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Preface to ”Image and Video Processing and
Recognition Based on Artificial Intelligence”

Recent developments have led to the powerful application of artificial intelligence (AI)

techniques to image and video processing and recognition. While the state-of-the-art technology has

matured, its performance is still affected by various environmental conditions and heterogeneous

databases. The purpose of this Special Issue was to invite high-quality and state-of-the-art academic

papers on challenging issues in the field of AI-based image and video processing and recognition.

We solicited original papers of unpublished and completed research that were not under review by

any other conference, magazine, or journal. Topics of interest included but were not limited to the

following:

- AI-based image processing, understanding, recognition, compression, and reconstruction;

- AI-based video processing, understanding, recognition, compression, and reconstruction;

- Computer vision based on AI;

- AI-based biometrics;

- AI-based object detection and tracking;

- Approaches that combine AI techniques and conventional methods for image and video

processing and recognition;

- Explainable AI (XAI) for image and video processing and recognition;

- Generative adversarial network (GAN)-based image and video processing and recognition;

- Approaches that combine AI techniques and blockchain methods for image and video

processing and recognition.

Kang Ryoung Park, Sangyoun Lee, Euntai Kim

Editors
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Abstract: Numeral recognition is considered an essential preliminary step for optical character recog-
nition, document understanding, and others. Although several handwritten numeral recognition
algorithms have been proposed so far, achieving adequate recognition accuracy and execution time
remain challenging to date. In particular, recognition accuracy depends on the features extraction
mechanism. As such, a fast and robust numeral recognition method is essential, which meets the
desired accuracy by extracting the features efficiently while maintaining fast implementation time.
Furthermore, to date most of the existing studies are focused on evaluating their methods based
on clean environments, thus limiting understanding of their potential application in more realistic
noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition
method that is accurate in the more practical noisy environment is crucial. To this end, this paper
proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials.
Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce
the complexity of feature extraction, the embedded image kernel technique has been adopted. In
addition, support vector machine is used to classify the extracted features for the different numerals.
The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic,
and Devanagari. We compare the accuracy of the proposed numeral recognition method with the
accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed
method with the most updated method of a convolutional neural network. The results show that the
proposed method achieves almost the highest recognition accuracy in comparison with the existing
recognition methods in all the scenarios considered. Importantly, the results demonstrate that the
proposed method is robust against the noise distortion and outperforms the convolutional neural
network considerably, which signifies the feasibility and the effectiveness of the proposed approach
in comparison to the state-of-the-art recognition methods under both clean noise and more realistic
noise environments.

Keywords: character recognition; orthogonal polynomials; orthogonal moments; Krawtchouk poly-
nomials; Tchebichef polynomials; support vector machine

1. Introduction

Due to the advancement of computational capabilities of computers, the automatic
processing of commercial applications that deals with handwriting has gained substantial
attention around the world. In particular, handwriting digit recognition plays a vital role in
the area of pattern recognition and computer vision, which are considered as an essential

Sensors 2021, 21, 1999. https://doi.org/10.3390/s21061999 https://www.mdpi.com/journal/sensors
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subfield of optical character recognition (OCR) [1]. Both handwritten and printed numerals
recognition have gained considerable attention in different practical applications. Specifically,
handwritten numeral recognition can be used for several purposes: (a) processing cheques in
the bank sector, (b) scanning zip code in the post offices, (c) recognition of vehicle number, (d)
processing medical data, and (e) recognition of the street number [1–4]. However, automatic
recognition of handwritten numeral is to date considered to be a challenging issue. This is
due to the huge variations in handwriting styles, which imply that the same numeral can
be written in various ways depending on the font size, font orientation, and the usage of
different writing materials. Therefore, to address these challenges, developing an accurate
handwritten numeral recognition scheme is crucial. In addition, the trade-off between
the process of extracting the most informative features, which have the ability to enhance
the classification accuracy, and the complexity reduction is to date one of the most critical
issue in this area of research. Furthermore, handwritten numeral recognition is defined
as the process of recognizing and classifying numerals from 0 to 9 without any human
involvement [5]. While extensive research works have been carried out for the recognition
of handwritten numerals and several different techniques have already been proposed,
improving the recognition accuracy rates are still required [6].

2. Related Works

In [7], different feature extraction classifiers have been developed using cooperation
of four support vector machine (SVM) for Roman handwritten digit recognition. To this
end, four different types of feature extractions, namely, projection histograms, ring-zones,
contour profiles, and Kirsch features, have been investigated. Chen et al. [8] examined
a max-min pseudo-probabilities approach for Roman handwritten numerals recognition.
In this study, 256 different dimensions features have been extracted from an input image
through the use of principal component analysis (PCA). Note that the research works in [7,8]
have been carried out using the National Institute of Standards and Technology (NIST)
digital database in [9]. Shi et al. [10] proposed an algorithm using gradient and curvature
features. These features are fused to compose a feature vector to classify Roman numerals.
The work in [11] examined a feature extraction for handwritten numeral recognition using
a sparse coding strategy with a local maximum operation. This method has been evaluated
using a modified NIST (MNIST) digital database in [12]. In [13], a handwritten numeral
recognition approach, which utilizes multiple feature extraction methods and classifier
ensembles, has been proposed. In this proposed scheme, six different features of extraction
methods have been evaluated. In [6], a moment-based approach has been proposed for
handwritten digit recognition. In particular, the proposed scheme has been evaluated
under several scripts: (a) Indo-Arabic, (b) Bangla, (c) Devanagari, (d) Roman, and (e)
Telugu. The proposed method in [6] has been examined using the databases from the
Center for Microprocessor Applications for Training Education and Research (CMATER)
and MNIST.

Besides the research studies that used feature extraction approaches for handwritten
digit recognition, another line of research studies has focused on using the neural network
(NN) method for numeral recognition. To this end, several NN-based architectures have
been proposed for numeral recognition. For example, in [14,15] a trainable feature extrac-
tion has been introduced based on convolutional neural network architecture (CNN) with
SVM based classifier. The proposed scheme has been applied on the MNIST database.
In [16], a new limited receptive area (LiRA) features has been investigated for the hand-
written Roman recognition based on MNIST database, which has been developed in [17].
Subsequently, two different NN classifiers have been considered: (a) a modified 3-layer
perceptron LiRA and (b) a modular assembly neural network. A new method based on
Boltzmann machine (RBM) and CNN deep learning method has been proposed in [18]
for Arabic handwritten digit recognition. The proposed method has been applied in the
CMATERDB 3.3.1 Arabic handwritten digit datasets. In [19], a CNN algorithm has been
proposed for the Arabic numeral recognition, which uses several convolutional layers
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along with ReLU activation. In [20], an offline handwritten recognition based on DNN has
been developed for both digits and letters. The proposed method has been examined using
the MNIST and EMNIST databases. Several studies have investigated the enhancement of
the digits misrecognitions by adopting the deep learning-based deep belief network (DBN),
see, e.g., in [21,22]. However, the DBN methods suffer from a poor recognition accuracy
and high running time, which make such methods unfeasible for practical implementation.
To overcome these issues, a combined method based on feature extraction and decision
making of reinforcement learning has been proposed, see, e.g., in [23,24]. In particular,
an adaptive deep Q-learning method has been proposed in [3] aiming to enhance the recog-
nition accuracy and reducing the running time for handwritten digit recognition. In [1], two
CNN-based approaches have been investigated for handwritten Arabic digit recognition.
In the research, a new development in the size of the Arabic numerals database from 3,000
to 72,000 has also been introduced. Both the CNN models have achieved a recognition
accuracy that is close to the state-of-the-art methods for Arabic numerals recognition.

Two shape-based feature descriptors, which are termed as a Point-Light Source-based
Shadow (PLSS) and Histogram of Oriented Pixel Positions (HOPP), have been proposed
in [25]. The proposed framework has been implemented using ten of the available datasets
of handwritten digits, which are written in eight different languages and one numeric
string recognition dataset. The nine offline handwritten digits datasets include Bangla,
Arabic, Telugu, Nepali, Assamese, two versions of Gurumukhi Latin and two versions of
Devanagari, and one online Assamese numeral dataset.

In [26], a hybrid of PCA and modular PCA (MPCA) recognition method with quad-
tree-based hierarchically derived longest-run (QTLR) features has been proposed for optical
character recognition of handwritten digits using SVM classifier. In this study, five popular
Indian sub-continent scripts have been evaluated, which include Arabic, Bangla, Devana-
gari, Latin, and Telugu. The authors of [27] have proposed the 5-layer CNN method with
SVM classifier for efficient handwritten recognition. In this work, 50-class BangIa datasets
samples have been used in the training. In particular, this method has extracted the fea-
tures of five different 10-class problems of Indian scripts, which are English, Devanagari,
BangIa, Telugu, and Oriya. In [28], a novel 196-element Regional Weighted Run Length
(RWRL) feature has been proposed for handwritten Devanagari numerals recognition.
The proposed scheme has been evaluated by using SVM classifier. In this work, the au-
thors generated their own samples, which are given by 6000 handwritten Devanagari
digit. Recently, an improved handwritten recognition method using a CNN (IHRS-CNN)
method has been proposed in [29] for improving the performance of handwritten digit
recognition while maintaining the computational complexity. In particular, the IHRS-CNN
method makes use of a pure CNN architecture only without the requirement of using any
ensemble architecture, which could increase both the cost and computational complexity.
The results show that a better performance can be achieved using pure CNN architecture
while reducing the computational cost and operational complexity.

Although many deep learning-based classification algorithms have been studied for
handwritten digits recognition, the recognition accuracy and the running time remain
major issues that need to be addressed. In particular, the current techniques do not
provide results that meet the desired accuracy with fast execution time. As such, a careful
investigation of a new fast and robust technique is essential to meet the desired accuracy.
Furthermore, to date most of the existing research works do not consider the effect of
the noise, limiting understanding of their potential application in noise environments.
We believe that investigating the robustness of the proposed solution against the noise is
crucial to characterize the effectiveness of the features extraction.

To address the aforementioned research challenges, the present paper employs a com-
bination of two orthogonal polynomials—Krawtchouk polynomials (KPs) and Tchebichef
polynomials (TPs)—for numeral recognition system. These two well-known orthogonal
polynomials are widely used and frequently encountered in the open literature of image
representation and signal compression [30,31]. This is due to their powerful capabilities
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in analyzing the signals’ components and retaining the significant features of the signals
quickly and efficiently. In this paper, we adopt these powerful polynomials, more ac-
curately their combination to produce a hybrid orthogonal polynomials, which we call
squared Krawtchouk–Tchebichef polynomial (SKTP). In addition, to expedite the pro-
cess of extracting different types of features (gradient and smooth), the embedded kernel
technique is employed. The performance of the proposed approach is evaluated and com-
pared under different numeral recognition datasets. In particular, the proposed method is
evaluated under the noise-free environment, which we call it as clean noise. In addition,
we investigate the effectiveness of the proposed approach for numeral recognition in the
presence of noise distortion. To the best of our knowledge, no previous research works
have investigated the combination of two hybrid orthogonal polynomials for handwritten
numeral recognition. To this end, we provide the mathematical formulation of the utilized
orthogonal polynomials and their moments. Furthermore, we compare the proposed char-
acter recognition system with the state-of-the-art recognition methods. The results illustrate
that the proposed method achieves almost the highest recognition accuracy in comparison
with the state-of-the-art recognition methods in all the scenarios considered. Importantly,
the results show that the proposed method is robust against the noise distortion and
outperforms the CNN remarkably, which signifies the feasibility and the effectiveness of
our proposed method in comparison to the state-of-the-art recognition methods under both
clean noise and more practical noise environments

The paper is organized as follows. In Section 3, the system models of the orthogonal
polynomials and orthogonal moment along with their mathematical formulations are
introduced. In Section 4, we explain the methodology of the feature extraction process
together with the classification process. In Section 5, numerical results are provided in
order to characterize the performance of the proposed method and also to validate the
effectiveness of the proposed approach in the presence of noise distortion. Finally, the paper
is concluded in Section 6.

Notation: In this paper, an upper boldface symbol stands for a matrix whereas a lower
boldface symbol stands for a vector. The operator transpose is denoted by (·)T.

3. Mathematical Models of Orthogonal Polynomials and Moments

This section provides the mathematical analysis of the employed orthogonal polyno-
mials and the computation of their moments for two-dimensional signals.

3.1. Orthogonal Polynomials

The basic principle of the orthogonal polynomials is to project a signal, which could be
a speech or image, in the orthogonal polynomials basis. Orthogonal polynomials have the
potential to represent the features of signal in an enhanced, efficient, and non-redundant
way. Orthogonal polynomials consist of a square matrix with two axes, where these axes
represent the signal index (x) and polynomial order (n). The elements of the generated
matrix are referred to the orthogonal polynomial coefficients. Motivated by the properties
of orthogonal polynomials, which allow a combination of any two orthogonal polynomi-
als matrices to generate orthogonal polynomials matrix, this paper explores Tchebichef
polynomials and Krawtchouk polynomials and their moments to produce a hybrid form of
orthogonal polynomials. This combination results in a squared matrix with orthogonal poly-
nomials termed as SKTP [32], which has unique features combined from both Tchebichef
and Krawtchouk polynomials. The hybrid polynomials show a remarkable performance
improvement in terms of energy compaction and localization properties in comparison to
any sorts of orthogonal polynomials, i.e., Krawtchouk–Tchebichef polynomials only [33].
Such polynomial combinations could also be efficiently applied in communication signal
processing to reduce the complexity of RZF and RZFBF precoders [34,35] or to minimize
the feedback overhead [36,37]. To this end, this paper proposes an approach based on SKTP
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aiming to provide a fast handwritten numeral recognition with high accuracy. Accordingly,
the n-th order of the SKTP,Rn, can be written as [32]

Rn(x; p) =
N−1

∑
i=0

N−1

∑
j=0

N−1

∑
l=0
Kj(i; p) Tj(x)Kl(n; p) Tl(i), (1)

n, x = 0, 1, · · · , N − 1,

where parameters T and K are the TPs and KPs coefficients, respectively. Furthermore, pa-
rameter p is the polynomial degree of Krawtchouk polynomial. The n-th order normalized
Krawtchouk polynomial can be written as [38]

Kn(n; p) =

√
ωK(x)
ρK(n)

2F1

(
−n,−x;−N + 1;

1
p

)
, (2)

where parameters ωK, ρK represent the weight and norm of the Krawtchouk polynomial,
respectively. On the other hand, the n-th order normalized Tchebichef polynomial can be
expressed as [39]

Tn(x) =

√
ωT (x)
ρT (n)

(1− N)n 3F2(−n,−x, 1 + n; 1− N; 1), (3)

where parameters ωK ρK are defined as the weight and norm functions of the Tchebichef
polynomial, respectively. The employed SKTP matrix in (1) can be computed by using
matrix–matrix multiplication, which preserves the orthogonality due to the unique feature
of the orthogonal polynomials. As such, the employed SKTP matrix R can be expressed
using a matrix multiplication as

R = (Rk × Rt)
2, (4)

where matrices Rk and Rt denote Krawtchouk polynomial and Tchebichef polynomial,
respectively. It is worth noting that the computation of the Tchebichef polynomial and
Krawtchouk polynomial is conducted here using a three-term recurrence algorithm. This
is due to the fact that the hypergeometric series of these polynomials (2F1 and 3F2) and the
gamma functions are computationally cost, and thus could be infeasible for practical
implementation [40]. As such, the three terms recurrence algorithm allows a computational
effect solution, which justifies its use here.

3.2. Orthogonal Moments

The orthogonal moments (OMs) have recently received considerable attention as
key fundamental tools in different digital processing systems [41]. In particular, OMs
can be effectively utilized to reduce the noise distortion effect and improve the features
representation. The OMs are computationally efficient and have the capability to reduce the
numerical error in comparison to the continuous orthogonal moments (COMs). In addition,
OMs are scalar quantities that can discover any small changes or distortions that could be
introduced or occurred to the signals [42]. Owing to these beneficial capabilities, OMs have
been widely used in various signal processing applications. The basic principle of OMs
are to project the signal/image on the polynomial basis functions, which could result in
scalar quantities that are used in retaining the significant features of the signal/image [40].
This implies that OMs can be considered as shape descriptors (features). OMs can be
divided into two types, which are low-order moments (LOMs) and high-order moments
(HOMs). The LOMs preserve most of the signal energy, which, in principle, represents
the most effective features/information about the signal. On the other hand, the HOMs
contain the other details of the signal [43]. In this paper, the moments are computed using
the hybrid SKTP. As such, we call the SKTP with the moments combination as a squared
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Krawtchouk–Tchebichef moments (SKTMs). To this end, for any two-dimensional signal,
the SKTM (Mnm) can be computed as

Mnm =
N1−1

∑
x=0

N2−1

∑
y=0
Rn(x; p, N1)Rm(y; p, N2) f (x, y),

n =
N1

2
− 1,

N1

2
, . . . ,

N1 −On

2
,

N1 + On

2
− 1, (5)

m =
N2

2
− 1,

N2

2
, . . . ,

N2 −Om

2
,

N2 + Om

2
− 1,

where parameters On and Om represent the maximum order of moments used to represent
the two-dimensional signal, and f (x, y) represents the two-dimensional signal/image.
Specifically, to achieve a fast computation time and efficient implementation of SKTMs,
matrix–matrix multiplication is utilized. Accordingly, the resulting matrix of the moments,
M, with nth and m-th elements,Mnm, can be expressed as

M = R1 × F× RT
2 , (6)

where F denotes the matrix form of the image f (x, y), and R1 and R2 represent the ma-
trix form of orthogonal polynomials with nth and m-th elements, which are given by
Rn andRm. It is noteworthy that the basis functions of orthogonal polynomials can be
utilized as an approximate solution for differential equations as discussed in [44].

4. The Proposed Methodology for Handwritten Numeral Recognition

In this section, the proposed methodology for handwritten numeral recognition is
provided. In particular, to make it simple and easy to clarify, this section is divided into
two subsections: the feature extraction process and classification process.

4.1. Feature Extraction Process

The feature extraction process is considered as key fundamental part in the recognition
system, which is beneficial for signal representation. As such, to enable an efficiently nu-
meral recognition system, a global feature extraction is utilized instead of the local feature
extraction. Although an approach based on SKTMs has shown reasonable performance
in signal representation [45], this was based on clean noise environment. In particular,
the vast majority of research studies on numeral recognition have focused on clean noise
environment, thus preventing the characterization of efficient numeral recognition methods
in more practical environments. However, when the numeral characters exhibit a noisy
environment, numeral recognition would be severely affected, and thus the accuracy of
signal/image recognition will be significantly reduced. This paper addresses the afore-
mentioned challenge by taking into account the effect of the noise, which underpins the
main contribution of this work. Specifically, this paper applies smoothed and gradient
operator [46] to the input image in order to extract the most effective features. To this end,
a smoothed kernel is used in this paper to minimize the effect of noise. In addition, this
paper exploits the gradient kernel to compute the gradient of the input image for efficient
numeral recognition outcome. It is worth pointing out that applying the aforementioned
kernels directly is computationally and cost inefficient. Therefore, to increase the computa-
tional time, an orthogonal polynomial embedded image kernel technique [46] is explored
here. In order to compute the smoothed kernel moments Ψs, the following formula is used,

Ψs = Sy × F× Sx, (7)

6



Sensors 2021, 21, 1999

where parameters Sx and Sy are the SKTP embedded with smoothed operator in the x and
y directions, respectively. To this end, parameters Sx and Sy can be expressed as [46]

Sx = R×Hsx, (8)

Sy = R×Hsy, (9)

where matrix R is given in (4), which represents the combination of Krawtchouk and
Tchebichef polynomials, and Hsx and Hsy represent the Toeplitz matrix (An N × N matrix
A is a Toeplitz matrix if the i, j elements of A, i.e., [A]i,j, satisfies the following [A]i,j =
Ai+1,j+1 = ai−j.) matrices of the smoothed operators of vectors hsx and hsy, respectively.
This paper uses the circularly symmetric complex Gaussian distribution with mean 0 as a
smoothing kernel. Accordingly, the smoothing kernel can be expressed as

hsx =
1

2πσ2
x

e
− x2

2σ2
x , (10)

hsy =
1

2πσ2
y

e
− y2

2σ2
y , (11)

where σ2 represents the standard deviation of the Gaussian distribution. The expression
in (8) and (9) indicates that no preprocessing operation is required before extracting features.

To compute the moments of gradient image, the SKTMs of the gradient image, which
are given in Ψx and Ψy, can be directly computed from the smoothed moments. Accord-
ingly, the moments of gradient image are obtained as

Ψx = Ψs × Px, (12)

Ψy = Py ×Ψs, (13)

where matrices Px and Py can be determined as

Px = Sx ×GT
x (14)

Py = Gy × ST
y (15)

where matrices Gx and Gy represent the SKTP embedded with gradient operator in the x
and y directions, respectively. Matrices Gx and Gy can be computed as [46]

Gx = R×Hgx, (16)

Gy = R×Hgy, (17)

where matrices Hgx and Hgy represent the Toeplitz matrices of the smoothed operators hgx
and hgy, respectively. In this paper, a simple gradient operator is exploited as a gradient
kernel, which is given as

hgx = [−1 1], (18)

hgy = [−1 1]T. (19)

After the moments of the smoothed and gradient are numerically obtained, they can
be concatenated in order to form a unique feature vector (FV). The obtained feature vector
is then normalized to ensure similar dynamic range [38,47]. The normalization process is
used because the values of features lie within wide ranges; thus, the effect of large features
values dominate small features values [40].

Figure 1a shows samples of feature vectors without normalization and Figure 1b
shows samples of features with normalization using zero mean and standard deviation of
1. Unlike the normalize feature vectors, the feature vectors without normalization show
values with a wide range [−400, 600].
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Figure 1. Plot of feature vector samples with indices from 1 to 200 (a) without normalization and (b) with normalization.

In order to make the proposed methodology of feature extraction more clearly,
the block diagram of the feature extraction process is provided in Figure 2.

Figure 2. A flow chart of the feature extraction process.
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4.2. Classification Process

After obtaining the normalized feature vector, an identified number value (ID) for
each input image is obtained based on a classifier. Note that the feature vector is considered
as an input to the classifier. A method using SVM is utilized in this paper to accomplish the
classification process. The reason behind selecting the SVM method is due to its capability
to maximize the margin between separation classes of the hyperplane and data, which is
achieved by generating a hyperplane [48–50]. This SVM can also minimize the structural
risk by controlling the out-of-sample error [48,49]. In addition, SVM is more adequate
for recognition as it is more resistant to the noisy environment [49]. By generating a
hyperplane, SVM can separate the positive and negative images [50]. The LIB-SVM with
kernel function is used for SVM implementation [47,51].

Figure 3 shows a schematic diagram of the classification process using the SVM
method, which includes training and testing process. The SVM kernels utilize polynomial
and radial basis function (RBF). These choices are considered as an effective classification
mechanism since these kernels show nonlinear separation between classes [47]. To en-
sure high prediction accuracy, the cross-validation process is carried out. This allows
the best kernel parameters to be obtained. Note that the cost and gamma are essential
parameters that are required to be tuned. To this end, five-fold cross-validation is applied.
The ranges of the parameters for cost and gamma are considered to be (20, 21, . . . , 25) and
(2−10, 2−9, . . . , 20). The cost and gamma parameters show high accuracy on the testing set.

Figure 3. A schematic diagram for support vector machine (SVM) training and testing process.

5. Experimental Results and Discussion

This section presents several simulation results, which characterize the performance of
the proposed numeral recognition in different datasets. We first evaluate different choices
of kernels in order to select the best SVM kernel. Furthermore, we compare the proposed
numeral recognition method with the state-of-the-art recognition methods. The following
subsection describes the datasets used in this paper.

5.1. Database Description

In this paper, several benchmarks handwritten numeral datasets are used in the
experiments. These datasets include Roman, Devanagari, and Arabic scripts. Among the
diverse set of datasets, Roman, which originally came from the Greek alphabet [6], seems
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to be the most popular handwritten numeral. This is mainly due to the fact that Roman
is considered as a second language in the vast majority of countries around the world.
Arabic handwritten numerals are widely used in the Middle East countries as well as part
of Asia such as in India. On the other hand, Devanagari script is also considered in this
paper, which is not only the most popular script used for the Hindi language, but also
used by more than 120 different languages around the world [6]. This can justify our
focus on these particularly essential handwritten numerals in our experiments. To this end,
the MINST numeral dataset provided in [12] is used in this paper. The MINST includes
10 numerals, i.e., 10 classes with 1000 images for each class. The Arabic numeral dataset
(CMATERdb 3.3.1) is obtained from the work in [52], wherein over 10,000 images are
explored with over 1000 images for each class. Finally, we obtain the dataset of Devanagari
(CMATERdb 3.2.1) from the work in [52]. In the Devanagari case, over 20,000 images
are used with about 2000 images for each numeral. Figure 4 elaborates different samples
for different datasets, which include Roman, Arabic, and Devanagari. The following
subsection evaluates the performance of the proposed numeral recognition method based
on the above discussed datasets.

Figure 4. Samples from dataset images (a) Roman, (b) Arabic, and (c) Devanagari.

5.2. Characterizing the Performance of the Proposed Numeral Recognition Using Different
Kernels Methods

The main objective of this paper is to identify the best handwritten numeral recognition
that achieves the best accuracy. To this end, for a given input image, we identity the best
recognition from different types of numerals. The feature extraction process and the training
and testing process provided in Figures 2 and 3, respectively, and discussed in detail in
Section 4, are exploited here for numeral recognition. In particular, for each dataset (e.g.,
Roman, Arabic, and Devanagari), the samples are divided equally into two parts, i.e., one
for the training phase and the other part for testing phase (see Table 1 for details). For each
phase, the feature extraction process is shown in Figure 2, where this process is utilized to
represent each image by its related features.

Table 1. Size of the sample for each dataset, and the size of the training and testing sets.

Dataset Sample Size The Size of the Training Set The Size of the Testing Set

Roman 10,000 5000 (50%) 5000 (50%)
Arabic 10,000 5000 (50%) 5000 (50%)

Devanagari 20,000 10,000 (50%) 10,000 (50%)

The proposed numeral recognition method is implemented based on two SVM kernels,
which are defined as the polynomial and radial basis function (RBF) kernels. For the radial
basis function kernel, the tuned parameters are given by the cost (C) and gamma (γ).
On the other hand, for the polynomial kernel, the parameters are given by the cost (C),
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gamma (γ), and the kernel coefficient (coe f 0). More details about the polynomial as well
as radial basis function kernels can be found in [51]. The obtained kernels coefficients are
shown in Table 2.

Table 2. Comparing the polynomial and RBF kernels coefficients based on the SVM method for
Roman, Arabic, and Devanagari datasets.

Dataset Kernel C γ coe f 0 Degree Accuracy

Roman
RBF 26 2−9.6 - - 99.80

Polynomial 26 2−7.2 0 4 100

Arabic
RBF 26 2−9.6 - - 98.94

Polynomial 26 2−9.6 −0.15 4 99.32

Devanagari
RBF 26 2−9.6 - - 99.12

Polynomial 26 2−9.6 −0.16 4 99.28

Figure 2 depicts that the polynomial kernel using the SVM method achieves better
overall preference in terms of accuracy than the RBF kernel. As such, the polynomial
kernel can be considered as a more robust recognition technique in comparison to the RBF
kernel. For more clarification about the differences between polynomial and RBF kernels,
we have provided Figure 5. In particular, Figure 5 shows the accuracy comparison between
polynomial and RBF based on Roman, Arabic, and Devanagari datasets considered. From
Figure 5a, we observe that for classes 3, 5, 7, and 8, the RBF kernel is less accurate than the
polynomial kernel when the Roman dataset is used. For the Arabic dataset in Figure 5b,
however, the class accuracy for polynomial kernel is slightly degraded in comparison to
Figure 5a. However, the results in Figure 5b illustrate that the RBF kernel is considerably
degraded when Arabic dataset is used, especially for classes 3, 4, and 9. Overall, the results
show that the polynomial kernel is more accurate than the RBF kernel for almost all the
classes considered when Arabic dataset is used. On the other hand, Figure 5c investigates
the accuracy of polynomial and RBF kernel based on the Devanagari dataset. The results
show that for Devanagari dataset, again, the RBF kernel is less robust in recognition than the
polynomial kernel where the accuracy has been considerably dropped, especially when we
considered classes 2, 5, 6, and 9. For more elucidation, the confusion matrices polynomial
and RBF kernels are evaluated based on all the datasets. To achieve this purpose, Figure 6
conducts a comparison of the accuracy between the polynomial and RBF kernels.

Specifically, Figure 6a–c provides a confusion matrix of the numeral recognition using
polynomial kernel based on Roman, Arabica, and Devanagari, respectively. Figure 6d–
f illustrates the results of the confusion matrix of the numeral recognition using RBF
kernel based on Roman, Arabica, and Devanagari, respectively. Figure 6 demonstrates
clearly that, based on the confusion matrix of the numeral recognition, the polynomial
kernel outperforms RBF kernel in all datasets considered. Based on the experiments
above, and due to the accuracy that polynomial kernel provides over a wide range of
comparisons, we consider the polynomial kernel with SVM method for feature extraction
in the rest of the paper. In particular, polynomial kernel is used here with SVM in the
classification process for numeral recognition system and through the comparison with the
state-of-the-art methods.
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Figure 5. Comparison of classes accuracy using polynomial and RBF kernels for (a) Roman, (b) Arabic,
and (c) Devanagari.

Figure 6. Cont.
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Figure 6. Confusion matrix of the numeral recognition system using (a) polynomial kernel for
Roman dataset, (b) polynomial kernel for Arabic dataset, (c) polynomial kernel for Devanagari
dataset, (d) RBF kernel for Roman dataset, (e) RBF kernel for Arabic dataset, and (f) RBF kernel for
Devanagari dataset.

5.3. Comparing Performances of the Proposed Method and the Existing State-of-the-Art Methods
for Numeral Recognition

To evaluate the performance of the proposed algorithm, different comparisons with
existing recognition methods are carried out in this subsection. Unless otherwise specified,
the comparisons are conducted based on clean noise environment, i.e., without introducing
the noise. Our proposed method use SVM as a classifier with polynomial kernel. Table 3
provides a comparison based on the Roman numeral recognition. Different recognition
methods, which use different classifier types, are compared with each other and with
our proposed method. To this end, a handwritten recognition based on moments fusion
(MF) [6] is used. MF recognition method uses two different classifier types, which are
defined as a multilayer perceptron (MLP) and SVM. Conventional neural network CNN,
which uses 5-layers CNN, has been proposed in [27]. We consider this 5-layers CNN
method in the comparison and we term it CNN-5 for brevity. We also compare our method
with the statistical–topological feature combination (STFC) proposed in [26]. The fourth
recognition method that we consider in the comparison is IHRS-CNN. As such, the classifier
type for the CNN-5 and IHRS-CNN methods is CNN.

The results in Table 3 show that the STFC and MF methods that use SVM classifier
achieve the lowest accuracy recognition levels, which are below 99%. On the other hand,
CNN-5-based CNN classifier achieves 99.10% recognition accuracy, while the MF-based
MLP classifier and IHRS-based CNN classifier achieve the same recognition accuracy of
99.77%. Interestingly, the proposed method achieves the highest accuracy level, i.e., 100%,
among all the methods considered. This signifies the feasibly of our proposed method in
comparison with other methods used for handwritten Roman numerals recognition. Par-
ticularly, the proposed method provides an accuracy improvement of 0.23% in comparison
with the MF-based MLP and IHRS methods, and 1.25% improvement in comparison with
MF-based SVM.

Having demonstrated the feasibility of the proposed method with the Roman numeral
recognition, it is pertinent to compare the proposed algorithm performance recognition
with that obtained from the conventional recognition methods based on Arabic numeral
recognition. To this end, the proposed algorithm is compared with several different
algorithms. For example, shape features (SF) [25] using random forest and MLP for
classification are considered in the comparison based on Arabic numeral recognition.
In addition, convolutional neural network (CNN), which is proposed in [19] for Arabic
handwritten numerals, is also used here in the comparison. The rest of the methods
that are used in the comparison are similar to those already considered with the Roman
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numeral recognition, which are MF-based MLP and SVM classifiers [6] and STFC with
SVM classifier [26]. Table 4 provides an accuracy comparison of the aforementioned
methods with our proposed method. The results show that CNN [19] method based on
CNN classifier achieves the lowest accuracy recognition level, which is below 97.40%.
The results demonstrate that the proposed numeral recognition algorithm outperform the
existing algorithms for handwritten Arabic numeral recognition, which achieves 99.32%
recognition accuracy.

Table 3. Comparison between the proposed method and the state-of-the-art methods based on
Roman numeral recognition in clean environment.

Method Classifier Type Dataset Accuracy %

MF [6] MLP MNIST 99.77
MF [6] SVM MNIST 98.75

STFC [26] SVM MNIST 98.90
CNN-5 [27] CNN MNIST 99.10

IHRS-CNN [29] CNN MNIST 99.77
Proposed SVM MNIST 100.00

Table 4. Comparison between the proposed method and the state-of-the-art methods for Arabic
numeral recognition in clean environment.

Method Classifier Type Dataset Accuracy %

SF [25] random forest CMATERDB 3.3.1 98.40
SF [25] MLP CMATERDB 3.3.1 98.20
MF [6] MLP CMATERDB 3.3.1 98.92
MF [6] SVM CMATERDB 3.3.1 97.95

STFC [26] SVM CMATERDB 3.3.1 98.40
IHRS-CNN [29] CNN CMATERDB 3.2.1 98.42

CNN [19] CNN CMATERDB 3.3.1 97.40
Proposed SVM CMATERDB 3.3.1 99.32

So far, the results presented are based on the Roman and Arabic dataset, in what
follows we compare the proposed method with the state-of-the-art methods based on
Devanagari handwritten numeral. To this end, a regional weighted run length feature
(RWRLF) [28] algorithm, wherein the SVM and MLP classifier are employed for classifi-
cation, is used here for comparison. The rest of the methods that are compared here are
similar to those already used with the Roman and Arabic numeral recognition, which are
MF-based MLP and SVM classifiers [6], SF [25] with random forest and MLP classifier,
and STFC with SVM classifier [26]. Table 5 presents the accuracy comparison of differ-
ent recognition with their corresponding classifiers. The results show that the MF based
on MLP classifier method achieves the best accuracy performance of 99.30%. However,
the proposed algorithm still achieves a comparable results to that obtained based on the
MF method with only 0.02% accuracy difference that is considered negligible. Nevertheless,
our proposed method outperforms the MF method in both Roman and Arabic handwritten
numeral recognition. Furthermore, the proposed method considerably outperforms all
the rest of the methods considered in the comparison for the Devanagari handwritten
numeral. This again signifies the feasibility of our method in comparison to the other
methods considered.
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Table 5. Comparison between the proposed method and the state-of-the-art methods for Devanagari
numeral recognition in clean environment.

Method Classifier Type Dataset Accuracy %

SF [25] Random Forest CMATERDB 3.2.1 98.01
SF [25] MLP CMATERDB 3.2.1 97.40
MF [6] MLP CMATERDB 3.2.1 99.30
MF [6] SVM CMATERDB 3.2.1 97.98

RWRLF [28] SVM CMATERDB 3.2.1 95.03
RWRLF [28] MLP CMATERDB 3.2.1 94.47

STFC [26] SVM CMATERDB 3.2.1 98.70
IHRS-CNN [29] CNN CMATERDB 3.2.1 97.60

Proposed SVM CMATERDB 3.2.1 99.28

From the previous comparison, the proposed method seems to be almost outper-
forming all the existing algorithms based on the clean environment. To illustrate the
effectiveness and the robustness of our proposed algorithm, different noisy environments
are also considered. We select the updated state-of-the-art algorithm, which is IHRS-
CNN [29]. The implementation of IHRS-CNN algorithm is also straightforward. This can
justify its use in the comparison with different noisy environments. The noisy environ-
ments are chosen to be Gaussian noise with two different variance values, i.e., (σ2 = 0.01
and σ2 = 0.05). Moreover, the Salt and Pepper noise with two different density values,
i.e., d = 0.01 and d = 0.05 are also considered. Finally, we use the blur noise in the compar-
ison, which is implemented using an averaging filter with size of 3× 3. In addition, as in
previously presented results, the comparison is conducted based on the Roman, Arabic,
and Devanagari numerals. The results of the comparison are provided in Table 6.

Table 6. Comparison between the proposed method and IHRS-CNN [29] method for Roman, Arabic, and Devanagari
numeral recognition in both clean and noisy environments.

Roman Arabic Devanagari

Environment Proposed IHRS-CNN [29] Environment Proposed IHRS-CNN [29] Environment Proposed IHRS-CNN [29]

Clean 100.00 99.77 Clean 99.32 98.42 Clean 99.23 97.6

Gaussian noise
σ2 = 0.01 100.00 97.08

Gaussian noise
σ2 = 0.01 99.12 97.78

Gaussian noise
σ2 = 0.01 99.17 97.32

Gaussian noise
σ2 = 0.05 96.68 90.00

Gaussian noise
σ2 = 0.05 99.00 94.76

Gaussian noise
σ2 = 0.05 98.66 95.69

Salt & Pepper noise
(d = 0.01) 100.00 93.68 Salt & Pepper noise

(d = 0.01) 99.08 97.68 Salt & Pepper noise
(d = 0.01) 99.22 97.4

Salt & Pepper noise
(d = 0.05) 99.90 90.76 Salt & Pepper noise

(d = 0.05) 99.12 93.84 Salt & Pepper noise
(d = 0.05) 99.14 96.69

Blur
(filter size = 3× 3) 100.00 96.88 Blur

(filter size = 3× 3) 99.02 98.08 Blur
(filter size = 3× 3) 99.23 97.27

As illustrated in Table 6, for the Roman numerals, the proposed algorithm shows a
stable recognition accuracy in clean and noisy environments. However, there is a slight
degradation in the recognition accuracy when the standard deviation of the Gaussian noise
is increased, i.e., σ2 = 0.05. On the other hand, the recognition accuracy performance of
the IHRS-CNN method degrades in all the noisy environments considered. For example,
the IHRS-CNN shows 2.7% and 9.8% for the Gaussian noise with σ2 = 0.01 and σ2 = 0.05,
respectively. For the Arabic numerals, the proposed method achieves almost the same
accuracy of about 99% in all the noisy environments considered. Clearly, the results show
that the proposed method again is more accurate than the state-of-the-art method in all
cases. In particular, the proposed method achieves a maximum gain in the accuracy of
5.28% in the Salt and Pepper noisy environment with density d = 0.05. For the Devanagari
numeral recognition, the proposed method again considerably outperforms the IHRS-CNN
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method. Here, the proposed method achieves a maximum gain of 2.97 over the IHRS-CNN
method in the Gaussian noise with standard deviation of σ2 = 0.05.

In terms of execution time, the proposed method with Roman and Arabic numerals
are executed with 24.2 and 15.1 s, respectively, while the CNN spends 26.7 and 17.9 s,
respectively, to get executed. Note that the time is measured for the entire test set for each
type of numerals. This clearly implies that the proposed method has nearly comparable
results with the existing methods in terms of execution time. Overall, the results presented
show that the proposed algorithm is still robust in the noisy environments in comparison
to the state-of-the-art IHRS-CNN method.

6. Conclusions

This paper presented a new codesign of orthogonal polynomials with their associated
moments to improve handwritten numeral recognition accuracy. The proposed algorithm
have been evaluated for three different numeral recognitions: Roman, Arabic, and De-
vanagari. The results demonstrated that the proposed approach achieves the highest
recognition accuracy in comparison to the state-of-the-art numeral recognition methods.
Importantly, the numerical results showed that the proposed approach is robust against
the noise distortion, which signifies the effectiveness of the proposed approach under
realistic environments.
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Abbreviations
The following abbreviations are used in this manuscript:

OCR optical character recognition
SVM support vector machine
NIST national institute of standards and technology
MNIST modified NIST
CMATER Center for Microprocessor Applications for Training Education and Research
CNN convolutional neural network
HOPP Histogram of Oriented Pixel Positions
PLSS Point-Light Source-based Shadow
KP Krawtchouk polynomials
TP Tchebichef polynomials
SKTP squared Krawtchouk–Tchebichef polynomial
COM continuous orthogonal moment
OM orthogonal moment
LOM low-order moments
HOM high-order moments
SKTM squared Krawtchouk–Tchebichef moment
FV feature vector
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Abstract: Sparse Coding (SC) has been widely studied and shown its superiority in the fields of signal
processing, statistics, and machine learning. However, due to the high computational cost of the
optimization algorithms required to compute the sparse feature, the applicability of SC to real-time
object recognition tasks is limited. Many deep neural networks have been constructed to low fast
estimate the sparse feature with the help of a large number of training samples, which is not suitable
for small-scale datasets. Therefore, this work presents a simple and efficient fast approximation
method for SC, in which a special single-hidden-layer neural network (SLNNs) is constructed
to perform the approximation task, and the optimal sparse features of training samples exactly
computed by sparse coding algorithm are used as ground truth to train the SLNNs. After training,
the proposed SLNNs can quickly estimate sparse features for testing samples. Ten benchmark data
sets taken from UCI databases and two face image datasets are used for experiment, and the low root
mean square error (RMSE) results between the approximated sparse features and the optimal ones
have verified the approximation performance of this proposed method. Furthermore, the recognition
results demonstrate that the proposed method can effectively reduce the computational time of testing
process while maintaining the recognition performance, and outperforms several state-of-the-art fast
approximation sparse coding methods, as well as the exact sparse coding algorithms.

Keywords: sparse coding; fast approximation; homotopy iterative hard thresholding; object recognition

1. Introduction

Object recognition is a fundamental problem in machine learning, and has been widely
researched for many years. The performance of object recognition methods largely relies on
feature representation. Traditional methods used handcrafted features to represent objects,
i.e., scale-invariant feature transform (SIFT) [1], histograms of oriented gradients (HOG) [2],
etc. Inspired by biological finding [3,4], learning sparse representation is more beneficial
for object recognition, because mapping features from low-dimensional space to a high-
dimensional space makes the features more likely to be linearly separable. Therefore, many
sparse coding (SC) algorithms have been proposed to learn a good sparse representation
for natural signals [5–7].

In general, SC is the problem of reconstructing input signal using a linear combination
of an over-complete dictionary with sparse coefficients, i.e., for an observed signal x ∈ Rp

an over-complete dictionary D ∈ Rp×K(p� K), SC aims to find a representation α ∈ RK

to reconstruct x by using only a small number of atoms chosen from D. The problem of SC
is formulated as

min :
α
||x− Dα||22 + λ||α||0, (1)

where the l0-norm is defined as the number of non-zero elements of α, and λ is the regu-
larization factor. Several optimization algorithms have been proposed for the numerical
solution of (1). However, the high computational cost induced by these optimization
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algorithms is a major drawback for real-time applications, especially when a large-sized
dictionary is used.

To get rid of this problem, many works focusing on fast approximation for sparse
coding have been proposed. Kavukcuoglu et al. [8] proposed a method named Predictive
Sparse Decomposition (PSD) that used a non-linear regressor to approximate the sparse
feature, and applied this method to objection recognition. However, the predictor is
simplistic and produces crude approximation, and the regressor training procedure is
somewhat time-consuming because of the gradient descent training method. Recently,
deep learning showed its widespread success on many inference problems, which provides
another way to design fast approximation methods for sparse coding algorithms. The
idea is first proposed by Gegor et al. [9] who constructed two deep learning networks to
approximate the iterative soft thresholding and coordinate descent algorithms, leading to
the so-called LISTA and LCoD methods, respectively. LISTA showed its superiority on
calculation and approximation, and many recent variants of LISTA have been proposed
for miscellaneous applications, see [10,11] for some examples. Inspired by [9], many fast
approximation sparse coding methods based on deep learning have been proposed and
shown their effectiveness on unfolding the corresponding sparse coding algorithms, i.e.,
LAMP [12], LVAMP [12], etc.

Though these methods perform well in large-scale datasets, there are three defects.
First, they are not suitable for small-scale datasets, in which the number of training samples
is far less then ten thousand. The performance of deep neural network is sensitive to the
scale of training data, when the number of training samples is small, the deep network
model is over-parameterized and may result in over-fitting. Second, deep networks in-
volve lots of hyper-parameters, whose training requires large computational and storage
resources because of the gradient-based back-propagation method, and is easy to get stuck
in a local optimal solution. Last but not least, each deep network architecture is designed
only for the corresponding sparse coding algorithm that cannot be generalized to other
algorithms. Therefore, the extendibility of these methods are limited.

To solve the problems mentioned above, a simple and effective fast approximation
sparse coding method is proposed for small-scale datasets object recognition task in this
paper. Differing from the deep learning-based methods, a special single-hidden-layer
neural network (SLNNs) is constructed to perform the approximation task, and the training
process of this SLNNs can be easily implemented by the least squared method. The
proposed method includes two steps. In the first step, the optimal sparse features of
training samples are exactly computed by sparse coding algorithm (in this paper, the
homotopy iterative hard thresholding (HIHT) algorithm [13] is used), and in the second
step the optimal sparse features are used as ground truth to train the especially constructed
SLNNs. After training, the input layer and hidden layer of this SLNNs can be used to
implement the nonlinear feature mapping from the input space to sparse feature space,
which only involves simple inner product calculation with a non-linear activation function.
Therefore, the sparse features of new samples can be estimated quickly. Ten benchmark
datasets taken from UCI databases and two face image datasets are used to validate
the proposed method, and the root mean square error (RMSE) results on testing data
have verified the approximation performance of this proposed method. Furthermore,
the approximated sparse features have been applied to object recognition task, and the
recognition results demonstrate that this proposed approximation sparse coding method is
beneficial for object recognition in terms of recognition accuracy and testing time.

The main contributions of this paper can be concluded as

1. A fast approximation sparse coding method is proposed for small-scale datasets object
recognition task, which can quickly estimate the sparse features for testing samples.

2. A special SLNNs architecture has been constructed to perform the approximation task,
whose parameters can be optimized easily by the least squared method, avoiding the
multifarious procedure induced by the gradient-based back-propagation training.
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3. Experiment results on ten benchmark UCI datasets and two face image datasets show
that our approach is more effective than current state-of-the-art deep learning-based
fast approximation sparse coding methods both in RMSE, recognition accuracy and
testing time.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
sparse coding algorithms and fast approximation sparse coding methods. Section 3 details
the proposed method. Section 4 describes implementation details and presents experimen-
tal results. Finally, conclusions are given in Section 5.

2. Related Work
2.1. Sparse Coding Algorithms

As described in Section 1, the problem of SC can be formulated as problem (1). How-
ever, problem (1) is NP-hard, which is difficult to be solved. There are three common meth-
ods for approximations/relaxations of this problem: (1) iterative greedy algorithms [14–16];
(2) l1-norm convex relaxation methods (which are called basis pursuit) [17]; (3) lp-norm
(0 < p < 1) relaxation methods [18–22]. Among these methods, BP has been studied more
widely, in which the l0 norm is replaced by l1 norm to make a convex relaxation for the
problem (1), i.e.,

min :
α
||x− Dα||22 + λ||α||1, (2)

where the l1-norm is defined as the sum of absolute values of all elements of α.
BP methods were proven to give the same solutions to (1) when the dictionary satisfies

the Restricted Isometry Property (RIP) condition [23,24]. Many research works focusing on
efficiently solving problem (2) have been proposed, [25] provides a comprehensive review
of five representative algorithms, namely Gradient Projection (GP) [26,27], Homotopy [28,29],
Iterative Soft Shrinkage-Thresholding Algorithm (ISTA) [30–32], Proximal Gradient (PG) [33,34],
and Augmented Lagrange Multiplier (ALM) [35]. Among these algorithms, ISTA is the
most popular algorithm, and lots of heuristic strategies have been proposed to reduce the
computational time of ISTA, i.e., TwIST [36], FISTA [33], etc. Recently, a kind of pathwise
coordinate optimization method called PICASSO [37–39] has been proposed to solve the
lp (0 < p ≤ 1) least squared problem, which showed superior empirical performance
compared with other state-of-the-art sparse coding algorithms mentioned above.

Although satisfactory results can be achieved by using the approximation/relaxation
methods, the l0-norm is more desirable from the sparsity perspective. In recent years,
researchers have attempted to solve problem (1) directly, with iterative hard thresholding
(IHT) [13,40,41] being the most popular method. The IHT methods have strong theoretical
guarantees, and the extensive experimental results show that the IHT methods can improve
the sparse representation reconstruction results.

2.2. Fast Approximation for Sparse Coding

The sparse coding algorithms mentioned in Section 2.1 involve a lot of iterative
operations, which induces high computational cost and prohibits them from real-time
applications. To get rid of this problem, some research focusing on fast approximation
for sparse coding was proposed. Kavukcuoglu et al. [8] proposed the PSD method to
approximate sparse coding algorithms using a non-linear regressor. In inspired by this,
Chalasani et al. [42] extended PSD to estimate convolutional sparse features. However, the
approximation performance of non-linear regressor is limited. As the development of deep
learning, some researchers have constructed deep networks to solve the fast approximation
sparse coding problem. Given a large set of training examples {(xi, αi)}N

i=1, a many-layer
neural network is optimized to minimize the reconstruction mean squared error between
network outputs and {αi}N

i=1. After training, the approximation of sparse representation for
a new signal xnew can be quickly predicted by the deep network. The idea is first proposed
by Gregor et al. [9] who constructed two deep learning networks to approximate the
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iterative soft thresholding and coordinate descent algorithms, leading to the so-called LISTA
and LCoD methods, respectively. Inspired by [9], Xin et al. [43] translated the iterative hard
thresholding algorithm into a deep learning framework. Borgerding et al. [12] proposed
two deep neural-network architectures to unfold the approximate message passing (AMP)
algorithm [44] and “vector AMP” (VAMP) algorithm [45] respectively, namely LAMP and
LVAMP. In [46], the authors proposed a deep learning framework for the approximation
of sparse representation of a signal with the aid of a correlated signal, the so-called side
information. The learned deep networks perform steps similar to those implemented by
corresponding sparse coding algorithms; however, the trained network can reduce the
computational cost when calculating the sparse representation of new samples effectively,
which is critical in large-scale data settings and real-time applications.

3. Materials and Methods
3.1. Homotopy Iterative Hard Thresholding Algorithm

The homotopy iterative hard thresholding (HIHT) [13] is an extension of IHT for the
l0-norm regularized problem

min :
α

θλ(α) = f (α) + λ||α||0, (3)

where f (α) = 1
2 ||x − Dα||22 is a differentiable convex function, whose gradient ∇ f (α)

satisfies the Lipschitz continuous condition with parameter L f > 0. Therefore, f (α) can be
approximately iteratively updated by the projected gradient method

αk+1 = argmin f (αk) +5 f (αk)
T
(α− αk) +

L
2
||α− αk||22, (4)

where L ≥ 0 is a constant, which should satisfies the condition of L > L f .
Adding λ||α||0 into both side of (4), the solution of (3) can be obtained by iteratively

solving the subproblem

αk+1 = arg min pL,λ(α
k, α)

= f (αk) +∇ f (αk)T(α− αk) +
L
2
||α− αk||22 + λ||α||0. (5)

The optimization of (5) is the same as follows (by removing or adding some constant
items which are independent on α):

min
α

L
2

[
||α− (αk − 1

L
∇ f (αk))||22 +

2λ

L
||α||0

]
. (6)

If denote
TL(α

k+1) = arg min
α

pL,λ(α
k, α), (7)

then the closed form solution of TL(α
k+1) is given by the following lemma.

Lemma 1. [32,41] The solution TL(α
k+1) of (7) is give by

[TL(α
k+1)]i =

{
[sL(α

k)]i, i f [sL(α
k)]2i > 2λ

L ;
0, i f [sL(α

k)]2i ≤ 2λ
L .

(8)

where sL(α) = α− 1
L∇ f (α), and [.]i refers to the i-th element of a vector.

In (8), the parameter L needs to be tuned. The upper bound on Lipschitz constant L f
is unknown or may not be easily calculated, thus we use the line search method to search L
as suggested in [41] until the objective value descends.
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Homotopy Strategy: many works [13,26,39] have verified that the sparse coding
approaches benefit from a good starting point. Therefore, we use a recursive process
automatically tunes regularization factor λ. This process begins from a large initial value
λ0. At the end of each λ-tuning iterations indexed by k, an optimal solution αk is obtained
given λk. Then λ is updated as λk+1 = ρλk, where ρ ∈ [0, 1], and αk is used as the initial
solution for the next iteration k + 1. The process stops once λ is small enough (given
a positive lower-bound target, the stop condition is λk ≤ λtarget). An outline of HIHT
algorithm is described as Algorithm 1.

Algorithm 1 {α?, L?} ← HIHT(L0, λ0, α0)

(Input:) L0, λ0, α0, D, Lmin, Lmax; //L0 ∈ [Lmin, Lmax]
(Output:) α?, L?;
initialize ρ ∈ (0, 1), η > 0, γ > 1, ε > 0, k← 0;
repeat

i← 0;
αk,0 = αk;
Lk,0 ← Lk;
repeat
An L-tuning iteration indexed by i

αk,i+1 ← TLk,i (α
k,i);

while θλk (α
k,i)− θλk (α

k,i+1) < η
2 ||αk,i − αk,i+1||2 do

Lk,i ← min{γLk,i, Lmax};
αk,i+1 ← TLk,i (α

k,i);
end while
Lk,i+1 ← Lk,i;
i← i + 1;

until||αk,i − αk,i+1||22 ≤ ε

αk+1 ← αk,i;
Lk+1 ← Lk,i.
λk+1 ← ρλk;
k← k + 1;

until λk+1 ≤ λtarget

α? ← αk;
L? ← Lk.

3.2. Proposed Method

Figure 1 illustrates the schematic diagram of this proposed method. As it can be seen,
for the given training dataset X = {x1, x2, ..., xN} ∈ Rp∗N and the over-complete dictionary
D, the HIHT algorithm described in Section 3.1 is used to calculate the optimal sparse
features A = {α1, α2, ..., αN} ∈ RK∗N of training data in the first step. After that, these
optimal sparse features are used to train the SLNNs in second step.

As Figure 1 shows, the architecture of the neural network consists of an input layer, a
feature layer and an output layer. The number of hidden neurons is the same as that of
output neurons, which is set as the dimension of the sparse feature. Each hidden neuron is
only connected to its corresponding output neuron with weight 1. Our goal is to obtain a
optimal input weights Ŵ to make the outputs of hidden layer as equal to A as possible,
that is

||g(Ŵ TX)− A||F → 0, (9)

where g(.) refers to a non-linear activation function.
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Figure 1. The schematic diagram of this proposed method.

There are two strategies to optimize the input weights W :
(1) If the activation function is known, we chose tanh function as the activation function,

where g(x) = tanh(x). We firstly calculate arctanh(A), and denote the result as Z, that is

Z = arctanh(A), (10)

then we formulate the objective function of the SLNNs as

Minimize: 1
2‖Z−W TX‖2

F +
C1
2 ‖W‖2

F, (11)

where constant C1 refers to the regularization factor used to control the trade-off between
the smoothness of the mapping function and the closeness to Z.

By setting the derivative of (11) with respect to W to zero and solve this equality, then
the optimal solution of W is obtained as follows:

Ŵ = (
I

C1
+ XXT)−1XZT . (12)

In addition, the sparse feature of a testing sample xtest can be quickly estimated as

α̂test = tanh(((
I

C1
+ XXT)−1XZT)Txtest). (13)

(2) If the activation function is unknown, a kernel trick based on Mercer’s condition
can be used to calculate the approximated sparse feature of testing data xtest directly instead
of training the weights W ,

α̂test = g(W T ∗ xtest) = Ker(xtest, X)(
I

C1
+ Ωtrain)

−1 A, (14)

where Ωtrain == Ker(X, X) and Ker stands for the kernel function.
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In this proposed method, Gaussian function is used as the kernel function Ker:

Ker(x1, x2) = exp(−||x1 − x2||2
σ2 ), (15)

where σ denotes the standard deviation of the Gaussian function.

4. Results and Discussion
4.1. Data Sets Description

Ten benchmark datasets taken from UCI Machine Learning Repository [47] and two
image datasets: the Extended YaleB [48] and the AR dataset [49], are used to validate the
proposed method. The ten UCI datasets include 5 binary-classification cases and 5 multi-
classification cases. The details of these datasets are shown in Table 1. In this table, column
“Random Perm” shows whether the training and testing data are randomly assigned or not.
In the experiments, 2

3 of samples per class are randomly selected for training, and the rest
samples are responsible for testing if “Random Perm” is Yes.

Table 1. UCI Data sets Used in Our Experiments.

Datasets Training Testing Features Classes Random Perm

Australian Credit 459 231 14 2 Yes
Diabetes 511 257 8 2 Yes

Glass 140 74 9 6 Yes
Image segmentation 1540 770 19 7 Yes

LiverDisorders 229 116 6 2 Yes
Madelon 2000 600 500 2 No
Satimage 4435 2000 36 6 No
Vehicle 562 284 18 4 Yes
Wine 118 60 13 3 Yes

Wisconsin Breast Cancer 379 190 30 2 Yes

The extended YaleB dataset [48] contains 38 different people with 2414 frontal face
images, and each class has about 64 samples. This dataset is challenging from varying
expressions and illumination conditions, see Figure 2 for some examples. The random
face feature descriptor generated in [7] is used as raw feature, in which a cropped image
with 192× 168 pixels was projected onto a 504-dimensional vector by a random normal
distributed matrix. In the experiment, 50% of samples per class are randomly selected for
training and the rest are responsible for testing.

Figure 2. Extended YaleB.

The AR face dataset contains over 126 people with more than 4000 face images. There
are 26 images per person taken during two different sessions. The images have large
variations in terms of disguise, facial expressions, and illumination conditions. A few
samples from the AR dataset are shown in Figure 3 for illustration. A subset of 2600 images
pertaining to 50 males and 50 females objects are used for experiment. For each object,
20 samples are randomly chosen for training and the rest for testing. The images with
165× 120 pixels were projected onto a 540-dimensional vector by using a random projection
matrix.
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Figure 3. AR Face.

4.2. Implementation Details

The experiments are mainly divided into two parts: (1) The RMSE between the
approximated sparse features and the optimal features of testing data is calculated to verify
the approximation performance of this proposed method, and the results of several state-
of-the-art fast approximation sparse coding methods are also reported for comparison. (2)
Classification experiments are implemented to validate the recognition performance of the
approximated sparse features estimated by the proposed SLNNs. The compared methods
can be categorized as follows: (a) Different representation learning methods: ELM [50] with
random feature mapping, and ScELM [51] with optimal sparse features computed by HIHT;
(b) Different fast approximation sparse coding methods: PSD [8], LISTA [9], LAMP [12],
and LVAMP [12], detailed descriptions to these methods are provided in Section 2.

Implementations of ELM, ScELM, PSD, and this proposed method are based on
Matlab codes and others are based on Python. A random normal distributed matrix is used
as the dictionary in each sparse coding algorithm, and the number of atoms or hidden
nodes K is set to 100 if the dimension of dataset is less than 100, otherwise 1000. The
parameter C1 is searched for in the grid of {2−25, 2−20, ..., 225}, and the σ is searched for
in {100, 200, ..., 1000}. The number of hidden layers of LISTA, LAMP, and LVAMP are set
as 6, 5, and 4, respectively, if not stated otherwise. Other parameters are default as the
authors suggested. For the randomly training-testing assigned datasets, ten repeated trials
are carried out in the following experiments, and the average result and standard deviation
are recorded.

In object recognition experiments, the trained network of each method is used to
compute the approximated sparse features for training and testing samples, and the
approximated sparse features are used as the input of the classifier. The ridge regression
model is used as the classifier in our experiments, whose objective function is

Minimize: 1
2‖Y − βT Â‖2

F +
C2
2 ‖β‖2

F, (16)

where Y is the label matrix of training data X, and β is the weights of the classifier model.
For a testing sample xtest, the predicted label for it is calculated as

identity(xtest) = argmaxi(βT α̂test). (17)

The hyper-parameter of the classifier C2 is searched for in the grid of {2−25, 2−20, ..., 225},
and a value with best validation accuracy is selected. We compare our method with others
in terms of recognition accuracy and testing time, where the recognition accuracy is de-
fined as the ratio of the number of correctly classified testing samples to that of all testing
samples, and the testing time refers to the total spending time of testing samples’ feature
calculation and classification.

A standard PC is used in our experiments and its hardware configuration as follows:

1. CPU: Intel(R) Pentium(R) CPU G2030 @3.40GHz;
2. Memory: 32.00GB;
3. Graphics Processing Unit (GPU): None.
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4.3. Root Mean Square Error Results

For testing data Xtest, whose optimal sparse features computing by sparse coding
algorithm is denoted as Atest, and the approximated sparse features computing by the fast
approximation method is denoted as Âtest, the RMSE between Atest and Âtest is defined as

RMSE(Atest, Âtest) =

√
1

NtestK
||Atest − Âtest||2F, (18)

where Ntest denotes the amount of testing samples.
Some UCI datasets are used in this experiment, and we reported the results of our

method, LISTA, LAMP and LVAMP to compare their approximation performance, Table 2
shows the results. As it can be seen from this table, our approach can achieve a lower RMSE
result than other methods on the most datasets, which indicates that the approximated
sparse features estimated by our approach are more closer to the optimal ones than that
estimated by the compared methods. For the Glass dataset, our method has achieved a
significant improvement, and for LiverDisorders, though the result of our approach is not
the best one, it is very close to the best one.

Table 2. The root mean square error of compared methods on UCI datasets (bold one represents the
best result).

Datasets LISTA LAMP LVAMP
Ours

Tanh Kernel

Australian Credit 0.0418 0.0614 0.0497 0.0591 0.0391
Diabetes 0.0460 0.0356 0.0446 0.0494 0.0350

Glass 0.0527 0.0436 0.0550 0.0111 0.0144
Image segmentation 0.0324 0.0406 0.0462 0.0375 0.0317

LiverDisorders 0.0440 0.0403 0.0435 0.0476 0.0597
Vehicle 0.0267 0.0442 0.0496 0.0141 0.0122
Wine 0.0415 0.0394 0.0462 0.0149 0.0094

Wisconsin Breast Cancer 0.0295 0.0551 0.0427 0.0222 0.0179

4.4. Objection Recognition Results
4.4.1. The Evaluation of HIHT

The existing literature on sparse coding only compared different sparse coding al-
gorithms in terms of reconstruction error and convergence speed, but did not compare
their classification performance when applying these algorithms in object recognition. To
show why this paper uses the HIHT algorithm to compute the optimal sparse features, we
implemented some experiments to validate the superiority of HIHT compared with several
state-of-the-art sparse coding algorithms when used in object recognition. The compared
methods include IHT, homotopy GPSR (HGPSR) [26], PGH [34], and PICASSO [39].

(1) Effectiveness on Object Recognition: the binary-classification datasets listed in Table 1
are used in this experiment. Firstly, the sparse coding algorithms are used to compute
sparse features for the experimental datasets using the same dictionary, and the measure
of cross entropy is used to show how different the sparse features are between class 1
and class 2. A higher value means that the sparse features computed by corresponding
algorithm are more discriminative and more beneficial for object recognition. The measure
of cross entropy is estimated as follows: we accumulate a histogram h(αk|v) along feature
dimensions over all sparse features αk that belongs to the same class v (v ∈ {1, 2}), then
normalize the histogram as the probability p(v) of class v, the cross entropy between class 1
and class 2 is estimated as

cross entropy(p(1), p(2)) = −
K

∑
k=1

pk(1) log
1

pk(2)
, (19)
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where pk(v) is the p-th element of the probability p(v).
Table 3 shows the cross entropy results. It can be seen that the HIHT algorithm can

achieve the best result on the most datasets than the other four algorithms. It indicated that
the sparse features computed by HIHT can distinguish different classes more effectively,
which is more useful for classification, especially when a simple linear classifier is used.

Table 3. Cross entropy of sparse features between different classes.

Datasets HGPSR IHT PGH PICASSO HIHT

Austrain Credit 6.840 6.785 6.933 6.299 7.268
Diabetes 4.381 6.164 3.899 4.118 6.410

LiverDisorders 3.087 5.461 3.267 5.894 6.346
Madelon 8.040 9.335 8.076 9.280 9.680

Wisconsin Breast Cancer 4.652 6.256 4.643 5.632 5.878

Subsequently, we use these sparse coding algorithms to compute the optimal sparse
features of training data to train the proposed SLNNs, and compare the final recognition
results, which is shown in Table 4. From this table it can be seen that these sparse coding
algorithms can achieve similar classification performance on most datasets when used in
the proposed method, while HIHT outperforms the other three algorithms in some datasets
(i.e., Glass and Vehicle) significantly. From the view of standard deviation, the results show
that the optimal sparse features computed by HIHT are more robust to classification than
other algorithms.

Table 4. Recognition Results of the Proposed Method Using different sparse coding algorithms.

Datasets HGPSR IHT PICASSO HIHT

Australian Credit 85.59 ± 1.83 85.87 ± 1.87 85.67 ± 1.87 86.08 ± 1.73
Diabetes 76.06 ± 1.96 76.73 ± 1.68 74.96 ± 2.28 76.99 ± 1.66

Glass 60.97 ± 4.83 61.64 ± 3.38 64.59 ± 4.63 66.60 ± 3.20
Image segmentation 90.08 ± 1.02 90.81 ± 0.97 90.91 ± 0.89 91.90 ± 0.73

LiverDisorders 68.59 ± 3.62 72.34 ± 4.27 69.57 ± 3.96 73.52 ± 2.56
Madelon 59.67 60.88 58.33 60.67
Satimage 82.12 83.37 83.00 84.30
Vehicle 78.46 ± 2.47 78.68 ± 2.07 76.20 ± 1.81 81.00 ± 1.51
Wine 96.80 ± 1.92 98.53 ± 1.47 97.33 ± 1.81 98.56 ± 1.07

Wisconsin Breast Cancer 93.87 ± 1.68 95.31 ± 1.09 96.00 ± 2.89 95.92 ± 1.81

(2) Parameter Sensitivity: In HIHT algorithm, different values of the regularization
factor λtarget and dictionary D will product different sparse features, which will cause the
proposed method to estimate different approximated sparse features and influence final
recognition result. In this experiment, the sensitivities of λtarget and D in final recognition
performance are verified, and the two face image datasets are used for testing.

Firstly, the influence of λtarget is investigated. By fixing other parameters (i.e., dictio-
nary, parameters of the classifier), λtarget is searched for in the grid of {10−10, 10−8, ..., 102},
and the corresponding recognition accuracy is recorded. From the results in Figure 4, we
can conclude that the final recognition result is not very sensitive to the λtarget, so it is no
need to spend much time turning λtarget when uses HIHT to compute the optimal sparse
features in this proposed method.
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(a) (b)

Figure 4. The influence of the target value λtarget of HIHT on the recognition performance. (a) Ex-
tended YaleB. (b) AR Face.

Subsequently, we investigate the influence of D. An unsupervised learned dictionary
by the Lagrangian dual method [52] is used to compare with a random dictionary generated
by normal distribution. The number of iterations in dictionary learning is set as 5, and
10 times with random selection of training and testing data are repeated, the average
accuracy is recorded for comparison. As Table 5 shows, the final recognition accuracy
achieved by using learned dictionary are close to that by using random dictionary. However,
the computational time of optimal sparse features calculation with dictionary learning is
five times (equal to the number of iterations) that with the random dictionary. Thus, in the
following experiments we use random dictionary to compute optimal sparse features in
HIHT algorithm.

Table 5. Comparison of final recognition performance with or without dictionary learning in HIHT al-
gorithm.

Datasets Learned Dictionary Random Dictionary

YaleB 95.95 ± 0.65 96.34 ± 0.69
AR 96.63 ± 0.77 97.37 ± 0.39

4.4.2. Evaluation on UCI Datasets

The average recognition accuracies on UCI datasets are listed in Tables 6 and 7 presents
the testing time. From these two tables we can conclude that the proposed approach
outperforms other methods in terms of accuracy and testing time simultaneously. For
most datasets, the approximated sparse features estimated by our approach can obtain the
highest accuracy, and is approximately 100 times faster than ScELM (exact sparse coding
algorithm), especially in high-dimensional datasets. Compared with other approximation
sparse coding methods, our approach can achieve higher recognition accuracy with simpler
network training, and the testing time of the proposed method and PSD are much less than
LISTA, LAMP and LVAMP. It is worth noting that the performances of activation function
tanh and kernel function of this approach are similar, but kernel function outperforms tanh
when the dataset is a litter complex, (i.e., Satimage, Madelon), which will be confirmed in
next experiments.
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Table 6. The average accuracy of compared methods on UCI datasets (red is the best result and blue is the second one).

Datasets ELM ScELM PSD LISTA LAMP LVAMP
Ours

Tanh Kernel

Australian Credit 86.13 83.52 86.22 81.97 80.26 - 86.08 86.15
Diabetes 65.32 69.26 65.01 73.98 68.19 74.59 76.99 75.14

Glass 57.30 62.38 63.46 67.50 60.50 61.75 66.60 67.23
Image segmentation 77.32 88.77 89.30 88.13 87.39 90.63 91.90 91.86

LiverDisorders 67.45 65.52 69.17 70.34 73.39 66.10 73.52 74.25
Madelon 58.17 59.17 59.35 51.67 50.92 56.93 60.67 64.83
Satimage 71.70 80.25 78.55 78.10 77.60 74.25 84.30 89.15
Vehicle 73.99 75.30 78.85 74.22 78.61 72.83 81.00 80.56
Wine 95.13 94.00 95.00 93.25 96.83 94.29 98.56 98.00

Wisconsin Breast Cancer 87.54 94.40 94.80 93.23 91.56 93.75 95.92 96.48

Table 7. The testing time of compared methods on UCI datasets.

Datasets ELM ScELM PSD LISTA LAMP LVAMP
Ours

Tanh Kernel

Australian Credit 0.0079 0.6696 2.006× 10−4 0.0728 0.0811 0.0728 3.181× 10−4 0.0033
Diabetes 0.0136 1.7844 6.704× 10−5 0.0756 0.1332 0.0927 3.536× 10−4 0.0057

Glass 0.0013 0.9932 5.282× 10−5 0.0527 0.0714 0.0505 1.276× 10−4 6.061× 10−4

Image segmentation 0.0029 22.226 2.258× 10−4 0.1833 0.4511 0.4998 9.128× 10−4 0.0365
LiverDisorders 0.0011 0.7055 6.198× 10−5 0.0797 0.2499 0.5070 2.052× 10−4 9.227× 10−4

Madelon 0.0494 148.59 0.0062 1.2150 1.2560 0.9656 0.0293 0.073
Satimage 0.0134 39.218 7.130× 10−4 0.4272 0.3601 0.3287 0.0028 0.3018
Vehicle 0.0015 1.2062 1.013× 10−4 0.1249 0.3214 0.0991 4.392× 10−4 0.0047
Wine 7.232× 10−7 0.2457 5.687× 10−5 0.1042 0.0783 0.0556 4.392× 10−4 4.291× 10−4

Wisconsin Breast Cancer 0.0021 2.7363 2.086e× 10−4 0.0625 0.0929 0.0731 3.099× 10−4 0.0134

Figure 5 (The Tanh and Kernel mean the tanh version and kernel version of our
method, respectively.) shows the confusion matrices obtained by this proposed method,
PSD, LISTA, LAMP and LVAMP on Satimage dataset, in which the kernel version of this
proposed method achieved a much better recognition result than others. It can be seen from
this figure that all methods almost fail to correctly classify the test samples of class 4 except
the kernel version of our method. It indicates that the features computed by this proposed
method are more discriminative than that of other approximation methods. Figure 6 shows
two examples of the receiver operating characteristic (ROC) curves of the approximation
methods, where the red lines report the performance of our approach. It is clear that the
Areas Under ROC curves (AUC) of our approach is much higher than others.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Confusion matrices on Satimage dataset. (a) PSD. (b) LISTA. (c) LAMP. (d) LVAMP. (e) Tanh. (f) Kernel.

(a) (b)

Figure 6. The receiver operating characteristic (ROC) curves of the approximate methods. (a) Madelon. (b) Breast.

4.4.3. Evaluation on Extended YaleB Dataset

Table 8 lists the recognition accuracies and testing time on Extended YaleB dataset,
in which the famous sparse representation-based face recognition algorithm SRC [53] and
collaborative representation-based classification (CRC) [54] are also used for comparison.
Furthermore, a result obtained by raw features is set as the error bar (denoted as Baseline),
and we set different number of hidden layers (denoted as T) for LISTA to show its influence
on object recognition performance. As Table 8 shows, all methods beat the Baseline,
indicating the benefit of feature learning. The kernel version of this proposed method
obtains the best result with the value of 98.33%, and is 1.89% higher than the second one.
In testing process, the proposed method is approximately 21 times faster than the deep
learning-based approximation methods, and 182 times faster than SRC, also much faster
than CRC. For LISTA, if the number of layers is small (T = 2), the recognition performance
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will degrade much, and as the number of layers increases, the recognition results tend to
be stable. Thus, the recognition performance is somewhat sensitive to the number of layers
of deep network.

Figure 7 shows the patterns of confusion across classes obtained by this proposed
method, in which coordinates in X-axis and Y-axis represent 38 face classes. Color at
coordinates (x, y) represents the number of test samples whose ground truth are x while
machine’s output labels are y. From this figure it can be seen that our approach shows
fewer points in the non-diagonal region (i.e., fewer false positives and false negatives),
indicting that the proposed method can classify most testing samples correctly.

Table 8. Average Recognition Accuracy with Random-Face Features on the Extended YaleB Database.

Method Accuracy (%) Time (s)

Baseline 91.54 ± 1.14 0.0009
SRC 96.27 ± 0.64 16.1676
CRC 96.82 ± 0.58 1.5006
ELM 96.44 ± 0.60 0.0256

ScELM 92.43 ± 0.93 168.3158
PSD 93.01 ± 0.69 0.057

LISTA (T = 2) 92.19 ± 1.21 2.0129
LISTA (T = 6) 95.16 ± 1.18 2.2535
LISTA (T = 10) 95.34 ± 0.82 4.6385

LAMP 94.07 ± 0.72 2.0119
LVAMP 94.62 ± 1.12 1.900

Tanh 96.34 ± 0.69 0.0256
kernel 98.33 ± 0.40 0.0888

(a) (b)

Figure 7. Patterns of confusion on Extended YaleB. (a) Tanh. (b) Kernel.

4.4.4. Evaluation on AR Dataset

For the AR dataset, a protocol (e.g., only five training samples per class or all training
samples are used) is established in our experiments, and the corresponding results are list
in Table 9. As we can see, the kernel version of this proposed method achieves the best
result in both cases. In addition, the tanh version of this method gets comparable result
with LAMP and ELM, but still better than SRC when all training samples were used. In
terms of testing time, the proposed method is approximately 12 times faster than the deep
learning-based approximation methods, 300 times faster than SRC, and 24 times faster than
CRC. It is worth noting that the computational speed of kernel version is a little slower
than that of tanh version, since it needs to compute the kernel matrix between testing
samples and training samples, while it is still much faster than the deep learning-based
approximation methods.
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We use a confusion matrix to give the detailed evaluation at the class-level. Figure 8
shows the results, in which coordinates in x- and y-axis denote 100 face classes. Red point
with coordinates (x, y) represents the misclassified test samples. It can be seen from this
figure that this proposed method shows rare points in the non-diagonal region than other
methods, indicating that this proposed method performs better than other methods in
object recognition.

Table 9. Average Recognition Accuracy with Random-Face Features on the AR Face Database. The
four column is the result when only 5 training samples per class are used.

Method Accuracy (%) Time (s) Accuracy (%)

Baseline 93.00 ± 0.84 0.0011 78.67
SRC 95.42 ± 0.59 27.1421 84.00
CRC 96.92 ± 0.76 1.9682 84.83
ELM 97.05 ± 0.78 0.0178 83.67

ScELM 94.50 ± 1.09 62.1872 73.50
PSD 96.80 ± 0.66 0.0305 77.17

LISTA (T=3) 95.57 ± 0.85 0.8888 -
LISTA (T=6) 96.47 ± 0.61 1.2335 80.33
LISTA (T=8) 96.80 ± 0.73 3.1065 -

LAMP 97.37 ± 0.59 1.0505 81.67
LVAMP 95.30 ± 0.97 1.0314 84.50

Tanh 97.37 ± 0.39 0.0189 85.33
Kernel 98.40 ± 0.46 0.0815 86.67

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Patterns of confusion on AR dataset. (a) SRC. (b) CRC. (c) ScELM. (d) PSD. (e) LISTA. (f) LAMP. (g) LVAMP.
(h) Kernel.

To give an intuitive illustration, Figure 9 shows all misclassified images obtained by
LAMP method (which achieves the second best result) and this proposed method (kernel
version). It can be seen that images with exaggerated facial expressions is the main reason
causing misclassification for both methods. Another interesting point can be seen that
most images with facial “disguises” are misclassified by LAMP method while they are
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correctly recognized by this proposed method. It indicates that the approximate sparse
features estimated by this proposed method is robustness to facial occlusion or corruption
than LAMP.

(a) (b)

Figure 9. All misclassified images produced by (a) LAMP and (b) Kernel.

5. Conclusions

This paper proposes a simple fast approximation sparse coding method for small-scale
datasets object recognition task, in which the optimal sparse features of training data com-
puted by HIHT algorithm are used as ground truth to train a succinct and special SLNNs,
thus make the representation learning in object recognition task more practical and efficient.
Extensive experimental results on publicly available datasets show that this approach out-
performs the compared approximation methods in terms of approximation performance,
recognition accuracy and computational time. The high recognition and computational
efficiency makes the proposed method very promising for real-time applications. Moreover,
experimental results have demonstrated that this proposed method is robust to parameters
on recognition performance, that make it more practical. Future work includes supervised
sparse coding algorithms and autonomously finding an over-complete dictionary.
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Abstract: Single-Sample Face Recognition (SSFR) is a computer vision challenge. In this scenario,
there is only one example from each individual on which to train the system, making it difficult
to identify persons in unconstrained environments, mainly when dealing with changes in facial
expression, posture, lighting, and occlusion. This paper discusses the relevance of an original method
for SSFR, called Multi-Block Color-Binarized Statistical Image Features (MB-C-BSIF), which exploits
several kinds of features, namely, local, regional, global, and textured-color characteristics. First, the
MB-C-BSIF method decomposes a facial image into three channels (e.g., red, green, and blue), then
it divides each channel into equal non-overlapping blocks to select the local facial characteristics
that are consequently employed in the classification phase. Finally, the identity is determined by
calculating the similarities among the characteristic vectors adopting a distance measurement of the
K-nearest neighbors (K-NN) classifier. Extensive experiments on several subsets of the unconstrained
Alex and Robert (AR) and Labeled Faces in the Wild (LFW) databases show that the MB-C-BSIF
achieves superior and competitive results in unconstrained situations when compared to current
state-of-the-art methods, especially when dealing with changes in facial expression, lighting, and
occlusion. The average classification accuracies are 96.17% and 99% for the AR database with
two specific protocols (i.e., Protocols I and II, respectively), and 38.01% for the challenging LFW
database. These performances are clearly superior to those obtained by state-of-the-art methods.
Furthermore, the proposed method uses algorithms based only on simple and elementary image
processing operations that do not imply higher computational costs as in holistic, sparse or deep
learning methods, making it ideal for real-time identification.

Keywords: biometrics; face recognition; single-sample face recognition; binarized statistical image
features; K-nearest neighbors

1. Introduction

Generally speaking, biometrics aims to identify or verify an individual’s identity
according to some physical or behavioral characteristics [1]. Biometric practices replace
conventional knowledge-based solutions, such as passwords or PINs, and possession-based
strategies, such as ID cards or badges [2]. Several biometric methods have been devel-
oped to varying degrees and are being implemented and used in numerous commercial
applications [3].

Fingerprints are the biometric features most commonly used to identify criminals [4].
The first automated fingerprint authentication device was commercialized in the early 1960s.
Multiple studies have shown that the iris of the eye is the most accurate modality since
its texture remains stable throughout a person’s life [5]. However, those techniques have
the significant drawback of being invasive, which significantly restricts their applications.
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Besides, iris recognition remains problematic for users who do not wish to put their eyes in
front of a sensor. On the contrary, biometric recognition based on facial analysis does not
pose any such user constraints. In contrast to other biometric modalities, face recognition is
a modality that can be employed without any user–sensor co-operation and can be applied
discreetly in surveillance applications. Face recognition has many advantages: the sensor
device (i.e., the camera) is simple to mount; it is not costly; it does not require subject
co-operation; there are no hygiene issues; and, being passive, people much prefer this
modality [6].

Two-dimensional face recognition with Single-Sample Face Recognition (SSFR) (i.e.,
using a Single- Sample Per Person (SSPP) in the training set) has already matured as a tech-
nology. Although the latest studies on the Face Recognition Grand Challenge (FRGC) [7]
project have shown that computer vision systems [8] offer better performance than human
visual systems in controlled conditions [9], research into face recognition, however, needs
to be geared towards more realistic uncontrolled conditions. In an uncontrolled scenario,
human visual systems are more robust when dealing with the numerous possibilities that
can impact the recognition process [10], such as variations in lighting, facial orientation,
facial expression, and facial appearance due to the presence of sunglasses, a scarf, a beard,
or makeup. Solving these challenges will make 2D face recognition techniques a much
more important technology for identification or identity verification.

Several methods and algorithms have been suggested in the face recognition literature.
They can be subdivided into four fundamental approaches depending on the method
used for feature extraction and classification: holistic, local, hybrid, and deep learning
approaches [11]. The deep learning class [12], which applies consecutive layers of infor-
mation processing arranged hierarchically for representation, learning, and classification,
has dramatically increased state-of-the-art performance, especially with unconstrained
large-scale databases, and encouraged real-world applications [13,14].

Most current methods in the literature use several facial images (samples) per person
in the training set. Nevertheless, in real-world systems (e.g., in fugitive tracking, identity
cards, immigration management, or passports), only SSFR systems are used (due to the
limited storage and privacy policy), which employ a single sample per person in the
training stage (generally neutral images acquired in controlled conditions), i.e., just one
example of the person to be recognized is recorded in the database and accessible for the
recognition task [15]. Since there are insufficient data (i.e., we do not have several samples
per person) to perform supervised learning, many well-known algorithms may not work
particularly well. For instance, Deep Neural Networks (DNNs) [13] can be used in powerful
face recognition techniques. Nonetheless, they necessitate a considerable volume of training
data to work well. Vapnik and Chervonenkis [16] showed that vast training data must
ensure learning systems’ generalization in their statistical learning theorem. In addition, the
use of three-dimensional (3D) imaging instead of two-dimensional representation (2D) has
made it possible to cover several issues related to image acquisition conditions, in particular
pose, lighting and make-up variations. While 3D models offer a better representation of
the face shape for a clear distinction between persons [17,18], they are often not suitable for
real-time applications because they require expensive and sophisticated calculations and
specific sensors. We infer that SSFR remains an unsolved issue in academic and business
circles, particularly with respect to the major efforts and growth in face recognition.

In this paper, we tackle the SSFR issue in unconstrained conditions by proposing
an efficient method based on a variant of the local texture operator Binarized Statistical
Image Features (BSIF) [19] called Multi-Block Color-binarized Statistical Image Features
(MB-C-BSIF). It employs local color texture information to obtain honest and precise
representation. The BSIF descriptor has been widely used in texture analysis [20,21] and
has proven its utility in many computer vision tasks. In the first step, the proposed method
uses preprocessing to enhance the quality of facial photographs and remove noise [22–24]. The
color image is then decomposed into three channels (e.g., red, green, and blue for the RGB
color-space). Next, to find the optimum configuration, several multi-block decompositions
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are checked and examined under various color-spaces (i.e., we tested RGB, Hue Saturation
Value (HSV), in addition to the YCbCr color-spaces, where Y is the luma component; Cb and
Cr are the blue-difference and red-difference chroma components, respectively). Finally,
classification is undertaken using the distance measurement of the K-nearest neighbors
(K-NN) classifier. Compared to several related works, the advantage of our method
lies in exploiting several kinds of information: local, regional, global, and color-texture.
Besides, the algorithm of our method is simple and does not require greater complexity,
which makes it suitable for real-time applications (e.g., surveillance systems or real-time
identification). Our system is based on only basic and simple image processing operations
(e.g., median filtering, a simple convolution, or histogram calculation), involving a much
lower computational cost than existing systems. For example, (1) Subspace or sparse
representation-based methods involve many calculations and higher time in dimensionality
reduction, or (2) Deep learning methods involve very high complexity cost and require
many computations. For such systems, GPUs’ need clearly shows that many calculations
must be done in parallel; GPUs are designed to run concurrently with thousands of
processor cores, making for extensive parallelism where each core is concentrated on
making accurate calculations. With a standard CPU, a considerable amount of time for
training and testing will be needed for deep learning systems.

The rest of the paper is structured as follows. We discuss relevant research about SSFR
in Section 2. Section 3 describes our suggested method. In Section 4, the experimental
study, key findings, and comparisons are performed and presented to show our method’s
superiority. Section 5 of the paper presents key findings and discusses research perspectives.

2. Related Work

Current methods designed to resolve the SSFR issue can be categorized into four
fundamental classes [25], namely: virtual sample generating, generic learning, image
partitioning, and deep learning methods.

2.1. Virtual Sample Generating Methods

The methods in this category produce some additional virtual training samples for
each individual to augment the gallery (i.e., data augmentation), so that discriminative
sub-space learning can be employed to extract features. For example, Vetter (1998) [26]
proposed a robust SSFR algorithm by generating 3D facial models through the recovery of
high-fidelity reflectance and geometry. Zhang et al. (2005) [27] and Gao et al. (2008) [28]
developed two techniques to tackle the issue of SSFR based on the singular value de-
composition (SVD). Hu et al. (2015) [29] suggested a different SSFR system based on the
lower-upper (LU) algorithm. In their approach, each single subject was decomposed and
transposed employing the LU procedure and each raw image was rearranged according to
its energy. Dong et al. (2018) [30] proposed an effective method for the completion of SSFR
tasks called K-Nearest Neighbors virtual image set-based Multi-manifold Discriminant
Learning (KNNMMDL). They also suggested an algorithm named K-Nearest Neighbor-
based Virtual Sample Generating (KNNVSG) to augment the information of intra-class
variation in the training samples. They also proposed the Image Set-based Multi-manifold
Discriminant Learning algorithm (ISMMDL) to exploit intra-class variation information.
While these methods can somewhat alleviate the SSFR problem, their main disadvantage
lies in the strong correlation between the virtual images, which cannot be regarded as
independent examples for the selection of features.

2.2. Generic Learning Methods

The methods in this category first extract discriminant characteristics from a supple-
mentary generic training set that includes several examples per individual and then use
those characteristics for SSFR tasks. Deng et al. (2012) [31] developed the Extended Sparse
Representation Classifier (ESRC) technique in which the intra-class variant dictionary is
created from generic persons not incorporated in the gallery set to increase the efficiency of
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the identification process. In a method called Sparse Variation Dictionary Learning (SVDL),
Yang et al. (2013) [32] trained a sparse variation dictionary by considering the relation
between the training set and the outside generic set, disregarding the distinctive features
of various organs of the human face. Zhu et al. (2014) [33] suggested a system for SSFR
based on Local Generic Representation (LGR), which leverages the benefits of both image
partitioning and generic learning and takes into account the fact that the intra-class face
variation can be spread among various subjects.

2.3. Image Partitioning Methods

The methods in this category divide each person’s images into local blocks, extract
the discriminant characteristics, and, finally, perform classifications based on the selected
discriminant characteristics. Zhu et al. (2012) [34] developed a Patch-based CRC (PCRC)
algorithm that applies the original method proposed by Zhang et al. (2011) [35], named
Collaborative Representation-based Classification (CRC), to each block. Lu et al. (2012) [36]
suggested a technique called Discriminant Multi-manifold Analysis (DMMA) that divides
any registered image into multiple non-overlapping blocks and then learns several feature
spaces to optimize the various margins of different individuals. Zhang et al. (2018) [37]
developed local histogram-based face image operators. They decomposed each image into
different non-overlapping blocks. Next, they tried to derive a matrix to project the blocks
into an optimal subspace to maximize the different margins of different individuals. Each
column was then redesigned to an image filter to treat facial images and the filter responses
were binarized using a fixed threshold. Gu et al. (2018) [38] proposed a method called
Local Robust Sparse Representation (LRSR). The main idea of this technique is to merge a
local sparse representation model with a block-based generic variation dictionary learning
model to determine the possible facial intra-class variations of the test images. Zhang et al.
(2020) [39] introduced a novel Nearest Neighbor Classifier (NNC) distance measurement
to resolve SSFR problems. The suggested technique, entitled Dissimilarity-based Nearest
Neighbor Classifier (DNNC), divides all images into equal non-overlapping blocks and
produces an organized image block-set. The dissimilarities among the given query image
block-set and the training image block-sets are calculated and considered by the NNC
distance metric.

2.4. Deep Learning Methods

The methods in this category employ consecutive hidden layers of information-
processing arranged hierarchically for representation, learning, and classification. They can
automatically determine complex non-linear data structures [40]. Zeng et al. (2017) [41]
proposed a method that uses Deep Convolutional Neural Networks (DCNNs). Firstly, they
propose using an expanding sample technique to augment the training sample set, and
then a trained DCNN model is implemented and fine-tuned by those expanding samples
to be used in the classification process. Ding et al. (2017) [42] developed a deep learning
technique centered on a Kernel Principal Component Analysis Network (KPCANet) and a
novel weighted voting technique. First, the aligned facial image is segmented into multiple
non-overlapping blocks to create the training set. Then, a KPCANet is employed to get
filters and banks of features. Lastly, recognition of the unlabeled probe is achieved by
applying the weighted voting form. Zhang and Peng (2018) [43] introduced a different
method to generate intra-class variances using a deep auto-encoder. They then used these
intra-class variations to expand the new examples. First, a generalized deep auto-encoder is
used to train facial images in the gallery. Second, a Class-specific Deep Auto-encoder (CDA)
is fine-tuned with a single example. Finally, the corresponding CDA is employed to expand
the new samples. Du and Da (2020) [44] proposed a method entitled Block Dictionary
Learning (BDL) that fuses Sparse Representation (SR) with CNNs. SR is implemented to
augment CNN efficiency by improving the inter-class feature variations and creating a
global-to-local dictionary learning process to increase the method’s robustness.

40



Sensors 2021, 21, 728

It is clear that the deep learning approach for face recognition has gained particular
attention in recent years, but it suffers considerably with SSFR systems as they still require
a significant amount of information in the training set.

Motivated by the successes of the third approach, “image partitioning”, and the relia-
bility of the local texture descriptor BSIF, in this paper, we propose an image partitioning
method to address the problems of SSFR. The proposed method, called MB-C-BSIF, decom-
poses each image into several color channels, divides each color component into various
equal non-overlapping blocks, and applies the BSIF descriptor to each block-component
to extract the discriminative features. In the following section, the framework of the
MB-C-BSIF is explained in detail.

3. Proposed Method

This section details the MB-C-BSIF method (see Figure 1) proposed in this article
to solve the SSFR problem. MB-C-BSIF is an approach based on image partitioning and
consists of three key steps: image pre-processing, feature extraction based on MB-C-BSIF,
and classification. In the following subsections, we present these three phases in detail.

Figure 1. Schematic of the proposed Single-Sample Face Recognition (SSFR) system based on the Multi-Block Color-
Binarized Statistical Image Features (MB-C-BSIF) descriptor.

3.1. Preprocessing

The suggested feature extraction and classification rules compose the essential steps in
our proposed SSFR. However, before driving these two steps, pre-processing is necessary to
improve the visual quality of the captured image. The facial image is enhanced by applying
histogram normalization and then filtered with a non-linear filter. The median filter [45]
was adopted to minimize noise while preserving the facial appearance and enhancing the
operational outcomes [46].

3.2. MB-C-BSIF-Based Feature Extraction

Our advanced feature extraction technique is based on the multi-block color repre-
sentation of the BSIF descriptor, entitled Multi-Block Color BSIF (MB-C-BSIF). The BSIF
operator proposed by Kannala and Rahtu [16] is an efficient and robust descriptor for
texture analysis [47,48]. BSIF focuses on creating local image descriptors that powerfully
encode texture information and are appropriate for describing image regions in the form
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of histograms. The method calculates a binary code for all pixels by linearly projecting
local image blocks onto a subspace whose basis vectors are learned from natural pictures
through Independent Component Analysis (ICA) [45] and by binarizing the coordinates
through thresholding. The number of basis vectors defines the length of the binary code
string. Image regions can be conveniently represented with histograms of the pixels’ binary
codes. Other descriptors that generate binary codes, such as the Local Binary Pattern
(LBP) [49] and the Local Phase Quantization (LPQ) [50], have inspired the BSIF process.
However, the BSIF is based on natural image statistics rather than heuristic or handcrafted
code constructions, enhancing its modeling capabilities.

Technically speaking, the si filter response is calculated, for a given picture patch X of
size l × l pixels and a linear filter Wi of the same size, by:

si = ∑
u,v

Wi(u, v)X(u, v) (1)

where the index i in Wi indicates the ith filter.
The binarized bi feature is calculated as follows:

bi =

{
1 if si > 0
0 otherwise

(2)

The BSIF descriptor has two key parameters: the filter size l × l and the bit string
length n. Using ICA, Wi filters are trained by optimizing si’s statistical independence. The
training of Wi filters is based on different choices of parameter values. In particular, each
filter set was trained using 50,000 image patches. Figure 2 displays some examples of the
filters obtained with l × l = 7× 7 and n = 8. Figure 3 provides some examples of facial
images and their respective BSIF representations (with l × l = 7× 7 and n = 8).

Figure 2. Examples of 7 × 7 BSIF filter banks learned from natural pictures.

Figure 3. (a) Examples of facial images, and (b) their parallel BSIF representations.

Like LBP and LPQ methodologies, the BSIF codes’ co-occurrences are collected in a
histogram H1, which is employed as a feature vector.
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However, the simple BSIF operator based on a single block does not possess informa-
tion that dominates the texture characteristics, which is forceful for the image’s occlusion
and rotation. To address those limitations, an extension of the basic BSIF, the Multi-Block
BSIF (MB-BSIF), is used. The concept is based on partitioning the original image into non-
overlapping blocks. An undefined facial image may be split equally along the horizontal
and vertical directions. As an illustration, we can derive 1, 4, or 16 blocks by segmenting
the image into grids of 1 × 1, 2 × 2, or 4 × 4, as shown in Figure 4. Each block possesses
details about its composition, such as the nose, eyes, or eyebrows. Overall, these blocks
provide information about position relationships, such as nose to mouth and eye to eye.
The blocks and the data between them are thus essential for SSFR tasks.

Figure 4. Examples of multi-block (MB) image decomposition: (a) 1 × 1, (b) 2 × 2, and (c) 4 × 4.

Our idea was to segment the image into equal non-overlapping blocks and calculate
the BSIF operator’s histograms related to the different blocks. The histogram H2 represents
the fusion of the regular histograms calculated for the different blocks, as shown in Figure 5.

Figure 5. Structure of the proposed feature extraction approach: MB-C-BSIF.

In the face recognition literature, some works have concentrated solely on analyzing
the luminance details of facial images (i.e., grayscale). This paper suggests a different
and exciting technique that exploits color texture information and shows that analysis of
chrominance can be beneficial to SSFR systems. To prove this idea, we can separate the RGB
facial image into three channels (i.e., red, green, and blue) and then compute the MB-BSIF
separately for each channel. The final feature vector is the concatenation of their histograms
in a global histogram H3. This approach is called Multi-Block Color BSIF (MB-C-BSIF).
Figure 5 provides a schematic illustration of the proposed MB-C-BSIF framework.

We note that the RGB is the most commonly employed color-space for detecting,
modeling, and displaying color images. Nevertheless, its use in image interpretation is
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restricted due to the broad connection between the three color channels (i.e., red, green,
and blue) and the inadequate separation of details in terms of luminance and chrominance.
To identify captured objects, the various color channels can be highly discriminative and
offer excellent contrast for several visual indicators from natural skin tones. In addition
to the RGB, we studied and tested two additional color-spaces—HSV and YCbCr—to
exploit color texture details. These color-spaces are based on separating components
of the chrominance and luminance. For the HSV color-space, the dimensions of hue
and saturation determine the image’s chrominance while the dimension of brightness (v)
matches the luminance. The YCbCr color-space divides the components of the RGB into
luminance (Y), chrominance blue (Cb), and chrominance red (Cr). We should note that the
representation of chrominance components in the HSV and YCbCr domains is dissimilar,
and consequently, they can offer additional color texture descriptions for SSFR systems.

3.3. K-Nearest Neighbors (K-NN) Classifier

During the classification process, each tested facial image is compared with those
saved in the dataset. To assign the corresponding label (i.e., identity) to the tested image,
we used the K-NN classifier associated with a distance metric. In scenarios of general
usage, K-NNs show excellent flexibility and usability in substantial applications.

Technically speaking, for a presented training set {(xi, yi) i = 1, 2, . . . , s}, where
xi ∈ RD denotes the ith person’s feature vector, yi denotes this person’s label, D is
the dimension of the characteristic vector, and s represents the number of persons. For
a test person x′ ∈ RD that is expected to be classified, the K-NN is used to determine a
training person x∗ resembling to x′ based on the distance rate and then attribute the label
of x∗ to x′.

K-NN can be implemented with various distance measurements. We evaluated and
compared three widely used distance metrics in this work: Hamming, Euclidean, and city
block (also called Manhattan distance).

The Hamming distance between x′ and xi is calculated as follows:

d
(
x′, xi

)
=

D

∑
j=1

(
x′j − xij

)2
(3)

The Euclidean distance between x′ and xi is formulated as follows:

d
(
x′, xi

)
=

√
∑D

j=1

(
x′j − xij

)2
(4)

The city block distance between x′ and xi is measured as follows:

d
(
x′, xi

)
=

D

∑
j=1

(
x′j − xij

)
(5)

where x′ and xi are two vectors of dimension D, while xij is the jth feature of xi, and x′j is
the jth feature of x′.

The corresponding label of x′ can be determined by:

y′ = yi∗ (6)

where
i∗ = argi=1,...,s

(
min

(
d
(
x′, xi

)))
(7)

The distance metric in SSFR corresponds to calculating the similarities between the
test example and the training examples.

The Algorithm 1 sums up our proposed method of SSFR recognition.
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Algorithm 1 SSFR based on MB-C-BSIF and K-NN

Input: Facial image X
1. Apply histogram normalization on X
2. Apply median filtering on X
3. Divide X into three components (red, green, blue): Cn; n = 1, 2, 3
4. for n = 1 to 3
5. Divide Cn into K equivalent blocks: Cn

k ; k = 1, . . . ., K
6. for k = 1 to K
7. Compute BSIF on the block-component Cn

k : H1(n)
(k)

8. end for
9. Concatenate the computed MB-BSIF features of the component Cn:

10. H2(n) = H1(n)
(1) + H1(n)

(2) + · · ·+ H1(n)
(K)

11. end for
12. Concatenate the computed MB-C-BSIF features: H3 = H2(1) + H2(2) + H2(3)

13. Apply K-NN associated with a metric distance
Output: Identification decision

4. Experimental Analysis

The proposed SSFR was evaluated using the unconstrained Alex and Robert (AR) [51]
and Labeled Faces in the Wild (LFW) [52] databases. In this section, we present the
specifications of each utilized database and their experimental setups. Furthermore, we
analyze the findings obtained from our proposed SSFR method and compare the accuracy
of recognition with other current state-of-the-art approaches.

4.1. Experiments on the AR Database
4.1.1. Database Description

The Alex and Robert (AR) face database [51] includes more than 4000 colored facial
photographs of 126 individuals (56 females and 70 males); each individual has 26 different
images with a frontal face taken with several facial expressions, lighting conditions, and
occlusions. These photographs were acquired at an interval of two-weeks and their analysis
was in two sessions (shots 1 and 2). Each session comprised 13 facial photographs per
subject. A subset of facial photographs of 100 distinct individuals (50 males and 50 females)
was selected in the subsequent experiments. Figure 6 displays the 26 facial images of the
first individual from the AR database, along with detailed descriptions of them.

Figure 6. The 26 facial images of the first individual from the AR database and their detailed descriptions.
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4.1.2. Setups

To determine the efficiency of the proposed MB-C-BSIF in dealing with changes in
facial expression, subset A (normal-1) was used as the training set and subsets B (smiling-1),
C (angry-1), D (screaming-1), N (normal-2), O (smiling-2), P (angry-2), and Q (screaming-
2) were employed for the test set. The facial images from the eight subsets displayed
different facial expressions and were used in two different sessions. For the training set, we
employed 100 images of the normal-1 type (100 images for 100 persons, i.e., one image per
person). Moreover, we employed 700 images in the test set (smiling-1, angry-1, screaming-1,
normal-2, smiling-2, angry-2, and screaming-2). These 700 images were divided into seven
subsets for testing, with each subset containing 100 images.

As shown in Figure 6, two forms of occlusion are found in 12 subsets. The first is
occlusion by sunglasses, as seen in subsets H, I, J, U, V, and W, while the second is occlusion
by a scarf in subsets K, L, M, X, Y, and Z. In these 12 subsets, each individual’s photographs
have various illumination conditions and were acquired in two distinct stages. There are
100 different items in each subset and the total number of facial photographs used in the test
set was 1200. To examine the performance of the suggested MB-C-BSIF under conditions
of object occlusion, we considered subset A as the training set and the 12 occlusion subjects
as the test set, which was similar to the initial setup.

4.1.3. Experiment #1 (Effects of BSIF Parameters)

As stated in Section 3.2, the BSIF operator is based on two parameters: filter kernel
size l × l and bit string length n. In this test, we assessed the proposed method by testing
various BSIF parameters to obtain the best configuration, i.e., the one that yielded the best
recognition accuracy. We transformed the image into a grayscale level, we did not segment
the image into non-overlapping blocks (i.e., 1 × 1 block), and we used the city block
distance associated with K-NN. Tables 1–3 show comprehensive details and comparisons
of results obtained using some (key) BSIF configurations for facial expression variation
subsets, occlusion subsets for sunglasses, and occlusion subsets for scarfs, respectively. The
best results are in bold.

We note that using the parameters l × l = 17× 17 and n = 12 for the BSIF operator
achieves the best performance in identification compared to other configurations considered
in this experiment. Furthermore, an increase in the identification rate appears when we
augment the values of l or n. The implemented configuration can achieve better accuracy
for changes in facial expression with all seven subsets. However, for subset Q, which is
characterized by considerable variation in facial expression, the accuracy of recognition
was very low (71%). Lastly, the performance of this implemented configuration under
conditions of occlusion by an object is unsatisfactory, especially with occlusion by a scarf,
and needs further improvement.

Table 1. Comparison of the results obtained using six BSIF configurations with changes in facial expression.

l×l (Pixels) n (Bits)
Accuracy (%)

Average Accuracy (%)
B C D N O P Q

3 × 3 5 70 72 38 36 20 24 14 39.14

5 × 5 9 94 97 59 75 60 66 30 68.71

9 × 9 12 100 100 91 95 90 92 53 88.71

11 × 11 8 97 99 74 85 70 75 43 77.57

15 × 15 12 100 100 96 97 96 96 73 94.00

17 × 17 12 100 100 98 97 96 97 71 94.14
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Table 2. Comparison of the results obtained using six BSIF configurations with occlusion by sunglasses.

l×l (Pixels) n (Bits)
Accuracy (%)

Average Accuracy (%)
H I J U V W

3 × 3 5 29 8 4 12 4 3 10.00

5 × 5 9 70 24 14 28 14 8 26.50

9 × 9 12 98 80 61 80 38 30 61.50

11 × 11 8 78 34 23 48 26 15 37.33

15 × 15 12 100 84 85 87 50 46 75.33

17 × 17 12 100 91 87 89 58 46 78.50

Table 3. Comparison of the results obtained using six BSIF configurations with occlusion by scarf.

l×l (Pixels) n (Bits)
Accuracy (%)

Average Accuracy (%)
K L M X Y Z

3 × 3 5 7 4 2 3 2 2 3.33

5 × 5 9 22 9 6 12 6 2 9.50

9 × 9 12 88 54 34 52 31 15 45.67

11 × 11 8 52 12 90 22 9 7 32.00

15 × 15 12 97 69 64 79 48 37 65.67

17 × 17 12 98 80 63 90 48 31 68.33

4.1.4. Experiment #2 (Effects of Distance)

In this experiment, we evaluated the last configuration (i.e., grayscale level image,
1 × 1 block l × l = 17× 17, and n = 12) by checking various distances associated with
K-NN for classification. Tables 4–6 compare the results achieved by adopting the city block
distance and other well-known distances with facial expression variation subsets, occlusion
subsets for sunglasses, and occlusion subsets for scarfs, respectively. The best results are
in bold.

Table 4. Comparison of the results obtained using different distances with changes in facial expression.

Distance
Accuracy (%)

Average Accuracy (%)
B C D N O P Q

Hamming 63 79 9 69 23 40 6 41.29

Euclidean 99 100 80 90 83 82 43 82.43

City block 100 100 98 97 96 97 71 94.14

Table 5. Comparison of the results obtained using different distances with occlusion by sunglasses.

Distance
Accuracy (%)

Average Accuracy (%)
H I J U V W

Hamming 37 5 6 11 4 2 10.83

Euclidean 96 68 42 68 31 17 53.67

City block 100 91 87 89 58 46 78.50
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Table 6. Comparison of the results obtained using different distances with occlusion by scarf.

Distance
Accuracy (%)

Average Accuracy (%)
K L M X Y Z

Hamming 34 5 8 20 4 4 12.50

Euclidean 79 32 16 41 22 5 32.50

City block 98 80 63 90 48 31 68.33

We note that the city block distance produced the most reliable recognition perfor-
mance compared to the other distances analyzed in this test, such as the Hamming and
Euclidean distances. As such, we can say that the city block distance is the most suitable
for our method.

4.1.5. Experiment #3 (Effects of Image Segmentation)

To improve recognition accuracy, especially under conditions of occlusion, we proposed
decomposing the image into several non-overlapping blocks, as discussed in Section 3.2.
The objective of this test was to estimate identification performance when MB-BSIF features
are used instead of their global computation over an entire image. In this paper, three
methods for image segmentation are considered and compared. Each original image was
divided into 1 × 1 (i.e., global information), 2 × 2, and 4 × 4 blocks (i.e., local information).
In other terms, an image was divided into 1 block (i.e., the original image), 4 blocks,
and 16 blocks. For the last two cases, the feature vectors (i.e., histograms H1) derived
from each block were fused to create the entire image extracted feature vector (Histogram
H2). Tables 7–9 present and compare the recognition accuracy of the tested MB-BSIF
for various blocks with subsets of facial expression variation, occlusion subsets for
sunglasses, and occlusion subsets for scarfs, respectively (with grayscale images, city
block distance, l × l = 17× 17, and n = 12). The best results are in bold.

Table 7. Comparison of the results obtained using different divided blocks with changes in facial expression.

Segmentation
Accuracy (%)

Average Accuracy (%)
B C D N O P Q

(1 × 1) 100 100 98 97 96 97 71 94.14

(2 × 2) 100 100 95 98 92 91 60 90.86

(4 × 4) 100 100 99 98 92 97 76 94.57

Table 8. Comparison of the results obtained using different divided blocks with occlusion by sunglasses.

Segmentation
Accuracy (%)

Average Accuracy (%)
H I J U V W

(1 × 1) 100 91 87 89 58 46 78.50

(2 × 2) 100 99 98 91 83 71 90.33

(4 × 4) 100 99 99 93 81 79 91.83
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Table 9. Comparison of the results obtained using different divided blocks with occlusion by scarf.

Segmentation
Accuracy (%)

Average Accuracy (%)
K L M X Y Z

(1 × 1) 98 80 63 90 48 31 68.33

(2 × 2) 98 95 92 92 79 72 88.00

(4 × 4) 99 98 95 93 84 77 91.00

From the resulting outputs, we can observe that:

- For subsets of facial expression variation, a small change arises because the results
of the previous experiment were already reasonable (e.g., subsets A, B, D, N, and P).
However, the accuracy rises from 71% to 76% for subset Q, which is characterized by
significant changes in facial expression.

- For occluded subsets, there was a significant increase in recognition accuracy when the
number of blocks was augmented. As an illustration, when we applied 1 to 16 patches,
the accuracy grew from 31% to 71% for subset Z, from 46% to 79% for subset W, and
from 48% to 84% for subset Y.

- As such, in the case of partial occlusion, we may claim that local information is
essential. It helps to go deeper in extracting relevant information from the face like
details about the facial structure, such as the nose, eyes, or mouth, and information
about position relationships, such as nose to mouth, eye to eye, and so on.

- Finally, we note that the 4× 4 blocks provided the optimum configuration with the best
accuracy for subsets of facial expression, occlusion by sunglasses, and scarf occlusion.

4.1.6. Experiment #4 (Effects of Color Texture Information)

For this analysis, we evaluated the performance of the last configuration (i.e., seg-
mentation of the image into 4 × 4 blocks, K-NN associated with city block distance,
l × l = 17× 17, and n = 12) by testing three color-spaces, namely, RGB, HSV, and YCbCr,
instead of transforming the image into grayscale. This feature extraction method is called
MB-C-BSIF, as described in Section 3.2. The AR database images are already in RGB and
so do not need a transformation of the first color-space. However, the images must be
converted from RGB to HSV and RGB to YCbCr for the other color-spaces. Tables 10–12
display and compare the recognition accuracy of the MB-C-BSIF using several color-spaces
with subsets of facial expression variations, occlusion by sunglasses, and occlusion by a
scarf, respectively. The best results are in bold.

Table 10. Comparison of the results obtained using different color-spaces with changes in facial expression.

Color-Space
Accuracy (%)

Average Accuracy (%)
B C D N O P Q

Gray Scale 100 100 99 98 92 97 76 94.57

RGB 100 100 95 97 92 93 67 92.00

HSV 100 100 99 97 96 95 77 94.86

YCbCr 100 100 96 98 93 93 73 93.29
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Table 11. Comparison of the results obtained using different color-spaces with occlusion by sunglasses.

Color-Space
Accuracy (%)

Average Accuracy (%)
H I J U V W

Gray Scale 100 99 99 93 81 79 91.83

RGB 100 99 100 93 85 84 93.50

HSV 100 97 99 96 82 80 92.33

YCbCr 100 99 98 93 81 80 91.83

Table 12. Comparison of the results obtained using different color-spaces with occlusion by scarf.

Color-Space
Accuracy (%)

Average Accuracy (%)
K L M X Y Z

Gray Scale 99 98 95 93 84 77 91.00

RGB 99 97 97 94 88 81 92.67

HSV 99 96 90 95 75 74 88.17

YCbCr 98 98 96 93 87 78 91.67

From the resulting outputs, we can see that:

- The results are almost identical for subsets of facial expression variation with all checked
color-spaces. In fact, with the HSV color-space, a slight improvement is reported,
although slight degradations are observed with both RGB and YCbCr color-spaces.

- All color-spaces see enhanced recognition accuracy compared to the grayscale stan-
dard for sunglasses occlusion subsets. RGB is the color-space with the highest output,
seeing an increase from 91.83% to 93.50% in terms of average accuracy.

- HSV shows some regression for scarf occlusion subsets, but both the RGB and YCbCr
color-spaces display some progress compared to the grayscale norm. Additionally,
RGB remains the color-space with the highest output.

- The most significant observation is that the RGB color-space saw significantly im-
proved performance in the V, W, Y, and Z subsets (from 81% to 85% with V; 79% to
84% with W; 84% to 88% with Y; and 77% to 87% with Z). Note that images of these
occluded subsets are characterized by light degradation (either to the right or left, as
shown in Figure 6).

- Finally, we note that the optimum color-space, providing a perfect balance between
lighting restoration and improvement in identification, was the RGB.

4.1.7. Comparison #1 (Protocol I)

To confirm that our suggested method produces superior recognition performance
with variations in facial expression, we compared the collected results with several state-
of-the-art methods recently employed to tackle the SSFR issue. Table 13 presents the
highest accuracies obtained using the same subsets and the same assessment protocol
with Subset A as the training set and subsets of facial expression variations B, C, D, N, O,
and P constituting the test set. The results presented in Table 13 are taken from several
references [36,39,53,54]. “- -” signifies that the considered method has no experimental
results. The best results are in bold.
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Table 13. Comparison of 18 methods of facial expression variation subsets.

Authors Year Method
Accuracy

Average Accuracy (%)
B C D N O P

Turk, Pentland [55] 1991 PCA 97.00 87.00 60.00 77.00 76.00 67.00 77.33

Wu and Zhou [56] 2002 (PC)2A 97.00 87.00 62.00 77.00 74.00 67.00 77.33

Chen et al. [57] 2004 E(PC)2A 97.00 87.00 63.00 77.00 75.00 68.00 77.83

Yang et al. [58] 2004 2DPCA 97.00 87.00 60.00 76.00 76.00 67.00 77.17

Gottumukkal and Asari [59] 2004 Block-PCA 97.00 87.00 60.00 77.00 76.00 67.00 77.33

Chen et al. [60] 2004 Block-LDA 85.00 79.00 29.00 73.00 59.00 59.00 64.00

Zhang and Zhou [61] 2005 (2D)2PCA 98.00 89.00 60.00 71.00 76.00 66.00 76.70

Tan et al. [62] 2005 SOM 98.00 88.00 64.00 73.00 77.00 70.00 78.30

He et al. [63] 2005 LPP 94.00 87.00 36.00 86.00 74.00 78.00 75.83

Zhang et al. [27] 2005 SVD-LDA 73.00 75.00 29.00 75.00 56.00 58.00 61.00

Deng et al. [64] 2010 UP 98.00 88.00 59.00 77.00 74.00 66.00 77.00

Lu et al. [36] 2012 DMMA 99.00 93.00 69.00 88.00 85.00 85.50 79.00

Mehrasa et al. [53] 2017 SLPMM 99.00 94.00 65.00 - - - - - - - -

Ji et al. [54] 2017 CPL 92.22 88.06 83.61 83.59 77.95 72.82 83.04

Zhang et al. [37] 2018 DMF 100.00 99.00 66.00 - - - - - - - -

Chu et al. [65] 2019 MFSA+ 100.00 100.00 74.00 93.00 85.00 86.00 89.66

Pang et al. [66] 2019 RHDA 97.08 97.00 96.25 - - - - - - - -

Zhang et al. [39] 2020 DNNC 100.00 98.00 69.00 92.00 76.00 85.00 86.67

Our method 2021 MB-C-BSIF 100.00 100.00 95.00 97.00 92.00 93.00 96.17

The outcomes obtained validate the robustness and reliability of our proposed SSFR
system compared to state-of-the-art methods when assessed with identical subsets. We
suggest a competitive technique that has achieved a desirable level of identification accu-
racy with the six subsets of up to: 100.00% for B and C; 95.00% for D; 97.00% for N; 92.00%
for O; and 93.00% for P.

For all subsets, our suggested technique surpasses the state-of-the-art methods an-
alyzed in this paper, i.e., the proposed MB-C-BSIF can achieve excellent identification
performance under the condition of variation in facial expression.

4.1.8. Comparison #2 (Protocol II)

To further demonstrate the efficacy of our proposed SSFR system, we also compared
the best configuration of the MB-C-BSIF (i.e., RGB color-space, segmentation of the image
into 4 × 4 blocks, city block distance, l × l = 17× 17, and n = 12) with recently published
work under unconstrained conditions. We followed the same experimental protocol
described in [33,39]. Table 14 displays the accuracies of the works compared on the tested
subsets H + K (i.e., occlusion by sunglasses and scarf) and subsets J + M (i.e., occlusion by
sunglasses and scarf with variations in lighting). The best results are in bold.

In Table 14, we can observe that the work presented by Zhu et al. [33], called LGR,
shows a comparable level, but the identification accuracy of our MB-C-BSIF procedure is
much higher than all the methods considered for both test sessions.

Compared to related SSFRs, which can be categorized as either generic learning
methods (e.g., ESRC [31], SVDL [32], and LGR [33], image partitioning methods (e.g.,
CRC [35], PCRC [34], and DNNC [39]) or deep learning methods (e.g., DCNN [41] and
BDL [44]), the capabilities of our method can be explained in terms of its exploitation of
different forms of information. This can be summarized as follows:

- The BSIF descriptor scans the image pixel by pixel, i.e., we consider the benefits of
local information.
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- The image is decomposed into several blocks, i.e., we exploit regional information.
- BSIF descriptor occurrences are accumulated in a global histogram, i.e., we manipulate

global information.
- The MB-BSIF is applied to all RGB image components, i.e., color texture information

is exploited.

Table 14. Comparison of 12 methods on occlusion and lighting-occlusion sessions.

Authors Year Method Occlusion (H + K) (%) Lighting + Occlusion (J + M) (%) Average Accuracy (%)

Zhang et al. [35] 2011 CRC 58.10 23.80 40.95

Deng et al. [31] 2012 ESRC 83.10 68.60 75.85

Zhu et al. [34] 2012 PCRC 95.60 81.30 88.45

Yang et al. [32] 2013 SVDL 86.30 79.40 82.85

Lu et al. [36] 2012 DMMA 46.90 30.90 38.90

Zhu et al. [33] 2014 LGR 98.80 96.30 97.55

Ref. [67] 2016 SeetaFace 63.13 55.63 59.39

Zeng et al. [41] 2017 DCNN 96.5 88.3 92.20

Chu et al. [65] 2019 MFSA+ 91.3 79.00 85.20

Cuculo et al. [68] 2019 SSLD 90.18 82.02 86.10

Zhang et al. [39] 2020 DNNC 92.50 79.50 86.00

Du and Da [44] 2020 BDL 93.03 91.55 92.29

Our method 2021 MB-C-BSIF 99.5 98.5 99.00

To summarize this first experiment, the performance of the proposed approach was
evaluated using the AR database. In this experiment, the issues studied were changes in
facial expression, lighting and occlusion by sunglasses and headscarf, which are the most
common cases in real-world applications. As presented in Tables 13 and 14, our system
obtained very good results (i.e., 96.17% with Protocol I and 99% with Protocol II) that
surpass all the approaches compared (including the handcrafted and deep-learning-based
approaches), i.e., that the approach we propose is appropriate and effective in the presence
of the problems mentioned above.

4.2. Experiments on the LFW Database
4.2.1. Database Description

The Labeled Faces in the Wild (LFW) database [52] comprises more than 13,000 photos
collected from the World Wide Web of 5749 diverse subjects in challenging situations, of
which 1680 subjects possess two or more shots per individual. Our tests employed the LFW-
a, a variant of the standard LFW where the facial images are aligned with a commercial
normalization tool. It can be observed that the intra-class differences in this database are
very high compared to the well-known constrained databases and face normalization has
been carried out. The size of each image is 250 × 250 pixels and uses the jpeg extension.
LFW is a very challenging database: it aims to investigate the unconstrained issues of
face recognition, such as changes in lighting, age, clothing, focus, facial expression, color
saturation, posture, race, hairstyle, background, camera quality, gender, ethnicity, and other
factors, as presented in Figure 7.

4.2.2. Experimental Protocol

This study followed the experimental protocol presented in [30,32–34]. From the
LFW-a database, we selected only those subjects possessing more than 10 images to obtain
a subset containing the facial images of 158 individuals. We cropped each image to a size
of 120 × 120 pixels and then resized it to 80 × 80 pixels. We considered the first 50 subjects’
facial photographs to create the training set and the test set. We randomly selected one
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shot from each subject for the training set, while the remaining images were employed in
the test set. This process was repeated for five permutations and the average result for each
was taken into consideration.

Figure 7. Examples of two different subjects from the Labeled Faces in the Wild (LFW)-a database.

4.2.3. Limitations of SSFR Systems

In this section, the SSFR systems, and particularly the method we propose, will be
voluntarily tested in a situation that is not adapted to their application: they are applicable
in the case where only one sample is available and, very often, this sample is captured in
very poor conditions.

We are particularly interested in cases where hundreds of samples are available, as in
the LFW database, or when the training stage is based on millions of samples. In such a
situation, deep learning approaches must be obviously chosen.

Therefore, the objective of this section is to assess the limitations of our approach.
Table 15 summarizes the performance of several rival approaches in terms of identifi-

cation accuracy. Our best result was obtained by adopting the following configuration:

- BSIF descriptor with filter size l × l = 17× 17 and bit string length n = 12.
- K-NN classifier associated with city block distance.
- Segmentation of the image into blocks of 40 × 40 and 20 × 20 pixels.
- RGB color-space.

Table 15. Identification accuracies using the LFW database.

Authors Year Method Accuracy (%)

Chen et al. [60] 2004 Block LDA 16.40

Zhang et al. [27] 2005 SVD-FLDA 15.50

Wright et al. [69] 2009 SRC 20.40

Su et al. [70] 2010 AGL 19.20

Zhang et al. [35] 2011 CRC 19.80

Deng et al. [31] 2012 ESRC 27.30

Zhu et al. [34] 2012 PCRC 24.20

Yang et al. [32] 2013 SVDL 28.60

Lu et al. [36] 2012 DMMA 17.80

Zhu et al. [33] 2014 LGR 30.40

Ji et al. [54] 2017 CPL 25.20

Dong et al. [30] 2018 KNNMMDL 32.30

Chu et al. [65] 2019 MFSA+ 26.23

Pang et al. [66] 2019 RHDA 32.89

Zhou et al. [71] 2019 DpLSA 37.55

Our method 2021 MB-C-BSIF 38.01

Parkhi et al. [12] 2015 Deep-Face 62.63

Zeng et al. [72] 2018 TDL 74.00
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We can observe that the traditional approaches did not achieve particularly good
identification accuracies. This is primarily because the photographs in the LFW database
have been taken in unregulated conditions, which generates facial images with rich intra-
class differences and increases face recognition complexity. As a consequence, the efficiency
of the SSFR procedure is reduced. However, our recommended solution is better than the
other competing traditional approaches. The superiority of our method can be explained
by its exploitation of different forms of information, namely: local, regional, global, and
color texture information. SVDL [32] and LGR [33] also achieved success in SSFR because
the intra-class variance information obtained from other subjects in the standardized
training set (i.e., augmenting the training-data) helped boost the performance of the system.
Additionally, KNNMMDL [30] achieved good performance because it uses the Weber-face
algorithm in the preprocessing step, which handles the illumination variation issue and
employs data augmentation to enrich the intra-class variation in the training set.

In another experiment, we implemented and tested the successful DeepFace algo-
rithm [12], whose weights were trained on millions of images from the ImageNet database
that are close to real-life situations. As presented in Table 15, the DeepFace algorithm shows
significant superiority to the compared methods. This success is down to the profound and
specific training of the weights in addition to the significant number of images employed
in its operation.

In a recent work by Zeng et al. [72], the authors combined traditional (handcrafted)
and deep learning (TDL) characteristics to overcome the limitation of each class. They
reached an identification accuracy of near 74%, which is something of a quantum leap in
this challenging topic.

In the comparative study presented in [73], we can see that current face recognition
systems employing several examples in the training set achieve very high accuracy with
the LFW database, especially with deep-learning-based methods. However, SSFR systems
suffer considerably when using the challenging LFW database and further research is
required to improve their reliability.

In the situation where the learning stage is based on millions of images, the proposed
SSFR technique cannot be used. In such a situation, References [12,72], which use deep
learning techniques with data augmentation [12] or deep learning features combined with
handcrafted features [72], allow one to obtain better accuracy.

Finally, the proposed SSFR method is reserved for the case where only one sample
per person is available, which is the most common case in the real world through re-
mote surveillance or unmanned aerial vehicles’ shots. In these applications, faces are
most often captured under harsh conditions, such as changing lighting, posture, or if
the person is wearing accessories such as glasses, masks, or disguises. In these cases,
the method proposed here is by far the most accurate. Finally, it would be interesting
to explore and test some proven approaches that have shown good performance in solv-
ing real-world problems, in order to evaluate their performance using the same protocol
and database, such as multi-scale principal component analysis (MSPCA) [74], signal
decomposition methods [75,76], generative adversarial neural networks (GAN) [77], and
centroid-displacement-based-K-NN [78].

5. Conclusions and Perspectives

In this paper, we have presented an original method for Single-Sample Face Recog-
nition (SSFR) based on the Multi-Block Color-binarized Statistical Image Features (MB-C-
BSIF) descriptor. It allows for the extraction of features for classification by the K-nearest
neighbors (K-NN) method. The proposed method exploits various kinds of information,
including local, regional, global, and color texture information. In our experiments, the
MB-C-BSIF has been evaluated on several subsets of images from the unconstrained AR
and LFW databases. Experiments conducted on the AR database have shown that our
method significantly improves the performance of SSFR classification when dealing with
several variations of facial recognition. The proposed feature extraction strategy achieves a
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high accuracy, with an average value of 96.17% and 99% for the AR database with Protocols
I and II, respectively. These significant results validate the effectiveness of the proposed
method compared to state-of-the-art methods. The potential applications of the method are
oriented towards a computer-aided technology that can be used for real-time identification.

In the future, we aim to explore the effectiveness of combining both deep learning and
traditional methods in addressing the SSFR issue. Hybrid features combine handcrafted
features with deep characteristics to collect richer information than those obtained by a
single feature extraction method, thus improving the level of recognition. Besides, we plan
to develop a deep learning method based on semantic information, such as age, gender,
and ethnicity, to solve the problem of SSFR, which is an area that deserves further study.
We also aim to investigate and analyze the SSFR issue in unconstrained environments
using large-scale databases that hold millions of facial images.
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Abstract: The conventional finger-vein recognition system is trained using one type of database and
entails the serious problem of performance degradation when tested with different types of databases.
This degradation is caused by changes in image characteristics due to variable factors such as position
of camera, finger, and lighting. Therefore, each database has varying characteristics despite the same
finger-vein modality. However, previous researches on improving the recognition accuracy of
unobserved or heterogeneous databases is lacking. To overcome this problem, we propose a method
to improve the finger-vein recognition accuracy using domain adaptation between heterogeneous
databases using cycle-consistent adversarial networks (CycleGAN), which enhances the recognition
accuracy of unobserved data. The experiments were performed with two open databases—Shandong
University homologous multi-modal traits finger-vein database (SDUMLA-HMT-DB) and Hong
Kong Polytech University finger-image database (HKPolyU-DB). They showed that the equal error
rate (EER) of finger-vein recognition was 0.85% in case of training with SDUMLA-HMT-DB and
testing with HKPolyU-DB, which had an improvement of 33.1% compared to the second best method.
The EER was 3.4% in case of training with HKPolyU-DB and testing with SDUMLA-HMT-DB,
which also had an improvement of 4.8% compared to the second best method.

Keywords: finger-vein recognition; camera position; finger position; lighting; unobserved database;
heterogeneous database; domain adaptation; cycle-consistent adversarial networks; SDUMLA-HMT-
DB; HKPolyU-DB

1. Introduction

Finger-vein images are difficult to forge and easy to obtain, but the image qualities are
easily affected by the shades inevitably generated by other biological tissues (e.g., bone and
fingernail) [1,2]. A finger-vein recognition system employs a small amount of feature
for recognition because of this fundamental characteristic of data [3]. Therefore, models
trained using such a dataset are ineffective for unobserved data.

To consider this issue, non-training-based finger-vein recognition methods have been
studied extensively to overcome this drawback. However, they exhibit significantly poorer
performance than training-based methods because a large amount of information is re-
moved by noise, thus making the classifier incapable of making an accurate decision [1–3].
Moreover, variations in the environment when acquiring images such as the camera po-
sition, lighting position, and lighting intensity create a large discrepancy between each
dataset domain. This also deteriorates the performance of non-training-based methods.

The existing non-training-based finger-vein recognition method extracts specific fea-
tures using local binary patterns for recognition [1]; however, these features are significantly
affected by misalignment or image quality, making them unsuitable for finger-vein recogni-
tion. Subsequently, local directional patterns (LDPs) [2] and optimal filter-based finger-vein
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recognition [3] have been proposed, which can solve the misalignment problem but cannot
solve the fundamental problem of image quality or removed information.

Hence, training-based finger-vein recognition methods have been extensively re-
searched [4,5]. In [4], authors increased the number of training images by five times based
on the data augmentation of image translation and cropping. In [5], they also increased
the number of training images by 121 times based on the data augmentation of image
translation and cropping. Although the similarity among augmented images increased by
simple image translation and cropping, the training of proposed models was successfully
performed with the augmented images, and the consequent accuracies of recognition were
enhanced in their methods [4,5]. These methods exhibit good performance for finger-vein
images with low quality by extracting features using a filter optimized for the distribution
of input data rather than extracting features of a fixed form.

Although the training-based methods exhibit better recognition performance than
non-training-based methods, their recognition rate in the cross-domain environment is
significantly lower. The training-based methods are trained for optimizing the distribution
of the training data used as input; thus, they exhibit poorer generality in the cross-domain
than non-training-based methods, which extract features of a fixed form regardless of the
training data. Moreover, the distances between domains are inevitably increased as training
is repeated with a small amount of information of finger-vein data. In general, a specific
dataset used for training refers to one domain, and the model trained using this dataset is
optimized for this specific domain. However, if the dataset of a different domain is used
for testing, the performance is significantly deteriorated because the data encountered by
the model are different from those used to train the model (the problem of heterogeneity).

For mitigating the trade-off between recognition performance and generality, this study
proposes a method for improving the finger-vein recognition rate of cross-domain databases
through finger-vein domain adaptation using cycle-consistent adversarial networks (Cycle-
GAN).

This paper is organized as follows. Section 2 presents previous studies related to the
finger-vein recognition method, domain transfer, and domain adaptation, and Section 3
presents the contributions of this study. Section 4 provides the details of the proposed
method, and Sections 5 and 6 present the experimental results of this study and discussions,
respectively. Lastly, Section 7 concludes this study.

2. Related Work

Research on finger-vein recognition in which domain adaptation is considered is
lacking. In this section, the scope of previous studies is expanded to include hand-based
biometrics; whether domain adaptation was performed, was analyzed by dividing the
studies into non-training-based and training-based methods.

2.1. Non-Training-Based Methods

Lu et al. performed domain adaptation to some extent by reducing the difference in
brightness present in each finger-vein dataset using a peak-value-based method (PVM) [6].
The difference in brightness occurs when different sensors are used during acquisition of
the dataset; this study focused on the difference between domains from this perspective.
Jia et al. attempted to solve the cross-sensor problem using various dimension reduction
algorithms and orientation coding methods [7].

Wang et al. performed a simple normalization to reduce the heterogeneity between do-
mains for a dorsal hand-vein database obtained from various sensors and then performed
segmentation to remove unimportant information which could increase heterogeneity [8].
In this study, matching was based on the scale-invariant feature transform (SIFT). The gen-
erality was high because matching was performed using a non-training-based algorithm;
however, the performance was not suitable for biometric systems which require a high
level of security. Wang et al. then performed soft domain adaptation using the same nor-
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malization algorithm followed by matching using an improved SIFT algorithm. This model
was a more general and robust dorsal hand-vein recognition system [9].

Alshehri et al. used various handcrafted features to solve the problem of heterogeneity
generated by different sensors when acquiring a fingerprint dataset, and in particular, ridge
pattern, orientation, and minutiae points present in fingerprint images were used [10].
Binary gradient pattern (BGP) and Gabor-histogram of oriented gradients (Gabor-HoG)
were used as descriptors, and the Sobel operator was used to compute the gradient.
A robust fingerprint recognition system was proposed by performing score level fusion
of the scores obtained from each descriptor. Ghiani et al. confirmed the problem with
the accuracy of a fingerprint spoof attack detection system being abruptly reduced in the
cross-sensor environment [11]. A least squares-based domain transformation function was
adopted to reduce the extent of changes in the distribution caused by cross-sensors.

2.2. Training-Based Methods

Kute et al. used the Bregman divergence regularization method to reduce the distribu-
tion gap between domains; the researchers used Fisher linear discriminant analysis (FLDA)
subspace learning algorithm to find a subspace through a projection matrix between fully
heterogeneous data and then used the subspace to perform recognition using a support
vector machine and K-nearest neighbor classifier [12]. Gajawada et al. performed domain
adaptation between spoof attack databases to perform augmentation to improve the gener-
ality of a fingerprint spoof attack detector [13]. Here, a synthetic spoof attack patch was
created using a universal material translator wrapper.

Anand et al. customized the DeepDomainPore network, which is a pore detection
network trained with high-resolution images to enable the pore information observed only
in high-resolution fingerprint images to be used in low-resolution images [14]. Domain
adaptation was performed for inserting pore information in the low-resolution image.
Using this method, pores, which are a level 3 feature, can be exploited even when low-
resolution images are input in a fingerprint recognition system. Shao et al. proposed
PalmGAN, which generates synthetic data using a palmprint dataset with labels [15].
Fake labeled data were generated using the palmprint dataset without labels as the target
and the palmprint dataset with labels as the source. The fake labeled data were then used
as new data with a newly inserted label while maintaining the identity information of the
target domain, i.e., domain adapted data. The data were input to a deep hash network to
perform palmprint recognition.

Moreover, the researchers attempted to solve the cross-domain problem by perform-
ing domain adaptation using an auto-encoder structured model [16]. Malhotra et al.
highlighted the need to reinforce the touch-based biometric recognition system as the coro-
navirus disease (COVID-19) is increasingly becoming a serious issue across the globe [17].
Accordingly, the system was reinforced so that the fingerprint authentication system imple-
ments matching using a finger-selfie image. The finger-selfie image is segmented primarily
using a handcrafted method to reduce the difference between the enrolled finger-scan
image and finger-selfie domain. The segmented finger-selfie image and enrolled image
undergo feature extraction through a deep ScatNet to allow matching with the trained
random decision forest (RDF) model.

Jalilian et al. performed finger-vein segmentation using a fully convolutional net-
work (FCN) [18]. The recognition performance was assessed in the cross-domain environ-
ment using the segmented image. However, the performance was not satisfactory in the
cross-domain environment even when recognition was performed using only compact
information. Dabouei et al. verified the performance in the cross-sensor environment
using a conditional generative adversarial network (CGAN) for fingerprint ridge map
reconstruction [19].

Nogueira et al. performed fingerprint spoof attack detection using visual geom-
etry group (VGG)-16 and a convolutional neural network (CNN) and verified that a
deep learning-based method is not effective in the cross-data, cross-sensor environment,
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even though this study was not related to recognition [20]. Chugh et al. confirmed that fin-
gerprint spoof detection based on the minutiae-based local patch approach and MobileNet
did not exhibit good performance in the cross-sensor environment [21]. Thus, training the
distribution of the training data in the cross-domain, cross-sensor environment without
using specific domain adaptation methods is ineffective for unobserved databases.

Although it is not the hand-based biometrics, Chui et al. proposed a CGAN and
improved fuzzy c-means clustering (IFCM) algorithm called CGAN-IFCM for the multi-
class voice disorder detection of three common types of voice disorders for smart healthcare
applications [22].

To overcome the drawbacks of previous studies, we propose a method to improve
the finger-vein recognition rate in cross-domain databases through finger-vein domain
adaptation based on a CycleGAN. The reason for using CycleGAN in our method is that
there is no paired data of input and target images in our experiments. That is, two finger-
vein images from two different open databases (Shandong University homologous multi-
modal traits finger-vein database (SDUMLA-HMT-DB) and Hong Kong Polytech University
finger-image database (HKPolyU-DB)) are respectively used in our experiments. Because
they are not from same class, there is no target image about input image in our case, and one
of them can be used as input and the other can only be used as the reference image for the
unpaired cases. Due to this reason, we use CycleGAN, which can use this kind of unpaired
images. It is different from other types of GAN such as conditional GAN, which requires
the paired data of input and target images [23].

CycleGAN can perform a task where the information of the source domain data is
retained to some extent while reflecting the target domain information, instead of carrying
out a task for simply making the source and target identical [24]. It is confirmed that our
CycleGAN-based method showed better performances than other types of GAN.

3. Contributions

Our research is novel in the following five ways compared to previous works:

• This is the first study to examine GAN-based domain adaptation to solve the problem
of performance deterioration of the finger-vein recognition system in a heterogeneous
cross dataset.

• Domain adaptation was performed through a CycleGAN so that the existing training-
based finger-vein recognition method can handle unobserved data. Each finger-vein
dataset has different numbers of classes. Therefore, we used CycleGAN, which can
deal with unpaired datasets.

• The proposed finger-vein recognition system does not have to be trained again when
unobserved data are input into the system.

• The experiments with two open databases of SDUMLA-HMT-DB and HKPolyU-DB
showed that the equal error rate (EER) of finger-vein recognition was 0.85% in case
of training with SDUMLA-HMT-DB and testing with HKPolyU-DB, which is the
improvement of 33.1% compared to the second best method. The EER was 3.4% in
case of training with HKPolyU-DB and testing with SDUMLA-HMT-DB, which is also
the improvement of 14.1% compared to the second best method.

• CycleGAN-based domain adaptation models and finger-vein recognition models
trained with our domain adapted dataset proposed in this study are disclosed for
a fair assessment of performance [25] by other researchers. On the website (http:
//dm.dgu.edu/link.html) explained in [25], we include the instructions of how other
researchers can obtain our CycleGAN-based domain adaptation models and finger-
vein recognition models.

4. Proposed Method

In this section, we would explain the overview of the proposed method in Section 4.1,
our preprocessing method in Section 4.2, and proposed data adaption method based
on CycleGAN in Section 4.3. In addition, we would explain the method of generating
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composite image for the input to CNN in Section 4.4, and finger-vein recognition method
by DenseNet and shift matching in Section 4.5.

4.1. Overview of the Proposed Method

Figure 1 shows the overall procedure of the proposed finger-vein recognition method.
The method involves preprocessing to remove unnecessary information generated by near-
infrared light (NIR) used while acquiring images of finger veins, other biological tissues
(e.g., bone or fingernail), or parts where information has been removed by shades [26]
(Step 2 of Figure 1).
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First, binary thresholding is performed to distinguish the finger region from the
background region. The image that has undergone binary thresholding is used as a mask
of the original finger-image and then undergoes linear stretching to fit the input size of a
CNN subsequently. The finger region is not stretched uniformly if burrs are present in the
mask during linear stretching. Thus, boundary smoothing enables the finger region to be
stretched uniformly, thus minimizing information loss.

In addition, misalignment may occur when the user’s finger trembles or is not fixed
properly when acquiring finger-vein images. Misalignment is a major factor that reduces
the finger-vein recognition performance. Hence, in-plane rotation compensation is per-
formed to eliminate the misalignment problem. During in-plane rotation compensation,
second-order moments of the entire image are found with respect to the finger-shape,
and then, rotation is performed accordingly. In general, both edges of the finger image
are thick and thus are affected more by biological tissues than other regions, or shades are
generated by fingernails. Therefore, it is difficult to obtain the essential information of the
finger vein. To overcome this problem, the parts are removed in the preprocessing step.
Only the regions with the best finger-vein representation are segmented using the final
mask obtained to be used as an input for finger-vein recognition.

The existing finger-vein recognition system has improved the performance of finger-
vein recognition while being biased to the training dataset. The proposed method, in con-
trast, adds a domain adaptation stage to the acquired finger-vein images using a CycleGAN
to better handle unobserved data, thus improving the generality of the finger-vein recogni-
tion system. After inputting the actual finger-vein images obtained in the preprocessing
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stage to the CycleGAN, the mapping function needed for domain adaptation is found
during training. The mapping function converts the source domain into the target domain.
Owing to the unpaired trait of the CycleGAN, a completely one-to-one mapping function
is not observed; instead, training is continued to identify style information of the target
domain. Therefore, the main structure of the data of the source domain is fairly main-
tained to create a new image to which the distribution characteristics of the target domain
are transferred (Steps 2-1 and 2-2 of Figure 1). This process mitigates the heterogeneity
between datasets.

Subsequently, a composite image is generated using the new image obtained with
a CycleGAN (Step 3 of Figure 1), and it is then input to a densely connected network
(DenseNet)-161 (Step 4 of Figure 1). Then, finger-vein recognition is finally performed via
shift matching (Steps 5 and 6 of Figure 1).

4.2. Preprocessing

The obtained finger image has both a background and finger region; therefore, the fin-
ger region and the background region need to be primarily segmented to obtain only the
finger region in the preprocessing step. Figure 2 shows each preprocessing stage. Binary
thresholding and segmentation are performed using the Sobel edge detector and Otsu
thresholding method [27]. The image for which binary thresholding has been performed
becomes a masked image filled with 255 in the finger region and with 0 for other regions.
If the background region and both edges of the finger region have areas with a small pixel
value, areas can be mis-classified as the finger region. To remove such areas, both edges
are removed and the image is corrected again with component labeling. The boundary of
this mask has numerous burrs; thus, a smoothing process would be required to perform
accurate linear stretching. Then, in-plane rotation compensation is performed to ensure
that the angles of all data are identical. Misalignment in the input image is a major factor
that causes false rejection in particular and thus needs to be removed. In-plane rotation
compensation involves calculating the second-order angle moments of the binarized mask
as shown in Equations (1)–(4), thereby performing misalignment compensation so that all
images can have the same angle with respect to the central axis [28].

∅11 =
∑(a,b)∈M(b−mb)

2 I(a, b)

∑(a,b)∈M I(a, b)
, (1)

∅22 =
∑(a,b)∈M(a−ma)

2 I(a, b)

∑(a,b)∈M I(a, b)
, (2)

∅12 =
∑(a,b)∈M(b−mb)(a−ma)I(a, b)

∑(a,b)∈M I(a, b)
, (3)
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2
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2+4∅2
12

)
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, (4)

where I(a, b) and (ma, mb) represent the pixel value and center index in the (a, b) index of
the input, M(a, b) represents the pixel value of the mask obtained through binary segmen-
tation; its value should be 255 for the actual finger region and 0 for all other regions. ∅ is
the second-order moments for each axis based on which the rotation compensation angle
τ is calculated. In detail, ∅11 and ∅22 represent the correlation values in the vertical and
horizontal directions, respectively. In addition, ∅12 shows that in the diagonal direction.
For example, if ∅11 is larger than ∅22, the correlation value of input (I(a, b)) with mask
(M(a, b)) in the vertical direction is larger than that in the horizontal direction, which indi-
cates that the input (I(a, b)) with mask (M(a, b)) has the elliptical shape, which is longer
in the vertical direction than the horizontal direction. If ∅12 is larger than ∅11 and ∅22,
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the correlation value of input (I(a, b)) with mask (M(a, b)) in the diagonal direction is
larger than those in the vertical and horizontal directions, which indicates that the input
(I(a, b)) with mask (M(a, b)) has the elliptical shape, which is longer in the diagonal direc-
tion than the vertical and horizontal directions. Based on this information, the rotation
compensation angle τ is calculated by Equation (4) [28]. With respect to the central axis,
in-plane rotation is performed for the initial finger image and binary mask based on this
rotation compensation angle; then, the final finger-vein region is obtained by taking the
mask as a condition. In the obtained finger region, the areas in which a finger-vein region
cannot be observed easily due to the thickness of the finger or areas in which finger-vein
information has been removed due to shades created by the fingernail or bone need to be
removed. Therefore, removing a certain portion in the left and right sides of the mask used
for acquiring the finger-vein region presents confident finger-vein information.
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 Figure 2. Sample images of each preprocessing stage: (a) original image, (b) image obtained after
Sobel edge detection and thresholding, (c) image after edge smoothing, (d) image after in-plane
rotation compensation, (e) finger-vein image obtained by region of interest (ROI) mask, and (f) finally
cropped finger-vein ROI image.

Certain areas in the mask region, such as the background region represented as a dark
area, may be mis-segmented as the finger region during binary thresholding; such areas
need to be removed by component labeling [27]. Moreover, if there are areas eroded
by additional noise in the finger-shape area, the final ROI mask is obtained through
compensation during the smoothing process for removing such areas [26]. The finger
region obtained thus undergoes linear interpolation to a size of 256 × 256 to be used as an
input of the CycleGAN, which is detailed in the next section.

4.3. Domain Adaptation

The existing finger-vein recognition systems are specialized for training data to simply
improve performance. However, a finger-vein recognition system is generally used for
security purposes; therefore, performance improvement for unobserved data needs to be
prioritized. If the image characteristics including brightness, shape, and texture between
datasets are different, the network trained with a specific dataset experiences serious
performance deterioration when tested with a different dataset. This problem implies
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that the model lacks generality, and its performance will fluctuate when it is applied in
the real world, thus inhibiting the construction of a stable security system. In this study,
therefore, both performance and generality are guaranteed by improving the generality in
the distribution of the fundamental data through domain adaptation. The network used
for domain adaptation in the proposed finger-vein system for this purpose is a CycleGAN.

4.3.1. CycleGAN Architecture

When performing domain adaptation for finger-vein images, there is a high possibility
that the features generated in a latent space cannot encompass all the data distribution of
each domain if the shape information of the finger-vein is transformed to a high extent.
Thus, the image should be generated in a form such that texture information can be inserted
while maintaining a shape information of specific domain.

A generative adversarial network which exploits unpaired data is most appropriate
for this study because finger-vein image datasets have a different number of classes and
thus require unpaired data to be utilized. The purpose is to find the latent space of a new
domain between each domain. A CycleGAN uses unpaired data as the source and target;
therefore, it can perform a task where the information of the source domain data is retained
to some extent while reflecting the target domain information, instead of carrying out a
task for simply making the source and target identical [24]. Therefore, a CycleGAN is most
appropriate considering these circumstances. A CycleGAN is a network consisting of two
discriminators and two generators.

A 70 × 70 PatchGAN [23] was used as the discriminator. Unlike a general discrimina-
tor, PatchGAN is a classifier that discriminates images at a patch unit. The prediction made
by a discriminator of a typical GAN is output in an image unit, whereas the prediction
made by a discriminator of a PatchGAN is output in a specific patch unit. In other words,
the chronic problem of a GAN where blurry output is generated occurs less frequently
by determining whether a specific patch region is fake or real, and the process is faster.
When the finger-vein shape information used for recognition becomes blurry, the gradient
between the finger-vein boundary and skin region is reduced, which implies that it cannot
be used effectively. Accordingly, a CycleGAN was selected for domain adaptation in
this study.

Table 1 shows the architecture of a 70 × 70 PatchGAN based discriminator. The fake
image and original image created in the generator are concatenated to be input. Because
it uses a 70 × 70 PatchGAN based method, it is parameter efficient and the relationship
between adjacent pixels can be clearly identified based on a local-level discrimination
rather than by determining real or fake data in the entire image.

Table 1. Architecture of the discriminator used in CycleGAN.

Layer Filter
(Number/Size/Stride) Input Size Output Size

Input layer 256 × 256 × 3 (×2) 256 × 256 × 6

Conv1 * 64/4 × 4 × 3/2 256 × 256 × 6 128 × 128 × 64

Conv2 * 128/4 × 4 × 64/2 128 × 128 × 64 64 × 64 × 128

Conv3 * 256/4 × 4 × 128/2 64 × 64 × 128 32 × 32 × 256

Conv4 * 512/4 × 4 × 256/1 32 × 32 × 256 31 × 31 × 512

Conv5 1/4 × 4 × 512/1 31 × 31 × 512 30 × 30 × 1
* denotes that the convolutional layer is followed by instance normalization and a leaky rectified linear unit
(ReLU) with a slope parameter of 0.2.

For the generator, a residual network (ResNet) based on an encoder-decoder structural
network was used. Figure 3 shows the overall structure of the CycleGAN. Table 2 presents
the detailed network architecture of the generator. We use the same settings of parameters
and number of layers to those of [24] in Tables 1 and 2.
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Table 2. Architecture of the generator used in CycleGAN.

Layer Filter
(Number/Size/Stride) Input Size Output Size

Input layer 256 × 256 × 3 256 × 256 × 3

Conv1 64/7 × 7 × 3/1 256 × 256 × 3 256 × 256 × 64

Conv2 * 128/3 × 3 × 64/2 256×256×64 128 × 128 × 128

Conv3 * 256/3 × 3 × 128/2 128 × 128 × 128 64 ×64 × 256

Res1 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res2 (256/3 × 3 ×256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res3 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res4 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res5 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res6 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res7 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res8 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res9 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Up-conv1 128/3 × 3 × 256/2 64 × 64 × 256 128 ×128 × 128

Up-conv2 64/3 × 3 × 256/2 128 × 128 × 128 256 × 256 × 64

Conv4 3/7 × 7 × 3/1 256 × 256 × 64 256 × 256 × 3
* denotes that the convolutional layer is followed by instance normalization and ReLU. ** denotes that the Res(k)
is a residual block where an input feature map is added to the output of each residual block, and each residual
block includes three convolutional layers.

4.3.2. Generating a Domain Adapted Finger-Vein Image

The data of each domain are used as a source and a target of the CycleGAN to generate
an image for which domain adaptation has been applied. Figure 4 shows an example of
the domain adapted image. It resembles the shape of an image used as a source and
shows the shape in which the distribution of lighting intensity or contrast of the target
domain is reflected. Hence, an image of a new domain is obtained for which information
is composited.
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The loss function of a CycleGAN is the weighted sum of adversarial loss and cycle-
consistency loss (see Equations (7)–(9)). The purpose of a generator is to deceive a discrim-
inator by generating fake data that resemble the real data as much as possible, whereas
a discriminator is trained to distinguish fake data from real data. Comparing the real
data and simply generated data generates adversarial loss, as shown in Equations (5)–(7),
while cycle-consistency loss helps in building a robust model through reconstruction by
comparing the real data with source data, as shown in Equation (8). Ultimately, the loss
function in which both adversarial loss and cycle-consistency loss are considered, as shown
in Equation (9), is used. We use the same loss functions of Equations (5)–(9) to those in
traditional CycleGAN [24].
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Losstotal = Lossadv + λLosscyc, (9)

where G and D represent the generator and discriminator, respectively, xi and yi are the
source image and target image selected in the X, Y domain, respectively, and m is the total
number of data of each domain. λ is a cycle-consistency coefficient; a value of 10 was used
in this study. Processing heterogeneous data through domain adaptation, as proposed in
this study, enables us to retain the shape information of a specific domain while generating
new domain data through adaptation of the texture information of a different domain.
Thus, for a proper mixture of shape information and texture information, cycle-consistency
loss value and adversarial loss value were adjusted using λ.
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4.4. Generating Composite Image

A composite image is generated using the domain adapted image [26]. It is gener-
ated for a matching case, and it maximizes the network utilization rate more than the
feature-based Euclidean distance matching method used in conventional finger-vein recog-
nition systems. For the feature-based Euclidean distance matching method, matching
is performed using the features extracted before the fully connected layer in a trained
CNN model for the finger-vein recognition system. Thus, a trained fully connected layer
cannot be used. In contrast, when generating authentic and imposter matching images
as composite images, all layers in the trained CNN model for finger-vein recognition
including the fully connected layer can be used. Furthermore, a data augmentation effect
is observed during training because composite images are generated for the number of
matching cases, and it is more robust for noise than difference image-based matching [5].
As shown in Figure 5, a composite image is an image generated by having an enrolled
image, a matched image, and a concatenated image in each channel. The concatenated
image is created by resizing the enrolled image and the matched image into 1/2 size images
and then concatenating vertically. As a result, a three-channel shape image is generated
and input in the CNN classifier. The composite image-based method does not involve
Euclidean distance calculation by a n-dimensional feature vector, thus requiring a shorter
time during inference compared to feature distance-based matching.
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4.5. Finger-Vein Recognition Based on Deep Densenet and Shift Matching

In this study, DenseNet-161 was used as the model for finger-vein recognition [26,29].
Table 3 represents architecture of DenseNet-161 that used in this study. We use the same
settings of parameters and number of layers to those of [29] in Table 3. In the DenseNet-
161 used for proposed method, the growth rate was set to 48. The original structure of
DenseNet was designed for ImageNet classification [29]. The output of the fully connected
layer was a 1000-dimensional vector. As only two types of output—authentic matching
score and imposter matching score—are used in this study, the existing fully connected
layer was removed and fine tuning was performed after replacing it with a fully connected
layer that outputs a two-dimensional score vector. DenseNet can effectively convey low
level features to deeper layers through a dense connection.
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Table 3. Architecture of DenseNet-161.

Layer Filter (Number/Size/Stride) Input Size Output Size

Input layer 224 × 224 × 3 224 × 224 × 3

Conv (96/7 × 7 × 96/2) 224 × 224 × 3 112 × 112 × 96

Max pool (96/2 × 2 × 1/2) 112 × 112 × 96 57 × 57 × 96

Dense block (6/(1 × 1 × 192, 3 × 3 × 48)/1) 57 × 57 × 96 57 × 57 × 384

Transition block (1/(1 × 1 × 192, 2 × 2 × 192) */1) 57 × 57 × 384 29 × 29 × 192

Dense block (12/(1 × 1 × 192, 3 × 3 × 48)/1) 29 × 29 × 192 29 × 29 × 768

Transition block (1/(1 × 1 × 384, 2 × 2 × 384) */1) 29 × 29 × 768 15 × 15 × 384

Dense block (36/(1 × 1 × 192, 3 × 3 × 48)/1) 15 × 15 × 384 15 × 15 × 2112

Transition block (1/(1 × 1 × 1056, 2 × 2 × 1056) */1) 15 × 15 × 2112 8 × 8 × 1056

Dense block (24/(1 × 1 × 192, 3 × 3 × 48)/1) 8 × 8 × 1056 8 × 8 × 2208

Global average pool (2208/8 × 8 × 1/1) 8 × 8 × 2208 1 × 1 × 2208

Fully connected layer 1 × 1 × 2208 1 × 1 × 2

* denotes the shape of the convolutional filter and average pooling filter, respectively.

Therefore, DenseNet was determined to be a very suitable classifier because low
level features such as a ridge are the core components of the vein shape information
present in the finger-vein data used in this study. For the composite image generated by
acquiring the domain adapted image, the enrolled image and matched image are input
in the same DenseNet-161. The spatial similarity of each image was evaluated in the
classifier to confirm whether it is an authentic matching case or an imposter matching case.
However, while evaluating the spatial similarity, misalignment or rotation, which were
not removed during preprocessing, could be observed. These factors significantly affect
the process of matching. To solve these problems, the enrolled image or matched image
was matched through eight-way translation in this study. Then, the misalignment issue
such as pixel translation was solved by designating the minimal matching value as the
final matching score.

5. Experimental Results

In this section, we would explain experimental environments in Section 5.1, training of
the domain adaptation model in Section 5.2, and training of finger-vein recognition model
in Section 5.3. In addition, we would explain evaluation metrics in Section 5.4, and testing
results and analyses with HKPolyU-DB after training with SDUMLA-HMT-DB (including
ablation study) in Section 5.5. Finally, testing results and analyses with SDUMLA-HMT-DB
after training with HKPolyU-DB (including ablation study) are presented in Section 5.6.

5.1. Experimental Environments

In this study, SDUMLA-HMT-DB [30] and HKPolyU-DB version 1 [31] were used.
The HKPolyU database is divided into session 1 and session 2; only session 1 data were used
in this study. HKPolyU-DB session 1 consists of 1872 images; two fingers of 156 persons
were used for image acquisition, and six images were captured for each finger. SDUMLA-
HMT-DB consists of 3816 images in which three fingers of each hand of 106 persons were
used, and six images were captured for each finger. Each dataset was classified according
to the finger used to acquire the image. HKPolyU-DB and SDUMLA-HMT-DB have a
total of 312 classes and 636 classes, respectively. The number of classes is calculated by
“the number of fingers”× “the number of hands”× “the number of persons”. For example,
because “the number of fingers”, “the number of hands”, and “the number of persons”
in SDUMLA-HMT-DB are 3, 2, and 106, respectively, the number of classes becomes
636 (3 × 2 × 106) in SDUMLA-HMT-DB. To perform two-fold cross validation for training
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and testing, 156 classes were used for the training set and another 156 classes were used
for the testing set for HKPolyU-DB, whereas 318 classes were used for the training set
and another 318 classes were used for the testing set for SDUMLA-HMT-DB in 1st-fold
validation. Specifically, the training and testing datasets did not include data from the
same class. The training set and testing set were switched once for the experiment in
the second-fold validation, and the average of the two accuracy values was used as the
final value. In detail, as shown in Table 4, in the first-fold validation, the images of 318
classes (classes 1~318) were used for training whereas those of the remaining 318 classes
(classes 319~636) were used for testing. In the second-fold validation, the images of 318
classes (classes 319~636) were used for training whereas those of the remaining 318 classes
(classes 1~318) were used for testing. The sets used in each database are summarized
in Table 4.

Table 4. Details of the experimental databases.

Database Subset Classes Number of Original Images Number of Augmented Images

HKPolyU-DB
Training 156 936 4680

Test 156 936 -

SDUMLA-HMT-
DB

Training 318 1908 9540

Test 318 1908 -

We increased the number of training images by five times (including original training
images) based on the data augmentation of image translation and cropping in the four
directions (left, right, up, and down directions) by referring to [4]. Therefore, the total
number of training images in HKPolyU-DB is 4680 (936 × 5) for each fold, and that in
SDUMLA-HMT-DB is 9540 (1908 × 5) for each fold as shown in Table 4. With these
augmented data, our models for domain adaptation and finger-vein recognition were
successfully trained as shown in Figures 6 and 7.
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When we generated the images from HKPolyU-DB by CycleGAN, the test images
of HKPolyU-DB were used for generation. Therefore, the number of generated images
is 936 as shown in Table 4. When we generated the images from SDUMLA-HMT-DB by
CycleGAN, the test images of SDUMLA-HMT-DB were used for generation. Therefore,
the number of generated images is 1908 as shown in Table 4.

Training and testing were performed using a desktop computer equipped with an
Intel® Core™ i7-3770K CPU @ 3.50GHz with 12GB RAM, and the graphics processing
unit (GPU) card of NVIDIA Geforce GTX 1070 [32]. Moreover, compute unified device
architecture (CUDA) version 9.0 [33] and CUDA deep neural network library (CUDNN)
version 7.4.2 [34] were used. To execute the model and algorithm proposed in this study,
Tensorflow framework version 1.15.1 [35] based on Python version 3.7.1 [36] was used.

5.2. Training of the Domain Adaptation Model

For the optimizer of the CycleGAN used for domain adaptation, the adaptive moment
estimation (Adam) optimizer [37] was used. The initial learning rate was 0.0001; the expo-
nential decay rate of the Adam optimizer was 0.9 for the first moment estimate and 0.999
for the second moment estimate. The learning rate strategies such as linear decay were
not used. The model was trained for a total of 100 epochs. The discriminator was trained
once for one mini-batch, whereas the generator was trained five times to solve the problem
of the difficulty in training the generator of CycleGAN. Owing to this training strategy,
the CycleGAN model used in this study was appropriately optimized for both the discrim-
inator and generator. Figure 6 shows the loss graph of the generator and discriminator of
the CycleGAN used in this study.

5.3. Training of Finger-Vein Recognition Model

A transfer learning strategy was used for training the finger-vein recognition model.
The fully connected layer of the original network fine-tuned with the ImageNet was
replaced with a fully connected layer with two-dimensional output, thus freezing the pre-
vious convolutional layer part and using the fully connected layer in the domain adapted
image for training. Figure 7 shows the loss and accuracy graphs of the DenseNet-161 used
in this study. These graphs imply that the DenseNet-161 model has been appropriately
optimized.

72



Sensors 2021, 21, 524

5.4. Evaluation Metrics

An EER was used as the evaluation metric in this experiment. Each input determines
genuine matching cases and imposter matching cases based on the matching score obtained
during finger-vein recognition. Here, the rate of cases in which imposter matching cases
have been categorized as genuine matching cases is the false acceptance rate (FAR), whereas
the rate of cases in which the genuine matching cases are categorized as the imposter
matching cases is the false rejection rate (FRR). The final EER is obtained at the threshold
point where FAR and FRR are the same.

5.5. Testing with HKPolyU-DB after Training with SDUMLA-HMT-DB (Including
Ablation Study)

In this section, the results of the experiment which proved the effect of the database
that has been domain adapted from HKPolyU-DB to SDUMLA-HMT-DB are presented.
As shown in Table 5, our CycleGAN was trained with the training data of HKPolyU-DB
(input domain) and SDUMLA-HMT-DB (target domain), and the trained CycleGAN gener-
ated the domain adapted image (similar to the images of SDUMLA-HMT-DB) by using the
testing data of HKPolyU-DB. Then, for testing, the generated images (similar to the images
of SDUMLA-HMT-DB) were used as input to our finger-vein recognition model trained
with the training data of SDUMLA-HMT-DB.

Table 5. Experimental scenario of our domain adaptation method (unit: %).

Training of CycleGAN Image Generation by
CycleGAN

Training of Finger-Vein
Recognition Model

Testing of Finger-Vein
Recognition Model

Using the training data of
HKPolyU-DB (input domain)

and SDUMLA-HMT-DB
(target domain)

Using the testing data of
HKPolyU-DB

Using the training data of
SDUMLA-HMT-DB

Using the generated images
by CycleGAN (similar to

SDUMLA-HMT-DB)

For two-fold cross validation, the model for domain adaptation was trained using the
training set. When both types of databases (HKPolyU-DB, SDUMLA-HMT-DB) were used
during domain adaptation, the training set and the testing set were strictly separated for
both databases in two-folds. Accordingly, the experiment was performed in an open-world
setting in which the class of training data was different from the class of testing data.

Table 6 shows the comparison of the drop of finger-vein recognition performance
for the same domain and cross-domain environment while the DenseNet-161 network is
applied in the same manner without the CycleGAN-based domain adaptation proposed in
this study.

Table 6. Comparisons of EER with same domain and cross-domain environment without our domain adaptation method
(unit: %).

Training of Finger-Vein Recognition Model Testing of Finger-Vein Recognition Model EER

HKPolyU-DB HKPolyU-DB 0.58

SDUMLA-HMT-DB HKPolyU-DB 1.80

As shown in Table 6, when training and testing were conducted using HKPolyU-DB,
the recognition rate was high with the EER of 0.58%. In contrast, when the model was
trained using SDUMLA-HMT-DB and tested using HKPolyU-DB without the CycleGAN-
based domain adaptation, the accuracy was significantly lower. As shown in Table 4,
the amount of data used in SDUMLA-HMT-DB were considerably greater than that used
on in HKPolyU-DB, and performance drop occurred even though they are both databases of
the same finger-vein scope. The difference in data between the two domains is not visually
noticeable; however, the heterogeneity between the two domains is definitely present.
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Moreover, the qualities of images in HKPolyU-DB are relatively better than those of images
in SDUMLA-HMT-DB, and the intra-class variance is lower. In other words, the training
set is a much more complex case than the testing set; thus, the performance drop is not
significant. However, compared with the same domain environment, the cross-validation
environment experienced a considerable performance drop, and the domain adaptation
method was used to solve this problem. Table 7 and Figure 8 show the accuracy of finger-
vein recognition of the various domain adaptation methods. Here, genuine acceptance
rate (GAR) is defined as 100–FRR (%). Therefore, we can find that the ratio of FRR to FAR
is smaller in case that the ROC curve is positioned higher (closed to the left-top position
of Figures 8 and 9), which means the ratio of GAR to FAR is higher. The experimental
results showed that the accuracy is significantly higher when the proposed CycleGAN-
based method is used compared to the cases when a domain adaptation method is not
applied or other domain adaptation methods were used. This result implies that domain
adaptation based on the proposed method sufficiently transferred the feature information
of each domain.

Table 7. Comparisons of EERs of the proposed method and other domain adaptation methods in
case of training with SDUMLA-HMT-DB and testing with HKPolyU-DB (unit: %).

Method EER

No domain adaptation 1.80

StarGAN-v2 [38] 1.34

ComboGAN [39] 2.77

CycleGAN (proposed method) 0.85
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Table 8 shows a comparison of the accuracy of the proposed method and the state-of-
the-art methods. The experimental results highlighted that the proposed method had a
higher recognition accuracy than the state-of-the-art methods.

Table 8. Comparisons of EER by the state-of-the-art methods and the proposed method in case of
training with SDUMLA-HMT-DB and testing with HKPolyU-DB (unit: %).

Method EER

Huang et al. [40] 9.46

Miura et al. [41] 6.49

Liu et al. [42] 5.01

Gupta et al. [43] 4.47

Miura et al. [44] 4.45

Dong et al. [45] 3.53

Liu et al. [46] 1.47

Xi et al. [47] 1.44

Joseph et al. [48] 1.27

Proposed method 0.85

5.6. Testing with SDUMLA-HMT-DB after Training with HKPolyU-DB (Including
Ablation Study)

In this section, we performed the experiments again by exchanging HKPolyU-DB
and SDUMLA-HMT-DB compared to the experiments of Section 5.5. Table 9 shows the
result of performing training and testing with SDUMLA-HMT-DB and of performing
training with HKPolyU-DB and testing with SDUMLA-HMT-DB. The performance drop
is greater compared to the result shown in Table 6, which can be because the degree of
noise, misalignment, and blur in the images in SDUMLA-HMT-DB are considerably greater
than those of the images in HKPolyU-DB. Therefore, the recognition performance in the
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cross-domain environment is significantly low because of the unique trait of the domain
transformed by noise or an image capturing device.

Table 9. Comparisons of EER with same domain and cross-domain environment without our domain adaptation method
(unit: %).

Training of Finger-Vein Recognition Model Testing of Finger-Vein Recognition Model EER

SDUMLA-HMT-DB SDUMLA-HMT-DB 2.17

HKPolyU-DB SDUMLA-HMT-DB 4.42

Table 10 and Figure 9 show the accuracy of finger-vein recognition obtained by various
domain adaptation methods. The experimental results showed that the accuracy is signifi-
cantly higher when the proposed CycleGAN-based method is used compared to when a
domain adaptation method is not applied or other domain adaptation methods were used.
Thus, the feature information that can be obtained from SDUMLA-HMT-DB has been well
adapted while partially maintaining the unique shape information of HKPolyU-DB. The re-
sults of StarGAN-v2 and ComboGAN are poorer than those of the proposed CycleGAN.
Table 7 and Figure 8 present similar results. Fundamentally, a CycleGAN is a network
designed for style transfer between two domains, whereas ComboGAN and StarGAN-v2
are designed for multi-domain transfer. Particularly, a StarGAN-v2 can not only simply
discriminate between real or fake data using a style code but can also discriminate the type
of domain generated. In a multi-domain focused architecture, performance is poorer as the
discrepancy between domains is greater. Only a specific region cannot have high activation
due to the trait of finger-vein data, and the heterogeneity in the shape information is
noticeably significant even if the databases appear similar. Furthermore, ComboGAN not
only mitigates the number of generators which increases with multi-domain transfer cases
but also attempts to solve the problem of deteriorating performance caused by a greater
difference in the domains of the existing StarGAN. However, the encoder and decoder
separated by the number of domains recognize a specific database as one style as proposed
by the ComboGAN, i.e., it failed to completely learn the domain distribution.

Table 10. Comparisons of EERs of the proposed method and other domain adaptation methods in
case of training with HKPolyU-DB and testing with SDUMLA-HMT-DB (unit: %).

Method EER

No domain adaptation 4.42

StarGAN-v2 [38] 4.43

ComboGAN [39] 8.96

CycleGAN (proposed method) 3.40

Table 11 shows the comparison of the accuracy between the proposed method and the
state-of-the-art methods. The experimental result showed that the proposed method had a
higher recognition accuracy than the state-of-the-art methods.

Figures 10 and 11 show examples of the image domains adapted using various meth-
ods. Figures 10a and 11a show the examples of the original image; the images on the left in
(b)–(g) are the source images and those on the right are images generated through domain
adaptation using the source images. That is, the left and right images of Figure 10b–g,
respectively, show original images and domain adapted images from SDUMLA-HMT-DB
and HKPolyU-DB using various methods ((b), (c) our method, (d), (e) ComboGAN, (f), (g)
StarGAN-v2). By comparing the right images of (b) and (c) with those of (d)–(g), the right
images of (b) and (c) by our method have more similar image characteristics (including
the distinctiveness of vein patterns) to the original images of HKPolyU-DB (Figure 10a)
compared to the right images of (d)–(g). In addition, as shown in Figure 11, by comparing
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the right images of (b) and (c) by our method with those of (d)–(g) by other methods,
the right images of (b) and (c) have more similar image characteristics (including to the
distinctiveness of vein patterns) to the original images of SDUMLA-HMT-DB (Figure 11a)
compared to the right images of (d)–(g).

Table 11. Comparisons of EER of the state-of-the-art methods and proposed method in case of
training with HKPolyU-DB and testing with SDUMLA-HMT-DB (unit: %).

Method EER

Jalilian et al. [18] 3.57

Pham et al. [49] 8.09

Miura et. al. [44] 5.46

Miura et al. [41] 4.54

Yang et al. [50] 3.96

CycleGAN (proposed method) 3.40

As shown in all examples, the image generated by the proposed method using a
CycleGAN has the best quality; the images generated by the StarGAN-v2 are somewhat
blurry and exhibit dark noises while transferring the target domain style to a certain
extent. Lastly, the image generated by the ComboGAN shows that the difference in data
quantity between SDUMLA-HMT-DB and HKPolyU-DB as well as the separated encoder
and decoder structure did not produce good performance. Unlike facial emotion data in
which features are concentrated in specific regions, the information is not concentrated
in specific regions in the finger-vein data; thus, it is difficult to assign a style. Therefore,
the results in Figures 10 and 11 are produced if the generator structure is not concrete
because the dataset is widely distributed.

Finally, the effect of the proposed method was analyzed by comparing the cases in
which recognition errors were produced in all schemes in which the proposed method and
domain adaptation were not applied and cases in which the model correctly recognized the
images only using the proposed method. Figure 12 summarizes the error cases generated
in the no adaptation method where SDUMLA-HMT-DB was used as the training set and
in the proposed method where SDUMLA-HMT-DB was domain adapted to HKPolyU-
DB. Figure 12a,b show the cases in which errors occurred even when domain adaptation
was performed using the proposed method. Specifically, Figure 12a is an example of a
false rejection case, and Figure 12b is the example of a false acceptance case. As shown
in Figure 12a, a major pixel translation observed even when the enrolled image and the
matched image were an authentic matching case. In Figure 12b, both images were not
properly acquired because of the imbalance in lighting intensity of the NIR sensor used
for acquiring the finger-vein images. Because of these problems, the finger-vein pattern
appeared only in a limited region of the image, which resulted in an imposter matching
case which appeared as an authentic matching case. In addition, correctly recognizing if
the shape pattern, which is important information, is distributed in a similar manner, is a
challenging task.
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Figure 10. Examples of original images and domain adapted images: (a) Original image of HKPolyU-
DB. Left and right images of (b–g) respectively, show original images and domain adapted images
from SDUMLA-HMT-DB and HKPolyU-DB using various methods. (b,c) proposed method, (d,e)
ComboGAN, (f,g) StarGAN-v2.
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that it is difficult to identify the overall finger-vein pattern because finger-vein infor-
mation is acquired from a limited region; however, a good recognition performance was 
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Figure 12. Examples of errors in case of testing with HKPolyU-DB: (a) False rejection case by both
proposed method and no domain adaptation, (b) false acceptance case by both proposed method and
no domain adaptation, (c) false rejection case by the no adaptation method, but correct recognition
case by the proposed method, (d) false acceptance case by the no adaptation method, but correct
rejection case by the proposed method. Left and right images of (a–d) show enrolled and matched
images, respectively.

Figure 12c,d are the results of correct recognition when the proposed method was
used in which 12c shows the falsely rejected case and 12d shows the falsely accepted case in
a scheme where the domain adaptation method was not applied. Figure 12c is an authentic
matching case; however, a problem was observed when the intensity of lighting varied
during the image capturing trial. However, the data for which domain adaptation was
performed are effective against the variance in lighting intensity as such information of
the source domain, SDUMLA-HMT-DB, was also transferred. Figure 12d also shows that
it is difficult to identify the overall finger-vein pattern because finger-vein information is
acquired from a limited region; however, a good recognition performance was still observed
when the proposed method was used appropriately using the scarcely available finger-vein
pattern. Therefore, a robust performance was achieved for extracting the finger-vein valley
through domain adaptation.

Unlike Figure 12, Figure 13 summarizes the error cases generated in the no adaptation
method where HKPolyU-DB was used as the training set, and in the proposed method
where HKPolyU-DB was domain adapted to SDUMLA-HMT-DB. The information was
mostly not contained in the images properly for the data of SDUMLA-HMT-DB, which is
similar to the data of HKPolyU-DB. In particular, the cases in Figure 13a,b only contained
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a small amount of finger-vein patterns, and the recognition was performed using the
background information during testing. This problem cannot be easily solved by domain
adaptation, and therefore, it was not successfully recognized in the case where the proposed
method was used. Even though the case in Figure 13c is an authentic matching case,
the pixel translation between the enrolled image and the matched image was significantly
large, while the forms of the shades slightly varied. However, for the data generated using
the proposed method, the finger-vein pattern of each domain was effectively transferred,
thus producing robust performance for the finger-vein pattern of SDUMLA-HMT-DB
along with the focused form of the finger-vein pattern. This shows that the network was
optimized to generate variations in the vein pattern information by focusing on the vein
pattern when training the CycleGAN. Figure 13d also shows that it is difficult to identify the
overall finger-vein pattern because the finger-vein information is acquired from a limited
region; however, a good recognition performance was still observed when the proposed
method was used appropriately using the scarcely available finger-vein pattern.
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6. Discussion

In this section, we briefly compared the previous and proposed methods with advan-
tages and disadvantages, as shown in Table 12.

Table 12. Comparisons of the previous and proposed methods for hand-based biometrics.

Categories
Considering

the Cross-Domain
Problem

Method Modality Advantage Disadvantage

Non-training-
based

No

Wide line detector and
pattern normalization

[40]

Finger-vein

Simple and
computationally
efficient than
training-based
method

Performance is not
good compared to
training-based
method

Maximum curvature
points [41]

Minutiae matching [42]

Multi-scale matched
filter [43]

Repeated line tracking
[44]

Personalized best
patches map [45]

Superpixel-based [46]

Discriminative binary
codes [47]

Fuzzy rule-based [48]

Local binary pattern [49]

Tri-branch vein structure
[50]

Yes

Dimension reduction
and orientation coding

algorithm [7]
Palmprint

SIFT [8]
Dorsal hand-vein

Improved SIFT [9]

BGP and Gabor-HoG
[10]

FingerprintLeast square-based
domain transformation

function [11]
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Table 12. Cont.

Categories
Considering

the Cross-Domain
Problem

Method Modality Advantage Disadvantage

Training-
based

No

VGG-16 and CNN [20]

Preprocessing is
not required

No consideration
about the
heterogeneous
data problemPatch-based MobileNet

[21]

CGAN [19]

Does not show
good performance
in cross-sensor
environments

FCN [18] Finger-vein

Using compact
information on
recognition stage
increases
generality

Unreliable label
data were used

Yes

FLDA [12] Face and
fingerprint

Simple method for
domain adaptation

Needs multiple
modality data
from same people

Universal material
translator wrapper [13]

Fingerprint

Uses a simple style
transfer network

Generated images
cannot deal with
level 3 features

DeepDomainPore
network [14]

Can exploit level 3
features using
low-resolution
input

Long
preprocessing time
and ground truth
required for source
data

PalmGAN [15]

Palmprint

Automatically
generates label
data for target
domain

- Long
preprocessing time
and ground truth
required for source
data
Segmentation
method is unstableAuto-encoder [16]

Automatically
generates label
data for target
domain
Simple method for
domain matching
with good
matching
performanceDeepScatNet and RDF

[17] Finger-selfie

CycleGAN-based
(Proposed method) Finger-vein

High performance
for domain
adaptation
Does not need
ground truth for
source data

Intensive training
for CycleGAN is
necessary

In case of five-fold or 10-fold cross validation, the number of training data becomes
much larger, and the consequent accuracy of testing becomes higher than that by two-fold
cross validation in most cases due to the sufficient training of model. However, it is very
difficult to acquire the sufficient number of training data in real world cases. Considering
these cases, we aim at measuring the testing accuracies even with insufficient training data
based on two-fold cross validation in our experiments.
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The proposed method failed the correct recognition in the following cases; (i) a major
pixel translation observed even when the enrolled image and the matched image were
an authentic matching case, (ii) both the enrolled and matched images were not properly
acquired because of the imbalance in lighting intensity of the NIR sensor used for acquiring
the finger-vein images, and (iii) the captured image only contained small amount of finger-
vein patterns, and the recognition was performed using the background information
during testing.

7. Conclusions

In this study, we propose a finger-vein recognition system in which domain adaptation
is applied to solve the problem of the performance drop in a finger-vein recognition system
when unobserved data are used. Domain adaptation was performed using CycleGAN,
and the proposed domain adapted model proved to be effective using two databases—
HKPolyU-DB and SDUMLA-HMT-DB. All cases found in the real environment include
unobserved data; thus, a performance drop in similar circumstances is critical. As a finger-
vein recognition system is used for security purposes, unstable performance depending on
specific situations would decrease the reliability, thus making its application to real-world
applications difficult. Using the proposed method, a stable finger-vein recognition system
with improved generality can be applied to various real-world applications.

In this research, we focused on checking the possibility of domain adaptation of
heterogeneous finger-vein databases. Therefore, we used the well-known CycleGAN and
DenseNet-161 whose performances for style transfer of unpaired data and classification
were already confirmed, respectively, in many previous researches of different applications.
We performed only the fine-tuning of CycleGAN and DenseNet-161 with our experimental
data. We would research the method of further customization of CycleGAN and DenseNet-
161 to enhance the accuracies as future works.

In addition, we would research the advanced domain adaptation method, which can
solve the cases of major pixel translation between the enrolled and matched images, the im-
balance of lighting intensity in the captured image, and the small amount of finger-vein
patterns contained in the captured image explained in Section 6. We would also evaluate
the performance by five-fold or 10-fold cross validation in future work. In addition, a finger-
vein recognition system with a more robust performance for unobserved data will be further
studied in the future by improving the generality of the domain through multiple-domain
adaptation, rather than simple domain adaptation between two databases. Furthermore,
the efficacy of domain adaptation proposed in this study will also be researched for diverse
biometric data such as palm and hand dorsal vein images, visible and NIR iris images,
and visible and NIR face images.
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Abstract: Depth estimation is a crucial component in many 3D vision applications. Monocular depth
estimation is gaining increasing interest due to flexible use and extremely low system requirements,
but inherently ill-posed and ambiguous characteristics still cause unsatisfactory estimation results.
This paper proposes a new deep convolutional neural network for monocular depth estimation. The
network applies joint attention feature distillation and wavelet-based loss function to recover the
depth information of a scene. Two improvements were achieved, compared with previous methods.
First, we combined feature distillation and joint attention mechanisms to boost feature modulation
discrimination. The network extracts hierarchical features using a progressive feature distillation and
refinement strategy and aggregates features using a joint attention operation. Second, we adopted
a wavelet-based loss function for network training, which improves loss function effectiveness by
obtaining more structural details. The experimental results on challenging indoor and outdoor
benchmark datasets verified the proposed method’s superiority compared with current state-of-the-
art methods.

Keywords: monocular depth estimation; feature distillation; joint attention; loss function

1. Introduction

Depth estimation is a fundamental computer vision task and is in high demand for
manifold 3D vision applications, such as scene understanding [1], robot navigation [2,3],
action recognition [4], 3D object detection [5], etc. Monocular depth estimation (MDE) is a
more affordable solution for depth acquisition due to extremely low sensor requirements,
compared with common depth sensors, e.g., Microsoft’s Kinect or stereo images. However,
MDE is ill-posed and inherently ambiguous due to one-too-many mapping from 2D to 3D
and remains a very challenging topic.

Classical approaches often design hand-crafted features to deduce depth information,
but hand-crafted features have no generality across different real-world scenes. Hence,
classical approaches have considerable difficulty in acquiring reasonable accuracy. Deep
convolutional neural network (DCNN) architectures could be considered as the effective
reconstruction methods for many applications with ill-posed problem properties [6–8].
Powerful feature generalization and representation has become available recently through
DCNN, which have been successfully introduced to MDE and demonstrated superior
performances to the classical approaches [9].

Most DCNN-based MDE methods are based on encoder–decoder architecture. Stan-
dard DCNN originally designed for the image classification task are selected as encoders,
e.g., ResNet [10], DenseNet [11], SENet [12], etc. These encoders gradually decrease the
feature map spatial resolution by pooling while learning the rich feature representation.
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Since feature map resolution increases during decoding, various deep-learning methods
have been adopted to provide high-quality estimations, including skip connection [13–17],
multiscale feature extraction [18–22], attention mechanism [23–26], etc. Although great im-
provements have been achieved for MDE methods, reconstructing the depth for fine-grain
details still requires further improvements, as shown in Figure 1.
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The current methods struggle to precisely recover large-scale geometry regions (walls)
and local detail regions with rich structural information (boundaries and small parts)
simultaneously, because the methods still lack the sufficient flexibility and discriminative
modulation ability to handle regions with different feature information during up-sampling.
This insufficiency limits the feature representation and significantly reduces the estimation
accuracy in many cases.

Another area for improvement is the loss function design. Several loss function terms
are commonly combined to construct loss functions for predicting a better-quality depth.
Various weight-setting methods for the loss function terms have been proposed to balance
the training process [27–29], but how to enhance loss function effectiveness for fixed loss
term combinations remains an open question.

Therefore, we proposed a new DCNN to settle this issue. We designed an attention-
based feature distillation block (AFDB) to address the insufficiency above and integrate it
into each up-sampling process in the decoder. To our best knowledge, this is the first time
feature distillation has been introduced to MDE. The AFDB enriches feature representation
through a series of distillation and residual asymmetric convolution (RAC) layers. We also
propose a joint attention module (JAM) to adaptively and simultaneously rescale features
depending on the channel and spatial contexts. The designed AFDB incorporates the
proposed JAM, providing flexible and discriminative modulation to handle the features.

We also designed a wavelet-based loss function to enhance the loss function effective-
ness by combining the multiple loss function with discrete wavelet transform (DWT). The
estimated depth map is first divided into many patches using DWT at various frequencies,
highlighting high-frequency information from depth map edge areas. The loss for each
patch is then reasonably combined to generate the final loss. The experimental results
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verified that this loss function modification could significantly improve various metrics on
benchmark datasets.

Our main contributions are summarized as follows:

• A novel AFDB was designed for the proposed DCNN-based MDE method by com-
bining feature distillation and joint attention mechanisms to boost discriminative
modulation for feature processing.

• A wavelet-based loss function was adopted to optimize the training by highlighting
the structural detail losses and, hence, improve the estimation accuracy.

• The proposed network was superior to most state-of-the-art MDE methods on two
public benchmark datasets: NYU-Depth-V2 and KITTI.

2. Related Works

We discuss and summarize supervised DCNN-based MDE methods in Section 2.1
and briefly review the related techniques, i.e., attention mechanism, feature distillation,
and loss function design, in Sections 2.2–2.4, respectively.

2.1. Supervised DCNN-Based MDE Methods

The Supervised DCNN-based MDE methods utilize the DCNN to realize the nonlinear
mapping from the RGB image to the depth map. The Supervised DCNN-based methods
have become significantly efficient for MDE, with many publicly available RGB and depth
map (RGBD) datasets, due to their powerful feature generalization and representation.
Eigen et al. [30] proposed a multiscale deep network for MDE that included coarse and
fine-scaled network pathways with skip connections between the corresponding layers.
Laina et al. [31] used ResNet architecture and several up-projection operators to attain the
final depth maps. Cao et al. [32] designed a fully convolutional deep residual network that
explicitly considered the long tail distribution of the ground truth depth and regarded the
MDE problem as a pixel-wise classification task.

Repeated pooling while learning the rich-feature representations for supervised
DCNN-based models inevitably reduces the feature map spatial resolution, which poorly
influences the fine-grain depth estimation. Li et al. [33] and Zheng et al. [34] integrated
hierarchical depth features to settle this problem. They combined different resolution depth
features with up-convolution to realize a coarse-to-fine process. Godard et al. [14] and
Liu et al. [13] used skip connection to aggregate feature maps in lower layers, with same
resolution feature maps in deeper layers. Other studies [18–22] have aggregated multiscale
contexts to improve prediction performances. For example, Fu et al. [18] applied dilated
convolution with multiple dilation rates to extract multiscale features and, subsequently,
developed a full-image encoder to capture image level features, Zhao et al. [19] employed
image super-resolution techniques to generate multiscale features, and Chen et al. [20]
proposed an adaptive dense feature aggregation module to aggregate effective multiscale
features to infer scene structures.

Several recent multitask learning methods [35–40] have been successfully introduced
for MDE by estimating depth maps with other information, such as semantic segmentation
labels, surface normals, super pixels, etc. For example, Eigen and Fergus [35] combined
semantic segmentation, surface normal, and depth estimation cues to build a single DCNN.
This single architecture simplifies implementing a system that requires multiple prediction
tasks. Ito et al. [36] proposed a 3D representation for semantic segmentation and depth
estimation from a single image. Lin et al. [37] proposed a hybrid DCNN to integrate
semantic segmentation and depth estimation into a unified framework. Although multitask
learning methods can boost estimation performances, the required multibranch design in
the decoder increases the model parameters and reduces the running speed.

2.2. Attention Mechanism

The attention mechanism can enhance the network representation by increasing the
model sensitivity to informative and important features. This has been widely adopted for
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MDE. For example, Chen et al. [23] enhanced the feature discrimination by designing an
attention-based context fusion network to extract image and pixel-level context information,
Li et al. [24] applied a channel-wise attention mechanism to extract discriminative features
for each resolution, Wang et al. [25] used joint attention mechanisms in their framework to
improve the presentation for highest level of feature maps, Chen et al. [15] proposed spatial
attention and global context blocks to extract features by blending cross-channel informa-
tion, and Huynh et al. [41] proposed a guiding depth estimation to favor planar structures
by incorporating a nonlocal coplanarity constraint with a nonlocal attention mechanism.

2.3. Feature Distillation

Feature distillation is a recently developed method that has been efficiently applied
to super-resolution tasks. The method usually adopts channel splitting to distill feature
maps and gain more efficient information. Hui et al. [42] first proposed a feature distilla-
tion network to aggregate long and short path features. Hui et al. [43] further advanced
the concept and constructed a lightweight cascaded feature multi-distillation block by
combining distillation with selective fusion operation. The selective fusion was imple-
mented by their proposed contrast-aware attention layer. Liu et al. [44] recently proposed
a lightweight residual feature distillation network using a shallow residual block and
multiple feature distillation connections to learn more discriminative representations. The
proposed model was the winning solution for the advances in image manipulation 2020
(AIM2020) constrained image super-resolution challenge [45].

2.4. Loss Function Design

Learning in DCNNs is essentially an optimization process, i.e., a neural network
adjusts the network weights depending on the loss function value. Therefore, the loss
function is important for generating the final estimation model. Many previous studies
combined multiple loss terms to build the loss function. However, some loss terms can
be ignored during training when many are included, and an adaptive weight adjustment
strategy is also required to balance the contribution from each loss term, since they reduce
at different rates. Jiang et al. [27] proposed an adaptive weight allocation method based on a
Gaussian model for their proposed hybrid loss function. Liu et al. [28] proposed an effective
adaptive weight adjustment strategy to adjust each loss term’s weight during training. Lee
et al. [29] proposed a loss rebalancing algorithm to initialize and rebalance weights for loss
terms adaptively during training. Yang et al. [46] adopted DWT to reform the structural
similarity (SSIM) loss [47] and achieved improved reconstructions. These methods were
proposed to enhance the loss function effectiveness under fixed loss term combinations.

Although great improvements have been achieved for MDE methods, reconstructing
the depth for fine-grain details still requires further improvements. Our proposed method
employed a single-task encoder–decoder architecture that has fewer model parameters
and faster running speed compared with the multitask learning architecture. We efficiently
integrated feature distillation and joint attention mechanisms in the decoder to further
boost the discriminative modulation for feature processing. We also combined multiple
loss functions with DWT to enhance the loss function effectiveness.

3. Proposed Method

This section describes the proposed MDE method. Sections 3.1 and 3.2 discuss the
network architecture and provide details for the proposed AFDB, respectively. Section 3.3
details the proposed wavelet-based loss function.

3.1. Network Architecture

Figure 2 shows the proposed network architecture. We use a standard encoder–
decoder architecture with skip connections between same resolution layers. The encoder is
modified from the standard DCNN that was originally designed for image classification by
removing the final average pooling and fully connected layers. In the decoding stage, we
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first attached a 1 × 1 convolutional layer to the top of the encoder for feature reduction. We
concatenated up-sampled feature maps in the decoder with feature maps from the encoder
that have the same resolution to enrich the feature representation and provide flexible
and discriminative modulation for the feature maps. The concatenated feature maps were
refined using the proposed AFDB. After gradually recovering the feature maps back to the
expected depth map resolution, the AFDB output was fed into a 3 × 3 convolutional layer
to derive the final estimation.
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3.2. Attention-Based Feature Distillation

Figure 3 shows the proposed AFDB to enrich the feature representation and improve
the flexible and discriminative modulation during up-sampling in the decoder. The first
1 × 1 convolutional layer reduces the concatenated feature map channels from the encoder
and decoder with the same resolution. The subsequent block with a residual connection
includes the progressive refinement, local fusion, and joint attention modules. The progres-
sive refinement module enriches the feature representation through several distillation and
feature refinement steps. The local fusion module is a commonly employed structure that
includes concatenation and a 1 × 1 convolutional layer, providing local feature reduction
and fusion for all branch outputs from the progressive refinement module. The JAM further
enhances the feature discriminative modulation by fully considering the feature channel
and spatial contexts.

The proposed AFDB was modified from the feature distillation block structure pro-
posed by [44], incorporating two improvements. We replaced the shallow residual block
of [44] with the RAC in the progressive refinement module, which efficiently enhanced
the model robustness to rotational distortions in image classification [48]. We effectively
integrated a channel attention branch in parallel to the original contrast aware attention
layer, enhancing the discriminative modulation for the block.
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3.2.1. Progressive Refinement Module

Figure 3a shows the proposed progressive refinement module structure. Each step uses
a 1× 1 convolutional layer to distill some features and an RAC layer to further refine the re-
maining features simultaneously. The RAC comprises an asymmetric convolution with skip
connections, where the asymmetric convolution comprises three parallel layers with 3 × 3,
3 × 1, and 1 × 3 kernels. The outputs are summed to enrich the feature representation.

Given the input features Fin for the progressive refinement block and four-step distil-
lation, the procedure can be described as

Fref1 , Fdis1 = Split1(Fin), (1)

Fref2 , Fdis2 = Split2
(

Fref1

)
, (2)

Fref3 , Fdis3 = Split3
(

Fref2

)
, (3)

and
Fref4 , Fdis4 = Split4

(
Fref3

)
, (4)

where Spliti denotes the i-th channel splitting operation, which includes a 1 × 1 convo-
lutional layer to generate the distilled features Fdisi and a 3 × 3 convolutional layer to
generate the refined features Frefi , which will be further processed by succeeding layers.
Distilled feature channels are half the dimensionality of the original.

After the four-step operation, we use a 3 × 3 convolutional layer to further filter the
last RCAB:

Ffil = W3 × 3
fil

(
Fref4

)
, (5)

where W denotes convolution.
The local fusion procedure can be expressed as

FLF = W1 × 1
LF

(
Concat(Ffil, Fdis1 , Fdis2 , Fdis3 , Fdis4

)
), (6)
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where Concat denotes concatenation.

3.2.2. Joint Attention Module

Figure 4 shows the proposed JAM structure, inspired by lightweight joint attention
modules [49] that infer attention maps along the channel and spatial dimensions simulta-
neously, to further enhance the feature discriminative modulation. We adopted a residual
connection and joint attention mechanism to facilitate the gradient flow. The JAM pro-
duces a 3D attention map for the input feature maps by combining parallel channel and
spatial attention branches. Thus, JAM can refine feature maps and enhance the feature
representation while fully considering the channel and spatial contexts.
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Figure 4 shows that, for a given input feature map FLF, i.e., the local fusion module
output, we simultaneously compute the channel attention Mc(FLF) and spatial attention
Ms(FLF) in the channel and spatial attention branches, respectively. The joint 3D attention
map M(FLF) is then computed as

M(FLF) = σ(Mc(FLF) + Ms(FLF)), (7)

where σ denotes the sigmoid function. The refined feature maps are

FRF = FLF + FLF ⊗M(FLF), (8)

where ⊗ denotes element-wise multiplication.
The channel attention Mc(FLF) exploits the inter-channel relationships for the feature

maps, which mainly includes three steps (Figure 4):

1. Global average pooling on the input feature maps to fetch global information for
each channel.
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2. Multilayer perceptron with one hidden layer to predict the attention across the com-
puted channels.

3. Batch normalization layer to adjust the scale with another spatial branch output.

The procedure can be described mathematically as

Mc(FLF) = BN(MLP(GAP(FLF))), (9)

where BN denotes the batch normalization, MLP denotes the multilayer perceptron, and
GAP denotes the global average pooling.

Spatial attention Ms(FLF) emphasizes or restrains the feature maps in different spatial
locations, which mainly includes five steps (Figure 4):

1. 1 × 1 convolutional layer to compress the channel dimensions.
2. Stride convolution and max-pooling layers combined to enlarge the receptive field to

receive more useful information.
3. Convolutional group with two 3 × 3 convolutional layers to catch the spatial context

information and up-sampling layer to recover the spatial dimensions.
4. 1 × 1 convolutional shortcut and adding its output to the step 3 output to further

enrich the spatial context information.
5. 1 × 1 convolutional layer to recover the channel dimensions.

Thus, the spatial attention is computed as

Ms(FLF) = W1 × 1
s3

(
Up
(

W3 × 3
s2

(
W3 × 3

s1

(
Mp
(

Wstride
s

(
W1 × 1

s1
(FLF)

)))))
+ W1 × 1

s2

(
W1 × 1

s1
(FLF)

))
, (10)

where Up denotes up-sampling, and Mp denotes max-pooling.

3.3. Wavelet-Based Loss Function

In order to balance the reconstructing depth maps by minimizing the difference
between the ground truth while also penalizing the loss of high-frequency details that
typically correspond to the object boundaries in the scene, four loss terms were combined
in our loss function as follows:

1. Depth loss. Balance loss contributions for different distances. We calculate the BerHu
loss [31] in logarithm space:

Ldep =
1
n ∑n

i=1 ln(|gi − di|b + α1), (11)

where

|x|b =

{
|x|, |x| ≤ c

x2+c2

2c , |x| > c
, (12)

di and gi are the predicted depth map value and corresponding ground truth for pixel
index i, respectively, n is the total number of pixels in the current batch, α1 = 5 is a
constant parameter; and we set c = 0.2 max

n
(|gi − di|).

2. Gradient loss. Penalizes acute object boundary changes in both the x and y directions
that show abundant fine-feature granularity:

Lgra =
1
n ∑n

i=1 ln
(∣∣∣∇sobel

x (ei)
∣∣∣+
∣∣∣∇sobel

y (ei)
∣∣∣+ α2

)
, (13)

where e is the L1 Euclidean distance between the predicted depth map and the corre-
sponding ground truth, ∇sobel

x and ∇sobel
y represent the horizontal and vertical Sobel

operators that calculate the gradient information, and α2 = 0.5 is a constant parameter.
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3. Normal loss. Minimize the angle between the predicted surface normal and corre-
sponding ground truth to help emphasize the small details in the predicted depth map:

Lnor =
1
n ∑n

i=1

∣∣∣∣∣∣∣∣
1−

〈
nd

i , ng
i

〉

√〈
nd

i , nd
i
〉√〈

ng
i , ng

i

〉

∣∣∣∣∣∣∣∣
, (14)

where nd
i =

[
−∇x(di),−∇y(di), 1

]
and ng

i =
[
−∇x(gi),−∇y(gi), 1

]
are the surface

normal for the predicted depth map and corresponding ground truth, respectively.
4. SSIM loss. Global consistency metric commonly employed for computer vision tasks:

LSSIM = 1−
(
2µdµg + c1

)(
2δdg + c2

)

(
µ2

d + µ2
g + c1

)(
δ2

d + δ2
g + c2

) , (15)

where µd and µg are the predicted depth map and ground truth means, respectively,
δd and δg are predicted depth map and ground truth standard deviations, respec-
tively, δdg is the covariance between the predicted depth map and ground truth, and
constants c1 = 2 and c2 = 6 follow [46].

Given the DWT invertibility, all depth maps features are preserved by the decom-
position scheme. Importantly, DWT captures the depth map location and frequency
information, which is helpful for penalizing the high-frequency detail loss that typically
corresponds with the object texture. Thus, we propose combining the DWT and multi-
ple loss terms. Figure 5 shows applying iterative DWT decomposes the depth map into
different sub-band images, which can be expressed as

ILL
i+1, ILH

i+1, IHL
i+1, IHH

i+1 = DWT
(

ILL
i

)
, (16)

where subscript i refers to output from the i-th DWT iteration, and ILL
0 is the original

depth map.
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The four loss terms described above are calculated from the original depth map,
ILL
0 , and sub-band images ILL

i ,i = 1, · · · , n, where n is the number of DWT iterations.
We supplemented some depth losses on the basis of the sub-band images ILH

i , IHL
i , and

IHH
i , i = 1, · · · , n, i.e., loss information for high-frequency details that typically correspond

to the object’s horizontal edge, vertical edge, and corner in the depth map, which are very
useful for fine-grain estimation. These loss terms can be expressed as

LW−dep = ∑n
i=0 Ldep

(
ILL
i

)
+ ∑n

i=1

(
Ldep

(
ILH
i

)
+ Ldep

(
IHL
i

)
+ Ldep

(
IHH
i

))
, (17)
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LW−gra = ∑n
i=0 Lgra

(
ILL
i

)
, (18)

LW−nor = ∑n
i=0 Lnor

(
ILL
i

)
, (19)

and
LW−SSIM = ∑n

i=0 LSSIM

(
ILL
i

)
, (20)

and hence, the final loss function is

Ltotal = LW−dep + LW−gra + LW−nor + LW−SSIM. (21)

Similar conclusions were found by [15] and [46]. Reference [46] extended the SSIM loss
by combining it with DWT and showed that this simple modification could improve recon-
struction for single-image dehazing. Reference [15] showed that simply allocating larger
weights to edge areas in the loss function could boost performances in the border areas.

4. Experiments

Section 4.1 describes the experimental setup, including the datasets, evaluation met-
rics, and implementation details. Section 4.2 compares the experimental results with
the current state-of-the-art methods on two public datasets: NYU-Depth-V2 [50] (indoor
scenes) and KITTI [51] (outdoor scenes). Section 4.3 uses the NYU-Depth-V2 dataset to
analyze the effectiveness and rationality of the AFDB and wavelet-based loss function.
Finally, Section 4.4 uses cross-dataset validation on the iBims-1 [52] dataset to assess the
proposed method’s generality.

4.1. Experimental Setup
4.1.1. Datasets

The NYU-Depth-V2 dataset contains 464 indoor scenes captured by Microsoft Kinect
devices. Following the official split, we used 249 scenes (approximately 50-K pair-wise
images) for training and 215 scenes (654 pair-wise images) for testing.

The KITTI dataset was captured using a stereo camera and rotating LIDAR sensor
mounted on a moving car. Following the commonly used Eigen split [30], we used 22-K
images from 28 scenes for training and 697 images from different scenes for testing.

iBims-1 is a high-quality RGBD dataset comprising 100 high-quality images and
corresponding depth maps particularly designed to test MDE methods. A digital single-
lens reflex camera and high-precision laser scanner were used to acquire the high-resolution
images and highly accurate depth maps for diverse indoor scenarios. We use iBims-1 for
cross-dataset validation to assess the proposed method’s generality.

4.1.2. Evaluation Metrics

The performance was quantitatively evaluated using standard metrics for these
datasets, as shown below for the ground truth depth y∗i , estimated depth yi, and total
pixels n in all evaluated depth maps.

• Absolute relative difference (Abs Rel):

Abs Rel =
1
n ∑i

∣∣yi − y∗i
∣∣

y∗i
. (22)

• Squared relative difference (Sq Rel):

Sq Rel =
1
n ∑i

‖yi − y∗i
2‖

y∗i
. (23)
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• Mean Log10 error (log10):

log 10 =
1
n ∑i

∣∣log10 yi − log10 y∗i
∣∣. (24)

• Root mean squared error (RMS):

RMS =

√
1
n ∑i

(
yi − y∗i

)2. (25)

• Log10 root mean squared error (logRMS):

logRMS =

√
1
n ∑i

(
log10 yi − log10 y∗i

)2. (26)

• Threshold accuracy (TA):

TA =
1
n ∑i g(yi, y∗i ), (27)

where

g(yi, y∗i ) =

{
1, δ = max

(
y∗i
yi

, yi
y∗i

)
< thr

0, otherwise
. (28)

The threshold accuracy is the ratio of the maximum relative error δ below the threshold
thr. Conditions δ < 1.25, δ < 1.252, and δ < 1.253 were used in the experiment, denoted
as δ1, δ2, and δ3, respectively.

4.1.3. Implementation Details

The proposed model was implemented with the PyTorch [53] framework and trained
using two Nvidia RTX 2080ti graphics processing units (GPUs). The encoders were both
pretrained on the ImageNet dataset [54], and the other layers were randomly initialized.
The Adam [55] optimizer was selected with β1 = 0.9 and β2 = 0.999, and the weight decay
= 0.0001. We set the batch size = 16 and trained the model for 20 epochs.

For the NYU-Depth-V2 dataset, we first cropped each image to 228 × 304 pixels,
and the offline data augmentation methods were as the same as those of the mainstream
approaches [18,20,22], i.e., each training image was augmented with random scaling (0.8,
1.2), rotation (−5◦, 5◦), horizontal flip, rectangular window dropping, and color shift
(multiplied by random value (0.8, 1.2)).

For the KITTI dataset, we masked out the sparse depth maps projected by the LIDAR
point cloud and evaluated the predicted results only for valid points with ground depths.
We capped the maximum estimation at the KITTI dataset maximum depth (80 m). The
data augmentation methods were the same as those in [23].

4.2. Results

Table 1 shows the evaluation metrics comparing the proposed model with several
state-of-the-art methods on NYU-Depth-V2. The DenseNet-161, ResNet-101, and SENet-154
encoders were selected to verify the proposed method’s flexibility. Figure 6 visualizes the
trade-off between the performance and model parameters. The results for the comparison
methods were taken from their relevant literature.
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Table 1. Model performance on NYU-Depth-V2. Best scores are highlighted in bold font. The
attention-based feature distillation block (AFDB) distillation step = 5 and discrete wavelet transform
(DWT) iteration = 3. Abs Rel: absolute relative difference and RMS: root mean squared error.

Method
Error (Lower is Better) Accuracy (Higher is Better)

Abs Rel RMS Log10 δ1 δ2 δ3

Eigen et al. [30] 0.212 0.873 - 0.611 0.887 0.969
Laina et al. [31] 0.127 0.573 0.055 0.811 0.953 0.988
Chen et al. [23] 0.138 0.496 - 0.826 0.964 0.990
Lee et al. [21] 0.131 0.538 - 0.837 0.971 0.994
Qi et al. [40] 0.128 0.569 - 0.834 0.960 0.990

Zhao et al. [19] 0.128 0.523 0.059 0.813 0.964 0.992
Li et al. [33] 0.134 0.540 0.056 0.832 0.965 0.989

Hao et al. [26] 0.127 0.555 - 0.841 0.966 0.991
Alhashim et al. [17] 0.123 0.465 0.053 0.846 0.974 0.994

Huang et al. [39] 0.122 0.459 0.051 0.859 0.972 0.993
Hu et al. [22] 0.115 0.530 0.050 0.866 0.975 0.993
Fu et al. [18] 0.115 0.509 0.051 0.828 0.965 0.992

Wang et al. [25] 0.115 0.519 0.049 0.871 0.975 0.993
Chen et al. [20] 0.111 0.514 0.048 0.878 0.977 0.994

Ours (DenseNet-161) 0.122 0.534 0.050 0.857 0.972 0.993
Ours (ResNet-101) 0.123 0.532 0.052 0.854 0.972 0.992
Ours (SENet-154) 0.113 0.504 0.048 0.878 0.978 0.995
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Table 1 confirms that the proposed method achieved good performances for all the
encoder architectures, with the SENet-154 encoder architecture providing the best perfor-
mance. The proposed method also achieved a comparable or better performance compared
with the current state-of-the-art methods.

Figure 6 shows that the proposed model achieved better a trade-off between the
performance and model parameters, with only the Abs Rel metric being less than [20],
but [20] has more parameters. The proposed method with the DenseNet-161 and ResNet-
101 encoders achieved better performances compared with other methods with less than
100 M parameters.

Figure 7 compares the estimated depth maps, and more qualitative results are pre-
sented in Appendix A. The display pixels for all the estimated depth maps were the same
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as those for ground truth to provide easier comparisons. The proposed method achieved
better geometric details and object boundaries than the other methods. Thus, the proposed
method provides better fine-grain estimations.
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Table 2 compares the proposed method on the KITTI test dataset using the SENet-154
encoder, with some quantitative comparisons in Figure 8 and more qualitative results
in Appendix A. The proposed method outperforms most state-of-the-art methods and
provides better object boundaries.

Table 2. Performance evaluation on the KITTI. The best scores are highlighted in bold font. Sq Rel:
squared relative difference.

Method
Error (Lower is Better) Accuracy (Higher is Better)

Abs Rel RMS Sq Rel logRMS δ1 δ2 δ3

Eigen et al. [30] 0.190 7.156 1.515 0.270 0.692 0.899 0.967
Godard et al. [14] 0.148 5.927 1.515 0.247 0.802 0.922 0.964

Jiang et al. [27] 0.128 5.299 1.037 0.224 0.837 0.939 0.971
Li et al. [33] 0.104 4.513 0.697 0.164 0.868 0.967 0.990

Liu et al. [13] 0.106 4.274 0.686 0.176 0.878 0.968 0.986
Wang et al. [25] 0.096 4.327 0.655 0.171 0.893 0.963 0.983

Alhashim et al. [17] 0.093 4.170 0.589 0.171 0.886 0.965 0.986
Chen et al. [23] 0.083 3.599 0.437 0.127 0.919 0.982 0.995

Fu et al. [18] 0.072 2.727 0.307 0.120 0.932 0.984 0.994

Ours (SENet-154) 0.071 2.848 0.306 0.121 0.933 0.983 0.995
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work according to the distance, as in the color bar above. 

Figure 8. Qualitative evaluations on the KITTI dataset. Rows from top to bottom: original RGB images, ground truth
depth maps, Eigen et al. [30], Godard et al. [14], Chen et al. [23], and the proposed method. Regions in the white boxes
highlight the better-predicted results. The ground truth maps were interpolated from the sparse measurements for better
visualization. Color indicates depth; yellow is far, and purple is close. We set the colors of all outdoor depth maps in our
work according to the distance, as in the color bar above.

4.3. Algorithm Analysis

We conducted several experiments on NYU-Depth-V2 to investigate the effectiveness
and rationality for the proposed AFDB and wavelet-based loss functions with the SENet-
154 encoder.

4.3.1. AFDB

Figure 9 and Table 3 compare other feature distillation methods with the proposed
AFDB. Distillation steps = 4, and DWT iterations = 2 for all evaluations. All metrics
are improved for the proposed AFDB at the cost of a few more model parameters. The
proposed feature distillation could better predict detailed depth map characteristics.
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results. Color indicates depth; red is far, and blue is close.

Table 3. Feature distillation performance on NYU-Depth-V2.

Method Parameters
Error (Lower is Better) Accuracy (Higher is Better)

Abs Rel RMS Log10 δ1 δ2 δ3

Hui et al. [43] 127.6 M 0.121 0.515 0.050 0.863 0.973 0.992
Liu et al. [44] 133.1 M 0.114 0.517 0.049 0.871 0.976 0.993

AFDB 135.7 M 0.113 0.509 0.049 0.877 0.978 0.994

Table 4 shows the ablation effects, i.e., distillation step and JAM influences, for the
prediction results and model performance. We used two DWT iterations to decompose
the depth map. More distillation steps can improve the evaluation metrics but increases
the model parameters. Almost all evaluation metrics worsened for six or more distillation
steps, mainly because five-step distillation generates sufficient features for subsequent
treatments, and more steps just increase the local feature fusion burdens. All metrics are
improved for the proposed JAM at the cost of a few more model parameters.

Table 4. The AFDB performance under different settings. Method subscripts show the distillation
steps (w/o means without). JAM: joint attention module.

Method Parameters
Error (Lower is Better) Accuracy (Higher is Better)

Abs Rel RMS Log10 δ1 δ2 δ3

AFDB 3, JAM 134.4 M 0.117 0.511 0.050 0.870 0.974 0.994
AFDB 4, JAM 135.7 M 0.113 0.509 0.049 0.877 0.978 0.994
AFDB 5, JAM 139.2 M 0.113 0.504 0.048 0.878 0.978 0.995
AFDB 6, JAM 142.7 M 0.121 0.503 0.050 0.867 0.976 0.994

AFDB 4, w/o JAM 133.9 M 0.117 0.511 0.050 0.867 0.974 0.992

4.3.2. Loss Function

Table 5 shows the performance metrics for the proposed model with different loss
functions for network training. We gradually added the loss terms described in Section 3.3
to assess the loss terms selection rationality using four-step distillation as the baseline. All
evaluation metrics improved with increased loss terms. Thus, the proposed loss function
selection method is effective and rational.
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Table 5. Proposed method performance for different loss functions. SSIM: structural similarity. Each
loss function is defined in Section 3.3.

Loss Function
Error (Lower is Better) Accuracy (Higher is Better)

Abs Rel RMS Log10 δ1 δ2 δ3

Ldep 0.121 0.534 0.051 0.857 0.970 0.992
Ldep+Lgra 0.117 0.525 0.050 0.865 0.975 0.993

Ldep+Lgra+Lnor 0.116 0.521 0.050 0.868 0.976 0.993
Ldep+Lgra+Lnor+LSSIM 0.114 0.515 0.049 0.872 0.976 0.994

Table 6 shows the effects from DWT iterations using the wavelet-based loss function
(Equation (21)) to train the network. Three DWT iterations are sufficient to obtain the
optimal results. The increased iterations reduce the performance, because the depth
map size gradually reduces with the increased iterations, and the detailed depth map
features from the smallest scale become indistinct, which may adversely influence the
estimation quality.

Table 6. DWT iteration effects on the model performance using the wavelet-based loss function.

DWT Iterations
Error (Lower is Better) Accuracy (Higher is Better)

Abs Rel RMS Log10 δ1 δ2 δ3

One 0.114 0.509 0.049 0.874 0.975 0.994
Two 0.113 0.509 0.049 0.877 0.978 0.994

Three 0.113 0.504 0.048 0.877 0.978 0.994
Four 0.114 0.509 0.049 0.873 0.976 0.994

4.4. Cross-Dataset Validation

We performed cross-dataset validation to assess the proposed method’s generality.
We used the iBims-1 dataset, because it contains different indoor scenarios and has higher-
quality depth maps closer to real depth values compared with NYU-Depth-V2. Therefore,
cross-dataset validation on the iBims-1 dataset could verify the model efficiency for different
data distributions between training and testing sets. The corresponding evaluation metrics
are also more objective and accurate due to the higher precision depth maps.

The proposed network was first trained on NYU-Depth-V2 to generate a pretrained
model. Then, the pretrained model was used without fine-tuning to estimate the iBims-1
depth maps. Table 7 shows the corresponding evaluation metrics for iBims-1, and Figure 10
shows some qualitative comparisons. The settings for the compared methods were the
same as for the proposed method. The pretrained models for the compared methods were
generated by running their open-source codes.

Table 7. Cross-dataset validation trained on NYU-Depth-V2 and tested on the iBims-1 dataset.

Method
Error (Lower is Better) Accuracy (Higher is Better)

Abs Rel RMS Log10 δ1 δ2 δ3

Alhashim et al. [17] 0.346 2.772 0.199 0.179 0.547 0.827
Hu et al. [22] 0.360 2.815 0.208 0.162 0.497 0.816

Chen et al. [20] 0.349 2.750 0.200 0.162 0.531 0.849
Ours 0.329 2.665 0.184 0.192 0.601 0.876
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Figure 10. Cross-validation trained on NYU-Depth-V2 and tested on the iBims-1 datasets. Columns from left to right:
original RGB images, ground truth depth maps, Alhashim et al. [17], Hu et al. [22], Chen et al. [20], and the proposed
method. Regions in white boxes show missing or incorrect depth values from the ground truth data. Regions in black boxes
highlight the better-predicted results. Colors indicate depth; red is far, and blue is close.

The test results of the pretrained models on iBims-1 were quite different from those
on NYU-Depth-V2. In contrast to the earlier comparisons in Table 1, [17] has better perfor-
mances than [20] and [22]. The proposed model achieved significantly better performances
than the three comparative methods. Thus, the proposed method could better estimate the
geometric details and object boundaries for these different scenes than the three current
state-of-the-art methods.

5. Conclusions

This paper proposed a new DCNN for monocular depth estimation. Two improve-
ments were realized compared with previous methods. We made a combination of joint
attention and feature distillation mechanisms in the decoder to boost the feature discrimi-
native modulation and proposed a wavelet-based loss function to emphasize the detailed
depth map features. The experimental results on the two public datasets verified the
proposed method’s effectiveness. The experiments were also conducted to verify the pro-
posed approach effectiveness and rationality. The generality for the proposed model was
demonstrated using cross-dataset validation.

Future works will focus on applying the proposed MDE methods to 3D vision appli-
cations, such as augmented reality, simultaneous localization and mapping (SLAM), and
indoor scene reconstruction.
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Abstract: Typhoons are some of the most serious natural disasters, and the key to disaster prevention
and mitigation is typhoon level classification. How to better use data of satellite cloud pictures to
achieve accurate classification of typhoon levels has become one of classification the hot issues in
current studies. A new framework of deep learning neural network, Graph Convolutional–Long
Short-Term Memory Network (GC–LSTM), is proposed, which is based on the data of satellite cloud
pictures of the Himawari-8 satellite in 2010–2019. The Graph Convolutional Network (GCN) is
used to process the irregular spatial structure of satellite cloud pictures effectively, and the Long
Short-Term Memory (LSTM) network is utilized to learn the characteristics of satellite cloud pictures
over time. Moreover, to verify the effectiveness and accuracy of the model, the prediction effect and
model stability are compared with other models. The results show that: the algorithm performance
of this model is better than other prediction models; the prediction accuracy rate of typhoon level
classification reaches 92.35%, and the prediction accuracy of typhoons and super typhoons reaches
95.12%. The model can accurately identify typhoon eye and spiral cloud belt, and the prediction
results are always kept in the minimum range compared with the actual results, which proves that
the GC–LSTM model has stronger stability. The model can accurately identify the levels of different
typhoons according to the satellite cloud pictures. In summary, the results can provide a theoretical
basis for the related research of typhoon level classification.

Keywords: deep learning; GC–LSTM model; typhoon; satellite image; prediction system

1. Introduction

Typhoons have the widest damage range among all the natural disasters, which is the most
invading disaster of coastal areas. In particular, storms caused by typhoons have caused huge losses to
coastal ships and the marine industry [1]. According to statistics, economic losses caused by typhoons
account for 1%–3% of Gross Domestic Product (GDP) [2]. The prediction of typhoons has always
been a scientific issue in this field [3]. During the typhoon outbreak, it is difficult to obtain typhoon
data directly from conventional climate and ocean monitoring data, which makes it difficult to predict
typhoons [4]. With the improvement of the satellite remote sensing technology, meteorological satellite
cloud pictures can more accurately and stably monitor the weather changes in real-time in all weathers,
becoming the main means of observing and predicting typhoons [5]. Research on using satellite cloud
pictures has achieved a series of results in the process of typhoon generation and development [6,7].
The influence of typhoons on people’s lives and property is closely related to its intensity. According to
the satellite cloud picture analysis, different typhoon levels will cause different cloud clusters. Therefore,
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the levels of typhoons can be predicted according to the cloud cluster data transmitted by satellite
cloud pictures [8]. The current research methods for typhoon level prediction are mainly divided into
the subjective empirical method and the simulation analysis method [9]. The subjective empirical
method requires professional knowledge; for example, the Dvorak analysis method is estimated by
understanding the cloud system structure characteristics and specific parameters through empirical
rules and constraints [10]. The simulation analysis method is the most used; atmospheric physical
quantities such as different initial fields and boundary conditions are comprehensively considered to
predict typhoon levels [11] The simulation analysis method depends on the accurate recognition of
satellite cloud pictures, and the typhoon level prediction model has poor accuracy and large errors [12].
Therefore, the establishment of a high-precision typhoon level classification model is crucial for the
study of typhoons.

As a classification and recognition method with strong generalization ability, deep learning
overcomes the shortcomings of traditional methods that require prior knowledge to explicitly extract
features. Of the latest years, many scholars worldwide have applied deep learning techniques to
marine meteorological research. Krapivin et al. employed sequential analysis and seepage theory tools
to analyze the process of the ocean–atmosphere coupling system; additionally, they adopted the SVM to
detect the state features of this system; such a method helped to monitor the changes and directions of
the ocean transition process and could predict significant changes in the state of the ocean–atmosphere
system [13]. Varotsos et al. proposed an information modeling tracker for tropical cyclones based on
the clustering algorithm to assess the instability of the atmosphere–ocean system; the synthesized
functional prediction structure could be a reliable global ocean monitoring system, which could
effectively reduce the risk of tropical cyclones [14]. Zhu et al. (2019) established a short-term heavy rain
recognition model based on physical parameters and deep learning; this model could automatically
predict the probability of heavy rain occurrence based on data from various monitoring stations [15].
Scher employed a deep neural network based on the principles of cyclic model dynamics; after training
the model, the network could predict ocean weather several hours in advance [16]. Kaba et al. input
astronomical factors, extraterrestrial radiation and climate variables, sunshine duration, cloud cover,
minimum temperature, and maximum temperature as attributes to obtain a climate prediction model;
the prediction accuracy of the model for the marine climate was 98% [17]. Xiao et al. used convolutional
Long Short-Term Memory (LSTM) networks as building blocks and trained the blocks in an end-to-end
manner to achieve accurate and comprehensive predictions of sea surface temperature in the short
and medium term [18]. However, there is little research on the characteristics of using satellite cloud
pictures to identify typhoon levels through deep learning technology [19]. The main reason is that
traditional machine learning algorithms need to explicitly extract features for classification, but it is
difficult to extract features related to typhoon level classification in satellite cloud pictures.

Therefore, the poor accuracy, complex satellite cloud picture feature extraction, and low
recognition rate in typhoon prediction are the problems to be focused on here. By introducing a
Graph Convolutional Network (GCN) and a Long Short-Term Memory (LSTM) neural network,
a typhoon Graph Convolutional–LSTM (GC–LSTM) neural network is constructed. The GC–LSTM
model uses satellite cloud picture data of 20 years as samples for deep learning, and is compared with
traditional typhoon prediction models. The results are expected to provide accurate and fast weather
information for relevant departments to help them make decisions and reduce human life and property
losses caused by typhoons.

2. Materials and Methods

2.1. Satellite Cloud Images and Data Sources

The meteorological satellite cloud picture is to use the meteorological satellite instruments in
space to photograph the earth’s atmosphere, to find the weather through some rules, and to verify
the weather in combination with the ground weather [20]. It can display various types of clouds on a
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single picture, characterize weather phenomena at different scales, and provide very useful telemetry
data for weather analysis and forecasting. Generally, satellite cloud pictures can be divided into
infrared satellite cloud pictures, visible light satellite cloud pictures, and cloud pictures processed and
synthesized according to requirements. Figure 1 below is a processed RGB color cloud picture.
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Typhoons are the most common severe weather system. Violent winds above level 12, huge waves
above 6–9 m, storm surges above 2–3 m, and heavy rains above 200–300 mm always accompany
typhoons, which are harmful to marine ships, the marine engineering industry even people’s lives
and properties in coastal and inland areas. The embryo of a typhoon, that is, the initial cyclonic
low-pressure circulation, has the following sources: (1) low-pressure disturbance in the tropical
convergence zone, accounting for about 80–85%; (2) easterly wind belt disturbance—easterly wind
wave, accounting for about 5–10%; (3) westerly wind belt disturbance degeneration, accounting for
about 5%; (4) low-level vortices induced by high-level cold vortices, accounting for less than 5%.
There is a very favorable weather situation in the Northwest Pacific: a strong tropical easterly wind
belt, a strong and active equatorial westerly wind belt, an active tropical convergence belt, and a
southwest-southeast monsoon convergence belt. Hence, typhoons are particularly prone to generate.
Before a typhoon is formed, it undergoes an enhanced development process, which usually develops
from an existing tropical cloud cluster of 3–4 d. Tropical cloud clusters and isolated cloud clusters
in the zonal cloud belt if they can maintain existence for more than 3–4 d and can present a cyclonic
low-pressure circulation. Once the surrounding long cloud belts can form one or several convections
and be involved in the low pressure, after l–2 d, the low pressure can develop into a tropical cyclone
typhoon. Therefore, when identifying the satellite cloud picture, whether it meets the rules based on
the cloud cluster features should be determined first. Then, whether it is a meteorological feature of a
typhoon should be judged based on the overall cloud cluster. In this way, the satellite cloud pictures
can effectively identify typhoons. However, traditional methods also depend on recognizing these
features; without enhancement, features in the satellite cloud pictures cannot be compared accurately,
thereby reducing the prediction accuracy.

The data come from the National Institute of Informatics (NII) of Japan. (1) The website is:
http://agora.ex.nii.ac.jp/digital-typhoon/. The Japanese “Himawari” series of satellite cloud pictures
are utilized. From 2010 to 2019, Japan successively launched the “Himawari” satellites. In particular,
there are 16 “Himawari-8” geosynchronous weather satellites. For the band channel, the spatial
resolution can reach up to 500 m; (2) Analysis area: The coverage range of satellite cloud picture data
is the upper part of the Northwest Pacific (120◦ E–160◦ W); (3) Data time: The high-resolution satellite
cloud picture data of this area have been downloaded, as well as the information of typhoon intensity;
all the data were transmitted from the Himawari-8 satellite from 2010 to 2019 in Japan.
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The model established here is based on Ubunt16.10. The processor is the computing node of
the Beijing Supercomputing Center server. The hardware configuration is 2 channels and 32 cores,
EPYC 7452 @2.35 GHz, and 256 GB memory. The deep learning framework used is open-source Keras.
The dataset contains more than 1000 typhoon processes. The experiment uses infrared cloud pictures
as data samples. The objective is to obtain all-weather meteorological data. According to the typhoon
level index, different typhoon level labels are formulated, as shown in Table 1:

Table 1. Typhoon level standard label.

Typhoon Level Maximum Wind Speed/kt Maximum Wind Speed/(m/s)

Tropical depression <34 <17
Typhoon >34–<64 >17–<33

Strong typhoon >64–<85 >33–<44
Super Typhoon >85–<105 >44–<54

Cloud pictures processing: First, the median filtering is performed on the original infrared image
to remove the noise in the cloud image, which effectively retains the edge information of the picture.
Second, the nearest neighbor scaling is used to convert the cloud picture into a 24 × 24 × 1 format as
input information. Then, according to the criteria in Table 1, the classification is performed, where A
represents tropical depression, B represents typhoon, C represents strong typhoon, and D represents
super typhoon. Finally, a dataset of 3500 training samples and 600 test samples is constructed. There are,
respectively, 1000 training sets and 200 test sets for tropical depression, typhoons, strong typhoons,
and super typhoons. Some satellite cloud picture samples are shown in Figure 2.
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2.2. Traditional Convolutional Neural Network

Deep learning Convolutional Neural Network (CNN) is a feed-forward neural network, which can
quickly respond to nearby covered networks through artificial neurons, thus achieving a deep learning
algorithm for rapid response to data [21]. It consists of a convolutional layer and a sampling layer
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alternately forming a network topology [22]. CNN uses the method of backpropagating neurons to
realize the update network of each neuron information. The feature extraction process can be expressed
as a score function S(xi, w, b). The cross-entropy loss function for the classification error of the i sample
(xi, yi) is defined as:

Li = – ln esyi + ln
∑

esi (1)

In (1), Syi represents the number of scores for the true classification of the i-th sample of the
training set, and Si indicates the ratio of the index of the current element to the sum of all the element
indices. The output of sample (xi, yi) after passing through the network is f (x), and the corresponding
sample loss value is:

Li( f (x), y) = – ln f (x)y (2)

The error-sensitive items of the output layer of the CNN of the deep learning layer l are:

δl =
∂L
∂al

= ∇l
a(x) − ln f (x)y = f (x) − y (3)

where al represents the input of layer l. Finally, the backpropagation rule of CNN is used to update the
weight of each neuron, which makes the overall error function of the model continuously decrease.

Figure 3 shows the convolution layer of CNN, which uses its convolution kernel to convolve with
the input image and then outputs the feature image of this layer through the neuron activation function,
which realizes the feature extraction of the image. The convolution process is defined as follows:

xl
j = f (

∑

i∈M j

xl−1
i × kl

i j + bl
j) (4)

where l is the number of convolutional layers in the model, kl
i j is the number of convolution kernels,

bl
j is the additive bias, f is the activation function, and M j is the input image. The specific structure

process is shown in Figure 3:
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Figure 4 shows the data collection layer of the convolution nerve. The data collection layer is
the process of reducing the resolution of the current input feature image and reducing the amount of
calculation, thereby improving the network convergence speed. The data collection can be defined as:

xl
j = f (βl

jdown(xl−1
i ) + bl

j) (5)

where down(•) represents the data collection function, βl
j and bl

j represent the product bias and additive
bias, respectively, f is the activation function. Among them, the characteristic of the sampling layer Cx
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is 2 × 2 sampling, and every 4 pixels are combined into 1 pixel. Weighted by the multiplicative bias
wx+1, the addictive bias bx+1 is output through the activation function Sx+1.
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2.3. Deep Learning GCN Algorithm

The network topology of traditional CNN is formed by alternately arranged convolution layers
and sampling layers. If the input features are not prominent, the pooling layer will lose some
image information while reducing the dimensionality, reducing the network learning capability.
The traditional CNN directly utilizes and compares the pictures with the original typhoon pictures.
If the resolution of the transmitted data CNN image is low, the CNN prediction accuracy of the typhoon
levels will decrease more. In the constructed dataset of satellite cloud pictures, due to the sophisticated
atmospheric factors during typhoon formation, the spiral radius of the cloud pictures is not apparent.
Therefore, traditional CNN is not suitable for feature extraction of typhoon cloud images. In contrast,
the GCN network is a deep learning algorithm specially established based on images. It can extract the
original image of the satellite cloud pictures according to some rules, effectively extract the features of
the image, and improve the local image resolution; then, the model compares the processed image
with the trained image database so that the processed image prediction accuracy is higher.

GCN is an algorithm that adds a lot of image processing based on CNN [23]. Most real-world
network data is represented in the form of graphs, such as social networks, protein interaction networks,
and knowledge graphs; however, they do not have a regular spatial structure and can process image
data that cannot be processed by CNN. The algorithm transfers the convolution method on the image to
the graph, and proposes two methods based on space and spectrum decomposition. The space-based
method is to establish a perceptual domain for each node (selecting the neighbor node of the node);
in other words, the nodes in the graph are connected in the spatial domain to achieve a hierarchical
structure, so as to perform convolution learning. Based on the spectral decomposition method,
the Laplacian matrix is used to transform the feature vector into the spectral domain; then, the point
in the spectral domain is multiplied and the inverse Fourier transform is performed to achieve the
convolution on the graph. The specific structure is shown in Figure 5. GCN is a CNN that directly acts
on graphs. GCN allows end-to-end learning of structured data, and extracts the features of network
nodes by learning the structural features of the network. Here, the GCN is utilized to extract the
network structure features at each moment.

In the recognition of the typhoon cloud pictures, the general model directly utilizes the pictures
and compares them with the original typhoon pictures. If the resolution of the transmitted data
image is low, the prediction accuracy of the typhoon levels will decrease more. The GCN network
is a deep learning algorithm specially established based on images. It can extract the original image
of the satellite cloud pictures according to some rules, effectively extract the features of the image,
and improve the local image resolution; then, the model compares the processed image with the trained
image database so that the processed image prediction accuracy is higher.
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The identification of satellite cloud pictures via GCN is as follows: (1) connecting a single sample
of satellite cloud pictures to form a row vector; and (2) superimposing n vectors into the GCN system.
Information can be transferred between nodes based on a correlation coefficient matrix. Therefore,
the data-driven method constructs a correlation coefficient matrix, which contains the original satellite
cloud picture’s image and edge features. This model uses the data-driven method to establish a
directed graph between markers, and GCN maps the category markers to the corresponding category
classifier. Finally, the category relationship is modeled, and at the same time, the model learning ability
is improved. A correlation coefficient matrix is constructed for GCN by balancing the node and its
neighboring nodes for node feature updates, thereby effectively solving the overfitting and excessive
smoothing problems that hinder GCN’s performance.

2.4. LSTM Neural Network Algorithm

LSTM is a type of Recurrent Neural Network (RNN) network. It is often used to process and
predict important events with very long intervals and delays in time series [24]. In typhoon prediction,
accurate time prediction is very important. Therefore, the LSTM algorithm is chosen, which can
accurately establish a time relationship graph. Based on the data transmitted from the traditional
satellite and after feature extraction, the data will be arranged in chronological order. Second, according
to the time interval of the previous typhoon, the algorithm can predict the time of the typhoon well.
An LSTM unit contains an input gate, output gate, and forget gate. Among them, the input gate
controls model input, the output gate controls model output, and the forget gate calculates the degree
of forgetting of the memory module at the previous moment. The structure of the LSTM model is
shown in Figure 6, the specific calculation is as follows:

ft = σ(W f · [ht−1, xt] + b f ) (6)

where ft and it denote the forget gate and the input gate of the t step in the sentence sequence,
respectively. In each sentence sequence, the forget gate controls the degree of forgetting the information
of each word, and the input gate controls the degree to which each word information is newly written
into long-term information.

it = σ(Wi · [ht−1, xt] + bi) (7)

C = tanh(Wc · [ht−1, xt] + bc) (8)

Ct = ft ×Ct−1 + it ×C (9)
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The two gates ft and it use the Sigmoid function, the value range is [0, 1], and the value of tanh
function is [−1, 1]. Ct−1 is the state of the neuron at time t − 1, and Ct is the state of the neuron at time t.

ht = ot × tanh(Ct) (10)

ot = σ(wo · [ht−1, xt] + bo) (11)

where ot is the output degree of the output-gate-controlled word long-term information ht is the output
of step t in the sentence sequence. The above equations show that the word information of the current
step of LSTM is determined by the word information retained in the previous step and the word
information saved after being filtered by the input gate at the current time. Here, the LSTM network is
introduced to effectively mine the long-term data and utilize the raw data information, to effectively
process the cloud picture data.

2.5. Construction of the GCN–LSTM Fusion Model

The traditional CNN uses a topology structure composed of a convolutional layer and a data
acquisition layer. When the input image features are not obvious, the resolution of the input picture
will be actively reduced in the pooling layer of the network, which loses some important information of
the pictures, resulting in a decline in network learning capabilities; in the meantime, the corresponding
model accuracy will continue to decline.

The complex atmospheric factors in the formation of a typhoon make the features within the
spiral radius of the cloud picture not obvious. In the data of satellite cloud pictures, every detail is very
concerned. However, the traditional CNN is not very suitable for the feature extraction of typhoon
cloud pictures. Based on the traditional CNN, the cyclic convolution is utilized to enhance the feature
extraction capability of the model. By taking the advantages of the LSTM network, a novel deep
learning model GC–LSTM is proposed to extract features in atmospheric cloud pictures to achieve
accurate prediction of typhoons.

The entire GC–LSTM model combines the advantages of the two models: LSTM network and
GCN. LSTM is used to learn the timing information of the connected state of each node, and GCN
is used to learn snapshots at every moment. The structural characteristics of the network make it
capable of effectively processing high-dimensional, time-dependent, and sparse structural sequence
data. This model is easy to build and train, and can adapt to different network applications. Also,
the accurate prediction of typhoon levels can be achieved. The specific structural framework is shown
in Figure 7.
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2.6. Model Verification and Optimization

(1) Model accuracy (ACC): It is the part that passes the true correct rate. If the number of real
typhoons in the i sample of all n satellite cloud picture samples is y, and the data predicted by the
model is Oi, then the correct rate of the classification of the typhoon satellite cloud picture model
is calculated as follows; if the number predicted by satellite cloud pictures is more consistent
with the real number, the correct rate of model classification is greater.

ACC(yi, Oi) =
1
n

n∑

i=0

1(yi = Oi) (12)

(2) Precision (Pre): It indicates the proportion of processed samples that are correctly divided into
positive samples [25].

Pre =
NTP

NTP + NFP
(13)

where NTP represents the number of satellite cloud pictures that should be correctly classified;
NFP represents the number of true correct classification after passing through the typhoon satellite
cloud picture prediction model.

(3) Recall (Rec): It represents the proportion of positive samples in the original positive samples [26].
It indicates the proportion of the total number of correctly predicted numbers after the typhoon
satellite cloud picture prediction model.

(4) Recognition Rate (RR): It is the ratio of the wrongly recognized image/the recognized image [27].
(5) Matching Speed (MS): It refers to the time from the completion of image acquisition to the

completion of model prediction.

Rec =
TP

TP + FN
× 100% (14)

where TP is the number of typhoon searches that are correctly identified by satellite cloud
pictures, and FN is the number of typhoon searches that are not correctly identified by satellite
cloud pictures.

The model performance is compared. M1 stands for the ANN model, M2 stands for the RNN model,
M3 stands for the GCN model, M4 stands for the LSTM model, M5 stands for the GCN–LSTM, and M6
stands for the RNN–LSTM model. RNN–LSTM has been employed in research [28]. Lian et al. (2020)
utilized the RNN–LSTM model for predicting the path of satellite cloud pictures; the results revealed
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the high prediction accuracy of this model [29]. Zhao et al. (2020) proposed a typhoon identification
and typhoon center location method based on deep learning; the average accuracy of this method
was 96.83%, and the average detection time of each sample was 6 ms, which met the real-time
typhoon eye detection. At present, typhoon paths are often predicted by the single algorithms or the
CNN + SVM/LSTM algorithm. Although some of these algorithms have high accuracy, the output
results are unstable, or the operation requires a higher configuration, which reduces the recognition
speed [30]. No one has systematically summarized and compared the problems of the fusion algorithms,
nor utilized the combination of GCN–LSTM for typhoon type prediction. The optimal model parameters
mainly determine the convolution number of the CNN and the proportion of neurons. Among them,
the convolution number of the input data is set to Q1 (1 × 1), Q2 (3 × 3), Q3 (5 × 5), Q4 (7 × 7), Q5 (8 × 8),
and Q6 (9 × 9); the proportion of different neurons is set between 0% and 90%, and increases by 10%
each time; the optimal parameter setting of the model is judged by its accuracy.

3. Results

3.1. Performance Analysis of Different Models

The performance of different models is shown in Figure 8. In terms of accuracy, the accuracy
of the training set is higher than that of the test set, which is 5% higher on average. Comparing
different models, it is found that as the number of training sets increases, the accuracy of the model
continues to increase, which is consistent with the actual situation. When the training data are more,
the accuracy of the model is higher. Compared with the single algorithm, the accuracy of the model
is lower than the fusion model. The single model with the highest accuracy rate is the LSTM model.
Because of its data memory function, the overall accuracy is significantly higher. Compared with other
models, the average accuracy rate is 88.21%, and the fusion model with the highest accuracy rate is
the GCN–LSTM model, with an average accuracy rate of 91.51%. In terms of accuracy and recall rate,
the results are consistent with the conclusion of the accuracy rate. The highest is the GCN–LSTM model,
with an average recall rate of 91.04% and an average accuracy of 92.35%. In terms of the recognition
rate, the model shows a higher advantage, and the average recognition rate is as high as 93.61%.
In terms of matching speed, the model has a stronger ability to recognize satellite cloud pictures
than other models. Due to the advantages of the GCN and the rapid processing of data by LSTM,
its average processing speed is maintained at 25.5 ms. According to the above results, the constructed
GCN–LSTM model has a higher recognition rate for satellite cloud pictures, and the accuracy is 13.3%
higher than that of the traditional ANN network. The classification effect of satellite cloud pictures is
also significantly enhanced. The model shows a strong advantage in typhoon recognition.

3.2. Determination of Optimal Model Parameters

It is illustrated in Figure 9 that by using different convolutional numbers based on the original
model, the convergence speed of the model differs greatly. In the training data set, when the convolution
kernel number is 1 × 1, the loss value of the model is 0.55. When the convolution kernel number is 3 × 3,
the model convergence speed is the slowest, and the stability can only be achieved when the number
of iterations is 350 times. When the convolution kernel number is 7 × 7, the model converges and
reaches stability at 310 times, and the loss value is 0.018. When the convolution kernel number is 5 × 5,
the optimal loss value for the model convergence at 320 times is 0.0094. When the convolution kernel
number is 8 × 8, the optimal loss value of the model at 300 times of convergence is 0.035, the overall
convergence iteration number of the test set is larger, and the optimal loss value is also larger than the
training set. In summary, 5 × 5 is chosen as the optimal convolution kernel number.
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Figure 8. Performance comparison results of different models (Note: M1 is the ANN model, M2 is the
Recurrent Neural Network (RNN) model, M3 is the GCN model, M4 is the LSTM model, M5 is the
GCN–LSTM, and M6 is the RNN–LSTM model, where 0–200 is the test set and 200–1000 is the training
set). Figures (A–E) show the performance results of different algorithms in accuracy, precision, recall,
recognition rate, and processing speed under different test sets.
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Figure 10. Feature extraction result of some convolution kernels.  

Figure 9. Feature extraction effect of different number of convolution kernels (Note: Q1 (1 × 1
convolution kernel), Q2 (3 × 3 convolution kernel), Q3 (5 × 5 convolution kernel), Q4 (7 × 7 convolution
kernel), Q5 (8 × 8 convolution kernel), and Q6 (9 × 9 convolution kernel)). Figure (A) shows the feature
extraction effect under different numbers of convolution kernels on the training set; Figure (B) shows
the feature extraction effect under different numbers of convolution kernels on the test set.

It is illustrated in Figure 10 that compared to the convolution kernel numbers of 1 × 1 and 3 × 3,
when the convolution kernel number is 5 × 5, the neural network has a high processing efficiency
for the satellite cloud picture. The 5 × 5 convolution kernel has obvious feature extraction effects for
typhoon eye, cloud wall, and spiral cloud belt (yellow area), but the 8 × 8 convolution kernel will
increase typhoon similar redundancy and thus lose local features. Compared with the original image
of the vortex cloud area, it is found that the model is more sensitive to the yellow area, but not sensitive
to the fibrous cloud at the edge of the typhoon. Therefore, adding the model to the yellow area feature
extraction is beneficial to the classification of the model. This is consistent with the truth that many
scholars predict typhoons by locating typhoon eyes, segmenting dense cloud areas, and extracting
spiral cloud belt features. This also proves the feasibility of classifying typhoon levels through deep
learning and satellite cloud pictures.
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By using different convolution kernel numbers based on the original model, the accuracy of the
model is not much different, which is shown in Figure 11. In the training data set, when the convolution
kernel number is 1 × 1, the model accuracy rate is 83.8%; when the convolution kernel number is 3 × 3,
the model accuracy rate is 87.2%; when the convolution kernel number is 7 × 7, the model accuracy
rate is 93.3%; when the convolution kernel number is 5 × 5, the model accuracy rate is 97.1%; when the
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convolution kernel number is 8 × 8, the model accuracy rate is 91.9%; the overall accuracy of the test
set is lower than the training set. In summary, 5 × 5 is chosen as the optimal number of convolutions
for the model.
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Figure 11. Model accuracy under different convolution kernels. Figure (A) shows the accuracy of the
model under different convolution kernels on the training set; Figure (B) shows the accuracy of the
model under different convolution kernels on the test set.

The accuracy of the model under different neuron ratios is shown in Figure 12. As the proportion
of neurons continues to increase, the accuracy of the model shows a slight increase and then decreases.
When the proportion of neurons is 30%, 50%, 80%, and 90%, the accuracy rate of the model drops;
the lowest accuracy rate is 91% when the proportion of neurons is 30%, and the highest recognition
rate is 92.5% when the proportion of neurons is 70%. The overall model accuracy of the test set is lower
than that of the training set.
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Figure 12. Model accuracy rate at different neuron ratios. Figure (A) shows the accuracy of the model
under different neuron ratios on the training set; Figure (B) shows the accuracy of the model under
different neuron ratios on the test set.

3.3. Application Analysis of Model Examples

It is shown in Table 2 that using the GC–LSTM model under the optimal parameters, the prediction
accuracy rate of typhoons and super typhoons can reach 95.12%, but the prediction accuracy rate
of tropical depressions is only 83.36% lower, which may be that the specific cloud characteristics
and complete cloud structure are not formed during the typhoon formation process. Approximate
results can also be seen in the results of some sample satellite cloud pictures. Therefore, the accuracy
of the model is low. For strong typhoons, the accuracy rate is 93.24%, which is 2% higher than the
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traditional typhoon prediction model [31]. In summary, the GC–LSTM typhoon prediction model has
high prediction performance, and the prediction accuracy of typhoons and super typhoons can reach
95.12%.

Table 2. Comprehensive evaluation of typhoon level prediction.

Categorical Data Tropical Depression (0-) Typhoon (1-) Strong Typhoon (2-) Super Typhoon (3-)

Tropical depression 83.36 12.67 9.59 3.28
Typhoon 1 95.12 0 0

Strong typhoon 1 1 93.24 7.24
Super Typhoon 0 0 1 95.12

Figure 13A,B shows the data prediction of the GCN–LSTM model from 2010 to 2019. After the
results are compared with actual values, the annual average absolute error is obtained. The result
shows that after 6 h of model training, the average absolute error remains between 1 and 15; after 12 h
of training, the average absolute error of the model drops by 33.33% and remains between 1 and 10,
which further shows that the accuracy of the GCN–LSTM model is improved greatly.
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Figure 13C illustrates that LSTM, the best single model, and RNN–LSTM and GCN–LSTM,
two best fusion models, are employed for prediction. Act represents the actual output result on the
test dataset, and Pre represents the actual output result on the training dataset. All satellite cloud
pictures, from 2010 to 2019, are output and analyzed according to different years. The results show
that when a fixed amount of data is input, the LSTM test set’s result is maintained between 30 and
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253. Data fluctuates sharply in different years. Therefore, the model is unstable. Compared to the
RNN–LSTM model, this model’s stability also has a large deviation due to the need for a large number
of neural networks to perform operations. The prediction result interval of GCN–LSTM is 38–104,
with the least data fluctuation. The above results show that the proposed GCN–LSTM model is
more stable.

4. Conclusions

Through the analysis of the original typhoon prediction model, problems such as poor prediction
accuracy, low recognition rate, and complex feature extraction are found in the traditional typhoon
prediction models. Therefore, based on the deep learning neural network framework, the advantages of
GCN and LSTM are utilized to build the typhoon GC–LSTM model to effectively process the problems
in the construction of satellite cloud picture models. The proposed model is significantly better than
other prediction models in terms of algorithm performance. Compared with the traditional ANN
model, it has improved by 13.3%. The prediction accuracy of typhoons and super typhoons through
optimization of parameters has reached 95.12%. It can accurately identify typhoon eyes and spiral
cloud belts, and its stability is better. This model can provide a theoretical basis for typhoon prediction
related research. Although the construction process and the actual application effect of the model have
been elaborated on as much as possible, due to the objective limitations, the following deficiencies
are found: (1) only one GCN image processing neural network is used, and no other image legend
recognition algorithm is used for processing; (2) for the actual application of the model, only the
prediction effect of the model is comprehensively evaluated, but actual application analysis with a
large amount of data is not involved. In the future, in-depth research will be continued in these two
areas, with a view to truly applying this satellite cloud picture-based typhoon prediction model to
actual analysis, thereby reducing the impact of typhoons on people’s lives and property.
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Abstract: Automatically finding correspondences between object features in images is of main interest
for several applications, as object detection and tracking, identification, registration, and many
derived tasks. In this paper, we address feature correspondence within the general framework
of graph matching optimization and with the principal aim to contribute. We proposed two
optimized algorithms: first-order and second-order for graph matching. On the one hand, a first-order
normalized cross-correlation (NCC) based graph matching algorithm using entropy and response
through Marr wavelets within the scale-interaction method is proposed. First, we proposed a
new automatic feature detection processing by using Marr wavelets within the scale-interaction
method. Second, feature extraction is executed under the mesh division strategy and entropy
algorithm, accompanied by the assessment of the distribution criterion. Image matching is achieved
by the nearest neighbor search with normalized cross-correlation similarity measurement to perform
coarse matching on feature points set. As to the matching points filtering part, the Random
Sample Consensus Algorithm (RANSAC) removes outliers correspondences. One the other hand,
a second-order NCC based graph matching algorithm is presented. This algorithm is an integer
quadratic programming (IQP) graph matching problem, which is implemented in Matlab. It allows
developing and comparing many algorithms based on a common evaluation platform, sharing input
data, and a customizable affinity matrix and matching list of candidate solution pairs as input data.
Experimental results demonstrate the improvements of these algorithms concerning matching recall
and accuracy compared with other algorithms.

Keywords: normalized cross-correlation; Marr wavelets; entropy and response; graph matching;
RANSAC

1. Introduction

Computer vision is an important research direction in current computer science since it occupies
a pivotal position in human perception simulation. Automatically finding correspondences between
object features in images is of interest for several applications, as target tracking [1], 3D object
retrieval [2], pattern recognition [3], image stitching [4] and in many other fields.

Image matching is used to determine the geometric alignment of two or more images of the
same scene taken by the same or different sensors from different viewpoints at the same or different
times. We can distinguish dense correspondence, that determines correspondences at the pixel
level, and sparse correspondence, that determines correspondences between a sparse set of higher
lever features being first extracting from images. Most of the time such features represent invariant
information at some location in the image, like corners, edges, gradients. Since we are interested
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in sparse correspondence, we study the standard methods for automatic extraction of the feature
point sets from images. This becomes a critical step since it should avoid the presence of outliers and
should allow discriminating objects easily. We propose a method for feature extraction step suitable to
first-order matching.

Local feature descriptors, that is, providing detail feature detection and feature description
information, play a fundamental and vital role in the process of feature correspondence, directly
affecting the accuracy and objective score of graph matching (GM). High-quality local feature
descriptors describe key points with uniqueness, repeatability, accuracy, compactness, and effective
representation. These key points can keep robust and constant in terms of scaling, rotation, affine
transformation, illumination, and occlusion [5]. Here we focus on the theoretical and mathematical
descriptions of various local feature descriptors. In the feature points detection algorithm, local
descriptors are typically used to describe image regions near feature points. Currently, methods
for extracting feature points include Harris descriptor [6], Gilles descriptor [7], LoG descriptor [8],
corner detector (CD) [9], Harrislaplace descriptor [10], SIFT descriptor [11], and so on. Among these
feature extraction algorithms proposed in the literature, Marr wavelets which was originally used
in [12] is favored for several properties: robustness (against distortion), rotationally invariant, noise
insensitivity [13]. We choose to focus on the latter, whereas other methods will serve as a basis for
comparative evaluation.

Given a pair of images, how to detect and extract feature points is the first step in image matching.
Automatic feature extraction is the key point, and further related image matching can be performed
based on the feature-to-feature correspondence. Given some standard nearest neighbor matching
strategies, how to improve the reliability of the feature set is the problem to be solved here. To this end,
we try to combine or enhance standard and easy-to-implement feature detection methods to make the
final overall method (including feature detection and matching) competitive in terms of computation
time and matching quality.

In order to obtain better matching results, the method proposed inserts a Laplace filter-based
image preprocessing method before detecting feature points to increase the size of the candidate
feature set. Since the Marr wavelet within scale-interaction method is more inclined to extract the edge
information of the object, the Laplacian method can be used to enhance the edge details of the image.
Then, a sparse feature point method based on entropy selection is proposed as a new filtering step.
Filtering (also known as convolution) is also a very popular operation in the field of image processing,
which can be applied to image encryption by changing pixel values [14]. This step combines the local
entropy evaluation with the brightness deviation response as a new process for feature selection.

Entropy is a key concept in thermodynamics and statistical mechanics. It not only plays a special
role in physical quantities, but also relates to the macro and micro aspects of nature, and determines
the behavior of the macro system. Entropy is a well-defined quantity regardless of the type or size
of the system under consideration. Entropy has many general properties, for instance, invariance,
continuity, additivity, concavity, etc. [15].The probability distribution of entropy can be interpreted not
only as a measure of uncertainty, but also as a measure of information [16]. Local entropy represents
structured information, which is used to count the probability of occurrence of gray level in the sub-image,
but independently around a single pixel. We claim that it is not sensitive to the influence of noise and
can improve the accuracy of the image description. Based on the mesh division, the feature points in
the sub-regions can be sorted according to their local entropy and selected trough deviation values.
Then, entropy selection can not only effectively reduce the useless feature points for saving time, but also
ensure the uniformity of feature point distribution. Mainly, the advantage of the proposed entropy and
response algorithm is to realize a good compromise (trade-off) between accuracy and computation time
together when compared to other standard approaches from literature. It is worth noting that both
accuracy and computation time are essential criteria to compare and evaluate heuristic methods [17,18].

A necessary graph matching procedure based on the normalized cross-correlation similarity
measure is applied to measure the effectiveness of the method in image matching. It entrusts quality
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assessment to the Random Sample Consensus Algorithm (RANSAC) program, which eliminates
mismatched pairs and calculates true match recalls. The experiments were performed on standard
image processing benchmarks. They showed how to increase the size of the feature set and matching
accuracy with saving computation time.

The contributions of our paper are proposing two optimized algorithms: first-order and
second-order for graph matching. Both of them are realized based on normalized cross-correlation
(NCC) algorithm, which allows us to address graph matching or derived sub-problems with a closer
relationship with experiments on integer quadratic programming (IQP) models in the Matlab platform.
Especially for the first-order graph matching, we have proposed a new combination of feature
points detection algorithms among Laplace filter, Marr wavelets, and the entropy-response based
selection method.

This paper is organized as follows. Section 2 introduces the motivations and taxonomy of graph
matching. The formulation of standard graph matching is explained in Section 3. In Section 4,
the different steps of the proposed feature extraction and first-order graph matching procedures
are respectively presented. A preliminary version of this section forward appears as part of our
previous conference paper [19]. We also extended the NCC based second-order graph matching in
Section 5. The evaluation of the two proposed algorithms and their comparison with some algorithms
are exposed in Section 6. Section 7 presents the conclusion.

2. Background of Graph Matching

2.1. Motivations of Graph Matching

Graph matching plays an important role in processing many practical applications in computer
vision, such as feature correspondence [20], action recognition [21], image classification [22,23],
shape matching [24], image retrieval [25], and pattern recognition [26,27]. The goal of graph matching
is to find the optimal mapping constraint between two sets of nodes in two corresponding images,
which will preserve the relationship between the graphs as much as possible so that when vertices are
labeled based on the correspondence, they look ‘the most similar’.

In a more general case, this problem is expressed mathematically as a quadratic distribution
problem, including finding a distribution that maximizes the objective function. Over the past
decade, considerable effort has been invested in developing approximate methods to address more
general QAP. Gold and Rangarajan [28] proposed a graduated assignment algorithm that combines
graduated nonconvexity, two-way (assignment) constraints, and sparsity to solve a series of linear
approximations to the cost function using Taylor expansion iterations. Leordeanu [29] presented an
efficient approximation by using the spectral matching method (SM), which approximates the IQP
problem to spectral relaxation. Cour et al. [17] introduced a new spectral matching with affine
constraints (SMAC), which can not only provide a higher relaxation than SM but also keep the speed
and scalability benefits of SM. Torresani et al. [20] designed a complex objective function which refers to
dual decomposition (DD) that can be effectively optimized by double decomposition. Cho and Lee [18]
presented reweighted random walk (RRWM) algorithms for graph matching. Later, Cho et al. [30]
provided a max-pooling graph matching method (MPM), which not only resists deformation but also
significantly tolerates outliers. This central idea of this algorithm is that the pairs with maximum
scores are the correct matches.

Recently, some authors have proposed the use of high-dimensional relationships between
super edges for high-order graph matching. The most commonly used is based on third-order
research. The calculation of the high-order affinity matrix is generally based on the tuples of feature
points, and it is achieved by comparing the corresponding edges and angle information of two
sets of corresponding triangles. Another vital characteristic of high-order matching is that it is
invariant to changes in scale and affine. Zass and Shashua [31] reformulated a high-order graph
matching (HGM) in the view of probabilistic view of the probability setting of convex optimization
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representation. Chertok and Keller [32] proposed a general framework for solving higher-order
assignment problems based on the core assumption that high order affinities are encoded in an
affinity tensor. In this algorithm, they derive a marginalization scheme that can map triples to
matrices or vectors. Olivier Duchenne et al. [33] derived a tensor-based high-order graph matching
(TM) that invariant to affine, rigid, or transformations. This algorithm defined a tensor to represent
the affinity assignment between the tuples of features. It is a multidimensional power iteration
operation during which the solution will be projected onto the closest assignment matrix. Lee et al. [34]
demonstrated a hypergraph matching via reweighted random walks (RRWHM) in a probabilistic
manner. The algorithm uses a personalized jump and re-weighting scheme, which effectively
reflects the one-to-one matching constraints in the random walk process. It can realize strong
anti-deformation and anti-noise performance compared with other state-of-the-art methods. Ngoc [35]
presented a general framework with a flexible tensor block coordinate ascent scheme for hypergraph
matching. It is a crucial idea under a multilinear reconstruction using the original objective
function, which can guarantee the third-order matching scores their algorithms increase monotonically.
Another hypergraph matching algorithm based on tensor refining was proposed in [36], accompanied
by an alternative adjustment approach to accelerate the convergence processing.

Despite decades of extensive research, graph matching is still a challenging problem for
two main reasons: (1) generally, the objective function is non-convex and prone to local minima.
(2) The constraints of space and time complexities. We set out to conduct research to solve
these challenges.

2.2. Taxonomy of Graph Matching

The goal of the graph matching process is mainly focused on finding the correspondences between
two characteristics, edges, and points, under certain constraints. A graph-based matching method
treats a set of points as graphics. In the most common cases, the algorithm used to solve inexact
matching problems can be classified into three categories: first-order, second-order, and high-order
graph matching methods.

• First-order graph matching At the view of first-order graph matching, it mainly implicates
vertex-to-vertex properties based on local feature descriptors, focuses primarily on unary
information, regardless of edge-related associated information. This matching method was
proposed initially to find the correspondence between two sets of points and transformation
parameters at the same time. It uses a coordinate positioning and grayscale information to
calculate the transformation parameters and uses a soft assignment algorithm to estimate the
correspondence between two sets of points. Finally, it converts the alignment of the two-point sets
into the optimal match between the two graphs. Although the result of the first-order matching is
stable, it fails when there is ambiguity, such as local appearance and repeating texture. In the case
of high noise and outlier registration, it performs poorly, which dramatically limits its range of
applications. Therefore, first-order matching is more suitable for focusing on non-rigid motion
types with a small local affine transformation.

• Second-order graph matching Second-order graph matching mainly enriches the vertex, and edge
approaches; it is objective function established by a matrix representing the affinity properties
between candidate pairs, that is to say, each node represents the correspondence between points,
and the weights represent pairwise protocols between the corresponding potential pairs. A secure
connection of the adjacency matrix can judge the correct assignment or not. Therefore, it better
stands for some point of view between candidate pairs and overcomes the disadvantages of the
first-order algorithm. Since the graph matching algorithm is usually based on the integer quadratic
programming (IQP) formula, with an approximate solution, so the second-order graph matching
problem is also the NP-hard problem. That means it can be formulated as an optimization
problem; the purpose is to get the best match and receive a higher score based on the objective
scoring function.
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• High-order graph matching Hypergraph is a natural generalization of traditional graphs.
Since pairwise assignments are sensitive to scale-invariant between two corresponding graphs,
pairwise relationships are not enough to capture the entire geometrical structure. Unlike pairwise
matching in which each link can have two vertices at its ends, each link in the hypergraph can
have three or more vertices, which can have a more powerful tool to model complex structures
for more high-level information. Therefore, the most crucial idea to solve the hypergraph
problem is to search for higher-order constraints, rather than unary or pairwise constraints.
Essentially, hypergraph matching is a combinatorial optimization problem. In the process of
obtaining the final solution, it is not straightforward for us to find its optimal global solution
based on a reasonable time. In recent years, more accessible methods use probability frames to
explain hypergraph matching, of which tensor-based models are often used. Considering the
complex structure of the data, we believe that the learning and construction of hypergraphs will
hopefully become an increasingly promising research direction in the future.

3. General Formulation of Graph Matching Problem

This section introduces the general representation of traditional graph matching and the definition
of the high-order graph matching problem. The main purpose is on finding the correspondence
one-to-one mapping between two feature sets from two image sources. The goal is to maximize a
function score among the set of correspondence pairs. In first-order matching, only local attribute
descriptors are considered and evaluated, whereas, in the general case of graph matching, two order
potentials between pairs (edges) of features must also be maximized to established the similarity
between edges of features. On the other hand, the high-order GM method considers the invariant
geometric information by considering the relationship between tuples of feature points. The input
feature graph becomes a hyper-graph, where hyper-edges replace edges, that is subsets of k points,
with the order k ≥ 2, rather than only considering couple of points.

Suppose we are given a pair of graphs GP = (P, EP) with NP feature points for the reference
graph GP, and GQ = (Q, EQ) with NQ feature points for the query graph GQ. P and Q are the two
sets of feature points, and EP and EQ denote edge sets. We note i, j ∈ P and a, b ∈ Q as representing
feature points. Therefore, the main problem is to find a suitable one-to-one mapping from one feature
set to the other feature set as illustrated in the Figure 1. The pictures in Figure 1 are from PF-WILLOW
dataset (https://www.di.ens.fr/willow/research/proposalflow/).

Figure 1. Feature point correspondence mapping.

Finding a mapping form P to Q can be equivalent to find an NP × NQ assignment matrix X,
such that Xia = 1 when point i is assigned to point a, and Xia = 0 otherwise. Therefore, a one-to-one
admissible solution must verify the following constraints in (1), that requires a binary solution, and (2)
and (3), that express the two-ways constraints of a one-to-one mapping.

X ∈ {0, 1}NP×NQ (1)
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∀i
NP

∑
a=1

Xia ≤ 1 (2)

∀a
NQ

∑
i=1

Xia ≤ 1 (3)

Then, the problem of graph matching can be formulated as the maximization of the following
general objective score function (4):

score(X) = ∑
ia,jb

Hia,jbXiaXjb, (4)

where Hia,jb means the similarity or affinity measurement corresponding to the tuple of feature points
i, j and a, b. The higher is the score Hia,jb, the higher are the similarities between the two corresponding
edges (i, j) and (a, b). The product XiaXjb is equal to 1 if and only if points i, j are respectively mapped
to points a, b.

Then, we need to know how to compute such a positive and symmetric similarity matrix H.
Many cost functions may be used to compute affinity matrices for first-order and second-order GM.
Note that Hia,ia represents first-order similarity term, between local attributes of points i ∈ P and
a ∈ Q. For example, the authors in [37,38] use the normalized cross-correlation (NCC) cost function,
as we have used to validate our feature point extraction method in this thesis. Nevertheless, any
point-to-point distance function can be used, as the Euclidean distance between SIFT descriptors,
or sum of squared error data terms.

Duchenne et al. in [33] propose a general formula to compute the second-order affinity term Hia,jb
as shown in (5), where f is a feature vector associated to each edge.

∀ia, jb Hia,jb = exp(−γ‖ fi,j − fa,b‖2) (5)

Leordeanu et al. in [29], and as most often encountered, computes the Euclidean distance between
the corresponding candidate point pairs i, j and a, b, to build the affinity term Hia,jb, as shown in
Equation (6). Here, σd is the sensitive controller of the deformation.

H(ia, jb) =





4.5− (dij − dab)
2

2σ2
d

i f |dij − dab|< 3σd

0 otherwise
(6)

4. First-Order NCC Based GM

In this section, we introduce the implementation of the system image matching process, including
feature point detection and extraction, feature point matching, and removing mismatching pairs.
The schematic diagram of the whole process is shown in Figure 2. Regarding the interest point
matching strategy, the proposed pipeline illustrated in Figure 2 can be summarized as (1) Laplacian
filter is used for edge detection; (2) Marr wavelets are used to identify salient points in the image;
(3) entropy based metric for selecting the most distinctive points of the image denoted as feature points;
(4) feature points matching; (5) outlier removal through RANSAC.
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Figure 2. The basic flowchart of graph matching.

4.1. Image Pre-Processing

Laplacian is a second-order derivative operator that detects the zero-crossing in image intensity
and usually produces more accurate edge detection results [39]. Laplace filter represents a discrete
approximation to the mathematical Laplace operator. Its second-order partial derivative in the
orthogonal direction of continuous space and the approximation of its mathematical equivalent
are defined below [40]:

∇2 f (x, y) =
∂2 f (x, y)

∂x2 +
∂2 f (x, y)

∂y2 (7)

∇2 f (x, y) ∼= { f (x + 1, y) + f (x− 1, y) + f (x, y + 1) + f (x, y− 1)} − 4 f (x, y) (8)

I(X) = I(x, y) = f (x, y)− c · ∇2 f (x, y) (9)

where f (x, y) is the original image, I(x, y) is the processed image, c is a constant.
From formula (8), the digital mask filter w can be viewed as the following 3× 3 set of filter

coefficients as shown in Figure 3a. The process of the Laplacian filter sharpening is essentially a
convolution process. Suppose the origin pixel of f is located in the upper left corner of the image f ,
and set the middle value of mask w as the center of kernel. Let w move at all possible positions so that
the center kernel of w can coincide with each of pixels of f . The convolution operation is essentially
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the sum of the products of the corresponding positions of the two functions. The convolution between
f and its corresponding mask filter w is shown in Figure 3b.

Figure 3. The process of the Laplacian filter sharpening: (a) the digital mask filter w, (b) the convolution
operation.

The definition of two-dimensional convolution is as:

I(x, y) = f ∗ w = ∑
k,l

f (x + k, y + l)w(k, l) (10)

4.2. Marr Wavelets within Scale-Interaction

Receptive field [41] is used to describe the stimulation pattern of the retina. The receiving field
of high-level neuron cells in the visual pathway is synthesized from the receiving field of low-level
neuron cells. Therefore, as the level increases, the range of the receptive field becomes more impressive.
Ultra-complex neuron cell models [42] can respond to complex object features through powerful
non-linear processing functions, and most ultra-complex neuron cells have sensitive termination
characteristics at the ends of line segments, corner points, and line segments with high curvature.
In other words, the response of ultra-complex neuron cells to light can be simulated by the difference
in response of spatial filters with different bandwidths to light. The response of the received field to
light can be represented by a spatial filter function, such as a Gaussian difference function or a Gabor
wavelet function.

The scale-interaction model for feature detection is based on filtering using a class of self-similar
Gabor functions or Gabor wavelets [43,44], which can achieve the minimum joint resolution in the
spatial and frequency domains. This recommendation is made because it is unique in reaching the
smallest possible value of the joint uncertainty [45]. The function of feature detection is defined as the
following formula:

Qij(x, y, θ) = f (Wi(x, y, θ)− γWj(x, y, θ)) (11)

where γ is a normalizing factor, Wi(x, y, θ) and Wj(x, y, θ) are spatial filters. They go through the
transformation of a nonlinear function f at location (x, y) with preferred orientation θ in two scales
i and j respectively. If feature detection function Qij obtains a local maximum at the location (x, y),
this location is considered to be a potential feature point position.

For further optimization, the Marr wavelets [46] were used instead of Gabor wavelets within the
scale-interaction model, because of its isotropic [47,48]. Two-dimensional Marr wavelets and their
corresponding feature detection function are defined as:

Mi(X) = λi(2− λ2
i X2)exp(−λ2

i X2

2
) (12)

Qij(X) = |Mi(X)− γMj(X)| (13)

Rij(X) = I(X) ∗Qij(X) (14)

134



Sensors 2020, 20, 5117

where X = (x, y), and X2 = (x2 + y2). λi = 2−i and i represents the scaling value of Marr wavelets.
Convolve Qij(X) with an grayscale image I(X). If its response value Rij(X) obtains a maximum
local value, then X is considered to be a potential feature point. Algorithm 1 is pseudo-code of Marr
wavelets within scale-interaction. Figure 4 illustrates the process of extracting response value using
Marr wavelets within scale-interaction. (b) and (c) are convolution results between the original picture
and the mask filter. Then local maximum points are extracted on this basis.

Algorithm 1 Marr wavelets within scale-interaction algorithm

Input: I(X), i, j
Output: points

1: Ii = MarrFilter(I(X), i)
2: Ij = MarrFilter(I(X), j)
3: Isub ← |Ii − Ij|
4: localthr ← max(max(Isub)) ∗ r
5: if Isub(i, j) < localthr then
6: Ilocalthr(i, j)← Isub(i, j)← 0
7: end if
8: points← cornerpeaks ← Ilocalthr
9: function MarrFilter(I(X), scale)

10: δ = 2scale

11: x = −(2 ∗ f ix(δ)) : 1 : (2 ∗ f ix(δ))
12: y = −(2 ∗ f ix(2 ∗ δ)) : 1 : (2 ∗ f ix(2 ∗ δ))
13: Mi(X)← X ← meshgrid(x, y)
14: I f il ← I(X) ∗Mi(X)
15: end function

Figure 4. From the left to the right: (a) original image, (b) filtered result when i = 1, (c) filtered result
when i = 2 and (d) response image.

4.3. Entropy and Response

Aiming at the problems of uneven feature distribution, too many feature points, and long
matching time, a feature point extraction method based on local entropy and feature point response
was proposed, called the entropy and response algorithm (ER). In this section, three main parts
are explained.
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4.3.1. Entropy Algorithm

In actual images, feature points often appear as sharp changes of gray values or inhomogeneity in
grayscale distribution; that is, the local region of a feature point has a large amount of information.
Entropy is a measure of information in an image, and local entropy is a measure of local area
information of an image. Local entropy value under feature-rich region is much higher than the
local entropy value under feature-poor region. Therefore, it is possible to determine which regions
have more features by calculating the local information entropy of image, and then extract the feature
points in these regions.

Information entropy [49,50] is the amount that represents the overall characteristics of the source
in a common sense. It is considered from the statistical properties of the entire source to measure
the expected value of a random variable. An image is essentially a source of information that can
be described by information entropy. Let the gray image G have m gray levels, mesh division is
performed to obtain n× n sub-regions. The whole information entropy Hi and the average entropy H̄
of the image are calculated as follows:

Hi =
m

∑
i=1

pilog2 pi (15)

H̄ =
1
n2

n2

∑
j=1

Hj (16)

where pi is the probability that the ith gray level appears, that is, the ratio of the number of pixels
whose gray value is i to the total number of pixels of the image. So the local entropy is counted for the
probability of occurrence of gray level in the sub-image. Since the value of the information entropy
is only related to the distribution of the local gray-scale pixels, but independent with a single pixel,
so it is not sensitive to the influence of noise and can improve the accuracy of the image authenticity
description. Here, we use the local information entropy of the image to extract feature points. Under the
meshing strategy, the image is divided into n× n sub-regions. Therefore, the sub-average entropy
value of each sub-grid can be calculated. Figure 5 is a schematic diagram of mesh division, n is set
to 40.

Figure 5. Schematic diagram of meshing: (a) image divided by 4× 4 sub-regions, (b) image divided by
8× 8 sub-regions.

4.3.2. Response Algorithm

After mesh division and the computation of each local entropy, we will get n× n sub-regions
for the whole image, then detected feature points are mapped into the respective sub-areas. In this
case, if we compute and sort the entropy values of all of these feature points extracted, then the first N
feature points with larger entropy values can be selected to describe the whole image. However, this
method only utilizes the entropy values of feature points, without considering its distribution in the
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image. Finally, feature points with high entropy values may mostly appear in the same local area,
which will cause aggregation. So a block division and response algorithm are proposed to deal with
this problem.

As mentioned before, if a pixel presents a sharp change in its neighborhood, this pixel will
have a stronger deviation value from the mean value. Based on the Bresenham discrete circle [51]
with the pixel point pi as the center and three pixels as the radius, 16-pixel points on the discrete
circumference are considered in correspondence with the central pixel point pi. This is shown in
Figure 6. These 16 pixels are assigned to dark and bright areas. The dividing criteria and deviation [52]
are respectively defined as the following:

Sbright =
{

x|Ipi ,x > Ipi + t
}

(17)

Sdark =
{

x|Ipi ,x ≤ Ipi − t
}

(18)

Dev = max( ∑
x∈Sbright

|Ipi ,x − Ipi | − t, ∑
x∈Sdark

|Ipi − Ipi ,x| − t) (19)

where Sbright indicates bright area, Sdark indicates dark area. Ipi is the gray value of center point pi,
Ipi ,x represents the gray value of a pixel labeled x on a discrete circumference centered at pixel pi, t is
the set threshold. Dev is the sum of the deviation value among the gray values of the pixel pi and its
corresponding neighboring pixels located in the bright or dark area.

Figure 6. Bresenham discrete circle centered on pixel pi.

4.3.3. Distribution Criterion

After the calculation of the entropy and response, a distribution criterion is proposed to extract
the corresponding points that meet the requirements. In the region where the local entropy is bigger
than the average of entropy H̄, the feature points are extracted with the ratio r. The only one strongest
response point is extracted in each remaining region where the local entropy is smaller than H̄. Here, we
choose the unified ratio method for the selection of r. Assuming that there are m regions whose local
entropy is greater than H̄, then ri(1, 2, ..., m) is the ratio of extracting feature points in the ith region.
For example, when r = 10%, that is, in the mth region with large local entropy, the feature points with
the top 10% responses given by Dev are extracted. The appropriate value of r is set empirically.

The detail of the entire ER method is outlined in Algorithm 2. Based on the mesh division strategy,
we first compute each of the local average entropy value of all these sub-regions. Then the feature
points are sorted according to the computation of their deviation values in each of their sub-region.
Finally, the distribution criterion can not only effectively reduce some of the useless feature points,
but also ensure the uniformity of feature point distribution. As we can see, the step entropy and
response can both develop a custom algorithm to identify feature points. Entropy strategy is only to
calculate the reflection degree of an individual pixel, but the response is based on the deviation value
of a set pixels between the center point, and it is adjacent points based on the Bresenham discrete circle
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principle, so that the mutation of response is more reflected for finding points with reliable contrast.
Therefore, deviation is more capable of extracting more qualified feature points than entropy.

Algorithm 2 Entropy and response algorithms

Input: I(X), points, m, n, t, r
Output: pointsselect

1: for j = 1→ n2 do
2: pointsj ← points
3: Hj, H̄ ← Entropy(I(X), m, n)
4: psub(j) ← Response(pointsj, t)
5: if Hj > H̄ then
6: pointsselect ← p(psub(j)∗r)
7: else
8: pointsselect ← pmax
9: end if

10: j = j + 1
11: end for
12: return pointsselect
13: function Entropy(I(X), m, n)
14: pi(m∗1) ← Isub(i)(n∗n) ← I(X)
15: H = ∑m

i=1 pilog2 pi
16: H̄ = 1

n2 ∑n2

j=1 Hj
17: end function
18: function Response(points, t)
19: Ip,x ← circlep ← points
20: Dev = max(∑x∈Sbright

|Ip,x − Ip| − t, ∑x∈Sdark
|Ip − Ip,x| − t)

21: psub ← p(Devp)
22: end function

4.4. Definition of First-Order GM Problem Based on NCC

The purpose of graph matching [53] is to determine the correct attribute correspondences
P = (VP, EP) and Q = (VQ, EQ) between two graphs P and Q, where V means vertex, and E represents
edge. We customize corresponding mapping edges e1 = ij ∈ EP, e2 = ab ∈ EQ.

The objective of graph matching is to find the correct corresponding point pairs between two
graphs P and Q among the feature points extracted. A unidirectional ’one-to-one’ constraint is assumed,
which requires one node in P to match at most one node in Q.

Cross-correlation is a standard method for estimating the similarity between two sets of data [54].
Normalized cross-correlation (NCC) is an essential application, which has been used widely for many
signal processing applications due to its effective and direct representation in the frequency domain,
and it is less sensitive to linear variations in the amplitude of two comparison signals [55]. We use the
NCC algorithm to measure the similarity between two feature point p in graph P and q in graph Q.
These ratios Ra(p, q) of the calculated correlation values represent the degree of matching between
the two sets of corresponding images. The NCC algorithm used to find similarity match between a
window near feature point p and a window around feature point q is defined as:

Ra(p, q) = ∑i[(W pi −W p)(Wqi −Wq)]√
∑i(W pi −W p)2

√
∑i(Wqi −Wq)2

(20)

where the summations are over all window coordinates, W pi and Wqi are pixel intensity in windows
for p and q respectively, each of the windows is sized as 5× 5. Also, W p and Wq are the corresponding
mean of the window pixels. The coordinate of maximum values in this normalization cross-correlation
is the position of the best matches for reference images.

Based on the NCC similarity measure, we use the nearest neighbor ratio (NNR) method to perform
a rough match on the feature point set. The selection and matching process of the NNR algorithm with
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one-way ‘one-to-one’ constraint is described as follows: Based on the sample feature point pairs in
the two images, first use the NCC algorithm to extract all the most significant corresponding pairs.
These ratios are then compared with a fixed threshold. If the NCC ratio is higher than this fixed
threshold, the corresponding point pair is considered a match. Otherwise, the pair of points are
discarded. The fixed threshold is usually a constant not greater than 0.9. Since correct matching has
stronger similarity than incorrect matching, this is a functional judging characterization for graph
matching according to the NNR concept. Figure 7 shows a flowchart of data processing. The detected
feature points of the two images are respectively put into two corresponding buffers. Each point p in
graph P is used to calculate the ratio of NCC to all points q in graph Q, and then all ratios are sorted in
descending order. Under the principle of NNR, some will be extracted as the best matching points,
otherwise, they will be discarded.

Figure 7. The basic flowchart of data processing.

4.5. Outlier Elimination

In this application, before using the Marr filter for convolution, we will use Laplacian for
convolution as a preprocessing step. Due to the linear relationship of these two operations,
this corresponds to a single convolution, which is a smoothed fourth-order derivative filter.
Therefore, as each derivative amplifies the noise, the number of feature points increases. On the other
hand, although the NNR method is easy to implement and sometimes well-matched, some points
in these extracted feature point sets do not match, so a mismatched cleanup operation is required.
Therefore, it is particularly important to find ways to reduce the mismatch caused by interference.

The RANSAC algorithm [56,57] is called the Random Sample Consensus Algorithm, which can
well eliminate the existence of mismatches. The algorithm has strong robustness and the ability
to correct data sets. The basic idea of the RANSAC algorithm is to use an iterative method to
extract the sample set from the model. Find an optimized parametric model that can include more
internal points in the data set and then test the extracted samples using the residual set. Points in
the algorithm that fit the data set model are called interior points. Otherwise, they are called outliers.
Therefore, the RANSAC algorithm can be used to find the best parameter model in the data set
containing outliers through an iterative algorithm. The detailed implementation process of RANSAC
is as follows:

(a) Randomly extracts non-collinear a pairs of feature points from the data set (a = 4 in experiment),
then calculate their transformation homography matrix H, and record it as model M.

(b) Calculate projection error of each point in the dataset with model Mk. If the error is less than a
predefined threshold τ, add it into the inner point set Ik.

(c) If the current number of elements in inner point set Ik is greater than the number in optimal inner
point set Ibest, then update Ibest and re-estimate the model Mbest.

(d) If the number of iteration is more than k, the operation will be exited; otherwise, the number of
iterations is increased by 1, and the above steps are repeated.
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The threshold τ is selected in accordance with n-dimensional chi-square distribution. χ is the
cumulative chi-square distribution. Assume that the out-of-class points are white Gaussian noise with
a mean of 0 and a variance of η. The number of iterations k will be updated instead of fixed until it is
greater than the maximum number of iterations.

τ2 = χ−1
n (µ)η2 (21)

k =
log(1− pc)

log(1− µa)
(22)

where pc is the confidence level, generally taking 0.95 to 0.99; µ is the ratio of inlier point; a is the
minimum number of samples required to calculate for model. The pseudo-code of RANSAC is outlined
in Algorithm 3.

Algorithm 3 Random Sample Consensus (RANSAC) algorithm

Input: pc, kmax, τ, a, m
Output: Mbest, Ibest

1: k = 0, Imax = 0
2: for k < kmax do
3: τ2 = X−1

n (µ)η2

4: Use randomly sampled subset a to estimate Mk and Ik.
5: if |Ik| > Imax then
6: Mbest = Mk, Ibest = Ik
7: µ = |Ibest|/m, kmax = log(1− pc)/log(1− µa)
8: end if
9: k = k + 1

10: end for

4.6. Parameters of the Proposed Algorithm

This section details the specific parameters used in the experiments. In the feature point detection
part, the Marr wavelet algorithm is used to define the feature points as the maximum local value
inside the scale-interaction image (with γ = 1). The two scales we chose are i = 1 and j = 2. Then the
mesh division and feature points extraction are processed, the image is meshed by n× n to obtain n2

sub-regions. Here, n = 40 is selected. The detected feature points are mapped into various sub-regions
and sorted based on the deviation value Dev in each sub-region to which they belong. At the same time,
each local information entropy Hi and average information entropy H̄ are calculated. Assume that
there are k sub-regions with local information entropy greater than the average information entropy,
then feature points with maximum responsiveness of 30% are extracted from these k regions. In the
feature point matching part, the NCC similarity measurement algorithm and NNR method are used
to match the feature point set roughly. For the matching point filtering part, RANSAC can better
remove the unmatched points, and finally get more accurate matching results. Its computational
complexity is O

(
max(NP, NQ)

)
, where NP is the number of features in the reference image, and NQ is

number of features in query image. The algorithm is suitable for performing real-time global methods.
Besides, it can also achieve efficient parallel implementation in GPU systems. Algorithm 4 outlines the
details of the entire process of the proposed algorithm.

Algorithm 4 The proposed algorithm

Input: Input images I1 and I2
1: I1 and I2 processed under Laplace filter
2: (I1′ , I2′) = MarrWaveletsFunction(I1, I2)
3: (points1, points2)← (cornerpeaks1, cornerpeaks2)← (I1′ , I2′)
4: (pointsselect1, pointsselect2) = EntropyResponseFunction(points1, points2)
5: (pointsselect1′ , pointsselect2′) = RANSACFunction(pointsselect1, pointsselect2)
6: MatchingPairs = NCCandNNR(pointsselect1′ , pointsselect2′)
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5. Second-Order NCC Based GM

The first-order GM provides convolution-based algorithms, whereas the second-order GM
emphasizes geometric inter-feature relationships, transforming the correspondence problem to a
purely geometric problem stated in a high dimensional space, generally modeled as an integer
quadratic programming. This section presents our second application. We introduce in this section
a new contribution with an application to second-order graph matching in the Matlab framework.
The framework is based on the original Matlab application provided by Cho et al. [18]. This application
constitutes a useful framework for graph matching as an IQP problem. It offers useful mathematical
abstractions, and it allows us to develop and compare many algorithms based on a common evaluation
platform, sharing input data, but also customizing affinity matrices and a matching list of candidate
solution pairs as input data. This allows us to reuse these common data and context to start elaborate
NCC algorithms for second-order graph matching application (As we discussed in detail in Section 4.4).
This approach uses NCC algorithm to search for the indicator vector, then the matching score will
be computed under IQP based formulation. By considering the second-order term, the algorithm
determines the mapping between two graphs that should reflect the geometric similarity relationship
between the pairwise matching features. All the algorithms are executed and compared based on the
same experimental framework with common data from standard benchmarks in the domain.

We set P and Q the two sets of features of query graph GP = (P, EP) and reference graph
GQ = (Q, EQ) respectively. We note i, j ∈ P and a, b ∈ Q as feature points, ij ∈ EP and ab ∈ EQ as
edges. Also, e1 = (i, a) and e2 = (j, b) represent, when needed, candidate assignments. The main
task it to find a suitable one-to-one mapping between P and Q. The feature points correspondence
mapping is shown in the Figure 1. The yellow lines are correct matches.

Affinity matrix M, also known as affinity tensor, is used to organize the mutual similarities
between sets of feature points. The measurement of affinity can be interpreted as a product of a
solution vector x, that represents the set of candidate correspondences, by the matrix. The solution
variable x ∈ {0, 1}NP NQ is an indicator vector such that xia = 1 means feature i ∈ P matches with
feature a ∈ Q, xia = 0 means no correspondence, and where NP and NQ are the respective set sizes of
P and Q.

A graph matching score S between edges can be defined by the following equation:

S = ∑
ij∼ab

f (ij, ab) = ∑
ia,jb

M(ia, jb)xiaxjb = xT Mx, (23)

where ij ∼ ab means (i, a) and (j, b) are correspondence pairs, and x is the indicator vector. Then,
the purpose of the graph matching IQP problem is computing solution x∗ that maximizes the matching
score as follows:

x∗ = argmax(xT Mx), (24)

s.t. x ∈ {0, 1}NP NQ , (25)

∀i
NQ

∑
a=1

xia ≤ 1, (26)

∀a
NP

∑
i=1

xia ≤ 1. (27)

The binary constraint is expressed by Equation (25), while (26) and (27) express the two-way
constraints, that specify the solution to be a one-to-one mapping from P to Q. Note that by removing
constraint (27), we obtain a many-to-one mapping, that is, a (partial) function from P to Q. In this
chapter both constraints must be verified.

Affinity matrix M which consists of the relational similarity values between edges and nodes must
is considered as an input of the problem. It can be noted that its size is defined by the total number of
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candidate assignment pairs considered. Then, the affinity matrix size may vary from O
(
(NPNQ)

2),
in the case of full possible pairs, to O

(
(K× NP)

2) where K is some constant, in case of a restricted list
of candidate pairs. Note that this list of candidate pairs must be added as part of the input to relate the
entries of the affinity matrix to the feature points. The indicator variable x size varies also accordingly
to the symmetric affinity matrix size. Its length corresponds to the column, of line, size of the matrix,
and may vary from NP × NQ to K× NP depending on the application.

Here, the matching score is completely retained as pairwise geometric only. The individual affinity
M(e1, e1) that represents first order affinity, is set to zero since there is no information about individual
affinity. That is to say, all the diagonal values of the affinity matrix are zeros. The pairwise affinity
M(e1, e2) = M(ia, jb) between edges is given by:

M(ia, jb) = max(50− dia;jb, 0), (28)

where dia;jb is the mutual projection error function used in [58] between two candidate assignments (i, a)
and (j, b), that includes euclidean distance evaluation dij between locations of features i, j. The Table 1
summarizes notations and definitions used in this paper.

Table 1. Summarization of notations.

Notation Purpose

GP Reference graph
GQ Query graph
P Set of features in GP
Q Set of features in GQ
NP Total number of data featrues of GP
NQ Total number of data featrues of GQ
C Mapping constrains
L A set of candidate assignments
i, j Feature points in GP
a, b Feature points in GQ
e1 = (i, a), e2 = (j, b) Candidate assignments
M Affinity matrix
M(e1, e2) Pairwise affinity
M(e1, e1) Individual affinity
S Graph matching score
x Indicator vector
x∗ Optimal solution
dij Euclidean distances between the point i and j

6. Experimental Evaluation

6.1. First-Order GM Experiment

The experiments were performed on a CPU Intel(R) Core(TM) i5-4590 3.3 GHz. In this section,
we evaluate the proposed feature point matching method by using the Visual Geometry Group
dataset (https://www.robots.ox.ac.uk/~vgg/data/). The following will be divided into two parts
for experimental description: extract feature points and perform feature matching. For quantitative
evaluation, a set of experiments was performed. The proposed algorithm based on Laplace filter
and Marr wavelets under entropy method (L_Marr_E) was compared with other classic conventional
methods, corner detector [9], Gilles [7], Harris [6], LoG [8] and SIFT [11] algorithms.

6.1.1. Feature Points Extraction

Based on the above experimental theory, the following experimental verification was performed.
First, we needed to verify the importance of the Laplacian filtering algorithm at the feature point
extraction stage. Figure 8b,c show comparison graphs before and after adding a Laplacian filter. We can
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clearly see that using Laplace filters could greatly increase the number of feature points detected.
Figure 9 shows the feature point detection results between different algorithms: CD, Gilles, Harris,
LoG, SIFT, and L_Marr_E. Correspondingly, Table 2 details the specific number of feature points
extracted of Figure 9. Compared with the conventional method, this method could extract more
feature points.

Figure 8. Quantitative experimental analysis of feature point extraction: (a) original image, (b) feature
point extraction without Laplace filter, (c) feature point extraction with Laplace filter.

Figure 9. Feature points extraction under different algorithms: (a) corner detector (CD) (b) Gilles
(c) Harris (d) LoG (e) SIFT (f) L_Marr_E.
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Table 2. Feature point extraction results under different kinds of algorithms.

Method CD Gilles Harris LOG SIFT L_Marr_E

img.1 72 73 104 174 226 264
img.2 70 246 457 165 980 654
img.3 144 274 341 110 763 1576
img.4 203 844 1133 153 3533 8402
img.5 320 627 696 140 3366 7806

6.1.2. Feature Points Matching

The following experiments verified the application of entropy-based refinement in feature
matching. Combined with the fragile feature selection stage, ablation analysis provided some valuable
intuitions for the pipeline in the feature matching stage. Then, the Figure 10 shows the comparison
results, and we found that the RANSAC algorithm could thoroughly eliminate the mismatch points.
Besides, the NCC algorithm based on Laplacian filter and Marr wavelet (L_Marr) not only had higher
matching accuracy but also could increase the number of correct feature matches than the method
without Laplace filter (Marr).

Figure 10. (a,b) show graph matching without Laplace filter before and after RANSAC optimization;
(c,d) show graph matching under Laplace filter before and after RANSAC optimization; (e,f) show
graph matching using entropy algorithm without Laplace filter before and after RANSAC
optimization; (g,h) show graph matching using entropy algorithm under Laplace filter before and after
RANSAC optimization.

Then we conducted another ablation study. We calculated the five groups of databases as used
in Figure 9 and took their final average as shown in Table 3. It summarizes the number of image
matching pairs, the number of recall, and time. The computation of graph matching Recall [59] can be
defined as follows:

Recall = Nrm/Ntm (29)

where Nrm is defined as the number of detected true matches after RANSAC removes the mismatched
points, and Ntm means the total number of correspondences. From the Table 3, we can find that the
use of Laplace increases the recall rate, but at the same time it increases the computing time; however,
the use of entropy can greatly improve operating efficiency under the premise of basically ensuring
the recall value. Therefore, the two complement each other, the combination of Laplace and entropy
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can better realize the superiority of the proposed algorithm. As shown in the Table 3, the accuracy of
the global L_Marr_E method remains very high, even if slightly lower than the accuracy of L_Marr
method with no entropy, whereas a substantial computation time acceleration by a factor 5 is a benefit
of the method with entropy element.

Table 3. Experimental comparison results for quantitative analysis of feature point matching.

Methods Nrm Ntm Recall (%) Time (s)

Marr 3323 4711 70.58 18.76
L_Marr 10407 10954 95.01 98.02
Marr_E 998 1455 68.59 10.33

L_Marr_E 3523 3740 94.20 21.45

We now selected the L_Marr_E method, which provided the best compromise in both accuracy
and computation time in previous tests, as a competitor against other feature point selection methods
from literature. We conducted another experiment based on test data from the University of Oxford’s
Object Category dataset, which contained 13 different image sets. Among them, seven data sets
were selected for comparative analysis in this section. Table 4 shows the average of all image pairs
selected from the dataset. The best recall results were obtained through L_Marr_E, which produced
the most significant feature points in the two query images. It should be noted that when compared to
standard feature point extraction methods, our method provided the best accuracy despite a slight
increase of computation time. While entropy accelerated feature point selection in our framework
with Laplacian and Marr wavelet, as shown in Table 3, it allowed on the contrary to improve accuracy
against other independent standard feature point selection methods, as shown in Table 4. Even when
compared to the famous SIFT method, our method remained competitive according to the trade-off
between time and accuracy, accuracy being improved at a slight expense of computation time. Note
that L_Marr_E also provided the highest number of feature points. Figure 11 shows the corresponding
links between images under different algorithms: CD, Gilles, Harris, LoG, SIFT, and L_Marr_E.
Therefore, the proposed algorithm ould obtain the better matching effect.

Table 4. Feature point matching results under different kinds of algorithms.

Detector 1st Image 2nd Image Time (s) Recall (%)

1 CD 51 53 1.76 0.36
2 Gilles 124 134 2.24 0.16
3 Harris 208 226 2.8 0.35
4 LoG 300 300 4.27 0.27
5 SIFT 1275 1258 5.49 0.48
6 L_Marr_E 1998 1929 7.22 0.52

Figure 11. Feature points matching under different algorithms: (a) CD (b) Gilles (c) Harris (d) LoG
(e) SIFT and (f) L_Marr_E.
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6.2. Second-Order GM Experiment

In this subsection, experiments were conducted on a CPU Intel(R) Core(TM) i5-4590 3.3 GHz.
We performed experiments on the CMU house image database and real image database. Accuracy,
objective score and time were the most important main parameters in the field of graph matching.
We needed to use them as criterion when comparing with other different algorithms. The datasets
used in this paper, such as CALTECH and CMU house datasets, are the most popular databases
for some state-of-the-art algorithms. Although there are still many different databases, in order to
facilitate the comparative study of researchers who study graph matching, this article used these most
popular databases for easier comparing research. The proposed NCC algorithm was compared with
two state-of-the-art methods such as RRWM [18] and SM [29]. All of these different algorithms shared
the same images, feature points, and affinity matrices as input data. Each test set had a ground-truth
solution for accuracy evaluation.

6.2.1. Presentation

Performance evaluation could be done by computing the affinity score, but more importantly,
by evaluating accuracy according to a ground-truth set of true assignment pairs, that reflected the
application requirement of graph matching. We also evaluated the computation time. Based on the
above IQP, the objective score could be obtained by formula (4). Accuracy could be obtained by
dividing the actual correct number of matches detected by the maximum number of ground truth
pairs that could be returned, and the formula was as follows:

Accuracy = x∗ ∗VGTbool/maxGT, (30)

where x∗ is the binary vector solution returned by the algorithm, VGTbool ∈ {0, 1}NP NQ is a binary
vector representing the ground-truth pairs, and maxGT is the maximum number of true assignments
that could be returned when considering a many-to-one mapping, relaxing constraint formula (2).
However, solutions returned by the algorithms had to necessarily verify a one-to-one mapping in this
section. They verified both constraints formulas (2) and (3).

6.2.2. CMU House Image Matching

Experiments using the CMU house internal sequence dataset (http://vasc.ri.cmu.edu/idb/html/
motion/) could evaluate sequence matching of the same object. A total of 110 pictures in this dataset
were divided into different sequence gaps (from 10 to 100 with an interval of 10). Therefore, we ended
up with ten sets of data pairs. Each pair of image sets consisted of an initial fixed-position picture
(sequence 1) and its changing transformations. To evaluate the matching accuracy, 30 landmark feature
extraction points were manually tracked and labeled as ground truth on all frames. In this typical classic
CMU test, the proposed NCC method was competitive to the RRWM algorithm. The experimental
results are shown in Figure 12, and the detailed information of the quantitative evaluation is recorded
in Table 5. From Table 5 we can find that in this typical single object with only the angle conversion
test, the proposed NCC algorithm was comparable to RRWM in terms of accuracy and score. NCC
also cost less computing time than RRWM.
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Figure 12. CMU house dataset matching results among (a) RRWM, (b) SM, and (c) NCC algorithms.

Table 5. Comparative evaluation on CMU database for reweighted random walk method (RRWM),
spectral matching method (SM), and normalized cross-correlation (NCC).

Methods Accuracy Score Time (s)

1 RRWM 92.61 99.93 0.52
2 SM 89.21 94.44 0.07
3 NCC 94.88 95.31 0.23

6.2.3. Real Image Matching

In the experiments of real image matching, we used the CALTECH database (https://cv.snu.ac.
kr/research/~RRWM/) customized by Cho et al. [18]. In this CALTECH database, it contained 30
different image pairs. All ground truths of these corresponding candidates were manually pre-labeled.
Accuracy and objective scores were the main criteria for matching. Table 6 shows the average results
of 30 pairs of images obtained by RRWM, SM, and NCC algorithms. As can be seen from the table,
the performance of the NCC algorithm was not better than the RRWM and SM algorithms. Figure 13
shows the visualization of feature point connections. Correct and incorrect matches were marked with
yellow and black lines, respectively.

Since the second-order graph matching based on IQP was an NP-hard problem, various
approximate solutions were used to attempt to solve the pairwise similarity corresponding mapping
problem. Leordeanu and Hebert provided a spectral matching (SM) algorithm [29] based on the main
strength cluster of the adjacency matrix by finding its principal eigenvector. Reweighted random
walks for graph matching (RRWM) algorithm was introduced by Cho et al. [18], and it combined
mapping constraints with re-weighted jumping schemes. Both of these two methods implement an
iteration loop to compute a principal eigenvector. This basic iteration loop technique belongs to the
power iteration method. Although this method cannot guarantee to achieve the final global optimal
solution during the operation, it can converge to the fixed point of the tensor. However, NCC algorithm
is a single-threaded algorithm but not an iterative method. When the normalized cross-correlation
algorithm calculation is over, the entire matching process is completed. It cannot run the optimization
iterative until the solution x converges. Therefore, the NCC algorithm cannot achieve the expected
optimization effect in the second-order matching.
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Table 6. Comparative evaluation on CALTECH database for RRWM, SM, and NCC.

Methods Accuracy Score Time (s)

1 RRWM 61.13 99.92 0.16
2 SM 50.22 79.93 0.02
3 NCC 52.17 74.39 0.06

Figure 13. From the left to the right: (a) RRWM algorithm, (b) SM algorithm, and (c) NCC algorithm for
graph matching. (The yellow lines represent the correct matching pairs, and the black lines represent
the wrong matches.)

7. Conclusions

We study different declinations of feature correspondence problems by the use of the Matlab
platform, in order to reuse and provide state-of-the-art solution methods, as well as experimental
protocols and input data necessary with evaluation and comparison tools against existing sequential
algorithms, most of the time developed in Matlab framework. While feature extraction methods are
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numerous, it is not straightforward that each could represent the objects to match from a query to a
reference image adequately. In order to vary the feature set size while preserving a reasonable recall
rate in graph matching, we have proposed a new combination of filters with an entropy-response
based selection method. Laplace filter enhances the edges and details of an image. Secondly, Marr
wavelets embedded in scale-interaction are used to detect feature points. Then, we use the entropy and
brightness response to extract typical feature points. Most importantly, the entropy-based selection
method greatly reduces the calculation time. Image matching is achieved by nearest neighbor search
using a normalized cross-correlation similarity measure. Finally, the RANSAC process deletes the
outlier correspondence to achieve matching optimization. The first-order comparison results show that
our algorithm has a higher matching rate for reasonable computation time, despite the augmentation
of the number of feature points under the Laplace algorithm. The second-order graph matching is
also realized based on the NCC algorithm, which allows us to address graph matching or derived
sub-problems with a closed relationship with experiments on IQP models in the Matlab platform.
We found that the second-order NCC approach performs competitively to IQP models on CMU images
on accuracy and score. The performance looks less satisfactory for real case images of the CALTECH
database. In future work, we will improve implementation by exploiting natural parallelism of the
method on the GPU platform.
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Abstract: Continually improving crowd counting neural networks have been developed in recent
years. The accuracy of these networks has reached such high levels that further improvement is
becoming very difficult. However, this high accuracy lacks deeper semantic information, such as
social roles (e.g., student, company worker, or police officer) or location-based roles (e.g., pedestrian,
tenant, or construction worker). Some of these can be learned from the same set of features as the
human nature of an entity, whereas others require wider contextual information from the human
surroundings. The primary end-goal of developing recognition software is to involve them in
autonomous decision-making systems. Therefore, it must be foolproof, which is, it must have good
semantic understanding of the input. In this study, we focus on counting pedestrians in helicopter
footage and introduce a dataset created from helicopter videos for this purpose. We use semantic
segmentation to extract the required additional contextual information from the surroundings of an
entity. We demonstrate that it is possible to increase the pedestrian counting accuracy in this manner.
Furthermore, we show that crowd counting and semantic segmentation can be simultaneously
achieved, with comparable or even improved accuracy, by using the same crowd counting neural
network for both tasks through hard parameter sharing. The presented method is generic and it can
be applied to arbitrary crowd density estimation methods. A link to the dataset is available at the
end of the paper.

Keywords: remote sensing; helicopter footage; deep learning; computer vision; image processing;
crowd counting; semantic segmentation; multitask learning

1. Introduction

With the recent rapid developments in convolutional neural networks (CNNs), many image
processing tasks that were very difficult a decade ago have become easier. Perhaps the most obvious
example is the recognition of humanoid shapes in images. The detection and counting of humans in
digital images, especially in crowded scenes, offer several applications, including traffic monitoring,
safety surveillance, and finding stranded people following disasters.

At present, the task of image-based crowd counting can be divided into two main categories: direct
and indirect methods. In the former case, all individuals are separately identified in the image, following
which the total number of humans is obtained by counting those individuals directly. However, indirect
methods produce additional abstract information, from which the total count can be achieved through a
more elaborate procedure. In this study, we focus on indirect methods; specifically, density map estimator
(DME) CNNs, although the work presented can also be applied to direct methods.

DME CNNs use an arbitrary three-channel RGB image as input and produce a single-channel
crowd density map. Thereafter, the total count of humans can be obtained by integrating over the
entire image. The advantage of this method is that, in addition to yielding the total count of humans,
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it provides a detailed map of their spatial distribution. The networks are usually fully convolutional,
which means that the input can have an arbitrary size.

The typical footage type used for crowd counting is created with street-level cameras and drones
flying at low altitudes. Although these image types are used extensively, they suffer from strong
perspective distortions and obstructions, owing to the low camera angle. As a result, people appear in
many different sizes and shapes in the imagery, and many methods can only detect a subset of these
varieties, thereby yielding suboptimal density maps. Most works in the field are focusing on solving
these issues at present.

Another issue exists that is unrelated to the previous problems and, to the best of the authors’
knowledge, is not currently being investigated by researchers. Although generic human detection
has its uses, it also exhibits limitations from certain practical viewpoints. If the task is to identify a
subset of humans, identifying that all humans will produce faulty results. The simplest example is
the differentiation between actual living humans and fake ones, such as dummies, statues, or posters,
which inevitably appear in urban footage whether or not they are exhibited in conventional datasets.

The set of features used for identifying humans can also be used for identifying human
subcategories, depending on the task; for example, people with a certain hair color, wearing a certain
type of clothing, or carrying a bag. However, more abstract subcategories exist that are difficult or
impossible to identify based on humanoid features alone. One such subcategory is pedestrians.

Counting pedestrians offers several applications. Such data can be used to reconstruct the traffic
flow of people, which can be subsequently used for further research purposes or monitoring the use of
infrastructural objects. Safety monitoring is another useful application, and the monitoring of curfews
is also an interesting option. Owing to the recent Coronavirus outbreak, many countries have imposed
a certain level of restrictions relating to time spent on the streets or social distancing.

For the abovementioned purposes, people inside buildings, on balconies, or even on rooftops
are irrelevant, as are people tending to their gardens or working at construction sites. Moreover,
as mentioned previously, inanimate human-like objects may also exist, such as billboards and other
forms of street advertisements (Figure 1). From the perspective of human detection, there is no real
difference between an “image of a human” or an “image of an image of a human”. We must recognize
the billboard itself to differentiate between the two. The latter is not specific to pedestrians, but it is a
generic issue. Furthermore, seemingly random false positive detections may occur in the regions of an
image where there are not supposed to be people. Finally, the density map may contain background
noise, which distorts the accuracy.

(a) Original image (b) Ground-truth (c) Estimated density map

Figure 1. Sample image exhibiting the problem of “fake human” detection. It is clear that the billboard
with humans on top of the building produces false positive detections.

Changing the footage type is an unorthodox means of solving the problems of perspective
distortions and occlusions. As opposed to conventional datasets, helicopter footage is free of
perspective distortions and it exhibits fewer obstructions. This is because of the high altitude and steep
camera angle. With such a setup, there is a very small size difference between humans in different
parts of the image, and even when they are standing close to one another, large parts of their bodies
remain visible. Moreover, one image can cover a much larger area from a higher altitude than from the
street level.
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In summary, helicopter footage contains several advantageous attributes for human detection.
Most importantly, it exhibits features that are not covered by other conventional datasets,
as demonstrated in [1], in which a new helicopter dataset was introduced as part of the investigation.
In this study, we introduce a new large-scale urban helicopter dataset, known as Tokyo Hawkeye 2020
(TH2020) [2], which shares the same attributes, but has a much larger image and pedestrian count,
and it also exhibits inanimate human-like objects in the urban environment.

We propose a solution that also happens to help with false detections in regions where ordinary
humans cannot possibly exist in order to address the issue of differentiating between all human-like
entities and actual pedestrians. We explicitly apply semantic segmentation to enhance the DME results.
The goal in the semantic segmentation task is to sort the regions of the input image into several
semantic categories. If C different categories exist, the network generates C confidence score maps:
one for every category. Semantic segmentation was also used as binary classification in several other
works, which differentiated between human and non-human regions in order to attempt to enhance the
accuracy. Our approach differs from this: in the footage that we introduce, the ratio of human regions
is very low when compared to the background. Therefore, we ignore humans in the segmentation and
focus on classifying the background, as illustrated in Figure 2.

Figure 2. Semantic segmentation of background for helicopter footage, where humans are ignored.

Semantic segmentation for aerial footage has been well developed and it can achieve high accuracy.
The segmentation can be used to identify the regions of images in which pedestrians can or cannot be
found. We demonstrate that this approach can be used to improve the accuracy of pedestrian detection
by masking regions where pedestrians cannot exist. Moreover, we show that the segmentation can
be achieved by the same network as the density map estimation by performing optimization for a
combinatorial loss (crowd density and segmentation) with minimal additional computational cost,
while the density map accuracy does not decrease significantly or even improves. The former approach
can be used with steep-angle, high-altitude footage, but is unfeasible with conventional crowd counting
benchmark datasets. Although the latter approach would be applicable to arbitrary datasets, to the
best of the authors’ knowledge, no other dataset has the required annotation information. Because
the introduced methods are independent of the underlying DME network, they can be applied to any
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arbitrary architecture. To support this statement, we present experimental results using three different
state-of-the-art DME networks.

2. Related Work

2.1. Crowd Counting

The majority of recent works have focused on solving two problems that arise in state-of-the-art
crowd counting methods: varying scales and perspective distortions. Several researchers have diretly
addressed the varying target sizes [3–7]. Others have experimented with increasing or changing
the receptive field of the output pixels [8–11]. Certain scholars have attempted to tackle perspective
distortions by using focused attention mechanisms [12–16]. Learning residual errors and correcting
density estimations with these errors has also proven to be a viable approach [17–19].

All of these methods serve the purpose of improving the accuracy of generic human detection.
However, we need to include the surroundings of the people in the calculations if we wish to
differentiate between people on roofs, balconies, or posters and those on the street. Although certain
methods may do so unintentionally and implicitly to an extent, our aim is to address this explicitly
using semantic segmentation.

The use of semantic segmentation in crowd counting is not new [20–24]. All of these works
aimed to create segmentation to separate human regions from non-human regions. In many situations,
this is a simple binary classification, but even when multiclass segmentation is used, the problem is
eventually reduced to human versus non-human separation.

In our work, we ignore humans as a segmentation class and focus on the segmentation of the
background. We classify the background from the functional perspective of how likely it is that
pedestrians exist in that region. This approach can be used with steep-angle, high-altitude footage,
but it is unfeasible with conventional crowd counting benchmark datasets. We elaborate further on
this in Section 5.1.

Besides density map methods, there is another closely related paradigm called localized regression.
The key difference lies with the target map. In this approach, every map pixel aims to represent the
total count in a small, localized region of the input. One typical way to create such a target map is
to apply a uniform square-shaped kernel to the head annotations [25]. The result will be a map of
redundant localized counts. Reference [26] also changes the counting task to a classification task by
predicting count intervals instead of specific counts. These methods achieve competitive accuracy.

While most research in crowd counting is based on image processing techniques, it is worth
mentioning that there are efforts underway to also use the rest of the electromagnetic spectrum for
this purpose. Some methods rely on on-person devices, such as smart phones or radio frequency
identification cards. The problem with these is that they are working with the assumption that people
would carry the device at all times, not to mention the serious privacy issues that are raised by use
of such devices. For indoor counting in buildings, where there are plenty of Wi-Fi enabled devices
installed, personal device-free Wi-Fi based methods yield high count accuracy [27,28] while preserving
privacy. However, in open outdoor spaces, these methods are less viable due to the significantly lower
number of installed devices and the lack of refractive surfaces.

2.2. Semantic Segmentation

The first significant breakthrough in CNN-based semantic segmentation was the realization that
the task is essentially no different from classification, and any arbitrary classification network can easily
be converted into a segmentation network [29]. Subsequently, various network architectures were
rapidly developed in an attempt to improve the segmentation accuracy. For example, FuseNet [30]
incorporates depth information into the training in order to improve the segmentation accuracy.

An important issue in the segmentation task is that the network is usually required to provide a
larger receptive field when compared to object detection. Dilated convolutions can solve this problem.
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DeepLabv3 [31] is a model based on ResNet [32], which uses dilated convolutions in its atrous spatial
pyramid pooling layer.

Several architectures have been specifically developed for aerial semantic segmentation [33–37].
A common feature of the above methods is that they are multimodal or multispectral. The ISPRS aerial
datasets [38,39] are typical benchmark datasets for aerial segmentation.

2.3. Existing Datasets

Numerous CNN-based human detection or counting methods have been developed and tested
on standard datasets, such as the UCSD [40], INRIA [41], Caltech Benchmark [42], UCF_CC_50 [43],
and ShanghaiTech [3] datasets. Although these image sets can be distinguished from one another by
the average person count, they were all obtained from near-street-level cameras and from low angles.
Therefore, these images contain many obstructions and perspective distortions. These issues pose
substantially less difficulty in aerial footage.

Obstructions are caused by people walking alongside one another. In images that were taken
from a steep angle, the obstruction is not very large because people do not walk over one another.
Perspective distortion is caused by the relative difference between the distances of objects from the
camera. The size of an object in an image is inversely proportional to its distance from the camera.
Therefore, if the ratio of the distance of two objects is much larger (or smaller) than 1.0, the difference
in their sizes in the image will also be very large. This ratio is closer to 1.0 in photographs taken from a
high altitude. Figure 3 depicts these issues.

Figure 3. Illustration of differences between street-level and aerial footage. (d + ∆d)/d is much further
from 1.0 than (d′ + ∆d′)/d′. Moreover, the dark gray area is obstructed from both cameras, whereas the
light gray area is only obstructed from the street-level camera. Note that the image is not to scale.

Of course, other aerial datasets are also available, which have been created either with airplanes or,
more recently, using drones. Airplane footage is typically obtained from a high altitude, which is not
suitable for the detection of small targets. The authors of [44] introduced a high-altitude, vertical-angle
airplane dataset with acceptable resolution. The elevations are lower in the case of drone datasets,
so human detection can be achieved. The angle is often vertical, which is advantageous for considering
occlusion, but the human features are less recognizable. If the angle is low, perspective distortions
occur, but a better viewpoint is provided for human features. Examples of drone datasets include the
SDD [45], VisDrone2019 [46], and Okutama-Action [47] datasets.

Some of the above-mentioned datasets are image based, whereas others are obtained from videos.
The image-based datasets were annotated manually. The common annotation strategy for video-based
datasets is to annotate certain key frames, such as every tenth one, and then interpolate the annotation
between frames. This vastly increases the dataset size, but not the unique object instance count.
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Certain video-based datasets, such as SDD and Okutama–Action, use unique ID-based annotation,
so that it can also be considered for tracking.

3. Materials and Methods

3.1. Segmentation-Based Region Masking

During our preliminary experiments, we identified two main issues with pedestrian counting.
The first is that even the best DMEs often produce false positive predictions and contain background
noise in locations where humans cannot be present, such as flat wall surfaces or treetops. The other
is that, even though the annotation only contains pedestrians, the trained models learn to identify
humans regardless of the context and, as a result, non-pedestrians and poster images of humans are
also identified and counted.

Both of the above issues can be solved by identifying the regions in which pedestrians cannot be
present. We refer to these as invalid regions. Consequently, we refer to regions in which pedestrians
may be present as valid regions. The invalid region information can be used to modify a base crowd
density map. We do so by integrating the density map estimation and semantic segmentation. We use
the mean absolute error (MAE) primarily and root mean squared error (RMSE) secondarily for the
density map quality measurement metrics.

In the following sections, we explain two methods for region-based masking, but, first,
we introduce our dataset in detail because it is essential for our methods.

3.2. Dataset

We introduce a new helicopter-based pedestrian dataset. There are two main reasons for this.
Firstly, a dataset from such a viewpoint exhibits features that are not covered by other conventional
datasets, and models trained on those datasets show very weak performance on helicopter footage,
as demonstrated in [1]. Secondly, the method that we introduce depends on the attributes of the dataset.

Because our dataset is an extended version of the TH2019 dataset [1], we named it TH2020. It has
the same attributes as TH2019, except for the dataset size; there are roughly 20 times more images
and 15 times more pedestrian annotations in our dataset. Specifically, TH2020 comprises 6237 static
images with a resolution of 960× 540, containing 120,772 pedestrian annotations from 10 different
locations and 22 different sessions. The images were obtained from helicopter footage from a high
altitude at a steep, but not vertical angle. Owing to the high altitude, the perspective distortions
and scale differences are negligible, although the average target size is very small. It is important to
note that, because the camera angle is not vertical, pedestrians are partially visible from the sides,
thereby increasing the number of recognizable features as compared to those of a vertical camera angle,
which is the most typical in airplane footage. Figure 4 presents some sample images.

The dataset includes two types of ground-truth annotations: a pedestrian annotation and
a semantic segmentation annotation. The former only contains pedestrian head coordinates,
including bikers, as there is no reason to differentiate between these from a practical viewpoint.
Moreover, distinguishing bikers from pedestrians is very challenging; for example, if there are 10 people
surrounding a bicycle, any one of these may be the rider. People on rooftops or on construction sites are
excluded from the ground-truth. We generated a ground-truth density map from the head coordinate
annotation using the conventional method. We created a matrix with the same dimensions as the input
image. The matrix contained 1s at the head coordinates, and 0s otherwise. Thereafter, we convolved
this matrix with a Gaussian kernel. We used a fixed kernel with a standard deviation of 15 instead of
the adaptive method.
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Figure 4. Sample images from TH2020 dataset.

For the segmentation, only 5040 images were annotated, owing to financial and time limitations.
The annotation assigned one category to every pixel of the image. When we created the segmentation
ground-truth, we were not aiming for an extensive annotation. Rather, we attempted to achieve
simplicity and focused on a functional perspective for pedestrian detection. We wanted to ignore
objects that were too small to occlude humans completely, so we considered those objects as part of
their surrounding entities. Moreover, we required high-level classes, as we did not want the annotation
to be too detailed. Therefore, we decided to annotate the following categories:

• Road: areas designated primarily for vehicle traffic; humans are often present.
• Sidewalk: areas designated for pedestrian traffic; humans are often present.
• Building: areas covered by construction that pedestrians can enter (houses, offices, etc.);

humans may appear in windows, on balconies, and on rooftops.
• Structure: areas covered by construction, often with girder-like features, where entry is not

possible (walls, columns, railings, etc.); humans are unlikely.
• Plant: areas covered by vegetation that can block visibility, such as trees with leaves and large

bushes; humans are unlikely.
• Vehicle: areas covered by cars, buses, trucks, etc.; depending on the vehicle and lighting

conditions, human heads may be present, but they are unlikely.
• Background: anything else; typically grass, rubble, railway tracks, etc.; humans may be present,

but are unlikely.

With regard to privacy matters, it should be mentioned that the resolution of the footage is
not enough to identify any individual; only coarse features, such as hair, clothing, or luggage,
can be identified. Therefore, there are no privacy issues with the dataset, as opposed to conventional
benchmark datasets, where there are clearly recognizable people.

We divided the dataset into training and evaluation parts scene-wise instead of applying a random
split in order to avoid overfitting. The training set was the same for the segmentation and density map
estimation, whereas the evaluation set for the segmentation was a subset of the density map estimation
evaluation set, as not all images had segmentation ground-truth. Specifically, there were 4114 training
images, 926 segmentation evaluation images, and 2123 density map estimation evaluation images.
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3.3. Simple Masking with Separate CNNs

In this approach, we used an arbitrary DME CNN and an arbitrary semantic segmentation CNN,
and trained both on the TH2020 dataset. For inference, we used the input image and generated
an ordinary crowd density map with the unaltered DME CNN. Thereafter, we used the semantic
segmentation CNN to generate a segmentation map for the same image. This segmentation map
could have arbitrary classes. In our experiments, we used those that were explained in Section 3.2.
Subsequently, we took the segmentation map and simplified it as a valid–invalid region map based on
a predetermined table. Valid pixels had a value of 1, whereas invalid ones were 0. As the two CNNs
were independent from one another, their output resolutions could differ. In such a case, we resampled
the valid–invalid map to the DME output resolution using nearest-neighbor interpolation. As the final
step, we masked the original crowd density map by multiplying it element-wise with the valid–invalid
map. Alternatively, it would be possible to assign real numbers between 0 and 1 to every segmentation
class and to use that as a mask, but, because this was our first attempt with masking, we aimed for
simplicity. Therefore, we used the zero–one map. Figure 5 illustrates the flow.

Figure 5. Flow of region-based masking procedure.

There is more than one means of creating a valid–invalid map from segmentation. The most
obvious method is that, whereby for every pixel, the value for that segmentation class from the
predetermined table is inserted. Although this is certainly a viable approach, it has two drawbacks.
Firstly, the segmentation is not perfect, so it is possible that some estimated invalid regions will overlap
with some pedestrians. Secondly, it is very common for pedestrians to appear at the edges of invalid
regions because the camera angle is not vertical. For example, when someone walks in front of a
building and very close to it, most of the body will overlap with the building.

We proposed max-pool masking to solve the above problems. We applied a max-pool layer to the
valid–invalid map with a carefully selected kernel size (we used a kernel size of seven) and a single
pixel stride. That is, an invalid pixel would only remain invalid if it did not have any valid pixels in a
certain vicinity. In this manner, the sizes of the invalid regions were shrunk to counter the effects of
segmentation errors and natural overlaps.

3.4. Dme Segmentation Multitask Training

Any arbitrary classification network can easily be converted into a segmentation network,
as demonstrated in [29]. However, we decided not to limit our approach to classification, as many
image processing CNNs are based on classification networks in any case. Furthermore, technically,
any arbitrary fully CNN can be changed into a semantic segmentation network by replacing the final
output layers and loss function, which is the approach we used.

We used crowd counting CNNs, increased the number of channels in the final output layer
to C, and changed the loss function to a conventional segmentation loss, specifically, the softmax
cross-entropy loss. However, it occurred to us that the output did not contain any parameters,

160



Sensors 2020, 20, 4855

which meant that the model was exactly the same as that used for crowd counting, so we could attempt
to perform the two tasks simultaneously. Moreover, we realized that, because we were generating
a crowd density map and segmentation map at the same time, we could use the segmentation map
directly for masking the density map. Thus, our final architecture contained C + 2 output channels:
one for crowd density map estimation, C for the segmentation categories, and one for the masked
crowd density map. Figure 6 presents a graphical layout of our proposed method.

(a) Regular density map estimator (DME) with one output channel

(b) Proposed multitask architecture with C + 2 output channels, where C is the number of segmentation categories

Figure 6. Visual representation of difference between regular DME network and our proposed multitask
segmentation method.

For the loss function, we calculated the Euclidean norm over the density map per-pixel errors and
softmax cross-entropy for the segmentation channels, and combined these two losses with a balancing
factor α.
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where N is the number of pixels in the mini-batch, di and d̂i are the ground-truth and estimated per-pixel
crowd density values, respectively, C is the number of categories, pg

i is the predicted confidence score for
the ground-truth category at pixel i, and pc

i is the predicted confidence score for category c at pixel i.
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The Euclidean norm could also be calculated over the masked crowd density map instead of the
raw one, but, in this case, finding the correct alpha was very difficult, because the valid–invalid map
could easily become stuck in the complete 0 or complete 1 state.

In this approach, we also evaluated the semantic segmentation quality, for which we used the
mean intersection-over-union (mIoU).

We added the MTSM prefix (for MultiTask Segmentation Method) to distinguish between the
original backbone crowd counting network and the multitask version. For example, if the backbone
was CSRNet architecture, we referred to our modified version as MTSM-CSRNet.

Finally, it should be noted that the conversion method also works backwards; that is, a semantic
segmentation network can be converted into a DME network, but we have not conducted such
experiments yet and, thus, the accuracy of the backwards direction remains to be determined.

4. Results

4.1. Simple DME and Segmentation Methods

In our experiments, we used CSRNet [9], CAN [48], and SPNet [10] as the DME networks and
DeepLabv3 as the semantic segmentation network, although, as we will demonstrate, there is no real
difference. We selected a general-purpose segmentation network, because methods for aerial footage
also require height information, which we did not have for our footage.

As we were using a custom dataset instead of a conventional benchmark dataset, we first had
to establish a baseline accuracy value for all of the networks. The DME results can be viewed in the
first line of Table 1, whereas Tables 2 and 3 display the DeepLabv3 results. In the segmentation task,
we assigned valid values to the road, sidewalk, and background classes. The average pedestrian count
in the evaluation set was approximately 30, which means that the relative MAE was slightly over 0.2.
We were confident that the models were well trained, as these models produced similar relative errors
on conventional datasets. In the case of DeepLabv3, the evaluation was not so simple. We could not
compare the results to those of aerial segmentation datasets, as those also contain height information,
which aids in achieving very high mIoU values. Our best option was a comparison with the Cityscapes
dataset [49]. Deeplabv3 achieved an mIoU of 81.3 on Cityscapes. The accuracy achieved on our dataset
was slightly worse than this, but the annotation was very different, so this difference did not mean
that the trained model was not as effective as it could possibly be.

Moreover, we made several attempts with SANet [50], because the authors claimed to achieve
high accuracy on conventional benchmark datasets, but we could not train the model. Even the lowest
error we could achieve was almost three times higher than that of the other networks. Therefore,
we excluded it from our investigation.

Table 1. Summary of crowd density estimation accuracies for models trained on TH2020. The mean
intersection-over-union (mIoU) column is only included to indicate the accuracy of the segmentation
mask used.

Method
CSRNet CAN SPNet

MAE RMSE mIoU MAE RMSE mIoU MAE RMSE mIoU
Simple DME 7.35 19.63 6.5 13.54 6.29 16.97

Masked
Simple DME 7.26 19.9 0.7562 6.03 13.95 0.7562 6.14 17.15 0.7562

MTSM
6.84 20.94 0.7332 6.9 22.3 0.7562 6.58 19.56 0.5821

Raw 6.84 20.85 6.82 22.2 6.56 19.56
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Table 2. Per-category intersection-over-unions (IoUs) and means for DeepLabv3 and our MTSM models
trained on TH2020.

Network Building Structure Plant Sidewalk Vehicle Road Background Mean Upsampled
Mean

DeepLabV3 0.8494 0.3431 0.6552 0.7905 0.732 0.8632 0.6765 0.7014 0.7014
MTSM-CSRNet 0.9207 0.6263 0.6115 0.7571 0.7004 0.8584 0.6583 0.7332 0.7131
MTSM-CAN 0.9428 0.6693 0.642 0.7632 0.7072 0.8834 0.6858 0.7562 0.7358
MTSM-SPNet 0.9043 0.4162 0.4541 0.673 0.4674 0.8308 0.3288 0.5821 0.5778

Table 3. Valid–invalid IoUs and their means for DeepLabv3 and our MTSM models trained on TH2020.

Network Invalid
(Building-Structure-Plant-Vehicle)

Valid
(Road-Sidewalk-Background)

Mean

DeepLabV3 0.8916 0.8846 0.8881
MTSM-CSRNet 0.8999 0.8979 0.8989
MTSM-CAN 0.9112 0.9115 0.9113
MTSM-SPNet 0.8533 0.8508 0.852

4.2. Simple Masking with Separate CNNs

We took our most accurate segmentation model, which happened to be MTSM-CAN, and used it
to mask the density maps for all three DME networks. The MAE improved in all scenarios. The results
are displayed in the second line of Table 1. Figure 7 presents a comparison of the different models.

4.3. DME Segmentation Multitask Training

For this method, we modified CSRNet, CAN, and SPNet according to Section 3.4. The DME
results are displayed in the third and fourth lines of Table 1.

We reported the results for the models with the lowest MAE and reasonable segmentation quality.
The latter means that the softmax cross-entropy loss was lower than 0.2. Tables 2 and 3 present the
per-class and valid–invalid IoUs as compared to the same metrics of DeepLabv3. Figure 7 displays a
comparison among the models.

The output of DeepLabv3 had the same resolution as the original image, whereas our backbone
networks applied downsampling. To enable a fair comparison, we reported the mIoU for both the
downsampled segmentation map and the downsampled segmentation map upsampled back to the
original resolution.

CSRNet and CAN were demonstrated to be strongly adaptable to our MTSM model,
with comparable and even improved accuracy. In the case of SPNet, both the counting and
segmentation metrics decreased. The most important difference between SPNet and the other
architectures is that SPNet is shallow when compared to the others.

It can be observed from Table 1 that the masking actually decreased the counting accuracy. In the
following section, we investigate the reason for the varying masking efficiency.

4.4. Masking Efficiency

The level of improvement depends on the quality of both the density map estimation and semantic
segmentation. The dependence on the segmentation quality is straightforward. If the invalid areas
are larger in the estimation than in the ground-truth map, true positive detections can be masked out.
However, nothing may change if they are smaller than the ground-truth.

The dependence on the crowd density estimation quality is slightly more complicated.
For argument’s sake, let us assume that the segmentation map is correct. This is a safe assumption,
because we achieved very high invalid region IoUs (Table 3), and the possibility of errors is further
reduced by the max-pool masking. Moreover, let us assume that the density map does not contain
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negative elements. Although many architectures do not enforce this, in our experiments the robust
networks eliminated negative values (or reduced them to very close to 0).

CSRNet

CAN

SPNet

MTSM-CSRNet

MTSM-CAN

MTSM-SPNet

Method (a) Original image (b) DME GT (c) Raw DM (d) Segmentaton (e) Masked DM

Figure 7. Sample results for comparison across methods. The segmentation for the regular density
map (DM) methods was generated by MTSM-CAN.

If the total count is overestimated, then there must be several false positive detections. As we
assumed perfect segmentation, the masking can only remove false positives. If there is a removed false
positive count that is more than twice the original error, the MAE will increase. However, this also
means that the estimation has numerous false negatives and the network attempts to compensate for
the error with false positives.

If the total count is underestimated and something is still masked out, thereby increasing the
MAE, the model produces false negatives and false positives simultaneously, but the false negatives
outweigh the false positives. In summary, the masking efficiency depends on whether or not the
estimated density map is littered with both false positives and false negatives.

If there are many false positives or false negatives, then they will cause spike-like errors in the
density map. These spikes significantly increase the L2 norm of the pixel errors (that is, the Euclidean
loss). In contrast, if there is mostly only background noise, the L2 norm will be much smaller than
the L1 norm. Therefore, the ratio of the two norms provides information regarding the amount of
spike-like errors; that is, the number of false positives and false negatives in the estimation. We collected
this information and plotted it against the MAE improvement, which can be observed from Table 4
and Figure 8.

Table 4. L2/L1 norm ratio as compared to change in accuracy after masking for investigated models.

Method Average L2/L1 Norm Ratio Change in MAE Invalid Mask mIoU
CSRNet 0.0457 −0.09 0.9112
CAN 0.0315 −0.47 0.9112
SPNet 0.0457 −0.15 0.9112
MTSM-CSRNet 0.0509 0 0.8999
MTSM-CAN 0.0529 0.08 0.9112
MTSM-SPNet 0.0444 0.02 0.8533
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Figure 8. Correlation between DME quality and masking efficiency in case of high-quality segmentation mask.

4.5. Training Details

We downloaded open-source implementations for all models except for SPNet, which we
implemented ourselves (excluding the final ReLU layer).

As DME networks are downscaling and sometimes upscaling, the output resolution differs
from the original resolution. Thus, because the ground-truth has the same resolution as the original
image, it must be resampled. We used bicubic interpolation for the density map and nearest-neighbor
interpolation for the segmentation map. For the density map, we also had to multiply the pixel
magnitudes by the resampling factor in order to preserve the total count. We applied a random
horizontal flip as augmentation. As the footage had a well-defined upwards vertical direction, it was
pointless to apply rotation or a vertical flip, and we did not want to complicate the training further.
As all three DME networks have a VGG-16 [51] backbone, we initialized them using pre-trained
VGG-16 parameter weights. There were no suitable pre-trained weights available for DeepLabv3;
therefore, we had to train it from scratch. The parameters without pre-trained values were randomly
initialized with a normal distribution (µ = 1, σ = 0.02).

We trained the models on full images, because DeepLabv3 struggled with patch-wise training,
and it was important for all of the models to be trained on the same dataset for comparison. We used
one or four GPUs for the DME methods. In the case of four GPUs, the batch size was increased, but we
did not observe any change in the accuracy, only in the execution speed. We used four GPUs for
DeepLabv3 owing to the large memory requirement. Each GPU had 16 GB memory in which a batch
of two images could fit, yielding a total batch size of 8. For the DME, we set the batch size to range
from 12 to 16 per GPU (the maximum number that could fit). We used the Adam optimizer with an
initial learning rate of 10−4 and a momentum of 0.95. The learning rate was directly halved every
20 epochs, starting from the 40th epoch.

The details of the MTSM training were mostly the same as those in the case of the baseline models.
The baseline model parameters were used as initial values for MTSM-CSRNet and MTSM-CAN.
As MTSM-SPNet did not perform effectively when initialized from the baseline model, we launched
several training sessions from scratch in order to achieve the highest accuracy.

However, the most important aspect was to determine the appropriate value for α. The Euclidean
loss and softmax cross-entropy are very different functions. Therefore, using a simple constant scaling
factor would result in the gradient components having different weightings in different sections of the
training. During our training attempts on MTSM-CSRNet and MTSM-CAN, we often observed that
with a constant α, the training shifted towards either the crowd density or segmentation very rapidly.
We used an initial α of 10−6 and, whenever the training became too one-sided, we shifted it towards
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the weaker loss, which usually meant increasing α. In the case of MTSM-SPNet, the training could be
performed by calculating the loss function over the masked density map using a constant α of 10−5.
In practice, we used two balancing factors: one for each loss component, so the final loss would be
closer to 1, because small fractions are difficult to read.

5. Discussion

5.1. Correlation between Density Map Quality and Masking Efficiency

Our data exhibited a linear correlation between the average L2/L1 norm ratio of the images and
the change in the MAE caused by masking. This means that a model with a smaller average L2/L1
norm ratio can benefit more from the masking method. A factor that could not be observed from our
experimental results is that models with very different MAEs may have the same average L2/L1 norm
ratio. For example, if there are two models and one produces proportionally larger per-pixel errors
than the other, then it will also have proportionally larger MAEs, while the average L2/L1 norm ratio
will be the same. However, if the per-pixel errors are all proportionally larger, the per-pixel errors that
are masked will also be proportionally larger, which is exactly the change in the MAE. In summary,
based on the MAE value, the same average L2/L1 norm ratio may be correlated to different changes
in the MAE. This suggests that the average L2/L1 norm ratio is probably linearly correlated to the
change in the MAE relative to the MAE, but, as our experimental results had MAEs that were very
close to one another, there was also a correlation with the absolute change.

Referring back to the results in Table 1, it can be observed that, although the MAE values improved,
the RMSE increased slightly. This may occur if there are moderate improvements in images with
small errors along with small degradations in images with large errors. If the dataset has a small
variance in the per-image ground-truth count, a high RMSE indicates that images exist in the dataset
that are greatly over- or underestimated. However, if the dataset has a large variance in the per-image
ground-truth count, a high RMSE is inevitable, because every method exhibits a certain proportionality
between the ground-truth count and absolute error; that is, if the ground-truth has high variance,
the absolute error will also have high variance. This means that the RMSE is not a very useful metric for
datasets with high ground-truth variation, such as ours, unless a method is developed that produces
an error that is independent from the ground-truth count.

Moreover, it should be noted that the proposed masking method is not feasible with conventional
crowd counting benchmark datasets for two reasons. Firstly, in conventional datasets, the ratio of
the area that is covered by humans is very large, and often almost the entire image is covered with
humans. Therefore, they cannot be ignored in the segmentation. Secondly, even if segmentation could
be achieved by ignoring the humans, owing to the low camera angle and close distance, the heads
would overlap excessively with invalid regions and, therefore, they would be masked out.

5.2. MTSM Model Parameters

Our aim was to delve deeper into the inner workings of the MTSM models. We were interested in
understanding how these are realized, and how they differ from training two independent networks for
crowd counting and segmentation apart from the obvious memory and/or computational requirements.
We were dealing with two different tasks that could either be intertwined or not. The latter case means
that inside the network, two parallel subnetworks are realized and the channels from the one do
not affect the output of the other. However, if the two tasks are intertwined, there cannot be such
separation and the parameters affect both outputs.

The existence of two separable subnetworks would mean that the current architectures for crowd
counting are excessive and the same accuracy can be achieved with a substantially smaller model.
However, our experiments demonstrated that this is not the case. If there were two subnetworks,
the parameters in the final layer would have to be separable into two groups by affecting either one
output or the other, which we investigated. For every output channel in the final layer, we calculated
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the absolute mean of its parameters over the input channels. Thereafter, we verified whether there
were any input channels with parameters that were thousands of times smaller than the mean. If so,
the given output channel would barely be affected by those input channels.

We found that only a handful of input channels exhibit such behavior, and most of these do
not affect any output channels, regardless of the type. Therefore, we can confirm that the two tasks
are strongly intertwined. In fact, there is no difference between them in the sense that both tasks
are performed using the same feature set, and they are only divided by the form of the output.
Our point is that well-designed architecture performs effectively in more than one image processing
task, and not just in a very particular narrow field. Therefore, combining the task of crowd counting
with other computer vision tasks to save on computation time offers development potential and future
research possibilities.

Furthermore, whereas region-based masking is unfeasible for different types of datasets,
the multitask segmentation method can be applied to any human dataset. Unfortunately, to the
best of our knowledge, the TH2020 dataset is the only one that includes both human head annotation
ground-truth and semantic segmentation ground-truth; therefore, we cannot conduct experiments on
any other datasets.

5.3. Considerations about the Dataset

We designate the dataset as helicopter footage; however, the attributes of the dataset are what
more significant. The most important of these is the high altitude. High enough so that perspective
distortions and size differences can be markedly reduced with a steep camera angle while still covering
large areas, but not so high that the targets become too small for detection. While technologically it is
feasible to create such footage with drones, there are a few reasons why the use of helicopters is the
only option currently.

In most countries, the use of airspace is very strictly regulated. Moreover, in many large
metropolitan regions, commercial or public use of drones is prohibited. In regions with more flexible
regulations, the use of drones is tied to special permissions but only allowed up to a very limited
altitude. Certainly, if authorities are considering putting aerial surveillance systems in place, they may
change these regulations for cost efficiency. However, it is still important to keep in mind technological
requirements. Due to the high altitude, the camera equipment must have high zooming capabilities to
achieve sufficient resolution. Moreover, precise aiming equipment is required to find and keep the
target region in focus. These devices greatly increase the payload weight, thereby requiring larger
drones with larger energy consumption and shorter flight times.

We also want to mention that there are practical applications where the use of drones is not
possible at the current technological level. One such example is a search and rescue operation,
where simultaneous crowd counting and semantic segmentation is a helpful tool to identify people in
immediate danger. For the rescue, helicopter is the only option and splitting the operation into search
and rescue parts to save money may cost time and, consequently, human lives.

6. Conclusions

We have introduced a new large-scale human dataset obtained from a helicopter. Based on
the experimental results, the dataset itself is not particularly challenging owing to the lack of scale
differences and perspective distortions. However, it offers a viewpoint that is not covered by other
conventional crowd counting benchmark datasets. Moreover, the area covered by one image is much
larger than that of conventional crowd counting datasets, meaning that the same region requires less
computational resources to process.

The focus of our work was DME crowd counting. We have introduced a new method of
extracting deeper semantic information regarding humans. Specifically, we have changed the task
from crowd counting to pedestrian counting, which cannot be performed simply by detecting human
features. The generated density map must use some information from the surroundings of the
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humans. We achieved this by applying semantic segmentation to the background, ignoring humans,
and using these results to mask regions of the crowd density map where the segmentation indicates a
non-pedestrian area.

Our experiments demonstrated that if the segmentation quality is high, the efficiency of this
masking method is dependent on the quality of the density map estimation. In fact, the change in
the accuracy exhibits a strong correlation with the ratio of the L2 norm and L1 norm of the per-pixel
estimation error. In particular, estimations with lower L2/L1 ratios (that is, better estimation quality)
benefit more from the masking method, whereas estimations with a high L2/L1 ratio may exhibit a
decrease in accuracy.

We have also theorized that the density map and segmentation map can both be generated by the
same network, resulting in a minimal increase in the memory and computational requirements
compared to either task alone. We tested this theory with three different backbone networks,
among which the two deeper architectures exhibited comparable or even improved accuracy.
This means that there is no real difference between the image processing tasks in the sense that
both tasks are performed using the same feature set, and well-designed models can perform effectively
in a wide variety of problems. Therefore, combining crowd counting with other computer vision tasks
is a valid research direction.

We attempted to replicate the work of other researchers appropriately where necessary, and to
confirm the validity of open-source software resources. Furthermore, we executed our experiments
with the utmost care to avoid any hazards that could falsify our results.
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Abstract: Image-to-image conversion based on deep learning techniques is a topic of interest in the
fields of robotics and computer vision. A series of typical tasks, such as applying semantic labels to
building photos, edges to photos, and raining to de-raining, can be seen as paired image-to-image
conversion problems. In such problems, the image generation network learns from the information
in the form of input images. The input images and the corresponding targeted images must share
the same basic structure to perfectly generate target-oriented output images. However, the shared
basic structure between paired images is not as ideal as assumed, which can significantly affect the
output of the generating model. Therefore, we propose a novel Input-Perceptual and Reconstruction
Adversarial Network (IP-RAN) as an all-purpose framework for imperfect paired image-to-image
conversion problems. We demonstrate, through the experimental results, that our IP-RAN method
significantly outperforms the current state-of-the-art techniques.

Keywords: image-to-image conversion; image de-raining; label to photos; edges to photos; generative
adversarial network (GAN)

1. Introduction

The main objectives of image-to-image conversion tasks are the discovery of suitable latent
space and understanding of features maps from source to target images. These tasks have multiple
applications in computer graphics, image processing, and computer vision. Image processing
applications include: (i) image in-painting, where damaged parts of an image are restored [1,2], (ii) image
de-raining where rain-streaks are removed from an input image to get rain-free image [3,4], (iii) image
super-resolution where high-quality images are generated from similar degraded images [5–10].
Additional applications exist, however they are not constrained to image denoising [11–13], style
transfer [14], image segmentation [15] and image colorization [16,17].

Recently, researchers have developed convolutional neural networks (CNNs) for multiple
image-to-image conversion problems. These models mostly come in the form of an encoder-decoder
structure where the encoder encodes an input image to some latent space, the decoder decodes
from the latent space to the required output image and then they punish the network with a loss
function to pick up the mapping between two image domains. Many different loss functions and
distinct motivations [5,18] established these models. CNNs utilize reconstruction or pixel-wise
losses [5,17,19,20] to generate output images, which are the most upfront techniques. For example,
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in pixel space, the least absolute or the least-squares losses used to estimate the difference between the
ground-truth and generated images. Pixel-wise computation can construct sensible photos. However,
in many cases, these losses just capture low-frequency instead of high-frequency components of images,
leading to some critical flaws concerning the outputs, e.g., image blurring and image artifacts [7].

Recent years have witnessed that the procedures using the concept of generative adversarial
networks (GANs) [21] have accomplished remarkable results in image-to-image conversion tasks.
GANs, introduced by Goodfellow et al., is made up of a generator network G and a discriminator
network D, targeting to model the real images distribution by synthesizing generated samples, which
are very similar to real images. GAN-based models need more memory and computational time
in the training process than simple CNN based models as they need to train two networks, i.e.,
the Discriminator network and the Generator network [22]. Whereas in the testing process, there is
only one network, i.e., the generator network. Therefore, the memory and the computational time of
GAN based models in the testing process are nearly similar to CNN based models. The significant
advantage of using GAN based model is that it generates sharper and more realistic images than CNN
based models [23–25]. Hence, the algorithms using the concepts of GANs and conditional GANs
(cGANs) [26] have turned out to be a common approach for numerous image-to-image conversion
tasks [8,23]. Based on cGAN, pix2pix-cGAN [23] became a representative method aimed at solving
the paired image-to-image conversion problems, the objective of which is to map the conditional
distribution of the real images conditioned on the given input images [25,27–29].

The critical part of image-to-image conversion tasks is that they have to map high-resolution input
grids into high-resolution output grids. Additionally, the issue we consider is that the input and the
output have dissimilar surface nature, but both must render the same basic structure to ensure perfect
outcomes. There are two popular methods to find out the basic structure of an image, i.e., perceptual
features based method [6] and moments based method [30]. The key challenges with methods of
moments (MoM) [31] for training deep generative networks are in describing millions of sufficient
distinct moments and identiflying an objective function for learning the desirable moments [31,32].
On the other hand, the use of features from deep neural networks (VGG-16) pre-trained on ImageNet
dataset [33,34] has led to important advancements in computer vision. Perceptual features have
been widely used in piece of works such as super-resolution [6], style transfer [14], and transfer
learning [35]. The image generation model is considered to learn from the information in the form of
input images, which plays a significant part in the image-to-image conversion task to achieve desire
targeted outputs. In paired image datasets, the input structure is roughly matched with the output
structure and can significantly affect the production of the image generation models. For example,
Figure 1 shows that the window frames are not accurately labeled in the corresponding input images.
Hence, the image generation model requires further information to capture targeted high-resolution
output grids against each given missing high-resolution input grids. Despite considerable progress,
we note that the previous approaches have not examined optimized additional input information for
imperfect paired datasets.

To overcome the problem of imperfect paired datasets and to attain desired results, we opted to
feed this extra information in the form of input-perceptual loss (i.e., calculated between imperfect
paired images) into the objective function of the proposed model. It is an essential issue, as the
perfect paired dataset is expensive and hard to collect. This work introduces a trade-off between
collecting large-amount of the perfect paired dataset and an optimized training for the image-to-image
conversion network.

The remainder of the study is as follows: We discuss the previous research of the image-to-image
conversion with details in Section 2. The IP-RAN methodology, objective, and network architecture are
explained in Section 3. In Section 4, we present the experiments, results, and analysis of different loss
functions and generator configurations. Section 5 presents the conclusions and future work.
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Figure 1. Example of the label to architectural photos. (a) shows an input labeled image. (b) shows
marked objects in a ground-truth image.

2. Related Work

In previous years, the training of deep convolutional neural networks using back-propagation
algorithms with per-pixel loss functions has solved a broad range of feed-forward image-to-image
conversion tasks [18,36]. Various techniques of image-to-image conversion employ only pixel-level
losses or pixel-level losses preceded by several additional losses [6,23]. Image segmentation techniques
generate dense scene labels by operating networks in a fully convolutional way over a single input
image [20,37–40]. Image de-raining techniques try to eliminate rain strikes in uncontrolled weather
images [41,42]. Image super-resolution techniques generate a high-resolution image for a given its
low-resolution matching part [5,6]. Image in-painting is designed to retrieve the missing portion of the
given damaged image [1,43,44]. Other examples of image-to-image conversion techniques modeled on
feed-forward CNNs exist, however, they are not constrained to depth estimations [37,45,46] and image
colorization [19], etc.

A series of GAN-family [16,26,47,48] networks was introduced in a short time for an enormous
variety of problems since Goodfellow introduced the influential concept of Generative Adversarial
Nets (GAN) [21] in 2014. GANs also showed promising results in numerous applications for computer
vision, for example, image generation, representation learning [48], image editing [49], etc. Specifically,
various extended GANs accomplished good results at several image generation applications such as
style transfer [24], super-resolution [7], image inpainting [1], text2image [50], and like many other
domains including videos [51] and 3D data [52]. These studies also consist of but are not constrained
to the PGN introduced for video prediction [53], the iGAN introduced for interactive application [54],
the SRGAN added for super-resolution [7], and the ID-CGAN presented for image de-raining [3].

Moreover, some of these works based on GANs are dedicated to developing an improved
generative model, for example, WGAN(-GP) [55,56], Energy-based GAN [57], Progressive GAN [58],
SN-GAN [59] and E-GAN [60]. A conditional image generation based on GANs has also been actively
studied recently. Some advanced GAN models continuously improved the quality of particular tasks,
e.g., InfoGAN [16], cGANs [26], and LAPGAN [61] have been introduced to image translation recently
for their easy execution and outstanding results. The cGANs [26] hold category labels as conditional
data for the generation of particular images. Some of the works have included GANs into their designs
to enhance the efficiency of conventional tasks, e.g., for small entity (or object) detection, the PGAN [62]
was adopted. Specifically, Li et al. [62] developed an innovative perceptual-discriminator network,
which includes a perception block and an adversarial block. Wang et al. [25] used different layers of
discriminator network to measures perceptual losses. Sung et al. [63] introduced new paired input
conditions for the replacement of conditional adversarial networks to improve the image-to-image
translation tasks.
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Additionally, some modifications of the GANs [29,64–66] examined cross-domain image
conversions over discovering the linear mapping relationship among various image domains.
In particular, primal GAN intentions to investigate the mapping relationships between input images
and target images, although a double (or opposite) GAN does the opposite task. Such GANs shape a
closed-loop and enable the translation and reconstruction of images from either domain. These designs
can also be used to execute image conversion operations in the lack of paired examples by merging cycle
consistency loss and GAN loss. However, paired data is available for training in specific applications,
Ge et al. [29], Zhu et al. [64], Yi et al. [65], and Kim et al. [66] ignore that paired data often achieves
less than paired methods [23]. It is therefore still essential at this point to study paired data training,
particularly for performance motivated circumstances and implementations like the photo-realistic
picture synthesis [7], high-resolution image synthesis [8], real-world image painting [67], etc.

In GANs based works, generator networks are the same as the aforementioned encoder-decoder
structure in CNNs. As the training of deep CNNs suffer from vanishing gradient problem. Therefore,
many previous works [3,4,25] used skip-connections in the generator to pass the gradient easily to
prior layers of the encoder. Unfortunately, these skip-connections directly carry unwanted information
from the inputs to the resultant images, hence affecting the visual quality of the constructing images.
In the demand to develop a visually appealing image-to-image conversion model, we have to consider
the following facts into the optimization method:

• The principle, to perfectly map targeted output images must not be affected by the texture of the
given input images, which should be the essential pillar in the formation of a generator structure.

• The visual quality of constructed images should also be considered in the optimization method
rather than just relying on qualitative performance metric values. This principle can guarantee
that the generated images look visually appealing and realistic.

Under the above criteria, we present the Input-Perceptual and Reconstruction Adversarial
Networks (IP-RAN) for image-to-image conversion tasks. The IP-RAN consists of an encoder-decoder
network G; for converting an input image to the desired output image, a discriminator network D;
to flag the real or fake photos and an input-perceptual loss network P; to calculate fundamental structure
difference between an input image and the ground-truth image. We employe the input-perceptual,
the traditional reconstruction L1, and the generative adversarial losses in the objective function. Initially,
this work utilized the input-perceptual loss to calculate the missing information of the basic structure in
the input images according to the target images. Then, this study used similar to many traditional losses
the L1 loss for penalizing generated images to be near to the targeted images. Meanwhile, we used
the generative adversarial losses to estimate the distribution of converted images, i.e., to punish the
generated distribution for converging into the target distribution of output, which generally results in
the production of more visually pleasing images. The contributions of this study are as follows:

• This study introduces a novel approach to deal with imperfect paired datasets and the method
of feeding extra information into the objective function in the form of input-perceptual losses
calculated between the input images and the target images for imperfect paired datasets.

• We introduce an optimized method based on pix2pix-cGAN and conditional GANs (cGANs)
frameworks for existing imperfect pair datasets.

• We also analyzed the primary two different configurations of the generator structure, and the
results show the proposed approach is better than previous methods.

• We achieve both qualitative and quantitative results by using IP-RAN, which indicates that the
adopted technique produces better results than the baseline models.

Table 1 shows a comparison between the proposed and existing methods.
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Table 1. Comparison between state-of-the-art and proposed method.

Methods Advantages Disadvantages

CNNs (Reconstruction L1 and L2
losses) based methods [1,17]

Need less computation as one
network is to trained. Need big datasets to train

Fast and easy to train Produce blurry results

Simple GAN (Adversarial Loss)
based methods [21,26]

Can be trained with small datasets
More computation than CNNs as

two different networks
to be trained

Produces sharp and
realistic images

GAN networks are difficult to train

There is an image artifacts problem

Adversarial, reconstruction and
perceptual losses with

skip-connections in generator
network based methods

[3,4,23,25,29,63]

Achieve good quality results than
CNNs and simple GAN by

combining two loss functions
Skip-connections affect the quality

of generated images by directly
passing unwanted input
information to the output

of the network.

Skip-connections in generator
configuration reduce vanishing

gradient problem

Proposed method

This method adds extra
information to the objective

function to optimize the results.

Need to calculate input-perceptual
losses which increase training time

Use the Resnet bottleneck
structure in the generator

configuration to reduce the
vanishing gradient problem.

Achieves excellent results visually
and quantitatively

3. Methodology

In this work, we have two sets of paired training images, i.e., a set of input images {xi}Ni=1 ∈ X
and a set of target output images

{
yi
}N
i=1 ∈ Y. We train the generative network G that the fake

generated images G(x) to be same as the real targeted images, and alongside we train a discriminative
network D to distinguish the fake generated images G(x) from the real targeted images. The generator
network learns the mapping from an input domain to a real-world domain by minimizing adversarial
losses, aiming to deceive the discriminator network. The generator has sub-networks: an encoder
Enc, residual blocks Res, and a decoder network Dec. The encoder network contains a sequence
of convolutional layers, which convert an input image into encoded feature space Enc(x). Later,
the output of encoder network, Enc(x), becomes the input of residual blocks [68]. The output of the
residual layers, Res(Enc(x)), is the activation maps which feed to the decoder network Dec. At that
moment, a sequence of fractionally-stride convolutionary layers decode the converted features into the
fake generated image G(x). Equation (1) expresses the output of the generator network:

G(x) = Dec(Res(Enc(x))) (1)

The whole network architecture is shown in Figure 2 and is called the Input-Perceptual
Pixel-Reconstruction Generative Adversarial Networks (IP-RAN).
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Figure 2. IP-RAN framework. IP-RAN consists of generator network, 𝐺 , input-perceptual loss 
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sampling layers stride-2 of transposed convolution. Input-perceptual loss network, 𝑃 , is the pre-
trained VGG-19 and used to extract features from hidden layers to calculate the perceptual loss. The 
discriminator network, 𝐷, consists of convolutional-BatchNorm-LeakyRelu layers, and its output is 
used to distinguish generated images from real images. 
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Figure 2. IP-RAN framework. IP-RAN consists of generator network, G, input-perceptual loss
network, P, and discriminator network, D. The generator network, G, is intended to generate translated
images from given input images. It is composed of an encoder-decoder structure that includes two
down-sampling layers of stride-2 convolution, several residual blocks, and two up-sampling layers
stride-2 of transposed convolution. Input-perceptual loss network, P, is the pre-trained VGG-19 and
used to extract features from hidden layers to calculate the perceptual loss. The discriminator network,
D, consists of convolutional-BatchNorm-LeakyRelu layers, and its output is used to distinguish
generated images from real images.

3.1. Objective

The input-perceptual loss calculated between high-resolution input grids and targeted
high-resolution output grids, which decrease the effect of less information in the input images
and useful against imperfect paired datasets. Equation (2) expresses input-perceptual loss:

LP(P) = ϕcl f + ϕsls (2)

where l f is the feature reconstruction as given in Equation (3), and ls is the style reconstruction losses
as given in Equation (4), are the two parts of the perceptual loss function, as Johnson et al. described
in [6]. Input-perceptual losses are utilized to measure fundamental structural differences such as
common patterns, texture, colors, etc., between the high-resolution input grids and the high-resolution
target grids.

Let Pi(x) be the activation maps for the ith layer of the network P when processing the image x. If i
is a convolutional layer then Pi(x) will be an activation map having a shape of Ci ×Hi ×Wi. The feature
reconstruction loss can be calculated as Euclidean distance between activation maps as follows:

l f = `P,i
f eat(x, y) =

1
CiHiWi

||Pi(x) − Pi(y) ||22 (3)
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where Pi denotes the non-linear CNN transformation at the ith layers of the loss network, P. The `P
f eat

loss aims to measure the discrepancy between high-level features of the given images.
The style reconstruction loss can be computed as squared Frobenius norm for the discrepancy

between the Gram matrices of the input and the targeted images as follows:

ls = `P,i
style(x, y) =

∣∣∣∣
∣∣∣∣GP

i (x) −GP
i (y) ||2F (4)

where GP
i (x) is the Gram matrix of ith layer activation maps of a given image x extracted from network P.

GP
i (x) is defined as the components of the Ci ×Ci matrix is given by:

GP
i (x)c,c∗ =

1
CiHiWi

Hi∑

h=1

Wi∑

w=1

Pi(x)h,w,cPi(x)h,w,c∗ (5)

where Pi(x) interpret as giving Ci-dimensional activation maps for each point on Hi ×Wi grid, and the
Gram matrix, GP

i (x), relates to non-centric covariance of the Ci-dimensional activation maps, processing
each grid site as an autonomous sample. Therefore, it gathers details about the features that appear to
be working together. The Gram matrix can also be determined accurately by transforming Pi(x) into a

matrix φ of shape Ci ×HiWi; then GP
i (x) =

φφT

CiHiWi
.

Generative adversarial loss [21], which trains G and D together as the two-player mini-max game
with loss function LGAN(G, D). The generator network G attempts to produce an image G(x) that
appears similar to the image in the target domain Y, while the discriminator network D attempts to
differentiate between them. In particular, we train the discriminator network, D, to maximize the
likelihood of classifying the correct label to the targeted image and the generated image G(x), while
training G is to minimize the likelihood of classifying the correct label to the generated image G(x).
The mini-max game can be formulated as:

min
G

max
D

Ey∈Y[log(D(y))] +Ex∈X[log(1−D(G(x)))] (6)

GANs-based models have revealed the significant ability to learn generative models, particularly
for image generation tasks [16,53,55]. Therefore, we also implement the GANs learning process to
resolve image conversion tasks. As illustrated in Figure 2, the image generation network G is used to
produce output image, G(x), against the input image, x ∈ X. In the meantime, each input image xi has
a correspondent target image yi. We assume that all target images, y, follow the distribution y ∈ Y,
and the generated images, G(x), are motivated to have matching distribution as targeted images y,
i.e., G(x) ∼ Y. Besides, to accomplish the generative adversarial learning approach, a discriminative
network, D, is added, and the adversarial loss function can be expressed as follows:

min
G

max
D

V(G, D) = Ey∈Y[log(D(y))] +Ex∈X[log(1−D(G(x)))] (7)

We use least squares loss (LSGAN) as discussed in [69], which offers a non-saturated and smooth
gradient for discriminator network D. Adversarial loss, LGAN(G, D), is expressed as:

LGAN(G, D) = Ey∈Y
[
(D(y) − 1)2

]
+Ex∈X

[
D(G(x))2

]
(8)

The generative adversarial loss turns as per the numerical measurement to punish the variance
between the distributions of generated images and ground-truth images.

The basic GAN framework is unstable as it trains two competing neural networks. In [64],
the author noted that one cause for instability is that there are un-unique solutions during the training
of the generator. As shown in Figure 3, several artifacts introduced by the standard GAN structure can
be observed which significantly impacts the visual quality of the output image. Previous methods
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have found that it is useful to combine GAN objectives with more traditional losses such as L2 loss [1]
in such way that the work of the discriminator remains unchanged as in Equation (8), but the task
of the generator is not only to deceive the discriminator but also to make generated image closer to
the targeted ground truth image according to L2. In our method, we used L1 distance instead of L2,
because L1 encourages blur reduction:

LL1(G) = Ex,y
[∣∣∣
∣∣∣y−G(x) ||1

]
(9)Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 
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Figure 3. (a) ground-truth image, (b) image generated by conventional CNN using L1 loss function, (c) 
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Figure 3. (a) ground-truth image, (b) image generated by conventional CNN using L1 loss function,
(c) image generated by standard GAN using adversarial loss and (d) image constructed by the proposed
method with Input-Perceptual and Reconstruction Adversarial losses

The adversarial loss helps the generator and protect from the blurry effect of L1 loss as well as
remain close to the targeted output images. The final objective for the generator network is expressed as:

LGT = ϕgLGAN(G) + ϕL1LL1(G) + ϕPLP(P) (10)

where LGT represents the total generator network loss which is the sum of the generator’s adversarial
loss, LGAN(G), L1 reconstruction loss, LL1(G), and the input-perceptual, LP(P).

3.2. Network Architecture

Figure 2 demonstrates the proposed structure consisting of three CNNs networks, i.e., the generator
network, G, the input-perceptual loss network, P, and the discriminative network, D.

Recently, many solutions [3,23,25] to these problems used skip-connections in the generator
network to shuttle the information directly from input to output throughout the network and to solve
the vanishing gradient problem. On the one hand, skip-connections are useful in resolving the vanishing
gradient problem. Still, for image-to-image conversion problems, these skip-connections are carrying
unwanted information from the input throughout the network and influencing the performance of the
results critically, see Figure 2. We utilize the ResNet [68] framework same as Johnson et al. [6], with
an encoder-decoder structure instead of skip-connections between encoder-decoder layers to avoid
unwanted information coming from the input and to produce visually pleasing results. Our generator
network includes two downsampling layers of stride-2 convolution, nine residual blocks, and two
upsampling layers with stride-2 of transposed convolution and utilizes instance normalization [70],
for specifications, see Table 2. The input-perceptual loss network, P, uses VGG-19 pre-trained on the
ImageNet dataset [33,34]. We extract features from six layers (Relu-1 of block1, Relu-1 of block2, Relu-1
of block3, Relu-1 of block4, Relu-1 of block5) for style loss ls and Relu-2 of block4 for feature loss l f of
pre-trained VGG-19 to calculate input-perceptual losses.

In this work, we use 70 × 70 Markovian PatchGANs [7,23,71] for the discriminator network D to
classify whether 70 × 70 overlapping patches of images are real or fake. Patch-level discriminator has
fewer parameters than a full-image discriminator and can operate in a fully convolutionary fashion on
images of arbitrary size [23].
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Table 2. Generator Network of IP-RAN.

Operation Pre-Reflection
Padding Kernel Size Stride Non-Linearity Feature Maps

Encoder
entry 2

Convolution 3 7 1 ReLU 64

Convolution 3 2 ReLU 128

Convolution 3 2 ReLU 256

Residual
Blocks

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Decoder

Deconvolutional 3 2 ReLU 128

Deconvolutional 3 2 ReLU 256

Convolutional 3 7 1 Tanh 256

4. Experiments and Results

In this section, we first discuss the specifications of the datasets, proposed model, and training
parameters. We compared the IP-RAN with the standard approaches and current state-of-the-art
methods. We also discuss the information on the experiments and performance measures used to test
the proposed method.

4.1. Datasets

Experiments are carried out on several datasets to evaluate the performance of IP-RAN and other
state-of-the-art methods. We use three public paired datasets which are as follows:

• CMP facades dataset [72] is used to train for architectural “Labels to Photos” task.
• Dataset provided by ID-CGAN [3] is used to train for the “Image De-raining” task.
• Dataset formed by pix2pix [23] is used to train for the “Edges to Photos” task. The original dataset

has come from [54] and [73], and the use of the HED edge detector [74] to extract edges. All images
are scaled to 256 × 256.

4.2. Model and Parameter Details

In this subsection, we discuss the model and the parameter details. In the case of GAN loss
(LGAN), we replace the criterion of negative log-likelihood with a least-square loss [69] for the network’s
training stabilization. This least-square loss is found more stable throughout the training procedure
and produces higher quality results. In general, for LGAN(G, D), we set that G, train to minimize
Ex∼pdata(x)

[
(D(G(x)) − 1)2

]
and D, train to minimize Ey∼pdata(y)

[
(D(y) − 1)2

]
+ Ex∼pdata(x)

[
(D(G(x))2

]
.

Furthermore, we divide the discriminator’s criterion by 2 when optimizing D, which slows the learning
rate of D proportional to G. We apply the Adam optimizer [75] and use minibatch Stochastic Gradient
Decent (SGD), setting a learning rate of α = 0.0002, β1 = 0.5. Relu activation function, with slope
value of 0.2, is used in the generator network, G, except the last layer used tanh. The Batch size is set
to one for all of the experiments. The training parameters are set as ϕg = 1, ϕL1 = 10, ϕs = 1 and
ϕc = 0 for labels to photos task, ϕg = 1, ϕL1 = 10, ϕs = 1 and ϕc = 1× 10−6 for edges to photos task,
and ϕg = 1× 10−9, ϕL1 = 10, ϕs = 1 and ϕc = 1× 10−6 for image de-raining task.
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4.3. Evaluation Criteria

For a performance demonstration of image-to-image conversion tasks, we performed qualitative
and quantitative tests to determine the quality of the generated images. We directly present input and
generated images for qualitative assessments. We apply quantitative measures on test sets to assess
the performance of different model and configurations such as, Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [76], Visual Information Fidelity (VIF) [77], and Universal Quality
Index (UQI) [78]. These quantitative measures valuation are based on the luminance channel of the
image. FID score [79] determines the distance between the real data distribution and the generated
data distribution.

4.4. Analysis of Different Loss Functions

We train models to separate the effect of different variations of loss functions on the architectural
CMP facades “label to photos” dataset. We perform tests to compare the impact of each part of
Equation (10). Figure 4 shows the qualitative results of the variations mentioned below on labels to
photos problem.

• L1, by setting ϕg = 0 and ϕP = 0 in Equation (10), causes to generate blurry outputs.
• The cGAN, by setting ϕL1 = 0 and ϕP = 0 in Equation (10), leads to much sharper outputs but

brings visual artifacts.
• L1 and cGAN together, by setting ϕP = 0 in Equation (10) causes sensible results but still far from

the targeted outputs.
• The results of the proposed loss function in Equation (10), show a significant improvement in

quality and similarity to the targeted results.
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Figure 4. Shows label input against different loss functions that produce different architectural photo
results. (a) input label image, (b) result of L1 (LL1(G)) alone, (c) result of cGAN (LGAN(G) ) alone,
(d) result of L1+cGAN (LGAN(G) +LL1(G)), (e) result of the IP-RAN, and (f) target output photo.
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In Table 3, we compared the abovementioned cases quantitatively using the PSNR, SSIM, UQI,
VIF, and FID scores on the labels to photos dataset. L1 achieves higher scores in PSNR, SSIM, UQI,
and VIF, but the output results are blurred images and are very poor in FID-score. Hence, pointing
out that the results are visually unpleasant. We observed from Figure 4 and Table 3 that for blurry
images PSNR, SSIM, UQI, and VIF evaluation scores perform inferiorly. Table 3 shows that cGAN
alone achieves poor scores in PSNR, SSIM, UQI, and VIF, which indicating that results are less similar
to the targeted output. However, it has got a good FID-score as compare to L1 that shows results have a
recognizable structure. Table 3 shows that the IP-RAN achieves the best possible scores in PSNR, SSIM,
UQI, VIF, and FID. Hence, the results are similar to the targeted output as well as have a recognizable
structure, and they are visually pleasing.

Table 3. Quantitative results compared with different loss functions.

PSNR(dB) SSIM UQI VIF FID

L1 13.43 0.2837 0.8186 0.0627 176.74
cGAN 11.86 0.1996 0.7722 0.0399 111.00

L1+cGAN=CGAN 12.80 0.2399 0.8035 0.0480 113.53
IP-RAN 12.84 0.2426 0.8052 0.0488 110.29

4.5. Analysis of Different Generator Configuration

The encoder-decoder structure does not have skip-connections among the layers. The U-Net
structure has skip-connections between encoder layers and decoder layers, as shown in Figure 5.
We have trained both structures on image de-raining dataset and labels to photos dataset with similar
loss function using pix2pix-cGANs [23] architecture. We conducted tests to compare both structures.
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Figure 5. Different structures of image-to-image generation networks.

Figure 6 shows the encoder-decoder structure achieves excellent results without losing any
information than the U-Net structure. Skip-connections passing unwanted information of the input
images, which have a severe influence on generated images, leads to corrupted results and poorly
achieved their targets. In the image de-raining task, the generator structure with skip-connections
poorly converts between the rain to de-raining images. In Figure 6c the first four rows, where
rain-streaks still can be found in resultant images. The resultant images inherit this unwanted
information via skip-connections from the corresponding input images. Figure 6c the last four rows,
where resultant images contain bluish and greenish color effects, which are directly coming from the
input labeled images via skip-connections.
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images. PAN uses perceptual adversarial losses to train the generator model. 

• iPANs [63]: iPANs used U-NET as image transformation network and perceptual similarity 
network as a discriminator network. iPANs introduced new paired input conditions for the 
replacement of conditional adversarial networks to improve the image-to-image translation 
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Figure 6. Sample results in the first four rows of rainy to de-raining images and last four rows of labels
to architectural photos. For good visual comparison, the smaller images below the test images represent
specific regions-of-interest. (a) input images, (b) targeted photos, (c) U-Net with skip-connections,
(d) Encoder-Decoder and (e) IP-RAN.
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4.6. Comparison with Baseline

For comparison purposes, we selected the following latest state-of-the-art approaches for
image-to-image conversion problems:

• Pix2Pix-cGAN [23]: Pix2pix is designed for paired image datasets based on the cGAN architecture.
Pix2Pix utilizes L1 reconstruction loss and adversarial loss to train its model for the conversion of
input images to output images.

• UTN-GAN [29]: UTN-GAN introduced a GAN-based unsupervised transformation network
with hierarchical representations learning and weight-sharing technique. The reconstruction
network learns the hierarchical representations of the input image, and the mutual high-level
representations are shared with the translation network to realize the target-domain oriented
image translation.

• PAN [25]: PAN can learn a mapping function to transform input images to targeted output
images. PAN consists of a image transformer network and a discriminator network. In PAN,
the discriminator measures perceptual losses on different layers and identifies between real and
fake images. PAN uses perceptual adversarial losses to train the generator model.

• iPANs [63]: iPANs used U-NET as image transformation network and perceptual similarity
network as a discriminator network. iPANs introduced new paired input conditions for the
replacement of conditional adversarial networks to improve the image-to-image translation tasks.
In this method the ground-truth images which are identical images are the real pair, whereas the
generated images and ground-truth images are the fake pair.

• ID-CGAN [3]: ID-CGAN introduced to handle the image de-raining task by combining the pixel-wise
least-squares reconstruction loss, conditional generative adversarial losses, and perceptual losses.
ID-CGAN used cGAN structure to map from rainy images to de-rainy images. ID-CGAN consists
of a dense generator to transform from an input image to its counter-part output images.
ID-CGAN used the pre-trained VGG-16 network to calculate the perceptual losses between generated
and ground-truth images.

4.6.1. Comparison with Pix2Pix-cGAN, PAN, UTN-GAN and iPANs

We attempt to transform semantic labels to architectural photos. This inverse conversion is a
complicated process and distinct from the tasks of image segmentation. Pix2Pix-cGAN and UTN-GAN
used adversarial and reconstruction losses, and PAN and iPANs used adversarial and perceptual losses
to produce labels to architectural photos as shown in Figure 7. After the comparison, we observe the
adopted approach captures further information and generates realistic and more similar images to
the targeted photos with less deformation. Furthermore, the quantitative assessment in Table 4 also
demonstrates that the IP-RAN can attain substantially improved results.

Creating a real-world object from the corresponding input edges is one of the image-to-image
conversion tasks as well. We train the IP-RAN on the dataset given by [23] to convert edges-to-shoes
and compare its results by the outcomes of pix2pix-cGAN, PAN, UTN-GAN and iPANs. Figure 8
shows shoe photos generated from given input edges by the proposed method, pix2pix-cGAN,
PAN, UTN-GAN and iPANs, while Table 5 presents the quantitative measures on the test set results.
By observing and comparing the constructed shoe photos, we find that the IP-RAN, pix2pix-cGAN
and PAN accomplished promising results, so far, it’s difficult to express which of these is better. On the
measurement score of UQI and FID, the IP-RAN performed slightly weak compared to pix2pix-cGAN
and PAN, yet superior in the other quantitative measures.
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Figure 7. Samples results from paired labels to architectural photos. (a) input images, (b) results of
pix2pix-cGAN, (c) results of UTN-GAN, (d) results of PAN, (e) results of iPANs, (f) results of the
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Figure 8. Samples result from edges to shoes. (a) input images, (b) results of the IP-RAN, (c) results of the 
pix2pix-cGAN, (d) results of PAN, (e) results of UTN-GAN, and (f) results of iPANs 

4.6.2. Comparison with UTN-GAN, ID-CGAN and iPANs 

ID-CGAN and iPANs try to resolve the image de-raining problem. They aim to eliminate rain 
streaks from a given input rainy photos. Assuming un-predictable weather situations, the image de-
raining or de-snowing alone is a challenging image-to-image conversion problem. 
We try to resolve a single image de-raining task by the IP-RAN using a similar configuration to ID-
CGAN. We train our adopted scheme on the image de-raining dataset provided by ID-CGAN [3]. 
This dataset contains 700 synthesizing images for training, whereas 100 artificial and 50 real-world 
rainy images are presented for testing purposes. Figure 9 shows the sample results of synthetic test 
images. As per the collection of ground-truth images are available against the set of synthetic test 
photos, we measure and report the quantitative outcomes in Table 6. Furthermore, we assess UTN-
GAN, ID-CGAN, iPANs and IP-RAN on natural rainy images, and the results are shown in Figure 10. 

Figure 8. Samples result from edges to shoes. (a) input images, (b) results of the IP-RAN, (c) results of
the pix2pix-cGAN, (d) results of PAN, (e) results of UTN-GAN, and (f) results of iPANs
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Table 4. Quantitative results of labels to architectural photos, bold results show good scores.

PSNR(dB) SSIM UQI VIF FID

Pix2Pix-cGAN 13.37 0.2559 0.8195 0.0541 113.53
UTN-GAN 12.78 0.2362 0.8016 0.0481 111.86

PAN 12.82 0.2370 0.8030 0.0477 112.47
iPANs 11.46 0.1765 0.7603 0.0382 140.70

IP-RAN 12.84 0.2426 0.8052 0.0488 110.29

Table 5. Quantitative results of Edges to Shoes, bold results show good scores.

PSNR(dB) SSIM UQI VIF FID

Pix2Pix-cGAN 19.33 0.7569 0.9220 0.2092 59.93
UTN-GAN 15.41 0.6588 0.8255 0.1786 104.9

PAN 19.11 0.7389 0.9187 0.2034 62.13
iPANs 15.71 0.6671 0.8444 0.1778 117.1

IP-RAN 19.42 0.7608 0.9179 0.2153 62.15

4.6.2. Comparison with UTN-GAN, ID-CGAN and iPANs

ID-CGAN and iPANs try to resolve the image de-raining problem. They aim to eliminate rain
streaks from a given input rainy photos. Assuming un-predictable weather situations, the image
de-raining or de-snowing alone is a challenging image-to-image conversion problem.

We try to resolve a single image de-raining task by the IP-RAN using a similar configuration to
ID-CGAN. We train our adopted scheme on the image de-raining dataset provided by ID-CGAN [3].
This dataset contains 700 synthesizing images for training, whereas 100 artificial and 50 real-world rainy
images are presented for testing purposes. Figure 9 shows the sample results of synthetic test images.
As per the collection of ground-truth images are available against the set of synthetic test photos,
we measure and report the quantitative outcomes in Table 6. Furthermore, we assess UTN-GAN,
ID-CGAN, iPANs and IP-RAN on natural rainy images, and the results are shown in Figure 10.
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Figure 9. Sample results of synthetic test images. For good visual comparison, the smaller images below 
the test images represent specific regions-of-interest. (a) input images, (b) results of UTN-GAN, (c) results 
of ID-CGAN, (d) results of iPANs and (e) results of the IP-RAN. 
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Figure 9. Sample results of synthetic test images. For good visual comparison, the smaller images
below the test images represent specific regions-of-interest. (a) input images, (b) results of UTN-GAN,
(c) results of ID-CGAN, (d) results of iPANs and (e) results of the IP-RAN.

Table 6. Quantitative results of image de-raining, bold results show good scores.

PSNR(dB) SSIM UQI VIF FID

UTN-GAN 21.81 0.7325 0.9056 0.2939 127.4
ID-CGAN 24.42 0.8490 0.9433 0.3708 76.71

iPANs 22.44 0.7687 0.9252 0.3101 112.72
IP-RAN 23.69 0.8518 0.9412 0.3740 75.90

From Figures 9 and 10, we can observe that ID-CGAN, iPANs and the IP-RAN have accomplished
great results in image de-raining tasks. The findings of the iPANs look slightly better, but contain
some artifacts and blurriness. However, by examining the results carefully, the adopted scheme
eliminates more rain-streaks with a lesser amount of color distortion. Moreover, as specified in Table 6,
for a synthetic set of test images, the introduced method’s evaluation scores and the resultant images
are far more comparable with the corresponding ground-truth photos than with the results of the
other methods. In the single image de-raining problem, the adopted method can accomplish more
improved results than UTN-GAN, ID-CGAN, iPANs; one of the possible reasons is that these methods
used skip-connection in their generator network. These skip-connection passes useful as well as
unwanted information directly from the input image to the output images throughout the network and
influence the results. Even though ID-CGAN achieved highest score in the PSNR and UQI metrics, still
rain-streak can be seen in the resultant images of ID-CGAN. On the other hand, the adopted method
tries to resolve the problem through the proposed loss function using an encoder-decoder generator
structure. The novel training scheme of IP-RAN can benefit the generator to learn better-quality
mapping from the input images to the output images, leading to improved performance.
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Figure 10. Sample results of real-world rainy images. For good visual comparison, the smaller images
below the test images represent specific regions-of-interest. (a) input images, (b) results of UTN-GAN,
(c) results of ID-CGAN, (d) results of iPANs and (e) results of the IP-RAN.

5. Conclusions

We have introduced a novel cGAN-based scheme to overcome the lack of information in input labels
for imperfect paired datasets. In this work, we propose a novel Input-Perceptual and Reconstruction
Adversarial Network (IP-RAN) for paired image-to-image conversion tasks as a general-purpose
framework. We merge the input-perceptual loss with the adversarial and the per-pixel reconstruction
Euclidean losses as an innovative loss function for imperfect paired datasets. Also, we analyze
two popular generator configurations and evaluated their results quantitatively and qualitatively.
A generator without skip-connections produced much better and visually pleasing results than
a generator with skip-connections. We conducted extensive experiments on multiple datasets to
assess the efficiency of the IP-RAN. The adopted scheme outperforms the state-of-the-art works for
image-to-image conversion problems. The experimental results of several image-to-image conversion
tasks illustrated that the proposed framework is efficient and capable of practical imperfect paired
image-to-image conversion applications. In this study, we explored input-perceptual losses to feed
the extra information of imperfect paired datasets for only paired image-to-image conversion tasks.
Future work is required to examine the impact of input-perceptual losses for unpaired image-to-image
conversion applications.
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Abstract: Semantic segmentation of street view images is an important step in scene understanding
for autonomous vehicle systems. Recent works have made significant progress in pixel-level labeling
using Fully Convolutional Network (FCN) framework and local multi-scale context information. Rich
global context information is also essential in the segmentation process. However, a systematic way to
utilize both global and local contextual information in a single network has not been fully investigated.
In this paper, we propose a global-and-local network architecture (GLNet) which incorporates global
spatial information and dense local multi-scale context information to model the relationship between
objects in a scene, thus reducing segmentation errors. A channel attention module is designed to
further refine the segmentation results using low-level features from the feature map. Experimental
results demonstrate that our proposed GLNet achieves 80.8% test accuracy on the Cityscapes test
dataset, comparing favorably with existing state-of-the-art methods.

Keywords: semantic segmentation; global context; local context; fully convolutional networks

1. Introduction

Image semantic segmentation is a computer vision task in which each pixel of an image is assigned
to a corresponding object label. Semantic segmentation provides richer information, including object’s
boundary and shape, than other object segmentation techniques such as object detection which produces
only object bounding boxes. Therefore, semantic segmentation of street view images is important
to the development of vision sensors for autonomous vehicle systems that require rich information
for scene understanding [1,2]. Many state-of-the-art semantic segmentation methods are based on
fully convolutional networks (FCN) [3]. FCN is an end-to-end, pixel-wise fully convolutional neural
network for image semantic segmentation which replaces the fully connected layer in a conventional
convolutional neural network (CNN) with convolutional layers and then restores the output to the
original image size by up-sampling the final convolutional layer using a deconvolution operation [4].
However, consecutive pooling operations at the encoding stage usually lead to the reduction of
feature resolution, which in turn will degrade final segmentation performance. As shown in the
first row of Figure 1, small objects such as poles and traffic light are missing due to loss of detailed
information resulted from pooling operations. To address this issue, dilated convolution (also called
atrous convolution) has been proposed to replace the down-sampling and up-sampling operations in
order to gain a wider field of view while preserving full spatial information [5–7].
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explicitly encoded in the semantic segmentation models [6]. Another important factor affecting 
segmentation is the existence of objects in multiple scales. With regard to this, different scales of an 
image are generated to extract multi-scale features, and the features are then merged to predict the 
results [8–10]. In [11] and [12], dilated convolution layers with different rates were used to capture 
object features at multiple scales, and the experimental results indicated that using multiple 
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and thin objects. (b) Incorrect segmentation of similar parts. (c) Incomplete segmentation of large 
objects. 

Convolutional operations process one local neighborhood at a time as in a conventional CNN 
[13,14], which may cause incomplete segmentation of large objects. As shown in the third row of 
Figure 1, with local convolutional operations, parts of the road near roadside area were wrongly 
predicted as sidewalk due to the lack of global context information. To resolve this, global contextual 
information has been utilized in scene segmentation and been shown to be effective in reducing false 
segmentation [15]. However, a systematic way to integrate both global and local contextual 
information in a single network has not yet been fully investigated. 

In this paper, we propose a global-and-local context network (GLNet) for semantic 
segmentation of street view images for autonomous vehicle systems, which incorporates both global 
and local contextual information in a single network. An overview of the proposed GLNet is shown 
in Figure 2. The global context module captures semantic of spatial interdependencies while the 
local context module uses dilated convolution of different rates to extract dense multi-scale features 
that are important for a network to adapt to different object sizes. GLNet fuses the outputs of the two 
modules to capture both global and local contextual information to help the network recognize the 
relationships between objects in a scene, helping eliminate false alarms. Furthermore, CNN 
low-level features are used through channel weighting to restore the edges and fine details of the 
segmentation results. 

Figure 1. Some semantic segmentation issues observed in the Cityscapes dataset. (a) Missing small and
thin objects. (b) Incorrect segmentation of similar parts. (c) Incomplete segmentation of large objects.

Local context information is an important component in semantic segmentation for segmenting
complex street view scenes that contain different objects with similar features. The second row in
Figure 1 shows a portion of the ‘truck’ object that has been mistakenly classified as a ‘car’ object
because it has a similar appearance to cars. Consequently, local context information should be explicitly
encoded in the semantic segmentation models [6]. Another important factor affecting segmentation
is the existence of objects in multiple scales. With regard to this, different scales of an image are
generated to extract multi-scale features, and the features are then merged to predict the results [8–10].
In [11,12], dilated convolution layers with different rates were used to capture object features at multiple
scales, and the experimental results indicated that using multiple field-of-views can improve overall
segmentation accuracy.

Convolutional operations process one local neighborhood at a time as in a conventional
CNN [13,14], which may cause incomplete segmentation of large objects. As shown in the third
row of Figure 1, with local convolutional operations, parts of the road near roadside area were wrongly
predicted as sidewalk due to the lack of global context information. To resolve this, global contextual
information has been utilized in scene segmentation and been shown to be effective in reducing false
segmentation [15]. However, a systematic way to integrate both global and local contextual information
in a single network has not yet been fully investigated.

In this paper, we propose a global-and-local context network (GLNet) for semantic segmentation of
street view images for autonomous vehicle systems, which incorporates both global and local contextual
information in a single network. An overview of the proposed GLNet is shown in Figure 2. The global
context module captures semantic of spatial interdependencies while the local context module uses
dilated convolution of different rates to extract dense multi-scale features that are important for a
network to adapt to different object sizes. GLNet fuses the outputs of the two modules to capture both
global and local contextual information to help the network recognize the relationships between objects
in a scene, helping eliminate false alarms. Furthermore, CNN low-level features are used through
channel weighting to restore the edges and fine details of the segmentation results.

196



Sensors 2020, 20, 2907

Sensors 2020, 20, x 3 of 13 

 

 
Figure 2. An overview of the proposed GLNet. First, a CNN is applied on the input image and the 
feature map from the last convolution layer of CNN is kept. Next, global module and local module 
are deployed on the feature map to capture both global and multi-scale context information. Finally, 
the channel attention module restores edges and fine details of the segmented objects using low-level 
features. 

2. Related Work 

Many recent image semantic segmentation methods have been based on fully convolutional 
networks (FCN) [3], which train on an end-to-end network for pixel-wise prediction, achieving 
state-of-the-art result. For instances, encoder-decoder networks such as SegNet [16] and U-Net [17] 
have been proposed to enhance semantic segmentation results. The encoder gradually reduces the 
spatial dimension of feature maps to extract salient features. On the other hand, the decoder 
increasingly up-samples the feature map back to the original spatial resolution of the input image 
and produces pixel-wise segmentation result. However, the encoding process usually causes the 
reduction of feature resolution, which in turn degrades final segmentation performance. 

The use of contextual information is important to pixel-level prediction tasks. Objects in 
complex scenes exhibit large-scale changes, which introduces great challenges for advanced feature 
representations. In [11] and [12], dilated convolutions were used to expand the receptive field and to 
encode multi-scale context information. Zhao et al. [18] proposed a pyramid scene parsing network 
to capture multi-scale context information by aggregating feature maps of different resolutions 
through a pyramid pooling module. DeepLabv3+ [19] used parallel Atrous Spatial Pyramid Pooling 
(ASPP) which connects parallel dilated convolutions of different rates on the feature map to 
effectively encode multi-scale information. Zhou et al. [20] designed a multi-scale deep context 
convolutional network for semantic segmentation which combines the feature maps from different 
levels of network. Although multi-scale context information help to capture different scales objects, 
it cannot leverage the relationship between objects in a global view, which is also essential to scene 
segmentation. 

DANet [21] uses self-attention to capture long-range global context by exploring orthogonal 
relationships in both spatial and channel dimensions using non-local operator [15]. Convolution is 
essentially a local operation. Non-local operations extract long-range dependencies directly from 
any two positions in an image. The position attention module of DANet selectively aggregates the 
features of each location by weighted summation of all locations. CFNet [22] adds an extra global 
average pooling path to determine whole scene statistics. However, both models do not incorporate 
local multi-scale features in their networks. Self-attention is also used in OCNet [23] to learn 
pixel-level object context information to enhance context aggregation. Attempt to incorporate 
additional depth information for improving semantic segmentation has also been explored in [24] 
and [25]. Our proposed method incorporates rich global spatial information and dense local 
multi-scale context information to model the relationship between objects in a scene to reduce 
segmentation errors. 

Figure 2. An overview of the proposed GLNet. First, a CNN is applied on the input image and
the feature map from the last convolution layer of CNN is kept. Next, global module and local
module are deployed on the feature map to capture both global and multi-scale context information.
Finally, the channel attention module restores edges and fine details of the segmented objects using
low-level features.

2. Related Work

Many recent image semantic segmentation methods have been based on fully convolutional
networks (FCN) [3], which train on an end-to-end network for pixel-wise prediction, achieving
state-of-the-art result. For instances, encoder-decoder networks such as SegNet [16] and U-Net [17]
have been proposed to enhance semantic segmentation results. The encoder gradually reduces
the spatial dimension of feature maps to extract salient features. On the other hand, the decoder
increasingly up-samples the feature map back to the original spatial resolution of the input image and
produces pixel-wise segmentation result. However, the encoding process usually causes the reduction
of feature resolution, which in turn degrades final segmentation performance.

The use of contextual information is important to pixel-level prediction tasks. Objects in
complex scenes exhibit large-scale changes, which introduces great challenges for advanced feature
representations. In [11,12], dilated convolutions were used to expand the receptive field and to encode
multi-scale context information. Zhao et al. [18] proposed a pyramid scene parsing network to capture
multi-scale context information by aggregating feature maps of different resolutions through a pyramid
pooling module. DeepLabv3+ [19] used parallel Atrous Spatial Pyramid Pooling (ASPP) which connects
parallel dilated convolutions of different rates on the feature map to effectively encode multi-scale
information. Zhou et al. [20] designed a multi-scale deep context convolutional network for semantic
segmentation which combines the feature maps from different levels of network. Although multi-scale
context information help to capture different scales objects, it cannot leverage the relationship between
objects in a global view, which is also essential to scene segmentation.

DANet [21] uses self-attention to capture long-range global context by exploring orthogonal
relationships in both spatial and channel dimensions using non-local operator [15]. Convolution is
essentially a local operation. Non-local operations extract long-range dependencies directly from any
two positions in an image. The position attention module of DANet selectively aggregates the features
of each location by weighted summation of all locations. CFNet [22] adds an extra global average
pooling path to determine whole scene statistics. However, both models do not incorporate local
multi-scale features in their networks. Self-attention is also used in OCNet [23] to learn pixel-level
object context information to enhance context aggregation. Attempt to incorporate additional depth
information for improving semantic segmentation has also been explored in [24] and [25]. Our proposed
method incorporates rich global spatial information and dense local multi-scale context information to
model the relationship between objects in a scene to reduce segmentation errors.
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3. Method

In this section, we describe the proposed GLNet network in detail. The overall network structure
of GLNet is shown in Figure 2. First, an Xception [26] network with 65 layers is used as the backbone
to extract features from the input image. Next, the feature map from the last convolution layer of the
Xception network is input into both the global module and the local module and the outputs from
the two modules are fused to generate the segmentation result. Lastly, the channel attention module
refines the segmentation result by utilizing the low-level features from the Xception network.

3.1. Global Module

The global module is intended to capture the spatial dependencies of the feature map. To this end,
we have adopted the non-local operations proposed in [15] and the details of the global module are
shown in Figure 3. In the global module, the response at a feature location is weighted by features
at all locations in the input feature map. The weights are determined based on the feature similarity
between two corresponding locations. Thus, any two positions with similar features can contribute to
each other regardless of the distance between them.
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Figure 3. The global module. The number of channels of the CNN feature map is first reduced to 1/8 of
the input channels before generating the attention map, and the weighted result is reverted back to the
shape of the input feature map.

The last layer of the Xception network is first convolved with a 1 × 1 convolution to reduce the
number of channels from 2048 to 256, or 1/8 of the original number of channels. This produces a H ×W
× nc feature map, where H, W are the height and width of the feature map, and nc denotes the number
of channels. Three copies of the feature map (A, B, C) are generated and reshaped to N × nc, where N
= H ×W. As shown in Figure 3, feature map A is then transposed and multiplied by feature map B,
and the resulting N × N matrix is passed through softmax function to produce the spatial attention
map. Finally, feature map C is multiplied by the attention map and the result is reshaped back to H ×
W × nc. As a result, the output of the global module is a feature map weighted by the global spatial
interdependencies among pixel locations.

3.2. Local Module

Objects in a scene usually exhibit large-scale changes, posing a difficult challenge for feature
representation in semantic segmentation since multi-scale information must be properly encoded.
DeepLab [19] handled this problem using an Atrous Spatial Pyramid Pooling (ASPP) module in which
dilated convolutions with different rates are applied to the input feature map and the results are fused
to account for different object scales. However, the ASPP module is not dense enough to deal with
large object scale changes in complex scenes.

To resolve this, we propose a local module based on DenseASPP [12] to extract dense multi-scale
features that are important for a network to adapt to large-scale variations. The local module combines
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the advantages of parallel and cascaded dilated convolutions to obtain larger and denser receptive
field than ASPP, thus achieving superior multi-scale representation of objects in a scene. The details
of the local module are depicted in Figure 4. Similar to the global module, the feature map from
the Xception network is first convolved with 1 × 1 convolution to reduce the number of channels
to nc (1/8 of the input channels) before it is fed to the local module. Next, the input feature map is
sequentially convolved with dilated convolution with increasing dilation rates from 3, 6, 12, to 18.
To lessen network complexity, dilation rate 24 is not included here as in DenseASPP. The input to each
dilated convolution layer is formed by concatenating the input feature map with the outputs from
previous convolutions and then convolved with 1 × 1 convolution to maintain the number of channels
at nc. Lastly, the outputs from the four dilated convolutions are concatenated together with the input
feature map and result is again reduced to nc channels before outputting to the next processing step.
Compared with DenseASPP, the total number of parameters of the local module is reduced from 6.48 M
to 2.01 M. It can be seen from Figure 4 that the output of the local module is a feature map that contains
dense multi-scale feature information for the input image.
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3.3. Channel Attention Module

The Global-Local module extracts high level multi-scale semantic information. However, details
of objects may be lost during the down sampling process in the initial stage of the CNN network.
The low-level feature maps produced by CNN before the max pooling layer should preserve detailed
information including edges and other fine details of the objects in the image. To recover the finer
details of objects, we propose a channel attention module which fuses the output from the Global-Local
module and the low-level feature map of CNN, as shown in Figure 5.

The output of the Global-Local module is up-sampled to match the dimension of the low-level
feature map of CNN before the fusion process. In addition, Squeeze-and-Excitation (SE) block [27] is
applied to both feature maps to obtain cross channel information and learn the channel-wise attention.
The SE block generates a weight between 0 and 1 per channel through sigmoid function, and the
weights are then used to perform dynamic feature reweighting via channel-wise multiplication between
the weights and the feature maps. As a result, the channel attention module also explores channel
dependency in the feature map, which has been proven useful for image classification and segmentation
tasks [28].
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4. Experiments

In this section, we describe the implementation details and discuss the experimental results of
the proposed GLNet network. Comprehensive experiments and ablation studies on the Cityscapes
dataset [29] were carried out to evaluate the proposed network, and the performance improvements of
the modules are highlighted.

4.1. Implementation Details

The implementation of GLNet is built upon the TensorFlow framework. The pre-trained weights
of Xception-65 [26] were drawn from the Imagenet [30]. The original image size was 1024 × 2048,
while the input image size was randomly cropped to 768 × 768. We adopted the learning rate policy
from [6,18] where the current learning rate is calculated as follows:

(
1− iter

max_iter

)power
, (1)

where iter and max_iter represent the current training step and the overall training iterations, respectively.
An initial learning rate of 0.01 was used throughout the experiments, whereas max_iter was set at
90,000 steps and power is set to 0.9. Furthermore, the batch size was fixed at 8 in our experiments.

The loss function is defined as:

loss =
∑N

n=1
lmce((Xn), Yn), (2)

where Xn are the training images and Yn are the corresponding ground truth, and lmce denotes the
multi-class cross-entropy loss for predictions.

The training data came from the Cityscapes dataset, which is comprised of 5000 annotated urban
street scenes (2975 for training, 500 for validation and 1525 for testing) for pixel-level semantic labeling.
Intersection over union (IoU) and pixel accuracy averaged across the 19 classes in the dataset were
used as performance metrics for evaluating the methods. The GLNet takes about 6 h of training time
using a single NVIDIA Tesla® V100 GPU with batch size fixed at 8.
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4.2. Ablation Study

An extensive ablation study on the Cityscapes dataset is conducted to determine the effectiveness
of the various modules and the design choice of the proposed GLNet.

4.2.1. Effect of Global Context Information

Before examining the overall performance of the proposed GLNet network, we first investigate
the effect of incorporating global context information on semantic segmentation, which is one of the
main objectives of this study. Figure 6 shows the sample segmentation results when incorporating
global context information versus results without the global context information. The first column is
the input images. The second column shows visualizations of the attention maps generated by the
Global-Local module, which are the results of fusing the outputs from both the global and the local
modules (see Figure 2). The third column shows the same attention map, excluding the output from
the global module.
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Figure 6. Visualization results of incorporating global context information versus without global
context information.

It can be seen in Figure 6 that the attention maps that incorporated global context information are
less noisy than those without global context information. The segmentation results in column 4 and 5
confirm that without the global context information, it is more problematic to segment larger objects,
such as the truck in the first row, the bus in the second row, and the road in the last row. This indicates
that using information from local context alone and ignoring the global scene context will result in
misclassified pixels.

4.2.2. GLNet Modules

In this experiment, we tested the effects of the various modules in GLNet on the overall performance
of the network. The results are summarized in Table 1 and the visualization results are shown in
Figure 7. The first test was to compare the proposed local module with the ASPP module used in
DeepLabv3+ [19]. The local module increased the mean IoU by 0.5% over the ASPP module on the
Cityscapes dataset. The first and second columns in Figure 7 show a slight decrease in false classification
of pixels using the proposed local module. The above results suggest that dense multi-scale features
extracted by the local module have positive influence on the overall segmentation results.

Next, we tested the effect of applying the channel attention module on the segmentation
performance, which fuses low-level feature using SE block. With the inclusion of SE block, the mean
IoU increased about 1%, from 77.6% to78.4%. Finally, when all three modules in GLNet were activated,
the mean IoU improved to 80.1%, 3% higher than using only the ASPP module of DeepLabv3+ [19].
By visually examining the segmentation results in Figure 7, we can see that the proposed GLNet
architecture has significantly fewer segmentation errors, especially for large objects and for the
background area. This is due to the inclusion of global information in the feature extraction process.
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Table 1. Performance evaluation on Cityscapes val. set.

BaseNet ASPP Local Global SE Mean IoU%

Xception-65 X 77.1%
Xception-65 X 77.6%
Xception-65 X X 78.4%
Xception-65 X X X 80.1%

Note: ASPP denotes ASPP module [19], Local represents local module, Global represents global module, and SE
implies SE block [24].
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4.2.3. Global Module

As mentioned in Section 3, non-local block [15] was chosen to gather global attention in the
proposed global module. It is worth to experiment with other attention mechanisms for capturing
global attention in the feature map. The Convolutional Block Attention Module (CBAM) proposed
recently by Woo et al. [31] and the Pyramid Pooling Module in PSPNet [18] are selected here to
compare with the non-local block method. CBAM applies average pooling and max pooling along the
channel axis of the feature map and then the result is passed through a 7 × 7 convolution to capture
both cross-channel and spatial attentions [31]. Pyramid pooling module harvests different sub-region
representations and concatenates them into a feature representation that carries both local and global
context information [18].

The results of applying different methods for extracting global context information in the global
module are shown in Table 2. The results indicate that using non-local block offers a slight edge over
CBAM on the Cityscapes dataset. Pyramid pooling does not perform as well and has the lowest IoU
score. One possible explanation of the low performance for pyramid pooling is that in the original
PSPNet implementation, the number of output channels after concatenation is 3072, which has been
reduced to 256 channels in order to fit our network architecture. The reduction in channel number
might result in loss of feature information. Visualization results in Figure 8 confirm that non-local
block can handle large objects better than CBAM and pyramid pooling. For example, as shown in the
upper left column in Figure 8, CBAM and pyramid pooling misclassified portion of the truck object as
car pixels, whereas non-local block was able to segment the truck object correctly. Therefore, non-local
block is recommended to be used in the proposed GLNet network.

Table 2. Performance on Cityscapes val. set of applying different methods in the global module.

BaseNet Non-Local CBAM Pyramid Pooling Mean IoU%

Xception-65 X 70.3%
Xception-65 X 78.9%
Xception-65 X 80.1%
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4.2.4. Fusion vs. Concatenation

Another experiment was to explore the use of concatenation operation versus fusion operation for
combining high-level feature and low-level feature and the results are shown in Table 3. The results
demonstrate that the performance of using fusion operation is slightly better than using a concatenation
operation. In-depth analysis of the segmentation results of individual object classes reveal that
concatenation operation actually produced slightly better segmentation of small objects and fine details,
thus providing nicer visualization results. Conversely, fusion operation generated better segmentation
results on larger objects such as buses and trucks. Since large objects occupy more pixels and contribute
more to the IoU calculation, as a result, the mean IoU under fusion operation is higher.

Table 3. Performance on Cityscapes val. set using concatenation operation versus fusion operation for
combining features.

BaseNet Concatenation Fusion Mean IoU%

Xception-65 X 79.9%
Xception-65 X 80.1%

4.3. Performance Comparison

4.3.1. Performance on Cityscapes Dataset

We have benchmarked our proposed GLNet with state-of-the-art methods on the Cityscapes test
set and validation set and the results are shown in Tables 4 and 5. All methods are trained with the
fine dataset of Cityscapes. For the test set, GLNet achieves a mean IoU of 80.8, the highest among
all the methods tested. Out of the 19 classes in the dataset, GLNet obtains or shares the best scores
for 13 classes. Similar results are reported on the validation set, where GLNet has the best overall
segmentation performance. Other methods, for example PSPNet [18], extract context information
through global average pooling, and concatenates the information in the final output feature map.
Although such an approach produces satisfactory segmentation results, but some fine details are
missing and it generates false edges in the results. The works in [11,12,19] use Atrous Spatial Pyramid
Pooling (ASPP) module to cope with different object scales. However, they do not carry enough global
context information to handle large objects. In contrast to the previous methods, the proposed GLNet
incorporates global and local context information, together with low-level feature to tackle complex
scenes that contain a mixture of fine and large objects.
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Table 4. Performance comparison on Cityscapes test set.
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FCN-8s [3] 65.3 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.7 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8
DeepLab-v2 [6] 70.4 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8
RefineNet [32] 73.6 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70
DUC [33] 77.6 98.5 85.5 92.8 58.6 55.5 65 73.5 77.9 93.3 72 95.2 84.8 68.5 95.4 70.9 78.8 68.7 65.9 73.8
ResNet-38 [34] 78.4 98.5 85.7 93.1 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69 76.7
PSPNet [18] 78.4 98.6 86.2 92.9 50.8 58.8 64.0 75.6 79.0 93.4 72.3 95.4 86.5 71.3 95.9 68.2 79.5 73.8 69.5 77.2
DenseASPP [12] 80.6 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8
GLNet 80.8 98.7 86.7 93.4 56.9 60.5 68.3 75.5 79.8 93.7 72.6 95.9 87.0 71.6 96.0 73.5 90.5 85.7 71.1 77.3

Table 5. Performance comparison on Cityscapes val set.
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FCN-8s [3] 57.3 93.5 75.7 87.2 33.7 41.7 36.4 40.5 57.1 89.0 52.7 91.8 64.3 29.9 89.2 34.2 56.4 34.0 19.7 62.2
ICNet [10] 67.2 97.3 79.3 89.5 49.1 52.3 46.3 48.2 61.0 90.3 58.4 93.5 69.9 43.5 91.3 64.3 75.3 58.6 43.7 65.2
DeepLab-v2 [6] 69.0 96.7 76.7 89.4 46.2 49.3 43.6 55.0 64.8 89.5 56.0 91.6 73.3 53.2 90.8 62.3 79.6 65.8 58.0 70.2
PSPNet [18] 76.5 98.0 84.4 91.7 57.8 62.0 54.6 67.4 75.2 91.4 63.2 93.4 79.1 60.6 94.4 77.2 84.6 79.4 63.3 75.1
DeepLab-v3+ [19] 77.1 98.2 85.1 92.6 56.4 61.9 65.5 68.6 78.8 92.5 61.9 95.1 81.8 61.9 94.9 72.6 84.6 71.3 64.0 77.1
DenseASPP [12] 79.5 98.6 87.0 93.2 59.9 63.3 64.2 71.4 80.4 93.1 64.6 94.9 81.8 63.8 95.6 84.0 90.8 79.9 66.4 78.1
GLNet 80.1 98.4 86.7 93.1 59.5 62.7 68.4 73.0 81.7 92.9 64.4 95.3 84.0 65.4 95.3 82.6 90.6 81.0 67.9 79.7

Recently, DANet [21] reached a new state-of-the-art performance level of 81.5 on the Cityscapes
dataset. However, DANet relies on extra strategies such as data augmentation, multiple feature maps
of different grid sizes, and segmentation map fusion to further improve its performance [21]. Such
improvement strategies can also be used in other methods. Therefore, DANet has not been included
here for comparison. Without the extra steps, DANet achieved a mean IoU of 77.57, which is lower
than our score.

The main difference between the proposed GLNet and existing segmentation methods is that
GLNet explicitly models global contextual information, local contextual information, and low-level
features in a single network and systematically combines the information for semantic segmentation
of complex street view scenes. The benefit of incorporating all three pieces of information in one
network enables GLNet to simultaneously dealing with large objects and background, and paying
attention to fine details. Figure 9 shows visualization results of DenseASPP and GLNet, which are the
top two performers in Table 4. Although the performance improvement of GLNet over DenseASPP
is incremental in terms of mean IoU, it can be seen from Figure 9 that GLNet generates much better
visualization results compared to DenseASPP. GLNet was able to segment large objects such as sidewalk
and vegetation as well as small objects such as pedestrians and light poles equally well, whereas
DenseASPP produced unsatisfactory results.
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Figure 9. Visualization results of DenseASPP and GLNet on Cityscapes val. set.

4.3.2. Network Size and Inference Speed

Network size in terms of number of parameters and inference speed in frame per second (FPS)
of the proposed GLNet and several other methods are listed in Table 6. The tests were running on
NVIDIA GeForce GTX 1080 with Tensorflow Cuda 9.0. The test images were 1024 × 2048 raw images
from the Cityscapes validation set. It can be seen from Table 6 that the number of parameters of the
GLNet is slightly fewer than the DeepLab methods [6,19], and it is much lower than FCN [3] and
PSPNet [18]. The inference speed of GLNet is comparable to DeepLab and PSPNet with 1.24 FPS. The
difference in inference speed is partially owing to the fact that different backbone networks are used in
different models. For instance, Xception-65 is used as the backbone in GLNet while DeepLab uses
ResNet-101 as the backbone network.

Table 6. Network size and inference speed.

Method Params FPS

FCN-8s [3] 134.4 M 2.70
DeepLab-v2 [6] 43.9 M 1.38

PSPNet [18] 67.6 M 1.13
ICNet [10] 6.7 M 5.58

DeepLab-v3+ [19] 41.2 M 2.08
GLNet 39.8 M 1.24

5. Conclusions

We have proposed the GLNet which integrates global spatial information and dense local
multi-scale context information in a single model for semantic segmentation of complex street view
scenes. The global context module captures semantic of spatial interdependencies whereas the local
context module extracts dense multi-scale features, and the output of the global-local module is
fused with low-level features to recover fine scene details. Experimental results on the Cityscapes
dataset have demonstrated superior performance of the proposed GLNet over existing state-of-the-art
methods. This study highlights the importance of incorporating both global and local contextual
information in image semantic segmentation. We hope this insight can contribute to future semantic
segmentation works.
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Abstract: To encourage people to save energy, subcompact cars have several benefits of discount
on parking or toll road charge. However, manual classification of the subcompact car is highly
labor intensive. To solve this problem, automatic vehicle classification systems are good candidates.
Since a general pattern-based classification technique can not successfully recognize the ambiguous
features of a vehicle, we present a new multi-resolution convolutional neural network (CNN) and
stochastic orthogonal learning method to train the network. We first extract the region of a bonnet
in the vehicle image. Next, both extracted and input image are engaged to low and high resolution
layers in the CNN model. The proposed network is then optimized based on stochastic orthogonality.
We also built a novel subcompact vehicle dataset that will be open for a public use. Experimental
results show that the proposed model outperforms state-of-the-art approaches in term of accuracy,
which means that the proposed method can efficiently classify the ambiguous features between
subcompact and non-subcompact vehicles.

Keywords: vehicle recognition; multi resolution network; optimization

1. Introduction

Typically, subcompact cars are defined by the engine displacement, width, and height under
1000 cc, 1.6 m, and 2.0 m, respectively. To satisfy these specifications, the subcompact car has a unique
shape such as shorter-bonnet and hatchback. In addition, there are various environmental benefits
because the subcompact cars have a small displacement engine and a light weight. To encourage people
to drive subcompact cars, many countries provide several benefits—discounts on tall road charge
and parking fee. Since classification of subcompact cars from other requires labor-intensive human
investigation, an automatic vehicle classification system is needed. In general, vehicle classification
methods can be classified into two approaches: one uses infrared sensors to measure physical
dimensions of a vehicle such as length, height, and width. The other uses a single camera and image
processing algorithms to recognize the visual characteristics of vehicles [1,2]. Despite of accuracy and
robustness, the infrared sensor-based system is too expensive to be installed in many places. Thus,
we propose an image recognition system to reduce the installation and maintenance cost. To classify the
visual feature in images, Dalal et al. extracted the histogram of oriented gradients (HOG) and classify
the HOG using support vector machine (SVM) [3]. To the best of authors’ knowledge, the HOG-based
SVM is the most popular approach to recognize objects before deep learning has become popular.
To enhance HOG features that are affected by rotation, or distance, and occlusion, various approaches
were proposed. Llorca et al. proposed vehicle manufacturer recognition by detecting the vehicle-logo,
but a subcompact car can not be completely classified using only manufacturer information [4].
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Clady et al. recognized the vehicle type by separating objects and the background in interactively
selected regions [5]. This method is robust to the variance in the distance. However, the region should
be passively selected. Mohottala et al. created vehicle images using computer graphics (CG), and then
classify the type of vehicle using eigenvalues [6].

Although this approach can easily obtain the vehicle data, it cannot avoid error in real vehicle data.
Michael and Daniel classified the eigenvalues of vehicle classes using neural networks [7]. Since they
used an artificial neural network, classification accuracy was acceptable only without occlusion.
Huttunen et al. adaptively recognized the vehicle classes using a deep neural network [8]. This method
can recognize the multi-class vehicles such as sedan, truck, and bus. However, in subcompact car
classification, it has overffiting while learning the subcompact vehicle class because it is difficult to
discriminate the subcompact vehicle from others. Simonyan et al. proposed the deep convolutional
neural networks called VGG16 and VGG19 [9]. Since the VGG networks can be pre-trained via
a large-scale image dataset [10], it can have a very deep hidden-layer to recognize the vehicle.
However, it cannot robustly classify the subcompact vehicles because of both obscure features and
environmental variables as shown in Figure 1. He et al. proposed the more deep residual networks [11].
This network can be designed more deeply such as 50, 101, 151 layers because of the residual learning.
However, in the binary classification, the VGG networks are also deep enough. Xie et al. applied the
split-transform-merge strategy to deep residual networks [12]. This strategy can effectively recognize
various features, but it can not adaptively crop the image region. Karpathy et al. proposed the multiple
convolutional neural networks with center clipping and image fusion for video classification [13].
It can recognize the obscure objects and actions in video, but it cannot localize objects that are not in
the center of the image.

(a)

(b)

Figure 1. (a) Subcompact vehicles and (b) sedans. It is not easy to differentiate two classes using small
features such as head lamp or rear-view mirror. On the other hand, there are differences in bigger
features such as bonnet and overall shape of vehicles.

To solve this isolated problem, we proposed a novel multi-resolution network and stochastic
orthogonal learning method. More specifically, the proposed method include three functional steps:
(i) we emphasize the features using retinex model-based image-enhancement [14], (ii) we track the
bonnet region using an optimized correlation filters [15], and (iii) we engage this region and image
using the proposed multi-resolution network. In addition, we learned our muti-resolution network by
considering stochastic orthogonality of probabilities between subcompact and general vehicles. We also
build a subcompact vehicle dataset including 1500 training data and 2000 test-images. Experimental
results show that the proposed method outperforms state-of-the-arts approaches in terms of accuracy
by over 12.25%. This paper is organized as follows. In Section 2, we describe the related works.
The proposed multi-resolution network is presented in Section 3 followed by experimental results in
Section 4, and Section 5 concludes this paper.
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2. Related Works

2.1. Support Vector Machine

To classify the features in images, the SVM can be applied by minimizing as following
Equation [16]

∴ arg min
~w,b

1
2
‖~w‖2 −∑

i=1
αi (yi (~w •~xi + b)− 1), (1)

where ~w and b represent weight and bias of hyper-plane to classify the features, α is an operator to find
the support vectors, and y denotes the label such as positive or negative. The optimized hyper-plane
of the support vector machine works well, but it should be estimated low-dimensional features such
as histograms of gradients and scale-invariant features [3,17] to apply imaging systems.

2.2. Neural Network

The neural networks can classify the non-linear features because the each node in hidden-layer
discriminates the complicated patterns as shown Figure 2. Each node includes the weight, bias,
and activate function such as sigmoid, and relu. These parameters can be easily estimated by simple
cost function and chain rule as

Etotal = ∑
1
2
(y− f (x))2, (2)

and
∂Etotal

∂w∗ = ∂Etotal
∂outo1

∗ ∂outo1
∂neto1

∗ ∂neto1
∂w∗ ,

∂Etotal
∂b∗ = ∂Etotal

∂outo1
∗ ∂outo1

∂neto1
∗ ∂neto1

∂b∗ ,
(3)

where f returns the results of neural networks, w∗ and b∗ are weight and bias in ∗-th node. Therefore,
each parameter can be estimated as

w∗(t + 1) = w∗(t)− ∂Etotal
∂w∗ ,

b∗(t + 1) = b∗(t)− ∂Etotal
∂b∗ .

(4)

However, the neural net also has limitation to apply large-scale image classification.

Figure 2. The architecture of neural network.

2.3. Convolutional Neural Network (CNN)

Since an image has various features such as gradients, color, and intensity information,
the convolution operators in the hidden layer are effective to extract the image features [9]. Furthermore,
these convolution operator can also be optimized by chain-rule. For example, we visualize the extracted
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image features in convolution layer using CNN feature simulator [18]. Note that the convolution
operator can extract the large scale features and textures as shown Figure 3. In other words, the CNN
can not only classify the multi-class image but also recognize the detail textures. Therefore, the CNN
can be applied to various field using the transfer learning method such as medical imaging [19],
intelligent transportation system [20,21], and remote sensing [22]

Figure 3. The convolutional neural network and convolution features.

3. Proposed Method

3.1. Subcompact Vehicle Dataset

To train and test the proposed network, we collected vehicle images using a digital
camera (gray-scale) at a parking gate in Seoul, South Korea. Since the camera was installed under
the charge machine, images were captured from an angle viewed from below as shown in Figure 4.
Furthermore, we collected vehicle images for 1 year and 6 months to reflect various environmental
variables such as day light, back light, dust, and night. The collected images were classified into
five types including subcompact sedan, subcompact van, subcompact truck, sedan and sport utility
vehicle (SUV), and truck and van according to the design and shape. The dataset was split into
training and test sets including 1500 and 2000 images, respectively. The goal of this work is the binary
classification (subcompact vehicle or not). To this end, each set of the proposed dataset is divided into
subcompact and non-subcompact vehicles as shown in Figure 5.

(a) (b)

Figure 4. (a) Camera installation and (b) four different illumination conditions.
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Sedan & SUV (C1) Truck & Van (C2)
Non-Subcompact Group

Subcompact Sedan (C3) Subcompact Van (C4) Subcompact Truck (C5)
Subcompact Group

Figure 5. An example of five vehicle classes in the proposed dataset.

3.2. Pre-Convolution Layer

The proposed network consists of pre-convolution and multi-resolution network layers. In the
pre-convolution layer, we resize the original 1920 × 1080 px images to 400 × 300 px, and we amplify
the intensity and increase the local-contrast using a simple retinex-based image enhancement algorithm
as [14]

H (x) =
I (x)

max (l (x) ε)
, (5)

where H represents high-resolution image, I the input gray-image in the dataset, and ε is a very small
positive number to avoid division by zero. The illuminance map l can be estimated as a smoothing
term [23]

l = med (I)−med (|med (I)− I|) , (6)

where Med represents the local-median filter [24]. Figure 6a,c show that the environmental variables
can be normalized, and at the same time local-contrast in the shadow region is also enhanced.
To process a low-resolution image, the vehicle region should be localized. In this paper, we detect the
region using a correlation filter which has low-computational complexity and efficient localization
performance [25]. To reflect a feature of texture, we applied multi-channel correlation filter (MCCF)
with the histogram of oriented gradients, which can be defined as ridge regression

E (w) =
1
2

N

∑
i

D

∑
j

(
yi (j)−

K

∑
k=1

w(k)Tx(k)i
[
∆τj
]
)2

+
λ

2

K

∑
k=1

(
w(k)

)2
, (7)

where yi(j) is the desired and shifted response in i-th sample yi = [yi(1), ...., yi(D)]T , xi[∆τj] is a set of
cyclically shifted vehicle images in the training dataset. N represents the number of training images,
K is the channels of feature map including HOG 34-channels, and w represents the correlation filter.
The response map y for a vehicle coordinate in the frequency domain has a Gaussian-shaped
distribution centering on a pre-annotated region. Since both input patch and response map are circular
matrices for cyclic convolution, the correlation filter w can be simply expressed in the frequency
domain as

ŵ∗ =

(
λI +

N

∑
i

X̂T
i X̂i

)−1 N

∑
i=1

X̂T ŷi, (8)

where, ŵ represents a variable w in the frequency domain, ∗ and T respectively represent the complex
conjugate and transpose of a matrix. The optimized correlation filter can estimate the coordinates of the
vehicle region via maximum response-region and distribution as shown in Figure 6d–f. We cropped
high-resolution images, based on this picking coordinates to obtain low-resolution images L (280× 200).
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Note that the proposed pre-convolution layer should be processed in Central processing unit (CPU)
for efficient memory allocation.

(a) Input (b) Illuminance (c) High-resolution image

(d) Feature extracting (e) Result of the correlation filter (f) Low-resolution image

Figure 6. Step-by-step results in the pre-convolution layer (a–f).

3.3. Multi-Resolution Network

We changed the size of both high- and low-resolution images to 224 × 224 to recognize vehicle
type. Note that the scale of the proposed subcompact dataset is gray. Therefore, we generate the
3 zero-min channels with the average color of ImageNet [10], and concatenate 3 zero-min channels to
create a pseudo color as

HR = H − 0.4850, HG = H − 0.4580, HB = H − 0.4076, (9)

and
LR = L− 0.4850, LG = L− 0.4580, LB = L− 0.4076, (10)

where H and L are single gray-scale (224 × 224 × 1), and H∗ and L∗ have pseudo RGB channel
(224 × 224 × 3) as shown as high- and low-resolution in Figure 7. We correspondingly defined
both high- and low-resolution network with 13 convolution layers, 5 max-pooling layers, and 3 fully
connected layers as shown in Figure 7. A 3 × 3 filter is used in each convolution layer, ReLU is used
for an activation function, and 2 × 2 max-pooling filters are used to maximize the receptive field [9].
Each fully connected layer has 4096 perceptrons, except for the last five layers. Finally, the soft-max
operator returns the probability using returned five values. In this paper, the proposed multi-resolution
network is combined to our pre-convolution layer described in Section 3.2.

Figure 7. The architecture of the proposed multi-resolution network. Blue, black, and red cubes
represent the resized input, convolution, and max-pool layers, respectively. Black and purple boxes are
fully-connected and softmax layers, respectively.
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3.4. Orthogonal Learning

To combine the results of low- and high-resolution networks, we define the average least square
loss as

Lleast =
1

2B

B

∑
n=0

N

∑
i=1

(gi
n − Pi (H∗n))

2 + (gi − Pi (L∗n))
2, (11)

where Hn and Ln respectively represent the n−th high and low resolution image, B denotes the size of
batch, and N is the vehicle type between C1 to C5. g represents the one-hot vector of size B× 5, which is
pre-labeled in our dataset described in Section 3.1. To reduce the correlation between two groups,
we also define the orthogonal loss as [26]

Lo =
1
B

B

∑
n=0

2

∑
i=1

(Pi (H∗n , L∗n) P3 (H∗n , L∗n) + Pi (H∗n , L∗n) P4 (H∗n , L∗n) + +Pi (H∗n , L∗n) P5 (H∗n , L∗n)). (12)

In binary classification, the error can be reduced when sum of multiplication between subcompact
and other group is closed to zero as shown in Figure 8. Therefore, the proposed total loss can be
defined as

Ltotal = Lleast + Lo. (13)

To reduce the total loss Ltotal , the set of parameters including convolution kernel, bias,
and perceptron weight are updated via stochastic gradient decent optimization [9]. The learning
and dropout rates are set to 0.0001 and 0.5, respectively. For supervised learning, we train the model
using 1500 labeled training data given in Section 3.1. For transfer learning, all of convolution layers are
pretrained by ImageNet data [10]. We trained the proposed model using 4500 iterations, and 15 batches
are engaged to the proposed multi-resolution network for each learning. Figure 9 shows the proposed
learning procedure. Finally, to distinguish subcompact vehicle, the probability values of the optimized
model are estimated using the thresholding operator as

Dn =

{
False arg max 1

2 (P (H∗n) + P (L∗n)) ∈ {C1, C2}
True arg max 1

2 (P (H∗n) + P (L∗n)) ∈ {C3, C4, C5} (14)

Ideal (
2
∑

i=1
(PiP3 + PiP4 + PiP5) = 0)

Error (
2
∑

i=1
(PiP3 + PiP4 + PiP5) > 0)

Figure 8. An example of orthogonal learning.
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Figure 9. Dual procedure of the proposed method using both CPU and GPU.

4. Experimental Results

4.1. Quantitative Evaluation

To evaluate the proposed method, we compared experimental results with 2000 test data
and state-of-the-arts classification models including HOG based recognition model (HOG + SVM)
proposed by Dalal et al. [3], MCCF combined HOG recognition (MCCF + HOG + SVM) [15],
multi-resolution image based HOG recognition (Retinex + MCCF + HOG + SVM), deep neural
network based Huttunen’s method (DNN) [8], convolutional neural network (CNN) with 16 layers
proposed by Simonyan et al. [9], retinex CNN Retinex + CNN, based on proposed pre-convolution
layer (Retinex + MCCF + CNN), and the proposed multi-resolution network without orthogonal
learning (Retinex + MCCF + MRN). All the algorithms were implemented in visual studio 2015
and Python 3.5 using on a desktop PC with i7 CPU, 64 GB RAM, and NVIDIA RTX 2080ti
graphics processing unit (GPU). We also quantitatively measured accuracy (Acc.), precision, recall,
and false-positive rate (FPR) as

precision =
TP

TP + FP
, (15)

Recall =
TP

TP + FN
, (16)

FPR =
FP

TP + FP
, (17)

and
Acc. = 100× TP + TN

2000
, (18)

where TP, TN, FP, and FN respectively represent the true-positive, true-negative, false-positive,
and false negative. Table 1 shows several evaluation results using state-of-the arts and the proposed
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methods. Since HOG uses handcraft-based features, its recognition performance is limited for
ambiguous features. HOG + SVM method results in many mis-classification cases represented by FN
and FP as shown in Table 1.

Table 1. Quantitative comparison with state-of-the art approaches.

Method TP FN TN FP Precision Recall FPR Acc.

HOG + SVM 165 335 912 588 0.2191 0.3300 0.7809 53.85%
MCCF + HOG + SVM 43 457 1477 23 0.6515 0.0860 0.3485 76.00%

Retinex + MCCF + HOG + SVM 37 463 1455 45 0.4512 0.0740 0.5488 74.60%
DNN 182 318 1377 123 0.5967 0.3650 0.4033 77.95%
CNN 198 302 1457 43 0.8216 0.3960 0.1784 82.75%

Retinex + CNN 410 90 1474 26 0.9404 0.8200 0.0596 94.20%
Retinex + MCCF + CNN 373 127 1444 56 0.8695 0.7460 0.1305 90.85%
Retinex + MCCF + MRN 417 83 1478 22 0.9499 0.8340 0.0501 94.75%

Proposed MRN 423 77 1477 23 0.9484 0.8460 0.0516 95.00%

MCCF + HOG + SVM method can improve the false-positive case because MCCF based
localization effectively removes unnecessary information such as background, but FN case can be
increased. Since retinex-based image enhancement enhance too much textures, MCCF + HOG + SVM
outperforms Retinex + MCCF + HOG + SVM in every sense. The deep neural network (DNN)
can effectively increase the TP compared with SVM-based methods, but false-positive rate was
slightly higher than MCCF + HOG + SVM. Simonyan’s convolutional neural network model can
improve both TP and TN, so accuracy was highly increased over 4% than both DNN and SVM based
methods, Especially, false-positive rate rapidly decreases compared with DNN and SVM based method,
but accuracy is not enough because of the imbalance between true positive and false negative. Since the
enhanced textures in a shadow region can compensate for the imbalance, the retinex-based CNN
model (Retinex + CNN) outperforms the vanilla CNN in terms of the recall, accuracy. As a result
of the localization error of MCCF, Retinex + MCCF + CNN can generate errors such as FN and FP,
but the combined version Retinex + MCCF + MRN outperforms CNN models in all of evaluation
terms. This is mean that the proposed MRN can adaptively reflect between localized information
and enhanced textures to recognize the sub-compact vehicle. Furthermore, the proposed orthogonal
learning method has TP values higher than Retinex + MCCF + MRN because it can generate the
uncorrelated group-probability vectors. Note that the precision, recall, fpr, and accuracy are better by
0.1268, 0.45, 1.268, and 12.25% than convolutional neural network (CNN). In conclusion, the proposed
approach can effectively classify the ambiguous objects because it designed and optimized with
consideration of the group-error and ambiguous features. In addition, the multi-class recognition
performance is compared with the CNN model as shown in Figure 10. The CNN method misclassifies
between sedan and subcompact vehicles many times. Furthermore, subcompact truck and van are
sometimes mis-recognized by the CNN method. However, the proposed method can not only reduce
the mis-recognized case but also improve the accuracy by 10.85%. In addition, we conducted ablation
study using validation check as shown in Figure 11. When we train the MRN without pseudo color (9),
the performance can be degraded as shown black line in Figure 11 because the MRN was pre-trained
by true color image dataset. The center crop-based MRN(Center crop) means that the MCCF operator
in proposed pre-convolution layer was replaced to center cropping method [13]. Since the center
cropping method can not adaptively localize the object, it can not outperform than proposed MRN.
Furthermore, if MRN was optimized by only least square loss (11), the extracted features are not
suitable for binary classification. Thus, when MRN was learned without proposed orthogonal loss (12),
the performance of the MRN can not reach the orthogonal learning-based MRN as shown in Figure 11.
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Convolutional Neural Network [9] Multi-Resolution Network

Figure 10. Multi-classification comparison.
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Figure 11. Ablation study: MRN (Lleast + Lo) is the proposed orthogonal learning based
multi-resolution network (MRN), MRN (Lleast) is the least square loss based MRN, MRN (Center
Crop) is the center cropping method to generate the low-resolution image, and MRN (Gray) is a single
channel based MRN.

4.2. Baseline Comparison

To compare the efficient baseline networks, we evaluate the accuracy with several efficient
networks such as VGG16 [9], residual network50(resnet50) [11], and resinext50 [12]. Table 2 shows
the maximum binary, and multi class accuracy values. Since general networks do not consider
ambiguous in binary classification problem, the MRN outperforms than several based line networks
in terms of both binary and multi-class accuracy. The residual network based MRN slightly lower
than the VGG16 based MRN because the VGG16 have already deep layers in binary classification.
However, resnext based MRN outperforms the VGG16 based MRN in terms of binary accuracy because
the split-transform-merge strategy can effectively apply to recognize the ambiguous binary objects.
Figure 12 shows the accuracy for each training epoch. Note that the proposed networks outperform
than state-of-the-arts baseline-networks in most epoch. In addition, we recorded computational
complexity and allocated GPU-memory on average to verify the computational efficiency.

Table 2. Effects on the accuracy for different baseline networks.

Method Baseline Tool Accuracy (Binary) Accuracy (Multi) Proc. Time (ms) GPU-Memory (GB)

CNN VGG16 Tensorflow 0.8275 0.8010 65 ms 1.3 GB
CNN Resnet50 Pytorch 0.8740 0.8435 80 ms 1.0 GB
CNN Resnext50 Pytorch 0.8890 0.8575 86 ms 1.0 GB
MRN VGG16 Tensorflow 0.9500 0.9095 70 ms 1.6 GB
MRN Resnet50 Pytorch 0.9290 0.8810 100 ms 1.2 GB
MRN Resnext50 Pytorch 0.9530 0.8955 106 ms 1.3 GB
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Figure 12. Accuracy evaluation according to each epoch.

4.3. Visualization

To verify the performance of the proposed orthogonal learning, we visualized the output values
of last layer in the both CNN [9] and the proposed MRN by projecting to two-dimensional space using
t-stochastic neighbor embedding (t-SNE) [27]. In Figure 13a, the visualization is not easy because of
the correlation between subcompact vehicle and other groups. However, Figure 13b shows that the
points are clustered to easily classify, which means that the proposed orthogonal learning can remove
the group-correlation. As a result, proposed orthogonal learning can improve the performance of deep
binary classification.

In Figure 14, we visualized the classified label and localized regions, where the localized bonnet
region is the input to the low-resolution network, and the entire image is engaged to the high-resolution
network. The resulting label (subcompact and non-subcompact vehicle) based on the average value of
the two probabilities is reflected at the end of red-box. The proposed MRN can not only classify in
various illuminations but also distinguish the ambiguous vehicle types.

(a) Convolutional Neural Network (b) Proposed Method

Figure 13. Probability Visualization using t-Stochastic Neighbor Embedding (t-SNE) [27].
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Input Subcompact Vehicle Data

Classification and Localization Result

Input Non-Subcompact Vehicle Data

Classification and Localization Result
Figure 14. Classification and localization result.

5. Conclusions

To recognize ambiguous features between the subcompact and other vehicles, we collected
a novel set of subcompact vehicle images, and proposed a pre-convolution layer that is combined
with the multi-resolution network with an orthogonal learning method. The proposed method
can not only enhance the textures using retinex-based enhancement but also adaptively cropped
the bonnet region using correlation computation. As a result, our MRN can avoid over-fitting by
ambiguous features between vehicle types, and outperforms the existing CNN(VGG16) method
by 12.25%. Therefore, the proposed method can be applied to various traffic management systems
such as toll and parking gates for automatic charging system. In the future work, we will expand
the proposed MRN by combining the license plate detection system. The source code is available
at https://github.com/JoongcholShin.
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Abstract: Action recognition in robotics is a research field that has gained momentum in recent
years. In this work, a video activity recognition method is presented, which has the ultimate
goal of endowing a robot with action recognition capabilities for a more natural social interaction.
The application of Common Spatial Patterns (CSP), a signal processing approach widely used in
electroencephalography (EEG), is presented in a novel manner to be used in activity recognition in
videos taken by a humanoid robot. A sequence of skeleton data is considered as a multidimensional
signal and filtered according to the CSP algorithm. Then, characteristics extracted from these filtered
data are used as features for a classifier. A database with 46 individuals performing six different
actions has been created to test the proposed method. The CSP-based method along with a Linear
Discriminant Analysis (LDA) classifier has been compared to a Long Short-Term Memory (LSTM)
neural network, showing that the former obtains similar or better results than the latter, while
being simpler.

Keywords: action recognition; social robotics; common spatial patterns

1. Introduction

Social robotics aims at providing robots with artificial social intelligence to improve
human–machine interaction and to introduce them in complex human contexts [1]. An effective social
interaction between humans and robots requires these robots to understand and adapt to the human
behaviour. Using visual perception for human activity recognition will aid the robot to provide better
responses and thus enhance its social capabilities. The robot will be able to understand when the user
wants to engage with it by recognising the action she/he performs.

Human activity recognition in videos is a task which consists in recognising certain actions from a
series of observations. This field of research has received great attention since 1980 due to the amount
of applications for which it is useful, such as health sciences, human-computer interaction, surveillance
or sociology [2]. For example, in the field of surveillance [3], the automatic detection of suspicious
actions allows an alert to be sent and some measures to be taken to deal with the danger. Another
example is the use of action recognition for rehabilitation, which involves recognising the action
the patients perform and being able to determine if they are performing it correctly or incorrectly.
The principal field where this task is studied is in computer vision, based on videos. The visual features
of a video provide basic information of the events or actions that occur.

Understanding what is happening in a video is really challenging, and different features can
be taken into account when analysing a video sequence. For example, Video Motion Detection is a
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constrained approach which consists in detecting the movement in a static background. On the other
hand, Video Tracking focuses on associating objects in consecutive frames, which can be difficult if
the objects are moving fast in relation to the frames per second rate. Moreover, if the object in the scene
must be recognised (already a challenging task), an additional complexity is added to the problem.

In the last few years many attempts to solve these problems have been made using different
techniques such as Optical Flow, Hidden Markov Models (HMM) or, more recently, deep learning [4,5].
For example, the authors of [6,7] use Histograms of Optical Flow to perform recognition. However,
in [8,9] the authors use the depth information obtained by depth cameras (Microsoft Kinect or Inter
Realsense), due to the fact that depth images provide additional useful information about movement.
The work of [10] must also be mentioned, as it is a reference for methods that use deep learning for
this task. The authors propose a two-stream architecture incorporating spatial and temporal networks,
which has been used in many subsequent methods.

Considering the computational cost and the complexity that come from the need of combining
temporal and spatial information, the video classification problem progresses slowly when compared
with image classification.

In this paper, a new approach for video action recognition is presented. The Common Spatial
Pattern algorithm is used, a method normally applied in Brain Computer Interface (BCI) for EEG
systems [11]. Videos are recorded and processed with OpenPose [12] software in order to obtain
a sequence of skeleton data. This skeleton data corresponds to the position of the joints of the person
performing the action of the video. A sequence of skeleton data is extracted from the video,
and this data can be treated as a multidimensional signal. It is then filtered according to the Common
Spatial Patterns (CSP) algorithm and characteristics extracted from these filtered data are used as
features for a classifier. Linear Discriminant Analysis and Random Forest (RF) classifiers have been
tested to build the models from the features extracted in the previous step. Variance, maximum,
minimum and interquartile range (IQR) of the filtered signals have been taken as features to feed
the aforementioned classifiers. The spatial filter generated by CSP is employed as a dimensionality
reduction approach and can also be interpreted in EGG data analysis as a technique that sheds light on
the relationships between the filtered signals, in a similar manner to Principal Component Analysis [13]
(PCA), from which it is derived. While no direct visual interpretation is possible when applied to
skeleton data, this dimensionality reduction technique allows for extracting the signal components
which maximally discriminate between classes.

In Figure 1 an interaction example of a person with the robot is displayed. On the left, the skeleton
superposed over the actual person that is interacting with the robot is shown. The skeleton contains
the (X,Y) position of 25-keypoints, which include body, head and feet information. On the right, another
point of view can be seen, with the expected response of the robot. A more detailed explanation about
the employed human pose estimation system and the skeleton definition is provided in Section 4.1.

To apply CSP, as a first step, the skeleton of the person appearing in each frame is extracted using
OpenPose, and the (X,Y) position of each of the 25 joints that OpenPose detects are used as input
data to the CSP. Therefore, in the presented method, input videos are represented as frame sequences
and the temporal sequence of each skeleton joint is treated as an input signal (channel) to the CSP.
In Figure 2, the following data acquisition process is shown.

In order to validate the proposed CPS-based approach, an experiment is performed where it is
compared with Long Short-Term Memory [14] neural networks, yielding better results.

The rest of the paper is organised as follows. First, in Section 2 some related works are mentioned
in order to introduce the topic. In Section 3 a theoretical framework is presented to explain the proposed
algorithm in detail.

In Section 4 the used dataset and related skeleton capture system, as well as the experimentation
carried out, are explained thoroughly, and the obtained results are shown, including a comparison
between the presented approach and a Keras [15] implementation of a LSTM network. A brief

224



Sensors 2020, 20, 2436

introduction to LSTMs is also presented in this section. The paper concludes with the Section 5, where
the conclusions from the presented work are presented and some future work is pointed out.

(a) Image captured by the robot. (b) Expected reaction of the robot.

Figure 1. Interaction example.

(X3,N,Y3,N)

(X2,N,Y2,N)

(X1,N,Y1,N)
(X2,1,Y2,1)

(X3,1,Y3,1)

(X1,1,Y1,1)

Figure 2. Proposed approach.

2. Related Work

As activity recognition has been an active research area lately, many different strategies have been
developed to deal with this problem. There are several ways to extract visual features, both static
image features and temporal visual features, and subsequently use them to perform the recognition.
Temporal visual features are a combination of static image features and time information, so through
these features temporal video information is achieved.

In [16] the authors use a temporal template as the basis of their representation, continuing with
their work presented in [17]. This temporal template consists of a static vector-image where the value
of the vector at each point represents a function of the motion properties at the corresponding spatial
location in an image sequence. The authors of [18] demonstrate that local measurements in terms
of spatio-temporal interest points (local features) can be used to recognise complex motion patterns.
In [19] the authors present a hybrid hierarchical model, where video sequences are represented as
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collections of spatial and spatio-temporal features. These features are obtained by extracting both static
and dynamic interest points, and the model is able to combine static and motion image features, as well
as to perform categorisation of human actions in a frame-by-frame basis. Laptev et al. [20] contribute to
the recognition of realistic videos and use movie scripts for automatic annotation of human actions in
videos. Due to the promising performance that they achieve in image classification [21–24], they employ
spatio-temporal features and spatio-temporal pyramids, extending the spatial pyramids presented
in [22].

Many other methods make use of the optical flow to solve this issue. Optical flow is the motion of
objects between consecutive frames, caused by the relative movement between an observer and a scene.
Therefore, optical flow methods try to calculate the motion between two image frames which are taken
at times t and t + ∆t at every position, assuming that the intensity of objects does not change during
the movement. The authors of [6] use Histograms of Oriented Gradients (HOG) for human pose
representations and time series of Histogram of Oriented Optical Flow (HOOF) to characterise human
motion. In [7], the authors also use HOOF features for frame representation, which are independent to
the scale of the moving person and to the direction of motion. There are many approaches which are
based on histograms [25–27]. The authors of [28] introduce a motion descriptor based on the direction
of optical flow, using the Lucas–Kanade algorithm [29] to compute it. In [30], the authors defend that
to deal with the video-based action recognition problem temporally represented video information is
needed. In their work, optical flow vectors are grouped according to their angular features and then
summed and integrated with a new velocity concept.

It should also be mentioned that the interest of using depth data captured by depth cameras for
the action recognition problem has grown, due to the advances in imaging technology to capture depth
information in real time, and there are many approaches which use this extra information to make
the recognition [8,9,31,32].

Some works focus on using skeleton data to perform activity recognition. In [33], the authors
present a representation for action recognition, for which they use a human pose estimator and extract
heatmaps for the human joints in each frame. Ren et al. [34] proposed a method for encoding
geometric relational features into colour texture images, where temporal variations of different features
are converted into the colour variations of their corresponding images. They use a multistream CNN
model to classify the images.

As a result of the great performance that deep learning methods have achieved in image
classification, these techniques have also been applied to video-based activity recognition. Taking
these two publications [10,35] as a starting point, deep learning has continued to be used for activity
recognition, mainly with Convolutional Neural Networks (CNN) and LSTMs. Wang et al. in their
work [36] presented a very deep two-stream CNN in order to improve the results of recent architectures,
getting closer to image domain deep models. In [37], trajectory-pooled deep-convolutional descriptor
(TDD) is introduced, where the authors first train two-stream CNNs and then use them as feature
extractors to achieve convolutional spatial and temporal feature maps from the learned networks.
In the work of Feichtenhofer et al. [38], authors show that it is important to associate spatial feature
maps of a particular area to temporal feature maps for that corresponding region. Authors of [39]
proposed an action recognition method by processing the video data using Convolutional Neural
Networks and deep bidirectional LSTM (DB-LSTM) networks. The use of deep learning for video
recognition is still a work in progress, and even though the obtained results are not as good as those
obtained in image recognition, better results are being achieved.

3. CSP-Based Approach

The core motivation of the presented method is to treat temporal sequences of skeleton joints as
signals to be later processed with the CSP algorithm. In this section the CSP algorithm and the proposed
approach, which makes use of that algorithm, are introduced.
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3.1. CSP

In the last few years, the Common Spatial Pattern algorithm (first mentioned in [40] as
Fukunaga-Koontz Transform) has been widely used in Brain Computer Interface (BCI) applications
for electroencephalography (EEG) systems [41–43]. It is a mathematical technique used in signal
processing and it consists in finding an optimum spatial filter which reduces the dimensionality of
the original signals. CSP was presented as an extension of Principal Component Analysis. Considering
just two different classes, a CSP filter maximises the variance of filtered signals of EEG of one of
the targets while it minimises the variance for the other, in this way maximising the difference of
the variances between the classes.

The feature extraction is organised in the following way:
Let X1 and X2 denote two sets of n signals where a signal is a sequence of values read from a

sensor. First the covariance matrices are computed as in (1).

R1 =
X1XT

1
trace(X1XT

1 )
; R2 =

X2XT
2

trace(X2XT
2 )

(1)

Then, the eigen decomposition of the composite spatial covariance matrix is computed as in (2),
where λ is the diagonal matrix of eigenvalues and U is the normalised eigenvectors matrix. To scale
the principal components, the whitening transformation is used (3), obtaining an identity matrix as
covariance and variance 1 for each variable.

R1 + R2 = UλUT (2)

P =
√

λ−1UT (3)

R1 and R2 covariance matrices are transformed using P (4). After that, taking into account that the sum
of two corresponding eigen values is 1 (ψ1 + ψ2 = I), the eigen decomposition is computed in order to
find their common eigenvectors (5).

S1 = PR1PT ; S2 = PR2PT (4)

S1 = Vψ1VT ; S2 = Vψ2VT (5)

The CSP filters are obtained as in (6), which maximises the separation between both classes. Using
W as a projection matrix (just the first q and the last q vectors), each trial can be projected, obtaining a
filtered signal matrix as in (7).

W = PTV (6)

Z = WTX (7)

The feature vector to be created for classification purposes is shown in (8), where varp(Zi) is
the variance of the row p of the i-th trial of Z. The feature vector value for the p-th component of
the i-th trial is the logarithm of the normalised variance. The feature vector has 2q dimensionality,
where q indicates how many vectors of the spatial filter are used in the projection. Exactly, q first and q
last vectors are used, which yield the smallest variance for one class and simultaneously, the largest
variance for the other class.

f i
p = log


 varp(Zi)

∑
2q
p=1 varp(Zi)


 (8)

The purpose of this algorithm is to filter the data so their variance could be used to discriminate
two populations, that is, to separate the signals belonging to two different classes. This algorithm
can be useful in action recognition, where actions belonging to different classes have to be separated.
From each video a group of signals is extracted (in the proposed approach, the coordinates of the joints’
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positions), and then, the CSP algorithm filters the signals in a way that maximum variance difference
is obtained for two different classes. Features from the filtered data obtained by CSP are therefore used
as input to a classification algorithm to discriminate instances that belong to different classes.

3.2. Proposed Approach

Even though the CSP algorithm has been used mainly with EEG problems, in this paper a new
application is presented; the use of CSP filters for feature extraction in the human action recognition
task. In the presented method, each video represents a trial and each skeleton joint is treated as an
EEG channel, so the videos are taken as time series where the joints of the extracted skeletons are
the channels which change over time.

In Brain–Computer Interface, some electrodes are placed along the scalp and they are used to
record the electrical activity of the brain. Therefore, the signals are obtained from the electrodes
and then the CSP is applied using the electroencephalography signals.

However, in the proposed approach, the signals used to feed the CSP are obtained in another way.
The full process can be seen in Figure 2, where the signals are composed with keypoints of the skeleton
of the actor who is performing the action to recognise. Each trial is a video where the signals are
the values of the skeleton position over time. Once the skeletons are processed and, hence, the signals
are formed, the CSP is computed in order to separate the classes according to their variance.

The main focus of the experimentation is the use of the variance of the signals after applying
the Common Spatial Pattern algorithm as input to the classification algorithms. However, in addition
to the variance, much more information can be extracted from these transformed signals, which may
be useful when performing the classification. Hence, some experiments are performed with just
the information of the variances and other experiments also with information about the maximum,
minimum and the interquartile range (IQR = Q3−Q1) of the signal. Once the features are extracted
from the transformed signals, Linear Discriminant Analysis and Random Forest classifiers are used to
perform the classification. The Linear Discriminant Analysis [44] tries to separate the different classes
by finding a linear combination of features which describe each of the targets. Random Forest [45] is a
Bagging (Bootstrap Aggregating) multiclassifier composed of decision trees.

4. Experimental Results

4.1. Robotic Platform and Human Pose Estimation

The robotic platform employed in the performed experiments is a Pepper robot developed by
Softbank Robotics (https://www.softbankrobotics.com/emea/en/pepper). Pepper is a human-like
torso that is fitted onto a holonomous wheeled platform. It is equipped with full-colour RGB LEDs,
three cameras and several sensors located in different parts of its body that allow for perceiving
the surrounding environment with high precision. In this work, only the information provided by
the two identical RGB cameras, with a resolution of 320 × 240 pixels, situated on the forehead of
the robot has been used (see Figure 3). The images of both cameras have been combined to obtain
a wider field of view and better capture the person in front of the robot, thus obtaining an image of
320 × 480 resolution. An example of the combined image is shown in Figure 1a.

In order to obtain the data to apply CSP, as a first step, the skeleton of the person appearing
in the scene has to be obtained. For this purpose, it has been decided to extract the skeletons using
OpenPose [12], one of the most popular bottom-up approaches for multiperson human pose estimation.
As with many bottom-up techniques, OpenPose first detects parts (keypoints) belonging to every
person in the image and then assigns those parts to distinct individuals. The assignment is made
using a nonparametric representation of association scores via Part Affinity Fields (PAFs), a set of
2d vectors fields that encode the location and orientation of limbs over the image. OpenPose can
detect human body, feet, hands, and facial keypoints (135 keypoints in total) on single images. Due to
the high computational cost that estimating all the keypoints requires, in this work only the BODY_25
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(COCO [46] + feet) model has been used for human pose estimation. It returns the (X,Y) positions in
the image of the extracted 25-keypoints, including head, body, and feet (see Figure 4).

Figure 3. Pepper’s RGB cameras position and orientation.

Figure 4. Skeleton’s joint positions and matrix representation of the extracted signals.

4.2. Dataset

The videos in the database have been recorded using the combined image obtained from Pepper’s
forehead cameras. It consists of 272 videos with six action categories and around 45 clips belong to
each category, performed by 46 different people. The robot adjusts the orientation of its head according
to the location of the face of the person appearing in its field of view.

All the participants in this study gave their consent in being recorded for this research purpose.
No raw video data has been stored, and only minimum information about joints’ spatial coordinates
has been maintained. All this data is anonymised, with no information about sex, age, race, or any other
condition of the participants.

The action categories and video information can be seen in Table 1.
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Table 1. Characteristics of each action category.

Category #Video Resolution FPS

COME 46 320 × 480 10
FIVE 45 320× 480 10

HANDSHAKE 45 320 × 480 10
HELLO 44 320 × 480 10

IGNORE 46 320 × 480 10
LOOK AT 46 320 × 480 10

These are the six categories that the robot must differentiate:

1. COME: gesture for telling the robot to come to you.
2. FIVE: gesture of "high five".
3. HANDSHAKE: gesture of handshaking with the robot.
4. HELLO: gesture for indicating hello to the robot.
5. IGNORE: ignore the robot, pass by.
6. LOOK AT: stare at the robot in front of it.

Examples of skeletons extracted from videos of the six different classes are shown in Figure 5.
It can be seen in the examples that all the videos follow the same pattern: the actor appears in the scene,
approaches the robot and finally, the action is performed.

(a) COME (b) FIVE

(c) HANDSHAKE (d) HELLO

(e) IGNORE (f) LOOK AT
Figure 5. Frame sequence examples for different categories.

In this case, the actions that have to be recognised are centred in the actor who performs them.
Therefore, the skeleton of the actor has been extracted in every frame of each video. OpenPose returns
the (X,Y) positions of 25-keypoints (joints). After obtaining the skeleton information for every frame
of each video, fifty different signals are created to represent each video, where each signal will be
the position of a skeleton keypoint over time. This way, there will be 50 signals (25 for the X position
of the joints and another 25 for the Y position) with the same length as the original video (one skeleton
per frame). The skeleton appearance and the matrix extracted from skeletons can be seen in Figure 4.

Some joints could be missing from the captured skeletons when the actor does not fit entirely
in the camera range. In these cases, the missing joint values are estimated by a linear interpolation,
using the previous and next values for that joint. The interpolation is done to avoid missing values
and assuming that consecutive values of joints positions follow a smooth curve. The process of
interpolation for the signal of one video can be seen graphically in Figure 6, where Figure 6a,c
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show the 25 X and 25 Y signals before interpolation and Figure 6b,d the 25 X and 25 Y signals after
interpolating them.

(a) X position signals before interpolation. (b) X position signals interpolated.

(c) Y position signals before interpolation. (d) X position signals interpolated.
Figure 6. Linear interpolation example.

Furthermore, the length of all the input data must be the same to apply the proposed method,
therefore, it might be necessary to apply a preprocessing step to the videos. As the duration of
the original videos differ, it has been decided to convert all the videos to the length of the longest clip.

As mentioned before, OpenPose provides the skeletons of the people of the scene for each frame
of the video. It could happen that in some frames no person is detected and no skeleton is formed.
Analysing this dataset, it can be noticed that full skeletons are only missed at the beginning of some of
the videos and it has been decided to repeat the first skeleton encountered as many times as necessary.

After performing these changes, 50 signals with maximum video’s length are obtained. These
signals are then used to feed the CSP.

4.3. Long Short-Term Memory (LSTM) Neural Networks

LSTMs are a category of recurrent neural networks (RNNs) which belong to the growing field of
deep learning paradigms. RNNs are artificial neural networks in which connections between units
form a directed cycle. Due to this architecture, recurrent neural networks possess an internal state that
stores information about past inputs. This endows the recurrent networks with the ability to process
sequences of inputs and exhibits a dynamic temporal behaviour in response to those sequences.

Training RNNs to learn long-term dependencies by gradient-descent methods used to be difficult
due to the vanishing or exploding gradient problem [47,48]. In recent years, sophisticated optimisation
techniques, specialised network designs, and new weight initialisation methods have addressed this
problem with great success [49]. LSTM design introduces gates that control how much of the past
and the current state has to get through to the next time step.

231



Sensors 2020, 20, 2436

In a RNN, the following terms are defined:

• xt: input vector at time step t.
• ht = φ(Wxt + Uht−1): hidden state at time step t. W and U are weight matrices applied to

the current input and to the previous hidden state, respectively. φ is an activation function,
typically sigmoid (σ), tanh, or ReLU.

• ot = softmax(Vst): output vector at time step t. V is a weight matrix.

In LSTMs accounting for the capability of forgetting selectively, the node’s state is needed,
so the terms are typically the following:

• xt: input vector at time step t.
• ft = σ(W f xt + U f ht−1): activation vector of the forget gate at time step t.
• it = σ(Wixt + Uiht−1): activation vector of the input gate at time step t.
• ot = σ(Woxt + Uoht−1): activation vector of the output gate at time step t.
• ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1): cell state vector at time step t.
• ht = ot ◦ tanh(ct): hidden state at time step t.

W f , Wi, Wo, and Wc are weight matrices applied to the current input, while U f , Ui, Uo, and Uc are
applied to the previous hidden state. The ◦ operator represents the Hadamard product.

4.4. Results

Once the data have been processed, the previously explained CSP algorithm is performed.
The used CSP method is implemented to work with just two classes, therefore all the tests have
been carried out using pairs of classes, although multiclass classification is possible using pairwise
classification approaches, such as One versus One (OVO) as a class binarization technique [50].

In Table 2 the obtained results by Linear Discriminant Analysis (LDA) classifier can be seen, and in
Table 3 the results obtained by RF classifier are shown, where best results are highlighted in boldface.
Both tables present the accuracy values obtained for every pair of classes of the database, using 10-fold
cross validation for the evaluation. Parameter q indicates that only 2× q feature vectors are considered,
where 2× q are the q first and q last vectors, when sorted by variance. Therefore, a feature vector of
2× q dimensionality is obtained after applying CSP, and that feature vector is the input to LDA or
RF classifiers. In each table the accuracy values obtained with two different types of feature vectors
are shown; variance when only the variances of the transformed signals are used to form the feature
vectors and variance, max, min, IQR when apart from the variances, maximum, minimum, and IQR
values are also represented in the feature vectors.

Table 2. Results obtained applying Common Spatial Patterns (CSP) with different q values and using
LDA as classifier.

Variance Variance, Max, Min, IQR

Pair of Categories q = 5 q = 10 q = 15 q = 5 q = 10 q = 15

COME-FIVE 0.7579 ± 0.13 0.8124 ± 0.12 0.7667 ± 0.17 0.7578 ± 0.12 0.8344 ± 0.14 0.7667 ± 0.16
COME-HANDSHAKE 0.8668 ± 0.10 0.8019 ± 0.12 0.6910 ± 0.17 0.8667 ± 0.13 0.7900 ± 0.12 0.6567 ± 0.16
COME-HELLO 0.5334 ± 0.16 0.5000 ± 0.09 0.5000 ± 0.14 0.4778 ± 0.16 0.4444 ± 0.09 0.4778 ± 0.15
COME-IGNORE 0.9779 ± 0.05 0.9667 ± 0.05 0.9667 ± 0.05 0.9667 ± 0.05 0.9667 ± 0.05 0.9444 ± 0.06
COME-LOOK_AT 0.8678 ± 0.09 0.8900 ± 0.09 0.8789 ± 0.11 0.8678 ± 0.10 0.8356 ± 0.14 0.8033 ± 0.14
FIVE-HAND 0.9557 ± 0.06 0.9333 ± 0.06 0.9223 ± 0.05 0.9333 ± 0.11 0.9000 ± 0.11 0.9000 ± 0.08
FIVE-HELLO 0.8208 ± 0.14 0.7986 ± 0.15 0.7764 ± 0.17 0.7750 ± 0.18 0.7528 ± 0.18 0.7319 ± 0.21
FIVE-IGNORE 0.9668 ± 0.07 0.9668 ± 0.07 0.9556 ± 0.11 0.9667 ± 0.07 0.9556 ± 0.11 0.9556 ± 0.11
FIVE-LOOK_AT 0.9667 ± 0.05 0.9556 ± 0.06 0.9556 ± 0.06 0.9556 ± 0.08 0.9556 ± 0.08 0.9011 ± 0.17
HANDSHAKE-HELLO 0.7431 ± 0.19 0.7861 ± 0.14 0.8097 ± 0.10 0.7111 ± 0.24 0.7889 ± 0.21 0.8000 ± 0.10
HANDSHAKE-IGNORE 0.9889 ± 0.04 1.0000 ± 0.00 1.0000 ± 0.00 1.0000 ± 0.00 0.9889 ± 0.04 0.9889 ± 0.04
HANDSHAKE-LOOK_AT 0.8235 ± 0.18 0.7789 ± 0.16 0.7567 ± 0.12 0.8122 ± 0.17 0.7467 ± 0.17 0.7456 ± 0.12
HELLO-IGNORE 0.9333 ± 0.14 0.9221 ± 0.14 0.9333 ± 0.11 0.9556 ± 0.14 0.9444 ± 0.14 0.9444 ± 0.11
HELLO-LOOK_AT 0.8445 ± 0.11 0.8334 ± 0.12 0.8556 ± 0.14 0.8556 ± 0.09 0.8000 ± 0.10 0.8667 ± 0.10
IGNORE-LOOK_AT 0.9889 ± 0.04 0.9889 ± 0.04 0.9889 ± 0.04 0.9778 ± 0.05 0.9678 ± 0.05 0.9678 ± 0.05
MEAN 0.8691 0.8623 0.8506 0.8586 0.8448 0.8301
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Table 3. Results obtained applying CSP with different q values and using RF as classifier.

Variance Variance, Max, Min, IQR

Pair of Categories q = 5 q = 10 q = 15 q = 5 q = 10 q = 15

COME-FIVE 0.6800 ± 0.29 0.6022 ± 0.24 0.5811 ± 0.19 0.7133 ± 0.21 0.6244 ± 0.23 0.5922 ± 0.21
COME-HANDSHAKE 0.7000 ± 0.20 0.6900 ± 0.29 0.6344 ± 0.29 0.7556 ± 0.16 0.6678 ± 0.32 0.6344 ± 0.32
COME-HELLO 0.5111 ± 0.22 0.3889 ± 0.21 0.4222 ± 0.17 0.4889 ± 0.22 0.4222 ± 0.20 0.3889 ± 0.20
COME-IGNORE 0.9233 ± 0.12 0.8900 ± 0.17 0.8800 ± 0.18 0.9233 ± 0.12 0.8911 ± 0.15 0.8578 ± 0.20
COME-LOOK_AT 0.8133 ± 0.23 0.7800 ± 0.20 0.7456 ± 0.25 0.8122 ± 0.23 0.8122 ± 0.24 0.7789 ± 0.24
FIVE-HANDSHAKE 0.8889 ± 0.17 0.7778 ± 0.15 0.6444 ± 0.17 0.8444 ± 0.17 0.7667 ± 0.12 0.6667 ± 0.17
FIVE-HELLO 0.6264 ± 0.22 0.5500 ± 0.22 0.5028 ± 0.23 0.6264 ± 0.22 0.5361 ± 0.23 0.5236 ± 0.24
FIVE-IGNORE 0.9444 ± 0.14 0.9344 ± 0.14 0.9344 ± 0.14 0.9556 ± 0.11 0.9456 ± 0.11 0.9233 ± 0.14
FIVE-LOOK_AT 0.9000 ± 0.19 0.8889 ± 0.21 0.8233 ± 0.23 0.9111 ± 0.21 0.9000 ± 0.21 0.8556 ± 0.25
HANDSHAKE-HELLO 0.6875 ± 0.18 0.5708 ± 0.14 0.6111 ± 0.20 0.6889 ± 0.19 0.5819 ± 0.16 0.6556 ± 0.15
HANDSHAKE-IGNORE 0.9789 ± 0.04 0.9578 ± 0.07 0.9133 ± 0.12 0.9789 ± 0.04 0.9578 ± 0.07 0.9244 ± 0.11
HANDSHAKE-LOOK_AT 0.7344 ± 0.26 0.7556 ± 0.29 0.6789 ± 0.29 0.7456 ± 0.26 0.7456 ± 0.28 0.6678 ± 0.25
HELLO-IGNORE 0.9000 ± 0.14 0.8889 ± 0.17 0.8667 ± 0.21 0.9111 ± 0.15 0.8889 ± 0.17 0.8667 ± 0.21
HELLO-LOOK_AT 0.7667 ± 0.22 0.6556 ± 0.32 0.6556 ± 0.35 0.7889 ± 0.23 0.7556 ± 0.29 0.7333 ± 0.28
IGNORE-LOOK_AT 0.9222 ± 0.12 0.9333 ± 0.14 0.9222 ± 0.14 0.9333 ± 0.09 0.9111 ± 0.15 0.9333 ± 0.14
MEAN 0.7985 0.7509 0.7211 0.8052 0.7605 0.7335

Looking at the results of Table 2, it can be observed that best outcomes are achieved when q = 5,
that is, taking 10 values per video is enough to perform the classification. An accuracy higher than
80% is attained for most of the category pairs. Regarding the categories, some of them are better
distinguished than others. For example, good results are obtained when classifying the class ignore
with all other classes, so it can be supposed that the features obtained for the category ignore are
quite different from the rest. However, videos that belong to the pair of classes come and hello are
more difficult to differentiate, which can be easily deduced looking at the skeletons of both classes.
Concerning the feature vector type, the results indicate that there is no need to use more information
than the variances of the transformed signals to obtain better results; the accuracy values obtained
with the variances are higher. Nevertheless, the obtained results indicate that the presented approach
yields a good classification accuracy.

The results of Table 3 show that RF classifier performs worse than LDA, obtaining lower accuracy
values in general. In this case, the feature vector type which uses the variance, max, min, and IQR
values achieves better outcomes. Regarding both the q value and the categories, the conclusions
presented for the results obtained by LDA classifier are maintained.

In order to assess the effectiveness of the presented method when compared with another
technique, a Long Short-Term Memory network has been chosen, as this type of neural network
has been widely used for video action recognition tasks. The LSTM network has been implemented in
Python using the Keras library. The input shape is bidimensional (number of frames, number of joints),
and the output space is of 64 units. Then another dense layer for classification is added, of size 2,
as this is the number of classes for each individual problem. The Adam optimisation algorithm [51] has
been used, as well as categorical cross-entropy as loss function. It has been trained during 100 epochs,
with a batch size of 25. The comparison is made between the aforementioned LSTM and the proposed
approach with the configuration which has achieved highest accuracy, in this instance, variance q = 5
with LDA classifier. The results are shown in Table 4, where best results are highlighted in boldface.

LSTM achieves accuracy values between 70% and 90% for most of the pairs. In this case,
the accuracy obtained for come-hello pair has been improved notoriously. However, the results
obtained for the rest of the classes are not that significant.

The results show that the presented method performs better than LSTM. More precisely,
it outperforms LSTM results for 9 of 15 category pairs. Moreover, the mean value of all the tested pairs
has been calculated for each technique, and it can be concluded that the proposed approach obtains
higher accuracy values. Therefore, the CSP-based method not only achieves better results in most
classifications but the average of the values obtained is higher.
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Table 4. Comparison between the proposed approach and LSTM approach.

Pair of Categories CSP (Variance and q = 5) + LDA LSTM

COME-FIVE 0.7579 ± 0.13 0.8628 ± 0.11
COME-HANDSHAKE 0.8668 ± 0.10 0.7739 ± 0.16
COME-HELLO 0.5334 ± 0.16 0.7336 ± 0.17
COME-IGNORE 0.9779 ± 0.05 0.9575 ± 0.06
COME-LOOK_AT 0.8678 ± 0.09 0.7849 ± 0.10
FIVE-HANDSHAKE 0.9557 ± 0.06 0.8125 ± 0.14
FIVE-HELLO 0.8208 ± 0.14 0.9125 ± 0.07
FIVE-IGNORE 0.9668 ± 0.07 0.9789 ± 0.04
FIVE-LOOK_AT 0.9667 ± 0.05 0.8889 ± 0.11
HANDSHAKE-HELLO 0.7431 ± 0.19 0.7108 ± 0.21
HANDSHAKE-IGNORE 0.9889 ± 0.04 0.9764 ± 0.05
HANDSHAKE-LOOK_AT 0.8235 ± 0.18 0.8350 ± 0.12
HELLO-IGNORE 0.9333 ± 0.14 0.9789 ± 0.04
HELLO-LOOK_AT 0.8445 ± 0.11 0.5733 ± 0.18
IGNORE-LOOK_AT 0.9889 ± 0.04 0.9775 ± 0.05
MEAN 0.8691 0.8505

Furthermore, the other three configurations tested above with LDA classifier (variance−q = 10,
variance−q = 15 and variance, max, min, IQR−q = 5) also outperform the results obtained by
the LSTM method.

variance q = 5 variance q = 10 var, max, min, IQR q = 5 variance q = 15 LSTM
0.8691 > 0.8622 > 0.8586 > 0.8506 > 0.8505

5. Conclusions

In this paper a new approach for activity recognition in video sequences is presented, in which
Common Spatial Pattern signal processing has been applied to the skeleton joints data of people
performing different activities. Features extracted from the transformed data have been used as input
to Linear Discriminant Analysis and Random Forest classifiers, in order to perform action recognition.
Two different sets of features have been selected: {Variance} and {Variance, Max, Min, IQR}. The results
show that CSP processing followed by LDA classifier over variance features compares favourably to a
Long Short-Term Memory model trained with the same data. From a database of six actions (fifteen
possible pairs of actions), CSP and LDA obtains better results than LSTM in 9 of 15 category pairs.

Another advantage of the proposed method is the relative simplicity of LDA compared to LSTM
networks and the lack of need for hyperparameter tuning. The set of features is also small, since only
variance is used in the model that achieves best results.

As further work, it is planned to extend the range of human activities. Implementation of a
real-time system could be of interest, for example, in social robotics.
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Abstract: In this paper, a complete system based on computer vision and deep learning is proposed
for surface inspection of the armatures in a vibration motor with miniature volume. A device for
imaging and positioning was designed in order to obtain the images of the surface of the armatures.
The images obtained by the device were divided into a training set and a test set. With continuous
experimental exploration and improvement, the most efficient deep-network model was designed.
The results show that the model leads to high accuracy on both the training set and the test set. In
addition, we proposed a training method to make the network designed by us perform better. To
guarantee the quality of the motor, a double-branch discrimination mechanism was also proposed.
In order to verify the reliability of the system, experimental verification was conducted on the
production line, and a satisfactory discrimination performance was reached. The results indicate
that the proposed detection system for the armatures based on computer vision and deep learning is
stable and reliable for armature production lines.

Keywords: armature; computer vision; deep learning; surface inspection

1. Introduction

A vibration motor is a source of excitation. Small vibration motors are used in digital products
like cell phones to provide a vibration sense. Large vibration motors are used in metallurgy and
mining to screen ingredients [1]. In terms of the vibration motors used in digital products, the quality
of the motor is an important factor that has an impact on the user experience. In the process of motor
production, the armature is assembled into a shell with magnets and bearings [2], so incipient faults in
any part of the machinery could produce a chain reaction and lead to its defects [3–5]. However, due
to its miniature volume, it is difficult to detect these defects.

Much effort has been made in fault diagnosis of rotating machinery. Asr et al. [6] designed a
feature extraction method using empirical mode decomposition and fed the extracted features into a
non-native Bayesian classifier for intelligent fault diagnosis of rotating machinery. Georgoulas et al. [7]
applied symbolic dynamic entropy features to extract features of gearbox signals and applied a support
vector machine to recognize the health conditions.

However, the inspection conducted after assembly is always dramatically influenced by the
mechanical system. It is difficult to explore the form of the signal. Therefore, each part should be
carefully examined before assembly. For a vibration motor, the armature is the core component. If
the quality of the armature is ensured, many problems will be avoided during motor rotation. In the
traditional way, surface inspection of the armature is done manually, which is costly and can be easily
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disturbed by many subjective factors [8]. Therefore, it is important for a factory to apply intelligent
inspection to detect the surface of the armature.

With the rapid development of computer vision, more and more image technologies have been
used in industrial environments to detect surface quality. Cabral et al. [9] realized the intelligent
detection of various glass products by traditional computer vision methods such as edge detection
operator and Hough circle. In reference [10], image processing algorithms including Canny edge
extraction, histogram equalization, and image morphology closed operation are utilized to extract and
locate a joint contour in a complicated background image. Firmin et al. [11] proposed a novel method
for detection and quantification of corrosion on a pipe using digital image processing techniques to
extract saturation value. All of these are the applications of traditional computer vision, which can only
achieve some simple industrial applications. It is difficult to use these applications for the detection of
complex industrial objects while obtaining good results.

Therefore, with the development of hardware performance, the deep learning algorithm
represented by convolutional neural networks (CNNs) has gradually become the core of the machine
learning algorithm [12]. To date, image feature extraction by a CNN has shown great success in
the process of image classification [13,14], object detection [15], semantic segmentation [16,17], and
high-resolution image reconstruction [18]. A CNN has also been successfully applied to inspect
industrial surfaces recently. Masci et al. [19] adopted max-pooling convolutional neural networks to
detect the defects in steel. Song et al. [20] proposed a novel residual squeeze-and-excitation network to
discover anomalies and inspect the quality of adhesives on battery cell surfaces. Weimer et al. [21]
discussed the structural design of the CNN to realize automatic feature extraction in industrial surfaces
and verified the proposed elements through the dataset of industrial surface defects.

For surface inspection in this paper, we consider the armatures in micro vibration motors with
miniature volume. Considering the rough surface and tiny features, we used more abundant semantic
features extracted by the CNN network to detect the surface. The inspection standard comes from the
armature manufacturer.

The rest of this paper is organized as follows. Firstly, we introduce the locating device we
designed to take photos of the armature. Then, we discuss the method, in which the collected images of
armatures were divided into a training set and a test set, and we introduce the classification standard.
Finally, we propose a network structure designed for our dataset and a training method to make the
network performs better.

2. Related Works

2.1. Image Acquisition

Figure 1 shows the inspected armature. We can see that the armature is made of an iron core
wrapped with copper wire. The length of the whole armature is about 1 cm. The entire armature is
symmetrical about 120◦ around the central axis. To detect as few images as possible to reduce the
detection time, we can convert the detection of the armature to the detection of three major surfaces.

Figure 1. The inspected armature.

In industrial inspection, the workpiece is mostly irregular. In order to reduce the difficulty of
positioning and detection, it is necessary to obtain a fixed imaging view through electromechanical
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structure. Figure 2 depicts the positioning and imaging device. The left side of Figure 2 is the entire
device, and the right side is a zoomed-in view of the loading platform. The armature was placed on
a loading platform and fixed by a small magnetic shaft hole. The loading platform was driven by a
stepper motor to rotate and change the shooting angle of the armature. Because the reflectivity of the
copper wire is greater than that of the iron core, when the beam of the digital fiber sensor shines on the
iron core, as shown in Figure 1, the amount of reflected light is lower than that in the groove on the iron
core shown in Figure 1, which is wrapped with copper wire. We used this phenomenon to find the
position of the groove on the iron core. We used this position as the initial position for photographs.
Then, taking advantage of the symmetry, a stepper motor with a closed loop system was used to drive
the loading platform to precisely rotate 120◦ two times. In the end, we obtained the photos of three
major surfaces, which can reflect the surface defects of a whole armature.

Figure 2. The positioning and imaging device.

Thus, for each armature we obtained three pictures. Whether the armature is defective is
determined by detecting the three pictures. To avoid the influence of external illumination, a telephoto
lens with fixed focus was selected. The shooting device was an industrial CCD camera with a resolution
of 1920 × 960 pixels. The final processed and transmitted image format was JPG with a resolution of
540 × 480. Figure 3 gives the picture of three faces of an armature. From Figure 3, we can see that we
obtained a good background and foreground. The edge between the armature and the background
is well segmented. We can use simple morphological detection to identify the effective region of the
armatures to eliminate unnecessary interference.

Figure 3. The picture of an armature we obtained from three faces.

2.2. Surface Defects on the Armatures

Figure 3 shows the full perspective of an armature. For our article, we only needed to examine a
portion of the image because the pictures taken by the above device had a fixed scale and perspective.
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Through the template matching algorithm in OpenCV, we could easily match the areas we needed
from the template library we created. Figure 4 displays the final inspected area with a resolution of
350 × 120 pixels. We can determine from this figure that there are six kinds of surface defects that need
to be inspected. The details of the surface defects are described in Table 1.

Figure 4. The final inspected area in our study and some of the surface defects.

Table 1. Types of surface defects.

Terminal exposed (Figure 4a)
The terminal connecting the copper wire and the

resistor is not covered with tin. It is not strong
enough to ensure the service life.

Rheostat bonded tin (Figure 4b) A long piece of tin is attached to the rheostat, which
will affect the use of the motor.

Too thin cropper wire (Figure 4c)
Because of the high temperature, the copper wire

connecting the terminals is thinned, which will cause
the copper wire to break easily.

Copper wire stuck, long tin (Figure 4d)
The attached tin on the copper wire is too long. The
tin is not as hard as the copper wire, which will also

cause the copper wire to break easily.

Foreign matter (Figure 4e) There are foreign bodies sticking in this area, which
will cause noise in the process of rotation.

Tin bead (Figure 4f) In the process of rotation, the tin beads easily fall off,
which will have a serious impact on the service life.

2.3. Data Calibration and Manual Observation

Each armature with a defective surface had one or more of the above-mentioned defects. Therefore,
a defective armature cannot be classified in detail. In the process of labeling, only two classifications
were tagged. Positive samples contained no surface defect, negative samples contained surface defects.
Photos of the armatures were collected using our shooting and positioning device. We returned the
collected photos to the company’s quality control group. The quality control group divided these
photos into two categories according to our classification task. Each armature picture was judged
separately by two experts. The third expert re-judged the controversial samples. The determination
of whether it is a positive sample was based on the judgment of the third expert. This dataset was
determined by the quality control team. We regarded it as the correct data classification, which was
our ground truth.

Although the inspected area is narrowed, we can see that the negative is still messy and varied.
The armatures are tiny, so the defective areas are even smaller. It is a challenge for the eyes to distinguish
between good and defective armatures. Due to the small size of the armatures, they must be studied
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under the microscope, which always contributes to eyestrain and high staff turnover. It is difficult for
an enterprise to retain experienced workers. The demand for the enterprise is that the whole process
of armature detection, including feeding, photographing, preprocessing, discrimination, and sorting,
takes less than 3 s. Based on the above reasons, there are various mistakes in manual observation.
For example, in the process of workers’ detection, the detection standards are confused, and some
minor defects are easy to ignore. As a result, based on the demand of detecting an armature in three
seconds, the armatures in the dataset were observed and classified by five workers. After comparing
the classification results with the correct classification results of the quality control group, we calculated
the manual observation accuracy of each worker and found the average as the manual observation
accuracy. In the end, the manual observation accuracy was 91.3%.

2.4. Traditional Computer Vision Method

In traditional computer vision, the information such as edges, textures, and colors are extracted
and summarized. In our study, we used Sobel edge detection (Figure 5b), binarization (Figure 5d), and
Canny edge detection (Figure 5e) to extract edges and textures information. Harris detection was used
to detect the corners (Figure 5a). Because the main features of the inspected area were copper wire and
tin, we took advantage of histogram backprojection to extract the areas that are similar to the tin in
color (Figure 5c). In addition, the copper wire and tin are different in values between the R channel
and B channel. Therefore, we subtracted the R and B channels to highlight the position of the copper
wire (Figure 5f).

Figure 5. The feature maps extracted by traditional computer vision.

As can be seen from Figure 5, all methods suffer from a degree of information loss due to the
effects of areas other than copper wires and tin, so the RGB image keeps the features integrated. We
need a more effective feature extraction method for feature extraction of RGB images.

3. Methodology

For the armatures in our paper, the defective regions are small, but the features needed are
complex and diverse. Furthermore, because of the concentricity error between the armatures and
loading platform, the pictures of the armatures have a certain degree of angular difference. Therefore,
we need to extract stronger semantic and more abstract features to inspect the surface of the armatures
to resist interference.

3.1. ResNet-101 + FPN Network

Thus, we need some way to extract stronger semantic and more abstract image features. A
convolutional neural network (CNN) is a kind of backpropagation neural network with deep structure
including convolution calculation. It is one of the representative algorithms of deep learning. Generally,
CNN has standard structure that the output of the features extractor which consists of stacked
convolutional and pooling layers, can be directly input into the classifier. And this typical structure
without any additional branch can be called a plain network like Alex, VGG [13,14]. For the plain
network, a high-level feature map of each image can be obtained through a deep-network structure.
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The small features become smaller or even disappear after downsampling. However, the information
of high-resolution feature maps without downsampling is not abundant enough. It is not conducive to
the extraction and characterization of complex small features, which is required for our dataset.

Inspired by the idea of feature pyramids in feature pyramid network (FPN) [22], our novel network
as shown in Figure 6 has made some improvements on the basic design of the plain network, which
comprises two specific branches: one for extracting feature maps, named the backbone branch, the
other used as a network architecture called feature pyramid network (FPN) to fuse feature maps of
multiple scales.

Figure 6. Final network structure of the ResNet101 + feature pyramid network (FPN).

In the process of forward propagation calculation, the backbone branch outputs feature maps
of various resolutions. The FPN branch combines low-resolution, semantically strong features
with high-resolution, semantically weak features via a top-down pathway, bottom-up pathway, and
lateral connections.

Backbone branch: For the classification task, to extract features better, higher layers of
representation amplify aspects of the input that are important for discrimination and suppress
irrelevant variations [23]. As a result, the network must have enough depth. In order to ensure that
the network has enough depth to extract rich semantic information to represent complex features, we
used ResNet as the backbone network, since it is connected via a shortcut to learn residual mapping,
which is better at transferring gradient information to prevent gradient vanishing and gradient
degradation [24,25]. As a result, it can reach thousands of layers compared with a common plain
network. In the end, allowing for the time and limited computing resources, we chose ResNet-101, a
stack of 101-layer residual units, as our backbone network.
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FPN branch: Our goal is to build a feature pyramid with high-level semantics throughout.
The construction of our pyramid involves a bottom-up pathway, a top-down pathway, and lateral
connections, as introduced in the following.

The top-down pathway provided the basic feature maps for our FPN. We collected the intermediate
feature maps, which is the result of feedforward computation of the backbone network. There are often
many layers producing intermediate feature maps of the same resolution, and we say these layers
are in the same network stage. In the end, we chose the output of the last layer of each stage as our
reference set of feature maps, which we enriched to create our pyramid. This choice is natural, since
the deepest layer of each stage should have the strongest features.

For our backbone network, ResNet-101, we used the feature activation output by each stage’s last
residual block. We denote the output of these last residual blocks as {C2, C3, C4, C5}, and they have
strides of {4, 8, 16, 32} pixels with respect to the input image. We did not include the output of the
conv1 in the pyramid due to its large memory footprint.

The bottom-up pathway outputs higher resolution features by upsampling spatially coarser, but
semantically stronger, feature maps from the upper level feature maps collected by the top-down
pathway. These features are then enhanced with features from the bottom-up pathway via lateral
connections. Each lateral connection merges feature maps of the same spatial size from the bottom-up
pathway and the top-down pathway. To start the iteration, we simply attached a 1 × 1 convolutional
layer on C5 to produce the coarsest resolution map. Finally, we appended a 3 × 3 convolution to each
merged map to generate the final feature map, which was to reduce the aliasing effect of upsampling.
This final set of feature maps is called {P2, P3, P4, P5}, corresponding to {C2, C3, C4, C5}, which are
respectively of the same spatial sizes.

The result is a feature pyramid that has rich semantics at all levels. The feature pyramid is built
quickly from a single input image [22], so P2~P5 all have rich semantics. Additionally, P2 has the
highest resolution and fused more features with different scales. As a result, we only took the P2
layer feature map for prediction. We added two convolutional layers after P2 to reduce the size and
dimension of the feature map for further information extraction and reduction of computation. After
the two convolutional layers, we still added two fully connected layers to summarize the feature
information. In the end, we connected SoftMax for binary classification.

3.2. Focal Loss

In the case of unbalanced input, the network will converge toward a large quantity of data. It will
not care more about the small quantity of data with a large amount of information. For the data in this
paper, negative samples have one or more of the above defects. The number of each kind of defective
armature is also unbalanced. If the traditional cross-entropy loss function is used, it will lead to poor
learning. To solve this problem, the focal loss was proposed by RetinaNet as follows [26]:

FL(pt) = −αt(1− pt)
γlog(pt) (1)

αt balances the importance of positive/negative examples. The focusing parameter γ smoothly
adjusts the rate at which easy examples are down-weighted.

p ∈ [0, 1] is the model’s estimated probability for the class with true label, and pt is defined as
follows:

pt =

{
p, i f label is true
1− p, otherwise

(2)

We can see from Equation (2) that focal loss adds a modulating factor to the original cross-entropy
loss function. When samples are misclassified and pt is very small, the modulating factor is close to 1,
and the loss function has no influence. When pt approaches 1, the factor goes to 0, and the loss for
well-classified examples is down-weighed. Therefore, focal loss can mine unbalanced data and weaken
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the contribution of the easy-to-classify armatures to loss. In this way, we can better mine the data
distribution of negative samples and achieve a better learning effect.

3.3. Feature Library Matching

In the surface detection of the industrial product, the appearance of positive samples is relatively
similar, and the appearance of the defective workpieces is relatively different. It is difficult to map all
negative samples with different appearances into the same category. Therefore, we took advantage
of the previously trained ResNet-101+FPN network, which has a strong representational ability for
positive and negative samples, to extract the vector from its end and establish an a priori feature library
according to the samples in the training set. We expected to get better results by matching the distance
between the sample and a priori feature library to judge the category of the sample. The whole process
is shown in Figure 7.

Figure 7. The method of feature library matching.

The flat quadrilaterals in the picture represent the data, and the rectangles represent calculations.
We used the above-mentioned trained network to infer the training set. Vectors with a size of 4096
extracted from the first fully connected layer were collected and saved. They formed a feature library
of the good samples. We inferred the test samples and obtained a feature vector with a size of 4096.
We could match the feature vector with the feature library to calculate the similarity between the test
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samples and the good samples. As a vector similarity measurement, cosine similarity is widely used in
text similarity calculation [27] and face recognition [28]. Cosine similarity is defined as follows:

similarity = cos(θ) =
∑n

i=1(xi × yi)√∑n
i=1 (xi)

2 ×
√∑n

i=1 (yi)
2

(3)

xi and yi represent the corresponding vectors. The result ranges from −1 to 1. A value of −1 means
that the two vectors are pointing in opposite directions, a value of 1 means they are pointing in the same
direction, and 0 usually means they are independent. A value in between them indicates similarity or
dissimilarity. It can be seen that the range of the values is fixed and will not change like the Euclidean
distance, which is helpful for us to find a better threshold value. Equation (3) indicates that it pays
more attention to the similarity of the two vectors in the direction, rather than the absolute difference
in value. For the comparison of feature vectors, it has a better effect. Therefore, we distinguished the
samples by measuring the cosine similarity between feature vectors in the library and feature vectors
of the samples.

It would be very time-consuming to compare the cosine similarity between the test workpiece and
each vector in the feature library because of the inner product calculation. Therefore, we carried out
K-means clustering to cluster the feature libraries of good parts into 100 groups by cosine similarity.
The 100 cluster center vectors were selected as a new good feature library, and we only needed to
compute the feature library once. We calculated the cosine similarity between the feature vectors of a
test armature and each feature vector in the good feature library as g_dis, which has 100 dimensions.
We set a threshold thre_dis. By comparing the size of g_dis and thre_dis, we can calculate the count,
which is the number meeting the threshold condition. If the size of count is greater than 50 (the vote
was more than half), it will output Y. By the voting mechanism, we could infer whether the sample
was good or not.

3.4. The Double-Branch Discrimination Mechanism

To ensure the quality of the workpiece, it is necessary for mass production to reduce the probability
of the defective samples being misjudged as good, so we introduced a double-branch discrimination
mechanism to synthesize the results of the two methods. The entire double-branch discrimination
mechanism is shown in Figure 8. A branch is determined by the result of the SoftMax layer. The other
branch is determined by the method feature library matching. Only when both branches output Y at
the same time will the system identify the sample as good. It is equivalent to improving the standard
of discrimination. In this way, we expected to achieve better results in defective part discrimination.

Figure 8. The double-branch discrimination mechanism.
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4. Experiment

4.1. Dataset

The image data were captured by the device above. We returned the collected photos to the
company’s quality control group. The quality control group divided these photos into two categories
according to our classification task. In the rest of this study, we tested and validated our approach
based on this dataset and its classification. Because there are many types of defective armatures and
the distribution is uneven, we tried and trained on different data volumes. We found that the larger
the quantity of data, the more robust the final model is. To ensure a good learning effect for the data
distribution of the defective samples and improve the robustness of the model, we studied a large
quantity of data. Finally, the training set contained 26,000, and the test set contained 11,106. The
ratio of the number between the training set and the test set is approximately 7:3, which followed the
common ratio of 7:3 in machine learning.

4.2. Implementation Details

Data Augmentation: To fully connect the layers and enhance robustness, we resized the images to
240 × 240 × 3 pixels and randomly cropped them to 224 × 224 × 3 pixels as the input in each batch.
Moreover, in the training process, we randomly flipped and rotated the loaded data and adjusted the
brightness. To prevent the small changes in image quality making the judgment of the network change,
we finally normalized the input data [29].

Experiment Environment: We built the network environment through TensorFlow, a deep learning
framework compatible with Windows. We created a graph model and trained on a 1080 Ti graphics
card with 12 GB video memory.

Training Strategy: Because the shortcut connection in the residual network can help the information
to propagate easily [25,30], when the structure of FPN was added, the network became more complex,
and information was harder to backpropagate. Thus, the method of training a backbone network, a
side-branch structure, and an up-sampling structure together cannot ensure that the backbone network
contains good semantic information for FPN to extract. To obtain a better backbone network and train
our network better, we used a step-by-step method of training.

4.3. Training and Results

Firstly, we trained our network directly. The initial learning rate was set to 0.001 and was
attenuated 10 times after the 80th epoch. In order to prevent the results from falling into a local optimal
solution and gradient oscillation [31], we used the momentum optimizer to optimize loss and update
the weight. We set the momentum to 0.01. After 300 iterations, we obtained the curve of loss and
accuracy as the number of iterations increased, as shown in Figure 9.

Figure 9. The accuracy and loss curve of the ResNet-101+FPN transfer learning from the ImageNet
classification model.
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As can be seen in Figure 9, the network tends to converge, and the highest accuracy in the
whole process was 96.5%, while the loss was 0.317. Compared with ResNet-101, the accuracy was
significantly improved.

The model with the highest accuracy on the test set was saved. Then, we tested it on test set and
obtained the confusion matrix as shown in Table 2.

Table 2. The confusion matrix of the ResNet-101+FPN model (one stage).

Predicted Value
Total

Positive Negative

Observed Value
Positive 6788 153 6941

Negative 221 3944 4165

Secondly, we extracted the partial parameters of ResNet-101 from the above trained
ResNet101+FPN. We used the parameters to initialize and trained the ResNet-101 to obtain a more
expressive backbone network. After 300 iterations, we obtained the curve of loss and accuracy as the
number of iterations increased, as shown in Figure 10.

Figure 10. The accuracy and loss curve of the ResNet-101 initialized by trained the model of
ResNet-101+FPN.

As can be seen from Figure 10, the highest prediction accuracy in the whole process was 96.8%,
while the loss was 0.213. Compared with ResNet-101 transfer learning from the ImageNet classification
model, our initialization method significantly improved the performance of ResNet-101. We realized
the idea of training a good backbone network. We saved the model that performed best in accuracy to
use in the follow-up work.

In the end, we used the trained backbone network to train ResNet101-FPN in two steps. In the
first step, we used the more expressive ResNet-101 model above as the model of the backbone network.
We adjusted the learning rate of ResNet-101 layers to 0 to fix the weight parameters of each layer. In
this way, we only trained related layers of FPN. After 300 iterations, we obtained the curve of loss and
accuracy as the number of iterations increased, as shown in Figure 11.
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Figure 11. The accuracy and loss curve of the ResNet-101+FPN in the first step.

As can be seen in Figure 11, the highest prediction accuracy in the whole process is 97.2 %, while
the loss was 0.293.

In the second step, we loaded the parameters obtained in the previous step into our network. We
trained the entire network including ResNet-101 and FPN. After 300 iterations, we obtained the curve
of loss and accuracy as the number of iterations increased, as shown in Figure 12.

Figure 12. The accuracy and loss curve of the ResNet-101+FPN in the second step.

As can be seen from Figure 12, the highest prediction accuracy in the whole process was 97.1%,
while the loss was 0.192. In the first step of training, the accuracy increased by 0.1% compared with the
result of training our network directly. Although the accuracy did not increase again in the second
step, the loss decreased significantly, indicating that the overall effect of the network was improved to
some extent. Therefore, compared with directly training ResNet-101+FPN, our distributed training
method achieved a significant improvement in terms of accuracy and loss.

The model with the highest accuracy on the test set was saved. Then, we tested to get the confusion
matrix shown in Table 3.

Table 3. The confusion matrix of the ResNet-101+FPN model (two stage).

Predicted Value
Total

Positive Negative

Observed Value
Positive 6823 118 6941

Negative 209 3956 4165

Through the above steps, we obtained a backbone network with a strong capability for feature
extraction and a multi-scale fusion network. This was also better than directly training our network.
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4.4. Establishing the Double-Branch Discrimination System and Results

Above all, we obtained a good network model. Since the range of cosine similarity is between
-1 and 1, we searched the thre_dis with the step size of 0.05 and verified the branch of feature library
matching on the test set to find the best threshold. Finally, when the thre_dis is 0.35, this branch has
the highest accuracy in the test. The accuracy is 97.3%. After testing on the test set, we obtained the
confusion matrix shown in Table 4.

Table 4. The confusion matrix of the branch implemented by feature library matching.

Predicted Value
Total

Positive Negative

Observed Value
Positive 6835 106 6941

Negative 196 3969 4165

It can be seen that the method of creating a priori feature library can improve the accuracy.
To further reduce the number of the defective samples being misjudged as good, we combined

the two branches in the way described before. Then, we tested the test set to get the confusion matrix
shown in Table 5.

Table 5. The confusion matrix of the double-branch discrimination mechanism.

Predicted Value
Total

Positive Negative

Observed Value
Positive 6797 144 6941

Negative 162 4003 4165

The accuracy of the test set dropped from 97.2% to 97.1%. As can be seen from Table 3, 4074
armatures were rejected by the first branch. Among them, 3956 were rejected correctly, and 118 were
rejected incorrectly. As can be seen from Table 4, 4075 armatures were rejected by the second branch.
Among them, 3969 were rejected correctly, and 106 were rejected incorrectly. As can be seen from
Table 5, after combining the above two branches, 4147 were rejected. Among them, 4003 were rejected
correctly, and 144 were rejected incorrectly. Through comparison, we find that more negative simples
were correctly identified after combining the above two branches. Since both branches are required to
be Y at the same time, the identification standards for good parts become stricter. This can guarantee
better quality of the armatures.

4.5. Comparison and Discussions

The evaluation indexes used in this paper are accuracy, precision, recall, and f1-score, commonly
used for classification problems. Our paper mainly considered the comparison of accuracy and
precision. The accuracy can reflect the overall performance of the model. The accuracy rate can reflect
the proportion of negative samples that are misjudged as positive samples, which is very important to
ensure the quality of industrial products.

We trained and tested the same dataset on the Support Vector Machine (SVM), a machine-learning
model, and the deep-learning model mentioned in our paper. Table 6 provides a comprehensive
comparison of the index.
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Table 6. A comprehensive comparison of the index.

Accuracy Recall Precision F1-Score Time Per Image/s

SVM 83.2% 85.3% 87.5% 86.4% 0.574

VGG-16 92.4% 93.3% 94.6% 93.9% 0.035

ResNet-101 93.6% 95.1% 95.0% 95.0% 0.084

ResNet-101+FPN (trained
directly) 96.6% 97.8% 96.8% 97.3% 0.095

ResNet-101+FPN (two
stage trained) 97.1% 98.3% 97.0% 97.6% 0.095

Feature library matching 97.3% 98.5% 97.2% 97.8% 0.186

Double-branch
discrimination mechanism 97.2% 97.9% 97.7% 97.7% 0.205

In summary, from Table 6, the armatures detection method we propose achieved good results.
Compared with other structures, the structure of ResNet-101+FPN we designed is improved in all
aspects. We also propose a training method to make our network performance better.

We can see that the proposed feature library matching method improved in all respects based
on the parameters of our classification network. Although the accuracy and recall rate were reduced
by 0.1%, the precision was improved by 0.5% after merging the two branches. It is a significant
improvement in precision for the mass production under the condition that the accuracy is almost
unchanged. With the precision improved, the probability of the defective samples being misjudged
as good reduced, which ensured the quality of the workpiece and was in line with the requirements
proposed by the enterprise. From the perspective of the time, there is little difference between the time
of feature library matching and the time of the double-branch discrimination mechanism. Therefore,
we chose double-branch discrimination mechanism to be applied to the production line.

4.6. Validation in Actual Production

In order to validate the reliability of the discrimination system in actual production, we inspected
the armatures produced by the company in one day. The total number of the armatures inspected was
about 360,000. Among them, the proportion of defective parts was about 2%. Due to the imbalance
of positive and negative workpieces and most of the armatures with relatively good surfaces on the
production line, the accuracy reached 98.9% in the actual production line. The result was also calculated
by comparing the classification result of the discrimination system with the classification result of
the quality control group. The whole process of the detection of the armatures, including feeding,
photographing, preprocessing, discrimination, and sorting, is automated and takes less than 3 s, which
is the enterprise’s required time to identify an armature. Therefore, the armature inspection system
proposed in this paper can meet the requirements of enterprise, both in terms of detection accuracy
and detection time. The discrimination system can be stably used in the armature production line.

5. Conclusions

In this paper, a novel and complete system based on computer vision and deep learning is
proposed for surface inspection of armatures in vibration motors with miniature volume. Concerning
the characteristics of the data samples, we designed the structure of ResNet-101+FPN, which uses
ResNet-101 as the backbone network and integrates the idea of FPN structure to utilize its representation
capacity more effectively for small features. The network achieved satisfying performance on our
dataset by accurately predicting the categories of armatures. In addition, we proposed a training
method to make the network designed by us perform better. To guarantee the quality of the motor, we
had to reduce the proportion of the defective samples being identified as good. Therefore, based on the
trained network, we proposed a feature library matching method. After combining the classification
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network and the feature library matching method, the miscalculation of defective parts was significantly
decreased. When testing on the production line, the discrimination could also ensure robustness
and universality. The whole process of the detection of the armature takes less than 3 s, which is the
enterprise’s required time to identify an armature. Therefore, the system proposed in this paper can
meet the requirements of enterprise, both in terms of effect and detection time. The discrimination
system can be stably used in the armature production line.
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Abstract: Medical image fusion techniques can fuse medical images from different morphologies to
make the medical diagnosis more reliable and accurate, which play an increasingly important role
in many clinical applications. To obtain a fused image with high visual quality and clear structure
details, this paper proposes a convolutional neural network (CNN) based medical image fusion
algorithm. The proposed algorithm uses the trained Siamese convolutional network to fuse the pixel
activity information of source images to realize the generation of weight map. Meanwhile, a contrast
pyramid is implemented to decompose the source image. According to different spatial frequency
bands and a weighted fusion operator, source images are integrated. The results of comparative
experiments show that the proposed fusion algorithm can effectively preserve the detailed structure
information of source images and achieve good human visual effects.

Keywords: medical image fusion; convolutional neural network; image pyramid; multi-scale
decomposition

1. Introduction

In the clinical diagnosis of modern medicine, various types of medical images play an
indispensable role and provide great help for the diagnosis of diseases. To obtain sufficient information
for accurate diagnosis, doctors generally need to combine multiple different types of medical images
from the same position to diagnose the patient’s condition, which often causes great inconvenience.
If multiple types of medical images are only analyzed by doctor’s space concepts and speculations,
the analysis accuracy is subjectively affected, even parts of image information may be neglected. Image
fusion techniques provide an effective way to solve these issues [1]. As the variety of medical imaging
devices increases, the obtained medical images from different modalities contain complementary as
well as redundant information. Medical image fusion techniques can fuse multi-modality medical
images for more reliable and accurate medical diagnosis [2,3].

This paper proposes a CNN-based medical image fusion method. First, CNN-based model
generates a weight map for any-size source image. Then, Gaussian pyramid decomposition
is performed on the generated weight map, and the contrast image pyramid decomposition is
applied to source images for obtaining the corresponding multi-scale sub-resolution images. Next,
a weighted fusion operator based on the measurement of regional characteristics is used to set different
thresholds for the top layer and the remaining layers of sub-decomposed images to obtain the fused
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sub-decomposed images. Finally, the fused image is obtained by the reconstruction of contrast pyramid.
This paper has three main contributions as follows:

(1) In training process of CNN, source images can be directly mapped to the weight map. Thus,
it can also achieve the measurement of activity level and weight distribution in an optimal way
to overcome the difficulties in design by learning network parameters in the training process.

(2) Human visual system is sensitive to the changes of image contrast. Thus, this paper proposes a
multi-scale contrast pyramid decomposition based image fusion solution, which can selectively
highlight the contrast information of fused image to achieve better human visual effects.

(3) The proposed solution uses a weighted fusion operator based on the measurement of regional
characteristics. In the same decomposition layer, the fusion operators applied to different local
regions may be different. Thus, the complementary and redundant information of fused image
can be fully explored to achieve a better fusion effect and highlight important detailed features.

The remainder of this paper is organized as follows. Section 2 discusses the related works
of medical image fusion. Section 3 demonstrates the proposed CNN-based medical image fusion
solution in detail. Section 4 presents the comparative experiments and compares corresponding results.
Section 5 concludes this paper.

2. Related Works

Researchers have proposed many medical image fusion methods in recent years [4,5]. Mainstream
medical image fusion methods include decomposition-based and learning-based image fusion
methods [6,7]. As a commonly used decomposition-based medical image fusion method, multi-scale
transform (MST) generally has three steps in the fusion process: decomposition, fusion, and
reconstruction. Pyramid-based method, wavelet, and multi-scale geometric analysis (MAG) based
method are commonly used in MST[8]. In MAG-based methods, nonsubsampled contourlet transform
(NSCT) [9,10] and nonsubsampled shearlet transform (NSST) [11] based methods have high efficiency
in image representation. In addition to image transformation, the analysis of high- and low-frequency
coefficients is also a key issue of MST-based fusion methods. Traditionally, the activity level of
high-frequency coefficient is usually based on its absolute value. It is calculated in a pixel- or
window-based way, and then uses a simple fusion rule, such as the selection of the maximum or
weighted average, to obtain the fused coefficient. Averaging the coefficients of different source images
was the most popular low-frequency fusion strategy in early research. In recent years, more advanced
image transformations and more complex fusion strategies have been developed [12–17]. Liu proposed
an integrated sparse representation (SR)- and MST-based medical image fusion framework [18].
Zhu proposed an NSCT based multi-modality decomposition method for medical images, which uses
the phase consistency and local Laplacian energy to fuse high- and low-pass sub-bands, respectively [9].
Yin proposed a multi-modality medical image fusion method in NSST domain, which introduced pulse
coupled neural network (PCNN) for image fusion [19]. To improve the fusion quality of multi-modality
images, a novel multi-sensor image fusion framework based on NSST and PCNN was proposed by
Li [20].

In the past decade, learning-based methods have been widely used in medical image fusion.
Especially, SR- and deep learning-based fusion methods are most widely used [21,22]. In the early stage,
SR-based fusion methods used a standard sparse coding model based on a single image component
and local image blocks [23–25]. In the original spatial domain, source images were segmented into a
set of overlapping image blocks for sparse coding. Most existing SR-based fusion methods attempt to
improve their performances is the following ways: adding detailed constraints [5], designing more
efficient dictionary learning strategy [26], using multiple sub-dictionaries in representation [27,28],
etc. As an SR-based model, Kim proposed a dictionary learning method based on joint image block
clustering for multi-modality image fusion. Zhu proposed a medical image fusion method based on
cartoon-texture decomposition (CTD), and used an SR-based fusion strategy to fuse the decomposed
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coefficients [29]. Liu proposed an adaptive sparse representation (ASR) model for simultaneous
image fusion and denoising [28]. All the above-mentioned methods propose complex fusion rules
or different SR-based models. However, these specific rules cannot be applicable to every type of
medical image fusion [27].

With the rapid development of artificial intelligence, deep learning-based image fusion methods
have become a hot research topic [30–33]. As a main representative of artificial intelligence,
deep learning is developed on the basis of traditional artificial neural networks. It can learn data
characteristics autonomously, establish a human-like learning mechanism by simulating the neural
network of human brain, and then analyze and learn the related data, such as images and texts [34,35].
CNN as a classical deep learning model can achieve the encoding of direct mapping from source
images to weight map during the training process [29,36]. Thus, both activity-level measurements
and weight distribution can be achieved together in an optimal way by learning network parameters.
In addition, CNN’s local connection and weight sharing feature can further improve the performance
of image fusion algorithms, while reducing the complexity of entire network and the number of
weights. At present, CNN plays an increasingly important role in medical image fusion. Xia integrated
multi-scale transform and CNN into a multi-modality medical image fusion framework, which uses
the deep stacked neural network to divide source images into high- and low-frequency components
to do corresponding image fusion [37]. Liu proposed a CNN-based multi-modality medical
image fusion algorithm, which applies image pyramids to the medical image fusion process in a
multi-scale manner [38].

The calculation of weight map, which fuses the pixel activity information from different sources,
is one of the most critical issues in existing deep learning based image fusion [38]. Most existing fusion
methods use a two-step solution that contains activity-level measurement and weight assignment. In
traditional transform-domain fusion methods, the absolute value of decomposition coefficient is used
to measure its activity first. Then, the fusion rule, such as “choose-max” or “weighted-average”, is
used to select the maximum or weighted average [39]. According to the obtained measurements, the
corresponding weights are finally assigned to different sources. To improve the fusion performance,
many complicated decomposition methods and detailed weight assignment strategies have been
proposed in recent years [28,40–45]. However, it is not easy to design an ideal activity level
measurement or weight assignment strategy, which can consider all key issues [37].

3. The Proposed Medical Image Fusion Solution

As shown in Figure 1, the proposed medical image fusion framework has three main steps. First,
it uses Siamese network model to generate the same-size weight map W for any-size source image A
and B, respectively. Then, Gaussian pyramid decomposition is applied to the generated weight map W
to obtain corresponding multi-scale sub-decomposed image GW , which is used to determine the fusion
operator in coefficient fusion process. Gl,k

W,l=N and Gl,k
W,0≤l<N are the top layer and the remaining layers

of sub-decomposed image. It applies the contrast pyramid to the decomposition of source image A
and B. The multi-scale sub-decomposed images CA and CB are obtained for the subsequent coefficient
fusion process. Cl,k

A,l=N and Cl,k
B,l=N are the top layer of sub-decomposed image CA and CB, respectively.

Cl,k
A,0≤l<N and Cl,k

B,0≤l<N are used to represent the remaining layers of sub-decomposed image CA and
CB, respectively. Finally, different thresholds are set for the top layer and the remaining layers of
sub-decomposed images, respectively. A weighted fusion operator based on the measurement of
regional characteristics is used to fuse the different regions in the same decomposition layer to obtain
the fused sub-decomposed image CF. The final fused image F is obtained by the reconstruction of
contrast pyramid.
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Figure 1. The proposed medical image fusion framework.

3.1. Generation of CNN-Based Weight Map

3.1.1. Network Construction

To obtain the weight map of pixel activity information from multiple source images, the proposed
method uses CNN to achieve the measurement of optimal pixel activity level and weight distribution.
This paper uses siamese network to improve the efficiency of CNN training. Siamese network has two
branches. Each branch contains three convolutional layers and one max-pooling layer. The first two
layers are convolutional layers. The first layer is used for the simple feature extraction of input image.
In the second layer, the number of feature maps increases. The features of output map in the upper
convolutional layer are extracted. The third layer is a max-pooling layer. It removes unimportant
samples from feature map to further reduce the number of parameters. As a convolution layer,
the fourth layer extracts more complex features from the output map of the pooling layer. To reduce
memory consumption, it uses a lightweight network structure to reduce the training complexity.
Specifically, the feature map of each branch’s final output is concatenated first. Then, the concatenated
ones are directly connected to a two-dimensional vector by a fully connected layer. To predict the
probability distribution of different characteristics, the two-dimensional vector obtained by mapping
is sent to a bi-directional softmax layer, and then classified by probability value. This paper uses the
siamese network training architecture shown in Figure 2.

To achieve the classification in CNN network, this paper uses softmax classifier to obtain the
classification probability by Equation (1).

f (pi) =
epi

∑n
j=1 epj

(1)

If one pi is larger than all the other p, then its mapping component is close to 1, and the others
are close to 0, which normalizes all input vectors. The batch size is set to 128, thus the softmax loss
function is obtained as Equation (2).

L =
batchsize

∑
i=0

− log f (pi) (2)
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Taking the softmax loss function as the optimization goal, stochastic gradient descent is used to
minimize the loss function. As the initial parameter settings, the momentum and weight decay are set
to 0.9 and 0.0005, respectively. Thus, Equations (3) and (4) are used to update the weights.

vi+1 = 0.9 · vi − 0.0005 · α · wi − α · ∂L
∂wi

(3)

wi+1 = wi + vi+1 (4)

where vi is the dynamic variable, wi is weight after ith iteration, α is the learning rate, L represents the
loss function, and ∂L

∂wi
is the loss derivative of weight wi.

Figure 2. Siamese network training architecture.

3.1.2. Networking Training

It selects a high-quality multi-modality medical image set from http://www.med.harvard.
edu/aanlib/home.html as training samples. It applies a Gaussian filter to each image to obtain
corresponding five different-level fuzzy versions. Specifically, a Gaussian filter with a standard
deviation of 2 and a cutoff value of 7× 7 is used. Gaussian filter is used to blur the original
image to obtain the first blurred image. In the following Gaussian filtering, the previous output
image is used as the next input image. For instance, the output image of first Gaussian filtering
is used as the input image of the second Gaussian filtering. Then, for each blurred and clear
image, it randomly samples 20 pairs of 16× 16 image blocks. pc and pb represent a pair of
clear and blurred image blocks. When p1 = pc and p2 = pb, it is defined as a positive example
(marked as 1), where p1 and p2 are the inputs for the first and second branch, respectively. Oppositely,
when p1 = pb and p2 = pc, it is defined as a negative example (marked as 0). Therefore, the training set
is ultimately composed of positive and negative examples. After the sample is generated, the weight
of each convolutional layer is initialized by using Xavier algorithm, which adaptively determines the
initialization scale based on the number of input and output neurons. The deviation of each layer is
initialized to 0. The inclination rates of all layers are equal, and their initial values are set to 0.0001.
When the loss reaches a steady state, the inclination rates are manually reduced to 10% of previous
values. After about ten iterations, it can complete the network training.
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3.1.3. The Generation of Weight Map W

In the image testing and fusion process, to process any-size source images, it converts the fully
connected layer into two equivalent convolutional layers of equal kernel size. When the conversion
is completed, any-size image A and B to be fused can be processed as a whole to generate a dense
prediction map S. Every prediction Si is a two-dimensional vector, and the value of each dimension
is between 0 and 1. If one dimension is larger than another, this dimension can be normalized to 1,
and the other one is set to 0. It simplifies the weight of corresponding image block with an output
dimension value of 1. For two adjacent predictions in S, the steps of corresponding image blocks
overlap. For overlapping areas, the weights are averaged. The output is the average weight of the
overlapping image blocks. In the above way, it is possible to input any-size image A and B into the
network, and generate the corresponding same-size weight map W.

3.2. Pyramid Decomposition

This paper uses both contrast pyramid and Gaussian pyramid to decompose source images.
It builds the contrast pyramid first. Then, when the Gaussian pyramid is established, G0 is the zeroth
layer (bottom layer), and the l’th layer Gl can be constructed in the following manner. As shown in
Equation (5), it convolves Gl−1 by a window function w(m, n) with low-pass characteristics first, and
then downsamples the convolutional result by the interlaced every other row and column.

Gl =
2

∑
m=−2

2

∑
n=−2

w(m, n)Gl−1(2i + m, 2j + n), 0 < l ≤ N, 0 ≤ i < C, 0 ≤ j < Rl (5)

where w(m, n) is the window function, Cl and Rl are the number of columns and the number of rows
in the l’th-layer sub-image of the Gaussian pyramid, respectively, and N is the total number of the
pyramid layers.

(1) Separability: w(m, n) = w(m)w(n), m ∈ [−2, 2] , n ∈ [−2, 2];

(2) Normalization:
2
∑

m=−2
w(n) = 1;

(3) Symmetry: w(n) = w(−n); and
(4) Equal contribution of odd and even terms: w(−2) + w(2) + w(0) = w(−1) + w(1).

According to the above constraints, it can construct w(0) = 3/8, w(1) = w(−1) = 1/4, and
w(2) = w(−2) = 1/16. Then, according to Constraint 1, it can get the window function w(m, n) by
calculation, as shown in Equation (6).

w =
1
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4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1




. (6)

At this point, the image Gaussian pyramid is constructed by G0, G1, · · · , GN .
After the construction of a Gaussian pyramid image by halving the size of each layer one by one,

the interpolation method is used to interpolate and expand the Gaussian pyramid. Thus, the expanded
lth-layer image Gl and the l − 1th-layer image Gl−1 have the same size and the operation is shown
as follows:

Gl
∗(i, j) = 4

2

∑
m=−2

2

∑
n=−2

w(m, n)Gl
[

m + i
2

,
n + j

2

]
, 0 < l ≤ N, 0 < i < Cl , 0 < j < Rl (7)
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Gl
[

m + i
2

,
n + j

2

]
=

{
Gl
(

m+i
2 , n+j

2

)
, when m+i

2 , n+j
2 are integer

0, otherwise
(8)

where Gl∗ is an expansion version of image Gaussian pyramid Gl . According to the above formulas,
an expansion sequence is obtained by interpolating and expanding each layer of Gaussian pyramid,
respectively.

According to the above formulas, an expansion sequence is obtained by interpolating and
expanding each layer of Gaussian pyramid respectively. The decomposition of image contrast is
shown as Equation (9).

Cl = Gl

Gl∗
− I, N > l ≥ 0

CN = GN , l = N
(9)

where Cl is the contrast pyramid, Gl is the Gaussian pyramid, I is the image decomposed by contrast
pyramid, and l is the decomposition level, which composes the contrast pyramid C0, C1, · · · , CN of
source image.

Source image A and B are decomposed into corresponding sub-images by contrast pyramid,
respectively. For the weight map generated in CNN network, it is decomposed into sub-images by
Gaussian pyramid. Different thresholds are set for the top layer and the remaining layers of the
obtained sub-images respectively in the fusion processing.

3.3. Fusion Rules

In the fusion process, to obtain better visual characteristics, richer details, and outstanding fusion
effects, this paper adopts new fusion rules and the weighted average fusion operators based on regional
characteristics. The fusion rules and operators are shown as follows:

(1) After the contrast pyramid decomposition, it calculates the energy El
A and El

B of corresponding
local regions in each decomposition level l of source image A and B, respectively.

El
A (x, y) = ∑

m
∑
n

Cl
A(x + m, y + n)2

El
B (x, y) = ∑

m
∑
n

Cl
B(x + m, y + n)2 (10)

where El(x, y) represents the local area energy centered at (x,y) on the lth layer of contrast
pyramid, Cl is the lth-layer image of contrast pyramid, and m and n represent the size of
local area.

(2) Calculate the similarity of corresponding local regions in two source images.

Ml (x, y) =
2 ∑

m
∑
m

Cl
A (x + m, y + n)Cl

B (x + m, y + n)

El
A (x, y) El

B (x, y)
(11)

where El
A and El

B are calculated by Equation (10). The range of similarity is [–1,1], and a value
close to 1 indicates high similarity.

(3) Determine the fusion operators. Define a similarity threshold T (when 0 ≤ l < N, T1 = 3; when
l = N, T2 = 0.6). When Ml (x, y) < T, it obtains:

when El
A (x, y) ≥ El

B (x, y) , Cl
F (x, y) = Cl

A (x, y) ;
when El

A (x, y) < El
B (x, y) , Cl

F (x, y) = Cl
B (x, y) ;

}
(12)
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when Ml (x, y) ≥ T, weight map W based weighted mean model is:

when El
A (x, y) ≥ El

B (x, y) ,
Cl

F (x, y) = W l
max (x, y)Cl

A (x, y) + W l
min (x, y)Cl

B (x, y) ;
when El

A (x, y) < El
B (x, y) ,

Cl
F (x, y) = W l

min (x, y)Cl
A (x, y) + W l

max (x, y)Cl
B (x, y) ;





(13)

where Cl
F is the lth layer of sub-image after fusion.

W l
min (x, y) = Gl

W(x, y)
W l

max (x, y) = 1−W l
min (x, y)

(14)

Finally, the integration strategy can be summarized as a whole by Equation (15).

Cl
F (x, y) =





Cl
A (x, y) ,

i f Ml (x, y) < T&El
A (x, y) ≥ El

B (x, y) ;
Cl

B (x, y) ,
i f Ml (x, y) < T&El

A (x, y) < El
B (x, y) ;

W l
max (x, y)Cl

A (x, y) + W l
min (x, y)Cl

B (x, y) ,
i f Ml (x, y) ≥ T&El

A (x, y) ≥ El
B (x, y) ;

W l
max (x, y)Cl

A (x, y) + W l
min (x, y)Cl

B (x, y) ,
i f Ml (x, y) ≥ T&El

A (x, y) ≥ El
B (x, y) ;

(15)

According to the above algorithm, when the similarity between the corresponding local regions
of source image A and B is less than threshold T, it means that the “energy” difference of two local
regions is large. At this time, the central pixel of the region with a larger “energy” is selected as the
central pixel of corresponding region in the fused image. Conversely, when the similarity is greater
than or equal to threshold T, it means that the “energy” of the region is similar in two source images.
At this time, the weighted fusion operator is used to determine the contrast or gray value of the central
pixel of the region in the fused image.

Since the central pixel with large local energy represents a distinct feature of source image, the
local image features generally do not only depend on a certain pixel. Therefore, the weighted fusion
operator based on region characteristics is used, which is more reasonable than other determination
methods of fused pixel based on the simple selection or the weight of an independent pixel.

Finally, the decomposed sub-image Cl
F obtained after fusion is inversely transformed by contrast

pyramid, which is also called image reconstruction. According to Equation (16), the accurate image
reconstruction by contrast pyramid can be obtained.

Gl =
(

Cl + F
)
� Gl∗, N > l ≥ 0

GN = CN , l = N
, (16)

where � denotes Hadamard product ( also known as the element-wise multiplication ).
The fused image F can be obtained by calculating the above-mentioned image reconstruction

formula. Algorithm 1 shows the main steps of the proposed medical image fusion solution.
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Algorithm 1 Proposed NSST-based multi-sensor image fusion framework.

Input:

source image A and B;

Parameters: pyramid decomposition level l, the number of pyramid levels N, similarity threshold

T
Output:

the fused image F
1: It inputs two any-size source images A and B to the trained siamese network.
2: It generates a dense prediction map S, where each prediction has two dimensions.
3: for any prediction Si do

4: It does normalization processing to obtain a corresponding image block weight with a dimension

value of 1.
5: end for
6: for an overlapping region of two adjacent predictions Sj and Sj+1 do

7: It does the averaging process to obtain the mean value of the overlapping image block weights.
8: It outputs the same size weight map W as source image.
9: end for

10: for each source image A, B, and weight map W do

11: It does pyramid decomposition respectively to obtain a contrast sub-images CA, CB and a

Gaussian sub-image GW .
12: for each decomposition level l obtained by the contrast pyramid decomposition of source image

do

13: It calculates the energy El
A,B(x, y) of its corresponding local area.

14: It determines the similarity of fusion mode Ml(x, y).
15: It defines a similarity threshold T (when 0 ≤ l < N, T1=3; when l = N, T2=0.6) to determine

the strategy of coefficient fusion.
16: end for
17: end for
18: The fused image F is obtained by the inverse pyramid transform of sub-image Cl

F after fusion.

4. Comparative Experiments and Analysis

4.1. Experiment Results and Analysis

The following comparative experiments were used to prove that the proposed CNN-based
algorithm has good performance in medical image fusion. Eight different image fusion methods
were used to fuse MR-CT, MR-T1-MR-T2, MR-PET, and MR-SPECT images, respectively. These
eight methods are MST-SR [18], NSCT-PC [9], NSST-PCNN [19], ASR [28], CT [29], KIM [26],
CNN-LIU [38], and the proposed solution.

Figure 3 shows the results of MR-CT image fusion experiments. In Figure 3c, the fused image
obtained by MST-SR method has a general visualization performance, and the image contrast is high
by analyzing the partially enlarged image. As shown in Figure 3d,e, the fused images by NSCT-PC
and NSST-PCNN have a high brightness. According to the partial enlargements marked in green
and red dashed frame, both methods have the poor performance in the preservation of image details.
In Figure 3f,g, the fused images obtained by ASR and CT have low brightness. According to the
analysis of details, the detailed information of image edge is not obvious, which is not good for human
eye observation. As shown in Figure 3h, the fused image obtained by KIM has low sharpness and poor
visual effect. Comparing Figure 3i,j, as well as the partially magnified images, it is difficult to visually
distinguish the quality of the fused image obtained by CNN-LIU and the proposed method.
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Figure 3. MR-CT image fusion experiments: (a,b) source images; and (c–j) the fused image obtained
by MST-SR, NSCT-PC, NSST-PCNN, ASR, CT, KIM, CNN-LIU, and the proposed method, respectively.
Two partially enlarged images marked in green and red dashed frames correspond to the regions
surrounded by green and red frames in the fused image.

The results of MR-T1-MR-T2 image fusion experiments are shown in Figure 4. Comparing the
fused result (Figure 4c) with source image (Figure 4a,b), the fused image obtained by MST-SR method
has a low similarity to source image (Figure 4a), and does not well retain the detailed structure
information of source image (Figure 4a). As shown in Figure 4d, the fused image obtained by NSCT-PC
method is too smooth in some areas, and the detailed image texture is not sufficiently obvious. In Figure
4e, the fused image obtained by NSST-PCNN method has high brightness, and does not well preserve
the detailed features of source images. ASR method obtains the fused image with low contrast and
a lot of noises, as shown in Figure 4f. The fused image shown in Figure 4g was obtained by CT
method, and has high edge brightness, which weakens the detailed texture information of image
edges. According to Figure 4h, the fused image obtained by KIM method has low sharpness, and is
blurred. As shown in Figure 4i,j, CNN-LIU and the proposed method reach the almost same visual
performance of human eyes.

Figures 5 and 6 show the results of MR-PET image fusion experiments. In both Figures 5c and 6c,
the fused images obtained by MST-SR method have high darkness, which is not conducive to human
visual observation. According to Figure 5d,e, as well as the partially magnified areas, the fused
images obtained by NSCT-PC and NSST-PCNN method have high brightness, and the detailed
image information is not clear. Figures 5f,g and 6f,g show that the fused images obtained by ASR
and CT methods have low brightness. It means that these two methods have poor performance
in the preservation of image details. Comparing Figure 5i,j, the fused image of KIM method
has low sharpness, which means the image is blurred. As shown in Figure 5i, the fused image
obtained by CNN-LIU method has a low contrast, and the detailed edge information is not obvious.
Both Figures 5j and 6j show that the proposed fusion method can preserve the detailed information
of source images well, which is conducive to the observation of medical images and the diagnosis of
diseases.
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Figure 4. MR-T1 CMR-T2 image fusion experiments: (a,b) source images; and (c–j) the fused image
obtained by MST-SR, NSCT-PC, NSST-PCNN, ASR, CT, KIM, CNN-LIU, and the proposed method,
respectively. Two partially enlarged images marked in green and red dashed frames correspond to the
regions surrounded by green and red frames in the fused image.

Figure 5. MR-PET image fusion Experiment 1: (a,b) source images; and (c–j) the fused image obtained
by MST-SR, NSCT-PC, NSST-PCNN, ASR, CT, KIM, CNN-LIU, and the proposed method, respectively.
Two partially enlarged images marked in green and red dashed frames correspond to the regions
surrounded by green and red frames in the fused image.

Figures 7 and 8 show the results of MR-SPECT image fusion experiments. In Figure 7c, the fused
image of MST-SR method has a low contrast and unclear edge details. As shown in Figure 8d,e, some
edge regions are too smooth in the fused images obtained by NSCT-PC and NSST-PCNN methods, and
the edge details are not clear. In Figures 7g and 8g, the images obtained by CT method have the high
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contrast, and CT method performs poorly on the detail retention of source images. The fused images
shown in Figures 7f,h and 8f,h, which were obtained by ASR and KIM method, respectively, have the
low brightness and poor visualization performance. As shown in Figures 7i,j and 8i,j, the fused images
obtained by both CCN-LIU and the proposed method have the high brightness and good visualization
performance. Comparing all the fused results in Figures 7 and 8, the fused images obtained by the
proposed fusion method have the high similarity with source images, which can preserve the detailed
structures of source images well and achieve good fusion performance.

Figure 6. MR-PET image fusion Experiment 2: (a,b) source images; and (c–j) the fused image obtained
by MST-SR, NSCT-PC, NSST-PCNN, ASR, CT, KIM, CNN-LIU, and the proposed method, respectively.
Two partially enlarged images marked in green and red dashed frames correspond to the regions
surrounded by green and red frames in the fused image.

Figure 7. MR-SPECT image fusion Experiment 1: (a,b) source images; and (c–j) the fused image
obtained by MST-SR, NSCT-PC, NSST-PCNN, ASR, CT, KIM, CNN-LIU, and the proposed method,
respectively. Two partially enlarged images marked in green and red dashed frames correspond to the
regions surrounded by green and red frames in the fused image.

266



Sensors 2020, 20, 2169

Figure 8. MR-SPECT image fusion Experiments 2: (a,b) source images; and (c–j) the fused image
obtained by MST-SR, NSCT-PC, NSST-PCNN, ASR, CT, KIM, CNN-LIU, and the proposed method,
respectively. Two partially enlarged images marked in green and red dashed frames correspond to the
regions surrounded by green and red frames in the fused image.

4.2. Evaluation of Objective Metrics

For image fusion, a single evaluation metric lacks objectivity. Therefore, it is necessary to do a
comprehensive analysis by using multiple evaluation metrics. In this study, four objective evaluation
metrics, namely QTE [46,47], QAB/F[29,48], QMI [47], and QVIF [29,49], were used to evaluate the
performances of different fusion methods. QTE is the Tsallis entropy of the fused image. The entropy
value represents the amount of average information contained in the fused image. QAB/F as a
gradient-based quality indicator is mainly used to measure the edge information of fused images.
QMI is the mutual information indicator, which is used to measure the amount of information contained
in the fused image. QVIF is the information ratio between the fused image and source images to
evaluate the human visualization performance of the fused image. The objective evaluation results
of medical image fusion are shown in Figure 9. Among all the fusion results, the proposed method
achieves good performance in all four objective evaluations. It confirms that the proposed method can
preserve the detailed structure information of source images well and realize good human visual effects.

Table 1 shows the values of four objective metrics for eight fusion methods. The proposed method
achieves the highest QTE value. Comparing with the seven other fusion methods, the fused image
obtained by the proposed method has the highest Tsallis entropy, and contains more information than
the others. According to the analysis of QAB/F, the fused images obtained by NSCT-PC, NSST-PCNN,
CNN-LIU, and the proposed method have high QAB/F, which means these fused images perform
well in the preservation of edge details. The fused image obtained by KIM has low QAB/F, which
indicates that KIM does not have good performance in the preservation of edge information. For QMI ,
the proposed method is a little bit higher than the others. It means more information of source
images is retained in the fused image, and the preservation ability of source image details is strong.
The proposed method has the highest QVIF. Comparing with CNN-LIU, the proposed method has a
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higher information ratio between the fused image and source images, and achieves a better human
visual effect as well.

Figure 9. Objective evaluation results of eight fusion methods.

Table 1. Objective evaluations of medical image fusion comparative experiments.

QTE QAB/F QMI QV IF Average Processing Time

MST-SR 0.6495 0.3911 0.9764 0.3693 15.0541
NSCT-PC 0.7150 0.4515 1.0681 0.4092 3.7743
NSST-PCNN 0.7113 0.4537 1.0610 0.3924 6.1595
ASR 0.6643 0.3550 0.9072 0.3258 35.2493
CT 0.6631 0.3769 0.9240 0.3258 14.5846
KIM 0.6257 0.3188 0.8792 0.2820 59.1929
CNN-LIU 0.7003 0.4421 1.0745 0.4145 14.5846
Proposed 0.7445 0.4449 1.0925 0.4181 12.8667

4.3. Threshold Discussion

In this study, a similarity threshold T was defined to fuse the multi-scale sub-decomposed images.
For the top layer of sub-decomposed images, the threshold was set to 0.6. For the remaining layers of
sub-decomposed images, the threshold was set to 3. Table 2 shows the values of five objective metrics
for the fusion framework with different thresholds. According to QMI , the proposed method is a little
bit lower than others. However, for QTE, QAB/F, and QVIF, the proposed method is higher than the
others. It means more average information and edge information is contained in the fused image, and
it has a higher information ratio between the fused image and source images. In addition, these three
methods have close values in terms of time consumption. Overall, the proposed method performs
better on five objective metrics.

Table 2. Objective evaluations of the fusion framework with different thresholds.

QTE QAB/F QMI QV IF Average Processing Time

Threshold = 0.6 0.6973 0.4248 1.1165 0.4151 12.7256
Threshold = 3 0.7289 0.4255 1.2540 0.4068 12.6652
Proposed 0.7445 0.4449 1.0925 0.4181 12.8667
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5. Conclusions

This paper proposes a CNN-based medical image fusion solution. The proposed method
implements the measurement of activity level and weight distribution by CNN training to generate
a weight map including the integrated pixel activity information. To obtain better visual effects, the
multi-scale decomposition method based on contrast pyramid is used to fuse corresponding image
components in different spatial frequency bands. Meanwhile, the complementary and redundant
information of fused images is explored by the local similarity strategy in adaptive fusion mode.
Comparative experiment results show that the fused images by proposed method have high visual
quality and objective indicators. In the future, we will continue to explore the great potential of
deep learning techniques and apply them to other types of multi-modality image fusion, such as
infrared-visible and multi-focus image fusion.
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Abstract: With an infrared circumferential scanning system (IRCSS), we can realize long-time
surveillance over a large field of view. Recognizing targets in the field of view automatically is
a crucial component of improving environmental awareness under the trend of informatization,
especially in the defense system. Target recognition consists of two subtasks: detection and
identification, corresponding to the position and category of the target, respectively. In this study, we
propose a deep convolutional neural network (DCNN)-based method to realize the end-to-end target
recognition in the IRCSS. Existing DCNN-based methods require a large annotated dataset for training,
while public infrared datasets are mostly used for target tracking. Therefore, we build an infrared
target recognition dataset to both overcome the shortage of data and enhance the adaptability of the
algorithm in various scenes. We then use data augmentation and exploit the optimal cross-domain
transfer learning strategy for network training. In this process, we design the smoother L1 as the
loss function in bounding box regression for better localization performance. In the experiments, the
proposed method achieved 82.7 mAP, accomplishing the end-to-end infrared target recognition with
high effectiveness on accuracy.

Keywords: infrared circumferential scanning system; target recognition; deep convolutional neural
networks; data augmentation; transfer learning; bounding box regression; loss function

1. Introduction

Objects with a temperature above absolute zero can continuously emit electromagnetic radiation
into outer space. At room temperature, these radiations mainly concentrate in the infrared band.
The infrared radiation emitted or reflected by the target is captured by thermal imagers to obtain
high-contrast imaging results, which are usually grayscale images. Compared with visible cameras,
the thermal infrared imager can work at night and has a specific ability to distinguish the true and
false targets, because it relies on the difference in temperature and emissivity between the target and
the ground. Compared with radar images, infrared images are more recognizable to human eyes
because of the shorter wavelength of infrared radiation. Additionally, the thermal imager has passive
characteristics, only receiving the target radiation, and does not need to transmit a signal, which means
high concealment. With the advantages of all-day work, high concealment, and sensitivity, thermal
infrared imagers are widely used to collect information in a variety of complex environments, and to
achieve 24-h surveillance, especially in the defense system, which can provide supports for battlefield
decision-making in modern warfare [1,2].

The infrared circumferential scanning system (IRCSS), equipped with a long linear infrared focal
plane array (IRFPA), performs circum-sweep motion under precise servo control to realize circum-
sweep imaging at multiple pitching angles [3]. Moreover, the horizontal coverage is close to 360
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degrees, greatly expanding the detection range of infrared detectors. The typical imaging resolution of
IRCSS can reach 768× 120, 000, which is much higher than that of the conventional forward-looking
infrared system [4]. With the rapid development of image processing technology, the IRCSS has the
capabilities of searching over a large field of view, long-range target automatic recognition, multi-target
high-precision tracking, and integration with mechanical control systems.

When the field of view expands, there will be more interference in the imaging results of the IRCSS,
such as clouds in the low-altitude background, and mountains and trees in the ground background, all
of which make target recognition more challenging. However, most of the previous works only finished
the target detection [5,6]. Our method is to upgrade the function of the IRCSS. Target recognition
involves two levels of understanding of the target. Firstly, where is the target? We need to perform
detection, deciding whether the target is in range, and localize it if it is. Secondly, what is the target? We
need to perform identification, classifying the target. In the past, traditional hand-crafted methods took
different algorithms for two subtasks—for example, threshold segmentation [7] for target localization,
a histogram of oriented gradients (HOG) [8] for features extraction, and a support vector machine
(SVM) [9] for classification. The representative work in this paradigm is the deformable part models
(DPM) [10]. However, independence between algorithms becomes an obstacle to further enhance
recognition performance. Since AlexNet [11] became the preferred option in ILSVRC 2012, there has
been a strong interest in deep learning for computer vision, especially the deep convolutional neural
network (DCNN). The DCNN has the structure of stacking various blocks, such as convolution layers,
activation functions, pooling layers, and fully connected layers, which endows the network with a
powerful feature extraction ability to automatically and adaptively obtain deep semantic information.
In the target recognition field, DCNN-based methods utilize a network to accomplish two subtasks,
realizing end-to-end processing. In learning-based models, DCNN-based methods need large-scale
datasets, including images and annotations, to train the networks with a strong generalization
ability. Owing to the access to large-scale datasets for the public, such as ImageNet [12], COCO [13],
VOC [14], the performance of DCNN-based methods on visible images has been dramatically improved.
However, in the infrared field, publicly available datasets are mostly used for target tracking, which
are usually sequences of infrared images. Unfortunately, these datasets are unsuitable for infrared
target recognition.

In this paper, as shown in Figure 1, we propose a DCNN-based method to address target
recognition in the IRCSS. In the experiments, results demonstrated the effectiveness of the proposed
method on accuracy with 82.7 mAP. The contributions in this paper can be summarized as follows:

1. We realize end-to-end target recognition on high-resolution imaging results of the IRCSS via
the DCNN.

2. We build an infrared target recognition dataset to both overcome the shortage of data and enhance
the adaptability of the algorithm in various scenes, including two types of targets in seven types
of scenes with two types of aspect orientations, four types of sizes and twelve types of contrasts.

3. We design a loss function called the smoother L1 in the bounding box regression for better
localization performance.

The rest of the paper is organized as follows. Section 2 reviews related works about target
recognition and tracking algorithms. In Section 3, we describe the methodology of this paper. Section 4
is the experiment part, including experiment details, results, and analysis. Section 5 provides the
conclusion and a plan for future work.
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Figure 1. The overall architecture of the proposed method to address target recognition in the infrared
circumferential scanning system (IRCSS). We perform the overlapping segmentation on the single-frame
image of IRCSS. After getting the sub-frame image, it is sent to the recognition network. The backbone
structure is detailed in Section 4. The feature fusion follows the design in the feature pyramid network
(FPN) [15]. The region proposal network (RPN) and the region convolutional neural network (RCNN)
subnet follows the design of the Faster RCNN [16]. The region proposals are processed by RoI align [17].
In the bounding box regression for target localization, the loss function is the smoother L1.

2. Related Work

2.1. Target Recognition and Tracking in Infrared Images

Thermal infrared sensors are not influenced by illumination variations and shadows, and objects
can be distinguished from the background as the background is normally colder [18]. Considering
these advantages and the demand for realistic, computer vision tasks in infrared images have emerged,
such as target recognition and tracking.

Target recognition can be divided into two subproblems: target detection and identification—in
other words, localizing the target in the image and figuring out its category. Target identification can
be further divided into feature extraction and classifier design. The sliding window approach was
the most straightforward way to localized the target [19]. It slid a window over the image to obtain
image patches, and the target recognition model was then used to classify each patch covered by the
window. To overcome the limitations of expensive computation of the sliding window approach, the
selective search [20] approach was used to segment the image into original regions using the algorithm
in [21] and then grouped similar regions based on color, texture, size, and shape compatibility. This
process was repeated until the number of iterations was reached. For target identification, several
methods have been proposed. In [22], a sparse representation-based classification (SRC) algorithm
was proposed for infrared target recognition. In [23], the HOG and bag-of-words (BoW) was applied
to further improve performance. With respect to the IRCSS, previous methods have finished the
detection of targets. A time-domain multi-frame cumulative difference algorithm was proposed to
detect the dim and small target in the large field of view and complicated background [6]. In [5],
a rough-to-meticulous target detection algorithm was proposed for panorama infrared images. In the
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rough detection phase, the integrating processing of morphological filtering and interframe differences
was utilized to pick up suspected targets most rapidly from high-resolution images and suspected
target image slices were generated. In the meticulous detection phase, permanent false alarm adaptive
threshold method and feature fusion were adopted to eliminate false alarm and generate a trajectory
for the real targets.

Based on the annotation of a target only on the first frame of the video, target tracking aims to
estimate a moving trajectory [24]. A discriminative correlation filter (DCF)-based tracker learns a
correlation filter from annotations to discriminate the target from the background [25]. Even after
several years, this branch is still flourishing in the tracking field. With respect to infrared tracking, in
VOT-TIR2017 [26], which is a challenge on tracking in thermal infrared sequences, the winner DSLT [27]
applied optical flow and extended Struck [28] with the ability to learn from dense samples and high
dimensional features. The top accuracy tracker SRDCFir [29] introduced a spatial regularization
function that penalized filter coefficients residing outside the target region to alleviate the periodic
assumption when using circular correlation. Another branch of infrared tracking fuses infrared images
and visible images. In the corresponding VOT-RGBT2019 challenge [30], the DCF-based tracker
JMMAC [30] designed a robust RGBT (RGB and thermal) tracker that combined motion cues and
appearance cues. The motion cue was inferred from key-point-based camera motion estimation and
a Kalman filter applied to object motion. The appearance cues are generated by an extension of the
efficient convolution operators (ECO) model [31]. In this paper, we are interested in target recognition.
In the next part, we introduce an overview of DCNN-based target recognition methods.

2.2. DCNN-Based Target Recognition

Feature extraction plays an important role in both target recognition and tracking. The traditional
hand-crafted features have been used in various modalities images [32]. Over the past few years,
DCNN-based method has outperformed the traditional approaches in various computer vision domains,
such as image classification, target recognition, and semantic segmentation, because of the strong
ability of feature extraction.

DCNN-based methods utilize a single network to accomplish two subtasks in target recognition.
According to the number of stages, they can be divided into two branches: two-stage methods and
one-stage methods.

The two-stage methods, which are also known as classification-based methods, divide the
recognition into two stages. In the first stage, the network selects target region proposals from the
predefined boxes over the image and refines their position coordinates. This process can be regarded
as binary classification. Each anchor is classified as the target-in or target-out. In the second stage, each
proposal is classified and refined again. In general, benefiting from a region proposal network and
two-time position refinement, two-stage methods have relatively higher precision. Faster RCNN [16]
firstly finalized the above-mentioned workflow. After that, the feature pyramid network (FPN) [15] was
proposed to fuse semantic information from deep layers and location information from shallow layers.
Cascade RCNN [33] utilized three thresholds for better region proposals in the first stage. DetNAS [34]
adopted the neural architecture search [35] to find the optimal architecture of the recognition network.
CBNet [36] proposed a strategy of compositing connections between the adjacent backbones to build a
more powerful backbone network than ResNet [37] and ResNeXt [38], which achieved the best 53.3
mAP on the COCO benchmark [13].

Meanwhile, the one-stage method can directly predict coordinates and categories of the targets by
a multi-tasks loss function, which is also called the regression-based method. The basic architecture
consists of the backbone network and detection subnet. Owing to less computation, one-stage methods
are mostly proposed to achieve a faster speed of recognition. If the limit is 20FPS, YOLO [39] is
the first to realize real-time target recognition. As an improved version, YOLO v3 [40] significantly
improved the precision while maintaining the speed and has been widely used in realistic circumstances.
SSD [41] was used to make predictions on feature maps of different scales. EfficientDet [42] utilized
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EfficientNet [43] and BiFPN to develop a family of networks, among which EfficientDet-D7 achieved
51.0 mAP on the COCO benchmark [13].

Most DCNN-based target recognition algorithms are mostly proposed for RGB images. When
used in the infrared system, diversities between characteristics of images may cause more problems,
making recognition more challenging. In [44], a DCNN-based detector was designed in the infrared
small unmanned aerial vehicle (SUAV) surveillance system by the laterally connected multi-scale
feature fusion approach and densely paved predefined boxes. In [45], SVM and DCNN classification
for infrared target recognition were compared. Some literature only takes CNN as feature extractors.
In [46], CNN cooperated with the difference of Gaussian (DoG) to recognize the target. In [47], a
compact and fully CNN was trained with synthetic data because of the shortage of infrared data. The
trained network was used to address target recognition in an infrared defense system. In this paper,
we propose a two-stage method to accomplish end-to-end target recognition in the IRCSS.

3. Methodology

We propose a DCNN-based two-stage method for target recognition in the IRCSS. Figure 1 shows
the overall architecture. To be specific, owing to the large size of the single-frame image in the IRCSS,
we perform overlapping segmentation on it to obtain sub-frame images. We then build an infrared
target recognition dataset to both overcome the shortage of data and enhance the adaptability of the
algorithm in various scenes. Furthermore, we adopt data augmentation to expend the dataset and
exploit the optimal cross-domain transfer learning strategy for the train. In the network, we design a
novel loss function in bounding box regression for target localization, called the smoother L1.

3.1. Sub-Frame Images of the IRCSS

An IRCSS consists of two parts: an infrared detector with a long linear IRFPA and a mechanical
structure. Under precise control by a servomotor, the detector performs uniform rotation to obtain
circumferential images. Compared with the simple staring thermal imager, the system can provide a
large field of view and continuous circumferential images, which can be applied in environmental
monitoring and night navigation.

As shown in Figure 2, the size of the circumferential image obtained by the IRCSS is much larger
than that of the single-frame image obtained by the traditional staring infrared detector or the visible
camera, up to 768× 40, 000. Directly handling the single-frame image, the efficiency of the algorithm
can be slow because of the massive amount of data. In order to solve the contradiction between data
quantity and algorithm efficiency, the method of sub-frame images is proposed.
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Figure 2. The single-frame image obtained by the IRCSS. In this paper, its size is 768× 40, 000. To make
it clearer to display, we zoom in on a helicopter target.

The single-frame circumferential image is divided into several blocks to reduce the amount of
data processed by the algorithm, and the target recognition is carried out on each image block, called a
sub-frame image. According to the sequence of obtaining the single-frame and sub-frame image, the
methods can be divided into direct and indirect acquisition. The direct acquisition means that in the
imaging process, the sub-frame image is directly obtained through the rotation of the IRCSS with an
equal angle, so the complete single-frame image is no longer stored. The indirect acquisition means
that a single-frame is firstly obtained, and the sub-frame is then obtained through segmentation.
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The existing data are complete circumferential images, so sub-frame images are obtained by
indirect acquisition. To be specific, we divide a circumferential image into several 768 × 768 image
blocks. Figure 3 shows the acquisition of subframe images. In the case of direct segmentation, some
targets can be segmented into different blocks, causing problems in recognition. In order to solve this,
there is an overlapping area between contiguous blocks during segmentation, such that one target is
complete in at least one block. The size of the overlapping area is selected according to the maximum
size of the target.
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Figure 3. The indirect acquisition of sub-frame images by overlapping segmentation. One target is
complete in at least one sub-frame image.

3.2. Infrared Target Recognition Dataset

As a type of data-driven algorithms, the DCNN needs a large amount of training data to ensure
generalization performance, so that it can cope with the changes of the target itself and the scene. In the
field of object recognition, training data refer to the images that contain targets and the annotations that
describe the location and category of each target. It is usually expected to collect the data of different
states of the targets in as many scenes as possible. However, the commonly used target recognition
datasets are composed of visible (RGB) images, such as ImageNet, COCO, and VOC. In the infrared
field, most of the datasets are used for target tracking, such as the VOT-TIR challenge [26,48], which
consists of small sequences of infrared images containing targets. In these sequences, the target is of a
single type, like pedestrians or vehicles, and the size and brightness of the target is almost unchanged,
while the scene is also almost unchanged. If the training set and test set are determined by dividing a
sequence randomly, the diversity between them can be too limited to guarantee the generalization of
the network, although the performance on the test dataset can be noteworthy. Meanwhile, as shown
in Figure 3, the background of the target in the existing data is too simple; if training is based only
on this, the adaptability to the scene of the algorithm will be weak. In order to ensure that targets
can be detected in infrared images of different scenes, we built an infrared target recognition dataset,
including aspect orientation, size, contrast, and scene changes.

As shown in Figure 4, we separated targets from the existing infrared data, including two-aspect
orientations and 12 contrasts of each types of targets, and selected frames as the background from image
sequences of seven types of scenes [26,49], including a road, trees, a desert, grassland, a mountain,
buildings, and cars, so that there was still diversity among backgrounds of the same scene.

When embedded in the background, each target was scaled to four sizes to simulate different
distances from the detector. Thus, each type of scene contains 192 images, and the dataset has a total of
1344 images, some of which are shown in Figure 5. Compared with ImageNet and COCO, the dataset
we built is too small, so we performed data augmentation, and details are shown in Section 4.
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image, we separated the target. The target was then embedded into the scene images.
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Figure 5. Some of the infrared target recognition dataset, including changes of target type, aspect
orientation (front and side), size, contrast, and scene (road (a), (h), tree (b), desert (c), grassland (d),
mountain (e), building (f), and car (g)).

If we train on our dataset from scratch, it will easily lead to overfitting. The results in Section 4
verify this assumption. Therefore, the cross-domain transfer learning is utilized. The network used for
target recognition includes a backbone network for obtaining feature maps of the input image. After
training, the features extracted by the shallow layer of the backbone are common for different targets,
which generally are structural features, such as edges and angles [50]. Therefore, the weight obtained
from training on a large dataset, called the source domain, can be transferred to the backbone network,
and we continue training with our customized dataset, called the target domain, to finetune the weight.
In this way, we can not only enhance the generalization ability of the DCNN-based algorithm in the
target domain but also avoid overfitting.

Different source domain can produce different initial weights, and their finetuning effect on the
target domain can also be different. In [51], the distribution of the relative size of the target in the
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ImageNet and COCO dataset was statistically analyzed. In ImageNet, the median relative size of the
target is 0.556, while it is 0.106 in COCO, which means there are more small targets in the COCO
dataset. Additionally, in COCO, the relative sizes of the maximum 10% target and the minimum 10%
target differ by 20 times, which is much more than that of ImageNet, which means targets in the COCO
dataset have a more extreme scale variation. In Section 4, we exploited the optimal cross-domain
transfer learning strategy by experiments.

3.3. Smoother L1

When training a DCNN for target recognition, we define a multi-task loss function to solve both
classification and localization:

L = Lcls + Lloc. (1)

The target location is realized by bounding box regression, and the objective function is a distance
function between the prediction and the ground truth, which is also the target of regression, of
the network:

Lloc =
∑

i

∑

D∈{x,y,w,h}
distance

(
pi

D, ti
D

)
. (2)

Here, i represents the index of a region proposal participating in the regression, and we drop
the superscript unless it is needed; D represents the four dimensions of a box coordinate, which is
the abscissa and ordinate of the center of box and the width and height of the box; p represents the
prediction; t represents the target. The specific definitions are as follows:



px = ωT
xφ(r)

py = ωT
yφ(r)

pw = ωT
wφ(r)

ph = ωT
hφ(r)

(3)



tx = Gx−Rx
Rw

ty =
Gy−Ry

Rh

tw = log
(

Gw
Rw

)

th = log
(Gh

Rh

)
(4)

where ωD (where D is one of x, y, w, h) represents the network parameters to be learned; φ(·) represents
the calculation of the DCNN, r represents the region proposal, and φ(r) represents the features
calculated by the DCNN of a region proposal; RD represents the coordinate of a region proposal; GD

represents the coordinate of the corresponding ground-truth box.
In training, the gradient descent is utilized to minimize the distance between prediction and

target, which can also be called loss. We take 1 as the boundary of error. Hence, each sample can be
classified as an inlier (< 1) or outlier (> 1). For the definition of loss functions, the L2 loss is adopted in
the RCNN [52].

L2 Loss = x2. (5)

Because of the unlimited gradient of the L2 norm, the learning rate needs to be set very carefully
in training to avoid the gradient explosion caused by outliers. In order to enhance the robustness of
the loss function, smooth L1 is first utilized in Fast RCNN [53], which connects L2 with L1 by taking 1
as the boundary.

L1 Loss = |x| (6)

smooth L1 =

{
0.5x2, |x| < 1
|x| − 0.5, others

. (7)
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Thus, both the undifferentiability of L1 at 0 and the sensitivity of L2 to outliers are solved.
However, during training, we realized that the value of gradient participates in the update of network
parameters rather than the value of loss function. Consequently, we should pay more attention to the
gradient when designing the loss function. In this paper, we propose a smoother L1.

As shown in Figure 6, compared with the smooth L1, the gradient of the smoother L1 changes
from a linear function to a power function for inliers and remains as a constant for outliers. By this
design, the nonlinearity, which can be regarded as the core of deep learning, of the network is enhanced.
On the other hand, the transition of the gradient between outliers and inliers becomes smoother to
avoid the large change of the gradient during the training, which is generally considered harmful
to training.
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Meanwhile, according to the ablation studies, smoother L1 inherently alleviates the imbalance
between classification loss and localization loss. The gradient formula is as follow:

∂smoother L1
∂x

=

{
α|x|1/β, |x| < 1
α, others

, (8)

where α controls the gradient of outliers, and β controls the changing trend of the gradient of inliers.
The larger or smaller the β, the closer it is to L1 loss or the smooth L1. L1 loss can be regarded as the
smoother L1 as α = 1, β→∞ , and the smooth L1 can be regarded as the smoother L1 as α = 1, β = 1.
For the optimal setting of α and β, we did a coarse grid search in the experiment. We integrated the
gradient formula to obtain the formula of the smoother L1:

smoother L1 =



α·β
β+1 |x|

β+1
β , |x| < 1

α·|x| − α
β+1 , others

. (9)

4. Experiments

4.1. Implementation Details

We adopt data augmentation to expand the quantity of images. As shown in Figure 7, we perform
horizontal flipping, Gaussian noise, rotation for each image. The dataset eventually contains 4032
images. It is divided into 2822 images for training, 403 images for validation, and 807 images for
testing. All experiments are implemented on a Lenovo Linux PC with an Nvidia RTX2060 GPU and
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Intel i7-9750 CPU. If not specifically noted, the batch size is set to 2 and every epoch contains 1411
iterations. We train all networks for 12 epochs, with the learning rate increasing linearly to 0.0025 in
the first 500 iterations and decreasing by 0.1 after 8 and 11 epochs, respectively.
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Figure 7. The data augmentation for each image, including horizontal flipping, Gaussian noise, rotation.

The evaluation metrics of recognition are standard COCO-style average precision (AP) [13], which
is a mixture metric of widely used precision and recall. Specifically, as defined in Table 1, for the
predicted bounding boxes of the same category, selecting an Intersection-over-Union (IoU) threshold
Tα and then setting the confidence of each box to another threshold Tβ, we classify each box as true
positive (TP), false positive (FP), true negative (TN), and false negative (FN). Some ground truth may
not have the corresponding prediction boxes; if only the prediction is judged, some FN may be missed.
Therefore, following the formulas below, we calculate all the precision and recall metrics to draw the
precision-recall curve. AP is the area under the curve. At last, we calculate the average value of all the
AP values for all the classes in the dataset, denoted as APα. In the paper, we choose mAP (the average
AP over 10 IoU thresholds 0.5:0.05:0.95), which is the primary metric, AP50 (the AP on IoU threshold
0.5), and AP75 (the AP on IoU threshold 0.75). The higher the AP, the better the performance.

precision =
TP

TP + FP
(10)

recall =
TP

TP + FN
=

TP
GT

. (11)

Table 1. The definition of true positive (TP), false positive (FP), true negative (TN), and false negative
(FN) [54].

Confidence > Tβ Confidence < Tβ

IoU > Tα TP FN
IoU < Tα or

Repetitive recognition * FP TN

* Corresponding to the same ground truth; if the IoU of multiply predicted boxes is larger than the threshold, only
the bounding box with the largest IoU is considered the TP; others are considered FP.

With respect to the network, if not specifically noted, the backbone part is ResNet50 [37] that is
introduced in Table 2, the feature fusion part is FPN [15], the region proposal network and the RCNN

282



Sensors 2020, 20, 1922

subnet follows the design of the Faster RCNN [6], and the region proposals are processed by RoI
align [17]. All the hyper-parameters follow the settings of the Faster RCNN [16].

Table 2. The architecture of the backbone part in the network: ResNet50 [37].

Layer Name Stage0 Stage1 Stage2 Stage3 Stage4

Operation *
7× 7, 64, 2, 3

maxpool
(3× 3, 2, 1)




1× 1, 64
3× 3, 64

1× 1, 256


× 3




1× 1, 128
3× 3, 128
1× 1, 512


× 4




1× 1, 256
3× 3, 256
1× 1, 1024


× 6




1× 1, 512
3× 3, 512

1× 1, 2048


× 3

* 7× 7, 64, 2, 3 means convolution kernel = 7× 7, num = 64, stride = 2, and padding = 3. For all the 1× 1, stride = 1,
padding = 0. For the first 3× 3 in Stage 2, 3, 4, stride = 2, padding = 1; for other 3× 3, stride = 1, padding = 1. Every
convolution is followed by batch normalization and ReLU, except the last one in every stage is only followed by
batch normalization. In the block, there is a shortcut that directly connects the input with the output, and batch
normalization follows the addition.

4.2. Comparison of Methods

We performed a comparison with SSD [41], RetinaNet [55], Faster RCNN [16], and Faster
RCNN+FPN [15] to evaluate the recognition performance of our proposed method in Table 3.

Table 3. Comparison of the different methods on the test dataset.

Method
Test

mAP AP50 AP75

SSD(VGG) 72.5 90.5 85.8
RetinaNet 78.3 97.2 90.5

Faster RCNN 79.7 97.9 91.6
Faster RCNN+FPN 81.5 98.0 93.7

Ours 82.7 98.1 95.2

Our method achieves 82.7 mAP on the test dataset. Compared with the one-stage methods
(SSD [41] and RetinaNet [55]), our two-stage recognition method obtained a significant improvement.
Compared with the Faster RCNN [16], we achieved a 3.0-point-higher mAP. When adding the FPN [15],
we still improved the mAP by 1.2 points, which was thanks to the new loss function—the smoother L1.
From the improvement of AP50 and AP75, we knew that our method could achieve target localization
with higher precision.

4.3. Exploiting the Optimal Cross-Domain Transfer Learning Strategy

4.3.1. Weight Initialization

In the experiments, we compared the recognition performance of different weight initialization,
including Xavier [56], the pre-trained weight on COCO [13] and ImageNet [12] dataset. The result is
shown in Table 4.

Table 4. Comparison of different methods of weight initialization on the validation dataset.

Weight Initialization
Validation

mAP AP50 AP75

Xavier \ \ \
ImageNet 80.1 95.9 94.0

COCO 83.7 97.0 97.0

When the network was initialized by Xavier, the trained detector failed to detect any targets on
the validation dataset under the same training setting with others. As shown in Figure 8, regardless of
the method of weight initialization, the classification loss could be reduced to quite a low level.

283



Sensors 2020, 20, 1922
Sensors 2020, 20, 1922  13 of 19 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

   

Figure 8. The visualization of training: (a) classification loss in RPN; (b) localization loss in RPN; (c) 

classification loss; (d) localization loss in bounding box regression; (e) total loss; (f) accuracy. 

Figure 8. The visualization of training: (a) classification loss in RPN; (b) localization loss in RPN; (c)
classification loss; (d) localization loss in bounding box regression; (e) total loss; (f) accuracy.

However, the Xavier initialization could not bring about a decrease in localization loss. Meanwhile,
because classification loss was much larger than localization loss, the overall loss still showed a
downward trend. We conjectured that the too-small size of the training dataset led to serious
overfitting. On the other hand, even though there were significant differences between source domain
datasets (COCO and ImageNet) and our customized dataset, transfer learning still worked well. We
observed that the pre-trained weight of COCO brought down the loss to a lower level and had a better
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recognition performance in all metrics than that of ImageNet. We thought that the COCO pre-trained
weight was more suitable for recognition network initialization because of more small targets and a
broader range of target sizes in the COCO dataset, as mentioned in Section 3.2.

4.3.2. Frozen Stages

We compared the effect of different frozen stages in the network on time consumption and
recognition performance. Table 5 shows the result.

Table 5. Comparison of different frozen stages in the network on the validation dataset.

Frozen Stages Time
Consumption

Validation

mAP AP50 AP75

None 1 h 55 min 83.6 97.5 96.3
1 1 h 37 min 83.7 97.0 97.0

1, 2 1 h 30 min 82.2 97.0 95.9
1, 2, 3 1 h 18 min 80.7 96.5 95.2

1, 2, 3, 4 1 h 11 min 80.1 96.5 95.4

We observed that the training time decreased as the number of frozen stages increased, and the
recognition results also decreased. Once a stage was frozen, it would no longer participate in the
update of network parameters, thus saving the time. At the same time, the network could not have a
better adaptation to the input image and thus could not extract more discriminative features. There was
an 18-minute difference in time consumption if the first stage was frozen (as opposed to no freezing),
but the recognition results were similar.

Therefore, in the other experiments, the network was initialized by the COCO pre-trained weight,
of which the first stage was frozen during the training.

4.4. Ablation Studies on the Smoother L1

For the best setting in the smoother L1, the ablation studies are shown in Table 6.

Table 6. Ablation studies of the smoother L1 on the validation dataset.

Smooth L1 82.7

β
α 1 1.5 2 2.5 3

2 83.2 83.2 83.7 83.6 82.9
3 82.4 83.4 83.4 83.4 83.4
4 82.9 83.2 83.1 82.8 82.9

We know that α controls the gradient of outliers, and β controls the changing trend of the gradient
of inliers according to Section 3.3. From another perspective, the change of α could be regarded as
rebalancing the classification loss and localization loss. Furthermore, the change in β could be regarded
as rebalancing the localization loss of inliers and outliers. As shown in Figure 9, we observed that
the smoother L1 caused the localization loss to increase, which alleviated the imbalance between
classification loss and localization loss. Benefiting from a more symmetrical multi-task loss function,
the network equipped with the smoother L1 could bring a 1.0-point-higher AP than the smooth
L1 baseline.
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Figure 9. The visualization of training with the smoother L1 (α = 2, β = 2) and the smooth L1: (a)
classification loss; (b) localization loss in bounding box regression.

4.5. Scene Adaptability of the DCNN-Based Method

Target recognition tasks are faced with various scenes, but the dataset cannot contain all types.
In order to observe the adaptability to different infrared scenes of our DCNN-based method, and
to explore whether the trained network learns the scene information or target information that we
prefer, the following experiment was conducted. Six types of scenes were taken for training, and the
remaining type was taken as the test dataset. A total of seven experiments were conducted.

As shown in Table 7, when processing the scene that did not appear during the training, the
network could still detect the target, but the performance of recognition decreased. Some of the
recognition results are shown in Figure 10. We noticed that the network could recognize not only the
specified target but also the original object in the scene image, such as the aircraft in the grassland
and mountain scenes, and armored vehicles in the desert. It was apparent that the network could not
correctly classify them because of the absence of their annotations, and they were considered as false
alarms when calculating the metrics of recognition. We conjectured that the reason why the network
could recognize these unknown targets in unknown scenes was that they had similar contours to the
specified target; i.e., the network performed reorganization by information from the target itself instead
of by speculating the location and category of the target based on the scene information. Because the
object in the infrared image often lacks texture information, the characteristic of relying on contour
information is noteworthy, and the designed network should pay more attention to learning contour
information when recognizing the infrared target.

Table 7. Recognition results of the deep convolutional neural network (DCNN)-based method on
different test scenes.

Test Scene mAP AP50 AP75

Grassland 67.2 97.3 77.8
Mountain 79.5 97.6 95.4

Road 80.9 96.8 92.6
Trees 74.5 93.6 89.8

Desert 76.0 93.5 92.4
Buildings 78.3 92.1 91.3

Cars 76.5 94.3 92.7
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Figure 10. Some of the recognition results. The target is in the grassland (a), road (b), (c), desert (d), (e),
trees (f), and mountains (g), (h). In (d), (e), (g), and (h), the original armored vehicles and aircraft in the
scene were also recognized.

5. Conclusions and Prospect

In this paper, we propose a DCNN-based method to address end-to-end targets recognition in
the IRCSS. The recognition accuracy reaches 82.7 mAP, proving the feasibility of the method. In
order to solve the contradiction between the data quantity caused by the large size imaging results
and the operation efficiency of the algorithm, direct and indirect acquisition of sub-frame images is
proposed, and the indirect acquisition method with overlapping segmentation is selected according
to the existing data in this paper. At the same time, we build an infrared target recognition dataset
to both deal with the shortage of recognition data in the infrared field and enhance the adaptability
of the algorithm in various scenes. During the training, on the one hand, the optimal cross-domain
transfer learning strategy is exploited, including the analysis of the effect of ImageNet and COCO
pre-trained weights on the recognition results and the optimal number of network frozen stages. On
the other hand, through observation and analysis of the classification and localization loss, we design
a smoother L1 loss function in bounding box regression and existing loss functions can be unified
as specific values. Without significantly increasing the amount of calculation, it effectively improves
recognition performance.

Some prospects for future work are given. Firstly, due to the low resolution of infrared images, we
seek a special super-resolution algorithm as a pre-processing process in target recognition. Secondly,
in the process of cross-domain transfer learning, we can adopt domain adaptation to further alleviate
the performance degradation caused by the diversity between visible and infrared images. Thirdly, the
method proposed in this paper has the background of practical demand, so we will continue to study
how the method can be deployed on the embedded hardware platform to realize real-time automatic
recognition of targets with high effectiveness both on accuracy and efficiency.
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Abstract: Computer-aided diagnosis systems have been developed to assist doctors in diagnosing
thyroid nodules to reduce errors made by traditional diagnosis methods, which are mainly based
on the experiences of doctors. Therefore, the performance of such systems plays an important
role in enhancing the quality of a diagnosing task. Although there have been the state-of-the art
studies regarding this problem, which are based on handcrafted features, deep features, or the
combination of the two, their performances are still limited. To overcome these problems, we propose
an ultrasound image-based diagnosis of the malignant thyroid nodule method using artificial
intelligence based on the analysis in both spatial and frequency domains. Additionally, we propose
the use of weighted binary cross-entropy loss function for the training of deep convolutional neural
networks to reduce the effects of unbalanced training samples of the target classes in the training
data. Through our experiments with a popular open dataset, namely the thyroid digital image
database (TDID), we confirm the superiority of our method compared to the state-of-the-art methods.

Keywords: ultrasound image; malignant thyroid nodule; artificial intelligence; deep learning;
weighted binary cross-entropy loss

1. Introduction

Traditional disease diagnosis/treatment methods are mostly based on doctors’ expert knowledge
on any given condition. However, this diagnostic method has a big limitation, that is, its performance is
much more dependent on the experiences and personal knowledge of doctors. As a result, the diagnostic
performance varies and is limited. With the development of digital technology, image-based diagnosis
techniques have been widely used to help doctors investigate problems with organs that are underneath
the skin and/or deep inside the human body [1–11]. For example, doctors have used X-ray imaging
to capture lung and/or bone images that can help to indicate whether a disease/injury exists in these
organs [9,10]. To diagnose issues with the human brain, the Computer-Tomography (CT) and/or
Magnetic Resonance Imaging (MRI) techniques have been widely used [2,3]. With the help of imaging
techniques, the diagnosis performance can be much more enhanced. However, the use of captured
images is still dependent on personal knowledge and experiences of doctors. To overcome this problem,
Computer-Aided Diagnosis systems (CAD) have been developed to assist doctors in the diagnosis
and treatment processes [1–10]. As indicated by its name, the CAD systems can serve as an additional
expert in the double screening process that aims to enhance the human diagnostic performance based
on a computer program [11]. This kind of system uses and processes one or more captured medical
images of some organs such as X-ray, CT, and MRI scans, and yields its decision that can assist
doctors in diagnosing diseases. Due to its purpose, CAD systems have been widely developed and
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used in real-life applications such as for diagnosing the brain [2,3,7,12], breasts [4,8,13–16], lungs [10],
and thyroid diseases [17–35].

The thyroid is an important organ located in the human neck that produces and secretes two
important hormones, namely triiodothyronine and thyroxine, which are responsible for the regulation
of metabolism in the human body. Due to its important role in the human body, diagnosing and
treatment of thyroid disease has become important [17–35]. As reported in the previous studies,
one important problem commonly experienced in the thyroid region is the appearance of nodules
that cause thyroid cancer. Thyroid nodules are abnormal lumps that appear on the thyroid region of
the human body. They could be caused by many factors, including iodine deficiency, overgrowth of
normal thyroid tissue, or thyroid cancer. Thyroid nodules are usually classified into two categories
based on their characteristics namely, benign cases (which are noncancerous nodules), and malign
cases (which can cause thyroid cancer) [36]. In both the benign and malign cases, the appearance of
thyroid nodules can cause problems with patient health. With the appearance of nodules, the thyroid
region can be malfunctioned. Although the benign case has little effects on patient health, it can cause
aesthetic problems and/or make it difficult for the patients to breathe and/or swallow. The malign case
can cause thyroid cancer. Fortunately, most detected thyroid nodules are benign cases as reported in
the previous studies [19,36]. However, diagnosing and treating malign cases is still very important.

There have been several methods of diagnosing thyroid nodules such as physical examination,
thyroid function tests, and Fine Needle Aspiration (FNA) biopsy. The physical exam is normally done
at the first stage of the diagnosis process in which the patients are asked to perform several physical
tests on the thyroid region such as swallowing to check the shape, size, and the movement of nodules.
However, this method is just a primary test and normally does not give deep information about the
nodules’ condition. To gain a deep look inside the thyroid problem, thyroid function tests or FNA
are normally invoked. In the thyroid function test method, the level (amount) of the two hormones
(thyroxine and triiodothyronine, which are produced by the thyroid region) is measured to see whether
there is any abnormality in thyroid functionality. FNA can also be applied in diagnosing thyroid
nodules to produce good diagnosis results. However, these methods required are labor-intensive,
invasive, and costly. As an alternative, image-based thyroid nodule diagnosis has been used in various
applications. This method uses high-frequency sound waves (ultrasound wave) to produce images of
the thyroid region. As a result, this method provides rich information of thyroid nodules such as the
shape and structure of nodule as well as the condition of the nodules.

Using the ultrasound thyroid nodule images, there have been several previous studies on CAD
for the thyroid nodule detection and classification problems. In contrast to the conventional thyroid
diagnosis methods mentioned above, the CAD methods for thyroid nodules use ultrasound thyroid
nodule images as inputs and produce thyroid nodule regions and/or the status of nodules (benign or
malign) [17–36]. Similar to normal image processing systems, CAD systems for thyroid nodule use
several image processing techniques to extract information from input images for detection/classification
purposes. Based on the methods for extracting information from images, the previous studies can
be categorized into three groups: the group using handcrafted feature extraction methods, the group
using deep feature extraction methods, and the group that is a fusion of the two.

Handcrafted-based image feature extraction methods have been widely applied for a long time,
especially with the simple image-based systems and/or before the appearance of deep learning-based
techniques. As indicated by its name, this kind of method uses several handcrafted image feature
extraction methods that are designed by experts based on their knowledge of specific problems to
extract efficient features from input images for image-based processing systems. For the thyroid nodule
CAD, the handcrafted feature-based method has also been used previously [22,24,31]. Chang et al. [24]
used up to 78 texture features extracted from ultrasound thyroid nodule images for the thyroid nodule
classification problem. Based on the extracted image features, they used Support Vector Machines
(SVMs) to classify input images into several categories such as nodule versus non-nodule and follicles
versus fibrosis. Sudarshan et al. [22] used wavelet transform to analyze the input ultrasound thyroid
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images for the thyroid nodule classification problem. A similar approach, Raghavendra et al. [31]
used the segmentation-based fractal texture analysis technique to analyze ultrasound thyroid images
under different threshold values for the classification problem. Ouyang et al. [26] found that linear
and non-linear classifiers yield similar classification results for the thyroid nodule classification based
on handcrafted image features. Since the handcrafted image feature extractors were designed and
selected by expert knowledge of authors, they only reflect some limited aspects of the problem. As a
result, the classification performance is limited.

With the development of technology, such as the back propagation algorithm, neural network,
and Graphics Processing Units (GPUs), the deep learning-based technique has recently been applied
to solve many problems in medical image processing systems [1,2,10,12,21,36]. For the thyroid
nodule detection/classification problem, the deep learning-based method has gained a lot of success.
As indicated by its name, the deep learning-based method, such as Convolutional Neural Network
(CNN), automatically learns the useful texture features for the detection/classification problem
instead of using handcrafted (fixed) feature extraction methods. As a result, the deep learning-based
method can produce more superior results than handcrafted-based methods. In a study by Zhu et
al. [21], they proposed a method for thyroid nodule classification using CNN systems. In their study,
they fine-tuned the residual network (ResNet18-based network) and obtained good classification
results using a public dataset. Similar to the work by Zhu et al., the work by Chi et al. [23] also used the
CNN network to classify ultrasound thyroid nodule images into benign and malign nodules. However,
different from the study by Zhu et al. [21], Chi et al. [23] used the GoogLeNet for a classification purpose.
In addition, they trained their CNN model using two datasets to reduce the effect of the over-fitting
problem and the variation of input images. In a study by Sundar et al. [28], the authors proposed a
general framework for thyroid nodule classification using the CNN network, including the fine-tuning,
training from scratch, and the use of pretrained networks for image feature extraction. With their
proposed methods, they performed various experiments using two popular CNN architectures,
including a relative shallow network based on VGG16-Net architecture, and a deep network based on
Inception (GoogLeNet) architecture. In some other studies, the thyroid nodule classification can also be
done by a detection-and-classification approach as shown in a study by Song et al. [27]. In that study,
Song et al. used a detection network such as multiscale single-shot detection network (multiscale SSD)
or Yolo network to roughly detect the position of thyroid nodules. Additionally, then, they performed
the nodule classification using the detection results of the first step. This method has the advantage
that noise and non-nodule regions can be removed before performing the classification step. However,
it is difficult to find small nodules, and the network architecture is very complex.

As a fusion of the two mentioned approaches, there exist studies that combine the handcrafted
and deep learning methods to enhance the classification performance. In a study by Nguyen et al. [36],
they found that the information in the frequency domain can be useful for discriminating easy samples
of benign and malign cases, and the deep learning-based method can be useful for discriminating
harder samples (ambiguous samples). Based on this observation, they proposed a method that applies
a cascade classifier scheme for the thyroid nodule classification problem. As a result of their study, they
showed that the combination of handcrafted and deep features is efficient for enhancing classification
accuracy compared to the use of individual feature extraction method. The following are more detailed
differences between previous study [36] and our research. First, one CNN of ResNet was used in a
previous study [36], but multiple CNNs of ResNet and InceptionNet are used in our research. Second,
only the binary cross-entropy loss was used in a previous study [36] whereas only the weighted binary
cross-entropy loss was newly adopted in our research. The weighted binary cross-entropy loss function
is efficient for reducing the overfitting problem caused by the unbalanced training samples of the target
classes in the training data. Third, the final classification of thyroid nodule was performed based on
the one output score of ResNet in a previous study [36]. However, the outputs of multiple CNNs of
ResNet and InceptionNet are combined by score level fusion in our research.
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There is a common limitation in the aforementioned studies: they did not fully consider the
problems associated with deep learning-based methods, such as the imbalance of training image
samples, the depth of the network, and the variation of the size of objects. For example, the classification
model can produce biased results if the training data have an imbalance of samples in target classes,
or it is difficult to construct a very deep network that can capture features of both the small and large
sizes of objects. In Table 1, we summarized the previous studies for the thyroid nodule classification
problem in comparison with our proposed method. To overcome this limitation, we propose a novel
approach for the thyroid nodule classification problem by modifying the loss function of a conventional
CNN network and a combination of multiple CNN networks to enhance the learning ability of the
deep learning method. In comparison with the methods in the previous studies, our proposed method
is novel in the following four ways:

• We propose the use of multiple CNN-based models to analyze input ultrasound thyroid images
deeply for the classification problem. Since each CNN model has its own architecture and
characteristics of learning the characteristics of input images, the use of multiple CNN-based
models can help to extract richer information compared to using an individual model.

• In order to solve the problem of unbalanced data samples between the benign and malign classes
in the training data, we propose the use of a weighted binary cross-entropy loss function instead
of the conventional binary cross-entropy loss function. As the name suggests, we assign a higher
weight value to data samples of class (benign or malign), which have a smaller number of data
than the other. This procedure helps increase the focus of the training process on this class rather
than the other class. As a result, it helps to reduce the effects of the overfitting problem of the
CNN networks when training with unbalanced data.

• We combine the outputs of multiple CNN-based models to enhance the classification performance
using several bagging methods, including MIN, MAX, and AVERAGE combination rules which
take the minimum, maximum, and average results of the multiple CNN-based models, respectively.

• We make our algorithm available to the public through [37], so that other researchers can make
fair comparisons.

Table 1. Summary of the previous studies on the ultrasound thyroid nodule image classification problem.

Category Method Strength Weakness

Handcrafted-based
Methods

- Classification is implemented using
extracted image features via
human-designed methods [22,24,26,31]

- Easy to implement.
- Does not require

high-performance
hardware devices

- Low
classification accuracy

Deep
learning-based
methods

- Fine-tuning an existing CNN network for
classification [21,23,28]

- Extracts image features using a pretrained
CNN network while classification is
implemented using an SVM [28]

- Combines detection and classification
based on a CNN network [27]

- Utilizes the power of deep
learning and transfer
learning methods

- Higher accuracy than
handcrafted-based methods

- There is room for
enhancing
classification performance

Fusion of deep
and
handcrafted-based
methods

- Extracts image features from both spatial
and frequency domains for classification
problem [36]

- Applies a cascade classifier
scheme to enhance
classification performance
using handcrafted and
deep features

- More complicated and
takes longer processing
time than using a single
method (FFT-based or
CNN-based methods)

- Extracts image information from both
spatial and frequency domains for
classification problem

- Combines classification results by
multiple CNN models to enhance
classification performance

- Reduces the effect of unbalanced training
samples of CNN network by using
weighted cross-entropy loss function.
(Proposed method)

- Analyzes the ultrasound
thyroid images using
different architectures of
CNN network

- Enhances the classification
results compared to the
use of single
CNN architecture

- Requires strong hardware
equipment to run multiple
CNN networks

- Takes longer processing
time than the
previous studies.

294



Sensors 2020, 20, 1822

The remainder of our paper is organized as follows. In Section 2, we provide detailed descriptions
of our proposed method for diagnosis of malignant thyroid nodules using the artificial intelligence
technique. In Section 3, we validate the performance of the proposed method using a public ultrasound
thyroid dataset, namely the Thyroid Digital Image Database (TDID) dataset [20]; compare the findings
with the previous studies; and provide a discussion about our results. Finally, we present the conclusion
of our study in Section 4.

2. Proposed Method

2.1. Overview of the Proposed Method

In Figure 1, we show some examples of ultrasound thyroid images in the TDID dataset [20].
As shown in these examples, the captured ultrasound thyroid images contained two main regions: the
background (dark region) and the thyroid (brighter regions). Focusing on the thyroid region, the benign
and malign cases exhibited several differences: the malign case images contained nodules with
round-like shape and exhibited the calcification phenomenon. Based on this observation, we proposed
a new thyroid nodule classification method as shown in Figure 2.
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Figure 1. Example of captured ultrasound thyroid images in the thyroid digital image database (TDID)
dataset [20]: (a) benign cases and (b) malign cases.

In Figure 2, we depicted the overall flow-chart of our proposed method for thyroid nodule
classification using ultrasound images. As shown in this figure, our proposed method receives an
ultrasound image of thyroid region and outputs a suggestion for doctors (radiologists) about whether
the image contains a benign or malign case of a thyroid nodule. To perform its functionality, an input
ultrasound thyroid image is first passed through a thyroid region detection method to filter-out
the background and noise region before feeding it to our main algorithm. This step is necessary
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and important to enhance the classification performance because the background and noise provide
redundant information, and consequently, they can have negative effects on the classification system.
The detail description of this step is mentioned in Section 2.2. As a subsequent step, we performed a
coarse classification step to classify the input ultrasound thyroid image into one of three categories,
including ‘benign’, ‘malign’, and ‘ambiguous benign–malign’, using the image of the thyroid region
(image obtained after filtering out the background and noise) based on a handcrafted-based method
extracted in the frequency domain. This classification step was used to detect the easy benign or malign
samples, reduce processing time, and shift the focus of the deep learning-based model on the more
difficult samples. When the coarse classifier classified the input images as ‘ambiguous benign–malign’
cases, the input image was then further processed (classified) by a deep neural network based on the
CNN method. The detail descriptions of these steps are included in the Section 2.3 for the coarse
classifier, and Section 2.4 for the fine classifier.
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2.2. Preprocessing of Captured Thyroid Images

As shown in Figures 1 and 2, the captured ultrasound thyroid images contained two main parts,
that is, the background (boundary parts with low illumination and some additional artifacts) and the
thyroid region (the inner brighter part that captures the details of the thyroid region). It is easy to
see that the background regions contain no information about whether an image contains benign or
malign cases of thyroid nodules. Besides, it also contains some artifact information that was added
to an image as indicators for the radiologist, such as the patient information or capturing system
configuration, during the image acquisition process. Due to this reason, the background region should
be removed before passing images to the main classification system. This step is a preprocessing
step and has been well-studied in a previous study [36]. In our study, we used a popular algorithm
for removing background regions as shown in the studies by Zhu et al. [21] and Nguyen et al. [36].
Steps for localizing the thyroid region and removing the background regions are roughly described in
Figure 3.

As shown in Figure 1, the thyroid region is normally displayed as the largest brighter region in the
captured ultrasound thyroid image. Although several brighter regions exist in an ultrasound thyroid
image, such as the illumination indicator and text for specifying capturing system configuration,
the size of these regions is much smaller than that of the thyroid region. Based on this observation,
we first performed an image binarization method to detect all brighter regions in the captured image
using an optimal threshold value. In our study, we used a binarization method proposed by Otsu’s
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et al. [38], which takes an input image and performs binarization adaptively by selecting the most
suitable threshold value. A result of this binarization step is given in Figure 3b using the input image
of Figure 3a. As shown in Figure 3b, although there were some brighter regions detected, the thyroid
region had the largest size. Based on this truth, we detected the thyroid region by selecting the largest
object in the binarized image and discarding the other regions as shown in Figure 3c. Finally, the
detected thyroid region was determined by taking the bounding-box in the input image (in Figure 3a)
based on the selected region of Figure 3c. An example of a resultant image of this step is given in
Figure 3d using the input image of Figure 3a. As we can see from this example, the thyroid region was
well localized using our localization method.
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Figure 3. Example result of the thyroid region detection algorithm used in our study: (a) an input
ultrasound thyroid image; (b) the binarized image; (c) the thyroid region detection by selecting the
largest object; and (d) the final detection results.

2.3. Coarse Classifier Based on Information Extracted in the Frequency Domain

As shown in Figure 2, our proposed method is based on a cascade structure of classifiers using
handcrafted-based and CNN-based methods. As the first stage of our proposed classification method,
we performed a coarse classification based on the information extracted from images in the frequency
domain, as suggested by Nguyen et al. [36]. The purpose of this classifier is to preclassify samples that
are easily classified using information extracted in the frequency domain. As exploited by Nguyen et
al. [36], there are differences between benign and malign case images in the frequency domain caused by
the appearance of nodules and calcification phenomenon in the thyroid regions. That is, the appearance
of nodules and calcification makes the captured ultrasound thyroid image of malign cases brighter,
and the change in pixel values is faster around these nodule regions than other regions. Based on
this observation, we used the Fast Fourier Transform (FFT) method to extract this difference and
classify an ultrasound thyroid image into one of three categories: ‘benign’, ‘malign’, and ‘ambiguous
benign–malign,’ as shown in Figure 4. As shown in Figure 4a, the thyroid region image was first
transformed from the spatial domain to the frequency domain using the FFT method to extract the
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distribution of image energy in the frequency domain. With this extracted image in the frequency
domain, Nguyen et al. proposed an image feature extraction method that uses the ratio between
some selected frequency components and the total frequency components as shown in Equation
(1) [36]. In this equation, Ps indicates the total power spectrum of image frequency components inside
a selected frequency region, and the P indicates the total power spectrum of all frequency components
of an image [36]. As indicated by Nguyen et al. [36], there could be several methods for selecting
the frequency region in which we used to measure Ps (the selected frequency components) such as
the use of frequency components inside a circle, horizontal, vertical, or a combination of them [36]
around/through the DC component (zero-frequency component) of an image. However, as indicated
by their work with the TDID dataset, they showed that the frequency components inside a circle
around the DC component works better than other methods. Therefore, we selected to use the circle
shape in our study as shown in Figure 4a (red circle).

Score =
Ps

P
(1)

We compared the extracted image feature in the frequency domain with two threshold values, i.e.,
TH_LOW and TH_HIGH in Figure 4b for classifying the input ultrasound thyroid image into one of
the three categories. These threshold values are experimentally obtained based on the training dataset.
As a result, if the extracted image feature (Score in Figure 4b) is lower than TH_LOW, it is regarded as
the ‘benign’ case image; if the extracted image feature is higher than the TH_HIGH image, it is regarded
as the ‘malign’ case image. Otherwise, it is considered to belong to the ‘ambiguous benign–malign’
category in which we are not sure which class it should belong to. For this case, the final classification
was done based on our second classifier that was based on the deep learning technique.
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2.4. Fine Classifier Based on a Combination of Multiple CNN Models

2.4.1. Introduction to the Deep Learning Framework

The deep learning-based method implies the use of a deep (many layers) neural network for a
regression or classification problem. Although this is not a new technique, this method has recently
attracted lots of attention from researchers because of the development of GPUs that are used to
speed-up the processing of the network, and lots of superior (state-of-the-art) performances of digital
signal processing systems have been reported [39–50]. This kind of signal processing technique has been
successfully and widely used in many fields including image processing [39–48] and natural language
processing [49,50]. In Figure 5, we show the general architecture of a CNN network, which is a special
kind of deep learning-based technique and has been successfully used for the image classification
problem. As shown in this figure, a CNN network is composed of two main components, including a
feature extraction component based on convolution operation, and a classification component based
on a multilayer perceptron (neural) network. This structure allows us to learn efficient representation
(image texture features) of an input image using the filtering technique through the application of
convolution operation. With the extracted image features, it is possible to learn a classifier to classify
input image into predesigned classes. All of the network parameters (weights and biases of convolution
filters and multilayer perceptron) can be trained and automatically obtained by a training process using
a back propagation technique and training data. This is the key to make the learning-based method
outperform the handcrafted-based method for the image-based classification problem. In addition,
the use of convolution operation with a weight-sharing scheme allows us to construct a deeper network
than the conventional neural network.
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Figure 5. A general architecture of a Convolutional Neural Network (CNN) network for the image
classification problem.

According to the type of applications, a suitable CNN network was used. Lots of CNN architectures
have been proposed for various image-based systems such as image classification [39–43], object
detection [44,45], 3D image reconstruction [46], and image feature extraction [47,48]. Although the
CNN network has been successfully used in many image-based processing systems, it still has
several limitations caused by its characteristics and internal structure. As mentioned in the previous
studies [39–43], there are two main problems frequently associated with a CNN network. The first
problem is caused by the depth of the network. To learn from data efficiently, we normally need
to construct a deep network that contains many weight layers. However, the deep network is
normally difficult to train due to the vanishing gradient problem [41]. The second problem is caused
by the huge number of parameters that need to be learnt through the training process. For an image
classification system, many CNN networks have been used, such as AlexNet, VGGNet, ResNet,
DenseNet, and InceptionNet. According to their structures, the AlexNet contained about 62 million
parameters, the VGGNet-16 contained about 138 million parameters, the VGGNet-19 contained about
143 million parameters, etc. To learn these huge amounts of parameters requires a strong hardware
power (Central Processing Unit (CPU), GPU) as well as a large amount of training data. These problems
can have strong negative effects on the performance of medical image-based systems because we
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normally require high performance systems using less training data. This is because it is difficult to
collect a large number of medical images owing to special characteristics of this kind of images: they
require expensive data acquisition devices and the cooperation of patients.

As explained above, the conventional CNN networks such as AlexNet or VGGNet were constructed
by chaining weight layers (convolution and dense layers) to extract image features and learn classifiers
for the classification problem. This is a basic CNN architecture and it works fine for a not-too-deep
network. However, there is a problem, called vanishing gradients, which can occur when the depth
of the network increases, and this problem makes the network difficult to train and consequently
degrades the classification performance [41]. To solve this problem, He et al. [41] propose a new
method for not only constructing a very deep CNN network, but also making it easier to train, namely
the residual network (ResNet). In Figure 6, we described the methodology of the ResNet network
building block. By using a new kind of connection, called skip connection, this new type of CNN
architecture can make the network skip some training layers when the input and output of these layers
are close to the identification function. As a result, the network is deeper and easier to train compared
to the conventional CNN networks. In our study, we used this type of CNN architecture to construct a
very deep network for learning texture feature of input ultrasound thyroid images. In detail, we used
a ResNet50-based network that contained a total of 50 weight layers for our classification problem as
explained in Section 2.1 and Figure 2.
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Although the conventional CNN networks have successfully been used to capture image texture
features, their performances are still affected by the large variation of the size of objects that appears in
input images. As a result, choosing a right kernel size for the convolution mask is difficult to achieve,
and normally a single optimal size of convolution mask does not exist. To solve this problem, Szegedy et
al. [42] proposed a new network structure that applies multiple sizes of the convolution mask to extract
image features from the input image. This new network structure is done by stacking its building
blocks, namely inception blocks, as shown in Figure 7. As shown in this figure, instead of using a single
convolution operation between a previous layer and the next layer as has been used in conventional
CNN (Figure 7a), the inception block performed various convolution operations with various kernel
sizes as shown in Figure 7b. Figure 7b shows the naïve inception block to demonstrate the methodology
of the inception method in which the output feature maps are obtained by concatenating the outputs of
several convolution and pooling layers [42]. Obviously, we could extract texture information at various
object sizes (scales) by using multiple convolution operations at different sizes of the convolution
kernel. As we could observe from this figure, the feature map at the output of the inception block
was much richer in information than the conventional convolution block. This structure is not our
contribution, but was proposed by the authors of the inception network [42].
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2.4.2. Proposed Method for Thyroid Nodule Classification Using Multiple CNN Models

As the second classifier used in our proposed method, the deep learning-based method was
applied in the case of the first classifier producing an ‘ambiguous benign–malign’ case as its answer.
This result indicates that the input thyroid ultrasound images were difficult to classify based on the
first classifier and needs to be processed further by the second classifier. In our study, we proposed the
use of a combination of multiple CNN models for the classification purpose as shown in Figure 8.

As shown in this figure, we tended to enhance the classification performance of single CNN model
by combining the classification results of multiple models that have different network architectures.
For this purpose, we used two efficient CNN architectures, including the residual network and
inception network, as explained in Section 2.4.1 and Figures 6 and 7. As shown in the previous
studies, the residual network works well for thyroid nodule classification [21,36]. Therefore, we used
this network in our study. Besides, in our study for the thyroid nodule classification problem, the
nodule’s size was varied according to the condition (status) of the thyroid nodules. To reduce the
effect of this variation on our classification algorithm, we also used the inception network to learn
the characteristics of thyroid nodules. In Tables 2 and 3, we show the detailed descriptions of the
ResNet50-based and Inception-based network architectures used in our study. By combining the
results of these two networks, we could enhance the classification result for CAD for the thyroid nodule
classification system.
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Table 2. ResNet50-based CNN architecture used in our experiments.

Layer Input Shape Output Shape Number of Parameters

Convolution Layers by
ResNet-50 Network (224, 224, 3) (7, 7, 2048) 23,587,712

Global Average Pooling (7, 7, 2048) 2048 0
Batch Normalization 2048 2048 8192

Dropout 2048 2048 0
Output Layer (Dense layer) 2048 2 4098

Table 3. Inception-based CNN architecture used in our experiments.

Layer Input Shape Output Shape Number of Parameters

Convolution Layers by
Inception Network (224, 224, 3) (5, 5, 2048) 21,802,784

Global Average Pooling (5, 5, 2048) 2048 0
Batch Normalization 2048 2048 8192

Dropout 2048 2048 0
Output Layer (Dense layer) 2048 2 4098

To combine the results produced by ResNet50-based and Inception-based network, we used three
combination methods, including the MIN, MAX, and SUM rules as shown in Equations (2)–(4). These
combination methods have been widely used to combine classification scores of multiple biometric
models or multiple classifiers for a single biometric [51–53]. In detail, at the output of each network we
could obtain a classification score that presents the probability of the input image belonging to the
benign or malign class. We referred to S1 and S2 as the decision scores produced by the ResNet50-based
model and the Inception-based model, respectively. Then the MIN rule was performed by selecting
the smallest score between these two scores; the MAX rule was performed by selecting the largest
score between the two scores; and the SUM rule was performed by taking the average score of the two
scores. If the final combination score was larger than the predetermined threshold, the input image
was classified as the benign class. If not, it was regarded as the malign class. This optimal threshold
was experimentally determined with training data.

MIN = min(S1, S2) (2)

MAX = max(S1, S2) (3)

SUM =
S1 + S2

2
(4)

2.4.3. Weighted Binary Cross-Entropy Loss Function for Compensating the Imbalance of
Training Samples

For the image classification problem, the previous studies mostly used the cross-entropy function
to measure the loss (the difference between ground-truth and predicted labels) function [39–42].
In our specific case of thyroid nodule classification, the cross-entropy function is reduced to binary
cross-entropy because we only have two classes of benign and malign. As a result, the formula for the
loss function using Binary Cross-Entropy (BCE) is shown as Equation (5). In this equation, y and (1-y)
indicate the ground-truth labels of two classes (benign and malign); and p and (1-p) indicate the predict
labels (probability) of these classes. This is a very nice loss function that incorporates the probability
theory into its calculation. However, this function only works well if the number of training data of
the two classes is balanced because it considers the losses caused by each class equally. In the case of
imbalance in the training data of the two classes such as the medical image processing system that is
normally faced with the problem of data collection due to special characteristics of medical images, the
binary cross-entropy function can produce bias in the trained classifier. To solve this problem, our
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proposed method uses a modified version of the binary cross-entropy, called the Weighted Binary
Cross-Entropy (wBCE), as shown in Equation (6). As shown in this equation, we assigned different
weight values to the losses caused by samples in each class in the binary cross-entropy function. As a
result, the weighted cross-entropy function makes the training process to focus more on the class,
which has a small number of samples than the other classes, and consequently reduces the bias in the
trained classifier. The weight values can be determined experimentally based on the actual number of
samples in each class in the training dataset. In our experiments with the TDID dataset, the optimal
weights of w0 (0.7) and w1 (0.3) were determined with the training data, and this result corresponds
to the fact that the number of malign samples is much larger than the number of benign samples.
In addition, we show that the weighted binary cross-entropy function is sufficient to reduce bias in the
classification results in Section 3.3.

BCE = −ylog(p) − (1− y) log(1− p) (5)

wBCE = −w0ylog(p) −w1(1− y) log(1− p) (6)

The weighted cross-entropy loss function is not a new method to deal with the imbalanced data
problem in a deep learning-based classification system. There exist several similar studies focusing on
the problem such as the use of focused anchors loss [54], focal loss [55], and class-balanced loss [56].
In these studies, the main idea is that they can down-weight the well-classified examples to make
the classification networks focus on the hard sample ones (focal loss, focused anchors loss); or assign
weights to samples according to the volume of classes (class-balanced loss). As stated in our paper, the
medical image processing systems normally face a common problem caused by the lack of training data.
Due to this problem, the imbalanced data problem is normally occurred and consequently reduces the
performance of the classification system. Therefore, the use of weighted cross-entropy loss function in
our study can be seen as a simple application of this type of technique that is applicable to enhance the
performance of the medical image processing systems.

3. Experimental Results

Based on the proposed method explained in Section 2, in this section, we present various
experiments with a public ultrasound Thyroid Nodule Image Dataset (TDID dataset) to measure
the classification performance of our proposed method. The experimental results are given in the
subsections as follows.

3.1. Dataset and Experimental Setups

Although studies for the ultrasound image-based thyroid nodule classification problem
exist [21–25,29], most of the datasets used in these studies are private. In addition, it is very difficult to
collect a large amount of data owing to the lack of time and the special characteristics of the medical
problems, in which expensive image collection systems and the patient’s cooperation are required.
Therefore, we decided to use a public thyroid nodule image dataset, namely the Thyroid Digital
Image Database (TDID), which was collected and published by Pedraza et al. [20] at the Universidad
Nacional de Colombia. This dataset has been widely used in the previous studies for the thyroid nodule
classification problem [21,28,36]. Therefore, we can not only evaluate the classification performance of
our proposed method, but also compare it with lots of the previous studies to investigate the efficiency
of our study.

The TDID dataset was published in 2015 and contains ultrasound thyroid images of 298 patients.
For each patient, one or more ultrasound images of the thyroid region were collected in the RGB format
with the image size of 560 pixels × 360 pixels. As a result, we extracted a total of 450 thyroid nodule
images for our experiments. To assess the condition of the thyroid region, a Thyroid Imaging Reporting
And Data System (TI-RADS) score is given for each image that was evaluated by radiologists. The
TI-RADS score is defined as a standard to evaluate the condition of thyroid nodules and can take one
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among seven possible values of {1, 2, 3, 4a, 4b, 4c, and 5}. Among these possible values, the TI-RADS
score of 1, 2, and 3 indicate that the thyroid nodules are normal (TI-RADS score of 1), benign (TI-RADS
score of 2), and no suspicious ultrasound features (TI-RADS score of 3), respectively. As indicated by
their meaning, ultrasound thyroid images with TI-RADS scores of 1, 2, and 3 were grouped together
to indicate that they belong to the benign case. The other four possible values of 4a, 4b, 4c, and 5
indicate that the thyroid nodule has one, two, three, and five suspicious features, respectively. Due to
their meaning, the thyroid nodule images with these four TI-RADS scores were normally grouped
together to indicate the malign case of thyroid nodule. In our study, we also used the TI-RADS score to
preclassify thyroid images into either the benign or the malign category for the classification problem
(ground-truth labels).

As explained in Section 2, our proposed method was based on a learning framework to determine
the best classifier for the classification problem. Therefore, we divided the TDID dataset into the
training and testing dataset for this purpose. In detail, we used a five-fold cross-validation scheme to
train and measure the performance of our classification system. As a result, we randomly divided
the benign and malign case data into five parts. Among these five parts, four parts were assigned
as the training data, and the remaining part was assigned as the test data in the 1st fold validation.
This process was repeated five times to train and measure the performance of our proposed method as
a five-fold cross validation scheme. Then, the average testing accuracy of five folds was determined
as a final testing accuracy. In Table 4, we show the detail information of our experimental data
in TDID dataset. Although a validation set is usually used during the training process of a neural
network, we did not use a validation set in our experiments. The reason is that the number of
images in the TDID dataset was small consisting of 450 images. Even we could split this dataset into
training/validation/testing sets, this division method consequently reduced the size of training and
testing sets, which could result in the insufficiency of training a neural network, and we used only
training and testing sets in our experiments like previous methods [21,28,36]. To train the CNN models
mentioned in Section 2.4.2, we performed the fine-tuning technique to reduce the effects of under- or
overfitting problem. The parameters for the training process are given in Table 5.

Table 4. Description of the TDID dataset used in our experiments (each number means the number
of patients).

Benign Case Malign Case
Total

Training Data Testing Data Training Data Testing Data

41 11 196 50 298

Table 5. Parameters for training CNN models in our study.

Optimizer Number of Epochs Batch Size Initial Learning Rate Stop Criteria

Adam 30 32 0.0001 End of Epochs

3.2. Criteria for Classification Performance of a Thyroid Nodule Classification Method

To measure the performance of a thyroid classification system, there are three popular
metrics that have been in use, including the sensitivity, specificity, and the overall classification
accuracy [21,23,28,36,57]. Similar to the previous studies, we also used these three performance
measurements in our experiments to measure the performance of our proposed method as well as to
compare our classification performance with the previous studies. Formulas for these measurements
are given in Equations (7)–(9). Since CAD for a thyroid nodule classification system normally focuses
on two different aspects of the classification problem, that is, the correct classification of benign case
images and a correct classification of malign case images, the specificity and sensitivity measurements
were used to measure the accuracy of these aspects. First, the sensitivity was measured as the ratio
between the true positive (TP) samples (samples that are malign case images are correctly classified as
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the malign ones) over the total number of the malign cases image (TP + false negative (FN)) in a test
dataset as shown in Equation (7). Second, the specificity is the measurement of true negative (TN)
samples (samples that are benign cases are correctly classified as benign ones) over the total number
of benign case images (TN + false positive (FP)) in a test dataset, as shown in Equation (8). As their
definition and measurement methods, the sensitivity reflects the ability of a classification system in
correctly detecting malign cases, while the specificity reflects the ability of a classification system
to correctly detect (classify) benign cases. To access an overall (average) ability of the classification
system, the third measurement (overall accuracy) was used and measured by the total number of
correct classification/detection samples (true positive and true negative samples) over the total number
of samples in a test dataset as shown in Equation (9). As indicated by the above explanations, high
values of specificity, sensitivity, and accuracy were expected for a good classification system. In our
experiments, we measured these criteria by using our proposed method with the TDID public dataset
for performance measurement and comparison with other studies.

Sensitivity =
TP

TP + FN
(7)

Speci f icity =
TN

TN + FP
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

3.3. Classification Results Based on Multiple Artificial-Intelligence Models

As our first experiment, we measured the classification performance of the proposed deep
learning-based network for the thyroid nodule classification problem. For this purpose, we first
performed experiments using individual CNN network, i.e., ResNet50-based architecture as shown in
Table 2, and Inception-based architecture as shown in Table 3. As shown in Section 2.4.3, we set the
weight values of weighted binary cross-entropy w0 and w1 as 0.70 and 0.30, respectively, because the
number of training samples in the benign cases is much smaller than the number of training samples
in the malign case in the TDID dataset as shown in Table 4. In addition, to demonstrating the efficiency
of the weighted binary cross-entropy loss function over the conventional binary cross-entropy loss
function, we additionally performed an experiment in the case of equal weight values, i.e., w0 of 0.50
and w1 of 0.50. The detailed experimental results are given in Table 6 for both the ResNet50-based
network and the Inception-based network. As shown in Table 6, using the ResNet50-based network,
we obtained an overall accuracy of about 87.778% with the sensitivity of 91.356% and specificity of
64.018% in the case of using the conventional binary cross-entropy loss function. These experimental
results are little different from those reported by Nguyen et al. [36]. The reason is caused by the
unstableness of the training process in which the network parameters were randomly initialized at the
beginning of the training process at some new layers as shown in Tables 2 and 3. Using the weighted
binary cross-entropy loss function, we obtained an overall accuracy of 82.412% with a sensitivity of
83.950% and specificity of 72.524%. As we can see from these experimental results, the difference
between the sensitivity and specificity in the case of using conventional binary cross-entropy loss
function was about 27.338% (91.356%–64.018%). This result demonstrates that there was a bias in the
classification result using the conventional binary cross-entropy loss function. Using the proposed
weighted binary cross-entropy loss function, the difference between the sensitivity and specificity was
much more reduced to about 11.426% (83.950%–72.524%). This result indicates that the bias was much
more reduced by using the weighted cross-entropy loss function compared to the conventional binary
cross-entropy loss function.
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Table 6. Classification performance of the individual CNN network using the TDID dataset (unit: %).

Method
ResNet50-Based Network Inception-Based Network

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Using BCE
[39–42] 87.778 91.356 64.018 81.506 83.406 68.760

Using wBCE
(proposed method) 82.412 83.950 72.524 80.792 81.842 74.016

A similar phenomenon also occurred in our experiments with the Inception-based network. Using
the conventional binary cross-entropy loss function, we obtained an overall classification accuracy
of 81.506% with a sensitivity of 83.406% and a specificity of 68.760%. Using the proposed weighted
binary cross-entropy loss function, we obtained an overall classification accuracy of about 80.792%
with a sensitivity of 81.842% and a specificity of 74.016%. Similar to the experimental results by
ResNet50-based network, the difference between the sensitivity and specificity was about 14.646%
(83.460%–68.760%) in the case of using the conventional binary cross-entropy loss function that
was much larger than the 7.826% (81.842%–74.016%) obtained in the case of using weighted binary
cross-entropy loss function. Through these experimental results with the ResNet50-based network
and Inception-based network, we could see that the proposed weighted binary cross-entropy loss
function was more efficient for reducing the overfitting problem by reducing the difference between
the sensitivity and specificity of the testing dataset.

Based on the trained models obtained by training the ResNet50-based network and Inception-based
network, we further performed experiments by combining the classification results of these two models
to investigate the enhancement ability of the combined network compared to the individual model.
As explained in Section 2.4.2, we used three combination methods, including the MIN, MAX, and
SUM rule, to combine the results of ResNet50-based network and Inception-based network as shown
in Equations (2)–(4). The detailed experimental results are given in Table 7. Again, we performed
experiments for the two cases of with and without the proposed weighted binary cross-entropy loss
function. As shown in Table 7, we obtained the overall classification accuracy of 83.938%, 90.603%, and
82.677% for the case of using MIN, MAX, and SUM rule, respectively, with the use of the conventional
binary cross-entropy loss function. The highest overall classification accuracy of 90.603% that was
obtained using the MAX combination rule was much higher than the 87.778% obtained by using only
ResNet50-based network or 81.506% using the Inception-based network. This result demonstrates that
the combination of the results of the two networks helped to enhance the classification performance of
our problem. In addition, the difference between the sensitivity and specificity using the MAX rule
was about 36.728% (95.446%–58.718%). Similarly, we obtained an overall accuracy of 75.200%, 91.192%,
and 78.709% for the case of using MIN, MAX, and SUM rule, respectively, with the use of the proposed
weighted binary cross-entropy loss function. Again, the best classification accuracy was obtained using
the MAX combination rule with the accuracy of about 91.192%. This classification accuracy was the
highest accuracy among those obtained by only ResNet50-based model, Inception-based model even
using conventional binary cross-entropy loss function or the proposed weighted binary cross-entropy
loss function. In addition, the difference between the sensitivity and specificity was reduced to
29.396% (95.083%–65.687%), which was smaller than the 36.728% obtained using the conventional
binary cross-entropy loss function. Through these experimental results, we could conclude that the
combination of the multiple CNN networks could help to enhance the classification accuracy of the
thyroid nodule classification, and the MAX rule outperformed the MIN and SUM rule for combining
the results of individual models. In addition, the weighted binary cross-entropy loss function was
efficient for reducing the overfitting problem caused by the unbalanced training samples of the target
classes in the training data.
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Table 7. Classification performance by combining the two CNN networks using MIN, MAX, and SUM
rules (unit: %).

Method
MIN Rule MAX Rule SUM Rule

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Using BCE
[39–42] 83.938 85.868 71.142 90.603 95.446 58.718 82.677 83.894 74.219

Using wBCE
(proposed method) 75.200 74.859 77.226 91.192 95.083 65.687 78.709 79.167 75.967

3.4. Classification Results by the Proposed Method

Based on our experimental results in Section 3.3, we finally performed the experiments to measure
the performance of our proposed method as explained in Section 2.1 and Figure 2. The detailed
experimental results are given in Table 8. Similar to the experiments in Section 3.3, we performed
our experiments for two cases of with and without the proposed weighted binary cross-entropy loss
function. For the case of the conventional binary cross-entropy loss function, we obtained overall
classification accuracies of 86.928%, 90.603%, and 86.073% for the cases using MIN, MAX, and SUM
rules, respectively. Compared with the classification results in Tables 6 and 7, we see that the proposed
method enhanced the classification results for the cases of MIN and SUM rules. For the case of MAX
rule, the proposed method produced the same classification accuracy as the combination of multiple
CNN models, which was still much higher than the performance of individual CNN models.

For the case of using the proposed weighted binary cross-entropy loss function, our proposed
method produced classification accuracies of 83.517%, 92.051%, and 85.286%, for the MIN, MAX,
and SUM rules, respectively. These classification accuracies were higher than those produced
by individual CNN models and the combination of them as shown in Tables 6 and 7. Especially,
the highest classification accuracy of about 92.051% obtained by using the proposed method with a
MAX combination rule was the highest classification result we obtained in all of our experiments in
Tables 6–8. Compared to the case of using our proposed method but with the conventional binary
cross-entropy loss function, the classification accuracy using our proposed method was also higher
(92.051% versus 90.603%). This result again confirmed that our proposed method with the weighted
binary cross-entropy loss function was efficient for reducing the overfitting problem, and consequently,
enhancing the classification accuracy.

Table 8. Classification performance of our proposed method using the TDID dataset with MIN, MAX,
and SUM rules (unit: %).

Method
MIN Rule MAX Rule SUM Rule

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Using BCE
[39–42] 86.928 89.331 71.142 90.603 95.446 58.718 86.073 87.831 74.219

Using wBCE
(proposed method) 83.517 84.466 77.226 92.051 96.072 65.687 85.286 86.748 75.967

3.5. Performance Comparisons of Proposed Method with the State-of-the Art Methods

As explained in Section 1, there have been several previous studies that proposed their methods
for solving the thyroid nodule classification problem. As one of the earliest studies, Zhu et al. [21] used
the ResNet18-based network for the problem. To reduce the effect of overfitting, the transfer learning
technique was applied, and they reported a classification accuracy of about 84.00% using the TDID
dataset. To deal with the change in nodule sizes, Chi et al. [23] used the GoogLeNet, another name for
the Inception network, for the problem. Using the method by Chi et al. [23], Nguyen et al. [36] evaluated
the classification performance with the TDID dataset and reported an accuracy of about 79.36% in their
experiments. In the study by Sundar et al. [28], they additionally performed experiments with the
VGG16-based network for the thyroid nodule classification problem using their dataset. Using the
VGG16-based network, a classification accuracy of 77.57% was obtained using the TDID dataset [36].
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These mentioned studies have a similar characteristic in that they used a single CNN network with or
without the transfer learning technique for the ultrasound image-based thyroid nodule classification
problem. As a result, the performance of these studies depended extensively on the architecture of the
selected CNN network as well as the training data. Most recently, Nguyen et al. [36] proposed a method
based on a cascade classifier architecture that employs both handcrafted and deep learning-based
methods. In that study, they first classified the input images using information extracted in the
frequency domain. After that, the ambiguous samples were further processed by a deep learning-based
network. The advantage of the study by Nguyen et al. [36] is that they combined information in both
the frequency and spatial domains for the classification problem. However, they did not consider
the difference in deep learning network architectures as well as the imbalance of image samples in
the target classes as we did in this study. Nguyen et al. [36] reported a high classification accuracy
of about 90.88% using their proposed method with the TDID dataset. Compared to the mentioned
classification results by the previous studies, our proposed method produced much better classification
accuracy. As shown in Section 3.4, our proposed method produced a classification accuracy of 92.051%.
In Table 9, we summarized the previous classification performances in comparison with our proposed
method. From the result in this table, we could conclude that our proposed method outperformed the
previous studies for the ultrasound image-based thyroid nodule classification problem.

Table 9. Comparison of the overall accuracy of the previous studies and our proposed method with the
TDID dataset (unit: %).

Methods Accuracy

Zhu et al. [21] 84.00

Chi et al. [23] 79.36

Sundar et al. [28]
VGG16 77.57

GoogLeNet 79.36

Nguyen et al. [36] 90.88

Proposed Method 92.05

3.6. Analysis and Discussion

As shown in Table 9, our proposed method outperformed all of the methods presented in the
previous studies using the TDID dataset. To get a deep visualization about the performance of our
proposed method compared to a previous study by Nguyen et al. [36], we show some example
classification results performed by both studies in Figure 9. In Figure 9a, we show the cases in which
the ground-truth benign case images were incorrectly classified in the study by Nguyen et al. [36].
However, using our proposed method, we correctly classified them as benign cases. As we can
observe from these images, although it is hard to label them as benign or malign case based on human
perception as well as the system by Nguyen et al. [36], our proposed method can still recognize them
as benign case images. Similar to Figure 9a but with examples of the malign case, Figure 9b shows the
example classification results of malign case images. As shown in this figure, our proposed method
also correctly classified them as the malign cases, while the method by Nguyen et al. [36] produced
incorrect classification labels. By human perception, we could find that these images contain nodules
with the calcification phenomenon (white blob region inside a round region (nodule)) that indicates
that they should be malign case images. However, the method by Nguyen et al. [36] made an incorrect
decision. This example shows that our proposed method was more effective than the method used in
the study by Nguyen et al. [36]. Through this example and our experimental results in Section 3.5,
we concluded that our proposed method was more effective than the previous studies for the thyroid
nodule classification problem using ultrasound images.
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As the final experiment in our study, we measured the processing time of our proposed method to
evaluate the real system applicability of our algorithm. For this purpose, we used a desktop computer
with an Intel Core i7-6700 CPU, working clock of 3.4 GHz with 64 GB of RAM memory. To speed up
the deep learning networks, we used a GPU, namely GeForce Titan X, to run the inference of the two
deep learning models [58]. To implement our algorithm, we used Python programming language with
the Tensorflow library for implementing the deep CNN networks [59]. The consequent experimental
results are given in Table 10. As shown in Section 2, our proposed method mainly consists of three
main steps, which include the preprocessing step, a coarse classification by FFT-based method, and
a fine classification by the combination of ResNet and InceptionNet. As shown in Table 10, it took
about 11.4646 ms for the preprocessing step (thyroid region extraction and normalization), 5.093 ms
for classifying the input image using FFT-based method, 17.525 ms for running the ResNet50-based
network, and 23.178 ms for running the Inception-based network. As shown in Figure 2 and Section 2.1,
our proposed method could produce the final decision in two scenarios. First, with the easy input
samples, our proposed method only used the preprocessing and FFT-based steps to produce its
decision. For difficult (complex) samples, our proposed method must invoke the fine classification
steps based on deep learning networks. As a result, it takes at least 16.739 ms (11.646 + 5.093) and at
most 57.442 ms (11.646 + 5.093 + 17.525 + 23.178) to produce a final prediction by our proposed method.
In other words, our proposed method could operate at a speed ranging from 17.4 (1000 ÷57.442) to
59.7 (1000 ÷16.739) fps. Averagely, we could conclude that our proposed method could operate at a
speed of about 38 fps. Through experimental result, we see that our proposed method was suitable for
real-system application using a desktop computer.

Table 10. Processing time of our proposed method (unit: ms).

Preprocessing
Step.

FFT-Based
Classification

ResNet50-Based
Classification

Inception-Based
Classification Total

11.646 5.093 17.525 23.178 57.442

309



Sensors 2020, 20, 1822

4. Conclusions

In this study, we enhanced the classification performance of the ultrasound imaging-based thyroid
nodule classification system by analyzing captured images of the thyroid region in two domains,
i.e., the spatial domain using the deep learning-based method, and frequency domain using the fast
Fourier-based method. Compared to the previous studies, we used two different CNN architectures,
which were different in depth and network structures in this study to analyze an ultrasound thyroid
image. As a result, the input ultrasound thyroid image was better analyzed compared to the single
network as used in the previous studies. Finally, by combining the classification results of two CNN
networks, we enhanced the overall performance of the classification system compared to the previous
studies. In addition, we applied the weighted binary cross-entropy loss function for learning the CNN
models instead of the conventional cross-entropy loss function to reduce the effects of the unbalanced
training samples in the training procedure, and consequently reduce the effect of the under/overfitting
problem. Through experiments with the public TDID dataset, we proved that our proposed method
could give more accurate predictions/suggestions for doctors (radiologists) when diagnosing thyroid
nodule problems than the previous studies.
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Abstract: Although face-based biometric recognition systems have been widely used in many
applications, this type of recognition method is still vulnerable to presentation attacks, which use
fake samples to deceive the recognition system. To overcome this problem, presentation attack
detection (PAD) methods for face recognition systems (face-PAD), which aim to classify real and
presentation attack face images before performing a recognition task, have been developed. However,
the performance of PAD systems is limited and biased due to the lack of presentation attack images
for training PAD systems. In this paper, we propose a method for artificially generating presentation
attack face images by learning the characteristics of real and presentation attack images using a few
captured images. As a result, our proposed method helps save time in collecting presentation attack
samples for training PAD systems and possibly enhance the performance of PAD systems. Our
study is the first attempt to generate PA face images for PAD system based on CycleGAN network, a
deep-learning-based framework for image generation. In addition, we propose a new measurement
method to evaluate the quality of generated PA images based on a face-PAD system. Through
experiments with two public datasets (CASIA and Replay-mobile), we show that the generated face
images can capture the characteristics of presentation attack images, making them usable as captured
presentation attack samples for PAD system training.

Keywords: generative adversarial network; presentation attack detection; artificial image generation;
presentation attack face images

1. Introduction

1.1. Introduction to Face-Based Biometric System

Biometric models, such as fingerprints, faces, irises, and finger-vein models, have been widely
used in high-performance systems for recognizing/identifying a person [1,2]. In addition, these
recognition systems offer more convenience to users than conventional recognition methods, such
as token- and knowledge-based methods [1]. However, with the development of digital technology,
biometric recognition systems are facing an increasing threat from attackers using fake samples to
successfully circumvent recognition systems.

Face-based recognition systems are popular biometric recognition systems and have been used
for a long time to recognize people [3–5]. This type of biometric is based on the fact that facial
appearance can be used to easily distinguish people. To prevent attackers, presentation attack detection
for face recognition (face-PAD) systems have been proposed; these typically use a collection of real
and presentation attack (PA) face images to train a detection model [6–15]. The performance of such
face-PAD systems has been shown to be strongly dependent on the training data, in which PA images

Sensors 2020, 20, 1810; doi:10.3390/s20071810 www.mdpi.com/journal/sensors315
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are captured by simulating several limited types of attacking methods, such as the use of a photo,
video display, or mask. The real images that are captured using real human faces represented in
front of capturing devices (camera) and PA images inherit differences because of different subjects
such as the distribution of illumination, reflection, and noises. However, with the development of
technology, the presentation attack face images are become closer to real face images and can possibly
deceive the face recognition system, making it fail. In addition, the attack methods are very diverse
according to PA instrument (PAI) and attack procedure, such as the use of a three-dimensional (3D)
masks instead of two-dimensional (2D) masks, the use of a high quality photo/video instead of a low
quality photo/video, or the use of different types of photo or different equipment for displaying videos.
As a result, it is difficult to collect a large amount of PA face sample images that simulate all possible
types of attacking methods to train the systems. Consequently, the performance of face-PAD systems
can be reduced and biased if faced with a new type of attacking method that has not been simulated
in the training data during detector training. This is still an open issue and must be studied in more
detail to enhance the security of face recognition systems.

1.2. Problem Definition

As explained in Section 1.1, face-PAD systems are necessary for enhancing the security level
of face-based recognition systems. However, a high-performance face-PAD system requires a huge
amount of training data (real and PA images) in which the PA images can simulate all possible attack
methods and scenario. Unfortunately, this kind of data is hard to collect in a real system because the
attack methods and presentation attack instruments are diverse and can change and become more
sophisticated as the technology develops. To solve this problem, our study aims to artificially generate
PA images that are close to the captured PA images by learning the presentation attack characteristics
of available captured PA images and the fusion of the real and these PA images. Our study makes the
following four novel contributions:

- This is the first attempt to generate PA face images based on a deep-learning framework. By
learning the characteristics of real and PA images in a training dataset, our method can efficiently
generate PA images, which are difficult to collect using conventional image collection methods
due to the diversity of attack methods.

- By training our CycleGAN-based generation network using both captured real and PA images,
we learn the characteristics of PA images in addition to the fusion of real and PA images. This
approach can consequently help to fill the gap of missing PA samples caused by the diversity of
attack methods.

- We propose a new measurement method to evaluate the quality of generated images for
biometric recognition systems based on the use of a conventional face-PAD system and the
dprime measurement.

- The code and pre-trained models for PA image generation are available as a reference to other
researchers [16].

The remainder of this paper is organized as follows: In Section 2, we summarize works related
to our study. In Section 3, the proposed method is described in detail along with several necessary
preprocessing steps. Using the proposed method in Section 3, we performed various experiments
using two public datasets (including CASIA [7] and Replay-mobile [9]) to evaluate the generated PA
images, and the results are given in Section 4. Finally, we conclude our work and discuss future work
in Section 5.

2. Related Works

As explained in Section 1, researchers have paid much attention to developing face-PAD systems
to detect PA samples from face recognition systems to enhance their security [6–15]. Initially, they
used several handcrafted image feature extraction methods to extract image features and detect PA
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samples by applying some classification method based on the extracted image features [6,8,10,11].
For example, color information [10], texture information extracted by local binary pattern (LBP) or
dynamic local ternary pattern (DLTP) [6,11], and the defocus phenomenon [8] have been used for
face-PADs. In [17], Benlamoudi et al. proposed a method that combined multi-level local binary pattern
(MLLBP) and multi-level binarized statistical image features (MLBSIF) for face-PAD. In addition,
they compared the detection accuracy of their proposed method with other six handcrafted-based
methods using CASIA dataset. However, their detection performances were not sufficient because they
were designed by expert knowledge of researchers alone, which can only reflect some limited aspects
of the face-PAD problem. Recently, with the development of learning-based methods, especially
deep-learning, the detection performance of face-PAD systems has significantly enhanced by using
image features extracted by convolutional neural networks (CNNs) instead of the handcrafted image
features. Nguyen et al. [15] used a stacked CNN-RNN network to learn deep representation of input
face sequences. By combining the deep and handcrafted image features, they showed that the detection
performance of sequence-based face-PAD system is greatly enhanced compared to the use of only
handcrafted features. Recently, Liu et al. [18] proposed a deep tree learning method for face-PAD
systems. By using the zero-shot learning technique, they made the face-PAD system more generalized
for unknown attack methods. However, a common limitation of deep-learning-based methods is
that they require a large amount of data to efficiently train the detection models, which is usually
difficult to obtain because it requires much labor and cost. An additional problem with common
face-PAD systems is that attack methods are diverse. As shown in previous studies [6–15], attackers
can use various methods to attack a face recognition system depending on the PAI and approach used.
Therefore, it is practically impossible to collect sufficient data to simulate all possible attack cases to
train a detection model. One possible solution to this problem is an automatic PA face image synthesis
and generation method.

With the development of deep-learning frameworks, image generation has attracted many
researchers in the computer vision research community [19–32]. A major method for generating
images is the generative adversarial network (GAN), which was proposed by Goodfellow et al. [19].
This type of image generation method has successfully been applied to many computer vision tasks,
such as image editing [20,21], super-resolution interpolation [22–24], image de-blurring [25], data
generation [26–28], image-to-image translation [29–31], and attention prediction [32]. The key to the
success of the GAN is that it trains two deep CNNs (the discriminator and generator) in an adversarial
manner. Specifically, the discriminator network is responsible for discriminating between two classes
of image, ‘real’ or ‘fake’, while the generator is responsible for generating ‘fake’ images that are as close
as possible to ‘real’ images. These two networks are trained to perform their functionalities using a
large amount of training data. As a result, the generator can generate fake images that are very similar
to real images.

For biometric image generation, there have been studies that generate images for palm-prints [26],
irises [27], and fingerprints [28,33]. In [26], the authors used a GAN method to generate realistic
palm-print images from a training dataset. In principal, a deep-learning-based system requires a large
amount of training data to successfully train a network. However, collecting such data usually requires
much effort and expense and sometimes is impossible due to the diversity of input images. To reduce
the effects of this problem, several simple techniques, such as cropping-and-scaling, adding noise, and
mirroring have been adopted to make the training dataset slightly more generalized. However, these
simple methods are not strong enough for full data generalization. As a result [26], the GAN-based
method is sufficient for generating realistic palm-print images and consequently helped to reduce the
error of the palm-print recognition systems. For other biometric systems, such as the fingerprint and
iris, a GAN-based network has also been used to generate images that are close to captured ones [27,28].
In [33], Bontrager et al. showed that fingerprint images generated by a GAN-based network can be
used to fool fingerprint recognition systems. This means that the generated images were very similar
to actual captured images and also demonstrates that fingerprint recognition systems are vulnerable.
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Although GAN-based methods have been widely used for image generation problems, there have
been no studies conducted to generate PA images for a face-PAD system. Inspired by the problem of
face-PAD systems, we propose a PA image synthesis/generation method for the face-PAD problem
based on a GAN. Our study serves two purposes. First, we aim to generate realistic PA images to
reduce the effort of PA image acquisition in designing face-PAD systems. Secondly, by training our
generation system using not only captured PA face images but also real face images, we tend to
generate more trustable PA images, which can fill the gap of missing samples caused by the diversity
of attacking methods. Table 1 summarizes the various previous studies that are related to ours.

Table 1. Summary of GAN-based image generation methods for biometrics systems.

Task Purpose

Fingerprint image generation [28,33]

-Generate realistic fingerprint images that are close to captured
fingerprint images [28,33].
-Demonstrate that synthetic fingerprint images are capable of
spoofing multiple peoples’ fingerprint patterns [33].

Iris image generation [27] -Generate realistic iris images that are close to captured iris images

Palm-print image generation [26]

-Generate realistic palm-print images and use them as augmented
data to train a palm-print recognition system.
-Enhance the performance of a palm-print recognition system
using generated images.

PA face image generation
(Our approach)

-Generate realistic PA face images to reduce the effort required for
image acquisition.
-Fill the gap of missing samples caused by diversity of
attack methods.

3. Proposed Method

In this section, we provide a detailed description of our proposed method for generating PA face
images using the deep-learning method based on the CycleGAN network architecture.

3.1. Overview of the Proposed Method

Figure 1 presents an overview of our proposed method for generating PA images.
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Figure 1. Overview of our proposed method for generating PA face images.

As explained in Section 2, our method aims to generate PA images using a Cycle-GAN network
architecture. Therefore, the input of the network is a face image captured in the wild. To learn the
characteristics of real and PA images efficiently for the generation problem, the input captured face
images are first preprocessed by a face detection and normalization block to detect the face as well as
align the face images. This step is explained in more detail in Section 3.2. Using the result of this step,
we generate PA images using an image generation network, which is described in Section 3.3.
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3.2. Face Detection and Normalization

As shown in Figure 1, our proposed method receives a captured face image as input and generates
a PA image at the output. As indicated in previous studies [6–15], the discrimination information
between real and PA images mostly appears inside the face region rather than in the background
regions. In addition, the purpose of our proposed method is to generate realistic PA images to reduce
the effort required in presentation attack image acquisition. Therefore, the input captured face image
must be preprocessed to remove the background before using it to generate a PA image.

Generally, an input captured face image contains not only faces but also background regions.
Therefore, we perform two preprocessing steps on the input face image: face detection and in-plane
rotation compensation [15]. As the first step, we use a face detection method based on the ensemble
of regression tree (ERT) proposed by Kazemi et al. [34]. This is an efficient and well-known method
for accurate face and face landmark detection. Using this method, we can efficiently locate the face
and additional 68 landmark points on the detected face, which can be used to define face shape [15].
Because we are generating PA images by learning the discrimination information between two types
of face images, the input face image should be aligned to reduce complexity and misalignment
and to let the generator focus on learning the characteristics of the two types of images. Using the
detected face and its landmark points, we further perform an in-plane rotation compensation step to
compensate the misalignment of the input face image [15]. Figure 2 illustrates the methodology of these
steps. In Figure 2a, we illustrate the abstract methodology of the face detection and in-plane rotation
compensation steps. A detailed explanation of the mathematical and implementation techniques is
provided by Nguyen et al. [15]. In Figure 2b, we show some example results (extracted face images) of
the implementation of these steps. As shown in this figure, the final detected face images are aligned to
a frontal face without in-plane rotation. This normalization step helps to reduce the effects of non-ideal
input images and makes the training procedure more focus on learning the characteristics of images.
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Figure 2. Methodology and an example result of face detection and misalignment compensation steps:
(a) overview of method for face detection and in-plane rotation compensation with input captured face
image (left) and result image (right); (b) example results.

3.3. GAN-Based Image Generation Network

As explained in the above sections, our study aims to generate PA images using captured real
images as the input of the generation network. Figure 3 illustrates the generation methodology of
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our study. In Figure 3a, we show a general concept of the distribution of the real and PA images
in which the real images are captured by real human faces presenting in front of capturing devices,
while the PA images can be obtained by either capturing presentation attack models (photo, video,
mask) or generating by an image generation model. In Figure 3b, we show the general concept of
our PA image generation framework. As shown in this figure, we can use captured real and PA
images to train a generation model to learn the characteristics of these two types of face images and
a transformation function from real to PA classes. As a result, we obtain a model to transform a
captured real image into a PA image. To construct a generation model, we built a GAN network
based on a popular image generation network, namely CycleGAN (as shown in Figure 3b), using two
discriminators (DX and DY), which are responsible for distinguishing the real and generated real
images (DX) and distinguishing PA and generated PA images (DY), and two generators (GX and GY),
which are responsible for generating PA images using real images (GX) and generating real images
using PA images (GY). The two discriminator networks share the same discriminator architecture, as
described in Section 3.3.1, and the two generator networks share the same generator architecture, as
described in Section 3.3.2.
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Figure 3. Overview of our deep-learning-based image generation network: (a) Demonstration of the
distribution of real and PA images; (b) Overview of our network structure for PA image generation. In
this figure, the real and PA indicate the captured real or presentation attack images; genReal and genPA
indicate the generated real and generated presentation attack images using generator networks and the
input real and PA images; fx, fy, fxy, and fyx indicates the relation function models by discriminator
(DX, DY) and generators (GX, GY), respectively.

To best of our knowledge, our study is the first attempt to use CycleGAN-based network to
generated PA face images for face-PAD system. The reason for the use of a CycleGAN-based network
to generate PA images in our study is that we tend not only to generate trustable PA images that are
close to captured real images as much as possible but also to stimulate new type of presentation attacks
that does not exist in training data. For this reason, we should learn the characteristics of both captured
real and PA images, and the transformation between the two domains. Because of this reason, we think
the CycleGAN-based network is most suitable for our goal.

3.3.1. Discriminator Architecture

The discriminator in the GAN-based network has the responsibility of distinguishing images in one
class from images in another. Therefore, a discriminator is essentially a classification network. Inspired
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by the success of recent deep-learning-based image classification works [35–42], we use a conventional
CNN to construct discriminators in our study. In previous studies on the image classification
problem [35–42], a deep-learning-based network has been constructed using two separated parts,
including convolution layers and fully-connected (dense) layers. Among these parts, the convolution
layers are used to extract image features using the convolution operation. Based on the extracted
image features, the fully connected layers are used to learn a classifier to classify input features into
several predesigned groups. The use of these two parts leads to a high performance in classification
systems. However, it has a weakness that it requires a huge number of parameters, which make
the classifier complex and difficult to train. To reduce the effects of this problem, we design the
discriminators in our GAN-based network by simply using convolution layers to extract image features.
As a result, the image classification step is directly executed by comparing the extracted image features
with the ground-truth image features of the desired class. In Figure 4, we illustrate the structure
of the discriminator used in our study. As shown in this figure, the discriminator contains five
convolution layers with a stride value of 2, followed by a leaky rectified linear unit (Leaky ReLU) as
the activation function. This network accepts an input color image of 256-by-256 pixels to produce a
feature map of 32-by-32 pixels as the output. Table 2 gives a detailed description of the layers and their
parameters in the discriminator network. Although pooling layers, such as max or average pooling, are
frequently used after convolution layers for feature selection to make the CNN network less invariant
to image translation, this is not suitable in our case, which uses only the convolution operation in the
discriminator. The reason for this is that pooling layers select a dominant feature for each image patch.
As a result, the extracted feature maps are misaligned and give poor classification accuracy. To solve
this problem, the discriminator in our study only uses convolution layers with a stride of 2 without a
pooling layer. This implementation helps to extract image features in patches (blocks of image) and
removes the effects of misalignment on the extracted feature maps.
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Table 2. Detailed description of the discriminator network used in our study (input and output shape
is in format: height ×width × depth).

Type of Layer Kernel
Size Stride Number

of Filters
Alpha of

Leaky ReLU Input Shape Output Shape

Convolution 4 × 4 2 64 - 256 × 256 × 3 128 × 128 × 64
Leaky ReLU - - - 0.2 128 × 128 × 64 128 × 128 × 64
Convolution 4 × 4 2 128 - 128 × 128 × 64 64 × 64× 128

Instance
Normalization - - - - 64 × 64 × 128 64 × 64 × 128

Leaky ReLU - - - 0.2 64 × 64 × 128 64 × 64 × 128
Convolution 4 × 4 2 256 - 64 × 64 × 128 32 × 32 × 256

Instance
Normalization - - - - 32 × 32 × 256 32 × 32 × 256

Leaky ReLU - - - 0.2 32 × 32 × 256 32 × 32 × 256
Convolution 4 × 4 1 512 - 32 × 32 × 256 32 × 32 × 512

Instance
Normalization - - - - 32 × 32 × 512 32 × 32 × 512

Leaky ReLU - - - 0.2 32 × 32 × 512 32 × 32 × 512
Convolution 4 × 4 1 1 - 32 × 32 × 512 32 × 32 × 1

In our study, we only use the convolution layers to extract image features (feature maps) and
matching the output of the network with the corresponding label feature maps where feature map
of ones represents the ground-truth label of real images, and feature map of zeros represents the
ground-truth label of PA images. Therefore, Figure 4 does not contain some layers such as fully
connected layer (FC), softmax, or classification. Although we can add these layers (FC, softmax, etc.)
to the end of this figure to construct a discriminator as what has done with a normal convolutional
neural network, the use of only convolutional layers helps to reduce the number of network parameter
and make it not depend on the shape of input images. Consequently, it helps to reduce the overfitting
problem that normally occurs in training the deep-learning-based networks.

As shown in Table 2, our discriminator network uses an even kernel in convolution layers.
Although odd kernels have been normally used in CNN networks, the even kernel has been used in
previous studies for GAN models such as conditional GAN [20], de-blurred GAN [25], pix2pix [31], or
CycleGAN-based network [29]. Therefore, we selected to use even kernels in our study.

3.3.2. Generator Architecture

The generator, which is responsible for image generation, is the heart of a GAN-based network.
In our study, we use a deep CNN to construct the generator. In detail, the generator is constructed
as an auto encoder-decoder network, as shown in Figure 5. At the input, the generator accepts an
input image and then performs initial pre-encoding steps, which are composed of three convolution
layers to encode the input image. As indicated in previous studies [37,41–43], the performance of
deep-learning-based systems can be much enhanced by making them deeper. Using this characteristic,
we continue processing the feature maps by applying a sequence of nine residual blocks to further
manipulate the image data.

The residual connection was first introduced in the work by He et al. [42]. In their work, they
showed that it is difficult to train a very deep neural network that is made by linearly stacking weight
layers. The problem is caused by the vanishing gradient problem that normally occurs when the depth
of the network increases. Consequently, this problem causes the network’s performance saturated and
degrading rapidly. To solve this problem, He et al. proposed a new network structure, namely residual
block, as shown in Figure 5a, where the residual block uses an identity shortcut connection to skip one
or more layers during training the network. As a result, training of some layers becomes easier if they
simply are identity mappings.
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Figure 5. Illustration of the generator network used in our study: (a) residual block architecture that is
used to increase depth of network; (b) draw sketch structure of generator network.

Based on this architecture, we use the residual block in our study to increase the depth of the
generator network that is efficient for enhancing the performance of a neural network. The reason is
that we not only want to make the network deeper but also make the network easy to train using a
residual architecture, which was successfully designed to reduce the effects of the exploring/vanishing
gradient problem [42]. To obtain the output image, we use several deconvolution layers on the output
of the residual blocks, as shown in Figure 5b. In Table 3, we give a detailed description of the generator
network used in our study.

Table 3. Detailed description of the generator network used in our study (input and output shape is in
format: height ×width × depth).

Type of Layer Block Kernel
Size Stride Number

of Filters Input Shape Output Shape

Convolution

Encoding

7 × 7 1 64 256 × 256 × 3 256 × 256 × 64

Instance Normalization - - - 256 × 256 × 64 256 × 256 × 64

ReLU - - - 256 × 256 × 64 256 × 256 × 64

Convolution 3 × 3 2 128 256 × 256 × 64 128 × 128 × 128

Instance Normalization - - - 128 × 128 × 128 128 × 128 × 128

ReLU - - - 128 × 128 × 128 128 × 128 × 128

Convolution 3 × 3 2 256 128 × 128 × 128 64 × 64 × 256

Instance Normalization - - - 64 × 64 × 256 64 × 64 × 256

ReLU - - - 64 × 64 × 256 64 × 64 × 256

Residual
(Repeated

9 times)

Convolution 3 × 3 1 256 64 × 64 × 256 64 × 64 × 256

Convolution 3 × 3 1 256 64 × 64 × 256 64 × 64 × 256

Deconvolution

Decoding

3 × 3 2 128 64 × 64 × 256 128 × 128 × 128

Instance Normalization - - - 128 × 128 × 128 128 × 128 × 128

ReLU - - - 128 × 128 × 128 128 × 128 × 128

Deconvolution 3 × 3 2 64 128 × 128 × 128 256 × 256 × 64

Instance Normalization - - - 256 × 256 × 64 256 × 256 × 64

ReLU - - - 256 × 256 × 64 256 × 256 × 64

Convolution 7 × 7 1 3 256 × 256 × 64 256 × 256 × 3

Tanh Normalization - - - 256 × 256 × 3 256 × 256 × 3
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In Tables 2 and 3, the “Normalization” implies the instance-normalization that normalizes the
feature maps to a normal distribution with zero-mean and unit variance [25]. The normalization
technique is normally used in the neural network to normalize feature maps and make them in the
same range and comparable. For the generator network, we tend to generate a real image that normally
has pixel values in the range of [0,255] (color image) or [−1, 1] (normalized image) at the output of the
network. Therefore, we used the Tanh normalization function at the last layer of the generator to scale
the output of the network in the range from −1 to +1.

3.3.3. Calculation of Loss

As discussed in the above sections, our proposed method is based on the CycleGAN network
architecture for training an image generation model. To train our network, we must calculate the
values of the loss function during the training procedure. For this purpose, let X and Y be two image
domains corresponding to the “real” and “PA” classes, respectively. As shown in Figure 3b, we use
two discriminator networks (DX and DY) and two generator networks (GX and GY) to construct the
GAN network in our study. In each domain, we have one generator and one discriminator, as shown in
Figure 3b. In detail, the discriminator DX is the discriminator in the X domain, which is responsible for
discriminating samples in the X domain from those generated by GY using samples in the Y domain;
the generator GX is the generator in the X domain, which is responsible for generating samples in
the Y domain using input samples in the X domain. Similarly, we have the discriminator DY and
generator GY in the Y domain. GX is used to generate fake samples of the Y domain using samples in
the X domain, and DY is used to discriminate the ground-truth samples of the Y domain from those
generated by GX. Therefore, we define the adversarial loss function LGAN(GX, DY, X, Y) as follows:

LGAN(GX, DY, X, Y) = Ey∼p(y)[log(DY(y)] + Ex∼p(x)[log(1− DY(GX(x)))] (1)

The first term Ey∼p(y)[ f (DY(y)] is the mean of the loss of the discriminator DY using ground-truth
samples in the Y domain (PA images), and the second term Ex∼p(x)[log(1−DY(GX(x)))] is the mean of
the loss of DY using the PA images generated by GX because DY is responsible for discriminating its
ground-truth sample (PA image) from the samples generated by GX. Similarly, we have the adversarial
loss LGAN(GY, DX, Y, X) for GY and DX as follows:

LGAN(GY, DX, Y, X) = Ex∼p(x)[log(DX(x)] + Ey∼p(y)[log(1− DX(GY(y)))] (2)

Equations (1) and (2) describe the loss function using the conventional cross-entropy loss function.
However, as indicated by previous research [44], the use of the standard cross-entropy loss function in
a deep convolutional GAN (DCGAN) can cause the vanishing gradient problem, and this problem
makes the network difficult to train. To overcome this problem and make network training easier, we
use the least-squared error instead of conventional cross-entropy for loss calculation in our experiments.
As a result, the adversarial loss is as described by Equations (3) and (4) as follows:

LGAN(GX, DY, X, Y) = Ey∼p(y)

[
(DY(y) − 1)2

]
+ Ex∼p(x)

[
(DY(GX(x)))

2
]

(3)

LGAN(GY, DX, Y, X) = Ex∼p(x)

[
(DX(x) − 1)2

]
+ Ey∼p(y)

[
(DX(GY(y)))2

]
(4)

In addition to the adversarial losses, we also use cycle-consistent-loss (cycle-loss) in the
reconstructed path to ensure the quality of the reconstruction of the input images using the two
generator networks GX and GY. Cycle-loss is defined by Equation (5):

Lcycle
(
Gx, Gy

)
= Ex∼p(x)

[∣∣∣
∣∣∣Gy(Gx(x)) − x

∣∣∣
∣∣∣
]
+ Ey∼p(y)

[∣∣∣∣
∣∣∣∣Gx

(
Gy(y)

)
− y

∣∣∣∣
∣∣∣∣
]

(5)

As a result, the final loss function used in our study is given by Equation (6), which takes a
weighted sum of the adversarial loss and cycleloss. In this equation, λ is used to indicate the weight
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(importance) of cycleloss over adversarial loss. In our experiments, we used the lamda value of 10 as
suggested by Zhu et al. [29].

LGAN(GX, GY, DX, DY) = LGAN(GX, DY, X, Y) + LGAN(GY, DX, Y, X) + λLcycle
(
Gx, Gy

)
(6)

4. Experimental Results

4.1. Experimental Setups

As explained in our above sections, our study purpose is to generate PA images those are close
to the captured PA images, not detecting PA images. Similarity measurements are usually used
to evaluate the performance of such systems. As indicated by their meaning, a high performance
image generation system has the ability to generate images which are as similar as the ground-truth
images. To measure the performance of the image generation model, we followed a well-known quality
measurement, namely Frechet Inception Distance (FID) [27,28,45–48]. In addition, we proposed a new
quality measurement, namely presentation attack detection distance (padD) as shown in Equation (8).
This newly proposed measurement has nice graphical visualization characteristics and it is customized
for face-PAD problem. Along with padD measurement, we additionally measured the distribution and
the error of face-PAD method with newly generated PA images using attack presentation classification
error rate (APCER) measurement, which is followed the ISO/IEC JTC1 SC37-ISO/IEC WD 30107-3
standard for presentation attack detection [49]. The APCER which is along with bona-fide classification
error rate (BPCER) and average classification error rate (ACER) are the three popular performance
measurements for a presentation attack detection system defined in ISO/IEC JTC1 SC37 standard [49].
By measuring the APCER value, we can evaluate the probability of a generated PA image successfully
circumvent a face-PAD system.

For the first measurement method, the FID score is used to measure the quality of the generated
images based on the features extracted by a pretrained inception model [43]. This method was proved
to work better than the traditional inception score (IS) method [45]. In detail, this method compares
the similarity of the two distributions of the extracted features of captured PA images and those of the
generated PAD images. For this purpose, a pretrained inception model, which was successfully trained
using the ImageNet dataset, is used to extract a 2048-dimensional feature vector for each input image.
Suppose that we have N captured PA images and M generated PA images. Using this method, we
extract N and M feature vectors for captured PA and generated PA images, respectively. Because the N
captured PA images are from the same class (the ground-truth PA images), they form a distribution in a
2048-dimensional space. A similar situation occurs with the M generated images. As a result, we have
two distributions for the two classes of images. Suppose these distributions are normal distributions
with mean µ and covariance matrix Σ. Then, the FID is given by Equation (7):

FID =

∣∣∣∣∣∣

∣∣∣∣∣∣ µr − µg

∣∣∣∣∣∣

∣∣∣∣∣∣
2 + Tr

(
Σr + Σg − 2

(
ΣrΣg

) 1
2

)
(7)

In this equation, the subscripts r and g represent real and generated images, respectively.
As shown in Equation (7), the FID measures the dissimilarity between the two distributions in
2048-dimensional space. As a result, a small value of FID indicates a high level of similarity between the
two distributions. The FID measurement is based on the texture features extracted from images using a
general deep-learning-based feature extraction model (a pre-trained inception model). Therefore, it can
be used to assess the quality of the generated image in general. For our specific case of generating PA
images for a face-PAD system, we suggest the use of an additional measurement to assess the quality
of the generated PA images based on the use of an actual pretrained face-PAD system instead of the
inception model, i.e., padD. The concept of the padD measurement is similar to that of the FID, but it
uses a different feature extraction method. Because a face-PAD system is designed to discriminate real
and PA images, well-generated PA images should have similar characteristics to captured PA images
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using a face-PAD system. Usually, a face-PAD system receives an image (or sequence of images) to
produce a detection score, which stands for probability of the input image belonging to the real or PA
class. If the output score is greater than a predefined threshold, the input image is regarded as a real
image. Otherwise, the input image is regarded as a PA image. Using the N captured and M generated
PA images, we can obtain N and M detection scores for the captured and generated PA image classes,
respectively. Finally, we measure the dprime value of the two distributions, as given by in Equation (8),
and use this value as the quality measurement of the generated PA images:

padD =

∣∣∣meanr −meang
∣∣∣

√
(σ2

r+σ
2
g)

2

(8)

As shown in Equation (8), padD measures the distance between the two distributions in
one-dimensional space using the dprime method based on two means and standard deviations.
As a result, padD is large if the two distributions are very different and becomes smaller as the
two distributions become more similar. We can see that padD is a custom FID measurement that
is specialized for face-PAD systems. By using both the FID and padD values, we can assess the
quality of generated images in more detail. In our experiments, we use two face-PAD systems for
measuring the padD value: a deep-learning-based and a handcrafted-based face-PAD system. The
deep-learning-based face-PAD system uses a combination of a CNN, recurrent neural network (RNN),
and a multi-level local binary pattern (MLBP) for feature extraction and support vector machine (SVM)
for classification. The handcrafted-based face-PAD system uses only the MLBP for feature extraction
and SVM for classification [50].

To evaluate the performance of our proposed method, we perform experiments using two
public datasets: CASIA [7] and Replay-mobile [9]. A detailed description of each dataset is given
in Tables 4 and 5, respectively. Originally, these datasets were widely used for training face-PAD
systems [7,9,13,15]. The difference between the two datasets is that the CASIA dataset was created for
the face-PAD problem in general using a normal camera, while the Replay-mobile dataset is specialized
for the mobile environment. As shown in Table 4, the CASIA dataset contains captured real and PA
images of 50 persons stored in video format. In total, the CASIA dataset contains 600 video clips (12
video clips (3 real attacks and 9 PAs) per person). By using the face detection method in Section 3.2, we
extracted a total of 110,811 face images for the CASIA dataset. The advantage of the CASIA dataset
is that it simulates rich attacking methods, including three levels of image resolution (low, normal,
and high) and three methods for making PA samples (cut-photo, wrap photo, and video display).
As shown in Table 4, the CASIA dataset is pre-divided into training and testing sub-datasets by the
dataset’s owner for training and testing purposes.

Table 4. Description of the original CASIA dataset used in our experiments.

CASIA Dataset
Training Dataset (20 Persons) Testing Dataset (30 Persons)

Total
Real Access PA Access Real Access PA Access

Number of Videos 60 180 90 270 600

Number of Images 10,940 34,148 16,029 49,694 110,811

Table 5. Description of the original Replay-mobile dataset used in our experiments.

Replay-Mobile Dataset Training Dataset (12 Persons) Testing Dataset (12 Persons)
Total

Real Access PA Access Real Access PA Access

Number of Videos 120 192 110 192 614

Number of Images 35,087 56,875 32,169 56,612 180,743
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The Replay-mobile dataset contains real and PA images of 40 persons from a mobile camera [9].
This dataset is also pre-divided into three sub-datasets for training, testing, and validation. However,
we only use the training and testing datasets in our experiments because we do not need to validate
the generation model. For both datasets, we use the training dataset to train the generation model and
the testing dataset to measure the quality of the generated images.

4.2. Results

As explained in Section 1, the goal of our study is to construct a method for efficiently generating
PA images to save efforts in collecting PA images in training a face-PAD system. For this purpose, in
this section, we perform various experiments using two public datasets, i.e. CASIA and Replay-mobile,
to evaluate the performance of our proposed method in comparison with previous studies. In summary,
we first train our proposed image generation models mentioned in Section 3 using these two datasets
and the results are presented in this section. Using these trained models, we further evaluate the
quality of generated images using two quality measurements, i.e. FID and padD. Finally, we measure
the processing time of the image generation model in two hardware systems, including a desktop
computer and an embedded system based on an NVIDIA Jetson TX2 board to demonstrate the ability
of our proposed method in a real application.

4.2.1. Quality Assessment of Generated Images Using FID Measurement

We show some example result images in Figure 6. In this figure, the left images are captured
real images (the input of generation model), the middle images are the corresponding generated PA
images, and the right images are reference captured PA images of the same person. As shown in this
figure, the generation model can efficiently generate PA images using the captured real images by
adding additional effects on the face, such as noise, blurring, color change, and textures. Although
these effects can be added to images using conventional methods (adding noise, performing blurring,
etc.), they are not manually added but learnt from the captured images in-the-wild. Therefore, we
believe that the generated images are more appropriate than the ones using conventional methods.
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Figure 6. Examples of generated images using the trained generation model: (a) Images in the CASIA
dataset. (b) Images in the Replay-mobile dataset. In each trio of images, the left, middle, and right
images represent the real image, generated PA image, and reference PA image, respectively.
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In the next experiment, we evaluated the quality of generated images using the FID measurement
mentioned in Section 4.1. For this purpose, we applied the trained generation model to the CASIA
and Replay-mobile testing datasets. Because there is no previous research on this problem, we do
not know whether the measured FID in our experiment is good or not. To solve this problem, we
additionally measured the FID values between the captured PA images. Because the captured PA
images are images captured in-the-wild by simulating attacking methods, they are correct PA images,
and measuring the FID between two sets of captured PA images gives us a criterion for evaluating the
performance of the generation model. We refer to the FID between the two subsets of captured PA
images as the intra-class FID and to the FID between the captured PA images and generated PA images
as the inter-class FID in this study.

To measure the intra-class FIDs, we used two different sets of captured PA images: one from the
captured PA images in the training dataset and the other from the captured PA images in the testing
dataset. This selection ensures two things. First, the images of the two sets are different but cover
similar characteristics of PA images as they are from training and testing datasets. Secondly, the size of
each set is as large as possible. Even if we divided the captured PA images of either the training or
testing dataset into two subsets and measure the FID between these two sets, the number of images in
each set would be reduced. As a result, the population of PA images would smaller than it is using
our method. For the inter-class FID, we first generated PA images using the captured real images
from the testing dataset. With the generated images, we performed the FID measurement using the
captured PA images in the testing dataset. The detailed experimental results from the CASIA and
Replay-mobile datasets are given in Table 6. As shown in this table, the intra-class FID of the CASIA
dataset is approximately 24.614, while the intra-class FID of the Replay-mobile dataset is approximately
37.943. These two FID values are relatively different because the PA images from the two datasets are
different. While the CASIA dataset was collected using a commercial camera in good illumination, the
Replay-mobile dataset was collected using a mobile camera with uncontrolled light conditions. As a
result, the variation of PA face images in the Replay-mobile dataset is large, which resulted in the high
intra-FID value. Using the generated images, we obtained an inter-class FID for the CASIA dataset
of approximately 28.300, and that of the Replay-mobile dataset was approximately 42.066. Because
the intra-class FID was obtained from the ground-truth captured PA images, we can estimate that the
intra-class FID should be lower than the inter-class FID because the inter-class FID was obtained using
generated PA images. From Table 6, it can be seen that the differences between the intra-class FID and
inter-class FID for the CASIA and Replay-mobile datasets are not too high (24.614 vs. 28.3 for the
CASIA dataset and 37.943 vs. 42.066 for the Replay-mobile dataset).

Table 6. FID measurements for the captured images versus generated images using our proposed
method in comparison with intra-class FID and the model based on conventional cross-entropy
loss function.

FID Measurement Using CASIA Dataset Using Replay-Mobile Dataset

Intra-class FID 24.614 37.943

Inter-class FID using CycleGAN-based model
with conventional cross-entropy loss function 30.968 51.207

Inter-class FID by our proposed method
(using least-squared loss function) 28.300 42.066

In addition, we performed experiments using the conventional cross-entropy loss function for a
CycleGAN-based image generation model and compared its performance with the least-squared loss
function. For this purpose, we measured the FID value between the captured PAD and generated PAD
images obtained by a cross-entropy-based CycleGAN model. As explained in Equation (7) of Section 4.1,
smaller FID means the higher performance of image generation model. The detail experimental results
are given in Table 6. As shown in Table 6, we obtained an FID of 30.968 using a cross-entropy-based
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CycleGAN model which is larger than the 28.300 using the least-squared-based CycleGAN model with
CASIA dataset. Similarly, we obtained an FID of 51.207 using the cross-entropy-based CycleGAN model
which is larger than the 42.066 using the least-squared-based CycleGAN model with Replay-mobile
dataset. These results confirmed that the least-squared loss function is better than the conventional
cross-entropy loss function in our experiments.

As explained in Section 2, there have been previous studies that generated images between
two different domains. Popular methods are DCGAN [27,28], the pix2pix [31], CycleGAN [29], and
DualGAN [51] networks. To the best of our knowledge, the pix2pix [31] GAN network requires
pairwise images (one for input image, and the other one for ground-truth label image) for learning
the relation between the two domains. Therefore, it is not suitable for applying to our study because
we are transforming the images between two domains (real vs. PA) without information of pairwise
images. The DualGAN [51] is another option (beside CycleGAN) that could be suite for our problem.
However, the methodology and structure of DualGAN and CycleGAN is very similar. Therefore, we
compared the performance of image generation using DCGAN-based network with our proposed
CycleGAN-based method. The experimental results are given in Table 7.

Table 7. Comparison of the measured FIDs in our study with those achieved in previous studies.

Method
DCGAN for Generation CycleGAN for Generation

Iris Images
[27]

Fingerprint
Images [28]

Replay-Mobile
Dataset

CASIA
Dataset

Replay-Mobile
Dataset

CASIA
Dataset

FID 41.08 70.5 65.049 82.400 42.066 28.300

In Table 7, we give a comparison between the FIDs measured in our study and those from previous
studies which use DCGAN for image generation problem. Minaee et al. [27] used a GAN to generate
iris images. In their study, they showed that the FIDs between the ground-truth and generated images
were approximately 41.08 on the IIT-Delhi dataset and 42.1 on the CASIA-1000 dataset. Similarly, the
authors of [28] showed that the FID between the ground-truth and generated fingerprint images was
approximately 70.5 using a GAN–based method. We can see that the FIDs obtained by our study are
much smaller than those obtained by previous studies. Although it is unbalanced to compare the FIDs
among different biometrics models because of the difference of image characteristics, we can roughly
conclude that our results are comparable or better than those of previous studies.

For ensure a fair comparison, we additionally performed experiments for PA image generation
using a DCGAN model. For this purpose, we trained a DCGAN model [27,28] using the CASIA and
Replay-mobile datasets and measured the FID between the captured PA and DCGAN-based generated
PA images as shown in Table 7, where we obtained an FID of 65.049 in the case of using the captured
and generated PA images using DCGAN and the Replay-mobile dataset. This value is much bigger
than that of 42.066 using the proposed method. Similarly, we obtained an FID of 82.400 for the case of
DCGAN trained on the CASIA dataset. This FID measurement is also much bigger than 28.300 using
our proposed method.

Based on these experimental results, we conclude that our proposed method can generate realistic
PA images. In addition, the Cycle-GAN-based method is more sufficient than DCGAN-based method,
and the Cycle-GAN-based network is a sufficient choice to solve our problem.

4.2.2. Quality Assessment of Generated Images Using padD Measurement on CASIA Dataset

FID measurements have been widely used to evaluate the quality of generated images in general
using deep features extracted by a pretrained inception model, which was successfully trained for the
general image classification problem. Therefore, FID measurements seem to be too general for our
problem. As explained in Section 4.1, our study proposes a new criterion for assessing the quality of
generated PA face images called padD. The purpose of this new measurement is to evaluate the quality
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of generated images for the specific problem of PA image generation. For this purpose, we used an
up-to-date face-PAD system [15] to generate decision scores of captured and generated PA images and
measure the distance between the two score distributions of these two classes. As a result, if the two
distributions are close each other, the generated images have similar characteristics to the captured
images. Otherwise, the generated images are different from the captured PA images. One important
characteristic of the padD measurement is that it allows a graphical visualization of the distributions
of the ground-truth and generated images, which that is not available with the FID. This is because
we are working with a one-dimensional feature space instead of a 2048-dimensional feature space.
Therefore, the padD measurement gives us a more intuitive measurement than the FID.

As the first experiment in this section, we measured the distributions and padD values for the case
of using captured and generated PA images using both face-PAD systems (deep-learning-based and
handcrafted-based method). The experimental results are given in Figure 7a,b for the handcrafted-based
and the deep-learning-based face-PAD systems, respectively. The specific padD values are listed in
Table 8. As shown in Figure 7, the distribution of captured PA images is relatively similar to that
of the generated PA images. Numerically, Table 8 shows that the distance (padD) between the two
distributions in Figure 7a is approximately 0.610 and that in Figure 7b is approximately 0.711.
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Figure 7. Distribution of detection scores for captured PA images versus the generated PA images
with the CASIA dataset (a) using the handcrafted-based face-PAD system [50]; (b) using the
deep-learning-based face-PAD system [15].

Table 8. PadD measurements of generated PA images using the CASIA dataset.

Handcrafted-Based PAD Method [50] Deep-Learning-Based PAD Method [15]

Captured PA versus
Generated PA Images

Captured Real versus
Captured PA Images

Captured PA versus
Generated PA Images

Captured Real versus
Captured PA Images

0.610 2.474 0.711 5.463

To evaluate these above padD measurements, we additionally measured the distributions and
padD values for the original (captured real and PA images) CASIA dataset. Figure 8a,b show the
distributions of the captured real and captured PA images using the CASIA testing dataset for the
handcrafted-based and the deep-learning-based face-PAD systems, respectively. From this figure, it
can be observed that the distributions of captured real and PA images were relatively separated. As a
classification problem, the errors of this face-PAD system were approximately 0.910% and 9.488% for
the deep-learning-based and handcrafted-based method, respectively. As indicated in [15], the error
produced by the deep-learning-based method is the smallest compared to other previously proposed
face-PAD systems using the CASIA dataset.
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(a) (b) 

Figure 8. Distribution of detection scores for the original captured data (captured real and captured PA
images): (a) results obtained using handcrafted-based face-PAD system [50]; (b) results obtained using
deep-learning-based face-PAD system [15].

Supposing that the two distributions are Gaussian-like, the distance between the two distributions
(padD) was measured as 5.463 for the deep-learning-based face-PAD system and 2.474 for the
handcrafted-based face-PAD system. This result indicates that the deep-learning-based face-PAD
method works well in detecting PA samples in the CASIA dataset. Because we are measuring the
padD value for two different types of images, i.e., real and PA images, the measured padD indicates
the distance between two different image domains. We see that the padD values in this experiment are
much larger than those obtained using the captured and generated PA images in the above experiments
(0.610 for the handcrafted-based and 0.711 for the deep-learning-based face-PAD system). This result
indicates that the generated PA images have similar characteristics to the captured PA images in the
CASIA dataset. We summarize our experimental results in Table 8. As the final experiment in this
section, we measured the attack presentation classification error rate (APCER) of the generated PA
images using the face-PAD system. By definition, the APCER indicates the proportion of PA images
that were incorrectly classified as real images by a face-PAD system. In other words, the APCER
represents the possibility of an attack successfully circumventing a face-PAD system. As a result, by
measuring the APCER value, we can estimate the quality of generated PA images. The experimental
results are shown in Figure 9 and Table 9.
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Table 9. APCERs of PA images using different face-PAD methods on CASIA dataset (unit: %).

Handcrafted-Based Face-PAD Method [50] Deep-Learning-Based Face-PAD Method [15]

Captured PA Images Generated PA Images Captured PA Images Generated PA Images

9.488 4.292 0.784 0.000

As shown in Figure 9, the distributions of captured real and generated PA images are quite far
from each other and similar to those in Figure 8. In detail, the padD value for the deep-learning-based
face-PAD system is approximately 6.745 and that for the handcrafted-based face-PAD system is
approximately 3.128. These values are similar to those using the captured PA images (5.463 and 2.474,
respectively). As shown in Table 9, we obtained APCERs of 9.488% and 4.292% for the captured PA
and generated PA images, respectively, using the handcrafted-based face-PAD system.

Using the deep-learning-based face-PAD system, we obtained APCER values of 0.784% and 0.000%
using the captured PA and generated PA images, respectively. The APCER values produced by the
handcrafted-based face-PAD system are much larger than those produced by the deep-learning-based
system, which is caused by the fact that the deep-learning-based feature extraction method works
much better than the handcrafted-based feature extraction method. By comparing the experimental
results for the captured and generated PA images, we see that our approach generates PA images that
contain the characteristics of PA images.

4.2.3. Quality Assessment of Generated Images Using padD Measurement on Replay-Mobile Dataset

Similar to the experiments on the CASIA dataset, we performed experiments for the Replay-mobile
dataset using the face-PAD systems. First, we measured the distributions and padD values for the
use of captured PA versus generated PA images and the use of captured real and PA images. The
experimental results of these experiments are given in Figures 10 and 11 and Table 10. Figure 10 shows
the distributions of the captured PA and generated PA images of the testing dataset. Similar to the
experiments on the CASIA dataset described above, the two distributions (captured and generated PA
images) are close to each other. In detail, the padD value for the deep-learning-based face-PAD system
is approximately 0.836, and that for the handcrafted-based face-PAD system is approximately 1.214.
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Table 10. padD measurements of generated PA images using Replay-mobile dataset.

Handcrafted-Based Face-PAD Method [50] Deep-Learning-Based Face-PAD Method [15]

Captured PA versus
Generated PA Images

Captured Real versus
Captured PA Images

Captured PA versus
Generated PA Images

Captured Real versus
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1.214 3.649 0.836 3.928

Figure 11 shows the distribution of the scores of the captured real and captured PA images.
For the deep-learning-based face-PAD system, we obtained a padD value of 3.928, and for the
handcrafted-based face-PAD system, we obtained a padD value of 3.649. It is clear that these padD
values are much larger than those produced by the captured and generated PA images. Through
these results, we can conclude that the generated PA images are close to the captured PA images,
while they are far from the captured real face images. In addition, we can see that the distributions
of these two types of images do not overlap. This means that although the generated images have
similar characteristics to the captured PA images, they are not identical, and the generated images can
complement the captured PA images to fill the gap of missing PA samples.

In a subsequent experiment, we measured the APCER of the face-PAD systems using generated
PA images. Figure 12 shows the distribution of detection scores of captured real and generated PA
images for the deep-learning-based and handcrafted-based face-PAD systems. Similar to Figure 11, the
distributions of the real and generated images are relatively separate.

In detail, the two distributions obtained using the handcrafted-based face-PAD system have a
padD value of 1.949, and those obtained using the deep-learning-based face-PAD system have a padD
value of 3.211. This high padD value indicates that the generated PA images are different from the
captured real face images.

Table 11 lists the APCERs obtained in this experiment. Originally, the APCERs were 5.684% and
0.000% for the handcrafted-based and deep-learning-based face-PAD systems, respectively, using
the captured data. Using the generated data, these APCER values increased to 41.294% and 1.551%.
Although the error caused by the generated PA images in the handcrafted-based face-PAD system is
much increased, the error caused by the generated PA images in the deep-learning-based face-PAD
system is small. This is caused by the fact that the deep-learning-based method uses a deep CNN-RNN
method for feature extraction, which results in higher performance than the handcrafted method.
As shown in Figure 12b, the generated PA images have different characteristics to the real images.
From this result and the results obtained using the CASIA dataset, we can conclude that the generated
images efficiently captured PA features.
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Table 11. APCERs of PA images using different face-PAD methods (unit: %).
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We presented our results using the CASIA dataset. Similarly, we presented our results using
Replay-mobile dataset. As indicated in these experimental results, the APCER scores of generated PA
images are lower than captured PA images, but APCER scores of generated PA images are higher than
captured PA ones. The reason for this result is that we trained our PA image generation model using
two different datasets which have slightly different characteristics and the amount of PA images. As
explained at the beginning of Section 4, the CASIA dataset contains real and PA images of 50 people
using various attack methods, including three levels of image quality (low, normal, and high), and three
methods for making PA samples (using cut-photo, wrap-photo, and video). Compared to the CASIA
dataset, the Replay-mobile dataset only contains PA images for the photo and video attack using a
mobile camera. As indicated in the previous study [15], the CASIA dataset has higher complexity of
PA images than Replay-mobile dataset, which is indicated by the fact that ACER of an up-to-date
face-PAD system [15] is approximately 1.286% and 0.0015% for the CASIA and Replay-mobile dataset,
respectively. Because of this reason, we obtained a face-PAD system which covers various kinds of PA
images using CASIA dataset (the effects of a new type of PA images on the face-PAD system is small).
However, the face-PAD system is more affected by noise and new kind of PA images when it is trained
by Replay-mobile dataset because this dataset has limited types of PA images (the effects of a new type
of PA images is large). As a result, the APCER of generated PA images is small in the experiment with
CASIA dataset, and high in the experiment with Replay-mobile dataset.

4.2.4. Processing Time of the Proposed Approach

As a final experiment, we measured the processing time of our proposed method for generating
PA images using the pretrained model to investigate the running speed of our approach. In our
experiments, we ran our generation model in two different hardware systems: a general-purpose
computer and an embedded system based on the NVIDIA Jetson TX2 board [52]. First, we used a
general-purpose computer with an Intel Core i7 central processing unit (CPU) (Intel Corporation,
Santa Clara, CA, USA) and 64 GB of RAM. For the deep-learning-based image generation model,
we used a TitanX graphics processing unit (GPU) card [53] and the Tensorflow library [54] as the
running environment. As the second option, we ran our image generation model on an NVIDIA
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Jetson TX2 embedded board, as shown in Figure 13. This is a popular deep-learning-based embedded
system developed by NVIDA Corporation, which integrates both the CPU and GPU for deep-learning
purposes and has been used for on-board deep-learning processing in self-driving cars. For running a
deep-learning-based model, the Jetson TX2 board has an NVIDIA PascalTM-family GPU (256 CUDA
cores) with 8 GB of memory shared between the CPU and GPU and 59.7 GB/s of memory bandwidth.
Because this board is designed for an embedded system, it uses less than 7.5 W of power. The
experimental results are given in Table 12. As shown in this table, it took approximately 29.920 ms to
generate a PA image using the general-purpose computer. This means that our generation model can
run at a speed of 33.4 frames per second (fps). Using the Jetson TX2 embedded system board, it took
approximately 62.423 ms to generate a PA image, which corresponds to 16.02 fps. Compared to the
processing time offered by the desktop computer, the Jetson TX2 embedded systems required longer
processing time due to its limited computation resources compared to a general-purpose computer.
However, with a speed of 16.02 fps with the embedded system and 33.4 fps with the general-purpose
computer, we can conclude that our approach is relatively fast and sufficient to run both in general and
in embedded environments.

Sensors 2020, 20, x FOR PEER REVIEW  21 of 24 

 

ms to generate a PA image using the general-purpose computer. This means that our generation 

model can run at a speed of 33.4 frames per second (fps). Using the Jetson TX2 embedded system 

board, it took approximately 62.423 ms to generate a PA image, which corresponds to 16.02 fps. 

Compared to the processing time offered by the desktop computer, the Jetson TX2 embedded systems 

required longer processing time due to its limited computation resources compared to a general-

purpose computer. However, with a speed of 16.02 fps with the embedded system and 33.4 fps with 

the general-purpose computer, we can conclude that our approach is relatively fast and sufficient to 

run both in general and in embedded environments. 

Table 12. Processing time of proposed method on a desktop general purpose computer and a Jetson 

TX2 embedded system (unit: ms). 

Desktop computer Jetson TX2 embedded system 

29.920 62.423 

 

Figure 13. NVIDIA Jetson TX2 on-board embedded system. 

5. Conclusions 

In this paper, we proposed a method for generating PA face images for face-PAD systems. We 

trained a generation model based on the CycleGAN method using images from two domains, i.e., 

captured real face images and captured PA images, to learn the characteristics of images in each class 

and the relations between these two classes. As a result, we showed that the generated PA images are 

quite similar to but do not overlap with captured PA images, which were collected using a 

conventional camera and attacking methods. Because the generated images are not identical to the 

captured PA images, we hope that they can fill the gap of missing samples caused by the lack of PA 

images because of the diversity of attack methods.  

In this study, we aimed to generate PA images to reduce the efforts required for simulating 

presentation attack methods and PA image acquisition procedure. Therefore, we used a fusion of all 

kinds of PA images in our experiments without considering every single attack method. Even we can 

train image generation model using PA images of single available presentation attack method (print 

attack, display attack etc.), this scheme has some limitations that make it not suitable for our research 

purpose. First, training an image generation model for every single attack method results in multiple 

generation models for a single problem. As a result, it wastes processing time, storage, and makes the 

system complex. Second, as we have explained, the presentation attack detection problem has a 

special property that we cannot simulate all possible attack methods because of various types of 

presentation attack instruments and attacking procedures. Therefore, the use of a fusion of existing 

PA images helps to learn the characteristics of PA images in general to simulate an unknown attack 

method. In our future work, we plan to use generated images along with captured images to train a 

face-PAD system to validate the efficiency of the generated images and also to reduce the error of the 

face-PAD system. 

Figure 13. NVIDIA Jetson TX2 on-board embedded system.

Table 12. Processing time of proposed method on a desktop general purpose computer and a Jetson
TX2 embedded system (unit: ms).

Desktop Computer Jetson TX2 Embedded System

29.920 62.423

5. Conclusions

In this paper, we proposed a method for generating PA face images for face-PAD systems. We
trained a generation model based on the CycleGAN method using images from two domains, i.e.,
captured real face images and captured PA images, to learn the characteristics of images in each class
and the relations between these two classes. As a result, we showed that the generated PA images are
quite similar to but do not overlap with captured PA images, which were collected using a conventional
camera and attacking methods. Because the generated images are not identical to the captured PA
images, we hope that they can fill the gap of missing samples caused by the lack of PA images because
of the diversity of attack methods.

In this study, we aimed to generate PA images to reduce the efforts required for simulating
presentation attack methods and PA image acquisition procedure. Therefore, we used a fusion of all
kinds of PA images in our experiments without considering every single attack method. Even we can
train image generation model using PA images of single available presentation attack method (print
attack, display attack etc.), this scheme has some limitations that make it not suitable for our research
purpose. First, training an image generation model for every single attack method results in multiple
generation models for a single problem. As a result, it wastes processing time, storage, and makes the
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system complex. Second, as we have explained, the presentation attack detection problem has a special
property that we cannot simulate all possible attack methods because of various types of presentation
attack instruments and attacking procedures. Therefore, the use of a fusion of existing PA images helps
to learn the characteristics of PA images in general to simulate an unknown attack method. In our
future work, we plan to use generated images along with captured images to train a face-PAD system
to validate the efficiency of the generated images and also to reduce the error of the face-PAD system.
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Abstract: Most of the current object detection approaches deliver competitive results with an
assumption that a large number of labeled data are generally available and can be fed into a deep
network at once. However, due to expensive labeling efforts, it is difficult to deploy the object
detection systems into more complex and challenging real-world environments, especially for defect
detection in real industries. In order to reduce the labeling efforts, this study proposes an active
learning framework for defect detection. First, an Uncertainty Sampling is proposed to produce
the candidate list for annotation. Uncertain images can provide more informative knowledge for
the learning process. Then, an Average Margin method is designed to set the sampling scale for
each defect category. In addition, an iterative pattern of training and selection is adopted to train an
effective detection model. Extensive experiments demonstrate that the proposed method can render
the required performance with fewer labeled data.

Keywords: surface defect detection; active learning; deep learning

1. Introduction

Defects may appear on metallic surfaces due to irresistible influencing factors, such as material
characteristics and processing technologies in industrial production. These defects affect not only the
qualities, but also the applications of products. Thus, it is of great significance to detect such defects for
quality control. As the main solution for defect detection, image processing techniques for detection
generally consist of defect localization, recognition, and classification. These methods can be roughly
divided into two categories: Traditional image processing and deep learning.

In traditional industries, traditional image processing is usually adopted as a defect detection
method combined with hand-crafted features [1], which are exploited to describe the defects.
In addition, these approaches require many complex threshold settings, which are sensitive to changes
in real-world environments and easily influenced by illumination, background, and so on. Therefore,
these approaches are easily affected by environmental noise, which may lead to a poor detection model
with weak performance. At the same time, traditional algorithms are weak in processing speeds and
cannot meet the requirements of real-time detection. Furthermore, they lack robustness for real-world
deployments due to their weak adaption capabilities.

With the rapid development of deep learning, convolutional neural networks (CNN) have been
successfully implemented for metallic surface defect detection [2]. For example, Ri-Xian et al. [3]
designed a deep confidence network (DCN) for defect detection. Masci et al. [4] proposed a defect
detection model for steel classification to reduce the processing time via CNN with a maximum pool.
Liu et al. [5] added a feature extraction module based on Faster-RCNN for defect detection. In addition,
regional suggestion and regression operation are also widely used in deep learning for defect detection.
The former is to generate candidate defect boxes that are classified by CNNs. For example, Girshick
developed a defect detection method based on Fast-RCNN [6] to detect five types of defects. The latter
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can directly perform on the target bounding boxes, such as OverFeat [7,8], SSD [9], YOLO-v2 [10],
and YOLO-v3 [11]. OverFeat is a network for integrating recognition, localization, and detection
using convolutional networks. The YOLO-v1 method is the base network for YOLO-v3 and YOLO-v3.
YOLO-v2 added batch normalization, a high-resolution classifier, multi-scale training, and dimension
clusters, while YOLO-v3 used an optimized darknet network and multi-scale prediction. In addition,
SSD adopted a softmax classifier, while YOLO methods adopted a logistic classifier. However, all of
these approaches assume that a large number of labeled images are available, which require expensive
and time-consuming labeling efforts. This problem significantly hinders the deployment of the deep
detection models into real-world industries.

As an important branch of machine learning for reducing labeling efforts, active learning has been
used to solve data collection problems for many applications. There are situations where unlabeled
images are abundant, but manually labeling is expensive. In such a scenario, active learning algorithms
can actively query the annotators for labels. Active learning algorithms are mainly aimed at selecting
effective data for annotation. Thus, the number of images can often be much lower than the number
required in supervised learning. The common query strategies include: (1) Expected model change:
Annotate images that would change the current model the most. (2) Uncertainty sampling: Annotate
images for which the current model is least certain. (3) Variance reduction: Annotate images that would
minimize output variance, which is one of the components of error. Theoretical results indicate that a
great active selection strategy can significantly reduce the labeling efforts compared to random selection
for obtaining similar accuracy. Although the existing active selection strategies have demonstrated
great performance in deep learning, these strategies cannot be directly employed in defect defection.
Thus, the active learning for defect detection still faces large challenges. Compared with existing deep
detection methods [12,13], active learning methods try to train an effective detection model with the
least labeling effort, while deep learning methods annotate all data and train the model with the full
training set. Uncertainty is the main problem of performance measurement for deep models, so the
active learning methods can select the valuable data for querying annotations.

To effectively reduce the labeling efforts for defect detection, this research introduces active
learning into metallic defect detection via uncertainty of data. First, based on the information of
the defect images, we propose an Uncertainty Sampling to the product candidate list for annotation.
Then, to estimate the sampling scale, an Average Margin method is designed for scale calculation.
Finally, a series of experiments is conducted to demonstrate the effectiveness of this method on the
NEU-DET [14] dataset.

2. Related Work

2.1. Object Detection for Defect Detection

Over recent years, deep metallic surface defect detection methods have obtained relatively
outstanding results in single-image backgrounds [15]. At the same time, deep object detection
approaches are the main methods for detecting defects, such as YOLO [8,10,11], Faster-RCNN [6],
and SSD [9].

To meet the real-time requirement of object detection, Radmond et al. [8] proposed the YOLO-v1
algorithm to reduce computational complexity and found that end-to-end real-time monitoring is
feasible. Meanwhile, combined with machine learning, the extraction of physical information and
the construction of structural features show more advantages in the field of defect detection, making
a shallow-to-deep transition. Therefore, deep learning plays a crucial role in defect detection at
present. Many defect detection methods are proposed based on deep object detection. For example,
Feng et al. [16] built an improved version based on the YOLO model, which is widely used in
production monitoring, mobile location, and surface defect detection. Ri-Xian et al. [3] proposed to
use a convolutional neural network (CNN) to detect defects on the surfaces by trying to overcome
the overfitting problem of small data sets that often occur in practical applications. Ren et al. [17]
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proposed a surface defect detection model for automatic detection. Azimi et al. [18] used a fully
convolutional network for pixel-level segmentation. However, these methods require huge numbers of
labeled images, which shall be collected in real-world industries and annotated by great human labors.
Thus, it is difficult to deploy them in real-world industries due to the expensive labeling efforts.

2.2. Active Learning

Active learning is a popular approach for reducing the labeling efforts. Its core problem is the
sampling strategy, which is used to estimate the labeling value of unlabeled data. Differently from
the traditional classifiers that are trained on a large number of data, active learning can speed up the
convergence of detection models and reduce the number of labeled data. To effectively reduce the
labeling efforts, active learning often selects the samples containing abundant information via specially
designed query strategies.

A common active strategy form is the committee [19], which is used to construct a similar
classifier for data selection. Then, the voting results are produced by multiple classifiers. In this
setting, the samples with the greatest divergence or complexity are selected and labeled. For example,
Tuia et al. [20] suggested a simple way to select samples based on the uncertainty: First,
all samples are tested by a classifier, and then the most uncertain samples are given to experts for
annotations. Xu et al. [21] proposed a density-weighting method to select samples with the richest
information based on the potential characteristics of the data. Chakraborty et al. [22] proposed that
numerical-optimization-based techniques can also help the selection of useful samples. In addition,
Tong et al. [19] proposed a kernel-space-based clustering algorithm for sample selection by using an
RBF (radial basis kernel function) to map samples into several clusters in a high-dimensional space,
and then selecting the center samples. However, these methods merely consider data characteristics,
ignoring the training process of the deep models.

Although defect detection methods based on deep learning have been well studied and greatly
improved, there are still expensive and time-consuming labeling efforts for dataset building. Thus, it is
important to take the reduction of labeling efforts into consideration for defect detection.

3. Active Learning for Defect Detection

The following sections first introduce an overview of the proposed active learning framework,
and then describe the detection model used in the framework in detail. Furthermore, we illustrate the
two main components of the framework, i.e., Uncertainty Sampling for Candidates and the Average
Margin for Scale.

3.1. Overall Framework

To reduce the labeling efforts in defect detection, we propose an active learning framework that
consists of three main modules: The detection model, active strategies, and data. As shown in Figure 1,
it utilizes an iterative pattern for selection and annotation. First, a defect detection model is initialized
via pre-training weights. Second, the unlabeled images are fed into the detection model for prediction
results. Then, combined with the proposed strategies, the uncertain images are selected for querying
annotations. After being labeled by annotators, these images are added into the training set, and the
detection model is updated from scratch. The above steps are repeated until the required performance
is achieved.
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Figure 1. Overview of the proposed active learning framework. First, a defect detection model (neural
network) is initialized via pre-training weights. Second, unlabeled images are fed into the detection
model for prediction results. Then, combined with the proposed strategies, uncertain images are
selected for querying annotations. After being labeled by annotators, the images can be added into the
training set, and the detection model is updated from scratch. The above steps are repeated until the
required performance is achieved.

3.2. Detection Model

Differently from other object detection methods, YOLO-v2 [23] integrates region prediction and
object classification into a single neural network. As illustrated in Figure 2, YOLO-v2 includes a
convolutional layer of 3× 3 kernel size and a sampling window with a size of 2× 2. In addition,
the object detection task can be regarded as a regression problem for object region prediction
and classification. YOLO-v2 utilizes a single network to directly predict the object boundary and
classification probability in an end-to-end way. It adds a batch normalization for each convolution
layer and adopts a high-resolution classifier (448× 448). In addition, YOLO-v2 introduces anchor
boxes to predict bounding boxes.

Figure 2. Architecture of the YOLO-v2 model. This network has 24 convolutional layers followed by 2
fully connected layers. Alternating 1× 1 convolutional layers reduce the feature space from preceding
layers. We pretrain the convolutional layers on the ImageNet classification task at half of the resolution
(224× 224 input image) and then double the resolution for detection.
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3.3. Active Learning for Detection

3.3.1. Uncertainty Sampling for Candidates

In this section, we propose an Uncertainty Sampling for Candidates (USC) algorithm to produce
the candidate list for annotation. To estimate the uncertainty of each unlabeled sample, the prediction
probabilities for classification are used to calculate the value. Aimed at selecting the most valuable
samples for annotation, the outputted probabilities are denoted as follows:

P(xi) = {p (yi = 1|xi; W) , p (yi = 2|xi; W) , . . . , p (yi = n|xi; W)}, (1)

where n is the number of the defect categories.
Note that if the performance of the model is great enough, the model can accurately detect

and classify defect images. In this case, the distribution of predicted probabilities has the following
characteristics:

• A higher predicted value denotes the higher probability belonging to the corresponding defect.
• There is the maximum value that denotes the probability belonging to the corresponding defect.
• The probability belonging to the corresponding defect is higher than other probabilities of the

remaining defects.

To select the most valuable samples, we need to select the sample with inaccurate predictions.
According to the above items, we design a predicted margin strategy to estimate the uncertainty of
each unlabeled sample, which can be written as:

Margin(xi) = p (yi = jmax|xi; W)− p (yi = jsmax|xi; W) , (2)

where p (yi = jmax|xi; W) is the maximum probability, p (yi = jsmax|xi; W) is the second maximum
probability xi, and W is the weights of the model.

The predicted margin strategy means that, if a sample is more uncertain, the distribution of
predicted probabilities is more average. Thus, the margins among predicted probabilities are small for
an uncertain sample. In this case, we select maximum probability and the second one to measure the
uncertainty of an unlabeled sample. The smaller value denotes the larger uncertainty of the sample.

3.3.2. Average Margin for Scale

In this section, we design an Average Margin for Scale (AMS) method to measure the sampling
scale of the different defects. In fact, a more uncertain defect category needs more unlabeled samples
for annotation. Thus, to measure the uncertainty of each defect category, we calculate the average
predicted margin for each category. Denote p(yi = j|xi; W) as the probability of xi belonging to the
j-th defect category. The average margin for each category is calculated as follows:

Maginavg
c =

1
N
∗

N

∑
i=1

Marginxi , (3)

where N is the total sample number of the c-th category in the testing set.
The final sample scale can be decided by:

Scale = Maginavg
1 : Maginavg

2 : ... : Maginavg
C , (4)

where Maginavg
c is the mean uncertainty of the c-th category in the testing set, and C is the number of

defect categories.
In addition, when selecting uncertain samples as in the above sampling scale, the samples are

ranked in the ascending order.
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3.3.3. Overview Sampling Algorithm

First, the detection model is initialized by some randomly labeled samples. Then, we calculate the
Marginx value for each unlabeled sample. In addition, the average margin for each category Maginavg

in the testing set is calculated. Then, unlabeled samples of each category are ranked in the ascending
order. Finally, we select samples according to the scale of Maginavg. The algorithm can be referred to
Algorithm 1.

Algorithm 1: Active Learning for Defect Detection.
Input: Unlabeled set U, Training set Tr, Testing set Te

1 Repeat
2 for each x ∈ U do
3 calculate P(xi) according to Formulation 1;
4 calculate Margin(xi) according to Formulation 2
5 end
6 Sort x according to Margin in the ascending order;
7 for each x ∈ Te do
8 calculate P(xi) according to Formulation 1;
9 calculate Margin(xi) according to Formulation 2

10 end
11 calculate average Margin for each defect class according to Formulation 3
12 select x ∈ U according to Formulation 4
13 annotation and update model by Tr
14 Until
15 The required performance is met or query budge.

4. Experiments

To train an effective detection model, we adopted a small-batch gradient descent method to
update the learning rate. The momentum can speed up the convergence of the model, and it is set as
0.9. At the same time, the pre-trained weights are used for the training, and the initialized learning
rate was set at 0.005.

4.1. Dataset Introduction

A surface defect dataset called NEU-DET [14] was published by Northeastern University,
which collected six typical surface defects on metal surfaces, as shown in Figure 3:

The NEU-DET dataset includes six types of surface defects, i.e., crazing (Cr), rolled-in scale (Rs),
patches (Pa), pitted surface (Ps), inclusion (In), and scratches (Sc). The dataset contains 1, 800 grayscale
images, and each category contains 300 samples. The dataset also provides complete annotations of
defect positions and types.

Due to image quality, we merely utilized a subset of NEU-DET, which includes: Patches (Pa),
pitted surface (Ps), inclusion (In), and scratches (Sc). This subset has 1200 samples.
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Figure 3. Typical surface defect samples in the NEU-DET dataset.

4.2. Comparisons

Random selection: The random selection (RS) strategy is usually used as a benchmark for the
comparison of active learning. In this method, the unlabeled samples are randomly selected in
each iteration.

Entropy selection: In this method, entropy value (ENi) is used to measure the uncertainty of
samples. A higher ENi value represents a greater uncertainty for sample i, which can be defined
as follows:

ENi = −
m

∑
j=1

p (yi = j|xi; W) logp (yi = j|xi; W) , (5)

where m is the class number and p is the prediction probability for class j.
MS: In this method, all of the unlabeled samples are ranked in an ascending order according to

the MSi value, which can be defined as follows:

MSi = p (yi = j1|xi; W)− p (yi = j2|x2; W) , (6)

where j1 and j2 represent the first and second most probable class labels predicted by the model,
respectively. The MS value denotes the margin. The smaller value means a higher uncertainty of
the sample.

345



Sensors 2020, 20, 1650

4.3. Evaluation

We adopt Recall, Average Precision (AP), and mean Average Precision (mAP) for performance
evaluation. Recall represents the ratio of correctly detected images and all testing images for each
defect category. AP represents the average detected precision for each defect category. mAP is the
mean of the average detected precision for all defect categories. In addition, we use the full dataset
to train the model to obtain the basic required performance, denoted by “Full”. This means that all
unlabeled images are annotated to train the model.

4.4. Comparison Results

To demonstrate the effectiveness of the proposed method, a series of comparison experiments
with Full, MS, EN, and random selection were conducted. From the above experiments, we observed
that the performance of the proposed method is better than that of other methods, which indicates
the superiority of USC and AMS. Figure 4 exhibits some defect images selected by the active learning
strategies of the proposed method.

patches scratches pitted_surfaceinclusion

Figure 4. Some images selected by our active learning strategies.

As illustrated in Table 1, the proposed algorithm can achieve the required Recall accuracy with
only 21.7% of the annotations of all datasets. Compared with commonly used active strategies,
the proposed algorithm can produce competitive results, i.e., 33.3% for MS, 31.6% for EN, and 50.0% for
random. It is noticed that, for defect patches (Pa), pitted surfaces (Ps), and scratches (Sc), the proposed
algorithm can outperform the Recall results obtained by the full data. In addition, the MS method
performed too badly for the pitted surface (Ps), while performing the best for scratches (Sc).

As shown in Table 2, the proposed algorithm can achieve the required Precision accuracy with
only 21.7% of the annotations. In detail, for defect inclusion (In), patches (Pa), pitted surfaces (Ps),
and scratches (Sc), our algorithm can outperform the Precision results obtained by both the full data
and other active learning methods.

As illustrated in Table 3, the proposed algorithm can achieve the required AP accuracy with
only 21.7% of the annotations. In detail, for defect patches (Pa) and pitted surfaces (Ps), the proposed
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algorithm can get the best AP and mAP results. Although other methods may exceed ours in AP
accuracy for several defects, they performed with lower mAP results.

The above experimental results indicate that the proposed method obviously performs better
than the commonly used active strategies in terms of both Recall Accuracy and Precision. This is
because the proposed method can not only select uncertain samples, but also provide a selection scale
for each defect category to train the model. Hence, the proposed method demonstrates a competitive
advantage in deep defect detection tasks. To clearly exhibit its effectiveness, we also conducted the
performance improvement comparison experiments, and the results are discussed below.

Table 1. Comparison of Recall on the NEU-DET dataset. The best results are shown in boldface.

Recall
Type

Inclusion (In) Patches (Pa) Pitted Surface (Ps) Scratches (Sc) Data (%)

Random 0.8333 0.9322 0.6774 0.9394 50.0%

EN 0.8636 0.9322 0.6774 0.9394 31.6%

MS 0.9242 0.9322 0.4839 1.000 33.3%

Full 0.8788 0.8983 0.6129 0.9091 100.0%

Ours 0.8485 0.9153 0.7742 0.9091 21.7%

Table 2. Comparison of Precision on the NEU-DET dataset. The best results are shown in boldface.

Precision
Defect

Inclusion (In) Patches (Pa) Pitted Surface (Ps) Scratches (Sc) Data (%)

Random 0.1291 0.1672 0.0323 0.2583 50.0%

EN 0.1839 0.2696 0.0669 0.2925 31.6%

MS 0.1017 0.2183 0.0498 0.2409 33.3%

Full 0.1213 0.2180 0.0617 0.1899 100%

Ours 0.1965 0.3396 0.0774 0.3614 21.7%

Table 3. Comparison of Average Precision (AP) on the NEU-DET dataset. The best results are shown
in boldface.

AP
Defect

Inclusion (In) Patches (Pa) Pitted Surface (Ps) Scratches (Sc) mAP Data (%)

Random 0.5498 0.7498 0.3082 0.5658 0.542 50.0%

EN 0.6359 0.8314 0.1959 0.8546 0.629 31.6%

MS 0.6874 0.7944 0.1763 0.9104 0.642 33.3%

Full 0.6183 0.7284 0.2103 0.7720 0.582 100%

Ours 0.6390 0.8269 0.3277 0.7874 0.645 21.7%

4.4.1. Performance Improvement Comparison

Figure 5 clearly illustrates the results of the performance improvement comparisons, while Table 4
shows the performance obtained by training on the full data. The horizontal axis represents the
annotation percentage, while the vertical axis represents the mAP values. It can be observed that the
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proposed method can reach the maximum mAP when the percentage is 21.6%, while MS is 33.3% and
EN is 31.6%. Therefore, the proposed method performs better than others. This demonstrates that
uncertainty sample selection plays an important role in improving the performance.

Figure 5. Comparison of mean Average Precision (mAP) for the different strategies.

Table 4. The performance obtained via the full data.

Types Inclusion (In) Patches (Pa) Pitted Surface (Ps) Scratches (Sc)

Recall 0.8788 0.8983 0.6129 0.9091

Precision 0.1213 0.2108 0.0617 0.1899

AP 0.6183 0.7284 0.2103 0.7720

4.4.2. Query Strategy Analysis

In fact, uncertainty measures the confidence of the current model for a sample, aiming to find the
samples with more useful information for model training. The essence of uncertainty is information
entropy, which is used to measure the amount of information. A greater information entropy denotes
richer information. Thus, many active learning methods [24,25] based on uncertainty are designed to
improve the performance of the model and exhibit competitive results.

5. Conclusions

In this paper, we propose an active learning framework for a deep defect detection task,
which utilizes the uncertainty of the samples for selection. The main contributions of this work
are the following three points: (1) We propose an active learning framework to reduce the labeling
efforts for defect detection. The proposed framework adopts an iteration pattern to train the detection
model. (2) To select effective data for annotations, we design an uncertainty sampling method to select
images according their uncertainty values. (3) To confirm the sampling number for annotations,
we design an average margin method to calculate the sampling ratios among defect categories.
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Extensive experimental results from a challenging public benchmark demonstrate the effectiveness of
the proposed active learning method. In the future, we will explore more effective query strategies to
reduce the labeling efforts; the adaptation of active learning is also under consideration.
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Abstract: Image based human behavior and activity understanding has been a hot topic in the field of
computer vision and multimedia. As an important part, skeleton estimation, which is also called pose
estimation, has attracted lots of interests. For pose estimation, most of the deep learning approaches
mainly focus on the joint feature. However, the joint feature is not sufficient, especially when the
image includes multi-person and the pose is occluded or not fully visible. This paper proposes a novel
multi-task framework for the multi-person pose estimation. The proposed framework is developed
based on Mask Region-based Convolutional Neural Networks (R-CNN) and extended to integrate
the joint feature, body boundary, body orientation and occlusion condition together. In order to
further improve the performance of the multi-person pose estimation, this paper proposes to organize
the different information in serial multi-task models instead of the widely used parallel multi-task
network. The proposed models are trained on the public dataset Common Objects in Context
(COCO), which is further augmented by ground truths of body orientation and mutual-occlusion
mask. Experiments demonstrate the performance of the proposed method for multi-person pose
estimation and body orientation estimation. The proposed method can detect 84.6% of the Percentage
of Correct Keypoints (PCK) and has an 83.7% Correct Detection Rate (CDR). Comparisons further
illustrate the proposed model can reduce the over-detection compared with other methods.

Keywords: pose estimation; body orientation; multi-person; multi-task

1. Introduction

Human pose estimation is defined as the problem of the localization of human joints (also known
as key points—elbows, wrists, etc.) in images or videos. It has become a highly concerned topic in
computer vision. In addition, pose estimation also recently received significant attention from other
research fields because of the valuable information contained in data of the human pose.

1.1. Non-Deep Neural Network Approach

In the early stage of the pose estimation research, researchers focus on the simple scenario,
and apply the background subtraction to extract the human silhouette from an image sequence.
The model-based method enforces a pre-defined human model to be consistent with the extracted
silhouette to estimate the human pose [1]. When the model-based method is performed in the multiple
views, the silhouette and human pose in 3D can be extracted and estimated [2].

In addition to silhouette information, the temporal information in image sequence is often used to
improve the performance of the pose estimation. One kind of these methods is based on detection
and tracking, which detects a rough pose in the initial frame and tracks the pose in every continuous
frame [3]. After that, the sophisticated model, such as the spatial–temporal Markov Random Field
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(MRF) model, is applied for pose estimation in image sequence [4]. A spatial–temporal constraint is
also used for optimizing body-part configurations in videos [5]. These models are benefited from the
position constraints of both intra-frame joints and inter-frame joints.

Compared to image sequence based pose estimation, extracting a human pose from a single image
is a more challenging topic. It requires to detect a human from variant backgrounds and estimate
the pose in a large number of degrees of freedom using the limited information in the single frame
only. For the single image based pose estimation, Pictorial Structures [6], Deformable Part Models
(DPM) [7] and the integration between the two methods [8] are the famous techniques prior to deep
neural networks.

1.2. Deep Neural Network for Single Person Pose Estimation

In recent years, Deep Neural Networks (DNN) have achieved high performance and outperformed
the conventional methods in many different tasks of computer vision. For example, the proposed
Alexnet [9], Visual Geometry Group (VGG) Net [10], GoogLeNet [11] and ResNet [12] improve the
accuracy of the object classification step by step. Fast Region-based Convolutional Neural Networks
(R-CNN) [13], You Only Look Once (YOLO) [14] and Mask R-CNN [15] also become the new milestones
of object detection and segmentation tasks, respectively. In addition, DNNs have been widely used for
human pose estimation.

Pose estimation can be classified into single person pose estimation and multi-person pose
estimation based on the number of humans that appear in the image. Toshev et al. [16] propose the
DeepPose to estimate the pose of a single person from coarse to fine in a cascade DNN structure.
However, two limitations exist in their method. Firstly, if the result of the initial pose estimation at the
beginning of the cascade DNN is far from the true position, the system will not be able to correct the
estimation because the cascade structure is a one-way flow. Secondly, this method only provides one
prediction per image, which means there is no possibility to improve the prediction when additional
information becomes available for the pose estimation. To address the first issue, Haque et al. [17] and
Carreira et al. [18] propose to apply feedback structures to iteratively optimize the pose estimation.
Their methods feed the estimated pose from the early iterations to the input end again and gradually
refine the pose in the next iterations. As for the second problem, methods using probabilistic heatmaps
are proposed as a solution. These heatmaps generated by Convolutional Neural Networks (CNN) turn
the joint estimation problem into a pixel-wise classification in pyramid feature maps [19].

In addition, Wei et al. [20] build a convolutional pose machine network for single person
pose estimation. Their method learns implicit spatial models via a sequential composition of
convolutional architectures, because the easier-to-detect joint can provide strong cues for localizing the
difficult-to-detect joint. Similarly, Newell et al. [21] present an hourglass module to capture information
at every scale in order to combine features from different stages better. Wang et al. [22] propose a novel
densely connected convolutional module-based convolutional neural network to estimate the pose of a
single person. Wang et al. [23] apply the multi-scale feature pyramid module to further improve the
performance of the deeply learned compositional model of human pose estimation. Chen et al. [24]
propose to use generative adversarial networks to exploit the constrained human-pose distribution for
improving single-person pose estimation. Szczuko proposes to localize single-person body joints in 3D
space based on a single low resolution depth image [25].

1.3. Deep Neural Network for Multi-Person Pose Estimation

However, the pose estimation task becomes more complex in the case of multi-person. Firstly,
assembling many homogeneous joints to different persons is a challenging issue. Secondly, occlusion
caused by overlapping between multi-persons makes the detection of joint much more difficult. In
order to deal with the multi-person pose estimation, the solutions are divided into two types: top-down
approaches and bottom-up approaches.
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In bottom-up approaches, firstly body part or joint detection is conducted, and then the accurate
prediction of the number of people and their poses is performed by person clustering and joint labeling.
Pishchulin et al. [26] propose a DeepCut method where Fast R-CNN [13] is used as a body part detector.
Then the goal of the task becomes subset partitioning from a graph of all connections among each joint
detected from the image, which turns the task into an Integer Linear Programming (ILP) problem.
After that, they improve DeepCut by using deeper ResNet architectures [12] to enhance body part
detectors and propose image-conditioned pairwise terms that assemble the proposals into a variable
number of consistent body part configurations [27]. Kocabas et al. propose to estimate the multi-person
pose using a pose residual network [28]. The proposed system is named as the MultiPoseNet and has
real time performance. Furthermore, in order to achieve the goal of real-time pose estimation, Cao et al.
present a new method using Part Affinity Fields (PAFs) [29], which is also known as OpenPose later.
The proposed method firstly generates the joint positions of all of the people in the image by finding
the local maximums of joint heatmaps. Then the method connects these joints gradually to construct
the person pose structures. This method performs well for visible joints. However, there are many
false positives for the occluded joints, because of its aggressive searching of joint positions.

Although bottom-up approaches show a general advantage in runtime analysis, these approaches
still suffer from problems that people in the image are in small scale or collusion, because detecting
body parts before detecting the person itself becomes even difficult. In this case, top-down approaches
could have better results by firstly detecting the person and then proceeding single-person pose
estimation in each bounding box. Papandreou et al. [30] propose a method using a two-stage network
that uses a person box detection system [31] as a bounding box detector, then predicts the pose of every
single person in each bounding box. He et al. [15] also develop a multi-task method based on their
former contribution [32], which can be implemented for pose estimation tasks.

1.4. Information Used for Human Pose Estimation

Joint feature is the most direct information for human pose estimation. In addition, human
detection [30] and human segmentation [15] have been used for improving the accuracy of pose
estimation. Furthermore, in order to handle the self-occlusion in pose estimation, Azizpour et al. [33]
and Ghiasi et al. [34] learn templates for occluded versions of each body part. Rafi et al. [35] incorporate
the context information of occluding objects to predict the locations of occluded joints. Haque et al. [17]
implicitly learn the occlusion through a deep neural network and gave the output of a visibility
mask of joints. In our previous work [36], orientation prediction is integrated with single person
pose estimation.

Table 1 shows a comparative overview of the different previous frameworks. Non-deep neural
network approaches require image sequence [1–5], or hand-crafted features and models [1,6–8] for
pose estimation. In addition, the accuracy of non-deep neural network approaches is lower than
the following deep neural network approaches [16,18]. The single person pose estimation works
with the guarantee of only one person present in the image [16–25,35,36]. However, the scenes
with multi-person are exceedingly common in our daily life. Thus, multi-person pose estimation
frameworks are more universal for real-world applications. Current multi-person pose estimation
approaches are the lack of effectively using occlusion and orientation information, and suffer from the
false positive detection problem. By considering the above mentioned points, this paper proposes
to integrate the body orientation and occlusion information into the multi-task learning framework
for the multi-person pose estimation. In addition, this paper not only simply implements the widely
used parallel multi-task network, but also develops the serial multi-task networks to reduce the false
positive detection (over-detection) in the multi-person pose estimation.
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Table 1. A comparative overview between the different previous frameworks.

Category Method Limitation

Non-Deep Neural
Network Approach

• Silhouette for pose [1,2]
• Spatial + temporal information for pose [3–5]
• Pictorial and part structure model for

pose [6–8,33,34]

• Requirement of image
sequence, hand-crafted
features and models

• Lower accuracy compared to
deep neural
network approaches

Deep Neural
Network

Approach

Single Person
Pose Estimation

• DeepPose [16],
• Feedback for pose [17,18]
• CNN + graphical model for pose [19]
• Convolutional pose machines [20]
• Stacked hourglass networks for pose [21]
• Densely connected convolutional module for

pose [22]
• Multi-scale compositional models for pose [23]
• Generative adversarial network for pose [24]
• Pose in depth image [25]
• Semantic occlusion model for pose [35]
• Orientation for pose [36]

• Limitation of only single
person pose in one image

Multi-Person
Pose Estimation

• DeepCut [26]
• DeeperCut [27]
• MultiPoseNet [28]
• Openpose [29]
• Two stages (Faster RCNN detector + fully

convolutional ResNet) for pose [30]
• Mask-RCNN [15]

• Lack of effectively using
occlusion and
orientation information

• False positive detection
(over-detection)

This paper has two contributions. First one is to propose a novel multi-task learning framework
for the multi-person pose estimation. In the related works, the body segmentation, joint position
estimation and joint visibility have been used for the human pose estimation. This paper proposes
to add body orientation and mutual-occlusion information into the multi-task learning framework
for the multi-person pose estimation. The second contribution of this research to propose to use the
serial multi-task networks instead of the widely used parallel multi-task network for the multi-person
pose estimation. To prove the advantage of serial multi-task networks, this paper compares the
performance of the multi-task learning frameworks with different configurations for the multi-person
pose estimation. In addition, for the purpose to train orientation and occlusion recognition tasks,
our research team builds a dataset based on images from the Common Objects in Context (COCO)
keypoints dataset by adding an orientation and occlusion mask as new annotations. The initial ideas
of this paper have been published in our previous conference papers [37]. Compared to our previous
conference publication, this paper gives more surveys about the related works. In addition, this paper
compares the performance of the different versions of the developed pose estimation networks.

The rest paper is organized as follows: Section 2 describes the proposed pose estimation networks.
Section 3 evaluates the performance of the proposed networks. Finally, Section 4 concludes this paper.

2. Deep Neural Network for Multi-Person Pose Estimation

Human pose estimation is a challenging task in computer vision. One of the difficulties is the
occlusion problem, including both self-occlusion and mutual-occlusion by other objects. The main
reason of self-occlusion is body orientation. For example, if a standing person is facing the right
of the camera, his or her left body is probably occluded. On the other hand, the mutual-occlusions
may happen due to arbitrary objects. Another difficulty of pose estimation is the left-right similarity
problem because of the symmetry of the human body. For example, the left shoulder of a person in the
back view is very similar to the right shoulder in the front view. Therefore, to solve these problems, this
research proposed to incorporate the body orientation and occlusion condition into the pose estimation.

In this paper, Mask R-CNN [15] was chosen as a basic model to build our multi-task model,
because the top-down region proposal network of Mask R-CNN makes it feasible to implement new
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tasks into the multi-task and the pose estimation task of Mask R-CNN also has a certain space to
improve. In the proposed models, body boundary, body orientation and occlusion condition and
joint position estimation tasks were integrated in order to improve the accuracy of multi-person pose
estimation. Body boundary can be represented as the silhouette. Body orientation is the human
body direction relative in the camera space. The occlusion condition in the multi-person case can be
separated into two situations: self-occlusion and mutual-occlusion. The more detailed information of
these tasks will be described in the following subsections.

The system framework of the proposed method is illustrated in Figure 1. The input image would
firstly be resized to 1024 × 1024 in the preprocessing step, then input into a Mask R-CNN layer heads
for feature extraction, which consists of the feature pyramid network, region proposal network and a
Region of Interest (RoI) align layer at last to generate RoI features. In addition, the two-stage object
detection and classification branch in the original Mask R-CNN was also conducted in this layer heads.
In fact, this paper also adopted the detection and classification branch of Mask R-CNN to obtain the
RoI feature of each human. RoI features were then fed into the multi-task network. The multi-task
learning part was the focus of this paper, and the details of the multi-task learning part were explained
in the next subsections.
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2.1. Parallel Multi-Task Network for Pose Estimation

In this paper, the widely used parallel multi-task network was firstly chosen to integrate the
multi-information. The architecture of the parallel multi-task network is illustrated in Figure 2.
The network has three branches: body segmentation branch, joint position estimation branch and
occlusion-orientation branch. The three branches output five multi-task results: segmentation, joint
heatmap, orientation, joint visibility and mutual occlusion. In the training step, the five multi-task
results were used for calculating the value of loss function. In this paper, the multi-task loss L was
defined as the sum of the loss from each task:

L = Lsegm + L joint + Lori + Lvis + Locc, (1)

where, Lsegm, L joint, Lori, Lvis and Locc denote the loss function for the task segmentation, joint heatmap
estimation, orientation estimation, joint visibility and mutual occlusion estimation, individually.
The details of each loss function will be explained in the next subsections.
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2.1.1. Body Segmentation Branch

To build the body segmentation branch, this paper borrowed the segmentation part of Mask
R-CNN and changed the number of object classes into 2 (person and background). The architecture of
this branch is illustrated in Figure 3. The body segmentation branch predicts masks for each RoI using
a Fully Convolutional Networks (FCN) [38]. This branch consists of a stack of four convolutional layers
with kernel size 3 and depth 256, followed by a deconvolution layer and a final convolutional layer
with kernel size 3. In this branch, the 14 × 14 size RoI features are firstly passed into the segmentation
head, and finally converted to an output with the resolution 28 × 28 and depth 2. This structure allows
each layer in the branch to maintain the explicit object spatial layout without collapsing it into a vector
representation that lacks spatial dimensions.
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The segmentation loss Lsegm is defined as a cross entropy between ground truth and segmentation
result with considering the class label of the segmentation result:

Lsegm = − 1
NRoI

NRoI∑

i=1

(Segmi ∗ classi)∗ logSegm′i , (2)

where i is the index of RoI. classi is the ground truth class label. Segm′i is the segmentation ground truth
and Segmi denotes the segmentation result.

2.1.2. Joint Position Estimation Branch

In the joint position estimation branch, the joint position is considered as a “one-hot” mask.
The joint position estimation branch uses the architecture similar to the body segmentation branch for
predicting N joint masks. Each mask is corresponding to one of N joint joint types (e.g., left shoulder, right
elbow). The architecture of the joint position estimation branch is shown in Figure 4. Similar to the body
segmentation task, this paper used the FCN structure to output these N joint masks. For the reason that
the joint is much smaller in each RoI, the output joint mask size is set twice as the segmentation mask
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in order to give accurate results. In this branch, the 14 × 14 RoI features are firstly input into a stack
of eight convolutional layers with kernel size 3 and depth 256, then passed through a deconvolution
layer with kernel size 2 and a bilinear interpolation up-scaling layer, finally converted to an output
with the resolution 56 × 56 and depth N joint.
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The joint position loss L joint is defined as Equation (3).

L joint = − 1
17NROI

NROI∑

i=1

N joint=17∑

j=1

Softmax(Ki j) ∗ log K′i j (3)

where the number of joint N joint is set to 17 in this research. K′i j is the ground truth, Ki j is the joint
position estimation result. Instead of the pixel-wise cross entropy used in body segmentation branch,
this paper used one-hot label ground truth where only one correct joint position is true in the joint
position loss function. This loss function can force the network to output a probability contribution
where only one pixel in the mask gives the peak value after softmax operation.

2.1.3. Orientation-Occlusion Branch

The architecture of the orientation-occlusion branch is shown in Figure 5. This branch consists of
a convolutional layer with kernel size 14 × 14 and depth 1024, followed by a fully connected layer.
The body orientation is a kind of global information of pose configuration. The body orientation is
useful for solving both the self-occlusion problem and left-right similarity problem. For example, if we
know a person is facing to right, the body orientation indicates the occlusion of his or her left body.
Similarly, if a person is facing the camera, his or her right shoulder is probably on the left side of the
image. Our previous research [36] suggests that body orientation could be defined as 8 directions,
as shown in Figure 6. When the body is defined as 8 directions, the prediction result of the body
orientation can be a vector format with 8 elements.
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The term visibility mask is introduced by Haque et al. [17]. However, they only applied the
visibility mask in the top view images for self-occlusions. This research extends the application of the
visibility mask for more flexible view angles and for both self-occlusion and mutual-occlusion by objects.
In this research, the joint visibility mask is a 17-dimensional vector to indicate the visibility of each joint.
In addition, the occlusion mask is defined as a 2-dimensional vector. The combination of occlusion
mask and joint visibility mask can explain the reason for the invisible joints: only self-occlusion or
self-occlusion plus mutual-occlusion. The loss of these 3 outputs are defined as the cross entropy
with softmax:

Lori = − 1
NROI

NROI∑

i=1

Softmax(Orii) ∗ log Ori′i , (4)

Lvis = − 1
NROI

NROI∑

i=1

Softmax(Visi)∗ logVis′i , (5)

Locc = − 1
NROI

NROI∑

i=1

Softmax(Occi)∗ logOcc′i , (6)

where the terms Orii′, Visi
′ and Occi

′ are the ground truth labels of body orientation, joint visibility
and mutual-occlusion, respectively. The terms Orii, Visi and Occi are the estimation results of body
orientation, joint visibility and mutual-occlusion output from this branch.

2.2. Serial Multi-Task Pose Estimation Network

In the parallel multi-task network, the information that can only be shared between different
tasks is the RoI features extracted from the Feature Pyramid Network (FPN) and RoI align layer.
Especially for the body segmentation task and joint position estimation task, the RoI features is
hardly affected by the activation of ground truth label during backpropagation because of the deep
convolutional networks. Actually, the information used in human pose estimation is strongly related
to each other. Figure 7 shows an example of the relationship between the different tasks. The body
segmentation describes the boundary of the human body, it can be a constraint for the joint position
estimation. In addition, joint positions are helpful to model the structure of the human pose, which can
be a strong reference for body orientation estimation. This is not the only way that this information is
related, there are more combinations that the different tasks can benefit from each other. In order to
take advantage of these relationships and enhance the connections between different tasks, this paper
proposes to use the serial multi-task networks instead of the widely used parallel multi-task network
for the multi-person pose estimation.
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Figure 8 shows two forward passing architectures of the proposed serial multi-task networks.
Since the orientation and occlusion outputs are vectors that have a smaller amount of data compared to
the segmentation mask and joint heatmap, the orientation-occlusion branch is set as the last output layer
in this research. For the rest two branches, this paper proposed two models. In the first model, the body
segmentation branch was configured at first and the output of segmentation branch was fed into the
joint position estimation branch (as shown in Figure 8a). In the other model, the results of the joint
position estimation were directly input into other two branches (as shown in Figure 8b). In both two
serial multi-task networks, the joint position estimation branch is connected to the orientation-occlusion
branch because the joint position is a better reference for the prediction of body orientation than the
body segmentation.

1 

 

(a) 
(b) 

 

  Figure 8. Proposed two serial multi-task networks. (a) Serial multi-task network
with “Segmentation→Joint” connection; (b) Serial multi-task network with “Joint→
Segmentation” connection.

As shown in Figure 8a, the output of the body segmentation branch is passed into the joint position
estimation branch in the first serial model. Figure 9 illustrates the new architecture of the joint position
estimation branch combined with body segmentation. In this new architecture, the body segmentation
output (resized to 14 × 14) was added into the RoI features to make the body segmentation be referred
into the convolutional process of the joint position estimation.
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Figure 9. Joint position estimation branch combined with body segmentation (for Figure 8a). 
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Figure 9. Joint position estimation branch combined with body segmentation (for Figure 8a).

In the second serial model, joint position estimation results were input into the body segmentation
branch, as shown in Figure 8b. This model added the intermediate result of the joint position estimation
(before the last up-scaling layer (size 28 × 28)) into the body segmentation branch, as shown in Figure 10.

Sensors 2020, 20, x FOR PEER REVIEW  10 of 21 

 

 

 
 

(a) 
(b 

 

Figure  8.  Proposed  two  serial  multi‐task  networks.  (a)  Serial  multi‐task  network  with 

“SegmentationJoint”  connection;  (b)  Serial  multi‐task  network  with  “Joint  Segmentation” 

connection. 

 

Figure 9. Joint position estimation branch combined with body segmentation (for Figure 8a). 

 

Figure 10. Body segmentation branch combined with joint position (for Figure 8b). Figure 10. Body segmentation branch combined with joint position (for Figure 8b).

In addition, both two serial models have a connection between the joint position estimation branch
and orientation-occlusion branch. Figure 11 shows how to combine the joint position estimation result
with the orientation-occlusion branch. This research clips the joint position results to be consistent
with the size of RoI features. In this way, the clipped joint position features and RoI features are input
into the fully connected network together. The performance of the two serial models will be presented
in Section 3.Sensors 2020, 20, x FOR PEER REVIEW  11 of 21 
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3. Results

This section will firstly describe the details of the training dataset, and then demonstrate the
evaluations for the proposed models and comparison with other methods.
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3.1. COCO Keypoint Dataset

In this paper, the COCO keypoint dataset [39] was used for training and evaluation. COCO
(Common Objects in Context) dataset is an open dataset built by Microsoft and Facebook, etc., which
has a large volume of images for general object detection and segmentation tasks. Keypoint detection
is one of the tasks in the COCO dataset, which requires localization of person keypoints in challenging,
uncontrolled conditions. COCO keypoint dataset is the largest 2D pose estimation dataset and has
been widely adopted by other multi-person 2D pose estimation algorithms. In addition, the images
of the COCO keypoint dataset were captured in human’s daily life, such as a party, meeting room
and sport field. The images include multi-person with different scales, orientations, occlusions and
postures. Figure 12 gives a demonstration of this task, each person in the image has a set of annotations
including segmentation, class name (in this task it is “person”), bounding box position, the number
of labeled keypoints and a list of body joint information (labeled in the format (x,y,v) with 17 joints,
where x,y is the location of joint and v is the visibility of joint that v = 0 means not labeled, v = 1 means
labeled but not visible and v = 2 means labeled and visible). The proposed models were trained on the
COCO Keypoint Dataset 2017, which includes 56,599 images for training. In the training, the instances
with less than three joints were excluded in order to teach the model to learn the whole body structure
better and accelerate the converge of the training process.
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Figure 12. Demonstrations of Common Objects in Context (COCO) Keypoint Dataset 2017.

3.2. Extended Sub Dataset with Mutual-Occlusion and Body Orientation

Since this paper added the mutual-occlusion estimation and orientation recognition task in
the proposed models, which require the annotations that do not exist in the COCO keypoint
dataset, our research team built a sub dataset for training these tasks and evaluation of the models.
The subdataset included 2306 images from the training dataset of the COCO keypoint dataset and
260 images from the validation dataset in the COCO keypoint dataset. The images include over 8000
human instances in different sizes and situations. The 2306 images are used in training, and the
260 images were used for evaluation.

The label of body orientation follows the definition shown in Figure 6. This paper divided the
horizontal space into eight parts with each part of 45 degrees to label different body orientations.
However, because some instances are hard to be categorized into certain orientation, for this reason,
a label “9” was added to deal with those instance orientations that were hard to distinguish. It means
that the prediction result of the body orientation was a vector format with nine elements in this research.
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The label system for the mutual-occlusion mask is shown in Figure 13. Unlike the joint visibility
mask that is a binary mask for each joint of each instance, the mutual-occlusion mask is defined as a
binary mask for the whole instance in one bounding box. It is a classification label that categorizes
the person in each bounding box into two classes: occluded and not occluded. To distinguish this
mutual-occlusion label from self-occlusion, our research team only labeled the instances that were
cropped by the edge of the image or occluded by another person (or object) with Label 1 (occluded).
For the instance that has self-occlusion due to its orientation, we labeled it as Label 0 (not occluded).
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3.3. Dataset for Training and Evaluation

In the research, all the models (will be presented in Tables 2–7) were trained on the training dataset
of COCO Keypoint Dataset 2017. More specifically, the proposed models (both the parallel and serial
models) were first “pre-trained” on the training dataset of the COCO keypoint dataset for the body
segmentation task, joint position estimation task and joint visibility mask task. After that, 2306 images
and their annotation (including segmentation, joint position, joint visibility mask, mutual-occlusion
and body orientation) in the extended subdataset were reused to retrain all the branches of our
proposed models. This retraining processing started from the pretrained networks. For other methods
(Openpose [29] and MultiPoseNet [28]) adopted in the comparisons, the models are trained on the
same training dataset.

Table 2. Evaluation for joint position estimation of proposed models using the Percentage of Correct
Keypoints (PCK; %).

Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle Overall

Joint+Segm 89.3 90.8 90.0 82.6 77.1 73.4 76.7 74.2 72.9 80.8

Joint+Segm
With

Occ&Ori
90.3 91.6 90.0 84.1 78.4 75.6 75.9 75.8 73.4 82.7

Segm→Joint 89.6 89.9 88.6 84.4 81.8 77.0 79.0 78.2 73.7 82.4

Segm→Joint
With

Occ&Ori
94.1 94.1 93.3 85.5 82.0 75.2 78.4 77.5 73.9 83.7

Joint→Segm 93.5 93.7 92.8 85.5 81.4 76.1 78.2 76.6 73.6 83.5

Joint→Segm
With

Occ&Ori
93.7 93.8 93.2 86.9 82.6 77.8 80.5 78.9 74.1 84.6
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Table 3. Accuracy of orientation recognition in a strict principle (%).

Label 1 2 3 4 5 6 7 8 9

Degree 0 45 90 135 180 225 270 315 -

Joint+Segm with Occ&Ori 40.2 47.4 58.7 38.6 34.5 38.1 63.1 38.6 48.1

Segm→Joint with Occ&Ori 79.2 50.0 67.7 46.4 80.1 62.3 79.0 42.3 49.4

Joint→Segm with Occ&Ori 88.6 47.2 58.8 50.0 85.9 54.7 75.6 47.1 77.1

Table 4. Accuracy of orientation recognition when a neighbor error allowed (%).

Label 1 2 3 4 5 6 7 8 9

Degree 0 45 90 135 180 225 270 315 -

Joint+Segm with Occ&Ori 91.7 95.8 93.6 86.7 79.0 89.2 93.7 88.7 48.1

Segm→Joint with Occ&Ori 98.2 98.4 100 90.9 83.6 94.4 93.3 94.7 49.4

Joint→Segm with Occ&Ori 98.1 98.5 99.2 90.9 94.7 92.0 93.2 93.8 77.1

Table 5. Comparison between proposed model and other methods using PCK (%).

Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle Overall

OpenPose
[29] 92.2 92.1 92.3 89.5 83.9 74.2 83.3 83.5 80.8 85.7

MultiPoseNet
[28] 88.9 88.5 88.9 84.5 82.0 79.6 78.6 79.7 78.0 83.2

Joint→Segm
WithOcc&Ori 93.7 93.8 93.2 86.9 82.6 77.8 80.5 78.9 74.1 84.6

Table 6. Comparison between proposed models and other methods using Correct Detection Rate
(CDR; %).

Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle Overall

OpenPose [29] 72.2 70.5 66.2 74.8 69.3 72.8 72.7 74.8 66.5 71.2

MultiPoseNet
[28] 85.6 81.1 77.6 88.3 82.4 80.5 83.7 80.3 71.0 81.2

Joint+Segm
with Occ&Ori 82.7 80.4 75.2 86.0 80.0 78.4 88.4 87.7 82.9 82.4

Segm→Joint
with Occ&Ori 89.3 86.6 79.2 85.2 77.7 77.8 77.8 85.3 82.7 82.4

Joint→Segm
with Occ&Ori 84.7 86.6 80.6 85.2 82.3 81.4 85.8 87.8 79.3 83.7

Table 7. Comparison for processing time of proposed models and other methods.

Method Processing Time (Second)

OpenPose [29] 0.26

MultiPoseNet [28] 0.05

Joint+Segm with Occ&Ori (Parallel model) 1.16

Segm→Joint with Occ&Ori (Serial model) 1.21

Joint→Segm with Occ&Ori (Serial model) 1.23

In the evaluation for joint position estimation (will be presented in Tables 2, 5 and 6), all the
models (including both our proposed models and models in other methods) were evaluated on the
validation dataset of the COCO keypoint dataset.
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In the evaluation for body orientation recognition (will be presented in Tables 3 and 4), the models
(including both the parallel models and serial models) were evaluated on 260 images in the extended
subdataset. The 260 images had orientation annotations labeled by our research team.

3.4. Evaluation for Joint Position Estimation

To evaluate the performance for the joint position estimation, this paper used the Percentage of
Correct Keypoints (PCK), which is a widely used evaluation metric. The correct keypoint is defined as
the predicted joint whose distance from the true joint is less than a given threshold. In this research,
the threshold used in the PCK calculation was set as 0.1 × bounding box height. PCK can evaluate
how many percentages of keypoints can be correctly detected. Calculation of PCK can be expressed as
Equation (7).

Percentage of Correct Keypoints =

∑(
Jointdetected ∩ Jointgroundtruth

∣∣∣
vis>0

)

∑(
Jointgroundtruth

∣∣∣
vis>0

) , (7)

where Jointdetected ∩ Jointgroundtruth is the joints correctly detected by the network and Jointgroundtruth
∣∣∣
vis>0

is the visible joints labeled in the ground truth annotations. In the evaluation, the PCK of the joints
was calculated by considering visibility > 0.

The evaluation results and comparisons between the different proposed models are shown in
Table 2. In Table 2, “Joint+Segm” represents a parallel multi-task model before training on the occlusion
and orientation subdataset, “Segm→Joint” represents the serial multi-task model that inputs body
segmentation results into the joint position estimation branch, “Joint→Segm” represents the serial
multi-task model that inputs joint position estimation results into the body segmentation branch,
and “with Occ&Ori” represents models trained on the occlusion and orientation subset.

The evaluation results show that after training on our occlusion and orientation subdataset,
the accuracy of each model had an overall increase on each joint. The proposed serial multi-task
models obtained higher accuracy than the parallel multi-task model. In addition, the serial model
starts from the joint position estimation branch had the best performance. Some results of this model
on multi-person images are shown in Figure 14. The examples of incorrect joint position estimation
results are shown in Figure 15, where the image on the left top is an example that our model did not
separate the two ankles but activated them at the same time, which led to the low accuracy of the ankle.
For the human instances with an uncommon pose (image on the right top of Figure 15), our model also
could not make a correct estimation. The two images on the bottom show examples where the body
segmentation and joint position estimation gave incorrect results together, which is a problem of the
multi-task network that we need to solve in the future.
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3.5. Evaluation for Orientation Estimation

This paper also evaluated the orientation recognition performance of the proposed models, which
was also a widely used benchmark for human pose estimation. Table 3 shows the accuracy of the
orientation recognition task of the proposed models. In the first evaluation, the predicted orientation
result was correct if the result was exactly the same as the ground truth orientation. We could see the
benefit after we input joint position estimation results into the occlusion-orientation branch. The serial
model starts from joint position estimation had the best overall accuracy, where we thought body
orientation estimation benefitted from the increase of joint position accuracy.

In addition, this paper adopted a compatible principle that allows a neighboring error for the
body orientation estimation in the second evaluation. As shown in Table 4, the proposed models show
more satisfying performance on the orientation prediction. For the normal eight orientations, the two
serial models obtained a similar high accuracy. However, for the other orientation (Label 9), the serial
model starts from the joint estimation branch had a better recognition rate than other models. Figure 16
visualizes several results of the whole multi-task outputs of the proposed model, where the red arrow
in the center of each bounding box shows the body orientation recognition result, and the number
with a blue background on the left top of bounding box represents the mutual-occlusion condition of
each person (1 is mutual-occluded and 0 is not mutual-occluded).
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3.6. Comparison with Other Methods

In order to demonstrate the effectiveness of the proposed method, this paper compared the
proposed multi-task models with other pose estimation methods. The comparison among our models,
OpenPose [29] and MultiPoseNet [28], is shown in Table 5. Our serial model starts from joint
position estimation obtained higher overall PCK than MultiPoseNet, which benefits from the higher
accuracy of the face parts. For the whole-body joints without face parts, our model gave similar
PCK as MultiPoseNet. The OpenPose performed higher PCK by taking advantage of its bottom-up
architecture and part affinity filed network. However, we found that OpenPose had an obvious
over-detection tendency on the “not joint” objects because it did not use the bounding box to limit the
area of convolution.

In order to demonstrate the ability to make correct joint detections, this paper defined a Correct
Detection Rate (CDR) to evaluate the over-detection tendency, which can be expressed as:

Correct Detection Rate =

∑(
Jointdetected ∩ Jointgroundtruth

∣∣∣
vis>0

)
∑
(Jointdetected)

, (8)

where Jointdetected is the joints detected by the network and Jointgroundtruth is the joints labeled in
the ground truth annotations. When a joint out of annotation is detected, it will be counted as an
over-detection. The comparison between our proposed method and other methods using CDR is
shown in Table 6.

This paper evaluated the performance of the human pose estimation algorithms by considering
both PCK and CDR. PCK denotes the percentage of correct keypoints and CDR represents the
over-detection tendency. Firstly, the proposed model (Joint→Segm with Occ&Ori) outperformed
the MultiPoseNet in the comparisons using both PCK and CDR. Secondly, the proposed model
(Joint→Segm with Occ&Ori) achieved 84.6% PCK, it was slightly worse than 85.7% of OpenPose in the
PCK comparison, as shown in Table 5. However, the proposed model (Joint→Segm with Occ&Ori) had
83.7% CDR, which was much better than the CDR of OpenPose 71.2%, as shown in Table 6. In order to
visualize the effect of the over-detection, Figure 17 shows the human pose estimation results generated
by OpenPose (left) and the proposed model (Joint→Segm with Occ&Ori; right). It is clearly seen that
the result of OpenPose had an over-detection on the right bottom of the left figure. In fact, the low
CDR value of the OpenPose method was caused by this kind of over-detection. By analyzing the PCK
and CDR, we could understand that OpenPose used an aggressive manner in the detection of the joint
position to maintain the higher PCK value, at the same time generated more over-detections. On the
contrary, our proposed model dramatically reduced the over-detections and achieved the competitive
result on PCK.
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After the evaluation of the accuracy, the comparison was conducted for the processing speed.
The processing speed of each model was calculated by averaging the processing time for each image
used in joint position estimation. In the comparison for the processing speed, the processing time of
different models were calculated by using the same images, and all experiments were performed on a
system with an i7-8700K CPU and Nvidia 1080Ti GPU. The processing time of the parallel multi-task
model, the serial multi-task models and other methods are summarized in Table 7. The parallel
multi-task model with occlusion and orientation branches spends 1.16 s per image, and both two
serial multi-task models need longer processing time than the parallel multi-task model, because later
subnetworks need to wait for the earlier sub-networks to finish the process in the serial multi-task
models, e.g., as shown in Figure 8b, the joint position estimation branch (label as “Joint Heatmap”)
should finish the calculation completely, then the segmentation branch and orientation-occlusion
branch can use the Joint Heatmap to finish the processing. Thus, this serial framework increased the
processing time. In addition, our proposed models had longer processing time than the conventional
methods [28,29]. Overall, our proposed model had better accuracy but required more processing time
compared to the conventional methods.

This proposed algorithm could be used for some applications that need high accuracy but do not
require real-time processing speed, e.g., our previously published works [36,40] propose to analyze the
customer pose for marketing. The customer behavior analysis is one of the most concerned topics
for retailers because the customer behavior information can indicate the customer interest level to
the product in the stores and is helpful to increase the commercial benefit. By checking the body
orientation, head orientation and pose interactions between merchandise (such as touching, taking
items, returning to shelf or putting into basket), these customer behaviors can reveal their interest level
to the merchandise. The proposed methods in this paper can be used to analyze the recorded images by
the surveillance camera in the store. High accuracy of the pose estimation is expected for the purpose
of the commercial benefit. In addition, the real-time processing speed is not required because the
customer behavior analysis could be post-processing. Thus, the customer behavior analysis application
is one of the examples that the proposed method can be applied for.

This research has proven that integrating body orientation and occlusion information into the pose
estimation multi-task network could improve accuracy. In the future, the temporal information between
frames will be considered and utilized for the multi-person pose estimation in video. In addition,
the temporal information is expected to be a solution to improve the low accuracy issue for ankle joints.

4. Conclusions

This research presented a multi-person pose estimation method using multi-task deep learning
networks. The proposed network model is the extended multi-task network based on a Mask R-CNN
layer heads, and it consists of five tasks: (1) joint position estimation, (2) body segmentation, (3) joint
visibility mask, (4) body orientation recognition and (5) mutual-occlusion mask, the five tasks are
separated into three branches: body segmentation branch, joint position estimation branch and
orientation-occlusion branch. This paper first built a parallel multi-task network with each task
separately. In order to strengthen the connections between different tasks, this paper further proposed
two serial multi-task models. In the evaluation step, this paper first evaluated the accuracy of the joint
position estimation and orientation recognition ability of the proposed models. In addition, this paper
compared the accuracy of the proposed model with other pose estimation methods by considering
two criterions PCK and CDR. The proposed method could detect 84.6% PCK and had 83.7% CDR.
Our proposed model could reduce the over-detection compared with other methods.

There are still some problems that need to be solved in the proposed models such as the low
accuracy of ankle joints. In the future, we would like to continue improving this model by using the
temporal information between frames for multi-person pose estimation in the video.
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Abstract: In this research, we present a semi-supervised segmentation solution using convolutional
autoencoders to solve the problem of segmentation tasks having a small number of ground-truth
images. We evaluate the proposed deep network architecture for the detection of nests of nevus cells in
histopathological images of skin specimens is an important step in dermatopathology. The diagnostic
criteria based on the degree of uniformity and symmetry of border irregularities are particularly vital
in dermatopathology, in order to distinguish between benign and malignant skin lesions. However,
to the best of our knowledge, it is the first described method to segment the nests region. The novelty
of our approach is not only the area of research, but, furthermore, we address a problem with a
small ground-truth dataset. We propose an effective computer-vision based deep learning tool
that can perform the nests segmentation based on an autoencoder architecture with two learning
steps. Experimental results verified the effectiveness of the proposed approach and its ability to
segment nests areas with Dice similarity coefficient 0.81, sensitivity 0.76, and specificity 0.94, which is
a state-of-the-art result.

Keywords: deep learning; autoencoders; semi-supervised learning; computer vision; pathology;
epidermis; skin

1. Introduction

Over the past few decades, both incidence and mortality rates caused by cutaneous melanoma
(the most aggressive and lethal skin cancer) among Caucasian populations worldwide has significantly
increased [1]. In many countries and regions of the world (such as France, Australia, and Switzerland),
the crude incidence rate of cutaneous melanoma increased by 50%–100% between 1993 and 2013 [2].
According to surveys conducted by national health services, melanoma is currently responsible for
nearly 70% of all skin cancer-related deaths in the United States and in Australia [3,4]. Although,
to date, no effective treatment of melanoma in advanced stages has been developed, an early melanoma
(in the in situ stage) is treatable in about 99% of the cases with all but a simple excision [5]. Therefore,
the early diagnosis of melanoma, and especially distinguishing melanoma from other types of skin
melanocytic lesions, has become an extremely important issue.

The gold standard for diagnosing skin melanocytic lesions (including melanoma) is the
histopathological examination—the microscopic examination of tissue in order to study the
manifestations of disease [6]. The histopathological criteria for diagnosing skin melanocytic lesions
are based on the analysis of such features as lesion’s asymmetry, morphometric features of epidermis,
proliferation patterns of single melanocytes, and more [7,8]. In particular, the size, shape, position,
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and distribution of nests of melanocytes (i.e., aggregations of melanin-producing cells, located
originally in the bottom layer of the epidermis) are considered. The traditional histopathological
examination was carried out manually and with the use of a light microscope. However, such an
approach has at least two important drawbacks: quantitative analysis of a large volume of specimens
is a laborious activity, and it is a subjectivity-prone task whose results are not reproducible [9,10].
Therefore, there is a need to develop automatic image analysis methods for the diagnostics of skin
melanocytic lesions, which will provide accurate, reliable, and reproducible results. The rapid
development in the fields of digital pathology and artificial intelligence facilitates research works in
this topic.

Artificial intelligence research (AI) is a wide-ranging branch of computer science that was already
introduced more than half a century ago [11]. However, the greatest progress has been visible in recent
years. Deep learning models, which are the latest but also the most promising methods, have been
exploited with impressive results in signal processing and computer-vision tasks. Deep learning is
currently one of the most popular advanced neural network models used for image segmentation,
classification, and reconstruction for challenges that have not been solved yet, particularly in the field
of biological systems and medical diagnostics [12]. Progress in the hardware, software, algorithms,
and availability of huge datasets allow employment of high accuracy image recognition systems.
A systematic review on the use of deep neural networks including convolutional autoencoders can be
found in [13,14].

In this paper, we present a new approach that is one of the first approaches to the segmentation
of nests of melanocytes. We examine the possibility to use convolutional autoencoders, which are a
specific type of feedforward neural networks where the input is the same as the output. They compress
the input into a lower-dimensional code and then reconstruct the output from this representation.
We firstly train the network in an unsupervised way to obtain the weights for the encoding part;
secondly, we train the network with limited ground-truth images to receive the weights for the
decoding part. The network architecture is adapted to the specification of our problem including the
densely-connected classifier layer.

To the best of our knowledge, it is the first method to segment nests of melanocytes in
histopathological images of H&E-stained skin specimens.

The novelty of this work can be summarized as:

• we present a deep learning based solution for the segmentation of nests on histopathological
images,

• we propose a convolutional autoencoder neural network architecture with two semi-supervised
training stages for the encoding and decoding parts,

• our method enables the adaptation of the autoencoders for limited ground-truth data amount
based on data augmentation and autoencoders specification.

This paper is organized in four sections as follows: Section 1 presents the skin cancer awareness
and covers background information on deep learning methods including autoencoders, related works,
motivation of the undertaken research, medical devices, and the problem of melanoma misdiagnosis.
Section 2 shows in detail the methodology used in this research to segment the nests regions including
data specification and preparation, the autoencoder architecture, layers, training, and classification
stages. Section 3 presents the training parameters, and conducts tests and results as well as visualization
and interpretation of the layers outputs. Section 4 exposes the conclusions and suggests new lines
of research.

1.1. Medical Background

Skin melanocytic lesions are neoplasms derived from epidermal melanocytes. The two principal
classes of skin melanocytic lesions are “benign” nevi (with no metastatic potential) and “malignant”
melanoma (with a metastatic capacity proportional to its thickness).

374



Sensors 2020, 20, 1546

In the context of melanocytes, the term “nevus” denotes the localized aggregation of nevus cells,
i.e., cells derived from melanocytes, as benign neuroectodermal proliferations, neoplasms, or both [15].
Nevus cells, arising as a result of proliferation of melanocytes at the dermal-epidermal junction,
are larger than typical melanocytes, do not have dendrites, have more abundant cytoplasm with coarse
granules, and are typically grouped in nests [16,17]. Cells within nests are often oval or cuboidal in
shape, with clear cytoplasm and variable pigmentation [18]. In the superficial dermis, the cells have an
epithelioid cell topography and contain amphophilic cytoplasm with granular melanin. The nuclei
have uniform chromatin with a slightly clumped texture. Deeper in the dermis, there is a diminished
content of cytoplasm, and the cells resemble lymphocytes and are arranged in linear cords [19].
Examples of nests of nevus cells are shown in Figure 1.

(a) (b) (c)
Figure 1. Examples of nests of nevus cells (marked with arrows): (a) a dermal nest; (b) a nest at the tip
of a rete ridge; and (c) a nest adjacent to the epidermal plate; note a strong pigmentation of cytoplasm
in nevus cells. The structure of nests is highly not-uniform and varies between individual nests.

Melanoma is the generic term for all malignant neoplasms derived from melanocytes, with most
melanomas developing through an out-of-control progressive proliferation of melanocytes within the
squamous epithelium [8]. Melanomas are the most aggressive and dangerous neoplasms; they grow
fast and quickly metastasize to nearby lymph nodes and other organs.

In recent years, the sharp dichotomy between “benign” nevi and “malignant” melanoma started
to be considered an oversimplification [7]. No histopathological criterion is entirely specific for nevi (all
can be occasionally found in a melanoma) [20] and some criteria are infrequent, or have low specificity,
or suffer from high inter-observer variation [21].

Examples of criteria which provide strong evidence in favor of melanoma, but are extremely
infrequent, include presence of necroses (sensitivity of 15.3%, specificity of 100%) and melanin in
deep cells (sensitivity of 36.1%, specificity of 90.4%). On the other hand, some highly sensitive and
specific criteria, such as the presence of mitoses (sensitivity of 81.9%, specificity of 100.0%) might be
hard to detect automatically, as demonstrated in the course of the MITOS-ATYPIA-14 challenge and
Tumor Proliferation Assessment Challenge 2016—the F1-score of top-performing methods for mitosis
detection was roughly 0.650 [22,23]. The analysis of cases in [21] showed that, in melanomas, except for
cytological atypia, not even one of the investigated features was constant.

Moreover, some challenging lesions contain conflicting criteria suggesting opposite diagnoses.
Consequently, in many instances, the diagnosis may be subjective because of differences in training
and philosophy, and the experience of the observers: accordingly, the same lesion may be classified as
dysplastic nevus with severe atypia by one pathologist and as melanoma in situ by another. Therefore,
criteria must be used in clusters and ought to be used for specific differential diagnosis (i.e., a specific
form of nevus should be differentiated from a type of melanoma morphologically mimicking it) [7].
The above-mentioned issues expose the need for CAD systems which will take into consideration as
wide a spectrum of histopathological features as possible.
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The histological criteria currently used in the diagnosis of skin melanocytic lesions consist of
the analysis of numerous features, such as: lesion’s asymmetry, morphometric features of epidermis,
proliferation patterns of single melanocytes and nests of nevus cells, cytological atypia, mitoses,
and necroses [7,8]. For nests of nevus cells, the following features are typically considered: size, shape,
horizontal and vertical proliferation patterns (as well as the regularity for each of those features). These
are nests-related diagnostic criteria for some of the most common types of skin melanocytic lesions:

• In common nevi, the nests are roundish or regularly elongated, and typically positioned at the
tips of rete ridges [24].

• Melanocytic nevi contain intraepidermal or dermal collections of nevus cells or both. The cells
within the junctional nests have round, ovoid, or fusiform shapes and are arranged in cohesive
nests [18].

• One of the major histological criteria for the diagnosis of lentigo maligna (a precursor to lentigo
maligna melanoma, a potentially serious form of skin cancer) is the absence of intraepidermal
nesting [8].

• A junctional dysplastic nevus consists of a proliferation of a variable combination of single
melanocytes and nevus cells in nests along the dermal-epidermal junction. If present, nests are
often irregular in size and shape and may “bridge” or join together [24].

• In superficial spreading melanoma (SSM) and melanoma in the in situ stage (i.e., entirely restricted
to the epidermis, the dermal-epidermal junction, and epithelial appendages), large, irregularly
shaped, confluent nests are unevenly distributed along the dermal-epidermal junction, separated
one from another by “skip areas” which are either free of melanocytes or with a lesser number
of melanocytes arranged in a lentiginous pattern [7,8]. In SSM, nests are also present above the
suprapapillary plates at the edges of rete ridges and a discohesive appearance in large nests is
often evident. The cellularity, the pigment, and the type of melanocytes vary greatly among nests.

• Melanomas are subdivided in “radial” and “vertical” growth phases: “radial growth phase”
includes melanoma in situ and early invasive superficial spreading melanoma and is characterized
by small nests in the papillary dermis, whereas nests larger than those at the junction are typical
of the “vertical growth phase” [7].

Examples of the above-mentioned melanocytic skin lesions are shown in Figure 2.

1.2. Melanoma Misdiagnosis Problem

The histopathological examination constitutes the gold standard for diagnosing skin melanocytic
lesions—other existing forms of examination (such as dermatoscopy) do not yield comparably high
diagnostic confidence [25,26]. Nonetheless, even this “gold standard” is far from being perfect and
pathologists evaluating the same lesion may not be concordant one with another regarding the
diagnosis. Numerous surveys revealed that, even in the case of the histopathological examination,
the melanoma misdiagnosis rate may well reach up to 25% [9,27–29]. A diagnostic error with
particularly severe consequences is a false-negative diagnosis of melanoma (i.e., a situation when a
malignant lesion is misdiagnosed as a benign one)—it delays the start of the treatment, which typically
leads to further medical complications resulting even in a patient’s death. Three important reasons for
the above-mentioned lack of concordance between pathologists and the high melanoma misdiagnosis
rate are that histopathological criteria are vaguely defined, in many cases, lesions are evaluated not
by dermatopathologists or surgical pathologists but by general histopathologists (who lack profound
knowledge of the diagnostic niceties), and the diagnosis is highly subjective as it is based mainly on
experience and intuition of a given pathologist.

These obstacles encourage researchers to try to develop new methods for the automatic analysis
of histopathological features of skin, such as features related to the nests of melanocytes, which could
increase the specificity and sensitivity of the assessment of skin melanocytic lesions.
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(a) Junctional dysplastic nevus (b) Junctional dysplastic nevus

(c) Melanoma in situ (d) Superficial spreading melanoma

Figure 2. Examples of melanocytic lesions containing nests of nevus cells: (a) in junctional dysplastic
nevi, nevus cells are typically arranged in cohesive nests along the dermal-epidermal junction nests
and often join together; (b) in nevi, nests are often positioned at the tips of rete ridges; (c) in melanoma
in situ, there are often large, confluent nests, irregular in shape and size, unevenly distributed along
the dermal-epidermal junction; and (d) in SSM, nests are present above the suprapapillary plate.

1.3. Image Acquisition

The problems plaguing the traditional histopathological examination (mentioned in Section 1)
may be addressed by digital pathology—a rapidly growing field primarily driven by developments in
technology, which is mainly about analyzing whole slide images (WSIs). WSIs are glass slides of tissue
specimens digitized at high magnification and thus able to provide global information for quantitative
and qualitative image analysis (Figure 3a) [30,31].

To obtain a WSI image, either an automatic microscope or a WSI scanner is typically used. Modern
microscopes have a wide variety of components that can be automated by means of electronic control
(mainly shutters, stages, light sources, and focus control) and all these motorized components, sensors,
and input devices are typically integrated into a software environment. However, the “traditional”
microscope systems still have at least one serious limitation in the context of digital pathology: due
to the open construction, they do not provide consistent imaging conditions. This shortcoming
was eliminated with the introduction of whole slide scanners—a specially designed microscope
under robotic and computer control, which has all components assembled in a special casing
(Figure 3b) [32,33].
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(a) A whole slide image (WSI) (b) Hardware (left) and software (right)

Figure 3. Whole slide imaging: (a) an example of a WSI produced by a scanning system; (b) a WSI
scanning system consists of a dedicated hardware and software.

After digital data are captured via the camera’s charge-coupled device (CCD), the virtual slide is
assembled together from large numbers of image frames in one of the following ways, depending on the
particular scanner being used: tiling, line scanning, dual sensor scanning, dynamic focusing, or array
scanning (the process is performed automatically by a specialized imaging software). However,
the stitching process rarely produces a truly seamless image, and thus artifacts (e.g., related to
vignetting) are typically observed even in images captured using a whole slide scanner.

For most diagnostic work, the digital slides are routinely scanned at ×20 magnification
(at resolution approximately 0.25–0.5 µm/px) [34,35]. The size of a high-resolution whole slide
image may well be up to 75,000 × 50,000 px. When stored in an uncompressed format or using
lossless compression, such high-resolution digital slides may result in very large files (on the order of
several GB), impacting storage costs and work throughput. Consequently, for routine examination by
pathologists, a lossy compression technique (e.g., the JPEG or JPEG 2000 image standard) is typically
applied. However, since compressing images in a lossy way renders them virtually useless for various
methods of automatic digital image processing and analysis [36], for this sort of research, the TIFF
format is usually employed to archive virtual slides.

Nonetheless, in recent years, some context aware image compression methods (i.e., techniques,
which compress only irrelevant parts of the image, while leaving regions valuable from the
diagnostic point of view intact) were proposed—some notable examples are briefly discussed
below. Tellez et al. [37] proposed a method to reduce the size of a gigapixel image while retaining
semantic information by shrinking its spatial dimensions and growing along the feature direction—an
image is firstly divided into a set of high-resolution patches, then each high-resolution patch is
compressed with a neural network mapping every image into a low-dimensional embedding vector,
and finally each embedding is placed into an array that keeps the original spatial arrangement
intact so that neighbor embeddings in the array represent neighbor patches in the original image.
Hernández-Cabronero et al. [38] proposed an optimization method called mosaic optimization for
designing irreversible and reversible color transforms simultaneously optimized for any given WSI
and the subsequent compression algorithm—the method is designed to enable continuous operation of
a WSI scanner. Niazi et al. [39] proposed a pathological image compression framework to address the
needs of Big Data image analysis in digital pathology, specifically for breast cancer diagnosis, based on
a JPEG2000 image compression standard and the JPEG2000 Interactive Protocol—they suggested to
identify "hotspots”, i.e., areas in which Ki-67 nuclear protein staining is most prevalent (Ki-67 is an
independent breast cancer prognostic marker), and reduce the compression ratio when processing
those areas.

1.4. Related Works

There are only a few works in the literature which cover automatic processing of histopathological
whole slide images of skin specimens stained with hematoxylin and eosin (H&E), the standard stain
in histopathology. Some notable examples include an automated algorithm for the diagnostics of
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melanocytic tumors by Xu et al. [40] (based on the melanocyte detection technique described in [41] and
the epidermis segmentation approach described in [42]), a method capable of differentiating squamous
cell carcinoma in situ from actinic keratosis by Noroozi and Zakerolhosseini [43] and a method for
classifying histopathological skin images of three common skin lesions: basal cell carcinomas, dermal
nevi, and seborrheic keratoses by Olsen et al. [44]. The first two methods are based on classic algorithms
for image processing and machine learning, whereas the last one uses deep neural networks. None of
the above-mentioned methods considers features related to nests of melanocytes, whereas the size,
shape, position, and distribution of nests are among important diagnostic criteria when diagnosing
skin melanocytic lesions [7,8].

The characteristics of autoencoders have rendered these models useful in various image processing
tasks, such as image denoising and image restoration [45,46]. In particular, they have been successfully
used in the field of medical imaging and diagnostics (also for super-resolution images) for image
denoising [47], detection of cells [48,49], and the analysis of whole tissue structures [50].

Specifically, two methods for automatic cell segmentation use autoencoders for unsupervised cell
detection in histopathological slides: Hou et al. [51] proposed a general-purpose method for nuclei
segmentation, whereas Song et al. [52] designed a model to segment erythroid and myeloid cells in
bone marrow. These methods are designed to detect individual cells or slightly overlapping cells
in cases where the maximum possible size of a cell is precisely determined. However, the nests
segmentation task is quite different from the above-mentioned tasks as nests are clusters typically
composed of dozens or even hundreds of cells and thus no size- or shape-related criteria can be
determined. Moreover, the structure of a nest is highly not-uniform and great inter-nest variability is
observed, which further complicate matters.

As histopathological image analysis is the gold standard for diagnosing skin melanocytic lesions
and grading skin tissue malignancies, the proposed method will provide a relevant input towards
automating this procedure.

2. Convolutional Autoencoder Segmentation Method for Nests of Melanocytes

2.1. Database Specification

To obtain the WSIs, we established scientific cooperation with the University Hospital in Krakow
and with the Chair of Pathomorphology of Jagiellonian University Medical College. The dataset
included 70. WSIs of selected melanocytic lesions (each image was taken from a separate case):
lentigo maligna (22), junctional dysplastic nevus (20), melanoma in situ (13), and superficial spreading
melanoma (15). All the histological sections used in the evaluation were prepared from formalin-fixed
paraffin-embedded tissue blocks of skin biopsies (each section was about 4 µm thick) stained with
H&E using an automated stainer. The original images were captured under 10× magnification
(0.44 µm/px) on Axio Scan.Z1 slide scanner and saved into uncompressed TIFF files whose size varied
from 3000× 1000 to 20,000 × 30,000 pixels. To verify the results, 39 WSIs (10 of lentigo maligna, 10 of
junctional dysplastic nevus, 9 of melanoma in situ, and 10 of superficial spreading melanoma) were
paired with the ground truth (binary) segmentation masks of nests of nevus cells prepared manually
by an experienced dermatopathologist using GIMP image processing program (i.e., in total, we had 39
manually labeled ground truth images).

Hematoxylin and Eosin (H&E) Staining

Hematoxylin and eosin stain (H&E stain) is the most commonly used stain for light microscopy in
histopathology laboratories due to its comparative simplicity and ability to demonstrate a wide range
of both normal and abnormal cell and tissue components [53]. The hematoxylin component binds
to basophilic structures, such as DNA of cell nuclei, and colors them blue, whereas the eosin colors
cell acidophilic structures, such as cytoplasm and most connective tissue fibers, in varying shades
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and intensities of pink, orange, and red [53,54]. Consequently, all relevant tissue structures in skin
specimen are stained and effectively the whole area of the specimen appears in color.

Since the staining protocol cannot be fully standardized (as for instance the staining quality
depends on the quality of the dyes used), the variation in staining is an important factor to be
considered when designing automatic image processing methods for digital pathology [55].

2.2. Data Preparation

While we were considering a neural network approach to solve the problem of nests segmentation,
we were aware of the fact that the input size is strongly related with the final number of parameters
that have to be optimized. If the input size is too large, there might be too many model parameters
which together with an insufficient number of training examples might lead to overfitting during
the training process. For that reason, the input size must be chosen with care. Having a collection of
images of different sizes, we decided to split it into small image patches of size 128× 128 pixels each,
which we found balanced between their size and final model’s accuracy, and set as a neural network
input (Figure 4).
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Figure 4. Examples of generated patches of size 128× 128 pixels each (windows of such size typically
include enough context to label the central pixel as either “part of a nest” or “not part of a nest” with
high confidence).

Trying to balance classes of the dataset, for those parts of images where nests were not marked, we
did not apply an overlapping and simply extracted consecutive examples with 128 px step in width and
height. However, while a nest part was found during patches’ extraction, an overlapping was applied
in order to produce more examples of particular class. Thanks to that trick and an augmentation
technique applied later on, we managed to balance classes in the dataset. The augmentation of the
nests images was based mainly on the rotation of particular parts by 45 degrees to generate four
more examples. Before the data preparation step was applied, the dataset has been divided into
three parts—the training, validation, and test part that have been described in detail in Section 3.1.
The dataset split step has been applied at the very beginning of the data preparation process on the
images, not patches, in order to provide as reliable results as possible.

2.3. The Convolutional Autoencoder

Convolutional autoencoder architecture imposes a bottleneck in the network which forces
a compressed knowledge representation of the original input. An autoencoder consists of
three components: the encoder, the code, and the decoder as well as a loss function to compare
the output with the target (Figure 5).

Figure 4. Examples of generated patches of size 128× 128 pixels each (windows of such size typically
include enough context to label the central pixel as either “part of a nest” or “not part of a nest” with
high confidence).

Trying to balance classes of the dataset, for those parts of images where nests were not marked, we
did not apply an overlapping and simply extracted consecutive examples with 128 px step in width and
height. However, while a nest part was found during patches’ extraction, an overlapping was applied
in order to produce more examples of particular class. Thanks to that trick and an augmentation
technique applied later on, we managed to balance classes in the dataset. The augmentation of the
nests images was based mainly on the rotation of particular parts by 45 degrees to generate four
more examples. Before the data preparation step was applied, the dataset has been divided into
three parts—the training, validation, and test part that have been described in detail in Section 3.1.
The dataset split step has been applied at the very beginning of the data preparation process on the
images, not patches, in order to provide as reliable results as possible.

2.3. The Convolutional Autoencoder

Convolutional autoencoder architecture imposes a bottleneck in the network which forces
a compressed knowledge representation of the original input. An autoencoder consists of
three components: the encoder, the code, and the decoder as well as a loss function to compare
the output with the target (Figure 5).
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Figure 5. Schema of a basic autoencoder including the encoder, decoder, and code parts. The model
contains an encoder function g(.) and a decoder function f (.) parameterized by φ and θ, respectively.
The low-dimensional code learned for input x in the bottleneck layer is z and the reconstructed input
is x′.

Both the encoder and decoder are fully-connected feedforward neural networks where the code is
a single layer of a feed forward network (FFN) with specified dimensionality. The encoder function (φ)
maps the original data X to a latent space F, which is present at the bottleneck. The decoder function,
denoted by θ, maps the latent space F at the code to the output, where the output is the same as the
input function. Thus, the algorithm is trying to recreate the original image after some generalized
nonlinear compression:

φ : X → F
ψ : F → X
φ, ψ = arg min

φ,ψ
‖X− (ψ ◦ φ)X‖2

(1)

Autoencoders are trained to minimize the loss function which is a reconstruction error such as
mean squared error:

L(x, x′) = ‖x− x′‖2 = ‖x− σ′(W′(σ(Wx + b)) + b′)‖2 (2)

where x is usually averaged over some input training set, W, W′ are weight matrices and b, b′ are bias
vectors for encoder and decoder, respectively.

2.4. Convolutional Autoencoder Architecture

Since our input data consist of images, we use a convolutional autoencoder which is an
autoencoder variant where the fully connected layers have been replaced by convolutional layers [56].
The proposed, implemented, and tested convolutional autoencoder architecture has been presented in
Figure 6. In our solution, we use the convolution layers with padding along with max-pooling layers
in the encoder part. Such combination of layers converts the input image of size 128× 128× 3 at the
RGB colorspace to an image (code) of size 16× 16× 64 at the latent space. In the decoder part, instead
of max-pooling, we use the upsampling layer. The decoder converts the code back to an image at the
RGB colorspace in its original size (i.e., 128× 128× 3).

Convolutional layers apply a convolution operation over the image and perform operation at
each point, passing the result to the next layer. Filters belonging to the convolutional layer are trainable
feature extractors of size 3× 3. As we are solving the segmentation problem, we use padding to
avoid spatial dimension decrease. To avoid this, we use ‘same’ padding of size 2 which is correlated
with the convolutional layer filter size 3 × 3 to preserve as much information about the original
input volume as possible to extract those low level features which are necessary for the segmentation
approach. Each of the convolutional layers stacks is followed by a rectified linear unit (ReLU) activation
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function. The purpose of this layer is to introduce nonlinearity to our system that basically has just
been computing linear operations during the convolutional layers. The ReLU is currently the most
popular nonlinear activation function, defined as the positive part of its argument where x is the input
to a neuron:

f (x) = max(0, x) (3)

Compared to sigmoid function, the ReLU function is computationally efficient, shows better
convergence performance, and alleviates the vanishing gradient problem (the issue where the
lower layers of the network train very slowly because the gradient decreases exponentially through
the layers).

Figure 6. Architecture of the proposed convolutional autoencoder. Each box corresponds to
a multichannel feature map. The horizontal arrow denotes transfer between the encoding and
decoding parts.

In the encoder part, after the ReLU activation function, we apply a max-pooling layer also referred
to as a downsampling layer. The output is the maximum number in every subregion that the 2× 2 filter
convolves around. The max-pooling layer serves two main purposes: overfitting control and reducing
the number of weights (which reduces the computational costs).

The reconstruction process of the autoencoder uses upsampling and convolutions layers.
The upsampling layer is a simple layer with no weights, doubling the dimensions of input by repeating
the rows and columns of the data. The last convolutional layer is followed by the sigmoid activation
function as we are facing the two-class prediction problem while creating the segmentation masks.
Sigmoid functions, which are of S-shape, are one of the most widely used activation functions in both
machine learning algorithms and deep learning classification layers. A standard choice for a sigmoid
function is the logistic function defined as

S(x) =
1

1 + e−x =
ex

ex + 1
. (4)

In Listing 1, we present the proposed autoencoder as well as summarize the layers of the model
and their output shapes.
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Listing 1. Summary of the implemented convolutional autoencoder model for both training stages.
In the first training stage, the last convolutional layer has the output shape of (128, 128, 3) like the input
data, while, in the second training stage 128, 128, 1 as it has been presented in the summary.

Layer (Type) Output Shape Nb. of Param.
input_1 (InputLayer) [(None, 128, 128, 3)] 0
conv2d (Conv2D) (None, 128, 128, 32) 896
conv2d_1 (Conv2D) (None, 128, 128, 64) 18,496
max_pooling2d (MaxPooling2D) (None, 64, 64, 64) 0
conv2d_2 (Conv2D) (None, 64, 64, 64) 36,928
conv2d_3 (Conv2D) (None, 64, 64, 128) 73,856
max_pooling2d_1 (MaxPooling2D) (None, 32, 32, 128) 0
conv2d_4 (Conv2D) (None, 32, 32, 128) 147,584
conv2d_5 (Conv2D) (None, 32, 32, 64) 73,792
max_pooling2d_2 (MaxPooling2D) (None, 16, 16, 64) 0
conv2d_6 (Conv2D) (None, 16, 16, 64) 36,928
conv2d_7 (Conv2D) (None, 16, 16, 32) 18,464
conv2d_8 (Conv2D) (None, 16, 16, 32) 9248
conv2d_9 (Conv2D) (None, 16, 16, 64) 18,496
up_sampling2d (UpSampling2D) (None, 32, 32, 64) 0
conv2d_10 (Conv2D) (None, 32, 32, 64) 36,928
conv2d_11 (Conv2D) (None, 32, 32, 128) 73,856
up_sampling2d_1 (UpSampling2D) (None, 64, 64, 128) 0
conv2d_12 (Conv2D) (None, 64, 64, 128) 147,584
conv2d_13 (Conv2D) (None, 64, 64, 64) 73,792
up_sampling2d_2 (UpSampling2D) (None, 128, 128, 64) 0
conv2d_14 (Conv2D) (None, 128, 128, 64) 36,928
conv2d_15 (Conv2D) (None, 128, 128, 32) 18,464
conv2d_16 (Conv2D) (None, 128, 128, 1) 289

Total params: 822,529
Trainable params: 822,529
Non-trainable params: 0

2.5. Semi-Supervised Autoencoder Training Process

Since we had only a few ground-truth examples in comparison with the whole dataset of
histopathological images, we took advantage of autoencoders with a semi-supervised learning
technique to solve the problem of small and insufficient ground-truth dataset. Semi-supervised,
in general, consists of three steps. In the first stage, for the unsupervised part, our autoencoder has
been trained to reconstruct the input images (Figure 7).

After the first stage of the semi-supervised training process the encoder’s weights have been
frozen (fixed) and only the decoder’s weights have been reset in order to train the model again,
this time to generate masks. This part is a supervised problem where we use both the input images
and segmented outcome mask. In the last step, the fine-tuning has been performed—encoder’s
weights have been unlocked again and the whole autoencoder network has been trained again. For the
autoencoder training part, the main assumption is that the network can learn to code patterns and
structures found in the image in the latent space. The latent size is usually smaller than the input size
which enforces the network to choose only those features which best describe the dataset and skip
less relevant ones. Later in the second phase, we utilize the feature extraction part—the encoder along
with the latent layer—to use those features in order to distinguish (generate masks) structures in the
image. Encoder’s weights are blocked because this part of the network is treated as a feature extractor
in the second phase of training—while the model for classifying pixels is trained.
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(a) (b)

Figure 7. Outcomes of the first stage of autoencoder semi-supervised training process showing:
(a) original patches and (b) reconstructed images.

During our research, we have analyzed and tested different deep neural network architectures.
However, the presented one has been found to be the most effective. The output layer consisted of
three filters of size 3× 3 with ReLU activation function which produced an output of size 128× 128× 3
(the same as the input). The mean square error has been chosen as the cost function. We applied
learning rate decay to ensure that the cost function’s minimum is not superpassed due to too large
weights update as the optimization process continues.

After we achieved the smallest validation error during the training process of the described
autoencoder, the encoder weights were transferred to a new model which had pretty much the same
architecture as the one described above. They only differed in the output layer: the autoencoder used
for reconstruction produced an RGB image (i.e., an image consisting of three channels), whereas the
autoencoder used for segmentation of objects belonging to only one class generates a probability map
representing the probability that a given pixel belongs to that class (i.e., an image consisting of only
one channel). Therefore, in the autoencoder for the segmentation task which is a binary classification
problem, we use the binary cross-entropy loss (BCE) consisting of sigmoid activation function and
cross-entropy loss. After applying those changes the training process has been repeated only on
supervised examples. This means that the dataset shrunk a lot, but, thanks to initially set weights of
the encoder part by the unsupervised training phase, we managed to achieve some decent results.
After achieving the minimal training error, in compliance with transfer learning, the pre-trained
weights have been unlocked and the fine-tuning has been utilized. Figure 8 presents the generated
masks compared to the ground-truth images.

2.6. Convolutional Autoencoder Training Parameters

It has been widely observed that hyperparameters are some of the most critical components of
any deep architecture. Hyperparameters are variables that determine the network structure and need
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to be set before training a deep learning algorithm on a dataset. Hyperparameters presented in Table 1
have been chosen experimentally and set before training our autoencoder.

Table 1. Parameter settings of the autoencoder.

Parameters Values

Initializer Glorot uniform (Xavier uniform)
Number of hidden layers 22
Number of hidden conv. layers 16
Learning rate eq. for reconstruction and segmentation log10(0.01× epoch + 0.1)× 0.001
Learning rate eq. for fine-tuning log10(0.01× epoch + 0.1)× 0.0005
Activation function ReLU and Sigmoid
Batch size 64
Optimizer Adam

Loss
Mean Squared Error (reconstruction),
Binary crossentropy (segmentation)

(a) (b) (c)
Figure 8. Outcomes of the second training stage of the convolutional autoencoder: (a) original images
(patches), (b) generated masks, and (c) ground-truth images.

3. Experimental Results and Evaluation

In order to evaluate the performance of the semi-supervised training strategy of the autoencoder
described in the previous section, we conducted a series of experiments. In this section, we present the
training parameters, visualization of the convolutional layers as well as the statistical analysis of the
obtained results.

3.1. Training, Validation, and Test Sets

The reconstruction stage was performed on all 70 WSIs (both labeled and unlabeled), out of which
49 images (70%) were used for training, 10 (14.3%) for validation, and 11 (15.7%) for testing. The split
was performed in a stratification fashion, i.e., in principle, the proportion of the number of labeled to
unlabeled images remained constant across all the three sets. The number of patches in each of these
sets equaled 223,274, 57,229, and 116,707, respectively.

385



Sensors 2020, 20, 1546

The segmentation stage was performed on those 39 out of 70 WSIs, which had the ground truth
available (i.e., unlabeled images were not used in this stage). Therefore, in this stage, 27 images (69%)
were used for training, 6 (15.5%) for validation, and 6 (15.5%) for testing. Each of these sets was created
by removing unlabeled images from a corresponding set from the reconstruction stage. The number
of patches in training, validation, and test set for the segmentation stage equaled 110,736, 31,566,
and 62,718, respectively.

In each stage, the patches were extracted only after splitting the initial dataset (for the given stage)
into training, validation, and test sets. Since individual WSIs differed in size, the proportion of patches
in those three sets differs between stages.

3.2. Visualization of the Convolutional Autoencoders Layers

Model interpretability of DNN has been an important area of research from the beginning since
proposed models achieve high accuracy but at the expense of high abstraction (i.e., accuracy vs.
interpretability problem). Visualizing intermediate activations consists of displaying feature maps,
filters, and heat maps. The feature maps are the outputs of various convolution and pooling layers in
a network. This gives an insight into how an input is decomposed unto the different filters learned
by the network (Figure 9). We can observe that the first few layers act as a collection of various edge
detectors while the higher-up become increasingly abstract and less visually interpretable.

(a) (b) (c)

(d)
Figure 9. Feature maps of the autoencoder convolutional layers: (a) original image, (b) generated mask,
(c) ground-truth image, and (d) a partial feature map from latent layers (only a few more interesting
activations were included).

The reason for visualizing a feature map for a specific input image is to try to gain some
understanding of what features are being detected. In the case of classification errors, it can help us to
inspect the results and locate specific objects in an image.

During the first step of the training process, we achieved 0.24 mean square error (MSE) on
validation set for reconstruction and 0.50 binary cross-entropy for classifying pixels (with threshold
equal to 0.5). The within-sample MSE is computed as

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2. (5)

where the vector of n are predictions generated from a sample of ”n” data points on all variables, Y is
the vector of observed values of the variable being predicted, with Ŷi being the predicted values.
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Figure 10 presents the error rate for reconstruction and segmentation over the training and
validation data. Figure 11 presents the learning rate decay for each epoch.

Figure 10. Error rate for reconstruction and segmentation over the training and validation data.

(a) reconstruction (b) segmentation

Figure 11. Learning rate decay for each epoch for (a) reconstruction and (b) segmentation over the
training and validation data.

One of the most commonly used performance metrics in segmentation problems is the Sørensen
index also known as Dice similarity coefficient (DSC), which compares the similarity of two samples
from a statistical population [57].

Given two binary sets, X and Y, the Sørensen’s formula is defined as:

DSC(X, Y) =
2|X ∩Y|
|X|+ |Y| (6)

Using the definition of true positive (TP), false positive (FP), and false negative (FN), it can be
rewritten as:

DSC =
2TP

2TP + FP + FN
(7)

where in our case TP denotes correctly detected nests’ structure pixels, FP denotes nests structure pixels
not detected, and FP denotes background pixels classified as parts of nests. The DSC is a statistical
measure that calculates the degree of overlapping between the experimental segmentation and the
manual segmentations where possible values of DSC range from 0.0 to 1.0. A perfect classifier or
segmentation model achieves DSC of 1.0.

Furthermore, sensitivity and specificity are calculated using the following equation:

SEN =
TP

TP + FN
(8)
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SPE =
TN

TN + FP
(9)

The proposed algorithm achieved an average DSC of 0.81, sensitivity 0.76, and specificity 0.94.
Taking into account that the small ground-truth database has been segmented manually, the achieved
DSC score is very promising. We observed that the algorithm’s misclassified areas that were on the
border between the patches as well as the area of the nests was really small containing only few cells.

4. Conclusions

Our results demonstrate the feasibility of segmenting the nests while using a convolutional
autoencoder approaches for a small ground-truth database. The achieved results are very promising
as there are no other works or solutions conducted so far. Our method allowed for segmenting the
nests with DSC 0.81, sensitivity 0.76, and specificity 0.94, respectively. To the best of our knowledge,
this is a first-of-its-kind experiment that shows that convolutional autoencoders may be sufficient
for histopathological image analysis with small ground-truth databases. Since no histopathological
criterion is entirely specific for nevi (all can be occasionally found in a melanoma) and some challenging
lesions contain conflicting criteria suggesting opposite diagnoses, criteria must be used in clusters
and ought to be used for specific differential diagnosis—hence, the CAD systems should take into
consideration as wide a spectrum of histopathological features as possible. Therefore, the proposed
solution for nests segmentation is not intended to be used as a standalone tool for melanoma diagnosis
but rather in combination with other automatic diagnostic methods and systems—it might help to
increase their accuracy and provide additional grounds for a certain diagnosis, especially for pairs of
clinical entities lacking strong delimitation (e.g., junctional dysplastic nevus with severe atypia and
melanoma in situ).

Future Works

Starting from the described framework, as our results seem very promising, there is still much
to improve. For example, by cutting out patches from images, we consciously gave up global spatial
dependencies in exchange for usable input size. However, spatial information might be preserved by
introducing some recurrent structures inside the neural network architecture which would contain
some context from previous examples. On the other hand, such a modification in feeding the model
with data which can not be random but in a defined, specified order, changes the current approach for
data preparation a lot, which in turn will lead to whole algorithm redesign.

In a follow-up study, we intend to improve the architecture of the proposed network as well as
train and validate it on a larger dataset containing images from various laboratories. We then plan to
integrate the proposed method with our epidermis segmentation method described in [58] and use
the information about the distribution of nests of melanocytes within the epidermis to improve the
process of diagnosing skin melanocytic lesions (examples of diagnostic information which could be
extracted after such a fusion of methods are provided in Section 1.1 Medical Background). Furthermore,
high-resolution histopathological images are very large; therefore, image processing, segmentation,
and detection are highly compute intensive tasks, and software implementation requires a significant
amount of processing time. To assist the pathologists in real time, special hardware accelerators, which
can reduce the processing time, are required.
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Abstract: We introduce a distance metric between two distributions and propose a Generative
Adversarial Network (GAN) model: the Simplified Fréchet distance (SFD) and the Simplified Fréchet
GAN (SFGAN). Although the data generated through GANs are similar to real data, GAN often
undergoes unstable training due to its adversarial structure. A possible solution to this problem is
considering Fréchet distance (FD). However, FD is unfeasible to realize due to its covariance term.
SFD overcomes the complexity so that it enables us to realize in networks. The structure of SFGAN is
based on the Boundary Equilibrium GAN (BEGAN) while using SFD in loss functions. Experiments
are conducted with several datasets, including CelebA and CIFAR-10. The losses and generated
samples of SFGAN and BEGAN are compared with several distance metrics. The evidence of mode
collapse and/or mode drop does not occur until 3000k steps for SFGAN, while it occurs between
457k and 968k steps for BEGAN. Experimental results show that SFD makes GANs more stable than
other distance metrics used in GANs, and SFD compensates for the weakness of models based on
BEGAN-based network structure. Based on the experimental results, we can conclude that SFD is
more suitable for GAN than other metrics.

Keywords: image processing; generative models; generative adversarial net

1. Introduction

Generative Adversarial Net (GAN) is one of the models drawing attention in the field of machine
learning (ML) and computer vision [1]. The model learns the distribution of a given data and generates
sample data based on the learning.

Recently, several GAN models have been proposed to deal with different purposes, and the
performances of generative models have improved. For instance, Domain Adversarial Neural Network
(DANN) and Adversarial Discriminative Domain Adaption (ADDA) considered image-to-image
translation [2,3] and GAN with text manifold interpolation and image-text matching discriminator
considered text-to-image synthesis [4]. Super-Resolution Generative Adversarial Nets (SRGAN)
focused on super-resolution [5], and style transformation [6,7], Context Encoder (CE) and Globally
and Locally Consistency Image Completion (GLCIC) considered inpainting [8,9], and Generative
Adversarial Nets for Video generation (VGAN) was applied to generate high-dimensional data based
on image, video, and audio [10].

The principle of GANs is to set up a game between two players: a generator and a discriminator.
The generator generates samples based on the distribution obtained from training data [11]. On
the other hand, the discriminator examines whether the input sample is real or fake when a data
sample is given. During the training of a model, the generator is trained to deceive the discriminator,
while the discriminator is trained to distinguish the generated samples from the real samples correctly.
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The optimal generator generates plausible data samples, and this makes the discriminator foolish and
unable to work eventually [12]. Owing to many efforts to improve GANs [13–15], the data generated
by GANs are so realistic that human beings almost cannot differentiate real data from fake data.

Each loss of generator and discriminator should converge to a constant during the training process
for success data generation. If this occurs, then the training process of the GAN is called “stable” [13].
Usually, GANs suffer from unstable training for several reasons. Examples of unstable phenomena
include the vanishing the gradient, the gradient becoming too large, or the loss oscillating during
training [12,13]. Another problem that GAN is experiencing is the generator collapsing, which produces
only a single sample or a small family of very similar samples. These phenomena are called mode
collapse and mode drop. Mode collapse is generating the similar or even the same outputs for different
random input vectors, while mode drop is concerned with modes being dropped from the output
distribution [1]. These phenomena may occur when the distribution of real data cannot be represented
correctly because of using inadequate optimizations or insufficient network resources that cause an
inability of node counting [1,13,14]. In such conditions, the average of real data distribution is used for
mode collapse, while the distribution of real data is ignored for mode drop, during the generation of
fake data.

To be an acceptable GAN, the distance between the two distributions of real data and generated
data has to be far in the discriminator’s viewpoint, while it has to be near the generator’s viewpoint.
The performance of a GAN, therefore, is closely related to the adopted distance metric in the loss
functions, and the instability of networks might be solved by changing the distance metric. One of the
studies of this approach was the Wasserstein Generative Adversarial Network (WGAN) [15]. Unlike
the original GAN, WGAN applied Wasserstein-1 distance, called Earth Mover’s distance (EMD), to
measure the distance between two distributions of real data and generated data [16]. The superiority of
EMD was considered in terms of stability and quality of a GAN by comparing these values of EMD with
those of other distance metrics involved. For instance, WGAN compared EMD with Jensen–Shannon
distance (JSD) and Kullback–Leibler (KL) divergence [17,18]. With the advent of WGAN, EMD has
been used widely in GANs as a metric in loss functions.

Recently, Fréchet distance (FD), called as Wasserstein-2 distance, has been introduced [19]. FD was
initially used as a similarity evaluation index, called Fréchet Inception distance (FID), like the Inception
Score (IS) [20]. FID that applied FD was used in the inception v3 model [21]. It used feature values
extracted from a pre-trained inception v3 model to evaluate the similarity of real data and generated
data [22]. On the other hand, IS was a score correlating human judgment with a pre-trained ImageNet
dataset in inception v3 networks [23]. An experiment was conducted to verify the adequateness of
FID as an evaluation index, and the superiority of FID over IS demonstrated [20]. Therefore, FID
became a primary evaluation index used in GANs [24–26]. However, it is very challenging to apply
FD in GANs directly because it requires a longer time and bigger memory compared to other distance
metrics [27,28], which is caused by its complexity. To the best of our knowledge, there is no GAN using
FD as a metric of training GAN until so far.

In this paper, we introduce a Simplified Fréchet distance (SFD) and propose a GAN model in which
SFD is involved. SFD is a simplified and regularized version of FD. That is, SFD reduces the complexity
of FD and enables the training process stable representing some of the characteristics of FD. Therefore,
a portion of the characteristics of FD could be explored when SFD is used in the training process of
GANs. The structure of the proposed GAN model, the Simplified Fréchet Generative Adversarial
Networks (SFGAN), is based on the Boundary Equilibrium GAN (BEGAN) [29]. The difference
between the two GANs is the distance metric used in the loss functions of the networks. SFGAN
uses SFD, while BEGAN uses EMD. In other words, SFGAN is trained by adversarial losses that are
defined by SFD among the distributions of input and output. Output distribution is computed through
auto-encoder based discriminator by using an adversarial loss.

For demonstrating the superiority and applicability of SFGAN, the experiments are conducted
with the CelebA, CIFAR-10, and a 2-D mixture of Gaussians [23,30,31]. Two purposes are considered
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in the experiment. One is to investigate the stability of training GANs by using SFD and EMD, and the
other is to compare JSD, EMD, and SFD between real data and generated data during the training
procedure of SFGAN and BEGAN. The trainings are executed up to three million steps to investigate
the stability of training and the differences in distance metrics before and after mode collapse and/or
mode drop. The same values of hyperparameters are used in the two models. The experiment is
conducted five to ten times to see whether the results change with each experiment. It is observed
that the differences in results for all experiments are negligible. Experimental results show that the
training process of SFGAN seems stable, and neither mode collapse nor mode drop is detected. On the
other hand, these phenomena have occurred during the training process of BEGAN, which result in
unstable training. Moreover, it is observed that SFD distinguishes the distributions of real data and
fake data generated by unstable BEGAN, while EMD sometimes fails it.

The contributions of this study are summarized as follows: (1) A Simplified Fréchet distance is
introduced. SFD reduces the complexity of FD, representing some characteristics of FD and enables
stable training by compensating the weakness that the models belonging to BEGAN-based network
structure have. (2) A new GAN model in which SFD is involved in the loss functions, SFGAN,
is proposed. SFGAN is more stable than BEGAN in which EMD applied. (3) SFD is introduced as an
evaluation index for detecting mode collapse and/or mode drop during the procedure of training a
GAN. It is possible to detect instability of a GAN during the training with SFD alone, without requiring
additional models, a balanced dataset or constrained space that other GANs are requiring.

This paper includes the following: The related works are presented in Section 2. In Section 3,
we introduce SFD and compare it with the existing distance metrics. The SFGAN model is presented
in Section 4, and the stability and effectiveness of the SFGAN model are verified via experiments in
Section 5. Lastly, Section 6 concludes the paper.

2. Related Works

There are many studies on GANs [13–15,24,32–47]. In this section, we investigate the studies that
consider the stability problem during the training of GANs. The studies dealing with the stability
on GANs can be divided into three categories: the GANs that consider stable training by evaluating
performances with only IS or FID, the methodologies to analyzing the stability of the GAN model,
and the GANs that consider stable training with their own evaluating methods to investigate the
stability. Figure 1 presents the known studies for the three categories.
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2.1. Stable Training

Many studies are dealing with stable training of GANs [13–15,24,32–43]. Notably, several
studies [13–15,32,33] also considered on mode collapse and/or mode drop problems. In these studies,
IS or FID is used as a performance evaluation index. This category can be classified further according
to their purposes or applied methods: optimization, model architecture, weight limitation, loss,
and game theory.

2.1.1. Optimization

The studies in the optimization class deal with the optimization of balancing of the generator and
discriminator for stable training. Unrolled GAN, SeqGAN, Gradient regularized GAN, and Consensus
GAN belong to this class [13,14,32,33].

The network parameters of the generator in the unrolled GAN are updated according to gradient
descent (GD) of every step, which reflects the state from the current step to some fixed number
of future steps, while those parameters of discriminator are updated according to GD of current
step only. Based on the updating rule, the unrolled GAN can mitigate the mode collapse and stabilize
the training of GANs. On the other hand, SeqGAN modeled a generator as a stochastic policy in
reinforcement learning (RL). SeqGAN performs the gradient policy update directly to avoid the
difficulty of differentiation of discrete data such as text generation and music generation. It showed that
the performance of SeqGAN outperforms that of the original GAN. A scheme imposing a regularization
penalty during the generator update was proposed [32]. This scheme was adopted in the original
GAN, and the local stability was confirmed. This local stability is updating the gradient near an
equilibrium point. Two major failures caused by GD optimization, vanished real-part and large
imaginary-part in the eigenvalues of the Jacobian, were considered in Consensus GAN [33]. By using
their Consensus Optimization, Nash equilibrium was found by more powerful optimization than GD
based optimization. Nash equilibrium is a state that no player in this state can gain more rewards
by changing its own strategy [48]. If the generator and the discriminator reach a Nash equilibrium
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state, the objective of GANs does not change any more theoretically, so this theory keeps the stability
of GANs during the training.

2.1.2. Model Architecture

The GANs in the model architecture class considered network architectures and their parameters
for stable training. Deep convolutional GAN (DCGAN), progressive GAN, spectral normalization
GAN (SNGAN), and packed GAN (PacGAN) are belonging to this class [24,34–36].

DCGAN is a Convolutional Neural Network (CNN)-based GAN model considering the way
of setting parameters and techniques for optimizing GAN [34]. It dealt with the use of batch
normalization and activation function. The resolution of images was increased up to 1024 by adding
layers, and mini-batch was also considered to improve stability in progressive GAN [24]. SNGAN
considered an architecture utilizing the residual block [35,49], and PacGAN considered to use an
augmented discriminator. The discriminator in PacGAN maps multiple samples that are jointly coming
from either real data or the generator to a single label [36].

2.1.3. Weight Limitation

In the weight limitation class, several techniques are dealing with the discriminator’s weights in a
network’s nodes. The techniques are schemes to control the instability of GANs.

Gradient-penalty and spectral normalization are typical examples in this class [37]. The main
idea of WGAN gradient-penalty (WGAN-GP) is considering the Lipschitz-1 constraint in WGAN.
The gradient penalty was added to the loss of WGAN, which is directly constraining the gradient
norm of the discriminator. By adjusting this method, WGAN-GP outperformed original WGAN in
terms of stable training and similarity between real data and generated data. SNGAN belonging to the
model architecture class also proposed a spectral normalization technique to increase the stability of
training [34]. Unlike gradient-penalty, spectral normalization does not depend much on the current
generative distribution but regularizes the weights of nodes in a network. Training with spectral
normalization was compared with that of gradient-penalty, and it was concluded that the former does
not easily destabilize with a high learning rate while the latter destabilizes.

2.1.4. Loss

Other recent approaches are considering new loss functions. NSGAN considered a risk that the
gradient of the generator would vanish when the original GAN loss is used [12]. For preventing
the risk, a function was proposed to maximize the loss of generator, and better performance was
obtained than that of the original GAN models. Margin adaption for GAN (MAGAN) evaluated the
performance improvement of stable training by using an adaptive hinge loss, which estimates the
appropriate margin of the loss [38]. MAGAN not only generated diverse datasets but also achieved an
improvement in terms of IS compared to energy-based GAN (EBGAN) and boundary equilibrium
GAN (BEGAN) [29,39]. Coulomb GAN trained the networks using the Coulomb potential equation
that makes samples attracted to the training samples but repulsed to each generated sample [40]. It was
shown that Coulomb GAN has only one Nash equilibrium.

2.1.5. Game Theory

In the game theory class, most studies used the Nash equilibrium [48]. For instance, EBGAN and
BEGAN considered Nash equilibrium [29,38]. These two models generate realistic data successfully
and hardly fail to learn the distribution of data. Stackelberg GAN was inspired by the Stackelberg
competition of game theory [41]. It is known that the Stackelberg model can be used to find the perfect
Nash equilibrium of sub-games. Experiments verified the effectiveness of the Stackelberg competition
by using a multi-generator architecture.
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2.1.6. Metric

The other approach of dealing with instability is considering distance metrics used in GANs.
As far as we know, Wasserstein GAN (WGAN) is the first study to improve the learning stability of
GANs by defining a new distance metric between data distributions [15]. It was shown that traditional
distances such as JSD are insufficient for data training in GANs. As an approach to mitigate this
problem, EMD was applied to WGAN. MMD-GAN used a maximum mean discrepancy (MMD) as
a distance and adopted auto-encoder [42,43]. The definition of MMD can be found in Appendix A.
This model’s discriminator was trained via MMD with adversarially learned kernels. Although it was
obtained that the IS of MMD-GAN was higher than WGAN when the experiment was conducted with
CIFAR-10, there are two problems in this model: (i) The performance of MMD-GAN comes only by
using either per-pixel reconstruction error term or gradient penalty. (ii) The fine learning from data
seems to discourage to contract the discriminator outputs of real data using MMD [50].

Improving distance metrics in GANs has the following advantages: (1) No additional network
models may be required for stable training a GAN, and existing losses can be used as they are. (2) The
state of mode collapse and/or mode drop during the training process can be identified through the
proposed metric. The training curves and sample graphs by WGAN and MMD-GAN showed the
relation between the loss and the sample quality. As our study proposes a metric, the proposed model
can also take the advantages that these studies grouped by this section have.

2.2. Analyzing the Stability of the GAN Model

Although analyzing the stability of the GAN model did not affect directly stable training of GANs,
studies in this category detected and showed these phenomena based on the data generated by the
trained model. Covariate shift analysis was a scheme to add a multi-class classifier in a balanced
multi-class dataset to investigate whether the data generated by GAN was biased [44]. Unsupervised
deep domain adaptation was a scheme to extend covariate shift analysis to an unbalanced dataset with
the existence of a balanced dataset [45].

2.3. Stable Training and An Evaluation Index

In this category, there are several studies recently. For instance, an algorithm was proposed
in Variational Encoder Enhancement GANs (VEEGAN) to estimate mode collapse [46]. It was
conducted by training a multi-layer neural network with sample data and the standard deviation of
the data. Boundary Equilibrium Generative Adversarial Nets-Constrained Space (BEGAN-CS) added
an embedding space-constrained loss in BEGAN and showed the stability improvement by using
the proportional coefficient’s variation during training [47]. Although the results of VEEGAN and
BEGAN-CS were noticeable, they had limitations that require additional CNN models and a constraint
of latent space for a discriminator, respectively.

Our model, SFGAN, detects mode drop and (or) mode collapse during training. The details of
SFGAN are presented in Section 3. Experimental results of SFGAN and BEGAN presented in Section 5
show that the output values of the two models are related to the mode drop and (or) mode collapse
of BEGAN.

3. Simplified Fréchet Distance

In this section, we introduce SFD and present its advantages. Section 3.1 defines notations to
describe image distribution and then introduces the Fréchet distance and SFD based on the defined
notations. The advantages of SFD are investigated in Section 3.2 by comparing it with other distance
metrics using two different examples.
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3.1. Simplified Fréchet Distance

We introduce distance metrics of image distributions. For defining distance metrics, images have
to be converted to numerical values. Consider a color image that has h and w pixels for height and
width, respectively. As an image usually consisted of three channels, R, G, and B, and its values are
numbers, without loss of generality, we assume that each pixel of an image has a number for each
channel. Then, the image has 3hw pixels in total. Let X be a random vector whose components consist
of a random variable Xc

i, j, where Xc
i, j is the value of pixel (i, j) for c = R, G, B. Then X can be written as

X = (Xc
i, j), i = 1, · · · , h, j = 1, · · · , w, c = R, G, B. (1)

From now on, we call X as an ‘image vector’ and describe distance metrics in terms of the image
vectors. Figure 2 illustrates the way of converting an image to an image vector.
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We first describe FD of images and then introduce SFD. Assume that there are k images and
denote an image vector corresponding to the n-th image as Xn. Then, Xn is given by Xn = (Xc,n

i, j ), i =
1, · · · , h, j = 1, · · · , w, c = R, G, B.

Let X and Y be random vectors given by image vectors and F and G be their distributions,
respectively. Let m• and C• be the mean vector and covariance matrix of a variable •, respectively,
where • = X, Y. Then, mX and CX of X are defined by

mX = (mXc
i, j
) =

(
1
k

k∑
n=1

Xc,n
i, j

)
and CX = (Xc

i, j −mXc
i, j
)T(Xc

i, j −mXc
i, j
),

i = 1, · · · , h, j = 1, · · · , w, c = R, G, B.
(2)

respectively, where T in CX represents transpose of a matrix.

Definition 1. Fréchet Distance.

The Fréchet distance Fr(F, G) between two distributions F and G is defined by

Fr2(F, G) = min
X,Y

E|X −Y|2, (3)

where E represents the expectation, and the minimization is taken over all random variable X and Y
having distributions F and G, respectively [19].

In particular, if X and Y follow multivariate normal distributions Fr2(F, G) is given by

Fr2(F, G) = ‖mX −mY‖2 + tr
{
CX + CY − 2(CXCY)

1/2
}
, (4)

where ‘tr’ in Equation (4) represents the trace of a matrix [51].
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FID was a metric providing a better result for measuring the similarity between the two
distributions of generated data and the real data. For instance, FID was compared with the IS
in experiments using various data [20]. However, the covariance term in Equation (4) has drawbacks
in adopting FD as a loss to train GAN. These drawbacks were demonstrated in [28] by the empirical
results using the MNIST [52], Fashion-MNIST [53], CIFAR-10 [31], and CelebA [30] datasets. In [28],
each dataset was divided into two groups, and the FID was used as the similarity index between the
groups. It was observed that estimating a total covariance matrix can be unnecessary and unproductive.
It was also mentioned that a constrained version of FID might be enough to represent distances between
data. Based on this, it seems relevant to delete the covariance term in FID. By considering this aspect,
it may not be a problem to apply the distance metric without covariance in FD to the data, not the
inceptionv3 feature of data. Furthermore, the larger the dimension size of the datasets is, the higher the
computational load on the covariance matrix is. These facts motivate SFD. That is, SFD simplifies and
regularizes the covariance term in FD to reduce the complexity of FD and to learn stably, respectively.
This distance metric makes applicable FD in the training process of GANs with less computing load.
For this purpose, we assume that all components of both random vectors X and Y are independent.
There is no guarantee that these components are independent, and they may be dependent on the real
world. In the field of deep learning, however, such an assumption was used in several studies, and the
better results were obtained under the assumption [54–56]. The independence of the two variables
does not imply that they have the same variances. The SFD is introduced with this assumption.

Definition 2. Simplified Fréchet Distance.

The Simplified Fréchet distance SF(F, G,α) between two multivariate normal distributions F and
G with coefficient α is given by

SF2(F, G,α) = ‖mX −mY‖2 + 1
α
‖σX − σY‖2, (5)

where σ2• is the variance of a random variable • and α is a constant for regularization.
In the following, SF(F, G,α) is representing

√
SF2(F, G,α).

3.2. Advantages of Simplified Fréchet Distance

To investigate the advantages of SFD, we consider two examples. Although these examples might
be extreme cases, they can appear in the training process of GANs. For the two examples, SFD is
compared with two distance metrics: JSD and EMD. The definitions of JSD and EMD can be found in
Appendix A.

Example 1. (Learning parallel distribution) The distributions of real data and estimated data are parallel.

It was shown that JSD is inadequate, while EMD is adequate to measure data distributions that
are parallel [15]. We consider the two-dimensional random vectors X and Y whose components are

normally distributed with means (0, 0) and (θ, 0), and covariance matrices
(

0 0
0 1

)
and

(
0 0
0 1

)
,

respectively. Then, the distributions of X and Y are parallel.

Example 2. The distributions of real data and estimated data are a couple of univariate normal distributions
with mean zero.

Let X and Y be the one-dimensional random variables distributed according to normal probability
density function (pdf) with means 0 and 0, variances 1 and δ2, respectively.

The three distances for the two examples are represented in Table 1. The detailed derivation of
the obtained values can be found in Appendix B. According to the table, JSD is a constant or log2,
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regardless of θ,θ , 0. On the other hand, EMD and SFD are varying according to θ for Example 1.
These values imply that JSD cannot distinguish the given distributions, while EMD and SFD can
distinguish those. For Example 2, on the other hand, EMD has zero as a lower bound regardless of δ,
while JSD and SFD depend on the δ. That is, EMD cannot distinguish the given distributions, while
JSD and SFD can distinguish those. Figure 3 illustrates the obtained three distances given in Table 1 for
varying θ and δ with α = 1 for SFD; (a) Example 1 with θ ∈ [−1, 1], (b) Example 2 with δ ∈ [0.04, 2].
From the two examples, it is noticed that SFD is the only distance metric that can always be expressed
in terms of the respective parameters θ and δ.
Sensors 2020, 20, x 9 of 28 
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4. Simplified Fréchet GAN 

In this section, we present a GAN model, simplified Fréchet GAN (SFGAN). SFGAN uses the 
SFD in the calculation of the discriminator loss and the generator loss in a GAN. 

Since GANs are trained by an adversarial loss that is based on the discriminator output, the 
output must have a multivariate normal distribution to apply SFD. As far as we know, however, no 
studies have considered multivariate normal distributions as outputs. It is widely accepted in the 
image processing field that the distribution of a lot of images is assumed as multivariate normal [57–
59], and the distribution of output data will be the same as that of input data through an auto-encoder. 
For this reason, we design the discriminator in the form of an auto-encoder. 

Three candidates can be considered for the baseline of our model; BEGAN, EBGAN, and MMD-
GAN. The architectures of all three models include an auto-encoder. However, EBGAN cannot apply 
measures based on data distributions because EBGAN uses errors per pixel. Therefore, EBGAN is 
excluded from the candidates. As MMD-GAN requires additional reconstruction error term, the error 
has to be defined additionally as the form of per-pixel error. Therefore, this model is not relevant to 

Figure 3. Description of Jensen–Shannon distance (JSD), Earth Mover’s distance (EMD), and Simplified
Fréchet distance (SFD) with α = 1 for the examples: (a) Example 1 for θ ∈ [−1, 1]; (b) Example 2 for
δ ∈ [0.04, 2].

This disadvantage of EMD is not limited to a univariate normal distribution, as shown in Example 2.
By Equation (A22), it is noteworthy that the lower bound of EMD is zero for other cases, such as the
given two distributions are multivariate normal distributions with the same mean but other than zero.
In this case, EMD cannot distinguish the two distributions.

Table 1. Comparison of JSD, EMD, and SFD for the examples.

Distance Metric Example 1 Example 2

Jensen–Shannon distance (JSD) log 2, θ , 0
0, θ = 0

1
2 log δ2+1

2δ

Earth Mover’s distance (EMD) |θ| [0, |δ− 1|]
Simplified Fréchet distance (SFD) |θ| 1√

α
|δ− 1|

4. Simplified Fréchet GAN

In this section, we present a GAN model, simplified Fréchet GAN (SFGAN). SFGAN uses the SFD
in the calculation of the discriminator loss and the generator loss in a GAN.

Since GANs are trained by an adversarial loss that is based on the discriminator output, the output
must have a multivariate normal distribution to apply SFD. As far as we know, however, no studies
have considered multivariate normal distributions as outputs. It is widely accepted in the image
processing field that the distribution of a lot of images is assumed as multivariate normal [57–59],
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and the distribution of output data will be the same as that of input data through an auto-encoder.
For this reason, we design the discriminator in the form of an auto-encoder.

Three candidates can be considered for the baseline of our model; BEGAN, EBGAN,
and MMD-GAN. The architectures of all three models include an auto-encoder. However, EBGAN
cannot apply measures based on data distributions because EBGAN uses errors per pixel. Therefore,
EBGAN is excluded from the candidates. As MMD-GAN requires additional reconstruction error
term, the error has to be defined additionally as the form of per-pixel error. Therefore, this model is not
relevant to the baseline model. Since BEGAN is only required to replace distance metric, it seems to be
the better model than the other two models.

For this reason, we select BEGAN as the baseline model of SFGAN. The network architecture and
used losses in the network of SFGAN are the same as those of BEGAN. The only difference is the used
distance metric, SFD for SFGAN, and EMD for BEGAN. Figure 4 illustrates the model architecture and
procedure of SFGAN. The procedure, including the data flow of SFGAN, is described in Table 2.Sensors 2020, 20, x 11 of 28 
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Table 2. Procedure of SFGAN.

The Procedure of SFGAN

1. Generate n noise samples z =
{
z1, · · · , zn

}
. Each zi is vector given by zi = (zi

1, zi
2, . . . , zi

d), where d is the
number of dimensions, and each component of zi is randomly generated according to a uniform distribution in
the interval [−1,1] with pdf pz.
2. The generator G generates fake data G(z) based on the generated samples z.
3. n samples x =

{
x1, · · · , xn

}
are taken from real data with pdf pdata.

4. Auto-encoder D receives G(z) and x as inputs and produces D(G(z)) and D(x) as outputs.

The detailed structure in D will be explained according to Figure 5. The loss functions in SFGAN
are as same as those of BEGAN except involved distance metric in the functions. The losses consist of
discriminator loss LD and generator loss LG, which is given by

LD = Ex∼pdata(x)[SF(x, D(x),α)] − ktEz∼pZ(z)[SF(G(z), D(G(z)),α)] (6)
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and
LG = Ez∼pZ(z)[SF(G(z), D(G(z)),α)], (7)

where Er∼p represents the expectation of variable r with pdf p. kt is a variable for stable learning at t
step which is updated by proportional control given by

kt+1 = kt + λk(γ(SF(x, D(x),α)) − SF(G(z), D(G(z)),α)), (8)

where k0 = 0, kt ∈ [0, 1], λk is the proportional gain depending on kt, and γ is a hyperparameter for
controlling image diversity taking values in the interval [0,1]. Note that the small value of γ gives low
diversity of generated data. Both of discriminator and generator are trained using the GD method
with values of Equations (6) and (7), respectively.Sensors 2020, 20, x 12 of 28 
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variable depends on the position of the random variable, and its standard deviation is fixed as 0.02. 

Figure 5. The architecture of SFGAN for discriminator and generator in 64 × 64 resolution with batch
size n and filter number c.

Figure 5 illustrates the overall network architecture of SFGAN. This architecture consists of
two parts: encoder and decoder/generator. The decoder and the generator have the same structure
with different weights. The discriminator consists of an encoder and a decoder. All convolutional
layers in the encoder are the same as the layers in the generator except for the number of filters.
In the sub-sampling layers of the encoder, the input of a layer is downsampled using stride two,
which reduces the input size as it passes through the layers. On the other hand, in the up-sampling
layers of the decoder/generator, the input of a layer is up-sampled using the nearest neighbor method,
which enlarges the input size as it passes through the layers.

The input of encoder is the real data or the generated data, while the input of decoder is the output
of the encoder, which is called as a hidden variable. The input of the generator is the noise sample
vectors z and it gets into the fully connected layer. All convolutional layers use 3× 3 convolutions with
exponential linear units [60] and are repeated twice for better output. The batch size of the discriminator
is twice of that for generator because discriminator has to afford to deal with both real data and
generated data. In the figure, n and c represent the batch size and the number of filters, respectively.

5. Experiments

In this section, we present experimental results. We implemented two experiments. One is for
stability comparison of generation models, and the other is for comparison of distance metrics to detect
mode collapse and/or mode drop during training the network. For performance comparison, BEGAN

403



Sensors 2020, 20, 1548

is executed in the experiment. SFGAN and BEGAN are trained until mode collapse and/or mode drop
occur to compare the stability. In the former experiment, the images generated during the training at
every 1000 steps, the measured values of losses, and the kts at that time are compared. In the latter
experiments, JSD, EMD, and SFD between the generated data and the training data of the two models
are measured. As a criterion for the similarity between real data and fake data, FID is considered for
the two models.

In the following, the experimental setting is explained in Section 5.1, and the image stability on
sequential steps by SFGAN and BEGAN are presented in Section 5.2. The results for verifying the
stability of SFGAN and the performance comparison of the two models are presented in Sections 5.3
and 5.4, respectively.

5.1. Experimental Setting

For training, two computers are used. One of them is composed of Intel® CORE™ CPU, NVIDIA
GTX 1080ti as GPU with 24 GB RAM, while the other is composed of Intel® Xeon® CPU E5-2680 v4,
NVIDIA RTX TITAN as GPU with 128 GB RAM. All experiments are implemented by the TensorFlow
library [61].

The CelebA [30], CIFAR-10 [23], and a mixture of Gaussian distributions are used to train the GAN
models. These datasets are commonly used in GANs research. The CelebA is a collection of human
face images. It is effective at testing qualitative results because human faces are good at recognizing
defects [29]. In the experiment, the images of 64 × 64 and 128 × 128 resolutions will be generated
for CelebA. The CIFAR-10 is a set of widely used images in the image-based machine learning studies.
CelebA has only human faces, and the number of training images is 202,599, while CIFAR-10 contains
various images such as trucks, frogs, birds, and ships, which are hardly the same objects, and the
number of images is 60,000, relatively small. The last dataset consists of 2-D random variables from
the mixture of Gaussian distributions. Eight random variables are distributed in a circle, and each
random variable consists of x and y coordinates. The expectation of each random variable depends
on the position of the random variable, and its standard deviation is fixed as 0.02. The test with this
dataset was proposed in unrolled GAN [13] to evaluate the performance of discriminator. In the test,
it was assumed as unstable if any one of eight distributions are not learned. With the same stability
criterion, the stability of SFGAN is also investigated with this dataset.

Figure 6 shows samples from CelebA, CIFAR-10, and the mixture of Gaussian. Table 3 summarizes
parameters and the corresponding values used in the experiments. Note that the parameter values are
the same used in BEGAN-cs [50] or BEGAN. It is noteworthy that two regularization constants are
used in the experiments. The value one is for detecting mode collapse and/or mode drop while 12,288
is for training the networks, which is obtained for acceptable learning of 64 × 64 resolution images
during the experiments. The experiments are conducted five to ten times to see if the results fluctuate
per each experiment. It is observed that the differences among results are negligible. The presented
SFD values are one-dimensional values, which are obtained from the experimental results divided
by the number of dimensions. Adam is used as an optimizer to both models since this optimizer is
invariant to a diagonal rescaling of the gradients [62].
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Figure 6. Samples of datasets: (a) CelebA; (b) CIFAR-10; (c) a mixture of Gaussian.

Table 3. Hyperparameters used in the experiments.

Hyperparameter Value

Batch size (n) 64
CelebA resolutions (h×w) 64 × 64, 128 × 128

CIFAR-10 resolution (h×w) 32 × 32
Channel unit (c) 64

Regularization coefficient for training (α) 12,288
Regularization coefficient for detecting (α) 1

Adam (β1, β2) 0.9, 0.999
Proportional gain (λk) 0.001

Diversity ratio (γ) 0.5
Learning rate 0.001

Total global steps 3000,000

5.2. Stability of Training

5.2.1. The Generated Images of CelebA: 64 × 64 Resolution

Figure 7a,b show 16 sample images in 64 × 64 resolution generated in four steps by BEGAN and
SFGAN, respectively. 16 samples (i.e., l is set to 16) are chosen from a random uniform distribution for
the generator’s input at the beginning, and the images generated from the samples are monitored in
every 1000 steps until 3000k steps. It is challenging to say mode collapse or mode drop numerically,
but the generated samples allow us to determine if the training was as intended. In the 200k step,
the training result of BEGAN is similar to that of SFGAN. However, at 970k step, the generated images
by BEGAN became weird while SFGAN still generated acceptable human faces. At 3000k step, BEGAN
generated very similar images even for different inputs. On the other hand, SFGAN generated diverse
human-like face images steadily until 3000k steps. In other words, BEGAN started to generate weird
similar face images after 968k steps on the average in a total of ten experiments. This implies that the
mode collapse occurs at 968k step, and BEGAN never optimized or restored to stable status after all.
On the other hand, SFGAN keeps on generating face images until 3000k steps without mode collapse.
Therefore, it can be said that the training process of SFGAN is stable until 3000k steps. However,
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the example in Figure 7 appears hard to assume that a mode drop has occurred in both BEGAN
and SFGAN.
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respectively. The amplitudes of both losses of discriminator and generator of BEGAN increase after 
970k steps, while those of SFGAN do not change much and even seem to converge. The loss 
differences for the two models appeared the difference between generated images, as shown in 
Figure 8d. That is, the generator of BEGAN fails to generate human-like faces at 970k step, while the 
generator of SFGAN keeps on generating human-like faces until 3000k steps. Figure 8c shows that 
the change of tk  is negligible if GANs are in the equilibrium state. That is, the more stable the 
training gives a smaller variation of tk  [50]. In early training stages, both of BEGAN and SFGAN 
are tending to generate easy-to-reconstruct data by auto-encoder because the real data distribution 
has not been learned accurately yet. BEGAN seems to find a stable value as it gradually descends. 

Figure 7. A total of 16 samples generated at 200k, 960k, 970k, and 3000k steps trained with CelebA
dataset in 64 × 64 resolution by: (a) BEGAN; (b) SFGAN with α = 12, 288.

Figure 8 compares the two losses, kts, and the generated images during the training process of the
two models. Figure 8a,b shows the losses of discriminator and generator of the models, respectively.
The amplitudes of both losses of discriminator and generator of BEGAN increase after 970k steps,
while those of SFGAN do not change much and even seem to converge. The loss differences for
the two models appeared the difference between generated images, as shown in Figure 8d. That
is, the generator of BEGAN fails to generate human-like faces at 970k step, while the generator of
SFGAN keeps on generating human-like faces until 3000k steps. Figure 8c shows that the change
of kt is negligible if GANs are in the equilibrium state. That is, the more stable the training gives
a smaller variation of kt [50]. In early training stages, both of BEGAN and SFGAN are tending to
generate easy-to-reconstruct data by auto-encoder because the real data distribution has not been
learned accurately yet. BEGAN seems to find a stable value as it gradually descends. When BEGAN
started to generate images that are not human-like faces, however, kt decreases rapidly. This means that
the discriminator’s loss is reduced faster than that of the generator. In other words, the discriminator
won the generator. SFGAN, on the other hand, kt increases and then decreases slowly until 150,000
steps. After 150,000 steps, no abrupt decrements are observed for SFGAN as BEGAN does have.
Based on this observation, we may derive the following: (1) If kt is not zero and has small vibration or
converging to a constant that is not zero, then the network can be considered as in a stable state. (2) If
kt converges to zero, the generator’s loss is too large, and the network is far from the equilibrium state.
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5.2.2. The Generated Images of CelebA: 128 × 128 Resolution 

Figure 9 presents the results for the images with 128 × 128 resolution. In the 200k step, the 
training result of BEGAN is similar to that of SFGAN. However, it is observed that the mode collapse 
occurs 520k, which is earlier than that with 64 × 64 resolution in BEGAN. At 3000k step, BEGAN 
generated the same images even if different inputs are given. Based on the results with two different 
resolutions, the mode collapse seems to occur faster as the image resolution increases in BEGAN. 
This phenomenon seems caused by the insufficiency of the weight parameters in the model network 

Figure 8. Comparison of BEGAN and SFGAN trained with CelebA dataset in 64 × 64 resolution:
(a) Discriminator loss LD; (b) generator loss LG; (c) variable kt; (d) samples during the training process
of BEGAN and SFGAN with α = 12, 288.

5.2.2. The Generated Images of CelebA: 128 × 128 Resolution

Figure 9 presents the results for the images with 128 × 128 resolution. In the 200k step, the training
result of BEGAN is similar to that of SFGAN. However, it is observed that the mode collapse occurs 520k,
which is earlier than that with 64 × 64 resolution in BEGAN. At 3000k step, BEGAN generated the
same images even if different inputs are given. Based on the results with two different resolutions,
the mode collapse seems to occur faster as the image resolution increases in BEGAN. This phenomenon
seems caused by the insufficiency of the weight parameters in the model network because the mode
collapse and/or mode drop can easily occur when the number of weight parameters is insufficient [63].
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SFGAN is almost consistent. The instant of the abrupt changes in loss of generator with this resolution 
is different from that with a smaller resolution, 520k steps. This can be interpreted in two ways; (i) 
The exact instant is missing because the losses are measured at every 1000 steps. (ii) The mode 
collapse and/or mode drop can occur even if the generator learns stably. Figure 10c illustrates tk s 
for every 1000 steps of the two models, and Figure 10d presents the created samples corresponding 
to 200k steps, 519k steps, 520k steps, and 3000k steps. At 520k steps, tk  of BEGAN dropped rapidly, 
and the similar images are generated. The rapid drop of tk  implies that the loss of discriminator 
does not change much during its update, and this may result in the model collapse or mode drop. 
This phenomenon did not occur in SFGAN until 3000k steps, as same as 64 × 64 resolution. 

If we compare the results of two resolutions and two models, the followings are concluded; (i) 
BEGAN requires one and two more convolutional layers for the generator and discriminator, 
respectively, if the resolution becomes twice. (ii) The used network architecture is not a good model 
for large sizes of images. (iii) Even though the network structure of SFGAN is the same as BEGAN, 
it is less affected by the architecture and, therefore, resolution. This phenomenon seems to owe to 
using SFD. 

Figure 9. A total of 16 samples generated at 200k, 519k, 520k, and 3000k steps trained with CelebA
dataset in 128 × 128 resolution by: (a) BEGAN; (b) SFGAN with α = 12, 288.

Figure 10 compares the two losses, kts, and the generated images during the training process of
the two models. Figure 10a,b show that the differences in both discriminators’ losses are insignificant,
while those of both generators’ losses seem significant. The loss of generator of BEGAN fluctuates
significantly after 700k steps compared to the previous steps, while the loss of generator of SFGAN
is almost consistent. The instant of the abrupt changes in loss of generator with this resolution is
different from that with a smaller resolution, 520k steps. This can be interpreted in two ways; (i) The
exact instant is missing because the losses are measured at every 1000 steps. (ii) The mode collapse
and/or mode drop can occur even if the generator learns stably. Figure 10c illustrates kts for every 1000
steps of the two models, and Figure 10d presents the created samples corresponding to 200k steps,
519k steps, 520k steps, and 3000k steps. At 520k steps, kt of BEGAN dropped rapidly, and the similar
images are generated. The rapid drop of kt implies that the loss of discriminator does not change much
during its update, and this may result in the model collapse or mode drop. This phenomenon did not
occur in SFGAN until 3000k steps, as same as 64 × 64 resolution.

If we compare the results of two resolutions and two models, the followings are concluded;
(i) BEGAN requires one and two more convolutional layers for the generator and discriminator,
respectively, if the resolution becomes twice. (ii) The used network architecture is not a good model
for large sizes of images. (iii) Even though the network structure of SFGAN is the same as BEGAN,
it is less affected by the architecture and, therefore, resolution. This phenomenon seems to owe to
using SFD.
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(a) Discriminator loss DL ; (b) generator loss GL ; (c) variable ;tk  (d) samples during the training 

process of BEGAN and SFGAN with 12,288α = . 
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and 3000k steps. Overall, it is difficult to figure out the images created by both models. According to 
[63], BEGAN-based models perform slightly better than DCGAN in training CIFAR-10. Therefore, it 
can be derived that the obtained unclear images may be caused by the network structure of BEGAN. 
The figure shows that BEGAN seems to produce relatively sharp images initially up to 397k steps 
compared to SFGAN. However, similar images are generated from 427k, and it seems to fail to 
generate different images from 457 k steps. The generated images are all the same images at 3000k 
steps finally. On the other hand, SFGAN generates different images continuously, even though the 
images are blurry from the beginning. Figure 12 compares the two losses, tk s, and the generated 
images during the training process of the two models. The losses of discriminator seem stable in both 
models, while the losses of the generator are not. That is, the loss of generator in BEGAN increases 
slightly from about 400k steps and then fluctuates after all. This phenomenon may result in a lack of 
diversity in the generated images. 

  

Figure 10. Comparison of BEGAN and SFGAN trained with CelebA dataset in 128 × 128 resolution:
(a) Discriminator loss LD; (b) generator loss LG; (c) variable kt; (d) samples during the training process
of BEGAN and SFGAN with α = 12, 288.

5.2.3. The Generated Images of CIFAR-10: 32 × 32 Resolution

The same experiments are conducted with CIFAR-10. Figures 11 and 12 present the results with
32 × 32 resolution. Figure 11 compares the images generated by the two models at 397k, 427k, 457k,
and 3000k steps. Overall, it is difficult to figure out the images created by both models. According
to [63], BEGAN-based models perform slightly better than DCGAN in training CIFAR-10. Therefore, it
can be derived that the obtained unclear images may be caused by the network structure of BEGAN.
The figure shows that BEGAN seems to produce relatively sharp images initially up to 397k steps
compared to SFGAN. However, similar images are generated from 427k, and it seems to fail to generate
different images from 457 k steps. The generated images are all the same images at 3000k steps finally.
On the other hand, SFGAN generates different images continuously, even though the images are blurry
from the beginning. Figure 12 compares the two losses, kts, and the generated images during the
training process of the two models. The losses of discriminator seem stable in both models, while the
losses of the generator are not. That is, the loss of generator in BEGAN increases slightly from about
400k steps and then fluctuates after all. This phenomenon may result in a lack of diversity in the
generated images.
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Figure 11. A total of 16 samples generated at 397k, 427k, 457k, and 3000k steps trained with CIFAR-
10 dataset by: (a) BEGAN; (b) SFGAN with 12,288α = . 

On the other hand, for SFGAN, the amplitude of loss of the generator gradually decreases, 
staying around small values near zero. As shown in Figure 12c, the tk values for BEGAN drop 
rapidly at 397k steps, 427k steps, and 457 steps, which seems to be associated with the reduction of 
diversity in the generated images, as shown in Figure 12d. The tk s for SFGAN does not drop 
abruptly, except in the initial stage of training. The stable tk s seem to correspond to the generated 
images of SFGAN. 

Comparing the results of two datasets, CelebA and CIFAR-10, the followings are concluded: (i) 
BEGAN and SFGAN can make human faces up to 500k steps when training a CelebA dataset, but it 
is not valid for the CIFAR-10. This phenomenon seems to owe to the number of training data because 
the number of images of CelebA is approximately 3.4 times that of CIFAR-10. (ii) Based on the 
training results of CIFAR-10, the capacities of SFD and BED as distance metrics are similar in training, 
while SFD is better than EMD in stability and performance. 
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5.3. Mixture of Gaussian Dataset 

In this section, we compare the qualitative results of a mixture of Gaussian. Figure 13c shows 
examples of images used as training data. The example images are dawn by randomly generated 100 
samples from the mixture of Gaussian distribution. Figure 13a,b presents the generated images by 
BEGAN and SFGAN, respectively. As shown in the figure, both models learn roughly the circular 
positions of the random variables. However, the densities of each eight centers of BEGAN are 
relatively low compared to those of SFGAN. These results imply that SFD enables us to learn the 
distribution at least as same as or better than EMD. 
  

Figure 12. Comparison of BEGAN and SFGAN trained with CIFAR-10 dataset: (a) Discriminator loss
LD; (b) generator loss LG; (c) variable kt; (d) samples during the training process of BEGAN and SFGAN
with α = 12, 288.
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On the other hand, for SFGAN, the amplitude of loss of the generator gradually decreases, staying
around small values near zero. As shown in Figure 12c, the kt values for BEGAN drop rapidly at
397k steps, 427k steps, and 457 steps, which seems to be associated with the reduction of diversity in
the generated images, as shown in Figure 12d. The kts for SFGAN does not drop abruptly, except in
the initial stage of training. The stable kts seem to correspond to the generated images of SFGAN.

Comparing the results of two datasets, CelebA and CIFAR-10, the followings are concluded:
(i) BEGAN and SFGAN can make human faces up to 500k steps when training a CelebA dataset, but it
is not valid for the CIFAR-10. This phenomenon seems to owe to the number of training data because
the number of images of CelebA is approximately 3.4 times that of CIFAR-10. (ii) Based on the training
results of CIFAR-10, the capacities of SFD and BED as distance metrics are similar in training, while
SFD is better than EMD in stability and performance.

5.3. Mixture of Gaussian Dataset

In this section, we compare the qualitative results of a mixture of Gaussian. Figure 13c shows
examples of images used as training data. The example images are dawn by randomly generated
100 samples from the mixture of Gaussian distribution. Figure 13a,b presents the generated images by
BEGAN and SFGAN, respectively. As shown in the figure, both models learn roughly the circular
positions of the random variables. However, the densities of each eight centers of BEGAN are relatively
low compared to those of SFGAN. These results imply that SFD enables us to learn the distribution at
least as same as or better than EMD.
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Figure 13. Four batches of 100 sample generation results trained with a 2-D mixture of Gaussian by: 
(a) BEGAN; (b) SFGAN with 12,288α = ; (c) training data. 
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BEGAN, the following are observed; For JSD, it is difficult to find the exact spot where the distance 
is distinguished from detecting the mode collapse even though the amplitude of the values increases 
between 960k and 970k. For EMD, the range of distances slightly increases from 960k to 970k after 
mode collapse occurs. However, there are overlapping ranges before and after the mode collapse 
occurs, which seems to owe the definition of EMD. In the case of SFD, however, the ranges of distance 
differ significantly before and after the mode collapse, compared to those of JSD and EMD. In other 
words, mode collapse and/or mode drop detection is detected better by SFD than by JSD and EMD. 
As already seen in Section 5.2, no collapse occurs in SFGAN, and distance metrics verifies this. As a 
result, the distance values of SFGAN in (a), (b), and (c) can imply the stable state. 
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dataset, which are regarded requirements for detecting these phenomena. All values of the three 
metrics for SFGAN are slightly increased in the second group compared to the corresponding value 
for the first group, even if mode drop and (or) mode collapse did not yet appear. This phenomenon 
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Figure 13. Four batches of 100 sample generation results trained with a 2-D mixture of Gaussian by:
(a) BEGAN; (b) SFGAN with α = 12, 288; (c) training data.

5.4. Detecting Mode Collapse Using Distances

Figure 14 compares (a) JSD, (b) EMD, (c) SFD between the training data and the generated data
for every 1000 steps during the training process of BEGAN and SFGAN with α = 12, 288 for (a)
and (b), and α = 1 for (c), and (d) the generated samples presented in Figure 14 d. At a glance, each of
the three distance metrics for BEGAN is more fluctuate than that of SFGAN, especially after 970k.
For BEGAN, the following are observed; For JSD, it is difficult to find the exact spot where the distance
is distinguished from detecting the mode collapse even though the amplitude of the values increases
between 960k and 970k. For EMD, the range of distances slightly increases from 960k to 970k after
mode collapse occurs. However, there are overlapping ranges before and after the mode collapse
occurs, which seems to owe the definition of EMD. In the case of SFD, however, the ranges of distance
differ significantly before and after the mode collapse, compared to those of JSD and EMD. In other
words, mode collapse and/or mode drop detection is detected better by SFD than by JSD and EMD. As
already seen in Section 5.2, no collapse occurs in SFGAN, and distance metrics verifies this. As a result,
the distance values of SFGAN in (a), (b), and (c) can imply the stable state.
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Figure 14. Comparison of distances between the distributions of training data and data generated by 
BEGAN and SFGAN: (a) JSD; (b) EMD; (c) SFD with 1α = ; (d) generated samples of the two models. 

Table 4. Mean values of JSD, EMD, and SFD of two groups; Before 968k (from 1 step to 968k) and 
After 968k (from 969k step to three million steps) for BEGAN and SFGAN. 

Model 
BEGAN SFGAN 

Step group Step group 
Before 968k After 968k Before 968k After 968k 

JSD 0.038065 0.048083 0.044120 0.045827 
EMD 0.152573 0.365471 0.227430 0.229367 
SFD 0.197894 0.867904 0.237440 0.240151 

5.5. Quantitative Comparison 

The performance of SFGAN is evaluated in two ways; comparison of FID index with BEGAN 
and comparison with well-known GAN models. 

Figure 15 shows the FID [20] between the real and the generated data for BEGAN and SFGAN 
for every 1000 steps up to 2000k steps. As the green circle indicates, the minimum values of FID for 
both models are 32.88 and 32.4, respectively, which are almost the same. The FID values of BEGAN 

Figure 14. Comparison of distances between the distributions of training data and data generated by
BEGAN and SFGAN: (a) JSD; (b) EMD; (c) SFD with α = 1; (d) generated samples of the two models.

In Table 4, the mean values of the three distance metrics are compared for two groups: a group
from 1 step to 968k step and a group from 969k step to three million steps, for the two models.
The presented values in the table are the averages of ten experiments. In BEGAN, all values of JSD,
EMD, and SFD for the second group are increased compared to the corresponding value for the first
group. The biggest increment is observed in SFD, followed by JSD and EMD. This increment shows that
mode collapse and/or mode drop signs can be captured without the inception v3 model or balanced
dataset, which are regarded requirements for detecting these phenomena. All values of the three
metrics for SFGAN are slightly increased in the second group compared to the corresponding value for
the first group, even if mode drop and (or) mode collapse did not yet appear. This phenomenon can be
interpreted as two situations: (1) SFGAN’s learning is almost balanced, which derives similar values of
distances. (2) SFGAN remains the possibility to occur mode drop and (or) mode collapse.
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Table 4. Mean values of JSD, EMD, and SFD of two groups; Before 968k (from 1 step to 968k) and After
968k (from 969k step to three million steps) for BEGAN and SFGAN.

Model
BEGAN SFGAN

Step Group Step Group

Before 968k After 968k Before 968k After 968k

JSD 0.038065 0.048083 0.044120 0.045827
EMD 0.152573 0.365471 0.227430 0.229367
SFD 0.197894 0.867904 0.237440 0.240151

5.5. Quantitative Comparison

The performance of SFGAN is evaluated in two ways; comparison of FID index with BEGAN and
comparison with well-known GAN models.

Figure 15 shows the FID [20] between the real and the generated data for BEGAN and SFGAN
for every 1000 steps up to 2000k steps. As the green circle indicates, the minimum values of FID for
both models are 32.88 and 32.4, respectively, which are almost the same. The FID values of BEGAN
increased suddenly around 970k, while those of SFGAN remain steady. However, BEGAN could no
longer maintain its quality after 970k, while SFGAN maintained its quality until 2000k steps. This FID
value demonstrated that SFGAN is not in mode drop or mode drop phenomenon.
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the forward and backward propagation as a whole. Even though SFGAN is in the second position, it 
is the best FID value in the models that do not calculate the gradient. The models with BEGAN-based 
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Meanwhile, when training CIFAR-10, BEGAN and SFGAN are worse than WGAN and WGAN-
GP. These performances are because the models with BEGAN-based architecture do not train the 
dataset sufficiently, which seems to owe the number of filters of a layer [63]. In other words, it is 
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Even though the training processes of some experiments turn out to be unstable and the same 
or blurred images are generated, it is difficult to figure out the reason for the results. Maybe it is 
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to find out the relationship between the stability of the training process and the two phenomena, 
quantitatively measure and distinguish the two phenomena. 
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Figure 15. Comparison of FID between the training data and the generated data by BEGAN and SFGAN.

The obtained FID indices of the two models are compared with those of well-known GAN
models. Table 5 summarizes the FID indices of those GAN models, including SFGAN. The FID indices
of DCGAN, WGAN, and WGAN-GP in the table are from [28], which obtained by using CelebA
and CIFAR-10.

Table 5. Comparison of FID indices by several GAN models.

Model CelebA CIFAR-10

DCGAN 65.6 ± 4.2 72.7 ± 3.6
WGAN 41.3 ± 2.0 55.2 ± 2.3

WGAN-GP 30.0 ± 1.0 55.8 ± 0.9
BEGAN 38.9 ± 0.9 71.4 ± 1.6
SFGAN 38.1 ± 0.8 68.4 ± 1.3

For the CelebA dataset, WGAN-GP performs best. This superiority comes from the process of
calculating the gradient of the discriminator. The calculation of gradient in WGAN-GP is executed the
forward and backward propagation as a whole. Even though SFGAN is in the second position, it is
the best FID value in the models that do not calculate the gradient. The models with BEGAN-based
architecture, such as BEGAN and SFGAN, appear to be better models for learning CelebA data than
the models with DCGAN-based architecture. Note that DCGAN, WGAN, and WGAN-GP belong to
models with DCGAN-based architecture.
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Meanwhile, when training CIFAR-10, BEGAN and SFGAN are worse than WGAN and WGAN-GP.
These performances are because the models with BEGAN-based architecture do not train the dataset
sufficiently, which seems to owe the number of filters of a layer [63]. In other words, it is assumed that
the number of filters in each layer within the BEGAN-based architecture is smaller than that of the
DCGAN-based architecture.

Even though the training processes of some experiments turn out to be unstable and the same or
blurred images are generated, it is difficult to figure out the reason for the results. Maybe it is because
of mode drop or mode collapse or both. At the current level of researches, it is not very easy to find out
the relationship between the stability of the training process and the two phenomena, quantitatively
measure and distinguish the two phenomena.

6. Conclusions

We have introduced a distance metric SFD and proposed a SFGAN model. SFD has used for
two cases: one is in loss functions of SFGAN, and the other is as a measure to detect mode drop
and mode collapse during the training process. SFGAN has implemented using several datasets,
including CelebA and CIFAR-10, and is compared with BEGAN that is using auto-encoder and EMD.
Experimental results show that the training process of SFGAN is more stable than that of BEGAN
under the same conditions. Also, it is verified that SFD is an acceptable distance metric presenting
better results than the existing distance metrics such as JSD and EMD in detecting mode drop and/or
mode collapse. This study will be extended to apply SFD in the field of GAN and apply SFGAN to
various datasets such as ImageNet. The relationship between stability and mode collapse and/or mode
drop and how to distinguish between mode collapse and mode drop will be studied in the future.
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Appendix A

Definition A1. The Jensen–Shannon distance (JSD).

JS(F, G) =
1
2

KL
(
F‖F + G

2

)
+

1
2

KL
(
G‖F + G

2

)
, (A1)

where KL(F‖G) is the Kullback–Leibler (KL) divergence defined by

KL(F‖G) =

∫
f (x) log

(
f (x)
g(x)

)
dx, (A2)

where both f (x) and g(x) are absolutely continuous with F(A) =
∫

A f (x)dx and G(A) =
∫

A g(x)dx [18].
JSD is based on the KL divergence considering symmetric property which KL divergence does

not have. Since JSD is bounded and symmetric [64], it is the first distance metric applied in GANs.
However, it has the disadvantage of not being able to learn the data distribution in low dimension [15].

Definition A2. The Earth-Mover distance (EMD or Wasserstein-1).
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EM(F, G) = inf
γ∈Θ

E(X,Y)∼γ[|X −Y|], (A3)

where Θ is the set of all joint distributions whose marginal distributions of X and Y are F and G,
respectively. The EMD considers the minimal cost for transformation of distributions.

Definition A3. Maximum Mean Discrepancy (MMD)

MMD(ψ, F, G) = sup
f∈ψ

(
Ex∼F[ f (x)] −Ey∼G[ f (y)]

)
, (A4)

where ψ =
{
h : χ→ R : χ is a metric space

}
and F and G are the distribution functions of x and

y, x, y ∈ χ, respectively [44].

Appendix B

For Example 1, the JSD, EMD, and SED are computed as follows:

Lemma A1.

(a)JS(F, G) =


log 2, θ , 0,

0, θ = 0.
(A5)

(b)EM(F, G) = |θ| (A6)

(c)SF(F, G,α) = |θ| (A7)

Proof. (a) If θ = 0, then F and G are the same distribution. Therefore, F+G
2 = F = G and this gives

JS(F, G) =
1
2

KL(F‖F) + 1
2

KL(F‖F) = KL(F‖F) =
∫

f (x) log
(

f (x)
f (x)

)
dx =

∫
f (x) · 0dx = 0 (A8)

If θ , 0, then

JS(F, G) = 1
2 KL

(
F‖F+G

2

)
+ 1

2 KL
(
G‖F+G

2

)

= 1
2

∫
f (x) log

(
2 f (x)

f (x)+g(x)

)
dx + 1

2

∫
g(x) log

(
2g(x)

f (x)+g(x)

)
dx

= 1
2

∫
f (x) log

(
2 f (x)
f (x)

)
dx + 1

2

∫
g(x) log

(
2g(x)
g(x)

)
dx

=
log 2

2

∫
f (x)dx + log 2

2

∫
g(x)dx

= log 2.

(A9)

(b) By Jensen’s inequality, the following relation holds.

inf
γ∈Θ

∣∣∣E(X,Y)∼γ[X −Y]
∣∣∣ ≤ inf

γ∈Θ
E(X,Y)∼γ[|X −Y|] ≤ inf

γ∈Θ

√
E(X,Y)∼γ‖X −Y‖2. (A10)

That is,

inf
γ∈Θ

∣∣∣E(X,Y)∼γ[X] −E(X,Y)∼γ[Y]
∣∣∣ ≤ EM(F, G) ≤

√
Fr2(F, G) (A11)

and this gives

inf
γ∈Θ
|mX −mY| = |θ| ≤ EM(F, G) ≤

√
Fr2(F, G). (A12)
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FD, the upper bound of Equation (A10), for this example is as follows:

Fr2(F, G) = θ2 + tr




(
0 0
0 1

)
+

(
0 0
0 1

)
− 2

((
0 0
0 1

)(
0 0
0 1

)) 1
2

 = θ2. (A13)

Therefore, EM(F, G) is given by
EM(F, G) = |θ|. (A14)

(c)SF2(F, G,α) = θ2 +
1
α
· 02 = θ2. (A15)

�

The JSD, EMD, and SFD for Example 2 are computed as follows.

Lemma A2.

(a)JS(F, G) =
1
2
(log

δ2 + 1
2δ

), (A16)

(b) 0 ≤ EM(F, G) ≤ |δ− 1|, (A17)

(c)SF(F, G,α) =
1√
α
|δ− 1|. (A18)

Proof. (a) Since F and G are belonging to the same mixture family, JS(F, G) can be expressed as a
Jensen–Bregman divergence [65]. Therefore, it can be written as:

JS(F, G) =
1
2




1
2

mT
XC−1

X mX +
1
2

mT
YC−1

Y mY −mT
1/2C−1

1/2m1/2 + log
|CX|1/2|CY|1/2

∣∣∣C1/2
∣∣∣


, (A19)

where C1/2 =
(

1
2 C−1

X + 1
2 C−1

Y

)−1
and m1/2 = C1/2

(
1
2 C−1

X mX + 1
2 C−1

Y mY
)
. Substituting the mean and

covariance of X and Y respectively, C1/2 and m1/2 are simply written as

C1/2 =
(1

2
1 +

1
2
δ−2

)−1
=

2δ2

δ2 + 1
and m1/2 = C1/2

(1
2
· 1 · 0 + 1

2
· δ−2 · 0

)
=

2δ2

δ2 + 1
· 0 = 0, (A20)

respectively. Therefore, the JSD between F and G is computed as

JS(F, G) =
1
2




1
2

0 · 1 · 0 + 1
2

0 · δ−2 · 0− 0 · δ
2 + 1
2δ2 · 0 + log

11/2
∣∣∣δ2

∣∣∣1/2

∣∣∣∣ 2δ2

δ2+1

∣∣∣∣


 ==

1
2

(
log

δ2 + 1
2δ

)
(A21)

(b) By Equation (A10), we obtain

inf
γ∈Θ
|mX −mY| = 0 ≤ EM(F, G) ≤

√
Fr2(F, G). (A22)

In this example, mX = mY = 0, CX = 12, and CY = δ2. Therefore, FD, the upper bound of
Equation (A22), is as follows:

Fr2(F, G) = 12 + δ2 − 2(12δ2)
1
2 = (δ− 1)2. (A23)

Finally, EM(F, G) is given by

inf
γ∈Θ
‖0− 0‖ = 0 ≤ EM(F, G) ≤ |δ− 1|. (A24)
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(c) In this example, mX = mY = 0, σX = 12, and σY = δ2, therefore, SF2(F, G,α) is computed as

SF2(F, G,α) = ‖mX −mY‖2 + 1
α
‖σX − σY‖2 = ‖0− 0‖2 + 1

α
‖1− δ‖2 (A25)

and this gives the result. �

References

1. Borji, A. Pros and Cons of GAN evaluation measures. arXiv 2018, arXiv:1802.03446. [CrossRef]
2. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V.

Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35.
3. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
4. Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis.

arXiv 2016, arXiv:1605.05396.
5. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

6. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 2414–2423.

7. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In
Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October
2016; pp. 694–711.

8. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context Encoders: Feature Learning by
Inpainting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016.

9. Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Globally and locally consistent image completion. ACM Trans. Graph.
2017, 36, 107. [CrossRef]

10. Vondrick, C.; Pirsiavash, H.; Torralba, A. Generating Videos with Scene Dynamics. In Proceedings of the
Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 613–621.

11. Goodfellow, I. NIPS 2016 tutorial: Generative adversarial networks. arXiv 2016, arXiv:1701.00160.
12. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.

Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

13. Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. Unrolled generative adversarial networks. arXiv 2016,
arXiv:1611.02163.

14. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4– 9
February 2017; pp. 2852–2858.

15. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
16. Rubner, Y.; Tomasi, C.; Guibas, L.J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput.

2000, 40, 99–121.
17. Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151.

[CrossRef]
18. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
19. Fréchet, M. Sur la distance de deux lois de probabilité. C. R. Hebd. S©Ances Acad. Sci. 1957, 244, 689–692.
20. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Klambauer, G.; Hochreiter, S. GANs trained by a two

time-scale update rule converge to a Nash equilibrium. arXiv 2017, arXiv:1706.08500.
21. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer

Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 27–30 June 2016; pp. 2818–2826.

417



Sensors 2020, 20, 1548

22. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved Techniques for
Training GANs. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain,
5–10 December 2016; pp. 2234–2242.

23. Fei-Fei, L. ImageNet: Crowdsourcing, benchmarking & other cool things. In Proceedings of the CMU VASC
Seminar, PA, USA, 7 June 2010; pp. 18–25.

24. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of GANs for improved quality, stability, and
variation. arXiv 2017, arXiv:1710.10196.

25. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 4401–4410.

26. Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and improving the image quality
of style GAN. arXiv 2019, arXiv:1912.04958.

27. Kim, C.; Jung, S.; Moon, J.; Hwang, E. Detecting mode drop and collapse in GANs using simplified frèchet
distance. J. KIISE 2019, 46, 1012–1019. [CrossRef]

28. Lucic, M.; Kurach, K.; Michalski, M.; Gelly, S.; Bousquet, O. Are Gans Created Equal? A Large-Scale Study. In
Proceedings of the Advances in Neural Information Processing Systems, Montréal, CA, USA, 3–8 December
2018; pp. 700–709.

29. Berthelot, D.; Schumm, T.; Metz, L. BEGAN: Boundary equilibrium generative adversarial networks. arXiv
2017, arXiv:1703.10717.

30. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738.

31. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Available online:
https://www.cs.toronto.edu/~{}kriz/learning-features-2009-TR.pdf (accessed on 8 April 2009).

32. Nagarajan, V.; Kolter, J.Z. Gradient Descent GAN Optimization is Locally Stable. In Proceedings of
the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5585–5595.

33. Mescheder, L.; Nowozin, S.; Geiger, A. The Numerics of GANs. In Proceedings of the Advances in Neural
Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1825–1835.

34. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative
adversarial networks. arXiv 2015, arXiv:1511.06434.

35. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks.
arXiv 2018, arXiv:1802.05957.

36. Lin, Z.; Khetan, A.; Fanti, G.; Oh, S. PacGAN: The power of two samples in generative adversarial networks.
arXiv 2017, arXiv:1712.04086.

37. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved Training of Wasserstein
GANs. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 5767–5777.

38. Wang, R.; Cully, A.; Chang, H.J.; Demiris, Y. Magan: Margin adaptation for generative adversarial networks.
arXiv 2017, arXiv:1704.03817.

39. Zhao, J.; Mathieu, M.; LeCun, Y. Energy-based generative adversarial network. arXiv 2016, arXiv:1609.03126.
40. Unterthiner, T.; Nessler, B.; Seward, C.; Klambauer, G.; Heusel, M.; Ramsauer, H.; Hochreiter, S. Coulomb

GANs: Provably optimal nash equilibria via potential fields. arXiv 2017, arXiv:1708.08819.
41. Zhang, H.; Xu, S.; Jiao, J.; Xie, P.; Salakhutdinov, R.; Xing, E.P. Stackelberg GAN: Towards Provable Minimax

Equilibrium via Multi-Generator Architectures. arXiv 2018, arXiv:1811.08010.
42. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn.

Res. 2012, 13, 723–773.
43. Li, C.-L.; Chang, W.-C.; Cheng, Y.; Yang, Y.; Póczos, B. Mmd Gan: Towards Deeper Understanding of Moment

Matching Network. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach,
CA, USA, 4–9 December 2017; pp. 2203–2213.

44. Santurkar, S.; Schmidt, L.; Madry, A. A Classification-Based Study of Covariate Shift in GAN Distributions.
In Proceedings of the International Conference on Machine Learning, Jinan, China, 26–28 May 2018;
pp. 4487–4496.

45. Wilson, G.; Cook, D.J. A survey of unsupervised deep domain adaptation. arXiv 2019, arXiv:1812.02849.

418



Sensors 2020, 20, 1548

46. Srivastava, A.; Valkoz, L.; Russell, C.; Gutmann, M.U.; Sutton, C. VEEGAN: Reducing Mode Collapse in
GANs using Implicit Variational Learning. In Proceedings of the Advances in Neural Information Processing
Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3308–3318.

47. Chang, C.-C.; Hubert Lin, C.; Lee, C.-R.; Juan, D.-C.; Wei, W.; Chen, H.-T. Escaping From Collapsing Modes
in a Constrained Space. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, 8–14 September 2018; pp. 204–219.

48. Schelling, T.C. The Strategy of Conflict; Harvard University Press: Cambridge, London, UK, 1980.
49. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
50. Wang, W.; Sun, Y.; Halgamuge, S. Improving MMD-GAN Training with Repulsive Loss Function. arXiv 2018,

arXiv:1812.09916.
51. Dowson, D.; Landau, B. The Fréchet distance between multivariate normal distributions. J. Multivar. Anal.

1982, 12, 450–455. [CrossRef]
52. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc.

IEEE 1998, 86, 2278–2324. [CrossRef]
53. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning

algorithms. arXiv 2017, arXiv:1708.07747.
54. Huang, X.; Belongie, S. Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 1501–1510.

55. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Improved Texture Networks: Maximizing Quality and Diversity in
Feed-Forward Stylization and Texture Synthesis. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6924–6932.

56. Ghiasi, G.; Lee, H.; Kudlur, M.; Dumoulin, V.; Shlens, J. Exploring the structure of a real-time, arbitrary
neural artistic stylization network. arXiv 2017, arXiv:1705.06830.

57. Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal
Process. Lett. 2012, 20, 209–212. [CrossRef]

58. Sharifi, K.; Leon-Garcia, A. Estimation of shape parameter for generalized Gaussian distributions in subband
decompositions of video. IEEE Trans. Circuits Syst. Video Technol. 1995, 5, 52–56. [CrossRef]

59. Hardie, R.C.; Barnard, K.J.; Armstrong, E.E. Joint MAP registration and high resolution image estimation
using a sequence of undersampled images. IEEE Trans. Image Process. 1997, 6, 1621–1633. [CrossRef]

60. Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential
Linear Units (ELUs). arXiv 2015, arXiv:1511.07289.

61. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.
Tensorflow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

62. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
63. Arora, S.; Zhang, Y. Do GANs actually learn the distribution? An empirical study. arXiv 2017,

arXiv:1706.08224.
64. Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Trans. Inf. Theory 2003, 49,

1858–1860. [CrossRef]
65. Nielsen, F. On a generalization of the Jensen-Shannon divergence and the JS-symmetrization of distances

relying on abstract means. arXiv 2019, arXiv:1904.04017.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

419





sensors

Article

Color-Guided Depth Map Super-Resolution Using a
Dual-Branch Multi-Scale Residual Network with
Channel Interaction

Ruijin Chen 1,2 and Wei Gao 1,2,*
1 National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences,

Beijing 100190, China; ruijin.chen@nlpr.ia.ac.cn
2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: wgao@nlpr.ia.ac.cn; Tel.: +86-10-8254-4618

Received: 24 February 2020; Accepted: 7 March 2020; Published: 11 March 2020

Abstract: We designed an end-to-end dual-branch residual network architecture that inputs a
low-resolution (LR) depth map and a corresponding high-resolution (HR) color image separately
into the two branches, and outputs an HR depth map through a multi-scale, channel-wise feature
extraction, interaction, and upsampling. Each branch of this network contains several residual levels
at different scales, and each level comprises multiple residual groups composed of several residual
blocks. A short-skip connection in every residual block and a long-skip connection in each residual
group or level allow for low-frequency information to be bypassed while the main network focuses
on learning high-frequency information. High-frequency information learned by each residual block
in the color image branch is input into the corresponding residual block in the depth map branch,
and this kind of channel-wise feature supplement and fusion can not only help the depth map branch
to alleviate blur in details like edges, but also introduce some depth artifacts to feature maps. To avoid
the above introduced artifacts, the channel interaction fuses the feature maps using weights referring
to the channel attention mechanism. The parallel multi-scale network architecture with channel
interaction for feature guidance is the main contribution of our work and experiments show that our
proposed method had a better performance in terms of accuracy compared with other methods.

Keywords: depth map; super-resolution; guidance; residual network; channel interaction

1. Introduction

With the development of 3D technologies, such as 3D reconstruction, robot interaction, and virtual
reality, the acquisition of precise depth information as the basis of 3D technology has become very
important. At present, depth maps can be obtained conveniently using low-cost depth cameras.
However, depth maps obtained under such hardware constraints are usually of low resolution.
To use low-cost depth maps in 3D tasks, we need to perform super-resolution (SR) processing on
low-resolution (LR) depth maps to obtain high-resolution (HR) depth maps.

The main difficulty of depth map SR tasks is that the spatial downsampling of HR images to
LR images will result in the loss and distortion of details, and this phenomenon will become more
serious as the downscaling factor increases. When we want to recover HR images from LR images
using simple upsampling, an edge blur and other detail distortion problems will appear. To cope with
these problems, methods of using HR intensity images to guide the upsampling process of LR images
have been proposed. The realization of these methods is based on the corresponding association
relationship between HR intensity images and LR depth maps in the same scene. If the resolution of
intensity image and target HR depth map are the same, edges of the intensity image and the target HR
depth map can be regarded as basically corresponding, and therefore discontinuities in the intensity
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image can help to locate discontinuities in the target HR depth map during upsampling on the LR
depth map. Although the introduction of intensity image guidance during the upsampling process
will alleviate the blur of details like edges, extra textures may be introduced into the generated HR
depth map owing to the inconsistency of the structure between the depth map and the intensity image.

We proposed an end-to-end, multi-scale deep map SR network, which consists of two branches,
namely the RGB image branch (Y-branch) and the depth map branch (D-branch). Each branch is
mainly composed of residual levels at multiple scales, and each residual level has two functional
structures of feature extraction and upsampling. Among them, feature extraction is achieved by
connecting several residual groups, each of which contains several residual blocks. As the key to
residual structure, the internal short-skip connections of residual blocks and the long-skip connections
in residual groups and levels enable the main road of branch network to learn the high-frequency
information of the RGB image or depth map at different scales. Feature extraction parts in every
residual level correspond one-to-one, which means that channel-wise, high-frequency features learned
by each residual block of the Y-branch can be input into the corresponding residual block of the
D-branch. On this foundation, we utilized a channel attention mechanism to rescale the channel-wise
feature maps and fuse these features from two branches to implement guidance from the RGB image
to the depth map. Under this kind of guidance, features in the HR depth map are supplemented,
meanwhile weights in the aforementioned channel-wise feature rescaling limits the addition of artifacts
from the RGB image. Compared with many existing methods, we input the LR depth map and HR
RGB image directly into the network instead of inputting a bicubic interpolation of the LR depth map.
Experiments indicate that our proposed method achieved great performances when recovering an HR
depth map from an LR depth map with different upscaling factors.

The main contributions of our work are:

1. We designed a multi-scale residual network with two branches to realize an end-to-end LR depth
map super-resolution under the guidance from an HR color image.

2. We applied a channel attention mechanism [1] to learn the features of a depth map and RGB
image and fuse them via weights; furthermore, we tried to avoid copying artifacts to the depth
map while ensuring the guidance from RGB image worked.

3. We discuss the detailed steps toward realizing image-wise upsampling and end-to-end training
of this dual-branch, multi-scale residual network.

2. Related Works

There have been many methods proposed to complete the task of depth map SR reconstruction.
Based on whether the method uses the guidance of an intensity image, the methods for depth map
super-resolution can be divided into two categories, namely methods only based on depth maps and
methods based on depth maps and intensity images.

Regarding methods based on depth maps, some methods are based on filters. The filter-based
methods calculate the depth value of a pixel using its local information. Narayanan et al. [2] proposed a
modified adaptive Wiener filter and a spatially adaptive signal-to-noise ratio estimate for reconstructing
HR JPEG2000-compressed images. Lu et al. [3] used image segmentation and proposed a smoothing
method to reconstruct the depth structure of each segmentation. Some methods are based on a
dictionary that employs the relationship between each patch pair of LR and HR depth maps through
sparse coding. Kwon et al. [4] defined an upscaling problem and introduced a scale-dependent
dictionary. Xie et al. [5] proposed a framework that reconstructs a depth map’s edge firstly and then
reconstructs the HR depth map. These methods based on a dictionary usually require image block
extraction and pre-processing operations that are difficult to implement for an end-to-end image
super-resolution. In addition, it is hard to establish correct mapping between LR and HR image blocks
in the dictionary. Some methods are based on a convolution neural network (CNN) and differ from
dictionary-based methods by not explicitly learning a mapping dictionary. Dong et al. [6] proposed an
SR reconstruction method called a super-resolution convolutional neural network (SRCNN) based on a
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CNN, which uses three convolution layers to non-linearly map a LR feature space to a HR feature space.
This network has a relatively simple structure and small receptive fields such that it can only learn a
few features. Kim et al. [7] proposed a VDSR (Very Deep Super Resolution) network that has 20 layers
and learns more features. VDSR pre-processes the input depth map using bicubic interpolation that
affects the network’s learning of the LR depth map’s original information and introduces artifacts to the
reconstructed HR depth map. Lai et al. [8] proposed a Laplacian pyramid SR network called LapSRN
that gradually reconstructs the sub-band residuals of HR images and uses transposition convolution to
generate HR images. The input of LapSRN is an LR image without bicubic interpolation such that
artifacts can be avoided. However, checkerboard artifacts [9] will occur if network parameters, such as
the kernel size, are set improperly.

Regarding methods based on depth maps and intensity images, some methods are based on filters.
He et al. [10] enhanced an LR depth map by assuming a linear relationship between the patches of the
image for guidance and the output depth map. Barron and Poole [11] proposed a fast bilateral solver
that can be used for enhancing the depth map under the guidance from a color image. Some methods
are based on optimization. In these methods, depth upsampling is defined as an optimization problem
in which if a pixel’s neighboring pixels have similar colors in the intensity image but different values
in the depth map, then this pixel will be given a large loss value and the total loss of all pixels needs
to be minimized. Diebel et al. [12] proposed a MRF (Markov Random Fields) formula containing a
data term from an LR depth map and a smooth term from an HR intensity image. Park et al. [13]
integrated edge, gradient, and segmentation from an HR color image to design the anisotropic affinities
of the regularization terms. Ferstl et al. [14] used a secondary generalized variable guided by an
anisotropic diffusion tensor extracted from an HR color image to limit a regularized HR depth map.
Zuo et al. [15,16] measured the discontinuities of edges between a color image and a depth map in
an MRF, and these discontinuities can be reflected in the edge weight of the minimum spanning
tree. Yang et al. [17] proposed a novel depth map SR method guided by a color image by using an
auto-regression model. All these optimization-based methods are based on the assumption that the
edges of a color image and a depth map have consistency. However, textures in a color image may
not have corresponding regions in a depth map, which will override the assumption of consistency
and introduce artifacts to the reconstructed HR depth map. Some methods are based on a dictionary.
Kiechle et al. [18] proposed a dual-mode co-sparse analysis model that reconstructs a depth map
by capturing the interdependence between the intensity of a color image and the depth of a depth
map. Some methods are based on a CNN. Riegler et al. [19] designed a kind of special end-to-end
deep convolution neural network (DCNN) to learn data terms and regulation terms in an MRF that
reconstructs an HR depth map. Zhou et al. [20] developed a new DCNN to jointly learn nonlinear
projection equations when noise occurs. Yang et al. [21] learned joint features to obtain an HR depth
map guided by the edge attention map extracted from an HR color image. Ye et al. [22] designed a
kind of DCNN to learn the binary map of depth edge positions from an LR depth map under the
guidance of a corresponding HR color image. These DCNNs introduce noise to the output HR depth
map by inputting the interpolated LR depth map, which is ineffective for processing features in the
high-frequency domain. Hui et al. [23] proposed a DCNN that accepts multi-scale guidance from an
HR intensity image and mainly learns features in the high-frequency domain. Zuo et al. [24] proposed a
data-driven approach based on a CNN with local residual learning introduced in each scale-dependent
reconstruction sub-network and global residual learning is utilized to learn the difference between
the upsampled depth map and the ground truth. Zuo et al. [25] proposed a DCNN to reconstruct the
HR depth map guided by the intensity image, where dense connections and sub-networks recover
the high-frequency details from coarse to fine. These DCNNs adopt a residual network or multi-scale
upsampling mechanism like our proposed network but the ways in which the intensity image guides
the process are different, which determines a difference in the severity of artifacts. Voynov et al. [26]
tried to avoid artifacts for virtual reality applications and they measured the quality of a depth map
upsampling using renderings of the resulting 3D surfaces.
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In recent years, there have been a lot of remarkable works in single-image super-resolution
(SISR) tasks, which have common ground with our depth map reconstruction task. Lim et al. [27]
developed a multi-scale deep SR system that can reconstruct HR images of different upscaling factors
in a single model. Zhang et al. [28] proposed a residual dense network that uses a residual dense block
to extract local features with a contiguous memory mechanism and then learned global hierarchical
features by fusing dense local features jointly and adaptively. Zhang et al. [1] proposed the very deep
residual channel attention networks formed by residuals in a residual structure and a channel attention
mechanism such that channel-wise features are treated differently. Liu et al. [29] proposed a kind of
non-local module to capture deep feature correlations between each location and its neighborhood and
employed the recurrent neural network structure for deep feature propagation. Qiu et al. [30] proposed
an embedded block residual network where different modules restore the information of different
frequencies for a texture SR. Hu et al. [31] proposed a channel-wise and spatial feature modulation
network where LR features can be transformed to high informative features using feature-modulation
memory modules. Jing et al. [32] took the LR image and its downsampled resolution (DR) and
upsampled resolution (UR) versions as inputs and learned the internal structure coherence with the
pairs of UR-LR and LR-DR to generate a hierarchical dictionary. In addition to SISR, multi-image
super-resolution (MISR) has gained attention and there have already been some deep learning methods
focusing on it. Haris el at. [33] proposed a recurrent backprojection network (RBPN) that integrates
spatial and temporal contexts from continuous video frames using a recurrent encoder–decoder module
that fuses multi-frame information with a single-frame SR method for the target frame. Molini et al. [34]
proposed a CNN-based technique called DeepSUM to exploit spatial and temporal correlations for
the SR of a remote sensing scene from multiple unregistered LR images. DeepSUM has three stages
including shared 2D convolutions to extract high-dimensional features from the inputs, a subnetwork
proposing registration filters, and 3D convolutions for the slow fusion of the features. DeepSUM++ [35]
evolved from DeepSUM and shows that non-local information in a CNN can exploit self-similar
patterns to provide the enhanced regularization of SR.

3. Proposed Dual-Branch Multi-Scale Residual Network with Channel Interaction

In this study, we supposed that an LR depth map Dl is obtained by downsampling its corresponding
target HR depth map Dh and an HR RGB image Yh of the same scene is available. Yh and Dl of the
same scene are the inputs of our network, and the goal is to reconstruct and output Dh end to end at an
upscaling factor s.

In the following, we take s = 8 as an example to show our network structure (see Figure 1).
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3.1. RGB Image Network Branch

The main role of the RGB image network branch is to provide guidance for the feature map
extraction of the deep map network branch. In general, the structure of the Y-branch can be divided
into three functional parts. The first part is to downscale the input RGB image by a factor of 2 through
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a convolution layer and a maxpooling layer for m = log(s) times until the resolution of the feature
maps is the same as the input depth map (see Figure 1). Since the sample network has an upscaling
factor of 8, such a downsampling operation is executed three times in total. The feature maps obtained
in the first part can be expressed as follows:

FY
DW(1) = WY

DW(1) ∗Yh + bY
DW(1) (1)

FY
DW(i) = WY

DW(i) ∗ FY
DW(i−1) + bY

DW(i) (2)

FY
DW(2i′) = MaxPool

(
FY

DW(2i′−1)

)
(3)

where i = {3, 5, . . . , 2m − 1}, i′ = {1, 2, . . . , m}. The operator ∗ represents convolution and WY
DW is a

kernel of size 3× 3 and bY
DW is a bias vector. The superscript Y means that features or blobs belong to

the Y-branch and subscript DW stands for the whole downscaling part.
The second part is the parallel network structure matching with the D-branch, which includes

a nested structure of residual blocks, groups, and levels. As the most basic constituent unit in the
network structure, the residual block of the Y-branch matches with the residual block at the same
location in the D-branch. Despite this one-to-one relationship, the residual block for feature extraction
in the Y-branch consists of two convolution layers and one PReLU (Parametric Rectified Linear Unit)
layer, which is simpler relative to that in the D-branch. After the second convolution operation in
the block, the generated feature maps are input into the matched residual block in the D-branch
and concatenate feature maps of the depth map guided from the RGB image. In addition, the input
feature maps of each residual block are added to the feature maps obtained after feature extraction,
which is called a short-skip connection inside the block. Based on the residual block, a residual group
is composed of several connected residual blocks and one convolution layer. Similar to a short-skip
connection, a long-skip connection is implemented by adding the input and output of each residual
group. In the same way, several residual groups and one convolution layer are connected to constitute
a residual level and a long-skip connection is also realized in each level using the same addition of
input and output. Figure 2 shows the structure of a residual block and a residual group in the Y-branch.
The feature maps generated by each residual level l can be expressed as follows:

FY
DF(1) = HY

DF(1)

(
FY

DW(2m)

)
(4)

FY
DF(l) = HY

DF(1)

(
FY

UP(l−1)

)
(5)

where l = {2, 3, . . . , m + 1}. HY
DF(·) donates the deep feature extraction and FY

UP represents the feature
maps from the third part of the Y-branch. In each residual level l, the feature maps generated by each
group g can be expressed as follows:

FY
l,1 = HY

l,1

(
FY

l,0

)
(6)

FY
l,g = HY

l,g

(
FY

l,g−1

)
(7)

FY
DF(l) = FY

l,0 + WY
l FY

l,G (8)

where g = {2, 3, . . . , G}, and G is the number of residual groups in a level. FY
l,0 is the input of the residual

level. HY
l,g(·) donates the function of the gth residual group. FY

l,g−1 and FY
l,g are the input and output of

gth residual group, respectively. WY
l is the weight set of the tail convolution layer. In each residual

group g, the feature maps generated by each residual block b can be expressed as follows:

FY
g,1 = HY

g,1

(
FY

g−1

)
(9)
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FY
g,b = HY

g,b

(
FY

g,b−1

)
(10)

FY
g = FY

g−1 + WY
g FY

g,B (11)

where b = {2, 3, . . . , B}, and B is the number of residual blocks in a group. FY
g−1 and FY

g are the input

and output of gth group, respectively. HY
g,b(·) donates the function of the bth residual block. FY

g,b−1 and

FY
g,b are the input and output of the bth residual block, respectively. WY

g is the weight set of the tail
convolution layer. In each residual block b, the basic operations can be expressed as follows:

h
(
FY

b

)
= WY

b,2 ∗
(
σ
(
WY

b,1 ∗ FY
b−1 + bY

b,1

))
+ bY

b,2 (12)

FY
b = FY

b−1 + h
(
FY

b

)
(13)

where h(·) denotes the high-frequency feature maps of the input. σ(·) donates the activation function
PReLU. FY

b−1 and FY
b are the input and output of the bth residual block, respectively. WY

b,1 and WY
b,2 are

kernels of size 3× 3, and bY
b,1 and bY

b,2 are the bias vectors.
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The third part of the Y-branch is the resolution enlarging level. This part consists of an upsampler
and a convolution layer, and all these layers are connected after the residual level. The upsampler
here is composed of a convolution layer and a pixel-shuffling layer. Corresponding to the initial
downscaling steps, feature maps are upscaled by a factor of 2 after each residual level and resolution
enlarging level. Furthermore, the feature maps from the first part concatenate the feature maps that
have the same resolution after upsampling, and then perform a convolution operation (see Figure 2).
This design means the upsampled feature maps become supplemented by feature maps with an
original high resolution from the first part such that more structured features at different scales can be
retained in the network for the processing that follows, meaning that enough guidance is provided to
the D-branch. The feature maps generated by the third part can be expressed as follows:

FY
UP(l′) = WY

l′,2 ∗
(
PixelShuffle

(
WY

l′,1 ∗ FY
DF(l′) + bY

l′,1

)
, FY

DW(2m−2l′+1)

)
+ bY

l′,2 (14)

where l′ = {1, 2, . . . , m}. WY
l′,1 and WY

l′,2 are kernels of size 3× 3, and bY
l′,1 and bY

l′,2 are the bias vectors.
Referring to Shi et al. [36], the pixel-shuffling layer rearranges the elements of a H ×W × C · r2

blob B to a blob of shape rH × rW ×C, where r is the upscaling factor and H ×W is the size of C feature
maps. Mathematically, the pixel-shuffling operation can be described as follows:

PixelShuffle(B)x,y,c = Bx/r,y/r,C·r·mod(y,r)+C·mod(x,r)+c (15)

where x and y are the output pixel coordinates of the cth feature map in HR space. The feature maps
from the LR space are built into HR feature maps through the pixel-shuffling layer.
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3.2. Depth Map Network Branch

The task of the depth map network branch is to complete the super-resolution of an LR depth
map under guidance from the parallel Y-branch. Compared to the Y-branch, due to the low resolution
of the input depth map, the D-branch is mainly composed of two parts, the residual levels and the
resolution enlarging levels, without the downscaling part. Except for this difference in architecture,
the nested structure of the residual blocks, groups, and the short- or long-skip connections in the
D-branch still exist as in the Y-branch. However, the composition of the residual block that contains
convolution layers, PReLU layers, and average-pooling layer in the D-branch is more complicated than
that in the Y-branch. The whole feature extraction procedure of this kind of residual block is explained
as follows. The input feature maps are processed using convolution, PReLU, and convolution first,
and then the feature maps from the Y-branch are concatenated. After the subsequent average pooling,
convolution, PReLU, convolution again, and applying the sigmoid function, the weights are generated
and multiplied by the previous concatenated feature maps to generate new feature maps that not
only integrate the structure information coming from the RGB image, but also prevent unreasonable
textures from appearing. In addition to these internal structures, the short-skip connection still exists
and adds the input and the output of each residual block. Figure 2 shows the structure of the residual
block and residual group in the D-branch. The feature maps generated by each residual level l can be
expressed as follows:

FD
DF(1) = HD

DF(1)

(
WD

0 ∗Dl + bD
0

)
(16)

FD
DF(l) = HD

DF(l)

(
FD

UP(l−1)

)
(17)

where l = {2, 3, . . . , m + 1}. The superscript D means that features or blobs belong to the D-branch. WD
0

and bD
0 are a kernel of 3× 3 and a bias vector to the head convolution layer for initial feature extraction,

respectively. HD
DF(·) denotes the deep feature extraction and FD

UP represents the feature maps from the
second part of the D-branch. In each residual level l, the feature maps generated by each group g can
be expressed as follows:

FD
l,1 = HD

l,1

(
FD

l,0

)
(18)

FD
l,g = HD

l,g

(
FD

l,g−1

)
(19)

FD
DF(l) = FD

l,0 + WD
l FD

l,G (20)

where g = {2, 3, . . . , G}, and G is the number of residual groups in a level. FD
l,0 is the input of the residual

level. HD
l,g(·) denotes the function of the gth residual group. FD

l,g−1 and FD
l,g are the input and output of

the gth residual group, respectively. WD
l is the weight set of the tail convolution layer. In each residual

group g, the feature maps generated by each residual block b can be expressed as follows:

FD
g,1 = HD

g,1

(
FD

g−1

)
(21)

FD
g,b = HD

g,b

(
FD

g,b−1

)
(22)

FD
g = FD

g−1 + WD
g FD

g,B (23)

where b = {2, 3, . . . , B}, and B is the number of residual blocks in a group. FD
g−1 and FD

g are the input

and output of the gth group, respectively. HD
g,b(·) denotes the function of the bth residual block. FD

g,b−1

and FD
g,b are the input and output of the bth residual block, respectively. WD

g is the weight set of the tail
convolution layer. In each residual block b, the basic operations can be expressed as follows:

h
(
FD

b

)
= WD

b,2 ∗
(
σ
(
WD

b,1 ∗ FD
b−1 + bD

b,1

))
+ bD

b,2 (24)
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FD
b = FD

b−1 + RD
b

(
h
(
FD

b

)
, h

(
FY

b

))
·
(
h
(
FD

b

)
, h

(
FY

b

))
(25)

where h(·) denotes the high-frequency feature maps of the input. σ(·) denotes the activation function
PReLU. FD

b−1 and FD
b are the input and output of the bth residual block, respectively. WD

b,1 and WD
b,2

are kernels of size 3 × 3, and bD
b,1 and bD

b,2 are the bias vectors. RD
b (·) denotes the function of the

channel interaction.
Except for the difference in the residual block, the D-branch directly employs the upsampler and

the convolution layer as a resolution enlarging level to upscale the feature maps without concatenating
feature maps from the branch itself due to the lack of a downscaling part. The resolution enlarging level
is arranged to be connected after the residual level, which is one of the steps used to gradually achieve
super-resolution. Finally, a convolution layer is connected after the last residual layer to convert the
feature maps into a depth map to generate a target HR depth map as the whole dual-branch network’s
output (see Figure 2). The feature maps generated by the second part can be expressed as follows:

FD
UP(l′) = WD

l′,2 ∗ PixelShuffle
(
WD

l′,1 ∗ FD
DF(l′) + bD

l′,1

)
+ bD

l′,2 (26)

where l′ = {1, 2, . . . , m}. WD
l′,1 and WD

l′,2 are kernels of size 3× 3, and bD
l′,1 and bD

l′,2 are the bias vectors.
At the end of our network is a convolution layer that reconstructs feature maps into an output HR

depth map D̃h as follows:
D̃h = WD

REC ∗ FD
DF(m+1) + bD

REC (27)

where WD
REC is a kernel of size 3× 3, and bD

REC is the bias vector.

Our network is optimized with a loss function L1. Given a training set
{
Yi

h, Di
l, Di

h

}N

i=1
,

which contains N HR RGB images and LR depth maps as inputs, along with their HR depth
map counterparts, our network is trained by minimizing the L1 loss function

L(Θ) =
1
N

N∑

i=1

‖D̃i
h −Di

h‖1 (28)

where Θ denotes the parameter set of our network. This L1 loss function is optimized using a stochastic
gradient descent.

3.3. Channel Interaction

Channel attention is a channel-wise feature interaction and change mechanism proposed by
Zhang et al. [1], whose goal is to allow the network to pay more attention to features that contain more
information. This mechanism originates from two points. One is that there are abundant low-frequency
and valuable high-frequency components in LR space. The low-frequency components are mostly
flat, and the high-frequency components are mostly regions full of details, such as edges and textures.
Another is that each filter of the convolution layer has a local receptive field such that convolution fails
to use contextual information outside the local region. In response to these two points, the channel
attention mechanism uses global average pooling to obtain channel-wise global spatial information and
employs a gating mechanism to capture the dependencies between channels. This gating mechanism
can not only learn nonlinear interactions, but also avoids mutual exclusion between channel-wise
features. The coefficient factors learned by the gating mechanism are the weights for rescaling the
channels. The channel attention mechanism operates between the channel-wise features learned from
the input image. We further extended this mechanism to the guidance from the RGB image to the
depth map, which makes the features learned by dual-network branches interact with each other.

There are two types of channel interactions in our network. The first one is the concatenation of
the feature maps before downscaling and after upsampling in the Y-branch, and then executing the
convolution operation for new channel-wise feature maps. This is a relatively common channel-wise
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interaction procedure, which guarantees that the feature maps of all the channels affect each other
equally. The reason for adopting this kind of equal channel interaction is that due to the beginning
downscaling part, the loss of details in the previous residual level needs to be supplemented for
feature extraction and network learning of the next residual level at a larger scale. Furthermore,
the supplemented feature maps also help the guidance provided for the D-branch. The second way
channel interaction occurs is through the weight of each channel, which is calculated through a series
of functions and decides the influence of its channel in the process of generating new feature maps
after the feature maps of each residual block in the D-branch concatenates the feature maps from the
Y-branch. The guidance from the Y-branch to the D-branch is realized in this way for the channels
from the Y-branch, which can affect all the channels in the residual block. However, each channel from
the Y-branch has an unequal influence and interacts with each other according to different weights
such that the structured features that have a corresponding relationship between the RGB image and
depth map are emphasized and the inconsistent features without such a relationship suppressed.
Small weights limit the appearance of artifacts introduced by the feature maps from the Y-branch.

As RD
b (·) denotes the entire operation of channel interaction, we suppose that X =[

xY
1 , . . . , xY

c , . . . , xY
C, xD

1 , . . . , xD
c , . . . , xD

C

]
is an input, which has C feature maps with a size of H ×W

from the Yth and Dth branches separately. The channel-wise statistic z ∈ <2C can be obtained by
shrinking X, and the cth element of z is:

zc = AveragePool(xc) =
1

H ×W

H∑

h=1

W∑

w=1

xc(h, w) (29)

where xc(h, w) is the value at position (h, w) of the cth feature xc from either the Yth or Dth branch.
Therefore, we obtain the weight coefficient using the function:

s = f
(
WD

Uσ
(
WD

Dz
))

(30)

where f (·) and σ(·) denote the sigmoid and PReLU functions, respectively. WD
D is the weight set of a

convolution layer that downscales channels with a reduction ratio r. In our experiments, r was set to
16. WD

U is also a weight set of a convolution layer that upscales channels with the same ratio r. Then,
we can rescale xc by:

x̂c = sc · xc (31)

4. Evaluation

4.1. Network Training

The data set for experiments in this paper was the same as in Hui et al. [23], which consisted
of 58 RGBD images from the MPI (Max-Planck Institute) Sintel depth dataset and 34 RGBD images
from the Middlebury dataset. Among them, a total of 82 RGBD images made up the training set for
our network training, and the other 10 images composed the test set for validation. Our experiments
included SR reconstruction of an LR depth map with upscaling factors of 2, 3, 4, 8, and 16 separately.
Considering that a factor of 2 was the initial base, we first trained a network with an upscaling factor of
2 whose Y-branch was pre-trained using 1000 images from the NYUv2 (New York University Version
2) dataset [37]; then, the entire network was trained using these 1000 RGB images and depth maps,
and finally, the aforementioned training dataset containing 82 RGBD images were used for network
fine-tuning. Based on the trained network with an upscaling factor of 2, other networks with upscaling
factors of 3, 4, 8, and 16 were further fine-tuned using the same 82 RGBD images.

In terms of the details of training, we gathered LR depth maps to form the training dataset
at different upscaling factors by downscaling the corresponding HR depth maps through bicubic
interpolation. In the process of training, we did not input large-size images or depth maps into
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our network directly, but split each one into small overlapping patches and did some common data
enhancement before a patch entered the network. The size of these patches was set according to
the upscaling factor. The upscaling factors were {2,3,4,8,16}, the corresponding size of the input
depth map’s patch were

{
482, 482, 482, 242, 122

}
, and the sizes of the input RGB image’s patch were{

962, 1442, 1922, 1922, 1922
}
. Furthermore, the other settings of the network training included the

choice of the loss function, optimizer, learning rate, etc. We chose L1 as the loss function, used the
ADAM optimizer where P1 = 0.8, P2 = 0.999, ε = 10−8 and the initial learning rate was set to 10−4.
The learning rate was halved after every 200 epochs. We trained all these network models using
PyTorch on a GTX 1080 GPU.

4.2. Evaluation on the Middlebury Dataset

In order to compare our method with the experimental results of other studies, we used the root
mean squared error (RMSE) as an evaluation criterion. Referring to Hui et al. [23], we evaluated our
algorithm using Middlebury RGBD datasets whose holes were filled. The dataset was divided into
three sets, namely A, B, and C. Data in the table came from References [2,3,6,10,12–14,16–18,23–25].
At each upscaling factor, the best RMSE result of all the algorithms listed in the table is in bold and the
sub-optimal result is underlined. For dataset C, the comparison was only performed until the upscaling
factor increased to 8 because the resolution of the input depth map was too low to reconstruct the HR
depth map when the upscaling factor was 16. In addition, the experimental results at the upscaling
factor of 3 were not put into the three tables because the other algorithms cannot reconstruct depth
maps at a factor that is not a power of 2.

Tables 1–3 are records of the evaluation on sets A, B, and C separately, and our algorithm showed
an excellent performance compared with the others. When the upscaling factor was small, the gap
between the algorithms was not huge, but the advantage of our method was obvious with after
increasing the upscaling factor. This phenomenon shows that it is feasible to use an HR RGB image to
guide an LR depth map super-resolution in a multi-scaled way if the LR depth map has poor quality
and lacks high-frequency information. This condition is a challenge to all the image SR methods.
Since References [23,24] adopt a multi-scale mechanism and References [24,25] are built on a residual
structure, we focused on the comparison of the experiment results between theirs and ours. According
to Table 1, the average RMSE of our network on dataset A at the upscaling factors of {2, 4, 8, 16} were
{0.37, 0.78, 1.27, 1.89}, which outperformed Hui et al. [23] with gains of {0.09 (+19.6%), 0.15 (+16.1%),
0.23 (+15.3%), 0.71 (+27.3%)}, outperformed Zuo et al. [24] with gains of {0.15 (+28.8%), 0.22 (+22.0%),
0.35 (+21.6%), 0.73 (+27.9%)} and outperformed Zuo et al. [25] with gains of {0.06 (+14.0%), 0.15
(+16.1%), 0.28 (+18.1%), 0.61 (+24.4%)}. On dataset B, our network outperformed Hui et al. [23] with
gains of {0.07 (18.4%), 0.13 (+15.9%), 0.32 (+22.2%), 0.75 (+31.5%)}, outperformed Zuo et al. [24] with
gains of {0.31 (+50%), 0.39 (+36.1%), 0.56 (+33.3%), 1.2 (+42.4%)}, and outperformed Zuo et al. [25]
with gains of {0.21 (+40.4%), 0.31 (+31%), 0.51 (+31.3%), 1.09 (+40.1%)}. On dataset C, our network
outperformed Hui et al. [23] with gains of {0.35 (+38.9%), 0.53 (+24.3%), 0.96 (23.3%)} at the upscaling
factors of {2, 4, 8}. Overall, our network substantially reduced the RMSE using these three datasets in
the mean sense compared with other methods. Although our network only had sub-optimal results in
several cases, such as for Venus in dataset C, it is still reasonable to infer that special optimization may
be required for some isolated samples.
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Table 1. Quantitative comparison (in RMSE) on dataset A.

Method Used
Art Books Moebius

2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x

Bilinear 2.83 4.15 6.00 8.93 1.12 1.67 2.39 3.53 1.02 1.50 2.20 3.18
Narayanan [2] 2.76 3.10 3.51 – 1.17 1.24 1.82 – 0.99 1.03 1.76 –

MRFs [12] 3.12 3.79 5.50 8.66 1.21 1.55 2.21 3.40 1.19 1.44 2.05 3.08
Park et al. [13] 2.83 3.50 4.17 6.26 1.09 1.53 1.99 2.76 1.06 1.35 1.80 2.38

Guided [10] 2.93 3.79 4.97 7.88 1.16 1.57 2.10 3.19 1.10 1.43 1.88 2.85
Kiechle et al. [18] 1.25 2.01 3.23 5.77 0.65 0.92 1.27 1.93 0.64 0.89 1.27 2.13
Ferstl et al. [14] 3.03 3.79 4.79 7.10 1.29 1.60 1.99 2.94 1.13 1.46 1.91 2.63

Lu et al. [3] – – 5.80 7.65 – – 2.73 3.55 – – 2.42 3.12
SRCNN [6] 1.13 2.02 3.83 7.27 0.52 0.94 1.73 3.10 0.54 0.91 1.58 2.69

MSF [16] 3.01 3.70 4.66 6.68 1.25 1.63 2.02 2.84 1.13 1.51 2.06 2.93
Hui et al. [23] 0.66 1.47 2.46 4.57 0.37 0.67 1.03 1.60 0.36 0.66 1.02 1.63
MFR-SR [24] 0.71 1.54 2.71 4.35 0.42 0.63 1.05 1.78 0.42 0.72 1.10 1.73

RDN-GDE [25] 0.56 1.47 2.60 4.16 0.36 0.62 1.00 1.68 0.38 0.69 1.05 1.65
Ours 0.44 1.17 1.96 3.24 0.35 0.60 0.96 1.24 0.32 0.58 0.89 1.18

Table 2. Quantitative comparison (in RMSE) on dataset B.

Method Used
Dolls Laundry Reindeer

2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x

Bicubic 0.91 1.31 1.86 2.63 1.61 2.41 3.45 5.10 1.94 2.81 3.99 5.82
Narayanan [2] 0.84 1.25 1.69 – 1.34 1.87 2.65 – 1.79 2.02 2.40 –
Park et al. [13] 0.96 1.30 1.75 2.41 1.55 2.13 2.77 4.16 1.83 2.41 2.99 4.29
Ferstl et al. [14] 1.12 1.36 1.86 3.57 1.99 2.51 3.76 6.41 2.41 2.71 3.79 7.27

Kiechle et al. [18] 0.70 0.92 1.26 1.74 0.75 1.21 2.08 3.62 0.92 1.56 2.58 4.64
AP [17] 1.15 1.35 1.65 2.32 1.72 2.26 2.85 4.66 1.80 2.43 2.95 4.09

SRCNN [6] 0.58 0.95 1.52 2.45 0.64 1.18 2.43 4.58 0.77 1.50 2.86 5.25
MSF [16] 1.15 1.43 1.80 2.49 1.93 2.37 3.18 4.58 2.36 2.76 3.53 4.74

Hui et al. [23] 0.35 0.69 1.05 1.60 0.37 0.79 1.51 2.63 0.42 0.98 1.76 2.92
MFR-SR [24] 0.60 0.89 1.22 1.74 0.61 1.11 1.75 3.01 0.65 1.23 2.06 3.74

RDN-GDE [25] 0.56 0.88 1.21 1.71 0.48 0.96 1.63 2.86 0.51 1.17 2.05 3.58
Ours 0.27 0.64 0.99 1.34 0.34 0.64 1.06 1.50 0.33 0.78 1.31 2.04

Table 3. Quantitative comparison (in RMSE) on dataset C.

Method Used
Tsukuba Venus Teddy Cones

2x 4x 8x 2x 4x 8x 2x 4x 8x 2x 4x 8x

Kiechle et al. [18] 3.65 6.21 10.08 0.61 0.82 1.17 1.20 1.82 2.37 1.47 2.97 4.52
Ferstl et al. [14] 5.25 7.35 – 1.11 1.74 – 1.69 2.60 – 2.19 3.50 –

Lu et al. [3] – 10.29 13.77 – 1.73 2.13 – 2.72 3.47 – 3.99 5.34
SRCNN [6] 3.28 7.94 11.28 0.46 0.79 1.71 1.17 1.99 3.25 1.48 3.59 5.18

Hui et al. [23] 1.85 4.29 8.43 0.14 0.35 1.04 0.71 1.49 2.76 0.91 2.60 4.23
Ours 0.91 2.75 6.18 0.21 0.42 0.95 0.55 1.34 2.16 0.51 2.09 3.33

Figure 3 shows the results of our network on dataset A with an upscaling factor of 8. To further
verify the effectiveness of the network structure we designed, we selected several regions full of
details in each HR depth map to observe the differences between our SR results and the ground truths.
We examined the effect of our network in terms of two aspects. One aspect was concerned with
whether the regions containing edges were blurred after super-resolution. In Figure 3, we marked these
regions with blue boxes in (a–c), and give the contrast between the ground truths and our SR results in
(d). It is obvious that edges in our SR results were as sharp as those in the ground truths. Generally,
deeper networks like ours can learn more complex and finer features, including edges. On the other
hand, we examined whether the artifacts existed in the reconstructed HR depth maps. We marked
the regions containing textures in the HR RGB image but were complanated in the corresponding
HR depth map with red boxes. The contrasts between the reconstructed results and ground truths
given in (e) demonstrate that artifacts disappeared after super-resolution. From these results, we can
conclude that our proposed method can perform finer depth map SR reconstruction while suppressing
the introduction of artifacts.
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4.3. Evaluation of Generalization

To test the generalization of our proposed network, we selected three RGBD images from different
databases to form a new dataset Mixture in which image Lucy from the SimGeo dataset [26], image Plant
from the ICL-NUIM (Imperial College London- National University of Ireland Maynooth) dataset [38],
and image Vintage from Middlebury dataset were considered. The model we used for evaluation was
the same as the model tested on datasets A, B, and C without fine-tuning, and the evaluation criterion
was still the RMSE. We mainly tested our method at the upscaling factors of 4 and 8, in comparison
with methods from References [23,26,39–41]. Our method produced the best performance on the
image from the Middlebury dataset and performed nearly 20% better than the sub-optimal result (see
Table 4). On the ICL-NUIM dataset, our method’s performance was similar to other methods. However,
the results on image Lucy indicated that our network was not suitable for this dataset, which means
the generalization ability of our network needs to be improved in the future. Figure 4 shows the results
of our network on dataset Mixture with an upscaling factor of 4. Details in blue boxes were enlarged
and shown in columns (d) and (e).

Table 4. Quantitative comparison (in RMSE) on dataset Mixture.

Method Used
Lucy Plant Vintage

4x 4x 8x 4x 8x

Bicubic 0.27 0.25 0.29 0.26 0.30
PDN [39] 0.25 0.27 0.31 0.32 0.35
SRfS [40] 0.37 0.28 0.31 0.35 0.38
DG [41] 0.25 0.27 0.29 0.29 0.30
Hui [23] 0.26 0.23 0.29 0.29 0.36

DIP-V [26] 0.22 0.26 0.28 0.34 0.44
Ours 0.40 0.24 0.31 0.19 0.24
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In Table 5, we provide the time taken by our network and other methods [6,7,23] to upscale the
depth map from different low resolutions to full resolution. The computation time of Hui et al. [23] was
calculated by upsampling image Art using dataset A, and we completed the same experiment on a GTX
1080 GPU using Python. Bicubic, SRCNN, and VDSR were written in MATLAB and Guo et al. [42]
provides information about the average running time.

Table 5. Computation time (seconds).

Method Used 2x 3x 4x 8x 16x

Bicubic 0.01 0.01 0.01 0.01 0.01
SRCNN [6] 46.63 46.55 46.87 – –
VDSR [7] 0.44 0.44 0.45 0.44 0.47
Hui [23] 0.247 – 0.296 0.326 0.368

Ours 4.17 3.99 5.21 6.72 39.89

5. Conclusions

We proposed a dual-branch residual network that realizes LR depth map super-resolution with
channel interaction and multi-scale residual levels under the guidance of an HR RGB image. In the
design of the network structure, we made the residual levels of the RGB image branch and the depth
map branch parallel for not only the corresponding feature extraction process, but also the guidance
process from the RGB image branch to the depth map branch. Furthermore, the channel interaction
via weights avoided introducing artifacts into the upscaled depth map. Using a multi-scale method
for upscaling the LR depth map helped to alleviate the blur of the HR depth map that is caused by
upsampling to a high resolution in one step. The experiments showed that our method performed
excellently compared with other methods, especially when the upscaling factor was large. In the
future, we hope to explore other methods for the channel-wise feature fusion and go further in the
residual network design. In addition, the RGB image branch, as an auxiliary role in our network,
has more layers than the depth map branch, which gives room for improved performance regarding
compressing the layers of the whole network.
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Abstract: In this paper, we consider building extraction from high spatial resolution remote sensing
images. At present, most building extraction methods are based on artificial features. However,
the diversity and complexity of buildings mean that building extraction methods still face great
challenges, so methods based on deep learning have recently been proposed. In this paper, a building
extraction framework based on a convolution neural network and edge detection algorithm is
proposed. The method is called Mask R-CNN Fusion Sobel. Because of the outstanding achievement
of Mask R-CNN in the field of image segmentation, this paper improves it and then applies it in remote
sensing image building extraction. Our method consists of three parts. First, the convolutional neural
network is used for rough location and pixel level classification, and the problem of false and missed
extraction is solved by automatically discovering semantic features. Second, Sobel edge detection
algorithm is used to segment building edges accurately so as to solve the problem of edge extraction
and the integrity of the object of deep convolutional neural networks in semantic segmentation. Third,
buildings are extracted by the fusion algorithm. We utilize the proposed framework to extract the
building in high-resolution remote sensing images from Chinese satellite GF-2, and the experiments
show that the average value of IOU (intersection over union) of the proposed method was 88.7% and
the average value of Kappa was 87.8%, respectively. Therefore, our method can be applied to the
recognition and segmentation of complex buildings and is superior to the classical method in accuracy.

Keywords: building extraction; convolutional neural networks; mask R-CNN; high-resolution remote
sensing image

1. Introduction

With the development of remote sensing satellite technology and the demand of urbanization,
it has become an important research field to automatically and accurately extract building objects
from remote sensing images. There are many studies on building extraction approaches from remote
sensing images based on artificial design features, and these approaches can be divided into three
categories. The first is the building extraction method based on edge and corner detection and matching.
In this method, feature matching is carried out through edge and corner information of the building
to complete building extraction [1]. The second is the building extraction method combined with
elevation information, and this kind of method uses elevation information to separate out non-ground
points, and then detect buildings by combining the common edge features, spectral features and other
artificial features [2]. The last is the object-oriented building extraction method. This kind of method
uses edge information to segment the remote sensing image initially so that homogeneous pixels make
up objects of different sizes, then extract them by using the unique spectral information, shape and
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texture features of the buildings [3]. Due to different shooting angles, light and other factors, remote
sensing images in different periods have considerable internal variability, and buildings have a variety
of structure, texture and spectral information, therefore, the methods above cannot perform well in the
extraction of complex buildings.

In recent years, deep learning technology has ushered in a new wave of revival. At present, deep
learning technology represented by deep convolutional neural networks has achieved excellent results
in the field of computer vision [4–6]. Compared with the traditional method of feature extraction
in artificial design, deep convolutional neural networks can obtain the structure, texture, semantics
and other information of the object through multiple convolutional layers, and their performance is
closer to visual interpretation in object recognition. The experiments in [7,8] had the advantages of
deep convolutional neural networks in the field of object detection, but also revealed the problems of
local absence and edge blur in image segmentation. This phenomenon is especially serious when the
hardware equipment is insufficient or the dataset is small. Figure 1 shows this phenomenon using a
mask image [9]. The main reasons for poor extraction results are as follows. Firstly, the lack of data sets
makes the convolutional neural network unable to effectively learn the hierarchical contextual image
features. Secondly, adding more layers to the suitably deep model leads to higher training errors [10].
Lastly, the prediction ability of CNNs (convolutional neural networks) with low computation is at the
expense of a decrease in output resolution.
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This paper investigates the possibility of artificial features to optimize the building extraction
results of convolutional neural networks. A fusion method of artificial edge features and convolutional
neural network recognition results is proposed to address the problem of building extraction accurately.

2. Related Work

(A) Artificial design model: this model based on artificial features has been widely used in the
detection of remote sensing images. Combining image segmentation technology, spectral constraint,
shadow constraint and shape constraint, Ding et al. proposed a new building extraction framework
based on the MBI (morphological building index) [11]. Aytekin et al. designed a general algorithm for
automatically extracting buildings from multispectral images by using spectral and spatial characteristics [12].
Jimenez et al. proposed an efficient implementation of MBI and MSI algorithms, which were specially
developed for GPU [13]. Jinxing et al. introduced a method based on multi-level segmentation and
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multi-feature fusion for building detection in remote sensing images [14]. Cui et al. proposed a method
based on the Hough transform combining edge and region to extract complex buildings [15].

(B) Deep learning model: convolutional neural networks have been successfully applied to
natural image categorization recently. Studies have shown that the deep learning method can
effectively improve the accuracy of building extraction. Guo et al. proposed a series of convolutional
neural networks that can be applied to a pixel level classification framework for township building
identification [16]. Kang et al. proposed a general framework for building classification based on
convolutional neural networks [17]. Makantasis et al. addressed the problem of man-made object
detection from hyperspectral data through a deep learning classification framework [18]. Nogueira et al.
analyzed three strategies of applying convolutional neural networks to remote sensing images [19]. The
results show that fine tuning is the best training strategy of convolutional neural networks applied to
remote sensing images. Yu et al. proposed a convolutional neural network remote sensing classification
model based on PTL-CFS (parameter transfer learning and correlation-based feature selection), which
can accelerate the convergence speed of CNN loss function [20].

Mask R-CNN was proposed after R-CNN [21], Fast R-CNN [22], and Faster R-CNN [23]. The
architecture of R-CNN is divided into three parts: firstly, 2000 candidate regions are extracted by
selective search; secondly, the extracted candidate regions are extracted by a multi-layer convolutional
neural network; lastly, support vector machine (SVM) and linear regression model are used to classify
and regress the object.

Although the R-CNN has high extraction accuracy, it is difficult to train and has lower execution
time of inference. To solve this problem, Fast R-CNN and Faster R-CNN are optimized in many ways:
1. The deep convolutional neural network is used to extract the features of the original image directly.
2. The RPN (region proposal network) is used instead of the selective search to extract the candidate
regions so as to reduce the training time of the model. 3. The end-to-end training is realized by using
fully connected layers instead of SVM. 4. The unified feature map size of the region of interest pooling
(ROI pooling) is proposed to meet the input requirements of fully connected layers.

Mask R-CNN adds a fully convolutional network (FCN) [24] branch to Faster R-CNN to segment
the object. At the same time, the ROI (region of interest) align method based on the bilinear interpolation
algorithm is proposed to solve the problem of the pixel offset between the input image and the feature
map caused by ROI pooling.

Mask R-CNN architecture is shown in Figure 2. The original image is processed by the multi-layered
convolutional network to obtain hierarchical contextual image features, then the candidate region is
extracted by region selection networks, and the ROI pooling of the feature map in Faster R-CNN is
solved by using ROI align based on the bilinear interpolation algorithm. In addition, FCN is introduced
as a branch of the model to achieve accurate segmentation of objects.
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3. Fast and Effective Building Extraction Method

Due to the high precision of Mask R-CNN in natural image segmentation, this paper will improve
the architecture of Mask R-CNN to get our framework, which is applicable to building extraction.
For simplicity, we abbreviate this method to MRFS (Mask R-CNN Fusion Sobel). Our method can be
summarized as follows:

(1) Image preprocessing: High resolution remote sensing images usually include panchromatic
images and multispectral images. Panchromatic images have high resolution and little spectral
information. Multispectral images have low resolution and rich spectral information. Both are
not conducive to dense pixelwise labeling. Therefore, we enhance image information through
fusing the panchromatic images and multispectral images.

(2) Constructing a network model: Our network architecture is improved based on Mask R-CNN.
The feature pyramid network is utilized for feature fusion in order to improve the final detection
accuracy. Compared with the Mask R-CNN model, RestNet50 (residual network) is used as
the pre-training model in this paper to extract building features, and to remove the branch of
boundary fitting and category judgment.

(3) Training of the network model: We adopt the cross-validation method to train our model.
(4) Detection: The trained model is used for building extraction, and the results are used as the input

data of the proposed method.
(5) Combining edge features: The remote sensing image is segmented by edge features, and the

building extraction results in the previous step are optimized by the results.

3.1. Image Preprocessing

A GF-2 remote sensing image is selected as the raw data, including the panchromatic image and
multispectral image. We fuse the panchromatic images and multispectral images to get high-resolution
multispectral images.

In order to ensure that the high-resolution multispectral images can preserve the color, texture and
spectral information of remote sensing images effectively, the nearest-neighbor diffusion pan-shaping
algorithm is used for image fusion, and the fusion maps are shown in Figure 3.
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3.2. Network Model

Mask R-CNN models have made remarkable achievements in the field of image segmentation.
Compared with the single-stage convolutional neural networks, Mask R-CNN has higher precision
in image segmentation. The architecture of the model is shown in Figure 4. In the original image,
the multi-layer convolutional neural network is used to obtain the high-dimensional feature map,
and candidate regions are extracted by RPN. The corresponding position offset between the feature
maps in Faster R-CNN and the original map is solved by using the pooling layer ROI align based
on the bilinear interpolation algorithm. In addition, the model achieves object segmentation by fully
convolutional networks as a branch.
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Compared with multi-object segmentation, building extraction in remote sensing images is
essentially a binary classification task. Therefore, the branch for category detection in the model is
removed to optimize the training time of the model. For our improved Mask R-CNN in this paper, the
cross-entropy loss function is used as follows.

3.2.1. Loss function

In our network architecture, the output of the RPN recommendation area is used as the input of
the fully convolutional layer, and FCN is used to complete a per-pixel classification. The cross-entropy
loss function is defined as:

Lx = Lmask = − 1
m

m∑

i=1

L(xi) (1)

L(xi) = −1
n

n∑

j=1

[
y jlna j +

(
1− y j

)
ln

(
1− a j

)]
(2)

where L(x) denotes the loss function of the total training samples; Lmask is the loss function of the mask
branches; m is the total number of samples; Lxi is the loss value of a single sample; n is the number
of pixels of a single sample; y j is the expected output of a single pixel; and a j is the output of the
neural network.

The output layer of Mask R-CNN uses the sigmoid function as the activation function, and uses
the average binary value of each sample as a loss function. Cross entropy is used to train the back
propagation of convolutional neural networks. Building extraction is a binary classification for a single
pixel. The expected output of a single pixel can be expressed as 0 or 1. From the cross entropy function,
when the expected value of a pixel is 0 or 1, and the predicted value a j approaches the expected value
y j, the cross entropy loss function L(xi) approaches 0; otherwise, L(xi) is close to infinity.

3.2.2. Dataset Construction

We annotate different remote sensing images and use them as the experimental data of our method.
The dataset includes the visual interpretation of buildings from the GF-2 remote sensing image and a
building dataset from (https://www.cs.toronto.edu/~vmnih/data/). In summary, the training datasets
contain 3231 images. In order to increase the sample size, the data sets are rotated at 90◦, 180◦, and
270◦, and flipped vertically and horizontally. In order to ensure the uniform distribution of data, the
data sets are randomly divided into training sets and test sets with the proportion of 7:3.

In order to verify the performance of MRFS on different kinds of buildings, this paper selects
three kinds of buildings according to their structure and distribution characteristics. This is shown in
Figure 5.
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3.3. Combining Artificial Edge Features

Deep convolutional networks have a high accuracy of the recognition and localization of the object,
but there are certain shortcomings in the segmentation of the object, which are mainly manifested on
the edge extraction and the integrity of the object. In order to solve these problems, we propose an
optimization method of object extraction based on deep convolutional neural networks combined with
artificial edge features.

The edge detection points of the Sobel operator are accurately located. There are fewer edge
detection errors, and the operator detection edge points correspond to the actual edge points one by
one. Therefore, we use the Sobel operator to obtain the gradient amplitude and gradient direction.

In order to reduce the influence of image noise on the edge detector, a Gaussian filter is used for
the smoothing operation. The Gaussian filtering results are shown in Figure 6.
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For the Gaussian smoothed image, the Sobel operator is used to obtain the gradient amplitude
and gradient direction. The specific formula is as follows:

GX =




−1 0 −1
−2
−1

0
0

−2
−1



∗ A (3)

Gy =




+1 +2 −1
0
−1

0
−2

0
−1



∗ A (4)
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where A denotes the original image, and GX and Gy are the first derivative values in the horizontal and
vertical directions. Thus, the gradient G and direction θ of the pixel can be determined.

M =
√

Gx2 + Gy 2 (5)

θ = arctan
(

Gy

Gx

)
(6)

where M denotes the edge strength of the image; and θ the edge direction.
In order to solve the shortcomings of convolutional neural networks on building extraction, we

propose optimizing the extraction results by an artificial design of edge features.
The process in detail is as follows:

a. Use the Sobel operator to detect edges of remote sensing images and apply the watershed
algorithm to perform label segmentation on gradient images, which is shown in Figure 7.

b. The trained convolutional neural network is used to build the extraction model and get the map
of the building extraction.

c. Get the area of the building object in step (b) and the area of the object in the corresponding
position in step (a). Establish a judgment function including the threshold value λ, as shown in
formula 7. When the pixel value of the object occupied by the mask is greater than a certain
threshold, the object is marked as a building object.

Υ(xi, yi) = sign(xi − λyi) (7)

where γ is 0, 1 or −1 for the building mark. If γ is 1 or 0, then object i is marked as building, and
if γ is −1, object i is marked as non-building. Here xi denotes the number of pixels of the mask
occupying object i, yi is the number of pixels of object i, and λ is the threshold.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 13 

 

𝛭 = √𝐺𝑥
2 + 𝐺𝑦 

2 (5) 

𝛩 = arctan (
𝐺𝑦

𝐺𝑥
) (6) 

where M denotes the edge strength of the image; and 𝜃 the edge direction. 

 

Figure 7. Remote sensing image after edge segmentation. 

In order to solve the shortcomings of convolutional neural networks on building extraction, we 

propose optimizing the extraction results by an artificial design of edge features.  

The process in detail is as follows: 

a. Use the Sobel operator to detect edges of remote sensing images and apply the watershed 

algorithm to perform label segmentation on gradient images, which is shown in Figure 7. 

b. The trained convolutional neural network is used to build the extraction model and get the map 

of the building extraction. 

c. Get the area of the building object in step (b) and the area of the object in the corresponding 

position in step (a). Establish a judgment function including the threshold value λ, as shown in 

formula 7. When the pixel value of the object occupied by the mask is greater than a certain 

threshold, the object is marked as a building object. 

Υ(𝑥𝑖 , 𝑦𝑖) = 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝜆𝑦𝑖) (7) 

where γ is 0, 1 or −1 for the building mark. If γ is 1 or 0, then object i is marked as building, and if γ 

is −1, object 𝑖  is marked as non-building. Here 𝑥𝑖  denotes the number of pixels of the mask 

occupying object 𝑖, 𝑦𝑖  is the number of pixels of object 𝑖, and 𝜆 is the threshold. 

4. Experiments 

4.1. Setting 

All of the experiments are implemented on a single NVIDIA GeForce GTX1070 with 8 GB 

memory. The training time of the u-net model is 5 h. Mask R-CNN uses ResNet50 as the backbone, 

with a batch size of 2. We use a weight decay of 0.001 and momentum of 0.9. The training time of 

Mask R-CNN and the MRFS model is 2 days, and 120 K iterations are completed. We use a threshold 

𝜆 = 0.6. 

4.2. Evaluation Criteria 

In this paper, the three measures, IoU, detection accuracy (pixel accuracy), and Kappa 

coefficients, are selected to evaluate our method. They are commonly used in remote sensing 

classifications. The IoU describes the degree of overlap between the predicted value and the 

authenticity value; the detection accuracy is used to measure the proportion of correct prediction 

results; the Kappa coefficient is usually used to measure the accuracy of remote sensing image 

classifications. Their formulae are shown in Equation (8) to Equation (10): 

Figure 7. Remote sensing image after edge segmentation.

4. Experiments

4.1. Setting

All of the experiments are implemented on a single NVIDIA GeForce GTX1070 with 8 GB memory.
The training time of the u-net model is 5 h. Mask R-CNN uses ResNet50 as the backbone, with a batch
size of 2. We use a weight decay of 0.001 and momentum of 0.9. The training time of Mask R-CNN and
the MRFS model is 2 days, and 120 K iterations are completed. We use a threshold λ = 0.6.

4.2. Evaluation Criteria

In this paper, the three measures, IoU, detection accuracy (pixel accuracy), and Kappa coefficients,
are selected to evaluate our method. They are commonly used in remote sensing classifications. The
IoU describes the degree of overlap between the predicted value and the authenticity value; the

443



Sensors 2020, 20, 1465

detection accuracy is used to measure the proportion of correct prediction results; the Kappa coefficient
is usually used to measure the accuracy of remote sensing image classifications. Their formulae are
shown in Equation (8) to Equation (10):

IoU =
Area(P)∩ Area(T)
Area(P)∪ Area(T)

(8)

P =
TP

TP + FP
(9)

K =
p0 − pe

1− pe
(10)

In Equation (8), Area(P) is the prediction area and Area(T) is the true value area. In Equation (9),
P is the detection accuracy rate, TP is the correct detection, and FP is the error detection. In Equation
(10), K is the kappa coefficient, p0 explains the proportion of correct cells, and pe is the proportion of
misinterpretations caused by chance.

4.3. Analysis

4.3.1. Comparison of loss function curves

In order to analyze the effect of three convolution neural network models, we compared the loss
function curves of u-net [7], Mask R-CNN and MRFS. As shown in Figure 8, we record the training
error every five epochs and plot the loss function curve.
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Compared with u-net, Mask R-CNN and the MRFS model have higher training error because
the deeper network has a higher training error [10]. It can be seen from Table 1 and Figure 8 that
when the training error converges to a bad local minimum, the method proposed in this paper has a
better performance.

4.3.2. Evaluation of different types of buildings

We use the same dataset to train the convolutional neural networks and divide it into three parts
to test according to the building characteristics. The experiments are shown in Figures 9–11. This paper
compares the performance of three convolution neural networks in three different regions, analyzes
the shortcomings of convolution neural networks in building extraction of high-resolution remote
sensing images, and verifies the effectiveness of the proposed method in this paper.
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Figure 9. Comparison of MRFS, Mask R-CNN, SVM and KNN(k-Nearest Neighbor) on large
building extractions.

(1) In this paper, three evaluation indexes are used to measure the extraction results of SVM, u-net,
Mask R-CNN and MRFS. Figure 9 shows the high recognition ability of the above method for large
regular buildings. As shown in Figure 12, MRFS has obvious advantages in object integrity and edge
extraction compared with the classical convolutional neural network algorithm.
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Figure 10. Comparison of MRFS, Mask R-CNN, u-net, SVM and KNN on the village buildings extraction.

(2) For the village buildings, Figure 10 shows that compared with the SVM, the convolutional
networks model has better extraction results, which proves that the deep convolutional neural network
has advantages on the extraction of complex buildings. Due to the poor edge of rural buildings, the
evaluation result of MRFS is lower than that of area a.
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Figure 11. Comparison of MRFS, Mask R-CNN, SVM and KNN on medium sized area c.

(3) Comparing the performance of the four methods on medium sized buildings (as shown in
Figure 5c), Figure 11 shows that the convolutional neural network has a high consistency with the real
value of the building label. At the same time, it shows that the artificial feature can optimize the result
of the convolution neural network.
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4.3.3. Comparison of Single building extraction

In order to further analyze the efficiency of these four methods in remote sensing image building
extraction, Figure 12 shows the building extraction map of the four methods, where the black and the
white represent background and building respectively. SVM is conducive to the overall recognition of
buildings, but it cannot effectively distinguish between the cement floors and buildings, and there are
a lot of false extractions. Mask R-CNN and u-net have achieved high accuracy in building recognition
and building locating, However, compared with visual interpretation, they are still insufficient on edge
extraction and object integrity.

The main error sources of classical convolution neural networks are as follows: firstly, a
convolutional neural network has a high requirement on hardware equipment. The batch size
in this paper is 2. In convolutional neural networks, large batches usually make the network converge
faster, but due to the limitation of memory resources, large batches may lead to insufficient memory
or program kernel crash. Secondly, in the convolution neural network, the pooling layer is used to
reduce the model parameters, and the deconvolution operation will also affect the integrity of object
extraction to a certain extent. In summary, the difference between the proposed method and the
classical convolutional neural network in building recognition is mainly focused on the optimization
of building edges, which can solve the incompleteness of the building extraction.
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Figure 12. Building extraction result maps of different methods.

Figure 12 shows that the convolutional neural network performs poorly in edge extraction and
the integrity of the object but the MRFS can deal with such problems more effectively. Figure 13 shows
the extracted results of the single building objects after enlargement. Compared with convolution
neural networks, the support vector machine has better edge segmentation, but misses some areas
of complex buildings. For Mask R-CNN, u-net and MRFS proposed in this paper, the convolutional
neural network has better efficiency to locate buildings in complex areas.
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Table 1 shows that due to the complex structure and various materials of remote sensing image
buildings, object-oriented building extraction methods are prone to large-scale error recognition, and
convolutional neural networks solve this problem well. The MRFS method we proposed in this paper
solves the problems of edge extraction and the integrity of the object. Therefore, compared with the
Mask R-CNN and other methods, our method has better efficiency on different building extractions.

Table 1. Quantitative evaluation of different methods on building extraction.

Test
Area

IoU Pixel Accuracy Kappa

SVM u-net Mask
R-CNN MRFS SVM u-net Mask

R-CNN MRFS SVM u-net Mask
R-CNN MRFS

Area a 0.697 0.890 0.871 0.925 0.822 0.941 0.931 0.961 0.643 0.881 0.861 0.921
Area b 0.691 0.826 0.794 0.841 0.818 0.905 0.885 0.914 0.634 0.808 0.768 0.827
Area c 0.647 0.861 0.841 0.894 0.786 0.925 0.914 0.943 0.571 0.848 0.825 0.886
mean 0.679 0.859 0.836 0.887 0.808 0.924 0.910 0.940 0.616 0.846 0.818 0.878

4.3.4. Edge feature fusion parameter λ

In order to analyze the influence of the parameters of the MRFS, this paper carries out a number
of experiments by changing the object selection threshold parameter λ. The values of λ are set as 0.3,
0.4, 0.5, 0.6, 0.7 and 0.8, respectively. Figure 14 shows the changes of IoU, detection accuracy and kappa
with the threshold parameter λ. In this experiment, λ is in the range of [0.4,0.6], and the change of each
index is relatively small.
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5. Conclusions

In this paper, the design of deep convolutional neural networks in semantic segmentation is applied
to extract building from high-resolution remote sensing images. Based on the characteristics of the deep
convolutional network, building recognition and high-precision extraction in high-resolution remote
sensing images were realized. Concerning the problems of poor edge recognition and incomplete
extraction of the convolutional networks on the building extraction from remote sensing images, an
optimization method combining edge features was proposed to improve the efficiency of the network
model on building extraction. Experiments on 3231 images and 20,000 building objects were carried
out to verify the effectiveness of the method we proposed in this paper. Compared with the classical
convolutional network models, the accuracy rate and integrity of building extraction were improved.
In the future, the relationship between the selection of the threshold parameter λ and the Mask R-CNN
training results will be analyzed in detail, and the method will be improved by automatically getting
the model parameters.
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Abstract: Human face image analysis is an active research area within computer vision. In this paper
we propose a framework for face image analysis, addressing three challenging problems of race,
age, and gender recognition through face parsing. We manually labeled face images for training an
end-to-end face parsing model through Deep Convolutional Neural Networks. The deep learning-based
segmentation model parses a face image into seven dense classes. We use the probabilistic classification
method and created probability maps for each face class. The probability maps are used as feature
descriptors. We trained another Convolutional Neural Network model by extracting features from
probability maps of the corresponding class for each demographic task (race, age, and gender).
We perform extensive experiments on state-of-the-art datasets and obtained much better results as
compared to previous results.

Keywords: face image analysis; deep learning; face parsing; facial attributes classification

1. Introduction

Face image analysis describes several face perception tasks, including face recognition,
race classification, face detection, age classification, gender recognition, etc. These demographic
attributes have been given immense attention in recent computer vision research due to large scale
applications. Face analysis plays a crucial role in different real-world applications, including image
augmentation, animations, biometrics, visual surveillance, human-computer interaction, and many
other commercial applications. Despite significant research developments, face analysis is still
challenging due to various reasons such as complex facial expressions, poor imagery conditions,
and complex background. Face analysis has more complications in particular in the unconstrained
and ‘in the wild’ conditions. Motivated by all the above reasons, we propose a multi-task framework
that is targeting jointly three facial attributes, including race, age, and gender classification.

Besides a large number of benefits of an autonomous classification of gender, race, and age,
there are certain social and ethical issues related to such classification. Some clinical practices believe
that race and ethnic classification provides the crucial genetic surrogates that might be helpful in
regimens treatment predictions. Due to such factors, and the increasing influence and attention
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given to the racial disparities in social and health, the definition of race have undergone scientific
scrutiny [1]. Such practices have been seen from poor to modern societies. Moreover, the fields of
cancer research, treatment, and prevention are facing the complexities of exploiting race and ethnic
features for predicting outcomes medical decisions [2]. With reference to the gender classification, the
authors in [3] report that female ratings of ethical judgment are consistently higher than that of males
across two out of three moral issues examined (i.e., sales and retails) and ethics theories. The analysis
of gender-based discrimination in [4] shows that worker characteristics and job search methods do
account, although little of the gender gap in earnings.

There are multiple benefits to age, race and gender classification. With the increased use
of smart devices, the autonomous recognition of age and gender can provide a large number of
application-oriented benefits. One of the most beneficial is the recommendation systems. When the
age and gender of a child are recognized, it should be helpful for many applications such as YouTube.
YouTube can then use this information to recommend autonomously the age-based filtered videos.
This can help in presenting related information to the user. Such recognition is also useful for
autonomous parental controls of the websites and video services. The applications should thus
provide a better experience, control, and security if the age of a particular user is correctly recognized.
Similar other benefits can be exhibited by the computer-based applications if gender and age are
recognized. Many shopping recommendation systems can present customized items to users just by
recognizing their gender and age.

Compared to age and gender, we find that the justification and uses of race classification are
expressively limited, and thus race classification is not only a sensitive and challenging matter, but
many societies consider it an unethical process. Because it is believed that it could create and motivate
social problems among masses. However, we believe that race classification can also be useful to
several applications and scenarios. For example, the advanced countries experience an influx of illegal
immigrants seeping into the country through several un-explored channels by the security agencies.
The autonomous recognition and classification of the race at a number of locations inside the country
can be very useful in this regard. Moreover, the border control can use such classification for better
understanding and blocking of forged identities. Facebook and other social applications can use race
classification for recommending related information, including but not limited to friends and products.

Typically, each of these facial attributes classification (race, age, and gender) are addressed
individually through different set of methods [5–12]. We argue, all these tasks can be addressed in
a single framework if sufficient information about different face parts is provided. In the proposed
framework, we provide various face parts information through a prior segmentation model, which we
develop through Deep Convolutional Networks (DCNNs). The psychology literature also confirmed
the fact that different face parts help the human visual system to recognize face identity, and all face
parts information is mutually related [13,14]. Therefore, the performance of all face related applications
can be improved if a well-segmented face image having sufficient face parts information is given as
input to the model.

The literature reports various methods to address human face analysis. Among all reported
methods, face analysis through landmarks information is frequently used by researchers [8,15].
However, the performance in such cases is highly dependent on accurate facial landmarks information,
which in real-world scenarios is again challenging [9,11,16]. These landmarks location identification is
greatly effected with image rotation, occlusions, or if images are with poor quality. Similarly, landmarks
extraction is again difficult if the images are collected in far-field imagery conditions. Due to all the
problems mentioned above, we approach the face image analysis differently, i.e., providing prior face
parts information through face image parsing.

We introduce a new framework in which face parts information is provided through a prior
face segmentation model, which we develop through DCNNs. We address the three demographic
tasks (race, age, and gender classification) through the face parts information provided previously.
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The proposed model is a joint estimation probability task that tackles it through DCNNs. The multi-task
model can be formulated as;

(r, a, g) = arg max
r,a,g

p(r, a, g|I, B) (1)

where race, age, and gender are represented by r, a and g respectively. The input face image is
represented by I and the bounding box by B in Equation (1).

Multi-class face segmentation (MCFS) is already addressed by researchers [17–19]. Previously,
face parsing was considered as three or sometimes four-class classification problem. In MCFS [17],
face parsing was extended to six classes, including skin, hair, back, nose, mouth, and eyes.
The MCFS [17] was developed through traditional machine learning methods (TMLMs). We addressed
face parsing through DCNNs instead of TMLMs, obtained much better results as compared to previous
results. Moreover, we extended our current research work to seven classes by adding eyebrow class.
Additionally, MCFS [17] was evaluated on a minimal set of images, which we extended into three large
datasets. We also extended our work to a joint task of race, age, and gender recognition. To summarize,
the contributions of this paper are:

• We propose a new face parsing method through DCNNs, known as MCFP-DCNNs. We develop
a unified human face analysis framework using the face parts information provided by a prior
MCFP-DCNNs model. The multi-task framework is addressing the three demographic tasks
(race, age, and gender) in a single architecture, which we named RAG-MCFP-DCNNs.

• We conduct detailed experiments on state-of-the-art (SOA) databases for face parsing, race, age,
and gender classification. We obtained significant improvement in performance on both controlled
and unconstrained databases for all four tasks.

The structure of the remaining paper is as follows: Section 2 describes related work for all the four
cases, i.e., face parsing, race, age, and gender recognition. The databases used in the proposed work
are discussed in Section 3. The proposed face parsing model is presented in Section 4. The multi-task
face analysis framework is discussed in Section 5. All obtained results are discussed and compared
with SOA in Section 6. The paper is summarized with some future directions in Section 7.

2. Related Work

Human face analysis is a well explored research area in computer vision. In this Section of the
paper we review SOA methods used to address face parsing and remaining three demographic tasks.

2.1. Face Parsing

Face parsing methods can be categorized into two groups: local and global based methods.
Local face parsing methods trained separate models for different face components such as eyes, nose,
mouth, etc. For example, Luo et al. [20] proposed a method segmenting each face part separately.
An interlinked DCNNs based method was proposed by Zhou et al. [21]. The approach proposed in [21]
is benefiting from the complex sort of designing. The interlinked DCNNs can pass specific information
between fine and coarse levels bidirectionally, consequently getting better performance at the expense
of large computational cost and memory. A shallow DCNNs method having better computational cost
as compared to the last mentioned method is proposed in [22]. SOA accuracy is obtained with [22]
having a very fast running speed.

In global face parsing methods, a semantic label is predicted for each pixel over the whole
image. Correlation between different face parts through different modeling methods is performed
in some cases, as Epitome Model [23] and exemplar modeling method [24]. The underlying layout
of the whole face image is performed through DCNNs. For example Aaron et al. [25] used facial
landmarks information combined with DCNNs to address face parsing. Saito et al. [26] proposed that
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the computational cost of the face parsing can be much reduced with DCNNs, which makes a network
fit for real-time applications.

Most of the methods mentioned above (algorithms with satisfactory performance) treated facial
parts globally and inherently integrated them prior to the face image layout. Pixel labeling accuracy of
all these methods was less because individual face parts were not focused upon. Moreover, most of
these methods were evaluated with limited databases or images in the databases were collected in
very constrained imaging conditions. Additionally, none of these methods addressed maximum face
classes, but in most cases, only three or four classes were considered. We evaluated our framework on
three large databases, namely, LFW-LP [27], HELEN [28], and FASSEG [29]. These databases include
both low and high-resolution images. Images collected in very unconstrained conditions are also
included. Moreover, unlike the previous methods considering a few semantic classes, we extend our
face parsing work to seven semantic labels.

2.2. Race Classification

Race classification is a well-explored research area, but still, it is challenging due to certain
reasons mentioned in the introduction portion of the paper. Recently, a method is proposed by Saliha
et al. [30] for race classification. The proposed method combined local binary pattern information
and logistic regression on a framework called Spark. Local binary patterns were used for feature
extraction, and Spark’s regression for classification. The method was evaluated on two databases,
namely FERET [31] and CAS-PEAL [32]. Two major races, Asian and Non-Asian, were included in
the experimentation.

In holistic race classification methods, the face image is considered as one-dimensional feature
vector, and some features are extracted. For example, Gutta et al. [33–35] used the RBF neural network
and decision tree for race classification. The work was validated on FERET [31] dataset. Another race
classification system was developed by Lu and Jain [36] through discriminant analysis. The system
was tested on Asian and Non-Asian races. A support vector machine (SVM) classifier was used as a
classification tool in another method proposed in [37]. The framework proposed in [37] was evaluated
on a subset of face images from the FERET [31] database.

Manesh et al. [38] extracted face features from images through Gabor filter and used SVM
for classification. The method proposed in [38] was evaluated on CAS-PEAL [32] and FERET [31].
Another approach [39] addressed the race classification through skin information and some secondary
features such as lips and forehead information. For experiments, Yale [40] and FERET [31] databases
were used. The framework classified five race classification, including Asian, American, Caucasian,
African, and American. A comprehensive algorithm classifying three races Oriental, European,
and African were classified by Salah et al. [41]. Face features were extracted through uniform local
binary patterns combined with Haar Wavelet transform. For classification, K-nearest neighbors (KNN)
was used. Some more methods addressing race classification through holistic methods can be explored
in [42–44].

All the methods mentioned above are performed on a smaller or subset of a larger database.
One method which was evaluated on comparatively larger dataset is reported by Xi et al. [45]. In this
method, face information was extracted through color features. The performance of the framework
was evaluated on the MBGC, having three classes of images. Han et al. [46] proposed another approach
which was using biologically inspired features and hierarchical classifiers. Two large scale databases
were used by the authors for experimentation, including MORPH2 and PCSO.

DCNNs are extensively used in different computer vision applications due to their excellent
performance. A method proposed by Zhang et al. [47] used stacked spare auto encoding for
features extraction. The classification was performed with regression Soft-Max method. Another
flexible DCNNs method was proposed by Wei et al. [48]. Due to several different object segment
hypotheses, this method was also called Hypothesis-CNNs-Pooling. The method proposed by Anwar
and Nadeem [42] used DCNNs for feature extraction but performed classification through SVM.
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2.3. Age Classification

Age classification can be studied both as regression and classification problem. Age is associated
with a certain group in age classification, while the exact age of a person is estimated in the regression
case. Our current research study regarding age is limited to classification only. Two survey papers
are reported in literature [49,50], which addressed both age classification and estimation. The survey
papers reported all the databases to date and also presented an overview of various age estimation
methods as well.

Kwon et al. [51] proposed an age classification algorithm by extracting face information and
training a classification tool. Face wrinkles information was used as features by the authors. Extension
of the age classification using wrinkles information was done in another paper [52]. First facial features
localization was performed, and then proper modeling strategy was adapted. Craniofacial growth
information was extracted through anthropometric and psychophysical evidences, and modeling
was performed. Accurate face features localization is necessary for the last mentioned approach.
In some examples, when face features were not localized, the performance of the framework was
drastically effected.

A new class of gender recognition methods was proposed known as AGing PatErn subspace
methods [53,54]. Regression models were trained in these methods. For training regression models,
features from face images that are related to aging were extracted. Both of these methods reported
some excellent results as compared to SOA. Two main weaknesses faced by these methods, firstly,
it was mandatory for face images to be frontal and well-aligned. Secondly, these methods are well
suited for images collected in very controlled environmental conditions. The performance of these
methods decreased as exposed to an unconstrained outdoor environment.

Another algorithm that used cost-sensitive hyperplanes information ranking way was introduced
by Chang et al. [55]. It was a multi-stage learning algorithm which they named ‘a grouping estimation
fusion’ (DEF). Another method that used features selection procedure was proposed in [56]. All the
above-mentioned methods have shown good results in images collected in indoor conditions; however,
when exposed to the real-world scenario, a drastic drop in performance was noted.

2.4. Gender Classification

Gender recognition received immense attention for many years due to its large scale applications
in face analysis, particularly face recognition [57], soft-biometrics [58], and human-computer
interaction [59].

Makinen and Raisamo [60] investigated gender recognition thoroughly in their work.
Neural networks was used by early researcher to address gender classification [61]. However, very few
(only 90) face images were used by Golom et al. [61]. Jia et al. [62] trained a gender classifier using
four million weakly marked images. Similarly, Moghaddam and Yang [63] used SVM with some
dimensionality reduction features for gender classification. Another paper [64] used Adaboost classifier
for gender classification.

Antipov et al. [65] used deep learning architecture for gender recognition. The authors claimed
that much improved performance can be achieved with less training data. The model was validated
with CASIA [66] dataset, having 494,414 face images. Jia et al. [62], in another paper, collected a large
dataset of five million weakly labeled images. Gender recognition through face segmentation is already
explored in another work [67,68]. However, the work proposed in [67,68] has been validated on very
limited data and through traditional machine learning methods.

2.5. Multi Tasks Framework

A framework addressing gender and age was prosed by Toews and Arbel [69]. The proposed
model is a view-point invariant appearance model that is robust to rotations at the local scale level.
Another algorithm proposed by Yu et al. [70] was based on gait and linear discriminant algorithms.
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A benchmark for both age and gender was proposed in [71]. Khan et al. [72] suggested another
algorithm, also called semantic pyramid gender and action recognition method, which addressed
both gender and action recognition. Chen et al. [43] proposed a multi modeling mechanism, which
combined both the text and image information. Higher accuracy was reported as compared to SOA
with the proposed model. Another generic algorithm proposed in [46] estimated gender, race, and age
in a single framework.

The performance of different visual recognition tasks was much improved with recently
introduced deep learning architectures. The three demographic attributes (race, age, and gender) were
also explored in a single model through these deep learning architectures. For example, a hybrid
approach for age and gender was introduced in [73]. DCNNs were used for features extraction and
for classification extreme machine learning (EML) strategy was adapted. The proposed method was
named CNNs-ELMs due to the joint venture of DCNNs and EML. The CNNs-ELMs was evaluated on
two challenging databases MORPH-II [59] and Adience [71].

All the methods mentioned above made lots of progress towards mature face image analysis
systems. However, these methods were designed either for non-automated estimation algorithms or
worked well in constrained and controlled imaging conditions. Both appearance and geometric based
methods were facing some serious problems, we approached face image analysis through a different
idea. Our face image analysis and attributes classification idea is novel; in a sense, we approach
the face analysis task through a prior face segmentation method. Initially, we segment a face image
into seven parts, including mouth, hair, back, skin, nose, eyes, and eyebrow. We used a probabilistic
classification strategy and modeled a DCNNs based framework for each demographic task, i.e., race,
age, and gender recognition. We test our framework on SOA databases, obtaining superior results as
compared to previous results.

3. Used Datasets

In this Section of the paper, we discuss different face image databases we used to evaluate
our framework.

3.1. Face Parsing

To the best of our knowledge, three authentic databases are publically available for different face
parts labeling. Details of these datasets are as follow;

• LFW-PL: We evaluate our face parsing part with LFW-PL [27]. Some recent methods [26,74]
already use the LFW-PL [27] for face parsing. We use a subset of training and testing images.
For fair and more exact comparisons, we conduct experiments on the same set of images as
in [75]. The LFW-PL contains 2927 images with size 250× 250, which are all collected in the wild
conditions. The ground truth data are created manually through commercial editing software.
All face images are labeled to three classes, including back, skin and hair.

• HELEN: The HELEN [28] database contains class labels for 11 categories. This database contains
2330 images, each with size 400× 400. These images are also manually labeled. The database is
divided into a training set (2000) and a validation set (330). We keep the experimental setup as
in [75]. Although the HELEN database is a comparatively large database having 11 dense classes,
the ground truth labeling is not very precise. Especially the hair class is mostly mislabeled with
skin in most of the cases.

• FASSEG: The FASSEG [29] consists of both frontal and profile face images. Frontal01, frontal02,
and frontal03 contain frontal images of 220 faces along with ground truth data. The subset
multipose01 contains profile face images of more than 200 faces. The FASSEG images are taken
from other publically available datasets, and ground truth data is created through manual editing
tool. The images contain both high and low-resolution data. The illumination conditions and
facial expressions are also changing in some cases. The dataset is very precise as ground truth
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data is created with extreme care. Figures 1 and 2 show some images from the FASSEG [29]
database. Original images are shown in row 1, ground truth in row 2 and the segmentation results
in row 3.

Figure 1. Face parsing results for FASSEG [29] frontal images. First row show: original images,
second row: ground truth, and third row: face parsing results.

Figure 2. Face segmentation results for profile images for FASSEG [29] database. Order of the images,
row 1 shows: original images, row 2: ground truth, and row 3: face parsing results.
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3.2. Race, Age, and Gender

• CAS-PEAL The CAS-PEAL [32] is a face database used for various tasks such as head pose
estimation, gender recognition, race classification, etc. It is a larger dataset with 99,594 face
images. The CAS-PEAL [32] is collected with a large number of face images having 1040 subjects.
The dataset is sufficiently large, but the complexity level of the images is not higher, making the
dataset a bit simple. We used CAS-PEAL [32] for race classification in the proposed work. Figure 3,
row 1 shows some images from the CAS-PEAL [32] database. The ground truth images manually
labeled to build DCNNs model are shown in row 2, whereas the segmentation results with
proposed DCNNs model are shown in row 3.

Figure 3. Face images from CAS-PEAL [32] dataset in row 1, ground truth in row 2, and face
segmentation results in row 3.

• FERET: This is an old dataset which is used for various face analysis tasks such as face recognition,
head pose estimation, gender recognition, etc. The FERET [31] dataset is collected in very
constrained lab conditions, and gender information is also provided for each participant. It is
a medium-sized dataset with 14,126 face images. However a sufficient number of participants
are included in the database collection with 1199 subjects. We use the colored version of the
FERET [31]. The participants include variations in facial expressions, changing in lighting
conditions, which make the database a bit challenging. we evaluate our race and gender
recognition part with FERET [31] database. Figure 4 , row 1 shows some face images from
the FERET [31] database. The ground truth images manually annotated are shown in row 2,
whereas the segmentation results in row 3.

• LFW: The LFW [76] database consists of 13,233 face image collected from 5749 participants.
The dataset is collected in very unconstrained environmental conditions. All the face images
are collected from the internet, with very poor resolution. The LFW [76] is a very unbalanced
database, as the number of female participants are 2977, whereas male candidates are 102,566.
We use this database for evaluating our gender recognition part.
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• Adience: The Adience [71] is a new database that was released in 2018. We evaluate our age and
gender classification part with Adience [71]. The database is collected in the wild and real-world
conditions. The images are collected through smart phones Much complexities are added to
the images to make the database rather challenging; such as pose variation, changing lighting
conditions, noise, etc. are present in the images. It is a comparatively larger dataset with more
than 25,580 face images. Sufficient number of candidates are included (2284) in the dataset
collection. Information about the exact age of each participant is not provided, instead each
participant is assigned to eight age groups, i.e., [0,2], [4,6], [8,13], [15,20], [25,32], [38,43], [48,53],
[60,+]. The database is freely available for downloading from the Open University of Israel.

Figure 4. Original face images from FERET [31] database in row 1, ground truth in row 2, and face
parsing results in row 3.

4. Proposed Face Parsing Framework (MCFP-DCNNs)

In this Section of the paper, we present the DCNNs we used to build our face parsing model.
We make this model for each demographic task, i.e., race, age, and gender.

Face parts are not localized in face images with some datasets. We apply a face detection algorithm
in the start if needed. Many excellent face detection algorithms are reported in the literature; we use a
deep learning-based face detector reported in [77]. After face detection, we re-scaled all face images to
a fixed size 227× 227. Details of the proposed DCNNs architecture is in the following paragraphs;

Architecture

The performance of the DCNNs based model depends on several parameters; for example, the size
of the kernels used, the convolutional layer numbers, and filters in every layer. In our DCNNs model,
we used three convolutional (C1–C3) layers, each followed by a max-pooling layer (P1–P3). The size of
the kernel in the convolutional layer was set as 5× 5. The down sampling stride for both convolutional
and max-pooling layer was fixed at two. We kept the kernel size 3× 3 in the max-pooling layer. Table 1
shows details about each convolution layer, kernel size, stride, and feature maps. Various parameters
setting of the proposed CNNs is presented in Table 2.
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Table 1. Information about each convolutional neural networks (CNNs) layer.

Layer kernel Size Stride Feature Maps Output Size

Input image – – – 227× 227
C-1 5× 5 2 96 112× 112
P-1 3× 3 2 96 56× 56
C-2 5× 5 2 256 27× 27
P-2 3× 3 2 256 12× 12
C-3 5× 5 2 512 5× 5
P-3 3× 3 2 512 2× 2

Table 2. Parameters setting for CNNs training.

Parameters Vales

Epochs 30
Batch size 125

Momentum 0.9
Base learning rate 10−4

For activation function we used rectified linear unit (ReLu). After each convolutional layer we
embedded pooling layer. For pooling layer we used max-pooling.

A complete DCNNs model has three main parts, i.e., convolutional layers, pooling layer, and fully
connected layers. We represented the kernels as N ×M× C where N and M represent the height and
width of the filter and C represents the channel. The pooling layers filters are represented by P×Q,
where P represents height and Q width of the filter. The fully connected layer is the final layer which
performs the task of classification. For better optimization of the DCNNs and more exploring deep
learning architecture, readers are recommended to read Goodfellow et al.’s book [78].

5. Proposed RAG-MCFP-DCNNs

Initially, we develop a segmentation model MCFP-DCNNs for each demographic task, i.e., race,
age, and gender. The MCFP-DCNNs assigns a semantic class label to each pixel of a face image. We use
a probabilistic classification strategy and generated probability maps (PMAPs) for each face class.
The PMAPs are computed by converting the probability of each pixel to a gray-scale image. In PMAPs,
higher intensity represents a higher value of probability for the most likely class on their respective
position and vice versa.

Figure 5 shows some images of FASSEG [29] database and their respective probability maps for
seven classes. The better segmentation for a specific class, the higher will be the predicted probability
value and vice versa. As a result, a brighter PMAP on the respective position will be obtained.
From Figure 5, it is clear that some good results are produced by the segmentation model for skin, back,
and hair. These regions can be easily differentiated from the others in a respective PMAP image, as can
be seen from column 4, 6, and 8 (PMAPs for hair, back, and skin) in Figure 5. The segmentation results
also confirm this fact because much better results are obtained for these classes as compared to minor
classes. On the other hand, PMAPs for minor classes can not be differentiated from the remaining
parts in a respective PMAPs, leading to a confusing situation. PMAPs for minor classes are shown in
column 2, 3, 5, and 7 (brows, eyes, mouth, and nose).

We investigated thoroughly which PMAPs are more helpful in age, race, and gender classification.
The PMAPs which are helpful for the respective task are then used for feature extraction.

We presents summary of the proposed RAG-MCFP-DCNNs in Algorithm 1. Initially a
segmentation model is developed through CNNs. For the classification of race, age, and gender
we use PMAPs created during segmentation. We use these probability maps as features descriptors.
We extracted features from these PMAPs through deep convolutional neural networks. After extracting
features from PMAPs, feature vectors for the corresponding classes are concatenated to a single unique
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feature vector which is given to Soft-Max classifier. We use 10-fold cross validation experiments in our
work. We represent PMAPs generated for each semantic class as PMAPnose, PMAPeyebrow, PMAPback ,
PMAPmouth, PMAPeyes, PMAPskin, and PMAPhair.

Figure 5. Example face images from FASSEG [29] database, probability maps in the order such that:
column 1 shows: original images, 2: eyebrow, 3: eyes, 4: hair, 5: mouth, 6: back, 7: nose, and 8:
skin class.
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Algorithm 1 proposed RAG-MCFP-DCNNs algorithm

Input: Mtrain = {(Ii,Ti)}
j
i=1 , Mtest.

where the DCNNs model is trained through training data represented as Mtrain and tested through
Mtest. The input training image is represented as I and the ground truth data is T(i,j) ∈ {1,2,3,4,5,6,7}.

a: Face parsing part:

Step a.1: Training a face parsing model DCNNs through training images and class labels.

Step a.2: Using the probabilistic classification strategy and producing PMAPs for each semantic class,
represented as:

PMAPskin, PMAPmouth, PMAPeyes, PMAPnose, PMAPhair, PMAPback, and PMAPeyebrow

b. race, age and gender classification part:

Training a second DCNNs for each demographic class (race, age, and gender) by extracting infomration
from PMAPs of the corresponding classes such that;

if race classification:

f = PMAPskin + PMAPmouth + PMAPeyes + PMAPnose + PMAPhair + PMAPbrows

Else if age classification:
f = PMAPskin + PMAPmouth + PMAPeyes + PMAPnose + PMAPbrows

Else if gender recognition:
f = PMAPskin + PMAPeyes + PMAPbrows + PMAPnose + PMAPmouth

where f is the feature vector.

Output: estimated race, age and gender.

For each face analysis task (race, age, and gender), we train a second DCNNs using the
corresponding PMAPs as features descriptors. The DCNNs extract features from the corresponding
classes which are used to train and test race, age, and gender classification module.

5.1. Race Classification

We classify face images into two races, i.e., Asian and Non-Asian. For race classification, we used
two datasets, namely CAS-PEAL [32] and colored version of FERET [31]. The CAS-PEAL [32] is a
Chinese database containing images collected in different poses. We named images of CAS-PEAL [32]
as Asian class. The colored version of FERET [31] contains 12,332 face images. All images in FERET [31]
are Non-Asian; hence, we named these images as Non-Asian class. Sample face images from both
CAS-PEAL [32] and FERET [31] are shown in Figures 3 and 4.

We manually labeled 200 face images from each race class of each database. We used the manually
labeled images to build an MCFP-DCNNs model, as discussed in Section 4. For all face images
of each database, we generated PMAPs. When a test face image was provided as input to the
RAG-MCFP-DCNNs, the model predicted PMAPs from the segmentation part for all seven face classes.

To know which face parts help in race classification, we conducted a set of qualitative and
quantitative experiments. A graph in Figure 6 shows which face part contributes towards race
classification. From the Figure 6 it is clear that six face classes contribute towards age classification.
We utilized PMAPs for eyes, nose, mouth, skin, eyebrows, and hair. We extracted features from PMAPs
of the above mentioned six classes through DCNNs. For classification we used Soft-Max classifier as
in the first case. We kept 10-fold cross validation experimental setup for race classification. Images that
were used to build the MCFP-DCNNs model were excluded from the testing phase.
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Figure 6. Feature importances of ‘skin’, ‘hair’, ‘back’, ‘mouth’, ’eyes’, ’brows’, and ‘nose’ for three facial
attributes (race, age, and gender) classification.

5.2. Age Classification

In our age classification module, each face image is given a specific age category within certain
categories. We manually labeled 20 images from each age group. We used the manually labeled images
to build an MCFP-DCNNs model for age classification.

We investigated during experiments that each face part has certain contribution towards age
classification. Figure 6 shows how different features contributes to the age classification. From Figure 6,
it is clear that skin, nose, eyes, mouth, and eyebrows contributes significantly towards age classification.
We also notice that using all class information makes the algorithm computationally quite expensive.
Therefore, we used a subset of all the seven classes for age classification.

All the testing images were passed to the MCFP-DCNNs to get a probability value for each class.
We generated PMAPs for each age category image and each class. We extracted features from the
PMAPs through DCNNs. For all face images of each database, we generated PMAPs. When a test face
image is provided as input to the MCFP-DCNNs, the model predicts PMAPs from the segmentation
part for all seven face classes.

We used Soft-Max for classification, as previously. We kept 10-fold cross validation experimental
setup during our experiments. We excluded face images that were previously used to build the
MCFP-DCNNs model for age classification.

5.3. Gender Recognition

We manually labeled 50 images from each gender for gender recognition. We built a DCNNs based
model for gender classification. We performed intensive experiments to know which face parts help in
gender classification. Human face anatomy also helps in gender classification. These fundamental
differences also help us to develop a gender classification module; the information is summarized
as follows:

• Face anatomy reports that the male forehead is more significant than the female forehead. In most
of the cases, male hairline lags behind as compared to female. Is the case of baldness (males only)
hairline is missing entirely. All this results in a more massive forehead in males compared to
females. We assigned to all forehead a skin label. Hence our MCFP-DCNNs model creates a
probability map for skin, which is on the larger brighter area in males compared to females.
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• Visually, female eyelashes are curly and comparatively larger. These eyelashes are misclassified
with hair and in some cases with eyebrows. Although, labeling accuracy is reduced for
segmentation part with this misclassification, however, this misclassification helps in gender
classification. The MCFP-DCNNs model generated a brighter PMAPS for males as compared
to females.

• Qualitative results reveal that the male nose is larger than the female nose. The male body is
larger, which needs a sufficient supply of air towards the lungs. This results in larger nostrils
and a giant nose for males compared to females. We also encode this information in the form of
PMAPs through MCFP-DCNNs.

• Literature reports very complex geometry for hair. For humans, it is easy to identify the region
between hair and face parts, but for the computer, it is not an easy task. Our MCFP-DCNNs model
reports excellent labeling accuracy for hair class. From segmented images it can be seen how
efficiently hairline is detected by MCFP-DCNNs. We also encoded this information in PMAPs for
hair class and used it in gender classification.

• Eyebrows is another class that helps immensely in gender classification. It is generally noticed
that female eyebrows are thinner, well managed, and curly at the ends. On the other hand,
male eyebrows are thicker, mismanaged. We obtained better labeling accuracy for eyebrow from
our face parsing model.

• Mouth is another class that also helps in gender recognition. Female lips are visible and very clear;
in the male in some cases (in images), the upper lip is even missing. We encoded this information
as well and used it in our modeling process.

Due to the reasons mentioned above, we use PMAPs of five classes including skin, nose, eyes,
brows, and mouth to build the second stage of DCNNs model. We perform 10-fold cross-validation
experiments to evaluate our model more precisely. We excluded all those images from the testing
phase, which were previously used to build MCFP-DCNNs.

6. Results and Discussion

6.1. Experimental Setup

Hardware Platform: For experiments we used intel i7 CPU. RAM of the system was 16 G while
graphical processing unit was NVIDIA 840 M. We used TensorFlow and Keras for experiments.
We trained the model for 30 Epochs and the batch size was 125.

From Figure 7 it is clear that the mis classification rate reduces as the number of Epochs are
increased. At 25 Epochs the miss classification rate for training data almost reaches to 0. This graph is
for training data of the face parsing part for HELEN [28] database only.
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Figure 7. The mis-classification rate (%) for training data (for HELEN [28] database only).
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6.2. Face Parsing Results

Previously, FASSEG [29] was evaluated with pixel labeling accuracy (PLA). The PLA compares
the estimated segmentation with manually annotated labels. For fair comparison with SOA We also
report the face parsing results in the form of confusion matrices.

F-measure is a common metric used in the literature for evaluating a face parsing framework.
We used F-measure for our evaluation of our work fot two dataset LFW-PL [27] and HELEN [28].
We used the same setting as in [48,75,79]. The total face images in HELEN are 2330. We used 2000 for
training, 230 for the validation, and remaning 100 images for the testing phase.

The LFW-PL [27] is a database with 2972 face images. All these images were manually annotated
with three labels: hair, back, and skin. As in [21,27], we also used 1500 images for training, 500 for
validation, and 927 for the testing phase. However, we re-annotate the remaining four parts, namely,
nose, eyebrow, mouth, and eyes. We reprocess the already annotated parts if needed, as the manual
annotation is not precise for LFW-PL [27]. For more accurate comparison, we kept the testing part
images unchanged except adding additional four parts labels for our own experiments.

We summarize the key points of the face segmentation results as following:
FASSEG: Some face Images from FASSEG are shown in Figures 1 and 2. Images in Figure 1 are

showing some segmentation results; we categorize these as good results. Original face images are
placed in the first row, ground truth in the second row, and segmented images in row three. It is also
clear from these images that better segmentation is produced for frontal images as compared to profile
images, as expected. It can also be observe from these images that better segmentation results are
produced for larger classes (skin, hair, and back) while comparatively poor segmentation results are
noticed for smaller classes (eyes, nose, mouth, and eyebrows).

There is very limited research work on FASSEG [29] database. Results reported for FASSEG till
date are shown in Table 3. From the Table 3 it is clear that we have much better results as compared to
previous results. The results reported in [80] do not consider an eyebrows class; we also added
eyebrow parts in our current research work.

HELEN: Previously, background class was not considered in face parsing. We believe sometime
background class also helps in some real-world application scenarios. We included background class
also and reported results in our paper. Results reported with our proposed face parsing model and its
comparison with SOA are shown in Table 4. From Table 4, it is clear that most of the previous work
does not consider hair class in segmentation due to its complex geometry. We included hair class as
well in our face parsing model.

It is clear from Table 4 that we have better results as compared to previous results. However,
the performance of the proposed MCFP-DCNNs is poor with minor classes (eyes, brow, and mouth).
We obtained better results on three major classes (skin, hair, and back) and one minor class (nose).
However, the overall results for the face parsing is improved as the contribution of the major classes in
the face is more as compared to minor classes.

LFW-PL: Results for the LFW-PL [27] database is reported in Table 5. From the Table 5, it is clear
that we have improvements in results for two major classes, hair and background. However, previous
results surpassed us in one case [23], as can be seen. The overall performance is also comparatively
poor, as compared to previous results [23]. The possible reason: we included four smaller classes
which are comparatively difficult and lower PLA as well. The lower PLA values for smaller classes
decreased the overall performance of the framework as well. We also noted the poor performance of
the prosed MCFP-DCNNs for background class for LFW-PL [27] database. This confirms the fact that
the proposed algorithm is not working good with complicated background scenarios, as LFW-LP [27]
images have complex background.

We also noticed that segmentation is highly depended on the quality of face images. For example,
we noted poor segmentation results for LFW-PL [27] and much better results on FASSEG [29] and
HELEN [28].
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Table 3. Face parsing: comparison of the MCFP-DCNN with SOA on FASSEG (frontal) DB. The reported
results are based on pixel labeling accuracy.

Method Eyes Brows Mouth Nose Skin Hair Back Overall

Khan et al. [80] 60.75 – 84.2 61.25 94.66 95.81 91.50 –
MCFP-DCNNs 84.30 86.25 89.30 87.8 96.58 98.2 94.54 95.12

Table 4. Face parsing: comparison of the MCFP-DCNN with SOA on HELEN DB. The reported results
are for F1 measure.

Method Eyes Brows Mouth Nose Skin Hair Back Overall

Smith et al. [24] 78.5 92.2 85.7 92.2 88.2 – – 80.4
Zhou et al. [81] 87.4 81.3 92.6 95.0 – – – 87.3

Liu et al. [75] 76.8 71.3 84.1 90.9 91.0 – – 84.7
Liu et al. [22] 86.8 77.0 89.1 93.0 92.1 – – 88.6
Wei et al. [48] 84.7 78.6 89.1 93.0 91.5 – – 90.2

Jonathan et al. [23] 89.7 85.9 95.2 95.6 95.3 88.7 – 93.1
MCFP-DCNN 78.6 83.2 88.5 97.2 96.2 98.4 86.2 95.2

Table 5. Face parsing: comparison of the MCFP-DCNN with SOA on LFW-PL DB. The reported results
are for F1 measure.

Method Eyes Brows Mouth Nose Skin Hair Back Overall

Liu et al. [75] – – – – 93.93 80.70 97.10 95.12
Long et al. [82] – – – – 92.91 82.69 96.32 94.13
Chen et al. [83] – – – – 92.54 80.14 95.65 93.44
Chen et al. [84] – – – – 91.17 78.85 94.95 92.49
Zhou et al. [81] – – – – 94.10 85.16 96.46 95.28

Liu et al. [22] – – – – 97.55 83.43 94.37 95.46
Jonathan et al. [23] – – – – 98.77 88.31 98.26 96.71

MCFP-DCNN 78.2 68.3 72.5 85.7 96.8 94.2 97.2 93.25

Race, Age, and Gender Classification Experimental Setup

In this Subsection, the experimental setup for training and testing data of race, age, and gender
classification is presented.

Race classification: For race classification, we used two datasets, including FERET [31] and
CAS-PEAL [32]. We selected 100 images randomly from each dataset. The 200 chosen images were
excluded from the testing phase of race classification.

Gender classification: We used three datasets for gender recognition, including LFW [76],
Adience [71], and FERET [31]. We selected 50 images each from these datasets, constituting a total of
150 images. As in race classification, the training phase images were excluded from the testing phase.

Race Classification:We used the Adience [71] dataset for age classification. The Adience dataset
contains eight different age categories. We manually labeled 20 images from each group. In this way,
the total number of training images we selected were 160. In all the three cases above, the selection of
the images for the training phase was random. The training phase images were not included in the
testing phase. Moreover, to validate the model and results more precisely, we conducted 10-fold cross
validation experiments for all the three cases (race, age, and gender classification).

6.3. Race Classification

To know how much each facial part contributes to specific demographic task, we exploited the
feature importance measure, which is returned by a Random Forest implementation as in [85]. Figure 6
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shows the feature importance of all the facial parts for all three tasks. From Figure 6, it is clear that the
nose has a maximum and background minimum contribution towards race classification.

We report race classification results with classification accuracy. For race classification, we used
two datasets, namely CAS-PEAL [32] and FERET [31]. The first database represents Asian and the
later Non-Asian class. We manually annotated 100 images from each of these databases for training a
DCNNs based model.

The MCFP-DCNNs built for the race was used to create PMAPs for each image in the testing
phase. We created PMAPs for all images of both classes. We built another DCNNs using the
PMAPs as descriptors and extracting features from the corresponding PMAPs. We performed 10-fold
cross-validation experiments in our work. We excluded 200 images that were previously used to train
MCFP-DCNNs.

For race classification, we investigated the possible combination of facial features. We noticed
during these experiments the contribution of each face part towards race classification. We utilized six
face features, excluding background to train a second stage of DCNNs.

We reported results and comparison with SOA in Table 6. From Table 6, it is clear that we have
perfect results for Asians and better results as compared to previous results for the Non-Asian class.

From Table 6, it is clear that we used only two classes (Asian and Non-Asian) for experimentation.
Although we evaluated our work on two large databases, but the number of races to be classify
were limited.

Table 6. Comparison between proposed method and related works on race classification.

Database Method Asian (Accuracy%) Non-Asian (Accuracy%)

RAG-MCFP-DCNNs – 100 96.4
Manesh et al. [38] FERET [31] and CAS-PEAL [32] 98 96

Muhammed et al. [86] FERET [31] 99.4 –
Chen and Ross [43] CAS-PEAL [32] 98.7 –

Anwar and Naeem [42] FERET 98.28 –

The computational cost is another factor that we did not consider in our work. One main limitation
of the deep learning architectures is a substantial computational cost, which we also faced in our work.
Our approach may lag as compared to previous methods if compared computationally, as we built
two DCNNs models for complete face analysis.

6.4. Age Classification

We reported our age classification results with classification rate, as in race classification. We used
Adience [71] for age classification. This database has eight different age categories. We labeled 20 face
images from each category. We built our age classification model with 160 manually labeled images.

The MCFP-DCNNs model was used to create PMAPs for each testing image. After creating
PMAPs for all images and all eight classes, we performed 10-fold cross-validation experiments.
We excluded all 160 images from the testing phase, which were previously used to build an
MCFP-DCNNs model.

We investigated all possible combinations of facial features for age classification. Figure 6 shows
which face part has major contribution toward age classification. Again nose has most contribution
and back least contribution towards age classification. We used all six face classes, excluding the
background class to built a DCNNs model.

We show our reported results and its comparison with SOA in Table 7. It can be seen from Table 7
that we have much better results as compared to SOA on age classification for Adienece [71] database.

We manually labeled ground truth data using an image editing software. We did not use any
automatic manually labeling tool. This ground truth labeling has two significant drawbacks. First,
such sort of labeling highly depends on the subjective perception of a subject who is involved in
all labeling process. Accurate label providing in such cases is tough, specifically differentiating the
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boundary region between two or more regions is highly challenging. For example, it is very difficult to
distinguish the skin region from the nose and vice versa. Second, this ground truth labeling is a very
time consuming process. One main drawback of our proposed method is; this research work is limited
to age classification only, which is due to tedious labeling process. We do not consider age estimation,
because, in that case, a large number of images needed to be labeled. Moreover, the computational
cost of the framework will also be sufficiently large.

Table 7. Comparative experiments on age classification using Adience database.

Database Method Classification Aaccuracy (%)

Adience RAG-MCFP-DCNNs 69.4
Dehghan et al. [87] 61.3

Hou et al. [88] 61.1
Hassner et al. [89] 50.7

Hernandez et al. [90] 51.6
CNN-ELM [73] 52.3

6.5. Gender Recognition

As in the other two cases, we try all possible combinations of facial features for gender
classification. After experimentation, we conclude to use five parts, i.e., nose, mouth, eyebrows,
eyes, and skin. Figure 6 shows contributions of each face part in gender classification. We created
manually labeled images from each male and female gender. We randomly took 30 images from
each gender and each database to train an MCFP-DCNNs model. The total training images were 180.
As in the case of age classification, we excluded 180 images that were previously used to build an
MCFP-DCNNs model.

We perform gender classification with three datasets, including Adience [71], LFW [76],
and FERET [31]. In Table 8, we show classification accuracy for all the three datasets. Table 8 also
compares our reported results with SOA. For gender classification, we perform 10-fold cross-validation
experiments, as in the previous two cases. We obtained better results as compared to previous results,
as can be seen from Table 8.

Table 8. Comparative experiments on gender recognition using Adience, LFW and FERET data-sets.

Database Method Classification Accuracy (%)

Adience RAG-MCFP-DCNNs 93.6

Levi et al. [91] 86.8

Lapuschkin et al. [92] 85.9

CNNs-EML [73] 77.8
Hassner et al. [89] 79.3

LFW Van et al. [93] 94.4

RAG-MCFP-DCNNs 94.1

HyperFace [94] 94.0

LNets+ANet [95] 94.0

Moeini et al. [96] 93.6

PANDA-1 [47] 92.0

ANet [56] 91.0

Rai and Khanna [97] 89.1

FERET RAG-MCFP-DCNNs 100

Moeini et al. [96] 99.5

Tapia and Perez [98] 99.1

Rai and Khanna [97] 98.4

Afifi and Abdelrahman [99] 99.4

A priori-driven PCA [100] 84.0
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As a whole, we noticed the performance of the proposed RAG-MCFP-DCNNs very interesting.
We introduced an idea of human face image analysis, which is using different face parts information
provided by a segmentation model. We reached an important observation stating: “face parts parsing
and different visual recognition tasks are closely related, the better segmentation, better results for the three tasks
will be observed".

7. Conclusions

We proposed an end-to-end face parsing method which tries to address three face image analysis
tasks, including race, age, and gender classification. We trained the MCFS-DCNNs model through
a DCNNs model by extracting information from various face parts. The MCFS-DCNNs classified
every pixel to one of the seven categories (hair, eyebrows, eyes, skin, nose, back, and mouth). We used
probabilistic classification method to generate PMAPS for seven face classes. We built another DCNNs
model by extracting features from the corresponding PMAPs for each of the three demographic tasks
(race, age, and gender). We performed a series of experiments to investigate which face parts help in
the race, age, and gender classification. We validate our experiments on seven face databases, obtaining
much better results as compared to SOA.

We argue that sufficient information is provided by the face parsing model for different visual
recognition tasks. We provide a route towards other complicated face image analysis problems.
For example, we intend to add complicated facial expressions, head pose estimation, and many other
applications to the framework. We are also planning to optimize the segmentation part to improve the
performance of the face parsing part of the framework.
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Abstract: Much attention has been paid to the recognition of human emotions with the help of
electroencephalogram (EEG) signals based on machine learning technology. Recognizing emotions is
a challenging task due to the non-linear property of the EEG signal. This paper presents an advanced
signal processing method using the deep neural network (DNN) for emotion recognition based on
EEG signals. The spectral and temporal components of the raw EEG signal are first retained in the
2D Spectrogram before the extraction of features. The pre-trained AlexNet model is used to extract
the raw features from the 2D Spectrogram for each channel. To reduce the feature dimensionality,
spatial, and temporal based, bag of deep features (BoDF) model is proposed. A series of vocabularies
consisting of 10 cluster centers of each class is calculated using the k-means cluster algorithm. Lastly,
the emotion of each subject is represented using the histogram of the vocabulary set collected from the
raw-feature of a single channel. Features extracted from the proposed BoDF model have considerably
smaller dimensions. The proposed model achieves better classification accuracy compared to the
recently reported work when validated on SJTU SEED and DEAP data sets. For optimal classification
performance, we use a support vector machine (SVM) and k-nearest neighbor (k-NN) to classify the
extracted features for the different emotional states of the two data sets. The BoDF model achieves
93.8% accuracy in the SEED data set and 77.4% accuracy in the DEAP data set, which is more accurate
compared to other state-of-the-art methods of human emotion recognition.

Keywords: emotion recognition; brain computer interface; bag of deep features; continuous
wavelet transform

1. Introduction

Brain–computer interface has been used for decades in the biomedical engineering field to control
devices using brain signals [1]. The electroencephalogram (EEG) signals captured from the electrodes
placed on the human skull [2] are used to classify and detect human emotions. Many researchers have
conducted a lot of studies about the recognition of emotions through EEG signals. However, emotion
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recognition is still a challenging task for machines to recognize. With the advancements of machine
learning tools, there is a growing need for automatic human emotion recognition [3]. Human emotional
states are associated with the participant’s perception and apprehension. Emotional awareness is of
great importance in other areas such as cognitive sciences, computer science, psychology, life sciences,
and artificial intelligence [4]. Due to the growing demands of mobile applications, emotion recognition
is also becoming an essential part of providing emotional care to people. Human emotions can be
recognized from speech, image, or video graphics, but the system for these types of recognition systems
are much expensive. The task of recognizing emotions from brain signals is yet challenging due to the
lack of temporal boundaries; also, different participants perceive the unusual amount of emotions in
different ways [5]. Previously researchers have found new ways to understand and discover emotions
through speech, images, videos, or BCI technology. In connection with non-invasive techniques,
the brain–computer interface (BCI) provides a gateway for obtaining EEG signals related to emotional
stimuli. The signals collected by the BCI help to better understand the emotional response, but it
is still unclear how we can accurately and extensively decipher emotions [6,7]. BCI and biosignal
acquisition techniques have grown considerably allowing real-time analysis of biosignals to quantify
relevant insights such as the mental and emotional state of the user [8]. EEG signals are collected using
10–20 international systems for electrodes placement used to decode the information [9,10].

Despite many of BCI’s techniques for capturing EEG signals for emotion recognition, however,
there is still room for improvement in extracting spatial functions, including accuracy, interpretability,
and utility of online applications. The most consistent approach proposed by [11] is to normalize the
common spatial pattern (CSP). Normalized CSP is used to extract features to achieve good decoding
accuracy. The purpose of normalizing the CSP is to reduce the effects of noise and artifacts that occur
in the raw EEG signal. Ref. [12] also used CSP features for motor rehabilitation in virtual reality
(VR) control.

Ref. [13] designed a filter for selecting features using CSP. As experienced by previous
BCI researchers [13,14], the manual selection of the best filter for each subject is still tricky.
Ref. [13] suggested optimal filtering to select filters for all subjects automatically. Choosing
the best filter removes the access noise from the signal, resulting in a superior accuracy of the
classification performance.

In the past, researchers used time-frequency distribution and spectral analysis methods, such
as the discrete wavelet transformation method (DWT) [15] and the Fourier transformation method
(FT) [5]. However, given the complex and subjective nature of the emotional state, it is challenging to
introduce a general method for analyzing different emotional states. For non-stationary EEG signals,
the frequency components change with time and frequency component information is not enough for
the classification of human emotions. Therefore, to acquire the full knowledge of signal frequency in
the spatial and temporal domain, another technique used is a continuous wavelet transform (CWT).
Several techniques for automated classification of Human emotions from EEG signals are proposed
using different machine learning techniques. Due to the non-linear behavior of EEG signals recognizing
emotions for a different subject is a challenging task. Therefore, the selection of channels and features is
crucial in recognizing human emotions accurately. Large feature dimensions have high calculation costs
and a broad set of training data. Various techniques proposed by the researchers [14,16] decompose the
signal into a series of features to deal with extensive data. Wavelet-based techniques such as empirical
mode decomposition (EMD), discrete wavelet transform (DWT), and wavelet packet decomposition
(WPD) are used to decompose signals. Ref. [16] used multi-scale PCA along with WPD to decompose
and remove noise from the signal. When classifying EEG signals for motor rehabilitation, they achieve
a classification accuracy of 92.8%. The wavelets based feature extraction technique is proposed in [17]
for emotion classification on the SEED dataset. They used flexible analytical wavelet transform (FAWT)
for channel decomposition. FAWT decomposition is a channel-specific technique that selects specific
channels based on machine learning. The accuracy of 83.3% is achieved using SVM on the SEED
dataset. Ref. [18] proposed a method of evolutionary feature selection in which frontal ad occipital
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channels were selected for classification and achieved an accuracy of 90%. Feature selection methods
are effective in eliminating irrelevant features and maximizing the performance of the classifier to
reduce high dimensions automatically. Of the many techniques that can be applied to prevent selection
problems, the simplest is a filtering method based on ranking techniques. The filter method selects
functions by scoring and ordering tasks based on their relevance and defining thresholds for filtering
out irrelevant features. This method is intended to filter less relevant and noisy features from the set of
features to improve classification performance. Filtering methods applied to the emotion classification
system include Pearson correlation [19], correlation-based feature reduction [20,21], and canonical
correlation analysis (CCA). However, the filter method has two possible disadvantages, assuming
that all features are independent of each other [22]. The first disadvantage is that there is a risk that
features are thrown away that are not relevant when viewed separately, but that may be relevant in
combination with other features. The second disadvantage is the ability to choose individual related
functions that can cause duplication. To overcome this issue, the evolutionary-based feature selection
method proposed by [23] evaluated on DEAP and MAHNOB dataset. Differential evolutionary
(DE) based features selection method was classified using a probabilistic neural network (PNN) and
achieved a classification accuracy of 77.8% and 79.3% on MAHNOB and DEAP datasets, respectively.
Text-based and speech-based emotions are also proposed by [3], which used the Mel frequency cepstral
coefficients (MFCC) and reported the overall accuracy of 71.04% on IEMOCAP dataset. Multivariate
empirical mode decomposition (MEMD) in [15] also used to decompose channels up to 18 out of 32.
It decomposes the signal into amplitude and frequency modulated (AM–FM) oscillations known as
intrinsic mode features (IMFs). Two-dimensional emotional states in arousal and valence dimensions
are classified in [15] using SVM and ANN classifiers. In other studies, differential entropy is calculated
on different frequency bands associated with EEG rhythms. Beta and gamma rhythms are the most
effective for emotion recognition [24,25]. The authors discovered that 18 different linear and non-linear
features were time-frequency domain features using spatial-temporal recurrent neural networks
(STRNN). Spatial and temporal dependency model is designed to select features. Ref. [26] investigated
the dynamic system features of EEG measurements and other aspects that are important for cross-target
emotion recognition (e.g., databases for different EEG channels and emotion analysis). The recursive
emotion feature elimination (RFE) method proposed by authors to eliminate repetitive features ad
reduce the feature dimension. They achieve an average accuracy of the rating of 59.06% and 83.33%
Using physiological signals (DEAP) and SJTU sentiment EEG data set (SEED) databases, respectively.
Recently, many articles have been published in the field of emotion recognition [27–29] with the help
of EEG signals. In comparison with traditional methods that use deep learning, there is a possibility
of recognizing emotions in multi-channel EEG signals. However, two challenges remain. First, is
deciding how to obtain relevant information from the time domain, the frequency domain, and the
time–frequency characteristics to the emotional state EEG signal.

Ref. [30] states that the selection of specific EEG channels is essential for multi-channel EEG-based
emotion recognition. Ref. [30] shows 32 channels and ten specific channels (F3, F4, Fp1, Fp2, P3, P4,
T7, T8, O1, and O2 for emotion recognition). Experiments show better results when 10 channels are
used compared to all 32 channels. Ref. [31] suggested the emotion recognition method based on the
entropy of samples. Their experimental results corresponding to channels related to the emotional
state are primarily from the frontal lobe areas, namely F3, CP5, FP2, FZ, and FC2. Few studies have
analyzed the spatial domain characteristics of multi-channel EEG, and it may also contain important
information. There were also some spatial features. The study is limited to the asymmetry between
electrode pairs [32].

In the past, researches used to recognize human emotion from the selective number of channels,
which may increase the computational speed but decreases the accuracy rate of understanding
emotions. In this paper, we presented an accurate multi-modal EEG-based human recognition using
a bag of deep features (BoDF), which ultimately reduces the size of features from all the channels
which are used for detecting brain signals. First, a feature vector is obtained from a time-frequency
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representation of a preprocessed EEG emotions dataset using continuous wavelet transform (CWT).
The features of all subjects from the AlexNet model are collected, which uses 2D images as input. BoDF
method is proposed to arrange features as a single matrix and reduce the feature vector using k-means
clustering. The reduced feature vector for all channels is then classified. Three states of participants as
positive, negative, and neutral for SEED dataset and two states as arousal and valence are classified
using all kernels of support vector machine (SVM) and k-nearest neighbor (k-NN) classifiers.

The rest of this article is organized as follows: Section 2 describes the dataset and electrode
channel mapping. Section 3 introduces the emotion recognition framework and the proposed deep
feature model using SVM and k-NN classifiers. In Section 4, experimental results are discussed by
comparing other emotion recognition models. Section 5 concludes this work.

2. Materials

2.1. SEED Dataset

The emotion recognition task is carried on SEED [33] dataset developed by SJTU. The EEG
dataset was collected by Prof. Bao Liang Lu at brain-like computing and machine Intelligence (BCMI)
laboratory. This publicly available dataset contains multiple physiological signals with emotion
evaluation, which makes it a well-formed multi-modal dataset for emotion recognition. In this data set,
15 participants were subjected to watch four minutes of six video clips. Each clip is well-edited that
can be understood without explanation and exhibits the maximum emotional meanings. The detail of
each clip used in acquiring EEG data are listed in Table 1.

Table 1. SEED dataset overview.

No. Emotion Label Film Clip Source

1 Negative Tangshan Earthquake
2 Negative 1942
3 Positive Lost in Thailand
4 Positive Flirting scholar
5 Positive Just another Pandora’s Box
6 Neutral World Heritage in Chine

The data was collected from 15 Chinese participants (7 males, 8 females), who were aged between
22–24. Each participant’s data includes 15 trials, and, in each trial, the experiment performed twice.
The RAW EEG signals were first segmented and then downsampled to 200 Hz. A bandpass frequency
filter of 0–75 Hz was also applied to remove noise from the signal and EMG signals. The data was
collected from 62 channels of each participant using 10–20 International standard [33].

2.2. DEAP Dataset

DEAP dataset is also publicly available as an on-line dataset for emotion classification [34].
The dataset was generated by a team of researchers at the Queen Mary University of London. The DEAP
dataset contains multiple physiological signals for the evaluation of emotions. 32 channel EEG data
were collected from 32 subjects. EEG signals were recorded by showing 40 preselected music videos,
each with a duration of 60 seconds. The signals were then downsampled to 128 Hz and de-noised using
bandpass and lowpass frequency filters. DEAP dataset can be classified using Russell’s circumplex
model [35] as shown in Table 2.
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Table 2. DEAP dataset classes.

No. Emotion Label States

1 LAHV (Low Arousal High Valence) Alert
2 HALV (High Arousal Low Valence) Calm
3 HAHV (High Arousal High Valence) Happy
4 LALV (Low Arousal Low Valence) Sad

To visualize the scale by Russell’s model DEAP dataset uses self-assessment manikins (SAMs) [36]
with the real numbers 1–9. To make SAM as a continuous scale, each subject was asked to tick any
number in between 0–10 from the list provided [34]. The scale based on self assessment rating were
selected as 1–5 and 5–9 [37–41]. If the rating was greater than or equal to 5, the label was set to “high”,
and if it was less than 5, the label was set to “low”. Thus, to create a total of four labels: high arousal
low valence (HALV), low arousal high valence (LAHV), high arousal high valence (HAHV), and low
arousal low valence (LALV). The emotional states describe by the given labels are shown in Table 2.

In this work, both the dataset were analyzed separately. In the SEED dataset, three classes are
used as positive/negative/neutral. Positive class indicates the subject is in a happy mood; the negative
class indicates the sad emotion of the subject while the neutral class tells the normal behavior of the
subject. In the DEAP dataset, there are two types of labels named valance and arousal with a scale of
1–9. Labels 1–4 represent the valance, and 5–9 represents the arousal scale. Detailed information about
the datasets can be found in [34].

2.3. Electrode to Channel Mapping

Both the datasets acquired EEG signals using the 10–20 International System [42].
The 10–20 international system describes the position of the electrodes to be placed on the human
scalp for detecting EEG signals. The “10” and “20” indicate that the actual distance between adjacent
electrodes is 10% or 20% of the distance between the front and back or right and left sides of the skull.
Figure 1 shows the mapping of electrodes to channel number describes by both the datasets. The first
32 channels are used by the DEAP dataset, while all 62 channels are used by the SEED dataset to
acquire EEG signals. In the figure, the first number in Figure 1 represents the channel number of the
DEAP data set, and the second number is the channel number of the SEED data set (DEAP channel
number, SEED channel number). Nasion in the figure represents the frontal part of the head, and
channels are named using the 10–20 international system.
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Figure 1. Electrode to channel mapping.
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3. Methodology

This section explores step by step working of the proposed model and overall architecture.
Figure 2 presents the framework of our work. First, the preprocessed EEG signals of both the
datasets are used for time-frequency representation using the continuous wavelet transform filterbank.
The feature extraction stage extracts the feature from all the channels of both the datasets.

EEG 
Signal TFR Features BoDF Label Classified 

Emotion

Train set True 
Label

2-Dimensional 
wavelet 

representation

Feature 
reduction using 

proposed 
(BoDF) model

Feature 
Extraction 

using 
AlexNet

Estimated 
Labels

Classification
SVM and KNN 

Classifiers

Figure 2. Framework.

3.1. Time Frequency Representation

The preprocessed EEG signal is used for time-frequency representation (TFR) of signals.
Traditional emotion recognition models directly extract features from the EEG signals results in
low accuracy and abortive results. In this paper, the one-dimensional EEG signal is presented as a
two-dimensional model of EEG signal as time–frequency representation to analyze the signal in a
better way and extract the desired features. This is achieved by using a continuous wavelet transform.

Contineous Wavelet Transform

Continuous wavelet transform (CWT) expresses the signals in terms of wavelet functions [43],
which are localized in both time and frequency domain. CWT provides the complete representation of
the 1D signal by letting the translation and scale parameters of the wavelets, varying continuously.
Continuous EEG signal x(t) for TFR χω(a, b) can be expressed as:

χω(a, b) =
1√
|a|

∫ ∞

−∞
x(t)ψ̄

(
t− b

a

)
dt, (1)

where, a is the scaling parameter that should be greater than 0 and a ∈ R; b is translation and b ∈ R;
t is the time instant; ψ̄ (t) is called the mother wavelet which is also continuous for both time and
frequency domain

Mother wavelet provides the scaling and translation of the original wavelet x(t) . The original
signal is then formulated again using Equation (2).

x(t) = C−1
ψ

∫ ∞

−∞

∫ ∞

−∞
χω(a, b)

1√
|a|

ψ̃

(
t− b

a

)
ab

da
a2 (2)

where Cψ is called the wavelet admissible constant whose value satisfies between

0 < Cψ < ∞

And expressed as:

Cψ =
∫ ∞

−∞

¯̂ψ(ω) ˆ̃ψ(ω)

|ω| dω (3)
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An admissible wavelet must integrate to zero. For this x(t) is recovered by using the second
inverse wavelet shown in Equation (2).

x(t) =
1

2π ¯̂ψ(1)

∫ ∞

−∞

∫ ∞

−∞

1
a2 χω(a, b)exp

(
i(t− b)

a

)
dbda (4)

The wavelet for each time is defined as:

ψ(t) = ω(t)exp(it) (5)

where, ω(t) is the window. Using the filterbank in CWT, we gather TFR of each channel. Figure 3
represents the TFR of different classes of SEED and DEAP. The TFR of different classes can be
differentiated. Before extracting features, TFR images are first resized to 227× 227 and separated for
testing and training the model using 20x fold validation.

Positive NegativeNeutral

(a) (b)

HAHV HALV

LAHV LALV

Figure 3. Continuous wavelet transform. (a) is the 3 classes TFR of SEED dataset. Positve, negative and
netral classes of SEED dataset is clearly differentiatable. (b) shows TFR of 4 classes in DEAP dataset.

3.2. Feature Extraction

In this paper, the time and frequency domain features were extracted using AlexNet. AlexNet
performance was superior to earlier methods. AlexNet is a multilayer deep neural network (DNN)
model consisting of 23 layers followed by the classification output layer [44]. AlexNet has an extensive
network structure of 60 million parameters and 650,000 neurons [45].

AlexNet is a network of vast deep neural networks (DNN) with the combination of three layers:
convolutional, max pooling, and fully connected layer. The TFR images were forwarded through
the pre-trained AlexNet model. Figure 4 shows the overall architecture of AlexNet used in this
article. AlexNet has five convolutional layers, followed by three fully connected layers. We did
not use the last segment in our work, which is softmax and performs the classification. The main
advantage of AlexNet is its rapid down sampling through stride convolutions and max-pooling layers.
The AlexNet model has low computational complexity due to its lower layer count in comparison to
other models. The two-dimensional TFR images are first resized to 227× 227× 3 before extracting
features. The images used are the 2D representation of an EEG signal. Therefore, different emotional
states have different corresponding regions. Hence, it is more sensitive to differences in spatial
information between different states. Each feature obtained from the last fully connected layer has
4096 attributes. The ‘fc7’ layer outputs the feature vector of each channel.
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Figure 4. AlexNet layer architecture

In Figure 4 the TFR images are convolved using all conv layers and max-pooling is used to reduce
the dimension of an image after each convolution. Rectified linear unit (ReLU) is used as the activation
function and is expressed as

ReLU = max(0, x) (6)

It selects the maximum value between 0 and the input x. The full connection layer ’fc7’ gives
the output with 4096 attributes. Figure 5 represents the tree of the output feature dimension vector
of both the datasets. SEED dataset uses three classes; the experiment was performed on 15 subjects
with five trials of an experiment for each category. The number of channels used for each participant
was 62 [33]. After two-dimensional representation, the signal across each channel is represented as an
image. Therefore, 62 images are created for each participant using TFR with the 4096 dimension vector
of the ‘fc7’ layer. Hence, the total output feature vector obtained from the SEED dataset is 13,950×4096.
Similarly, for the DEAP dataset, the nine class data were performed on 32 subjects twice generates a
feature vector of 18,432×4096.
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Figure 5. Feature tree.

3.3. Bag of Deep Features (BoDF)

Bag of features has been used to order less collection of features for image classification in
computer vision [46]. We proposed the bag of deep features (BoDF) model for the reduction of features
up to suitable value. Using this model, the feature size is significantly reduced to save time for training
the dataset. A large number of features usually take long processing time and poor classification
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performance. In our article, we have been using all the channels to recognize emotions; therefore,
feature with high dimension results in high computational cost for training the dataset. Previously
researchers used only eight or 12 channels, which also results in lower accuracy by ignoring the rest of
the channels. Hence, there is a trade-off between accuracy and the total number of channels used for
classification [47].

In this paper, we utilize all the channels of SEED and DEAP dataset and achieve better results.
Figure 6 illustrates the overall structure of the proposed method in which the total number of features
with dimension 13,950×4096 for SEED dataset and 18, 432× 4096 for DEAP dataset are fed to BoDF
model for feature reduction. The BoDF model consists of two steps in which features extracted from
AlexNet are reduced using k-means clustering. k-mean clustering groups similar features and represent
one feature vector. The first stage reduces the feature vector based on mean clustering. Features are
further reduced in the second stage by calculating the histogram features. This model selects the
number of features that are closer to the centroid for each class while ignoring others, which are not
very useful features for emotions.
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Figure 6. Bag of deep features (BoDF).

3.3.1. Stage 1: k-Mean Clustering

In step 1 of BoDF, the features are extracted from the AlexNet model of each class clustered
using k-means clustering. Clustering is used to group similar features that belong to the same class.
The k-means algorithm suits well for large datasets while other available clustering techniques suffer
overfitting when dealing with large dataset [48]. The k-means algorithm is used to group redundant
features by comparing the distance Initially, k is chosen randomly, and k is the number of clusters
to group the features. At k = 10, all features are clustered correctly. That is, the features of the two
data sets are clustered in 10 comparable groups. First, the distance of each characteristic value is
calculated using Euclidean distance. The distance formula is used to compare each feature value and
goes to the specific cluster with the shortest distance. For each cluster, the mean value is calculated
by taking the average of all attribute values in a specific cluster. The average feature values are then
re-evaluated until the average of the centers converges. For SEED, feature vectors of 13,950 × 4096 and
18,432 × 4096 are clustered in 30× 4096 and 40× 4096 in the SEED and DEAP datasets, respectively.
The 10× 4096 for each class feature vector is called a vocabulary.

483



Sensors 2019, 19, 5218

Choosing ’k’ clusters (centroids) is also a difficult task for achieving the best possible results.
The universal answer for determining the value of k does not exist and starts with an arbitrary value
instead. Hit and trial methods were used to select the value of k. This commonly used method is to
measure the difference between the sum of the results of squared errors at different values of k. Sum
of the squared errors for all values of k is calculated using Equation (7)

Sum of the squared errors =
k

∑
i=1

(xi − ci)
2, (7)

where, xi is the input feature vector; ci centroid of the ith cluster; k is the cluster number.
In Figure 7 graph shows that the value of the sum of the squared errors is quite small at k = 10.

67 

56 

39 

31 
25 

21 21 19 

11 11 10 

0 

10 

20 

30 

40 

50 

60 

70 

80 

2 3 4 5 6 7 8 9 10 11 12 

SU
M

 O
F 

T
H

E
 S

Q
U

A
R

E
D

 E
R

R
O

R
S 

k clusters 

k clusters

x106 

Figure 7. Selecting value of k.

3.3.2. Stage 2: Histogram Features

The histogram of vocabulary is calculated in the second step. The vocabulary compares each
feature vector of 30× 4096 and 40× 4096 with the EEG data set of all channels. For the SEED dataset,
we used features one by one at 30 × 4096 to compare with 62 channel features and calculate the
frequency of occurrence. So we get a histogram feature of 225× 30 with each attribute value being a
histogram between 0 and 30. Similarly, we get a histogram feature vector of 576× 40 for a DEAP dataset
with four classes and 32 channels. This step has considerably reduced the feature size. The histogram
features indicate the frequency of the best feature for each class.

3.4. Classification

As stated earlier, we use the AlexNet model only for extracting features; we did not use the
last three layers of AlexNet models, which performs classification of the provided data. AlexNet
is a pre-trained model and has the capability of recognizing up to 10,000 objects [44]. In our case,
we have three and four classes for SEED and DEAP datasets, respectively. Therefore, our classifier
selection is based on the classification output. For this work, we select a support vector machine (SVM)
and k-nearest neighbor (k-NN) classifiers that outperform the classification performance based on
four classes.

In this study, emotions of both datasets from all the kernels of SVM [49] and k-NN [50] are used
for classification purposes. The principle of each classification is based on aggregation. In the SVM
classifier [51], data is assigned to higher dimensions the optimum hyperspace for separation of space
and data is built in this space. This classifier is a secondary programming problem [51]. In the training
phase, SVM creates a model, maps the decision boundaries of each class, and specifies the hyperplane
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that separates the other classes. Increasing the hyperspace margin increases the distance between
classes for better accuracy of the classification. SVM is used because it can effectively perform for
non-linear classification [52]. In this study, BoDF feature vector is fed to SVM classifier to distinguish
between happy, sad, and healthy emotional states for SEED dataset and two-dimensional Valence
and Arousal states for the DEAP dataset. The SVM classifier is the kernel-based classifier. The kernel
function is the mapping procedure performed on a training set to improve the correspondence with a
linearly separable dataset. The purpose of mapping is to increase the dimensions of the dataset and
execute it efficiently using kernel functions. Some of the most commonly used kernel functions are
linear, quadratic, and polynomial Gaussian (RBF) kernels.

The second classifier we used for classification is the k-NN classifier. It is the instance-based
classifier that classifies objects based on their closest training examples in feature space [52]. The object
is classified as a majority of neighbors; that is, the object is assigned to the most common class of
k-nearest neighbors, where k is a positive integer [53]. In the k-NN algorithm, the classification of
the new test feature vector is determined by the class of the k-nearest neighbors [54]. Here in our
work, we implement a k-NN algorithm using a Euclidean distance metric to find the nearest neighbor.
The Euclidean distance between two points x and y is calculated using Equation (8). Where N is
the number of features; 45 and 288 for SEED and DEAP dataset, respectively. The classification
performance is determined on different values of k ranging from 1–10, and results showed that the
best accuracy achieved at k = 2.

d(x, y) =
N

∑
i=1

√
x2

i − y2
i (8)

For accessing the classification performance using SVM and k-NN classifiers, we used 20×
cross-validation, which is useful for classification [55]. Classification performance achieved from both
the classifiers is discussed with the results in the next section.

4. Results and Discussion

The accuracy performance of the proposed BoDF-method is evaluated on both the SEED and
DEAP datasets. The features extracted from the proposed method are then classified using all the
kernels of SVM and k-NN classifier. The results achieved from both the classifiers are also compared
with the earlier studies and benchmark results of SEED and DEAP dataset. Feature vector extracted
from AlexNet are reduced to 225× 30 and 576× 40 dimension vector for SEED and DEAP dataset,
respectively in BODF-model. After classification, three emotional states positive/negative/neutral of
all 15 participants of SEED dataset are classified.

Figure 8 shows the variation in classification accuracy for different kernels of the SVM classifier
for two datasets. Linear and cubic classifiers show minimum variation in the classification accuracy
as compared to other kernels. The maximum classification accuracy of 93.8% is achieved using the
cubic kernel, as evident from the figure. Figure 8b shows the classification accuracy with the k-NN
classifier. The result shows that the fine kernel of k-NN works better for CWT based features. Figure 8b
shows the variation in classification accuracy for different kernels of the k-NN classifier. Cosine and
coarse classifiers show minimum variation but minimum classification accuracy as compared to other
kernels. The maximum classification accuracy of 91.4% is achieved using the fine and medium kernel,
as evident from the figure.

The average classification accuracy on both datasets using SVM and K-NN classifiers are shown
in Table 3.
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Figure 8. Classification accuracy.

Table 3. Average classification accuracy (%).

Classifier
SEED DEAP

k Value Accuracy k Value Accuracy

SVM 10 93.8 10 77.4
8 92.6 8 76.3
6 92.4 6 76.1
4 91.8 4 75.3
2 90.9 2 75.1

k-NN 10 91.4 10 73.6
8 90.2 8 71.1
6 87.4 6 69.8
4 87.1 4 68.5
2 86.6 2 67.3

In reference to the comparison table, our proposed model has a higher classification accuracy
than earlier studies. It can be seen that the classification accuracy achieved from the SVM classifier is
more as compared emotion recognition using the k-NN classifier (see Table 4). BoDF model proposed
in this paper recognize emotions without channel decomposition.
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Table 4. Comparison on publicly available dataset with previous studies.

Ref. Features Dataset Number of Channels Classifier Accuracy (%)

[3] MOCAP IMOCAP 62 CNN 71.04

[4] MFM DEAP 18 CapsNet 68.2

[17] MFCC
SEED 12 SVM 83.5

Random Forest 72.07

DEAP 6 Random Forest 72.07

[15] MEMD DEAP 12 ANN 75
k-NN 67

[24] STRNN SEED 62 CNN 89.5

[26] RFE SEED 18 SVM 90.4
DEAP 12 SVM 60.5

[23] DE MAHNOB 18 PNN 77.8
DEAP 32 PNN 79.3

Our work DWT-BODF

SEED 62 SVM 93.8
k-NN 91.4

DEAP 32 SVM 77.4
k-NN 73.6

The proposed BoDF model employs the vocabulary set of size 30 features, which produces a small
feature dimension. However, the lowest computation complexity is possible by using the AlexNet
model with the lowest number of layers. Feature reduction based on BoDF model also shows that
using clustering and selecting mean features results in higher classification accuracy. Figure 9 clearly
indicates that higher efficiency is achieved when trials or channels are reduced to its maximum value.

The lower feature dimensionality provides the superiority of the proposed architecture on other
models in terms of its memory requirement. Secondly, the proposed model can more accurately classify
the emotion based on the EEG signal in comparison to other models. However, the proposed model
requires the vocabulary set before the feature extraction process. This will increase the computational
complexity of the model. In the future, more robustness in recognizing emotion with low computational
complexity can be achieved using different pooling algorithms.
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Figure 9. Classification accuracy at different value of k-clusters.

5. Conclusions

This emotion recognition model, based on bag of deep features (BoDF), is intended to achieve a
higher classification accuracy for SEED and DEAP data sets. The results obtained with the proposed
method without channel decomposition are higher than the benchmark results of both datasets.
We have also found that the proposed method has better classification performance when the feature
size is reduced to the optimum level. Reducing the number of channels also degrades the classification
performance. All EEG signals are analyzed based on temporal and spatial characteristics. In the BoDF
model, the k-means clustering algorithm is used to reduce the size of the feature without disturbing
the overall accuracy of the proposed model. Three states for SEED and four emotional states for the
DEAP dataset of each participant are recognized using multiple support vector machines (M-SVM)
and k-NN classifiers. The results show that our method is superior to previous studies with the same
data set. In the BoDF model without channel degradation, it has been demonstrated that the properties
obtained from all channels are useful for classifying human emotions using EEG signals. The rating
accuracy obtained with multiple SVMs is higher than the rating accuracy of the k-NN classifier. Our
study has shown that it achieves higher classification accuracy compared to the emotion recognition
method of the conventional channel.
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Swinoujście, Poland, 9–12 May 2018; pp. 137–141.

2. Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based
on physiological signals: A review. Comput. Methods Progr. Biomed. 2018, 161, 1–13. [CrossRef]

3. Tripathi, S.; Beigi, H. Multi-Modal Emotion recognition on IEMOCAP Dataset using Deep Learning. arXiv
2018, arXiv:1804.05788.

4. Hao, C.; Liang, D.; Yongli, L.; Baoyun, L. Emotion Recognition from Multiband EEG Signals Using CapsNet.
Sensors 2019, 19, 2212. [CrossRef]

5. Anagnostopoulos, C.-N.; Iliou, T.; Giannoukos, I. Features and classifiers for emotion recognition from
speech: A survey from 2000 to 2011. Artif. Intell. Rev. 2015, 43, 155–177. [CrossRef]

6. Tzirakis, P.; Trigeorgis, G.; Nicolaou, M.A.; Schuller, B.W.; Zafeiriou, S. End-to-End Multimodal Emotion
Recognition Using Deep Neural Networks. IEEE J. Sel. Top. Signal Process. 2017, 11, 1301–1309. [CrossRef]

7. Aloise, F.; Aricò, P.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F. Asynchronous gaze-independent
event-related potential-based brain-computer interface. Artif. Intell. Med. 2013, 59, 61–69. [CrossRef]
[PubMed]

8. Aric, P.; Borghini, G.; di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the lab: Current trends
and future directions. Physiol. Meas. 2018, 39, 08TR02. [CrossRef]

9. Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Maglione, A.G.; Rossi, D.; Modica, E.; Trettel, A.;
Babiloni, F.; Colosimo, A.; et al. EEG-based Approach-Withdrawal index for the pleasantness evaluation
during taste experience in realistic settings. In Proceedings of the 2017 39th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017;
pp. 3228–3231.

10. Aricò, P.; Borghini, G.; di Flumeri, G.; Bonelli, S.; Golfetti, A.; Graziani, I.; Pozzi, S.; Imbert, J.; Granger, G.;
Benhacene, R.; et al. Human Factors and Neurophysiological Metrics in Air Traffic Control: A Critical Review.
IEEE Rev. Biomed. Eng. 2017, 10, 250–263. [CrossRef]

11. Lotte, F.; Guan, C. Regularizing common spatial patterns to improve BCI designs: Unified theory and new
algorithms. IEEE Trans. Biomed. Eng. 2010, 58, 355–362. [CrossRef]

12. Coogan, G.; He, B. Brain-computer interface control in a virtual reality environment and applications for the
Internet of things. IEEE Access 2018, 6, 840–849. [CrossRef]

13. Song, L.; Epps, J. Classifying EEG for brain-computer interface: Learning optimal filters for dynamical
system features. Comput. Intell. Neurosci. 2007, 2007, 57180. [CrossRef] [PubMed]

14. Sadiq, T.; Yu, X.; Yuan, Z.; Fan, Z.; Rehman, A.U.; Li, G.; Xiao, G. Motor imagery EEG signals classification
based on mode amplitude and frequency components using empirical wavelet transform. IEEE Access 2019,
7, 678–692. [CrossRef]

15. Mert, A.; Akan, A. Emotion recognition from EEG signals by using multivariate empirical mode
decomposition. Pattern Anal. Appl. 2018, 21, 81–89. [CrossRef]

16. Kevric, J.; Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for
motor-imagery BCI system. Biomed. Signal Process. Control 2017, 31, 398–406. [CrossRef]

17. Gupta, V.; Chopda, M.D.; Pachori, R.B. Cross-Subject Emotion Recognition Using Flexible Analytic Wavelet
Transform From EEG Signals. IEEE Sens. J. 2019, 19, 2266–2274. [CrossRef]

18. Zangeneh Soroush, M.; Maghooli, K.; Setarehdan, S.K.; Motie Nasrabadi, A. Emotion classification through
nonlinear EEG analysis using machine learning methods. Int. Clin. Neurosci. J. 2018, 5, 135–149. [CrossRef]

19. Kroupi, E.; Yazdani, A.; Ebrahimi, T. EEG correlates of different emotional states elicited during watching
music videos. In Affective Computing and Intelligent Interaction; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 457–466.

489



Sensors 2019, 19, 5218

20. Nie, D.; Wang, X.-W.; Shi, L.-C.; Lu, B.-L. EEG-based emotion recognition during watching movies.
In Proceedings of the 2011 5th international IEEE/EMBS Conference on Neural Engineering (NER), Cancun,
Mexico, 27 April–1 May 2011; pp. 667–670.

21. Schaaff, K.; Schultz, T. Towards emotion recognition from electroencephalographic signals. In Proceedings
of the 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops,
Amsterdam, The Netherlands, 10–12 September 2009; pp. 1–6.

22. Zhang, S.; Zhao, Z. Feature selection filtering methods for emotion recognition in Chinese speech signal.
In Proceedings of the 2008 9th International Conference on Signal Processing, Beijing, China, 26–29 October
2008; pp. 1699–1702.

23. Nakisa, B.; Rastgoo, M.N.; Tjondronegoro, D.; Chandran, V. Evolutionary computation algorithms for feature
selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 2018, 93, 143–155.
[CrossRef]

24. Zhang, T.; Zheng, W.; Cui, Z.; Zong, Y.; Li, Y. Spatial-Temporal Recurrent Neural Network for Emotion
Recognition . IEEE Trans. Cybern. 2019, 49, 839–847. [CrossRef]

25. Duan, R.; Zhu, J.; Lu, B. Differential Entropy Feature for EEG-based Emotion Classification. In Proceedings
of the 6th International IEEE EMBS Conference on Neural Engineering (NER), San Diego, CA, USA,
6–8 November 2013; pp. 81–84.

26. Li, X.; Song, D.; Zhang, P.; Zhang, Y.; Hou, Y.; Hu, B. Exploring EEG features in cross-subject emotion
recognition . Front. Neurosci. 2018, 12, 162. [CrossRef]

27. Jirayucharoensak, S.; Panngum, S.; Israsena, P. EEG-based emotion recognition using deep learning network
with principal component based covariate shift adaptation. Sci. World J. 2014, 2014, 627892. [CrossRef]

28. Liu, W.; Zheng, W.L.; Lu, B.L. Emotion Recognition Using Multimodal Deep Learning. In Proceedings of
the 23rd International Conference onNeural Information Processing, Kyoto, Japan, 16–21 October 2016;
pp. 521–529.

29. Yang, B.; Han, X.; Tang, J. Three class emotions recognition based on deep learning using staked autoencoder.
In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical
Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017.

30. Thammasan, N.; Moriyama, K.; Fukui, K.; Numao, M. Continuous music-emotion recognition based on
electroencephalogram. IEICE Trans. Inf. Syst. 2016, 99, 1234–1241. [CrossRef]

31. Jie, X.; Cao, R.; Li, L. Emotion recognition based on the sample entropy of EEG. Bio-Med. Mater. Eng. 2014,
24, 1185.

32. Liu, Y.J.; Yu, M.; Zhao, G.; Song, J.; Ge, Y.; Shi, Y. Real-time movie-induced discrete emotion recognition from
EEG signals. IEEE Trans. Affect. Comput. 2017, 9, 550–562. [CrossRef]

33. Zheng, W.-L.; Lu, B.-L. Investigating Critical Frequency Bands and Channels for EEG-based Emotion
Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. (IEEE TAMD) 2015, 7, 162–175.
[CrossRef]

34. Koelstra, S.; Muehl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I.
DEAP: A Database for Emotion Analysis using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3,
18–31. [CrossRef]

35. García-Martínez, B.; Martinez-Rodrigo, A.; Alcaraz, R.; Fernández-Caballero, A. A Review on Nonlinear
Methods Using Electroencephalographic Recordings for Emotion Recognition. IEEE Trans. Affect. Comput.
2019, doi:10.1109/TAFFC.2018.2890636. [CrossRef]

36. Morris, J.D. SAM. The Self-Assessment Manikin an Efficient Cross-Cultural Measurement of Emotional
Response. Advert. Res. 1995, 35, 63–68.

37. Li, X.; Zhang, P.; Song, D.W.; Yu, G.L.; Hou, Y.X.; Hu, B. EEG Based Emotion Identification Using
Unsupervised Deep Feature Learning. In Proceedings of the SIGIR2015Workshop on Neuro-Physiological
Methods in IR Research, Santiago, Chile, 13 August 2015.

38. Naser, D.S.; Saha, G. Classification of emotions induced by music videos and correlation with participants’
rating. Expert Syst. Appl. 2014, 41, 6057–6065.

39. Naser, D.S.; Saha, G. Recognition of emotions induced by music videos using DT-CWPT. In Proceedings of the
IEEE Indian Conference on Medical Informatics and Telemedicine (ICMIT), Kharagpur, India, 28–30 March
2013; pp. 53–57.

490



Sensors 2019, 19, 5218

40. Chung, S.Y.; Yoon, H.J. An effective classification using Bayesian classifier and supervised learning.
In Proceedings of the 2012 12th International Conference on Control, Automation and Systems, Je Ju Island,
Korea, 17–21 October 2012; pp. 1768–1771.

41. Wang, D.; Shang, Y. Modeling Physiological Data with Deep Belief Networks. Int. J. Inf. Educ. Technol. 2013,
3, 505–511.

42. Homan, R.; Herman, J.P.; Purdy, P. Cerebral location of international 10–20 system electrode placement.
Electroencephalogr. Clin. Neurophysiol. 1987, 664, 376–382. [CrossRef]

43. Vuong, A.K.; Zhang, J.; Gibson, R.L.; Sager, W.W. Application of the two-dimensional continuous wavelet
transforms to imaging of the Shatsky Rise plateau using marine seismic data. Geol. Soc. Am. Spec. Pap. 2015,
511, 127–146.

44. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [CrossRef]

45. Xie, C.; Shao, Y.; Li, X.; He, Y. Detection of early blight and late blight diseases on tomato leaves using
hyperspectral imaging. Sci. Rep. 2015, 5, 16564. [CrossRef] [PubMed]

46. O’Hara, S.; Draper, B.A. Introduction to the Bag of Features Paradigm for Image Classification and Retrieval.
arXiv 2011 ;arXiv:1101.3354

47. Elazary, L.; Itti, L. Interesting objects are visually salient. J. Vis. 2008, 8, 1–15. [CrossRef] [PubMed]
48. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise; AAAI Press: Menlo Park, CA, USA, 1996; pp. 226–231.
49. Tsai, C.-F.; Hsu, Y.-F.; Lin, C.-Y.; Lin, W.-Y. Intrusion detection by machine learning: A review. Expert Syst.

Appl. 2009, 36, 11994–12000. [CrossRef]
50. Li, M.; Xu, H.P.; Liu, X.W.; Lu, S.F. Emotion recognition from multichannel EEG signals using K-nearest

neighbor classification. Technol. Health Care 2018, 29, 509–519. [CrossRef]
51. Wichakam, I.; Vateekul, P. An evaluation of feature extraction in EEG-based emotion prediction with support

vector machines. In Proceedings of the 11th international Joint Conference on Computer Science and
Software Engineering, Chon Buri, Thailand, 14–16 May 2014.

52. Palaniappan, R.; Sundaraj, K.; Sundaraj, S. A comparative study of the SVM and K-nn machine learning
algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals. BMC Bioinform.
2014, 27, 223. [CrossRef]

53. Hmeidi, I.; Hawashin, B.; El-Qawasmeh, E. Performance of KNN and SVM classifiers on full word Arabic
articles. Adv. Eng. Inf. 2008, 22, 106–111. [CrossRef]

54. Pan, F.; Wang, B.; Hu, X.; Perrizo, W. Comprehensive vertical sample-based KNN/LSVM classification for
gene expression analysis. J. Biomed. Inform. 2004, 37, 240–248. [CrossRef]

55. Khandoker, A.H.; Lai DT, H.; Begg, R.K.; Palaniswami, M. Wavelet-based feature extraction for support
vector machines for screening balance impairments in the elderly. IEEE Trans. Neural Syst. Rehabil. Eng. 2007,
15, 587–597. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

491





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors



MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-1591-5 


	Cover-front.pdf
	Book.pdf
	Cover-back.pdf

