-caudal
sequence exhibits a specific signature according to the adopted
turn strategy. The so-called movement signature concept corre-
sponds to the specific way (timing, force, amplitude, velocity) the
movement is performed. Through signal modeling, the complex
system involved in human movement can be reduced to a simpler
form in order to better understand it. In this specific case, signal
modeling is believed to provide insights into the mobility deficits.
Human movement can be modeled using different paradigms
which include, but are not limited to: equilibrium point models,
minimization-based models, kinematic-based models and neural
networks (Plamondon et al., 2014). Based on the Kinematics The-
ory, human movement can be seen as the cumulative response of
an important number of biological systems (Plamondon, 1995a,b,
1998; Plamondon et al., 2003). Each systemwill produce a velocity
vector from which their cumulative sum will, in the end, result in
the movement of a segment. The motion can, therefore, be seen as
the spatiotemporal representation of the energy induced on a spe-
cific body segment. The different systems involved in the planning
and the execution of a specific task is controlled by the central ner-
vous system. Therefore, assessment of human motion produced
during a specific task can provide insights into the fundamentals
of the motor control system (Wolpert et al., 1995). Analysis of the
human motion through linear system modeling and an impulse
response approach, therefore, seems to be a promising avenue
for better characterization and early identification of motor con-
trol system deficits. Among those kinematic-based models are
the delta- and sigma-lognormal models (Plamondon, 1995a,b;
Djioua, 2007). These models rely on mathematical grounds to
demonstrate that the lognormal function properly models the

impulse response of the neuromuscular network in the case of
rapidmovements and can be seen as the optimal representation of
the movement’s kinematics (Djioua and Plamondon, 2009). Their
applications ranges fromhumanmotor control phenomena expla-
nations and the factors affecting it (Plamondon and Alimi, 1997;
Plamondon et al., 2013a) to scripted signature verification (Djioua
and Plamondon, 2009; Woch and Plamondon, 2010; Woch et al.,
2011; Plamondon et al., 2013b; Diaz et al., 2016) and detection
of fine motor control problems (O’Reilly and Plamondon, 2011;
O’Reilly et al., 2014) as well as applications to monitor the evolu-
tion of fine motor control in kindertgarden children (Duval et al.,
2015; Rémi et al., 2015). Indeed, directional rapid movements
produce an asymmetrical bell-shaped velocity profile. This can
be represented by lognormal functions with characteristic param-
eters and can be related to the system commands and its abil-
ity to respond (command impulse delay, command magnitude,
execution delay, and response time). However, can such model
be used to analyze axial control specifically? Preliminary studies
within the angular domain have shown that the wrist flexion and
extension inmonkeys could be fit verywell with a delta-lognormal
model (Plamondon, 1995a), but no extensive study has further
explore the interest of using the Kinematic Theory for the analysis
of angular movement control.

This study investigates the possibility of characterizing the turn
cranio-caudal signature via a sigma-lognormal model using the
head relative to the trunk velocity profile derived from the orien-
tation data assessed with AHRS. Specifically, this paper aims at (i)
presenting and illustrating the methods required for head-trunk
signature recognition based on AHRS recording of motion and
(ii) evaluating the robustness and the reliability of the identified
cranio-caudal signature parameters.

MATERIALS AND METHODS

Protocol and Instrument
The present study experimental protocol is based on the execution
of a 10-m Timed-Up-and-Go (TUG). The TUG is a clinically
recognized test to assess mobility and balance which combines
basic mobility tasks (sit-to-stand, walk and turn) (Rehabilitation
Institute of Chicago, 2010). Upon signal, the participant stands-
up, walks out to the 10-m mark, turns around, and walks back to
his initial seated position (Figure 1A).

To enable assessment of kinematics, participants are instru-
mented with the IGS-180 suit (Synertial Ltd., UK) containing 17
AHRS (OS3D, Inertial Labs, USA) as shown in Figure 1B. Each
AHRS measures raw inertial signals (segment linear acceleration,
angular velocity and magnetic fields) and derives the orientation
of the module, and hence the orientation of the segment it is
attached to, in a global reference frame (Figure 1C). A validity
study performed on this system revealed an acceptable accuracy
and an excellent agreement for both the head and trunk sensors
when compared with an optoelectronic gold standard during a
turn (Lebel et al., 2017). The IGS-180 enables acquisition of data
(raw inertial data and orientation data) over its 17 sensors at 60Hz.
Sensor to body alignment, required to express the sensor move-
ment into anatomical planes of reference, is performed with the
participant standing in a neutral position (standing up, looking
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FIGURE 1 | Setup, protocol, and methodology. (A) Spatial schematic of a 10-m Timed-Up-and-Go (TUG) task. Participants initiate the task sitting on a chair. Upon
signal, the participant stands-up, walk out for 10m, turn around when the 10-m mark is reached, walks back toward the chair and sits down. The turn portion of the
TUG is targeted for the present study. (B) Participants are equipped with a suit comprised of sensors which position are illustrated this diagram. Signals from the
double-marked sensors (head and trunk) were used for the signature recognition. (C) Sensors used are composed of 3-axis accelerometer, gyroscope, and
magnetometer to measure linear acceleration, angular velocity, and magnetic field. All of the data are passed on to the fusion algorithm embedded in the sensor
estimate the orientation of the module, expressed in an Inertial reference frame. (D) Global workflow of the algorithm to recognize the cranio-caudal signature of a
turn.

straight-ahead with palms facing their thighs) at the beginning of
each trial.

Signal Processing
Figure 1D gives an overview of the global workflow of the
algorithm, including the signal processing. Trials are manually
reviewed and segmented using the avatar in IGS-Bio, the appli-
cation available with the IGS-180. Specifically, the procedure
described below was followed to ensure systematic segmentation
of the turns:

i. visual identification of the point in time at which a misalign-
ment between the head–trunk–pelvis axis appears;

ii. establishment of the beginning of the previous gait cycle (i.e.,
heel strike preceeding initial misalignment)→Beginning of
turn;

iii. identification of the point in time at which the head-trunk-
pelvis axis is realigned; and

iv. localization of the beginning of the next gait cycle (i.e., heel
strike following realignment)→End of turn;

All trials were segmented by the same evaluator in order to
avoid bias. Further signal processing is performed in Matlab
v2015a (MathWorks, USA). For each trial, the relative orientation
of the head to the trunk is computed and expressed in anatomical
planes of reference. The resulting relative angle signals are then
filtered using a fourth order low-pass Butterworth filter with a
cutoff frequency of 1.5Hz. The cutoff frequency was determined
from a residual-based analysis of the relative orientation signal,
using an acceptable threshold of 2° and was performed over
repeated trials (Carbonneau et al., 2013). The residual threshold
was based on the reported accuracy of orientation data obtained
with the present system (Lebel et al., 2013, 2017). For each trial,
the cutoff frequency that yielded the acceptable residual threshold
was calculated. The final cutoff frequency was calculated from
the mean and SD values obtained over repeated trials analysis to
cover 95%of the cases. The resulting filtered angle profile was then
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transferred back into its quaternion form and used to compute the
relative angular velocity profile.

Let us define

θ as the rotation angle and
u⃗ , u = (uxi + uyj + uzk) as the unit vector, expressed with

the Cartesian axes i, j, k (1)

Then, the quaternion may be expressed as:

q = cos
(

θ

2

)
+ (uxi + uyj + uzk) sin

(
θ

2

)
(2)

q
−

=


cos
(

θ
2
)

ux sin
(

θ
2
)

uy sin
(

θ
2
)

uz sin
(

θ
2
)

 (3)

The angular velocity of the head relative to the trunk (ω)
can then be determined by Eq. 4 (Rico-Martinez and Gallardo-
Alvarado, 2000).

ω = θ̇(t)û(t) +
.

û sin(θ(t)) + û(t) ×
.

û(1 − cos(θ(t))) (4)

The axial component of the angular velocity, corresponding to
the axial velocity profile of the head relative to the trunk, is then
available to be used for further signature analysis.

Conceptual Framework and Parameters of
Turn Signature
The optimal turn cranio-caudal sequence generates a change in
relative angular orientation of the head to the trunk which seg-
ments are realigned upon completion of the transition. The turn
cranio-caudal signature conceptual framework, therefore, has two
main components: the analysis of the relative head to trunk
maximum angle reached during the turn and the investigation
of the relative angular velocity profile derived from it via the
sigma-lognormal model approach.

Relative Angular Velocity Profile Analysis
According to the Kinematics Theory, the impulse response of
the neuromuscular system (NMS) can be identified by analyzing
the characteristics of the movement itself. If it is assumed that
the NMS encompasses the motor cortex down to the muscles,
all neuronal activities processed prior to the NMS consequently
translates into a delay in the impulse command sent to the system.
TheNMS itself ismade ofmultiplemotor units which can bemod-
eled as non-linear sub-systems organized in such a way that allows
them to work efficiently (Plamondon, 1995a; Djioua, 2007). The
impulse response of such linearized system follows an asymmetric
positive bell-shaped curve described by a lognormal function. If
one considers the control strategy of a movement from an energy
point of view, the velocity of the end effector becomes the basic
unit of the motion and should, therefore, follow a lognormal
profile. Thus, Plamondon and his team proposed and validated
the use of the sigma-lognormal model on the velocity profile to

analyze the humanmotion during scripted signature (Plamondon,
1995a; Plamondon et al., 2003; Djioua, 2007; Djioua and Plamon-
don, 2009; O’Reilly and Plamondon, 2009; Javier et al., 2013).

Here, we use the sigma-lognormal model to characterize the
turn cranio-caudal signature. The two segments involved (head
and trunk) can be seen as two NMSs, each one having its own
lognormal impulse response. The output of each of these systems
will, therefore, follow a lognormal profile for simple movements.
In our study, we are interested in analyzing a more complex NMS,
the head-trunk system, from which output can be seen as the
vectorial summation of both basic systems outputs. Specifically,
the cranio-caudal velocity profile can be decomposed into two
phases corresponding to the moment the head initiates the turn,
moving away from the trunk (phase 1) and the moment the trunk
engages into the turn, closing the gap with the head (phase 2).
We can, therefore,mathematically describe this complex system as
the substraction of the two illustrated velocity profiles (Figure 2A;
Eq. 5). The impulse response of the NMS is a lognormal (Plamon-
don et al., 2003), asymmetric bell-shaped curve (Figure 2B) from
which the exact representation follows the equation in the insert
and depends upon the magnitude of the commanded signal (D),
the time occurrence of this command (t0), the execution delay (µ)
and the response time (σ). The latter two were defined on a log
scale. Indeed,

|⃗v(t)| =

∣∣∣∣∣
2∑

i=1
v⃗i
(
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2
i
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2
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2
i

)
=

1
σi(t − t0i)

√
2π

e

(
[ln(t−t0i)−µi]2

−2σ2i

)
(5)

where t0i is the time of occurrence of the ith input command; µ
is the log time delay of the NMS, the time delay on a logarithmic
scale; σ is the log response time of the NMS, the response time on
a logarithmic scale; and D is the amplitude of the command sent
to the NMS.

The lognormal equation parameters may be calculated using
specific points of the velocity profile (Figure 2C) following equa-
tions, Eqs. 6–9 (Djioua, 2007; Djioua and Plamondon, 2009;
O’Reilly and Plamondon, 2009).

tP3 − tP1
tP5 − tP1

=
e−σ2

− e−3σ

e3σ − e−3σ → σ (6)

µ = ln

(
tP4 − tP2

e−(1.5σ2−σ
√

0.25σ2+1) − e−(1.5σ2+σ
√

0.25σ2+1)

)
(7)

t0 = tP3 − eµe−σ2
(8)

D =
√

2πvP3eµσe(σ4/2σ2−σ2) (9)

Indeed, from the velocity signal it is possible to identify the time
at which the motion is initiated and terminated, the time at which
the maximum velocity is reached as well as both inflection points.
These points are first identified for phase 1 of the motion. The
lognormal model parameters are then derived from these points
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FIGURE 2 | Sigma-log normal model conceptual framework. (A) Upon initiation of a turn, a first command is sent to the neuromuscular system (NMS) to initiate the
head motion. A second command is sent to initiates the movement of the trunk. The difference of the NMS impulse responses generates the head to trunk velocity
profile corresponding to the cranio-caudal signature. (B) The NMS impulse response is characterized by an asymmetric bell-shaped curved which can be
characterized by the delay between command initiation and the median of the velocity as well as the response time. (C) Parameters of the sigma-lognormal profile
can be estimated through the localization of specific points on the curve. (D) The sigma-lognormal model estimates the parameters of the two lognormal signal
phases from which the velocity profile is estimated.

and phase 1 response is estimated. A similar process is followed
for phase 2, allowing a full reconstruction of the velocity signal
(Figure 2D). From the estimated lognormal equation parameters,
it is also possible to deduce further characteristics of the lognormal
impulse response which could help interpret the NMS. The time
delay (̄t), defined as the rapidity at which the system responds to
the command, and the time response (s), corresponding to the
time it takes the system to react and execute the movement, are
defined by Eqs. 10 and 11, respectively (Plamondon et al., 2003).

t̄ =
∫ +∞

t0
tΛ
(
t, t0, µ, σ2

)
dt = t0 + eµ+0.5σ2

(10)

s =

√∫ +∞

t0
tΛ (t, t0, µ, σ2) dt =

√
e2µ+σ2 (eσ2 − 1)

= (̄t − t0)
√

(eσ2 − 1) (11)

Finally, the quality of the reconstructed signature is evalu-
ated using a signal-to-noise ratio (SNR) approach described in

equation Eq. 12, as proposed by O’Reilly and Plamondon (2009).

SNR = 20 log

( ∫ tend
0 v2(t)dt∫ tend

0 [v(t) − v̂(t)]2dt

)
(12)

In Eq. 12, v corresponds to the measured velocity profile, while
v̂ is the reconstructed or estimated profile.

Experimental Concept Overview
The complete set of metrics proposed for characterization of the
turn cranio-caudal signature is summarized in Table 1. In order
for these parameters to be of true interest, they must be robust to
task velocity natural variation and be reliable.

Detailed Experimental Protocol and
Participants
The robustness and reliability of the proposed approach was
tested on a sample of older adults. The project was approved
by the Centre de Recherche de l’Institut Universitaire de
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TABLE 1 | Turn cranio-caudal signature metrics.

Metric Description

H2Tmax Maximal head to trunk angle reached during turn
D1, D2 Amplitude of the commanded turn phase 1 and 2 signal
t01, t02 Time of occurrence of the commands (phase 1 and 2)
t̄1, t̄2 Time delay of the system impulse response (phase 1 and 2)
s1, s2 Neuromuscular system response time (phase 1 and 2)

Gériatrie de Montreal ethics board and participants provided
written informed consent. Sixteen asymptomatic adults
aged between 55 and 83 years old (mean age= 69.1 years,
50% female, height= 1.61± 0.08m, weight= 63.2± 10.1 kg;
BMI= 24.3± 3.2 kg/m2) participated in the study. Participants
performed repeated 10-m TUGs equipped with the IGS-180,
as explained in Section “Protocol and Instrument.” TUGs were
executed both at normal and fast paces, each condition being
repeated twice.

Traditional Metrics
For comparison purposes, data were also analyzed using tradi-
tional metrics. As such, the accelerometer signal from the trunk
AHRS was analyzed to determine the number of steps the partic-
ipants took during the turn (Salarian et al., 2010). Analysis of the
number of steps is based on a threshold on the acceleration mea-
sured by the trunk sensors. Validity of themethod was assessed by
visual comparison over five trials. Mean and max angular velocity
during obtained during the turn was computed using the angular
velocity data provided by the trunk AHRS’ gyroscope (Salarian
et al., 2009, 2010; Mancini et al., 2015a).

Data Analysis
For each trial, the introduced cranio-caudal signature metrics
were calculated along with the traditional turn parameters.

A quality control process ensured that only the trials with a SNR
greater than 10 dB were kept. The selected threshold is slightly
lower than the generally accepted rule for SNR in controlled
experiments (usually 15 dB), but this threshold was shown to be
satisfying in this specific context. Indeed, this slightly more per-
missive SNR takes into account the complexity of the experiment
and the possible sources for uncertainties such as the manual seg-
mentation of the turn from the TUG task. The effects of velocity
on the different metrics as well as their reliability were then ana-
lyzed. The robustness of the cranio-caudal turn signature metrics
to natural task-related velocity variations and their reliability over
repeated trials are important properties that need to be established
before their validity can be further explored. All statistical analyses
were performed using SPSS (v23.0.0 from IBM) and considered a
significance level of 0.05.

Velocity Effect and Reliability
Each participant performed four TUGs (two at a normal pace, two
at a fast pace). The effect of velocity on the metrics was, there-
fore, evaluated by taking the mean of each metric per participant
and velocity and comparing them using a Wilcoxon signed-rank
test. Reliability was assessed using a two-way random, absolute,
average-measures intra-class correlation coefficient (Weir, 2005)

performed on the repeated measurement of each metric [i.e.,
ICC(2,4) for absolute agreement]. The following guidelines were
used for interpretation (Koo and Li, 2016):

• 0.00≤ ICC< 0.50 Poor reliability
• 0.51≤ ICC< 0.75 Moderate reliability
• 0.75≤ ICC< 0.90 Good reliability
• 0.91≤ ICC≤ 1.00 Excellent reliability

RESULTS

The ability of the sigma-lognormal model to estimate the cranio-
caudal signature is shown in Figure 3. The left panel of this
figure illustrates the variation in relative head to trunk angle
captured during the turn for a healthy individual. The right
panel corresponds to the relative head to trunk angular veloc-
ity profile for the same turn (blue curve—measured; red dot-
ted curve—reconstructed profile using the sigma-lognormal
approach). Analysis of the SNR revealed a median of 17.7 [14.6,
26.6], confirming the ability of the model to fit the data.

The robustness of the proposed parameters to velocity varia-
tions as well as their reliability shall now be verified.

Velocity Effect
Normal pace TUGs were significantly slower than fast TUG (Nor-
mal pace TUG duration: 20.3± 2.8 s; fast pace TUG duration:
17.0± 1.7 s; p= 0.001). Figure 4 illustrates the turn’s cranio-
caudal signature captured for the same healthy individual per-
forming a normal pace and a fast pace TUG.

The dispersion of the cranio-caudal signaturemetrics (H2Tmax
and D1,2) across participants is shown in Figure 5. The averaged
peak head to trunk angle reached during the turn varied from
25.6°± 8.9° for normal pace TUG to 24.5°± 8.4° for fast pace tri-
als, a difference not statistically significant (p= 0.683). The differ-
ence between the commanded amplitudes computed for normal
pace versus fast pace were not statistically different (D1 normal
pace: 24.8± 12.3, D1 fast pace: 28.5± 11.0, p= 0.470; D2 normal
pace: 29.2± 11.0, D2 fast pace: 24.1± 10.1, p= 0.124). Similarly,
the pace of the trials also did not have any significant effect on the
timing parameters (t01 normal pace: −4.40± 6.30 s, t01 fast pace:
−4.37± 5.56 s, p= 0.836; t02 normal pace: −7.0± 6.3 s, t02 fast
pace: −4.5± 3.4 s, p= 0.198; t̄1 normal pace: 0.62± 0.15 s, t̄1 fast
pace: 0.57± 0.21 s, p= 0.363; t̄2 normal pace: 1.34± 0.22 s, t̄2 fast
pace: 1.17± 0.32 s, p= 0.158; s1 normal pace: 0.28± 0.09 s, s1 fast
pace: 0.26± 0.06 s, p= 0.638; s2 normal pace: 0.23± 0.05 s, s2 fast
pace: 0.22± 0.06 s, p= 0.198). For comparison purposes, Figure 6
illustrates the dispersion observed across participants for the tra-
ditional turn metrics. Both the number of steps (NbSteps normal
pace: 3.9± 0.8, NbSteps fast pace: 3.9± 0.7, p= 0.685) and the
mean turn velocity (turnvelmean normal pace: 1.54± 0.25 rad/s,
turnvelmean fast pace: 1.53± 0.15 rad/s, p= 0.925) were not signif-
icantly affected by velocity. However, the maximum velocity was
significantly different (turnvelmax normal pace: 3.83± 0.40 rad/s,
turnvelmax fast pace: 4.08± 0.42 rad/s, p= 0.009).

Reliability
Reliability was assessed for all repeated trials performed by the
participants (i.e., normal and fast trials). Table 2 reports the ICC
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FIGURE 3 | Cranio-Caudal Signature Determination. The proposed cranio-caudal signature approach is composed of both the analysis of the relative head to trunk
angle achieved during the turn and the head to trunk relative angular velocity profile, modeled with the sigma-lognormal approach. (A) Change in head to trunk
relative angle during a normal turn. The maximum angle reached is identified as a signature variable. (B) The blue curve illustrates the relative head to trunk angular
velocity profile during the turn, as derived from the attitude and heading reference system measurement. The red dotted line illustrates the reconstructed profile, using
the sigma-lognormal model. The parameters used to achieve the reconstruction are listed as inserts.

FIGURE 4 | Turn cranio-caudal signature for a normal pace (A,C) and a fast pace Timed-Up-and-Go (TUG) (B,D), executed by the same healthy participant. (A,B)
Relative head to trunk angle variation captured during the turns. (C,D) Measured and estimated relative head to trunk angular velocity profile captured during the
turns along with the computed signature parameters.
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FIGURE 5 | Turn signature metric dispersion per trial velocity.

FIGURE 6 | Tradition turn metric dispersion per trial velocity.

TABLE 2 | Turn metrics reliability.

Metric ICC SEM

Cranio-caudal signature H2Tmax 0.808 [0.422, 0.962] 3.9°
D1 0.678 [−0.098, 0.939] 7.5
D2 0.640 [−0.249, 0.933] 7.0
t̄1 −0.480 [−3.058, 0.693] 0.27 s
t̄2 0.781 [0.329, 0.957] 0.13 s
s1 −0.045 [−1.818, 0.784] 0.11 s
s2 0.538 [−0.707, 0.915] 0.04 s
t01 −0.068 [−1.799, 0.664] 9.02 s
t02 −0.216 [−2.823, 0.643] 9.25 s

Traditional metrics NbSteps 0.242 [−2.179, 0.866] 0.8 step
turnvelmean 0.607 [−0.397, 0.927] 0.13 rad/s
turnvelmax 0.682 [0.120, 0.935] 0.28 rad/s

for each metric together with their 95% confidence intervals.
Cranio-caudal signature metrics were shown to have a moderate
to good reliability with ICCs, varying from 0.64 to 0.81. Further-
more, it was found that both traditional turn velocity metrics
(mean and max turn velocity) had a moderate agreement while
the number of steps revealed a poor reliability.

DISCUSSION

The current study demonstrated for the first time that it is pos-
sible to successfully capture the cranio-caudal signature from
the relative angular velocity profile deduced from the AHRS
orientation data. In past studies, a cranio-caudal sequence was

identified using camera-based stereophotogrammetric systems
(Ferrarin et al., 2006; Crenna et al., 2007; Hong et al., 2009;Wright
et al., 2012; Spildooren et al., 2013; Hulbert et al., 2015). These
studies predominantly assessed the temporal sequence in which
the segments (head, trunk and pelvis) are engaged in turning
as well as the maximum angle reached by the head relative to
the trunk and pelvis. In a study comparing recurrent fallers to
non-fallers performing a 360° on-spot turning task, Wright et al.
(2012) showed that all participants initiated the turn by rotating
the head and that the extent of that head rotation is greater in non-
fallers. Additionally, in a population with Parkinson’s disease, it
was also shown that both the temporal cranio-caudal sequence
as well as the maximum rotation of the head to the trunk are
altered compared to controls, reflecting the so-called “en-bloc”
strategy (Ferrarin et al., 2006; Crenna et al., 2007;Hong et al., 2009;
Spildooren et al., 2013). Hence, it has been well demonstrated that
the cranio-caudal sequence exhibited during the turn contains
useful information. However, it is also documented that camera-
based systems have restrictions (cost, required volume of opera-
tion, occlusions) which limit their use in a clinical settings (Zhou
and Hu, 2008). Alternatively, inertial measurement systems have
the portability required to be used outside laboratory settings, but
the type of information provided by this system is different, and
thus requires data to be analyzed differently. Orientation data,
expressed in a global reference frame, allow us to measure the
change in orientation of the head relative to the trunk. In this
study, we investigated the possibility to capture and characterize
the cranio-caudal signature from the orientation data provided
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by AHRS using a two-step process: First, the relative head to
trunk angular profile is analyzed to assess the maximum angle
reached. Then, the relative angular velocity profile of the head to
the trunk is derived from that relative orientation information and
investigated with the sigma-lognormal model. While orientation
and inertial data (acceleration and angular velocity) can be used to
directly characterize the turn, the choice to use a model is based
on an assumption that this model will provide insights into the
NMS which will help understand mobility deficits. The model
has already been proven to be linked to the NMS in different
situations, but had never been used on relative angular velocity.
The combined analysis of the maximum relative head to trunk
angle with a sigma-lognormal approach on the velocity profile
of this joint, therefore, presents a promising avenue to enable
cranio-caudal signature analysis with AHRS.

In order for the approach to be truly of interest, the signa-
ture metrics have to be reliable and robust to speed variations.
Comparing the metrics computed during fast TUG to the ones
computed for the TUG performed at normal pace has shown
that velocity does not produce significant variations in the met-
rics. These results are in conjunction with Akram et al. (2010)
who demonstrated, using a camera-based system, that the cranio-
caudal timing sequence is robust to walking speed variations.
Furthermore, the metrics have shown moderate to strong reli-
ability over the four repeated trials. At this point, it is difficult
to relate the results to other published work as this is, to our
knowledge, the first time a similar approach has been used to
characterize the cranio-caudal sequence. For comparison pur-
poses, traditional metrics were also captured during each trial.
These metrics (number of steps, mean turn velocity and max turn
velocity) correspond to the current most popular metrics used
in the literature to characterize the turn behavior using inertial
measurement systems (Greene et al., 2010; Salarian et al., 2010;
Zampieri et al., 2010; El-Gohary et al., 2013; Galán-Mercant and
Cuesta-Vargas, 2014; Sheehan et al., 2014; Mancini et al., 2015b,
2016; Zakaria et al., 2015; Smith et al., 2016; Vervoort et al.,
2016). Both the number of steps and the mean turn velocity were
robust to a change in speed, but the maximum turn velocity was
found to be significantly higher at fast pace TUG. According to
Hulbert et al. (2015), the number of steps taken during a turn
relates to the strategy adopted to perform that turn. The results
from the current study illustrate that the turn strategy itself was
not modified with TUG speed. In the literature, turn duration
was identified as an objective biomarker of the ability of the
neural control system to perform postural transitions (Horak
and Mancini, 2013). Therefore, the observed increased maximum
turn velocity with increasing TUG pace combined with the con-
stant mean velocity can be interpreted as an adaptive strategy
to maintain the same turn duration, denoting a good ability to
change motor program among the participants. However, from
these results, we must be cautious when interpreting a difference
in maximum velocity to differentiate populations, as the extent
of the difference may also be due to speed difference. If the
instruction is not standardized (e.g., “perform the test as fast
but safely as possible”), results of the maximum velocity may be
biased. With respect to reliability, those traditional metrics per-
formed poorer than the signature metrics as a result. The number
of steps even showed poor reliability as assessed with an ICC.

Previously, Salarian et al. (2010) had reported a strong agreement
for that same metrics. The difference may be explained by the
small variation between individuals within our sample. Indeed,
the number of steps required to perform a 180° lacks variability in
the current study as participants were all healthy elderly. Salarian
et al. (2010) used both healthy controls and Parkinson’s disease
patients to test for reliability, increasing the variability between
individuals. In the near future, a test-retest reliability of cranio-
caudal signature parameters could be re-evaluated using a similar
approach to enable better comparison with the literature. The lack
of variability between healthy individuals is a good thing when
trying to differentiate two groups with clearly different behavior
(e.g., Parkinson’s disease patients versus healthy controls). How-
ever, it raises concerns regarding the sensitivity to the change of
such metric. The better reliability of the cranio-caudal signature
metrics observed between individuals suggests a better resolution
of the metrics, offering the potential to a better sensitivity to
change. If true, suchmetrics could be useful tomonitor changes in
motor control with age or disease progression within individuals.
One limit to this study is the fact that the proposed cranio-caudal
signature methodology was directly validated using an inertial
system which is known to have a certain inaccuracy. In a recent
study, it was demonstrated that the segment of interest here had a
mean root-mean-squared difference between 3.1° and 4.4° during
a turn with peak values around 6°(Lebel et al., 2017). However,
peak error will occur around maximum velocity which, in the
case of the sigma-lognormal model, is defined by Eq. 13 below.
The impact of this inaccuracy on timing parameters is minor
as the reported agreement is good. As a result, inaccuracy in
Vmax measurement could result in inaccuracy in the estimation
of parameter D. However, recalling that the effect of the pace of
the trial on D was shown to be not statistically significant across
individuals, it can be assumed that the model is robust to the
measurement inaccuracies:

Vmax =
D

σ/2π
e(−µ+0.5σ2). (13)

Now that we have established the required methodology to
derive the cranio-caudal signature based on AHRS data and
verified the reliability of the metrics, there is a possibility of
applying it to different populations to verify the sensitivity of the
metrics.

The proposed algorithm allows for the characterization of the
quality of a turn using AHRS in an innovative manner. It also
demonstrates the power of orientation data assessed with AHRS.
The full potential of such an approach will only be reached when
combined with automatic recognition and segmentation of activ-
ities (Nguyen et al., 2015; Ayachi et al., 2016a,b). Additionally,
this work also shows that the sigma-lognormal model can be
used to fit the cranio-caudal signature. Although this model has
been proven well-suited for rapid (Plamondon et al., 2014) and
slow movements (Duval et al., 2015) in different situations, the
movement of the head to the trunk during the turn is somewhat
different and it was previously unclear if such a model could be
applied here. The present results confirm this hypothesis. How-
ever, further validation of the model in this specific context of use
would be beneficial in order to provide a deeper understanding of
the parameters values in this particular framework.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2017 | Volume 5 | Article 51430

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Lebel et al. Capturing the Cranio-Caudal Signature of a Turn with AHRS

CONCLUSION

The present study has shown that cranio-caudal signature during
the turn can be captured using AHRS and a sigma-lognormal
model. Metrics deduced from the signature profile were shown to
be robust to speed variations and reliable. Comparison with tradi-
tional turn metrics leads us to believe that the proposed approach
is a promising avenue to enhance early deficits identification.
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Many of the intriguing properties of blood originate from its cellular nature. Therefore,

accurate modeling of blood flow related phenomena requires a description of the

dynamics at the level of individual cells. This, however, presents several computational

challenges that can only be addressed by high performance computing. We present

Hemocell, a parallel computing framework which implements validated mechanical

models for red blood cells and is capable of reproducing the emergent transport

characteristics of such a complex cellular system. It is computationally capable of

handling large domain sizes, thus it is able to bridge the cell-based micro-scale and

macroscopic domains. We introduce a new material model for resolving the mechanical

responses of red blood cell membranes under various flow conditions and compare it

with a well established model. Our new constitutive model has similar accuracy under

relaxed flow conditions, however, it performs better for shear rates over 1,500 s−1. We

also introduce a newmethod to generate randomized initial conditions for densemixtures

of different cell types free of initial positioning artifacts.

Keywords: blood rheology, RBC material model, cellular flow, high-performance computing, dense cell

initialization

1. INTRODUCTION

On the cellular level, blood is a dense suspension of various types of cells. Red blood cells (RBC)
form the primary component with an approximate volume fraction of 42% (Davies and Morris,
1993) determining the bulk blood rheology. They have a biconcave shape and a typical diameter
of 8 µm. Platelets (PLTs), the second most numerous component with typically 1 PLT for every 10
RBCs (Björkman, 1959) form the link between transport dynamics and vital biochemical processes
related to thrombus formation. In their unactivated state PLTs have a rigid ellipsoidal form. The
collective behavior of RBCs and PLTs can provide explanation to the most fundamental transport
phenomena in blood, for instance the non-Newtonian viscosity (Merrill and Pelletier, 1967), the
margination of platelets (Beck and Eckstein, 1980; Tilles and Eckstein, 1987), the Fåhræus effect
(Barbee and Cokelet, 1971), the appearance of a cell-free layer (Maeda et al., 1996; Kim et al.,
2009), or the scaling of shear-induced diffusion of RBCs (Mountrakis et al., 2016). The necessity
to accurately reproduce these effects grows as the typical length-scale of the examined system
reaches below ≈ 200 µm, at which point the macroscopic description no longer yields accurate
local dynamics (Popel and Johnson, 2005). With the development of modern medical devices more
and more elements reside in the micrometer domain, such as the strut structure of flow-diverters
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(Lubicz et al., 2010) or woven endobridge (WEB) flow disruptor
devices (Ding et al., 2011). This together with additional
complex phenomena that require detailed cellular modeling of
the flow, for instance platelet aggregation (Nesbitt et al., 2009)
or white blood cell (WBC) trafficking (Fay et al., 2016), triggers
an increasing need to understand how the rheology and the
transport of the RBCs and PLTs are influenced while acting over
such small scales.

In the solutions targeting these questions the mechanical
responses of the RBCs and PLTs are often expressed with
constitutive models applied through their membranes
accounting for the responses of the various structural elements
(Ye et al., 2016). Some examples for these material models are the
spectrin-link membrane model of Dao et al. (2006) or the energy
model of Skalak et al. (1973). Fedosov et al. (2010a) employed the
dissipative particle dynamics (DPD) method with a constitutive
description gained by coarse-graining the model of Dao et al.
(2006) to study various transport features of blood (Fedosov
et al., 2010b, 2011b,c; Fedosov and Gompper, 2014; Yazdani and
Karniadakis, 2016). A low dimensional RBC membrane model
was developed by Pan et al. (2010) and was compared to the
coarse-grained spectrin-link model of Fedosov et al. (2010a).
More recently, a two-component RBC membrane model that
consist of a separate lipid bilayer and spectrin network (Chang
et al., 2016) was introduced to examine the difference in the
deformation of healthy and infected RBCs. MacMeccan et al.
(2009) developed a model that coupled the lattice Boltzmann
method (LBM) to finite element method (FEM) based cell
mechanics and investigated the viscosity behavior of blood in
shear flows at various hematocrit levels. Later, Reasor et al.
(2012) used the spectrin-link membrane representation rather
than solving Cauchy’s equation to model the trajectory and
deformation of elastic deformable particles. This model was also
used to study the margination of platelets (Mehrabadi et al.,
2016). Moreover, Krüger et al. (2011) developed a combination
of lattice Boltzmann method (LBM) and finite element RBC
membrane model based on the energy model of Skalak et al.
(1973), and used the immersed boundary method (IBM) to
couple the fluid and the membrane. This model was used
to study the tank-treading behavior of single RBCs next to
the deformation behavior and the relative viscosity of RBC
suspensions (Krüger et al., 2013; Gross et al., 2014; Krüger,
2016). In addition, Shi et al. used LBM in combination with
the fictitious-domain method to couple the plasma to the
spectrin-link membrane model. They studied the deformation
of an RBC in capillary flows, during tank-treading motion and
hydrodynamic interaction between two cells (Shi et al., 2014).
Hashemi and Rahnama (2016) investigated the deformation of
RBCs in capillary flows with an LBM-FEM based model with
IBM coupling.

In this paper, our framework called Hemocell (High
pErformance MicrOscopic CELlular Libary)1 is presented for
modeling the flow of blood on a cellular level. Hemocell is
designed to be easily extendible with additional cell-types and
interactions and to provide the high computational performance

1https://www.hemocell.eu/ (Accessed July 25, 2017).

that enables applications up to macroscopic scales. Blood plasma
is represented as a continuous fluid simulated with LBM, while
the cells are represented as discrete element method (DEM)
membranes coupled to the fluid flow by the immersed boundary
method. Furthermore, two different material models for the
RBC membrane mechanics have been investigated. One is the
aforementioned coarse-grained spectrin-link model of Fedosov
et al. (2010a) and a new one that addresses several shortcomings
of the former. The validation of Hemocell, in combination with
our new RBC material model, is presented through single-cell
mechanical experiments (i.e., stretching and shearing cases). We
demonstrate that the proposed new material model reproduces
both the single-cell mechanical responses and the collective
transport dynamics in very good agreement with experiments,
as well as it provides an accurate mechanical response and
an increased structural stability under higher shear forces and
strong deformations. The later is necessary, since it is known
from recent high-field-strength MRI measurements of Bouvy
et al. (2016) that pulsation effects are significant even on the
mesoscopic level of smaller arterioles. Moreover, it can also
enable simulations of transport mechanisms in micro-fluidic
settings or in the vicinity of micro-medical devices, where
strong deformations and high shear values and gradients can
be expected. Hemocell also forms a fundamental component
in building versatile multi-scale models of arterial health and
diseases (Hoekstra et al., 2016).

2. METHODS

The solvent (blood plasma) in Hemocell is modeled as an
incompressible Newtonian fluid using the lattice Boltzmann
method implemented in the Palabos library (Lagrava et al., 2012)
which is known to be capable of producing accurate flow results
in vascular settings (Závodszky and Paál, 2013; Anzai et al.,
2014). The surfaces of RBCs and PLTs are are described as
boundary layers immersed into the plasma. These layers are
discretized using Nv vertices which are connected by Ne edges
yielding Nt surface triangles (see Figure 1 for an example in
case of an RBC and a PLT). The connectivity and symmetries
are similar to the structure of the cytoskeleton as imaged by

FIGURE 1 | Visualization of the membrane meshes of an RBC (Left) and a

platelet (Right).
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atomic force microscopy (Swihart et al., 2001; Liu et al., 2003).
In our simulations the membrane of each RBC consisted of
Nv = 642 vertices, Ne = 1, 920 edges, and Nt = 1, 280 faces .
The mechanical behavior of a cell is expressed using this discrete
membrane structure. The response to deformations is formulated
as a set of forces acting on the cell membrane, which is coupled
to the plasma flow through a validated in-house immersed-
boundary implementation (Mountrakis et al., 2014; Mountrakis,
2015) that has an efficient parallel design. Mountrakis et al.
(2015) demonstrated that the framework can be scaled up to 106

cells executing on 8,192 cores without significant loss of parallel
efficiency.

2.1. Description Of The Coarse-Grained
spectrin-Link Membrane Model
In Hemocell, two distinct constitutive model have been
implemented for RBCs to act on the membrane mesh. The first
one is based on the systematic coarse-graining of the model of
Dao et al. (2006). For the detailed derivation we refer to the work
of Fedosov et al. (2010a). The model is briefly outlined below:

The free-energy of a cell is described as

Utotal = Uin−plane + Ubend + Uvolume + Uarea + Uvisc.

The location xi of each vertex on the membrane mesh is updated
according to the force:

Fi =
∂Utotal,i

∂xi
.

The total free-energy is composed of the following elements:

1. The in-plane potential models the compression response of
the underlying cytoskeletal network along the membrane
surface. The edges of the surface triangles represent the
cumulative behavior of the local spectrin links using the
wormlike chain (WLC) nonlinear spring description:

Uin−plane =
∑

i= 1..Ne

UWLC +
∑

j= 1..Nt

Cq

A
q

k

,

UWLC =
kBTlm

4p

3r2i − 2r3i
1− ri

,

Cq =

√
3A2

l0
kBT(4r

2
0 − 9r0 + 6)

4plm(1− r0)2
,

where p, lm are the persistence length and the maximum
length of the spectrin links, ri = li/lm ∈ [0, 1), l0 is the average
length of links, r0 = l0/lm and Al0 =

√
3l20/4.

2. The potential to account for bending rigidity:

Ubend =
∑

i= 1..Ne

κ̃[1− cos(θi − θ0)],

where κ̃ = 2κ/
√
3, θi is the instantaneous, θ0 is the

equilibrium angle between neighboring faces sharing an edge,
and κ is the bending constant.

3. The volume conservation energy is a fictitious potential which
accounts for the forces arising from the change of volume:

Uvolume =
kV (V − V0)

2

2V0
,

where V is the current, and V0 is the equilibrium volume of
the cell.

4. The area conservation potential is similarly a non-physical
term representing the inextensible nature of the bilipid layer:

Uarea =
kA(A− A0)

2

2A0
+

∑

k=1..Nt

kAl
(Ak − A0,k)

2

2A0,k
,

where A,A0 are the global and Ak,A0,k are the local actual and
equilibrium surface areas, respectively.

5. The additional term to correct membrane viscosity:

Uvisc =
∑

i= 1..Ne

−
1

2
ηmv

2
m,n,

where vm,n denotes the relative velocity of the vertices m and
n connected by edge i and membrane viscosity ηm = 22 ×

10−3 Pas is chosen such that RBCs yield realistic tank-treading
and tumbling frequencies (Fedosov et al., 2014).

The free parameters of this model ( κ = 100 kBT, kV = 6, 000,
kA = 5, 900, kAl

= 100 ) were adopted from (Fedosov et al.,
2010a) with the exception of the maximum link extension ratio

( r0 = l0
lmax

= 2.6 ), which was fine-tuned for our current

discretization. The usefulness of this model was demonstrated in
a series of publications (Fedosov et al., 2010a, 2011a; Fedosov
and Gompper, 2014; Mehrabadi et al., 2016). However, it also
has a few shortcomings. The bending response is based on
Helfrich’s model (Helfrich, 1973) which only accounts for the
properties of the lipid bilayer and not the underlying structures.
Furthermore, the coarse-graining of the bending rigidity for the
triangulated mesh is based on the work of Gompper and Kroll
(1996) which assumes small angles and equilateral triangles,
both of which are often not fulfilled for sheared RBCs. As a
consequence, the bending energy in this model yields a sinusoidal
force-response that has a sub-linear response for angles over π

4 ,
which even decays further for larger angles. This can lead to
insufficient force responses and consequently to acute angles or
collapse of neighboring faces. The resulting problems can often
be mitigated by using a linear bending response that fits the
slope of the sinusoidal at low angles. Moreover, the global surface
conservation potential can lead to unphysical responses, since a
local stretch of the membrane instantly causes the contraction
of the rest of the membrane forcing the surface points to move
toward the center of the cell.

2.2. Description Of the New Constitutive
Model
We propose a new material model in the form of a set of forces
acting on the same triangulated cellular membrane. The initial
assumption for this model is that during small deformations
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all these forces present a linear regime with different slopes
as the response types correspond to different components of
the cell and are independent of each other. However, for large
enough deformations the cytoskeleton adds contribution to all
of them, resulting in qualitatively similar behavior. For instance,
a response for small bending is assumed to be dominated by
the curvature rigidity of the bilipid membrane resulting in a
term linear in angle for the DEM membrane, while for larger
deformation the underlying cytoskeleton deforms as well yielding
an additional quickly diverging term. In the following we describe
this model in two steps by separating the phenomenological
description and the implementation.

1. The link force acts along links between surface points and
represents the response to stretching and compression of
the underlying spectrin-network beneath the representative
link. The formulation of the force is similar in spirit to the
worm-like-chain potential model often used to mimic the
mechanical properties of polypeptide chains. It presents a
linear part which corresponds to smaller deformations and
a fast-diverging non-linear part which represents the limits
of the material toward this type of deformation by quickly
increasing the force response as the stretch approaches the
persistence-length.

Flink = −
κldL

p

[

1+
1

τ 2
l
− dL2

]

,

where dL = Li−L0
L0

is the normal strain defined as the relative
deviation from the equilibrium length L0 with τl = 3.0 is
chosen based on the assumption that the represented spectrin-
network reaches its persistence length at the relative expansion
ratio of 3. The persistence-length of a spectrin filament was
taken as p = 7.5 nm (Li et al., 2005).

2. The bending force acts between two neighboring surface
elements representing the bending response of the membrane
arising primarily from the non-zero thickness of the spectrin-
network. On each surface it points along the normal direction
of that surface. As opposed to the previous model in which
bending is expressed by modeling the bending rigidity of the
bilipid membrane (Helfrich, 1973), the form of the employed
force term here is similar to the form of the previous link force
to account for increased resistances coming for additional
sources, such as the connection of the membrane to the
underlying cytoskeleton.

Fbend = −
κbdθ

L0

[

1+
1

τb
2 − dθ2

]

,

where dθ = θi − θ0. From simple geometric considerations it
follows that the limiting angle τb scales with the discretization
length of the surface elements (L0). We fix the smallest
representable curvature rmin = L0

2 sin
τb
2 . From the micro

pipette aspiration images of Mohandas and Evans (1994) a
rough approximation for the necessary curvature radius of
0.2µm can be inferred by examining the membrane curvature
at the pipette neck. For the currently employed resolution

( L0 = 0.5µm ) the limiting angle is chosen to be τb =
π
6 . This

choice prevents unrealistic sharp surface edges while allowing
curvature radii as small as 0.18 µm to be represented.

3. The local surface conservation force acts locally on surface
elements (i.e., triangles) and has the same form. It represents
the combined surface response of the supporting spectrin-
network and the lipid bilayer of the membrane to stretching
and compression. This force is applied to all three vertices
of each face and it points toward the centroid of the
corresponding surface triangle.

Farea = −
κadA

L0

[

1+
1

τa2 − dA2

]

,

where dA = Ai−A0
A0

. Strong-deformation experiments of
erythrocytes show that at around 40% of surface area change
the membrane of most cells is damaged permanently (Li et al.,
2013). We set τa = 0.3, thus prohibiting surface area changes
larger than 30%.

4. The volume conservation force is the only global term. It
is used to maintain quasi-incompressibility of the cell. It is
applied at each node of each surface element and it points
toward the normal of the surface.

Fvolume = −
κvdV

L0

[

1

τ 2v − dV2

]

,

where dV = V−V0
V0

, τv = 0.01 and κv = 20 kBT is chosen to be
a large but numerically still stable constant.

This constitutive model has three free parameters for RBC
modeling : κl, κb, and κa. These are chosen to satisfy mechanical
single-cell experimental results.

2.3. Implementation Of the Constitutive
Forces For The New Model
The proposed forces can be realized in multiple ways on the
given DEM structure, thus the implementation method is an
inseparable part of the model. Figure 2I aids this description by
showing a notation for two neighboring surface elements.

1. For each edge Eei, i ∈ [1..Ne] the link force EFlink is added to the
total force acting on the end nodes of that edge (i.e., the IBM
particles). Following the notation of Figure 2I for the edge
between the nodes Ev1 and Ev2, the resulting link forces are:

EFlinkv1 = Flink ∗
Ev2 − Ev1

‖Ev2 − Ev1‖
= −EFlinkv2 .

2. The bending force is applied for each edge Eei, i ∈ [1..Ne] on
the four nodes of the two connecting surface elements. For the
edge between the nodes Ev1 and Ev3:

EFbendvk
= −Fbend ∗ Enk, k ∈ [1, 2]

EFbendvl
= Fbend ∗

En1 + En2

2
, l ∈ [3, 4].
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FIGURE 2 | (I) Notation of the membrane structure. (II) Mechanical tests on a patch of membrane. (IIa) uniaxial stretching. (IIb) shearing. (IIc) area expansion.

FIGURE 3 | The mechanical properties of the RBCs are validated using

experiments measuring these two basic deformations.

3. The local surface conservation force acts on each Efj, j ∈ [1..Nt]
surface elements. For the face with the normal vector En1 and
centroid EC:

EFareavm = Farea ∗ (EC − Evm),m ∈ [1, 2, 3].

4. The volume conservation force is applied on the three nodes
of each surface element:

EFvolumej = Fvolume ∗
Sj

Savg
∗ Enj,

where Sj is the surface area of the j-th element and Savg is the
average surface area.

2.4. Validation Of the Mechanical RBC
Responses
The free parameters of our mechanical RBC membrane model
are fit to match the results of the optical-tweezer stretching
experiments (Mills et al., 2004) and the Wheeler shear
experiment (Yao et al., 2001). The single-cell deformation types
during the measurements are shown in Figure 3.

In the optical-tweezers experiment small silica beads are
attached on the opposing sides of the RBC. One is then fixed to
the wall of the experimental container while the other is moved
away by a focused laser beam. The arising forces result in a
stretching of the RBC along the longitudinal axis and contraction
along the transversal axes. In our simulation the same force
magnitudes are used as in the experiment. They are applied on
five percent of the membrane area on the opposing ends of the
RBC. These areas represent the attachment surfaces of the silica
beads.

The stretching curves of the twomaterial models implemented
in Hemocell are compared to the experiment of Mills et al. (2004)
and to the results of Fedosov et al. (2010a) and are shown in
Figure 4. Both constitutive membrane models can reproduce
the stretching behavior of a single RBC in the given forcing
regime with good accuracy. However, since the responses of the
different force types are more balanced in our new model (i.e., it
is less likely, that one force will dominate over the others during
deformation), while the spectrin-link model is over-dominated
by the in-plane link-force, our model captures the transversal
contraction at higher stretches with more accuracy.

In the wheeler experiment performed by Yao et al. (2001) an
RBC is positioned in shear flow such that the axis of symmetry
of the cell lies in the plane of the shear and is perpendicular to
the flow velocity. The deformation of the RBCs is then inferred
from measuring its laser diffraction pattern in the flow. We
numerically compute the behavior of a single RBC placed in
pure shear flow with shear rates between 17 and 200 s−1, in
accordance with the experiment. The deformation index of the
RBC is defined as given in Yao et al. (2001):

DI =
(Dmax/D0)

2 − 1

(Dmax/D0)2 + 1
,

where D0 is the original diameter of the RBC (7.82 µm) and
Dmax is the maximal diameter during the deformation at a
constant shear rate value. The results are compared to the
experimental results and to simulated results of MacMeccan et al.
(2009) in Figure 5. Both material models give a deformation
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FIGURE 4 | The results of the RBC stretching simulations. The upper arm of the curve denotes axial diameter expansion due to the stretching force, while the lower

arm depicts the transversal contraction of the cell.

index that are in agreement with Yao’s experiment and with
the simulations of MacMeccan et al. (2009). It is important
to point out that the numerical accuracy of this simulation is
more sensitive to the fluid-structure coupling compared to the
previous stretching scenario, therefore, a close match with the
measurements implies an accurate coupling between the plasma
flow and the cell membranes. Additionally, the numerical limit of
shear rate is tested for both material models with this setting. In
our implementation the new material model could resist higher
sustained shear rates (γ̇max = 2, 500 s−1) than the spectrin-
link model (γ̇max = 500 s−1) before the RBC collapsed due to
insufficient force response arising from numerical errors (for the
onset of such an error see the inset image in Figure 5).

The fit to the experimental results yield κl = 15 kBT,
κa = 5 kBT, and κb = 80 kBT. These values are used
throughout this work for the new constitutive model. Evans
(1983) measured the bending modulus to be in the order of
50 kBT, not far from our κb. Additionally, with the selected
κa value the local surface extensions under physiological flow
conditions are smaller than the set limit of 30%, typically below
7%, which agrees with the literature (Fung, 1993). Please note
that the selection of these parameters is not unique, other sets
might exist that also fit the single-cell experimental results well
with the proposed mechanical model. To infer further material
characteristics of the model, we employed a simulation to deform
a single hexagonal patch of the membrane (for an overview of
the applied deformations see Figure 2II). The uniaxial stretching
yields a surface Young modulus of Es = 27.82 µN/m. Assuming
that the major deformation response arise from the membrane
(the bilipid layer, and the spectrin, actin filaments) and its width

in the range of 25 − 50 nm (Gov and Safran, 2005; Yoon et al.,
2009), the typical Young modulus for small deformations E =

1 kPa of healthy RBCs (Maciaszek and Lykotrafitis, 2011) gives
the surface tensile modulus of Es = 25− 50 µN/m, in agreement
with our results. The shear deformation of the patch yields µ =

10.87 µN/m, close to the upper region of the measured ranges of
6 − 10 µN/m (Mohandas and Evans, 1994; Park et al., 2011).
Finally, area expansion gives a compression modulus of K =

21.88 µN/m near the reported range of 18 − 20 µN/m (Park
et al., 2011). Assuming homogeneous isotropic linear behavior
(that only holds for small deformations), the relation between the
elastic constants yields a Poisson’s ratio of 0.29, in the vicinity of
the expected value of 1/3.

From the unique material properties an emergent ability of
RBCs traveling in small, confined flows is their deformation
to parachute-like shapes (Noguchi and Gompper, 2005). This
behavior is necessary to pass small micro-capillaries of diameters
below the diameter of the undeformed RBC (Tsukada et al.,
2001). Figure 6 shows an example of a simulated RBC that
deforms toward this shape in a tight channel computed with the
new material model.

2.5. Generating Cell Initial Conditions
An important component of simulating blood flows on a cellular
level is the selection of initial conditions for the cells, such as
position and orientation. These are far from trivial since, due
to the biconcave shape of RBCs, their volume (≈ 71 µm3 )
compared to the volume of their enclosing box ( ≈ 224 µm3 )
is low. Using the densest possible packing along a regular grid
thus yields a hematocit of 32% which is often inadequate as it
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FIGURE 5 | Results of the wheeler RBC shearing simulations. Both constitutive models show good agreement with the measurements. Inset image in the lower right

corner: RBC shapes at an increased shear rate of 1, 500 s−1 for the two implemented material models—top, Dao/Suresh model; bottom, our model.

FIGURE 6 | Transition of an RBC toward parachute shape while traveling in a

micro-channel of D = 12 µm diameter.

does not reach the level of physiologic hematocrit of human
blood. A further issue is the need for a randomized distribution
to avoid initial artifacts originating from the regular positioning
and orientations. To circumvent these difficulties an additional
kinetic simulation was developed to compute realistic initial
distributions even at high hematocrit values. Instead of the real
biconcave shapes, the enclosing ellipsoid of the RBCs were used
to execute a simple kinetic process for hard ellipsoid packing.
The so-called the force-bias model (Mościński et al., 1989; Bargieł
and Mościński, 1991; Bezrukov et al., 2002) was applied to these
enclosing ellipsoids. The algorithm proceeds as follows. The
positions of the center of the cells are randomly distributed in
the simulation domain. Next, two scaling variables are defined
for every cell type (e.g., RBC, platelet): din represents the possible
largest scaling in the system without any overlap between the
cells. While dout is initially set so that the merged volume

(counting overlapping volumes only once) of all the ellipsoids
scaled with it equals the total volume of the enclosing ellipsoids
corresponding to the desired hematocrit level. Then, a repulsive
force is applied between overlapping ellipsoids, proportional to
the volume of the overlapping regions:

EFij = δijpij
Erj − Eri

|Erj − Eri|
,

where δij equals 1 if there is an overlap between particle i and
j and 0 otherwise, while pij is a chosen potential function. In
our case, the potential function was selected to be proportional
to the overlapping volume of the dout scaled particles. The
positions are updated following Newtonian mechanics where
mass is proportional to the particle scaling radius. This ensures
that larger particles will move slower than smaller ones (i.e., an
RBC will push away a platelet rather than the other way around).
The rearrangement of the cells have a tendency of increasing
din. As a final step the size of dout is reduced every iteration
according to a chosen contraction rate τ . The computation stops
when dout ≤ din at which point the system is force-free, since
there are no overlaps. Using this method, we were able to push
the initial hematocrit value up to 46% covering the physiological
range. Additionally, we can fix the orientation of the cells by
only allowing translation of their center of mass during this
computation, thus predefining the alignment of the particles.
This is beneficial for initializing higher velocity flows where the
cells are expected to be lined up with the bulk flow direction.
Figure 7 presents two sample initial conditions generated with
this method.
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FIGURE 7 | Randomized packing of a 50 µm3 cubic domain with RBCs (red)

and PLTs (yellow). (Left) random positions with fixed alignments. (Right) both

positions and alignments are randomized.

It is possible to initialize simulations of up to 106 cells
efficiently this way. These simulations are free from regular-
grid positioning artifacts from the beginning, which in turn
reduces the computational time significantly. Though the actual
computational cost it saves varies by geometry, hematocrit, flow
velocity, etc., in our simulations the warm-up phase needed
to allow the initially regularly placed cells to arrange more
realistically amounted to 10-30% of the total computational time,
while with the randomized initialization this whole phase could
be omitted.

3. RESULTS

Our ultimate goal of accurate mechanical modeling of cellular
membranes in blood flows is to allow for the resolution
of the collective transport dynamics and coupling this to
relevant biochemical processes. In the following, these transport
properties are explored using the new constitutive model in the
cases of a straight vessel sections of varying diameters. A snapshot
from the simulation of the D = 128 µm case is visualized in
Figure 8. The RBCs close to the wall experience much larger
deformations than those in the center of the channel. In every
simulation PLTs are present as well in a physiologic concentration
(around 1/10th of the RBC cell count). Since the elastic response
of the unactivated platelets are at least an order of magnitude
stronger for small deformations than the response of RBCs (Haga
et al., 1998), the platelets are simulated with the same constitutive
model as RBCs, however, the constants κl, κa, κb are multiplied
by 10. These simulations also benefit from the above mentioned
randomized initialization of the cells.

The first fundamental transport property examined is the
apparent viscosity. The results are compared to the experimental
results collected by Pries et al. (1992). These experimental results
are aggregated for hematocrit levels of 20, 45, and 60% after a
correction for temperature and medium viscosity. Based on these
data, an empirical formula is also derived in Pries et al. (1992)
which was used in the current work to produce the expected
results for the hematocrit level of 30%. It can be insightful
to briefly overview the general measurement method of blood
viscosity in experimental settings. The hematocrit level refers
to the discharge hematocrit present in the blood tank, from

where the flow is directed through a tube of various diameters
driven by hydrostatic pressure. The relation of the pressure
and the appearing average flow velocity in the tube defines the
viscosity. This is taken into account in the current simulations
by translating the discharge hematocrit values to hematocrit
values actually present in the tube during the measurements by
applying Equation (8) from (Pries et al., 1992). The simulations
are initialized with zero velocity in the whole domain after
which the flow is started up and driven by external body force.
The results together with the experimental results are shown in
Figure 9.

The results show good agreement with the measurements.
For the simulations of H = 45% after the initialization the
undeformed cells create large clusters. In the current work, the
notation of an RBC cluster refers to a group of RBCs having
at least a single membrane point in touch with another RBC
of the same cluster. In the initial phase of the simulations the
elastic effects of these RBC clusters are perceivable as the viscosity
during the first few milliseconds increases quickly, well above the
expected values. This is caused by the deformation of the cells
residing inside these large and dense clusters and this behavior
is one of the major components that leads to yield-stress. After
a critical threshold in shape deformation they loose these stable
structures and the viscosity quickly settles back to the expected
level. For more details see Sections 3.1 and 3.2.

Another distinctive feature of cellular suspension flows is the
formation of a cell-free layer (CFL) close to the walls as a result
of lift force acting on the cells. The width of the appearing cell-
free zones are defined using the density distribution of cells. It is
the distance from the wall at which point the density distribution
averaged along the vessel section reaches 5%. The results are
compared to the in vitro experiments at different hematocrit
levels of Tateishi et al. (1994) in Figure 10.

While our simulated diameter range surpasses the bounds
of the experimental range, the overlapping region shows good
agreement for the hematocrit level of 30 and 45%. The level
of 20% does not have a directly corresponding measurement,
however, it is situated between between the experimental results
of 16% and 30%, as expected. For a given diameter the CFL
decreases with the increase of hematocrit as more RBCs are
packed into the same domain volume.

Finally, to validate the flow profile in stationary flow a straight,
rectangular channel was set up to recreate the flow environment
of the experimental work of Carboni et al. (2016). The hematocrit
level was set to 35%, and the driving body-force was calibrated
to have a volumetric flow rate matching the experiment. In
Figure 11, the velocity profile was compared to the profile
obtained from the PIV measurements.

The simulated profile fits the measurement well and has the
same plug-shape along with similar widths of high-shear regions
at the sides of the channel.

3.1. Break-up of the RBC Structures At
Increasing Shear-Rates
It is a well-known phenomenon that toward low shear-rate values
the viscosity of blood increases steeply (Chien, 1970). This is
caused by the formation of dense clusters of RBCs including
rouleaux structures. In our simulations, aggregation interactions
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FIGURE 8 | Blood flow simulation in a straight vessel section of D = 128 µ m diameter with a hematocrit value of 45% at an average velocity of 1.5 cm/s using our

new material model. (Left) side view; (Right) 2D-projected axial view (the black outline shows the location of the vessel wall). The simulation of this case consists of

∼2× 104 cells and it was computed on 512 cores.

FIGURE 9 | Relative apparent viscosity as a function of diameter at the hematocrit levels of 20, 30, and 45%. Please note that the curve of 30% originates from the

fitted empirical formula of Pries et al. (1992).

between cells were not included, thus, these structures arise
from the various alignments and high density of the cells. This
effect was investigated in the case of the D = 128 µm vessel
section at H = 45%. The whole system is initialized to be
still. Then, it is driven by a constant body force, and once the
average velocity equilibrates (typically after a few hundred ms)
the relative apparent viscosity is recorded. The shear is not
constant along the radius of the vessel, however, for slow flows
its local value scales approximately linearly with the average
velocity. Figure 12 shows the relative apparent viscosity of the
whole vessel section at low average velocities.

The relation appears to be logarithmic (see the fitted
exponential decay), which is in agreement with the literature
(Baskurt and Meiselman, 1997). Around the average velocity of
1 cm/s the apparent viscosity of the vessel section already settles
suggesting that the majority of the RBC structures are gone. The

further increase in velocity from this point on only results in a
minor change of bulk viscosity.

3.2. Effects Of the Initial RBC Deformation
Due to the elastic deformable nature of RBCs, blood can exhibit
yield-stress behavior if the hematocrit level is high enough (Picart
et al., 1998). In such a dense suspension of cells under low shear-
stress the clusters can behave similarly to deformable solids.
The relative positions of the RBCs within these clusters remain
the same while they deform. At a critical stress value the force
required to further deform the cells becomes larger than the
force needed to separate them, thus breaking the structure. From
that point blood transitions to fluid-like behavior. The stability
of these clusters is dependent on several variables, for instance
the level of hematocrit and the concentration of fibrinogen in
blood plasma (Baskurt andMeiselman, 1997). However, a weaker
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FIGURE 10 | The width of the cell-free layer as a function of vessel diameter in a straight section.

FIGURE 11 | Velocity profile arising in Hemocell simulation (red line) and the particle tracking results of Carboni et al. (2016) (black dots).

yield-stress behavior still arises in the absence of fibrinogen (and
other endogen proteins) at high hematocrit values (> 30%)
(Blackshear et al., 1983; Morris et al., 1989). This effect is
perceivable during some phases of the simulations, such as the
initial start up of the flows in our straight vessel sections. To
investigate it, the plasmawas brought up to the stationary velocity
driven by external body force without any cells. This is necessary

to separate the effects of initial cell deformations from the effects
of initially driving the fluid up to the desired velocity. The velocity
is set to a high enough value (e.g., 6 mm

s for the D = 64 µ m ,
H = 45% case and 1.5 cm

s for the D = 128 µ m , H = 45%
case) for the large RBC structures to break. The undeformed cells
with randomized positions and alignments are then placed into
the flow while the driving force is kept constant. This moment

Frontiers in Physiology | www.frontiersin.org August 2017 | Volume 8 | Article 563443

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Závodszky et al. Cellular Modeling of Blood Rheology

FIGURE 12 | Viscosity drops as clusters are breaking up with the increase of flow velocity and shear.

FIGURE 13 | Elastic behavior of dense RBC clusters cause an initial viscosity peak.

is denoted as t = 0 s . Figure 13 shows the progression of the
relative viscosity from this point in the case of D = 64 µ m ,
H = 45%.

During the first 3 ms the relative viscosity rises from the
value of 1 steeply while the plasma flow slows down. At this
stage, the RBCs do not flow but deform. The local velocity in
the fluid corresponds to the deformation velocity of the cells.
Around 4 ms, the relative viscosity reaches its peak value and
the clusters start to break up, i.e., the relative positions of the
RBCs start to change and the suspension no longer displays
solid-like features. After this point blood quickly settles back to
its stable final relative viscosity. The same viscosity pattern is
observable for all simulations with H = 45% during the initial
phase, however, for smaller diameters the phenomenon is less
significant. It must be noted, however, that in our case both the
surface and the cytoplasmic viscosity was the same as the plasma
viscosity, while experimental results suggest higher values of 2−6
mPas for cytoplasma (Park et al., 2011) and 10−10 − 10−9 Ns/m
for the bilipid membrane membrane (Waugh, 1982; Evans and
Yeung, 1994). This difference is likely to have a strong effect on
the characteristic times of cell deformation that is not investigated
here.

4. CONCLUSIONS

The novel material model produces results in good agreement
with several experiments targeting both single-cell mechanics
and collective transport behavior. It also performs well for
higher shear rate values where the other investigated model
might fall short. It is capable of capturing the emerging solid-
like behavior of dense RBC suspensions under low shear-rates.
Furthermore, since our RBC material model is able to handle
strong deformations coupling it with the LBM method for the
plasma flow which operates at very small time-steps (in the
order of 10−8s for the demonstrated flows) allows for small scale
transient effects such as flow instabilities behind obstacles (e.g.,
stenosis or micro medical devices) to be simulated as well.

The framework itself is structured to be easy to extend with
additional material models and cell types, e.g., white blood
cells, and with other fields, such as concentrations of different
chemical components as well as with new biophysical processes,
for instance bond formations. The efficient highly parallel
implementation is capable of handling large domain sizes, thus
it is able to cover the range between cell-based micro-scale and
macroscopic domains.
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The demonstrated capabilities make this framework in
combination with our constitutive model an ideal environment
for exploring the transport effects of blood flows in-silico. It forms
a solid ground for resolving accurate transport mechanics in
vascular flows as a necessary component for modeling complex
phenomena such as cell aggregation around micro-medical
devices, thrombus formation and rheological response of diseases
effecting RBC mechanical properties.
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