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Editorial on the Research Topic

AI and Financial Technology

The Financial Stability Board defines FINancial TECHnology as “technologically enabled financial
innovation that could result in new business models, applications, processes, or products with
an associated material effect on financial markets and institutions and the provision of financial
services.” While innovation in Finance is not a new concept, the focus on technological
innovations and its pace have increased significantly. Fintech solutions that make use of Big
Data analytics, Artificial Intelligence, and Blockchain technologies are currently introduced at an
unprecedented rate. These new technologies are changing the nature of the financial industry,
creating opportunities for Fintechs startups to offer more inclusive access to financial services. The
advantages notwithstanding, Fintech solutions leave the door open for many challenges such as
underestimation of creditworthiness, market volatility, cyber attacks, fraud and money laundering
which represent central points of interest for regulators and supervisory bodies.

In this context, a key issue becomes identifying the desired level of trade-off between innovation
incentives on one hand, and mitigation of risks on the other. The European regulatory framework
should enable Fintech companies operating in their jurisdiction to benefit from innovations in
Technology and Finance while at the same time ensuring both a high level of protection for
consumers and investors and resilience of the financial system. This point has been framed by
the current European Commissioner for the Euro and Social Dialogue and Vice-President of the
European Commission, Valdis Dombrovskis: “Across the board, we are working to strike the right
balance between risks and opportunities; so that Europe can benefit fully from new technologies in
the financial services sector.”

There is a strong need to improve the competitiveness of the European Fintech sector,
introducing a framework for a common regulatory approach across all countries that can supervise
Fintech companies without stifling their economic potential. Such a framework should support
both Fintechs as well as supervisors: on one hand, Fintech firms that want to grow and scale-up
across Europe require a neutral technology and proportional regulatory compliance as well as
advice on how to identify opportunities for innovation procurement, e.g., in advanced regulatory
technology (RegTech) solutions; on the other hand, the supervisory bodies’ ability to monitor
innovative financial products proposed by Fintechs is limited and advanced supervisory technology
(SupTech) solutions are required.

The Horizon 2020 project FIN-TECH (Financial Supervision and Technological
Compliance)—funded by the European Commission for the period 2019–2020—conducts
research on Fintech risk management models to be shared with European regulators, Fintechs
as well as banks. These models are evaluated on a global level which helps to close the gap
between technical and regulatory expertise, in particular providing risk management procedures

4

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2019.00025
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2019.00025&domain=pdf&date_stamp=2019-11-15
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:paolo.giudici@unipv.it
https://doi.org/10.3389/frai.2019.00025
https://www.frontiersin.org/articles/10.3389/frai.2019.00025/full
http://loop.frontiersin.org/people/590184/overview
http://loop.frontiersin.org/people/592652/overview
http://loop.frontiersin.org/people/587887/overview
http://loop.frontiersin.org/people/600304/overview
http://loop.frontiersin.org/people/591664/overview
https://www.frontiersin.org/research-topics/8810/ai-and-financial-technology


Giudici et al. Editorial: AI and Financial Technology

common to both sides and uniform across countries. It will
eventually lead to the development of a regulatory framework
that encourages innovations in Big Data analytics, Artificial
Intelligence, and Blockchain technologies which, at the same
time, satisfies supervisory concerns to apply regulations in
an effective and efficient way, that well protects consumers
and investors. In particular, the FIN-TECH project aims to
create a European training program aimed at shared risk
management solutions that automatize compliance of Fintech
companies (RegTech) and, at the same time, increases the
efficiency of supervisory activities (SupTech). In other words,
the project aims at connecting FINancial supervision with
TECHnological compliance.

This special issue contains the first contributions from this
European project. Some of them are research papers that
evolved into use cases of the project and are shared as well
as used by regulators, banks, and Fintechs. Other papers
are based on extensive talks given by external speakers that
participated at specific events organized by the project. This
collection of papers is discussing public policy viewpoints as
well as AI applications to measure market risks and credit
risks especially in the areas of Robo Advisory and Peer to Peer
(P2P) lending.

The paper by Bredt as well as the paper by O’Halloran
and Nowaczyk present and discuss public policy strategies
aimed at addressing financial innovations brought by disruptive
technologies, capturing their opportunities while mitigating the
related risks.

Furthermore, the paper by Schwendner et al., the paper by
Hakala and the paper by Pagnottoni show howMachine Learning
methods and Artificial Intelligence solutions can be employed to

develop new asset management practices addressing risks. While
Schwendner et al. focus on European Bonds, Hakala considers
modeling volatilities and Pagnottoni works on Blockchain based
bitcoin transactions.

The paper by Giudici et al. the paper by Ahelegbey et al., and
the paper by Agosto et al. all consider how the measurement of
network effects arising from Peer to Peer (P2P) lending platforms
can improve the measurement of credit risk of borrowers. They
apply different models but use the same database with the
common goal to provide applicable use cases for the FIN-TECH
European project to monitor and control credit risk arising from
the application of Big Data analytics.

Finally, the paper by Agosto and Raffinetti focuses on building
appropriate model comparison tools for credit risk modeling.
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Spatial Regression Models to
Improve P2P Credit Risk
Management
Arianna Agosto*, Paolo Giudici and Tom Leach

Department of Economics and Management, University of Pavia, Pavia, Italy

Calabrese et al. (2017) have shown how binary spatial regression models can be

exploited to measure contagion effects in credit risk arising from bank failures. To illustrate

their methodology, the authors have employed the Bank for International Settlements’

data on flows between country banking systems. Here we apply a binary spatial

regression model to measure contagion effects arising from corporate failures. To derive

interconnectedness measures, we use the World Input-Output Trade (WIOT) statistics

between economic sectors. Our application is based on a sample of 1,185 Italian

companies. We provide evidence of high levels of contagion risk, which increases the

individual credit risk of each company.

Keywords: credit risk, systemic risk, contagion, spatial autoregressive models, binary data

1. INTRODUCTION

In recent years, the emergence of financial technologies (fintechs) is redefining the roles of financial
intermediaries and introducing many opportunities for consumers and investors. In particular,
peer-to-peer (P2P) online lending platforms allow private individuals to directly make small and
unsecured loans to private borrowers.

P2P lending business models vary in scope and structure: a comprehensive review is provided
by Claessens et al. (2018). Here we specifically refer to the platforms that lend to small and medium
enterprises (SME).

While both classic banks and P2P platforms rely on credit scoring models for the purpose of
estimating the credit risk of their loans, the incentive for model accuracy may differ significantly.

In a bank, credit risk assessment is conducted by the financial institution itself which, being the
actual entity that assumes the risk, is interested to have the most accurate possible model. In a P2P
lending platform, credit risk is determined by the platform but the risk is fully borne by the lender.
In other words, P2P platforms allow for direct matching between borrowers and lenders.

A factor that penalizes the accuracy of P2P credit scoring models is that they often do not have
access to borrowers’ data usually employed by banks, such as account transaction data, financial
data and credit bureau data. For these reasons, the accuracy of credit risk estimates provided
by P2P lenders may be poor. However, P2P platforms involve their users and, in particular, the
borrowers, in a continuous networking activity. Data from such activity can be leveraged not only
for commercial purposes, as it is customarily done, but also to improve credit risk accuracy.

We believe that networking information can offset the lack of financial and credit behavioral
data and improve credit risk measurement accuracy of P2P lenders, but also of banks. There are
indeed cases in which also traditional financial intermediaries face lack of information about the
borrower. Consider, for example, credit granting to new customers, for whom internal behavioral
data—known to be the most predictive in rating models—are not available.
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When financial networks are backed by statistical models,
inferential statements can be obtained. Important contributions
in this framework are Billio et al. (2012); Diebold and Yilmaz
(2014); Hautsch et al. (2015); Ahelegbey et al. (2016); Giudici
and Spelta (2016), and Giudici and Parisi (2018), who propose
measures of connectedness based on similarities, Granger-
causality tests, variance decompositions and partial correlations
between market price variables.

We improve these contributions, extending them to the
P2P context and linking network models, that are often
merely descriptive, with econometric models, thus providing a
predictive framework.

More specifically, we suggest to use spatial econometrics to
study the interconnectedness in the corporate sector. Spatial
econometrics incorporates dependence among observations that
are in any kind of proximity, not only geographical.

In particular, the model we apply is a logit Spatial
Autoregressive model based on an exogenously defined network.
Themain advantage of this approach over the traditional network
analysis is that it can be used as both an early warning model, to
forecast the failure of a given company, and as a stress testing
technique taking systemic effects into account.

The paper is organized as follows. Section 2 explains
the econometric methodology. Section 3 presents the results
obtained by applying the proposed methodology to data
collected from a European P2P lending information provider.
Section 4 concludes.

2. METHODOLOGY

2.1. Spatial Logit
Themodel we use in this paper has a binary spatial autoregressive
structure, whereby the dependent variable is binary and a spatial
autoregressive structure is assumed in the underlying latent
variable. Taking the latent underlying quantity to be represented
by a continuous variable y∗i , we consider the observation
mechanism as

yi =

{

1, y∗i > 0
0, otherwise,

(1)

with i = 1, 2, . . . , n.
We implement the spatial structure with an autoregressive

model specification, such that

Y∗ = ρWY∗ + Xβ + ǫ, (2)

where Y∗ is a continuous random vector, X represents an n × k
matrix of explanatory variables with related coefficient vector β ,
ǫ is the error term and W is the spatial lag weight matrix with
ρ the associated coefficient, which in our application to defaults
will be interpreted as a contagion parameter.

The model implies heteroskedastic errors e as follows:

Y∗ = (I − ρW)−1(Xβ + ǫ) = (I − ρW)−1Xβ + e, (3)

where

e = (I − ρW)−1ǫ (4)

and

var(e) = var
[

(I − ρW)−1ǫ
]

= σ 2
ǫ

[

(I − ρW)′(I − ρW)
]−1

.
(5)

The defined model has been used by Calabrese et al. (2017) to
study default interdependence in the European banking sector.
Relative to the estimation, Calabrese and Elkink (2014) have
provided a review of the main methodologies for model (3)
in the literature. Among the various approaches, we focus on
the Generalized Method of Moments (GMM) proposed by
Pinkse and Slade (1998). They derive the Generalized Method
of Moments (GMM) moment equations from the likelihood
function of a spatial error probit model, for which Klier and
McMillen (2008) provide the extension to logit models. The
GMM approach does not rely on a potentially inaccurate
assumption of normally distributed errors and is therefore more
robust than maximum likelihood methods.

In general, a GMM estimator is defined by:

θ̂ ≡ argmin
2

mn(θ)�nmn(θ)
′, (6)

where mn(θ) are the moment conditions and �n is a weighting
matrix to be determined.
In our case, we have:

θ = [ρ,β]

To construct the moments, following Pinkse and Slade (1998) we
use the generalized residuals

ui = yi − pi, (7)

where:

pi = Pr[yi = 1] =
exp(I−ρ̂W)−1Xβ̂

1+ exp(I−ρ̂W)−1Xβ̂

It follows from specification (3) that the elements of the spatially
lagged dependent vector WY∗ are correlated with those of
the error vector, hence the need for instrumental variables.
Following Kelijian and Prucha (1998), who suggest to choose the
instruments as a subset of the linearly independent columns of:

H = {X,WX,W2X,W3X, ...}

we define the instrument matrix1

Z = {X,WX}

Thus, generating the moment conditions via the identity:

E[Z′u] = 0

θ̂ can be estimated by the following

θ̂ = argmin
2

u′Z�Z′u (8)

The estimation algorithm used in our application is explained in
detail in section 2.3.

1As explained in Kelijian and Prucha (2010),H proxies the expected value ofWY∗

using its projection on X.
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2.2. The Network
The spatial regression model we propose is based on an
exogenously defined network, where the nodes correspond to
individual companies and the ties express the volume of trade
between any pair of companies, i.e., the trade flow from company
i to company j, for each i and each j. This information is generally
not available, so we must approximate it using data on aggregate
input-output trade between sectors.

The World Input Output Trade (WIOT) statistics provide
information on the aggregate trade volumes of 52 economic
sectors in each country with all sectors in all countries.

For a given country, define A as the sector of company i, B as
the sector of company j, and let fAB be the trade flow from sector
A to sector B, while fBA is the trade flow from sector B to sector A.

Replacing the individual flows with the aggregate ones, the
entries of the approximate trade matrix F are then obtained as:

fij = fAB =
∑

l∈A

∑

m∈B

flm

To use these data for proxying the individual companies’ flows,
we need to calculate the proportion of each company in terms
of size over its sector using a suitable measure, such as turnover
or the value of trade receivables (for inflows) and payables
(for outflows).
Consider, for example, the case of determining the trade
flows from company i, belonging to sector A, to company j,
belonging to sector B, knowing the individual trade payables
and receivables.
We first calculate the ratio between company i trade payables x̃i
and the sum of sector A trade payables:

xi =
x̃i

∑

l∈A x̃l

Then we calculate the ratio between company j trade receivables
ỹi and the sum of sector B trade receivables:

yj =
ỹj

∑

m∈B ỹm

The product xiyj is a proxy of the proportion of flows from
company i to company j on the total flows from sector A to
sector B.
Repeating this calculation for all companies, we get the matrix:

R = 〈x, y〉 =











x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

. . . · · ·
...

xny1 xny2 · · · xnyn











Finally, by calculating the entrywise product of R and the trade
matrix F, we get the following matrix:

W = R ◦ F =











x1y1F1,1 x1y2F1,2 · · · x1ynF1,n
x2y1F2,1 x2y2F2,2 · · · x2ynF2,n

...
. . . · · ·

...
xny1Fn,1 xny2Fn,2 · · · xnynFn,n











Note that the ij element can be interpreted as the proxy of
the trade flow from company i to company j. Conversely, the
ji element can be interpreted as the proxy of the trade flow
from company j to company i. The estimated flows define the
magnitude of intercompany connections. To use W as a spatial
weighting matrix in our application, we need to set the entries on
the diagonal to 0 and normalize the rows so as to sum to 1.

2.3. Estimation Procedure
To estimate the SAR model parameters, we use a two-step
estimation procedure:

(i) minimize Equation (8), letting� = I2k−1, to obtain parameter
estimates θ̂ and calculate the optimal weighting matrix by
computing the covariance of the moments:

Ŝ =
1

n
Z′uu′Z

where the residual vector u is calculated as in (7).
(ii) recompute the parameter estimates θ̂ by substituting the

identity matrix with the optimal weight matrix:

�̂ = Ŝ−1

Note that this procedure requires inversion andmultiplication
of large matrices, so the computation time can be very long
when working with large datasets. Possible solutions should
be based on suitable simplifications to the connectivity matrix
W to make it more sparse, such as fixing a threshold for the
relevance of trade flows. However, with our sample size (n =

1, 185) the computational time for the two-step algorithm is
more than acceptable. We remark that the employed data is
available as Supplementary Material.

3. DATA AND RESULTS

In this section we empirically verify whether the predictive
performance of P2P credit scoring models can be improved using
correlation network models. In particular, we are interested in
assessing significance and magnitude of the contagion parameter
ρ. The more the contagion parameter is close to 1, the more the
networking information can support credit risk evaluation. To
achieve this goal, we have collected data from a European Credit
Assessment Institution (ECAI), that supplies credit scorings to
P2P platforms specialized in business lending. We use data
relative to 1,185 borrowing Italian SMEs, in 2015–2016. The
proportion of observed defaults in our sample is nearly 11%,
which is large, in line with the observed impact of the recent
financial crisis in Southern European countries. The available
data include the status of the companies, classified as [1 =
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FIGURE 1 | Network of P2P Italian SMEs.

TABLE 1 | Results of estimation of non-spatial logit model.

Estimate Std. error Pr(> |z|)

Intercept −2.11 0.16 2.97e–38

β1 (RATIO012) −0.69 0.10 6.35e–11

β2 (RATIO018) 0.02 0.10 0.84

β3 (RATIO027) −0.01 0.00 9.10e–04

Defaulted] and [0 = Active], in 2016 as well as some main
financial information, for year 2015. From the available data, we
select three financial ratios reflecting the three most important
aspects related to default probability: operational performance,
business sustainability and financial sustainability. Specifically,
we consider:

• the return on equity ratio (RATIO012)
• the activity ratio, expressed as the ratio between sales and total

assets (RATIO018);
• the solvency ratio, expressed as the ratio between the net

income and the total debt (RATIO027)

The spatial weight matrix W has been built from the WIOT
database, as described in section 2.2 and using turnover as a
company size measure. Figure 1 shows the network based on the
estimated connections.

Table 1 shows the parameter estimates obtained using a
simple logit model, without the spatial component.

TABLE 2 | Results of estimation of SAR model.

Estimate Std. error Pr(> |z|)

ρ 0.78 0.23 5.44e–04

Intercept 0.44 0.46 0.35

β1 (RATIO012) −0.53 0.15 2.24e–04

β2 (RATIO018) 0.05 0.13 0.69

β3 (RATIO027) −0.03 0.01 0.03

Then we estimate the SAR model (3) through the algorithm
presented in section 2.3. The obtained results are reported
in Table 2.

We first note from Table 2 that the contagion parameter is
significant and its value is high (0.78). The effect of financial
ratios is stable, supporting the SAR specification including
both a spatial and an exogenous component. Thus, considering
a measure of connectivity between companies significantly
explains the credit risk arising from P2P lending, improving the
traditional analysis based on individual financial indicators.
Including the spatial component also improves model accuracy,
as shown in Figure 2 plotting the ROC curves of the simple
logit and the spatial logit model. The AUC (Area Under the
ROC Curve) values are 0.798 and 0.806, respectively. It is worth
noting that the difference in the AUC values is modest and
could turn out to be non-significant in an out-of-sample exercise.
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FIGURE 2 | ROC curves of baseline and spatial logit models.

However, the proposed specification defines a contagion model
which can support the analysis of interconnectedness between
the agents’ default risk, even when this does not improve the
predictive performance in a crucial way. Future research may
concern dealing with unbalanced samples (as in Calabrese and
Giudici, 2015) and/or with multiple data sources (as in Figini and
Giudici, 2011).

4. CONCLUSIONS

This paper provides a method, based on binary spatial regression
models, to improve default prediction by estimating the
interdependence between companies due to trade ties.

We have applied the methodology to a sample of Italian
companies, finding evidence of a high level of spatial
autocorrelation, interpretable as a credit contagion parameter.

The proposed model provides both a description of contagion
(through the spatial component) and a predictive capability,
differently from most existing contagion models, which provide
either of the two. The model can be easily implemented, as
a modification of a classical logistic regression that includes
interconnectedness. We believe that the findings which can
be derived from spatial autoregressive models may be useful,
especially for P2P lenders who can use it to improve credit
risk assessment.

From a methodological viewpoint, further research may
involve employing a different generalized linear model, such
as the generalized extreme value regression models discussed

in Calabrese and Elkink (2016). Moreover, the dependence
structure could be extended to the dynamic case (Arakelian and
Dellaportas, 2012).
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Stochastic volatility models are a popular choice to price and risk–manage financial

derivatives on equity and foreign exchange. For the calibration of stochastic local volatility

models a crucial step is the estimation of the expectated variance conditional on the

realized spot. The spot is given by the model dynamics. Here we suggest to use methods

from machine learning to improve the estimation process. We show examples from

foreign exchange.

Keywords: radial basis functions, machine learning, local stochastic volatility, derivatives pricing, finance

1. INTRODUCTION

For derivatives pricing a major breakthrough was achieved with the risk-neutral valuation principle
(Black and Scholes, 1973). Initially themodels assumed a deterministic, state-independent volatility
of the underlying price process. For many classes of underlying this assumption is too restrictive
as it does not allow for an implied volatility that depends on strike as it is observed in the
market, at least since the Black Friday in 1987, see for a review and attempted explanation
(Benzoni et al., 2011).

Hence the most natural extension of the existing models was to postulate either a
state-dependent volatility often duped as local volatility (Derman and Kani, 1994; Dupire, 1994)
or to postulate an additional process for the volatility (e.g., Hull and White, 1987; Heston, 1993)
which are labeled as stochastic volatility models.

Looking at the properties of these two model classes it was found (Hagan et al., 2002)
that local volatility is postulating a dynamics which is not found in real markets. In foreign
exchange options markets stochastic volatility models tend to exaggerate the effect of volatility
convexity and at the same time these models are unable to match the short–dated volatility
smile observed in market–prices. As a practical workaround, models that mix the local volatility
and stochastic volatility were developed (Said, 1999; Blacher, 2001). It was observed that the
calibration of SLV models is a hard problem which requires either a specific parametrization to
derive fast pricing of vanilla options or quite time-consuming numerical optimization procedures
(Guyon and Henry-Labordere, 2011). See as well Homescu (2014) for a great summary and best
practice of local stochastic volatility models.

A shortcut to derive manageable calibration times was developed by
Guyon and Henry-Labordere (2011) and Van der Stoep et al. (2014) using a Monte Carlo
procedure to derive the required estimation of the conditional variance. In this paper we suggest to
use methods from machine learning, in particular radial basis functions and variations thereof to
derive fast and efficient estimators.
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2. LOCAL STOCHASTIC VOLATILITY
CALIBRATION

The LSV model in general is of the form:

dSt = µ(t)Stdt + σ (St , t)f (Vt)StdWt

dVt = µV (Vt)dt + ξχ(Vt)dXt

< dWt , dXt > = ρdt

with spot St , variance Vt , drift µ, (state-dependent) drift for
the variance µV , vol of variance ξχ(Vt), and correlation ρ. The
LSV calibration is the process to determine the leverage function
σ given the local volatility function σ 2

Dupire and all the other

parameters of the model. There is a fundamental relationship of
the leverage function and the local volatility function (Dupire,
1996) where the expectation EP(St ,Vt ,σ ) of the conditional variance
Vt is taken with respect to the risk–neutral measure induced
by the model. The notation indicates that P(St ,Vt , σ ) is the
joint probability of spot process St , variance process Vt and the
solution for σ which depends on the probability distribution
of (St ,Vt).

σ 2
Dupire(St , t) = EP(St ,Vt ,σ )(Vt|S = St)σ

2(St , t) (1)

Plugging the solution into the model equation makes this a
McKean SDE where the expectation depends on the probability
of the process itself.

To solve this equation Monte Carlo simulation can be used.
The equations are discretized and the forward propagation of
the spot St and variance Vt is interleaved with the estimation
of conditional expectation using the realized paths of St and
Vt . Contrary to standard Monte Carlo where all paths develop
independently we need to bring all simulated paths to the
estimation procedure. Using Euler discretization

1 ln(St) = µ(t)1t −
1

2
σ 2(St , t)f

2(Vt)1t

+σ (St , t)f (Vt)
(

√

1− ρ21W + ρ1X
)

1Vt = µV (Vt)1t + ξχ(Vt)1X

with 1W,1X independent increments. The estimation of the
conditional expectation can be seen as finding the function
R(S) = E(Vt|St = S) based on the samples as observed pairs

(S1t ,V
1
t ), · · · , (S

n
t ,V

n
t )

where the spot Sit and variance V i
t are the time t realizations

of spot and variance on path i. Originally it was proposed
to estimate the function R using kernel regression
(Guyon and Henry-Labordere, 2011):

R((S1,V1), · · · , (SN ,VN))(S) =

∑N
i=1 ViKh(S− Si)

∑N
i=1 Kh(S− Si)

(2)

with Kernel functions Kh, where we dropped the t index as it is
clear from the context. Alternatively (Van der Stoep et al., 2014)
proposed to use binning techniques or sets of polynomials.

Subsequently we will evaluate alternative regression
techniques to estimate the conditional expectation based
on the realized paths. This can be rephrased as a supervised
learning problem where each path is a (noisy) example.

3. REGRESSION AS A SUPERVISED
LEARNING PROBLEM

The task to find a relationship between some input variables
and an output from examples is one of the problems tackled
by machine learning and is well studied as supervised learning.
There are many classes of supervised learning algorithms and
setups and we would like to demonstrate guidelines to which
specific choices are suitable for the problem at hand. The basic
problem is, given a set of examples xi, yi to find a function f (x)
such that an error functional is minimized. The task is to find
a function such that there is low error on unseen examples, this
is called generalization. There is a balance to strike between the
error on the examples used for training and the error on the
validation set of examples which are examples not used during
training, for a fundamental analysis of the learning theotry and
the relation between capacity and the generalization (see e.g.,
Vapnik, 2013), in particular chapter 4.

3.1. Kernel Regression
The approach taken in Guyon and Henry-Labordere (2011) as
stated above is Nadarajan-Watson kernel regression which is one
of the so called non-parametric methods. The method is identical
to Equation (2). The estimator is given as:

R((x1, y1), · · · , (xN , yN))(X) =

∑N
i=1 yiKh(x− xi)

∑N
i=1 Kh(x− xi)

In this approach a Kernel function K(x) is used, which satisfies:

K(x) ≥ 0

K(x) = K(−x)
∫ ∞

−∞

K(x)dx = 1

Kh(x) =
1

h
K

(x

h

)

There is a variety of Kernel functions well studied in the literature
(Härdle, 1990):

• Gaussian 1√
2π

e−
x2

2

• Quartic 15
16 (1− x2)2

• Epanechnikov 3
4 (1− x2)

• Sigmoid 2
π

1
ex+e−x

Often the Kernel function used is Gaussian hence the support
of the function is infinite or it will be the Epanechnikov Kernel
which has bounded support.

The crucial choice is the bandwidth of the Kernel functions.
There is a rule-of-thumb derived from normal distribution
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assumptions, (Silverman, 1986):

h =

(

4σ 5

3n

)

1
5

for the standard deviation σ of the data and n data points.
Alternatively cross validation, particular “leave–one–out cross

validation” can be used to determine an optimal Kernel width.
Cross validation is quite costly computationally and hence can
only be used to cross check ad-hoc choices.

Local Linear Kernel Regression is a variation of Kernel
regression which employs local linear terms and which is given
by the solution of

R((x1, y1), · · · , (xN , yN))(x) = min
α,β

N
∑

i=1

(yi − α − (x− xi)β)
2

Kh(x− xi)

The minimum is found by solving a 2× 2 linear system .
In general the Kernel approaches suffers from some systematic

shortcomings, mainly the fact that all examples are used, no
compression happens, secondly a bias is introduced close to the
boundary and the difficult choice of suitable bandwidth, where
practically sound theoretical methods as cross validation cannot
be used for computation time reasons.

3.2. Radial Basis Functions
Radial Basis Functions (RBF) and Partition of Unity Radial Basis
Functions (PURBF) respectively take the form

RBF(x) =

C
∑

i=1

wiKhi (x− ci)

PURBF(x) =

∑C
i=1 wiKhi (x− ci)

∑C
i=1 Khi (x− ci)

PURBF are quite similar in functional form to Kernel regression.
Themain difference is that the number of basis functions is much
smaller than the number of examples. It was proven that RBF
and PURBF are universal function approximators (Hakala et al.,
1994) which makes them suitable to approximate our estimation
problem. If the L2 norm is used the weights are optimized by
solving the normal equation

LS =
1

2N

N
∑

i=1

(yi − RBF(xi))
2.

The solution s given by the weights wi, which satisfy

wi = (ATA)−1
ik

Akjyj

FIGURE 1 | EUR/USD implied volatility in log moneyness and time to maturity. (Source: Leonteq AG—March 2018).
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FIGURE 2 | EUR/USD local volatility in log moneyness and time to maturity. (Source: Leonteq AG—March 2018).

FIGURE 3 | EUR/USD 6M estimated variance conditional on realized spot and realized paths for various kernel functions as well as forward and digital levels. (Source:

Leonteq AG—March 2018).
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FIGURE 4 | EUR/USD 6M estimated variance conditional on realized spot and realized paths for various kernel functions and cross validated width as well as forward

and digital levels. (Source: Leonteq AG—March 2018).

FIGURE 5 | EUR/USD 6M estimated variance conditional on realized spot and realized paths for various local linear kernel functions and cross validated width as well

as forward and digital levels. (Source: Leonteq AG—March 2018).
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FIGURE 6 | EUR/USD 6M estimated variance conditional on realized spot and realized paths using PURBF as well as forward and digital levels. (Source: Leonteq

AG—March 2018).

FIGURE 7 | EUR/USD 5Y estimated variance conditional on realized spot and realized paths using kernel regression, local linear kernel regression, and PURBF as well

as forward and digital levels. (Source: Leonteq AG—March 2018).

Frontiers in Artificial Intelligence | www.frontiersin.org 6 May 2019 | Volume 2 | Article 417

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Hakala Machine Learning for SLV-Calibration

with the matrix Aij given as

Aij = Khj (xi − cj).

(3)

The remaining parameters are determined heuristically:

• centers ci - in 1D we chose min(xi), max(xi), and a random
subset of the remaining xi. Centers which are too close (in
their local width) are pruned—the criterion for unit j is

mini

(

|ci−cj|

hj

)

≤ 2 with a suitable global pruning constant 2.

There are resource allocating approaches as well (e.g., Fritzke,
1994) which seem less suitable here.

• width hi- are chosen individually as a multiple of the k nearest
neighbors or ad-hoc.

3.2.1. Regularization

Often the solution of the normal equation will be ill-conditioned.
To counteract the bad conditioning of the problem and to get a
better generalization we will use a regularizer on the L2 norm of
the weights (e.g., Goodfellow et al., 2016, Chapter 7.1).

LSR =
1

2N

N
∑

i=1

(yi − RBF(xi))
2 + λ

C
∑

j=1

w2
j

The corresponding solution is given as

wi = (ATA− λ id)−1
ij Ajkyk

with identity matrix id. The same solution applies for the PURBF
function instead of the RBF one.

3.3. Computational Efficency
For standard Kernel Regression computational effort is mainly
due to sorting O(n log(n)) of the spot observations to
enable an efficient lookup of relevant spot observations during
the retrieval phase. Optimal determination of width (cross-
validation) requires the evolution of all kernels at all points
several times which is very costly compared to the lookup.
Local linear Kernel Regression requires an additional inversion
of a 2× 2 matrix which is negligible. For RBF and PURBF the
solution to a small linear system is required. In particular the size
is much smaller than the number of samples. Sorted examples
can be used to optimize the training as the required matrix
is determined by sums over the samples. Width and pruning
computations require local computation of the order of the
number of kernel functions. Overall the computational effort for
RBF/PURBF is comparable and might be smaller in the retrieval
phase than for Kernel Regression itself.

FIGURE 8 | USD/JPY local volatility in log moneyness and time to maturity. (Source: Leonteq AG—March 2018).
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3.4. Alternative Architectures
In the last couple of years popularity of multilayer perceptron
(MLP) and deep versions thereof grew enormously. For our
application we rule out these architectures as the training is much
more involved in the MLP case with a many remaining questions
about a suitable number of hidden units, number of layers, type of
activation functions. We could envision to use a pretrained MLP
to get the solution without training. We postpone this approach
for potential future use.

4. APPLICATION TO LSV MODEL IN
FOREIGN EXCHANGE

The model we will study is of Heston type

dSt = µ(t)Stdt + σ (St , t)
√

VtStdWt

dVt = κ(V̄ − Vt)dt + ξ
√

VtdXt

< dWt , dVt > = ρdt

with mean reversion speed κ , mean reversion level V̄ .

The advantage is that we have a semi-closed form solution for
vanilla call- and put options in the Heston model without the
leverage function hence the first step is to calibrate the Heston
model and then apply a scaling to the vol of vol parameter to
reduce the SV impact and to let the local volatility compensate
to match the vanilla option market. In this study we will use a
volatility mixing of 66% which means that we scale the vol of
variance by this factor before calibrating of the leverage function.

To compare the performance of the various regression
algorithms on this model we will show for a specific slice
the realized spot/variance and the corresponding results of the
regression functions.

4.1. Example EUR/USD 6M
You can see the volatility surface in Figure 1 and the
corresponding local volatility surface in Figure 2. The snapshot
of data, including spot, volatility, and interest rates was taken in
March 2018. We show the results of different kernel estimators,
using Silverman’s rule of thumb for the width, including the
samples indicated as Current, as well as the forward and the
level of a 0.1% digital on the upside and downside Figure 3.

FIGURE 9 | USD/JPY 5Y estimated variance conditional on realized spot and realized paths using kernel regression, local linear kernel regression, and PURBF as well

as forward and digital levels. (Source: Leonteq AG—March 2018).
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In Figure 4 you see the results of Kernel Regression for
Silverman’s rule and additionally the cross-vaildated width for
the same kernel functions. Notice that the optimal width varies
between different kernels. We show results for local linear kernel
regression in Figure 5. It can be seen that the bias at the
boundaries is reduced in comparison to the kernel regression.
Again we show results for Silverman’s rule and additionally the
cross-vaildated width.

For the PURBF we show results in Figure 6 using a global
width, relative knn width, pruned and relative knn width, pruned
with global width, and pruned, knn width and regularizer (λ =

0.2). We use 40 units in all cases as this number seems sufficently
versatile for the number of particles we want to use (2,048).

The last version with regularizer, pruning, and local width is
the preferred version as it shows a smooth behavior without a bias
in the boundaries andmatches the part with many data–points in
the middle without oscillations.

4.2. Example EUR/USD 5Y
We show the results for 5Y maturity and the same volatility
surface in Figure 7. Among the tested approaches the
PURBFwith 5 nearest neighbors performs best.

4.3. Example USD/JPY 5Y
We show the results for USD/JPY, see the local volatility
surface in Figure 8. The estimation across the spot range is

shown in Figure 9. Again the PURBFwith 5 nearest neighbors
performs best.

4.4. Example EUR/BRL 3Y
We show the results for EUR/BRL, which is a highly skewed
and highly drifting underlying. See the local volatility surface
in Figure 10. The estimation across the spot range is shown in
Figure 11. Note that in this case the range of spot realizations
is quite skewed as is expected from the skewed volatility surface.
Nevertheless the PURBFwith 5 nearest neighbors puts a relatively
smooth estimator through the samples and performs better than
other methods.

4.5. Pricing Examples
To see the impact on exotics pricing we look at one–touch
options. A one–touch option pays one unit of the counter
currency at the maturity date if the spot trades at or beyond
the touch–level at any time during the life of the option. We
show the impact as a function of the Black–Scholes price (TV),
similar to (Clark, 2011). The TV of a one–touch can be between
0% and the discount factor to maturity, which is in the range of
100%. For fixed market parameters like spot, volatility and the
risk–neutral drift TV is a function of the touch–level only, hence
makes a unique scale to show the model impact. The deviation
of the LSV model price from the TV is the desired effect of an
alternative model, which incorporates volatility risk management

FIGURE 10 | EUR/BRL local volatility in log moneyness and time to maturity. (Source: Leonteq AG—March 2018).
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FIGURE 11 | EUR/BRL 3Y 5Y estimated variance conditional on realized spot and realized paths using kernel regression, local linear kernel regression, and PURBF as

well as forward and digital levels. (Source: Leonteq AG—March 2018).

FIGURE 12 | One–touch prices EUR/USD 6M LV vs. TV, SV vs. TV, LSV vs. TV. Upside one–touches on the left, downside on the right.(Source: Leonteq

AG—March 2018).
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FIGURE 13 | One–touch prices EUR/BRL 6M LV vs. TV, SV vs. TV, LSV vs. TV. Upside one–touches on the left, downside on the right. (Source: Leonteq

AG—March 2018).

and hedging, compared to the Black–Scholes model. The form
of the deviation is not obvious and would require a rather
complicated hedging argument of volatility risk and cross spot–
volatility risk.

With the mixed local stochastic volatility model and mixing
rate of 66% we expected the LSVprice to be within the bounds
of stochastic and local volatility price. We use Monte Carlo
pricing with a fixed number of 32,000 paths (antithetic) and
Quasi Random Numbers, a time discretization of 5 days and
fixed 2048 particles. We denote the Black–Scholes prices as
BS or TV (theoretical value) in the graphs and use LV as
abbreviation for prices in local volatility and HES for the
Heston model without local volatility component. The prices
can be seen in Figure 12 for EUR/USD 6M and in Figure 13

for EUR/BRL 6M. We observe the expected behavior in all
cases, the mixed local stochastic volatility prices are within the
range of local and stochastic volatility prices and the mixing
parameter can be used to adjust the behavior to observed exotics
prices (e.g., one touches) in the market. Usually this mixing
parameter is quite stable across longer periods, often weeks or
even months.

5. CONCLUSION

We apply machine learning principles to improve the calibration
process of the local stochastic volatility models. The suggested
meta parameters and heuristics seem to apply to a wide variety of

underlyings in FX, liquid pairs like EUR/USD as well as emerging
markets as EUR/BRL. The computational efficiency is at about
the same level as for the formerly suggested Kernel Regression
based approach. The results given by the PURBF function with
pruning, regularization, and local width determined by 5 nearest
neighbor performed significantly better than the Kernel based
approaches, hence we would suggest to consider this approach
in the calibration process.

Further work will be dedicated to improve the computational
speed and to establish better measures of the quality. In
particular in situations where vol surfaces are almost arbitragable
we will need the method to continue to provide numerically
stable results.
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Financial intermediation has changed extensively over the course of the last two decades.

One of the most significant change has been the emergence of FinTech. In the context of

credit services, fintech peer to peer lenders have introduced many opportunities, among

which improved speed, better customer experience, and reduced costs. However,

peer-to-peer lending platforms lead to higher risks, among which higher credit risk:

not owned by the lenders, and systemic risks: due to the high interconnectedness

among borrowers generated by the platform. This calls for new and more accurate

credit risk models to protect consumers and preserve financial stability. In this paper

we propose to enhance credit risk accuracy of peer-to-peer platforms by leveraging

topological information embedded into similarity networks, derived from borrowers’

financial information. Topological coefficients describing borrowers’ importance and

community structures are employed as additional explanatory variables, leading to an

improved predictive performance of credit scoring models.

Keywords: contagion, credit risk, credit scoring, network models, peer to peer lending

1. INTRODUCTION

Financial intermediation has changed extensively over the course of the last two decades mostly
due to technological advancement. One of the most significant change has been the emergence
of FinTech that is nowadays altering many financial products, services, production processes, and
organizational structure. In the context of commercial credit, FinTech solutions have introduced
many opportunities for both lenders and borrowers thus redefining the role of traditional
intermediaries. Peer-to-peer lending platforms, often abbreviated P2P lending, allow private
individuals to directly run small and, in most cases, unsecured loans to private borrowers or small
and medium enterprises (SME). The recent advances in information technology have enabled these
online platforms to provide an alternative to traditional financial intermediaries, by delivering
more cost efficient, consumer friendly and transparent lending services, improving the overall
value for customers (for a review see e.g., Claessens et al., 2018; Giudici and Misheva, 2018).

The literature identifies many factors which explain the increasing role of P2P lending platforms
in the global world of finance (see e.g., Serrano-Cinca and Gutiérrez-Nieto, 2016). For instance,
P2P platforms are not required to respect bank capital requirements nor to pay fees associated
with state deposit insurance practices, and this allows them to operate with lower costs. Thus,
borrowers benefit because they are able to receive credits at lower interest rates, and in some
cases with little or no collateral, whereas lenders can receive higher rates of return on investment,
due to reduced transaction costs (see Emekter et al., 2015). Second, advancements in information
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technology have also been a key force driving the exponential
growth of P2P platforms (see Guegan and Hassani, 2017). In this
context, many P2P platforms rely not only on "hard" but also on
"soft" i.e., social network activity information for the purpose of
evaluating a candidate’s creditworthiness, a practice not typically
employed by traditional banks. The third factor explaining the
rapid growth of P2P platforms is related with regulatory aspects.
With the new revised Payment Service Directive (PSD2), that
came in effect in 2018, the monopoly which banks have on
their clients account information and payment transactions
becomes weaker as this information can be disclosed through
application payment interfaces. From a different viewpoint,
the rapid growth of the importance of P2P lending platforms
can pose significant risks to financial stability. This because P2P
lenders typically produce inadequate measures of credit risk.
In comparison with traditional banks, P2P platforms are less
able to eliminate asymmetric information, thus increasing the
risk of bad debt accumulation because they have no access to
detailed information on borrowers past financial transaction.

Moreover, P2P lending activity is built on the basis of a
"many-to-many" approach, in which the financial intermediary
empowers each lender to decide to whom borrower to lend and
for what amount. This leads to a strong interdependence between
the borrowers and the lenders, which may generate high levels of
contagion and systemic risk.

Even more importantly, P2P lenders allow for direct matching
between borrowers and lenders, without the loans being held
on the intermediary’s balance-sheet; in other words, in a P2P
platform, the risk is fully born by the lender. From a risk-return
perspective, while in classical banking a financial institution
chooses its optimal trade-off between risks and returns (subject to
regulation constraints), in P2P lending, the platform maximizes
its returns without taking care of the risks which are borne by
the lenders.

The misaligned incentives, asymmetric information,
differences in the business model and in the risk ownership
may lead to the platform not being able to correctly distinguish
between different risk classes which in turn can impact the
overall stability of the financial system. In this paper we propose
to exploit topological information embedded into similarity
networks to increase the predictive performance of some credit
scoring models.

Understanding the structure of a similarity network (see
Mantegna and Stanley, 1999) is indeed instrumental for
understand the origin of companies failures and to inform
policymakers on how to prepare for, and recover from,
adverse shocks hitting the network. Similarity patterns between
companies’ features can be extracted from a distance matrix and
they can reveal how credit risk is related to the topology of the
network. To account for such topological information we rely on
centrality measures and community structure detection (see e.g.,
Newman, 2018). We show that the inclusion of these variables
into credit scoring models does improve their predictive utility.
Results confirm the validity of this approach in discriminating
between defaulted and sound institutions, thus, the proposed
methodology can constitute a new instrument in both policy-
makers an practitioners toolboxes. We remark that our work is

related to two main other recent research streams. First, some
authors have carried out investigations on the accuracy of credit
scoring models of P2P platforms (Serrano-Cinca et al., 2016).
We improve these contributions by extending the methodology
to also account for the interconnections that emerge between
economic agents. Second, our network approach relates to a
recent and fast expanding line of research which focuses on
the application of network analysis tools, for the purpose of
understanding flows in financial markets, as in the papers of
Allen and Gale (2000), Leitner (2005), and Giudici and Spelta
(2016). We improve these contributions, extending them to
the P2P context and linking network models, that are often
merely descriptive, with statistical and machine learning models,
thus providing a predictive framework. The rest of the paper
is organized as follows: section 2 introduces the data set we
employ in the analysis together with the description of the
credit scoring models and of the performance measures. In this
section we also present the metric used for extracting distances
between the borrowing companies and themethods employed for
building the networks and for extracting topological information.
Section 3 is devoted to show the results of the analysis
and the comparison between the performances of the credit
scoring models with and without the topological information.
Section 4 concludes.

2. DATA AND METHODOLOGY

In this section we first describe the data set employed in our
analysis and the necessary pre-processing stage. Subsequently we
introduce the families of credit scoring models and the non-
parametric measures used for testing the performance of such
models. Then we focus on showing how one can extract relevant
patterns of similarities to build up meaningful networks from
balance-sheet features of borrowing companies.

We consider data supplied by the European External Credit
Assessment Institution (ECAI) that specializes in credit scoring
for P2P platforms focused on SME commercial lending.
Specifically, the analysis relies on a data set, that is composed
of official financial information (financial ratios constructed on
the basis balance sheet and income statement information) on
4514 Italian SMEs which represent the target of P2P lending
platforms. Appendix A provides a table encompassing formulas
to compute such ratios. Table 2, instead, provides the summary
statistics of the variables included in this data set and information
concerning their mean value aggregated by the status of the
companies (active and defaulted). It is important to note that
none of the variables included in data set contains missing values
and the proportion of defaulted companies is 11%.

What is noticeable from Table 1, is that, as in most real-world
data sets (and particularly those reflecting the operations of start-
ups and small and medium enterprises), for most variables, there
is a noticeable presence of unusually large or small values when
compared to the mean. The literature recognizes many methods
for dealing with outliers however in most cases the correct
application of these methods is based on very strong assumptions
concerning the size and distribution of the data set as well as the
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TABLE 1 | Summary statistics of variables included in the dataset.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max Active Default

ratio001 4,514 8.885 19.155 −64.430 1.303 9.680 206.550 8.85 9.15

ratio002 4,514 1.264 3.333 −10 0 1.2 33 1.25 1.35

ratio003 4,514 1.444 0.761 0.170 1.070 1.520 8.270 1.49 1.09

ratio004 4,514 1.536 1.201 0.010 0.970 1.720 13.710 1.6 1.04

ratio005 4,514 1.190 1.024 0.000 0.610 1.407 10.880 1.24 0.76

ratio006 4,514 7.726 23.277 −33.140 0.940 4.890 297.020 7.93 6.09

ratio008 4,514 23.068 70.271 −285.860 1.240 16.317 566.960 26.22 –2.33

ratio011 4,514 0.028 0.147 −1 0.01 0.1 0 0.05 –0.13

ratio012 4,514 −0.069 0.790 −8.540 0.000 0.210 1.080 0.01 –0.69

ratio017 4,514 1.372 1.068 0.010 0.680 1.740 8.420 1.38 1.30

ratio018 4,514 1.335 1.064 0.010 0.640 1.700 8.420 1.34 1.29

ratio019 4,514 0.194 0.498 −3.320 0.010 0.390 3.950 0.21 0.05

ratio027 4,514 36.513 92.893 −191.630 2.470 27.608 747.010 40.18 6.96

ratio029 4,514 0.062 0.196 −2 0.02 0.1 1 0.08 –0.12

ratio030 4,514 0.068 0.216 −2 0.02 0.1 1 0.09 –0.12

DIO 4,514 105.228 355.807 0 1 80 5.569 100.61 142.47

DPO 4,514 75.934 111.651 0 0 99.8 1.467 67.35 145.18

DSO 4,514 95.732 128.370 0 0 136 1.465 91.07 133.32

turnover 4,514 3,344.479 7,580.559 6 594 2,761.8 76.403 3,542.27 1,749.41

For each measure we report the average (Mean) along with the standard deviation (St. Dev.), the minimum (Min), the 25-th and 75-th percentiles (Pctl), the maximum (Max), mean value

of the variable for active companies (Active), mean value of the variable for defaulted companies (Defaulted).

randomness of the outliers. In this context, we do not substitute
or cancel outliers because we believe they can provide important
insights concerning the companies included in the sample. All
data and code employed is available as Supplementary Material.

2.1. Credit Risk Models
Credit risk models are useful tools for modeling and predicting
individual firm default. Such models are usually grounded on
regression techniques or machine learning approaches often
employed for financial analysis and decision-making tasks (see
Khandani et al., 2010; Yu et al., 2010; Khashman, 2011; Lessmann
et al., 2015; Abellán and Castellano, 2017 to cite few).

Consider N firms having observation regarding T different
variables (usually balance-sheet measures or financial ratios). For
each institution n define a variable γn to indicate whether such
institution has defaulted on its loans or not, i.e., γn = 1 if
company defaults, γn = 0 otherwise. In a nutshell, credit risk
models develop relationships between the explanatory variables
embedded in T and the dependent variable γ .

Against this background, we employ logistic regression,
discriminant analysis, classification and regression trees and
support vector machine (Anderson, 2007). The following
paragraphs briefly summarize the characteristics of the models
we use for the present analysis.

The logistic regression model is one of the most widely used
method for credit scoring. The model aims at classifying the
dependent variable into two groups characterized by different
status (defaulted v.s. active) by the following model:

ln(
pn

1− pn
) = α +

T
∑

t=1

βtxnt (1)

where pn is the probability of default for institution n, xi =

(xi,1, ..., xi,T) is the T-dimensional vector of borrower specific
explanatory variables, the parameter α is the model intercept
while βt is the t-th regression coefficient. It follows that the
probability of default can be found as:

pn = (1+ exp(α +

T
∑

t=1

βtxnt))
−1 (2)

Discriminant analysis assumes that different classes generate data
based on different Gaussian distributions. Linear discriminant
analysis (LDA) approaches the problem by assuming that the
conditional probability density functions p(x|γ = 0) and
p(x|γ = 1) are both normally distributed with mean and
covariance parameters (µ0,V0) and (µ1,V0) respectively. In this
context, the decision rule is based on the Linear Score Function,
a function of the population means for each of the populations, i,
as well as the pooled variance-covariance matrix.

Classification and regression trees (CART) is another widely
used statistical technique in which a dependent variable is
associated with a set of input factors through a recursive sequence
of simple binary relations. Put simply, it is a step-by-step process
which results in a decision tree which is constructed either by
splitting or not splitting each node into daughter nodes. The
splitting strategy follows a node impurity function meaning that
at each stage of the recursive partitioning, all possibles splits are
considered and the one which leads to the greatest increase in
node purity is chosen.

Support vector machine (SVM) classifies data by detecting the
best hyperplane that separates all data points of one class from
those of the other class. Given a data set of N institutions of the
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form (x1, γ1), ..., (xN , γN) where the γn indicates the class to which
the point xn belongs. Each xn is a T-dimensional real vector. SVM
finds the “maximum-margin hyperplane” that separates data
points xn for which γ = 1 from the data points for which γ = 0,
which is defined so that the distance between the hyperplane and
the nearest point xn from either group is maximized. In formula:

max
w∈RT ,b∈R

min
x∈A∪B

|w′xi+b|

||w||
(3)

where A and B are disjoint subsets and wx − b = 0
represents a hyperplane.

2.2. Assessing Model Performance
For evaluating the performance of each model, we employ, as
a reference measure, the indicator γ ∈ {0, 1} that is a binary
variable which takes value one whenever the institutions has
defaulted and value zero otherwise. For detecting default events
represented in γ , we need a continuous measurement p ∈ [0, 1]
to be turned into a binary prediction B assuming value one
if p exceeds a specified threshold τ ∈ [0, 1] and value zero
otherwise. The correspondence between the prediction B and the
ideal leading indicator γ can then be summarized in a so-called
confusion matrix.

From the confusion matrix we can easy illustrate the
performance capabilities of a binary classifier system. To this aim,
we compute the receiver operating characteristic (ROC) curve
and the corresponding area under the curve (AUC) and Gini
coefficient. The ROC curve plots the false positive rate (FPR)
against the true positive rate (TPR). To be more explicit:

FPR =
FP

FP + TN
(4)

TPR =
TP

TP + FN
(5)

Moreover, we also compute other measures for assessing models
performance such as the accuracy and the KS statistic. The overall
accuracy of each model can be computed as:

ACC =
TP + TN

TP + TN + FP + FN
(6)

and it characterizes the proportion of true results (both true
positives and true negatives) among the total number of cases
under examination. In this context a key issue is setting the
threshold at which a company is classified as belonging to one
class rather than another.

Additional to this, another often-used characteristic in
describing the quality of the model (or the scoring function) is
the Kolmogorov-Smirnov statistic (KS). This metric too seeks
to jointly consider specificity and sensitivity and it corresponds
to the maximum value of their sum as the threshold is varied.
Put differently, it represent the maximum difference between
the cumulative distribution of active and defaulted companies.
Consequently, the KS statistics is defined as:

KS = maxj|FActive(xj)− FDefaulted(xj)|

For back-testing, while assessing the performance of each model,
available information must be exploited in a realistic manner. To
this end, we perform repeated sub-sampling validation approach.
Specifically, we randomly split the data set in 10 training and
validations data sets. For each such split, the model is fitted on
the training data set and predictive utility is assessed on the
corresponding testing data. The results concerning the model
accuracy (area under the ROC curve, KS statistic, Gini index) are
then averaged over the splits.

2.3. The Distance Metric
In the present study we exploit information derived from
financial statements of borrowing companies collected in a vector
xn representing the financial composition of the balance-sheet
of institution n. We define a metric that provides the relative
distance between companies by applying the standardized
Euclidean distance between each pair (xi, xj) of institutions
feature vectors. More formally, we define the pairwise distance
di,j as:

di,j = (xi − xj)1
−1(xi − xj)

′ (7)

where 1 is a diagonal matrix whose i-th diagonal element
represent the standard deviation of the series. Namely, each
coordinate difference between pairs of vectors (xi−xj) is scaled by
dividing by the corresponding element of the standard deviation.
The distances can be embedded into aN×N dissimilarity matrix
D such that the closer the companies i, j features are in the
Euclidean space, the lower the entry di,j.

Although D can be informative about the distribution of the
distances between the companies, the fully-connected nature
of this set does not help to find out whether there exist
dominant patterns of similarities between institutions. Therefore,
to extract such patterns we derive the Minimal Spanning Tree
(MST) representation of borrowing companies’ balance-sheet
similarities (see Mantegna and Stanley, 1999; Bonanno et al.,
2003; Spelta and Araújo, 2012).

2.4. The Minimal Spanning Tree
To find out the MST representation of the system, we perform
hierarchical clustering by applying the nearest neighbor method.
At the initial step, we consider N clusters corresponding to the N
institutions. Then, at each subsequent step, two clusters li and lj
are merged into a single cluster if:

d
(

li, lj
)

= min
{

d
(

li, lj
)}

with the distance between clusters being defined as:

d
(

li, lj
)

= min
{

drq
}

with r ∈ li and q ∈ lj. These operations are repeated until a
single cluster emerges. This clustering process is also known as
the single link method since one obtains the MST of a network.
Given a connected graph, the corresponding MST is a tree of
N − 1 edges that provides the minimum value of the sum of
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the edge distances. More specifically, the hierarchical clustering
procedure takes N − 1 steps to be completed when the graph is
composed by N nodes, and it exploits, at each step, a particular
distance di,j ∈ D to merge two clusters into a single one.

In order to extract relevant information from the topology of
the network for discriminating between borrowing companies,
we compute different measures from complex network theory.
In particular, the research in network theory has dedicated a
huge effort to developingmeasures of interconnectedness, related
to the detection of the most important player in a network.
Moreover, beside investigating the importance each institution
has in the network, we are also interested in assessing whether
the network is characterized by a community structure and to
exploit such feature. This topological characteristic indicates the
presence of sets of companies usually defined as very dense
sub-graphs, with few connections between them.

2.5. Network Measures
Various measures of centrality have been proposed in network
theory such as the count of neighbors of a node has, i.e., the
degree centrality, or measures based on the spectral properties
of the graph (see Perra and Fortunato, 2008). These measures are
feedback, also know as global, centrality measures and provide
information on the position of each node relative to all other
nodes. For our purposes we employ both families of centrality
measures. In particular, for each node we compute the degree and
strength centrality. The degree ki of a vertex iwith (i = 1, ...,N) is
the number of edges incident to it. More formally, let the binary
representation of the network be D̂ such that:

D̂ij =

{

if dij > 0
otherwise

then, the degree a vertex i is:

ki =

N
∑

j=1

D̂ij. (8)

Similarly, the strength centrality measures the average distance
of a node with respect to its neighbors. Formally the strength of
vertex i is:

si =

N
∑

j=1

Dij. (9)

Moreover, since several studies have found the presence of sets
of very dense sub-graphs, with few connections between them, as
a result of similar patterns at the micro-level (see Pecora et al.,
2016; Spelta et al., 2018), we also apply the Louvain Method
to extract the community structure of the network (see Blondel
et al., 2008). The identified communities maximize system’s
modularity, a measure that quantifies the strength of the division
of the system into communities of densely interconnected nodes
that are only sparsely connected with the rest of the system (see
Newman, 2006). The modularity of our system is:

Q =
1

2m

∑

i,j

[Di,j −
sisi

2m
]δ(ci, ci) (10)

FIGURE 1 | Minimal spanning tree representation of the borrowing companies

networks. The tree has been obtained by using the standardized Euclidean

distance between institutions features and the Kruskal algorithm. In the panel,

nodes are colored according to their financial soundness, red nodes represent

defaulted institutions while green nodes are associated with active companies.

where di,j is the weight of the edge between nodes i and j, si is
the sum of the weights of the edges attached to node i, ci is the
community to which node i belongs, δ(u, v) is equal to 1 when
u = v and zero otherwise, and m = 1

2

∑

i,j Di,j. The final step

of our model specification is to embed the obtained centrality
measures as well as information on the community structure
of the network, into a predictive model. We propose to extend
Chinazzi and Reyes, who incorporate network measures in a
linear regression model, to the credit scoring context (i.e., logistic
regression, linear discriminant analysis, CART, and SVM).

3. RESULTS

This section is devoted to show the results of the analysis.
First, we report the MST representation of the similarity
network obtained from companies’ feature distances. We show
nodes colored according to their financial soundness, red nodes
represent defaulted institutions while green nodes represent
sound and active companies, see Figure 1. Notice how, defaulted
institutions occupy precise portion of the network, namely, such
companies belong to the leafs of the tree and form clusters. This,
in other words, suggests those companies form communities.

Information concerning the community structure of the
networks and the centrality measures are used to provide
synthetic topological variables at the node level. Such variables
are embedded into the credit scoring models to assess
whether they contain relevant information useful for forecasting
institutions default.
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FIGURE 2 | Receiver Operating Characteristic (ROC) curves for the baseline credit risk models and for the network-augmented models. In blue, we show the results

related to the baseline models while in red we show the results related to the network-augmented models.

TABLE 2 | Summary Statistics of non-parametric analysis.

AUC KS Gini Accuracy

Basic Network Basic Network Basic Network Basic Network

Logit 79.631 80.793 52 52 59.262 61.586 90.193 90.09661

LDA 77.759 79.16 51 52.8 55.518 58.32 90.122 89.98844

CART 67.973 67.973 35.5 35.946 35.946 35.5 90.832 90.82413

SVM 76.81 77.65 53.62 50 51 55.3 92.44444 92.22222

Summary statistics of the non-parametric analysis. From the left to the right: area under the ROC curve (AUC), KS Statistic (KS), Gini Index (Gini), Model accuracy (Accuracy),

and area under the Precision Curve (AUCPR). For each measure and for all the tested models we report the results obtained by the baseline scenario and for the

network-augmented configurations.

Figure 2 reports the results related to the performance of some
of the models tested in the paper. Basically, the upper left panel
shows the results from the logistic regression, the upper right
panel encompasses the same information from the discriminant
analysis while the bottom panel refers to the performance curves
of the SVM classifier.

For sake of comparison, we have reported several measures
of predictive utility so to show that, overall, the inclusion of
topological information regarding similarity patterns among
companies feature, increases the forecasting performance of
various credit scoring models even when the data sets are
imbalanced between the two classes (defaulted vs. active). Notice
how, formost of the cases, red lines representing the performance
of the models feeded with network measures lie above the
blue lines representing baseline classifiers. Considering that
graphically the improvements might not be fully visible,
performance improvements for all the tested models are also
reported in Table 2. The table summarizes the values of the
measures employed to assess the predictive gain of the network-
augmented credit scoring models. We report, the area under the
ROC curve (AUC), the KS statistic, the Gini Index and the overall
model accuracy (ACC).

From the results collected in Table 2, it is clear that
the inclusion of topological variables describing institutions
centrality in the similarity networks and the community structure
composing such networks increases the predictive performance

of the methods used for credit scoring even if the forecasting gain
obtained differ frommodel to model. In particular, we observe an
increase of the predictive utility values for the logistic regression,
the linear discriminate analysis and the SVM classifier once
network parameters are added to the specification. Concerning
the overall models accuracy, the ACC measure is less sensitive
to the inclusion of topological variables with values between
the baseline and network-augmented methods remaining quite
similar across all models. Even though the increases in predictive
utility across models are not very large, it might make significant
difference for P2P lending platforms. Furthermore, we also
notice that the predictive utility of the CART model does
not change with the inclusion of the community and network
parameters in the models specification. Future research may
concern dealing with unbalanced samples (as in Calabrese
and Giudici, 2015) and/or with multiple data sourrces (as
in Figini and Giudici, 2011).

4. CONCLUSION

FinTech services, such as peer-to-peer lending platforms, are
becoming part of the everyday life. Such new technologies can
increase financial inclusion, but they can bring the cost of
an increase credit risks. To cope with such risk, fintech risk
management becomes a central point of interest for regulators
and supervisors, to protect consumers and preserve financial
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stability. In this work we have shown that topological information
embedded into similarity networks can be exploited to increase
the predictive performance of credit scoring models usually
applied by P2P lending companies. Topological information
are summarized computing centrality measures and community
detection. The forecasting gain obtained by the inclusion of
these variables has been then measured by employing non-
parametric statistics. Standard performance measures such as
ROC, precision recall and accuracy reveal the usefulness of
the proposed methodology to build an early-warning signal
suitable for both policy makers and supervisors as well as
for practitioners.
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APPENDIX

A. FINANCIAL RATIOS

Since the data set is composed of ratios between financial and
balance-sheet statements here we report the formulas employed
to compute such ratios.

TABLE A1 | Description of variables included in the dataset.

ID FORMULA Type ID FORMULA Type

RATIO001 (Total assets - Shareholders Funds)/Shareholders Funds Continuous RATIO019 Interest paid/(Profit before taxes + Interest paid) Continuous

RATIO002 (Long term debt + Loans)/Shareholders Funds Continuous RATIO027 EBITDA/interest paid Continuous

RATIO003 Total assets/Total liabilties Continuous RATIO029 EBITDA/Operating revenues Continuous

RATIO004 Current assets/Current liabilties Continuous RATIO030 EBITDA/Sales Continuous

RATIO005 (Current assets - Current assets: stocks)/Current liabilties Continuous RATIO036 Constraint EBIT Dichotomous

RATIO006 (Shareholders Funds + Non current liabilities)/Fixed assets Continuous RATIO037 Constraint PL before tax Dichotomous

RATIO008 EBIT/interest paid Continuous RATIO039 Constraint Financial PL Dichotomous

RATIO011 (Profit (loss) before tax + Interest paid)/Total assets Continuous RATIO040 Constraint P/L for period th EUR Dichotomous

RATIO012 P/L after tax/Shareholders Funds Continuous DPO Trade Payables/Operating revenues Continuous

RATIO013 GROSS PROFIT/Operating revenues Continuous DSO Trade Receivables/Operating revenues Continuous

RATIO017 Operating revenues/Total assets Continuous DIO Inventories/Operating revenues Continuous

RATIO018 Sales/Total assets Continuous NACE Industry classification on NACE code, 4 digits precision Dichotomous
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We apply an artificial intelligence approach to simulate the impact of financial market

regulations on systemic risk—a topic vigorously discussed since the financial crash of

2007–09. Experts often disagree on the efficacy of these regulations to avert another

market collapse, such as the collateralization of interbank (counterparty) derivatives

trades to mitigate systemic risk. A limiting factor is the availability of proprietary bank

trading data. Even if this hurdle could be overcome, however, analyses would still be

hampered by segmented financial markets where banks trade under different regulatory

systems. We therefore adapt a simulation technology, combining advances in graph

theoretic models and machine learning to randomly generate entire financial systems

derived from realistic distributions of bank trading data. We then compute counterparty

credit risk under various scenarios to evaluate and predict the impact of financial

regulations at all levels—from a single trade to individual banks to systemic risk. We

find that under various stress testing scenarios collateralization reduces the costs of

resolving a financial system, yet it does not change the distribution of those costs and

can have adverse effects on individual participants in extreme situations. Moreover, the

concentration of credit risk does not necessarily correlate monotonically with systemic

risk. While the analysis focuses on counterparty credit risk, the method generalizes to

other risks and metrics in a straightforward manner.

Keywords: artificial intelligence, graph theoretic models, data science, machine learning, stochastic Linear

Gauss-Markov model, financial risk analytics, systemic risk, financial regulation

1. FRONTIERS OF ARTIFICIAL INTELLIGENCE

Predicting the next financial crisis is like forecasting the weather, a plethora of variables must
converge at just the right moment in just the right way, invariably, leading experts to arrive at wildly
conflicting prognostications. Advances in artificial intelligence (AI) methodologies have enhanced
the robustness of such predictive models by introducing schemes based on skeletonization that
extract vertices and edges from an initial graph and algorithms that prune unlikely outcomes by
sifting through hundreds of thousands of factors to match shapes to known prototypes1.

Artificial intelligence, which incorporates machine learning and data science, places data
within a context through pattern recognition and iterative learning. What is new about the
latest incarnation of the AI framework is that its draws on many disciplines, such as statistics
and computer science, but also biology, psychology, and game theory, and employs a myriad of
techniques, including:

1See Kamani et al. (2018) for an application of this technique to forecast severe climate events.
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1. Rules-based systems that set parameters and conditions to
enable scenario testing;

2. Machine learning that applies algorithms to decipher patterns
and linkages in the data by continuously updating “learning”
through an iterative process;

3. Neural networks that identify interconnected nodes through
multi-layered data to derive meaning;

4. Deep learning that leverages pools of high-dimensional data
to identify patterns of patterns; and

5. Pattern recognition that uses tools, such as natural language
processing to classify and interpret data.

What does this methodology tell us about predicting financial
disasters or, even more importantly, how to avoid them? The
turmoil following the 2008 collapse of Lehman Brothers, gave
rise to a lively debate on how to regulate financial markets.
Governments have imposed a number of regulations to reduce
systemic risk or the possibility that an adverse event at a
single financial institution could trigger severe instability or
the collapse of an entire industry or economy. To mitigate
effects of cascading defaults, for instance, regulators introduced
the collateralization of derivative trades and incentivized
dealers to clear trades on centralized exchanges as opposed to
over-the-counter.

The financial crisis not only called into question the soundness
of such regulations, but also the process to evaluate the efficacy
of new regulations being put into place. Although a decade
has passed, regulators and industry participants alike failed to
arrive at a consensus on: (1) Have the regulations implemented
post-crisis reduced systemic risk? (2) How can we predict the
impact of a financial regulation before it is implemented? and
(3) How can we evaluate which regulation is best to avert
yet another “Financial Katrina?” As many governments once
again face pressure to rollback far reaching financial legislation,
it is necessary to know which regulations promote safety and
soundness of the financial system and which add undue burdens
on markets.

In this paper, we analyze credit exposures created by contracts
among financial institutions that arise when one party defaults
or fails to repay the contracted amount, or counterparty credit
risk. We develop a graph model that characterizes a financial
system as a network, similar to skeletal representations in
meteorology, where the nodes of the graph represent a bank and
the vertices represent credit relations, each with various weights.
We introduce an analytic tool that simulates a financial system
based on real case trade data. Through an iterative process, we
evaluate, predict and optimize the amount of collateralization
required to mitigate counterparty credit risk at the trade, bank
and systemic level.

The analysis shows that collateralization reduces the costs
of resolving risk in a financial system, yet it does not change
the distribution of those costs among banks and can have
adverse effects on individual participants in extreme situations.
Consistent with the work of Battiston et al. (2012a,b) we
also find that diversification is not sufficient to ward against
systemic financial failures; indeed, it may exacerbate it. The
analysis measures the impact of collateralization on counterparty
credit risk exposure in the derivatives market, but the method

generalizes to other types of risks andmetrics in a straightforward
manner. The approach developed enables regulators and industry
participants alike to conduct iterative scenario testing and
thereby provides a unique opportunity to make informed
decisions about the impact of public policy before the next
crisis strikes.

2. MODELS IN CRISIS: A NEW APPROACH

The 2008 financial crisis was the perfect storm of failures: Wall
Street, regulators, hedge funds, all played a part. Government’s
response has been to introduce a number of new regulations to
improve the safety and soundness of the banking system as well
as mitigate systemic risk. These include: capital buffers, leverage
requirements and restrictions on derivatives. This has taken place
at both domestics and global levels.

The question is, given all these regulations are we better off
now than before? In particular, is the financial system more
transparent and accountable than prior to the crisis? After all
it was the oblique, complex derivatives that exasperated the
mortgage crisis and almost brought down the international
system in the first place.

The financial industry’s response to these regulations has
been to build black box risk models developed, for the most
part, in institutional silos. The implication is that financial firms
currently conduct risk exposure analysis absent shared standard
models to use as benchmarks and validate results.

Yet, regulations require transparency and flexibility, and these
requirements cannot be met by traditional silo-ed approaches.
In response, collaborative efforts among academia, industry, and
government have formed. Even the banks have come together in
a previously unheard of data consortium, AcadiaSoft.

This reorganization has been accompanied by paradigm shifts
from proprietary, homegrown software to open source. Even in
financial risk management open source solutions, such as ORE,
see Open Source Risk Engine (2016), have emerged. This trend
has facilitated the use of AI technologies in the solution space,
including: machine learning, natural language processing, AI
and neural networks, provide powerful tools to augment risk
analysis. In addition, these technologies provide new ways of
developing models.

2.1. Open Source Risk Engine (ORE)
ORE computes the risks in a derivative portfolio from the
perspective of a single bank. Schematically, it works as follows,
see also Figure 1: It consumes trade data, market data and
some configuration files as inputs, identifies all risk factors
of the trade portfolio and performs a MonteCarlo simulation.
This allows the computation of risk analytics at portfolio,
asset class, and counterparty levels. See Lichters et al. (2015);
Open Source Risk Engine User Guide (2017).

These analytics provide a benchmark that can be shared by
regulators and industry participants to calibrate models around
risk tolerance. As the assumptions are commonly known, it
enables conversations around why and how various models
deviate from the standard benchmarks.
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FIGURE 1 | Open source risk engine (Reprinted with permission by Columbia

University Press).

2.2. A Systemic Risk Engine
One can aggregate firm specific riskmetrics produced by the ORE
into a systemic risk engine to assess the impact that regulations
have on the financial system as a whole. This requires that the
analysis takes into account not only the impact that financial
transactions have on a financial institution but also the impact
that each institution has on the system. Netting these input and
output effects provide a more realistic picture of the impact
of a regulation on the risks in the financial system. Moreover,
adopting graph modeling enables visualization, calculation
and testing of the robustness of various hypotheses under
alternative parameter assumptions. More technical details on
the technology stack used in the simulation can be found in
Anfuso et al. (2017); O’Halloran et al. (2017b).

2.3. Columbia Data Science Institute
FinTech Lab
The Columbia FinTech Lab housed in the Data Science Institute
provides an easily accessible demonstration of how these tools
can produce risk analytic measures. The Fintech Lab website,
see Columbia University Fintech Lab (2018), provides a graphic
display and interface that demonstrates how such analysis can be
conducted.

3. USE CASE: SYSTEMIC FINANCIAL RISK

ORE has been built to compute the risks in a derivatives portfolio
from the perspective of a single bank with purposes of serving
as a bank risk management system or validating such a system.
Its applications have an interesting pivot, however. Because, the
computations of those risks from the perspective of one bank
requires the above mentioned inputs, market data, trade data,
netting agreements and other simulation parameters, one can use
ORE to compute systemic risk, by running the computation from
the perspective of all banks in a system.

The results include all risks of all banks in a financial system.
As the same models are used for each bank, the resulting risk
metrics are consistent and comparable across all banks. Those
metrics can be computed under different regulatory regimes,
allowing a consistent evaluation of the impact of financial
regulation on systemic risk.

In practice, performing such a computation is difficult as
one crucial input, the trade data of all the banks in the system,
is proprietary and thus inaccessible. However, if the purpose
of such a computation is to evaluate the impact of a financial
regulation in general or to guide regulatory decision making
bodies, it is, in fact, undesirable for the outcome to depend
overly on current trade data. Trading activity in the global
financial system is significant. Millions of transactions change
the trade portfolios of the market participants every day, even
every second. Changes in financial regulation, however, happen
over a period of decades. The regulations around Initial Margin,
for instance, a direct reaction to the financial crisis in 2007–
2008, are still not fully implemented and will not be implemented
fully before the early 2020s. Given the different time scales for
changes in trade portfolios and changes in financial regulation,
it would be an undesirable feature of financial regulation if its
impact strongly depended on current trade data as this would
signal overfitting of regulation to the current market.

Ideally, financial regulation should have the desired impact
and that impact should be largely invariant under trading activity.
Consequently, the evaluation of a regulation should be largely
independent of changes in trade data. The precise trade data of
the current financial system, therefore, should not be needed to
evaluate the impact of a regulation. What is needed to study the
impact of a regulation on a financial system is simply trade data,
preferably as realistic as possible, but not necessarily the live deals
of the current dealer banks. Our approach is to use a simulation
technology. We randomly generate entire financial systems,
including trade data, and calibrate those random generators to
realistic distributions. The result is a representative sample of
possible financial systems, which is transparent and completely
accessible on all levels, from a single trade to the entire system.

3.1. Literature Review of Systemic Risk
Metrics
This simulation approach has the advantage of bridging the
gap that traditionally separates micro- and macro-prudential
regulation, see Figure 2. The micro-prudential side considers a
single bank in all its complexity and is primarily interested in
the risks this bank is exposed to as a result of the trades in its
portfolio. The metrics in which those risks are measured are
standardized and their use is enforced globally by regulators.
Examples include Value-at-Risk (VaR) to measure market risk,
Effectivized Expected Positive Exposure (EEPE) for credit risk,
Liquidity Coverage Ratio (LCR) for liquidity risk or a Basel-II
traffic light test for model risk. Even though the concrete value of
a metric like EEPE can differ between two banks that use internal
models, the regulatory framework around internal models is
designed to minimize those differences and the method, at least,
is consistent. The only drawback of the micro-prudential view is
that it considers only one bank in isolation making it difficult to
study systemic risk.

In contrast, macro-prudential regulation considers an entire
financial system with all its banks, but evaluates each and every
bank from a high level perspective only. From amacro-prudential
view, the amount of risk a bank is exposed to is of less interest
than the amount of risk a bank induces into the financial system.
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FIGURE 2 | Using artificial intelligence to close the gap between micro- and

macro-prudential regulation (Reprinted with permission by Columbia University

Press).

In particular, the question on whether or not a bank default could
result in the default of the system is of particular importance (“too
big to fail”). An excellent overview is provided by Battiston and
Martinez-Jaramillo (2018) of the relationship between micro-
prudential policies, which focus on individual exposures and
leverage and capital ratios, and macro-prudential network-
based policies.

In sharp contrast to the micro-prudential risk metrics, there
is no clear definition on what systemic risk precisely means
nor how it should be measured. In Bisias et al. (2012), the
U.S. Office for Financial Research discusses 31 different metrics
of systemic risk2. A closer look at these metrics, however,
reveals that these are not simply different mathematical functions
measuring the same quantity, but different underlying notions
of systemic financial risk. Most of these metrics focus on the
analysis of market data, such as housing prices or government
bonds and their correlations. For instance, Billio et al. (2012) use
Principal Components Analysis (PCA) and Granger Causality
to study the correlations between the returns of banks, asset
managers and insurance. Unfortunately, most of those macro-
prudential metrics are unsuited to guiding decision making
bodies or regulatory interventions—precisely because their
micro-prudential nature remains unclear (with CoVaR, which
relies on a quantile of correlated asset losses, being a notable
exception; see Adrian and Brunnermeier, 2016).

More recently, Sedunov (2016) compares the performance
of three institution-level systemic risk exposures to forecast the
financial crisis, including Exposure CoVar, Granger causality, and
Systemic Expected Shortfall. Using data from the 25 largest U.S.
banks, insurers, and brokers, the analysis shows that CoVar is
the measure that best forecasts the within-crisis performance of
financial institutions over multiple crisis periods. By contrast,
neither Granger causality nor expected shortfall metrics predict
within crisis performance. A key indicator in forecasting crisis
exposures is the size of the financial institution.

2Similarly, in a meta analysis of the literature on systemic financial risk, Silva et al.

(2017) find that from a sample of 266 articles published from 1990 to 2016, 134

articles directly addressed measures or indices of systemic risk.

3.2. AI: Bridging the Gap Between Micro-
and Macro-prudential Regulation
As Figure 2 demonstratesmicro-prudential regulation is directed
toward the safety and soundness of an individual bank. Financial
crises, however, result from the external actions of a bank,
which may or may not be correlated with its compliance with
regulatory standards. A lessons of the 2007–09 crisis is that
macro-prudential regulation focused only on the risks taken by
individual banks is insufficient to prevent crises.

An AI framework provides a way to bridge this gap.
First, synthetic data of a financial system can be derived by
sampling data from real market, portfolio and bank trades.
Second, given these inputs, simulations can be constructed to
forecast pricing and exposure trends. Computational analytics
provide models for prediction and accuracy testing of sparse,
high dimensional data. Scenario testing enables comparisons
of different policy interventions on market outcomes. Finally,
graphical visualization based on pattern recognition facilitates
classifying outcomes.

3.3. Weighted Degree Metrics
This 2-fold divergence in metrics—the gap between micro-
and macro- prudential regulation and the different notions of
systemic risk—is unfortunate from a methodological point of
view. The various notions of systemic risk are a consequence of
the fact that this is a relatively new field and that the financial
system and hence systemic risks are very complex and have many
different facets. The gap between micro- and macro-prudential
regulation has historic origins: The obvious approach of studying
the macro-prudential impact of a regulation on an entire
financial system as an aggregation of all its micro-prudential
impacts has failed in the past due to the complexities of
both levels.

In recent years there have been tremendous technological
advances in handling big and highly complex data sets. Therefore,
our approach is to use the standardized micro-prudential risk
metrics and aggregate them in a graph model of systemic risk.

The advantages of this methodology are manifold. First, of
the 266 papers reviewed by Silva et al. (2017), the analysis
shows that only 20 articles used a combination of computational,
simulation, and mathematical modeling. AI techniques enable
iterative hypothesis testing to decipher patterns and linkages in
the data, thereby providing more robust models and estimates
of systemic risk. Second, Battiston andMartinez-Jaramillo (2018)
note that existing research addresses systemic risk from either a
micro-prudential or a macro-prudential level, absent any analysis
of how link the two. By contrast, we derive a systemic risk
metric from the ground up. The total risk exposure in the
financial system is an aggregate estimate of individual firms’
credit risk exposure, thereby providing an indicator of howmuch
risk a firm generates and how much it absorbs. And third, as
documented by Silva et al. (2017), network analysis (Battiston
et al., 2012a,b), cascade models (Capponi and Chen, 2015), and
even examinations of the topological structure of inter-bank
networks (Caccioli et al., 2015) are readily adopted constructs to
evaluate contagion effects among financial institutions. Here, we
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employ the mathematics of graph models to analyze the credit
risk in financial systems.

4. GRAPH MODEL OF SYSTEMIC RISK

The trade data in a financial system is naturally organized in
an undirected trade relation graph G = (B,T): The nodes B
represent the banks and the links T represent the trade relations.
The graph is undirected because a trade relation is symmetric—
a deal is only a done deal if both sides sign it. For formal
details on graph models, see Erdős and Rényi (1959, 1960); Bales
and Johnson (2006). An example of a trade relation graph is
shown in Figure 3, where six banks (labeledA-F here) are trading
bilaterally with each other in five trade relations. Any additional
data on the trade portfolios can be attached to the links, for
instance as a list of trade ids. The details of the trades are then
stored in a database. Thismodel serves both as a representation of
a financial system and as a data format for the random generation
of financial system, c.f. section 5.2. Optionally, one can also attach
more information on the nodes in that graph, for instance a
bank’s core capital ratio.

Each trade in a trade relation imposes various types of risks (as
well as rewards) on potentially both banks and these risks can be
computed in various metrics by means of mathematical finance.
By computing a fixed set of risk metrics for all trade relations in a
trade relation graph, we obtain a risk graph that captures the risks
between all the various banks in the system, see Figure 4 for the
example. Formally, the risk graph RG = (B,A,w) is computed
out of the trade relation graph as follows: The risk graph has
the exact same nodes B as the trade relation graph, but each
undirected trade relation t ∈ T is replaced by two directed arrows
a1, a2 ∈ A representing the risks the bank at the tail induces onto
the bank on the head and vice versa as a consequence of their
trade relation. Finally, we attach a (possibly multivariate) weight
function w(a) onto the arrows a ∈ A that quantify the risks. An
example we will use later is EEPE (Effectivized Expected Positive

FIGURE 3 | Trade relations: the nodes represent the banks, the links represent

the trade relations and the labels on the links represent the trade or portfolio

IDs (Reprinted with permission by Columbia University Press).

Exposure) to measure credit risk3. Another example could be the
PFE (Potential Future Exposure) over a certain time horizon at
a fixed quantile (analogous to US stress testing). Notice that the
amount of risk that is induced by a bank b1 onto a bank b2 may
or may not be the same as the amount of risk induced from b2
onto b1 even though both are in the same trade relation. For
example, the loss an issuer of an FX optionmight suffer as a result
of the buyer defaulting is at most zero, while the buyer can in
theory suffer a unlimited losses. Notice that this use of a directed
graph to model exposures in a financial system is consistent with
(Detering et al., 2016), who use this to study default contagion.

The weight functions, that is, the risk metrics, can be
computed using ORE. The resulting data produces a weight w(a)
for each arrow a ∈ A in a risk graph. This provides a complete
picture of risk in the financial system modeled by the trade
relation graph in established micro-prudential risk metrics. We
then aggregate this data by a purely graph theoretic construction
from the arrows of the risk graph to the nodes and then further
to a systemic level as follows: For each bank b ∈ B, we compute
the weighted in/out-degree

w−(b) :=
∑

a∈A
a ends at b

w(a), w+(b) :=
∑

a∈A
a starts at b

w(a). (1)

The in-degree w−(b) represents the total amount of risk the bank
b is exposed to from the system and thus corresponds to the
micro-prudential view of b. The out-degree w+(b) represents the
total amount of risk the bank b induces into the system and
thus corresponds to the macro-prudential view of b. Therefore,
this graph theoretic construction bridges the gap between the
micro- and the macro-prudential by providing a coherent metric
of both in the same model. In the example shown in Figure 4,

FIGURE 4 | Exposures: the nodes represent the same banks as in Figure 3,

the arrows represent that risk is induced from the bank on the tail onto the

bank on the head, the weights on the arrows quantify that risk and the

percentages in the nodes represent the share of risk induced by that bank

(Reprinted with permission by Columbia University Press).

3This is a regulatory standard metric to measure exposure. Notice that the

exposure is a key ingredient in the calculation of capital requirements. Thus, a

reduction in exposure automatically causes a reduction in capital requirements.
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the in-degree of the big bank A in the middle is w−(A) = 537 +
142 + 112 + 491 = 1282 and the relevant arrows going into A
are highlighted as H⇒. The out-degree is w+(A) = 491+ 112+
142+ 537 = 1282 and the outgoing arrows are highlighted as;.

In a second step, we aggregate the risk metrics to a system
wide level by computing w(G) : =

∑

a∈A w(a) the total weight
in the system. It is instructive to express the weighted in- and
out-degree as a percentage of that total, i.e., to compute

ρ−(b) :=
w−(b)

w(G)
, ρ+(b) :=

w+(b)

w(G)
, (2)

a relative version of the weighted in/out-degree. In the example
shown in Figure 4, the total amount of risk in the system
in w(G) = 3, 836 and e.g., counterparty A has ρ+(A) =

w+(A)/w(G) = 1, 282/3, 836 = 33%. Any of the quantities

w(G), max
b∈B

w+(b), max
b∈B

ρ+(b) (3)

are (possibly Rk valued) metrics that capture the total amount of
weight in the graph and its concentration. These metrics serve as
weighted degree metrics of systemic risk.

5. COLLATERALIZATION

The financial crisis exposed vividly the credit risk component
in derivative contracts. Any two banks that enter into a
derivative contract fix the terms and conditions of the contract
at inception and both commit to payments according to the
contract until it matures. While the rules on how to compute the
payment amounts are fixed at inceptions, the payment amounts
themselves are not as they depend on future market conditions.

In particular in the interest rate derivatives market that has an
estimated total aggregated notional in the hundreds of trillions,
the maturities of these contracts can be several decades. This
exposes the two trading counterparties to each others credit
risk: A payment in 10 years would simply not happen if one of
the counterparties defaults in 9 years. As a derivative contract
with a defaulted counterparty is worth zero, a default induces a
significant shock to the value of a derivatives book of a bank.

Figure 5 shows the magnitude of the over-the-counter
derivative market. The top part of the chart displays the notional
amounts of outstanding derivatives in millions of U.S. dollars
from 1998 to 2018. The data covers all derivative types, e.g.,
currency and interest rate swaps, for all risk types and all
countries. The graph illustrates a steeply rising trend that
peaks during the financial crisis, 2007–2009. The bottom half
of the chart shows the increases and decreases in the trend
line. The onset of the liquidity crisis in the U.S. and the
sovereign debt crisis in Europe led to decreases in derivative
trading activity. The subsequent introduction of new regulatory
standards to force dealers to trade derivatives through central
counterparties (CCPs) or exchanges precipitated sharp declines
in notional amounts. By the end-June 2018, however, the notional
value outstanding had once again reached 595 trillion USD,
close to pre-crisis levels. The resumption of an upward trend
suggests that despite new regulations to push more dealers onto
central clearing platforms, banks continue to use non-standard
derivative contracts.

Figure 6 compares OTC derivative gross market values and
gross credit exposure from 1998 to 2018. The solid line shows
the gross values, which measure a bank’s total exposure to
financial markets or the investment amount at risk. Once again,
the trend peaks before the crisis and declines afterwards. This

FIGURE 5 | Notional value of over-the-counter derivatives, 1998–2017. See stats.bis.org; BIS derivatives statistics, OTC derivatives outstanding for all counterparties

and risk categories on a net-net basis.
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FIGURE 6 | Gross credit exposure and gross market values, 1998–2018. See stats.bis.org; BIS derivatives statistics, OTC derivatives outstanding for all

counterparties and risk categories on a net-net basis.

time, however, the line continues its decent. For regulators,
this indicates the success of stringent clearing and collateral
requirements. By contrast, gross credit exposures, shown on the
bottom of Figure 6 by the light blue bar chart, tell a different
story. Credit exposure is the total amount of credit made available
to a borrower by a lender and calculates the extent to which a
lender is exposed to the risk of loss in the event of the borrower’s
default. The chart shows that while market values have decreased,
credit exposures have remained unchanged. In short, the credit
risk resulting from a failure has not altered even as the total
amount of market risk has declined. Moreover, the proportion of
outstanding OTC derivatives that dealers cleared through CCPs
held steady, at around 76 percent for interest rate derivatives and
54 percent for credit default swaps (CDS)4.

These data highlight that regulatory interventions may have
unintended consequences. Adopting an AI framework—e.g.,
generating synthetic data from real bank distribution, simulating
a financial system, and conduct scenario testing by introducing
policy interventions and compare outcomes, may help avert
implementing poorly tailored policies.

For example, a standard financial regulation to mitigate credit
risk exposures is collateralization. That means that the two
counterparties exchange collateral (typically in cash or liquid
bonds) with each other during the lifetime of the trade. In a first
step, counterparties exchange variationmargin (VM) to cover the
current exposure to daily changes in the value of a derivatives
portfolio, sometimes subject to thresholds andminimum transfer
amounts. This regulation is already fully phased in. In a second

4See Bank of International Settlements, Statistical release: OTC derivatives

statistics at end- June 2018.

FIGURE 7 | A randomly generated trade relation graph (Reprinted with

permission by Columbia University Press).

step, on can post initial margin (IM) to each other to cover for the
potential exposure to close out risk after a default would occur. A
more detailed description of these regulations can be found in
(O’Halloran et al., 2017a, section 4); see also the Basel Committee
on Banking Supervision (2015); Andersen et al. (2016, 2017);
ISDA (2016); Caspers et al. (2017).

5.1. Collateralization Regimes
These collateralization regulations lead to four different
regulatory regimes:

1. All derivative trades are uncollateralized.
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2. All derivative trades are VM collateralized, but some may only
be partially collateralized due to thresholds and minimum
transfer amounts.

3. All derivative trades are fully VM collateralized.
4. All derivative trades are fully VM collateralized and also fully

IM collateralized.

For reasons of clarity, we exclude regime (2) from the present
discussion. It is obvious that collateralization mitigates the
exposure to credit risk on a micro-prudential level from the
perspective of each counterparty5. We now test the hypothesis
that collateralization also reduces systemic risk using the graph
model from section 4 and simulated financial systems.

We consider regime (1) as our baseline scenario and will
compute all relative impacts with reference to (1).

5.2. Simulation Technology
We use a systemic risk engine, see O’Halloran et al. (2017b),
to compare the collateralization regimes described above. The
engine generates trade relation graphs using the Python

libraries numpy.random and networkx and then computes
the risk metrics associated to all trades in all trade relations
using an open source risk engine, see Open Source Risk Engine
(2016). The resulting risk data is then aggregated using pandas.
This process is repeated for each of the collateralization regimes
such that their effect on the computed risk metrics can be
systematically studied.

5In the language of section 4 this means that collateralization reduces the w−(b),

i.e., the amount of risk bank is exposed to, where w is a credit risk metric (EEPE in

our case).

5.3. Synthetic Data
The first step in the generation of the data is the generation
of financial systems like Figure 3, where we want to calibrate
the distributions of our random generator to realistic data.
A statistical analysis of the macro exposures in the Brazilian
banking system carried out in Cont et al. (2013) (based on
central bank data) has shown that the degrees of the nodes in
the trade relation graph, i.e., the number of links attached to
each node, follow approximately a Pareto distribution. Therefore,
we randomly generate Pareto distributed sequences and then
compute a graph, which realizes that sequence. While the
first step is straightforward, the second is a hard problem in
discrete mathematics, which is still under active research. For the
purposes of this paper, we use the so called erased configuration
model as implemented in the Python library networkx and
described in Newman (2003). Further details can also be found
in Britton et al. (2006), Bayati et al. (2010). The resulting graphs
look like Figure 7. We can see that the Pareto distributed node
degree yields to graphs which have a few nodes with many links
representing a few big banks, and many nodes with only one
or a few links representing a large number of smaller firms in
the system.

The trades in the trade relations are interest rate swaps (fixed
vs. floating) and FX forwards in EUR and USD. Technically,
these are implemented as boilerplate ORE XMLs and the trade
parameters are chosen at random. For the FX forwards we
use uniformly distributed maturities of up to 5Y, uniformly
distributed notionals of between 100k and 100m and log-
normally distributed strikes. For the interest rate swaps we use
the same distributions for the notionals and the fixed rates are
uniformly distributed between 0.01 and 5%. A coin flip decides
whether or not a generated trade is an FX forward or an interest
rate swap and the same applies to the long/short flag.

FIGURE 8 | Total reduction of EEPE (Reprinted with permission by Columbia University Press).
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We run this simulation with parameters, which can be
summarized as follows:

• Risk Type: Counterparty Credit Risk
• Risk Metric (choice of weight function w): EEPE (Effectivized

Expected Positive Exposure)
• Asset classes: IR/FX Derivatives
• Number of financial systems: 10
• Number of banks in each system: ≤ 50
• Number of trades: 2, 360
• Number of netting sets: 1, 378
• Number of Monte Carlo paths: 500

5.4. Results
In Figure 8 we see a highly aggregated overview of the results of
the simulation. We can see that measured in average total levels
of credit risk [i.e., w(G)] measured in w = EEPE collateralization
reduces this risk. The relative reduction between regime (1),
that is the uncollateralized business, and regime (3), that is
the fully VM collateralized business, is 74% and the relative
reduction between regime (1) and (4), that is the fully VM and
IM collateralized business is even 95%. Notice that this level of
aggregation is even higher than in macro-prudential regulation
as we aggregate across multiple financial systems representing
possible future states of the world.

As all data is created during the simulation and thus
completely accessible, we can now drill down to the macro-
prudential view and study the impact of those regulations on
an example system. In Figures 9–11 we see the risk graph of
a financial system under the three regulatory regimes. The size
of the node indicates the amount of risk the bank at that
node induces into the system, that is the w−(b). We see that
collateralization significantly reduces risk in the entire system.

This optical impression can be confirmed by drilling down
further to the micro-prudential view. In Figure 12 we plot the
EEPE+(b) for every bank b in the system. We can confirm that

FIGURE 9 | Example of a financial system (uncollateralized) (Reprinted with

permission by Columbia University Press).

the impact of collateralization on every bank is qualitatively the
same as on the average, that is it reduces individual risk, but the
amount of reduction can vary among the banks. It is interesting
to note that the concentration of those risks, see Figure 13, i.e.,
the ρ+(b) stays mostly the same across the regulations and for
banks, where it does change, it is not necessarily smaller. We
conclude that collateralization has the desired effect of reducing
total levels of risk of each counterparty, but is inadequate to
address concentration risks.

We can now drill down even further than the micro-
prudential level. As a byproduct of the simulation, we obtain
exposure data of 1,378 netting sets, which we can mine to gain
insight into all the micro impacts of the various regulations.
In Figure 14 we see the distribution of relative reductions
in EEPE of the various netting sets when comparing REG_1

(uncollateralized) with REG_3 (VM collateralized). While most
of the netting sets show a significant relative reduction in

FIGURE 10 | Example of a financial system (VM collateralized) (Reprinted with

permission by Columbia University Press).

FIGURE 11 | Example of a financial system (VM & IM collateralized) (Reprinted

with permission by Columbia University Press).
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FIGURE 12 | Impact of collateralization on individual banks (EEPE+) (Reprinted with permission by Columbia University Press).

FIGURE 13 | Impact of collateralization on individual banks (ρ+) (Reprinted with permission by Columbia University Press).

exposure, we can see that some of them also show a significant
relative increase in exposure. The explanation for this is as
follows: Assume bank A has trades in a netting set with bank
B. These trades are deeply out of the money for bank A,
meaning the markets have moved into bank B’s favor. Then
the uncollateralized exposure for bank A is very low6. Under
VM collateralization however, as the trades are deeply in the
money for bank B, bank B will call bank A for variation
margin. Bank A will then pay the variation margin to bank
B, where it is exposed to the default risk of B, because B
might rehypothecate7 this variation margin. In some situations

6Due to the finite number of MonteCarlo paths, it is sometimes even numerically

zero in the simulation.
7i.e., posting margin received from one counterparty to another.

this results in higher exposure under VM collateralization than
under no collateralization. We see that on a micro level, VM
collateralization can have an adverse effect in rare cases of netting
sets, which are deeply out of the money.

Initial Margin cannot be rehypothecated and, therefore,
posted Initial Margin is not treated as being at risk8. In Figure 15

we see the relative reductions in EEPE of the various netting sets
when comparing REG_3 (VM collateralization) vs. REG_4 (VM
& IM collateralization). Here, we can see that the effect of the

8It should be highlighted that in our simulation we model the bilateral trading

between various banks, where Initial Margin is posted into segregated accounts.

Derivatives that are cleared through a central counterparty (CCP) or exchange

traded derivatives (ETDs) are not in scope of this simulation.
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FIGURE 14 | Histogram of relative reduction in EEPE over all netting sets (197 out of 1,378 have more than 150% increase and are not shown, 29 of those have

zero uncollateralized EEPE). Mean: −57.42%, SD: 38.33% (Reprinted with permission by Columbia University Press).

FIGURE 15 | Histogram of relative reduction in EEPE over all netting sets (0 out of 1,378 have more than 150% increase and are not shown, 0 of those have zero

VM collateralized EEPE). Mean: −85.78%, SD: 20.76% (Reprinted with permission by Columbia University Press).

additional IM overcollateralization unambiguously reduces the
exposure further.

When comparing REG_1 (uncollateralized) vs. REG_4 (VM
& IM collateralization) directly, we can see in Figure 16 that the
reduction in exposure is larger and distributed more narrowly
compared with just the VM collateralization, see Figure 14.
There are still some netting sets left, which show an increase
due to posted variation margin. However, this increase is smaller
than under REG_3, as it is partially mitigated by the additional
IM collateral.

It should be noted that while the increases in exposure we
see in Figures 14, 16 are large in relative terms, they are actually

quite small in absolute terms. In Figure 17 we compute the total
increases and decreases in EEPE of all the netting sets separately.

5.5. Summary
The directed weighted graph metrics provide a useful
comparative statistics to evaluate the impact of various
regulatory regimes on systemic risk. Applied to our hypothesis
testing we arrive at the following conclusions:

• Collateralization reduces systemic credit risk significantly
(measured in EEPE, i.e., the cost of resolving a failed system).

Frontiers in Artificial Intelligence | www.frontiersin.org 11 May 2019 | Volume 2 | Article 742

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


O’Halloran and Nowaczyk AI and Systemic Risk

FIGURE 16 | Histogram of relative reduction in EEPE over all netting sets (69 out of 1,378 have more than 150% increase and are not shown, 29 of those have zero

uncollateralized EEPE). Mean: −83.83%, SD: 34.44% (Reprinted with permission by Columbia University Press).

FIGURE 17 | Total increases and decreases in EEPE of all netting sets between the various regimes (Reprinted with permission by Columbia University Press).

• Collateralization does not materially change the concentration
of credit risk in a financial system.

• In corner cases (deeply out of the money portfolios), VM
collateralization can increase credit risk.

Notice that these results are an interplay of the aggregatedmacro-
exposures and a systematic analysis of all micro-exposures, which
would not be possible outside of the present framework.

6. CONCLUSION

Over the past two decades, the interconnected nature of global
financial markets has increased dramatically, exacerbating threats
to the financial system through the domino effect, the fire-sale

effect, and oversized role certain firms. Just like predicting the
weather, financial service firms are nowmore interconnected and
inherently more complex than ever before. The financial crisis
highlighted the dangers of relying too heavily on proprietary
models developed in silos. The open source paradigm introduced
provides a means to benchmark models and to have common
standards across the industry. The analytic approach adopted
merges the structural and predictive properties of graph model
and AI techniques to generate a financial system from real
distributions of bank trading data.

Our analysis advances the literature in three ways:

1. Provides a simulation environment that enables iterative
stress testing to decipher patterns and linkages in the data,
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thereby providing more robust models and estimates of
systemic risk;

2. Generates entire financial systems from a single trade to
the entire trade relation graph, resulting in a graph model
of systemic risk derived from random distributions of bank
data; and

3. Aggregates standardized micro-prudential risk exposures into
a macro-systemic risk metric that captures both the amount of
risk a firm generates and the amount it absorbs.

We will expand the substantive analysis and methodological
approach developed here in a number of directions:

Large scale simulation: The simulation performed to obtain the
results in section V-D ran on a standard desktop computer.
We plan to deploy the systemic risk engine in a cloud
environment and run a large scale simulation to achieve an
even higher statistical robustness.

Dependence on distributions of the trades: During the
random generation of the trade relations, various
distributional choices have to be made. It is interesting to
study the dependence of the results on those choices. We
expect them to be fairly stable under distributions.

Agent based creation of trade relation graphs: The current
model assumes a Pareto distribution of the trade
relations. It would be interesting to enhance the
nodes representing the banks in the graph model
with dynamic agent based rules of trading and study
under what conditions the resulting trade relations are
Pareto distributed.

Joint modeling of all major risk classes: In the present article
we study the impact of collateralization on credit risk.
However, regulation can affect all types of risk and
the metrics used to measure it. We plan to conduct a
joint analysis of market risk, credit risk, liquidity risk,
operational risk and model risk. In fact, there is significant
interplay between the various risks. Figures 5, 6 highlight a
paradox: the notional amount of OTC derivatives increased
simultaneously as market risk decreased and credit risk

remained changed. One explanation is that collateralization
may decrease market risk at the expense of increased
liquidity risk. We can test this possibility with the AI
framework detailed above9.

Initial Margin and Funding Costs: We believe that the key
to understanding the interplay between credit risk and
liquidity risk, in particular when studying the impact of
collateralization, is its effect on funding costs and other
value adjustments of derivative trades, the so called XVAs.
These quantify the price of the reduction in risk.

Derivatives Market vs. Money Market: It is to be expected that
collateralization will not only impact the derivatives market,
but also the money market. As initial margin cannot be
rehypothecated, its impact could be large. It is therefore
interesting to study the interplay between those markets,
both in case studies and simulations.

Central Clearing: The current analysis focuses on the study of
the impact of collateralization on systemic risk as this was
one of the major regulatory responses to the crisis. Another
response was the incentivization of central clearing, which
can be studied in a similar fashion. Notice that the graph
model presented in section 4 is already able to capture
the effect of this regulation: Any bilateral trade relation
of a bank A with a bank B has to be replaced by two
trade relations—one of bank A with the clearing house and
another one for bank B with the clearing house. We expect
to obtain results quantifying how much safer a clearing
house needs to be in order to reduce systemic risk compared
to bilateral trading.
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This paper investigates how to improve statistical-based credit scoring of SMEs involved

in P2P lending. The methodology discussed in the paper is a factor network-based

segmentation for credit score modeling. The approach first constructs a network of

SMEs where links emerge from comovement of latent factors, which allows us to

segment the heterogeneous population into clusters. We then build a credit score

model for each cluster via lasso-type regularization logistic regression. We compare

our approach with the conventional logistic model by analyzing the credit score of over

1,5000 SMEs engaged in P2P lending services across Europe. The result reveals that

credit risk modeling using our network-based segmentation achieves higher predictive

performance than the conventional model.

Keywords: credit risk, factor models, FinTech, peer-to-peer lending, credit scoring, lasso, segmentation

1. INTRODUCTION

Issuance of loans by traditional financial institutions, such as banks, to other firms and individuals,
is often associated with major risks. The failure of loan recipients to honor their obligation at
the time of maturity leaves the banks vulnerable and affects their operations. The risk associated
with such transactions is referred to as credit risk. It is well known that some percentage of these
non-performing loans are eventually imputed to economic losses. Tominimize such risk exposures,
various methods have been extensively discussed in the credit risk literature to enable credit-issuing
institutions to undertake a thorough assessment to classify loan applicants into risky and non-risky
customers. Some of these methods range from logistic and linear probability models to decision
trees, neural networks and support vector machines. A conventional individual-level reduced-form
approach is the credit scoring model which attributes a score of credit-worthiness to each loan
applicant based on the available history of their financial characteristics. See Altman (1968) for
some pioneer works on corporate bankruptcy prediction models using accounting-based measures
as variables. For a comprehensive review on credit scoring models, see Alam et al. (2010).

Recent advancements gradually transforming the traditional economic and financial system is
the emergence of digital-based systems. Such systems present a paradigm shift from traditional
infrastructural systems to technological (digital) systems. Financial technological (“FinTech”)
companies are gradually gaining ground in major developed economies across the world. The
emergence of Peer-to-Peer (P2P) platforms is a typical example of a FinTech system. The P2P
platform aims at facilitating credit services by connecting individual lenders with individual
borrowers without the interference of traditional banks as intermediaries. Such platform serves
as a digital financial market and an alternative to the traditional physical financial market.
P2P platforms significantly improve the customer experience and the speed of the service and
reduce costs to both individual borrowers and lenders as well as small business owners. Despite
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the various advantages, P2P systems inherit some of the
challenges of traditional credit risk management. In addition,
they are characterized by the asymmetry of information and
by a strong interconnectedness among their users (see e.g.,
Giudici et al., 2019) that makes distinguishing healthy and risky
credit applicants difficult, thus affecting credit issuers. There is,
therefore, a need to explore methods that can help improve
credit scoring of individual or companies that engage in P2P
credit services.

This paper investigates how factor-network-based
segmentation can be employed to improve the statistical-based
credit score for small and medium enterprises (SMEs) involved
in P2P lending. The approach is to first constructs a network
of SMEs where links emerge from comovement of the latent
factors that drive the observed financial characteristics. The
network structure then allows us to segment the heterogeneous
population into two sub-groups of connected and non-
connected clusters. We then build a credit score model for each
sub-population via lasso-type regularization logistic regression.

The contribution to the literature of this paper is manifold.
Firstly, we extend the ideas contained in the factor network-
based classification of Ahelegbey et al. (2019) to a more realistic
setting, characterized by a large number of observations which,
when links between them are themain object of analysis, becomes
extremely challenging.

Secondly, we extend the network-based scoring model
proposed in Giudici et al. (2019) to a setting characterized
by a large number of explanatory variables. The variables
are selected via lasso-type regularization (Tibshirani, 1996;
Hastie et al., 2009) and, then, summarized by factor scores.
Thus, we contribute to network-based models for credit risk
quantification. Network models have been shown to be effective
in gauging the vulnerabilities among financial institutions for
risk transmission (see Battiston et al., 2012; Billio et al.,
2012; Diebold and Yilmaz, 2014; Ahelegbey et al., 2016a), and
a scheme to complement micro-prudential supervision with
macro-prudential surveillance to ensure financial stability (see
IMF, 2011; Moghadam and Viñals, 2010; Viñals et al., 2012).
Recent application of networks have been shown to improve
loan default predictions and capturing information that reflects
underlying common features (see Letizia and Lillo, 2018;
Ahelegbey et al., 2019).

Thirdly, our empirical application contributes to modeling
credit risk in SMEs particularly engaged in P2P lending. For
related works on P2P lending via logistic regression (see
Andreeva et al., 2007; Barrios et al., 2014; Emekter et al., 2015;
Serrano-Cinca and Gutiérrez-Nieto, 2016). We model the credit
score of over 15,000 SMEs engaged in P2P credit services across
Southern Europe. We compare the performance of our network-
based segmentation credit score model (NS-CSM) with the
conventional single credit score model (CSM). We show via our
empirical results that our network-based segmentation presents a
more efficient scheme that achieves higher performance than the
conventional approach.

The paper is organized as follows. Section 2 presents
the factor network segmentation methodology and the lasso-
type regularization for credit scoring. Section 3 discusses the

empirical application of our segmentation approach against the
conventional single model.

2. METHODOLOGY

We present the formulation and inference of a latent factor
network to improve credit scoring and model estimation. Our
objective is to analyze the characteristics of the borrowers to build
a model that predicts the likelihood of their default.

2.1. Logistic Model
Let Y be a vector of independent observations of the loan status
of n firms, such that Yi = 1 if firm-i has defaulted on its loan
obligation, and zero otherwise. Furthermore, let X = {Xij}, i =
1, . . . , n, j = 1, . . . , p, be a matrix of n observations with p
financial characteristic variables or predictors. The conventional
parameterization of the conditional distribution of Y given X is
the logistic model with log-odds ratio given by

log

(

πi

1− πi

)

= β0 + Xiβ (1)

where πi = P(Yi = 1|Xi), β0 is a constant term, β =

(β1, . . . ,βp)
′ is a p × 1 vector of coefficients and Xi is the i-th

row of X.

2.2. Decomposition of Data Matrix by
Factors
The dataset X can be considered as points of n-institutions in
a p-dimensional space. It can also be interpreted at observed
outcomes driven by some underlying firm characteristics. More
specifically, X can be expressed as a factor model given by

X = FW + ε (2)

where F is n×kmatrix of latent factors,W is p×kmatrix of factor
loadings, ε is n × p matrix of errors uncorrelated with F. The
error term ε is typically assumed to be multivariate normal but F
in general case need not be multivariate normal (see Tabachnick
et al., 2007). Lastly, k < p is the number of factors required to
summarize the pattern of correlations in the observed datamatrix
X. In the context of our application, we set k to be the number of
factors that account for approximately 95% of the variation in X.

2.3. Factor Network-Based Segmentation
We present the construction of network structure for the

segmentation of the population. Following the literature on

graphical models (see Carvalho and West, 2007; Eichler, 2007;

Ahelegbey et al., 2016a,b), we represent the network structure as
an undirected binary matrix, G ∈ {0, 1}n×n, where Gij represents
the presence or absence of a link between nodes i and j. We
construct G via similarity of the latent firm characteristics, such
that Gij = 1 if the latent coordinates of firm-i are strongly related
to firm-j, and zero otherwise.

Given the latent factors matrix, F, we construct a network
where the marginal probability of a link between nodes-i and j by

γij = P(Gij = 1|F) = 8[θ + (FF′)ij] (3)
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where γij ∈ (0, 1), 8 is the standard normal cumulative density
function, θ ∈ R is a network density parameter, and (FF′)ij is the
i-th row and the j-th column of FF′. Under the assumption that
G is undirected, it follows that γij = P(Gij = 1|F) = P(Gji =

1|F) = γji. We validate the link between nodes-i and j in G by

Gij = 1(γij > γ ) (4)

where 1(γij > γ ) is the indicator function, i.e., unity if γij > γ

and zero otherwise, and γ ∈ (0, 1) is a threshold parameter.
By definition, the parameters θ and γ control the density of G.
Following Ahelegbey et al. (2019), we set θ = 8−1( 2

n−1 ). To
broaden the robustness of the results, we compare γ = {0.05, 0.1}
to capture a sparse but closely connected community.

2.4. Estimating High-Dimensional Logistic
Models
When estimating high-dimensional logistic models with a
relatively large number of predictors, there is the tendency
to have redundant explanatory variables. Thus, to construct a
predictable model, there is the need to select the subset of
predictors that explains a large variation in the probability of
defaults. Several variable selection methods have been discussed
and applied for various regression models. In this paper,
we consider variants of the lasso regularization for logistic
regressions (Hastie et al., 2009).

2.4.1. Lasso

The lasso estimator (Tibshirani, 1996) solves a penalized log-
likelihood function given by

arg min
β

n
∑

i=1

[

Yi(β0 + Xiβ)− log
(

1+ exp(β0 + Xiβ)
)

]

− λ

p
∑

j=0

|βj| (5)

where n is the number of observations, p the number of
predictors, and λ is the penalty term, such that large values of
λ shrinks a large number of the coefficients toward zero.

2.4.2. Adaptive Lasso

The adaptive lasso estimator (Zou, 2006) is an extension of the
lasso that solves

arg min
β

n
∑

i=1

[

Yi(β0 + Xiβ)− log
(

1+ exp(β0 + Xiβ)
)

]

− λ

p
∑

j=0

wj|βj| (6)

where wj is a weight penalty such that wj = 1/|β̂j|
v, with β̂j as the

ordinary least squares (or ridge regression) estimate and v > 0.

2.4.3. Elastic-Net

The elastic-net estimator (Zou and Hastie, 2005) solves
the following

arg min
β

n
∑

i=1

[

Yi(β0 + Xiβ)− log
(

1+ exp(β0 + Xiβ)
)

]

− λ

p
∑

j=0

(α|βj| + (1− α)β2
j ) (7)

where α ∈ (0, 1) is an additional penalty such that when α = 1 we
a lasso estimator (L1 penalty), and when α = 0 a ridge estimator
(L2 penalty). For the elastic-net estimator, we set α = 0.5 giving
equal weight to the L1 and L2 regularization.

2.4.4. Adaptive Elastic-Net

The adaptive elastic-net estimator (Zou and Zhang, 2009)
combines the additional penalties of the adaptive lasso and the

TABLE 1 | Description of the financial ratios with summary of mean statistics

according to default status.

Var Formula (description) Active

(mean)

Defaulted

(mean)

V1 (Total Assets - Shareholders

Funds)/Shareholders Funds

8.87 9.08

V2 (Longterm debt + Loans)/Shareholders

Funds

1.25 1.32

V3 Total Assets/Total Liabilities 1.51 1.07

V4 Current Assets/Current Liabilities 1.6 1.06

V5 (Current Assets - Current assets:

stocks)/Current Liabilities

1.24 0.79

V6 (Shareholders Funds + Non current

liabilities)/Fixed Assets

8.07 5.99

V7 EBIT/Interest paid 26.39 −2.75

V8 (Profit (loss) before tax + Interest

paid)/Total Assets

0.05 −0.13

V9 P/L after tax/Shareholders Funds 0.02 −0.73

V10 Operating Revenues/Total Assets 1.38 1.27

V11 Sales/Total Assets 1.34 1.25

V12 Interest Paid/(Profit before taxes + Interest

Paid)

0.21 0.08

V13 EBITDA/Interest Paid 40.91 5.71

V14 EBITDA/Operating Revenues 0.08 −0.12

V15 EBITDA/Sales 0.09 −0.12

V16 Constraint EBIT 0.13 0.56

V17 Constraint PL before tax 0.16 0.61

V18 Constraint Financial PL 0.93 0.98

V19 Constraint P/L for period 0.19 0.64

V20 Trade Payables/Operating Revenues 100.3 139.30

V21 Trade Receivables/Operating Revenues 67.59 147.12

V22 Inventories/Operating Revenues 90.99 134.93

V23 Total Revenue 3557 2083

V24 Industry Classification on NACE code 4566 4624

Total number of institutions (%) 13413(89.15%) 1632(10.85%)
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elastic-net to solve the following

arg min
β

n
∑

i=1

[

Yi(β0 + Xiβ)− log
(

1+ exp(β0 + Xiβ)
)

]

− λ

p
∑

j=0

(αwj|βj| + (1− α)β2
j ) (8)

In the empirical work, we focus on estimating the credit score
using the four lasso-type regularization methods. We select the
regularization parameter using 10-fold cross-validation on a grid
of λ values for the penalized logistic regression problem. Two
λ’s are widely considered in the literature, i.e., λ.min and λ.1se.
The former is the value of the λ that minimizes the mean
square cross-validated errors, while the latter is the λ value that
corresponds to one standard error from the minimum mean
square cross-validated errors. Our preliminary analysis shows
that λ.1se produces a larger penalty that is too restrictive in the
sense that we lose almost all the regressors. Although our goal
is to encourage a sparse credit scoring model for the purpose of
interpretability, we do not want to impose too much sparsity that
renders the majority of the features insignificant. Thus, we rather
choose λ.min over λ.1se. For the additional penalty terms, we set
α = 0.5, v = 2, and β̂j as the ridge regression estimate.

TABLE 2 | The eigenvalues of the singular value decomposition to determine the

factors to retain.

No. Eigenvalue Variance explained (%) Cumulative (%)

1 5.18 21.60 21.60

2 2.58 10.73 32.33

3 2.50 10.41 42.74

4 1.60 6.69 49.42

5 1.42 5.92 55.34

6 1.30 5.40 60.74

7 1.16 4.82 65.55

8 1.09 4.56 70.11

9 0.99 4.11 74.22

10 0.93 3.88 78.10

11 0.80 3.35 81.45

12 0.79 3.31 84.76

13 0.75 3.11 87.87

14 0.56 2.35 90.22

15 0.53 2.21 92.43

16 0.51 2.12 94.55

17 0.43 1.80 96.35

18 0.37 1.54 97.89

19 0.17 0.69 98.58

20 0.11 0.47 99.05

21 0.09 0.36 99.41

22 0.07 0.27 99.68

23 0.06 0.26 99.94

24 0.01 0.06 100.00

3. APPLICATION

3.1. Data: Description and Summary
Statistics
To illustrate the effectiveness of the application of factor network
methodology in credit scoring analysis, we obtained data from
the European External Credit Assessment Institution (ECAI)
on 15045 small-medium enterprises engaged in Peer-to-Peer
lending on digital platforms across Southern Europe.

FIGURE 1 | A graphical representation of the estimated factor network. (A)

shows the structural representation of the factor network for threshold

γ = 0.05, and (B) depicts the connected sub-population only. The nodes in

red-color are defaulted class of companies and green-color coded nodes are

non-defaulted class of companies. (A) Network Structure of All Institutions. (B)

Network of Connected Component.

TABLE 3 | Summary statistic of connected and non-connected sub-population

obtained from the factor network-based segmentation for threshold values of

γ = {0.05, 0.1}.

Threshold Status Conn-sub Non-conn-sub

γ = 0.05 Default 964 22.4% 668 6.2%

Non-Default 3,341 77.6% 10,072 93.8%

Total 4,305 28.6% 10,740 71.4%

γ = 0.1 Default 816 24% 816 7%

Non-Default 2,580 76% 10,833 93%

Total 3,396 22.6% 11,649 77.6%
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TABLE 4 | Estimated coefficients from lasso (top left), adaptive lasso (top right), elastic-net (bottom left) and adaptive elastic-net (bottom right).

CSM NS-CSM(C) NS-CSM(NC) CSM NS-CSM(C) NS-CSM(NC)

lasso Adaptive lasso

V1 0.0535 · 0.0375 · · ·

V2 · 0.0332 · · · ·

V3 −0.4468 −0.2818 −1.0148 −0.5298 −0.3539 −1.1990

V4 −0.3549 −0.1294 −0.5556 −0.2928 −0.1368 −0.5137

V5 · · · · · ·

V6 0.0774 · 0.1460 0.0440 · 0.0213

V7 0.2818 · · 0.2116 · ·

V8 −0.3933 −0.3408 0.1185 −0.4356 −0.3463 ·

V9 −0.0360 0.0365 −0.4690 · · −0.5577

V10 −0.0701 0.0287 · · · ·

V11 0.1291 · 0.0550 · · ·

V12 0.0265 0.0222 0.0204 · · ·

V13 −0.2419 · · −0.1759 · ·

V14 −0.0399 −0.0776 · · −0.113 ·

V15 −0.0751 −0.0396 0.0128 −0.0520 · ·

V16 0.0520 0.2851 · · 0.2245 ·

V17 0.2213 0.1650 0.1761 0.2529 0.2092 ·

V18 0.0396 0.0661 0.0143 · 0.0484 ·

V19 0.2540 0.0291 0.2096 0.2755 · 0.2151

V20 0.0412 · 0.2429 · · 0.1950

V21 0.2212 0.1620 0.2969 0.2410 0.1721 0.3185

V22 0.0930 · 0.1470 0.0541 · 0.0219

V23 −0.2262 −0.0649 −0.3452 −0.2213 −0.0650 −0.3826

V24 −0.0062 −0.0641 0.0343 · −0.0645 ·

Elastic-net Adaptive elastic-net

V1 0.0548 · 0.0568 · · ·

V2 1.0e−04 0.0372 · · · ·

V3 −0.4472 −0.2692 −1.0132 −0.5293 −0.3538 −1.2208

V4 −0.3628 −0.1286 −0.6051 −0.2900 −0.1350 −0.6034

V5 0.0048 −0.0123 · · · ·

V6 0.0780 −0.0028 0.1862 0.0422 · 0.1528

V7 0.3003 · · 0.1925 · ·

V8 −0.3926 −0.3310 0.2054 −0.4363 −0.3474 0.1672

V9 −0.0356 0.0435 −0.4884 · · −0.5195

V10 −0.1419 0.0315 · · · ·

V11 0.2016 0.0112 0.1025 · · ·

V12 0.0299 0.0299 0.0545 · · ·

V13 −0.2595 · · −0.1571 · ·

V14 −0.0374 −0.0785 · · −0.1112 ·

V15 −0.0777 −0.0468 0.0597 −0.0499 · ·

V16 0.0600 0.2902 0.0669 · 0.2256 ·

V17 0.2173 0.1588 0.1701 0.2527 0.2097 0.1147

V18 0.0417 0.0769 0.0439 · 0.0459 ·

V19 0.2538 0.0502 0.2042 0.2747 · 0.2151

V20 0.0425 · 0.3139 · · 0.2571

V21 0.2210 0.1634 0.3113 0.2409 0.1721 0.3036

V22 0.0933 0.0012 0.1727 0.0533 · 0.1047

V23 −0.2286 −0.0728 −0.3754 −0.2185 −0.0616 −0.4114

V24 −0.0077 −0.0724 0.0464 · −0.0619 ·

CSM is the benchmark credit score model, NS-CSM(C) is the network segmented connected sub-population credit score model, and NS-CSM(NC) is the network segmented

non-connected sub-population credit score model, estimated for threshold value γ = 0.1.
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The observation on each institution is composed of 24
financial characteristic ratios constructed from official financial
information recorded in 2015. Table 1 presents a description
of the financial ratios with summary of mean statistics of the
institutions grouped according to their default status. In all, the
data consists of 1,632 (10.85%) defaulted institutions and 13,413
(89.15%) non-defaulted companies.

3.2. Decomposition of the Observed Data
Matrix by Factors
To estimate the underlying factors that drive the observed
data matrix, we decompose the matrix of observed financial
characteristics via a singular value decomposition given by,

X = UDV = FW + ε (9)

where U and V are orthonormal, and D = 31/2 is a diagonal
matrix of non-negative and decreasing singular values, with 3

as the diagonal matrix of the non-zero eigenvalues of X′X and

TABLE 5 | Number of selected variables of the four methods.

Lasso Adaptive lasso Elastic-net Adaptive

elastic-net

CSM 22 12 24 12

NS-CSM(C) 16 10 20 10

NS-CSM(NC) 17 9 18 11

XX′. U is n × p, D is p × p and V is p × p. Following the
error approximation criteria, we obtain the factor matrix by,
F = Un,k Dk,k andW = Vk,p, whereUn,k is n×kmatrix composed
of the first k columns ofU, k < p,Dk,k is k× kmatrix comprising
the first k columns and rows of D, and Vk,p is k × p matrix
of factor loadings. The matrix F can therefore be interpreted
as a projection of X onto the eigenspace spanned by Un,k. We
determine k by observing the number of eigenvalues associated
with the largest variance matrix. Table 2 shows the eigenvalues
of the singular value decomposition to determine the factors
to retain. The eigenvalues reported are the normalized squared
diagonal terms of D. From the table, we set k = 17 since the first
17 eigenvalues explain about 95% of the total variation in X.

3.3. Factor Network Analysis
We use the estimated factor matrix, F, to construct the network
for the segmentation of the companies. For purposes of graphical
representations and to keep the companies name anonymous,
we report the estimated network by representing the group
of institutions with color-codes. The defaulted companies are
represented in a red color code, and non-defaulted companies in
the green color code (see Figure 1). Table 3 reports the summary
statistics of the estimated network in terms of the default-
status composition of the SMEs. For robustness purposes, we
compare the results obtained with a threshold value γ = 0.05
against γ = 0.10.

The result for the threshold γ = 0.05 of Table 3 shows that
the connected sub-population is composed of 4,305 companies

FIGURE 2 | ROC curves of the four methods. CSM is the benchmark model, NS-CSM(C) is the network segmented connected sub-population model, and

NS-CSM(NC) is the network segmented non-connected sub-population model, estimated for threshold values of γ = {0.05, 0.1}.
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which constitute 28.6% of the full sample. The non-connected
sub-population is composed of 10,740 (71.4%). The percentage
of the defaulted class of companies are 22.4 and 6.2% among
the connected- and non-connected sub-population, respectively.
We notice that higher threshold values (say γ = 0.1) decrease
(increase) the total number of connected (non-connected)
sub-population and vice versa. Such higher threshold values
also lead to a lower (higher) number of defaulted class of
connected (non-connected) SMEs but (and) constituting a higher
percentage of the defaulted population. Figure 1 presents the
graphical representation of the estimated factor network with
the sub-population of defaulted and non-defaulted companies
color coded as red and green, respectively. Figure 1A shows
the structural representation of both connected and non-
connected sub-population while Figure 1B depicts the structure
of connected sub-population only.

3.4. Credit Score Modeling
We compare the lasso, adaptive lasso, elastic-net, and adaptive
elastic-net variable selection methods to model the credit score of
the listed companies in our dataset. To estimate the models, we
standardized each series to a zeromean and unit variance.Table 4
reports the variable selection and estimated coefficients of the
four methods. The column CSM represents the benchmark credit
scoring model, NS-CSM(C) - the network segmented connected
sub-population credit scoring model, and NS-CSM(NC) for
the network segmented non-connected sub-population credit
scoringmodel. The top left panel represents the lassomethod, the
adaptive lasso is on the top right panel, elastic-net at the bottom
left and adaptive elastic-net at the bottom right.

Table 5 reports the number of variables selected by each of the
four competing methods for the credit score model estimation.
From the table, the elastic-net is the least parsimonious, followed
by the lasso, and lastly, the adaptive elastic-net and adaptive
lasso are the most parsimonious. From Tables 4, 5, we observed
a significant difference in the number of selected explanatory
variables for the benchmark model and the network segmented

TABLE 6 | Comparing area under the ROC curve (AUC) of the four methods.

Lasso Adaptive lasso Elastic-net Adaptive

elastic-net

CSM 0.8089 0.8061 0.8090 0.8061

NS-CSM(γ = 0.05) 0.8214 0.8204 0.8225 0.8207

NS-CSM(γ = 0.1) 0.8330 0.8277 0.8342 0.8312

models. More precisely, the former model the credit score of a
given company by using more variables while the latter on the
other hand uses a significantly lower number of variables. The
similar results across the four variable selection methods, given
their similarities, is not terribly surprising. But they do indicate
that the general approach appears to be robust in this setting,
which was the main purpose of the testing. The network-based
segmentation framework is therefore more parsimonious than
the benchmark full population credit score model, and this helps
in interpretability.

3.5. Comparing Default Predicting
Accuracy
We analyzed the performance of the models by splitting the
sample into 70% training and 30% testing sample. We now
compare the default prediction accuracy of the models in terms
of the standard area under the curve (AUC) derived from
the receiver operator characteristic (ROC) curve. The AUC
depicts the true positive rate (TPR) against the false positive
rate (FPR) depending on some threshold. TPR is the number
of correct positive predictions divided by the total number of
positives. FPR is the ratio of false positives predictions overall
negatives. See Figure 2 for the plot of the ROC curve for the
competing methods.

The comparison of the ROC curves from the competing
methods shows that the CSM (in red) lies below the rest. Clearly,
the curves of NS-CSM (γ = 0.1) depicted in green seems
to dominate the others. The summary of the area under the
ROC curve reported in Table 6 shows that NS-CSM (γ = 0.1)
is ranked first, followed by NS-CSM (γ = 0.05), and the
lowest AUC is obtained by the CSM. Overall, in terms of default
predictive accuracy, the result of the AUC shows the NS-CSM
outperforms the CSM, on average by two percentage points. This
is an advantage that can be further increased considering as the
cut-off the observed default percentages, which are different in
the two samples.

We investigate whether the AUC of the network segmented
model is significantly different from the benchmark model for
the four methods. We applied the DeLong test (DeLong et al.,
1988) to investigate the pairwise comparison of the AUC of
the benchmark model (i.e., CSM) and that of the NS-CSM
for γ = {0.05, 0.1}. We perform these tests under the null-
hypotheses that H0: AUC (CSM) ≥ AUC (NS-CSM) and the
alternative hypotheses, H1: AUC (CSM) < AUC (NS-CSM).
Table 7 reports the one-sided statistical test of the AUC of the

TABLE 7 | AUC of the benchmark model relative to the network segmented models under the four methods.

Statistic P-value Significance Statistic P-value Significance

Lasso Adaptive lasso

CSM NS-CSM(γ = 0.05) -0.7639 0.2225 -0.8598 0.1950

NS-CSM(γ = 0.1) -1.4972 0.0672 * -1.3129 0.0946 *

Elastic-net Adaptive elastic-net

CSM NS-CSM(γ = 0.05) -0.8241 0.2050 -0.8728 0.1914

NS-CSM(γ = 0.1) -1.5770 0.0574 * -1.5327 0.0627 *
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benchmarkmodel relative to the network segmentedmodels. The
result of the De Long test shows that while the ROC of CSM
is not statistically different from that of NS-CSM(γ = 0.05),
the difference between the ROC of NS-CSM(γ = 0.1) and the
benchmark (CSM) is statistically significant at 90% confidence
level for all four methods.

In conclusion, our proposed factor network approach to credit
score modeling presents an efficient framework to analyze the
interconnections among the borrowers of a peer to peer platform
and provides a way to segment a heterogeneous population
into clusters with more homogeneous characteristics. The results
show that the lasso logistic model for credit scoring leads to
better identification of the significant set of relevant financial
characteristic variables, thereby producing a more interpretable
model, especially when combined with the segmentation of
the population via the factor network-based approach. These
empirical results are promising, but certainly not definitive. More
research is required to determine whether the observed ‘lift’
truly is significant rather than just an artifact of random chance
or spurious correlation, especially given the fact that these p-
values are not calibrated in any way (e.g., Sellke et al., 2001) and
Calabrese and Giudici (2015). Further research may include a
Bayesian approach, as in Figini and Giudici (2011) and Giudici
(2001). We therefore find evidence of a modest improvement in
the default predictive performance of our model compared to the
conventional approach.

4. CONCLUSION

This paper improves credit risk management of SMEs engaged
in P2P credit services by proposing a factor network-based
approach to segment a heterogeneous population into a cluster
of homogeneous sub-populations and estimating a credit
score model on the clusters using a lasso-type regularization
logistic model.

We demonstrate the effectiveness of our approach through
empirical applications analyzing the probability of default of
over 15,000 SMEs involved in P2P lending across Europe.
We compare the results from our model with the one
obtained with standard single credit score methods. We
find evidence that our factor network approach helps
to obtain sub-population clusters such that the resulting
models associated with these clusters are more parsimonious
than the conventional full population approach, leading to
better interpretability and to a modest improved default
predictive performance.
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The growing importance of financial technology platforms, based on interconnectedness,

makes necessary the development of credit risk measurement models that properly

take contagion into account. Evaluating the predictive accuracy of these models is

achieving increasing importance to safeguard investors and maintain financial stability.

The aim of this paper is two-fold. On the one hand, we provide an application of

Poisson autoregressive stochastic processes to default data with the aim of investigating

credit contagion; on the other hand, focusing on the validation aspects, we assess

the performance of these models in terms of predictive accuracy using both the

standard metrics and a recently developed criterion, whose main advantage is being

not dependent on the type of predicted variable. This new criterion, already validated on

continuous and binary data, is extended also to the case of discrete data providing results

which are coherent to those obtained with the classical predictive accuracy measures.

To shed light on the usefulness of our approach, we apply Poisson autoregressive

models with exogenous covariates (PARX) to the quarterly count of defaulted loans

among Italian real estate and construction companies, comparing the performance of

several specifications. We find that adding a contagion component leads to a decisive

improvement in model accuracy with respect to the only autoregressive specification.

Keywords: credit risk, systemic risk, contagion, PARX models, validation measures

1. INTRODUCTION

The credit market is experiencing a large growth of innovative financial technologies (fintechs).
In particular, peer-to-peer lending platforms propose a business model that disintermediates the
links between borrowers and lenders and is based on a stronger interconnectedness between the
agents with respect to the traditional banking system. Furthermore, peer-to-peer lenders often do
not have access to individual borrowers’ data usually employed in banks’ credit scoring models,
such as financial ratios and credit bureau information. In this context, models analyzing correlation
in the default dynamics of different agents or sectors can effectively support credit risk assessment.

More generally, interconnectedness, already known as a trigger of the great financial crisis in
2008–2009, is recognized as a source of systemic risk, i.e., according to the European Central Bank,
“the risk of experiencing a strong systemic event, which adversely affects a number of systemically
important intermediaries or markets.” The impact that an event experienced by an economic agent
or sector can have on other institutions in the market is often referred to as contagion. From an
econometric viewpoint, statistical methods able to properly measure the systemic risk that arises
from interconnectedness are necessary to safeguard both traditional intermediaries and peer-to
peer lending investors, therefore maintaining financial stability.
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The first systemic risk measures have been proposed for
the financial sector, in particular by Adrian and Brunnermeier
(2016) and Acharya et al. (2012). These works consider
financial market data, calculating the estimated loss probability
distribution of a financial institution, conditional on an extreme
event in the financial market. Being applied to market prices,
these models are based on Gaussian processes.

Financial market data have also been used in another recent
approach to systemic risk, based on correlation network models,
where contagion effects are estimated from the dependence
structure among market prices. The first contributions in this
framework are Billio et al. (2012) and Diebold and Yilmaz (2014),
who derived contagion measures based on Granger-causality
tests and variance decompositions. Ahelegbey et al. (2016)
and Giudici and Spelta (2016) have extended the methodology
introducing stochastic correlation networks.

Networks represent a relevant modeling approach in peer-to-
peer platforms, where continuous credit demand and lending
activity makes available large amounts of transaction data.
Network models have been recently applied to peer-to-
peer lending platforms data by Ahelegbey et al. (2019) and
Giudici et al. (2019).

Another possible approach to analyze contagion is to build
discrete data models for the counts of default events. Including
exogenous covariates in such models allows to test whether the
failure of a given firm increases the probability that other failures
occur conditional on a set of risk factors. For example, Lando
and Nielsen (2010) model default times by Poisson processes
with macroeconomic and firm-specific covariates entering the
default intensities. Their methodology does not directly include a
contagion component, but investigates possible contagion effects
by testing whether the Poisson model is misspecified. Default
counts are also modeled by Koopman et al. (2012) and, recently,
by Azizpour et al. (2018), who use a binomial specification where
the probability of default is a time-varying function of underlying
factors, also including unobserved components.

Among the approaches to default counts modeling we focus
on PARX models developed by Agosto et al. (2016), including
autoregressive and exogenous effects in a time-varying Poisson
intensity specification. A recent extension by Agosto and Giudici
(Submitted) makes PARX models suitable to investigate default
contagion. In this paper, PARX models are applied to default
counts data in the Italian real estate sector.

Validation is a critical issue in credit risk modeling, because
of the interest in selecting indicators able to predict the default
peaks, and achieves further importance in artificial intelligence
systems, where the traditional accuracy measures based on
probabilistic assumptions cannot always be implemented.

In the specific case of contagion analysis, such as the
one presented in this paper, model selection also assumes an
explanatory role: the comparison of alternative specifications,
including contagion components or not and considering
different exogenous risk factors, provides a deeper insight into
default correlation.

In our empirical application we validate the models applied
to default counts using several measures, including the Rank
Graduation index RG, recently developed by Giudici and

Raffinetti (Submitted). In Giudici and Raffinetti (Submitted),
the purpose was to propose an index that is objective and not
endogenous to the system itself. The Rank Graduation index
(RG) was originally developed to deal with two real machine
learning applications characterized, respectively, by a binary and
a continuous response variable. It is based on the calculation
of the cumulative values of the response variable, re-ordered
according to the ranks of the values predicted by the considered
model. Giudici and Raffinetti (Submitted) showed that the RG
metric is more effective than the AUROC (typically used for
models with binary response variables) and the RMSE (typically
used for models with continuous response variables). Specifically,
in the binary case, it appears as an objective predictive accuracy
diagnostic, since built on re-ordering the response variable
values according to the predicted values themselves, and, in the
continuous case, it is not affected by the presence of outliers.
Here, the application of the Rank Graduation index is extended
to the case of default count data and the related results are
compared to those obtained with traditional measures, such
as the likelihood-based criteria and RMSE. Given its attractive
features and properties, both regulators and supervisors may
be interested in the RG employment in artificial intelligence
applications, in order to better understand and manage the
business models and avoid decisions based upon wrong outputs
which may lead to losses or reputational risks.

The paper is organized as follows. Section 2 describes PARX
models and how they can be used to study the default count
dynamics and investigate possible contagion effects. Section 3
provides an overview of the main validation criteria and the
basic elements characterizing the Rank Graduation measure.
Section 4 presents the empirical findings derived from the
application and validation of PARX models for default counts.
Section 5 concludes.

2. PARX MODELS

The approach to default counts modeling applied in this work
is based on PARX models (Agosto et al., 2016). PARX models
assume that a count time series yt , conditional on its past,
follows a Poisson distribution with a time-varying intensity
λt > 0, whose formulation includes an autoregressive part
and a d-dimensional vector of exogenous covariates xt : =

(x1t , x2t , ..., xdt)
′ ∈ R

d:

yt|Ft−1 ∼ Poisson (λt) ⇔ P
(

yt = y|Ft−1

)

=
λ
y
t exp (−λt)

y!
(1)

λt = ω +

p
∑

i=1

αiyt−i +

q
∑

i=1

βiλt−i +

d
∑

i=1

γif (xi)

with Ft−1 denoting the σ -field
σ

{

y0, ..., yt−1, λ0, ..., λt−1, x0, ..., xt−1

}

, ω > 0, αi ≥ 0
(i = 1, 2, ..., p) and βi ≥ 0 (i = 1, 2, ..., q).

When the vector of unknown parameters γ : = (γ1, ..., γd)
is null, the model reduces to Poisson Autoregression (PAR)
developed by Fokianos et al. (2009), who showed how including
past values of the intensity λt allows for parsimonious modeling
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of long memory effects. Note that exogenous covariates are
included through a non-negative link function to guarantee that
intensity is positive.
The presence of both dynamic and exogenous effects makes
PARX models suitable for describing count time series of events
that cluster in time, as defaults are known to do. Furthermore,
it can be shown that including an autoregressive component as
well as covariates in a Poisson process generates overdispersion,
that is unconditional variance larger than the mean, a typical
feature of default count time series.
Agosto et al. (2016) applied model (1) to Moody’s rated US
corporate default counts, with the aim of distinguishing between
the impact of past defaults on current default intensity—possibly
due to contagion effects—and the impact of macroeconomic
and financial variables acting as common risk factors. Recently,
Agosto and Giudici (Submitted) proposed to extend PARX
models to accomplish investigation of default contagion
effects. Differently from model (1) and following Fokianos and
Tjøstheim (2011), they use a log-linear intensity specification.
This allows to consider negative dependence on exogenous
covariates, which can be useful in credit risk applications.

Letting yjt the number of defaults in economic sector (or, more
generally, group of borrowers) j at time t and ykt the number of
defaults in sector k, they define the following model:

yjt|Ft−1 ∼ Poisson(λjt) (2)

log(λjt) = ωj +

p
∑

i=1

αji log(1+ yjt−i)+

q
∑

i=1

βji log(λjt−i)

+

r
∑

i=1

γjixt−i +

s
∑

i=1

ζji log(1+ ykt−i)

with ωj,αji,βji, γji, ζji ∈ R and xt−i : = (x1t−i, x2t−i, ..., xdt−i)
′ ∈

R
d being a vector of lagged exogenous covariates. In model (2),

that the authors call Contagion PARX, ζj measures the effect
of the covariate default count process on the response default
counts, which can be interpreted as a contagion effect. Taking the
log(·)+ 1 of counts allows to deal with possible zero values. This
specification can easily be extended to the case where the default
counts of a set of different sectors, rather than only one covariate
default series, are included among the regressors.

3. MODEL VALIDATION

A basic issue of the artificial intelligence systems is the validation
process for themodel prediction quality assessment. In this paper,
we consider the available literature for validation procedures and
illustrate a new practice for the validation.

In literature, several metrics aimed at comparing and
improving the models are available, depending on the nature of
data. As mentioned above, one of the focus of this paper is on
the use of the Poisson autoregressive models for modeling default
counts. The presence of a discrete response variable suggests
the choice of the Root Mean Squared Error (RMSE) and the
criteria based on likelihood, such as the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC), as

the most widely employed measures for the model predictive
accuracy evaluation.

It is worth noting that in the model validation research field,
the lack of a standard metric, working regardless of the nature of
the response variable to be predicted, is still a crucial drawback
to be faced. Recently, Giudici and Raffinetti (Submitted) have
worked out one possible solution by proposing a new measure,
the RG Rank Graduation index, which is based on the calculation
of the cumulative values of the response variable, according to
the ranks of the values predicted by a given model. The main
features of the RG criterion together with a brief description
of the conventional validation measures are provided in the
following subsections.

3.1. Conventional Model Validation
Measures
The RMSE, AIC, and BIC criteria, intended as some of the
most broadly used metrics for the model validation, are defined
as follows:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi)2, (3)

where the yi’s and ŷi’s represent the response variable observed
and predicted values (with i = 1, . . . , n), respectively,

AIC = −2logL(θ̂ |x1, . . . , xn)+ 2k (4)

and

BIC = −2logL(θ̂ |x1, . . . , xn)+ klog(n), (5)

where θ is the set of model parameters, logL(θ̂ |x1, . . . , xn) is
the log-likelihood of the model given the data x1, . . . , xn when
evaluated at the maximum log-likelihood estimate of θ (θ̂), k is
the number of the estimated parameters in the model and n is the
number of observations.

The best model, in terms of predictive accuracy, is the one that
provides theminimumRMSE, AIC and BIC (for more details, see
e.g., Kuha, 2004; Hyndman and Koehler, 2006).

3.2. The RG as an Additional Model
Validation Criterion
Besides the conventional model validation criteria, the RG
measure deserves a wider discussion, especially because it appears
as a more general predictive accuracy criterion which does not
depend on the type of data to be analysed. As mentioned above,
in Giudici and Raffinetti (Submitted), the RG was proposed as a
unique metric to assess the model predictive accuracy in presence
of both binary and continuous response variables. Moreover,
due to its features and construction it fulfills some attractive
properties: (1) it appears as an objective criterion compared with
the AUROCmetric, which depends on the arbitrary choice of the
cut-off points; (2) it is a robust criterion since non-sensitive to
the presence of outliers. Given the topic of this paper, related
to the employment of discrete data models for default counts, it
is therefore worth to extend the frontiers of the RG application
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areas to the context of discrete response variables.
The interest in applying the RG index to default count data

is also linked to some typical features shown by the time series
of defaults. The common presence of peaks and outliers makes
indeed preferable to evaluate predictive accuracy of default
count models through concordance measures rather than error
measures that are known to be sensitive to outliers.

In order to better highlight the main strengths of our
validation approach, a brief overview on the RG construction
seems to be basic. The proposal is based on the so-called C
concordance curve, which is obtained by ordering the normalized
Y response variable observed values according to the ranks of the
predicted Ŷ values provided by the model.

Let Y be a discrete response variable and let X1, . . . ,Xp be
a set of p explanatory variables. Suppose to apply a model
such that ŷ = f (X). The model predictive accuracy is
assessed by measuring the distance between the set of the C
concordance curve points, whose coordinates are denoted with
(i/n, (1/(nȳ))

∑i
j=1 yr̂j ), where ȳ = 1

n

∑n
i=1 yi and yr̂j represents

the j-th response variable value ordered by the rank of the
corresponding predicted value ŷj (with j = 1, . . . , i and i =

1, . . . , n), and the set of the bisector curve points of coordinates
(i/n, i/n). As an example, the graphical representation of the
C concordance (in red) and bisector (in black) curves is
displayed in Figure 1. Figure 1 reports also two other curves:
the response variable LY Lorenz curve (in blue), which is
defined by the normalized Y values ordered in non-decreasing
sense, and the response variable L′Y dual Lorenz curve (in
green), which is defined by the normalized Y values ordered in
non-increasing sense.

Both the response variable Lorenz and dual Lorenz curves
take a remarkable role in the RGmeasure construction, especially
the response variable LY Lorenz curve. Indeed, since the
model predictive accuracy degree depends on the distance
between the bisector and the C concordance curves, it follows
that the more the C concordance curve moves away from
the bisector curve, the more the model predictive accuracy
improves. This because the bisector curve detects a model
without predictive capability. Indeed, if ŷi = ȳ, for any
i = 1, . . . , n, through some manipulations, the coordinates of
the C concordance curve becomes (i/n, i/n), which perfectly
corresponds to the coordinates of points characterizing the
bisector curve. Analogously, if the C concordance curve perfectly
overlaps with the LY Lorenz curve, then the model is perfect
because it preserves the ordering between the observed response
variable Y values and the corresponding Ŷ estimated values.
In such a case, the coordinates of the C concordance curve
become (i/n, (1/(nȳ))

∑i
j=1 y(j)), where y(j)’s, with j = 1, . . . , i

and i = 1, . . . , n, are the response variable values ordered in
non-decreasing sense.

Based on the above considerations, the RG measure takes the
following expression:

RG =

n
∑

i=1

{

(1/(nȳ))
∑i

j=1 yr̂j − i/n

}2

i/n
=

n
∑

i=1

{

C(yr̂i )− i/n
}2

i/n
,

(6)

FIGURE 1 | The LY (blue) Lorenz curve, dual L′Y (green) Lorenz curve, and

the C (red) concordance curve.

where C(yr̂j ) =

∑i
j=1 yr̂j

∑n
i=1 yi

represents the cumulative values of

the (normalized) response variable Y . The RG measure in (6)
appears as an absolute metric, since it takes values in the close
range [0,RGmax], where RGmax is the maximum value that can
be achieved. Trivially, the maximum RG value can be reached if
the model perfectly explains the response variable, meaning that
the C concordance curve indifferently overlaps with the response
variable Lorenz or dual Lorenz curves. Indeed, the distance
between the Y Lorenz or dual Lorenz curves and the bisector
curve is the same, being the two curves symmetric around the
bisector curve. A normalized RG measure is then defined as
the ratio between the absolute RG measure ad its maximum
value RGmax.

Finally, we remark that when some of the Ŷ values are equal
to each other, we take into account the adjustment suggested by
Ferrari and Raffinetti (2015) in order to solve the re-ordering
problem. Specifically, the original Y values associated with the
equal Ŷ values are substituted by their mean.

4. APPLICATION

In this section we provide the application of PARX models to
Italian corporate default counts data in the real estate sector and
their evaluation through different validation measures. Bank of
Italy’s Credit Register collects the quarterly number of transitions
to bad loans in major economic sectors. Bad loans are exposures
to insolvent debtors that cannot be recovered and that the bank
must report as balance sheet losses. Being an absorbent state,
the number of loans turned out to be bad in a given period
can be used as a proxy of the default count at that time. The
data are quarterly and divided by economic sector. Among the
sectors included in the database we focus on the Real Estate
and Commercial ones, using data covering the period March
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FIGURE 2 | Default count time series of real estate and commercial corporate

sectors (logarithmic scale): Italian data.

TABLE 1 | Summary statistics for the real estate sector default counts: Italian data.

Mean Std. Dev. Min Max

1132.9 711.7 368 2825

1996–June 2018 (90 observations). The real estate sector includes
both real estate and construction companies and was one of the
most hit by the recent financial crisis. Our choice is motivated
by the economic interest in verifying the impact that the default
dynamics of commercial firms, highly influenced by the changes
in consumption behavior, may have on the real estate sector.
Possible contagion from the commercial to the real estate sector
is mainly due to the decrease of both business and private
investments by the owners of commercial activities, causing a
reduction in the demand of new buildings and real estate services.

Figure 2 shows the default count time series of the two
economic sectors considered. Both series exhibit clustering
and a possible structural break in 2009, with an increase in
both level and variability. Table 1 reports the main summary
statistics for the response variable of our exercise, that is the
default counts among real estate Italian firms, while Figure 3

shows the autocorrelation function of the series. Both the
presence of overdispersion (the empirical variance is 506468.7
and the empirical average 1132.9) and the slowly decaying
autocorrelation encourage the use of PARX to model the data.

To investigate credit contagion effects between the two sectors
and show our validation procedure, we consider the model
regressing real estate sector default counts on their past values
and on past commercial sector default counts.

An important robustness and validation step when applying
PARX models is assessing the effects of including exogenous
covariates summarizing the macroeconomic context, such as
the business cycle. The aim is to verify to what extent the
macroeconomic stress affecting all the economic agents and
sectors explains the default and contagion dynamics.

FIGURE 3 | Sample autocorrelation function of real estate default count time

series: Italian data.

TABLE 2 | Parameter estimates for real estate sector default counts.

Variable Estimate Standard error t-stat

Constant −0.1339 0.3285 0.4075

Real estate sector bad loans in t-1 0.6062 0.1591 3.8103***

Commercial sector bad loans in t-1 −0.2886 0.2689 −1.0732

Commercial sector bad loans in t-2 0.7161 0.1299 5.5129***

GDP growth rate in t-1 −0.0341 0.0284 −1.2009

GDP growth rate in t-2 −0.0705 0.0274 −2.5732**

***p < 0.001; **p < 0.01.

Thus, we first estimate a model (Full Contagion PARX)
that, according to specification (2), includes both a contagion
component and the exogenous covariate GDP in a log-linear
intensity specification1:

log(λt) = ω +α log(1+ yt−1)+ γ1GDPt−1 + γ2GDPt−2

+ζ1 log(1+ yCt−1)+ ζ2 log(1+ yCt−2) (7)

whereGDPt is the Italian GDP growth rate and yCt is the number
of defaults among commercial sector companies at time t.

FromTable 2, reporting the parameter estimates for themodel
above, note that the effect of GDP variation on the real estate
sector default risk is significant at the second lag, suggesting a
delayed effect of the business cycle on the corporate solvency
dynamics which is reasonable from an economic point of view.
Also the impact of commercial sector default counts turns out to
be significant with a two quarters lag.

In order to highlight the contribution of the
different components—autoregressive, contagion, and
exogenous—and validate the model we then consider two
alternative specifications.

1The number of lags has been determined through preliminary model selection

based on likelihood ratio and BIC criterion.
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TABLE 3 | Validation measures for the considered models.

Model RMSE AIC BIC RG

Full contagion PARX model 207.68 −1,256,019 −1,256,004 6.098

Contagion PARX model 222.02 −1,255,643 −1,255,633 6.114

PAR model 272.06 −1,254,332 −1,254,327 5.796

We first estimate a PARX model that, following specification
(1), includes an autoregressive and an exogenous component in a
linear intensity specification:

λt = ω + αyt−1 + γ1GDP
−
t−1 + γ2GDP

−
t−2 (8)

where GDP− : = IGDP<0|GDP|, that is the absolute value
of the negative part of GDP growth rate. This ensures that
default intensity is positive, as needed in the linear specification.
Fitting the model above, we do not find significant effects
of GDP decrease on the real estate sector. Thus, the model
reduces to an only autoregressive Poissonmodel as the previously
cited PAR. According to this result, while negative correlation
with the business cycle taken into account by the log-linear
model significantly explains the default dynamics, the positive
association between the GDP decrease and the default counts is
not significant in our exercise. This highlights the advantage of
using specifications that allow to consider negative dependence.

The last competing model is a Contagion PARX without other
covariates than commercial sector default counts [γ parameters
equal to 0 in specification (2)]:

log(λt) = ω+αyt−1+ ζ1 log(1+ yCt−1)+ ζ2 log(1+ yCt−2) (9)

We now compare the in-sample performances of the three
models above: PAR model, Contagion PARX model, and Full
Contagion PARX model by using the RMSE, AIC, BIC and RG
validation measures. The results are illustrated in Table 3.

First note that the Full Contagion PARX model is the
most performing according to RMSE, AIC, and BIC criteria.
In particular, moving from the PAR to the Contagion PARX
specification leads to a decrease of nearly 24% in the RMSE. The
model ordering changes when considering the RG index. The
model showing the higher RG index is indeed the Contagion
PARX one, with a value of 6.114. The Full Contagion PARX
model shows a slightly lower value (6.098), while the RG index
of the PAR model is 5.796. As RGmax = 6.709, it follows that the
PARmodel explains the 86.4% of the variable ordering, compared
with the 90.9% of the Full Contagion PARXModel and the 91.1%
of the Contagion PARXModel.

According to all the considered measures, adding the
contagion component leads to a decisive increase in model
performance with respect to the only autoregressive specification,

with a decrease of 18% in RMSE and an increase of nearly
3.5% in accuracy. Considering the negative association between
the macroeconomic stress and default risk considerably reduces
the error measure—the decrease in RMSE with respect to the
Contagion PARX model is around 7% - but does not improve
model performance in terms of accuracy, measured through the
RG index. In such a case, the choice of the preferable specification
depends on the objective of model comparison. If the aim,
as in our contagion analysis, is validating a model that well
explains the empirical distribution of the data even with a limited
number of parameters, rather than getting a point forecast of the
response variable, decisions based on a concordance measure are
more appropriate.

5. CONCLUSION

In this paper, we have illustrated an application of PARX models,
which investigate contagion through Poisson autoregressive
stochastic processes, and we have evaluated the predictive
accuracy of different specifications. While previous works
focused on the theory development and extension of PARX,
we concentrate on the issue of validating these models
and measuring the contribution of contagion and exogenous
components to their predictive performance. For doing so, we
resorted to a novel metric, called RG index, which is independent
on the involved response variable nature. Specifically, the RG
measure, originally considered in the cases of binary and
continuous data, was here extended with the aim of covering also
the case of discrete data.

Fitting several PARX-type specification to the quarterly count
of defaulted loans in the Italian real estate sector, we find
evidence of a significant effect of commercial sector defaults on
real estate default risk. We also find that considering the effect
of the business cycle improves model performance according
to likelihood-based criteria and traditional error measures, but
it does not increase predictive accuracy according to the new
concordance metric.
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Despite the current growing interest in Bitcoins—and cryptocurrencies in

general—financial instruments, as well as studies related to them, are quite

underdeveloped. Therefore, this article aims to provide a suitable pricing model

for options written on this peculiar underlying. This is done through an artificial neural

network approach, where classical pricing models—namely the trinomial tree, Monte

Carlo simulation, and explicit finite difference method—are used as input layers. Results

show that options written on Bitcoin turn out to be systematically overpriced when

considering classical methods, whereas a noticeable improvement in price predictions

is achieved by means of the proposed neural network model.

Keywords: cryptocurrencies, bitcoin, option pricing, neural network, alternative option pricing methods

1. INTRODUCTION

Stock options are a category of financial derivatives which became widely employed by investors
and speculators during the last few decades. Nevertheless, investors may ineffectively manage
their portfolios if they are not able to value options in a proper way. For this reason, a reliable
methodology capable to yield an option’s current price or forecast is fundamental for investors
in order to produce a rigorous decision making. This is particularly true when considering
non-mature and volatile markets like the cryptocurrency one.

The theory of option pricing is broad and involves various types of pricing techniques, largely
parametric ones. The most widely known option pricing method is arguably the one defined by
Black and Scholes (1973). Although this technique has been widely employed by practitioners, its
strict set of assumptions, as well as subjectivity with respect to the parameter choices, often yields to
unreliable results to some extent. To illustrate, the leptokurtic behavior of return distributions and
the volatility smiles and skews are features that cannot be captured by such a simplistic technique.

Besides the Black-Scholes model and its modifications, other parametric models have been
developed and became widely used, among which the (binomial and trinomial) tree models, the
finite difference method and the Monte Carlo simulation. While tree models converge to the
Black-Scholes one in case the time occurring between steps is small enough, other methodologies
take into consideration pricing aspects that these two models do not. Indeed, the Monte Carlo
simulation allows for random shocks other than those provided by the volatility and the movement
probabilities of the tree models, whereas the finite differencemethod relies on a different simulation
scheme. This is the reason why in this paper examines and includes tree models, the Monte Carlo
simulation, and the finite difference method as pricing methodologies.

Alongside the category of classical derivative and option pricing models, non-parametric
models, such as neural networks gradually emerged, mainly thanks to their improved predictive
performance with respect to the former techniques. Yao et al. (2000) predicts prices related to
the Nikkei 225 index futures using back-propagation neural networks. Their results show that,
despite the Black-Scholes model is still good for pricing at-the-money options, the neural network
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outperforms it, in particular when considering volatile markets.
Another research conducted by Liang et al. (2009) motivates this
paper’s approach, as the authors use classical models (binomial
tree, finite difference method, and Monte Carlo simulation)
in a first stage to forecast the option price and refine those
forecasts through neural networks and support vector machines
in a second stage. This technique allows to notably reduce
forecast error, i.e., substantially improves price forecasts in their
Hong Kong option market framework. Nonetheless, there are
many other examples on neural network models for derivative
securities pricing which found that neural networks outperform
classical models—see, for instance, Hutchinson et al. (1994),
Malliaris and Salchenberger (1996), Amilon (2003), Binner et al.
(2005), and Lin and Yeh (2005).

Research related to the cryptocurrency market, as the
phenomenon itself, is relatively new. Despite that, there is a
massive interest of the academic community in investigating
this new market and its peculiar features from all points of
view, with a particular focus on Bitcoin. Indeed, since Nakamoto
(2008) introduced the concept of Bitcoin as a purely peer-to-
peer version of electronic cash, researches developed following
different and multidisciplinary fields. Some researchers provide a
general descriptional analysis of the cryptocurrency framework.
To illustrate, in Dwyer (2015) we may find a detailed overview
on technical issues of Bitcoin and the cryptocurrency market in
general. Also White (2015) goes through the key concepts of
cryptocurrencies, while focusing on the so called “Altcoins”1. A
further study by Kroll et al. (2013) examines the Bitcoin mining
process thoroughly. Another stream of the literature, with studies
conducted by Brandvold et al. (2015) and Pagnottoni and Dimpfl
(2019), finds the leader and follower Bitcoin exchanges of the
price discovery process through an econometric analysis of its
price across different exchange.

Despite the quite wide set of studies in the cryptocurrency
area, to the best of our knowledge there is not yet any
research trying to address option pricing related to Bitcoin (or
cryptocurrency) derivatives. The aim of this study is to propose
a pricing methodology that is feasible to price cryptocurrency
options. Without loss of generality, the paper focuses on
european style Bitcoin put and call options which became
recently available on the market. To this end, the study makes
use of a two stage approach. The first stage consists of option
pricing through parametric approaches, such as tree models,
finite difference method, and Monte Carlo simulation. In the
second stage, artificial neural networks are employed in order to
combine the parametric option pricing approaches and capture
the residual errors by learning schemes in the current status of
the option market. Their performance is then compared to the
conventional option pricing techniques obtained in the first stage.
Results point to the predominance of the neural network models
with respect to the conventional methods in pricing Bitcoin
options and, therefore, in capturing their real price dynamics.
As a robustness check, an out-of-sample analysis confirm the
previous result, as well as a cross validation analysis through

1“Altcoin” stands for “alternative coin.” The term is used to indicate all

cryptocurrencies except for Bitcoin.

random sub-sampling reveals that—despite there is still some
room for improvement—results are arguably stable and the
neural network is a suitable model in order to price options
written on Bitcoin.

The remainder of the paper proceeds as follows. Section 2
outlines the methodology employed. Section 3 describes and
analyzes the data. Section 4 presents the results. Section 5
illustrates the robustness analysis conducted. Section 6 concludes.

2. METHODOLOGY

This section briefly introduces the classical parametric option
pricing techniques used in this paper: specifically, tree models,
finite difference method, and Monte Carlo simulation. After
that, I discuss the neural network model and the comprehensive
approach for option pricing.

The following notation will be used. S represents the
underlying asset price, C is the option price, K is the options’
exercise price, σ denotes the asset price volatility, r represents the
risk-free interest rate, 1t is the time interval (i.e., the time period
length), and T is the time to maturity.

2.1. Tree Models
Tree models are widely used not only to price European
style options, but also closed-form American options, as
they can account for the early exercise feature. Milestone
references for binomial trees are the ones of Cox et al. (1979)
and Rendleman and Bartter (1979). Further extensions are
proposed by Boyle (1977), Nelson and Ramaswamy (1990),
and Hull and White (1990a).

In the binomial tree setup, the underlying asset price St,i with
t = 0, 1, 2, ..., n − 1 may either experience an up movement to
St+1,i or a down movement to St+1,i+1, with t = 1, 2, ..., n. This
happens according to an upward rate u and a downward rate d,
which Cox et al. (1979) define as:

u = eσ
√
△t , d = e−σ

√
△t (1)

where △t = T
n denotes the time step from t to t + 1 and n the

total number of time steps in the binomial tree.
A graphical representation of a n-step binomial tree is

illustrated in Figure 1. Arrows constitute possible paths for the
price dynamics, whereas nodes represent the underlying price St,i
from which the option price Ct,i is computed. Option prices are
then recursively computed from the last ones to the first one,
going backwards, according to the following:

Ct−△t,i = e−r△t(pCt,i+1 + (1− p)Ct,i) (2)

where r is the risk-free rate, and the probabilities of up (p) and
down (pd) movements are defined as

p =
er△t − d

u− d
, pd = 1− p (3)
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FIGURE 1 | Binomial tree.

The trinomial tree (Figure 2) works in a similar way. However,
in this setup, the underlying asset price St,i with t = 0, 1, 2, ..., n−
1 may either experience an up movement to St+1,i, a middle
movement to St+1,i+1 or a down movement to St+1,i+2, with t =
1, 2, ..., n. This happens according to an upward rate u, downward
rate d and middle ratem defined as:

u = eσ
√
2△t , d = e−σ

√
2△t , m = 1 (4)

In this case, the probabilities of up (p), down (pd) and middle
(pm) movements are defined as:

p =





e(r)
1t
2 − e

−σ

√

1t
2

e
σ

√

1t
2 − e

−

√

1t
2





2

, pd =





eσ
1t
2 − e(r)

1t
2

e
σ

√

1t
2 − e

−

√

1t
2





2

,

pm = 1− (p+ pd)
(5)

Among the advantages of using the trinomial trees,
computational efficiency as well as precision are of our interest.
Indeed, the trinomial tree should yield to more precise prices
with less time steps if compared to the binomial counterpart.

2.2. Finite Difference Method
As extensively described in Brennan and Schwartz (1977),
the finite difference method allows to price options through
the solution of some differential equations with respect to the
option prices. These equations are transformed into difference
equations, whose solutions are iteratively solved by CPUs.

According to the finite differencemethod, the time tomaturity
T is segmented into p equally sized time periods 1t, whereas the
asset price is segmented into q steps of length 1S, ranging from a
minimum of 0 to a maximum of Smax. This can be represented as

FIGURE 2 | Trinomial tree.

a grid in which the horizontal line is the number of periods and
the vertical one the asset prices.

In the present case, the application uses the so called explicit
finite difference method, which solves the differential equations
in a forward way, as elucidated by Hull and White (1990b). The
reason behind our choice is that the explicit finite difference
method is arguably more efficient than the implicit one, which in
contrast solves the differential equations backwards. In particular,
the equation to be solved is the well-known partial differential
equation of Black-Scholes, i.e.,

∂C

∂t
+

1

2
σ 2S2

∂2C

∂S2
+ rS

∂C

∂S
= rC (6)

Where i = 1, 2, ..., p and j = 1, 2, ..., q. The discrete version of
Equation (6) is:

−
Ci,j − Ci−1,j

1t
=

1

2
σ 2Ci,j+1 − 2 Ci,j + Ci,j−1

1S2
+

+rS
Ci,j − 2 Ci,j−1

21S
− rCi+1,j.

(7)

The option price can then be derived as:

Ci,j =
1

1+ r1t
(pCi+1,j+1 + pmCi+1,j + pdCi+1,j−1) (8)

where the probabilities associated with an up, middle or down
movement are respectively:

p = Sjr
1t

21S
+

1

2
S2j σ

2 1t

1S2
(9)

pm = 1− S2j σ
2 1t

1S2
(10)
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pd = −
Sjr1t

21S
+

1

2
S2j σ

2 1t

1S2
(11)

For a detailed explanation of the finite difference method, refer to
Brennan and Schwartz (1977) and Hull and White (1990b).

2.3. Monte Carlo Simulation
The Monte Carlo simulation is used to obtain the underlying
asset price at the option maturity by means of averaging a
sufficiently high number of stochastic asset price paths, obtained
by assuming that the underlying price follows a log-normal
distribution, that is simulating L scenarios for the underlying
price evolution as:

ST = Ste
(r− 1

2 σ )(T−t)+σ
√
T−t1Wt (12)

whereWt denotes a standard Wiener process at time t.
After that, option prices are found by discounting that average

result backwards. In other words, given the payoffs at maturity T
of call and put options, respectively as:

CT = max(0, ST − K), PT = max(0,K − ST) (13)

the resulting call and put prices are obtained as an average of the
L simulated scenarios, i.e.,

Ct =
1

L

L
∑

l=1

Cl, Pt =
1

L

L
∑

l=1

Pl (14)

where l = 1, 2, ..., L.

2.4. Neural Networks to Improve Precision
Option prices dynamics depend on several variables as well as on
an economic environment and rules that continuously change.
Despite parametric methods mimic the behavior of real option
prices, it may be argued that they do not fully reflect the actual
market evolution of option prices.

To cope with that, similarly to Liang et al. (2009), this paper
defines a two-step procedure in order to consistently evaluate
option prices. The first step consists of pricing options according
to the three parametric methods described above, i.e., tree
models, finite difference method, and Monte Carlo simulation.
The prices obtained in the first step are then used as input
training vector of a neural network model in the second step. As
a consequence, once the main information regarding an option’s
price are captured through the parametric methods in the first
step, the machine learning neural network can concentrate its
modeling power to approximate the non-linear features of the
option pricing errors. A graphical representation of the model
can be found in Figure 3.

It is well-known that the option market is a complex
systemwith non-linear characteristics. This furthermotivates our
approach, since the use of a particular kind of neural network

model, the multilayer perceptron one, allows to account for
these features. Indeed, through the multilayer perceptron neural
network one is able to include include hidden layers and non-
linear activation functions that may capture the non-linearity
of the option market. An organic description of multilayer
perceptron neural networks can be found, for example, in Haykin
et al. (2009).

2.5. Performance Assessment
In this subsection the the assessment criteria used to evaluate
our models are presented. Performances of our pricing methods
are judged according to three widely employed measures, i.e.,
the mean absolute error (MAE), mean squared error (MSE), and
the mean absolute percentage error (MAPE). These criteria are
defined by

MAE =
1

N

N
∑

n=1

|At,n − Ft,n| (15)

MAPE =
1

N

N
∑

n=1

|
At,n − Ft,n

At,n
| (16)

MSE =
1

N

N
∑

n=1

(At,n − Ft,n)
2 (17)

where A is the actual option value and F is the fitted value
obtained by the corresponding pricing model, being t the specific
time at which the option is evaluated and N the number
of observations.

3. DATA

An option market for cryptocurrencies—and Bitcoin—is
gradually emerging. I analyze data from deribit.com, a platform
offering trading of futures and European style options written
on Bitcoin. In particular, the corresponding underlying on which
the options are written consists of the deribit BTC index2.

Data are collected from 16May 2018 to 15 July 2018, on a daily
basis, every day at the same time (11:00 UTC). To be precise, the
retrieved data are the deribit BTC index and all available option
prices related to that day (European calls and puts).

Following Liang et al. (2009) the analysis is restricted
to options having a time to maturity comprised between 5
and 20 days, as well as to in-the-money options having a
spread which is lower than 50%. In this way it is possible
to overcome price fluctuations related to the expiration effect
and liquidity problems linked to the long term time to
maturity options, as well as to eliminate outliers reflecting
expectations which are somehow not rational and may heavily
affect results. Furthermore, the choice of such a maturity

2Detailed information regarding the deribit BTC index can be found on

www.deribit.com
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FIGURE 3 | The multilayer perceptron neural network model. The following notation is used: NN stands for the neural network model, TT corresponds to the trinomial

tree, FDM represents the finite difference method, and MC for the Monte Carlo simulation.

FIGURE 4 | Real option prices (black) against trinomial tree price predictions (red) for the option expiring on 29 June 2018, K = 8000, call (left) and put (right).

range is in line with the peculiar short term feature of
cryptocurrency options, whose maturities are generally smaller
than the ones related to traditional option markets. To illustrate,
the majority of options in our full dataset were issued only 8 days
before maturity.

Given the set of restrictions adopted above, the dataset ends
up with a total number of 281 call and 695 put prices. In the
current analysis, the first 10 weeks will be used for the estimation
purposes, while the last 2 weeks will be used for out-of-sample
performance assessment.

As far as the parameter specifications, a 15-days
historical volatility for the deribit BTC index and the
2-months Libor interest rate as risk-free rate are used.
Moreover, the finite difference method has a grid
of size 3T and the Monte Carlo simulation involves
10,000 repetitions.

The neural network involves several specifications, too.
Firstly, the study relies on the widely spread backpropagation
algorithm for the parameter estimation. Secondly, the most
widely employed activation functions are tested in order to

TABLE 1 | In-sample performance of neural network and classical models.

– TT FDM MC NN

CALL

MAPE 0.0713 0.0713 0.0716 0.0670

MAE 42.78 42.79 43.2 33.55

MSE 5,362.41 5,362.65 5,401.13 1,926.66

PUT

MAPE 0.0546 0.0547 0.0546 0.0506

MAE 56.00 56.05 56.08 33.63

MSE 4,764.71 4,764.81 4,765.29 2,299.11

The following notation is used: NN represents the neural network model, TT corresponds

to the trinomial tree, FDM stands for finite difference method, and MC for the Monte

Carlo simulation.

choose the one ensuring the best performance in terms of fitting3.
Results indicate that the sigmoid function is the one ensuring

3In particular, the following activation functions are tested: sigmoid, taylor,

identity, tanh, softplus, gauss.
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FIGURE 5 | In-sample performance of neural network and “best” classical model. The figure compares the in-sample performance of the neural network model (red)

and “best” classical model (blue). (A–C) Illustrate the MAPE, MAE, and MSE, respectively.

the smallest sizes of prediction error. Thirdly, an analysis of the
optimal number of hidden layers and neurons in the network
is conducted, following the iterative procedure described in
Stathakis (2009). Results suggest a model having two neurons and
one hidden layer.

4. EMPIRICAL FINDINGS

4.1. Experimental Results on Selected
Options
In this section results are presented distinguishing between call
and put options.

Without loss of generality, a plot of a representative option
price evolution against one of the parametric methods (the
trinomial tree) prediction is shown in Figure 4. Overall, classical
parametric option pricing methods (i.e., trinomial tree, finite
difference method and Monte Carlo simulation) lead to price
predictions which are consistently lower than the actual option
prices, both in the put and the call cases. Consequently, it may
be argued that options written on Bitcoin are systematically
overpriced by the platform when considering the parametric
methods in question. Notwithstanding this, theoretical prices
yielded by parametric methods converge to the real option prices
as the time to maturity becomes smaller. This is in line with the
behavior of the traditional markets for option exchanges, where a
small time to maturity leads to a convergence of theoretical and
real option prices.

Prediction errors associated with each category of options are
illustrated in Table 1. Absolute and relative model performance
measures are quite comparable across the considered classical
parametric methods. Besides that, it is clear that the neural

TABLE 2 | Out-of-sample performance of neural network and classical models.

TT FDM MC NN

CALL

MAPE 0.0429 0.0429 0.0425 0.0283

MAE 26.64 26.65 26.77 17.93

MSE 1,016.11 1,016.28 1,026.79 441.94

PUT

MAPE 0.0642 0.0643 0.0642 0.035

MAE 73.4 73.4 73.23 41.45

MSE 6,668.17 6,667.56 6,646.12 2,978.26

The following notation is used: NN represents the neural network model, TT corresponds

to the trinomial tree, FDM stands for finite difference method, and MC for the Monte

Carlo simulation.

network outperforms them in terms of prediction accuracy. This
is also graphically represented in Figure 5, which shows the
model performance metrics of the neural network against those
of the “best” classical model, meaning the parametric model
among the ones used in this study showing the lowest prediction
error. To illustrate, when comparing the neural network and the
“best” classical model performances the MAPE lowers by 6% in
the call case and 7.33% in the put one, the MAE by 21.58% (call)
and 0.4% (put) as well as the MSE by 64.07% (call) and 51.75%
(put). This is mainly due to the fact that themultilayer perceptron
neural network can deal with the complexity and non-linearity of
the option market and the cryptocurrency market. Indeed, price
predictions yielded in the first step by the conventional approach
are then refined into the second step by the neural network, which
focuses on lowering the errors existing between the real option
prices and the predicted ones.
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FIGURE 6 | Out-of-sample performance of neural network and “best” classical model. The figure compares the out-of-sample performance of the neural network

model (red) and “best” classical model (blue). (A–C) Illustrate the MAPE, MAE, and MSE, respectively.

FIGURE 7 | Model performance distribution (call). (A–C) Illustrate the MAPE, MAE, and MSE, respectively.

The obtained results are in accord with the existing literature
on option pricing through non-parametric methods and,
particularly, neural networks—see Hutchinson et al. (1994),
Malliaris and Salchenberger (1996), Amilon (2003), Binner et al.

(2005), and Lin and Yeh (2005). Indeed, all these studies point
to an overall predominance of neural network based models in
pricing options with respect to conventional methodologies. It
may be argued that this holds true also for particular markets
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FIGURE 8 | Model performance distribution (put). (A–C) Illustrate the MAPE, MAE, and MSE, respectively.

like the cryptocurrency one, whose particular features are well-
captured by non-parametric models, such as the neural network.

5. ROBUSTNESS ANALYSIS

With the aim of testing the robustness of our model, this
section provides an out-of-sample performance analysis
as well as a cross-validation analysis through repeated
random sub-sampling.

5.1. Out-of-Sample Performance
The out-of-sample performance is tested on the options available
on the deribit platform between 1 August 2018 and 15 August
2018. Options are selected according to the same criteria
described in section 3. The final out-of-sample dataset consists
of 29 call and 47 put option prices.

Results of the out-of-sample performance of the investigated
models are illustrated in Table 2. At a first glance, one may notice
that results linked to both absolute and relative performances
change quite consistently. This is mainly due to the different
structure of the out-of-sample dataset, in particular to the
different maturities and market expectations.

As also depicted in Figure 6, it is clear that the neural
network model proposed still outperforms the considered
parametric methods. In addition, the difference in performance
is even higher than the in-sample one. When comparing the
performance of the neural network and the “best” classical model,
theMAPE lowers by 33.41% in the call case and 45.48% in the put
one, the MAE by 32.7% (call) and 43.4% (put) as well as the MSE
by 55.23% (call) and 55.06% (put). This provides further support

to the fact that the neural network is a feasible model to price
Bitcoin options.

5.2. Cross-Validation
To further assess the robustness of our proposed model, the
approach of repeated random sub-sampling for cross-validation
purposes is adopted. In other words, the dataset is randomly
split into training and validation set for 50 times and then
the methodology and procedures described in this study are
repeated. In this way one is able to determine whether the neural
network performance achieved in the results section are stable,
as well as to evaluate the model’s relative performance after
random sub-sampling with respect to the conventional option
pricing methods.

Results linked to the random sub-sampling procedure are
illustrated through the boxplots contained in Figure 7 (call
case) and Figure 8 (put case). Overall, outcomes are satisfactory
provided that performance variability lies in ranges which are
arguably not too wide. To illustrate, the interquartile ranges for
MAPE and MAE are respectively <3% and below 10 USD in the
call case, whereas in the put case they amount to roughly 1% and
5 USD.

Furthermore, comparing the distributions of the assessment
criteria with the results in Table 1, it may be noticed that even
in the context of resampling the neural network achieves again
satisfactory results in terms of precision. Indeed, despite the
MAPE results coming from the repeated random sub-sampling
are partly worse than those of classical option pricing methods,
the absolute assessment criteria still point to a substantial
improvement when considering the neural network model rather
than the conventional option pricing methods.
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To conclude, there may be room for improvement in the
modeling strategy, as well as this needs to be adapted to the
specific case of interest. As an example, it can be argued that
the neural network performances would benefit from increasing
the number of observations and, specifically, by using high
frequency data. In addition, as the market is highly volatile
and the option market follows fast changing rules and patterns,
different choices of the neural network specifications—different
input layers, structure of the layers, activation functions, etc.,—
may result more feasible in other contexts. Nevertheless, it
may be claimed that the multilayer perceptron neural network
model proposed is suitable for pricing options written on
Bitcoin. Moreover, it may be argued that its application can be
extended to the whole cryptocurrency framework, as well as to
traditional markets.

6. CONCLUSION

This paper proposes an approach that relies on artificial neural
network models for the purpose of Bitcoin option pricing. The
methodology involves a first step in which options are priced
according to some of the most widely employed parametric
methodologies, i.e., tree models, Monte Carlo simulation, and
finite difference method. The option prices obtained in this
way are then used as input layers in a second step by the
neural network, which is capable to refine the price predictions
delivered by the parametric models in the first step. We believe

that the proposed model can be extended, without loss of
generality, to other cryptocurrency derivatives, as well as to
traditional ones.

Empirical results show that the investigated conventional
pricing methodologies yield to the conclusion that Bitcoin
options are extensively overpriced. In contrast, by applying
the proposed neural network model one is able to better
represent the real market dynamics of Bitcoin option
prices. Indeed, prediction errors consistently reduce when
comparing the neural network pricing model to the classical
parametric ones.

Further studies may benefit and improve prediction precision
by using high frequency data as well as different model
specifications. As an example, improvements could be achieved
by the use of differentmodels, such as stochastic volatilitymodels,
as input layers in the proposed neural network framework.
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AI is providing a significant basis for future technological innovation. The financial sector

will be transformed by AI, offering the opportunity for better and more tailor-made

services, cost reduction, and the development of new business models. The Federal

and the Hessen governments recently published roadmaps for the further development

of AI in Germany and Hessen, respectively. The Federal Government will invest three

billion euros over the next 5 years in a variety of research and business sectors whereas

the State of Hessen will set up a new AI-oriented institute of applied research and

business development and spend one billion euros over the next 5 years on digitalization

development. The public strategies for building AI hubs are still extremely diverse.

However, the focus is on stronger application of research results in business activities, on

increasing networks and ecosystems and predominantly on building on existing centers

of excellence. The Frankfurt Rhein Main Region, already a strong hub for fintech, cyber

security, and AI, will especially benefit from these programs. The financial center Frankfurt

offers a vivid and fast growing tech and start up community a well as an academic and

data infrastructure unprecedented in Europe: the largest data and cloud service hub in

continental Europe, the worlds largest internet knot, universities, research institutes with

global quality research in AI, as well as companies and consultancies specialized in AI

and neighboring areas such as fintech and cyber security.

Keywords: artificial intelligence, public strategies, financial sector, national strategy for artificial intelligence,

artificial intelligence and market surveillance, artificial intelligence ecosystem frankfurt rhein main, start up

ecosystem frankfurt rhein main

INCREASING IMPORTANCE OF AI FOR SOCIETIES AND THE

ECONOMY

AI is recognized as a combination of new technologies, processes, and methods with an increasing
importance for the current and future development of our societies and economies. AI is
applied today in various diverse sectors such as medical diagnostics, optical character recognition,
automotive autonomous driving, and financial services. Already today large corporates and small
and medium enterprises in Germany use AI technologies. AI has become a part of daily life for
millions of consumers. The application of AI is seen as a potential driver of disruptive technological
development and innovation.
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That is why recently a flood of studies and reports by
research and public institutions as well as consultancies
has been published to clarify the opportunities, challenges,
and steps ahead (Schwab K., World Economic Forum,
2016, The fourth industrial revolution: what it means, how
to respond, 2016; Bafin, Big Data trifft auf künstliche Intelligenz,
Herausforderungen und Implikationen für Aufsicht und
Regulierung von Finanzdienstleistungen, 2018; BMBF, Die
Revolution der Künstlichen Intelligenz, 2018).

Estimates calculate that productivity in Germany could be
increased by 29% until 2035 (Accenture, Why AI is the Future
of Growth, 2016). Investment in AI is increasing sharply, in
start ups as well in existing companies. It is calculated that
in 2017, about 17 billion euros were invested globally in AI
technology (Accenture, Weg ohne Ziel? Wie Deutschland ein
Spitzenstandort für Künstliche Intelligenz werden kann, 2018).
Additionally AI will have an increasing impact on financial
services. It is estimated that by 2035, banks could improve
their productivity annually by 4.3%1. In financial services
business, AI could transform the financial sector in the following
three aspects.

First, AI could improve the quality of products and service
for clients due to a broader and deeper analytical basis and
information. Second, AI could lead to higher efficiency and lower
costs, e.g., in the area of compliance and fraud detection or anti-
money laundering measures. Furthermore, public institutions
like FinancialMarket or Tax Supervisory authorities could benefit
from AI technology in that sense (Bafin, Big Data trifft auf
künstliche Intelligenz, Herausforderungen und Implikationen
für Aufsicht und Regulierung von Finanzdienstleistungen, 2018).
Third, AI could become a central innovation driver. Although
it is not quite clear yet what the financial service provider of
tomorrow will look like, it seems probable that AI will transform
financial service providers into data- and AI-based businesses
(Accenture, Hessens Ambitionen für Künstliche Intelligenz,
2018, p. 11s.).

In Germany, the Federal Government and the State of Hessen
government have set up strategic road maps to develop AI
made in Germany and AI made in Hessen. These roadmaps
are first instruments to shape the development of AI in
the financial sector and beyond. They must be embedded
in broader public strategies such as development of research
and the creation of an innovative environment for start ups
and incumbents.

STRENGTHENING THE TECH AND AI

ECOSYSTEM

The Hessen Government has analyzed the situation of the
Frankfurt Metropolitan Region for its status and prospects as a
Tech and AI Hub in recent months and years and developed a
road map, and it has taken steps to develop it along this roadmap.
After the set up of the TechQuartier in 2016, a Masterplan for the

1Accenture, How AI Boosts Industry Profits an Innovation, 2017.

Available online at: https://www.accenture.com/fr-fr/_acnmedia/

36dc7f76eab444cab6a7f44017cc3997.pdf

region as a Start Up hub was developed in 2017 (Techquartier,
Masterplan Start-Up Region Rhein Main, 2018). Subsequently
strengths and opportunities of the region were analyzed by the
Frankfurt ecosystem report by Startup Genome in 2018. Finally,
an analysis by Accenture on the status and opportunities of the
region in the AI sector with concrete proposals was presented in
2018. These reports are the basis of the following section.

The Environment: The Tech Ecosystem in

Frankfurt Metropolitan Region
Alongside the public universities with more than 100,000
students, more than 20 private universities and other institutions
of higher research, Frankfurt boasts world-class research
organizations such as the Fraunhofer Institutes, Leibniz
Association, and Max Planck Institutes, among others. The
region’s 22 research institutions are responsible for breakthrough
research, innovative products, and new processes. Academic
research in Frankfurt is complemented by corporate research
and development (R&D) in production, life sciences, robotics,
and artificial intelligence. Corporate R&D spending reached
5.5 billion euros in 2017 (Startup Genome, Frankfurt Startup
Ecosystem Report, 2018, p. 16).

The Frankfurt Metropolitan Tech ecosystem can be
characterized by three sub-sectors for which the region has
potential to build global competitiveness and economic value.
These are closely integrated, with alignment across talent and the
types of problems that startups are addressing: 1. Fintech, 2. AI,
Big Data & Analytics, and 3. Cybersecurity.

Whereas Fintech is characterized in the region by its dynamic
start up environment, the exceptional role of the region in
cyber security is shaped by research institutions. The Center
for Research in Security and Privacy (CRISP) in Darmstadt
alone is host to more than 450 researchers in this sector and is
complemented by research at the universities and the Fraunhofer
Institute. Recently, Chancellor Merkel announced that these
institutions will be supported by the Federal Government and be
developed as the national cyber security hub.

The creation of the TechQuartier by the State of Hessen
with the support of numerous financial service providers in
2016 provided a fast growing platform an light house and most
important ecosystem for start ups, businesses, and researchers.
The TechQuartier (TQ) is the central platform for the startup
community in the Frankfurt Metropolitan Region, enriching the
vibrant startup ecosystem with its unique community of more
than 100 start ups and 30 corporate partners and academic
institutions. Nearly 400 tech start ups are now active in the
Frankfurt region, and recent exits and funding rounds have
helped drive total ecosystem value to $1.8 billion. These start ups
enjoy a supportive environment that includes 32 incubators, 24
coworking spaces, and 10 accelerators.

In 2018, the so called Masterplan Start-Up Region Frankfurt
Rhein-Main, developed by TQ and partners was presented.
It endorses an ambitious strategy to develop Frankfurt
Metropolitan Region as the leading FinTech-Hub in continental
Europe and home to 1,000 start ups in 2022.
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Frankfurt’s multinational corporations operate several
programs to support start ups and, increasingly, these companies
are investing more into early-stage companies. This has helped
Frankfurt achieve one of the fastest growth rates in early-stage
funding in the world in recent years. As a center of global
finance—home to the European Central Bank and several
international banking headquarters—this corporate support has
led to one of the world’s strongest clusters of Fintech startups.
Frankfurt’s leading Fintech sub-sector has been catalyzed by
financial support (over half of venture capital investment in the
region has gone into Fintech startups in the last 5 years) and the
$800 million acquisition of 360T in 2015 by Deutsche Börse (See
Startup Genome, Frankfurt Startup Ecosystem Report, 2018,
Startup Genome, p. 5). However, there are still challenges to the
Frankfurt Start Up Ecosystem:

- Over the past few years, Frankfurt has enjoyed one of the
world’s fastest growth rates in early-stage funding. Yet as
startup output rises, that growth needs to continue and
even increase, meaning that Frankfurt will need millions of
additional dollars per year in early-stage funding (European
Parliament, 2018, p. 6).

- Frankfurt has several areas of latent entrepreneurial talent that
need to be better activated (European Parliament, 2018, p. 6).

- Frankfurt currently faces gaps in scaleup creation. The
exception is the extent to which founders in Frankfurt
report the ways they build Global Connectedness (such as
meeting founders from international ecosystems locally). In
January 2019, TQ, Goethe University and Yi Shi Foundation
published a report that addresses this problem and indicates
which instruments and strategies could help to overcome
this problem (TechQuartier, Goethe University and Yi
Shi Foundation for innovations, Scale-Ups In Europe, an
untapped potential, 2019).

- The gaps in Frankfurt’s startup ecosystem relate to the global
orientation of the ecosystem and experience levels (Ecosystem
Report p. 39).

The AI Ecosystem
The AI research in the Frankfurt Metropolitan region has been
classified as competitive on a global level (Accenture, Hessens
Ambitionen für Künstliche Intelligenz, 2018, p. 15).

The Technical University Darmstadt belongs to the most
important universities globally in informatics. Research at
TU Darmstadt covers the full scale of AI research (Machine
Learning, Reinforcement Learning, Deep Learning, Supervised
und Unsupervised Learning, Computer Vision, NLP, Robotik,
Predicative Systems). The Technical University Darmstadt
runs an Autonomous Systems Lab for Machine Learning for
Intelligent Systems and Robotics with research centered around
the goal of bringing advanced motor skills to robotics using
techniques from machine learning and control (European
Parliament, 2018, p. 22).

Additionally the Frankfurt Big Data Lab Start-up Program
at Goethe University offers general training courses for data
computation and analytics by startups. Frankfurt School of
Finance & Management runs a Center for Human and Machine

Intelligence (HMI), which conducts basic and applied research
at the intersection of artificial intelligence and machine learning,
decision and social science, and finance and management. Just
recently, January 2019, the Frankfurt School opened their AI Lab
as a place for testing, learning, and developing AI-based ideas
and strategies.

Also on the business and start up side, there are growing
activities: Some 8.5% of all startups in Frankfurt are in the
Artificial Intelligence or Big Data & Analytics sub-sector and,
over the past 5 years, the sub-sector captured 13% of all local VC
investment (European Parliament, 2018 p. 22).

Still, there are challenges that need to be addressed: more
AI talents need to be educated. There are not enough and
additionally they do rarely move to finance professionally
(Accenture, Hessens Ambitionen für Künstliche Intelligenz,
2018). The number of students in informatics in Hessen
increased in the last 10 years by ca. 73% to 1,897 in
2016/2017. However, still only 0.8% of all students in
Hessen study informatics (without mixed curricula such as
“Wirtschaftsinformatik”). The top employers of graduates from
German universities in informatics are Google (25.2%), BMW
Group (10.6%), Microsoft (10.5%), Apple (9.9%), and SAP
(9.7%). Deutsche Bank is the first financial service provider in
that list and is ranked 53 (1.3%).

PUBLIC STRATEGIES FOR SUPPORTING

AI IN GERMANY AND HESSEN

The National AI Strategic Report
Germany’s national government published its AI Strategic
Report in December 2018. The strategy is broad in both
focus of industries and technologies as well as in instruments
to strengthen AI in Germany (Bundesregierung, Strategie
Künstliche Intelligenz der Bundesregierung, 2018). The
financial sector is included beside many other business areas
(Bundesregierung, p. 25). The instruments mentioned are
strengthening the startup environment in AI, building on
existing instruments like the Digital Hub Initiative of the Federal
Government, the creation of new institutions like the Agency
for Disruptive Technologies, 12 centers and “application hubs,”
the expansion of venture capital offering, extended research (100
professor positions), and the creation of academic networks
(Bundesregierung, p. 6). Industry-supported or -led initiatives
can also be eligible for support.

The program will support institutions nationwide that already
are focused on AI technology such as the Deutsches Zentrum für
Künstliche Intelligenz or Fraunhofer Institutes and specialized
universities. The federal government will cooperate closely with
the federal states for an effective execution of the program.

The State of Hessen and especially the Frankfurt Metropolitan
Region will potentially benefit from that national program.
The TechQuartier and the Digital Hub in Darmstadt are
both included in the Federal Digital Hub Strategy and are
therefore potentially eligible for financial assistance. Also,
the abovementioned inclusion of the financial sector and
its supervisory institutions offers widespread opportunities for
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projects to be supported by the national program. The Darmstadt
Digital Hub, also part of the Federal Digital Hub Strategy and
focused on cyber security, could also benefit from the program.
Besides, there are points of contact with national programs
that are already enrolled in the Frankfurt Metropolitan Region
such as cyber security and so called “Mittelstandsförderung
for Digitalization.”

It needs to be decided in the future where exactly some of the
three billion euros to be spent by the federal government until
2015 will be invested. The idea exposed in the national program
is that this support will be leveraged by investment of academic,
commercial, or other public institutions such as the federal states
(Bundesregierung, p. 6).

The program has been welcomed and criticized. Welcomed,
because it offers for the first time a more comprehensive view and
action plan to this important topic, and because it is including
concrete approaches and resources. It was criticized because it
is missing a kind of focal point but is comprising potentially
too many institutions and topics and therefore losing traction
and visibility. However, with its decentralized approach, it can
be stated that the strategy paper corresponds very well with the
German academic and economic national institutional set up.
It is left to the competition and efficiency of several academic
and economic institutions and players where lighthouses of AI
will develop. Still, it would be an advantage and should be a
target to develop a globally renowned top institution for AI.
Fort the moment the German Center for AI in Saarbrücken and
Kaiserlautern is seen as such an institute, which will also benefit
from the national strategy. The national strategy could potentially
and adequately strengthen this and other players.

The State of Hessen AI and Tech Strategy
Parallel to the creation of the national strategy for AI Made
in Germany, the Hessen State government decided to build up
an AI hub in the Frankfurt Metropolitan Region in August
2018. This decision was supported by an analysis of the AI
capacities of the Frankfurt Metropolitan Region by Accenture
for the State of Hessen (Accenture, Hessens Ambitionen für
Künstliche Intelligenz, 2018). Before, an analysis from Startup
Genome had already encouraged increasing the support for
the development of AI start ups in the Frankfurt Metropolitan
Region (European Parliament, 2018). The core finding and then
proposal of the Accenture report was that there are already high
quality research and business activities in the region but that
sufficient interconnectedness was missing. Also, a finding was
that research results should be more effectively introduced into
business activities.

These findings and corresponding proposals and measures
were then inshrined in the Coalition Treaty 2018 in Hessen. A
specific focus in the coalition treaty is on the development of
AI (Koalitionsvertrag zwischen CDUHessen und Bündnis90/Die
Grünen Hessen für die 20. Legislaturperiode, 2018 p. 178s).
It includes the creation of a tech campus with 20 professor
positions and is supposed to overcome the shortcomings found
by the Accenture analysis concerning interconnectedness in the
AI ecosystem in the Frankfurt Metropolitan Region.

The tech campus is supposed to strengthen applied research in
AI and deliver a growing number of coders and IT specialists for a

growing AI economy. It seems open to decision currently, which
kind of institution the TechCampus will develop into. There exist
several successful tech campuses in Germany which could serve
as a role model: the CDTM in Munich, the Code University in
Berlin, and the Hasso Plattner Institute at Potsdam University.
Other federal states and cities in germany have also published
plans to develop such campuses, e.g., the states of Hamburg and
North Rhine Westphalia.

Already now, AI activities have been intensified by activities of
TechQuartier and industry partners concerning the ecosystem,
comprising accelerator programs and seminars. The next step
under preparation by the Ministry of Economics together with
TQ and industry partner is to make use of the outstanding
data infrastructure the region provides: national and Europe-
wide data are available with the federal statistics office in
Wiesbaden, the Bundesbank research center in Frankfurt, the
Goethe University participating in a Europe wide data project
on financial data going back to the nineteenth century, the ECB,
and EIOPA und Bafin collecting financial data broadly and in
depth. Besides, Frankfurt is home to the continent’s largest offers
in cloud services and data centers, of commercial financial data
providers such as Deutsche Börse and Schufa. It will be an
opportunity and challenge to make use of these data pools for AI
purposes. The idea is to set up or open platforms as far as possible
for start ups and new technologies and applied research as the
provision of sufficient data is understood as the most relevant
basis of AI applications. There will be public and private interest
in projects to be developed on these platforms: financial market
supervision instruments for the supervisory mentioned above
and based in Frankfurt or AI-based tools for business processes
in diverse industries. Moreover, university labs could offer access
for students to such data pools.

Legal restrictions in the EU and Germany are simultaneously
both chance and impediment: chance, because a safe and
reliant legal environment attracts data providers and companies
outsourcing data, and impediment because a broad use of
these data is still often prohibited; some may only be used
for academic research, others may not be combined with
other specific data. In general, it will be a challenge to define
broad limits for the outsourcing for companies’ data. The
security of data stored in cloud service could be improved and
enhanced for this purpose. An international cloud provider could
potentially offer security standards to be fully controlled by the
outsourcing company.

The coalition treaty includes also the decision to strengthen
the access to venture capital for AI start ups (Koalitionsvertrag,
p. 175). It was decided to set up a specialized fund with a volume
with up to 200million euros contributed to publicly and privately
equally. It was also decided to invest generally 1 billion euros
for “digitalization” measures and programs, concerning public
institutions, infrastructure and business development. Besides,
the existing structures such as the TQ are being focused more on
AI-related projects and startup programs.

CONCLUSION

In 2018, public strategies and programs for the development
of AI have leaped forward significantly (Basel Committee on
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Banking Supervision (BCBS), 2018; European Commission,
2018; European Parliament, 2018). Germany and the State
of Hessen are investing significant resources to strengthen
their already highly competitive AI ecosystems, research, and
technology. Other federal states have already set up dedicated
technology innovation hubs or are currently planning to do
so. The federal AI program will strengthen cooperation of
national and state programs and hub development, building
on existing centers of excellence. Several analyses have found
that the startup ecosystem in Frankfurt Metropolitan Region

is fast developing as an early stage ecosystem, and is offering

a high potential for development in AI. After the path has
been laid with the national and the Hessen AI strategies, the
years to come require now efficient execution of these plans
and programs.
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We revisit the discussion of market sentiment in European sovereign bonds using a

correlation analysis toolkit based on influence networks and hierarchical clustering. We

focus on three case studies of political interest. In the case of the 2016 Brexit referendum,

the market showed negative correlations between core and periphery only in the week

before the referendum. Before the French presidential elections in 2017, the French

bond spread widened together with the estimated Le Pen election probability, but the

position of French bonds in the correlation blocks did not weaken. In summer 2018,

during the budget negotiations within the new Italian coalition, the Italian bonds reacted

very sensitively to changing political messages but did not show contagion risk to Spain

or Portugal for several months. The situation changed during the week from October

22 to 26, as a spillover pattern of negative sentiment also to the other peripheral

countries emerged.

Keywords: sovereign bonds, contagion, sentiment, European sovereign bond crisis, correlation, correlation

influence, networks

INTRODUCTION

In this empirical study, we discuss the short-term impact of three specific political situations
relevant to the European Union on the return correlations between its sovereign bond markets
in 2016, 2017, and 2018. We focus on effects happening at the same time in these markets and
interpret the correlation patterns on an hourly timescale in non-overlapping weekly time windows
as an expression of the sentiment of market makers regarding a potential risk spillover. Forbes and
Rigobon (2002) and Rigobón (2019) present a precise differentiation of “spillover,” “contagion,” and
“interdependence” phenomena.

To illustrate our interpretation of “sentiment,” we point out that positioning decisions of large
investors happen at a slower pace than quote changes generated by quote machines of bond market
makers. Quote machines need to make sure that market makers cannot get “arbitraged” by external
traders who have access to all public market information. Therefore, market maker quotes need to
include current market information, even information inferred from other markets. These “cross-
sectional” quotation models can enable correlation patterns in the quoted time series. For example,
negative news concerning a specific country may trigger a spread widening of bonds of this country
and also of bonds of other, similar countries even before many actual trades happen. The changes
in observed quotes then may have an impact on the trading decisions of speculative traders who
might follow a momentum trading rule. On a longer time scale, these quote changes can also have
an impact on the positioning of long-term investors who might be forced to cut their positions as
the need to comply with a stop-loss or value-at-risk rule.

The Euro-denominated sovereign bond markets within the European Union are a very specific
universe, as the yield levels across countries significantly converged already before the introduction
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of the Euro in 1999 and diverged during the European
sovereign debt crisis from 2010 to 2014, accompanied by a
pronounced block structure in the correlation matrix reflecting
the “core-periphery” dichotomy. At the peak of the crisis
between 2010 and 2012, the correlations between core European
and periphery bonds have even been negative as only the
core bonds acted as “safe havens,” but not the periphery
bonds, inducing capital flows from the weaker to the stronger
bond markets.

The spread increase in Euro area bonds from 2010 to
2012 has been discussed thoroughly by academia as well as
by central bank research and related European institutions,
for example by Beirne and Fratscher (2013) and Tola and
Waelti (2015). D’Agostino and Ehrmann (2014) pointed to an
overreaction of the market given the change in fundamentals
and thus to a structural change in longer-term risk perception.
Gross and Kok (2013), Alter and Beyer (2014), Broner et al.
(2014), Glover and Richards-Shubik (2014), Shoesmith (2014),
Erce (2015), Li and Waterworth (2016), Lange et al. (2017)
discussed the relationships between private and public sector
bonds, between sovereign bonds and credit derivatives, and
the transmission channels between bank risk and sovereign
risk. Gerlach-Kristen (2015), Blasques et al. (2016), Ehrmann
and Fratzscher (2017), Moessner (2018), Arakelian et al. (2019)
confirmed the stabilizing impact of ECB measures on bond
spreads after 2012.

Many of these authors use variations of the Diebold and
Yilmaz (2014) variance-decomposition framework that allows

FIGURE 1 | (A) European sovereign bond yields from January 2015 to October 2018. (B) Brexit odds as estimated by Oddschecker (lhs) and GBPEUR exchange rate

(rhs). (C) Odds of Le Pen winning as estimated by Oddschecker (lhs) and FR-DE Bond Spread (rhs). (D) Spreads of Italian (IT), Spanish (ES), and Portuguese (PT)

bonds against Germany (DE).

applying network theory to interpret the time-lagged variance
contributions as variance spillover effect between markets.

Schwendner et al. (2015) applied a correlation influence
approach from Kenett et al. (2010). This approach does not
employ a time lag structure and therefore, does not address
realized variance spillover across time, but the current perception
regarding spillover risk reflected in bond correlations. In
contrast to correlations, the concept of correlation influence is
a directed measure from a market A to another market B that
explains correlations between market B and all other markets.
A noise filter using a bootstrap scheme allows dropping the
less significant correlation influences and thus to identify the
markets that have the highest explanatory power regarding
the correlation matrix. The authors found positive correlations
dominating the European bond markets from 2004 to 2009.
Between 2010 and 2012, negative correlations between the core
and periphery markets had the highest explanatory power for the
European bond market correlations. The situation normalized
in 2013 and 2014, but negative correlations between core and
periphery and negative correlation influences reappeared during
the negotiations between Greece and the Eurogroup in the
first half of 2015. Contagion risk and a possible breakup of
the Euro area was no more an abstract risk but even used as
negotiation leverage.

After the agreement to the third ESM-funded Euro area
financial assistance program in July 2015, bond spreads and
contagion risk declined substantially. Media focus switched to
the increasing influx of refugees from Syria, Afghanistan, Iraq,
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and African countries to Europe that peaked in October 2015
and a wave of terrorist attacks after that. Populist parties gained
substantially since then by stressing anti-immigration positions
even more than anti-austerity and anti-EU postures.

Before the Brexit referendum on June 23, 2016, most studies
warned of the negative economic consequences of a potential
Brexit (Boettcher, 2016; EIU, 2016; Kierzenkowski et al., 2016).
The unexpected Brexit outcome was explained afterwards by
immigration fears and distrust in established media being more
convincing than abstract rational economic arguments. The
impact on bond markets was small as a decline of the British
pound relative to the Euro absorbed the Brexit shock.

In the Dutch general elections on March 15, 2017, the right-
wing PVV gained grounds, but finally, a four-party conservative-
social-liberal coalition formed a new government in October
2017. During the presidential elections in France in spring

TABLE 1 | Average silhouette widths for hierarchical and k-means clustering.

k 2 3 4 5 6 Avg

Hierarchical 0.65 0.62 0.67 0.70 0.75 0.68

k-means 0.65 0.62 0.66 0.69 0.70 0.66

The p-value of the t-test for the mean difference of the average silhouette width between

the hierarchical clustering and k-means for each k is ≤1%.

2017, the most important topics were the relationship toward
the EU and immigration. The spread between French and
German bonds closely followed the odds of the right-wing
Marie Le Pen winning in the second round (Bird and Sindreu,
2017; Macintosh, 2017). After Emmanuel Macron won the
second round on May 7, 2017, Europe embraced a wave
of positive mood, and sovereign spreads declined (Whittall,
2017). The next risk scenario highlighted by the financial press
(Marriage and Jennifer, 2017) was a Eurosceptic government
in Italy after the next elections and a potential exit from the
EU (Kelly et al., 2015).

The Italian general elections on March 4, 2018, indeed
resulted in gains for the populist five stars movement and the

right-wing Lega, but not immediately in a new government
or a sharp reaction of financial markets. Sandhu (2018) noted

a large demand for Euro-denominated sovereign bonds from

Asian investors who have a very low funding rate. The BTP-

Bund spread widened and whipsawed during the formation
phase of the new government until the end of May. Giuseppe
Conte took office as a new prime minister on June 1st and
confirmed increased spending commitments. During July and
August, the spread lowered slightly. Italian bonds showed
increasing volatility as the negotiations for the 2019 budget
proceeded (O’Brien, 2018) and both parties postured against the
Maastricht criteria. However, in contrast to the 2015 situation

FIGURE 2 | Bond return correlations during the weeks around the Brexit Referendum (23.6.2016).
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with Greece, the spillover to other peripheral countries in
the form of increasing Bund spreads was limited (Macintosh,
2018), despite the larger size of the Italian economy and bond
market. The limited spillover was reasoned with increasing
economic resilience in those countries (Pascual et al., 2018) and
contrasted a 2015 “Eurozone Meltdown” risk scenario developed
by Kelly et al. (2015).

DATA AND METHODS

The 10y bonds are the most liquid “benchmark bonds” in
the sovereign bond market. For the larger European bond
markets (UK, Germany, France, Italy, Spain, and Switzerland),
the ICE and EUREX derivatives exchanges offer bond futures
as a risk management, hedging and speculation instrument.
The open interest of bond futures is much lower than the
outstanding volume of bond issues, but bond futures trade
at lower bid-ask spreads than bonds and don’t require full
funding of their market value, so they are the preferred tool
for fast intraday trading. EUREX introduced the Spanish BONO
bond futures as recently as 2015 as the Spanish bond yields
deviated from the Italian bond yields that were previously
often used as a proxy for Spanish sovereign risk (EUREX,

2018). Bond market makers often link their bond quotes to
the higher-frequency bond futures market to capture short-
term market movements in their bond quotes (Allen, 2018;
Stafford and Allen, 2018). Therefore, the trading of bond futures
instruments can have an impact on the quotes of the much larger
bond market.

For this paper, we use a dataset of hourly generic 10y bond
yields (Figure 1) from Bloomberg for UK, Switzerland (CH),

ESM, Germany (DE), Finland (FI), the Netherlands (NL), Austria
(AT), France (FR), Belgium (BE), Ireland (IE), Spain (ES), Italy

(IT), Portugal (PT), and Greece (EL). In contrast to our 2015

paper, we added the UK to discuss the Brexit impact and

Switzerland to have another non-EUR denominated reference
beyond the UK. To get intraday ESM bond yields, we use the
current 10y ESM benchmark price quote and compute the yields
from those.

From the proprietary EFSF/ESM primary and secondary

market databases (source: ESM, 2018), we got insight into the

net flows of specific investor types into EFSF and ESM bonds
(Supplementary Table 3) to investigate if risk-on/off signals that
we see in the correlation patterns have corresponding flow
patterns in the trade data. The flows from Asian investors
are especially interesting to get an external view on the risk

FIGURE 3 | Dendrograms during the weeks around the Brexit Referendum (23.6.2016).
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and reward perception of the Euro area, even though FX
dynamics may add some noise on the data. Two mechanisms
let risk-reward perception having an impact on secondary
market flows: the first mechanism is a so-called “flight-to-
safety” reaction that lets investors shift bond positions within
the Euro area, into the safe assets. For EFSF/ESM bonds, this
means net bond inflows. The second mechanism is the reaction
to the decision to reduce exposure to the Euro area bond
market as a whole. For EFSF/ESM bonds, this means net bond
outflows. These mechanisms may happen at the same time
and then partially neutralize each other, meaning that some
investors are shifting EUR bond exposure to EFSF/ESM and
some investors are reducing their overall EUR bond exposure,
including EFSF/ESM.

The three political situations in Europe relevant for bond
markets that gained the most public interest after 2015 were
the 2016 Brexit referendum, the 2017 French presidential
elections, and the 2018 Italian budget negotiations. For a detailed
quantitative analysis, we picked a time window of 6 weeks for
each of these three situations:

a) 2016 Brexit referendum: June 6, 2016, to July 15, 2016. The
actual day of the referendum was on June 23, 2016.

b) 2017 French presidential elections: April 3, 2017, to May 12,
2017. The first round of the elections took place on April 23,
the second round on May 7.

c) 2018 Italian budget negotiations: September 17, 2018, to
October 26, 2018. The deadline to submit the Italian budget
to the EU commission was October 15.

Following Schwendner et al. (2015), we use the Pearson

correlation coefficient Cij =
<rirj>−<ri><rj>

σiσj
of the bond return

time series rti and rtj between two markets i and j for 50 hourly

bond returns during a window of 1 week, sampled from 08:00
to 17:00 CET. To transform the bond yield time series yti into a
bond return time series rti , we apply a duration approximation:

rti ∼ −Dt
i(y

t
i − yt−1

i ) with duration Dt
i for bond i at time t.

To extract the correlation influence di,j:k from one market k
to the correlations of another market i to all other markets j,
we employ a definition of correlation influence di,j:k = Cij −

ρij : k from Kenett et al. (2010) based on partial correlations

ρij : k =
Cij−CikCkj

√

1−C2
ik

√

1−C2
kj

. If the correlation influence is positive,

the return time series of market k has a positive, converging
influence on the correlations between the return time series of
markets i and j. If the correlation influence is negative, the return
time series of market k has a negative and diverging influence
on the correlation between the returns of markets i and j. We
average across market j to get the average correlation influence
di,k =

〈

di,j:k
〉

j 6=i,k
. This asymmetric matrix reflects a directed

graph from k to i.

FIGURE 4 | Filtered correlation influence networks during the weeks around the Brexit Referendum (23.6.2016).
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To reduce the number of directed links in the resulting
correlation influence network, we employ a bootstrap (Efron,
1979) filter that only retains the directed links k → i if and only

if
∣

∣di,k
∣

∣ > Q × σbootstrap(di,k) with a parameter Q = 3. Q is not
a convergence parameter, as it only filters out more links at a

higher Q. We compute σbootstrap(di,k) with a resampling with the
synchronous replacement of the cross-section of bond returns.

Following Politis and Romano (1992), we draw the block length

from a uniform distribution between 1 and 10 h for each sample

to account for serial correlation.
This method does not involve a time lag between the

time series of the respective markets and thus addresses only

synchronous effects. In contrast to Beetsma et al. (2017) and Van
Der Heijden et al. (2018), the news events themselves are not

explicitly part of the model.
Partial correlations have also been employed by Saroyan and

Popoyan (2017) to analyse risk spillover between European

bank and sovereign credit risk. They find contagion from other

countries to the correlations between the CDS spreads of banks
and the sovereign bonds of their home country and recommend
non-zero risk weights for sovereign bond holdings of banks.

Giudici and Parisi (2018) integrated partial correlation
networks into a structural VAR model, labeled CoRisk approach.
They find high contagion risk for peripheral countries from
other peripheral countries, but low contagion risk between core
and periphery. These findings confirm our results of a strong
core-periphery segmentation, visible in the persistent block
structure of the bond return correlation matrices.

To enable a more detailed discussion of this block structure,
we analyse the blocks using a non-parametric clustering method.
We apply a hierarchical clustering method (Ward, 1963) using

the distance matrix metric Gij =

√

2
(

1− Cij

)

as a function

of the bond return correlation matrix Cij according to Gower
(1971). This choice of the distance metric preserves the sign of
the correlation coefficients, which is important as we specifically
want to discriminate positive from negative correlations. In

FIGURE 5 | Cumulative positive (blue) and negative (red) incoming filtered correlation influences per market during the weeks around the Brexit

Referendum (23.6.2016).
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contrast to the standard portfolio management literature,
negative correlations are not an opportunity for diversification,
but a warning signal in the specific case of this dataset as
they appear between Euro area sovereign bonds that should be
benchmark instruments without default risk.

To assess the quality of the hierarchical clustering compared to

a simpler k-means clustering algorithm, we employ the “average

silhouette width” criterion as suggested by Rousseeuw (1987).
According to Rousseeuw, a higher number for the average
silhouette width points to a more appropriate clustering. Table 1
shows a comparison of the average silhouette widths of the
hierarchical and the k-means clustering for different values of
k. For larger values of k, hierarchical clustering shows higher
average silhouette widths. The null hypothesis of hierarchical
clustering not leading to higher average silhouette widths than
k-means clustering could be rejected with a p-value of 1% for the
dataset given by the three discussed time periods and k values
from 2 to 6.

From the viewpoint of the specific application domain
of European bonds, hierarchical clustering has the additional
advantage of making overlapping correlation blocks visible.
Following Gower and Ross (1969) and Mantegna (1999), we
present the membership of the various bond markets to a
hierarchy of clusters using a dendrogram. The clusters at
the lowest levels of the dendrogram correspond to the most
pronounced blocks in a correlation matrix. We found almost

the same clusters using “complete linkage” or “single linkage”
methods instead of Ward’s method.

The advantage of a dendrogram compared to a heatmap
is the objective representation of the clusters, as they are
sorted in clusters according to the distance metric, whereas
the visual impression of a correlation matrix as a heatmap
depends on the predefined ordering. This ordering may depend
on subjective beliefs or a market practice to sort issuers into a
tiered hierarchy.

DISCUSSION

In the Discussion section, we discuss the bond return correlation
matrices, hierarchical clusters and filtered correlation influence
networks for the three political situations “Brexit referendum,”
“French presidential elections,” and “Italian budget negotiations”
as main results. A supplementary spreadsheet offers more
technical details:

Supplementary Table 1 shows the correlation matrices
as numbers.

Supplementary Table 2 shows the filtered average correlation
influences as numbers.

Supplementary Table 3 shows investor flows in
EFSF/ESM bonds.

Supplementary Figure 1 shows the results of k-means
clustering with k= 4.

FIGURE 6 | Bond return correlations during the weeks around the 2017 French Presidential Elections (first round: 23.4.2017, second round: 7.5.2017).
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Supplementary Figure 2 shows silhouette widths for k-means
and hierarchical clustering for different values of k to compare the
performance of both clustering methods.

Supplementary Figure 3 shows the cumulative outgoing
filtered correlation influences per market.

Brexit Referendum
We discuss the first situation describing the weeks around the
2016 Brexit referendum using Figures 1B, 2–5: Figure 1B shows
the odds of the “leave” outcome as estimated by the British
bookmaker odds comparison service “Oddschecker” (Bloomberg
ticker: ODCHLEAV Index) and the GBP exchange rate. In the
weeks before the referendum, the odds for “leave” hovered in
a range between 23 and 43%. The British pound exchange
rate against the Euro inversely mirrored these odds. After the
referendum, the odds massively underestimated the outcome and
jumped from 23 to 100%, with the British pound losing almost
9% against the Euro in 2 days. Figure 2 shows the correlation
matrix of hourly bond returns during the weeks before, during
and after the referendum (June 23). Figure 3 shows the results of
Wards’ hierarchical clustering as dendrograms. Figure 4 presents
the filtered correlation influence networks during the same weeks
on geographical maps. Figure 5 shows the cumulative positive

(blue) and negative (red) incoming filtered correlation influences
per market. The outgoing filtered correlation influences are
shown in Supplementary Figure 3.

Two weeks before (June 6–June 10) the referendum,
the correlation matrix showed strong positively correlated
core/semi-core and periphery blocks, and positive to neutral
correlations between core/semi-core and periphery. UK bonds
show weak positive correlations to the European core and
semi-core. The core/semi-core block has only a very weak
substructure. Irish bonds belong to the core/semi-core block.
The dendrogram for this week confirms the block structure.
The k-means clustering assigns a discrete cluster number from
1 to 4 to each of the bond markets but does not relate the
four clusters to each other. The k-means cluster assignments are
roughly consistent with the results from the hierarchical clusters
but deliver a more “binary” view. For example, Italy belongs to
the ESM cluster in both clusterings, but only the hierarchical
clustering shows the tight coupling of Italy to Spain and Portugal
one hierarchy level above. Throughout the 6 weeks with very few
exceptions, we see, in the dendrograms, Greece, Portugal, Spain,
and Italy as main constituents of the periphery block, Germany,
Netherlands, Finland, and Austria as main “core” countries and
Belgium, France, and Ireland as main “semi-core” countries.

FIGURE 7 | Dendrograms during the weeks around the 2017 French Presidential Elections (first round: 23.4.2017, second round: 7.5.2017).
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Interestingly, UK stays very close to the core block, as well as
Switzerland. ESM is also part of the core block except for the
Brexit week where it was hierarchically part of the periphery.
It moved back to the core a week later, after worries about the
further European integration had quickly calmed down.

The correlation influence network shows strong connections
within and between core and periphery.

During the week directly before (June 13–June 17) the
referendum, the smaller issuers ESM, Austria, and Ireland
decorrelate. Spain, Italy, and Portugal develop slightly negative
correlations to Germany. Portugal also shows slightly negative
correlations to British and Swiss bonds. The dendrogram for this
week shows members leaving the clusters compared to the week
before. The network (Figure 4, second panel) shows negative
filtered correlation influences between Germany and the three
peripheral countries Spain, Italy, and Portugal. These negative
influences are statistically significant, as they pass the noise filter,
but of small amplitude (Figure 5, second panel). Only a few core
countries are affected by positive correlation influences.

The week of the referendum (June 20–June 24) induced strong
positive correlations within the core and periphery blocks, and
very strong negative correlations between core and periphery.
UK and Swiss bonds were highly correlated to the “core Europe”
block and thus also negatively correlated to the Euro area
periphery (Spain, Italy, Portugal, Greece). The British currency
absorbed the negative shock of the referendum to the UK

economy. British bonds even gained in market value, consistent
with the core Euro area bonds. The dendrogram of this week
confirms the strong core-periphery segmentation. The network
shows only a few connections that pass the noise filter.

During the 3 weeks after the referendum (June 27–July
15), correlations returned to the first week in the panel. Irish
bonds return to the core/semi-core block. The first and the last
week of the correlation matrix panel look very similar, also the
dendrograms and networks.

From June 6 to July 1, the net flows from Asian investors
into EFSF/ESM bonds were balanced. Two weeks and 3 weeks
after the referendum (July 4–July 8 and July 11–July 15, net
flows were negative at about −0.5 bn EUR, respectively. These
flows after the referendum may be completely independent of
the political event, or they may be a reversed flight-to-safety
reaction (i.e., outflows from the safe haven when the political
situation normalizes.

French Presidential Elections
The second situation begins 3 weeks before the first round of
the 2017 French presidential elections and ends 1 week after the
second round. Figure 1C shows the odds of Le Pen winning from
Oddschecker (Bloomberg: ODCHFRML Index) together with the
spread of 10Y French bonds vs. 10Y German bonds. The spread
decreases from 73 bp with the Le Pen odds until 50 bp at the first
round (April 23, resulting in the second round between Le Pen

FIGURE 8 | Filtered correlation influence networks during the weeks around the 2017 French Presidential Elections (first round: 23.4.2017, second round: 7.5.2017).
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and Macron) and then further until 43 bp at the second round
(May 7, resulting in the victory of Macron).

Figure 6 shows the bond return correlations as heatmaps. As
the political position of France within the EU was an important
topic of the elections, the position of French bonds within
the European tier structure was a trading topic. The market
challenged the usual structure of a “core” block (DE, FI, NL, AT),
a “semi-core” block (FR, BE, IE), and a “periphery” block (ES,
IT, PT). Especially in the week immediately after the first round
(April 24–28), France was part of a “semi-core plus periphery”
block (FR, BE, IE, ES, IT, PT) and showed slightly negative
correlations to Swiss bonds. After that, the block structure
normalized. The dendrograms in Figure 7 confirm the “semi-
core plus periphery” block in a corresponding hierarchy. A
similar hierarchy is already visible in the second panel (April
10–April 13) of Figure 7. The dendrograms hence show that the
uncertainty around France was affecting the “semi-core” block as
a whole. Uncertainty stopped 1 week after the first round when
the other candidates endorsed Macron such that it became likely

that he would win the second round. The correlation influence
networks in Figure 8 confirm the weakening of the established
block structure until April 28 and recovery to an almost fully
positively connected network afterwards. In contrast to the 2015
Greek negotiations and the 2016 Brexit referendum, there are no
negative correlation influences during these 6 weeks (Figure 9).

The net flows of Asian investors into EFSF/ESM bonds are
substantially positive (+384 mln EUR) in the week from April
3 to April 7 and in the week after the first round (+251 mln
EUR from April 24 to April 28. The net selling in this week is
most probably a technical flow: investors swap old bonds to the
new issuance. Important is here the positive net volume, showing
additional buying of the issued volume.). After that, they are
negative during the weeks before and after the second round
(−166 mln EUR from May 2 to May 5 and −133 mln EUR
from May 8 to May 12). We interpret the data as a flight-to-
safety movement with a reversal after the result from the second
round: Asian investors were, in sight of a political event with
an uncertain outcome, increasing their “core block” exposure

FIGURE 9 | Cumulative positive (blue) and negative (red) incoming filtered correlation influences per market during the weeks around the 2017 French Presidential

Elections (first round: 23.4.2017, second round: 7.5.2017).
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(where the correlations clearly show that EFSF/ESM belong to) at
the cost of peripheral bonds. Consistent with this interpretation,
French bonds traded at a 30 bp risk premium to the yield of ESM
bonds at the beginning of 2017. This spread decreased to zero at
the end of the second quarter of 2017, as it did with respect to
other core block bonds such as Bunds.

Italian Budget Negotiations
Figure 1D shows the main observable of Italian fiscal and EU
political discussions, the spread between Italian and German 10y
bonds (IT-DE) from January to October 2018. At the beginning
of the year, the spread was at 150 bp on par with the spread
of Portuguese bonds (PT-DE) and about 50 bp higher than the
spread of Spanish bonds (ES-DE). After the electoral success of
Five Stars and Lega in earlyMarch, the Italian spread decorrelated
from Portugal and Spain. As the new government was set up at
the end of May, the spread widened by an additional 100 bp.
During the negotiations within the new government about the
budget given the electoral promises to increase spending and
frequent postures against the EU budget rules, the spread showed
increased volatility in several waves until October 19 when it
reached 336 bp. Portuguese and Spanish bonds traded in much
lower ranges, showing only mild contagion.

In Figure 10, the correlation heatmaps show positive
correlations within and between the core and semi-core blocks
and positive correlations to the ESM bonds and the non-Euro

denominated UK and Swiss bonds throughout the full 6-week
period from September 17 to October 26. The boundary between
the core and semi-core block is barely visible but consistent.
The correlations of the two peripheral countries, Spain and
Portugal, to the semi-core countries are between neutral and
strongly positive. The correlations between Italy and the core
(AT, DE, FI, NL) and semi-core (BE, FR, IE) are between neutral
and strongly negative. Greece (EL) decouples and sometimes
shows negative correlations to ESM, CH, and UK bonds. The
dendrograms in Figure 11 confirm the consistent core and semi-
core blocks, the strong coupling between Spain and Portugal and
the isolated role of Italian bonds until the third week. During the
fourth week (October 8–12), Italy forms a cluster with Greece.
In the fifth week (October 15–19), a periphery block with Spain,
Italy, Portugal, and Greece is visible both in the correlation
matrix and in the dendrogram. This block weakens in the last
week (October 22–26). It is noteworthy that the block structure
“core,” “semi-core,” and “periphery” remained constant through
the observation period in the dendrograms. The intact block
structure means that every yield movement on the Italian bond
market affected the other peripheral markets more as markets
belonging to the other blocks. In other words, while the level of
correlation and influence changed within the observation period,
the fundamental structure remained unchanged.

The correlation influence graphs in Figure 12 show
strong positive influences between the core and semi-core

FIGURE 10 | Bond return correlations during the Italian budget negotiations of autumn 2018.
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FIGURE 11 | Dendrograms during the Italian budget negotiations of autumn 2018.

FIGURE 12 | Filtered correlation influence networks during the Italian budget negotiations of autumn 2018.
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FIGURE 13 | Cumulative positive (blue) and negative (red) incoming filtered correlation influences per market during the Italian budget negotiations of autumn 2018.

countries and toward Spain and Portugal in the first week,
whereas Italian bonds couple positively to Spain. In the
second week (September 24–28), all core countries develop
negative correlation influences toward Italy. This sentiment
improvement is confirmed in the third week (October1–5).
During the fourth week (October 8–12), there are negative
correlation influences between Italy and all core and semi-core
countries. Spain recoupled to the semi-core in the fourth
week. During the week from October 15 to October 19,
positive correlation influences within core and semi-core bonds
passed the noise filter. The budget submitted by the Italian
government on October 16 was rejected on October 18 by the
EU commission.

During the last week (October 22–26), Equities sold off as
the EU commission formally requested the Italian government
to revise their budget within 3 weeks. Negative correlation
influences were visible between the core European block and all
peripheral countries and from Italy to the rest of the periphery.

The amplitudes of these negative correlation influences are
larger (Figure 13) than during the Brexit referendum and French
election cases. This pattern echoes the frequent spillover patterns
during the 2015 negotiations between the Eurogroup and Greece
(Schwendner et al., 2015).

The net flows of Asian investors into EFSF/ESM bonds were
close to zero in the period from September 17 to October 5.
In the week from October 8 to October 12, net selling of 187
mln EUR was overcompensating primary purchases of 136 mln
EUR. In the week from October 15 to October 19, there was net
buying of more than 1 bln EUR, more than 90% of it on the
primary market. In the week after that, we saw only little net
inflows of 91 mln EUR on the secondary market. These flows
reflect the increasing buying from Asian investors in the fourth
quarter of the year; still the volume in the time window of this
case study was above average. On the background of the political
scenery, the inflows may be attributed to steady investment in
quality, if not even be interpreted as flight-to-safety, taking into
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account the above-average volume. Flight-to-safety movements
usually happen at a higher pace than the reverse ones since risk
protection usually has more urgency than the relaxation of risk
protection measures. Also, there has not been any strong political
signal letting investors move toward a “risk-off”mode. Hence, we
do not see any reverse flight-to-safety in the observation period
of 6 weeks.

CONCLUSION

In an empirical study, we discussed the European bond market
return correlations in three prominent events during 2016–2018.
In contrast to the frequent spillover patterns that happened
during the negotiation between the Eurogroup and Greece in
2015 (Schwendner et al., 2015) about the third financial assistance
programme, the patterns around the 2016 Brexit referendum,
the 2017 French presidential election and the 2018 budget
negotiations in Italy were different.

The 2016 Brexit referendum only caused a muted warning
signal in the form of negative correlation influences fromGerman
to Spanish, Italian, and Portuguese bonds in the week before
the referendum and stronger core-periphery distortions with
volatile correlations during the week of the referendum due
to the unexpected result. The pattern of negative correlation
sentiment reversed quickly. However, the devaluation of the
British pound remained.

The 2017 French presidential elections showed a merge
between the semi-core correlation block and the periphery
correlation block before the second round, but no negative
correlations or correlation influences between core and
periphery. The French bond spreads improved after the
second round.

Finally, the Italian budget negotiations in autumn 2018
showed increased spreads for Italian bonds and negative
correlation influences between core Europe and Italy. During the
last week from October 22 to 26, a significant pattern of negative
correlation influences from core Europe and Italy to the rest of
the periphery was visible.

Interpreting the primary and secondary market aggregated
net flows of Asian investors in the context of euro area bond
correlations, we observe an interesting relation: we saw flight-
to-safety patterns into ESM bonds in the two case studies where
ESM was, in terms of correlations, part of the core block. In

contrast, during the week of the Brexit referendum, the ESM
correlations did not show significant relations, and the flows did
not show clear patterns. With the quick calming down of the
markets, the normal core structure with ESM being part of it
was visible again.
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