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Andrés Úbeda, Brayan S. Zapata-Impata, Santiago T. Puente, Pablo Gil, Francisco Candelas

and Fernando Torres

A Vision-Driven Collaborative Robotic Grasping System Tele-Operated by
Surface Electromyography
Reprinted from: Sensors 2018, 18, 2366, doi:10.3390/s18072366 . . . . . . . . . . . . . . . . . . . . 65

Karina de O. A. de Moura and Alexandre Balbinot

Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant
Classification System
Reprinted from: Sensors 2018, 18, 1388, doi:10.3390/s18051388 . . . . . . . . . . . . . . . . . . . . 76

Marisol Rodrı́guez-Ugarte, Eduardo Iáñez, Mario Ortiz and José M. Azorı́n
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Abstract: This Special Issue is focused on breakthrough developments in the field of biosensors and
current scientific progress in biomedical signal processing. The papers address innovative solutions
in assistance robotics based on bioelectrical signals, including: Affordable biosensor technology,
affordable assistive-robotics devices, new techniques in myoelectric control and advances in
brain–machine interfacing.

Keywords: electromyographic (EMG) sensors; electroencephalographic (EEG) sensors; assistance
robotics applications; robotic exoskeletons; robotic prostheses; advanced biomedical signal processing

1. Introduction

In recent years, the use of bioelectrical information to enhance traditional motor-disability
assistance has experienced significant growth, mostly based on the development and improvement
of biosensor technology and the increasing interest in solving accessibility limitations in a more
natural and effective way. For that purpose, control outputs are directly decoded from the user’s
biological information. Biomedical signals, recorded from cortical or muscular activity, are used
to interact with external devices, such as robotics exoskeletons or assistive robotic arms or hands.
However, efforts are still needed to make these technologies affordable for end users, as current
biomedical devices are still mostly present in rehabilitation centers, hospitals and research facilities.

2. Contributions

This Special Issue collected ten outstanding papers covering different aspects of assistance robotics
and biosensors. In the following, a brief summary of the scope and main contributions of each of these
papers is provided as a teaser for the interested reader.

One of the most important issues in assistive robotics is helping people with special needs or
disabilities to adequately perform rehabilitation exercises in the friendliest way. In “A High-Level
Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton” [1] the authors
designed a high-level control algorithm capable of generating position and torque references from
surface electromyography signals (sEMG). They applied this algorithm to a shape memory alloy
(SMA)-actuated exoskeleton used in active rehabilitation therapies for elbow joints.

In the same field of assistance, the paper “Intelligent Multimodal Framework for Human
Assistive Robotics Based on Computer Vision Algorithms” [2] shows a multimodal interface based
on computer vision, which has been integrated into a robotic system together with other sensory
systems (electrooculography (EOG) and electroencephalography (EEG)). The results were part
of an European project, AIDE, whose purpose is to contribute to the improvement of current
assistance technologies.

Undoubtedly, rehabilitation tasks require friendly systems and exoskeletons that are at the same
time more precise. In this sense, the improvement of hardware systems is crucial. In the paper
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“ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered
Prostheses” [3] the authors propose a novel gait detection algorithm that can predict a full gait cycle
discretized within a 1% interval. In addition, the system provides an opportunity to eliminate detection
delays for real-time applications.

In the case of assistive robotics, another field of great interest is creating equipment and
friendly environments for people with physical movement disabilities. In this context, the authors
of the paper “A Vision-Driven Collaborative Robotic Grasping System Tele-Operated by Surface
Electromyography” [4] propose an interface that combines computer vision with electromyography,
aiming to allow a person with impeded movement to teleoperate a robotic hand. Experiments were
carried out on basic operations of the grasping and shifting of objects.

The problem of more reliable myoelectric systems is addressed in the paper “Virtual Sensor of
Surface Electromyography in a New Extensive Fault-Tolerant Classification System” [5]. The authors
propose extending the use of virtual sensors used in other research fields to the myoelectric field.
With this, they provide a new, extensive, fault-tolerant classification system to maintain the
classification accuracy after the occurrence of the following contaminants: ECG interference,
electrode displacement, movement artifacts, power line interference, and saturation. The time-varying
autoregressive moving average (TVARMA) and time-varying Kalman filter (TVK) models were
compared to define the most robust model for the virtual sensor.

In “Effects of tDCS on Real-Time BCI Detection of Pedaling Motor Imagery” [6] the authors sought
to strengthen the cortical excitability over the primary motor cortex (M1) and the cerebro-cerebellar
pathway by means of a new transcranial direct current stimulation (tDCS) configuration to detect
lower limb motor imagery (MI) in real time using two different cognitive neural states: relaxed and
pedaling MI. In this case, the use of software or hardware techniques with the purpose of improving
the reception of signals was again treated.

The use of assistive robotics is justified when it improves the life of people with certain disabilities.
In this sense, the use of appropriate signals for each case is of great importance. In “A Novel
Feature Optimization for Wearable Human–Computer Interfaces Using Surface Electromyography
Sensors” [7], the authors carried out a study of the signals and selection of optimal-feature selection
made according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature
selection results were evaluated using four different classifiers, and compared with other conventional
feature subsets. These experiments validated the feasibility of the proposed real-time wearable HCI
system and algorithms, providing a potential assistive device interface for persons with disabilities.

In the same field of achieving improvements for people with certain disabilities, the paper titled
“Evaluating the Influence of Chromatic and Luminance Stimuli on SSVEPs from Behind-the-Ears
and Occipital Areas” [8] presents a study of chromatic and luminance stimuli in low-, medium-,
and high-frequency stimulation to evoke steady-state visual evoked potential (SSVEP) in the
behind-the-ears area. These findings will aid in the development of more comfortable, accurate and
stable BCI with electrodes positioned in the behind-the-ears (hairless) areas.

The use of exoskeletons in rehabilitation therapies is increasingly widespread and it is one
of the most promising and expected future lines in the field of assistive robotics. The authors of
“Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscle-Driven
Ankle Rehabilitation Robot” [9] propose the improvement of a therapeutic robot for the rehabilitation
of ankle injuries. To do this, they proposed a new method of adaptive backstepping sliding mode
control (ABS-SMC) in order to solve the PM’s nonlinear characteristics during operation and to tackle
the human–robot uncertainties in rehabilitation.

The correct adaptation of an exoskeleton to patients with knee problems is dealt with in “Knee
Impedance Modulation to Control an Active Orthosis Using Insole Sensors” [10]. In this case,
the authors propose a method for online knee impedance modulation that generates variable gains
through the gait cycle according to the users’ anthropometric data and gait sub-phases recognized
through footswitch signals.
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A High-Level Control Algorithm Based on sEMG
Signalling for an Elbow Joint SMA Exoskeleton
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Abstract: A high-level control algorithm capable of generating position and torque references from
surface electromyography signals (sEMG) was designed. It was applied to a shape memory alloy
(SMA)-actuated exoskeleton used in active rehabilitation therapies for elbow joints. The sEMG signals
are filtered and normalized according to data collected online during the first seconds of a therapy
session. The control algorithm uses the sEMG signals to promote active participation of patients
during the therapy session. In order to generate the reference position pattern with good precision,
the sEMG normalized signal is compared with a pressure sensor signal to detect the intention of each
movement. The algorithm was tested in simulations and with healthy people for control of an elbow
exoskeleton in flexion–extension movements. The results indicate that sEMG signals from elbow
muscles, in combination with pressure sensors that measure arm–exoskeleton interaction, can be
used as inputs for the control algorithm, which adapts the reference for exoskeleton movements
according to a patient’s intention.

Keywords: exoskeleton; electromyographic (EMG); control systems

1. Introduction

The development of advanced robotic assistive technologies has gained special attention in the
scientific community over the last decades. Millions of people worldwide rely on assistive devices to
improve their quality of life. For this reason, there is a need to further promote the development of
assistive devices by pooling the efforts of engineers and clinicians, together with the feedback and
experiences of users, to improve these technologies.

Aging of populations, mainly in developed countries, and the incidence of diseases, such as
stroke, spinal cord injuries, and various musculoskeletal injuries, have increased the need for health
resources, especially those dedicated to the rehabilitation process. Rehabilitation therapy is the process
that assists a person in recovering from serious disorders after an injury, illness, or surgery that causes
motor impairments. One of the most common rehabilitation methods consists of musculoskeletal
rehabilitation to improve motor functions and the autonomy of patients in typical daily activities.
In standard rehabilitation methods, every patient needs one or more therapists, because the therapist
must directly manipulate the affected limb. This implies a huge consumption of healthcare and
financial resources. The use of robotic devices as rehabilitation tools is proposed as a complement to
the traditional rehabilitation sessions effectuated by therapists and can reduce the need for human
resources. The main advantage offered by the use of robotic systems in rehabilitation is the capacity to
support the work of physiotherapists in simple therapies with repetitive movements, reducing the
need for the presence of the therapist. In this way, the costs associated with rehabilitation therapies
can be reduced, allowing the same therapies to be carried out for longer, if the patient requires it,

Sensors 2018, 18, 2522; doi:10.3390/s18082522 www.mdpi.com/journal/sensors4
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and for a larger number of patients to be treated simultaneously. Robotic systems have proven to be as
effective as conventional therapy [1,2].

Among the most promising assistive robotic technologies are exoskeletons. An exoskeleton robot
is a wearable robot designed to assist limb motions. The ease of use and the intuitive control of the
robotic exoskeleton are crucial aspects for acceptance by patients. A step towards a more effective and
intuitive control of upper-limb exoskeletons is the use of a myoelectric signal to detect the user’s motion
intention. Myoelectric signals (MESs) contain information from which data about user movement
intention in terms of muscular contractions can be extracted. Control based on MESs provides a more
natural interaction with the exoskeleton.

A wearable shape memory alloy (SMA)-actuated exoskeleton with two degrees of freedom (DOF)
(for flexion–extension and pronation–supination) was presented in [3]. In that work, the control
algorithm made it possible to control the exoskeleton tracking a reference for passive rehabilitation
therapy in flexion [4]—only actuating in flexion and recuperating (during the extension movement)
with the aid of gravity—and actuating with two SMA-based actuators in flexion and extension [5].
The reference pattern in both cases represents a repetitive movement (for example, a sinusoidal
trajectory) defined by the therapist, which makes the rehabilitation passive. In order to activate,
in a natural manner, the exoskeleton according the user’s intended motion, the control algorithm
proposed in this work uses input signals to the controller based on a skin surface electromyogram
(sEMG). A key aspect for the success of robotic rehabilitation therapies is to keep the patient involved
in carrying out the therapy. This is the objective pursued with the proposed control algorithm. Our
new control algorithm analyzes the signal sEMG to detect that the patient is involved in the realization
of the movement—that is, the patient intends to move their arm, even if they lack sufficient muscular
strength to carry out the movement. The exoskeleton will only receive a reference position to which it
will move if the patient is generating an sEMG signal indicating their intention to move.

In order to generate the reference position pattern with good precision, the sEMG normalized
signal is compared with a pressure sensor signal to detect the intention to move. The pressure sensor is
used to estimate the motion of the user through the force between the user and the robot. The proposed
approach has been tested in a single joint for the flexion–extension task.

1.1. Electromyogram Signals

Electromyography (EMG) signals of human muscles are biological signals that record the electrical
potential generated by muscle cells to contract. It can be used to detect the user’s intention to move,
since the amplitude directly correlates with the user’s muscle activity. Moreover, according to [6],
the EMG signal starts about 20–80 ms before the muscle contraction, so it allows anticipation of the
motion intention.

EMG signals can be classified into two types: intramuscular EMG signals, detected from inside of
the muscles; and surface EMG signals (sEMGs), detected from the skin surface. The intramuscular
EMG signals give a better muscle activation pattern, but their use requires an invasive extraction
procedure. Therefore, skin surface EMG signals are used as input for control robotic systems. Although
the extraction of sEMG signals is relatively simple, the precise estimation of the motion is difficult
because of the variability of EMG signals, which can be affected by multiple factors. EMG signals vary
from one person to another, and even between two sessions with the same person making the same
movement. In addition, each joint movement involves the activation of many muscles, and one muscle
can be involved in various joint movements. Factors such as the changes in limb posture affect the
relationship between the EMG signal level and motion estimation. The anatomy and physiological
conditions of the user, including any diseases, injuries, fatigue, or pain, also modify EMG signals.
Consequently, control strategies that employ sEMG signals require adjusting the controller to the
particular user and, in many cases, calibrating the system during each session. Therefore, raw EMG
signals are not suitable as input signals to a controller. Data must be filtered and normalized using the
maximum voluntary contraction (MVC) level of the user [7].
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In the case of an elbow exoskeleton, it must taken into account that the human elbow motion
is activated by antagonistic pairs of muscles—biceps (agonist) and triceps (antagonist). According
to [8], the biceps brachii, brachioradialis, and brachialis muscles are involved in elbow flexion. Biceps
muscles are easily accessible from the skin surface. For this reason, the sEMG electrode circuit used in
this work was situated over the bicep muscles to detect the intention of movement in the elbow joint.

1.2. Related Work

Since the 1960s, sEMG signals have been a common way of controlling prostheses [9,10].
More recently, EMG signals have been used for motion control of numerous robotic systems [11,12],
prostheses [13], and robotics exoskeletons [14]. A broad review of the related literature can be found
in [15].

Prosthesis and exoskeleton movements have frequently been controlled using EMG signals from
muscles not involved in the movement. For example, Benjuya and Kenny [14] used the EMG signals from
the wrist extensors of the forearm to open/close a pinch action. Also, in [7], the EMG signal from the
ipsilateral biceps was used to develop an extremely reliable natural reaching and pinching algorithm.
The EMG signals from the residual biceps and triceps of a user with transhumeral amputation have been
proposed to control a robotic elbow in a learning from demonstration approach [16].

In the last decades, several research groups have worked on different control algorithms based on
EMG signals for use with prostheses and exoskeletons. Many of these works have focused on the use
of neural networks and fuzzy algorithms to distinguish the user’s intention for movement based on
the EMG signals of various muscles. Hudgins [17] proved that artificial neural networks are practical
for controlling prostheses by classifying different movements from EMG signals. In [18], the authors
evaluated a time-delayed artificial neural network to predict shoulder and elbow motions using only
EMG signals from six shoulder and elbow muscles as inputs. Results from both able-bodied subjects
and subjects with tetraplegia indicate that the EMG signals contain a significant amount of information
about arm movement that could be exploited in advanced control systems.

In [19], a hierarchical neurofuzzy controller based on the EMG signals was presented for real-time
control of a shoulder and elbow motion exoskeleton. A wrist force sensor was used when the EMG
activity levels were low. In [20,21], an EMG signal-based control method for a seven degrees of freedom
(7DOF) upper-limb motion assistive exoskeleton robot (SUEFUL-7) was proposed. In their method,
an impedance controller was applied to the muscle-model-oriented control method. Impedance
parameters were adjusted in real-time as a function of the upper-limb posture and EMG activity levels.
The work presented in [22] proposes a more advanced EMG-based impedance control method for an
upper-limb exoskeleton. In that work, a neurofuzzy matrix modifier made the controller adaptable to
all upper-limb postures of any user. The neurofuzzy modifier is a neural network with fuzzy reasoning
that is trained to adjust its output to each user before operation. The method was applied to the 7DOF
exoskeleton for upper-limb joint motions, as presented in [20]. They used 16 channels of EMG signals,
with each electrode mainly corresponding to one muscle. Moreover, two force/torque sensors were
used to estimate the forces between robot and user. The control algorithm was able to distinguish
between different kinds of motion.

As can be seen from the previous studies cited, the EMG-based neurofuzzy control method has
proven its effectiveness in controlling exoskeleton robots. However, the rules of control are complicated
when increasing the number of degrees of freedom of the exoskeleton.

The amplitude of the EMG signals reflects the muscles’ activity levels. Many methods have been
developed to estimate human muscular torque from EMG activity levels, using this information to
control joint torques in robots. Due to the many factors that modify the EMG signals, this type of
control requires a complex calibration process to adapt to the variability of the signals, and depends
on the user and the session conditions. In the experimental work presented in [23], the reactions of
10 healthy subjects to the assistance provided through a proportional EMG control applied by an elbow
powered exoskeleton were studied. The system did not require calibration. Their results showed that

6



Sensors 2018, 18, 2522

in order to assist movement, an accurate estimate of the muscular torque may be unnecessary and
a simpler control algorithm can be more efficient.

The control algorithm presented in this work is similar to the binary control algorithm used
in [7,24]. In [7], DiCicco tested binary “on–off” control, and variable and natural control algorithms
based on EMG signals. They validated that the EMG signal from the ipsilateral biceps could be used
to develop an extremely reliable natural reaching and pinching algorithm. A specific EMG threshold
value serves to determinate the output binary value “on” if the EMG signal from the biceps muscle is
above the threshold and “off” when it is below.

In our case, the rehabilitation exoskeleton has been designed with the objective of assisting in
therapies consisting of performing repetitive movements. This type of therapy is typical of the first
phases of rehabilitation, where the patient must repeat defined movements of a certain joint in order to
recover muscular strength and increase the range of motion lost. In this context, it is not necessary
to discriminate the type of movement that the patient wants to make. The proposed algorithm tries
to determine the intention of the patient to initiate a certain movement and its ability to maintain
it, even if the patient lacks sufficient muscular strength to carry it out. Consequently, the sEMG
signals are detected and analyzed only from muscles directly related to the movement being assisted.
In this case, the biceps muscles were targeted to detect voluntary flexion of the elbow joint. In the
proposed algorithm, the triceps muscle activity was not considered, as the control algorithm has the
limitation that if co-contraction happens and the extension signal is not detected by the pressure
sensors, the system needs to be manually turned off.

Our proposed approach fuses sensor data with EMG signals. Force sensors were used to check
the interaction between the exoskeleton and the user. In this way, only when the patient actively
tries to execute the movement does the control algorithm initiate the movement of the exoskeleton.
A similar approach was implemented in [20]. This approach reduces errors caused by low EMG levels
or external unexpected forces affecting the patient’s arm.

This paper presents an algorithm capable of generating the reference pattern in position and
torque based on surface electromyography (sEMG) signals and pressure sensors for high-level control
of the SMA exoskeleton. The first part of the paper presents an introduction to the problem. In the
second section, materials and methods are explained, including a description of the elbow exoskeleton.
The initial assembly of SMA-based actuators is presented, and the elbow exoskeleton design is shown.
The electronic hardware is also presented in the second section. The final part of the second section is
devoted to explaining the high-level control algorithm in detail. In the third section, the results are
presented: first, simulation test results of the high-level control algorithm, followed by performance
evaluation of the proposed control method, based on experiments with healthy subjects that were
carried out with the SMA elbow exoskeleton. The final part presents brief conclusions of the paper.

2. Materials and Methods

This section presents a brief description of the hardware architecture on which the tests were run:
the structure of the exoskeleton, the actuators, and the sensors which are involved in the algorithm,
as well as the high-level control algorithm capable of generating the reference patterns for position and
torque; the algorithm provides high-level control and is based on sEMG signals and pressures sensors.

2.1. Elbow SMA Exoskeleton

In previous publications, a wearable SMA exoskeleton was presented with two DOF, which
permits mobilization of the elbow joint in flexion–extension and pronation–supination movements [3,5].
This device used an SMA actuator for the actuation system and was the first elbow joint rehabilitation
device powered by this technology. It has the potential to be a light device, with a weight less than
1 kg (structure, actuators, and electronics), noiseless operation, and low-cost fabrication. The actuator
structure is described in Section 2.1.1.
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2.1.1. Actuator Design

The simple SMA-based actuator (with only one SMA wire) used in this work was presented
in [25]. The SMA wire is made of a metallic alloy—a common mixture of nickel and titanium,
called Nitinol [26]. It has the property of recovering its original shape (memorized shape) between
two thermic transformation phases: the martensite phase (at low temperature) and austenite phase
(at high temperature). The principle on which it works is based on the heating effect (Joule effect), where
electrical energy is transformed into thermal energy, after which the thermal energy is transformed
into mechanical energy. During this transformation, the SMA wire undergoes a variation of total
length, between 3% and 5%. As a function of the diameter and alloy type, the actuator can exert
different forces. A 0.51 mm diameter wire of Flexinol R© [26] can exert a force of about 35.6 N (with
a lifetime of tens of millions of cycles under these force conditions). The SmartFlex R© [27] wire with
the same diameter can exert a maximum force of 118 N (with a lifetime of hundreds or a few thousand
cycles). The activation temperature of the SMA wire depends on the alloy and, in this case, it is 90 ◦C.
In this work, the actuator was composed of multiple SMA wires, a polytetrafluoroethylene (PTFE)
tube, a Bowden tube, and the terminal parts (Figure 1).

Figure 1. Actuator design. Flexible shape memory alloy (SMA)-based actuator.

• The Bowden cable is a mechanical flexible cable which consists of a flexible inner cable that forms
a metal spiral and a flexible outer nylon sheath. This type of wire can guide the SMA actuators
and transmit the force. In addition, the metal has the property of dissipating the heat, which is
an advantage during the recuperation of the initial position phase.

• The PTFE tube can support high temperatures, more than 250 ◦C; it is an electrical insulator and
does not cause friction.

• The terminal units are used at one end to connect the actuator to the actuated system and at
the other to fix the SMA wires to the Bowden cable. They also serve as connectors for the power
supply (using the control signal). These units are formed of two pieces that can be screwed to
each other to set the tension of the SMA wires. The total SMA wire tension range adjustment
is 0.01 m.

There is a relation between the SMA wire diameter, the force, and the cooling time (Table 1).
In Table 1, the first column represents the diameter of the wire, the second column is the actuation
force which guarantees a lifetime of tens of millions of cycles, and the last two columns represent the
cooling time for the two types of wires, with activation at 70 ◦C and 90 ◦C, respectively. According to
the data shown in the table and the objectives of the exoskeleton, it was decided to work with 0.51 mm
wires activated at 90 ◦C, because the maximum force was obtained with this diameter and the cooling
time is lower than when the wire was activated at 70 ◦C.

If the SMA actuator is designed to operate with the configuration parameters shown in Table 1,
the actuator lifetime can be tens of millions of cycles. If the actuator operates with higher forces than
those specified, the lifetime drops to only a few thousand cycles.
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Table 1. SMA wire characteristics [26].

Diameter Size [mm] Force [N] Cooling Time 70 ◦C [s] Cooling Time 90 ◦C [s]

0.025 0.0089 0.18 0.15
0.038 0.02 0.24 0.2
0.050 0.36 0.4 0.3
0.076 0.80 0.8 0.7
0.100 1.43 1.1 0.9
0.130 2.23 1.6 1.4
0.150 3.21 2.0 1.7
0.200 5.70 3.2 2.7
0.250 8.91 5.4 4.5
0.310 12.80 8.1 6.8
0.380 22.50 10.5 8.8
0.510 35.60 16.8 14.0

Regarding the application of the necessary torque to execute defined movements (the necessary
torque of each movement was found from a biomechanical simulation [3]), a summary of the system
configuration of the actuators can be seen in the Table 2.

Table 2. Exoskeleton actuators.

Movement SMA Wires Maximum Actuator Force [N] Length [m] Weight [kg]

Flexion 3 354 1.5 0.16
Extension 2 236 1.5 0.15
Pronation 1 118 2 0.1
Supination 1 118 2 0.1

2.1.2. Exoskeleton Design

The exoskeleton was designed according to elbow biomechanics. A biomechanical simulation was
performed with the objective of finding the necessary force for various frequencies of movement [3]
using the actuator structure presented in Section 2.1.1. The structure of the exoskeleton is displayed in
the Figure 2. It was made using simple parts that can be assembled easily, and it permits matching
the dimensions of the exoskeleton to those of the user (length of the arm and the forearm), such that
the axis of the elbow joint remains aligned with the axis of the exoskeleton. The components of the
exoskeleton were a combination of aluminum pieces (such as the Bowden terminals and axis) and
other parts made by 3D printer using aluminum with polyamide. The exoskeleton has four points of
attachment to the human body, connecting with the arm (two attachments), the forearm, and the hand
(Figure 2a). Three force-sensing resistors (FSRs) were placed in the hand piece. These can measure
a force between 0.1 and 10 kg. For the safety of the patient, the exoskeleton movement is mechanically
limited between 0 and 150 degrees in the elbow flexion–extension direction and between 70 and
−70 degrees in the supination–pronation direction. In order to increase comfort, all internal parts in
contact with the patient were covered with a soft hypoallergenic material. Compared with current
solutions, due to the lack of gears and motors in the mechanism, the proposed rehabilitation device is
lightweight. The whole structure with the actuators weighed less than 1 kg. A 960 W DIN rail power
supply (24 Vdc/40 A) was used to provide the necessary energy to the actuators. The weight of the
power supply unit was 1.9 kg. In addition, it provides noiseless operation, which increases the comfort
of the patient during the rehabilitation process. The final version of the exoskeleton installed on the
human body can be seen in Figure 2b.
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(a) (b)

Figure 2. SMA exoskeleton design. (a) CAD structure: 1—attachment points with the hand
and force-sensing resistor (FSR) sensors, 2—fixed structure for supination–pronation, 3—actuator
termination for Bowden tube, 4—pulley for linear to rotational transformation, 5—temperature sensors,
6—supination–pronation actuators, 7—flexion–extension actuators, 8—absolute encoder, 9—SMA
wires. (b) SMA elbow joint exoskeleton on a human body.

2.1.3. Electronic Hardware

The electronic hardware is composed of power electronics, a controller, and sensors placed in
the device. The power electronics are capable of supplying the necessary power to four distinct
actuators: flexion, extension, supination, and pronation. The system is based on a MOSFET transistor
(STMicroelectronics STP310N10F7, STMicroelectronics group, Shanghai, China), which works as
a switch circuit and amplifies the control signal (PWM) generated by the controller. The device was
connected to the terminal units of the SMA-based actuator.

The controller is a 32-bit microcontroller STM32F4 from STMicroelectronics R©, China, which can
be fully programmed with Matlab/Simulink R© [28]. It was programmed with four different PWM
output ports, which generate the necessary duty cycle for managing the four actuators (each with one
or more SMA wires).

The structure of the rehabilitation device includes sensors for position, temperature, force, and
sEMG. An absolute angle position sensor with Hall effect (AS5045 made by AMS (Austrian Micro
Systems), Premstaetten, Austria) is placed in the shaft of the exoskeleton (pulley for flexion–extension).
This sensor has a resolution of 0.0879 degrees and measures the flexion–extension movement.
The second position sensor, a membrane potentiometer made by Spectrasymbol, has a length of
0.1 m and is placed on the supination–pronation piece (on the outside) to measure the absolute
displacement of this movement. In the same piece, on the inner part which makes the connection
between the human forearm and hand and the exoskeleton, three FSR sensors were placed with
a 60-degree angular distance between them. These sensors measure the force variation of the elbow
during flexion–extension movements—forces that are involved in the high-level control algorithm.
Another main sensor involved in this algorithm is the sEMG sensor. The circuit uses three disposable
disc electrodes, F-TC1 made by SKINTACT—a low-cost, multi-purpose ECG. It consists of Ag/AgCl
electrodes, a conductive gel (Aqua-Tac), an adhesive area with a dimension of 35 × 41 mm, and a snap
connection. The gel permits a better connection between the skin and the electrode. This electrode is in
the category of non-invasive and wet electrodes.

The sEMG circuit (Figure 3) was made in Carlos III University of Madrid (UC3M), and presents
two channels that are connected by two electrodes, which are situated at a distance of 0.03 m from
each other over the belly biceps muscle; another channel is used as a reference, which is connected
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to the last electrode positioned over the shoulder blade. The EMG circuit is composed of various
stages, including connectors. There is the differential active feedback stage, the digital stage (where the
signal is amplified and filtered), and the stage for the power supply and communication connectors.
The communication between the EMG and the microcontroller uses a serial peripheral interface (SPI)
bus. For the signal-processing module, we used the same microcontroller STM32F4.

Figure 3. Surface electromyography (sEMG) circuit with two channels and the electrodes: 1—electrodes,
2—electrode connector, 3—connectors for power supply (5 V and GND), 4—connector for serial
peripheral interface (SPI) communication.

The temperature sensors are placed in the terminal of the actuator to measure the temperature of
the SMA wires, a parameter that is required in the control loop. All the electronics used in this project
were based on low-cost components.

The position of the EMG electrodes and FSR sensors over the human body can been seen
in Figure 4. A auxiliary piece was built to form the connection between the human hand and
forearm-sensor-exoskeleton. This piece (made with a 3D printer using PLA (polylactic acid)) was bent
(by introducing it to hot water before the sensors were mounted), taking the form of the patient’s
forearm, and formed the connection between the forearm and hand with the exoskeleton.

(a) (b)

Figure 4. (a) Surface electromyography (sEMG) electrodes over the subject’s arm and shoulder blade.
(b) The auxiliary piece where are placed the FSR sensors (green parts).
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2.2. The High-Level Control Algorithm

Previous publications [3,5] presented a low-level control algorithm based on a BPID (bilinear
proportional integral derivative) controller, which governs the SMA-based exoskeleton in position.
Their algorithm, involving position and temperature sensors, is capable of acquiring data from the
sensors or controlling the exoskeleton in flexion, extension, or in flexion–extension using an antagonistic
controller (two BPID controllers in a parallel configuration [5]). With the data acquisition configuration,
the SMA-based exoskeleton only offers the possibility to diagnose and evaluate the patient. In the
passive mode, the actuators offer all the necessary force to reach and follow the reference position
without taking into account the patient force. Through the introduction of sensors for pressure/force
and sEMG, the SMA-based exoskeleton offers the possibility of rehabilitation therapies in active
mode, where the reference position is generated by the patient’s movement intention. In this way,
passive reference position (habitually sinusoidal movements) is changed to active reference in a case
where the patient presents activity in the motor function (the motor function has been partially
affected). Active reference involves the patient undergoing rehabilitation therapy, leading to a faster
recovery. The high-level control algorithm, which generates the active rehabilitation therapy (active
reference position), uses the sEMG sensors and force-sensing resistor (FSR) sensors, together with
position sensors. This is currently available (due to the SMA-based exoskeleton configuration—in fact,
the sensors) only for the elbow flexion movement.

The sEMG signals are captured at a sampling frequency of 1 kHz using the circuit presented in
Section 2.1.3. The signals are preprocessed: firstly, the raw sEMG data is filtered with a band-pass
Butterworth filter, order 8, with a cut-off frequency at 6 dB point below the band-pass value of 20 Hz,
and the second cut-off frequency with a value of 480 Hz. This filter was proposed in order to remove
the movement artifact [29]. After that, the absolute value of the response of the filter is calculated,
and this value is provided to the second filter. This is a low-pass Butterworth filter, order 10, with
a cut-off frequency of 20 Hz. The 20 Hz cut-off frequency of the low-pass filter was decided upon
according to [29], wherein the authors claim that in the last three decades, various recommendations
and standards have been put forth for a cut-off frequency between 5 and 20 Hz. In his publication,
he chose such an adequate cut-off frequency of 20 Hz. Both filters were configured at a frequency of
1 kHz. After the filtering process, the EMG signal proceeds to the normalization stage. This consists
of an online calibration, where the first 2 s are ignored (in the first 2 s, the circuit experiences some
perturbation), and the next 18 s are used to detect the maximum and minimum signals for the
normalization process. In this time, the patient is required to flex the forearm as much as possible
at least once, followed by an extension movement to return to the original position. During these
18 s, maximum and minimum values are stored to be used in the normalization process, where the
normalized signal, Enorm, is calculated by Equation (1):

Enorm =
Eact − Emin
Emax − Emin

; (1)

where Eact is the actual EMG signal, and Emin and Emax are the minimum and maximum values of the
EMG signal during the 18 s used for normalization.

The entire process of filtering and normalizing of the sEMG signals can be seen in Figure 5.
The normalized signal is compared with a threshold value between 0 and 1. This threshold

value is fixed experimentally according to the patient and the desired sensitivity of the algorithm.
Lower threshold values imply that the algorithm will be more sensitive to the EMG signal and detect
motion intention with less signal intensity, but may be more affected by unexpected external forces.
The effect of the threshold, using the same sEMG signals with different thresholds, can be seen in
Figure 6. The result of this comparison represents the intention of movement detected through the
sEMG signal from the biceps muscle—more precisely, the elbow flexion.
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Figure 5. Surface electromyography (sEMG) signals after each processed step.

(a) (b)

Figure 6. (a) the orange line shows data using a 0.05 threshold. (b) the black line shows data using
a 0.15 threshold.

If the sEMG signal decreases over time, then the following should be taken into account. If Eact

becomes less than Emin, the result according to Equation (1) is a negative signal, which causes the
actuators to turn off (the intention of movement is not detected). If the patient’s intent is to move the
forearm and the result of Equation (1) is less than the threshold, the value of this can be modified
online to change the sensibility of the algorithm. If Eact becomes less than Emin when the patient’s
intent is to move the forearm, the algorithm needs to be recalibrated.

The proposed control algorithm generates the reference position as an increment of the current
joint angle. That is, if movement intention is detected in the sEMG signal, the control algorithm
provides a reference to increase the elbow angle of flexion. If no movement intention is detected,
the reference position will be null and the actuator is disabled.

According to the actual elbow position and the final movement intention, the system works
between two types of increments: one for fast reference position generation and another used to
generate a slow reference position. The first increment is used when the actual position of the elbow
joint is different from the position of the actuator reference. This case occurs when motion intention
is detected, that is, the signal sEMG exceeds the established threshold after a period of deactivation
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of the actuators caused by the non-detection of intention to move. The exoskeleton used in the
flexion movement leaves the joint free to move, as long as the actuator is not activated because of the
loss of patient motivation and engagement that results in loss of the EMG signal. At that moment,
the reference position is zero, but the actual joint position is not null. This situation is shown in the
descending part of the sawtooth-shaped graph in Figure 6. The loss of intention to move produces
a null reference that causes deactivation of the actuator, and the recovery of the intention causes a rapid
increase of the reference position. If the algorithm is activated and detects an intention to move, the
generated reference uses a fast increment until it reaches the elbow position, after which it uses a slow
increment to generate the reference that will be followed by the exoskeleton, as long as there exists
an intention to move. When intention to move is no longer detected, the high increment is used to
decrease the reference position; the actuators are no longer activated and the extension movement is
carried out by actuator recuperation (dissipation of the heat).

In order to address the situation caused by small EMG levels and generate the reference position
pattern with better precision, the high-level control algorithm uses the sEMG normalized signal
together with the FSR sensor signal. Similar to the EMG signals, the signal from the FSR sensors is
filtered and normalized. The filter for this signal is a low-pass filter at a frequency of 100 Hz. Filtered
signals are normalized in the same way as the sEMG signal, using an equation analogous to (1). After
that, it is compared with the threshold defined to detect the intention to move through the force
interaction between the patient and exoskeleton. For flexion movement detection, only the signal
provided by the FSR sensor placed over the radius bone is taken into account. The patient’s movement
intention causes the forearm to exert pressure over the rigid part of the exoskeleton, which can be
detected with this sensor. The two signals, from sEMG and FSR, are logically compared in order to
detect the final intention to move, a binary result that is used later. The logical comparison consists
of an AND function, to ensure a higher accuracy of the algorithm, having a minimum of two active
signals (above the threshold), or with an OR condition if the reference is generated, where at least one
of the signals is above the threshold.

The scheme of the high-level control algorithm capable of generating the reference position pattern
can be seen in Figure 7, where Eact(k) and Pact(k) are the actual EMG and pressure or force signals in
the discrete domain, Ef ilt(k) and Pf ilt(k) are filtered EMG and pressure or force signals, Enorm(k) and
Pnorm(k) are normalized EMG and pressure or force signals, θ(k) is the generated angle reference, V(k) is
the control signal, and Y(k) is the angular position of the SMA-based exoskeleton.

Figure 7. High-level control algorithm based on EMG and pressure signals for reference position generation.

In parallel to the algorithm that generates the reference position, the normalized EMG signal is
used to generate a torque assistive reference for rehabilitation therapy. According to the total height
and weight of the patient, the weight of the forearm and hand is approximately calculated, as well
as the length from the joints to the center of gravity of each. As a function of these parameters and
the actual angle, torque on the elbow joint is estimated. Using this torque and the sEMG signal,
a percentage of assistance in torque reference can be generated. This percentage can be set by the user.
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Torque assistive reference is directly proportional to the sEMG signal. A similar idea is presented
in [30], but they did not take the biomechanical structure of the human body into account.

3. Results

In order to highlight the algorithm performance, feasibility, and adaptability to various hardware
configurations, a series of tests were done. Firstly, simulation with EMG signals from different circuits,
together with an actuator model, was conducted to simulate the behavior of the actuator in the
exoskeleton; secondly, the real hardware over the exoskeleton was tested with healthy subjects.

3.1. Results of Simulation

In [31], the model of an SMA-based actuator with a variable charge was presented. This permits
the simulation of the actuator with different SMA diameters (0.51 mm and 0.1 mm); in this case,
the 0.51 mm diameter was used. According to the simulation results presented in [31], which were
compared with the real behavior of an SMA actuator, it can be concluded that the behavior of the
model is highly similar to a real actuator. To use this model in the simulation with the high-level
control algorithm based on sEMG, a number of settings of the SMA-based actuator were used. Firstly,
the charge of the actuator was set according to the forearm and hand weight, and the linear position
was converted to an angular position as a function of the exoskeleton characteristics, such as the pulley
radius. It is worth noting that the SMA-based actuator model includes the same low-level control
algorithm ([3,5]), as well as the exoskeleton.

For the sEMG data acquisition, the electrodes were placed along the biceps muscle fibers and on
the midline of the belly of the muscle, taking into consideration that this is where the sEMG signals
have the greatest amplitude (Figure 4). The subject was asked to perform some elbow extension–flexion
movements, and data was saved to be used in offline simulation. This process was accomplished
with two types of sEMG circuits: firstly with the circuit realized in UC3M, presented in Section 2.1.3,
and secondly with an sEMG measurement device (DKH Co., Ltd., Tokyo, Japan) with a sampling
frequency of 1 kHz. This latter circuit was successfully used in other works, such as for the control of
a prosthetic hand [32], and in a rehabilitation finger system [33]. The sEMG signal acquired with the
UC3M circuit was similar to the sEMG signal acquired with the DKH circuit.

Figure 8. The generated angular reference position from the sEMG signal with the UC3M circuit: first
subject (male, 24 years old, 1.73 m height, and 70 kg weight).
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Figure 8 shows the normalized sEMG signal acquired from the UC3M circuit, the generated
reference, and the angular position of the exoskeleton. This first test was realized offline in a simulation,
where the signal of FSR sensor was set to 1 (this means that the signal of the FSR sensor is ignored),
and the increment was set empirically to 0.1 for fast increment and 0.01 for slowly increment.

As can be seen, at t = 20 s, the reference position is 0 degrees, since this signal from the sEMG
was used for calibration, whereas the first 2 s were ignored for perturbation. Next, t = 18 s were
used to detect the maximum and minimum sEMG signal. After this process of calibration, starting at
t = 20 s, once muscle activity has been detected in the biceps muscle, the algorithm starts to generate
the reference.

We take, as an example, the sEMG signal at t = 29 s (Figure 9). From this moment, the normalized
sEMG signal changes the amplitude, which means that the circuit detects muscular activity in the
bicep muscles, and the algorithm begins to increment the reference position. Because the actual
angular position of the exoskeleton is different to the actual reference, by approximately 30 degrees,
the algorithm increases the angular reference position with a high increment. Once the angular
reference position coincides with the exoskeleton position, the algorithm increases the angular reference
position with a slow increment and the exoskeleton begins to follow the voluntary movement intention.
In t = 32.5 s, the amplitude of the normalized sEMG signal decreases, the high-level control algorithm
interprets that there is no intention to move by the user and, therefore, the algorithm decreases the
angular reference position. In this case, though the reference decreases very quickly, the angular
position of the actuator is limited by the actuator behavior (shows a slow recovery due to heat
accumulation). The sEMG threshold can easily be set from the user interface and, in this case, it was
set to 0.05.

Figure 9. The angular reference position generated by the sEMG signal, first subject (enlarged area).

The second test was performed with a different sEMG circuit and a different person. Similar to
the first case, the person was asked to execute some repetitions of flexion–extension of the elbow and
the sEMG signal was recorded. The signal can be seen in Figure 10, from which can be observed
a higher frequency of movement of the elbow joint. Between t = 40 s and t = 45 s, we can see a muscle
relaxation; the amplitude of the sEMG signal decreases, and in this case the angular reference position
goes to 0 degrees. The exoskeleton behavior can be seen when the extension actuator is not active:
it represents a slow extension movement.
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Figure 10. The generated angular reference position by the sEMG signal, second subject.

In parallel, the algorithm offers the possibility to generate the torque reference to assist the
movement. This reference is generated according to the biomechanical model of the human body,
taking into account that rehabilitation is executed standing or sitting, and that the sEMG signal is
detected over the biceps muscles. In Figure 11, the pattern reference in torque assistance is presented
for one patient with a weight of 70 kg and height of 1.73 m for two cases: the exoskeleton assists the
patient with the total torque, 100% (blue signal), and the exoskeleton assists with 50% of total torque
(red signal). The sEMG signal used to generate this reference in torque assistance is the same as the
sEMG signal presented in Figure 8.

Figure 11. The generated torque reference from the sEMG signal.

3.2. Results with the Real SMA Exoskeleton

The sEMG-based control algorithm was tested in the real exoskeleton presented in Section 2.1.
This was tested with healthy people from RoboticsLab laboratory, Carlos III University of Madrid.
The characteristics of the subject were: male, 1.73 m height, and 70 kg weight. Firstly, sEMG electrodes
were fixed over the biceps (over the belly of the biceps, a good positioning is essential) and the
shoulder (reference electrode), and then the exoskeleton was fitted over the body. The exoskeleton was
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configured on the subject’s body so that the elbow axis was aligned with the exoskeleton rotation axis
and the FSR sensors were in contact with the hand and forearm. The results of this test can be seen in
Figure 12, showing the reference position signal (the blue signal), which is generated by the sEMG
signal (purple) and the FSR signal (green), and the real position exoskeleton (red).

According to the high-level control algorithm, in the first 20 s, the exoskeleton user calibrates the
algorithm through movements of flexion–extension of the elbow joint. In Figure 12, two movements
of flexion–extension can be observed during the first 20 s. In these first seconds, the output reference
is 0 degrees.

In the second graphic, the sEMG signals can be seen, where the amplitude is changing during the
flexion–extension movement. In the third graphic is the FSR sensor signal variation corresponding
to the flexion–extension movement. After the process of calibration, when the algorithm detects
the movement intention (from the sEMG signal and FSR sensor), it starts to generate the reference
position and the exoskeleton begins to move following the reference. We take as a reference example
the interval t = 23–40 s. At t = 23 s, the FSR sensor presents a signal with a high amplitude which
exceeds the value of the threshold, and the sEMG signal also begins to increase in amplitude. Starting
from this point, the algorithm begins to generate the angular reference, incrementing slowly, as the
angular reference is near the exoskeleton elbow position. Until t = 30 s, the amplitude of the sEMG
signal remains high, with the angular reference reaching the maximum 120 degrees. Due to the elbow
movement, the FSR sensor signal amplitude may have decreased and, for this reason, the weight of
this signal (during this period) on the algorithm is lower. After time t = 30 s to t = 40 s, the sEMG
signal has decreased its amplitude and the algorithm starts to decrease the angular reference, finally
to 0 degrees.

To successfully use the exoskeleton in this mode of rehabilitation therapy (active mode), the patient
needs to present a minimum level of activity in the motor function, otherwise the algorithm is not
capable of detecting the movement intention based on the sEMG and force/pressure signals. If this
mode of therapy cannot be used by the patient, passive mode rehabilitation therapy can be used,
where the exoskeleton follows a passive reference (habitually a sinusoidal reference).
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Figure 12. Reference position and response generated by the sEMG signal.
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4. Conclusions

In this work, a new high-level control algorithm based on sEMG signals and pressure/force
signals capable of generating the angular and torque reference for an active rehabilitation was
presented. An algorithm capable of generating the angular and torque reference was successfully
tested: in simulations (with the EMG signals provided by the circuit made by the research group and
a commercial circuit) and in real applications over the SMA elbow exoskeleton with healthy people.
In the latter case, in a real device, the sEMG signal was used together with the force/pressure signals
from an FSR sensor.

The SMA-based exoskeleton for an elbow joint presented in this work, together with the low and
high-level control algorithm and sensors, is based on low-cost components and offers three modes
of operation:

• Data acquisition mode: to evaluate and diagnose the patient. Also, in this mode of operation,
the angular limits of elbow movement are saved to set the angular reference limits for the
control algorithm.

• Passive rehabilitation mode: The exoskeleton follows a defined angular reference, the most
common being a sinusoidal type. In this case, the patient executes repetitive movements, not
taking into account the movement intention of the patient. The exoskeleton can support all the
movement in flexion, extension, or flexion–extension.

• Active rehabilitation mode: The angular reference for the elbow exoskeleton is generated
as a function of the patient’s intention for movement, detected by the sEMG signals and
force/pressure signals. In this case, the patient is actively involved in the rehabilitation therapy,
and if movement intention is not detected, the angular reference goes to 0 degrees. This type of
rehabilitation can only be used with patients who present a minimum activity level in their motor
function; otherwise, a passive rehabilitation can be used.

The performance of the high-level control algorithm considered the biceps muscle activity and
did not take into account the triceps muscle activity. If this co-contraction appears, and the FSR sensor
is not capable of detecting it, the user needs to manually stop the system.

The control algorithm presented in this paper permits the adjustment of the parameters of the
generated reference position, such as the increments (which modify the angular velocity response of
the exoskeleton) and the thresholds of the sEMG and FSR signals, which change the sensibility of the
algorithm (from which signal value the algorithm starts to increment to the reference position).

The main advantage provided by the proposed high-level controller is that it forces the patient to
be involved in the therapy task on a constant basis. If the patient loses attention, the exoskeleton is
deactivated. In this way, the controller promotes active rehabilitation.
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Abbreviations

The following abbreviations are used in this manuscript:

SMA Shape Memory Alloy
UC3M Carlos III University of Madrid
FSR Force Sensing Resistor
PWM Pulse-Width Modulation
sEMG Surface electromyography
PTFE Polytetrafluoroethylene
DOF Degrees of freedom
SPI Serial Peripheral Interface
PLA Polylactic Acid
MES Myoelectric signals
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Abstract: Assistive technologies help all persons with disabilities to improve their accessibility in
all aspects of their life. The AIDE European project contributes to the improvement of current
assistive technologies by developing and testing a modular and adaptive multimodal interface
customizable to the individual needs of people with disabilities. This paper describes the computer
vision algorithms part of the multimodal interface developed inside the AIDE European project.
The main contribution of this computer vision part is the integration with the robotic system and
with the other sensory systems (electrooculography (EOG) and electroencephalography (EEG)).
The technical achievements solved herein are the algorithm for the selection of objects using the
gaze, and especially the state-of-the-art algorithm for the efficient detection and pose estimation of
textureless objects. These algorithms were tested in real conditions, and were thoroughly evaluated
both qualitatively and quantitatively. The experimental results of the object selection algorithm were
excellent (object selection over 90%) in less than 12 s. The detection and pose estimation algorithms
evaluated using the LINEMOD database were similar to the state-of-the-art method, and were the
most computationally efficient.

Keywords: 3D object detection and pose estimation; assistive robotics; eye-tracking;
human–computer interface

1. Introduction

Approximately 80 million people in the European Union (one-sixth of its population) have
a disability. The percentage of people with disabilities is set to rise as the EU population ages [1].

Accessibility is a basic right for all persons with disabilities according to Article 9 of the
United Nations Convention on the Rights of Persons with Disabilities. The purpose of accessibility
is to enable persons with disabilities to live independently and to participate in all aspects of life.
Assistive technologies help all persons with disabilities to improve their accessibility in all aspects
of their life. Current trends in assistive technology for supporting activities of daily living (ADL),
mobility, communication, and so on are based on the integration of the capabilities of the user and
the assistive technologies. The improvement of the interaction and cooperation between the user and
the assistive technologies can be split into three main areas: (1) improvements of the assistive devices,
such as mechanical parts, electronic parts, etc.; (2) improvements of the user–technology interface;
and (3) improved shared control between the user and the assistive technology. The AIDE European
project contributes to improving current assistive technologies by developing and testing a modular

Sensors 2018, 18, 2408; doi:10.3390/s18082408 www.mdpi.com/journal/sensors22
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and adaptive multimodal interface customizable to the individual needs of people with disabilities as
well as a totally new shared control paradigm for assistive devices that integrates information from the
identification of the residual abilities, behaviours, emotional state, and intentions of the user on one
hand and the analysis of the environment through the use of cameras and context factors on the other.
This paper describes the computer vision algorithms part of the multimodal interface developed within
the AIDE European project.

There are some examples of multi-modal architectures for the interaction and control of assistive
robotic devices. Specifically, Meng et al. presented a non-invasive brain–computer interface (BCI) for
controlling a robotic arm to complete reach-and-grasp tasks [2]. They used a Microsoft Kinect Motion
Sensor to locate and send the position of a target to the robot control system. Another interesting
recent paper presented an assisted feeding strategy that uses a Kinect camera and a modular robotic
arm to implement a closed-form system that performs assisted feeding [3]. In contrast to these works,
our approach uses two cameras (one looking at the environment in front of the user and the other
looking at the user) to locate real objects and the user’s mouth position, respectively. In addition, the
user wears a pair of eye-tracking glasses to recognise the object at which the user is looking. There are
also some works using invasive BCI systems in people with long-standing tetraplegia to control a
robotic arm to perform three-dimensional reach and grasp movements [4,5]. Some works can be
found in the literature reporting the control of an arm exoskeleton using multimodal interfaces.
Specifically, Pedrocchi et al. developed a novel system composed of a passive arm exoskeleton,
a robotic hand orthesis, and a neuromuscular electrical stimulation system driven by residual
voluntary muscular activation, head/eye motion, and brain signals in the framework of the MUNDUS
project [6]. In addition, Frisoli et al. presented a robotic-assisted rehabilitation training with an upper
limb robotic exoskeleton for the restoration of motor function in spatial reaching movements [7].
Then, they presented the multimodal control of an arm–hand robotic exoskeleton to perform activities
of daily living. The presented system was driven by a shared control architecture using BCI and
eye gaze tracking for the control of an arm exoskeleton and a hand exoskeleton for reaching and
grasping/releasing cylindrical objects of different size in the framework of the BRAVO project [8].
Most recently, Clemente et al. presented a motion planning system based on learning by demonstration
for upper-limb exoskeletons that allow the successful assistance of patients during activities of daily
living (ADL) in an unstructured environment using a multimodal interface, while ensuring that
anthropomorphic criteria are satisfied in the whole human–robot workspace [9]. In contrast to the
previous works, the AIDE multimodal control interface predicts the activity that the user wants to
perform and allows the user to trigger the execution of different sub-actions that compose the predicted
activity, and to interrupt the task at any time by means of the hybrid control interface based on a
system combining gaze tracking, electroencephalography (EEG), and electrooculography (EOG).

Most activities of daily living require complete reach-and-grasp tasks. The grasping task is a
common operation for fixed manipulators in a controlled environment, but assistive robotics have the
complexity that this environment is not fixed. Moreover, it should be solved in real-time in order to be
comfortable for humans and sufficiently precise to perform successful grasps of a variety of objects.
To sum up, a grasping task in multimodal assistive robotics requires the processing of a precise
location and orientation of common textureless objects in real-time. Some authors have solved it
using commercial tracking systems like Optitrack© or ART Track© [10–12], but these solutions require
the modification of the objects by adding specific marks. Our proposal employs a computer vision
approach that does not have that limitation. There are multiple technical approaches to solving this
problem, and despite the great advances made recently in the field of computer vision (especially
with the new deep learning techniques), it is still a difficult problem to solve effectively—specifically
when the 3D object is textureless. For well-textured objects, several methods based on appearance
descriptors like SURF or SIFT [13] can be employed to solve this problem. However, most common
objects in our context (home) are textureless.
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Considering the technical features required, these methods should be efficient, accurate, scalable,
and robust to changes in the environment (no controlled light conditions or occlusions).

The main lines of investigation in the field of 3D textureless object pose estimation are methods
based on geometric 3D descriptors, template matching, deep learning techniques, and random forests.

Methods based on geometric 3D descriptors employ the information extracted from the geometry of
the 3D models of the objects. There are two kinds of 3D descriptors: local descriptors and global descriptors.

On one hand, local descriptors are obtained from characteristic local geometric points from
the model. Once descriptors are calculated from the model and from the depth image from the RGB-D
camera, a matching correspondence can be obtained. The last stage is usually a refinement of the pose
using an iterative closest point algorithm (ICP [14] Among these methods [15] stand out FPFH [16],
PPF [17], and SHOT [18]. These methods are very computationally expensive (need several seconds
for estimating the object pose), but are robust to occlusions. One of the most employed methods
is the point pair features (PPFs). This method was developed by Drost et al. [17] and employs the
depth image for estimating local descriptors using normals of the object. Later, several authors have
optimised the original implementation, greatly reducing the computational cost of the algorithm
(Stefan et al. [19] still requires between 0.1 and 0.8 s for processing an image). However, the algorithm
is still too heavy for real-time use.

On the other hand, global descriptors encode the shape of the 3D model in a single vector.
The main global descriptor classes are VFH [20], OUR-CVFH [21], and ESF [22]. In contrast to the
local descriptors, and as the main disadvantages, it is necessary to first have the 3D reconstruction of
the object, as well as to segment the scene before estimating the pose of the object. In addition, these
methods are very sensitive to the occlusion of the object. On the other hand and as a main advantage,
they are computationally efficient. These types of descriptors are usually used for their efficiency
in problems of classification or 3D model retrieval. In addition, note that these geometric methods
(both local and global descriptors) can also use the colour information of the object (if it is available),
increasing the robustness of the method (e.g., the local descriptor CSHOT [23]).

Methods based on template matching efficiently search through the generated set of templates of
a 3D model employing a sliding window approach to find the most similar template within an image,
as well as its 2D location using a similarity criterion. Once the most similar template is determined
within the image, the initial pose of the 3D object is inferred from the one associated with the template.
Within these methods, the algorithm LINEMOD++ [24] stands out. This algorithm is one of the
most-employed algorithms by the scientific community for estimating the pose due to its high efficiency
and robustness. Specifically, Hinterstoisser et al. [24] were the first to use this LINEMOD detection
method to estimate the pose of objects. The LINEMOD method uses the information extracted from the
gradients of a colour image and the surface normals. This information is subsequently quantified so that
the search for the most similar template is carried out efficiently. Then, Hinterstoisser et al. [24] added
a post-process stage in order to strengthen the detection method by eliminating some of the possible
false positives. The last stage is a refinement of the pose using an ICP algorithm. This implementation
was enhanced by Kehl et al. [25] to increase its scalability.

Another similar template method was proposed by Hodaň et al. [26]. Unlike the original LINEMOD++
method, they initially limit the search to certain areas of the image, by means of a simple filtering
technique. The matching between the templates and the remaining possible locations within the
image is done with a voting procedure based on hashing. To refine the pose, they use particle swarm
optimization (PSO) [26] in place of the ICP algorithm. Following the same line, Zhang et al. [27]
proposes that in addition the detection method be invariant to scale, consequently reducing the number
of templates on which to perform the search. Despite all these modifications, these methods [25–27] are
less precise and more computationally expensive than the LINEMOD++ method. The main limitation
of methods based on templates is that they are very sensitive to object occlusion. On the contrary, they
are usually computationally efficient methods when compared with methods based on 3D descriptors
or deep learning techniques.
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Recently, multiple methods have appeared that address the problem of estimating the pose of
a 3D object through the use of deep learning techniques. Among the most popular methods are the
SSD-6D [28], BB8 [29], Pose-CNN [30], and [31,32] methods. The main advantages of these methods
are that they allow estimation of the pose using only the RGB sensor information, the scalability, and
the robustness against occlusion. However, and as one of the main disadvantages, most of these
methods need a large amount of training images to detect and estimate the pose of an object. Moreover,
there is the added difficulty of estimating the actual pose associated with the training images. This
supposes a great effort and time of work on the part of the user, as much the compilation of images of
the 3D model as the estimation of the pose in each of them. To solve this type of limitation, methods
such as the SSD-6D [28] method have been used to estimate the pose of objects using deep learning
techniques using only synthetic images extracted from the original 3D model. However, these methods
can have problems when there are substantial differences between the appearance of the synthetic
images of the 3D model and the appearance of the images captured by the camera [28] (e.g., local
changes in the illumination due to specular reflections). In turn, simply the change in the specifications
of the capture sensor in the test phase can substantially influence the results [33]. To mitigate this
problem, it is necessary to obtain 3D models of 3D objects with photorealistic quality. Although these
methods present promising results, the 3D models of the objects must have colour information so
that the pose can be detected and estimated correctly. This is a problem because it is common to only
have access to a CAD model of the object without colour, or models are obtained through the use of a
depth camera/RGB-D and KinectFusion technology [34], resulting in non-photorealistic models. It is
importand to remark that training these models requires high-end equipment and/or a lot of time once
the training information is ready. On the other hand, except for the SSD-6D [28] method that works at
10 fps, these are very computationally expensive, preventing their use in real-time. In addition, all
these methods need a high-performance GPU.

Finally, the last types of methods are those based on forest classifiers. Some examples of these
methods are those proposed by Brachmann et al. [35,36] in which they predict the 3D coordinates of
an object as well as the labels assigned to each class by means of a random forest. Then, they use the
RANSAC algorithm to estimate the initial pose. This method is very robust to the occlusion problem.
Another outstanding work is the method of Tejani et al. [37]. They use the “latent-class Hough forest”
method with the extracted information (features) of the LINEMOD algorithm on RGB-D patches to
estimate the pose of the object. This method is invariant to scale and also allows estimation of the pose
of multiple instances of the same 3D object.

In summary, this paper presents the computer vision algorithms developed in the AIDE
multi-modal architecture for human assistive robotics that is able to give accessibility to persons
with disabilities. The main contribution of this computer vision component is the integration with
the robotic system and with the other sensory systems (EOG and EEG). The technical achievements
solved are the algorithm for the selection of objects using the gaze and especially the state-of-the-art
algorithm for the efficient detection and pose estimation of textureless objects. These algorithms
were tested in real conditions with patients, and were also thoroughly evaluated both qualitatively
and quantitatively. This paper is organised as follows. Section 2 presents the experimental setup with
the multi-modal interface composition, the integration with the robotic system, and the developed
computer vision algorithms. Section 3 shows quantitative and qualitative experimental results to
evaluate the computer vision algorithm, and finally, Section 4 presents the conclusions and the future
work planned.

2. Materials and Methods

2.1. Experimental Section

All participants were sitting in an electric wheelchair in front of a desk. Moreover, a Jaco2 robot is
attached to the wheelchair (see Figure 1). In addition, the multimodal interface is composed of: (1) a pair
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of gaze-tracking glasses and a hybrid brain–computer interface (BCI) based on electroencephalography
(EEG) and electrooculography (EOG); (2) context recognition sensors: two cameras to locate the object’s
position and the user’s mouth position; (3) sensors for the monitoring of physiological parameters
(breathing rate, heart rate, heart rate variability, galvanic skin response); and (4) a central server (YARP)
for the communication. YARP stands for Yet Another Robot Platform. The experiments and results
presented in this paper focused on the algorithms used for gaze-tracking and context recognition.

Figure 1. AIDE system integrates three different hardware modules: (i) a full-arm robotic exoskeleton or
a Jaco2 robot; (ii) multimodal interfaces, consisting of a pair of gaze-tracking glasses (Tobii glasses) and a
hybrid brain–computer interface (BCI) based on electroencephalography (EEG) and electrooculography
(EOG); and (iii) context recognition sensors: a RGB-D camera to locate the object’s pose and a camera
to compute the user’s head and mouth pose.

2.2. Calibration Methods Robot <-> RGB-D Camera

The objective of the calibration between the RGB-D camera and the robot is to make it possible to
transform the coordinates system from the camera to the coordination system of the robot. This problem
in robotics is known as hand–eye calibration. Specifically, it consists of estimating the homogeneous
rigid transformation between the robot hand, or end-effector, to the camera as well as to the world
coordinate system (see Figure 2). In the developed platform, the world coordinate system coincides
with the robot base and the camera is not in the final effector of the robot but in a fixed position
outside the robot. Let the rigid transformation of the robot-base to the end-effector be bBee, and
c Am be the transformation of the camera to an augmented reality mark system. This system is an
Aruco [38] mark mounted on a known pose on the robot thanks to a printed piece as can be seen in
Figure 3. The transformation eeUm between the mark and the robot end-effector is calculated using the
CAD schematics of the robot and the printed piece. Thanks to this, the position and orientation of the
end-effector can be expressed regarding the robot base and the camera system as shown in Equation (1).
From this equation (Direct Calibration), the direct transformation bTc can be easily extracted .

However, due to inaccuracies in the measurements and transformations obtained from the robot
kinematics, Aruco detection, and U transformation, the following four optimisation methods were
employed to increase the accuracy.

1. Standard Calibration: The implementation of the shape registration method in C++ [14].
2. XS Calibration: The c1 method of Tabb et al. [39].
3. XS2 Calibration: The c2 method of Tabb et al. [39].
4. Ransac Calibration: The OPENCV library implementation in C++ of the random sample

consensus method (RANSAC optimization).
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Figure 2. Schematic of the robot—camera problem.

Figure 3. Calibration program.

Methods 1 and 4 employ the strategy of estimating the transformation between a cloud of 3D
points expressed in the robot base and a cloud of the same points expressed in the camera system.
Methods 2 and 3 were developed by Tabb et al. [39], and are based on the homogeneous matrix equation
AX = ZB where Z is the transformation from camera to robot base and X is the transformation from
robot base to world coordinate. The difference between both methods is the cost function employed
for the optimisation of transformations, as shown in Equations (2) and (3), respectively.

(bBee ←→c Am ∗m Uee) (1)

c1 =
i=0

∑
n−1

||AiX − ZBi||2F (2)

c2 =
i=0

∑
n−1

∣∣∣∣∣∣Ai − ZBiX−1
∣∣∣∣∣∣2

F
(3)

27



Sensors 2018, 18, 2408

2.3. Eye-Tracking Detection

The hardware selected for this task was the Tobii© Pro Glasses 2. This hardware is a mobile
lightweight gaze tracker recording both point-of-regard and scene in front of the subject. The gaze
point data are sampled at 100 Hz with a theoretical accuracy and Root Mean Square (RMS) precision
of 0.5◦ and 0.3◦, respectively [40]. This device has two main components: head unit and recording
unit. The head unit is a glasses-shaped device with a full-HD RGB camera with a frame rate of 25 fps.
The Tobii© Pro Glasses recording unit can record to a Micro-SD (not used in this project), and has
battery support and two network interfaces (wireless and Ethernet). A C++ library was developed
that receives the video streaming of the glasses and the synchronized gaze point. No Tobii© SDK or
proprietary software was employed for this project. The developed software can configure the glasses
to work at different image resolutions, set-up frame rates (until 25 fps), and transmits via wireless or
Ethernet connection. For this application, only the wireless connection was employed due to some
issues detected during the integration phase of the project. Specifically, Tobii© Glasses internally
implement a UDP broadcast and an IP6 discovering devices protocol which is incompatible with
the YARP system. Gaze information is received in datagram ASCII. code via UDP protocol, and the
streaming video is encoded in H264 (also received using a UDP protocol).

The gaze position obtained from the Tobii© Glasses is enhanced using a median filter, obtaining a
more stable gaze point. In addition, due the higher acquisition rate of the gaze position than the RGB
camera (100 Hz vs. 25 fps), the median filter allows the filtered gaze position to be synchronized with
the RGB image.

A deep learning method called YOLOV2 [41] in combination with the gaze point gives us the
initial detection of the desired object. There are other deep learning methods to detect objects, such as
Faster-RCNN [42] or SDD [43]. However, YOLOV2 was chosen due its great efficiency and robustness in
real-time. Specifically, YOLOV2 was trained with the COCO image database [44], which has 91 classes
from the YOLOV2 . These classes cover most of the desired objects to manipulate (e.g., glasses, cutlery,
microwave, etc.) in this project. Moreover, in the event that a desired object was not in the dataset,
it could been trained. Finally, as a result of this stage, the class of the user-selected object is sent to the
object detection and pose estimation stage.

2.4. Detection and Pose Estimation

The method developed for the detection and pose estimation was derived from the detection
method of Stefan et al. [24], known as LINEMOD. The eye-tracking stage gives the ID of the object to
track, so the Hinterstoisser et al. algorithm [24] only has to search one class of model. Consequently, it is
more efficient, has a lower rate of false positives, and removes the scalability problem of different classes
of objects that the Hinterstoisser et al. algorithm experiences.

The LINEMOD method starts with 2D images (colour and depth) synthetically rendered from
different points of view and scales of the object 3D model. Viewpoints are uniformly sampled around
the object, like going over a virtual sphere with the object in its center. For each of the viewpoints, a set
of a RGB-D images and the virtual camera pose {R, t} are saved. Then, a vector of distinctive points,
as well as their associated descriptors, are calculated using the RGB-D information, as described in
Hinterstoisser et al. [24]. This method defines a template as V = ({Om}m∈M, ρ). O is the template
feature (surface normal orientation or gradient orientation). M is the image information (RGB or
depth). ρ is a vector of features locations r in the template image. Then, the generated templates
are compared in the region of interest (ROI) of the scene image I at location c based on a similarity
measurement over its neighbours ω:

(I, V, c) = ∑
r∈ρ

max
v∈c+ω

fm(Om(ω), Im(v)))). (4)
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This function fm(Om(r), Im(v)) measures the cosine similarity of the features. Then, an empirical
threshold is defined based on the score similarity score in order to decide if it is a match. The template
matching stage (Equation (4)) was efficiently implemented taking advantage of the SSE instructions
of modern CPUs. Furthermore, the detected templates could contain duplicate object instances,
so a template clustering algorithm is performed aggregating templates with similar spatial location.
However, this detection method can still throw false positives, so as in the original work, the colour
information (in the HSV colour space) and the depth information (using an iterative closest
point algorithm) were employed to filter these errors. Finally, the pose associated {R, t} with the
most similar template was refined with an iterative closest point algorithm—specifically with the
point-to-plane version.

The main contribution of this part is the optimisation of the LINEMOD detection method [45].
This method was redesigned in order to be multi-processing, so it was split into two independent
parts: one process is responsible for extracting the colour information from the RGB image (gradients),
while another process is responsible for extracting the depth information (normals from the surface).
These processes do not share memory between them so they can be executed in independent physical
cores for an optimum performance. Moreover, the post-processing part [24] was also optimised with
a multi-threading approach, responsible for eliminating false positives and refining the initial pose
obtained. This post-processing part is performed by an ICP algorithm and checking the colour for each
of the possible templates in different threads. These threads share memory in order to finish early the
execution when one thread finds a valid template. Our method is summarised in Figure 4.

Acquisition
RGB-D

camera frame

eye-tracking
detection

Calculation RGB
Linemod
Features

Calculation
Depth Linemod

Features

Linemod
Cluster &

Match Template

Post-Processing:
colour checking

and ICP

Post-Processing:
colour checking

and ICP
.........

Post-Processing:
colour checking

and ICP

Post-Processing:
colour checking

and ICP

Final ICP

3D Model ID

α β

τ1 τ 2

τ
N−1

τN

Figure 4. Flow diagram of the LINEMOD++ implemented algorithm. α and β are two independent
processes, and τ represents a thread. ICP: iterative closest point.
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2.5. Mouth Pose

The first step in the pose estimation of the mouth is to detect and recognise the user’s face.
Face recognition algorithms generally use 2D images for feature extraction and matching [46]. In order to
achieve better performance and accuracy, 3D images captured via RGB-D cameras can be employed [47].
Therefore, we decided to employ one for this project. Specifically, we chose the Intel® RealSense™ SR300
RGB-D camera. This camera implements a short-range (maximum 1.20 m) coded light 3D imaging system.
The small size of the SR300 provides system flexibility to allow design into a wide range of products.

The mouth pose is obtained using the landmark detection API of the RealSense™ SDK.
The algorithm employed returns 78 facial landmark points. For this project, we selected two pupil
landmarks and two extreme points of the mouth (left and right). Using these two last 3D points (L and
R) we estimate the mouth pose as follows:

Mp =
�LR
2

+ L. (5)

The point Mp is the center point of the mouth and the origin of the mouth pose. We set the axis so
that the x-axis is in the ( �LR) direction, z-axis is in the direction from Mp to the camera, and the y-axis
is calculated to be a right-handed coordinate system. In addition, based on the colour information of
the detected pupil landmarks, we can estimate if the user is blinking their eyes and know if it is the left
or the right eye. For this work, all mouth landmarks were employed to detect when the mouth is open
using the area of a convex hull calculated from all of the mouth points provided by the SDK.

3. Results

In this section, the results of different experimental sessions to evaluate the methods and/or
algorithms reported in this paper are described.

3.1. Calibration between Camera and Robot

The position and orientation errors measured using different calibration approaches are shown in
Figure 5. The most accurate method regarding position error was the standard method. In the case of
orientation error, the most accurate methods were XS and XS2 followed by the standard method. After the
evaluation of all the methods, we selected the standard one, which had the best results regarding position
error and an admissible accuracy regarding orientation error. Moreover, the comparison of the influence
of using different number of calibration points can be found in Appendix A.

Figure 5. Position and orientation errors using different calibration methods: (a) Position error
measured as a distance from the correct position; (b) Norm of the orientation error vector computed by
Rodrigues’ expression.
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3.2. Detection and Pose Estimation

In this section, the quantitative results of the detection and pose estimation method are described.
These results are compared with the works of other authors. Finally, a detailed analysis of the
computational performance of the algorithm was carried out, and as in the quantitative analysis, it is
compared with the work of other authors.

3.2.1. Quantitative Validation of the Detection and Pose Estimation of 3D Objects

To quantitatively evaluate the developed method, the LINEMOD dataset [24] was used. Although
there are other datasets (e.g., T-LESS [48], Tejani [37], among others), the LINEMOD dataset is
undoubtedly the most used by the scientific community to quantitatively evaluate detection and
pose estimation methods. The LINEMOD dataset is formed by 15 3D non-textured objects, of which
13 colour 3D models are available (see Figure 6). Each model has a sequence of RGB-D images (around
1200 images in each), in which multiple objects appear from different points of view and distances
(in a cluttered environment). Each image has the associated real pose (“ground truth”) of the object
and the intrinsic parameters of the RGB-D camera employed for acquiring the image.

Figure 6. Some 3D models of the LINEMOD dataset.

The most common metrics employed for comparing the different methods are:

• Average distance (AD): This metric was introduced by Hinterstoisser et al. [24] and is the most
employed to quantitatively evaluate the accuracy of pose estimation [19,26–29,49]. Given a set of
vertices of a 3D model, M, the actual rotation and translation [R, t] (“ground truth ”) and their
estimations [R̂, t̂]:

mAD =
1

|M| ∑
x∈M

||(Rx + T)− (R̂x − T̂)||2. (6)

when the 3D object is symmetrical, like some of the LINEMOD models (“cup”, “bowl”, “box”,
and “glue”):

mAD =
1

|M| ∑
x1∈M

min
x2∈M

||(Rx1 + T)− (R̂x2 − T̂)||2. (7)

Traditionally, it is considered that the pose is correct if mAD ≤ kmd, d being the diameter of
the object, and km a coefficient ≥ 0. Generally a km = 0.1 is used (i.e., 10% of the diameter of
the object).

• Shotton criteria (5 cm 5◦): Using this criteria [24] a pose is considered correct if the rotational error
is less than five degrees and the translational error is less than 5 cm. Please note that this metric
does not take the size of the object into account.

• 2D Bounding Box: This metric calculates the intersection over union (IoU) [50] between the 2D
bounding box obtained by projecting all the vertices of the 3D object with the real pose “ground
truth ” in the image and the 2D bounding obtained by projecting all the vertices of the object with
the estimated pose. A pose is correct if IoU > 0.5.
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• 2D Projections: This metric [36] sets a pose as valid if:

mProj =
1

|M| ∑
x∈M

||K(Rx + T)− K(R̂x − T̂)||2 (8)

is less than 5 pixels. M is the set of vertices of the 3D model, K is the matrix of intrinsic parameters,
[R̂, t̂] is the estimated pose and [R, t] is the true pose. It should be noted that this metric is the
most appropriate when you want to estimate the pose of 3D objects in an Augmented Reality
system, and so was not used in this work.

• F1-Score. Given PR as true positive, TPR the recall ratio (true positive rate), and PPV the
precision ratio (positive predictive value), F1 = 2 PR

PPV+TPR is defined. This metric has been used
in References [28,37].

3.2.2. Comparison of the Results with State-Of-The-Art Methods

Firstly, it is worth noting that unlike other authors, quantitative evaluation using the main
metrics was carried out in this work. This is of vital importance, since the results obtained often vary
substantially depending on the metric employed.

When comparing the results of our method with some of the most popular methods (Table 1) on the
LINEMOD dataset and with the AD metric, the results obtained are similar to those of the LINEMOD++
method proposed by Hinterstoisser et al. [24] (95.7% versus 96.6%). This is reasonable since the method
developed in this work is based mainly on the LINEMOD++ algorithm. Specifically, the proposed method
presents a series of modifications of LINEMOD++ in order to optimise the performance in real scenarios.

Looking in detail at the obtained results (see Tables 1 and 2) and comparing with the results
obtained from other similar works, our method improved upon the results of [17,26,27,35]. It also
exceeded by a wide margin the method SSD-6D [28], since it got 76.3% using the RGB information
and 90.9% with the RGB-D information compared to the 95.7% obtained in our method. Note also
that it improved the accuracy of the method of Brachmann et al. [36] when it only used the colour
information (50.2%). In addition, the described method improved the BB8 [29] method with or without
refinement of the pose (62.7%).

On the other hand, it matched the results obtained by the method of Zhang et al. [51]. In contrast,
the method of Brachmann et al. [36] was more accurate when the depth information was employed
in addition to the colour information; specifically, it achieved 99.0% with the AD metric in the
LINEMOD dataset.

When comparing with the work of [19], it is worth remarking that they only show the best results
of 8 of the 13 3D objects available in the LINEMOD database. Consequently, if we calculate the average
obtained using the AD metric of our method for these models, we obtained 96.5% versus 97.8% of the
method of Hinterstoisser [19].

Finally, it can be concluded that although more precise methods have appeared in recent years [28]
(all of them based on deep learning techniques), especially when the objects are partially visible, our
method was not only accurate enough compared to many of the methods in the scientific literature
(see Tables 1 and 2), but it was also (as will be seen in the next section) the fastest of all the methods
analysed in this work, allowing pose estimation in real-time with only the requirement of a 3D model
(not necessarily with colour) of the 3D object.

Additionally, Figure 7 shows some qualitative results of the estimated pose using our method in
the LINEMOD++ database. Specifically, a projection was done of a bounding box calculated using the
estimated pose (in green) and the ground truth pose (in red).
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Table 1. Comparison of the results between different detection and pose estimation methods on the
LINEMOD dataset [24] using the AD metric and km = 0.1, given as the percentage of objects in which
the pose was estimated with an error smaller than 10% of the object diameter.

Sequence Our Method LINEMOD++ [24] Drost [17] Hodaň et al. [26] Brachmann et al. [35] Hinterstoisser et al. [19]

Ape 97.3% 95.8% 86.5% 93.9% 85.4% 98.5%
Benchwise 95.4% 98.7% 70.7% 99.8% 98.9% 99.8%

Driller 93.0% 93.6% 87.3% 94.1% 99.7% 93.4%
Cam 95.0% 97.5% 78.6% 95.5% 92.1% 99.3%
Can 97.0% 95.9% 80.2% 95.9% 84.4% 98.7%
Iron 98.7% 97.5% 84.9% 97.0% 98.8% 98.3%

Lamp 99.2% 97.7% 93.3% 88.8% 97.6% 96.0%
Phone 97.1% 93.3% 80.7% 89.4% 86.1% 98.6%

Cat 98.8% 99.3% 85.4% 98.2% 90.6%
Hole punch 92.8% 95.9% 77.4% 88.0% 97.9%

Duck 99.1% 95.9% 46.0% 94.3% 92.7%
Cup 97.7% 97.1% 68.4% 99.5%
Bowl 97.8% 99.9% 95.7% 98.8%
Box 99.2% 99.8% 97.0% 100.0% 91.1%
Glue 96.9% 91.8% 57.2% 98.0% 87.9%

Mean 95.7% 96.6% 79.3% 95.4% 92.5% 97.8%

Sequence Zhang et al. [27] Kehl et al. [32] Zhang et al. [51] BB8 [29] SSD-6D with RGB-D [28]

Ape 96.3% 96.9% 93.9%
Benchwise 90.4% 94.1% 99.8%

Driller 95.2% 96.2% 94.1%
Cam 91.3% 97.7% 95.5%
Can 98.2% 95.2% 95.9%
Iron 98.8% 98.7% 97.0%

Lamp 91.4% 96.2% 88.8%
Phone 92.7% 92.8%

Cat 91.8% 97.4% 98.2%
Hole punch 97.8% 96.8% 88.0%

Duck 91.8% 97.3% 94.3%
Cup 99.6% 99.6%
Bowl 99.9% 99.9%
Box 99.8% 99.9% 100.0%
Glue 94.6% 78.6% 98.0%

Mean 94.7% 95.8% 95.7% 62.7% 90.9%

Table 2. Results of our detection and pose estimation system on the LINEMOD dataset [24] using
different metrics. The percentage is calculated as the number of times that the pose was estimated
correctly with respect to the total number of images for each of the sequences. AD: average distance;
IoU: intersection over union.

Model 6D Pose (5 cm 5◦) 6D Pose (AD) 2D Bounding Box (IoU) F1-Score (AD)

Ape (1235) 98.94% 97.33% 98.86% 0.9864
Bench Vise (1214) 95.46% 95.46% 95.46% 0.9768

Driller (1187) 93.09% 91.24% 93.85% 0.9542
Cam (1200) 95.08% 94.50% 95.17% 0.9717
Can (1195) 97.07% 91.88% 97.07% 0.9577
Iron (1151) 98.70% 98.00% 98.87% 0.9899

Lamp (1226) 99.26% 98.04% 99.26% 0.9901
Phone (1224) 97.11% 97.11% 97.11% 0.9853

Cat (1178) 98.89% 98.89% 98.89% 0.9944
Hole punch (1236) 92.80% 91.35% 92.72% 0.9547

Duck (1253) 99.12% 96.96% 99.12% 0.9846
Cup (1239) 97.74% 97.74% 97.66% 0.9881
Bowl (1232) 97.81% 97.81% 97.81% 0.9889
Box (1252) 99.28% 99.28% 99.28% 0.9963
Glue (1219) 96.97% 90.26% 96.97% 0.9495

Mean 97.15% 95.72% 97.20% 0.9779
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Figure 7. Results visualisation of the estimated pose using the LINEMOD dataset. The bounding
box projection of the actual pose is shown in red, and the estimated pose by our method is shown in
green (best viewed in colour).

Figure 8 depicts two objects employed in the AIDE project and its pose estimation. Please note that
the spoon CAD model was obtained by scanning the actual object using a KinectFusion algorithm [34]
and a RGB-D camera, while the plate CAD model was modelled using Autocad 3ds Max. This example
sustains the affirmation that our algorithm works with models with poor and high quality.
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Figure 8. Qualitative results visualisation of the estimated pose of two project objects. The spoon
model was scanned and the plate was modelled.

3.2.3. Computational Cost

One of the objectives of this work was to design a detection and pose estimation system that
worked in real-time so that the grasping system could correct the position and orientation of the object.
This feature is very interesting in our use case because the user selects the object of interest through
an eye-tracking system that works in real time so they can change the objective quickly. In addition,
it allows the grasping of moving objects. It is important to note that the performance analysis was
done with the limitation that only one object is detected and estimated simultaneously (common in
grasping systems).

The developed method had a total computational cost of 0.032 s (31.72 fps) obtained using a
battery test of sequences of the LINEMOD dataset, as can be seen in Table 3.

Table 3. Breakdowns of time in seconds of the detection and pose estimation algorithm on each of the
sequences of the LINEMOD dataset. The algorithm implemented in the project (multi-core version)
improved upon the performance of the LINEMOD++ algorithm by a factor of three [24].

Sequence Total Time (One-Core) Total Time (Multi-Core)

Ape (1235) 0.1070 0.0401
Bench Vise (1214) 0.0581 0.0289

Bowl (1231) 0.0748 0.0316
Cam (1200) 0.0646 0.0319
Can (1195) 0.0597 0.0288
Cat (1178) 0.0698 0.0308
Cup (1239) 0.0896 0.0367

Driller (1187) 0.0582 0.0291
Duck (1253) 0.0836 0.0333
Box (1252) 0.0830 0.0344
Glue (1219) 0.0837 0.0335

Hole punch (1236) 0.0831 0.0343
Iron (1151) 0.0621 0.0300

Lamp (1226) 0.0577 0.0287
Phone (1224) 0.0624 0.0288

Mean 0.0731 0.0320
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The developed method considerably improved the computational cost in comparison with
other similar works. Specifically, it exceeded by a factor of 3× the method on which it is based
(LINEMOD++) [24] (see Table 3), obtaining very similar results in precision (see the previous Section 2).
This is due to the optimisation performed in the original method. Table 3 shows the times obtained with
our parallelized algorithm and without parallelizing. Please note that the tests were performed using
the same number of templates as those cited by Hintertoisser et al. [24]. Specifically, 1235 templates
were used for each of the 3D models.

In addition, compared with other works (Table 4), our method considerably decreased the
computational cost using only the CPU. In more detail, when compared to detection and pose
estimation methods based on deep learning techniques [29,31] (with the exception of the SSD-6D
method [28] that works at 10 fps), these are very computationally expensive, preventing their use in
real-time. Furthermore, all of these methods require a high-performance GPU. In fact, the implemented
method exceeded in efficiency the following template matching methods [24,26,27], methods based on
geometric descriptors [17,19], and methods based on random forest [36,52–54].

Another outstanding aspect is that the implemented method estimates the pose independently
in each frame; that is, it does not use tracking techniques such as the one proposed by Tan et al. [55].
This makes it possible in future work to further reduce the computational cost if combined with any of
these tracking techniques. It is also important to remark that the obtained time results were calculated
after the analysis of the complete image captured by the camera (in this case of size 640 × 480).
However, in our case it was only necessary to analyse the regions of the image obtained from the
eye-tracking phase, and consequently the times obtained were further reduced.

The equipment employed for testing our algorithm was a computer with Intel Core i7-7700
(3.60 GHz) with 16 GB of RAM and an Orbbec Astra S RGB-D camera. Our method was implemented
in C++ with OpenMP. The optimisation in the detection algorithm was performed in the LINEMOD
algorithm implementation of the OPENCV library.

Table 4. Time comparison (seconds) of different methods for detection and pose estimation.

Method Time (seconds) Use GPU

LINEMOD++ [24] 0.12 s x
Hodaň et al. [26] 0.75 to 2.08 s

√
Brachmann et al. [36] 0.45 s x

Drost et al. [17] 6.30 s x
Hinterstoisser et al. [19] 0.1 to 0.8 s x
Doumanaglou et al. [53] 4 to 7 s x

Tejani et al. [52] 0.67 s x
BB8 [29] 0.30 s

√
Zhang et al. [51] 0.80 s –
Zhang et al. [27] 0.70 s x
Michel et al. [54] 1 to 3 s x

Do et al. [31] 0.10 s
√

SSD-6D [28] 0.10 s
√

Ours 0.03 s x

3.3. Mouth Pose System

The mouth pose algorithm was tested with different users during experimental sessions as can be
seen in Figure 9. In this figure, pupil landmarks are coloured yellow while mouth landmarks are red.
3D coordinates are written on the top of the images, and on the top-left corner there are three circle
indicators. These indicators change colour to green when the user has their mouth open or if the user
is blinking their eyes. These events are also communicated as numerical values and written in blue
text on the image. As can be seen, the algorithm worked well with/without facial hair, with glasses,
and with different genders.
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Figure 9. Qualitative results visualisation of the estimated mouth pose with five users. Red points are
the mouth landmarks and yellow points the pupil landmarks. The top-right circles indicate if the user
has their mouth or the eyes open (green) or closed (red) (best viewed in colour).

To assess the stability of the developed method, some extreme positions, partial face occlusion,
and wearing an eye-tracking system were tested (shown in the second row of Figure 9).

3.4. Eye-Tracking System

To evaluate the performance of object selection using the estimation of gaze point and detection
of the type of object already selected, an experiment was conducted with 10 healthy subjects.
The experiment consisted of the selection and detection of three kinds of objects (a glass, a bottle, and
a fork) wearing the Tobii Glasses. The user had to select the object whose name is shown on a screen
in front of the user. The name of the objects appeared randomly, and when the object was selected
an audio feedback was provided to the user. The performance of the system was near-excellent since
the percentage of average success was 90% and seven out of eleven users only had two or less fails in
20 trials (see Table 5). Regarding the average selection and detection time, the average selection time
of all users was around 10 s and the average detection time of all users was around 1 s (see Table 5).
Therefore, the users required around 11 s on average to select and detect the object with which they
want to interact. Moreover, we measured the angular movements of the neck during the experimental
session. The maximum range of motion of each joint was: flexion 15.27◦, extension 7.5◦, lateral rotation
(right) 68.08◦, lateral rotation (left) 41.01◦, lateral flexion (right) 14.54◦, and lateral flexion (left) 35.86◦.

Table 5. Object selection using the estimation of gaze point and detection of the type of object.

Users
Average Selection Standard Average Detection Standard Number

Successes Failures
Time (s) Deviation Time (s) Deviation of Trials

user 1 10.00 13.68 1.02 0.05 20 20 0
user 2 6.38 5.64 1.00 0.02 20 20 0
user 3 18.81 32.52 0.98 0.04 20 20 0
user 4 4.97 2.15 0.96 0.05 20 16 4
user 5 24.63 46.31 0.96 0.05 20 15 5
user 6 6.39 6.98 1.08 0.69 20 18 2
user 7 4.04 1.02 0.96 0.04 20 19 1
user 8 6.05 5.30 1.03 0.03 20 15 5
user 9 14.75 17.32 0.97 0.02 20 18 2
user 10 5.151 1.90 1.06 0.05 20 19 1

3.5. Experimental Results

The algorithms and methods presented in this paper were tested in real environments with
healthy subjects and subjects with different neurological conditions. The subjects used the hybrid BCI
system to trigger the movements of the Jaco2 robot: EEG to control the open/close movement of the
gripper and EOG to trigger the movement to grasp the selected object. In Figure 10, some images of
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the experiments are shown. The performance of the system was very good, and it is out of the scope of
this paper to report on the results regarding the use of the hybrid BCI system.

Figure 10. Images of the context recognition and eye-tracking systems in experimental tests. Examples of
object detection (cup and bottle) with the estimated gaze position (blue circle). Snapshots of the
experiments: grasping a bottle using the Jaco2 robot.

4. Conclusions

The AIDE project has developed a complete assistive robotic solution with a novel and
revolutionary modular and adaptive multimodal human–machine interface. The computer vision
algorithms have an essential role, as has been shown in this manuscript. On one hand, the object
selection algorithm is a very useful and natural robot–human interface because the user only needs to
stare at the desired object. Furthermore, the complete selection made by the users only costs around
11 s, with an average success of 90% in the test performed. On the other hand, a major contribution
presented here is the real-time detection and pose estimation method of textureless objects that allows
for precise grasping tasks. As shown in the results, this algorithm outperformed the state-of-the-art in
terms of computational cost, with similar precision results to the top methods. A thorough evaluation
was made against the popular LINEMOD so that the results can be compared with future methods.
Finally, a mouth pose algorithm was employed with the objective of safely operating the robot system.
Moreover, the complete assistive robotic system and sensing solution is mounted on a wheelchair,
giving a great deal of independence and accessibility to motion-disabled people.

As a future work regarding the detection and pose estimation topic, it is planned to explore
a deep learning approach. The main problems of the deep learning methods of pose estimation is
that they are not in real-time and it is difficult to obtain the ground-truth data for the training. It is
planned to design convolutional neural network that can be computed very quickly, like the YOLO
or SSD methods. Furthermore, this model should be able to learn from synthetic generated images.
This approach could improve the weaknesses of our method and maintain its strengths.
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Appendix A. Experimental Validation: Detailed Figures

Appendix A.1. Comparing the Influence of Using Different Numbers of Calibration Points for Each Method
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Figure A1. Results obtained by the direct calibration method using different numbers of calibration points.
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Figure A2. Results obtained by the standard calibration method using different numbers of
calibration points.
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Figure A3. Results obtained by the RANSAC calibration method using different numbers of
calibration points.
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Figure A4. Results obtained by the XS calibration method using different numbers of calibration points.
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Figure A5. Results obtained by the XS2 calibration method using different numbers of calibration points.
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Abstract: Throughout the last decade, a whole new generation of powered transtibial prostheses and
exoskeletons has been developed. However, these technologies are limited by a gait phase detection
which controls the wearable device as a function of the activities of the wearer. Consequently,
gait phase detection is considered to be of great importance, as achieving high detection accuracy will
produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait
percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called
this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was
obtained from seven healthy subjects that performed daily walking activities on the flat ground and
a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached
to the lower shank. The dataset was divided into training and validation datasets for every subject,
and the mean square error (MSE) error between the model prediction and the real percentage of
the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training
and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation
set was obtained when combining all subjects’ signals together. Although our experiments were
conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides
an opportunity to eliminate detection delays for real-time applications.

Keywords: gait phase prediction; gait event detection; lower limb prosthesis; exoskeleton;
gait recognition

1. Introduction

Gait phase detection is a non-trivial problem for the new generation of powered prostheses and
exoskeletons that are under development [1]. Gait phase detection algorithms are used to create and
improve control strategies that permit prosthetic devices such as those presented in References [2–5]
to work with more precision, safety, and stability. The objective of gait event detection algorithms
is to detect non-delayed events in order to build control strategies for improving gait movement.
For example, authors in [2] focused on a treatment to fix the amputee’s foot in the lifted position by
an orthosis. The technology known as functional electrical stimulation (FES) facilitates the artificial
generation of action potentials in subcutaneous efferent nerves during the swing phase of the paretic
foot by applying tiny electrical pulses via skin electrodes or implanted electrodes. By modulating
the frequency or dimensions of these pulses, one can control the contraction of paretic muscles and
induce movements in the affected limbs based on gait phase transitions. The foot pitch and roll angles
are assessed in real-time by means of an inertial measurement unit (IMU). They detected four phases
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based on measuring the angular velocity and accelerometer to control the pitch and roll of the foot.
Another example is the Ankle Mimicking Prosthetic Foot (AMP-Foot) [4]. This device greatly relies
on the accuracy of a gait event detection algorithm to precisely control the torque of the motor in
the device. This device stores energy in the springs during the first event of gait from initial-contact
(IC) to foot-flat (FF), then releases the energy stored in the push-off (PO) spring and transmits it to
the ankle joint by controlling the direct-current (DC) of the motor at the moment of heel-off (HO).
This joint effort provides a peak torque and power output to the amputee, producing a toe-off (TO)
event. After the TO, the amputee enters a swing phase where the torque of the motor is returned to zero
magnitude, allowing the foot to go back to its initial position, resulting in an IC event. Knowing when
all these events take place allows the device to take action at the right moment. Due to the different gait
terminologies used in different articles, in this paper we follow the wording of Figure 1. In this figure,
a gait cycle percent is defined as a sample from the continuous space of the gait cycle, an event is viewed
as a discrete representation of the percentage space, often labelled as IC, FF, HO and TO; a gait period is
considered as an interval between events, and a phase is considered as a union of several periods that
represent different stages of the gait cycle. Lastly, a full gait cycle is composed of a stance phase and
a swing phase. A more detailed description of different gait events is provided in Section 3. In the gait
percent detection literature, a large set of techniques for improving the performance of event and phase
detection can be found. These include threshold-based methods [3,6–8], time-frequency analysis [9,10],
peak heuristic algorithms [9,11,12], machine learning (ML) models [13–21], and combinations of
these [22]. ML algorithms are among the most popular techniques to detect phases in off-line data
(i.e., stored data) and for real-time data (i.e., data gathered in real time). For instance, authors in
References [17,19] detected four event-phases using hidden Markov models (HMMs). Evans and
Arvind [23] increased the number of event-phases to five, and applied a hybrid method that combined
fully connected neural networks (FNNs) and HMMs. The model accuracy of these algorithms is
dependent on the type of sensors used to gather the gait event signals. Currently, wearable sensors
are widely used for gait phase recognition systems: wearable sensors such as foot switches [14,24,25],
foot pressure insoles [6,16,26,27], electromyography (EMG) [28,29], IMUs [3,8,9,15,30–34], and joint
angular sensors [20,21] are used specifically for gait detection. A review in [35] showed that foot
switches and foot pressure insoles yield the highest accuracy for gait phase detection algorithms.
However, these sensors are very sensitive to the placement of the insole, which can influence the
accuracy and reliability of the model. Additionally, they have a short lifespan, as they are often exposed
to shock forces of the gait. Consequently, foot switches and foot pressure sensors are not considered
suitable for daily activity applications. In contrast, Joshi et al. used EMG sensors to accurately extract
up to eight gait phases [29]. EMGs are sensors that measure specific muscle activities occurring during
a task. Regardless of the amount of information that can be extracted from the EMG signals, a heavy
pre-processing step (e.g., a complex combination of filters) is required before it can be directly used in
a learning algorithm. Furthermore, these sensors are susceptible to artifacts generated by moisture that
builds between the skin and the sensors, and to the way in which they are placed on the skin of the
subject. Recently, IMUs including gyroscopes, accelerometers, and magnetometers have become more
popular, as they are not affected by most of the limitations of the aforementioned sensors. IMUs are
low-cost, low-energy, durable, and can be easily mounted on different parts of the human body.
Moreover, a human walking gait is a periodic cycle where IMUs can measure the angular velocities
and accelerations of the walking gait. As a result, these signals are composed of rich information
that can be used to accurately predict the gait events. Similar to EMG signals, IMU signals are very
sensitive to movement artifacts. This means that in some cases these signals may require a strong
pre-processing step before they can be directly used for learning. We hypothesise that deep learning
algorithms are best suited for gait phase detection using IMU signals, as they perform well on signals
that have a medium-low signal-to-noise ratio.
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Figure 1. A gait cycle is described as a dynamic and continuous occurrence of eight phases from the
heel-contact at 0% to the next heel-contact at 100% percent of the gait cycle. Phase 0 is initial double-limb
support, which appears during the first 10% of the cycle. Phase 1 is mid-stance, which appears from
10% to approximately 30% of the gait cycle. The following 10% of the gait cycle is terminal-stance.
The propulsion phase or toe-off occurs after foot flat from 40% of the gait. This stage pushes the body
forwards and prepares for swing phase from approximately 60% of the gait cycle. Single-limb support
occurs from foot flat until 50% of the gait-related opposite initial contact limb, typically at 50% of
the gait cycle. The second double-limb support occurs from the opposite limb at 50% until the toe
leaves the ground at 60% of the gait cycle. Then, the second single-limb support completes the cycle.
The following phases are early swing at approximately 60% to 75% of the gait cycle, mid swing at
approximately 75% to 85% of the gait cycle, and late swing at approximately 85% to 100% of the gait
cycle. Adapted from [36].

This paper introduces a novel gait percent detection model based on deep learning (DL) algorithms
that can predict a full gait cycle discretised within a 1% interval. Currently, most studies can accurately
detect four to eight phases. However, for real-world applications, it may be not sufficient for controlling
active prosthetic devices. As a result, a more densely sampled gait phase is needed in order to obtain
more important gait information and give more possibilities of control. The purpose of this study is to
open an opportunity for future active devices such as below-the-knee prosthetics to take full control of
the gait by accurately predicting the gait percentage in densely sampled phases.

2. Related Work

Due to the capacity of IMU sensors to measure the velocities and accelerations of motion, they are
generally used in the fields of gait phase detection, gait event detection, and gait detection. In this
section, we analyse and evaluate the performances and time delays of several recent gait phase
detection systems in the fields of transtibial prostheses and exoskeletons.

Evans and Arvind [23] presented a method for the detection of five gait phases based on
a feed-forward neural network (FNN) embedded in the hidden Markov model (HMM) model. However,
their sensor system had to use seven IMUs mounted on the foot, shank, both sides of the thigh, and one
on the pelvis. An implementation of complex threshold rules was further applied in exoskeletons in
References [8,37]. The study in [8] could detect seven gait phases, and Boutaayamou et al. could detect
four events in their study, with a temporal accuracy of around 10 ms [37]. However, systems in [8,37]
were required to use four sensors which were attached to the leg segments.
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Several papers have proposed applications for robotic prostheses that use signals from one IMU
attached to the shank or the foot [12,17,38,39] to detect four phases or events. Mannini et al. [17]
and Muller et al. [39] proposed two different models to detect four gait events in real-time using
one IMU. The former proposed an HMM and the latter proposed afinite state automaton to model
the transitions between phases. Nevertheless, both cases showed a time delay limitation in on-line
detection. For example, authors in [17] presented an average error latency of 62 ± 47 ms for FS and
86 ± 61 for HO. Moreover, authors in [39] reported delays when subjects were wearing or not wearing
shoes. For example, they reported approximately 0.1 ± 0.05 s for the TO and 0.01 ± 0.07 s for the IC.
Similar to our work, the recent study of Quintero et al. [40] worked on estimating the continuous
progression of the gait cycle by extracting the relationship between the thigh angle and velocity
extracted from one IMU. They transformed the angle–velocity relationship to polar coordinates in
order to predict the gait percentage. However, a comparison between their results and ours would
be unfeasible, as they only visually reported the accuracy of their technique. A study in [12] recently
announced an effective algorithm that detects four gait events (e.g, IC, TO, mid-swing (MSw) and
mid-stance (MSt)) based on a set of heuristic rules using one gyroscope attached to the shank of
subjects performing activities of daily living such as normal walking, fast walking, ramp ascending,
and ramp descending. However, this algorithm is limited to an off-line setting and to a non-detection
of the push-off event, which is considered to be an important phase before toe-off. Although they state
that their algorithm also works in an on-line setting, they do not show any evidence that supports
their results. In summary, in the course of our literature review, we encountered gait event detection
systems that limit their experiments to one IMU and to gait phases that were partitioned between
two [9,41,42] and three phases [3]. In this limited framework, they illustrated that a high accuracy
can be achieved. For instance, authors in [41,42] illustrated an accuracy of 100% in IC and TO event
detection. Zhou et al. [9] showed an accuracy of above 98% for IC event detection and 95% for TO
event detection on three different terrains. We also observed that in cases where the number of
phases is increased (i.e., to four phases [12,15,17]), the gait phase detection performance also decreases.
For example, the experiment in [15] yielded an average detection accuracy under 95% in every phase,
while Mannini et al. [17] showed a long delay of detection from 45 ms to 100 ms. The experiment in [12]
showed a mean difference error between the reference and the proposed system of approximately
+4 ms for IC and −6.5 ms for TO.

Recently, most studies have focused on improving the detection accuracy with the purpose of
applying real-time safety walking for amputees while at the same time increasing the number of
detectable gait phases for better control of the robotic device. However, we previously saw that
increasing the granularity of the phases leads to a significant decrease in the prediction accuracy.
To cope with this trade-off, we built a new deep learning architecture called the exponentially delayed
fully connected neural network (ED-FNN). This network is made to overcome most of the current
limitations in gait phase detection algorithms, such as predicting gait events with one IMU attached to
the lower shank with high phase granularity and no detection delay.

3. Materials and Methods

This section discusses the algorithms and materials that were used for our experiments section.
First, the concept of gait classification is introduced. Second, we describe how the walking gait is
typically discretised. Finally, a description of the ED-FNN architecture is provided.

3.1. The Division of the Human Walking Gait

The human walking gait is defined as a periodic cycle involving two legs from the initial contact
of one foot on the ground to the following occurrence of the heel of the same event with the same
foot. Typically, one gait cycle is divided into two main phases, including a stance phase which is
approximately 60% of a gait cycle and a swing phase which is approximately 40% of the remaining
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gait cycle [43]. The heel-contact and the toe-off events mark the beginning of the stance phase and the
swing phase, respectively.

The granularity of one step is equally divided into two, three, four, five, six, seven, and eight gait
periods depending on the specific type of application. This is done to define the label of the different
periods of the gait cycle [35]. An example of the different periods is shown in Figure 1, which illustrates
eight periods that were summarised into one gait cycle based on 100 percent of the gait [35,43].

In our study, we classified a full gait cycle discretised within a 1% interval based on real-time
measurements of the gait cycle. Doing so will allow prosthetic devices to have a wider spectrum of
control in the cycle. For example, the prosthesis AMP-Foot 3 plus [4] stores energy in the springs at
the mid-stance period and starts to inject positive energy at the terminal stance period by using a DC
motor. The detection of the terminal stance period is important for injecting energy at the right time.
At the initial swing and mid-swing periods, the trajectory for the next work situation (i.e., the next
walking phase) needs to be set. It is of great importance to command the control of the prosthesis just
before gait events happen in order to avoid action delay on the device. Therefore, an algorithm for
detecting 100% of the gait is required for the next concept of gait phase detection. For applications that
do not require a granular gait cycle, the phases can be mapped to the fundamentals of human gait
phases (Table 1) in order to control the prosthesis when needed.

Table 1. One gait cycle can be subdivided into eight typical phases based on the gait fundamentals
shown in Section 3.1. In this table Dorsi Assist means assisting the foot to bend up, Plantar Assist means
assisting the foot to bend down, and No Assist means that there is no assistant for the movement.
FF: foot-flat.

Label Phase Percentage Function Controlling

0 Initial Contact 0 to 8 Loading, weight transfer Dorsi Assist
1 Mid Mid-stance (FF) 8 to 30 Support of entire body weight: No Assist
2 Terminal Mid-stance (FF) 30 to 40 Center of mass moving forward No Assist
3 Push Off 40 to 50 Push Off Plantar Assist
4 Pre-swing, double-limb support, push off 50 to 60 Unloading and preparing for swing Plantar Assist
5 Initial swing 60 to 75 Foot Clearance Dorsi Assist
6 Midswing 75 to 85 Limb advances in front of body Dorsi Assist
7 Terminal Swing 85 to 100 Preparation for weight transfer Dorsi Assist

According to the fundamentals of human gait phases, the stance phase begins with IC from 0%
to 10% of the gait cycle. Initial double-limb support appears during the first 10% of the gait cycle.
The foot flat occurs from 10% until the heel leaves the ground at 40% of the gait cycle. Mid-stance
appears at approximately 30% of the gait. Single-limb support occurs from foot flat until 50% of
the opposite initial contact which is approximately at 50% of the gait cycle. The second double-limb
support occurs from the opposite limb at 50% until the toe leaves the ground at 60% of the gait cycle.
Then the second single-limb support starts until the cycle is complete. The following periods are early
swing at approximately 60–75% of the gait cycle, mid-swing at approximately (75–85% of the gait
cycle, and late swing at approximately 85–100% of the gait cycle. The fundamentals of human gait
phases are shown in Figure 1.

3.2. Percent Segmentation Method for the Gait Cycle

We propose a model that can predict the gait percentage that was equally divided into 100
one-percent fragments. To achieve this, we reused the method from [44] to segment input signals and
label output targets. We began by extracting the lengths of the walking steps from one heel-contact to
the next. Then, we sampled each heel-strike window with an interval of 10 ms. This resulted in several
signals that were stored as a matrix X of dimension R

p×(s∗d), where p is the percentage value, s is the
number of sensors, and d is the number of dimensions in an IMU sensor.
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3.3. Gait Prediction Model

We developed an exponentially delayed fully connected neural network (ED-FNN) that accurately
detects and forecasts gait percentage that was densely discretised. In Section 2 we showed that Evans
and Arvind [23] implemented a combination of FNN and HMM that had been previously used to
detect phases that had been partitioned into five events. However, coarse discretisation of the gait
is not sufficient to fully control prosthetic devices for real-world applications. In this section we will
describe the ED-FNN and show that this algorithm manages to simulate recurrent neural networks for
regression problems.

3.3.1. Fully Connected Neural Networks (FNNs)

An FNN is a collection of artificial neurons called computational units. These units are grouped
as a set of layers that are arranged in a hierarchical structure. FNNs are divided into input layer, hidden
layers, and output layer. The function of the input layer is to directly process the data given by the
user and forward it to the first hidden layer to learn complex representation of the data. This forward
process is repeated in the following hidden layers, allowing them to learn more specific characteristics
of the input data. The function of the output layer is to process the output of the last hidden layer
and generate a prediction that agrees with the ground truth of the given input data. This network
architecture is called a fully connected network because every unit in a layer is connected to every other
unit in the following layer. These connections are represented as weights and biases that express the
importance of a respective input to the output. The activation of each unit in a layer of the network is
computed by the following equation:

al = σ
(

θl al−1 + bl
)

, (1)

where θ ∈ R
n×k is a matrix denoting the weights between layers l and l − 1, al−1 ∈ R

k denotes the
activation units of the previous layer (l − 1), and σ is a predefined activation function. In the literature,
several activation functions (e.g., sigmoid [45], rectified linear unit (ReLU) [46], and softmax [47]) can
be found. For our model, we chose a ReLU activation function as shown in Equation (2) due to its
properties of avoiding saturation in the error gradients:

σ(z) = max(0, z). (2)

Modifying the weights and biases in every activational layer (al) will lead the overall model to
obtain a desirable output. To learn these weights and biases, the objective of the network is quantified
by means of a cost function. Several cost functions for neural networks (NN) are found in the literature,
such as the mean square error (MSE) [48] and cross-entropy [49]. For the purpose of gait percentage
detection, we use the mean square error (MSE) of Equation (3) to minimise the cost between the ground
truth of the data and the prediction of our model:

MSE
(θ,b)

(x) =
1

2N

N

∑
xi∈x

||h(θ,b)(xi)− y(xi)||2, (3)

where h(θ,b)(xi) is the prediction of the FNN and θ and b are the weights and the biases of the network.
This equation indicates that if the MSE is close to zero, then the weights and the biases reflect a good
representation of the given data. In an NN, gradient-based methods are used to back-propagate the error
from the output layer to every weight of the hidden units. The error gradient indicates the direction
in which the weights and biases of the units need to be updated. (Stochastic) gradient descent [50],
conjugate gradient [51], and Adam [52] are the most popular gradient-based methods that are used
in NNs.
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3.3.2. Exponentially Delayed Fully Connected Neural Network (ED-FNN)

Because FNNs do not hold any notion of time as they only consider the current example x,
a machine learning model needs to rely not only on the signal taken at time t but also on the history
of signals Xd = [xt−k, · · · , xt] to estimate present and future gait percentages y = [yt, yt+1, · · · , yt+n].
In this case, n indicates the number of gait events to estimate in the future, and k specifies the number
of IMU samples to take from the past. Recurrent neural networks (RNNs) are known to simulate
a historical behaviour by introducing memory that encodes information about what has been observed
in the past. Figure 2 shows the architecture of an RNN.

Figure 2. This figure illustrates the information flow in a recurrent neural network (RNN). The left
image shows an RNN as an infinite loop network where the model outputs are fed back as inputs.
The right figure is an unfolded representation of an RNN [53].

In a simple fully connected neural network (FNN), information flows back and forth from the
lower to the higher layers of the network, allowing it to learn higher-order representations of the input
data. A similar process is observed in RNNs, with the distinction that the network not only depends
on the inputs X, but also on the activations of the hidden units at previous time steps. As a result,
these networks will learn to map the sequence of inputs x = [xt−k, . . . xt] into output of sequences
o = [ot+1, . . . , ot+n]. RNN algorithms such as long short-term memory (LSTM) networks have shown
great success in many problems that contain temporal information (e.g., IMU signals) [54]. Based on the
characteristics of RNNs, it is clear that these networks have the capacity to accurately predict dense gait
events. However, we found that they generally require substantially more data than standard FNNs,
and they are computationally expensive, which poses limitations when working with microprocessors.
Consequently, in our research we created an NN architecture that simulates the “memory” of RNNs
and removes the aforementioned limitations.

To simulate a “memory” of an RNN, the input tensor X was delayed according to the
following equation:

D = [W(t−d):t]
T−1− f
t=d , (4)

where W[·]start:end is a window sequence from start to end, [xt]BA is a vector of elements xt that ranges
from A to B, T indicates the number of samples in the signal, and f is the number of percentage
values that will be predicted in the future. This equation constructs a tensor D of dimensions Rp×sd×s,
where p indicates percent index, sd indicates the delayed samples, and s indicates the number of IMU
sensors. This tensor is illustrated in Figure 3. Furthermore, the tensor D was reshaped into a matrix
Xd ∈ R

p×k in order to use this tensor directly in the NN. In this case, k = sd ∗ s ∗ d refers to the product
of the delayed samples, IMU sensors, and the dimensions of the IMU sensors. Finally, we generated the
output matrix Yd ∈ R

p× f , where p indicates the percentage index and f is the number of samples in
the future. Using the matrix, we oblige the network to always predict f percentage values in advance.
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Figure 3. This figure illustrates how the matrix D was created. Every sample in the inertial
measurement unit (IMU) is delayed by n times (in this case five times). The output matrix is shifted
n times into the future (in this case three times).

Using the matrix Xd directly in an FNN with a short delay d will yield bad predictions on the overall
trend, but it will be good at predicting fast changes in the percentage. This is because a one-to-one
mapping between neighbouring samples Xd and percent samples yd does not exist. In contrast,
using a Xd with long delays will be better at predicting the overall trend of the percentage, but less good
at predicting fast changes. A good trade-off between large and short delays will yield an optimal input
space to predict the gait percentage. One of the reasons why LSTM works well for time series is due to
its ability to choose which of the delay samples are important for the overall prediction. As a result,
in order to simulate this behaviour, we introduced the concept of exponential windows, which allows us
to make trade-offs between short and long delays. An exponential window is defined as:

ψ(Xd, δ) = Xd[t − exp(k)]δk=0. (5)

This equation uses the delayed matrix Xd and re-samples it using a smaller delay δ. Consequently,
we not only obtain a window that includes the knowledge of samples that are close by, but also obtain
knowledge of samples that are far away. Note that the number of samples which are close in time
are more densely sampled than those that are far away from t. This means that we are including
information that encompasses both fast changes in the percentage and samples that contribute to the
prediction of the cycle trend. Furthermore, applying this exponential window allows us to decrease the
number of input units that are needed to predict the gait percentages, which results in a substantial
decrease of computational power. Additionally, due to the forecasting properties of the network,
we also removed the delay limitations that arise when using algorithms on micro-controllers with low
memory and CPU power.

The network that was used in our experiments is made of one fully connected (fc) layer as input,
two hidden layers of six units, and an output layer of one unit. Furthermore, we found that training
one IMU sensor per input layer and concatenating them later decreased the variance between several
runs. Figure 4 illustrates the architecture of the NN. The concatenation of the weights and biases for
each layer was performed based on the following equation:

alc = [al−1
0 , · · · , al−1

s ],

θlc = [θl
0, · · · , θl

s],

blc = [bl
0, · · · , bl

s],

(6)

where s is the number of sensors that were modelled by different FNNs. Note that the activation of the
concatenated layer can be computed by modifying Equation (1) as:
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al = σ
(

θlcalc + blc
)

. (7)

Figure 4. This figure illustrates the exponentially delayed fully connected neural network (ED-FNN)
architecture. Initially, the network individually receives each sensor input from the matrix X in
Equation (5). Then, the network separately extracts the features of each sensor and concatenates them
into a single feature vector. Finally, the output layer uses the feature vector to forecast the gait events of
the cycle.

Regarding the framework of the ED-FNN, in order to keep the network architecture constrained
by the computation complexity, we chose six hidden units per layer. We found that this number of
units satisfied the computational limitations and the accuracy of the model. Moreover, with regard
to the sampling of Equation (5), we chose an exponential window of 1.6. We found that this window
yielded the best results for every subject in the dataset. Further optimisation of the hyper-parameters
could be done in future work by means of cross-validation techniques.

3.3.3. Performance Metric for the ED-FNN

To train the ED-FNN model, we used the MSE to minimise the cost between the prediction and
the ground truth. In addition to these metrics, we also calculated the mean absolute error (MAE) and
the coefficient of determination (R2). The absolute error is computed as:

MAE =
∑i |ŷi − yi|

n
, (8)

where ŷi is the predicted percentage of the model and y is the ground truth. Furthermore, we computed
R2 as:

SStot = ∑
i
(ȳi − y)2,

SSres = ∑
i
(ŷi − y)2,

R2 = 1 − SSres

SStot
,

(9)
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where ȳi is the mean of the ground truth and SStot and SSres indicate the total sum of squares and the
residual sum of squares, respectively. This metric is generally used to measure the correlation between
the prediction and the ground truth. If there is a correlation of 1, it means that the prediction fully
represents the ground truth.

4. Experiments

This experimental section is divided into three parts. First, Section 4.1 explains the electronic
board that was used to read the IMU signals. Section 4.2 describes the number of subjects and situations
that were performed in the experiments. Finally, Section 4.3 explains how the signals were recorded
and pre-processed.

4.1. Experimental Electronic Board Prototype, Experiment Protocol, Measurement System

In our experiments, an electronic board with one embedded IMU sensor was used. The board
was an Adafruit Feather M0 Bluefruit LE (using ATSAMD21G18 ARM Cortex M0 processor, clocked
at 48 MHz and at 3.3 V logic, 256 KB of FLASH ROM and 32 KB of RAM). Moreover, the charging
battery unit was designed to measure and monitor the voltage of the battery so we could detect when
it needed to be recharged. The board also supports a Bluetooth Low Energy component. This addition
makes it convenient for transferring data to the computer or designing mobile applications so that
amputees can easily monitor or even control their prosthesis. To measure the gait signals, we used
one IMU and two FSRs. The IMU (MPU 6000–Invensense) consists of a gyroscope sensor and
an accelerometer. This provides tri-axis signals of angular velocity and tri-axis acceleration of the lower
shank. Furthermore, the IMU was connected to the microcontroller via the SPI interface for the purpose
of high-speed signal transfer to the commuter (up to 1 MHz). The gyroscope resolution was set at a full
range scale of ±2000 degrees/sec with a sensitivity of ±16 g LSB/degree/s. Moreover, the resolution of
the accelerometer was set at a full range scale of ±16 g with a sensitivity of 2048 LSB/g (g = 9.8 m/s2).
Regarding the FSRs, we placed two of these sensors under the toe and the heel of the subject to detect
the impact of the foot with the ground. FSR signals were used as references for classifying gait events
and to build a dataset for training the ED-FNN algorithm. After pre-prossessing the IMU signals with
the FSRs, we removed these sensors for the training and prediction of the model. All signals were
recorded synchronously at intervals of 10 ms, then transmitted directly to the computer. This electronic
board was first used for collecting the data and creating a dataset. Additionally, we embedded the gait
percent detection algorithm combined with a device control program for the prosthesis.

4.2. Subjects

The data were extracted from seven healthy subjects with IMUs fixed with a belt placed on the
subjects’ lower shank, and two FSRs were placed under the toe and heel. Participants were five males
and two females. Their age ranged from 25 to 33 years, their height ranged from 160 to 185 cm, and their
weight ranged from 48 to 80 kg. We recorded different scenarios in two environments. In the first
environment, subjects walked on a treadmill with a 0 degree inclination. In the second environment,
subjects walked outside on a 0 and a 15-degree inclination. On the treadmill, each subject was required
to walk four different trials with different speeds. The speeds were divided into 2.2 m/s, 2.6 m/s,
3.2 m/s, and 3.8 m/s respectively. For outside walking, subjects performed normal speed (approx.
3.2 m/s) and fast speed (approx. 4.0 m/s). All trials were recorded for an interval of five minutes.
The number of steps of each subject was categorised as an example in the training data. On average,
each participant walked 275.0 steps in the overall experiment. All IMU signals obtained from each
participant were mixed together to build a larger dataset for training the network model. This resulted
in a dataset of 2313 walking cycles, as shown in Table 2. Merging the dataset allowed the model to
increase the chances of extracting the important features that are relevant in different walking gaits.

55



Sensors 2018, 18, 2389

Table 2. The number of samples and cycles in the dataset.

Subjects The Number of Samples The Number of Cycles

Subject 1 19,805 162
Subject 2 47,089 449
Subject 3 46,367 434
Subject 4 21,531 189
Subject 5 19,149 170
Subject 6 15,858 181
Subject 7 25,166 258
Subject 8 15,858 181

Data on the treadmill 78,473 451
Dataset (all samples and cycles) 269,491 2313

4.3. Off-Line Data Analysis

As mentioned earlier, FSRs were used to extract gait cycles and phases by measuring the heel-strike
and the toe impact with the ground. The location of FSRs under the sole can be seen in the right image
of Figure 5. The IMU’s position on the subject’s lower shank can also be seen in the right image.

A

B
2

1

Figure 5. Sensor positions of the IMU and the FSR on the foot. Arrow (A) illustrates the position of the
IMU, and arrow (B) the position of FSRs under the sole.

In Section 2 we described that the methodologies that divide the gait cycle into foutr or more
phases (see Table 1) yield acceptable results to classify the gait percentage. However, for real-world
applications, this phase granularity may not be sufficient for controlling active prosthetics. For this
reason, we want to open an opportunity for future active prosthetics to be able to fully control their
devices by accurately predicting the gait percentage in a densely discretised gait. An example can
be observed in Figure 6, which illustrates a gait cycle that was discretised within a 1% interval in
the real-time estimation of the gait cycle. Lastly, in comparison with [3,34,37,55], our model does not
require complex pre-processing steps, as it can deal with data with a high signal-to-noise ratio.
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Figure 6. The figure shows one gait cycle discretised with a 1% interval. The division was based on
measuring cycle latency, from an initial-contact (IC) at 0% to the next at 100%.

5. Results

The development of a gait percent detection model based on ED-FNN was described above.
The model was trained with the angular velocity and acceleration signals in the sagittal plane of the
foot. These signals were taken from healthy subjects walking at different speeds on flat ground and
on a 15-degree inclined terrain. The performance of our method was evaluated on individual and
group bases. Over several runs, we computed the mean loss and variance to determine the overall
performance of the model. Additionally, we generated a validation set to validate the generalisation
accuracy of our model.

For each subject, we computed the mean absolute error (MAE), mean square error (MSE), and the
coefficient of determination (R2). Table 3 gives an overview of the average error of all subjects and
the joined dataset. These values are shown as training and validation errors. Furthermore, due to
the number of subjects in the experiments, the visualisation of the results was divided into two parts.
The first part illustrates the learning process of the MSE prediction in four different plots: two for one
single subject and two for all-subjects’ signals combined. The second part individually illustrates the
overall MSE performance for every subject by means of a violin plot. The following table provides
a summary of the performance in Figures 7–9.

Table 3. The average error across every subject in the dataset and the error obtained when learning
in the joined dataset. To convert these errors into percentages (except R2), the equations for MSE and
MAE are given in Equations (10) and (11), respectively. Individual errors for each subject are shown in
Figure 9.

Error

t-MSE v-MSE t-MAE v-MAE t-R2 v-R2

Average 0.005 ± 0.0003 0.005 ± 0.0004 0.021 ± 0.001 0.023 ± 0.002 0.93 ± 0.003 0.881 ± 0.015
Joined 0.006 ± 0.0003 0.011 ± 0.0017 0.021 ± 0.001 0.041 ± 0.002 0.91 ± 0.004 0.828 ± 0.022

MSE% =
√

MSE × 100 (10)

MAE% = MAE × 100 (11)

5.1. Results: Part 1

In this section we illustrate the results for one subject and all the subjects’ signals combined.
Figure 7 shows the prediction and learning process of one subject. The Gyroscopey,z signals can be
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observed in the bottom plot in Figure 7a. Additionally, the prediction of the phase signal can be
observed in the top plot. Notice that the prediction almost perfectly follows the trend of the ground
truth. Moreover, we can see that this accuracy is reflected in Figure 7b, which shows the MSE of the
learning. In this plot we can observe that the MSE reached an average loss of 0.003 in the training
set and a value of 0.0028 for the validation set. The reason why the model performed better in the
validation set is because it was slightly under-fitting the data. This could be solved by increasing
the size of the NN. Figure 8a illustrates the gait prediction for all subjects’ signals joined together.
In this plot we can observe similar results to those in Figure 7a, with a difference in the accuracy of the
MSE. Here we can see that the validation set performed less well than in one subject alone. This was
expected, as the signals of each subject slightly vary. Furthermore, we can observe that the prediction
still followed the trend of the ground truth despite the decrease of accuracy. Based on these results,
we can conclude that the network managed to generalise well.

(a) Subject predictions (b) MSE learning curve

Figure 7. This figure shows the prediction and the results of the learning process for one subject.
(a) The ground truth and mean prediction of the gait phase discretisation divided into 100 portions
normalised between 0 and 1 (0 equals to 0 percent and 1 equals 100 percent of the gait cycle). The bottom
figure shows the y and z signals of the gyroscope sensor; (b) The mean and variance of the mean square
error (MSE) learning curve. The average of MSE reached a loss of 0.003 in the training set and 0.0662 in
the validation set.

(a) Joined predictions (b) MSE learning curve

Figure 8. This figure shows the prediction and learning process results of the joined signal for several
subjects. Similar to Figure 7, (a) shows the comparison between the prediction and the ground truth
and (b) illustrates the learning curve of the MSE. The average MSE reached a loss of 0.006 in the training
set and an average of 0.0115 in the test set.
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5.2. Results: Part 2

This section describes the MSE violin plot for every individual subject in the experiments.
In Figure 9, the colours of the plot show the distributions of the training and the test MSEs. Each violin
in the plot belongs to one subject in the experiments, and the last violin plot belongs to all the subjects’
signals combined. These results show that the ED-FNN accuracy was consistent over every subject in
the dataset. Furthermore, thanks to the concatenation of the layers in our network, we can observe that
the variance between different runs was small. As a result, it increased the robustness and reliability of
our model.

Figure 9. This figure illustrates the MSE for every subject in the experiments. Each number in the x-axis
from 1 to 7 represents a subject in the experiments. Violin plots 7, 8, and 9 were of two 15 degree incline
walks and to all subjects’ signals combined, respectively. Every violin plot consists of two distributions
(i.e., Train—blue and Test—orange ) and the mean of the MSE. The distributions illustrate the MSE
variance over 100 runs. This figure shows that the ED-FNN managed to accurately predict the gait
cycle over several subjects.

5.3. Reference System

We observed that our algorithm was able to accurately predict 100 percent of the gait cycle. To our
best knowledge, this setting has never been done in previous studies. Furthermore, we showed that
the MSE managed on average to achieve a 0.003 in both validation and training sets. We expect the
real-time performance to be very similar to the off-line performance. It is difficult to compare our
algorithm with other studies, as our setting is not standard. However, Table 4 lays out the performance
of other existing gait phase prediction systems using one IMU.

Table 4. This table compares existing gait event predictions with our method using one IMU. Every
method was applied on lower limbs. FF: foot-flat; HO: heel-off; IC: initial contact; TO: toe-off.

Author
Detectable Events

or Phases
Performance Metric Detection

Ledoux et al. [42] (2018) IC and TO −1.7% ± 0.6 stride (IC),
−1.8%± 0.6 stride (TO) Detection delays On-line

Zakria et al. [12] (2017) IC and TO 3.92 ms ± 1.56 (IC),
−1.81 ms ± 4.03 (TO) Time difference Off-line
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Table 4. Cont.

Author
Detectable Events

or Phases
Performance Metric Detection

Maqbool et al. [41]
(2016) IC and TO 15.44 ms ± 25.2 (IC),

−28.44 ms ± 16.2 (TO) Time difference On-line

Zhou et al. [9] (2016) IC and TO

95% (TO: upstairs),
99% (IC: upstairs),

99% (TO: downstairs)
98% (IC: downstairs)

Detection
precision On-line

Mannini et al. [17] (2014) IC, FF, HO, TO

62 ms ± 47 (IC),
−3 ms ± 53 (FF),
86 ms ± 61 (HO),
36 ms ± 18 (IC),

Time difference On-line

Muller et al. [39] (2015) Detected four phases 100 ms ± 50 (TO),
50 ms ± 79 (IC) Time difference On-line

Quintero et al. [40]
(2017) 100 gait percent Reported visually Theory Off-line

Our method 100 gait percent 2.1%± 0.1 MAE—No delay Off-line

6. Conclusions and Future Work

Over the recent decades, gait phase detection algorithms have become a challenging topic for
researchers due to their extensive application in assistance devices. One example is improving the
gait phase detection accuracy in prosthetics so that amputees can safely use these devices. To date,
many gait phase detection methods have been developed. However, these methods use only one
sensor, and often detect gait cycles on a low granular domain of the phase space. In order to take full
control of current prosthetics, we proposed a robust walking gait percent detection method that can
detect 100 percent of the gait cycle for walking on flat ground and on a 15-degree inclination. Because
other similar methods have shown that the accuracy of gait phase detection algorithms is suitable for
ambulatory applications, we showed that our method yielded state-of-the-art performance for these
applications. In summary, our study obtained the following outcomes:

• A compact system using one IMU mounted on the lower shank.
• A model that is capable of learning highly discretised percentages of the gait cycles.
• An average mean square error of approximately 0.003 in both training and validation sets for

single subjects.
• A model that generalises toward several subjects with an average MSE of 0.006 in the training set

and 0.01 in the validation set.
• A model that is consistent over several subjects. (i.e., low variance between several runs).
• A model with powerful forecast capabilities that introduces a no-delay prediction method within

10 ms.

It is important to note that our tests were performed on ARM chips, which are known to
underperform when conducting heavy mathematical computations. Because our experiments were
purely offline, computational cost was not a concern. However, our model was built with the purpose of
working on scenarios where computational power is an issue. The ED-FNN requires less samples than
a normal FNN or RNN. Consequently, it takes less computational power for prediction. Additionally,
we also included a forecasting option that allows the network to predict future percentages in the case
of a delay in the system. Furthermore, we would like to point out that we are not learning on the ARM
chips directly. Instead, we learn the models in a normal computer and then make the predictions in the
ARM chip. Lastly, in the near future we plan to leave aside the Beagle Bone Black and use other more
powerful alternatives, such as ODROID-C2 boards or neuromorphic computation.
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For future work we will focus on improving the prediction accuracy and evaluation with different
walking conditions such as stair walking and real-time implementation with the newest prosthesis
version of the AMP-Foot [4]. Additionally, the hyper-parameters of the ED-FNN model will be
improved by means of cross-validation methods.
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Abstract: This paper presents a system that combines computer vision and surface electromyography
techniques to perform grasping tasks with a robotic hand. In order to achieve a reliable grasping
action, the vision-driven system is used to compute pre-grasping poses of the robotic system based on
the analysis of tridimensional object features. Then, the human operator can correct the pre-grasping
pose of the robot using surface electromyographic signals from the forearm during wrist flexion and
extension. Weak wrist flexions and extensions allow a fine adjustment of the robotic system to grasp
the object and finally, when the operator considers that the grasping position is optimal, a strong
flexion is performed to initiate the grasping of the object. The system has been tested with several
subjects to check its performance showing a grasping accuracy of around 95% of the attempted
grasps which increases in more than a 13% the grasping accuracy of previous experiments in which
electromyographic control was not implemented.

Keywords: surface electromyography; computer vision; grasping; assistive robotics

1. Introduction

Nowadays, robots can perform a variety of tasks to help human operators in their work [1]. The use
of robots to collaborate with people with disabilities in industrial environments is a growing sector.
For instance, several studies analyse the execution of manufacturing tasks by disabled people [2,3].
In this line, robotic assistive technologies have been successfully introduced following two different
approaches. They are used to assist humans who have motor disabilities to perform daily activities.
Typical examples are prosthetics devices and exoskeletons for motor substitution, or smart homes where
household tasks are performed and controlled by automatic systems. These technologies also provide
novel rehabilitation therapies to recover motor function and reduce further complications. Essentially,
assistive technologies seek to improve the well-being of humans with disabilities [4].

The inclusion of assistive robotics in industrial applications contributes to the improvement of
occupational health of human operators. Tele-operation systems increase the degree of assistance
in dangerous manipulation tasks. Their goal is to make a system capable of mimicking and scaling
the movements of a human operator in the control of a manipulator avoiding the risks of handling
dangerous products or carrying out dangerous actions. Before including assistive technologies in
industrial tasks, several teleoperation aspects must be considered. One of them is the feedback to the
user, therefore the use of haptic interfaces [5] is critical to obtain a more natural feeling of the robot
operation. Another important aspect is the additional assistance given to the user in the performance of
the assigned task; focused, for instance, on the possibility of providing an amputee with the capability
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of performing bimanual tasks [6]. The need of interacting with the environment requires of vision
systems to recognise the working place and provide a proper manipulation of the products [7].

A good option to achieve a proper tele-operated robotic manipulation is to implement
solutions based on techniques that provide reliable control signals from the human operator. Surface
electromyography (sEMG) allows a system to record the electrical activity of muscle contractions in
a non-invasive way [8]. The use of this information to control external devices is called myocontrol.
Myocontrol techniques have been usually developed to obtain a reliable actuation of assistive devices
in the field of prosthetics. This actuation ranges from simple binary control commands to complex
multidimensional control [9,10].

Complex techniques have been applied to multi-finger prosthetic devices and robotic hands.
However, myocontrol is generally limited to a few hand grips and still unreliable in realistic
environments [11]. To avoid these limitations, several approaches have been recently proposed.
One option is to provide a proper sensory feedback to the subject to close the control loop [12,13].
However, this option is still limited to the low accuracy in the classification of complex biomechanical
tasks. Another alternative is the introduction of multimodal control of the robotic actuation which
may provide a good solution to the unreliability of multidimensional control. In this case, another
control method, such as gaze-tracking or electrooculography, is combined with myocontrol to increase
reliability and speed [14,15]. Its main disadvantage is the increased workload on the user as both
interaction methods must be controlled simultaneously.

To solve the problems arisen from the previously described solutions, we propose the use of
a shared control of the end effector of the robot arm. To achieve this, complex positioning and grasping
tasks are performed by an alternative system and sEMG processing provides high-level commands.
In this case, myocontrol will be combined with a vision-based grasping system.

Grasping is one of the most significant tasks which is performed by humans in everyday manipulation
processes. In recent works, robots have been provided with the ability to grasp objects [16,17]. It is
often possible to see robots autonomously grasping objects in many industrial applications in which the
environment is not dynamic and where both geometry and pose of objects are known. Therefore, the
proper pose of the robotic hand or gripper to grasp the object is computed only once. This process is
repeated whenever it is needed. More recently, robots are beginning to be self-sufficient and they are
reaching a great level of autonomy to work without human intervention in unstructured scenarios or with
dynamics in which the kind of objects or their poses are unknown, for example in industrial applications
as in [18] and in storage and logistic applications [19].

Many grasp methods have been made possible by the advances in visual perception techniques
of the environment, both 2D [20] and 3D [21]. In general, both techniques combine computer vision
algorithms and traditional machine learning, the first for the extraction of object features of the scene
and the second for the recognition of the objects by comparison and classification of extracted features
with features from a dataset of known objects. Thereby, visual perception has allowed robots to have
the ability of grasping in a similar way to humans, though under certain conditions, making use of
object recognition algorithms [22–24] and pose estimation algorithms [25,26]. Recently, a significant
number of new approaches have been proposed to localize robotic grasp configurations directly from
sensor data without estimating object pose using training databases of real objects [27] or synthetic
objects (CAD models) as in [28].

However, currently it is still not possible to compare the ability of robots and humans to grasp
objects in a generic way, for each and every situation. The main drawback of applying visual perception
techniques to accomplish a completely autonomous grasping is the great variability of the kind of
objects (geometric shape, pose and visual appearance such as color or texture) that can be present in
an environment. This demands a large datasets of training data to implement a robust algorithm to
avoid ambiguity in both recognition and location processes of the objects in the scene. The proposed
system may solve both the more relevant issues of grasping and the complexity of multidimensional
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myoelectric control, by combining the visual-driven system with simple electromyographic analysis,
based on ON/OFF sEMG commands.

2. System Architecture

2.1. Vision-Guided Robotic Grasping System

The system architecture is composed of a PA-10 industrial robot arm (Mitsubishi, Tokyo, Japan).
This robot has seven degrees of freedom (DoF). The robot arm is controlled as a slave in a client-server
software architecture managed from a Robot Operating System (ROS) framework. The PA-10 is
connected to a server module installed on a computer acting as the PA-10 controller, and both elements
are communicated via the Attached Resource Computer NETwork (ARCNET) protocol. The robot
is always waiting for commands generated from the orders given by the computer vision algorithm
running in the slave module. This module is also responsible for the planning and simulation of
trajectories computed from the information obtained from the vision algorithm and from the data
supplied by the sEMG system. In addition, the robot arm has an Allegro hand (Wonik Robotics,
Seoul, Korea) attached to its end effector with a payload of 5 kg. It is a low cost and highly adaptive
multi-finger robotic hand composed of 4 fingers and 16 independent torque-controlled joints, 4 for
each finger. The Allegro hand is connected to the slave module via the Controller Area Network (CAN)
protocol. The implementation of the system, with its different components, can be seen in Figure 1.

Additionally, the architecture of the system includes a RealSense Camera SR300 (Intel, Santa
Clara, CA, USA). It is a depth-sensing camera that uses coded-light methodology for close-range depth
perception. With this sensor, the system can acquire 30 colour frames per second with 1080 p resolution.
SR300 is able to capture depth in a scenario from a distance between 0.2 m and 1.5 m. It is ideal to
obtain shapes of real-world objects using point clouds.

(a) (b)

Figure 1. Pre-grasping pose of the robotic system computed by the vision algorithm. (a) Real robotic
system in which the grasps are executed. (b) Simulation system where the movement is planned and
the robotic hand pose is evaluated.

2.2. Electromyography -Based Movement Control System for Robotic Grasping

After positioning the robot hand in front of the object, subjects perform a fine control of the
grasping action by reorienting the end effector left or right and then provide the control output for
the final approach to the object and subsequent robot hand closing. To obtain these control outputs
surface electromyography has been recorded from the forearm during the performance of wrist flexion
and extension.

To record surface electromyography (sEMG) signals a Mini DTS 4-channel EMG wireless system
(Noraxon, Scottsdale, Arizona, USA) has been used (Figure 2). Two sEMG bipolar channels have been
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located over the flexor digitorum superficialis (FDS) and the extensor carpi radialis longus (ECR) of the
forearm. Signals have been acquired with a sample frequency of 1500 Hz, then low-pass filtered below
500 Hz, full-wave rectified and, finally, smoothed with a mean filter of 50 ms (Figure 3).

Three different states have been classified from the filtered sEMG signal corresponding to a weak
wrist flexion, a weak wrist extension and a strong wrist flexion. To classify these states, two thresholds have
been defined to identify weak contractions (flexion on the FDS and extension on the ECR). Additionally,
a higher threshold has been defined for strong contractions of the FDS (Figure 3). A ROS message is sent
with the decoded output commands to the robotic system. This classification is performed every 0.5 s.

Weak flexion and extension is used to adjust the end effector in the z-axis (direction of the hand)
with an initial step of 5 cm. These corrections can be performed through several control commands.
When the robot end effector changes direction, the initial step is reduced to a 50%, which allows a fine
adjustment of the position of the robot end effector avoiding a loop between end locations. Finally,
when the operator thinks that the robot hand is properly positioned a strong flexion is used to perform
the final approach to the object and the subsequent grip action.

Figure 2. Surface electromyography (sEMG) system acquiring data from a subject.

Figure 3. EMG raw signal for several flexion/extension wrist movements (left). Processed EMG signal
and estimative thresholds (right).

3. Proposed Method for Grasping

The proposed method consists of two phases. First, the vision algorithm detects the presence of
unknown objects on the scene, segments the scenes to obtain clusters of each object (each cluster is
a point cloud) and then, it computes grasping points on the surface of each of the objects (Figure 4).
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The method is flexible to obtain grasping points of objects even changing the scenario providing that
objects are located on a table or flat surface. Once the vision algorithm provides the robot with the
optimal grasping points of the object, the robot plans the trajectory in order to position the robot hand
to grasp the object. Occasionally, the grasping of the object is not optimal. For this reason, the method
adds a second phase which is used to plan fine hand robot-object interactions. In this step, EMG-based
teleoperation of the robot hand-arm is performed to accomplish a successful and stable grasp without
slipping and avoiding damage to the object.

3.1. Grasping Points and Pose Estimation

The algorithm calculates pairs of contact points for unknown objects given a single point cloud
captured from a RGBD sensor with eye-to-hand configuration. Firstly, the point cloud is segmented in
order to detect the objects present in the scene. Then, for each detected object, the algorithm evaluates
pairs of contact points that fulfil a set of geometric conditions. Basically, it approximates the main
axis of the object using the major vector obtained by running a Principal Component Analysis (PCA)
extraction. Then, it calculates the centroid in the point cloud. With this information, it is possible to
find a cutting plane perpendicular to the main axis of the object through its centroid. The candidate
contact areas are at the opposite edges of the surface of the object that are close to the cutting plane.
A standard grasping configuration consists of one point from each of these two areas. Figure 4 shows
all these steps graphically.

These candidate areas, in which the robot hand can be positioned, contain multiple potential
points so the vision algorithm evaluates a great variety of grasping configurations for the robot hand,
using a custom metric that ranks their feasibility. Thereby, the best-ranked pair of contact points
is selected, since it is likely to be the most stable grasp, given the view conditions and the used
robotic hand. The algorithm takes into account four aspects: the distance of the contact points to
the cutting plane, the geometric curvature at the contact points, the antipodal configurations and the
perpendicularity to the contact points.

Figure 4. Steps of the method for calculating a pair of contact points. Scene Segmentation: clouds of the
detected objects. Grasping Points Calculus, executed for each detected object: (1) grasping areas with
potential contact points, (2) curvature values and a pair of evaluated contact points, (3) best ranked
pair of contact points.
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The first one, distance of the contact points to the cutting plane, is important because it is assumed
that the grasping of the object is more stable as the robotic hand grasps closer to the centroid of the object,
which is an approximation of its centre of mass. This way, the inertial movements caused throughout the
manipulation process of the object are more controllable. The second aspect, the curvature, is considered
to avoid the grasps of unstable parts on the object surface. The goal is to place the fingertips on
planar surfaces instead of highly curved areas that are prone to be more unstable. Grasping objects
on non-planar areas can cause a slip and fall of a grasped object when it is being manipulated, for
example, if the robot arm executes a lifting movement. Regarding to the third aspect, contact points
should be located on places where the robotic fingers can apply opposite and collinear forces (antipodal
configuration). Finally, it is desirable to have contact points that are connected by a line perpendicular to
the main axis of the object. That is, the contact points are equally distanced from the cutting plane.

The aforementioned aspects are used to define a quality metric to evaluate the candidate contact
point and to propose the best grasp points to carry out a successful grasp of the object on the scene.
Accordingly, this quality metric ranks with greater values the grasping configurations that place the
robotic hand with its palm point towards the object, its fingertips perpendicular to the axis of the
object, parallel to the cutting plane and close to the centroid of the object. Notice that this operation is
performed for every detected object. Consequently, the final pose of the robot hand is calculated using
the best ranked grasping configuration and the approximated main axis of the object.

Our vision algorithm only computes pairs of contact points. This is assumed to avoid the method
being dependent on the type of robotic hand mounted at the end of the robotic arm. Two points are
the minimum required for a simple robotic gripper but also, any multi-finger robotic hand can adapt
its grasping configuration to two points on the object surface. In the experiments, we use an Allegro
hand with four fingers, one of which acts as the thumb. In practice, it is assumed that the grasps will
be done with three fingers. This number has been limited to three because the Allegro hand size is
often bigger than the object size which will be grasped.

In order to perform three-finger grasps, the algorithm takes into account the following criterion:
one of the contact points corresponds to the place the thumb must reach during a grasp, while the other
contact point remains between the first two fingers (index and middle). This means that the first and
second finger wrap around the second contact point. In this way, the grasp adapts its configuration
to only two contact points even though the hand uses three fingers. In addition, the robotic hand is
oriented perpendicular to the axis of the object, meaning that it adapts to the pose of the object.

When the human operator has selected the desired object that will be grasped, the robotic system
guided by the vision algorithm performs the following steps to reach it:

1. First, the robotic hand is moved to a point 10 cm away from the object. This is a pre-grasping
position which is used to facilitate the planning of the following steps. The pre-grasping position
is computed, from location (position and orientation) of contact points on the object surface,
by the vision algorithm previously described.

2. Second, the robotic hand is moved forward facing the object with its palm and the fingers opened.
In this step the hand reaches the point in which, after closing, it would place the fingertips on the
calculated contact points.

The correctness of this position depends on the calibration of the camera position with regards to
the world’s origin as well as lighting conditions and reflectance properties of the objects in the scene.
Owing to this, the proposed method performs the correction of the robot hand using the sEMG signals.
But also, sEMG can be used to accomplish a proper grasp of objects in a complex manipulation.

3.2. Collaborative System with Both Visual and Electromyography Data

The proposed solution has been implemented using the ROS in order to develop nodes in charge
of different responsibilities but keeping a communication framework among them. One node has been
created, called pointcloud_listener, where point clouds are read and processed to perform the calculus
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of the grasp contacts. This node publishes a custom ROS message called GraspConfiguration where the
point clouds of the objects and the calculated grasp contacts are stored.

Another node, called allegro_control_grasp, subscribes to this topic and reads the published contact
points to generate a grasp pose for the robotic gripper. Then, it proceeds to plan a trajectory following
the steps listed in the previous section. MoveIt! [29] has been used to perform this trajectory planning.
Once it reaches the grasping position, the EMG control starts. To do so, it subscribes to a topic
called/emgsensor/move where the correcting movements are published.

These corrections are published by a third node called emg_reader, which processes the sEMG
signals in order to provide messages of type geometry_msgs/Quaternion. This type of ROS message
allows us to describe the direction of movement for the arm that the operator wants to perform in
order to correct the position of the robotic gripper. Thus, using one of the axis of the Quaternion,
we can specify in which axis we want to move the gripper. The w term is set to 1 when we detect the
grasping pattern in the EMG signal so the allegro_control_grasp node closes the gripper and continues
to lift and carry the object.

It is important to note that this message is constantly published by the emg_reader node but
the allegro_control_grasp only reads them after performing a correction. This means that messages
published during the physical movement of the robot are ignored and, as soon as it stops, the control
returns to wait for a new message in the topic. Figure 5 shows a scheme of the nodes and their
interactions through ROS.

Figure 5. Scheme of the proposed method implemented in Robot Operating System (ROS) showing
communication modules among different steps.

4. Experiments and Discussion

4.1. Test Design

Six subjects (age 24.5 ± 6.2 years old, four male and two female) without previous experience
on myoelectric control participated in the experimental tests. First, subjects were asked to perform
several wrist flexion and extensions at different force levels and thresholds were visually chosen from
the processed sEMG signals of the FDS and ECR. After selecting the proper thresholds, subjects were
asked to freely perform wrist contractions and the classification output was shown to them until they
felt comfortable with the myoelectric setup.

The experimental tests were divided into three sets of grasping activities, each one for a different
positioning of the object. The object, a cylindrical plastic can (23 cm height, 8 cm diameter), was
placed vertically (position 1), horizontally (position 2) and in a diagonal orientation (position 3). Each
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grasping activity was performed five times for each position and subject. Subject 5 did not perform the
last set (position 3) of grasping tasks due to fatigue and technical problems.

During the grasping activity, the visual-driven robot arm positioned the robotic hand facing the
side of the object and then, subjects were asked to readjust the z-axis (weak wrist extension or flexion)
and then grasp the object voluntarily with a strong wrist flexion. The accuracy of classifying sEMG
signals was measured by counting correct sEMG commands (classification success), no detections
(if muscle contraction was present but the control command was not generated) and errors in
the classification output. No detections were manually counted from the visualization of correct
contractions that did not reach the selected thresholds. Errors were counted as wrong generated
commands. Grasping accuracy was measured by counting correct graspings of the object, i.e., if the
object did not flip or fall from the robotic hand.

4.2. Results and Evaluation

Tables 1–3 show the results obtained on sEMG performance (classification success, no detection,
classification error) and grasping performance in terms of accuracy (ACC), i.e., percentage of correct
grasps. sEMG accuracy was obtained by dividing successful classifications by performed contractions.

Table 1. sEMG performance and grasping accuracy for object position 1.

Subject Success Error No Detection sEMG ACC Grasping ACC

A01 10 0 0 100% 100%
A02 10 0 1 91% 100%
A03 10 1 2 77% 100%
A04 8 1 0 89% 100%
A05 10 0 0 100% 80%
A06 6 2 1 67% 80%

Average 9.00 0.67 0.67 87.23% 93.33%
Standard deviation 1.67 0.82 0.82 13.20% 10.33%

Table 2. sEMG performance and grasping accuracy for object position 2.

Subject Success Error No Detection sEMG ACC Grasping ACC

A01 8 1 0 89% 100%
A02 10 1 1 83% 100%
A03 10 0 1 91% 100%
A04 8 1 0 89% 100%
A05 10 1 3 71% 100%
A06 10 0 2 83% 100%

Average 9.33 0.67 1.17 84.46% 100.00%
Standard deviation 1.03 0.52 1.17 7.12% 0.00%

Table 3. sEMG performance and grasping accuracy for object position 3.

Subject Success Error No Detection sEMG ACC Grasping ACC

A01 10 0 1 91% 80%
A02 10 0 0 100% 100%
A03 10 1 0 91% 100%
A04 10 0 1 91% 100%
A06 8 1 0 89% 80%

Average 9.60 0.40 0.40 92.32% 92.00%
Standard deviation 0.89 0.55 0.55 4.38% 10.95%
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From the results, it can be concluded that both sEMG and grasping accuracy is high. sEMG errors
or no detections do not always affect grasping accuracy as the robot hand is quite well positioned
with the visual-driven system alone. It is interesting to notice that for object position 2 the grasping
is always successful. This is possibly due to the fact that the object is placed horizontally to the
ground and, as it is cylindrical, it sometimes rolls until touching the thumb of the hand when the
hand is repositioned. Nevertheless, grasping for the remaining object positions is also very accurate
(93.33% ± 10.33% for position 1 and 92.00% ± 10.95% for position 3). Regarding sEMG classifications,
errors are fewer than no detections. A possible solution to reduce these errors is a longer training of
the subjects (in these tests, subjects were naïve to myoelectric control systems). Another option could
be the use of a more conservative threshold selection. This will prevent the appearance of errors but
would probably increase the no detections increasing the time taken to perform the grasping.

The results of a previous experiment, in which only the visual-driven system was used, are compared,
in Table 4, to the results of the proposed sEMG-based system. Visual-driven tests are automatic, so there
is no direct implication of a human operator in the positioning of the robot and the following grasping.
The error for experiments without EMG represents two kind of errors. One of them is due to the slipping
of the object during the grasping tasks. Other errors occurred because the hand position is not properly fit
with vision techniques. Both cases are mostly solved when sEMG control is added to the grasping system.
This way, sEMG can be used to correct the hand pose and its grasps, showing an increase in grasping
accuracy close to a 9% using the same cylindrical object. Besides, the accuracy increases up to a 15% if it
is compared with other grasping experiments using other cylindrical objects Consequently, the average
increase in accuracy is around 13.8% considering the 81 trials without sEMG.

Table 4. Comparison of the grasping accuracy for the proposed (visual data + sEMG) compared to the
previous method (only visual data).

Subject Trials Success Error Grasping ACC

with sEMG 85 81 4 95.29%
without sEMG (same object) 15 13 2 86.66%

without sEMG (other cylindrical objects) 66 53 13 80.30%

5. Conclusions

In this paper, we propose a method based on combining both computer vision and sEMG
techniques to allow a human operator to carry out grasping tasks of objects. The proposed method has
been demonstrated and validated by several human operators with different ages and sex. To do this,
our method uses a vision algorithm to estimate grasping points on the surface of the detected object
and moves the robotic hand-arm system from any pose to a pre-grasping pose according to the object.
Then, sEMG signals from arm muscles of human operators are measured, processed and transformed
into movements of the robotic hand-arm system. Thereby, the human operator can readjust the robotic
hand to properly grasp the object. The results show an increase of around a 9% in grasping accuracy
compared to the use of the visual-driven system alone with the same object and around a 15% with
similar cylindrical objects.

The proposed method evaluates a simple ON/OFF myocontrol classification algorithm based on
a threshold selection with a very high reliability and that could be easily translated into an industrial
environment with the introduction of low-cost sEMG devices such as the MYO Thalmic bracelet or
Arduino-based acquisition systems. Additionally, specific expertise is not needed to instrument the
sEMG system, as the location of electrodes on flexor and extensor muscles is straight-forward. This
is a first approach towards bridging the gap between human operators with and without disabilities
in industrial works in which grasping and manipulation tasks are required. In the future, we hope
to integrate more signals to control additional degrees of freedom during the movement to generate
better grasps and more complex manipulation tasks.
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Abstract: A few prosthetic control systems in the scientific literature obtain pattern recognition
algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such
systems are not natural and intuitive. These are some of the several challenges for myoelectric
prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective
to estimate unavailable measures based on other available measures, is being used in other fields of
research. The virtual sensor technique applied to surface electromyography can help to minimize
these problems, typically related to the degradation of the myoelectric signal that usually leads to a
decrease in the classification accuracy of the movements characterized by computational intelligent
systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to
maintain the classification accuracy after the occurrence of the following contaminants: ECG interference,
electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying
Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are
compared to define the most robust model for the virtual sensor. Results of movement classification
were presented comparing the usual classification techniques with the method of the degraded signal
replacement and classifier retraining. The experimental results were evaluated for these five noise
types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system
without using classifier retraining techniques recovered of mean classification accuracy was of 4% to
38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification
considering all signal contaminants and channel combinations evaluated was the classification using the
retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method
recovered the classification accuracy after the degradations, reaching an average of 5.7% below the
classification of the clean signal, that is the signal without the contaminants or the original signal.
Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused
by signal contamination related to degrading events over time. There are improvements in the virtual
sensor model and in the algorithm optimization that need further development to provide an increase
the clinical application of myoelectric prostheses but already presents robust results to enable research
with virtual sensors on biological signs with stochastic behavior.

Keywords: biomedical signal modelling; virtual sensor; cross-correlation; self-recovery; fault-tolerant
sensor; signal disturbance

1. Introduction

Advances in the intuitive and natural prosthetic control with multiple degrees of freedom
could significantly improve the quality of life of amputees [1–3]. However, a robotic hand based
on non-invasive techniques is still a challenge in real application [4], especially when dealing with
long-term usage. The myoelectric signal changes over time explain the difficulty of applying an
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intuitive and natural system. The myoelectric signals of a human being may change for reasons such
as electrode conductivity changes that may be due to transpiration or environmental humidity, muscle
fatigue, atrophy or hypertrophy, electrode displacement on the skin, changes in movement execution
and the force intensity applied by the user [5–7].

The development of systems adaptive to these changes in the sEMG signal is necessary to obtain
more intuitive and natural control myoelectric prostheses, but most of the recent developments are not
adapted to such changes [4–11]. The sEMG signal is a stochastic time-series based on the physiological
muscle properties and the subject muscle contraction form [12]. The same stochastic behaviour that
provides the sEMG signal hinders its estimation.

Several solutions have been developed to reduce the interference in the acquired biomedical
signals. However, a residual interference of these interferences still presents [13–20]. The signal
contamination by motion artifacts causes data irregularities. Nonetheless, the effects of motion artifacts
can be reduced by proper design of the electronic circuitry and set-up, but not eliminated [21]. The ECG
interference is difficult to remove with conventional filters because the contamination overlaps with
the sEMG signal in both the time domain and frequency domain [22]. For these reasons, it is essential
to design classification systems that are robust enough to operate on signals containing such artifacts
or can detect these artifacts so that signals containing them are discarded.

Virtual sensors are an emergent and intelligent tool which have been successfully used in
other fields [23–26]. Usually, they are used to replace physical sensors [25,27,28]. They can also
be used as part of fault detection methodologies, where their output is compared to the corresponding
sensor [24,29–32]. The concept of virtual sensors is also present in studies in the context of wearable
sensors [27,33] and physiological signals [34]. In Ref. [33], a multi-layer task model based on Hidden
Markov Model (HMM) was presented and applied in the context of gait analysis. This virtual
sensor approach research confirms the application effectiveness while maintaining high efficiency and
accuracy. The virtual sensing service presented in [35] was used to estimate human body temperatures
of various parts of the body by integrating human physiological models with measurable sensor data.
In [34], a virtual sensor estimated the respiratory rate performance for time intervals, starting from a
single-lead electrocardiogram signal.

The operation principle of these sensors is based on the mathematical model estimation of
the collected data. The novel approach of the extensive fault-tolerant motion classification system
consists of the use of the virtual sensor concept to reduce the impact over time of the sEMG signal
degradation, combined with a fault-tolerant signal quality analysis detector. This study evaluated
the five most common contaminants in sEMG signals [7,11,36]: motion artifacts, amplifier saturation,
electrode displacements, power line interference and ECG interference. The study in [11] of signal
contamination insertion and detection presents a one-class Support Vector Machine (SVM) successfully
employed to detect a variety of contamination in sEMG signals with different SNR levels. There are
also studies [11,36] that specifically identify which contaminant is present in the signal. Moreover, a
signal quality analysis system in conjunction with re-training of the classifier in the removal of the
contaminated channel is presented in [7].

The purpose of a virtual sensor model is to produce a signal output model independent of the
physical acquisition of the signal of interest. The surface electromyography signal modeling is designed
combining concepts of multichannel and their cross-correlation to replace degraded signal channels.
This approach is referred to as multichannel cross-correlation. The objective of this new processing
system is to maintain the classification accuracy after some signal degradation without the need for
any retraining or calibration.

In this research, two types of sEMG signal modeling are evaluated: Time-Varying Autoregressive
Moving Average (TVARMA) and the Time-Varying Kalman filter (TVK). The TVARMA models have
already been used to improve non-stationary signal models [37]. Furthermore, the Kalman filter model
has been used extensively in other fields [37–42], where it is considered an extremely efficient and
flexible signal processing tool, and it is also employed in other virtual sensor enforcement [31].
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Moreover, the system was evaluated in the characterization of seventeen hand-arm segment
movements and the resting positions through the sEMG signals of twelve surface electrodes positioned
on the upper limb. Regarding the number of subjects, ten non-amputee subjects and ten amputee
subjects from the Non-Invasive Adaptive Hand Prosthetics (NINAPro) database were used to evaluate
the mean classification accuracy of the system presented in this work.

2. Methods

2.1. System Overview

The processing and classification of the sEMG signals can be divided into the following seven
experimental procedures to simplify the designed method: database loading, contaminated signal
simulation, pre-processing, fault-tolerant detection, virtual sensor, feature extraction, and classification.
The experimental system starts with the loading of NINAPro sEMG database. Before the common
step where the data is preprocessed (filtering, rectification, and normalization), the stage of simulated
contamination signals is composed of sixteen cases of contaminated electrode studies for each one of
five types of contamination simulated from real examples of signal contamination.

The researchers in [43–45] reported differences in the classification accuracy with the processing
with pre-recorded data and real-time performance. Signal processing with pre-recorded data typically
presents a higher movement accuracy. Consequently, the fault-tolerant detection, virtual sensor
production, and feature extraction were performed online by scanning each of twelve-channel sliding
windows to providing a suitable solution to the replicate real-life situation. However, the classification
step was performed offline to perform the statistical analysis of the results. The features extracted of
each case study are saved separately for further classification.

The sensor fault-tolerant detector (SFTD) performs quality analysis for sEMG signals using a
two-class SVM, where the training occurs with selected signals. The training occurs in advance with
sEMG signals with real acquired noise, several samples of clean sEMG signals, and their contamination
based on motion artifacts, amplifier saturation, electrode displacements, power line interference and ECG
interference. Only a few samples from the database of both intact and amputated subjects were used for
the SFTD training. The objective was to train the detection sensor for the different amplitude variations of
the sEMG signal. The same trained SFTD is then used for all subjects analyzed. When the SFTD detects
that there is contamination in more than 70% of the signal for the last 3 s analyzed, the virtual sensor
performs the signal modeling of interest for TVARMA and TVK models. One limitation of the response of
the SFTD is that virtual sensor activation does not occur for noise bursts lasting less than 2.1 s.

The features were selected based on results obtained in other studies [46,47]. The features Mean
Absolute Value (MAV), Root Mean Square (RMS), Wave Length (WL), Maximum Fractal Length (MFL)
and Power (PWR) are extracted. Each procedure is detailed in the next subsections. The experimental
procedures can be seen in Figure 1a. All data saved from each subject have the same number of
samples. The features extracted were used in the multi-class non-linear SVM classification in different
analyses of setting classification cases, according to Figure 1b. The first analysis case corresponds to
the usual classification, where 50% of the signal data without degradation were used for training and
the other 50% for the test. The signal without degradation or the original signal was referred in this
study as the clean signal. For cases 2, 4 and 6, the classifier training still remains using 50% of the clean
signal. However, the other 50% of the corresponding data of the test are replaced with the signals
with degradation inserted (case 2), the virtual sensor signal with the TVARMA model (case 4) and
the TVK model (case 6). Case 3 analyzes the retraining of the classifier and test without the degraded
channel detected by the SFTD. The last cases analyze the re-training of the classifier and test with the
clean signal dataset with the replacement of the degraded windows by the virtual sensor with the
TVARMA model (case 5) and the TVK model (case 7). In these two last cases, the training and the test
were performed with the replacement of the signal by the models at all points detected by the SFTD.
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(a) (b) 

Figure 1. The experimental procedures (a) Flowchart of the method performed; (b) Description of SVM
classification setting.

2.2. NINAPro sEMG Database

The NINAPro project provides to the scientific community a database of sEMG signals.
This database utilizes 12 active wireless electrodes of the DelsysTM TrignoWireless System® [48].
The twelve electrodes are placed on the forearm, with eight uniformly spaced electrodes just beneath
the elbow at a fixed distance from the radiohumeral joint, two on the flexor digitorum and the extensor
digitorum, and two electrodes on the main activity spots of the biceps and the triceps. Figure 2
demonstrated the positions of the electrodes on the arm. NINAPro data is acquired using a NI-DAQ
PCMCIA 6024E platform (National Instruments, Austin, TX, USA) at a rate of 2 kHz, 12 bits and with
a lower than 750 nV RMS [49].

 

Figure 2. The positions of the electrodes.

The timestamp was based on the virtual model of the orientation screen after the realignment
treatment of each movement’s limits and the start and end time adjustment [50]. The timestamp
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generated from the stimulus videos was used to segment the signal. This study also does not monitor
the subject-applied force and does not use any feedback procedure.

During a signal acquisition session, a subject was required to perform six repetitions of 17 distinct
movements (i.e., a total of 102 movements) which were interspersed with periods of rest in which
the subject’s hand was in the resting position. The movement is performed for 5 s, interspersed with
pauses of 3 s to allow the volunteer to rest. The rest position and the 17 distinct movements are
presented in Figure 3.

Figure 3. The hand-arm segment movements: (a) rest position; (b) hand movements; (c) Rotational
movements; and (d) Wrist movements. The sequence of movements from 1 to 18: rest position; thumb
up; flexion of ring and little finger, thumb flexed over middle and little finger; flexion of ring and little
finger; thumb opposing base of little finger; abduction of the fingers; fingers flexed together; pointing
index; fingers closed together; wrist supination and pronation (rotation axis through the middle finger);
wrist supination and pronation (rotation axis through the little finger); wrist flexion and extension;
wrist radial and ulnar deviation and wrist extension with closed hand.

The first ten non-amputee subjects (aged 29 to 45 years) and ten amputee subjects (aged 32 to
67 years) of the NINAPro database were evaluated in this study. One amputee volunteer of NinaPRO
database had an extremely noisy signal and was consequently excluded from the analysis. In these
subjects, the SFTD detected similarities among the types of degradation evaluated in almost all the
channel windows. The number of volunteers kept the same the number of amputee subjects and
non-amputee subjects. The clinical characteristics of the analyzed amputated subjects provided by
NINAPro are listed in Table 1.

Table 1. Clinical characteristics of the amputated subjects.

Subject Age Handedness Amputated Hand (s) Amputation Cause Remaining Forearm (%) Year Since Amputation

1 32 Right Right Accident 50 13
2 35 Right Left Accident 70 6
3 50 Right Right Accident 30 5
4 34 Right Right and Left Accident 40 1
5 67 Left Left Accident 90 1
6 32 Right Left Accident 40 13
7 33 Right Right Accident 50 5
8 44 Right Right Accident 90 14
9 59 Right Right Accident 50 2
10 45 Right Right Cancer 90 5

2.3. Preprocessing

The pre-processing step aims to perform the digitized signal segmentation, rectification, and
normalization. In real-time applications of prostheses, the classification is frequently based on the
features extracted from the segmentation by sliding windows [51]. In this type of segmentation, the
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analysis window slides along in increments, adding new collected data and discarding the oldest
data [52]. Majority voting strategies are commonly used to minimize the classifier output error when
dealing with sliding windows [51,52]. Other studies suggest that the controller delay has to be as
approximately 100 ms [29] and the top limit must be of roughly 300 ms [8,48,53].

The study in [48] analyzed the mean classification accuracy according to the window length
variation in the NINAPro database. The study used sliding windows of 100, 200, and 400 ms with
an increment of 10 ms for all analysis windows and they obtained the best accuracy with a window
length of 400 ms. However, they did not analyze whether the effects of changing window length and
increment variation were significant regarding the subject and the movement change.

Some researchers have already demonstrated that classification accuracy increases when the
pattern recognition is performed on larger data windows [47,50,52,53]. However, this ends up
increasing the time which is required to collect and process a more extensive dataset [52]. Thereby, a
more significant amount of data results in features with lower statistical variance, which increases
classification accuracy. The optimal mean classification accuracy for the different sliding windows
is dependent on both the classifier and the feature extracted. Therefore, comparing results between
studies with different characteristics are difficult. Thereby, this study chooses to use the sliding window
size of 300 ms with the increment of 75 ms most common in the literature.

The Butterworth filter used on the signals was a digital band-pass filter of order 20 with a
frequency range of 20 to 500 Hz. The sampling frequency was 2 kS/s. The normalization was
performed separately for each channel considering all channel data. This method is not suitable
for online processing. The online normalization must be standardized by a calibration procedure
capturing the muscle signals in rest time and a moment of maximum voluntary contraction (MVC).
However, the NINAPro database does not contain this information for calibration [54–56].

2.4. Sensor Fault-Tolerant Detector (STFD)

The SFTD performs a quality analysis of sEMG signals based on the presence or absence of
contaminants in the sEMG signal. The SFTD uses a two-class SVM that classifies a signal with or
without contamination. The disturbances were simulated by the Matlab® R2016b software using real
signal contamination data samples as standard. In Figure 4 a comparison between each contaminant
insertion in a clean sEMG signal sample with examples of a sEMG signal sample with acquisition noise
can be observed. Each artificial contamination was approximated to a real acquisition of contaminated
signal, except for ECG interference. The sEMG signals with actual acquisition of ECG interference are not
possible in the forearm.

The correct detection of the occurrence of disturbances in the sEMG signal can allow the
application of techniques to reduce the impact on movement classification accuracy. The contamination
detection by the SFTD in sEMG signals was based on the results described in [11]. Their research
already used the SVM trained only with clean signals and tested with artificially contaminated signals
with different SNR levels. Their results show that a one-class SVM could be successfully employed to
detect a variety of contaminants in sEMG signals. Differently, this proposed study sought to deepen
the SFTD knowledge with the signals training with contamination and observed in real acquisitions of
sEMG signals without varying the SNR level.

The data used for the SFTD training are composed of samples from some channels of the NINAPro
database and real samples of contamination. The training occurred in advance of all signal processing.
The signal quality test occurs for each sliding window of the 12 electrode channels. The developed
method does not compromise online processing and can be applied to any subject. The operation
analysis of this fault-tolerant detection requires a broad system for study the identification accuracy of
the 5 types of contaminants. Therefore, it is essential to specify the simulation of the contaminated signal.
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2.5. Signal Contamination Simulation

Some studies identify which contaminants are present in the signal [36]. However, this information
is not relevant if the focus is to find a unique solution for all contamination cases. The classifier
retraining disregarding the contaminated channels obtained significant results to maintain classification
accuracy. Nevertheless, other studies observed that there is a processing cost to update the classifier
only with the channels without contamination [7,57]. Also, there is not yet a thorough study in the
processing cost to retrain the classifier after the end of the contaminant occurrence.

Figure 4. The comparison of each contaminant insertion in the clean sEMG signal of the subject 1 sample
in four repetitions of movement 7. The clean sEMG signal sample in (a) is artificially contaminated
by Motion artefacts in the first column in (b), by Amplifier Saturation in the first column in (c), by
Electrode displacements in the first column in (d), by Power line interference in the first column in
(e) and by ECG interference in the first column in (f). The second column in (b–e) are the sEMG signal
samples with the acquisition of real noise.
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The performance analysis of this new approach which includes the virtual sensor in conjunction
with STDF was carried out through different study cases for each contaminant type. Sixteen cases of
contamination were examined for each contaminant type, where, in each case, artifacts were inserted
into one channel or a combination of channels. The channels which were contaminated in each case
are described in Table 2. The research in [58] related the impact of channels combination in the mean
classification accuracy of the NINAPro database, demonstrating that include the signals of the biceps
and triceps are a positive influence on the movement recognition. The channel combinations analyzed
was select for the influence verifies of each channel and the influence of acquisition region of the upper
limb. It essential note that this study not evaluated the variation effect of SNR and not changing the
gain of the artifact signal before insertion.

Table 2. Channels contaminated in sixteen cases for each contaminant type.

Case Channels Contaminated Case (Cont.) Channels Contaminated (Cont.)

1 The 1st electrode of eight uniformly spaced electrodes 9 Flexor digitorum electrode
2 The 2nd electrode of eight uniformly spaced electrodes 10 Extensor digitorum electrode
3 The 3rd electrode of eight uniformly spaced electrodes 11 Bicep electrode
4 The 4th electrode of eight uniformly spaced electrodes 12 Tricep electrode

5 The 5th electrode of eight uniformly spaced electrodes 13 Flexor digitorum and extensor
digitorum electrodes

6 The 6th electrode of eight uniformly spaced electrodes 14 Bicep and tricep electrodes

7 The 7th electrode of eight uniformly spaced electrodes 15 Flexor digitorum, extensor digitorum, bicep
and tricep electrodes

8 The 8th electrode of eight uniformly spaced electrodes 16 All eight uniformly spaced electrodes

The simulated contamination covers the entire channel period for each channel degradation case
study before window segmentation. The motion artifact signals simulated to contaminate sEMG signal
were estimated models based on the real signals acquired according to the tests described in other
studies [7,36]. The electrode displacement artificially contamination was generated by Added White
Gaussian Noise (AWGN) of 15 dB [36]. The amplifier saturation was implemented by addition of six
sine waves with a random frequency between 200 and 240 Hz as analyzed in the sEMG signal sample
with acquisition amplifier saturation noise and based on another study [11].

A sine wave, which has a frequency of 60 Hz, its harmonics, and an amplitude of 0.4 V, was added
to the signals to simulate power line interference. The ECG artificial interference occurred with ECG
database available from PhysioBank ATM of Physionet (http://www.physionet.org) with the same
sampling frequency of sEMG signal. The ECG interference does not occur in the electrode position
in this work that is why the acquisition of real noise is not demonstrated. However, the interference
detection was analyzed for the application of myoelectric protheses and the ECG interference is present
in severe cases of left upper limb amputation, depending on where the electrodes are positioned and
whether Targeted Muscular Reinnervation (TMR) occurred. The ECG signal was normalized and
added to sEMG signal with maximum amplitude was established at 0.2 for the detection tests.

2.6. Virtual Sensor

The initial idea of this study was conceived through studies of cross-correlation coefficient
analysis applications involving investigation of the crosstalk among different sEMG channels [59] and
analysis of the degree of synchronization between the surface electromyography recordings for the
two muscles [60]. We approached the idea that there is some cross-correlation coefficient between the
muscular fibers or muscles of the same hand-arm segment in the performance of the movement and
this idea was called multichannel cross-correlation (MCC).

The cross-correlation (rxy) between two sEMG signal channels (x, y) was normalised (cxy) for the
number of channels (M), which is the same for all channels. The novel approach called multichannel
cross-correlation for utilization on the virtual sensor provides the base of the signal modelling of TVARMA
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and TVK models. The MCC is a matrix which can be obtained through the percentage contribution (pxy)
of each cross-correlation coefficient between the M acquired channels with Equation (1):

pxy =

{ cxy

∑M
i=1 cxy,i

, x �= y

0, x = y
(1)

For 12 sEMG signal channels, x and y vary with the interval (1,12) providing a multichannel
cross-correlation matrix of order 12 × 12 as can be seen in (2):

pxy =

⎡⎢⎢⎢⎢⎢⎢⎣
0 p2,1

p1,2 0
p1,3 p2,3
...

...
p1,12 p2,12

p3,1 · · · p12,1

p3,2 · · · p12,2

0 · · · p12,3
...

. . .
...

p3,12 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ (2)

The process of signal quality analysis and the signal modeling by the virtual sensor occurs for
each examined window. Virtual sensor activation is performed by the SFTD. The SFTD adjusts the
MCC matrix, removing contaminated channels when detected contaminated signals above 70% of
the windows in the last 3 s. After, the SFTD transmit the matrix and the signals for the virtual sensor.
The correlation coefficient between sensor responses has already been used differently as the input
of one virtual sensor [61]. The virtual sensor replaces sEMG contaminated signal channel based on
the SFTD analysis to the sEMG signal modeling using the TVARMA and TVK models. This operating
logic can be seen in Figure 5.

Figure 5. The operating logic of the SFTD with the virtual sensor.

2.6.1. TVARMA Model

The proposed sEMG signal TVARMA model for the virtual sensor at time n can be represented in
(3) and was based on the sEMG model proposed in [37,62]. Each sEMG signal channel segment of the
virtual sensor ychannel(n) is established as a linear combination of the previous output samples, plus
the previous input samples uchannel(n) and an error term of the noise error present echannel(n), which is
independent of past samples:

ychannel(n) =
P

∑
i=1

a(i, n).ychannel(n − i) +
Q

∑
j=1

b(j, n).uchannel(n − j) + echannel(n) (3)

where the a(i, n) is the time-varying autoregressive (AR) coefficient, b(j, n) is the time-varying moving
average (MA) coefficient and the indexes P and Q are the highest orders of the AR and MA models,
respectively. The model has the model orders set to 4 for P and 2 for Q.
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The input samples uchannel(n − j) can be obtained through Equation (4), which uses the respective
channel of interest’s column of the MCC matrix and the other channel samples considered as clean
signals from sEMG

→
y (n − i). The channels with known contamination have the correlation coefficient

line set to zero:
uchannel(n − j) =

(→
p x,channel

)T
.
→
y (n − i) (4)

where
→
p x,channel is the respective values column of the percentage contribution of the cross-correlation

coefficient between the channel of interest and the other channels.
A finite-order base function f (n, m) was imposed for the functions of parameters a(i, n) and b(j, n)

to obtain a better model in Equations (5) and (6). These functions were proposed in other studies of
TVARMA models [62,63]:

a(i, n) =
V

∑
m=0

α(i, m) f (n, m) (5)

b(j, n) =
V

∑
m=0

β(j, m) f (n, m) (6)

where f (n, m) with m = 0, 1, 2, . . . , V and n = 0, 1, 2, . . . , N − 1 is the base function that needs to
be selected. The parameter functions α(i, m) and β(j, m) represent the expansion of the parameters
with V, which is the maximum number of base sequences [62]. Therefore, the proposed sEMG signals
TVARMA model is finally defined as shown in (7):

ychannel(n) =
P

∑
i=1

V

∑
m=0

α(i, m).ychannel(n − i) +
Q

∑
j=1

V

∑
m=0

β(j, m).uchannel(n − j) + echannel(n) (7)

2.6.2. TVK Model

The TVK model of sEMG signals for the virtual sensor is based on Kalman state estimator that is
given a state-space model with satisfactory known inputs uchannel(n), white process noise w(n), and
white measurement noise v(n). The virtual sensor measurement ychannel(n) and the state equation
x(n) can be represented by Equation (8):

x(n + 1) = Ax(n) + Buchannel(n) + Gw(n)
ychannel(n) = Cx(n) + v(n)

(8)

where A, B, C, and G are state matrices.
The ychannel(n) and uchannel(n) are estimated in the same way as reported for the TVARMA

models. The estimator generates output estimates ŷ[n|n] and state estimates x̂[n|n] using all available
measurements up to ychannel(n). The state estimator can be represented as in (9):

x̂[n + 1|n] = Ax̂[n|(n − 1)] + Buchannel(n) + M(ychannel(n)− Cx̂[n|(n − 1)]) (9)

where M is the innovation gain, which updates the prediction x̂[n + 1|n] using the new measurement
ychannel(n), and it is determined by solving an algebraic Riccati equation in (10), where P solves the
corresponding equation:

M = PCT
(

CPCT + R
)−1

(10)

The final estimator ŷ[n|n] for the virtual sensor has the following output equation:[
ŷ[n|n]
x̂[n|n]

]
=

[
C(I − MC)

I − MC

]
x̂[n|n − 1] +

[
CM
M

]
ychannel [n|n] (11)
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The matrices of the TVK model were set with the identity matrix. The sEMG signals models were
applied to all sliding windows detected by the SFTD for each subject in the sixteen different cases
reported for each simulated signal contamination.

2.7. Feature Extraction

The efficiency of the sEMG signal classification system depends on the choice of features [64].
However, the features selected may be redundant or even irrelevant [65]. Each feature is not equally
necessary for a specific task. The features were selected based on the result of the classification of other
studies [46,53,66] with the same database and the evaluation of characteristics for sEMG [47].

The characteristics were extracted from each sliding window and the features selection in the
time domain is directly related to the MMC concept, which analyses the percentage contribution of
each cross-correlation coefficient of two sEMG signal channels in the time domain. It is important to
emphasize that no feature reduction technique was used. The combination of the MAV, RMS, WL,
MFL, and PWR features presented better mean classification accuracy results for the analyzed subjects.

2.8. Classification with Support Vector Machines

The non-linear SVM classification with radial basis function (RBF) kernel was implemented in
the sEMG signals classification of all simulated cases. The kernel functions parameters were selected
by a search algorithm of the best result for each subject. The multi-class definition technique for
classifying movement was eighteen binary classifications of one versus all. In more than one positive
class case, the algorithm selects the class that is farthest away from the hyperplane that separates each
binary classification.

The majority voting technique is used as a post-processing mechanism considering last three
window classification. Also, the k-fold complimentary technique was applied for improving the
reliable accuracy test with the small number of samples in which the model is trained and tested.
The tests are carried out in all possible different input conditions forming 20 k-folds for the six available
movement repetitions. For each k-fold, three of the six repetitions (50% of the dataset) were selected
for the training model and three (50% of the dataset) for testing.

The classification procedure was applied to seven different settings, according to the Figure 1b.
The classification using the signal without contamination performed the usual training and test in the
average of all possible k-folds. The classification analyses of the signal contamination were performed
by training the classifier with the data part of the signal without degradation and the test with the other
corresponding part in each separate case for the signal with degradation inserted. The classifications
using the virtual sensor occur similar to the previous, the data part of the signal without degradation
was used for training, but the signals with TVARMA model and TVK model replace the degradation
inserted detected for STFD for the test.

The seven different settings include the re-training practice of the classifier for comparative
performance analysis. The classification re-training without the degraded channel was performed when
80% of the windows were considered contaminated by the SFTD. The classification with re-training
using the two signals modeled was made through the contaminated signal replacement by the virtual
sensor in the training and testing. For every sliding window that featured 70% of contamination
detected by the SFTD in the last 3 s, the virtual sensor replaced the sEMG signal by the modeled signal.
This threshold was established based on another study [57], which introduced the idea of contaminant
temporality and the return to reconsideration of the contaminated channel. Each subject was analyzed
for different contamination types in different channel arrangements, and each analysis resulted in a
specific confusion matrix of all k-folds each classification results.

2.9. Experimental Statistical Analysis

Design and analysis of three-factor experiments were entirely randomized and used for the
statistical validation of the test methodology. A Design of Experiments full factorial design [67] was
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realized with the mean accuracy response variable and the controllable factors: the classification setting
type, the contaminant signal inserted and the variation cases of channel contaminations. The model
used follows in (12):

y_ijk = μ + α_i + β_j + γ_k + (αβ)_ij + (αγ)_ik + (βγ)_jk + (αβγ)_ijk + ε_ijk (12)

where y_ijk corresponds to the level i response in repetition j, μ corresponds to the general average,
α_i corresponds to the effect of each level i and ε_ijk corresponds to the error of level i in repetition j.

Analyses of variance (ANOVA) and multiple comparisons also were used for providing a
statistical test, which makes possible to assert whether the various group’s average differences
are significant or not. Two averages are significantly different when their intervals are disjointed.
When their intervals overlap, they are not significantly different.

3. Results

The signal processing was analyzed for ten intact subjects and ten amputees. It is important
to note that the proposed method using a virtual sensor is independent of the pattern algorithm
because the virtual sensor is applied before classification. The SFTD detection and the movement
classification used the algorithm SVM. However, there is no dependency on this algorithm. This new
extensive fault-tolerant system could use any other algorithm. The SVM is widely used in sEMG
signals [46,68–72] and was selected to compare and evaluate the effectiveness of this new system.

3.1. SFTD Results

For the correct interpretation of the results, an analysis of the detection of the windows
contaminated by the SFTD is necessary. The SFTD detection accuracy of 85.31 ± 24.88%
and false-positive recognition for the channels that non-received the artificial contamination of
8.18 ± 17.52% demonstrated the sensibility of sensor detection. All acquired signal has noise, even
after preprocessing, since there may be noises in the frequency range of the sEMG signals.

The SFTD has a differentiation in detection depending on the analyzed contaminant. The ECG
and power line interference detection have obtained lower precisions. These contaminants present an
effect of lower significance than the other three disturbances. The detection of the ECG and power line
interferences in channel 12, which corresponds to the electrode positioned on the triceps, obtained a
precision lower than 20% of the average of the other channels. The acquired channel 12 also features
the low representativity of the sEMG signal compared to the noise level of the channel. This low
representativity may explain the accuracy detection decrease of the SFTD since channel 12 does not
seem to be significantly relevant to the movement classification.

3.2. Movement Classification Results

Figure 6 presents the mean classification accuracy for all 16 noise insertion cases with different
channel combinations.

In Figure 6, it is possible to realize that each contamination type impairs the classification
differently in comparison to the clean signal classification (legend 1), in which some contaminations are
more expressively than others, such as saturation and displacement of electrodes. For contamination
by electrode displacement and saturation, the substitution of the contaminated signal by the signals
modeled with TVARMA (legend 4) and TVK (legend 6) recovers at least 30% of the mean accuracy
classification. For contamination by movement artifacts, recovery is at least 20% for intact subjects and
approximately 4% for amputated subjects. For ECG contamination and power line interference, the
contaminated signal replaced by the virtual sensor models only further damages the signal.

In the comparison of the classifier retraining with removal of the contaminated channel (legend 3),
the classifier retraining with the contaminated channel entirely replaced by the virtual sensor using
the TVARMA model (legend 5) and using the TVK model (legend 6) demonstrate the improvement
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or recovery of the mean accuracy classification results after the signal contamination. The classifier
retraining method with removal of the contaminated channel recovers 50% of the mean accuracy in the
intact subjects and 30% in the amputees for electrode displacement and saturation, 30% in the intact
subjects and 20% in the amputees for motion artifacts, 7% in the intact subjects and 3% in the amputees
for ECG and power line interference. The classifier retraining method of replacing the degraded
channel by the signal modeled by the virtual sensor in the TVARMA and TVK models achieves a mean
classification accuracy of at most 5.7% below the clean signal classification.

Figure 6. Classification setting comparison for each contaminant insertion type and the clean sEMG
signal classification.

3.3. Experimental Statistical Results

The ANOVA obtained results that disregard the possible factors such as subjects and
movements because they have already proven that they influence the mean classification accuracy
significantly [46,73]. The ANOVA used a 95% confidence interval for all response factors. The significant
F-ratio is used to investigate whether the difference among the sample means is significant or just
matter of sampling fluctuations. The F-test on main effects and interactions follows directly from the
expected mean squares. The calculated value of F-ratio above of the table value of P define if data
is significant. The factors classification setting (F = 6992.86 > p-value = 0.0), the contaminant signals
inserted (F = 194.02 > p-value = 0.0) and the cases of variation of channel contaminations (F = 1299.08 >
p-value = 0.0) indicate that all the factors are individually significant, and their interactions are also
significant for mean classification accuracy. That is, each method can achieve better results than another
depending on the contaminant and the analyzed combination of noise insertion.

4. Discussion

Analyzing the contaminants detection with the other two similar studies [11,36], SFTD
demonstrated very similar performance to the study [11], which also uses SVM and has difficulty
detecting the same contaminants with low SNR. It is more difficult to compare with the study [36],
that identifies which noise is present in the signal among the contaminants. Since its classification
accuracy is based on the correct identification of the noise present among the possible contaminants, it
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is impossible to compare it with the SFTD. However, the study [36] also uses an SVM algorithm and
reinforces the potential of applying this method to identify and mitigate the influence of contamination
on acquired sEMG signals. Thereby, after using the SFTD, the presented detection method obtained
a suitable solution for identification of contaminants in the sEMG signal. However, the selection of
additional features for better detection of ECG and power line interference is a possibility to improve
the sensor detection.

The classification setting method analysis for the 16 cases of insertion of contamination in different
combinations of channels can be visualized in Figure 7. Regarding the previous analysis, this figure
shows that the classifier retraining method without the contaminated channel does not maintain its
performance when more than one channel has any contaminant insertion. However, the classifier
retraining method with replacement signal by virtual sensor models maintains up to 20% variation
for the worst case of degradation (legend 16). The already widely used method of removing the
contaminated channel [7,57] has a lower performance in the movements characterization when more
than one channel was degraded to the method proposed in this paper with the classifier retraining.

It is important to emphasize that the mean accuracy of the classification settings 5 and 6 are
practically overlapped in Figure 7. This overlap demonstrates that it is possible that the chosen model
between TVARMA and TVK is not significant. However, the classifier retraining method replacing
the signal degraded by the virtual sensor signal increased the mean accuracy in the analysis of all
contaminated cases.

The implementation in [57] of a self-adaptive neural network of self-retraining discarding
the channels which considered with the looseness or electrodes misplacement was used for the
improvement of acquired sEMG signals application. However, there is no artificial contamination,
only the contaminations obtained during signal acquisition. The sEMG signal had already intrinsic
known contaminants, which were identified using threshold for detection. The presented new system
in this work is more complex and evaluates several other interferences. Nonetheless, both demonstrate
the possibility of using detection systems to improve the movement classification.

The study in [7] already has a contamination simulation approach like the one implanted in
this study. However, this other study tested contact artifacts, loose contacts, and baseline noise with
different SNR levels. Although the other study in [7] does not use the same database and they focus
on reducing the re-training time of the classifier after their detection sensor module, it is possible to
make some comparisons with this work. The number of false-positive occurrences is lower in [7], but
this may be a feature of the database used. In a comparison among the noises used, it is possible to
affirm that they obtained a less accurate detection for loose contacts.

For the loss of the average accuracy classification after the contamination of one to three channels,
this other study had a lower effect of the contaminants in the movement classification for the amputated
subjects and non-amputated subjects. The worst case of three contaminated channels presented in the
other study has a decrease of classifier accuracy by up to 15%. The comparison the same retraining
method discarding contaminated channels of this work with the other study in [7] shows a lower
decrease in accuracy for the same noise with more than one contaminated channel for the other study.
However, it also showed less influence of the contaminants on the accuracy of the classifier.

Therefore, it is possible to affirm that this new fault-tolerant classification system obtained a
suitable solution with better results than the already presented studies. Also, the other studies did
not evaluate so many contaminants and cases of channel contamination. This new classification
system when using classifier retraining with the virtual sensor signal recovered the mean classification
accuracy to the maximum of 5.7% below the clean signal classification, and the worst case with eight
contaminated channels obtained a maximum decrease in the mean classification accuracy of 15%.

This statistical analysis can be observed previously, however, the proximity of the results to the
retraining methods with the virtual sensor models attained very close results. Thus, a new ANOVA
was needed using only the retraining classifier methods with the TVARMA and TVK models for
the virtual sensor in the classification setting type factor. This ANOVA results obtained showed
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that individual mean results are significant (F = 0.62 > p-value = 0.43), but their interactions with
the other factors are not (F(combination channels, classification setting) = 0.21 < p-value = 0.999),
F(combination channels, noise type) = 0.51 < p-value = 0.999), F(classification setting, noise type) =
0.25 < p-value = 0.908)). In other words, one model always has better results than the other when it
changes the contaminant type or the variation of cases of channel contaminations and both together.

Figure 7. Degradation channel cases comparison for each classification setting.

5. Conclusions

The proposed method can maintain over 60% of the classification accuracy of the clean sEMG
signal when contaminated with electrode displacement and saturation and 20% when contaminated
with motion artifacts, without a retraining or calibration procedure. For classifier retraining methods,
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the replacement of the contaminated channel by the virtual sensor model demonstrates the best results
for all types of contaminants.

The statistical experimental results determined that the variation of the classification setting,
the contaminant signal inserted and the cases channel contaminations significantly affect the mean
classification accuracy. The comparison and statistical analysis of the virtual sensor method with the
TVARMA and TVK models demonstrate that the TVARMA model obtains more significant mean
accuracy for the variation of the contaminant signal inserted, for the variation of cases channel
contaminations and both together.

The SFTD accuracy was obtained using a training base of intact subjects and amputees. It is may
be possible to improve this accuracy by dividing the intact subjects and amputees for training SFTD.
However, it is necessary the controlled acquisition of contaminants in amputees, and calibration may
be required, because of the uniqueness of each amputee’s muscular integrity.

The quality analysis and virtual sensor model run online at the same time for both TVARMA
and TVK models. The processing time of the virtual sensors with the SFTD was not computed.
The classification is performed offline later to generate the results of the statistical tests. The algorithm
of the proposed system can be optimized for the user online application in the next steps, considering
the results analyzed in this work. Classification accuracy cannot be determined in most surveys since
different movements and subjects are evaluated. The use of a public database such as NINAPro enables
the scientific community to evaluate the contribution of this innovation. It is important to note that
proposed technic of adaptation can be a form of complementation with several other approaches such
as user adaptation with online feedback [74].

The proposed system is a complementary technique to increase the clinical impact of the
myoelectric prosthesis or other applications with the same stochastic behavior signals. For example,
EEG for seizure detection, ECG for QRS detection or arrhythmia classification. However, the next step
in this research will be the improvement of virtual sensor model adaptation for frequency features
and consequently the classification results enhancement. In parallel, an adjustment of SFTD method
should be developed for ECG and power line interference.
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Abstract: The purpose of this work is to strengthen the cortical excitability over the primary
motor cortex (M1) and the cerebro-cerebellar pathway by means of a new transcranial direct
current stimulation (tDCS) configuration to detect lower limb motor imagery (MI) in real time
using two different cognitive neural states: relax and pedaling MI. The anode is located over the
primary motor cortex in Cz, and the cathode over the right cerebro-cerebellum. The real-time
brain–computer interface (BCI) designed is based on finding, for each electrode selected, the power
at the particular frequency where the most difference between the two mental tasks is observed.
Electroencephalographic (EEG) electrodes are placed over the brain’s premotor area (PM),
M1, supplementary motor area (SMA) and primary somatosensory cortex (S1). A single-blind study
is carried out, where fourteen healthy subjects are separated into two groups: sham and active tDCS.
Each subject is experimented on for five consecutive days. On all days, the results achieved by the
active tDCS group were over 60% in real-time detection accuracy, with a five-day average of 62.6%.
The sham group eventually reached those levels of accuracy, but it needed three days of training to
do so.

Keywords: transcranial direct current stimulation (tDCS); brain–computer interface (BCI); real-time;
pedaling motor imagery; cerebro-cerebellar pathway

1. Introduction

Transcranial direct current stimulation (tDCS) is a modern technique of non-invasive brain
stimulation which has the purpose of temporally modulating cortical excitability [1,2]. Currently,
its effects are not known with certainty, but they are believed to be dependent on several factors such
as intensity applied [3], time of stimulation [4] and size of the electrodes used [5]. The majority of the
studies focused their research on applying tDCS to the representation of the upper limbs in the brain
to evaluate the performance of the subjects or to improve the quality of life of stroke patients who
have had that area affected [6–8]. Only relatively few studies attempted to investigate how tDCS could
affect the lower limbs [9,10]. This could be due to the challenge of reaching the area of the brain where
the legs are represented, which is located deep in the longitudinal fissure corresponding to the primary
motor cortex (M1).

From a cognitive perspective, brain activity during a lower limb complex motor task, such as gait
or pedaling, involves the supplementary motor area (SMA), M1, the primary somatosensory cortex (S1)
and the premotor area (PM) [11–14]. Moreover, lower limb motor imagery (MI) is also associated with
these areas [15]. Hence, if a person imagines a complex motor task, the person will activate a similar
neural pathway to that activated when the task is actually being performed. In addition, the cerebellum
is a key part during movement coordination, motor learning and cognition [16]. The underlying
mechanism of the ascending outputs from the cerebellum relies on sending information to M1 through

Sensors 2018, 18, 1136; doi:10.3390/s18041136 www.mdpi.com/journal/sensors96



Sensors 2018, 18, 1136

the dentate nucleus. Some of the axons in this area cross the midline of the brain to terminate in the
ventral lateral complex of the thalamus, and then the motor thalamus sends inputs to the M1 and PM
areas [17].

On the one hand, research findings have found that tDCS over the cerebellum produces cortical
excitability changes in a polarity-specific manner [18]. While cathodal tDCS over the cerebellum
decreases the inhibitory tone the cerebellum exerts over M1, anodal tDCS has the opposite effect [19,20].
From a physiological perspective, the principal neuron found in the cortex of the cerebellum is called
the Purkinje cell. If the anode is located over the cerebellum, these neurons are excited producing
inhibition in the dentate nucleus and resulting in disfacilitation of the motor cortex [21]. On the other
hand, cortical excitability over M1 increases when the anode is located over M1 and the cathode
over the contralateral hemisphere, or over the contralateral supraorbital region [22,23]. Nevertheless,
no research has studied the cerebro-cerebellar pathway where simultaneously the anode is located
over M1 and the cathode over the contralateral cerebellum. Doing this could increase the cortical
excitability over M1 even more.

Brain–computer interfaces (BCIs) are devices that translate brain waves into commands to
control an external device, such as exoskeletons. They can do this, for example, by reading
electroencephalographic (EEG) signals from the brain, extracting useful features from those signals,
and then using statistical methods to discern between relevant outputs. This technique can improve
the rehabilitation process of a person that has suffered a cerebrovascular accident (CVA). The most
challenging aspect of using BCIs is to detect neural cognitive processes in real time, so that, as soon
as data are received, they are processed. However, researchers usually analyze data offline, where
data are studied once the experiment has finished [24,25]. This can produce unrealistic results when
compared to a more challenging online analysis, which is more relevant for real-time applications such
as rehabilitation therapies involving exoskeletons.

Motor imagery has been detected using EEG-based BCIs in the past, but most studies focused
on upper limbs or simple foot movements [26–29]. Much fewer studies concentrated on lower limb
complex tasks such as gait or pedaling [30]. In most of these studies, BCIs have exploited in some
way the fact that there is a suppression of the mu waves (8–12 Hz) and beta waves (13–30 Hz) around
M1 when a motor task is being imagined [31,32]. The literature involving real-time processing and
feedback of BCI signals associated to these types of movements is scarcer, and the methods of reporting
results are disperse [26,30,33–37]. Nevertheless, there are many relevant applications of detecting
lower limb movement in real time. Indeed, in the long run, it would be desirable to design an online
BCI where patients with CVA are rehabilitated with the aid of a lower limb exoskeleton which they are
able to control in real time. Additionally, if the effects of tDCS prove to be positive (by exciting M1
and facilitating detection), this could help in improving or simply accelerating the recovery of those
patients even more.

Thus, the aim of this work is to strengthen the cortical excitability over M1 and the
cerebro-cerebellar pathway by means of a new tDCS configuration to better detect lower limb motor
imagery in real time using an online BCI that distinguishes between two different cognitive neural
states: relax and pedaling MI. To do that, a single-blind study is carried out where people are randomly
divided into two groups, sham and active tDCS, and experimented for five consecutive days. The sham
group received a fake stimulation and the active tDCS group was given 0.4 mA. Our hypothesis is
that the active tDCS group would achieve better detection accuracy results than the sham group.

2. Materials and Methods

2.1. Subjects

Fourteen healthy subjects between 23 and 38 years old (26.8 ± 4.9) took part in this experiment
(most of them were MSc students). There were twelve male participants and two female participants.
All of them were right-footed. None of the subjects had any previous experience with BCIs or MI;
they reported no neurological diseases; none of them were medicated; and they were not suffering
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the consequences of an intoxication during the time the experiments were carried out. Lastly,
all participants gave written informed consent according to the Helsinki declaration. The Ethics
Committee of the Office for Project Evaluations (Oficina Evaluadora de Proyectos: OEP) of the Miguel
Hernández University of Elche (Spain) approved the study.

2.2. Experimental Protocol

This section explains the experimental protocol. Several studies which treat different problems
such as phantom limb pain, Parkinson’s disease or apraxia of speech after stroke, applied tDCS for five
days and reported positive effects [38–40]. In addition, a study from [41] stated that the lasting effects
of tDCS when it is applied for 15 min were up to 1.5 h. Therefore, taking into account these aspects,
our stimulation protocol was established as five consecutive days (Monday to Friday) for 15 min to
investigate if there was any improvement in developing pedaling MI.

The experiment consisted on recording the EEG signals (more details on Section 2.3) while the
user was performing two mental tasks: relax and imagine. During the imagine task, subjects had
to visualize a pedaling movement inside their heads. To remove the placebo effect, a single-blind
study was designed in which subjects were randomly divided into two groups: sham or active tDCS.
The participants sat in front of a screen which fed them with instructions. Each subject performed
1 session every day which consisted of tDCS supply and MI experiment. First, tDCS (sham or active)
was administrated for 15 min (more details in Section 2.4). Then, each subject performed 10 trials of
the MI experiment. Each trial included each task (relax and imagine) 10 times. The screen provided
three types of instructions: Relax, Imagine and +. Relax and Imagine tasks lasted 5.8 s and the order
appeared at random, but in such a way that no same task appeared more than two times consecutively.
This was done to avoid the user to start an expected task beforehand. The symbol + was always shown
between tasks and lasted 3 s. During Relax and Imagine, the subjects were told to avoid blinking,
swallowing or any other kind of artifacts. They were told to postpone these until the + symbol
appeared. Figure 1 shows the flow diagram of each session’s experimental protocol, while Figure 2
shows the experimental setup.

Healthy  
Subjects 

tDCS (15 min): sham or active tDCS 

    MI: 10 trials 

END 

Imagine Relax + + Relax + Imagine … + Imagine + 

1 session = 10 Imagine and 10 Relax 

    EEG  
recording 

Figure 1. Flow diagram of the experiment for healthy subjects. The subjects were instructed by the
screen to perform one of two possible mental tasks: Relax or Imagine. During Relax, subjects had to try
not to think about anything, while, during Imagine, they had to imagine themselves pedaling. The Relax
and Imagine tasks appeared at random and were always separated by an intermediate period (indicated
by the screen with a + symbol). The setup also prevented two tasks of the same type to appear more
than two times consecutively.
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Figure 2. Experimental setup. Subjects sat looking at a screen which fed them with instructions while
their EEG signals were recorded. Furthermore, the screen gave feedback about their performance in
each task. The participant in the picture gave written informed consent to publish the image.

The first 4 trials were used to train a SVM classifier with which an online BCI was designed. This is
explained in Section 2.5. For the remaining trials, the users received real-time positive feedback about
their performance using the output from the BCI. That is, if during the relax task, the BCI detected
that the subject had executed mental relaxation, then a green bar increased in size (otherwise it stayed
the same size); and similarly with the pedaling MI task. The detection accuracy was calculated for
each session, but this information was withheld from the subjects until the end of the last day to avoid
influencing them.

2.3. EEG Acquisition

The StarStim R32 (Neuroelectrics, Barcelona, Spain) was used to acquire signals from the brain.
The device was connected through a USB isolator to the computer. Based on the International 10-10
system, the EEG signals were acquired from 30 channels (P7, P4, CZ, PZ, P3, P8, O1, O2, C2, C4, F4,
FP2, FZ, C3, F3, FP1, C1, OZ, PO4, FC6, FC2, AF4, CP6, CP2, CP1, CP5, FC1, FC5, AF3, and PO3)
with two reference electrodes (CMS and DRL) at a frequency rate of 500 Hz. The system is shown in
Figure 2.

2.4. Supply of tDCS

As mentioned before, the idea was to stimulate the cerebro-cerebellar pathway. To do this, a novel
montage which aimed at strengthening the neural activity in M1 was proposed. It involved placing
the anode over the primary motor cortex in Cz and the cathode over the right cerebro-cerebellum
(two centimeters right and one centimeter down of the inion).

To corroborate that the cerebro-cerebellar pathway was being stimulated with such a choice
of electrode placement, an electric field simulation of the brain was performed first. SimNIBS free
platform [42] was used for the simulation, and Figure 3 shows the electric field generated by the
anode over Cz (M1) and the cathode over the right cerebro-cerebellum. The parameters were set
according to the materials utilized in the experiments. Both electrodes had a radius of 1 cm, 3 mm of
thickness and 4 mm of space for the conductive gel. The tDCS intensity chosen was 0.4 mA, which
produced 0.127 mA/cm2 of current density. This current density was higher than in most studies
(roughly 0.06 mA/cm2) and it was selected because a previous study reported that a current density of
0.06 mA/cm2 was not sufficient to reach the representation of the legs in the brain [43]. The current
density also lies inside the range of neurological safety that avoids brain damage [44]. In Figure 3 it
can be seen that the most affected area is close to the red nucleus and the thalamus. Both areas belong
to the pathway of the ascending outputs from the cerebellum to M1 and PM [45], and therefore we
expect this configuration to enhance the excitability in the area of interest.
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Figure 3. Axial, coronal and sagital view of the tDCS simulation. The scale represents the electric
field (V/m) induced by the anode located over Cz and cathode over the right cerebro-cerebellum.
The intensity applied was 0.4 mA. The most affected area (red) is close to the red nucleus. The image
was generated with SimNIBS.

For the actual experiment, the StartStim R32 supplied anodal tDCS for 15 min at the beginning of
each session (one session per day for five consecutive days) through two gel electrodes with a surface
area of π cm2 (1 cm radius). To create a placebo effect, the sham group received a 3 s ramp up until the
intensity chosen, followed by 3 s ramp down; then, no stimulation was provided for almost 15 min
until again there was a 3 s ramp up followed by a ramp down. Meanwhile, the active tDCS group
received a 3 s ramp up until the intensity chosen, followed by constant stimulation throughout 15 min,
and finally a 3 s ramp down.

2.5. Brain–Computer Interface (BCI)

As mentioned before, EEG signals were obtained as the subjects performed their relax and
pedaling MI tasks. The first two seconds of each task were not considered to avoid influence of
the visual cue and assure the total concentration of the subject in the respective task. Signals were
processed in 1 s epochs with a 200 ms shift. For each epoch, a 4th order Butterworth high-pass filter
with a cut-off frequency of 0.05 Hz was applied to remove the direct current. Then, a Notch filter was
used to eliminate the power line interference at 50 Hz. Afterward, a 4th order Butterworth low-pass
filter with cut-off frequency of 45 Hz was utilized. Subsequently, based on previous work (e.g., [46,47]),
a Laplacian spacial filter was employed as in [48]. This filter eliminates the influence of the other
electrodes by means of weighting by their distance. Of these filtered EEG signals, only those coming
from nine carefully selected electrodes were considered: Cz, CP1, CP2, C1, C2, C3, C4, FC1 and FC2.
These were chosen because the task involved imagination of the lower limbs, so their proximity to the
M1, S1, SMA and PM regions of the brain was a deciding factor.

As mentioned above, the first four trials were used to train a support vector machine (SVM)
classifier. This classifier is based on hyperplane tasks separation by maximizing the margin between
the nearest points of the different tasks [49], with the outcomes obtained using non linear kernels
being generally more robust than those of other classifiers [50]. In this work, a radial basis function
was used as kernel for the SVM. For every given electrode, the power at each frequency between
6 and 30 Hz (resolution of 1 Hz via Burg’s method) was calculated for each epoch. Then, the powers
were separated according to the task (relax or pedaling imagery), normalized and averaged across
all task-related epochs of the first four trials. Then, for each electrode, the frequency for which the
maximum (normalized) power difference between tasks occurred was chosen and designated as the
electrode’s optimal frequency. Lastly, for each epoch, the feature associated to each electrode was the
power at the electrode’s optimal frequency, for a total of nine features per epoch. These features were
then used to train the SVM classifier.
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Therefore, the online BCI designed consisted of filtering the EEG signals of each epoch as described
above, finding the nine features (the powers at each electrode’s optimal frequency), and classifying
the features with the (already trained) SVM. Thus, for each epoch, the BCI predicted whether it
corresponded to a relaxed or pedaling state, and it was able to do this in real time (making a prediction
every 0.2 s). The remaining six trials were utilized to determine the performance of the user in the
day’s session by measuring the real-time detection accuracy of the online BCI. The real-time detection
accuracy was defined as the percentage of total correct classifications divided by the total number
of classifications. As mentioned before, real-time positive feedback was given to the user, so that, if
the BCI detected a relaxed state while the screen requested Relax (a correct classification), a green bar
increased in size (otherwise it did not move), and similarly with the pedaling MI task.

3. Results

3.1. Statistical Analysis

IBM SPSS Statistics 22.0 for Windows (SPSS Inc., Chicago, IL, USA) was used for statistical analysis.
First, we wanted to examine the differences in performance between groups (sham and active tDCS).
Moreover, we wanted to study, within subjects of each group, the evolution of their performance
throughout the five days of the experiment, which we refer to here as plasticity. Therefore, there were
two independent variables: group and days; and only one dependent variable: real-time detection
accuracy. Thus, a mixed factorial ANOVA was applied, but only after a Mauchly’s test of sphericity
was completed to verify the equality of variances of the differences within subjects [51]. In addition,
pairwise comparisons between groups for each day, and within subjects of each group between days
were computed. For every analysis, a p-value less than 0.05 was considered statistically significant.

Table 1 shows the results of applying Mauchly’s test of sphericity. As it can be seen, variances
were significantly different (p < 0.05), so data violated the sphericity assumption. Consequently,
the correction with the biggest power was applied. In this case, it corresponded to Hyunh–Feldt
(ε̂ = 0.987). After applying this correction, a mixed factorial ANOVA was calculated.

Table 1. Mauchly’s test of sphericity. Within subjects effect.

Epsilon

Mauchly’s W df p-Value Greenhouse-Geisser Hyunh-Feldt Lower-Bound

days 0.09 9 0.003 0.688 0.987 0.25

3.1.1. Effects of tDCS in MI

Table 2 shows the five-day mean real-time detection accuracies for each subject along with
the overall average of the sham and active tDCS groups. In addition, from the mixed factorial
ANOVA we obtained that the effects of tDCS in MI were not significant: F(1, 12) = 0.37, p > 0.05,
r = 0.03. Moreover, Table 3 shows the comparisons, with Bonferroni adjustment applied for multiple
comparisons, between both groups for each day. It can be appreciated that for the first day there was
a significant difference (p < 0.05) in the real-time detection accuracies (see also Figure 4).
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Table 2. Mean real-time detection accuracy.

Subject Sham tDCS

1 61.7 66.6
2 66.9 51.8
3 59.6 55.7
4 64.1 55.9
5 51.5 66.9
6 55.2 68.7
7 63.5 72.4

Mean 60.4 ± 5.4 62.6 ± 7.9

Table 3. Pairwise accuracy comparison between tDCS and sham group.

Day 1 2 3 4 5

p-Value 0.04 0.29 1.00 0.74 0.60
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Figure 4. Mean real-time accuracy for all subjects of each group at each day.

3.1.2. MI Plasticity

Figure 4 represents the mean real-time accuracy for each group at each day of the experiment.
From the mixed factorial ANOVA, it can be concluded that there was a significant interaction effect
between the days and the group of stimulation: F(3.95, 47.35) = 3.56, p < 0.01, r = 0.23. Furthermore,
Table 4 shows, for each group, the p-values comparing day five and the other days. There was only
a significant difference between Day 5 and Day 1 within subjects of the sham group (p < 0.01).

Table 4. Comparison between Day 5 and the rest of the days for each group.

Group Day Day p-Value

sham 5

1 0.002
2 1.00
3 1.00
4 1.00

tDCS 5

1 1.00
2 0.78
3 0.85
4 1.00
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3.2. Optimal Frequencies

The optimal frequencies associated to the BCI model at each electrode on each day are also very
useful information. They show where the greatest (normalized) changes in power were occurring,
and therefore give a rough idea of the frequency bands that are most important in association with
the lower limb motor imagery that is being studied. To present the results of all subjects together,
a histogram was made showing, for each day and group, the number of optimal frequencies lying in
three important frequency bands: 6–12 Hz (high theta and mu waves), 13–20 Hz (low and mid-range
beta waves) and 21–30 Hz (high beta waves). For each group and day, there were a total of 63 optimal
frequencies since there were nine electrodes selected for each of the seven subjects in each group.
The results are presented in Table 5. The frequency band associated to mu waves seems to be the
most preferred.

Table 5. Optimal frequencies histogram for each day and group.

Group Frequency Range Day 1 Day 2 Day 3 Day 4 Day 5

sham
(6–12) Hz 27 42 52 36 39

(13–20) Hz 14 8 10 18 5
(21–30) Hz 22 13 1 9 19

tDCS
(6–12) Hz 42 48 53 49 47

(13–20) Hz 11 10 5 11 6
(21–30) Hz 10 5 5 3 10

3.3. Real-Time Accuracy and ERD of the Best Subjects

As previously mentioned, lower limb motor imagery is thought to be associated to the attenuation
of mu and beta waves in M1 [31,32]. This phenomenon is referred to as event-related desynchronization
(ERD). To see the changes in ERD, the best subjects of each group were selected based on their five-day
real-time detection accuracy (Table 2): Subject 2 of the sham group and Subject 7 of the active tDCS
group. Given the results in the previous section and that those electrodes over M1 are thought to be
mostly involved, the focus was on the mu waves (8–12 Hz) occurring in the Cz, C1, C2, C3 and C4
electrodes. For an electrode E, and for a fixed frequency f , the ERD was defined as

ERDE( f ) =
(P( f )− R( f )

R( f )

)
× 100 , (1)

where P( f ) is the average of the power at the frequency f over all pedaling-epochs, and R( f ) is the
same but averaged over all relaxing-epochs. Then, the mu band motor cortex ERD for a given day
was simply the average of all ERDE( f ) over f = 8, 9, 10, 11, 12 and E = Cz,C1,C2,C3,C4. These results,
along with the real-time accuracies of the two best subjects, are shown in Figure 5.

40

50

60

70

80

1 2 3 4 5

Re
al

-t
im

e 
ac

cu
ra

cy
 (%

) 

Days 

Real-time accuracy 

-50

-40

-30

-20

-10

00
1 2 3 4 5

ER
D 

(%
) 

Mu band motor cortex ERD 

Days 

Figure 5. Real-time accuracy and ERD of the best subjects in each group.
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4. Discussion

It can be seen in Table 2, as well as concluded from the mixed factorial ANOVA test, that in
general there is no significant difference between the active tDCS and sham groups. Indeed, the active
tDCS group achieved 62.6% of real-time detection accuracy and the sham group 60.4%. Nevertheless,
the mixed factorial ANOVA results also indicated that there was a significant interaction effect between
the days and the groups. This is because the sham and tDCS groups differ significantly in the first day,
with the tDCS group having 9.6% better real-time accuracy, and also because within the sham group
there is a significant variation when comparing the first and last day of the experiment.

Thus, the results show that the positive effects in performance due to tDCS are only relevant
in the first few days, possibly only the first day, as the sham group then adapts and achieves the
same performance. This is consistent with a study performed by Fernandez et al. [10] where it was
observed that adaptation reached a lower limit the first day due to the simplicity of the task, leading to
non-significant differences in the days that followed. However, it contradicts a study by Soekadar
et al. [20] on upper limbs which suggested that only after three days did changes due to tDCS started
to be differentiated from sham. This could be due to several reasons, including the different location of
the tDCS electrodes and their surface area, as well as the different nature of the experiment and the
way the data were processed. Longer experiment durations (over five days) could also help to discern
the root cause of these slight differences. Meanwhile, the results agree in part with those of Wei
et al. [8], which only had a one-day experiment showing slight improvement due to tDCS stimulation.
Our results also show such slight improvement in favor of the tDCS group on the first day. Naturally,
our real-time accuracy results differed from the offline accuracies shown in the study by Wei et al. [8],
since they were able to improve on their classifier offline.

From another point of view, the subjects without stimulation showed evidence of brain plasticity,
with an overall improvement of 13% in real-time accuracy from the first to the last day. Hence, their
brains seem to have adapted very quickly to the task, meaning that if the intention is to eventually
develop a therapy that elapses over several days, perhaps it is not necessary to apply tDCS at all.
Having said that, tDCS did show evidence of speeding up improvement in the sense that it seems
to have had an instantaneous effect in activating the desired neural pathway. Therefore, the results
suggest that the active tDCS immediately induces the maximum performance that a subject could
reach and it maintains it each day. Meanwhile, the sham group seems to require two to three days of
training to reach the same level as the active tDCS group (see Figure 4). Nevertheless, it should be
pointed out that these results involved only healthy subjects. When dealing with patients, we expect
to see greater differences between the groups due to the greater potential of improvements in the case
of rehabilitating patients.

These conclusions are also corroborated with results in Section 3.2. Indeed, looking at the
histogram in Section 5 shows that the optimal frequencies lied the most often in the band containing
the mu waves: 6–12 Hz. For the tDCS group on every single day at least 66% of the optimal frequencies
lied in this band, while for the sham group from the second day onwards at least 57% of the optimal
frequencies were in that band. However, on the first day, only 42% of the optimal frequencies of the
sham group where in the preferred frequency band. This seems to indicate that the behavior was
more disperse among the frequency bands, and could be a contributing factor explaining why the
performance of the sham group in the first day was at chance level, while the tDCS group was already
performing better on that day. Namely, it is possible that tDCS favored changes in the mu waves,
whereas it took at least one day of training for the sham group to focus the motor imagery on that
frequency band.

The results from Section 3.3 also confirm the conclusions, albeit at the level of the best subjects in
each group. The best subject in the tDCS group started out with real-time accuracies of nearly 70%
and remained above 70% from the second day onwards. On the other hand, the best subject in the
sham group started at chance level (50%) and from the second day onwards significantly improved
and remained at around 70% accuracy. The mu band motor cortex ERD (8–12 Hz in Cz, C1, C2, C3 and

104



Sensors 2018, 18, 1136

C4) was also interesting. First, as expected, there was presence of ERD each day and for both subjects
(negative values because the suppression means that the power while pedaling is lower than when
relaxing). On the first day, the sham subject only showed a very subtle ERD, while the tDCS subject
had a much more pronounced ERD of around −20%. Then, from the second day onwards, there was
an even larger enhancement of the ERD levels of both groups, which remained at an average of about
−30%. This shows some level of adaptation of the subjects to the task after the first day.

To address the seemingly low real-time accuracies of around 60% (chance level is 50%), we looked
thoroughly at the existing literature to make the appropriate comparisons. It should be noted that
the real-time accuracies reported in this study are taking into consideration every single prediction
during the experiment (every single epoch is classified). Unfortunately, the current literature on
real-time BCIs is somewhat disperse in the way the results are reported [26,30,33–37], but whenever
it is possible to compare, our results coincide rather well with those of the literature. Our results are
consistent with those of Zich et al. [33] which have a real-time accuracy of 55–65%, [26] with around
65% accuracy (of first 30 sessions), and [30] with around 65% accuracy. Meanwhile, Guger et al. [34]
reported the results of the best time point of the best session of each of their three subjects (98%, 93%
and 87%), but a careful analysis of their data shows the average real-time classification accuracy is
about 80%, 65% and 65% for their three subjects respectively. Prasad et al. [35] averaged the maximum
classification accuracies of each task and report them to be 60–75%. All of these studies involve upper
limb or simple foot movements with the exception of the study by Liu et al. [30], which involved
gait. Therefore, our results actually do not stray far from those found in the literature. Additionally,
as pointed out by Prasad et al. [35], these results are reasonable given the fact that all the subjects are
novices to BCIs and MI, so their performance is lower than that of experienced users. To improve
on the accuracy levels, it might be necessary to change the nature of the motor imagery, since [26]
reported significantly better results when doing so. Lastly, in other studies, it was simply not possible
to make a fair comparison of the online results [8,36,37].

If the intention is to justify the use of active tDCS over the course of several days or more,
then stronger evidence of its effects is needed. In this sense, it could be sensible to change the
stimulation montage to one that could possibly lead to more marked differences among the groups.
Some possible modifications of the experimental setup would be the number of stimulation anodes
and cathodes and their placement, as well as increasing the intensity used whilst keeping safety in
mind. From a physiological perspective, we first proposed that the excitation of Purkinje cells in
the cerebellum might have the side effect of disfacilitating the motor cortex. However, there is also
evidence that their activation can lead to improved motor learning [52]. In fact, anodal stimulation
over the cerebellum can speed up learning [19,53,54]. Therefore, we propose an alternative for future
use, where two anodes with differing intensities are utilized: one over M1 with relatively high intensity,
and another over the cerebro-cerebellum with lower intensity (to prevent any major inhibitory behavior
over M1 while still leading to improved motor learning). Meanwhile, a single cathode can be placed in
an alternative location (such as FC1 or FC2).

Lastly, it should be said that the online BCI is perfectly apt for use in real-time applications, such as
active therapies involving exoskeletons. In the future, we intend to use active tDCS and the online
BCI to treat patients that have suffered a CVA accident. The idea is to improve their rehabilitation by
engaging them in therapy where they have to control a lower limb exoskeleton in real time.

5. Conclusions

In this work, a new tDCS configuration intended to boost the cerebro-cerebellar pathway to
improve the detection of lower limb MI via the use of a real-time BCI is tested. One anode is located over
M1 and one cathode over the right cerebro-cerebellum. A single-blind experiment with duration of five
days is completed using healthy subjects who are randomly separated into two groups: sham and active
tDCS. The mental tasks they have to perform are: relax and pedaling MI. The online BCI designed is
based on finding the power at an optimal frequency at each of nine carefully selected electrodes in the
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proximity of M1, S1, PM and SMA. From the very first day, the real-time detection accuracy achieved
by the active tDCS group is over 60% and remains around 62.6% on average. However, the sham group
needs three days of training to reach that same level of accuracy. This, along with other supporting
evidence, indicates possibly that the tDCS has an immediate effect in activating the desired neural
pathway, and shows the potential advantages in accelerating recovery of patients undergoing therapy.
However, overall, the long-term effects of tDCS seems to have been moderate at best. With this in
mind, the stimulation montage could possibly be further improved to increase the effects of tDCS
and hopefully justify its use. Lastly, the online BCI designed, with or without tDCS, is a desirable
stepping stone in designing therapies that allow recovering patients’ real-time control of lower limb
exoskeletons, which is a future endeavor of interest.
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Abstract: The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable
tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG)
signals induced by four classes of wrist movements were acquired from four sites on the lower
arm with our designed system. Forty-two features were extracted from the time, frequency and
time-frequency domains. Optimal channels were determined from single-channel classification
performance rank. The optimal-feature selection was according to a modified entropy criteria (EC)
and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different
classifiers, and compared with other conventional feature subsets. In online tests, the wearable
system acquired real-time sEMG signals. The selected features and trained classifier model were
used to control a telecar through four different paradigms in a designed environment with simple
obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results
of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality.
Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU)
performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels
placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank.
Experimental results showed that the proposed FD method was better than other feature selection
methods and single-type features. The combination of FD and random forest (RF) performed best
in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine
paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control.
Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of
46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time
wearable HCI system and algorithms, providing a potential assistive device interface for persons
with disabilities.

Keywords: human-computer interface; surface electromyogram; channel selection; feature optimization;
multi-class recognition; support vector machine

1. Introduction

Human-computer interfaces (HCI) for those with motor deficits based on bioelectrical signals
have received increasing attention in the last decade. HCI provides communication and control
channels between human subjects and the surrounding environment with the purpose of replacement
or augmentation of muscle activity [1]. Common classes of bio-signals used to control assistive devices
include electromyography (EMG) [2,3], electroencephalography (EEG) [4,5], electrooculography
(EOG) [6,7], and fusions of these signals [8–11].
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This work presents the performance results of an HCI system based on electrical currents
generated in the contraction and relaxation phase of muscles [12] known as sEMG. Measurement of
sEMG is noninvasive, can offer excellent signal-to-noise ratio compared to EEG, and provides real-time
information about muscle intents [13].

Applications of sEMG include early disease detection [14], seizure [15,16] and fall
detection [10,17], gesture [18,19], and sign language recognition [3,20]. These applications recorded
activities of facial [21,22], upper [18,23] and lower-limb [17,24] muscles.

The sEMG-based HCIs are sensitive to electronic noise, movement artefacts and muscle
fatigue [12]. To overcome the problem, wearable rigid printed circuit board (PCB)-based systems are
often used [3,25,26]. However, these devices still need to be fully fixed and tethered. Another solution
is development of wearable and flexible electronics. These sEMG sensors have been utilized to monitor
electrocardiogram (ECG), EMG and body posture [27,28] signals as well as to detect arm gestures [29].

The sEMG-based HCIs require effective features to provide real-time efficiency from the data
processing standpoint. Time-domain feature extraction is the most common method because these
features provide high recognition rate and low computational cost. Root mean square (RMS) [30–33]
and mean absolute value (MAV) [29,33,34] are most popular among these features. Time-frequency
domain features which characterize varying frequency information at different time locations have
received attention recently. Time-frequency domain analysis can efficiently eliminate the non-stationary
noise in either time or frequency domain [12,35–38].

Feature optimization/selection techniques further enhance the performance. These techniques
include filter, wrapper, and embedded methods [39]. Filter and wrapper methods have
very low computational costs because they optimize features independent of the classification
performance [40,41]. In contrast, embedded methods rely on criteria that are generated during the
classifier training process. Examples of embedded techniques are the support vector machine
(SVM)-based Recursive Feature Elimination (RFE) [42] and the linear discriminant analysis
(LDA)-based Fisher’s Discriminant (FD) function [17].

Channel selection is another simple feature selection/optimization technique. Within this method,
channel optimization is based on the single-channel classification accuracy. A more sophisticated
adaptation is about selecting important muscles/channels that highly contribute to the specific
movements according to the power and frequency distribution of sEMG signals [31].

Classification is the next step to distinguish between different movements. Simple and linear
classifiers are preferable because of their simplicity and ease of implementation. For example,
Linear Discriminant Analysis (LDA) [29], k-Nearest Neighbor (kNN) [3] and Decision Tree (DT) [3,13]
are feasible to separate small numbers of uncomplicated classes clearly. To increase expandability
and performance in complicated systems, Support Vector Machine (SVM) [43], Artificial Neural
Network (ANN) [44], Fuzzy Min-Max Neural Network (FMMNN) [40] and Random Forest (RF) [37]
are suggested for classification. Neural Network classifiers can be used for both simple and complex
cases due to their high performance. However, with too many hidden layers or hidden units, the
classifiers need long training times and require large amounts of training data. Unsupervised learning
methods including K-Means and Fuzzy C-Means have also provided high classification performance
in sEMG recognition [32].

An important application of biopotential-based HCI is smart wheelchair control. The conventional
paradigm of smart wheelchair control is through joysticks [45]. This paradigm is not applicable for
patients with low or no control of their upper limb. The sEMG-based HCI is an advanced alternative
controller [46,47], however with more sophisticated implementation than the conventional joystick
control. A critical problem is the functionality requirement for accurate control. (1) The recognition
for more motions or gestures can increase degree-of-freedom [37,42]. (2) A state-machine based
control and a proportional control could meet the requirement [48,49]. In this method, a modality or
a channel is used to switch control modes. (3) Fusion of two or more types of sensors can realize the
high-dimensional control for assistive devices. The combination of sEMG and inertial measurement
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units (IMU) consisted of conventional accelerometers (ACC) and gyroscopes is frequently used because
of the high performance in long-term control. Muscle fatigue and skin sweat can make sEMG signals
drift, while they have no influence to IMU signals [50,51].

In this paper, we explore the performance of sEMG-based HCI in controlling a telecar. We present
a wireless wearable sEMG system based on flexible printed circuit (FPC) with embedded dry metallic
detecting electrodes that avoids channels connection and fixation challenges. We also present
methodology to select sEMG feature subsets for the recognition of four movements. The novel
entropy criteria (EC) and Fisher discrimination (FD) criteria are compared with the conventional RFE
method. Dunn-Heriksen et al. [52] introduced EC in EEG channel selection. Here we adopt EC for
sEMG feature optimization. Fisher’s discriminant based separability measurement has been widely
utilized in feature optimization [17,40]. However, we introduce a novel method to compute the ratio
of between-class distances to within-class distances. Finally, subjects control a designed telecar based
on different paradigms using the optimal channels and features.

The structure of this paper is as follows: Section 2 describes two types of sEMG acquisition
systems. Experimental methods about anticipants, experiment design, sensors placement are discussed
in Section 3. Signal processing techniques including preprocessing, feature extraction, selection, and
classification are explained in Section 4. Section 5 introduces four different control paradigms, followed
by the results of offline analysis and real-time control in Section 6. Finally, Sections 7 and 8 discuss and
conclude with the strengths of the current work.

2. System Architecture

The entire circuit structure of two types of sEMG acquisition systems consists of four main parts:
a power module, a signal-conditioning module, a signal-processing module, and a signal-transmission
module. The power module provides required power and safety precaution for using in human
recordings. The function of signal-conditioning module is to amplify and filter raw signals.
Analog filtered sEMG signals are converted into digital signals in the signal-processing module.
Finally, the signal-transmission module transmits these digital signals to PC. Our overall hardware
design includes the requirements of low cost, low power, small size, human compatibility, and ease of
programming and interfacing with standard computers.

2.1. Offline sEMG Acquisition System

We used disposable disc sensors in offline sEMG acquisition, as shown in Figure 1b. These sensors
consist of Ag/AgCl electrodes, conductive gel, an adhesive area and a snap connection. Wet sensors
with conductive gel ensure an easy conversion between ionic current and electron current, resulting in
low electrode impedance up to few kilo-ohms [53]. Diameters of the Ag/AgCl electrodes, conductive
gel, and disc sensors are 9, 15 and 34 mm, respectively. Two sensors, at a distance of roughly 30 mm,
constitute a pair of bi-polar sEMG electrodes.

The sEMG signal has small amplitude and is severely distorted by electromagnetic interference.
An approach to reduce the electrode-skin interference is to employ an amplifier with high input
impedance. The acquisition system board presented in Figure 1a (32 × 22 mm2) includes
a high-performance voltage follower (AD8626, Analog Devices, Norwood, MA, USA) as well as
a differential amplifier (INA128, TI, Dallas, TX, USA) with very large input impedance. Together
they largely reduce common mode interference (CMI) as well as improve the common mode rejection
ratio (CMRR) and signal to noise ratio (SNR). We further reduce differential mode interference (DMI)
with anti-aliasing and on chip digital filters. In both hardware and software solutions, the high-pass
filter may have a 3 dB cutoff frequency of 10–20 Hz and the low-pass filter a 3 dB cutoff frequency
of 400–450 Hz to avoid loss of information from the sEMG signals [54]. Therefore, a pass-band filter
between 10 Hz to 450 Hz is designed using the AD8626. The sEMG signals are further passed through
a notch filter at 50 Hz (UAF42, TI).
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For the signal-processing module, we used an ATmega8 low-power 8-bit microcontroller (ATMEL,
Microchip Technology, Chandler, AZ, USA), as the central processor and analog to digital converter.
The supply voltage and reference voltage are both 3.7 V. The amplified and filtered signals (in the
range of −1.8 V to 1.8 V) are then transformed to unipolar signals in a dynamic range of 3.7 V, sent to
the analog-to-digital converter, and finally transmitted to a PC with Bluetooth UART module (HC05).
We receive the signals at 1000 Hz sampling rate. They are further filtered (bandpass 10 Hz to 450 Hz as
well as notch 50 Hz and its harmonics) and then stored via MATLAB.

(a) 

 
 

(b) 

Figure 1. (a) The four-channel offline acquisition board; (b) The wet disc sensors and architecture.

The voltage convertor (LM2596, National Semiconductor, Santa Clara, CA, USA) including the
thermal shutdown and current limit protection cells can provide the power of +3.7 V efficiently.
The CMOS monolithic voltage converter chip (MAX660, Maxim, San Jose, CA, USA) produces a −3.7 V
power to supply the negative voltage to dual-supply amplifiers.

2.2. Wearable sEMG Acquisition System

The wearable sEMG acquisition system, shown in Figure 2a, is almost same as the offline system,
with small differences. First, the FPC-based real-time system is more flexible, small-sized, lightweight,
and low-cost compared to the PCB-based system. Therefore, this design minimizes noise pickup in
sEMG recording stations, and allows for recording without additional pre-amplification steps.

Second, in term of sensors materials, we designed two pairs of metallic dry sensors. This type of
disc sensors is plated with copper on the top layer of FPC-based board. The next step is plating nickel
and gold on the copper disc to stabilize contact impedance as shown in Figure 2b. Low electrode-skin
impedance is critical for recording high-quality signals. The traditional solution is to gently exfoliate
skin using abrasive gel or 75% alcohol. The diameter of each sensor is 3 mm and the fixed distance
within a pair of sensors is 30 mm. The inter-electrode distance can be minimized further due to
the smaller size of electrodes. Therefore, metallic dry sensors can fit an uneven skin for more
precise applications.

Thirdly, the optimization of circuit structures is considered to satisfy demands of miniaturization
and high-reliability for systems. The contact-impedance problem is a much more pressing problem
for dry sensors compared with wet sensors [55]. Except for cleaning skins, another practice is to
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employ an amplifier with high input impedance. Therefore, we replaced the amplifier INA128
with a higher performance instrumentation amplifier INA2126 (TI). In order to minimize the system
size, we replaced the AD8626 amplifier with a TLV4333 (TI). The TLV4333 contains a four-channel
amplifier with an input filter to reduce both common mode interference (CMI) and differential mode
interference (DMI). To combine the signal-processing and signal-transmission modules, the nRF51822
(Nordic, Oslo, Norway) is used as central processors because it integrates Cortex-M0 kernel, analog
to digital converter (ADC), and Bluetooth 4.0 module. We used a 3 V button battery to power the
real-time system.

(a) 

 
 
 

Au (2 um)

Ni (2 um)

Cu (320 um)

Diameter:3mm

(b) 

Figure 2. The two-channel real-time acquisition system. Subfigure (a) correspond to the acquisition
board, and subfigure (b) correspond to the architecture of the metallic dry sensors.

Finally, wearable online systems are paired with a personal computer which performs more
computationally intensive processing steps. These include independent component analysis (ICA),
multiscale principle component analysis (MSPCA), specified features calculation, and prediction based
on the trained model.

3. Methods

3.1. Subjects

Nigh able-bodied subjects (seven male and two female; mean age: 25.1; range: 21–31) participated
in the data acquisition, all of whom had no prior experience with sEMG based HCIs and signed the
consent form approved by the Academic Ethics Committee of Southeast University before experiments.
All subjects are university-educated and non-smoking with no history of forearm muscle injuries and
neurological disorders. Instructions for offline and online experiments were carefully explained and
illustrated, and the first trial did not begin until subjects indicated full understanding of the required
tasks. During all implementation processes, subjects sat motionless in a comfortable chair and rested
their hands on a desktop.

3.2. Acquisition Setup

In offline experiments, we selected four different muscle groups: flexor carpi ulnaris (FCU),
extensor carpi radialis (ECR), extensor carpi ulnaris (ECU), and abductor pollicis longus (APL);
as shown in Figure 3a. The activity of these muscles were measured via pairs of bipolar sEMG sensors
during four wrist movements including wrist extension (WE), wrist flexion (WF), make a fist (MF),
and rest (REST). The reference sensor was placed on the upper arm far from recording channels.

114



Sensors 2018, 18, 869

Figure 3b shows the real-time system setup. Four controlling states namely forward, backward,
clockwise rotation and anti-clockwise rotation were mapped with four motions. Subjects can control
the vehicle easily because the direction and rhythm of wrist movements correspond to commands
of vehicle motions. We performed channel selection technique on data pooled from all subjects and
found that the location with highest classification accuracy are ECU and ECR.

Figure 3. Sensor placement and implementation of the system. (a) Sensor placement in the offline
analysis and the pairs of yellow points correspond to the bi-polar electrodes; (b) Real-time system
setup for data acquisition.

3.3. Experiments Protocol

Each subject was connected and sat for one complete recording period. The experimental
period was divided into five offline sessions (1 h) and eight real-time sessions (0.5 h). In offline
sessions, subjects maintained 1.5 s movements according to cues on the screen. Signals were
recorded continuously and saved separately for each session. Within each session, subjects performed
40 individual motion split evenly and randomly ordered among these four movements.

The same group of subjects attended real-time tests. We optimized channels, features, and
classification parameters during offline sessions and utilized these optimal values for online processing.
The telecar was controlled by four methods: the joystick paradigm, the fixed-moving sEMG paradigm,
the channel-combination paradigm, and the state-machine paradigm. Each paradigm was repeated
two times. The real-time analysis window was 125 ms with 20% overlap. The entire trajectory was
a square.

4. Signal Processing and Pattern Recognition

All data processing was performed within MATLAB. The steps of signal analysis and the
relationship between offline and online sessions are illustrated in the flowchart of Figure 4. In the
offline phase, we used infinite impulse response (IIR) filters, ICA and MSPCA to de-noise sEMG signals.
The feature extraction module includes time-domain, frequency-domain, and time-frequency-domain
features computation. Feature selection refers to separability. The rank of single-channel accuracies
selected optimal channels, and the EC and FD methods determined a uniform subset of features.
Four machine learning algorithms (kNN, ANN, RF and SVM) were employed to classify features,
and the best parameters and model were saved. In online sessions, same preprocessing approaches
except a different segmentation method were adopted for signals from the selected channels. We then
extracted the optimal feature subset according to offline sessions and utilized a classifier model to
specify the control commands during online sessions.
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Figure 4. Flowchart of proposed processing framework.

4.1. Preprocessing

4.1.1. Data Filtering and Segmentation

We employed an IIR Butterworth bandpass filter (10–450 Hz, with order 16) according to the
previous works [54,56]. An elliptic notch filter and several bandstop filters were used to eliminate the
power line interference at 50 Hz and its harmonics. There are two main sEMG segmentation methods:
disjoint and overlapped methods [57]. In offline sessions, subjects maintained each motion in a 1.5-s
task time, which had precise onset and offset boundaries. The task period was further divided into
3 periods—a transient period of onset (0–0.25 s); a one-second execution period (0.25–1.25 s); and
another transient period. Feature values were extracted only from the one-second execution window
segmented by the disjoint method with a predefined length. For example, four feature vectors could
be extracted from the execution period with a 250 ms analysis window. Real-time analysis adopted the
overlapped segmentation method. The size of sliding window was predefined with 20% overlap.

4.1.2. Independent Component Analysis (ICA)

Subsequently, remaining artifact signals could be removed conveniently by applying ICA. For
the general ICA model of sEMG, suppose we have N channels filtered sEMG signals xi, i = 1, . . . , N.
Each channel has N independent source signals si, i = 1, . . . , N and records different mixture of si.
Mathematically, the principle of mixing processes can be expressed as follows:

x = A·s, (1)

where A is the unknown mixing matrix, x and s represent the combination of xi and si respectively.
Then, the algorithm extracts a matrix with independent components (ICs) that recovers original sEMG
signals when applied to the data set x according to:

u = W·x, (2)

where W called unmixing matrix equals A−1, and u denotes the sources (ICs). After performing an ICA,
clean sEMG signals used in future processing are obtained by removing the ICs with artifacts and
neglecting the corresponding column of W.

4.1.3. Multiscale Principle Component Analysis (MSPCA)

The MSPCA algorithm was proposed by Bakshi [58] to merge the strengths of PCA with the
benefits of the wavelet transform (WT). While PCA extracts the linear or nonlinear relationships among
variables, WT extracts deterministic features and approximately removes the autocorrelation within
measurements [59].

MSPCA has been applied for EMG [36] and ECG [60] signal modeling and de-noising. In terms
of sEMG signals, the algorithm steps are: (1) The j-th column xj(t) of raw data are decomposed
to its wavelet coefficients by WT. (2) The covariance matrix of each scale is computed along with
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the number of principle components separately from other scales. (3) The appropriate number of
principle components is selected. (4) The combination of WT and PCA is used to reconstruct the
de-noised signals.

4.2. Feature Extraction

Three main types of features—time, frequency and hybrid domains—have been used to classify
sEMG signals for HCI [61]. These features are computed based on signals’ amplitudes (time domain),
estimated power spectrum density (frequency domain) and time-frequency transformation (hybrid
domain). The time domain features are most popular because of their computational simplicity.
Time-domain features include mean absolute value, modified mean absolute value with the weighting
window function (function (1)) and the improved weighting window function (function (2)), root mean
square, variance, waveform length, Willison amplitudes, simple square integral, zero crossing, slope
sign change, and histogram of sEMG. Frequency-domain features are mostly used to study muscle
fatigue and to recognize movements. Widely used frequency-domain features include auto-regressive
coefficients, median and mean frequencies.

Time-frequency analysis, with its ability to represent time dependent frequency responses, has
recently leveraged in the sEMG feature extraction. The most commonly used analysis method
is discrete wavelet transform (DWT). We use the Daubechies 4 (DB4) wavelet because of higher
classification accuracy and lower computation cost [62]. Average power of wavelet coefficients in
each sub-band are extracted for evaluation of the frequency distribution. We also compute standard
deviation of coefficients to evaluate changes in the distribution. Another time-frequency feature is
power spectral density (PSD) of short time window Fourier transform.

Table 1 lists features used in this study, their abbreviation and dimensions. In offline sessions,
all 42 listed features were extracted for each channel. These features were then cascaded into a final
vector with a dimension of 168 for four channels.

Table 1. List of sEMG features and dimensions.

Feature Name Abbreviation Dimension

Mean Absolute Value MAV 1
Modified Mean Absolute Value 1 MMAV1 1
Modified Mean Absolute Value 2 MMAV2 1

Root Mean Square RMS 1
Variance VAR 1

Waveform Length WL 1
Zero Crossings ZC 2

Slope Sign Change SSC 1
Willison Amplitude WAMP 5

Simple Square Integral SSI 1
Histogram of sEMG HEMG 6

Four-order Auto-Regressive Coefficients AR 4
Median Frequency MDF 1
Mean Frequency MNF 1

Short Time Fourier Transform STFT 1
Average Power of the Wavelet Coefficients APWC 7

Standard Deviation of the Wavelet Coefficients SDWC 7

4.3. Feature Selection

The dimension of features extracted in the last section should be reduced before sending them
to classifiers. Efficient feature and channel selection algorithms improve the prediction performance
and provide less computational complexity. The common approach to evaluate selected features is
estimating the rank of classification rate or the separability criteria [63].
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Here, the optimal-feature selection combined the rank of separability values (SV) of each feature
with classification rates by SVM. First, we obtained a feature subset with the highest accuracy for
individual channel. The mean number of optimal feature subsets across all channels and subjects
represented the size of features in real-time algorithms. Next step was to confirm the detailed common
features. We calculated the summation of each feature’s SV via EC and FD methods. We then used
the RFE method to compute and rank the frequency each feature was contained in optimal subsets.
The selected features were determined by specific criteria according to these different methods. Ideally,
different algorithms should obtain almost same optimal feature subsets.

4.3.1. Entropy Criterion Based Feature Selection (EC)

A modified entropy based method is used to calculate separability values. The variance of features
among different classes can provide classification information, and the entropy of features’ variance is
a measurement of uncertainty. When the variance of different classes is close, it means that the specific
class has little classification information and vice versa. Therefore, the entropy of variance measures
separability of each feature. The definition is as follows:

Ji = −
n

∑
k=1

Vi
k · ln(Vi

k), (3)

where Ji denotes SV of the i-th feature, and Vi
k denotes normalized variance of the i-th feature for

the k-th class (totally n class). Within this method, smaller Ji corresponds to the feature with larger
variance entropy.

4.3.2. Fisher Discrimination Based Feature Selection (FD)

The ratio of between-class and within-class distance could evaluate the extracted features’
separability numerically. The principle of this method is similar with the Fisher linear discriminant
analysis (LDA) algorithm [64]. The SV is calculated by:

Ji = D2(ai, bi)/(D2(ai, ai) + D2(bi, bi)), (4)

where ai and bi denote the i-th feature in class a and b respectively, and the function D2(a,b) is the
mean Euclidean distance between all combination of different trials of two groups. The separability
improves when the ratio increases. In multi-class (totally n class) separability analysis, we separate the
problem into n two-class problems according to one-versus-all strategy [65]. The average ratio of these
two-class problems is computed as the multi-class SV for each feature.

4.3.3. Recursive Feature Elimination (RFE)

Compared with the mentioned methods offering the numerical evaluation of features, the RFE
algorithm based on SVM outputs a list of ranked features. In detail, the RFE algorithm mainly contains
following steps [66]. (1) Features and class labels are combined. (2) Training the model of SVM.
(3) Computing the weight vector and rank criteria. (4) The feature with the smallest rank criteria is
eliminated. (5) Steps (2)–(4) are repeated until only one feature is left. Finally, the algorithm outputs
the feature rank list. The rank criteria is the squared coefficients w2 [67]. Importance of a feature is
determined by the loss of the margin between classification boundaries when the feature is removed.
The rank criteria is defined as:

Ji = min
i

∣∣∣w − w(−i)
∣∣∣, (5)

where w is the inverse of margins which means w = ‖w‖2, and w(−i) represents the w without the i-th
feature at this SVM iteration.
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4.4. Classification

Although we quantify the separability of various sEMG features, it is still unclear whether they
interact well with the classification process. Therefore, it is important to choose the best classifier for
recognizing sEMG patterns. Here, four widely-used classifiers—kNN, ANN, RF and SVM—were
Considered. We optimized classification parameters based on offline data (train) and then applied the
optimal classifier to real-time data (test).

4.4.1. k-Nearest Neighbor (kNN)

The kNN is one of the simplest learning methods that divides data into two or more classes.
The kNN is frequently used for small training datasets, because it is easy to implement and has low
computational cost. Inputs consist of the k closest training samples in the feature space. In the sEMG
classification, the distance of k nearest neighbors from one another determines the label of test samples.
Performance of the kNN depends on the selection of parameter k. Wan et al. tested the relationship
between k and ten-fold CV accuracy [68]. When k is in the range of 3 to 10, the difference of accuracy is
not huge. In this work, six nearest neighbors were selected to evaluate accuracies.

4.4.2. Artificial Neural Network (ANN)

The ANN follows a learning method with self-learning capability [69]. However, because the
network contains numerous parameters its training process is time-consuming. These parameters
including thresholds of hidden layers and connection weights between layers. In the classification of
four-motion sEMG signals, the ANN structure consisted of one input layer, one hidden layer and one
output layer. The dimension of input feature vectors was n. The neurons of input, hidden and output
layers were n, 2n and 4, respectively. The activation function was a sigmoid. We estimated parameters
by the back-propagation algorithm to reduce the cost function and gradient [70]. Because of long
training time, we used a five-fold CV to validate classification of sEMG data.

4.4.3. Random Forest (RF)

The RF is a type of ensemble learning method. Although the design and computation are easy, it
works better than other high-performance classifiers, such as SVM and ANN, in some applications [71].
In order to ensure performance of the RF, each base learner should have high precision. Simultaneously,
to improve generalization ability of the RF, the diversity of base learners is guaranteed by two methods.
The first method is to sample training data randomly as the input of each base learner. The second
method is to choose the best decision feature from a subset of features (dimension: s) instead of from
all features (dimension: d) for each node. The output is a final class voted by all base learners. In this
study, the optimum number of base decision tree was 30 according to the research results of Gokgoz
and Subasi [12]. The optimal feature subsets for nodes were determined as follows [72]:

s = log2 d. (6)

4.4.4. Support Vector Machine (SVM)

The SVM has high speed in calibration and classification of high dimensional sEMG features.
The goal of this algorithm is to solve classification problem by finding maximal margin hyper-plane
(w,b) to separate training data with a given set of labels. Briefly, a positive real constant α is computed
by training data to determine parameters w and b. When using the test feature f , a label is assigned
according to the decision boundary function, which is:

g(f) = sign(〈w, f〉+ b) = sign(
m

∑
j=1

αjyjK(f, fj) + b), (7)
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where f j denotes the j-th trial (totally m trials) in training data with a corresponding label yj, and K is
a kernel function including a high dimensional model. In this work, we chose the radial basis kernel
function in LIBSVM [73]. Despite more than two movements present, the binary SVM was still used
with one-versus-all technique. In offline sessions, ten-fold cross validation (CV) was used to assess
classification accuracies and F-score.

5. Control Methods

Subjects can control a wheelchair—the final aim of sEMG-based HCIs—only when they achieve
high performance in the telecar control with a pre-defined path. In real-time sessions, subjects
controlled the designed toy vehicle with the wearable sEMG system to finish two loops in a square-loop
environment with some simple obstacles. The length of each side was 40 cm. The vehicle was randomly
positioned at any corner after the obstacle localization was completed. The moving and rotating speeds
are set to a constant value of 12 cm/s and 0.25π rad/s, respectively. Figure 5a shows an ideal route to
finish the loops and simple obstacle map. The differential distance of two loops in the figure is only for
clear visualization.
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Figure 5. (a) Environment and obstacle maps. It contains the forward information (black vectors),
backward information (blue vectors), starting point (red circle) and obstacle location (gray areas);
(b) Three possibilities of the location update for Paradigm 1 and 2 (‘1’ denotes the straight-line
movements, ‘2’ denotes the rotation movements, and ‘3’ is no movements); (c) The protocol for
each paradigm. The onset of each real-time session is presented as the reference time point of 0 s.
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This section introduced four control methods. The response time of a real-time system should
not introduce a delay that was perceivable by users, and the threshold was generally regarded to be
roughly 300 ms [74]. Therefore, the real-time control in this work adopted a 125 ms window. There are
two controlling rules: First, only one motion was classified at a time during the implementation.
Second, in Paradigm 2, the classification result of newly acquired sEMG features combined with the
last motion to confirm whether two consecutive windows were same. The protocol for each paradigm
is shown in Figure 5c, and introduced as follows:

Paradigm 1: The vehicle moved to a direction according to the joystick command.
The maneuverability is best for healthy subjects.

Paradigm 2: Considering safety and a continuous control, the fixed-moving paradigm was
introduced. In this paradigm, the next motion was determined during vehicle moving. Once the
vehicle moved, subjects were prompted to start a motion with an auditory signal (beeps). After our
system identified the motion, subjects received another auditory feedback and prepared for the next
move. The epoch of sEMG data processing was 125 ms, and the same results of two consecutive epochs
were considered as a valid control command. The HCI system would translate predicted classes into
corresponding actions as described in Table 2. Suppose P(t) is the location at the time window t, and
Δx and Δθ denote the position change in straight-line and veer directions. Then, the position at the
next time window t + 1 could be updated as:

P(t + 1) = P(t)± Δx, P(t + 1) = P(t)± Δθ, or P(t + 1) = P(t). (8)

The equation reveals that the position at t + 1 has three possibilities as shown in Figure 5b:
(1) Fixed Δx determines the vehicle moves forward or backward by 12 cm. (2) Fixed Δθ influences veer
movements, which means the vehicle rotates 45 degrees clockwise or anti-clockwise. (3) If there is no
movement commands, the vehicle waits and then stops.

Because of the high separability of sEMG signals among different movements as well as the
efficient auditory cues and feedbacks, this paradigm had a high degree of maneuverability in
continuous HCIs.

Table 2. Definition of muscular movements and corresponding commands to vehicle.

Muscular Movements Vehicle Motions

Make a Fist (MF) Move forward by the length of 12 cm
Keep Relaxed (REST) Move backward by the length of 12 cm
Wrist Extension (WE) Clockwise rotation of 45 degrees

Wrist Flexion (WF) Anti-clockwise rotation of 45 degrees
No continuous same results come Stop

Paradigm 3: Although the second paradigm has a good performance, some problems still exist.
The main problem is about fixed moving periods, which leads to challenges for paths that frequently
change directions. Another problem is that when no continuous same results come, the delay may
still exists.

To overcome these problems, we proposed the channel-combination paradigm with 125 ms
window. The same results from both selected channels determined moving directions during
recognition periods (i.e., t31–t32, t33–t34 and t35–t36 in the figure). Table 3 shows control methods
in this paradigm. The sEMG recording for the next process was synchronous with the vehicle moved.
For example, the recording time was from t32 to t33 and the vehicle-moving period was from t32 to t34.
The respond time is short in this paradigm, but subjects could not stop by their autonomous motions
in the four-state control, which is a hidden danger for patients.

Paradigm 4: The state-machine-based control paradigm could increase the functionality [48].
Five-dimension control could be achieved by four motions in this paradigm as shown in Table 4.
The REST state was a switching of straight-line and rotational movements. The protocol was similar
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with Paradigm 3 in Figure 5c. The initial state was straight-line movements, and the detailed control
method was as following. Recognition results from t41–t42 determined moving states in t42–t44. Upon
the REST state appeared (e.g., the period of t43–t44), an auditory beeps was offered and the mode was
switched to rotational movements. Consequently, another REST state set back the mode to straight-line
state. A critical control rule was the mode could not be changed unless at least one motion was
implemented. Subjects can stop control by keeping fisting.

Table 3. Definition of muscular movements and control method in Paradigm 3 and 4.

Muscular Movements Control Method Vehicle Motions

Make a Fist (MF) Ch1 = Ch2 = 1 Forward
Keep Relaxed (REST) Ch1 = Ch2 = 2 Backward
Wrist Extension (WE) Ch1 = Ch2 = 3 Clockwise rotation

Wrist Flexion (WF) Ch1 = Ch2 = 4 Anti-clockwise rotation
Others Ch1 �= Ch2 Stop

Table 4. Definition of muscular movements and control method in Paradigm 5 and 6.

Muscular Movements Vehicle Motions

Keep Relaxed (REST) Switching: on/off
Wrist Flexion (WF) On: Forward Off: Anti-clockwise rotation

Wrist Extension (WE) On: Backward Off: Clockwise rotation
Make a Fist (MF) Stop

6. Results

Our objective is to choose and use effective features for the sEMG-controlled vehicle with wearable
HCI designed by our group. We present four steps: first, we validate the feasibility and performance
of our proposed hardware and filters. Second, the rank of classification accuracy picks two channels.
Thirdly, optimal feature subsets and multi-class recognition rates are computed by the proposed feature
selection algorithms, and compared with the RFE method. Finally, we generalize findings through
comparing different control paradigms, and investigate whether the selected common channels and
features are applicable to online sessions.

6.1. Acquisition System Testing

Tests of this part are to verify the feasibility of acquisition systems and preprocessing methods.
The results show that real-time high-quality signals can be transmitted to computers and saved within
the Bluetooth communication distance.

6.1.1. Hardware Evaluation

Signal amplifiers and filters are the main components in acquisition systems. Two stages of
amplifiers were used to avoid effects on the signals’ bandwidth when the gain of one stage amplifier
was too large. The first stage amplifier has a large input impedance, and the gain is 51. The second
stage is an inverting amplifier with high gain (−35.7), gain bandwidth product (GBP) and CMRR.
Therefore, the total gain for amplification of raw sEMG signals is −1821 as shown in Figure 6a.

The acquisition systems contain a low-pass filter of 450 Hz, a high-pass filter of 10 Hz and a notch
filter of 50 Hz. We validated designs of filters and circuit components in the FilterPro (TI) instead
of via manual derivation process. The low-pass and high-pass filters are four-order and two-order
Butterworth structure with the Sallen-Key topology, respectively. In addition, a 50 Hz notch filter is
integrated in the UAF42.

Frequency responses of filters were measured by applying a 1 Vpp sinusoidal signal
logarithmically generated by a function generator. Figure 6 depicts the amplitude-versus-frequency
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curves. The frequency range of testing signals is from 1 Hz to 480 Hz. From Figure 6b,c, acquisition
systems show a flat operation on the edge of frequencies of interest (10–450 Hz). The selection and
parameter errors of resistors and capacitors resulted in the real cut-off frequency range of on-chip
filters is from 6 Hz (fL) to 451 Hz (fc). In Figure 6d, we show effects of the notch filer, the interference
of 50 Hz has been reduced.
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Figure 6. (a) is the system electrical schema of amplifiers and filters, (b–d) are the amplitude-versus-
frequency curves of low-pass filter with the cut-off frequency fc, high-pass filter with the cut-off
frequency fL, and notch filter of 50 Hz, respectively.

In order to evaluate performance of the recording hardware, we computed the SNR as follows:

SNR = 10 log10

(
A2

m
A2

r

)
, (9)

where Am is the maximum RMS amplitude of continuous strained muscles signals and Ar is the
maximum RMS value of noise when a muscle is not activated. SNR of the offline and online acquisition
systems are 47.42 dB and 54.09 dB, respectively. The slightly higher SNR in the wearable system can be
attributed to the optimized circuit structure and selection of high-performance chips.
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6.1.2. Test on the Digital Signal Preprocessing

To improve SNR of systems and quality of sEMG signals, the preprocessing module contains
several digital filters, including band-pass filter in the frequency range of interest (10–450 Hz).
When adopting dry sensors, significant 50 Hz noise pickup interfered with signals. In order to
eliminate this power line noise, we used a combination of analog and digital filters including the
elliptic notch and band-stop filters.

The features in time and frequency domains were extracted. Therefore, this section presents the
time-domain and frequency-domain verification. Figure 7a shows time-domain signals at the APL
after preprocessing and normalization. An increased amplitude appears after zero to one second in the
last three movements, because subjects keep rest in this period. Because of the normalization of each
state, amplitudes of signals within 0–1 s in the last three plots are not similar to amplitudes of the REST
state. The differences among different movements are clear. The REST and WE states have respectively
the smallest and largest amplitudes. The time-series for the WF and MF tasks closely resemble each
other. In detail, the MF state has slightly higher amplitudes than the WF state.

The power spectral density (PSD) was estimated for each trial. Averaged PSD zoomed in the range
of 0–5 is depicted in Figure 7b for the time span from 1 to 2.5 s. The MF state has the highest mean
PSD, followed by the WF, WE and REST states. In detail, the MF and the WF states have the highest
PSD in sub-bands of 10–105 Hz and 105–195 Hz, respectively. Relevant frequencies of all movements
are between approximately 10 Hz and 450 Hz. Neural information plateaus around 40–95 Hz, and
the range of interest extends to 40–195 Hz for the WF state. Then, the PSD diminishes slowly as the
frequency increased to 450 Hz. Mentioned notch and bandstop filters can eliminate the 50 Hz and its
harmonic. SNR is improved to 61.47 dB and 68.91 dB for these two acquisition systems, respectively.

  
    (a)                              (b) 

Figure 7. Time-frequency verification of different movements: (a) Normalized amplitudes in time
domain; (b) PSD in frequency domain. (The names of four movements were represented to their
abbreviations in the following analysis)

6.2. Channel and Feature Selection

According to previous studies, longer time windows would not have significantly improved
prediction accuracy [43,74]. All sEMG signals during training were analyzed in non-overlapping
windows as mentioned in Section 4.1.1. Each motion modality could extract 160 feature vectors with
250 ms window. If the window length decreased to 125 ms, training sessions contained 1280 feature
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vectors. To ensure classification performance and reduce training complexity, the window length was
250 ms in the channel and feature selection.

6.2.1. Channel Selection

Although we use only four pairs of sEMG channels, it is still necessary to minimize the number
of channels to make systems more mobile and easier to maintain. We rank single-channel classification
accuracies using all features. Table 5 shows accuracies of each channel across all nine subjects.

Table 5. Classification accuracy of each channel for different pairs of movements.

Motion Pairs APL ECR ECU FCU

REST vs. MF 99.32% 99.42% 99.56% 99.47%
REST vs. WE 96.17% 98.99% 97.98% 99.30%
REST vs. WF 98.86% 99.13% 98.64% 99.34%
MF vs. WE 90.62% 95.16% 93.90% 94.96%
MF vs. WF 84.95% 91.08% 96.86% 91.31%
WE vs. WF 82.32% 95.52% 97.76% 85.62%

Average 92.04% 96.55% 97.45% 95.00%

We then select channels located on the ECU and ECR according to Table 5. Features from
the channel ECU achieve the best classification accuracy equal to 97.45%, followed by the channel
ECR and FCU reaching 96.55% and 95.00%, respectively. The channel FCU is best for recognizing
between the REST and motions states (i.e., the first three pairs in Table 5). The channel ECU provides
the best accuracies compared among different motion states (i.e., the last three pairs in Table 5).
When comparing all motion pairs, first three pairs have higher accuracies than last three pairs.
The REST and MF pair obtains the best performance for all channels. Furthermore, the MF and
WE pair has the highest distinction among last three pairs.

For each subject, we divided sEMG features from these two channels into training and testing
sets by ten-fold CV to estimate mean classification accuracies of different pairs of movements as
shown in Figure 8. Accuracies of one subject are lower, which are marked as outliers in the boxplot.
Mean accuracies of the first three pairs are 99.56%, 98.99% and 99.12%, respectively. Classification
results of the last three pairs are more than 97%. Especially for the third and sixth pairs, median
accuracies reach 100%. Above all, compared with single-channel analysis, the selected-channel
performance is not significantly improved in recognizing the rest state with other movements. However,
channel selection improves accuracies of the last three pairs by 3.75%, 6.33% and 2.80%, respectively.

Figure 8. Boxplot for EMG tasks classification accuracy with ECU and ECR. The horizontal axis
represents the different pairs of movements (1: REST vs. MF, 2: REST vs. WE; 3: REST vs. WF,
4: MF vs. WE, 5: MF vs. WF, and 6: WE vs. WF).
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6.2.2. Classification Performance between Each Two Motions

This part tests the single-channel separabilty between each two movements, and investigates the
feasibility of feature selection methods. Proposed EC and FD methods ranked features between two
motions. Classification rates were performed as features increased from 1 to 42 to determine the best
combination of feature space. Mean classification accuracies (MCA) with optimal feature numbers
(OFN) across all subjects were evaluated by LIBSVM in the proposed two situations, and compared
with the RFE method.

Table 6 lists MCA with OFN at the channel ECU. Classification accuracies are above 97% for all
pairs except for the MF and WE pair. On average, accuracies are slightly higher with lower numbers of
features opting for the FD and RFE based feature subsets. When comparing classification performance
among different pairs, first three pairs obtain larger MCA with less OFN. Almost same accuracies
between the REST and motions states reach about 98% by three feature selection methods. For last
three pairs, average accuracies in the range of 94.72–98.16% and 94.68–98.15% are achieved by the FD
and RFE methods compared with the range of 94.52–98.06% by the EC method.

Table 6. Mean optimal feature numbers and classification accuracies of the channel ECU.

Motion Pairs OFN with EC MCA with EC OFN with FD MCA with FD OFN with RFE MCA with RFE

REST vs. MF 19.3 99.73% 3.1 99.73% 1.4 99.73%
REST vs. WE 24.8 98.16% 5.8 98.24% 5.8 98.36%
REST vs. WF 15.2 98.69% 1.8 98.79% 2.4 98.89%
MF vs. WE 28.8 94.52% 26.4 94.72% 23.1 94.68%
MF vs. WF 22.2 97.35% 20.8 97.25% 21.3 97.11%
WE vs. WF 29.9 98.06% 26.1 98.16% 27.8 98.15%

Average 23.4 97.75% 14.0 97.82% 13.6 97.82%

One-way analyses of variance (ANOVA) are used for statistical analysis. The factors for analysis
are six pairs of motions and three feature selection algorithms. (1) According to Table 6, the OFN is
influenced by different pairs (F(5,156) = 14.416, p < 0.001) as well as three algorithms (F(2,159) = 7.641,
p = 0.001). Post hoc tests of the influence of pairs show that first three pairs use significantly small
feature subsets compared to last three pairs, but no differences are found within these two groups.
Post hoc tests also show that the FD and RFE methods differ significantly from the EC method (p = 0.002
and p = 0.003, respectively), indicating the EC method uses more features to reach the optimal accuracy.
There are no differences between the FD and RFE methods (p = 0.991), because these two algorithms are
both based on classifiers learning. (2) The MCA is also affected by pairs (F(5,156) = 8.716, p < 0.001), but
do not show reliable relationship with algorithms (F(2,159) = 0.006, p = 0.994). Post hoc comparisons
reveal that the MF and WE pair has significantly lower accuracy than other pairs. All other pairs have
no differences within each other except for comparing the first and fifth pairs (p = 0.039).

Furthermore, Figure 9 shows classification accuracies of three pairs of motions (i.e., the last three
pairs in Table 6) as features increases by the EC and RFE ranks. The classification accuracy increases
as the feature space increases. We assert that this is due to insufficient information provided with
small feature subsets. However, when the feature size exceeds OFN, the accuracy remains high and
then begins to decrease due to over-fitting. It illustrates one reason why feature selection is necessary.
When number of selected features is less than 25, the RFE method performs better than the EC method.
Then, performance of these two method reaches the same level. Figure 9a plots the best recognition
rates of subject S6 could be improved to 89.38%, 95.63% and 97.5% with 36, 23 and 31 features picked
by the RFE method for mentioned three pairs, respectively. As shown in Figure 9b, subject S7 uses the
EC method to select 33 features to yield 96.25% accuracy comparing the MF and WE states, to select
37 features to yield 98.13% accuracy comparing the MF and WE states, and to select 33 features to yield
98.44% accuracy comparing the WE and WF states.
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    (a)                                     (b) 

Figure 9. Comparisons of the RFE and EC methods. Evolution of classification accuracies was
computed with feature subsets increasing according to different separability ranks: (a) classification
accuracies of three pairs of motions for subject S6; (b) Same results for subject S7.

6.2.3. Feature Selection

The feature selection analysis is as follows. First, the dimension of optimal features is determined
by single-channel analysis of ECU and ECR. This step combines feature selection and classification
processes. Mean optimal feature numbers across all channels and subjects are 31, 23.3, 32.8 for the EC,
FD and RFE methods, respectively. Then, the focus in this section is to identify common features from
these subjects for future application. The advantage is that under repeated use, limitation to specified
features reduces training and processing times. Two weighting methods were used to select specified
features derived from the SV rank of different feature selection algorithms.

The weighting methods based on proposed EC and FD methods belong to quantitative weighting
methods because they have detailed numerical evaluation. The single-channel SV of each feature is
normalized to the range of 0 to 1, and averaged across all subjects. Then the separability criteria is
the summation of all single-channel SV. Detailed features are determined by considering the 1st–31st
and 1st–23rd features of EC and FD methods respectively according to their SV ranks. Table 7 shows
total selected features from mentioned two feature selection algorithms, as well as the separability
value of each feature. For the FD method, improper amplitude thresholds lead to the exclusion of
WAMP1 and entire HEMG features except for HEMG1. All frequency features and the STFT are also
neglected. Removal of APWC_D4 to APWC_A6 and SDWC_D5 to SDWC_A6 indicates a low effect of
low-frequency components. For the EC method, features in the time domain including ZC1, WAMP4,
WAMP5, HEMG1 and HEMG2, as well as all frequency features are eliminated.

The RFE method can indicate whether an individual feature is within the optimal subset with
1st–33rd features for a particular subject. The frequency with which each feature occurred among
the top 33 features, across all subjects and channels, is considered. These frequencies are sorted
in a descending order. Table 7 presents the top 33 features and their frequencies marked as T32.
Because we select two channels for nine subjects, the highest time should be 18. The results show that
seven features form the best feature combination for this method. These features include variance, the
first and third thresholds for Willison amplitude, and average power of the wavelet coefficients in the
1st–4th sub-bands. In contrast, two dimensions of the AR coefficients never enter top 33.

From the table, the optimal feature subsets with qualitative and quantitative weighting
analysis indicate that time-domain and time-frequency-domain features lead to a better separability
performance than frequency-domain features.
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Table 7. The selected features and SV rank.

Rank
EC Method FD Method RFE Method

Feature Aver. SV Feature Aver. SV Feature Aver. T32

1 APWC_D3 0.2296 WAMP5 1.9005 VAR 18
2 APWC_D2 0.3066 WAMP4 1.7716 WAMP1 18
3 APWC_D4 0.3447 ZC2 1.5245 WAMP3 18
4 APWC_D1 0.3657 ZC1 1.4595 APWC_D1 18
5 STFT 0.3665 WAMP3 1.4290 APWC_D2 18
6 APWC_D5 0.3723 SSC 1.2673 APWC_D3 18
7 VAR 0.3882 SDWC_D1 1.2508 APWC_D4 18
8 SSI 0.3883 SDWC_D3 1.2128 WAMP2 17
9 APWC_D6 0.5859 SDWC_D2 1.2079 SSI 17
10 APWC_A6 0.6015 APWC_D1 1.1998 HEMG4 17
11 WAMP1 0.8886 HEMG1 1.1997 HEMG5 17
12 WAMP2 0.8907 HEMG2 1.1963 STFT 17
13 SDWC_D3 0.9152 MAV 1.1721 APWC_A6 17
14 MMAV2 0.9875 RMS 1.1626 APWC_D5 17
15 SDWC_D4 0.9898 MMAV1 1.1620 APWC_D6 17
16 MMAV1 0.9905 APWC_D3 1.1595 SDWC_D3 17
17 MAV 0.9908 WAMP3 1.1477 MAV 16
18 SDWC_D2 0.9915 APWC_D2 1.1458 MMAV1 16
19 RMS 0.9972 SDWC_D4 1.0873 MMAV2 16
20 SDWC_D5 1.0365 MMAV2 1.0643 RMS 16
21 SDWC_D1 1.0448 WL 1.0626 SDWC_A6 16
22 HEMG4 1.0605 SSI 1.0454 WAMP4 15
23 HEMG5 1.0714 VAR 1.0454 WAMP5 15
24 SDWC_A6 1.2020 SDWC_D1 15
25 SDWC_D6 1.2354 SDWC_D2 15
26 WAMP3 1.2441 SDWC_D4 15
27 WL 1.2672 SDWC_D6 15
28 SSC 1.3096 ZC2 14
29 HEMG3 1.4682 SDWC_D5 14
30 ZC2 1.4725 HEMG3 13
31 HEMG6 1.5413 HEMG6 13
32 HEMG1 11
33 HEMG2 11

6.3. Classification Performance

Four amplifiers (kNN, ANN, RF and SVM) and three analysis windows (125, 250 and 500 ms)
were compared in this section.

6.3.1. Comparisons of Feature Subsets and Classifiers

Table 8 summarizes classification results for different feature combinations. In this study, seven
different feature subsets are classified by four different algorithms such as kNN, ANN, RF and SVM.
Each classifier is trained and tested with data from the same subject. Bold numbers in Table 8 indicate
the best classifier for each feature subset. RF and ANN classifiers perform better for all subsets. RF with
FD-based features ranks first at 96.77%, followed by ANN at 96.67%, SVM at 95.40% and kNN at
94.41%. In classification of EC-based features, ANN provides the superior accuracy with 96.74%, and
RF ranks second with 96.66%. SVM gives 95.37% and kNN is with 94.73% ACC. All classifiers deliver
above 94% accuracies after feature selection.

As shown in Table 8, classification performance of EC-based and FD-based features almost have
no differences. Both of them are slightly better than RFE-based features and single-type features.
Compared among single-type features (RMS, MAV, APWC and SDWC), the wavelet coefficients
have better classification accuracies than RMS and MAV. The reason is that features of sEMG signals
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after time-frequency preprocessing offer a better classification precession [75]. Above all, smart
combinations by feature selection methods provide more accurate features.

Table 8. Classification performance of machine learning algorithms. ACC is the abbreviation
of Accuracy.

Features
kNN ANN RF SVM

ACC F-Score ACC F-Score ACC F-Score ACC F-Score

EC 94.73% 0.9473 96.74% 0.9672 96.66% 0.9656 95.37% 0.9533
FD 94.41% 0.9441 96.67% 0.9667 96.77% 0.9669 95.40% 0.9529

RFE 94.37% 0.9436 95.82% 0.9678 95.60% 0.9651 95.01% 0.9489
RMS 86.36% 0.8630 87.75% 0.8723 89.43% 0.8918 89.14% 0.8755
MAV 87.23% 0.8719 87.21% 0.8664 89.12% 0.8885 88.20% 0.8773

APWC 86.08% 0.8585 90.20% 0.9007 91.63% 0.9150 87.07% 0.8678
SDWC 85.36% 0.8535 88.90% 0.8861 91.60% 0.9150 82.85% 0.8004

F-Score is another index to evaluate classification performance calculated by the formula:

F-Score =
2 × TP

2 × TP + FP + FN
, (10)

where TP, FP and FN are the numbers of true positives, false positives and false negatives in the
confusion matrix, respectively. ACC and F-Score are close to each other, which indicates all classifiers
achieve reliable performance on these feature subsets. With EC-based features, RF obtains 96.66% ACC
and 0.9656 F-Score. The F-Score of FD-based features classified by RF is 0.9669, which is coincident
with 96.77% ACC. It is also the case for other classifiers.

For statistical analysis of classification accuracy, different feature subsets and classifiers are the
factors. The ANOVA reveals significant effect of feature subsets (F(6,245) = 14.323, p < 0.001) and
classifiers (F(3,248) = 2.990, p = 0.032). However, the two factors interacted missed the 5% criteria
(p = 0.677). (1) From post hoc analysis, the feature subsets could be divided into two groups. The first
group contains feature space selected by algorithms. The second group is all single-type features.
The two groups differ significantly (p < 0.001), but no differences appear within each group (p > 0.5).
The results demonstrate that performance of feature selection algorithms is significantly better than
single-type features. (2) In view of different classifiers, RF is significantly better than kNN (p = 0.036)
and marginally better than SVM (p = 0.109). Furthermore, ANN has almost similar performance with
RF (p = 0.796).

6.3.2. Comparisons of Analysis Window

Figure 10 shows the effects of analysis window length and accuracies. The mean accuracies are
calculated by RF and SVM classifiers with the FD-based feature subset. RF performs better with these
three epochs. Mean classification accuracies are 96.29%, 96.77% and 97.09% for the 125, 250, and 500 ms
windows, respectively. The difference is non-significant (p = 0.744). Statistical analysis implicates
that when shortening window length to 125 ms, the accuracy is not deteriorated. The advantages
of adopting shorter windows are low computational cost and little storage space. Moreover, it is
important with regard to the real-time classifier.
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Figure 10. Effect of window length on the classification accuracy. The classification accuracies are
averaged over all nine subjects.

6.3.3. Comparisons of Confusion Matrices

Each motion indicates a detailed command in the online system. Therefore, we structure the
confusion matrix of each modality to investigate results of parameters and model selection. Figure 11
shows the recognition performance of FD-based, RFE-based and APWC feature subsets, respectively.

  
(a)                                  (b) 

 
(c) 

Figure 11. Recognition rate of the RF and confusion graph of different feature subsets: (a) the FD-based
features; (b) the RFE-based features; (c) the APWC features. The numbers denote the percentage of
samples in the class (arrow tail) classified as the class (arrowhead).
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These features are extracted from 125 ms windows, and classified by RF. The FD method (REST:
98.82%, MF: 96.10%, WE: 95.96% and WF: 95.32%) is slightly better than the RFE method (REST: 98.79%,
MF: 95.67%, WE: 95.89% and WF: 94.93%). The feature selection process is helpful to classify all states
compared to single-type APWC features (REST: 96.42%, MF: 88.72%, WE: 87.43% and WF: 89.70%).
The REST modality achieves the best recognition performance as sEMG amplitudes of keeping rest
and moving have large differences shown in Figure 7. Whereas, the MF, WE and WF modalities are
misclassified to others, especially for the MF and WE modalities. These observations are in line with
the results in previous sections. They indicate that assessment of multi-class recognition is feasible
with proposed feature selection methods. Our proposed FD method can improve the prediction
performance and reduce the feature numbers compared with the conventional RFE method and
single-type features.

6.4. Online Evaluation by Wearable EMG-based HCI

Each subject performs eight online sessions according to four separate paradigms. The selected
features extracted from optimal channels and the trained RF model are opted for online sessions.
Averaged recognition rates (RR) and travel time (TT) of each paradigm for all subjects are recorded and
referred to Table 9. In Paradigm 2, moving directions offer labels for classification. Therefore, the RR
equals to classification accuracies. However, in Paradigm 3 and 4, subjects control the vehicle according
to their thoughts. Here, the RR in Paradigm 3 denotes success rates of recognizing classification results
of both channels are same. Since it is hard to define which motion is right in Paradigm 4, the RR is not
presented in Table 9 as a criterion.

Table 9. The recognition rate and travel time for different online paradigms.

Subject
Paradigm 1 Paradigm 2 Paradigm 3 Paradigm 4

TT (s) RR TT (s) RR TT (s) RR TT (s) RR

S1 44.98 – 44.88 99.25% 47.21 96.88% 46.93 –
S2 45.86 – 44.82 98.38% 50.31 89.61% 46.42 –
S3 44.44 – 44.94 97.66% 45.07 98.03% 46.29 –
S4 45.08 – 46.93 95.75% 48.87 95.77% 47.08 –
S5 44.73 – 46.60 96.00% 47.10 92.50% 49.61 –
S6 45.55 – 46.86 92.19% 51.43 84.45% 47.81 –
S7 44.82 – 45.52 95.91% 48.87 96.09% 46.97 –
S8 45.70 – 47.04 86.16% 52.03 85.08% 51.37 –
S9 45.46 – 46.59 91.77% 50.67 88.54% 50.26 –

Mean 45.18 – 46.02 94.79% 49.06 91.77% 48.08 –

The results illustrate all subjects are able to complete these online paradigms with acceptable
accuracies and travel time. The TT in last three paradigms is close to the joystick paradigm (Paradigm 1).
Averaged time of Paradigm 1 to finish the loops is 45.18 s. In the fixed-moving paradigm (Paradigm 2),
subjects can accomplish two sessions within the mean time of 46.02 s with 95.01% RR. Paradigm 3
and 4 increase the control time to 49.06 s and 48.08 s, respectively. The increment is achieved that
when two channels have different classification results in Paradigm 3, the vehicle stops and waits.
Transience pauses also happen in mode switches during Paradigm 4. Although Paradigm 3 and 4 are
more sophisticated, these paradigms are closer to daily life. In Paradigm 2, only one command could
make the vehicle move a fixed distance. However, in Paradigm 3 and 4, subjects decide each minor
motion by their own ideas. Compared these two complex paradigms, subjects use less travel time in
Paradigm 4. The reason is that success rates are lower to ensure both channels have the same class for
Paradigm 3. S3 completes all sEMG-based sessions using the shortest time with the highest RR. On the
contrary, S8 performs the worst.

The rough relationship between the TT and RR in Paradigm 2 and 3 is that more TT uses, less
RR obtains. However, there are some special situations in detail. For example, the TT of S9 is similar
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with S5 (46.59 s vs. 46.60 s in Paradigm 2), but S5 has higher RR (96.00% vs. 91.77% in Paradigm 2).
S9 can send out control commands before the end of vehicle-moving periods, although he misclassifies
some motions. The performance decreases sharply controlling Paradigm 3 for a small number of
subjects. The RR reduces 9.37% and 7.74% for S2 and S6, respectively. According to the offline and
online analysis, performances of two selected-channels have some differences. For S2, accuracies of
ECR and ECU are 90.76% and 96.80% in the offline analysis. The problem is solved in Paradigm 4 to
a certain extent because of using combined features from both channels. The real-time RR obtained in
Paradigm 2 is slightly lower than offline sessions. A main reason is the states with high accuracies
are less than offline experiments. For example, Paradigm 2 needs only four backward commands
controlled by the REST state which has 98.82% offline RR.

The results of statistical analysis illustrate that the travel time shows a significant effect of
paradigms (F(3,68) = 14.149, p < 0.001). Post hoc tests reveal the TT of Paradigm 1 is significantly
shorter than Paradigm 3 and 4 (p < 0.001), but it has no difference with Paradigm 2 (p = 0.607). Subjects
use slightly less time in Paradigm 4 compared with Paradigm 3 (p = 0.548).

The route tracking performance of two subjects for the rectangular route is provided in Figure 12.
Position measurements are taken when the vehicle reaches a certain position as green circles in the
figure. During the online implementation, rotational movements are more difficult than straight-line
movements for most subjects. The difference between S3 and S8 is related to two control methods
facing a turn. A group of subjects turns a degree, moves forward and adjusts the direction for the next
straight-line motion, as shown in Figure 12a. The other group of subjects moves forward for an enough
distance and makes an approximate 90 degree turn at the corner, as plotted in Figure 12b. The first
group needs short path length, but also needs to change modes three times. After turning, the vehicle
could move in a straight line without too many fluctuations.

  
(a)                                  (b) 

Figure 12. Rectangular route results for sEMG based control by different subjects: (a) path traced by S3;
(b) path traced by S8.

7. Discussion

The purpose of this work was to design and demonstrate a type of sEMG-based HCI. The optimal
combination of sEMG feature selection and classification methods is found and applied for online
telecar control with the wearable acquisition system. The results demonstrate that the system with
selected channels and features could achieve the classification accuracy and F-score above 90% in both
offline and online experiments. This study provides potentials that patients with little motor ability
could control the actual wheelchair with our system and algorithms.
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7.1. Wearable EMG-Based HCI System Design

sEMG monitoring systems are suitable for wearable wireless applications that require small size,
excellent mobility, low power consumption, and high transmission rates [76]. The most common
systems were based on rigid PCBs [44,50,77]. The work studied by Kundu [50] proposed an EMG
acquisition system equipped with a 7.4 V Li-ion battery, and then data were transmitted to computers
via USB. Youn et al. [77] proposed a wireless sEMG system, whose size was 37 × 17 mm2, with
a Bluetooth transmission module. In the design of another system, a 3.7 V Li-ion battery provided
power to the system with a size of 34 × 25 mm2 [44]. Data were sent to a PC through a wireless module
pair. Our proposed PCB-based system had a slightly smaller size (32 × 22 mm2) and the power was
±3.7 V. The main problem of these systems is mobility. Because the PCB-based systems still have
connection wires between systems and sensors, they require complex fixation. Another problem is the
sensor material. Although disposable sensors are convenient, they did not provide good performance
in the accurate control on uneven skins due to the large distance between electrode pairs.

To overcome these problems, we implemented all systems on the FPC with embedded metallic
sensors. Flexible dry sensors based on the FPC substrate achieved comparative performance with
standard wet Ag/AgCl sensors [78], and were approved for clinical applications. FPC lines connected
the signal-conditioning and signal-processing modules designed on the PCB to transmit signals and
power [79]. Here, dry gold-plated copper sensors were used and the inter-pair sensor spacing was set
at 12 mm. The fixation distance between sensors pairs was 30 mm and could be adjusted as needed.

SNR of a system could influence the signal quality. Phinyomark et al. [80] demonstrated the
relationship between classification accuracies and SNR. Different white Gaussian noises were added to
make the SNR varied from 20 to 0 dB. When the level of SNR noise reached 20 dB, accuracies were
close to clean signals. SNR of standard-wet and FPC-based sensors were 18.1 dB and 20.2 dB [78].
SNR of the system designed in Youn’s work was 59.06 dB [77]. SNR of our proposed PCB-based and
FPC-based systems were 61.47 dB and 68.91 dB, respectively.

7.2. Feature Selection and Classification

Other studies have recognized several sEMG patterns to different applications such as
motions/hand gesture recognition, prosthesis control and diagnostic decision. To allow comparison of
our findings with these literatures, we list methods, classification results and applications in Table 10.
The averaged ACC of our paper is best.

Table 10. Comparison of results and methods with other studies using sEMG-based signals.

Year Features Feature Selction Classification ACC (%) Applications Classes Channels

2015 [12] DWT RF 96.67 Diagnostic Decision 3 5
2017 [26] MAV SVM >90 Prosthetic Hands 4 1
2017 [29] RMS & WL LDA 90% Prosthetic Hands 6 4
2015 [32] RMS & DRMS Fuzzy C-Means 89.15 Motions Recognition 4 16
2012 [35] AR & DWT ANFIS 1 95 Diagnostic Decision 3 1
2014 [36] MUSIC 2 SVM 92.55 Diagnostic Decision 3 5
2017 [37] WPD RF 92.1 Motions Recognition 10 8
2017 [40] 178 Fisher Criterion + SVM 84.01 Gait Phase Recognition 4 4
2017 [42] 21 TD 3 & 6 FD 4 RFE + Extreme Learning Machine >90 Motions Recognition 17 12
2017 [43] 15 SVM 63–99 Prosthetic Hands 6 1
2017 [44] MAV ANN 94 Virtual Trackpad 10 4
2017 [69] DFT & MAV SVM 70.2 Motions Recognition 14 8
2017 [81] 22 RES 5 + LBN 6 93.25 Speech Recognition 11 5

This work 46 FD + RF 96.77 Motions Recognition 4 2
1 ANFIS: the Adaptive Neuro-Fuzzy Inference System. 2 MUSIC: feature extraction using Multiple Signal
Classification. 3 TD: Time Domain. 4 FD: Frequency Domain. 5 RES: ratio of Euclidian distance and standard
deviation. 6 LBN: Linear Bayes Normal classifier.

Efficient features selection algorithms could exclude many irrelevant and redundant features
to provide higher performance. Nevertheless, the methods were not mentioned in some studies in
Table 10. Fang et al. [32] just mentioned RMS was one of the most important sEMG features because of
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lower computational cost and decent performance. Another study used MAV for the same reason [44].
The optimal features should be extracted by some criteria. Tosin et al. [42] demonstrated that RFE was
a powerful feature selection algorithm. However, the output was a list of ranks in separability without
detailed values. Then, quantitative feature selection methods including the Davies-Bouldin index [82],
RES [81] and Fisher Criterion [40] were introduced. There are two problems in these methods. First,
success rates of these methods are not high enough (Table 10). The second problem involves the
optimal number of features. Huang et al. [82] used a feature subset selected by the Davies-Bouldin
index to obtain 85% and 71% classification rates in offline and online tests, respectively. In Lee’s
work, the authors tested classification performance fixing the numbers of feature subsets to 100 and
150 [40]. In others, the feature selection process including CV of classifiers was complicated [81]. In our
paper, the modified EC method was proposed because of low computational cost. We also combined
Euclidian distances with the Fisher’s discriminant to obtain the modified FD method. The accuracies
of these two methods were 96.66% and 96.77%, which were slightly better than the conventional RFE
method and other feature selection methods in the table. The average number of features to receive the
best accuracy for each selected channel across all subjects was defined as the optimal feature number.
This method was more reasonable than Lee’s work [40], and easier than Srisuwan’s work [81].

7.3. The Online Performance

Since the final target of our systems is for a wheelchair control, the performance of smart
wheelchairs is compared and discussed in this section. Delicate motions of the upper limb controlled
joysticks-based smart wheelchairs [83], but they are not capable for patients with complete or partial
loss of muscle activities. The EEG-based [83] and EOG-based [7] wheelchairs with automated
navigation systems were proposed. In Huang’s work [7], subjects could control the wheelchair
to finish all tasks within 227 s and 277 s by joysticks and EOG signals, respectively. The recognition
rate for healthy subjects was 91.7%. The main challenge was to decrease misclassification rates of
unwanted blinks or rotational motions of eyes. In Zhang’s work [84], the destination selection was fast,
but the critical problem was subjects needed 4.5 s to stop control.

The sEMG-based control method was considered in this work, because sEMG signals could
achieve higher accuracies and use in long-term applications. The fixed-moving paradigm could
improve safety. The average time was 46.02 s, which means each vehicle motion including the
sEMG-recognition and vehicle-moving periods cost 1.05 s. The waiting time was much shorter than
the same method in an EEG-based wheelchair [85].

According to Kucukyildiz’s work [86], the fixed-moving control paradigm had challenges for
paths with frequently directional changes. Their work used very short analysis window (50 ms) for
the sEMG control. Englehart et al. analyzed the effects of analysis window length upon classification
accuracy [74]. The results showed that the best performance is with 32 ms analysis window with
a majority vote decision. There was no differences when the window length ranged from 32 ms to
256 ms. However, in single-window analysis, the accuracy degraded rapidly with decreasing analysis
window length. According to this work, the real-time processing window is 125 ms in our work.

To improve control’s continuity, the channel-combination and state-machine paradigms were
introduced. The travel time of controlling by joysticks was 45.18 s. Subjects used 49.06 s and
48.08 s by these two continuous sEMG-based paradigms. The accuracy of Paradigm 2 was 94.79%.
The recognition rate of motions was 91.77% in Paradigm 3. The same comparisons were shown in
Kundu’s work [50]. The travel time of a designed wheelchair was 67.18 s and 72.88 s for joysticks and
sEMG signals. The real time recognition accuracy was 90.58%. Despite the moving speed was lower
and the path length was shorter in our work, the real-time results were acceptable.

The trend of sEMG-based HCIs is to increase the degree-of-freedoms. Maeda et al. designed
an omnidirectional wheelchair with four-channel sEMG signals [87]. They adopted amplitude
combinations of different channels during straining muscles. The similar method was defined as
proportional control [48]. The performance in classifying 10 functions with a linear discriminant
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classifier, reaching 94%, 93% and 87% at 16, 8 and 4 channels, respectively. In Ishii’s work [49],
the combinations of different motions corresponded to eight control commands based on the
state machines.

In our work, Paradigm 3 and 4 were similar with the proportional and state-machine control.
Our vehicle could move to five directions with two channels. The travel time of Paradigm 4 was
slightly shorter than Paradigm 3. These two paradigms were more sophisticated than Paradigm 2, but
they were closer to the real-life control method. However, these paradigms were hard to remember or
implement for some subjects, especially for the high-dimensional control.

7.4. Limitations and Future Work

There are several basic limitations associated with this study that need further development to
provide the wearable sEMG system for clinical purposes. (1) Although we obtained a stable acquisition
system, Balouchestni et al. [76] designed a system to recover the original bio-signals with good level
of accuracy and SNR greater than 95.8 dB. Therefore, the circuit architecture optimization are still
needed. (2) From Table 10, the next step of research should extend the motion pool. (3) The current
research study recorded and analyzed the sEMG data performed only by healthy subjects. (4) In the
future, minimization of analysis windows and improvement of single-window performance are main
works for real-time algorithms. (5) In this study, subjects controlled the designed telecar in a laboratory
environment. We are combining our system with a smart wheelchair. To control it in a complicated
real scenario, efforts still need to be made.

8. Conclusions

Two wearable sEMG acquisition systems are designed and implemented successfully in this work.
The PCB-based prototype can capture four-channel sEMG signals simultaneously from different
forearm muscles, and the FPC-based system with two channels are utilized for online control.
The system could communicate with a laptop wirelessly through Bluetooth. The high SNR of 61.47 dB
and 68.91 dB for these systems ensure the signal quality. Temporal and frequency responses indicate
that the system can remove noise and are stable during all motions.

The ECU and ECR channels are selected with 97.45% and 96.55% mean classification accuracies
across all pairs of motions and subjects. In single-channel analysis, the FD and RFE methods achieve
the optimal accuracy with significantly less features than the EC method (p = 0.002 and p = 0.003
respectively). For the channel ECU, the average accuracy increases to 97.82% with only 14 features.
Accuracies above 98% are achieved comparing the REST state with other states. The FD method
produces recognition rates in the range of 94.72% to 98.16% comparing among three motions.

Detailed features are selected according to the level of feature separability provided by the EC, FD
and RFE methods. According to qualitative and quantitative weighting analysis, these three methods
opt for 31, 23 and 33 features, respectively. The feature selection results also prove that time-domain
and time-frequency-domain features provide more discriminative information than frequency-domain
features. The FD-based feature subset with RF classifier achieves 96.77% accuracy, which is better than
other methods and single-type features referred in some references.

Furthermore, to validate the feasibility of proposed methods, we invited same group of subjects
to control the designed toy vehicle using four different paradigms. Subjects can accomplish the online
task by joysticks with averaged 45.18 s. For the fixed-moving paradigm, the mean travel time is 46.02 s
with 94.79% recognition rate. The results of Paradigm 3 and 4 reveal that these paradigms can improve
the maneuverability and provide potentials in more sophisticated paths.

Therefore, all mentioned results suggest that our proposed acquisition systems and algorithms
can be used in the HCI research. The future work focuses on recording and discerning more motions
to realize the accurate implementation of smart wheelchairs.
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Abstract: This work presents a study of chromatic and luminance stimuli in low-, medium-,
and high-frequency stimulation to evoke steady-state visual evoked potential (SSVEP) in the
behind-the-ears area. Twelve healthy subjects participated in this study. The electroencephalogram
(EEG) was measured on occipital (Oz) and left and right temporal (TP9 and TP10) areas. The SSVEP
was evaluated in terms of amplitude, signal-to-noise ratio (SNR), and detection accuracy using
power spectral density analysis (PSDA), canonical correlation analysis (CCA), and temporally local
multivariate synchronization index (TMSI) methods. It was found that stimuli based on suitable
color and luminance elicited stronger SSVEP in the behind-the-ears area, and that the response of the
SSVEP was related to the flickering frequency and the color of the stimuli. Thus, green-red stimulus
elicited the highest SSVEP in medium-frequency range, and green-blue stimulus elicited the highest
SSVEP in high-frequency range, reaching detection accuracy rates higher than 80%. These findings
will aid in the development of more comfortable, accurate and stable BCIs with electrodes positioned
on the behind-the-ears (hairless) areas.

Keywords: SSVEP; visual stimuli; BCI; hairless area

1. Introduction

The elicited response in the visual cortex by light stimuli flickering at a constant frequency is
known as steady-state visual evoked potential (SSVEP) [1]. In the electroencephalogram (EEG), these
potentials manifest as an oscillatory component in the signal, with the same frequency (and/or
its harmonics) of the visual stimulation [1]. SSVEP can normally be evoked up to 90 Hz [2],
and three stimuli bands can be identified: low (up to 12 Hz), medium (12–30 Hz), and high-frequency
(≥30 Hz) [3–5].

SSVEPs have been used for studies concerning the brain, vision, and the development of
brain–computer interfaces (BCIs) [6]. People with severe disabilities can use BCIs as an alternative
channel for interaction and communication with the environment around them, only using brain
activity [7]. In SSVEP-based BCIs, each stimulus flickers at a specified frequency [8]. Thus, when a
person gazes at one of the stimuli, an SSVEP is evoked in the brain [6,9], which can be detected in the
EEG signal, and later translated into a control command [10].

Researches have used the SSVEP response to develop assistive technologies, such as
robotic wheelchairs [11,12] and robotic exoskeletons [13], as well as for rehabilitation [14,15],
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communication [16,17], mobile robot control [18], cursor control for computer interaction [4,19],
and entertainment [8,20,21].

The SSVEP response is generally maximum on the occipital area of the scalp, and consequently,
SSVEPs are strongly detected in the electrodes located at this area [6]. Hence, most of existing
SSVEP-based BCIs use electrodes located at O1, O2, and Oz positions. However, this area is generally
covered by hair, which causes some complications in the electrode contact with the skin [22,23]. This
represents an important drawback in BCI implementation due to the loss of contact between electrode
and skin, drying of the gel, especially in long-term operation. In contrast, in hairless regions, it is
possible to use different kinds of electrodes, and these drawbacks may be mitigated. Thus, more
comfortable BCIs can be designed.

Different studies based on magnetoencephalography (MEG), positron emission tomography
(PET), functional magnetic resonance imaging (fMRI), and EEG have demonstrated that SSVEPs
can be found in other brain areas, such as parietal, temporal, frontal, and prefrontal areas [9,24–30].
Thus, using EEG signals from hairless regions to develop a SSVEP-based BCI is a possible option.
For example, a system measured SSVEP right in-the-ear using stimulation at low-frequency range
(8–11 Hz) [31]. In other work, an electrode was positioned behind-the-ear to acquire the SSVEP [32].
Hsu et al. measured the EEG on the forehead, employing medium-frequency stimuli [33]. In another
work, electrodes placed at three hairless areas (behind-the-ears, neck, and face) were used to detect
SSVEP [34], in which the authors concluded that electrodes positioned behind-the-ears are the best
candidates to build an SSVEP-based BCI in a hairless area. These works used stimuli based only on
luminance modulation.

However, visual stimuli that use colors (green-blue or green-red) and luminance combination can
increase the evoked response [35–39]. Moreover, it was found that color information is mediated by
specialized neurons that are clustered within the temporal areas [40]. Besides, there are color-selective
neurons in the inferotemporal cortex [41]. The inferotemporal cortex receives projections from the
primary visual cortex (ventral pathways) [42,43], which are both color-sense-associated and object
recognition pathways that detect luminance and color. Thus, colored stimuli can enhance the detection
of SSVEP in behind-the-ears regions, due to its proximity to the temporal area. Our hypothesis is that
chromatic and luminance stimuli can evoke a better response than luminance stimuli in this area.

Therefore, in our work, we present a comparative study of chromatic and luminance stimuli
flickering at low-, medium-, and high-frequencies to evoke SSVEP responses in behind-the-ears areas.
Basically, this study aims to answer three questions: (1) What is the influence of chromatic and
luminance stimuli on SSVEP from behind-the-ears? (2) What is the best combination (green-blue or
green-red—note that we did not use the blue-red combination, as these colors are the worst case for
photosensitive epilepsy, especially at 15 Hz [44])? (3) How is the SSVEP response evoked by these
stimuli in low-, medium-, and high-frequency bands? Therefore, the results of the current work will
help in the development of more accurate and comfortable BCI systems.

2. Materials and Methods

2.1. Data Acquisition

Twelve healthy subjects (ages 26.1 ± 4.1; 6 F and 6 M) with normal or corrected-to-normal vision
participated in this study. The EEG recordings were conducted in a laboratory with low background
noise and dim luminance. Previous to participation in this study, all volunteers read an information
sheet and provided written consent to participate. Ethical approval was granted by the institutional
ethics committee. The subjects did not receive any financial reward for their participation.

The EEG was measured over occipital (Oz) and left and right temporal (TP9 and TP10) areas
(see Figure 1). The ground electrode was placed at A2. The EEG signals were acquired with a
Grass 15LT amplifier system, and digitalized with a NI-DAQ-Pad6015 (sampling frequency: 256 Hz).
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The cut-off frequencies of the analogical pass-band filter were set to 1 and 100 Hz. Additionally, a notch
filter for 50 Hz line interference was applied.

TP9 TP10

REF

Oz

GND
GND

TP10

Oz
REF

(a) (b)

Figure 1. Positions on the scalp where the electrodes were located. (a) Top view of positions; (b) Side
view of the positions. Oz: occipital area; TP9: left temporal area; TP10: right temporal area; REF:
reference electrode; GND: ground electrode.

2.2. Visual Stimulation

The visual stimulation was performed by light-emitting diodes (LEDs) that illuminated a diffusion
board of 4 cm × 4 cm. The LEDs were red, blue, green, and white. Each LED could flicker at different
frequencies from 5 Hz to 65 Hz with an interval of 5 Hz. Therefore, the stimulation range comprised
the three SSVEP bands (low-, medium-, and high-frequency). The frequency of the LEDs was precisely
controlled with an Xilinx Spartan3E field-programmable gate array (FPGA) on a Nexys board (Digilent
Inc., Pullman, USA). The 50 Hz frequency was not used as a stimulation frequency, because this is the
Argentinian power line frequency. The light intensity of the the green and white LEDs was 750 mcd
and 250 mcd for blue and red LEDs.

The setup consisted of three different stimuli (see Figure 2). The first stimulus was white (W) LED
for the luminance condition. The W stimulus was configured with 90% of contrast between off and
on state, as done by [33]. The other two stimuli were green-red (G-R) stimulus and green-blue (G-B)
stimulus for the chromatic and luminance conditions. In this case, the contrast was configured with
50%, such as done by [39]. Figure 2 shows the transition of the two states of the visual stimuli. Each
state remained activated for half of the period of the stimulation frequency (f = 1/T, where T is the
period). For the luminance stimulus (W), the two states represented the light on and off. For the G-R
and G-B stimulus, the two states were green-red and green-blue, respectively.

(a) (b)

(c)

Figure 2. Visual stimulation used for the experiments: (a) Luminance stimulus (white, W); (b) green-red
(G-R) stimulus; (c) green-blue (G-B) stimulus.
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2.3. Experimental Protocol

Each subject sat in a chair at 60 cm from the stimulus. The experiment was divided into five
runs (Figure 3a). At each run, the three possible stimuli (G-R, G-B, and W) were showed to the
volunteer (Figure 3b). At each colored stimulus, the 12 frequencies were presented. Thus, each
stimulus comprised 12 trials, and each trial lasted 7 s (Figure 3c). Thus, 12 trials (one per frequency) of
the same colored stimulus were presented to the volunteer. Later, the process was repeated for the other
two colored stimuli, which comprised a run. Finally, the run was repeated five times. The stimulation
frequencies and the colored stimuli were randomly presented to each volunteer. In order to avoid
expectation effects, a variable separation time (2–4 s) between trials was used. The trial began with
a beep (at t = 0 s), and 2 s later the stimulus was turned on. The stimulus stayed on until the end of
the trial at t = 7 s. At this moment, a feedback was presented to the volunteer indicating whether the
SSVEP was detected or not. The volunteer could relax for 2–5 min.

2s 5s 2s 5s 2-5 min

W G-B G-R

1st trial 12th

. . .F1 F12 Rest

  1st run     2nd run    3rd run    4th run    5th run (a)

(b)

(c)

random order

random order
trial

2-4s

F2

2s 5s

2ndtrial

Figure 3. Protocol of the experiment: (a) experiment divided into five runs; (b) three colored
stimuli presented in random order to each volunteer; (c) 12 frequencies randomly presented for
each colored stimulus.

2.4. EEG Signal Processing

The EEG was preprocessed using a Butterworth filter, order 6, with cut-off frequencies set at 3
and 70 Hz. Later, the EEG between t = 2 s and t = 7 s was extracted for analyzing in the next step. Then,
the magnitude of the frequency components of the signal was calculated based on the discrete Fourier
transform (DFT) of the signal x[n] defined as:

F( f ) =

∣∣∣∣∣N−1

∑
n=0

x[n]e−j2π f nTs

∣∣∣∣∣ , (1)

where F( f ) is the magnitude of the signal, Ts is the sampling period, N is the total number of samples
of the signal, and f is the frequency.

The signal-to-noise ratio (SNR) measurement was computed based on the values extracted from
Equation (1). The SNR of SSVEP at a single channel is defined as the ratio of F( f ) to the mean
amplitude of the K neighboring frequencies [34,45]:

SNR =
K × F( f )

∑K/2
n=1[F( f + nΔ f ) + F( f − nΔ f )]

, (2)

where Δ f is the frequency resolution (0.2 Hz in this study), and K was set to 8 (i.e., four frequencies on
each side) [46].
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2.5. Statistical Evaluation

For the statistical analysis of the results, the Friedman test for simultaneous comparison of more
than two groups was used. Post-hoc pairwise comparisons using Wilcoxon signed-rank test were also
conducted, in which a level of p < 0.05 was selected as the threshold for statistical significance.

3. Results

This section is divided in three parts, where results about amplitude, SNR, and a simulation of
SSVEP classification are presented.

3.1. Amplitude

Figure 4 shows the average amplitudes of the elicited SSVEP of all volunteers for the three visual
stimuli. The frequencies marked with an asterisk show statistical significance (p-value < 0.05) using
the Friedman test. The amplitudes were calculated according to Equation (1). Then, for each volunteer,
the amplitude value was obtained at each frequency F( f ), and the average was computed across
the volunteers.

Figure 4. Average of the steady-state visual evoked potential (SSVEP) amplitudes of all volunteers
for the Oz, TP9, and TP10 channels using three different stimuli. The frequencies with statistical
significance (p-value < 0.05) based on the Friedman test are marked with an asterisk.

At the occipital region, the G-R stimulus showed a higher response when compared with the
W stimulus in the medium-frequency range (15–25 Hz, with p-value < 0.05). In contrast, in the
high-frequency range (30–40 Hz, p-value < 0.05) the G-B stimulus presented a better response when
compared with the W stimulus. In the 55–65 Hz interval, the W stimulus achieved a better response
than G-R and G-B stimuli.

In the temporal region (TP9 and TP10), a similar behavior was observed; i.e., in the
medium-frequency range, the G-R stimulus achieved higher amplitudes (TP9: 15 Hz, with
p-value < 0.05; TP10: 15–25 Hz, with p-value < 0.05) than W and G-B stimuli. In the high-frequency
range, the G-B stimulus showed a better response (30–35 Hz, with p-value < 0.05) than the other stimuli.
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3.2. SNR

Figure 5 shows the average SNR of the SSVEP of all volunteers for the three stimuli.
The frequencies marked with an asterisk show statistical significance (p-value < 0.05) using the
Friedman test.

Figure 5. Average of the SSVEP SNR of all volunteers for the Oz, TP9, and TP10 channels using the
three different stimulus configurations. The frequencies with statistical significance (p-value < 0.05)
based on the Friedman test are marked with an asterisk.

At the occipital region, the G-R stimulus showed a higher response than the W stimulus in
the medium-frequency range (15–25 Hz). In the high-frequency range (30–40 Hz), the G-B stimulus
showed a better response (30–35 Hz, p-value < 0.05) than the W stimulus. In the 55–65 Hz range,
the luminance stimulus (W) presented a better response than the G-R and G-B stimuli.

Again, a similar behavior was observed in the temporal region (TP9 and TP10); i.e., in the
medium-frequency range, there was a higher response of the G-R stimulus (TP9: 15 Hz,
with p-value < 0.05; TP10: 15–25 Hz, with p-value < 0.05) compared with the luminance stimulus (W).
In the high-frequency range the G-B stimulus showed a better response (30–35 Hz, with p-value < 0.05)
when compared with the W stimulus.

3.3. Simulated SSVEP Classification

Aiming to provide an overview of how the different SNR of SSVEP would impact the design of
a future BCI system, a simulated online analysis was performed. Hence, the accuracy of the SSVEP
detection [47,48] and information transfer rate (ITR) [9] were used. To emulate an online detection
process, the EEG signal was segmented in 4 s windows (as done by [34]). Then, power spectral density
analysis (PSDA) [45], canonical correlation analysis (CCA) [49] and temporally local multivariate
synchronization index (TMSI) [50] methods, with criterion of maximum value were used for data
classification. For this test, two frequencies were chosen in order to simulate a binary BCI. Thus,
15 and 20 Hz were chosen within the medium-frequency range, and 30 and 35 Hz were chosen for the
high-frequency range, as these frequencies presented the best SNR (see Figure 5).

Figures 6 and 7 present the average accuracy of the classification of all volunteers for the three
stimuli in medium- and high-frequency ranges.
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Figure 6. Average accuracy of all volunteers for the three stimuli in medium-frequency range. Error
bars indicate standard errors. CCA: canonical correlation analysis; TMSI: temporally local multivariate
synchronization index.

Figure 7. Average accuracy of all volunteers for the three stimuli in high-frequency range. Error bars
indicate standard errors.

Figures 8 and 9 present the average ITR of all volunteers for the three stimuli in medium- and
high-frequency ranges.

Figure 8. Average information transfer rate (ITR) of all volunteers for the three stimuli for the
medium-frequency range. Error bars indicate standard errors.

Figure 9. Average ITR of all volunteers for the three stimuli for the high-frequency range. Error bars
indicate standard errors.
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4. Discussion

The literature reports that the visual stimuli that combine colors and luminance can increase the
evoked response of P300 potentials [35,36]. Similarly, it was demonstrated that the combination of G-B
and luminance can evoke a better response in the SSVEP from the occipital region [37,38]. In other
work [39], G-R stimuli combined with luminance changes obtained a better response at a modulated
frequency of 15 Hz. These works measured the EEG on occipital and parietal regions of the scalp.

Currently, the BCI community is looking at how to transfer these systems from the lab to the
patient’s home. Thus, more accurate and comfortable BCI systems must be designed. This way,
measuring the EEG from hairless positions presents advantages to the user, and recently, these kinds
of BCI systems have been reported in the literature [31,32,34]. These studies demonstrated that it is
possible to develop a BCI based on EEG measured from hairless regions; however, concerning the
wide frequency range and types of stimulation (color and luminance), the question about the best
frequency and type of stimulation remains unclear.

In the current work, SSVEP from behind-the-ears areas (TP9 and TP10) was elicited by three
stimuli (G-B, G-R, and W) flickering at low-, medium-, and high-frequency. The aim of this work was
to analyze how these stimuli influence the SSVEP response from the behind-the-ears areas. Higher
amplitude (Figure 4) and SNR (Figure 5) of the SSVEP were observed when stimuli that combined color
and luminance (G-R and G-B) were applied. Particularly, the best response in the medium-frequency
band (15–25 Hz) was obtained with G-R stimulation. On the other hand, G-B stimulation showed
the best response in the high-frequency range (30–40 Hz). Therefore, a suitable color and luminance
stimulation allows the achievement of higher amplitudes and higher SNR from behind-the-ears areas,
and consequently, an accurate and comfortable BCI may be designed.

At the occipital electrode, G-R presented the best response in the medium-frequency range,
in accordance with [39]. In the current work, the Oz electrode was used as the standard measure in
SSVEP and to corroborate the results with TP9 and TP10 electrodes.

The results of the simulated online analysis showed that the combination of colors and luminance
also improved the SSVEP detection accuracy and ITR. When stimuli in the medium-frequency range
were used, G-R presented better results (see Figures 6 and 8). Using PSDA in TP9 and TP10, the
detection accuracy was increased by 12% and 19%, respectively, in comparison with the luminance
stimulus (W). Similar behavior was observed with CCA and TMSI methods, with G-R stimulus
obtaining better results than other stimuli. CCA and TMSI achieved higher accuracy detection values
than PSDA. Specifically, CCA achieved at Oz: 92.3± 3.0%, at TP9: 76.1± 4.8%, at TP10: 84.3± 3.7%, and
at TP9/TP10: 80.2 ± 2.8%. On the other hand, TMSI achieved at Oz: 92.3 ± 3.2%, at TP9: 81.8 ± 4.2%,
at TP10: 85.8 ± 4.2%, and at TP9/TP10: 85.3 ± 3.3%. As a counterpart, the 15–25 Hz stimulation range
can provoke epileptic seizures [1,51].

The high-frequency band is known for its low-amplitude SSVEP, making difficult to implement
a BCI [52]. However, when using G-B stimuli, the detection accuracy and ITR were increased on
both the occipital and temporal regions (see Figures 7 and 9). The G-B stimulus presented the higher
accuracy when compared with G-R and W stimuli using PSDA (Oz: 89.8 ± 2.5%, TP9: 76.0 ± 5.0%
TP10: 78.8± 4.0%), CCA (Oz: 91.0± 3.1%, TP9: 74.3± 4.0%, TP10: 76.3± 4.0%, TP9/TP10: 75.7± 4.6%),
and TMSI (Oz: 92.2 ± 2.8%, TP9: 76.0 ± 4.5%, TP10: 77.7 ± 4.0%, TP9/TP10: 80.7 ± 4.2%). In addition,
a previous work [44] reports that the green-blue chromatic flicker is the safest stimulus for human
visual photosensitivity.

Moreover, the high-frequency stimulation band can provide a reduction of epileptic seizures [51],
false positives due to alpha rhythm (8–13 Hz) [1,53], migraine headaches [54], and visual fatigue [54].
Hence, the development of more comfortable and stable BCIs are possible [53]. In the current work,
we showed that using G-B stimulus at high frequencies allowed an accuracy rate close to 80% to be
obtained in a hairless area.
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5. Conclusions

This work presented a study of chromatic and luminance stimuli to evoke SSVEPs on
behind-the-ears areas. The SSVEP was elicited at low-, medium-, and high-frequency stimulation, and
the EEG was measured at left and right temporal (TP9 and TP10) areas. It was found that stimuli based
on a suitable color and luminance elicited stronger SSVEP on the behind-the-ears areas. Interestingly,
we found a different response of SSVEP related to frequency and color of the stimuli. G-R stimulus
elicited the highest SSVEP in the medium-frequency range (15–25 Hz), and G-B stimulus elicited the
highest SSVEP at high-frequencies (30–40 Hz). Moreover, detection accuracies of around 80% using
PSDA and even more than 80% using CCA or TMSI on a hairless area were obtained. These findings
allow the development of more comfortable, accurate, and stable BCIs with electrodes positioned on
the behind-the-ears (hairless) areas.

6. Future Works

Currently, we are developing an online BCI based on the results of this research to command a
robotic wheelchair. Other possible applications for this BCI are spellers for communication, command
of telepresence robots, command of autonomous car or for turning on/off home appliances in domotics,
and other applications required by people with severe disabilities. A recent work of Chien et al. applied
a new paradigm to elicit SSVEPs with little or no flickering sensation and using color stimuli on a
screen [48]. However, that work did not use its paradigm on non-hair positions, which can be evaluated
using our methodology.
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Abstract: A rehabilitation robot plays an important role in relieving the therapists’ burden and
helping patients with ankle injuries to perform more accurate and effective rehabilitation training.
However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of
complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles’ good
flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant
ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM’s nonlinear
characteristics during operation and to tackle the human-robot uncertainties in rehabilitation,
an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper.
The human-robot external disturbance can be estimated by an observer, who is then used to adjust the
robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov
stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the
proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output
in real time during operation, resulting in a higher trajectory tracking accuracy and better response
performance especially in dynamic conditions.

Keywords: parallel robot; ankle rehabilitation; pneumatic muscles; disturbance estimation; adaptive
sliding mode control

1. Introduction

The ankle joint plays a key role in maintaining balance during walking [1–3]. Recently, there have
been an increasing number of people suffering from ankle injuries caused by diseases and accidents.
In the US, more than 23,000 cases of ankle sprain injuries happen every day [4]. The postoperative
recovery from ankle injury is slow and ineffective while the application of rehabilitation robots is
supposed to be possible to solve this problem. Rehabilitation robots can help patients accomplish
repetitive training tasks more accurately and effectively without physical therapists’ excessive
participation [5–7]. Increasing attention has been paid to the robotic rehabilitation that is appropriate
to perform repetitive exercises for the recovery from neuromuscular injuries [8].

In the perspective of ankle rehabilitation, parallel robots can produce greater torque as well as
achieve multiple movement degrees of freedom (DOFs) [9]. A series of parallel platform-based ankle
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rehabilitation robots have been developed [10]. Liu et al. [11], Alireza et al. [12], and Mozafar et al. [13]
all proposed a 6-DOF ankle rehabilitation robot based on the Stewart platform. However, these robots
utilized rigid actuators, such as electric motors or cylinders [14] that cannot achieve soft and compliant
interaction with the patients. To overcome the limitations, some researchers started to use pneumatic
muscles (PMs) as actuators to drive the ankle rehabilitation robot. PMs have inner compliance, high
power/weight ratio [15] and can drive the robot in a safer way, so they have become increasingly
popular in the rehabilitation robots [16]. Xie et al. [17,18] designed a four PMs-driven 3-DOF ankle
rehabilitation robot with large workspace and good flexibility. Park et al. [19] in Harvard University
designed a PMs-driven ankle rehabilitation robot by simulating the human muscle-tendon-ligament
model, in which the PMs directly drove the foot to complete dorsiflexion/plantarflexion and
inversion/eversion movements. Sawicki et al. [20] also used multiple PMs to provide dorsiflexion
and plantar flexion torque for the ankle movement. Patrick et al. [21] designed a 2-DOFs ankle
rehabilitation robot driven by three PMs to help patients achieve plantarflexion/dorsiflexion and
inversion/eversion movements.

PMs have strong non-linearity and time-varying properties [22], which may cause difficulties in
implementing precise control [23]. In order to solve these problems, a variety of control approaches
have been developed. Zhao et al. [24] used neural network to adjust the parameters of PID controller.
However, the method has the problems of long response time, poor tracking on desired trajectory
and low tracking accuracy in the step response experiment. Zhang et al. [25] proposed a hybrid
fuzzy controller to control the elbow exoskeleton robot actuated by PMs. However, this method
cannot estimate the external disturbance when chattering happens, resulting in a large overshoot of
step response. For the safety of human-robot interaction, Choi et al. [26] proposed a new approach to
control the compliance and associated position independently. However, when an external disturbance
occurs suddenly, the control method cannot detect the external disturbance quickly and it takes a long
time to re-track the desired trajectory. Meng et al. [9] proposed an iterative feedback tuning control
method for the repetitive training. However, the actual trajectory changed in a ladder shape because
the external disturbance cannot be estimated. Jiang et al. also [27] proposed an adaptive fuzzy control
algorithm based on neural network optimization to control the humanoid lower limb device driven
by pneumatic muscles. However, this method cannot achieve high-accuracy tracking control and the
error would significantly increase when the external load changes.

During the operation of rehabilitation robot, external disturbances are usually inevitable [28].
To obtain good control performance, the applied disturbance needs to be known exactly. However,
external disturbances are often difficult to get accurately [29]. Therefore, one of the reasons why the
above control method cannot achieve better control accuracy is that the external disturbance cannot
be estimated. It has been recently accepted that the disturbance observer is a good choice to solve this
problem [30]. Yang et al. [31] designed an error-feedback controller based on extended state observer to
estimate the external disturbances and improve the trajectory tracking accuracy of a PMs-driven robot.
Zhu et al. [32] presented an adaptive robust controller based on a pressure observer to control a three
PMs-driven robot without pressure sensors. Wu et al. [33] proposed a novel nonlinear disturbance
observer-based dynamic surface control (NDOBDSC) and can solve the friction and unknown external
disturbances existing in the PM-driven device. Youssif et al. [34] designed a nonlinear disturbance
observer (NDO) to estimate the lumped disturbance. Zhang et al. [35] proposed an active disturbance
rejection controller for a PM actuator to achieve angle tracking precisely under varying load conditions.
Plenty of studies have implied that external disturbance observer can reduce the error and improve
the control accuracy effectively.

On the other hand, since the parallel robot actuated by PMs is a complex high-order nonlinear
system, it would be increasingly difficult to develop an accurate control scheme for the system [36].
The backstepping sliding mode control (BS-SMC) can decompose a high-order nonlinear system into
several lower order subsystems and design an intermediate virtual controller for each subsystem,
which can improve the control performance [37]. In recent years, BS-SMC has attracted the interest
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of many researchers. Petit et al. [38] used backstepping sliding mode method to control a robot
with variable stiffness and achieved satisfactory tracking performance. However, the tracking error
would obviously increase if external disturbance occurred. Taheri et al. [39] designed a backstepping
sliding mode controller for pneumatic cylinders suitable for wearable robots. The force and stiffness
tracking performance were better than the previous pneumatic force-stiffness sliding mode controllers.
However, the overshoot of this control scheme was still large and there was no experiment with
variable loads. Esmaeili et al. [40] used a backstepping sliding mode controller to achieve balancing
and trajectory tracking of Two Wheeled Balancing Mobile Robots (TWBMRs).

As concluded from the previous studies, there will be excessive overshoots or significantly
increased errors when the external disturbance happens. The main reason is that the above methods
cannot estimate the external disturbance, and as a result the control output cannot be adjusted in
real time. This paper will propose an adaptive backstepping sliding mode control (ABS-SMC) with
the capacity to estimate the external disturbance during operation, thus improving the robustness
and accuracy of the control method. The ABS-SMC method is applied to a new 2-DOF parallel ankle
rehabilitation robot which has been recently developed by us using pneumatic muscles. The controller
can also deal with the nonlinearities and uncertainties of the robot system. The rest of this paper is
arranged as follows: Section 2 presents mechanism design of the ankle robot. The control strategy
is described in Section 3. In Section 4, experiments are carried out to verify the performance of
the controller. Section 5 draws conclusion of the paper.

2. The Ankle Rehabilitation Robot

The complete system of the 2-DOF ankle rehabilitation robot and its hardware configuration
are shown in Figures 1 and 2, respectively. The robot consists of a fixed platform, a moving
platform, and three pneumatic muscle actuators. The moving platform is equipped with two angle
sensors (GONIOMETER SG110) to measure its real-time orientation angle around the X and Y axis.
Each pneumatic muscle (FESTO MAS-20-400N) is controlled by an air pressure proportional valve
(ITV 2050-212N). The position information of each pneumatic muscle is collected by displacement
transducers (MLO-POT-225-TLF). A force/toque sensor (ATI Mini85) is mounted between the platform
and the footplate to measure the applied ankle torque. Through the data acquisition card, the sensing
data are gathered by robRIO and then transmitted to the host computer. After the D/A conversion of
the data, the control signals are input to the corresponding proportional valves to control pneumatic
muscles, thus driving the upper platform to move. The ABS-SMC is implemented in the host computer
and closed-loop control is realized on LabVIEW.

 

Figure 1. System structure of the ankle rehabilitation robot.
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Figure 2. The developed ankle rehabilitation robot driven by PMs.

Figure 3a,b shows the simplified structure and geometrical model of the designed ankle
rehabilitation robot. Since the PM can only provide pulling force, the robot must have a
redundant actuation mechanism [41]. So the 2-DOF ankle rehabilitation robot is actuated by three
pneumatic muscles. The lower fixed platform has three fixed holes, and the wires pass through the
holes on the fixed platform. A strut is fixed between the fixed platform and the moving platform
(end-effector). The Hooke joints between these two platforms guarantee that the robot can only move
at two orientations. When the muscles’ lengths change, the platform can be controlled to work on
two orientations. In order to reduce the height of the robot and make it easier for human usage,
three PMs are placed in the horizontal direction, using three fixed pulleys to change the direction of
actuating forces. In this case, the overall height of the robot is only 0.3 m.

(a) 

(b)

Figure 3. Kinematics of the designed 2-DOF ankle rehabilitation robot: (a) structure model,
(b) geometrical diagram.
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In order to control the robot end-effector to track a predefined trajectory for ankle movement
training, the robot kinematic model must be studied [42], using which the joint space displacements can
be determined from the end-effector orientation. As shown in Figure 3b, b1b2b3 and B1B2B3 represent
the moving platform and the fixed platform, respectively. The vectors that connect the moving platform
and the fixed platform can be written as b1B1, b2B2 and b3B3. O − X′Y′Z′ and O − XYZ are coordinate
system of the moving platform and the fixed platform, respectively. A space vector in the moving
coordinate can be transformed to the fixed via rotation matrix, which is widely used to establish inverse
kinematics of the parallel rehabilitation robot [43]. Here α = 50o, β = 80o, h1 = 0.07 m, h2 = 0.08 m,
H1 = 0.05 m, H2 = 0.06 m. The rotation matrix can be expressed as:

T = T(y, φ)T(x, θ) =

⎡⎢⎣ cos φ sin φ sin θ sin φ cos θ

0 cos θ − sin θ

− sin φ cos φ sin θ cos φ cos θ

⎤⎥⎦. (1)

The solution of b1B1, b2B2 and b3B3 is necessary for robot control and workspace analysis. It can
be obtained by using the inverse kinematics. The link’s length of this parallel robot is:

li = |L|i =
∣∣∣Tr′bi

+ P − rBi

∣∣∣i = 1, 2, 3 (2)

where Li is the vector from Bi to bi, P is the vector from O to O′, r′bi
is the vector from O′ to bi(i = 1, 2, 3)

and r′Bi
is the vector from O to Bi(i = 1, 2, 3).

The dynamic model of the robot describes the relationship between the output torque and the
desired angle as well as angular velocity [44]. The dynamics model is also the foundation of sliding

mode control [45]. Define q =
[

θ ϕ φ
]T

=
[

θ ϕ 0
]T

as the generalized coordinates of the
robot’s moving platform, thus the generalized speed of the moving platform is shown in Equation (3).

ω = Ẽ·

⎡⎢⎣
.
θ
.
ϕ

0

⎤⎥⎦ =

⎡⎢⎣ cos ϕ 0 0
0 1 0

− sin ϕ 0 1

⎤⎥⎦
⎡⎢⎣

.
θ
.
ϕ

0

⎤⎥⎦. (3)

Lagrange’s equation is suitable for the complete system and it can solve the complex system
dynamic equation in a simpler way [46]. So we use the Lagrange’s equation to establish the dynamic
equation of the moving platform:

M(q)
..
q + C(q,

.
q)

.
q + G(q) = τ + τd, (4)

where M(q), C(q,
.
q) and G(q) represent the robot inertia matrix, the Coriolis centrifugal force matrix

and the gravity matrix, τ is the robot torque and τd is the external disturbance torque. τd is mainly
composed of human applied torque and the friction. The parameters in Equation (4):

M(q) = TIPTT

C(q,
.
q)

.
q = ω̃TTIPTT

G(q) = −mT̃rm g
, (5)

where m is the mass of the moving platform, Ip is the rotational inertia of the moving platform, rm

is the position vector of the moving platform centroid, Trm = Trm and T̃rm is the spiral matrix of Trm .
According to the formula, the driving force of each pneumatic muscle can be obtained, and finally to
realize the accurate trajectory tracking of the robot platform.
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3. Control Strategy

3.1. Backstepping Sliding Mode Control

The basic idea of backstepping design method is to decompose the complex nonlinear system into
subsystems with lower orders, and then design Lyapunov function and intermediate virtual control
for each subsystem [47]. Based on Equation (4), the controlled object model can be defined as{ .

q1 = q2.
q2 = −M−1Cq2 + M−1τ − M−1G + M−1τd

, (6)

where q1 = q, q is the actual trajectory.
Assuming the desired position qd, the controller can be designed by the following two steps:

Step 1: Define the tracking error e1 = q1 − qd, then
.
e1 =

.
q1 −

.
qd = q2 −

.
qd, and define the Lyapunov

function as
V1 =

1
2

eT
1 e1. (7)

So .
V1 = eT

1
.
e1 = eT

1
(
q2 −

.
qd
)
. (8)

Define
q2 = e2 +

.
qd − c1e1, (9)

where c1 > 0, e2 is a virtual control law. From Equation (9), we can obtain

.
e1 =

.
q1 −

.
qd

= q2 −
.
qd + c1e − c1e1

= e2 − c1e1

. (10)

From Equations (8) and (10) we can obtain

.
V1 = eT

1
.
e1 = eT

1 e2 − c1eT
1 e1. (11)

If e2 = 0,
.

V1 = −c1eT
1 e1 = −c1(‖e1‖2)

2 ≤ 0. So it is necessary to further design the control law.
Step 2: Define the switch function as

s = k1e1 + e2, (12)

where k1 > 0. Taking Equation (10) into (12), we can obtain

s = k1e1 +
.
e1 + c1e1 = (k1 + c1)e1 +

.
e1. (13)

The Lyapunov function is

V2 =
1
2

eT
1 e1 +

1
2

sTs. (14)

From Equation (14) we can obtain

.
V2 = eT

1
.
e1 + sT .

s
= eT

1 e2 − c1eT
1 e1 + sT(k1(e2 − c1e1)− M−1C(e2 +

.
qd − c1e1)

+M−1τ + M−1τd − M−1G − ..
qd + c1

.
e1)

. (15)

So the control law can be written as

τBS−SMC = τeq + MΔτ, (16)
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where
τeq = M(−k1(e2 − c1e1) + M−1C(e2 +

.
qd − c1e1) + M−1G +

..
qd − c1

.
e1)

Δτ = −h(s + βsgn(s))
. (17)

where h and β are the parameters of exponential reaching law. They can determine the speed and time
of the moving point approaching to the sliding surface.

3.2. Adaptive Backstepping Sliding Mode Control

The proposed ABS-SMC can estimate the external disturbance by establishing an disturbance
observer [48]. Assuming that the external disturbance observer is τ̂d.

Define

Q =

[
q1
q2

]
. (18)

So
.

Q =

[ .
q1.
q2

]
=

[
q2.
q2

]

=

[
q2

−M−1Cq2 − M−1G + M−1τ + M−1τd

] , (19)

Equation (19) can be rewritten as:

.
Q =

[
q2

−M−1Cq2 − M−1G

]
+

[
0
M−1

]
τ +

[
0
M−1

]
τd

= f1(Q) + f2(Q)τ + f2(Q)τd

, (20)

where

f1(Q) =

[
q2

−M−1Cq2 − M−1G

]
; f2(Q) =

[
0
M−1

]
, (21)

The disturbance observer is designed based on the difference between estimated output and
actual output. Equation (20) can be rewritten as

f2(Q)τd =
.

Q − f1(Q)− f2(Q)τ, (22)

So the disturbance observer is designed:

.
τ̂d = Γ(

.
Q − f1(Q)− f2(Q)τ − f2(Q)τ̂d), (23)

Define vector z = τ̂d − p(Q). The observer gain can be expressed as Γ = ∂p(Q)/∂Q. Let

Γ =
[

ξ2 ξ2

]
,ξ1 > 0, ξ2 > 0 (24)

p(Q) = ξ1q1 + ξ2q2 = ξ1q + ξ2
.
q. (25)

.
z =

.
τ̂d − .

p(Q). (26)

Substituting Equations (23) and (25) into (26),

.
z =

.
τ̂d − .

p(Q)

= Γ(− f1(Q)− f2(Q)τ − f2(Q)(z + p(Q)))

+
[

ξ1 ξ2

][
.
q

..
q

]T − ξ1
.
q − ξ2

..
q

= Γ(− f1(Q)− f2(Q)τ − f2(Q)(z + p(Q)))

. (27)
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Let τ̃d = τd − τ̂d. When the disturbance varies slowly relative to the observer dynamics, which is
commonly assumed in observer design [48,49], it is reasonable that

.
τd = 0, so we have

.
τ̃d +

.
τ̂d = 0. (28)

Substituting Equations (24) and (25) into (28),

0 =
.
τ̃d + Γ(

.
Q − f1(Q)− f2(Q)τ − f2(Q)τ̂d)

=
.
τ̃d + Γ( f2(Q)τd − f2(Q)τ̂d) =

.
τ̃d + Γ f2(Q)τ̃d

. (29)

Substituting Equation (21) into (27), the disturbance observer can be written as

τ̂d = z + p(Q)
.
z = −(ξ1

.
q + ξ2M−1(−C

.
q − G + τ) + ξ2M−1(z + ξ1q + ξ2

.
q))

. (30)

Based on Equations (17) and (30), the adaptive control law can be written as

τABS−SMC = M(−k1(e2 − c1e1) + M−1C(e2 +
.
qd − c1e1) + M−1G

−M−1τ̂d +
..
qd − c1

.
e1 − h(s + βsgn(s)))

. (31)

According to these, the proposed ABS-SMC controller for the developed ankle rehabilitation robot
with external disturbance in practice can be implemented based on the diagram in Figure 4, in which
the controller observer can adaptively estimate the external disturbance.

 

Switch part

Dynamic Model   Equivalent partDynayyyy mic Model  Equiqqqq valent pppppart

disturbance 
observer

2-DOF Ankle 
Rehabilitation robot

d

Figure 4. Implementation of ABS-SMC for the ankle rehabilitation robot.

3.3. Stability Analysis

To prove the stability of a closed-loop system, Lyapunov function is commonly used [28,29,50],
through which we firstly prove that the estimation error of disturbance is bounded.

Remark 1. For the dynamic model in (4) and the disturbance observer in (29), the estimation error τ̃d is bounded.

Proof. Define a Lyapunov function V3 as follows:

V3 =
1
2

τ̃T
d τ̃d. (32)
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Substituting Equations (21) and (24) into (23):

.
τ̂d =

[
ξ1 ξ2

]([ .
q1.
q2

]
−

[
q2
−M−1Cq2 − M−1G

]
−

[
0
M−1

]
τ −

[
0
M−1

]
τ̂d

)
= ξ2(

..
q + M−1Cq2 + M−1G − M−1τ − M−1τ̂d)

. (33)

Substituting Equation (6) into (33):

.
τ̂d = ξ2(M−1τd − M−1τ̂d) = ξ2M−1τ̃d. (34)

So

τ̃T
d

.
τ̃d = τ̃T

d (
.
τd −

.
τ̂d) = −τ̃T

d

.
τ̂d. (35)

Substituting Equation (34) into (35), we have

τ̃T
d

.
τ̃d = −ξ2τ̃T

d M−1τ̃d. (36)

Because M−1 is a positive definite matrix and ξ2 > 0, then

.
V3 = τ̃T

d

.
τ̃d ≤ 0. (37)

This indicates that the designed disturbance observer can track external disturbance, which means
the estimation error τ̃d is bounded, so Remark 1 is proved to be correct.

Then, we prove the stability of the combined system. As the robot moves within a confined space,
the inertia matrix M is bounded and positive definite so M−1 exists and is bounded,

‖M−1τ̃d‖1 = ‖M−1τd − M−1τ̂d‖1 ≤ δ. (38)

δ̂ is the estimated value of δ. Then define:
.
δ̂ = γ‖s‖1. (39)

where γ > 0 [51,52]. �

Remark 2. As long as the parameters are appropriately set, the closed-loop system is stable for disturbance
observer in (30) and control law in (31).

Proof. The Lyapunov function is defined as

V = V2 +
1

2γ
δ̃2 +

1
2

τ̃T
d τ̃d. (40)

where δ̃ = δ − δ̂.
From Equation (40), we can get

.
V =

.
V2 +

1
γ

δ̃
.
δ̃ + τ̃T

d

.
τ̃d. (41)

Substituting Equation (31) into (15), we can get

.
V2 +

1
γ δ̃

.
δ̃ = eT

1 e2 − c1eT
1 e1 + sTM−1τ̃d − hsTs − hβ‖s‖1 − 1

γ δ̃
.
δ̂

≤ eT
1 e2 − c1eT

1 e1 + δ‖s‖1 − hsTs − hβ‖s‖1 − δ̃‖s‖1
= eT

1 e2 − c1eT
1 e1 − hsTs + (δ − δ̃ − hβ)‖s‖1

. (42)
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Let hβ = δ̂ =
∫

γ‖s‖1dt. Equation (42) can be rewritten as:

.
V2 +

1
γ δ̃

.
δ̃ ≤ eT

1 e2 − c1eT
1 e1 − hsTs + (δ − δ̃ − hβ)‖s‖1

= eT
1 e2 − c1eT

1 e1 − hsTs + (δ − δ̃ − δ̂)‖s‖1
= eT

1 e2 − c1eT
1 e1 − hsTs

. (43)

Define e =
[

eT
1 eT

2

]
, eT =

[
e1

e2

]
, and =

[
c1 + hk2

1 hk1 − 1
2

hk1 − 1
2 h

]
.

Then

eBeT =
[

eT
1 eT

2

][ c1 + hk2
1 hk1 − 1

2
hk1 − 1

2 h

][
e1

e2

]
= c1eT

1 e1 − eT
1 e2 + hk2

1eT
1 e1 + hk1eT

1 e2 + hk1eT
2 e1 + heT

2 e2

= c1eT
1 e1 − eT

1 e2 + hsTs

. (44)

Substituting Equation (44) into (43):

.
V2 +

1
γ

δ̃
.
δ̃ ≤ −eBeT . (45)

If we make be a positive definite matrix, then

.
V2 +

1
γ

δ̃
.
δ̃ ≤ −eTBe ≤ 0. (46)

Because
|B| = h(c1 + hk2

1)− (hk1 − 1
2 )

2

= h(c1 + k1)− 1
4

. (47)

By appropriately setting h, c1, k1, we can make |B| > 0, so that B is a positive definite matrix and

guarantee
.

V2 +
1
γ δ̃

.
δ̃ ≤ 0.

From Equation (37), we can get
τ̃T

d

.
τ̃d ≤ 0. (48)

Substituting Equations (46) and (48) into (41):

.
V =

.
V2 +

1
γ

δ̃
.
δ̃ + τ̃T

d

.
τ̃d ≤ 0. (49)

Therefore, as long as the mentioned parameters are appropriately set, we can ensure the system
be stable. In this way, Remark 2 is proved to be correct. �

4. Experimental and Results Discussion

In order to confirm the performance of the proposed control method, experiments were carried
out on the 2-DOF ankle rehabilitation robot. The experiments can be divided into four groups: (1) step
response experiment; (2) sine trajectory tracking experiment (without subject); (3) robustness test with
human subjects; and (4) sudden external disturbance experiment. BS-SMC has been widely used
in recent years and achieved good control performance [38–40], so we conduct the experiments to
compare the proposed control method with BS-SMC to verify its control capacity and advantages.
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4.1. Step Response

To simulate step response, the moving platform was firstly set to its initial pose (θ = 0◦, ϕ = 0◦).
Then, at t = 10 s, the expected position of the moving platform was set as θ = 10◦ and ϕ = 10◦.
The experimental results of both BS-SMC and ABS-SMC are shown in Figure 5.
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Figure 5. Actuator position tracking results and errors in step response experiment with robot
controlled by BS-SMC and ABS-SMC respectively.

Figure 5 shows the step response of three PMs under different control methods. It can be seen that
both the proposed ABS-SMC and BS-SMC were able to generate delay less than 0.5 s, but the ABS-SMC
reached the desired trajectory more quickly after a short shock. The response time of the proposed
control method was 1 s while that of the BS-SMC was about 1.5 s. In addition, there was always
vibration existing near the desired trajectory in the BS-SMC experiment, while the proposed ABS-SMC
could effectively reduce chattering and guaranteed the operation safety. Moreover, the overshoot
of ABS-SMC was significantly smaller than that of BS-SMC. For example, the tracking overshoot of
Actuator 3 was about 5 mm when controlled by ABS-SMC. If the overshoot is too large, the patient’s
foot may have to rotate at a large angle in a short time, which may cause the secondary injury to
the patient. On the other hand, after the system reached the steady state, the error of the ABS-SMC
was smaller than 0.5 mm while the maximum error of the BS-SMC was 2 mm.

4.2. Sine Trajectory Tracking Experiment (without Subject)

The desired trajectory was set θ = 10 sin(2π f t)(deg), ϕ = 10 cos(2π f t)(deg), f = 10 Hz.
The results of sine trajectory tracking with no subject involved (load = 0) are shown in Figures 6 and 7.
From Figure 6, we can see that the proposed method had higher control accuracy and smaller chattering
than BS-SMC, due to its ability to compensate the external disturbance, which can effectively guarantee
the safety and stability of the rehabilitation operations. In order to further quantitatively compare
the performance between ABS-SMC and BS-SMC, maximum error (ME) and average error (AE) of
the robot control results were calculated for statistical evaluation. Table 1 shows the position tracking
errors of the two control methods. Taking Actuator 1 as an example, for the proposed control method,
the ME and AE were 0.84 mm and 0.39 mm respectively, while the ME and AE of BS-SMC were
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1.48 mm and 0.64 mm. Compared with BS-SMC, the ME and AE of ABS-SMC were reduced by about
43% and 40% respectively. In Table 2, the ME (0.69◦) and AE (0.19◦) of the rotation angle around
X-axis were reduced by 53% and 70%, compared with BS-SMC (1.48◦ and 0.57◦). Compared with
BS-SMC, the proposed ABS-SMC cannot only improve the position control accuracy, but also has a
lower chattering level attributing to its ability of disturbance estimation.
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Figure 6. Actuator position tracking results (without subject).
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Figure 7. Robot end-effector angle tracking results (without subject).
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Table 1. Statistical analysis of actuator position tracking errors under different control methods
(without subject).

Methods
Maximum Error (mm) Average Error (mm)

A1 A2 A3 A1 A2 A3

Position tracking results ABS-SMC 0.84 1.05 0.93 0.39 0.47 0.46
BS-SMC 1.48 1.64 1.55 0.64 0.72 0.75

Table 2. Statistical analysis of end-effector angle tracking errors under different control methods
(without subject).

Methods
Maximum Error (◦) Average Error (◦)

θ ϕ θ ϕ

Angle tracking results ABS-SMC 0.69 0.68 0.19 0.20
BS-SMC 1.48 1.41 0.44 0.44

4.3. Robustness Test with Human Subjects

In order to verify the robustness of the proposed controller, especially when interacting with
human users, five healthy subjects were involved in the experiment. The information of all subjects is
shown in Table 3. The participants were instructed to fix their right foot on the robot moving platform
so that they can follow the moving platform for passive training. This trial has been approved by the
Human Participants Ethics Committees from Wuhan University of Technology, China and written
informed consent was obtained from each participant. The experimental results were compared with
BS-SMC to verify its superior ability by taking advantage of external disturbance estimation. We take
Subject 1 as an example with results shown in Figures 8 and 9.

Table 3. Information of all involved subject.

Participants Gender Age Height (cm) Weight (kg)

Subject 1 male 23 175 65
Subject 2 male 22 178 64
Subject 3 female 23 160 49
Subject 4 female 24 165 50
Subject 5 male 25 180 70

The results of the sine wave tracking with Subject 1 are shown in Figures 8 and 9. Compared with
BS-SMC, we can see that proposed control method has smaller tracking errors. In the case of
Actuator 1, as shown in Tables 1 and 4, when the ABS-SMC was applied to the robot, compared
to the experiment without subject, the ME and AE of position tracking result increased by about
0.26 mm and 0.04 mm only. However, when BS-SMC was used, the ME and AE increased by 1.23 mm
and 0.66 mm. Comparing Tables 2 and 5, taking the rotation angle around X axis as an example, in the
use of ABS-SMC and when subject participated, the ME and AE only increased by about 0.21◦ and
0.01◦, but the ME and AE increased by 0.56◦ and 0.10◦ when using BS-SMC.

In Figure 8c, the desired trajectory was sinusoidal, so the torque applied by the subject to the
moving platform showed a similar pattern. ABS-SMC regarded the exerted force as an external
disturbance, thus the estimated external disturbance torque also revealed similar sine changes. On the
other hand, it can be seen from Figure 8d that the control law of the proposed ABS-SMC was quite
different from that of the BS-SMC, especially when it reached the extreme point. This is because the
external disturbance reached the maximum at the extreme point of the control law. It can also be
noticed that the estimated external disturbance of Z-axis was much smaller than X and Y axes. This is
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because the designed robot cannot rotate around the Z-axis. The ideal Z-axis torque should be zero,
but in practice the moving platform still has a slight rotation in the Z-axis.
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Figure 8. Actuator position tracking results with subject 1: (a) actuator position tracking results; (b) the
actuator tracking errors; (c) the estimated external torque (using ABS-SMC) and (d) the control output
tuning processing via ABS-SMC disturbance estimation.
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Figure 9. End-effector angle tracking results with subject 1.

Figure 10 further shows the errors of three actuators with all five participants. We can see that the
proposed ABS-SMC is able to obtain smaller errors which also changed more smoothly. It can be again
validated that the proposed ABS-SMC is able to obtain better robustness. The statistical details in
Tables 4 and 5 indicate the robustness of the ABS-SMC scheme for its adaptability to different subjects
with varying capabilities. When different subjects involved, the actuators’ ME changed very slightly.
The minimum ME was 1.10 mm and the maximum 2.07 mm. The change of AE was also small
(0.37~0.49 mm). When using BS-SMC to control the robot, the ME ranged 2.71~5.30 mm, and the
AE ranged 1.14~1.56 mm; therefore, the stability and control accuracy of ABS-SMC were better than
BS-SMC, which could adapt to different people’s rehabilitation training. Therefore, we can conclude
that the ABS-SMC has a better robustness as it estimates the exerted disturbance and adjusts the control
law in real time, resulting in higher control accuracy and reduced chattering.
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Figure 10. Actuator tracking error results with five subjects.
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Table 4. Statistical analysis of actuator position tracking errors under different control methods (with
five subjects).

Participants Methods
Maximum Error (mm) Average Error (mm)

A1 A2 A3 A1 A2 A3

Position
tracking
results

Subject 1 ABS-SMC 1.10 1.13 1.33 0.43 0.47 0.49
BS-SMC 2.71 3.60 3.24 1.30 1.48 1.56

Subject 2 ABS-SMC 1.52 2.07 1.76 0.39 0.47 0.37
BS-SMC 3.71 4.67 4.20 1.19 1.43 1.07

Subject 3 ABS-SMC 1.53 2.02 1.81 0.40 0.47 0.37
BS-SMC 3.90 5.01 4.19 1.17 1.46 1.10

Subject 4 ABS-SMC 1.77 2.07 1.88 0.39 0.48 0.38
BS-SMC 3.86 5.22 5.30 1.22 1.27 1.29

Subject 5 ABS-SMC 1.39 1.97 1.66 0.39 0.47 0.37
BS-SMC 3.74 4.96 4.63 1.14 1.34 1.09

Table 5. End-effector angle tracking errors under different control methods (with five subjects).

Participants Methods
Maximum Error (◦) Average Error (◦)

θ ϕ θ ϕ

Angle
tracking
results

Subject 1 ABS-SMC 0.90 0.99 0.20 0.39
BS-SMC 2.04 2.50 0.54 0.75

Subject 2 ABS-SMC 1.12 0.99 0.29 0.28
BS-SMC 2.25 2.18 0.50 0.78

Subject 3 ABS-SMC 1.21 1.18 0.29 0.34
BS-SMC 2.91 2.36 0.67 0.78

Subject 4 ABS-SMC 1.41 1.13 0.43 0.34
BS-SMC 3.32 2.75 0.63 0.66

Subject 5 ABS-SMC 1.14 0.89 0.27 0.28
BS-SMC 2.97 2.17 0.92 0.94

4.4. Sudden External Disturbance

To further confirm the anti-interference ability of the proposed ABS-SMC, a certain resistance was
applied on the 2-DOFs ankle rehabilitation robot. During different training cycles, the strength and
duration of the resistance are shown in Table 6 and the experimental results are compared with BS-SMC.
It can be seen that the trajectories of the actuator 2 and 3 were exactly the same when the trajectory of
the moving platform is θ = 0◦, ϕ = 10 cos(2π f t)◦. In order to ensure the applied force consistent for
the two control methods comparison, the ABS-SMC was used to control the actuator 1 and actuator 2,
while the BS-SMC was used to control the actuator 3 of the rehabilitation robot. The experimental
results are shown in Figure 11.

Table 6. Resistance force and duration of four phases in the experiment.

Man-Made Resistance Size (N) Duration (s)

Phase i (P i) None 0 0
Phase ii (P ii) Applied 10 2

Phase iii (P iii) Applied 30 2
Phase iv (P iv) Applied 30 3
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Figure 11. Actuator trajectory tracking results with abrupt disturbances.

Figure 11 shows the trajectory tracking curve after applying sudden disturbances. It can be
seen that the time required for ABS-SMC to track the desired trajectory was about 1.53 s and the
maximum error was about 7.50 mm in phase ii, while the time required for the BS-SMC was 2.39 s
and the maximum error 9.61 mm. In phase iii, compared with phase ii, the time that the proposed
ABS-SMC required to tracks the desired trajectory only increased by 3.92% and the maximum error
increased by 7.60%. However, the required time and maximum error increased by 7.60% and 20.9%
respectively in BS-SMC. Similar patterns were found in phase iv, the data increased by 4.81% and
4.96% respectively in ABS-SMC, while in BS-SMC increased by 8.40% and 17.53% respectively. So we
can conclude that the time required to re-follow the desired trajectory by using ABS-SMC was reduced
and the maximum error also remained small under uncertain resistances. The ABS-SMC can achieve a
better anti-interference performance compared with the BS-SMC, attributing to its ability of estimating
external disturbance and adjusting the control output accordingly.

To further verify superior ability of the proposed method, we also compared our results with
other recently published works, which also aimed to control the PMs-driven rehabilitation robot.
As summarized in Table 7, the proposed control method shows a better performance. Zhang et al. [53]
used adaptive patient-cooperative control method to control a compliant ankle rehabilitation robot
driven by PMs. They conducted the experiments with the subject, and the root mean square deviation
(RMSD) was 2.34◦. Jamwal et al. [18] used a fuzzy-based disturbance observer (FBDO) to control a
3-DOF ankle rehabilitation robot driven by PMs. The maximum error (ME) and average error (AE) of
end-effector were 22.93% and 6.43%. The team also designed a robust iterative feedback tuning control
scheme to improve the performance, and the ME and RMSD of trajectory tracking of the robot were
about 12.48% and 1.40◦ [9]. In addition, Su at al. [54] proposed a model-based chattering mitigation
robust variable control (CRVC) method and applied this method to control a lower limb rehabilitation
robot driven by PMs. The ME of the end-effector was 15.00% and The RMSD was 2.34◦. In this paper,
when there was a participant, the ME, AE and RMSD were 7.05%, 2.15% and 0.78◦, respectively. It can
be seen from the above analysis that the control performance of the proposed method is obviously
better than that of the above methods.

169



Sensors 2018, 18, 66

Table 7. Comparison of existing control methods and the proposed method for PMs-driven parallel
rehabilitation robot. (*, unknown).

Literature

End-Effector Tracking Error

Without Human Participant With Human Participant

ME (%) AE (%) RMSD ME (%) AE (%) RMSD

[9] 11.18 * 1.35 12.48 * 1.40
[18] * * * 22.93 6.43 *
[53] * * * * * 2.34
[54] * * * 15.00 * *

Current study 3.45 1.00 0.44 7.05 2.15 0.78

From the experimental results analysis, it can be concluded that the ABS-SMC estimates external
disturbance and adaptively adjusts the control law so the performance is obviously better than that
of the BS-SMC and the recent published control schemes in [15,23,43,44] in terms of response speed,
control accuracy, robustness and ability to resist external disturbance. This controller can meet the
rehabilitation demands of patients under dynamic conditions.

5. Conclusions

In this paper, a 2-DOF parallel robot was developed for ankle rehabilitation and the inverse
kinematics model as well as the dynamics model of the robot were constructed. This paper proposed an
ABS-SMC for PMs by introducing a disturbance observer, so the external disturbances can be estimated
and the control output can be adjusted in real time. Experimental results show that the ABS-SMC had
better trajectory tracking performance compared with the conventional method. The proposed method
can greatly reduce chattering, which may reduce secondary damage to the patient. When participants
were involved, the tracking error of traditional method obviously increased while the error of the
proposed method remained small. In addition, the ABS-SMC has a better anti-interference ability.
When the ankle rehabilitation robot was applied with greater resistance, the proposed method could
quickly track the desired trajectory after removing the resistance. How the control would perform
under uncertainties in the model and the applied torque is also need to be studied in the future.
Because of the complexity of the ankle rehabilitation robot, it is difficult to establish a precise dynamic
model. Our model here can match the real system to a large extent, which can also be reflected from
the experimental results. However, the model uncertainties should be optimized further and the
applied torque can be measured in real time by using a force/torque sensor to reach a more accurate
model that will in turn improve the control performance. To improve the patient’s participation in
the future work, patient force feedback must be considered. In this case, the performance of current
position/force hybrid control and impedance control can be improved by incorporating the proposed
ABS-SMC method. Furthermore, functional electrical stimulation, and biological signals should also be
applied to the control of the robot to improve the patient’s voluntary participation and rehabilitation
training performance.
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Abstract: Robotic devices for rehabilitation and gait assistance have greatly advanced with the
objective of improving both the mobility and quality of life of people with motion impairments.
To encourage active participation of the user, the use of admittance control strategy is one of the most
appropriate approaches, which requires methods for online adjustment of impedance components.
Such approach is cited by the literature as a challenge to guaranteeing a suitable dynamic performance.
This work proposes a method for online knee impedance modulation, which generates variable gains
through the gait cycle according to the users’ anthropometric data and gait sub-phases recognized
with footswitch signals. This approach was evaluated in an active knee orthosis with three variable
gain patterns to obtain a suitable condition to implement a stance controller: two different gain
patterns to support the knee in stance phase, and a third pattern for gait without knee support.
The knee angle and torque were measured during the experimental protocol to compare both
temporospatial parameters and kinematics data with other studies of gait with knee exoskeletons.
The users rated scores related to their satisfaction with both the device and controller through QUEST
questionnaires. Experimental results showed that the admittance controller proposed here offered
knee support in 50% of the gait cycle, and the walking speed was not significantly different between
the three gain patterns (p = 0.067). A positive effect of the controller on users regarding safety
during gait was found with a score of 4 in a scale of 5. Therefore, the approach demonstrates good
performance to adjust impedance components providing knee support in stance phase.

Keywords: active knee orthosis; admitance control; footswitch; gait cycle; knee impedance

1. Introduction

Walking is more difficult for persons that suffer gait impairments due to age, stroke, paralysis or
spinal cord injury [1,2]. They usually present muscles weakness, knee instability, gait asymmetry and
reduction of gait velocity [3,4], which may produce alterations in sensory or motor systems, leading to
injury, disability, risk of falls, loss of independence and reduction in the quality of life [5].

Robotic assisted systems can provide functional compensation for lower-limbs during gait,
making possible to improve the human locomotion assistance and the gait rehabilitation through
powered exoskeletons and active orthoses [6–9]. The objective of these devices is to help lower-limb
impaired people to make their joints move through external movement compensation, using suitable
mechanical structures, actuators and control systems. Preliminary findings report promising results,
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as the fact of sub-acute stroke patients experimenting added benefit from exoskeletal gait training [10],
and powered exoskeletons providing individuals with thoracic-level motor-complete spinal cord injury
the ability to walk [11].

For the implementation of proper gait training and rehabilitation plans, control strategies that
consider both the ability and impairment of the user are required [12]. In this sense, an impedance
controller offers the possibility of regulating the mechanical impedance at joints according to the user’s
disability level and their voluntary participation to promote a compliant human–robot interaction [13–15].
Here, the impedance is regulated through the relation between force, position and its time-derivate,
which is given by three components: stiffness, damping and inertia. Thus, a robotic-assisted system can
provide interactive gait training adjusting the amount of support to be assisted [8]. In fact, some reviews
report that the use of an adaptive impedance control strategy provides a gait motion training that is
comparable to the one provided by physical therapists [6].

In this context, some robotic devices use variable impedance, such as the mechanism reported
in [16], which employs a variable damping to substitute the stabilizing effect of eccentric quadriceps’
contractions during stance flexion in walking. In addition, there is the robotic orthosis reported
in [14], which uses an adaptive impedance control to provide assistance at low compliance level to
severely impaired subjects adapting the compliance to an increased level for subjects with less severe
impairments. In [17], an impedance control is used as method to effectively transfer the task-oriented
impedance profile from the human master to the robotic slave device.

Due to the fact that humans change their joint impedances during gait by regulating the postures
and the muscle-contraction levels to maintain the stability, robotic devices must integrate methods
for a suitable impedance modulation to assist the movement through the gait cycle. Impedance
modulation allows promoting a compliant human-robot interaction to provide an effective human
support through assisting the limited motor capability of the user [12,13]. Despite this, few studies
have explored suitable and reliable methods to execute this modulation in gait applications, which are
necessary in rehabilitation robots to guarantee a dynamic performance [18]. The literature provides
information about impedance modulation for assist-as-needed control strategies based on interaction
torque estimation methods and trajectory references [8,12,18,19]. In this case, a common limitation
is the discontinuous model, just like to turn on or off the robotic assistance, rather than offering
a seamless impedance tuning process [18]. Robots that use manual impedance level adjustment
to adapt the support to patient’s capabilities or training progress have also been reported [12].
Some methods try to estimate the joint stiffness using electromyography signals combined with kinetic
and kinematic measurements to estimate muscle force, together with models that relate muscle force
to stiffness [20,21], which would be of great interest for control strategies. However, these methods
have still not been applied in control systems for robotic devices to assist gait.

Furthermore, strategies such as stance control (SC) using impedance control have been little
explored, although it is reported as a strategy that can be used to increase walking speed, reduce
energy expenditure and gait asymmetry (for both affected and unaffected legs), allowing less stress for
paretic musculature in patients with muscular weakness [22–24]. A stance control strategy provides
knee stability and protects the joint from collapsing during the standing and stance phase of walking,
releasing the knee to allow free motion during the swing phase [25].

A study about the mechanics of the knee during the stance phase of the gait, reported in [26],
suggests that, ideally, the mechanism that adjusts impedance at the knee should be based on the gait
speed and weight in order to mimic the behavior of the human knee joint. In this sense, a suitable
impedance modulation can allow a smooth switching between the stance phase and swing phase to
apply impedance compensation during gait under the SC principle, which is a remarkable challenge
to warranty a suitable response of robotic orthosis [25,27]. Thus, in contrast with mechanical knee
orthoses, a stance controller implemented with a variable impedance controller can be considered as
a promising orthotic intervention for assistive devices, in order to provide the patient with adequate
knee stability and allow a more normal gait.
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The objective of this work is to propose a new method for online impedance modulation to
switch the knee impedance throughout the gait cycle in order to implement a stance controller with
an admittance controller (one of the variations of impedance controllers). Our impedance modulation
method uses the gait velocity, height and weight of the user to generate a gain variable pattern to
increase or decrease impedance parameters during gait. Information about the gait phases obtained
from an instrumented insole composed of force sensors is used. To validate the approach, the controller
was implemented and tested, with different subjects, in an active knee orthosis.

The novelty of the proposed control scheme relies on the use of the footswitch data of the
instrumented insole to regulate the knee impedance of the user without additional sensors, through
the generation of gain patterns that adjust the impedance components. Previous studies show that
instrumented insoles provide information about plantar pressure that can be used to implement
strategies for human motion recognition [28] and detect gait sub-phases [29]. In addition, due to the
fact that it is a method based on direct measurement of ground reactions having high accuracy [30],
several analyses of walking strategies in stroke survivors and older adults are being developed based
on data gathered from these instrumented insoles [31,32].

The method proposed here uses two gain variable patterns, which are based on knee torque and
knee velocity during gait, in order to evaluate the suitable condition to implement the SC controller.
This control strategy also provides the possibility of investigating knee impedance variations in
humans, such as done by other studies focused on upper limbs [13], which is of vital interest to
researchers involved with the design and control of variable impedance prosthetic and orthotic
devices [33]. This paper is organized as follows. Section 2 presents the admittance control strategy and
the knee impedance adjustment method, the gait phase detection system composed of an instrumented
insole, the description of the active knee orthosis and the experimental protocol used to validate
the controller. Section 3 shows experimental results to evaluate the method, and Section 4 presents
the discussion.

2. Materials and Methods

2.1. Admittance Controller

According to the description of the SC principle, during gait, it is necessary that the knee
impedance variation allows both body support and free movement of the leg. This dynamic requires
high resistance at the movement, which can be defined using a system with force feedback. In this
sense, admittance controllers are stable in high stiffness conditions; therefore, they are more suitable
for implementation of an SC, due to the high and stable stiffness needed to avoid knee collapse
during stance phase [34]. An admittance controller is one variation of impedance controller and its
performance is determined by both the precision of force sensor and actuator position. Compared
with impedance control, admittance behavior is often more easily implemented in hardware [35].
Thus, a proper measure of the effectiveness of a system, which is meant to produce a rapid motion
response to external forces, is the mechanical admittance Y [36], defined as:

Y = v/F, (1)

where v is the velocity of the controlled system at the point of interaction, and F is the contact force at
that point. A large admittance corresponds to a rapid velocity induced by applied forces. The dynamic
behavior for the interaction between the actuator and the environment (in this case, the user during
gait) can be expressed by the model shown in Figure 1.
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Figure 1. Schematic of one-mass dynamic system.

In this model, the plant parameters are assumed to have values M and D for the mass and damping,
respectively, in which an actuator exerts a force Fa, and the environment a force Fs. Then, the equation
of motion for the system velocity is

Mv̇ + Dv = Fa + Fs. (2)

Fa and Fs can be measured with a force sensor in order to obtain an interaction force F, hence it
can be considered Fa + Fs = F.

In the Laplace domain, (1) can be expressed as

v(s) = F(Ms + D)−1. (3)

For the implementation, the use of a velocity controller in the active knee orthosis is assumed.
Based on Equations (1) and (3), the desired admittance can be expressed as:

Y(s) = (Ms + D)−1. (4)

The gain pattern to modulate the inertia and damping is applied to the relation of M and D,
maintaining a ratio r = 0.2 without considering units, where r was experimentally obtained here and
expressed as:

r = M/D, (5)

with M > 0 and D > 0.

2.2. Knee Impedance Modulation

In order to implement the SC control strategy with the admittance controller, a modulation
through a variable gain G to increase or decrease the impedance components (damping and inertia) is
required. The modulation must be according to the gait sub-phases to adapt the knee joint impedance
during gait. Usually, most of the gait cycles are divided in the sequence of the following sub-phases [37]:
(1) Initial contact (IC), defined by the heel contact; (2) Loading response and mid-stance (MS), defined
by a flat foot contact; (3) Terminal stance (TS), defined by the heel off; (4) Swing (SW), defined by the
foot off, as shown in Figure 2a.
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Figure 2. Events related to gait phases. (a) sub-phases of the gait cycle; (b) on-off sequence of force
sensing resistors (FSR) throughout the gait cycle; (c) footswitch signal generated by the instrumented
insole to identify gait phases; (d) knee angle throughout the gait cycle; (e) knee moment during gait,
correspondent to the reference and predicted values of [21]; the gain variation was considered to define
the gait pattern to knee impedance modulation during gait; (f) gain pattern P1 based on the knee
moment to decrease/increase gain values during gait phases for stance control; (g) knee velocity during
gait using the variable impedance knee mechanism (VIKM) [38]; (h) gain pattern P2 based on the the
knee velocity to decrease/increase gain values during gait phases for a stance control.

This sequence offers information to develop an impedance modulation for an online variation of
the knee joint impedance. The objective is to block the knee joint only in the stance phase to resist the
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knee flexion and allow free knee extension and free knee motion in the swing phase [25,39], in order to
achieve, during gait, the knee angle, moment and velocity, as shown in Figure 2d–f.

For that, a different value of G for each sub-phase must be defined and vary smoothly. Figure 2f,h
shows two examples of variation of G in a gait cycle. In both cases, the value for each sub-phase is G1

for IC, G2 for MS, G3 for TS and G4 for SW, which requires suitable times to increase/decrease G during
the gait cycle, defined as: Δt1, Δt2, Δt3 and Δt4. Considering that the weight and the gait velocity are
the two major parameters that affect the mechanical parameters of the knee [26], both weight and the
gait velocity are considered here to define the corresponding G and Δt.

The first example of variation of G, known as pattern 1 (P1), shown in Figure 2f, corresponds
to a pattern based on the knee moment variation shown in Figure 2e, which is the knee moment
reported in a study of a model of a neuromuscular mechanism to regulate knee joint impedance
during human locomotion [21]. Here, P1 is adapted at the knee moment tendency throughout the gait
sub-phases, in which G1 has the highest values in the IC phase when the knee generates the first flexion.
In sub-phase MS, G2 decreases with a little increment in TS. The second example of variation of G
shown in Figure 2h, termed pattern 2 (P2), is a pattern obtained from a tendency marked in Figure 2g,
which shows the knee velocity during walking using the variable impedance knee mechanism of an
SC orthosis [38]. In this case, the highest value of G2 is generated in the sub-phase MS, when the knee
maintains the angle but the knee torque decreases. In both cases, an impedance modulation using P1

and P2 can generate a knee impedance that allows a shock damping during the weight acceptance
stage (sub-phases IC and MS) where the knee applies a large moment.

For both patterns, the increase/decrease of G can be executed in times Δ1, Δ2, Δ3 and Δ4 for IC,
MS, TS and SW, respectively. Hence, values of Δ depend on the period of duration of each sub-phase
of the gait cycle. Then, considering i as the phase number assigned as follows: i = 1 for IC, i = 2 for
MS, i = 3 for TS and i = 4 for SW, the duration of each sub-phase can be expressed as

Ti = tGC(Qi/100) fs, (6)

where Ti is the duration of each sub-phase in seconds, tGC is the time of the gait cycle in seconds, Qi is
the percentage of each phase with respect to the gait cycle, and fs is the sampling frequency in samples
per second. As shown in Figure 2f, a suitable Δi does not have to exceed the corresponding Ti.

According to gait studies [40], tGC can be estimated through Equation 7:

tGC = SL/vu, (7)

where SL is the stride length in meters, and vu is the user velocity in meters per second. SL can be
estimated from the users height H in meters multiplied by the constant 0.826 [40]. Hence, Ti can be
expressed as

Ti = 0.826(HQi fs)/100vu. (8)

Experimental tests to validate Qi with the instrumented insole were conducted, obtaining the
following percentages for each phase: 16 ± 4%, 38 ± 6%, 6 ± 0.8% and 40 ± 4% for IC, MS, TS and
SW phases, respectively. Based on the knee moment and velocity shown in Figure 2e,g, IC and MS are
the more critical phases, which occur when a knee support is required. In this case, Δt should allow
a time of stabilization in order to sustain the knee with a G constant for each phase.

Therefore, for this method, values of Qi were defined as: Q1 = 10%; Q2 = 20% and Q4 = 40%,
as shown in Figure 3a,b. This consideration allows having a minimum period of time to increase or
decrease the corresponding G and applies to patterns P1 and P2 (knee moment and velocity).
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Figure 3. Percentage of each phase with respect to the gait cycle (Qi) taken into account in this approach
for (a) gain pattern P1; (b) gain pattern P2.

In relation to the sub-phase TS, it can be seen in Figure 3 that it has short duration with respect
to other phases, and does not allow a suitable time for stabilization of G. For that reason, in order to
simplify the method, 30% was chosen as the percentage for Q3.

Considering that Δ represents 50% of its corresponding T, to obtain a smooth switching between
the levels of G, Equation (9) is used:

Δi = (0.0413i/vu)H fs. (9)

Figure 4 shows the flowchart of the algorithm implemented in Simulink/Matlab (2014b,
The MathWorks Inc.) for online gain pattern generation, where Phd is the default phase from which
the pattern G begins to be generated; Phs is the current phase recognized through the insole, and δG is
the gain increment for each phase.

Figure 4. Flowchart of the algorithm used to generate the pattern G, where Phs is the output of the gait
phase detector, and Phd is the default phase (recommended sub-phase mid-stance).

Using the aforementioned gain patterns P1 and P2, the modulation of M and D in each gait
sub-phase during the gait cycle can be expressed as

Mi = MdGi, (10)

Di = DdGi, (11)

where Md and Dd are the inertia and damping default values, respectively, according to Equation (5).
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2.3. Gait Phase Detection

The gait phase detection is required to implement the impedance modulation method proposed
here, which is done by the instrumented insole built with force sensing resistors (FSRs) shown in
Figure 5a. Four FSRs are placed on the plantar surface of the foot. Figure 5b shows the sensor
locations, which are defined in the function of the peaks of the plantar pressure data reported in [41,42],
corresponding to hallux bone (FSR1), 1st metatarsal (FSR2), 5th metatarsal (FSR3) and calcaneus (FSR4).
These locations allow for acquiring more relevant ground reaction forces generated during gait to
recognize stance sub-phases, which are suitable to use in feet with normal arch, high arch and flat
foot Figure 5c.

FSR1 

FSR2 

FSR3 

FSR4 

1 

2 

3 

4 

1 

2 
3 

4 

1 

2 
3 

4 

Flat arch       High arch        Normal 

Figure 5. (a) instrumented insole implemented at the active knee orthosis; (b) FSR locations; (c) FSR
locations at flat arch, high arch and normal foot.

The sensors employed are FlexiForce A401 (Tekscan Inc, Boston, MA, USA), which are
force-sensing resistors with a sensing area of 25.4 mm and standard force range of 111 N. An electronic
circuit was implemented to obtain output voltages proportional to the plantar pressure. To validate
the insole data, a pressure sensitive gait mat GAITRite Electronic Walkway Platinum (CIR Systems
Inc., Peekskill, NY, USA), 9 m long was employed. The signals of the insole were acquired with a DAQ
USB-6009 (sampling frequency of 120 Hz) using the DAQ ExpressTM driver of National Instruments c©
(Austin, TX, USA) and Matlab software. The mat data were acquired at 1 kHz using the PKMAS
(ProtoKinetics Movement Analysis) software (Franklin, NJ, USA) [43]. The acquisition data were
synchronized throughout an external pulse. Two subjects (man: 35 years; 1.72 m; 70 kg and woman:
78 years, 1.75 m, 80 kg) walked at a comfortable velocity on the mat using the insole. Each subject
completed six trials (each trial with six steps) completing 36 gait cycles. A concordance correlation
analysis was performed to estimate the reliability of the insole pressure signals in relation to the foot
pressure measured by the mat.Then, a gait phase detection algorithm based on a truth table from the
combinations of the sensors during gait was programed in Matlab Simulink. The signals were acquired
through an analog to digital acquisition card, model Diamond-MM-32DX-AT (32 inputs of 16 bits,
4 outputs of 12 bits, with maximum sampling frequency of 250 kHz) of a PC-104 computer, sampled at
a frequency of 1 kHz, and conditioned through a low-pass filter Butterworth of 5th-order, with cutoff
frequency of 10 Hz. Afterwards, the signals were compared to a threshold of 0.5 V in order to obtain
contact information (on-off) from the footswitch. In order to recognize the gait sub-phases IC, MS, TS
and SW, the combinations shown in Figure 2b were considered. Then, a truth table implemented in
Simulink/Matlab, which includes these combinations, was used to obtain a logic scheme to generate
the footswitch signal shown in Figure 2c.
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2.4. Active Knee Orthosis

Figure 6 shows the active knee orthosis developed at the Federal University of Espirito Santo
(UFES/Brazil) known as ALLOR (Advance Lower Limb Orthosis for Rehabilitation), which was used
to test the admittance controller with the modulation method proposed here.

DC 
motor 

Insole 

Angle 
adjustment 

Bottom  
security 

Walker 

PC-104 

Monitor 

Figure 6. Advance Lower Limb Orthosis for Rehabilitation (ALLOR) built for this research.

ALLOR is a two degree of freedom orthosis composed of an active knee joint and a passive hip,
which moves in the sagittal plane during the walking. The hip joint has a manual flexion and extension
angle regulator from 0 to 80 degrees. Although this joint is not active, the regulation, according to the
user requirements, allows for establishing a safe range of motion. During gait, the physiological range
of motion (flexion and extension) must be adjusted to ±20◦ for hip, while the movements of the frontal
plane are restricted. ALLOR is mounted on the left leg of the user with the axis of rotation of the
orthosis joint aligned with the axis of the user knee and hip joints. To ensure a correct alignment during
operation, a backpack and rigid braces at the thigh and shank with velcro straps are used. ALLOR
weighs 3.4 kg (including 0.8 kg of the backpack) and is adaptable to different anthropometric setups,
which include heights of 1.5 to 1.85 m and weights from 50 to 95 kg. It provides both mechanical
power to the knee joint and feedback information related to knee angle, interaction torque and gait
phases. It was developed for knee rehabilitation in both sit position and during gait. In this last case,
the user must use the walker shown in Figure 6.

The components of the active knee joint are a brushless flat motor (model 408057), a Harmonic
Drive gearbox (model CSD-20-160-2A-GR) and an analog pulse-width modulation (PWM) servo
drive (model AZBH12A8). Additionally, ALLOR is equipped with a strain gauge arrangement
(Wheatstone bridge configuration), which measures the torque produced by its interaction with the
user. A precision potentiometer model 157S103MX) is used as an angular position sensor to measure
knee angles. ALLOR also uses Hall Effect sensors inside the motor to compute angular speeds of the
actuator. The computer used to implement the control software is a PC/104, which is a standard for
embebbed computers, in which the architecture is built by adding interconnected modules through an
industry standard architecture (ISA) data bus. The modules are a motherboard, power source, ethernet
communication and an analog to digital (A/D) acquisition card, model Diamond-MM-32DX-AT
(32 inputs of 16 bits, four outputs of 12 bits, with maximum sampling frequency of 250 kHz). All sensors,
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acquisition and velocity driver are connected through the A/D card. The whole system requires
24 V/12A DC power supply and uses a controller area network (CAN) bus running at 1 Mbps.
The control software was developed in Simulink/Matlab and uses a real-time target library. Safety
conditions are incorporated at the ALLOR control system along with mechanical stops, which ensure
that the actuator operates within the normal range of motion of the knee, allowing safe use.

Figure 7 shows the admittance controller implemented in Simulink/Matlab, which is based on
Equation (2). Ph(t) is the phase, which is recognized online by the gait phase detector through the
use of the instrumented insole. G(t) is a variable gain for the impedance modulation. The controller
also includes an outer force control loop implemented over a inner velocity control loop, in which the
motor controller performs the velocity closed-loop control with information feed from Hall sensors on
the motor structure. In this controller, the axis of the subject knee joint is considered to be aligned to
the axis of the knee joint of the active orthosis.
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Figure 7. Admittance controller implemented at the active knee orthosis.

2.5. Experimental Protocol

In order to evaluate the proposed method, the following protocol was conducted with ALLOR.
Three healthy subjects, female (26 ± 5.13 years; height 1.62 ± 0.03 m; weight 56 ± 8.75 kg) without
lower-limb injury or locomotion deficits, participated in the tests. Written, informed consent was
obtained from each subject before participation. The Ethics Committee of the Federal University of
Espirito Santo approved this protocol, with number: 64801316.5.0000.5542. At the beginning of the test,
the subjects were asked to perform a trial with the walker and without ALLOR, walking a distance
of 10 m at a comfortable speed for each one. Then, the gait velocity was calculated to obtain the
v reference value needed to adjust G. Then, ALLOR was mounted on the subject to perform three
level-ground walking trials in a distance of 10 m with the following patterns for G: (1) knee moment
based-pattern shown in Figure 3a, termed P1, with G1 = 0.7 W, G2 = 0.2 W, G3 = 0.3 W and G4 = 0.1 W;
(2) knee velocity based-pattern shown in Figure 3b, termed P2, with G1 = 0.4 W, G2 = 0.7 W, G3 = 0.2 W
and G4 = 0.1 W; (3) pattern termed P3 to perform a gait without knee modulation, maintaining G4

corresponding to SW phase in all the gait cycle, hence G1 = G2 = G3 = G4 = 0.1 W, where W is the
user’s weight.

For the three patterns of G, the impedance parameters M and D are set as 0.5 kg and 2.5 N/(m/s),
respectively, which are obtained experimentally from gait tests with ALLOR. The trials were carried
out at slow speed, determined by the subject, and were performed with the acquisition hardware
attached to a four wheel walker as shown in Figure 6, in order to have a mobile platform during the
tests. Each trial had an average of seven steps, and three trials with each pattern G were performed.
The patterns (P1, P2 and P3) were randomly applied at the controller in order to not influence their
perception regarding the effects introduced by each modulation pattern.

During these experiments, the subjects were asked to accomplish their normal gait patterns,
considering the imposed system (ALLOR and walker) and a slow speed. The use of a walker in this
study was with the goal of emulating the same conditions of patients or subjects with disabilities,
which will need the walker to improve their stability and ambulatory ability themselves in order to
feel safety during gait. A sequence of a subject performing this protocol is illustrated in Figure 8.
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Figure 8. Sequence of an experiment conducted at 0.2 m/s by a subject wearing ALLOR with the stance
control using the knee impedance modulation based on the knee moment during gait.

2.6. Statistical and User’s Satisfaction Analysis

For statistical analysis, data from the three subjects that participated in the test, related to speed
of walking, cadence, stance phase percent and maximum knee flexion in swing phase, were used.
Friedman test (non-parametric statistical test) was used to compare the three gain modulation patterns.
The level of significance was set at p < 0.05.

Finally, a survey to measure satisfaction with the use of assistive technology, the adapted Quebec
User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) was used [44]. QUEST 2.0
may be used to evaluate the user satisfaction through 12 questions separated in two items: assistive
technology and services. In this study, only the issues related to assistive technology (dimensions,
weight, adjustments, safety, durability, simplicity of use, comfort, and effectiveness) were evaluated,
since it is a non-commercial product in the phase of controlled tests. The score for each question
ranges from 1 to 5 ( 1 “not satisfied at all”; 2 “not very satisfied”; 3 “more or less satisfied”; 4 “quite
satisfied”; and 5 “very satisfied”), and, finally, an average score is taken for the number of valid
questions answered. The subjects were asked to select the three most important items.

3. Results

3.1. Instrumented Insole

Figure 9 shows the mat and insole pressure data during the test with subject 1. For both subjects,
144 steps were collected and the pressure data of the insole presented acceptable values of precision
(r > 0.92 ± 0.02) with respect to the mat pressure, which has an accuracy of (Cb > 0.82 ± 0.02),
and acceptable reproducibility (pc > 0.89 ± 0.03).

Although the pressure data presented differences in the first sub-phases of stance phase, as shown in
Figure 9, the insole showed a good response to recognize stance and swing phase. Hence, the algorithm
used in this research to determine the gait phases uses data from the insole.
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Figure 9. Mat and insole plantar pressure data during six steps.
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3.2. Knee Impedance Modulation

Two gain patterns for knee impedance modulation were used to control the knee orthosis: the first
based on the knee moment during gait P1, the second based on knee velocity P2. For purposes of
comparison with both knee modulation patterns, a third pattern P3 was also used to develop a free
gait without knee impedance modulation. Results are shown in Figure 10 to demonstrate the efficiency
of the knee modulation proposed for SC assistance, where it is possible to see the variation of the knee
angle during gait using patterns P1 and P2. Here, the variation of the knee angle in time shows that
the subject walked approximately with the same velocity. The knee angle showed similar amplitudes
for both patterns. Even though the footswitch signals presented a false negative in sub-phase TS as
shown in Figure 10a, the method may adapt the modulation of the gain G in this period and maintain
the expected value of G.
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Figure 10. Footswitch signal, gain variation and knee angle during gait with impedance modulation.
(a) modulation obtained from the pattern P1 based on normal velocity; (b) modulation obtained from
the pattern P2 based on the knee moment.

For the pattern G based on velocity P2, Figure 11a–c shows the variation of G during the gait,
which generates different footswitch signals at different walking speeds.
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Figure 11. M variation during gait cycle. (a) variation of M during a gait test, which generates four
sub-phases: initial contact (IC), mid-stance (MS), terminal stance (TS) and swing (SW); (b) example
with three sub-phases; (c) example that shows the variation of M during a gait cycle with noise.

The footswitch signal of the instrumented insole showed good performance to measure the four
gait sub-phases considered for the impedance modulation. The gait pattern also was different in some
cases, as shown in Figure 10, which is considered common due to the gait dynamic. These examples
demonstrate that a specific subject does not present a single characteristic gait cycle. It is reported in
literature that the percentage of atypical cycles in the healthy adults is from 1% to 3% [29]. Despite this,
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the modulation method proposed here was able to generate pattern G to obtain an SC performance
even with a non ideal footswitch signal, as shown in Figure 11.

Figure 12 shows the knee torque and knee angle of subject 1, with impedance modulation patterns
P1, P2, and P3 during the gait. The maximum torque is presented at the beginning of the knee flexion
(marked with red dashed line) for P1 and P2. Another increment of knee torque was obtained at the
beginning of the stance phase (marked with gray dashed line) for the three patterns.
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Figure 12. Knee angle and knee torque during knee impedance modulation with patterns G: P1 (a,b);
P2 (c,d); P3 (e,f).

In [19], a gait analysis with an active knee orthosis without a walker was conducted, in which the
torque with a position control at 0.28 m/s was approximately ±5 Nm. In addition, this study reported
that the torque with an adaptive impedance control at 0.28 m/s and 0.44 m/s may have values of
±10 Nm. In our work, walking with ALLOR and the walker at 0.2 m/s implies an interaction torque
of ±5 Nm, as shown in Figure 12. In this sense, the new method for knee impedance modulation
proposed here presents less knee torque than the torque presented in [19], with both position control
and knee impedance modulation. Hence, the method based on FSR sensors for gait phase segmentation
may be used to modulate knee impedance without demanding additional knee torque from the user
during walking.

Table 1 shows the temporospatial and kinematic information of the subjects when walking using
the three G patterns P1, P2 and P3.

Table 1. Mean and standard deviation for temporospatial parameters, and maximum flexion during
swing phase for subjects wearing the active knee orthosis controlled by the stance control strategy
using three types of impedance modulation patterns.

Gait Velocity Cadence Stance Phase Maximum Flexion
(m/s) (steps/min) (%gait cycle) in Swing Phase (◦)

P1 0.18 (0.07) 26.76 (6.87) 49.73 (7.87) 36.44 (9.56)
P2 0.14 (0.05) 22.41 (3.25) 46.19 (9.04) 39.92 (12.40)
P3 0.18 (0.04) 24.02 (6.22) 44.51 (7.75) 39.0 (10.61)

p-value 0.0670 0.0032 * 0.4493 0.1534

P1, Gain pattern based on knee moment; P2, Gain pattern based on knee velocity; P3, Gain pattern for gait
without knee support in the stance phase. * significant difference
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For the three subjects, the results shown in Table 1 demonstrate no significant difference in gait
velocity (p = 0.067), percentage of ST phase of the gait cycle (p = 0.44) and maximum flexion in SW
(p = 0.153) between P1, P2 and P3. However, a significant difference in walking with P2 resulted in
a slower cadence in 16% and 10% compared with P1 and P3, respectively (p = 0.0032).

Considering both modulation patterns, pattern G that presents better temporospatial parameters
was the knee moment based on pattern P1, which reported highest walking speed, cadence and stance
phase percentage of the gait cycle compared with P2. However, regarding the kinematics, the maximum
knee flexion was increased (39.92 ± 12.40◦) using the pattern P2 based on knee velocity.

In addition, the duration of the swing phase during walking generally represented 50% to 56%
of the gait cycle, as shown in Table 1. A study that describes gait analysis using an exoskeleton with
walker [45] reports a swing phase around 37% of the gait cycle with healthy subjects. On the other
hand, in [46] , a gait analysis with an hybrid neuroprosthesis for SC is performed, which reports that
the swing phase during evaluation with nondisabled subjects represents 36% to 51% of the gait cycle.
Then, the swing phase percentage obtained during gait with the proposed method agrees with a gait
analysis that considers SC. Furthermore, a study of gait analysis with assistive devices tested with
pathological cases, such as spinal cord injury [46], reports that the swing phase represents 25% of the
gait cycle. In [47], other research of a gait analysis using a knee-ankle-foot orthoses with a powered
knee joint is reported, whose swing phase during evaluation with poliomyelitis subjects represents
36% to 51% of the gait cycle. Then, in this sense, an important future task is to analyze the real-time
adjustment of knee impedance in pathological gait.

Walker assisted gait with healthy subjects has been reported values between 0.17 m/s and
0.29 m/s depending on the body weight bearing patterns of the leg [48]. In [49], a gait assisted by
a smart walker without orthosis in post-stroke subjects showed gait velocity values between 0.23 m/s
and 0.44 m/s. Then, for the three patterns used here, the walking velocity is within that range of
the first case, which means that the effect of ALLOR with knee impedance modulation does not
produce a significant speed reduction in walker-assisted gait. In addition, this value indicates that the
incorporation of a smart walker can be considered for test with post-stroke subjects.

Regarding the maximum knee flexion during swing phase, the three patterns present similar
values, agreeing with [45], where the walking speed using a powered gait orthosis with a walker
has been reported as being 48 ± 10◦. Here, it should be made clear that, during walker assisted gait,
the gait velocity and knee flexion in phase SW are lower than a normal gait.

Regarding the QUEST survey, the user satisfaction with ALLOR controlled by the proposed
approach was scored as: dimensions: 4.00 ± 0.00, weight: 3.67 ± 0.58, adjustment: 3.33 ± 0.58, safety:
4.00 ± 0.00, durability: 3.00 ± 1.00, ease of use: 3.33 ± 1.15, comfort: 3.33 ± 0.58 and effectiveness:
3.33 ± 0.58, in a range of 0 to 5.

Based on the experience after and during this study, it was verified that the use of our system
requires a therapist or assistant to mount the orthosis on the user. The total time required for this task
is approximately 8 min with subjects familiarized with ALLOR. When it is being used for the first
time, more minutes are required, in order to adjust the length of leg and thigh segments along with hip
angle adjustment. In this case, the total amount of time is from be 20 to 25 min.

4. Discussion

This work evaluated the effect on walking with an active knee orthosis (ALLOR) while using two
knee impedance modulation patterns: P1 (based on knee moment) and P2 (based on knee velocity),
which incorporates an SC strategy. The main functional purpose of the SC strategy is to provide free
movements in swing phase and provide a support to knee joints during stance phase.

The three patterns present no significant difference in walking speed, stance phase percentage of
the gait cycle and maximum flexion during swing phase, as indicated in Table 1. The results of our
study demonstrated that the proposed patterns P1 and P2 could be used to improve knee support in
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stance phase. Hence, both gain patterns are suitable to modulate the knee impedance and assist the
knee joint under the SC strategy using an admittance controller.

The variation of the knee impedance was performed considering two implications for the design
of stance control orthoses: walking speed and weight. In fact, literature shows that the following
parameters: stiffness, knee flexion and extension, and maximum moment change with gait speed [26].
On the other hand, it is also reported that the stiffness of the parallel assistive device should be
modified as the load or pilot weight changes [26]. In this sense, both patterns G change the impedance
at knee during gait cycle, increasing or decreasing it, according to the both weight and velocity of the
subject. Then, the proposed approach may also be considered to evaluate knee impedance variation to
design efficient assistive devices. The weight percentage considered for each gait phase was due to the
characteristics of the subjects during tests, which are healthy adults that have normal gait development.
For this study, gait assisted by a walker was chosen due to it allowing offering safety to the users.
It is worth mentioning that parallel bars, crutches or canes can be also used as support elements
instead of the walker. For future tests with subjects with disabilities, the total weight of the user will
be considered, according to recommendations for the design of parallel assistive devices [26].

In addition, for gait phase recognition in pathological cases, such as stroke survivors with foot
drop problems, which present different footswitch signals (percentage of atypical cycles from 11%
to 100% in pathological subjects) [29], an alternative for gait phase detection might be necessary.
Therefore, an individual study to define it is recommended to design an insole with additional sensors
or programming a gait-phase detector for each case must be conducted. In addition, data fusion
techniques may be used, taking into account the knee angles acquired by goniometers or inertial
measurement units (IMUs). Based on the experience and participants’ comments, the instrumented
insole was comfortable to use. In future works, the insole will be used to study plantar pressure
in order to detect alterations in gait, and allow comparing stroke survivors with healthy people.
Stroke survivors usually adopt walking strategies, such as heel walking, planar stride or low heel
pressure. These gait alterations can evolve to more complex musculoskeletal disorders, which influence
functional activities. Plantar pressure can inform about these alterations, calculating the gait variability
over time [31], and therapists can use this data as feedback to help strategies for rehabilitation avoid
the evolution of gait disorders.

In relation to user satisfaction, results show that the lowest score (3.00) was related to “durability”,
while questions on “adjustment”, “ease of use”, “comfort” and “effectiveness” received a mean value
(3.33) on the QUEST score. In this sense, some hardware adjustments are needed to obtain a more
robust system and improve the “adjustment”, “ease of use” and “comfort” items, such as new materials
to adjust the exoskeleton and to decrease structure and the hardware weight. The comfort is associated
with adjustment of actuators and biomechanics of human movement. Some factors such as sensors,
straps and weight affect the gait of healthy people, causing more energy costs [15]. Physiological
theories have been developed to address these limitations in wearable robots [50], but more clinical
trials are necessary to determine how these adjustments influence normal and pathological gaits,
making these exoskeletons more easy to use in daily activities. It is worth noting that participants
in this study this system for the first time. Based on their comments after the experimental protocol,
the time required to adjust the device will be improved. We considered that offering unilateral knee
assistance for healthy subjects can influence this discomfort.

Regarding the “effectiveness”, a clinical protocol with a therapist is needed to address this issue
in practice, in order to evaluate ALLOR with knee impedance modulation and its effect on patients.
With this purpose, a graphical user interface will be adapted for the therapist who accompanies the
rehabilitation, in order to facilitate the programming and monitoring of variables, such as: knee angle
and torque, plantar pressure, number of steps and choosing pattern G for knee impedance modulation.

To conclude, our control method constitutes an approach to assist knee movement in stance phase.
Future works will focus on implementing a position controller for swing phase or functional electrical
stimulation FES, in order to apply force to the advance leg. In addition, future efforts will investigate
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correlations between the FSR activation and the knee joint impedance during walking on treadmills
and stair climbing.
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Abbreviations

The following abbreviations are used in this manuscript:

ALLOR Advance Lower Limb Orthosis for Rehabilitation
D Damping
F Force
FSR Force sensing resistor
G Gain for impedance modulation
H ALLOR user’s height
IC Initial contact phase
M Mass
p Plantar pressure
P1 Gain pattern for impedance modulation based on knee moment during gait
P2 Gain pattern for impedance modulation based on knee velocity during gait
P3 Gain pattern for impedance modulation to obtain a free movement
Ph Phase
Q Percentage
QUEST Quebec User Evaluation of Satisfaction with Assistive Technology
SC Stance control
ST Stance phase
SW Swing phase
t Time
W ALLOR user’s weight
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