
Edited by

Discrete
Multiphysics
Modelling Complex Systems
with Particle Methods

Alessio Alexiadis

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/ChemEngineering

Discrete Multiphysics

Discrete Multiphysics

Modelling Complex Systems with Particle
Methods

Editor

Alessio Alexiadis

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editor

Alessio Alexiadis

School of Chemical Engineering,

University of Birmingham

UK

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access

journal ChemEngineering (ISSN 2305-7084) (available at: https://www.mdpi.com/journal/

ChemEngineering/special issues/Particle Methods).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-2213-5 (Hbk)

ISBN 978-3-0365-2214-2 (PDF)

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to ”Discrete Multiphysics” . ix

Iwan H. Sahputra, Alessio Alexiadis and Michael J. Adams

A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations
Reprinted from: ChemEngineering 2020, 4, 30, doi:10.3390/chemengineering4020030 1

Adamu Musa Mohammed, Mostapha Ariane and Alessio Alexiadis

Using Discrete Multiphysics Modelling to Assess the Effect of Calcification on Hemodynamic
and Mechanical Deformation of Aortic Valve
Reprinted from: ChemEngineering 2020, 4, 48, doi:10.3390/chemengineering4030048 17

Wenwei Liu and Chuan-Yu Wu

Modelling Complex Particle–Fluid Flow with a Discrete Element Method Coupled with Lattice
Boltzmann Methods (DEM-LBM)
Reprinted from: ChemEngineering 2020, 4, 55, doi:10.3390/chemengineering4040055 29

Maciej Kot

Mass Spring Models of Amorphous Solids
Reprinted from: ChemEngineering 2021, 5, 3, doi:10.3390/chemengineering5010003 63

Soren Rasmussen, Ethan D. Gutmann, Irene Moulitsas, and SalvatoreFilippone

Fortran Coarray Implementation ofSemi-Lagrangian Convected Air Particles within an
Atmospheric Model
Reprinted from: ChemEngineering 2021, 5, 21, doi:10.3390/chemengineering5020021 79

Andrea Albano, Eve le Guillou, Antoine Danzé, Irene Moulitsas, Iwan H. Sahputra, Amin

Rahmat, Carlos Alberto Duque-Daza, Khai Ching Ng and Alessio Alexiadis

How to Modify LAMMPS: From the Prospective of a Particle Method Researcher
Reprinted from: ChemEngineering 2021, 5, 30, doi:10.3390/chemengineering5020030 101

Amin Rahmat, Philip Kuchel, Mostafa Barigou and Alessio Alexiadis

Numerical Simulations of Red-Blood Cells in Fluid Flow: A Discrete Multiphysics Study
Reprinted from: ChemEngineering 2021, 5, 33, doi:10.3390/chemengineering5030033 159

Hosam Alden Baksamawi, Mostapha Ariane, Alexander Brill, Daniele Vigolo and Alessio

Alexiadis

Modelling Particle Agglomeration on through Elastic Valves under Flow
Reprinted from: ChemEngineering 2021, 5, 40, doi:10.3390/chemengineering5030040 173

Adamu Musa Mohammed, Mostapha Ariane and Alessio Alexiadis

Fluid-Structure Interaction in Coronary Stents: A Discrete Multiphysics Approach
Reprinted from: ChemEngineering 2021, 5, 60, doi:10.3390/chemengineering5030060 187

Carlos Duque-Daza and Alessio Alexiadis

A Simplified Framework for Modelling Viscoelastic Fluids in Discrete Multiphysics
Reprinted from: ChemEngineering 2021, 5, 61, doi:10.3390/chemengineering5030061 199

v

Andrea Albano and Alessio Alexiadis

A 3D Smoothed Particle Hydrodynamics Study of a Non-Symmetrical Rayleigh Collapse for an
Empty Cavity
Reprinted from: ChemEngineering 2021, 5, 63, doi:10.3390/chemengineering5030063 235

vi

About the Editor

Alessio Alexiadis is a Reader at the School of Chemical Engineering at the University of

Birmingham in UK. He received his Ph.D. in 2001 at the Politecnico di Torino (Italy). Since then,

he has worked at the Ecole Nationale Superieure des Mines de Paris (2001–2003), Max-Planck-Institut

fur Kohlenforschung (2003–2004), University of New South Wales (2004–2006), University of Cyprus

(2006–2008), Washington University in St. Louis (2008–2010), KTH—Royal Institute of Technology

(2010–2011) and University of Warwick (2012–2013). He has been PI or co-I in various research

projects supported by research councils and other funding bodies in the UK, Australia, USA and EU.

In 2008, he was awarded the Marie Curie OIF fellowship (EU), and between 2008 and 2009 he was

part of the Plasma–wall Interaction EURATOM Task force. His current research mainly focuses on

mathematical modelling and computer simulations. Past research activities include photocatalysis,

computational fluid dynamics, bubbly flows, multiphase reactors, polymer dynamics, membrane

science, global warming modelling, electrochemistry, micro- and nano-fluidics, and both classical

and ab initio molecular simulations.

vii

Preface to ”Discrete Multiphysics”

This book is based on the ChemEngineering special issue “Discrete Multiphysics: Modelling

Complex Systems with Particle Methods” and presents various computational studies, characterized

by the use of particle-based methods such as Smooth Particle Hydrodynamics (SPH), Discrete

Element Method (DEM), Lattice Spring Model (LSM) and several others. Particle methods can

be applied to a variety of different problems that, on the surface, look very different from each

other. For example, SPH is often used to model hydrodynamics problems, LSM solid mechanics

and DEM real particles. However, despite these differences, they all follow the same algorithm.

The computational domain is subdivided into computational particles that represent real particles

(e.g., DEM), or discrete portions of liquid (e.g., SPH) or solid (e.g., LSM) matter. These particles

move because they exchange forces with each other. What characterizes different particle methods is

the type of physical phenomena represented by the forces. For instance, in SPH, they represent the

pressure and viscous forces occurring in fluids; in LSM, the elastic forces occurring in solids; in DEM,

Hertzian contact forces between real particles.

The focus of this book is not on single-particle methods, but on the coupling of different-particle

methods. As particle methods follow the same algorithm, they can easily be coupled within Discrete

Multiphysics (DMP) simulations. By coupling multiple particle methods, we can simulate a variety

of phenomena occurring in solid–liquid flows, fluid–structure interaction, solidification, melting,

breakage and agglomeration. Generally, DMP has proven itself more versatile than traditional,

mesh-based, multiphysics, and researchers familiar with this technique will have a very effective

tool for modelling complex physical phenomena at their disposal.

While there are many books on traditional mesh-based multiphysics and on single particle-based

methods such as SPH, LSM or DEM, to the best of our knowledge, no book on Discrete Multiphysics

is available. The publisher and I felt this was an unjustifiable gap in the current literature that needed

to be filled. This is even more important at present, because the ability of particle methods to be

coupled with other particle methods seems to go beyond the traditional boundaries of mathematical

modelling and cross over into research fields such as machine learning and artificial intelligence.

This specific aspect is not part of this book (the interested reader will find some material by googling

“particle-neuron duality”), but it shows the growing importance of particle methods in the scientific

community.

Some chapters, such as “Mass Spring Models of Amorphous Solids” by Maciej Kot, deal with

specific particle methods from a theoretical perspective. They do introduce new ideas to the field,

but they can also be used as an introduction to the subject. Other chapters, such as “Modelling

Complex Particle–Fluid Flow with a Discrete Element Method Coupled with Lattice Boltzmann

Methods (DEM-LBM)” by Liu and Wu, focus on the coupling of different particle methods. The

advantages of DMP with respect to traditional multiphysics are particularly clear in biological

and medical problems (e.g., “Numerical Simulations of Red-Blood Cells in Fluid Flow: A Discrete

Multiphysics Study” by Rahmat et al. or “Using Discrete Multiphysics Modelling to Assess the Effect

of Calcification on Hemodynamic and Mechanical Deformation of Aortic Valve” by Mohammed et

al.). The ability of DMP to easily model solid–liquid flows accounting for particle agglomeration

is highlighted in “Modelling Particle Agglomeration on through Elastic Valves under Flow” by

Baksamawi et al. Finally, DMP can also be used to improve the mathematical modelling of viscoelastic

materials: both viscoelastic solids (e.g., “A Coarse Grained Model for Viscoelastic Solids in Discrete

ix

Multiphysics Simulations” by Sahputra et al.) and viscoelastic fluids (e.g., “A Simplified Framework

for Modelling Viscoelastic Fluids in Discrete Multiphysics” by Duque-Daza and Alexiadis).

A feature that makes this book unusual and, hopefully, worth reading is its practical, hands-on

approach. We wanted to go beyond the theory, and even beyond the application, of DMP. Several

of the authors that contributed to the book have many years of experience with particle methods

and we wanted to take advantage of this fact to give to the book a unique practical value. There

are many tricks-of-the-trade and rules of good-practice that experienced researchers have developed

over the years. This knowledge is often passed from supervisor to student, but is rarely shared in the

traditional open literature. Certain chapters of this book (e.g., “How to Modify LAMMPS: From the

Prospective of a Particle Method Researcher” by Albano et al.) are specifically based on this idea,

while others (e.g., “Fortran Coarray Implementation of Semi-Lagrangian Convected Air Particles

within an Atmospheric Model” by Rasmussen et al.) focus on the programming aspects from the

perspective of the computer scientist. On this matter, we are very happy for the feedback we are

received so far and, in particular, for comments of the type “I wished this article was available when

I was a PhD student”. This was an aspect I really wanted to highlight in the book and I am grateful

to the publisher for giving me the freedom to do so.

I believe that both researchers that are new to particle methods and those that have years of

experience will be interested in and benefit from this book. The former will find an introduction to

several particle methods and how they can be coupled together. The latter will find several advanced

applications of DMP that refer to research topics such as biology, atmospheric research or cavitation.

Another interesting aspect of the book, which is worth mentioning, is the number of authors and

co-authors involved in the different chapters. They come from institutions distributed around the

word, covering all five continents. It was a pleasure working with each one of them and having the

opportunity to build collaborations that go beyond the publication of this book.

Alessio Alexiadis

Editor

x

chemengineering

Article

A Coarse Grained Model for Viscoelastic Solids in
Discrete Multiphysics Simulations

Iwan H. Sahputra 1,2,*, Alessio Alexiadis 1 and Michael J. Adams 1

1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
a.alexiadis@bham.ac.uk (A.A.); m.j.adams@bham.ac.uk (M.J.A.)

2 Industrial Engineering Department, Petra Christian University, Surabaya 60236, Indonesia
* Correspondence: iwanh@petra.ac.id

Received: 10 March 2020; Accepted: 25 April 2020; Published: 1 May 2020

Abstract: Viscoelastic bonds intended for Discrete Multiphysics (DMP) models are developed to
allow the study of viscoelastic particles with arbitrary shape and mechanical inhomogeneity that
are relevant to the pharmaceutical sector and that have not been addressed by the Discrete Element
Method (DEM). The model is applied to encapsulate particles with a soft outer shell due, for example,
to the partial ingress of moisture. This was validated by the simulation of spherical homogeneous
linear elastic and viscoelastic particles. The method is based on forming a particle from an assembly
of beads connected by springs or springs and dashpots that allow the sub-surface stress fields to be
computed, and hence an accurate description of the gross deformation. It is computationally more
expensive than DEM, but could be used to define more effective interaction laws.

Keywords: Kelvin–Voigt viscoelastic bonds; coarse grained model; particle method; viscoelastic
particles; inhomogeneous particles

1. Introduction

The Discrete Element Method (DEM) has been employed to study a range of pharmaceutical
manufacturing processes and products including powder mixing [1], agglomeration with and without
a liquid binder [2], and the release of Active Pharmaceutical Ingredients (APIs) from powder inhalation
products [3]. Invariably, this has not involved inhomogeneous particles, and those of arbitrary shape
have been simulated by gluing primary particles together such that the interior is essentially rigid in
order to minimise the computational cost, which is not representative of real particles [4]. An important
example of mechanical inhomogeneity is the softening of particles due the presence of moisture during
agglomeration or dispersion/dissolution. In such cases, a gradient of moisture content is developed
with a corresponding gradient in the mechanical properties. Another example is the encapsulation
of APIs for which there is commonly a hard shell and a softer core. For particles formed from
an organic polymer such as microcrystalline cellulose, the ingress of moisture will cause them to
become viscoelastic.

Mesh-free methods and, in particular, particle methods such as DEM are increasingly popular
in the scientific community due to their ability to overcome some drawbacks of the conventional,
mesh-based, numerical methods; see [5] for a review. Particle methods can also be coupled together
within a Discrete Multiphysics (DMP) framework that, unlike conventional multiphysics techniques,
is based on “computational particles” rather than on computational meshes [6,7]. In fact, there is a
range of systems for which DMP can address problems that would be very difficult, if not impossible,
for traditional multiphysics approaches. Examples are cardiovascular valves [8,9], blood clotting [10],
phase transitions [11], capsules’ breakup [12,13], and fuzzy boundaries (e.g., a tablets’ dissolution) [14].
In many of the above examples, the solid phase is often represented by a Lattice Spring Model (LMS)
and involves both linear and non-linear springs for modelling elastic materials. In the current study,

ChemEng 2020, 4, 30; doi:10.3390/chemengineering4020030 www.mdpi.com/journal/chemengineering1

ChemEng 2020, 4, 30

the method is extended to viscoelastic materials by implementing the Kelvin–Voigt (KV) viscoelastic
model that involves springs and also dashpots to represent the viscous friction.

KV bonds have been proposed in the LSM literature, but only to model wave propagation in
viscoelastic media (e.g., seismic wave propagation [15]), where the media are treated as homogenous
and no external forces are applied to the system. KV bonds have never been implemented to study the
strain field of solid objects under the effect of external loads. Achieving this objective would provide
particle-based multiphysics techniques (e.g., DMP) with the ability to model viscoelastic materials,
which is currently not possible.

The current study addresses the above shortcoming in the literature. For benchmark and validation
purposes, the diametric compression of homogeneous spherical particles between parallel platens is
described, which may be considered as a special case of indentation. A flat indenter or platen is widely
used especially for the diametric compression of single particles [16] and microcapsules [17]. Generally,
they are loaded at a constant velocity to a specified displacement and unloaded, or alternatively held
in position, to measure the stress relaxation.

A quasistatic model based on Hertz’s contact theory has been employed to describe the interaction
between the particles that are packed together to represent unconsolidated porous media [18].
The evolution of the permeability with the deformation was computed by the lattice-Boltzmann
approach. Here, the approach is that macroscopic bodies (such as particles) are sub-divided into
computational beads. Each bead is connected to the nearest neighbours by linear springs or by KV
bonds. It will be shown that for the spherical particle represented by beads connected by linear springs
model, under diametric compression simulation, the relationship between force and displacement is
nearly identical to the Hertz contact theory.

In the current work, the KV model is compared initially with the theoretical results for a single
viscoelastic bond. Then, elastic and viscoelastic spherical particle models including multiple bonds are
developed and simulated under diametrical loading. Finally, applications of DMP to spherical particles
composed of core and shell regions with different properties are also presented to demonstrate the
potential for inhomogeneous systems.

2. Materials and Methods

2.1. Theoretical Background

2.1.1. Hertz Theory for Elastic Normal Contact Force

Hertz proposed a theory to analyse the contact of two elastic isotropic spherical solids by assuming
linear elasticity and frictionless boundary conditions [19]. For diametric compression, a spherical body
is in contact with two flat surfaces, and the radius of curvature of the flat surfaces is set to infinity. Since
the total deformation is evaluated, it is divided by two [20], and therefore, the relationship between the
force, FH, and the relative displacement of the plates, δ, is as follows:

FH =
E
√

2R
3(1− υ2)

δ3/2, (1)

where E, R, and υ are the Young’s modulus, radius, and Poisson’s ratio of the particle, respectively.

2.1.2. Viscoelastic Normal Contact Force

For the diametric compression of a spherical viscoelastic particle, the force may be partitioned
between the elastic deformation and the viscoelastic dissipation, thus [21,22]:

FVE = Felastic + Fdissipative = Aδ3/2 + Bδ1/2
.
δ, (2)

2

ChemEng 2020, 4, 30

where δ and
.
δ are the displacement and the rate of displacement, respectively. The elastic term is

the Hertzian contact force where A is the constant in the Hertz theory. The dissipative part has a
dissipative constant B that was derived independently in [21,23,24].

2.1.3. Mass-Spring-Dashpot Models

Figure 1 depicts two particles of mass m connected by a KV model, which is defined as a “KV”
bond and implemented numerically as described in the next section. When a KV bond is displaced by
a distance X from its equilibrium position, the resulting force is given by the following relationship:

FKV = kX + b
dX
dt

, (3)

where k is the spring constant and b is the dashpot constant. If such a force is applied to the model, the
displacement will be a function of time, t, as follows:

X(t) =
F
k

(
1− e− k·t

b

)
, (4)

Figure 1. Two particles connected by a spring and a dashpot in parallel.

2.2. Model and Simulation

In this section, we initially compare the numerical implementation of the spring and dashpot
model with the theoretical results for a single viscoelastic bond. Then, we extend the study to a large
geometry (spherical) including multiple bonds.

2.2.1. Validation of a Single KV Bond

The KV bond was implemented numerically in LAMMPS [25] following the standard Hooke’s law
and Newton’s law of fluid flow for the spring and dashpot, respectively, as shown in Equation (3). To
validate the numerical implementation of the mass-spring-dashpot model, a simple system was created
as shown in Figure 1, and the displacement was calculated from the simulations and compared to the
analytical solution of Equation (4). The following parameter values were employed for the simulations:
F = 1 N, m = 0.00001 kg, k = 0.2 N/m, and a range of values of b, as shown in Figure 2, where m is the
mass of the beads. The simulated displacements are in close agreement with the analytical solution.

A second validation was performed by comparing the creep and recovery responses of the system
in Figure 1 to that calculated using Simulink (Version 9.1, The MathWorks Inc., Natick, MA, USA).
As depicted in Figure 3, the simulated displacements were in close agreement with the calculated
values from Simulink. After the force was applied, the displacement increased rapidly until it reached
a steady state. When the force was removed, the displacement decreased rapidly, and as time increased,
it approached asymptotically to zero.

3

ChemEng 2020, 4, 30

Figure 2. Comparison of the displacement calculated from the simulation and the analytical solution,
i.e., Equation (4).

Figure 3. Response of the system depicted in Figure 1 to a constant force, which is removed after
6 s. The blue line is the displacement calculated from the simulation, and the red line is calculated
using Simulink.

A third validation was performed by comparing the displacement response of the system in
Figure 1 to a sinusoidal load (dynamic force), to the value calculated using Simulink (Version 9.1,
The MathWorks Inc. Natick, MA, USA), as shown in Figure 4. Furthermore, in this case, the simulated
displacements were in close agreement with the calculated values.

2.2.2. Modelling the Diametric Compression of a Spherical Particle

In DMP models, macroscopic bodies are sub-divided into computational particles (beads). Since in
this work, we study KV bonds that can be used in DMP (or other particle-based multiphysics methods),
we extended the validation to macroscopic spheres that accounted for multiple KV bonds. A sphere
could be sub-divided into computational beads in different ways. Here, we employed two approaches:
the beads were arranged on (a) a regular cubic lattice and (b) an irregular tetrahedral lattice.

4

ChemEng 2020, 4, 30

Figure 4. Response of the system depicted in Figure 1 to a sinusoidal loading force. The lines are the
displacements calculated from the simulation, and the points are calculated using Simulink.

In the first case, the spherical particle (Figure 5a) was constructed from cubic lattice cells (Figure 5b).
It contained 137,059 beads with each connected to the nearest neighbours and along face diagonals
by linear springs or by KV bonds. This work focuses on viscoelasticity (KV bonds), and the case
of purely elastic spheres (linear springs) was computed for comparison. The case of linear springs,
in fact, has been already studied, and mass-spring cubic lattice cell models are known to represent
(purely) elastic homogenous isotropic materials if the connection between the masses and the stiffness
of the springs are selected appropriately [26]. For a cubic lattice cell with nearest neighbour and
next nearest-neighbour linear springs, the Poisson’s ratio is predicted by the theory to be 0.25 [26],
and Young’s modulus is given by the following relationship [27]:

E = 2.5 k/l (5)

where l is the length of an edge of the cell. In the “Results and Discussion” (Section 3), our model will
be initially validated against these theoretical values for a perfectly elastic sphere by only accounting
for linear springs and, later, it will be extended to a viscoelastic sphere by substituting the springs with
KV bonds.

(a) (b)

Figure 5. (a) Visualisation of a spherical particle between two parallel compression planes, which are
represented by red lines; (b) an elementary cell of a cubic lattice.

5

ChemEng 2020, 4, 30

The tetrahedral cells were created by discretising the sphere with a finite-element mesh generator.
In this case, the distance between the beads was not perfectly uniform, and for this reason, we called it
a disordered model. Using this approach, less beads were required, but the calculation of the elastic
modulus a priori (Equation (5)) was less accurate [26]. A spherical particle based on a disorder model
with 5921 beads was created using an open-source 3D finite element grid generator [28]. As in the
case of the cubic lattice, the beads were connected to their neighbours either with linear springs or KV
bonds to model, respectively, elastic and viscoelastic materials.

Two parallel solid planes were applied to the particle in order to simulate diametric compression.
They exerted a force to compress the particle, where the magnitude of the force, F(r), is given by [29]:

F(r) = S(rb − Ri)2, (6)

where S is the specified force constant, Ri is the position of the plane and rb − Ri is the distance from
the bead to the plane. The force is repulsive, and F(r) = 0 for rb > Ri. The force constant was set to be
1010 Nm−2 for all simulations in order to represent rigid compression planes. During the compression
loading simulations, one plane compressed the particle with a constant velocity for both the elastic
and viscoelastic particle models, while the other was maintained static. For the viscoelastic particle,
the displaced plane was held at its final position after the loading to allow for relaxation. The force and
particle displacement were recorded during the simulations, and a time step of 10−11 s was used to
integrate Newton’s equations of motion.

It is well known that the KV model can produce the creep and recovery responses of a two-bead
system, as shown in Figure 3, but cannot model stress relaxation behaviour. However, as will be
shown in the next section, for the many-bead spherical particle models connected with KV bonds,
stress relaxation behaviour could be observed. This is because a many-bead particle model connected
with KV bonds is similar to a generalized KV model, i.e., a viscoelastic material model composed of N
Kelvin–Voigt units assembled in series. The generalized KV model has been employed, for example to
study the viscoelastic properties of micro-cracked materials [30].

3. Result and Discussion

3.1. Perfectly Elastic Spherical Particles

3.1.1. Cubic Lattice Cell Model

Figure 6a presents the simulated force as a function of displacement for an elastic spherical particle
based on the cubic lattice cell with a spring constant of 200 Nm−1. The data were compared against
the Hertz theory predictions (Equation (1)) and the comparison depicted in Figure 6b. The force and
displacement calculated from the simulations were nearly identical to the Hertz theory. The fluctuating
behaviour in Figure 6 was due to slight numerical inaccuracies that artificially perturbed the total energy
of the system. Since the particle was perfectly elastic, this energy was never dissipated and manifested
itself as a high frequency perturbation. This is a known issue with the LSM, which, in the literature, is
usually solved by adding a small artificial dissipative term that damps these high frequencies [31].
In this study, since the focus was on validation, we did not implement any artificial dissipation.

The calculated Young’s modulus for the spherical particle was 39.1 MPa, which was in a close
agreement with the Young’s modulus of the elementary cubic lattice cell of 40 MPa calculated using
Equation (5). The small discrepancy arose because, due to the cubic cell internal structure, the bead
model was not a perfect spherical shape, so that it did not fully comply with the Hertzian contact model.

The bulk shear stress, which is the sub-surface principal stress difference, i.e., |(σ1 − σ3)|/2, may be
calculated for each bead. The principal stresses (σ1 and σ3) were calculated from the virial stress
and kinetic energy contributions [32] for each bead. The contours of the calculated shear stress are
presented in Figure 7, where a is the contact radius and r is the particle radius. The shape of the

6

ChemEng 2020, 4, 30

contours was similar to that calculated theoretically [33,34]. The maximum value was found at a depth
of 0.5a. This is in a close agreement with theoretical value of 0.48a [33].

(a) (b)

Figure 6. (a) Contact force as a function of displacement; (b) contact force as a function of displacement3/2.
Both were calculated from the simulations of an elastic spherical particle based on the cubic lattice cell
model. The dashed lines are the best fits of the data to the Hertz theory.

Figure 7. Contours of the sub-surface shear stresses estimated from the simulations using the cubic
lattice cell.

3.1.2. Disorder Model

Figure 8a presents the normal contact force as a function of displacement calculated from the
simulations using the disorder model with a spring constant of 200 Nm−1. Although this involved a
smaller number of beads, the data were a closer fit to a Hertzian response (Figure 8b), but with greater
fluctuations of the force. As mentioned above, these fluctuations normally would be removed with an
artificial dissipation term, but in this validation example, it is noteworthy that, as expected, disordered
structures increased the amplitude of the perturbation. Using Equation (1) and assuming that υ = 0.25,
the Young’s modulus was calculated to be 12.4 kPa.

7

ChemEng 2020, 4, 30

(a) (b)

Figure 8. (a) Contact force as a function of displacement; (b) contact force as a function of displacement3/2.
Both were calculated from the simulations of an elastic spherical particle based on the disorder model.
The dashed lines are the fits of the simulated data to the Hertz theory.

Figure 9 presents the contours of the calculated sub-surface shear stresses, for which due to the
random location of the beads, the pattern was not similar in form to that of the cubic lattice cell model.
However, the maximum value was also found at a depth of about 0.5a below the surface, which was
similar to the cubic lattice model.

Figure 9. Contours of maximum shear stress beneath the particle surface estimated from the simulations
of the particle based on the disorder model.

3.2. Viscoelastic Spherical Particles

3.2.1. Cubic Lattice Cell Model

Figure 10 presents the contact force as a function of time during compression and relaxation
calculated from the simulations of a viscoelastic spherical model based on the cubic lattice cell during
compression with a spring constant of 200 Nm−1 and a dashpot constant of 10−6 Nm−1 s. The force
and displacement data were fitted to Equation (2) in order to obtain the value of A, and hence Young’s
modulus using Equation (1). It was found to be 36.8 MPa, which was slightly less than that for the
elastic particle.

8

ChemEng 2020, 4, 30

Figure 10. Contact force as a function of time during compression and relaxation calculated from the
simulations of the viscoelastic spherical particle based on the cubic lattice cell model.

An analysis of the force relaxation after compression was performed using a previous method for
experimental compression of an agarose micro-particle [35]. Instantaneous (E0, corresponding to t = 0)
and long-time (E∞, corresponding to t = ∞) elastic moduli were then calculated. The values were
found to be E0 = 54 MPa and E∞ = 34 MPa. The Hertzian Young’s modulus was close to the calculated
relaxed value. The relaxation times are t1= 0.49 s and t2= 4.6 × 10−5 s.

3.2.2. Disorder Model

Figure 11 presents the simulated contact force as a function of time for a viscoelastic spherical
particle based on the disorder model with a spring constant of 200 Nm−1 and a dashpot constant of
10−6 Nm−1 s. The force and displacement data were fitted to Equation (2) in order to obtain the value
of A, from which the Young’s modulus was obtained using Equation (1) as 112 KPa, which was greater
than the calculated value for the elastic particle.

Figure 11. Contact force as a function of time during compression and relaxation calculated from the
simulations of the viscoelastic spherical particle based on the disorder model.

An analysis of the force relaxation after compression was performed using the procedure used for
the cubic lattice model. The elastic modulus values were found to be E0 = 203 KPa and E∞ = 200 KPa.
The Hertzian Young’s modulus was less than the calculated relaxed value, indicating that the force

9

ChemEng 2020, 4, 30

was not fully relaxed after compression. The relaxation time t1 = 0.82 s and t2= 2.83 × 10−5 s. It
is noteworthy that since the dashpot accounted for the physical viscosity of the material, artificial
dissipation was not necessary in these examples.

3.3. Application of the Elastic Disorder Model: Hard Core-Soft Shell and Soft Core-Hard Shell Spherical
Particles under Compression

In this section, we consider spherical inhomogeneous particles composed of a hard core-softer
shell (HC-SS) and a soft core-harder shell (SC-HS). The models were based on a disorder lattice with
6065 beads. The beads were connected with springs to their neighbours. The hard regions of the
particles were modelled using a larger spring constant than that for the soft part. The ratios of shell
thickness, h, and the particle radius, r, were set to be 0.5, 0.2, and 0.05. A visualization of the shell
thickness and particle radius is presented in Figure 12. A small artificial damping force (1−10 Nm−1.s)
was added to the beads, which was proportional to the relative velocity of the beads, in order to damp
the kinetic energy from the system and obtain a smoother compression force. Two parallel solid planes
were positioned on the surface of the particle in order to simulate diametric compression, as described
in the previous section. Using Equation (1) and assuming that υ = 0.25, the Young’s modulus was
calculated for each case.

Figure 12. Illustration of shell thickness (h) and particle radius (r).

Figure 13 presents the force as a function of fractional deformation (δ/2r) of HC-SS particles with
different values of kcore and h/r. Figure 14 presents the force as a function of fractional deformation
(δ/2r) of SC-HS particles with different values of kshell and h/r. The force profiles in Figures 13 and 14
can be compared with experimental data to simplify theoretical equations for small deformation e.g.
for microcapsules [36].

By comparing Figures 13a and 14a, for the deformation up to 5%, it may be seen that the change
in kshell affected the deformation force more significantly than the change in kcore. Figure 13a shows
that by reducing kshell from 200 to 20 Nm−1, the deformation force is now just about 11% of the initial
value; while in Figure 14a, by reducing Icore from 200 to 0.2 Nm−1, the force now is about 67% of the
initial value. Thus, at small deformations, the compression load is mainly absorbed by the shell.

Increasing the h/r ratio from 0.05 to 0.2 changed the deformation force more significantly than
increasing the h/r ratio from 0.2 to 1, as presented in Figures 13b and 14b for the deformation up to 5%.
Increasing the h/r ratio from 0.5 to 1 did not change the force significantly. Moreover, it may be seen
from Figures 15b and 16b that changing the h/r ratio from 0.5 to 1 did not change the lumped Young’s
modulus significantly. In these cases, the h/r ratio of 0.5 could be considered as a cut-off ratio where
there would be no significant change to the modulus.

10

ChemEng 2020, 4, 30

(a) (b)

Figure 13. (a) The force as a function of fractional deformation (δ/2r) of HC-SS particles (h/r = 0.2
and different kshell) and a hard solid particle (kshell = kcore = 200 Nm−1). (b) The force as a function of
fractional deformation (δ/2r) of HC-SS particles (kcore = 200 Nm−1 and kshell = 20 Nm−1) with different
values of h/r and a soft solid particle (h/r = 1, kcore = kshell = 20 Nm−1).

(a) (b)

Figure 14. (a) The force as a function of fractional deformation (δ/2r) of SC-HS particles (h/r = 0.2
and different kcore) and a hard solid particle (kcore = kshell). (b) The force as a function of fractional
deformation of SC-HS particles (kcore = 2 Nm−1 kshell = 200 Nm−1) with different values of h/r and a
hard solid particle (h/r = 1, kcore = kshell = 200 Nm−1).

(a) (b)

Figure 15. (a) Lumped Young’s modulus of HC-SS particles of Figure 12a as a function of kshell.
(b) Lumped Young’s modulus of HC-SS particles of Figure 12b as a function of h/r.

11

ChemEng 2020, 4, 30

Figure 16. (a) Lumped Young’s modulus of SC-HS particles of Figure 13a as a function of kcore.
(b). Lumped Young’s modulus of SC-HS particles of Figure 13b as a function of h/r.

Based on the results, a lumped Young’s modulus could be calculated using Equation (1), which
represented the equivalent Young’s modulus the particle would have if it were homogeneous.
Figures 15 and 16 present the lumped Young’s moduli of HC-SS and SC-HS particles as a function
of kshell and kcore, respectively, and as a function of the h/r ratio. As expected, with increasing values
of kshell or kcore, the Young’s modulus increases for HC-SS and SC-HS particles, respectively. For the
HC-SS particle, increasing the h/r ratio decreased the Young’s modulus, while for the SC-HS particle,
it increased the value.

4. Conclusions

It has been demonstrated that the LSM could accurately represent the deformation, including
the associated sub-surface stress fields, not only for elastic particles, but also for viscoelastic particles
when linear springs were substituted with KV bonds. The disorder model was computationally more
efficient than that based on a cubic lattice cell and led to a more refined definition of particle shape.
Although only spherical particles were investigated in the current study, the approach is readily
applicable to more complex shapes of the type that are often encountered in the pharmaceutical sector.
The proposed technique could be employed, within a particle-based multiphysics model such as DMP,
to model mechanical inhomogeneity, for example the softening of a particle immersed in water could
be modelled by coupling the Young’s modulus with the diffusion coefficient. It could also be extended
to non-linear elastic deformation, plastic deformation, and fracture by introducing non-linear springs,
friction elements, and springs of limited extensibility. For example, the fracture strength is of particular
interest for encapsulates.

If compared with gluing DEM particles together to model different shapes, the proposed technique
provided not only accurate contact stresses, but also the stresses within the particle. The disadvantage,
however, was in the greater computational cost. However, it was considerably more convenient to
implement than discrete finite elements, which require more complex material models. The proposed
approach could also be adopted to develop effective interaction laws for inhomogeneous systems in
DEM simulations to reduce the computational cost. It would also be possible to incorporate LSM
particles in a DEM simulation.

Author Contributions: Conceptualization, I.H.S., A.A., and M.J.A.; methodology, I.H.S., A.A., and M.J.A.;
software, I.H.S.; validation, I.H.S.; writing, original draft preparation, I.H.S; writing, review and editing, I.H.S.,
A.A. and M.J.A.; funding acquisition, A.A. and M.J.A. All authors read and agreed to the published version of
the manuscript.

Funding: This research was funded by Engineering and Physical Sciences Research Council, Grant Number
EP/M02959X/1.

12

ChemEng 2020, 4, 30

Acknowledgments: The computations described in this paper were performed using the University of
Birmingham’s BlueBEAR HPC service, which provides a High Performance Computing service to the University’s
research community. See http://www.birmingham.ac.uk/bear for more details.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

a contact radius
API Active Pharmaceutical Ingredients
b dashpot constant
δ relative displacement
.
δ rate of displacement
DEM Discrete Element Method
DMP Discrete Multiphysics
E Young’s modulus
F force
F(r) force (diametric compression)
FE viscoelastic normal contact force
FH force (Hertz theory)
FKV force (Kelvin–Voigt model)
h shell thickness
HC-SS hard core-softer shell
k spring constant
KV Kelvin–Voigt
l length of an edge of the cell
LSM Lattice Spring Model
m mass
r radius
rb-Ri distance from the bead to the compression plane
Ri position of the compression plane
σ1, σ3 principal stresses
S specified force constant
SC-HS soft core-harder shell
υ Poisson’s ratio
X distance from equilibrium position

References

1. Alian, M.; Ein-Mozaffari, F.; Upreti, S.R. Analysis of the mixing of solid particles in a plowshare mixer via
discrete element method (DEM). Powder Technol. 2015, 274, 77–87. [CrossRef]

2. Ketterhagen, W.R.; am Ende, M.T.; Hancock, B.C. Process modeling in the pharmaceutical industry using the
discrete element method. J. Pharm. Sci. 2009, 98, 442–470. [CrossRef] [PubMed]

3. Yang, J.; Wu, C.-Y.; Adams, M. DEM analysis of the effect of particle–wall impact on the dispersion
performance in carrier-based dry powder inhalers. Int. J. Pharm. 2015, 487, 32–38. [CrossRef] [PubMed]

4. Lu, G.; Third, J.; Müller, C. Discrete element models for non-spherical particle systems: From theoretical
developments to applications. Chem. Eng. Sci. 2015, 127, 425–465. [CrossRef]

5. Garg, S.; Pant, M. Meshfree methods: A comprehensive review of applications. Int. J. Comput. Methods 2018,
15, 1830001. [CrossRef]

6. Alexiadis, A. A smoothed particle hydrodynamics and coarse-grained molecular dynamics hybrid technique
for modelling elastic particles and breakable capsules under various flow conditions. Int. J. Numer.
Methods Eng. 2014, 100, 713–719. [CrossRef]

7. Alexiadis, A. The discrete multi-hybrid system for the simulation of solid-liquid flows. PLoS ONE 2015,
10, e0124678. [CrossRef]

13

ChemEng 2020, 4, 30

8. Ariane, M.; Allouche, M.H.; Bussone, M.; Giacosa, F.; Bernard, F.; Barigou, M.; Alexiadis, A. Discrete
multi-physics: A mesh-free model of blood flow in flexible biological valve including solid aggregate
formation. PLoS ONE 2017, 12, e0174795. [CrossRef]

9. Ariane, M.; Allouche, M.H.; Bussone, M.; Giacosa, F.; Bernard, F.; Barigou, M.; Alexiadis, A. Modelling and
simulation of flow and agglomeration in deep veins valves using discrete multi physics. Comput. Biol. Med.
2017, 89, 96–103. [CrossRef]

10. Ariane, M.; Vigolo, D.; Brill, A.; Nash, F.G.B.; Barigou, M.; Alexiadis, A. Using Discrete Multi-Physics for
studying the dynamics of emboli in flexible venous valves. Comput. Fluids 2018, 166, 57–63. [CrossRef]

11. Alexiadis, A.; Ghraybeh, S.; Qiao, G. Natural convection and solidification of phase-change materials in
circular pipes: A SPH approach. Comput. Mater. Sci. 2018, 150, 475–483. [CrossRef]

12. Alexiadis, A. A new framework for modelling the dynamics and the breakage of capsules, vesicles and cells
in fluid flow. Procedia IUTAM 2015, 16, 80–88. [CrossRef]

13. Rahmat, A.; Barigou, M.; Alexiadis, A. Deformation and rupture of compound cells under shear: A discrete
multiphysics study. Phys. Fluids 2019, 31, 051903. [CrossRef]

14. Rahmat, A.; Barigou, M.; Alexiadis, A. Numerical simulation of dissolution of solid particles in fluid flow
using the SPH method. Int. J. Numer. Methods Heath Fluid Flow 2019. [CrossRef]

15. O’Brien, G.S. Discrete visco-elastic lattice methods for seismic wave propagation. Geophys. Res. Lett. 2008, 35.
[CrossRef]

16. Paul, J.; Romeis, S.; Tomas, J.; Peukert, W. A review of models for single particle compression and their
application to silica microspheres. Adv. Powder Technol. 2014, 25, 136–153. [CrossRef]

17. Kuo-Kang, L. Deformation behaviour of soft particles: A review. J. Phys. D Appl. Phys. 2006, 39, R189.
18. Bakhshian, S.; Sahimi, M. Computer simulation of the effect of deformation on the morphology and flow

properties of porous media. Phys. Rev. E 2016, 94, 042903.
19. Hertz, H. Ueber die Berührung fester elastischer Körper. J. Reine Angew. Math. 1882, 1882, 156–171.
20. Mook, W.M.; Nowak, J.D.; Perrey, C.R.; Carter, C.B.; Mukherjee, R.; Girshick, S.L.; Gerberich, W.W.

Compressive stress effects on nanoparticle modulus and fracture. Phys. Rev. B 2007, 75, 214112. [CrossRef]
21. Brilliantov, N.V.; Spahn, F.; Hertzsch, J.M.; Pöschel, T. Model for collisions in granular gases. Phys. Rev. E

1996, 53, 5382–5392. [CrossRef] [PubMed]
22. Schwager, T.; Pöschel, T. Coefficient of restitution for viscoelastic spheres: The effect of delayed recovery.

Phys. Rev. E 2008, 78, 051304. [CrossRef] [PubMed]
23. Zheng, Q.J.; Zhu, H.P.; Yu, A.B. Finite element analysis of the contact forces between a viscoelastic sphere

and rigid plane. Powder Technol. 2012, 26, 130–142. [CrossRef]
24. Kuwabara, G.; Kono, K. Restitution Coefficient in a Collision between Two Spheres. Jpn. J. Appl. Phys. 1987,

26, 1230–1233. [CrossRef]
25. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19.

[CrossRef]
26. Ladd, A.J.; Kinney, J.H.; Breunig, T.M. Deformation and failure in cellular materials. Phys. Rev. E 1997,

55, 3271. [CrossRef]
27. Kot, M.; Nagahashi, H.; Szymczak, P. Elastic moduli of simple mass spring models. Vis. Comput. 2015, 31,

1339–1350. [CrossRef]
28. Geuzaine, C.; Remacle, J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing

facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [CrossRef]
29. Kelchner, C.L.; Plimpton, S.; Hamilton, J. Dislocation nucleation and defect structure during surface

indentation. Phys. Rev. B 1998, 58, 11085. [CrossRef]
30. Nguyen, S. Generalized Kelvin model for micro-cracked viscoelastic materials. Eng. Fract. Mech. 2014, 127,

226–234. [CrossRef]
31. Chen, H.; Lin, E.; Liu, Y. A novel Volume-Compensated Particle method for 2D elasticity and plasticity

analysis. Int. J. Solids Struct. 2014, 51, 1819–1833. [CrossRef]
32. Thompson, A.P.; Plimpton, S.J.; Mattson, W. General formulation of pressure and stress tensor for arbitrary

many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 2009, 131, 154107.
[CrossRef] [PubMed]

33. Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1987.

14

ChemEng 2020, 4, 30

34. Lee, S.C.; Ren, N. The Subsurface Stress Field Created by Three-Dimensionally Rough Bodies in Contact
with Traction. Tribol. Trans. 1994, 37, 615–621. [CrossRef]

35. Yan, Y.; Zhang, Z.; Stokes, J.R.; Zhou, Q.Z.; Ma, G.H.; Adams, M.J. Mechanical characterization of agarose
micro-particles with a narrow size distribution. Powder Technol. 2009, 192, 122–130. [CrossRef]

36. Butt, H.-J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique,
interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

15

chemengineering

Article

Using Discrete Multiphysics Modelling to Assess the
Effect of Calcification on Hemodynamic and
Mechanical Deformation of Aortic Valve

Adamu Musa Mohammed 1,2,*, Mostapha Ariane 3 and Alessio Alexiadis 1

1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
A.Alexiadis@bham.ac.uk

2 Department of Chemical Engineering, Faculty of Engineering and Engineering Technology, Abubakar
Tafawa Balewa University, Bauchi 740272, Nigeria

3 Department of Materials and Engineering, Sayens—University of Burgundy, 21000 Dijon, France;
Mostapha.Ariane@u-bourgogne.fr

* Correspondence: amm702@bham.ac.uk or ammohd@atbu.edu.ng; Tel.: +44-(0)776-717-3356

Received: 2 April 2020; Accepted: 29 July 2020; Published: 3 August 2020

Abstract: This study proposes a 3D particle-based (discrete) multiphysics approach for modelling
calcification in the aortic valve. Different stages of calcification (from mild to severe) were simulated,
and their effects on the cardiac output were assessed. The cardiac flow rate decreases with the
level of calcification. In particular, there is a critical level of calcification below which the flow rate
decreases dramatically. Mechanical stress on the membrane is also calculated. The results show that,
as calcification progresses, spots of high mechanical stress appear. Firstly, they concentrate in the
regions connecting two leaflets; when severe calcification is reached, then they extend to the area at
the basis of the valve.

Keywords: discrete multiphysics modelling; smoothed particle hydrodynamics; lattice spring model;
particle-based method; aortic valve; calcification; stenosis

1. Introduction

Aortic valve disease is the malfunction of the aortic valve due to heart malformation at birth
(congenital) or developed during a lifetime related to injury, age, or calcification of the valve [1].
Calcification, in particular, may result in calcific aortic valve disease (CAVD) caused by calcium deposits
on the valve leaflets, which mainly affects the elderly population with an incidence rate of 2 –7% in
the population above 65 years of age [2]. Over time, calcium build-up makes the aortic valve stiffer,
preventing full opening (stenosis) and hindering the blood flow from the left ventricle to the aorta.
It may also prevent the valve from closing properly (regurgitation), resulting in blood leakages back to
the ventricle.

Stenosis starts with the risk of leaflet deformation and progresses from early lesions to valve
obstruction, which is initially mild to moderate but eventually becomes severe, with or without clinical
symptoms [3] and the patient has high risk of cardiac failure.

In the literature, several studies focus on the dynamics of blood flow and the deformation of the
calcified aortic valve leaflets to better understand and assess the severity of calcification. Computational
fluid dynamics (CFD) was used to generate patient-specific aortic valve models from patients’ medical
images in [4,5]. Other studies [6–10] focus on investigating the stresses on the valve leaflets, excluding
the fluid flow behaviour in the model. Since the behaviour of the aortic valve depends on both the fluid
and the leaflets, a fluid–structure interaction (FSI) approach is recommended to model the complex
dynamic of this problem [2,11].

ChemEng 2020, 4, 48; doi:10.3390/chemengineering4030048 www.mdpi.com/journal/chemengineering17

ChemEng 2020, 4, 48

In this paper, we aim to use discrete multiphysics (DMP) [12–14], which enables the fluid–solid
interaction, to develop a 3D model representing various stages of calcification of the aortic valve.
DMP has been extensively used in in silico medicine for modelling a variety of human systems
including the aortic valve [15], the intestine [16], deep venous valves [17,18], the lungs [19], and, in
conjunction with machine learning, peristalsis in the oesophagus [20]. Sections 2 and 3 give an overview
of the method and model used, respectively.

2. Discrete Multiphysics

Multiphysics simulation allows for tackling problems that involve multiple physical models or
simultaneous physical phenomena, and that gives it widespread application in both industry and
academia [20]. Discrete multiphysics, therefore, is a method based on particles and that combines
various particle methods such as smoothed particle hydrodynamics (SPH), lattice spring model (LSM),
and discrete element method [15]. The current model only accounts for SPH and LSM. Both modelling
techniques are briefly discussed below. The reader can refer to [21] for a more extensive introduction
to SPH, and to [22] for the LSM. Details on how the two models are linked together in DMP can be
found in [12,13].

2.1. Smooth Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) was invented to simulate nonaxisymmetric phenomena
in astrophysics by [23,24] and to solve the astrophysical problems in three-dimensional open space [24].
It is a meshless Lagrangian particle method used to solve differential equations which are often
found in engineering and scientific problems [25,26]. The method, being easy to work with a
reasonable degree of accuracy, could be extended to complicated physics without much trouble [27].
The SPH method is gaining popularity in a variety of fields and has a wide range of applications such as
multiphase flow [25,28], biomedicals [15,17,19,29], fluid–solid interaction [12,29–33], and hydrodynamic
instability [34,35].

The SPH method represents the state of a system with particles which possess individual material
properties and move according to a governing equation [36]. The fundamental idea behind this discrete
approximation lies in the mathematical identity

f (r) =
�

f (r′)δ(r− r′)dr′ (1)

which gives a discretized particle approximation within a domain of a smoothing function (kernel) W
within a characteristic width h called the smoothing length [12] such that

lim
h→0

W(r, h) = δ(r) (2)

This gives rise to the discrete approximation

f (r) ≈
�

f (r′)W(r− r′, h)dr′ (3)

which can be discretised over a series of particle of mass mi and density ρi to obtain

f (r) ≈
∑

i

mi
ρi

f (ri)W(r− ri , h) (4)

where f (r) is a generic function defined over the volume V, r is the three-dimensional vector point, and
δ(r) is the three-dimensional delta function.

Equation (4) is a representation of the discrete approximation of a generic continuous field. Further
simplification of Equation (4) can be done to approximate the Navier–Stokes equation. See detail and

18

ChemEng 2020, 4, 48

complete equations in [14,15]. In addition, more information on the SPH and equation derivation can
also be found in [21,35,37].

2.2. Lattice Spring Model (LSM)

The behaviour of deformable objects can be simulated using the LSM approach. This model
consists of mass point and linear springs which exert forces at the nodes located at the end point [38],
which are placed on either a regular lattice or positioned randomly within the system [38]. The term
LSM is interchangeable with mass spring model (MSM), where the latter is mostly used in computer
graphics and the former in solid mechanics. Nowadays, LSM is applicable in many areas and
disciplines, for instance, cloth simulation, face animation, or soft tissue behaviour in surgery training
systems [39,40] are simulated using LSM.

The LSM follows the idea that any material point of the body can be referred to by its position vector
r = (x,y,z) [38]. When that body undergoes deformation due to an applied force F, the displacement is
proportional to the force applied.

F = k(r− r0) (5)

where r0 is the initial distance between the two particles, r is the distance at time t, and k is a Hookean
constant

3. The Model

As mentioned, the multiphysics model used in this study is based on DMP, a computational
method that combines various particle methods. In the case under investigation, the computational
domain is divided into two parts: (i) a liquid part (blood) where smooth particle hydrodynamics (SPH)
is used, and (ii) the solid structure part (valve) where the stress deformation equation is solved using
the lattice spring model (LSM). The two parts are coupled together to represent an FSI model that
simulates the valve deformation and blood flow dynamics within the valve.

In Figure 1a, the valve’s leaflets (tricuspid) are shown; Figure 1b shows the overall geometry.
The geometry was firstly designed as a CAD model (nodes and elements) and then transformed to a
particle model as explained in the Appendix A. Simulations were run with the open-source software
LAMMPS [41].

Figure 1. Valve leaflets (a) and complete geometry (b).

19

ChemEng 2020, 4, 48

The system is three-dimensional and consists of 418,743 particles: 342,358 particles for the fluid,
19,725 particles for the leaflets, and 56,660 particles for the rigid pipe. The distance between particles
(particle spacing) and the number of particles were chosen from the previous work done where DMP
was used to model similar FSI problems [29,32]. In this study, the aortic valve geometry of Bavo et al.
(2016) was adopted. The leaflets tissue was modelled as linear and elastic, whereas the elasticity of the
aorta (rigid pipe) was neglected and the arterial wall was assumed to be rigid [42].

In the simulation, the flow is driven by a periodic acceleration (Figure 2) given by

G = G0 sinn(ωt) cos(ωt−φ) (6)

where G0 = 400 m s−2,ω = 2πf is the angular frequency, n = 13, and φ = π/10 as discussed in Steven et al.,
2003 [40]. The value of G0 is determined to achieve full opening of the valve that gives an average
flow rate around 600 mL s−1 for valves at normal condition, which is consistent with the literature,
e.g., [40,43,44].

Figure 2. Pulsatile flow function.

As mentioned, the flexible valve is modelled with LSM, which is a common approach for
cardiovascular valves [45]. This implies that each computational particle is linked with its neighbour
particles by means of a force (in Equation (5)).

In LSM, the value of k is linked to the Young modulus E of the material [38]. In practice, however,
it is not always straightforward to calculate k from E in the case of complex geometries, in particular,
with irregular particles distribution [39]. For this reason, we use a more practical approach: k is
determined, together with G0, in such a way that the valve opens fully and the flow rate for a healthy
and non-calcified valve is 600 mL s−1 as discussed above.

The numerical model used in this paper has extensively been tested and validated for a variety of
similar fluid flow problems [15–18,32]. In this paper, the value of k in the lattice model, as mentioned
earlier, and G0 in Equation (6) were chosen in such a way to make sure the flow in the valve and its
opening are consistent with available observations (e.g., [40,43,44,46,47]). Convergence of the results
on the number of particles used to discretise the system was carried out and the numbers reported in
Table 1 represent the best compromise between accuracy and computational times. Since we refer to the
human body, the available observations of real valves show very scattered results because of individual
variability. Therefore, we cannot provide a systematic validation like in the case of experiments carried
out in a laboratory under controlled conditions. This is even more true for calcified valves, where,
on top of physiological variations, we have additional variations due to the severity and the course of
the disease. Given all of the above, the best we can do is to make sure that the results are consistent

20

ChemEng 2020, 4, 48

with real data. In our study, we achieved this by making sure that the flow in the valve and the opening
of the leaflets are both within the range of real observations.

Table 1. Model parameters used in the simulation; for the meaning of SPH parameters such as α or h,
refer to Liu and Liu, 2003 [21].

Parameters Values

Number of SPH wall particle 56,660
Number of SPH fluid particle 342,358

Number of SPH leaflets 19,725
Mass of each particle (fluid) 6.7 × 10−8 kg
Mass of each particle (Solid) 14 × 10−8 kg

Smoothing length h 1.0 × 10−3 m
Length L 6 × 10−2 m

Diameter D 2 × 10−2 m
Particle spacing l 0.4 × 10−3 m
Fluid Density ρ 1060 kg m−3

Frequency f 1.167 s−1 (70 beats min−1)
Pseudo-gravity G0 400 m s−2

Viscosity μ 0.003 Pa·s
Elastic constant k 10−14,500 N m−1

Sound speed c0 16 m s−1

Time step Δt 1 × 10−6 s

4. Results and Discussion

4.1. Stages of Calcification

In our model, the value of k was chosen to control the stiffness of the valve and model calcification.
The higher the value of k, the stiffer the valve. In our model, higher values of k are used to model a
higher degree of calcification. We define the degree of calcification γ as

γ = log
(

k
kH

)
(7)

where k is the spring constant used to simulate the calcified valve and kH is the stiffness of the healthy
valve. Figure 3 shows the valve during maximal opening for four different degrees of calcification.

Figure 3. Severity of aortic valve stenosis in terms of orifice opening (stenosis).

Some important parameters like flow velocity, volume flow rate, and stress can be used to ascertain
the level of calcification of the valves. Figure 4 shows how the flow velocity in the valve is affected
by calcification.

21

ChemEng 2020, 4, 48

Figure 4. Velocity profile at different time steps.

The flow velocity was measured on a section just above the valve for three different degrees of
calcification and three different times. According to the level of calcification, the valve opens and closes
at different times. The healthy valve (γ = 0) starts opening at t = 0.29 s, reaches maximal opening (peak
systole) at t = 0.41 s, and closes again at t = 0.56 s. The valve with γ = 2.0 starts opening at t = 0.32
s, reaches maximal opening at t = 0.43 s, and closes again at t = 0.54 s. The valve with γ = 3.0 starts
opening at t = 0.37 s, reaches maximal opening at t = 0.43 s, and closes again at t = 0.53 s. Figure 4 also
relates with Figure 3 in showing how the valve opening is reduced (stenosis) in case of calcification.
The time to attain peak velocity varies with the severity of the valve’s stenosis, which signifies high
mortality risk and the need for a valve replacement [48]. The time at which the valve closes also
varies with the severity of calcification; at γ = 3.0, there is also evidence of regurgitation (back flow),
a characteristic of a stenotic aortic valve [2,3,9]. Figure 4 also shows that, as expected, the blood flow in
the healthy valve (γ = 0.0) is higher than in the calcified valves (γ = 2.0 and γ = 3).

Transvalvular flow is another important parameter for measuring aortic valve functionality.
The flow reduces as γ increases (Figure 5); it decreases almost linearly up to a critical value
γCR = 3, after which it decreases sharply. In Figure 5, γCR corresponds to a flow rate of 200 mL s−1.
Our calculations are consistent with the medical literature where a flow rate ≥250 mL s−1 is considered
acceptable, whereas <200 mL s−1 is associated with an increase of mortality rate in cases of patients
with aortic stenosis [44,49]. The maximum orifice diameter and the average stress on the valve (see next
section) can also be used to monitor the progression of the valve stenosis. Table 2 summarizes the
parameters as the condition worsens from normal to severe.

22

ChemEng 2020, 4, 48

Figure 5. Volumetric blood flow with respect to γ.

Table 2. Parameters for determining severity of calcification.

Calcification Maximum Orifice Diameter [cm] Mean Flow × 10−4 [m3s−1] Average Stress [kPa]

Normal (γ = 0.0) 1.81 5.72 10.60
Mild (γ = 2.0) 1.41 3.21 91.68

Moderate (γ = 2.7) 1.29 2.17 181.61
Severe (γ = 3.1) 1.17 1.58 324.27

4.2. Stress Distribution on the Membrane

Calcification increases the stiffness of the valve, which results in higher stresses on the membrane.
This is particularly important because mechanical stress plays a major role in the calcification of
bioprostheses [50]. This, potentially, can create a vicious circle where calcification leads to higher
mechanical stress, which, in turn, leads to further calcification. Figure 6 shows how the average
stress increases with the degree of calcification. Since stenosis due to calcification can be related to
congenital bicuspid valve disease or fused leaflets [51], the numerical values of 0.28 to 0.35 MPa
obtained for calcified valves are consistent with those reported by [46] for fused tri-leaflet valves.
For stress distribution in a transcatheter aortic valve, the maximum value of 0.35 MPa is also consistent
with the report of Auricchio et al. (2014) [47].

Figure 6. Stress at different degrees of calcification.

23

ChemEng 2020, 4, 48

The local stress distribution (i.e., the Frobenius norm of the stress tensor) on the leaflets is shown
in Figure 7, considering a membrane thickness of 0.6 mm [7]. In this work, calcification is modelled by
uniformly increasing the Young modulus of the membrane; Figure 7 suggests that calcification does
not progress uniformly.

Figure 7. Mechanical stress on the valve leaflets at maximal opening.

In fact, as calcification progresses, spots of high mechanical stress appear. Firstly, they concentrate
in the regions connecting two leaflets; when severe calcification is reached, they extend to the area at
the basis of the valve.

5. Conclusions

In this study, the effect of calcification in a 3D aortic valve is simulated with discrete multiphysics.
The model accounts for both hemodynamics and leaflet deformation, and it can be considered an
improvement over a previous 2D model [15]. The results show that the mean transvalvular flow could
be used to assess valve calcification, and severe calcification occurs when the flow rate is lower than
200 mL s−1.

The model can also assess the local stress on the membrane. Calcification increases mechanical
stress, which, in turn, promotes further calcification. In this work, calcification is modelled by uniformly
increasing the Young modulus of the membrane. The results show that, as calcification progresses,
spots of high mechanical stress appear. Firstly, they concentrate in the regions connecting two leaflets;
when severe calcification is reached, they extend to the area at the basis of the valve. This suggests that
the model could be improved by accounting for local changes in stiffness, which depends on the local
stress distribution.

Methodologically, this work can also benefit researchers interested in particle methods, but not
necessarily to cardiovascular applications. In fact, the Appendix A explains how geometries designed
with CAD model can be transformed to particle models.

Author Contributions: Conceptualization, A.A., A.M.M., and M.A.; simulation and visualization, A.M.M.;
numerical calculations, A.M.M.; interpretation and analysis of results, A.M.M. and A.A.; writing—original draft
preparation, A.M.M.; supervision, A.A.; writing—review and editing, A.A., A.M.M., and M.A.; input script, M.A.
and A.A.; model and appendix, M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The Nigerian Petroleum Technology Development Fund (PTDF) is acknowledged for the
provision of a scholarship to Adamu Musa Mohammed.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix explains how to adapt the 3D CAD model for Discrete Multiphysics. The valve
geometry is taken from [42] and was initially created with the help of CAD software. In general,
particle distribution can be generated with a programming code or a pre-processing solver. In the first
case, the coordinates of the points are created with a separate standard programming code such as
C++ and MATLAB, or directly in the processing solver with an integrated algorithm (in the software

24

ChemEng 2020, 4, 48

LAMMPS for instance). For complex geometries, a pre-processing commercial builder (GAMBIT,
ABAQUS, SALOME) can be used for the structure and the associated mesh is then replaced with
particles (Figure A1). In the paper, we used the second approach in order to design our tricuspid
valve system.

Figure A1. Mesh generation using a pre-processing solver (a) and the generated particle distribution
(b).

The procedure of implementation is simple, but it requires a couple of sequences to obtain the final
input file. Here, we present the one used for our valve model, but the methodology can be extended to
any other applications.

The different steps can be described as follow:

1. Creation or importation of the CAD geometry
2. Writing of the data file
3. Generation of the bond and coefficient files
4. Implementation of the input file

The first step consists of designing the part geometry or importing an existing one to any CAD
commercial or open-source software (Figure A2a). The idea is to use the software capability for
automatically or manually generating the mesh (elements and nodes, Figure A2b). Next, the nodes
information (numbers and coordinates) are downloaded (Figure A2c) and collected into a text file
(Figure A2d).

Subsequently, the data file is adapted and implemented in a LAMMPS format file, which contains
specific line codes and keywords (for more details and documentation, readers can refer to the LAMMPS
documentation available at https://lammps.sandia.gov/doc/Manual.html). For instance, for this model,
we used the keywords meso for the atom style and bond for the inter-atomic potential.

The unsymmetrical shape of the tricuspid valve system makes a 3D design necessary.
This representation requires a fine mesh with a consequent number of nodes (418,743 particles)
to ensure a realistic valve motion. Each node/particle is connected with at least three other nodes
located nearby, increasing the data processing drastically. As a result, we developed an algorithm
(C++ code) in order to set the bond definitions automatically. All particle positions are scanned by
the code and for each particle, its neighbour (within a prescribed radius distance of interaction) is
identified, numbered, and printed out in a bond file. Meanwhile, a second file is also created with the
storage of the bond coefficients (potential force) and the distance (between two particles).

Finally, as the number of fluid particles is very important (342,358), the inclusion of the list into
the data file (which is technically possible) makes the input file processing heavy. Instead, we preferred
to generate, during the first step of the simulation, the fluid particles via the LAMMPS commands
‘create_atoms’ and ‘region’. The command ‘delete’ is also used to avoid overlapping.

25

ChemEng 2020, 4, 48

Figure A2. Tricuspid valve CAD part (a), tricuspid valve meshed CAD part (b), nodes generation using
the CAD software (c), and external data file (d).

References

1. Fioretta, E.S.; Dijkman, P.E.; Emmert, M.Y.; Hoerstrup, S.P. The Future of Heart Valve Replacement: Recent
Developments and Translational Challenges for Heart Valve Tissue Engineering: The Future of Heart Valve
Replacement. J. Tissue Eng. Regen. Med. 2018, 12, e323–e335. [CrossRef] [PubMed]

2. Amindari, A.; Saltik, L.; Kirkkopru, K.; Yacoub, M.; Yalcin, H.C. Assessment of Calcified Aortic Valve Leaflet
Deformations and Blood Flow Dynamics Using Fluid-Structure Interaction Modeling. Inform. Med. Unlocked
2017, 9, 191–199. [CrossRef]

3. Otto, C.M.; Prendergast, B. Aortic-Valve Stenosis—From Patients at Risk to Severe Valve Obstruction. N. Engl.
J. Med. 2014, 371, 744–756. [CrossRef] [PubMed]

4. Fedele, M.; Faggiano, E.; Dedè, L.; Quarteroni, A. A Patient-Specific Aortic Valve Model Based on Moving
Resistive Immersed Implicit Surfaces. Biomech. Modeling Mechanobiol. 2017, 16, 1779–1803. [CrossRef]
[PubMed]

5. Youssefi, P.; Gomez, A.; He, T.; Anderson, L.; Bunce, N.; Sharma, R.; Figueroa, C.A.; Jahangiri, M.
Patient-Specific Computational Fluid Dynamics—Assessment of Aortic Hemodynamics in a Spectrum of
Aortic Valve Pathologies. J. Thorac. Cardiovasc. Surg. 2017, 153, 8–20. [CrossRef] [PubMed]

6. Bluestein, D.; Einav, S. The Effect of Varying Degrees of Stenosis on the Characteristics of Turbulent Pulsatile
Flow through Heart Valves. J. Biomech. 1995, 28, 915–924. [CrossRef]

7. Hamid, M.S.; Sabbah, H.N.; Stein, P.D. Comparison of Finite Element Stress Analysis of Aortic Valve Leaflet
Using Either Membrane Elements or Solid Elements. Comput. Struct. 1985, 20, 955–961. [CrossRef]

8. Arjunon, S.; Rathan, S.; Jo, H.; Yoganathan, A.P. Aortic Valve: Mechanical Environment and Mechanobiology.
Ann. Biomed. Eng. 2013, 41, 1331–1346. [CrossRef]

9. Morganti, S.; Conti, M.; Aiello, M.; Valentini, A.; Mazzola, A.; Reali, A.; Auricchio, F. Simulation of
Transcatheter Aortic Valve Implantation through Patient-Specific Finite Element Analysis: Two Clinical
Cases. J. Biomech. 2014, 47, 2547–2555. [CrossRef]

26

ChemEng 2020, 4, 48

10. Lazaros, G.; Drakopoulou, M.I.; Tousoulis, D. Transaortic Flow in Aortic Stenosis: Stroke Volume Index
versus Flow Rate. Cardiology 2018, 141, 71–73. [CrossRef]

11. Ghasemi Bahraseman, H.; Mohseni Languri, E.; Yahyapourjalaly, N.; Espino, D.M. Fluid-Structure Interaction
Modeling of Aortic Valve Stenosis at Different Heart Rates. Acta Bioeng. Biomech. 2016, 18, 11–20. [CrossRef]

12. Alexiadis, A. The Discrete Multi-Hybrid System for the Simulation of Solid-Liquid Flows. PLoS ONE 2015,
10, e0124678. [CrossRef] [PubMed]

13. Alexiadis, A. A Smoothed Particle Hydrodynamics and Coarse-Grained Molecular Dynamics Hybrid
Technique for Modelling Elastic Particles and Breakable Capsules under Various Flow Conditions:
SPH-CGMD HYBRID. Int. J. Numer. Meth. Eng. 2014, 100, 713–719. [CrossRef]

14. Alexiadis, A. A New Framework for Modelling the Dynamics and the Breakage of Capsules, Vesicles and
Cells in Fluid Flow. Procedia IUTAM 2015, 16, 80–88. [CrossRef]

15. Ariane, M.; Allouche, M.H.; Bussone, M.; Giacosa, F.; Bernard, F.; Barigou, M.; Alexiadis, A. Discrete
Multi-Physics: A Mesh-Free Model of Blood Flow in Flexible Biological Valve Including Solid Aggregate
Formation. PLoS ONE 2017, 12, e0174795. [CrossRef]

16. Alexiadis, A.; Stamatopoulos, K.; Wen, W.; Batchelor, H.K.; Bakalis, S.; Barigou, M.; Simmons, M.J.H.
Using Discrete Multi-Physics for Detailed Exploration of Hydrodynamics in an In Vitro Colon System.
Comput. Biol. Med. 2017, 81, 188–198. [CrossRef]

17. Ariane, M.; Vigolo, D.; Brill, A.; Nash, F.G.B.; Barigou, M.; Alexiadis, A. Using Discrete Multi-Physics for
Studying the Dynamics of Emboli in Flexible Venous Valves. Comput. Fluids 2018, 166, 57–63. [CrossRef]

18. Ariane, M.; Wen, W.; Vigolo, D.; Brill, A.; Nash, F.G.B.; Barigou, M.; Alexiadis, A. Modelling and Simulation
of Flow and Agglomeration in Deep Veins Valves Using Discrete Multi Physics. Comput. Biol. Med. 2017, 89,
96–103. [CrossRef]

19. Ariane, M.; Kassinos, S.; Velaga, S.; Alexiadis, A. Discrete Multi-Physics Simulations of Diffusive and
Convective Mass Transfer in Boundary Layers Containing Motile Cilia in Lungs. Comput. Biol. Med. 2018,
95, 34–42. [CrossRef]

20. Alexiadis, A. Deep Multiphysics: Coupling Discrete Multiphysics with Machine Learning to Attain
Self-Learning in-Silico Models Replicating Human Physiology. Artif. Intell. Med. 2019, 98, 27–34. [CrossRef]

21. Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Hackensack,
NJ, USA, 2003.

22. Kot, M.; Nagahashi, H.; Szymczak, P. Elastic Moduli of Simple Mass Spring Models. Vis. Comput. 2015, 31,
1339–1350. [CrossRef]

23. Gingold, R.A.; Monaghan, J.J. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical
Stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [CrossRef]

24. Lucy, L.B. A Numerical Approach to the Testing of the Fission Hypothesis. Astron. J. 1977, 82, 1013. [CrossRef]
25. Hopp-Hirschler, M.; Shadloo, M.S.; Nieken, U. A Smoothed Particle Hydrodynamics Approach for

Thermo-Capillary Flows. Comput. Fluids 2018, 176, 1–19. [CrossRef]
26. Shadloo, M.S.; Zainali, A.; Sadek, S.H.; Yildiz, M. Improved Incompressible Smoothed Particle

Hydrodynamics Method for Simulating Flow around Bluff Bodies. Comput. Methods Appl. Mech. Eng. 2011,
200, 1008–1020. [CrossRef]

27. Monaghan, J.J. Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574.
[CrossRef]

28. Rahmat, A.; Yildiz, M. A Multiphase ISPH Method for Simulation of Droplet Coalescence and
Electro-Coalescence. Int. J. Multiph. Flow 2018, 105, 32–44. [CrossRef]

29. Schütt, M.; Stamatopoulos, K.; Simmons, M.J.H.; Batchelor, H.K.; Alexiadis, A. Modelling and Simulation
of the Hydrodynamics and Mixing Profiles in the Human Proximal Colon Using Discrete Multiphysics.
Comput. Biol. Med. 2020, 121, 103819. [CrossRef]

30. Ji, S.; Chen, X.; Liu, L. Coupled DEM-SPH Method for Interaction between Dilated Polyhedral Particles and
Fluid. Math. Probl. Eng. 2019, 2019, 1–11. [CrossRef]

31. Li, D.; Zhen, Z.; Zhang, H.; Li, Y.; Tang, X. Numerical Model of Oil Film Diffusion in Water Based on SPH
Method. Math. Probl. Eng. 2019, 2019, 1–14. [CrossRef]

32. Rahmat, A.; Barigou, M.; Alexiadis, A. Deformation and Rupture of Compound Cells under Shear: A Discrete
Multiphysics Study. Phys. Fluids 2019, 31, 051903. [CrossRef]

27

ChemEng 2020, 4, 48

33. Tran-Duc, T.; Phan-Thien, N.; Khoo, B.C. A Smoothed Particle Hydrodynamics (SPH) Study of Sediment
Dispersion on the Seafloor. Phys. Fluids 2017, 29, 083302. [CrossRef]

34. Rahmat, A.; Tofighi, N.; Shadloo, M.S.; Yildiz, M. Numerical Simulation of Wall Bounded and Electrically
Excited Rayleigh–Taylor Instability Using Incompressible Smoothed Particle Hydrodynamics. Colloids Surf.
A Physicochem. Eng. Asp. 2014, 460, 60–70. [CrossRef]

35. Shadloo, M.S.; Yildiz, M. Numerical Modeling of Kelvin-Helmholtz Instability Using Smoothed Particle
Hydrodynamics. Int. J. Numer. Meth. Engng. 2011, 87, 988–1006. [CrossRef]

36. Liu, M.B.; Liu, G.R. Restoring Particle Consistency in Smoothed Particle Hydrodynamics. Appl. Numer. Math.
2006, 56, 19–36. [CrossRef]

37. Shadloo, M.S.; Zainali, A.; Yildiz, M. Simulation of Single Mode Rayleigh–Taylor Instability by SPH Method.
Comput. Mech. 2013, 51, 699–715. [CrossRef]

38. Pazdniakou, A.; Adler, P.M. Lattice Spring Models. Transp. Porous. Med. 2012, 93, 243–262. [CrossRef]
39. Lloyd, B.; Szekely, G.; Harders, M. Identification of Spring Parameters for Deformable Object Simulation.

IEEE Trans. Visual. Comput. Graph. 2007, 13, 1081–1094. [CrossRef]
40. Stevens, S.A.; Lakin, W.D.; Goetz, W. A Differentiable, Periodic Function for Pulsatile Cardiac Output Based

on Heart Rate and Stroke Volume. Math. Biosci. 2003, 182, 201–211. [CrossRef]
41. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19.

[CrossRef]
42. Bavo, A.M.; Rocatello, G.; Iannaccone, F.; Degroote, J.; Vierendeels, J.; Segers, P. Fluid-Structure

Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary
Lagrangian-Eulerian Techniques for the Mesh Representation. PLoS ONE 2016, 11, e0154517. [CrossRef]
[PubMed]

43. Murgo, J.P.; Westerhof, N.; Giolma, J.P.; Altobelli, S.A. Aortic Input Impedance in Normal Man: Relationship
to Pressure Wave Forms. Circulation 1980, 62, 105–116. [CrossRef] [PubMed]

44. Blais, C.; Burwash, I.G.; Mundigler, G.; Dumesnil, J.G.; Loho, N.; Rader, F.; Baumgartner, H.; Beanlands, R.S.;
Chayer, B.; Kadem, L.; et al. Projected Valve Area at Normal Flow Rate Improves the Assessment of
Stenosis Severity in Patients With Low-Flow, Low-Gradient Aortic Stenosis: The Multicenter TOPAS (Truly
or Pseudo-Severe Aortic Stenosis) Study. Circulation 2006, 113, 711–721. [CrossRef]

45. Hammer, P.E.; Sacks, M.S.; del Nido, P.J.; Howe, R.D. Mass-Spring Model for Simulation of Heart Valve
Tissue Mechanical Behavior. Ann. Biomed. Eng. 2011, 39, 1668–1679. [CrossRef] [PubMed]

46. Jermihov, P.N.; Jia, L.; Sacks, M.S.; Gorman, R.C.; Gorman, J.H.; Chandran, K.B. Effect of Geometry on the
Leaflet Stresses in Simulated Models of Congenital Bicuspid Aortic Valves. Cardiovasc. Eng. Tech. 2011, 2,
48–56. [CrossRef] [PubMed]

47. Auricchio, F.; Conti, M.; Morganti, S.; Reali, A. Simulation of Transcatheter Aortic Valve Implantation:
A Patient-Specific Finite Element Approach. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 1347–1357.
[CrossRef] [PubMed]

48. Kamimura, D.; Hans, S.; Suzuki, T.; Fox, E.R.; Hall, M.E.; Musani, S.K.; McMullan, M.R.; Little, W.C. Delayed
Time to Peak Velocity Is Useful for Detecting Severe Aortic Stenosis. JAHA 2016, 5. [CrossRef]

49. Saeed, S.; Senior, R.; Chahal, N.S.; Lønnebakken, M.T.; Chambers, J.B.; Bahlmann, E.; Gerdts, E. Lower
Transaortic Flow Rate Is Associated with Increased Mortality in Aortic Valve Stenosis. JACC Cardiovasc.
Imaging 2017, 10, 912–920. [CrossRef]

50. Thubrikar, M.; Deck, J.; Aouad, J.; Nolan, S. Role of Mechanical Stress in Calcification of Aortic Bioprosthetic
Valves. J. Thorac. Cardiovasc. Surg. 1983, 86, 115–125. [CrossRef]

51. Huntley, G.D.; Thaden, J.J.; Alsidawi, S.; Michelena, H.I.; Maleszewski, J.J.; Edwards, W.D.; Scott, C.G.;
Pislaru, S.V.; Pellikka, P.A.; Greason, K.L.; et al. Comparative Study of Bicuspid vs. Tricuspid Aortic Valve
Stenosis. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 3–8. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

28

chemengineering

Article

Modelling Complex Particle–Fluid Flow with a
Discrete Element Method Coupled with Lattice
Boltzmann Methods (DEM-LBM)

Wenwei Liu and Chuan-Yu Wu *

Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK;
wenwei.liu@surrey.ac.uk
* Correspondence: c.y.wu@surrey.ac.uk

Received: 1 July 2020; Accepted: 29 September 2020; Published: 7 October 2020

Abstract: Particle–fluid flows are ubiquitous in nature and industry. Understanding the dynamic
behaviour of these complex flows becomes a rapidly developing interdisciplinary research focus.
In this work, a numerical modelling approach for complex particle–fluid flows using the discrete
element method coupled with the lattice Boltzmann method (DEM-LBM) is presented. The discrete
element method and the lattice Boltzmann method, as well as the coupling techniques, are discussed
in detail. The DEM-LBM is thoroughly validated for typical benchmark cases: the single-phase
Poiseuille flow, the gravitational settling and the drag force on a fixed particle. In order to demonstrate
the potential and applicability of DEM-LBM, three case studies are performed, which include the
inertial migration of dense particle suspensions, the agglomeration of adhesive particle flows in
channel flow and the sedimentation of particles in cavity flow. It is shown that DEM-LBM is a robust
numerical approach for analysing complex particle–fluid flows.

Keywords: particle–fluid flow; discrete element method; lattice Boltzmann method

1. Introduction

Particulate flows are extensively encountered in nature and industrial processes, attracting tremendous
engineering research interests in almost all areas of sciences [1–3], including astrophysics,
chemical engineering, biology, life science and so on. Due to the complex particle–particle interactions and
their interactions with the surrounding media, i.e., gas/liquid environment or electrostatic/magnetic field,
the dynamic behaviour of particulate flow is very complicated. Therefore, it is of significant importance to
understand the particle dynamics, in order to promote relevant manufacture and production processes.

With the rapid development of the modern modelling technique, abundant numerical studies
on the particulate flows have sprung up in recent years. As the name suggests, the particulate
flow can behave like a continuous fluid or a rigid solid. Therefore, studies of particulate flows
can be classified into three categories based on the types of approach: (1) continuum modelling,
which extends the continuum mechanics of single-phase fluid to describe the particle transportation,
leading to a representative population balance method [4,5]; (2) developing the kinetic theory of
particulate flow [6] based on the averaged equations for multi-particle systems, which generalise the
dynamics of particle–particle collision processes; (3) discrete particle modelling, which solves the
particle’s motion individually based on certain interaction laws. The third approach is also classified as
Lagrangian particle method and has many different variations, including the discrete element method
(DEM), dissipative particle dynamics (DPD), molecular dynamics (MD) and Brownian dynamics (BD).
These discrete particle methods differentiate themselves with different particle–particle interaction
laws and their corresponding length and time scales [3]. DEM is widely used for modelling of granular
materials and adhesive particulate flows [7–17], and was first introduced by Cundall and Strack [18] to

ChemEng 2020, 4, 55; doi:10.3390/chemengineering4040055 www.mdpi.com/journal/chemengineering29

ChemEng 2020, 4, 55

study the rock mechanics. In DEM, particles are treated as individual entities, and interact with each
other through contact and non-contact forces. The translational and rotational motions of the particles
are described using the Newton’s second law. The greatest advantage of DEM is that a large amount of
dynamic information, which is almost unattainable experimentally, such as the transient forces and
torques, can be obtained in great detail.

Apart from the particle–particle interaction, the hydrodynamic interaction associated with the
surrounding fluid is also an important issue in the study of particulate flow. Various computational
fluid dynamics (CFD) methods at different scales of time and length are developed to model the
single-phase fluid flow, ranging from discrete models, e.g., the lattice Boltzmann method (LBM) [19–21],
to continuum models, e.g., the direct numerical simulation (DNS) [22], the large eddy simulation
(LES) [23] and the two-fluid model (TFM) [24]. Hence, a large number of hybrid models are developed
for modelling particle–fluid flow [20,25–33]. A comprehensive comparison of various hybrid models
was discussed in the literature [1,34].

Comparing with other conventional CFD approaches, LBM arises in the last two decades and
has become a promising numerical method due to several advantages [19,20]. First, the primary
computation procedure, i.e., the so-called collision operator, is performed locally with information
only from where the computation takes place, facilitating straightforward implementation in a
parallel way with high computational efficiency. Second, the LBM shows significant flexibility in
handling complex boundary conditions, as they are treated with a local bounce-back fashion instead
of the conventional boundary treatment. Third, the lattice grid adopted in LBM is traditionally
orthogonal and smaller than the particle size, providing a high space resolution on the evaluation of
the hydrodynamic interactions. As a result, the LBM was coupled with DEM and widely applied in
analysing a large range of particle–fluid problems, such as particle suspensions [35–38], flow through
porous media [39,40], multicomponent flows [20,41,42], particle-laden turbulent flows [31,43,44] and
magnetohydrodynamics [45].

In this paper, a numerical approach to model complex particle–fluid flow using a coupled
DEM-LBM is introduced. The fundamental equations of DEM and LBM, as well as various
coupling techniques are presented in detail. The validity and accuracy of the numerical approach
are demonstrated with some benchmark tests. Finally, case studies, including the migration,
the agglomeration and the sedimentation of particle suspensions, are presented to illustrate the
potential and applicability of the numerical approach. It should be noted that the interactions between
particles and the surrounding environment, such as electrostatic interactions, liquid bridge effect and
so on, are not within the scope of this work, but can be found in the literature [46–54].

2. Discrete Element Method (DEM)

In DEM, particle motion is solved individually using the Newton’s equation of motion,

m
dUp
dt = G +

∑
F,

I
dΩp

dt =
∑

M,
(1)

where Up and Ωp are the translational and rotational velocities of a particle, respectively. m and I are
the mass and rotational inertia of the particle. G is the gravitational force. F and M represent the
force and torque acting on the particle, which could come from various sources, such as interparticle
collision, hydrodynamic interactions with the fluid, electrostatic interactions with charge and so on.
As DEM was designed to deal with the numerous collision problems between the distinct particles,
the collision forces and torques are the most important aspect. When two particles get in contact with
each other, the collision force and torque can be decomposed as

Fcollision = Fnn + Fsts,
Mcollision = rpFs(n× ts) + Mr(tr × n) + Mtn,

(2)

30

ChemEng 2020, 4, 55

where Fn and Fs denote the contact forces in the normal and tangential direction, respectively. Mr and
Mt are the rolling and twisting resistance torques, respectively. rp represents the particle radius n, ts and
tr are the unit vectors in the normal, tangential and rolling direction at the contact point, respectively.

2.1. Normal Contact Force

The most common model for the normal contact force is the Hertz model [55], which can be
expressed by a non-linear Hook’s law. The Hertz model was validated and widely applied in the contact
of spherical particles with size above millimeters. However, as the particle approaches the micrometer
size range, the adhesion effect due to the van der Waals force must be taken into consideration.
Extensions of the Hertz model, including the well-known Johnson–Kendall–Roberts (JKR) theory [56]
and Derjaguin–Muller–Toporov (DMT) theory [57], were also proposed to describe the contact force in
presence of adhesion.

Let us consider two contacting particles at centroid positions xi and xj with radii rp,i and rp,j,
respectively. The normal overlap δN between these two particles is derived as δN = rp,i + rp,j − |xj− xi|.
Then the normal forces between two particles are given as:

Fne−Hertz = −kNδ1.5
N ,

Fne−JKR = −4FC(â3 − â1.5),
(3)

where kN is normal stiffness coefficient in the Hertz model, â = a/a0 is the normalized contact area
radius and FC represents the critical pull-off force obtained from the JKR theory. In the Hertz model,
the normal stiffness is analytically derived as kN = 4/3E

√
R, where R is the effective particle radius

and E is the effective elastic moduli, defined as:

1
R = 1

rp,i
+ 1

rp, j
,

1
E =

1−σ2
i

Ei
+

1−σ2
j

Ej
,

(4)

with Ei and Ej being elastic moduli and σi and σj being the Poisson’s ratios, respectively. Note that the
contact area radius a, the effective radius R and the normal overlap δN are related to each other via a
simple geometrical relation, a =

√
RδN. In the JKR theory, the particles will keep in contact due to

the presence of van der Waals adhesion even if the external load is zero [56], which gives rise to an
equilibrium contact radius a0,

a0 = (
9πγR2

E
)

1/3

, (5)

where γ is the particle’s surface energy. The critical pull-off force in the JKR theory is then derived as
FC = 3πγR [56]. However, both the Hertz model and the JKR theory are energy conserved, i.e., there is
no energy dissipation during the process of particle collision. To consider the energy dissipation
during a collision, various dissipation mechanisms were proposed, including the viscoelastic response,
plastic deformation as well as the fluid-phase dissipation [58]. For the low-speed impact regime,
the viscoelastic dissipation is dominant. The dissipation force Fnd is approximated with a dashpot
model, which is proportional to the approaching velocity of the particles, i.e.,

Fnd = −ηNvR·n, (6)

where ηN is the normal dissipation coefficient, and vR is the relative velocity at the contact point.

31

ChemEng 2020, 4, 55

2.2. Sliding, Rolling and Twisting Resistance

The tangential contact force results from the relative sliding motion between two particles.
Similar to the normal force, the standard sliding model is approximated by a linear spring-dashpot,

Fs = −kTξT − ηTvs·ts, (7)

where kT is the spring stiffness coefficient in the tangential direction, vs is relative sliding velocity,
ξT =

∫ t
t0

vs(t)·ts dt is the cumulative displacement in the tangential direction and ηT is the sliding
dissipation coefficient. According to the Amonton’s friction law, two contacting particles start to slide
relative to each other when the tangential force reaches a critical value Fs,crit and the dynamic friction
force remains constant as Fs = −Fs,crit. For non-adhesive particles, the critical value is Fs,crit = μs |Fne|,
where μs is sliding friction coefficient. Due to the presence of adhesion, the critical value for adhesive
particles is larger, Fs,crit = μs |Fne + 2FC| [3,58].

The rolling and twisting resistances are similarly postulated in the form:

Mr = −kRξR − ηRvL · tr,
Mt = −kQξQ − ηQΩT,

(8)

where ξR =
∫ t

t0
vL(t) · tr dt and ξQ =

∫ t
t0

ΩT(t)dt are the rolling and twisting displacements, vL=

−R(Ωp,i − Ωp,j) × n and ΩT= (Ωp,i − Ωp,j)· n are the relative rolling and twisting velocity, respectively.
The rolling direction is tr = vL/|vL|. kR, kQ are the rolling and twisting stiffness, respectively, and ηR,
ηQ are the rolling and twisting dissipation coefficients, respectively. Correspondingly, the critical
values for rolling and twisting resistances are given as:

Mr,crit = kRθcritR,
Mt,crit = 3πaFs,crit/16,

(9)

where θcrit is the critical rolling angle in the relative rolling motion between two contacting particles.

3. Lattice Boltzmann Method (LBM)

3.1. Lattice Boltzmann Equation

Fundamentally, the LBM aims to establish a microscopic kinetic model involving essential physics,
so as to make the average physical quantities in macroscopic scale follow the expected equations,
which is completely different from the conventional numerical methods that directly discretise the
macroscopic continuum equations. Hence an important premise lies in that the dynamic behaviour of
a fluid in the macroscopic scale is the outcome from the collective behavior of numerous constitutions
in the microscopic scale [19].

The LBM originated from lattice gas automata, which utilises a discrete lattice and discrete time.
In each lattice, the fluid is described by a packet of microscopic particles, which only move in certain
directions with certain discrete velocities. A number of lattice speed models are available, depending
on the dimension of the problem. For example, the D2Q9 and D3Q19 are frequently used in the 2D
and 3D problems, respectively, as illustrated in Figure 1. The individual particle motion is neglected in
the LBM and a single-particle distribution function fi(x,t) is adopted instead.

32

ChemEng 2020, 4, 55

Figure 1. The D2Q9 (a) and D3Q19 (b) lattice speed model.

The evolution of the particle distribution functions fi(x,t) follows the lattice Boltzmann equation
(LBE) [19] with an external force term,

fi(x + eiΔt, t + Δt) = fi(x, t) + Ωi[fi(x, t)] + FiΔt, (10)

where x is the position of the node, ei is the unit vector of the lattice speed in the direction i as denoted
in Figure 1, Δt is the explicit time step, Fi is the external body force and Ωi[fi(x,t)] is the collision
operator. Equation (10) can be evaluated in two independent processes: collision and streaming,
as shown below:

fi(x, t + Δt) = fi(x, t) + Ωi[fi(x, t)] + FiΔt, (11)

fi(x + eiΔt, t + Δt) = fi(x, t + Δt). (12)

Equation (11) represents the collision process, which updates the distribution functions at position
x from t to t+Δt based on the relaxation operator Ωi[fi(x,t)]. Then the streaming process (Equation (12))
takes place, which simply propagates the updated distribution functions from position x to their
nearest neighbor nodes x + eiΔt according to the lattice speed model. The sequence of collision and
streaming becomes irrelevant after a few time steps.

3.1.1. Single-Relaxation-Time Model

The single-relaxation-time (SRT) model refers to the Bhatnagar-Gross-Krook (BGK) approximation
of the collision operator [59]. The collision operator is simplified to a linear form [59–62]:

Ωi = −Δt
τ
[fi(x, t) − f eq

i (x, t)], (13)

where τ is the dimensionless relaxation parameter and fieq(x,t) is the equilibrium distribution function
that is defined as:

f eq
i = ρωi[1 +

ei · u
c2

s
+

(ei · u)2

2c4
s
− u2

2c2
s
]. (14)

In this equation, the weight coefficientωi depends on the lattice speed model. For example,ω0 = 4/9,
ω1,2,3,4 = 1/9 and ω5,6,7,8 = 1/36 for D2Q9 model, while ω0 = 1/3, ω1, . . . ,6 = 1/18 and ω7, . . . ,18 = 1/36 for
D3Q19 model. cs = 1/

√
3 is the lattice sound speed.

33

ChemEng 2020, 4, 55

The discrete body force term Fi in Equation (10) is given as [63]:

Fi = (1− 1
2τ

)ωi[
ei − u

c2
s

+
(ei · u)

c4
s

ei] · F, (15)

where F represents the macroscopic body force. The macroscopic fluid properties, including the density
ρ, velocity u and pressure p are related to the microscopic particle distribution function, which are
determined as:

ρ =
∑
i

fi,

ρu =
∑
i

fiei +
Δt
2 F,

p = c2
sρ.

(16)

The kinematic viscosity of the fluid ν is related to the relaxation parameter as:

ν =
2τ− 1

6
. (17)

3.1.2. Multi-Relaxation-Time Model

It was reported that the SRT LBE does not show good stability with small relaxation time τ or
with high Reynolds number. To improve the performance of the LBM, the multi-relaxation-time (MRT)
LBE was proposed, which can be expressed as [20]:

fi(x + eiΔt, t + Δt) = fi(x, t) −
∑
α

Ωiα[fα(x, t) − f eq
α (x, t)] + [Si(x, t) − 0.5

∑
α

ΩiαSα(x, t)], (18)

where S is the force term. From Equation (15), we have:

Si = ωi[
ei − u

c2
s

+
(ei · u)

c4
s

ei] · F. (19)

Equation (18) can be transformed into the matrix form as:

f(x + eiΔt, t + Δt) = f(x, t) −M−1Λ[m(x, t) −meq(x, t)] + M−1[I− Λ

2
]S(x, t), (20)

where M is the transformation matrix, m and meq are the moment spaces of the distribution function fi
and its equilibrium distribution fieq, which can be derived as m =Mfi and meq=Mfi

eq, respectively.
The collision matrix Λ is a diagonal matrix in the moment space.

The matrixes M and Λ vary for different speed models. For D2Q9 model, the matrix M is:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

34

ChemEng 2020, 4, 55

The equilibrium distribution functions meq in the moment space are related to that in the velocity
space as follows:

meq = Mf
eq
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
eeq

εeq

jeq
x

qeq
x

jeq
y

qeq
y

peq
xx

peq
xy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
−2ρ+ 3(u2

x + u2
y)

ρ− 3(u2
x + u2

y)

ρux

−ux

ρuy

−uy

u2
x − u2

y
uxuy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

The diagonal matrix Λ is Λ = diag(s1, s2, s3, s4, s5, s6, s7, s8, s9). In order to ensure the mass and
momentum conservation after collision, it is easily derived that s1 = s4 = s6 = 0. s8 and s9 are set
as s8 = s9 = 1/τ in order to reproduce the same viscosity of SRT model [64]. The other relaxation
parameters s2, s3, s5 and s7 can be decided with more flexibility according to the physical model.

For D3Q19 model, the matrix M is:

M =

⎡⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 −1 0 0 1 1 0 −1 −1 0 1 1 0 −1 −1 0
0 −4 0 0 4 0 0 1 1 0 −1 −1 0 1 1 0 −1 −1 0
0 0 1 0 0 −1 0 1 0 1 −1 0 −1 −1 0 1 1 0 −1
0 0 −4 0 0 4 0 1 0 1 −1 0 −1 −1 0 1 1 0 −1
0 0 0 1 0 0 −1 0 1 1 0 −1 −1 0 −1 −1 0 1 1
0 0 0 −4 0 0 4 0 1 1 0 −1 −1 0 −1 −1 0 1 1
0 2 −1 −1 2 −1 −1 1 1 −2 1 1 −2 1 1 −2 1 1 −2
0 −4 2 2 −4 2 2 1 1 −2 1 1 −2 1 1 −2 1 1 −2
0 0 1 −1 0 1 −1 1 −1 0 1 −1 0 1 −1 0 1 −1 0
0 0 −2 2 0 −2 2 1 −1 0 1 −1 0 1 −1 0 1 −1 0
0 0 0 0 0 0 0 1 0 0 1 0 0 −1 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 −1 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 1 0 0 −1 0 0 −1 0
0 0 0 0 0 0 0 1 −1 0 −1 1 0 1 −1 0 −1 1 0
0 0 0 0 0 0 0 −1 0 1 1 0 −1 1 0 1 −1 0 −1
0 0 0 0 0 0 0 0 1 −1 0 −1 1 0 −1 1 0 1 −1

⎤⎥⎥⎦

. (23)

35

ChemEng 2020, 4, 55

The equilibrium distribution functions meq in the moment space is:

meq = Mf
eq
i =

⎡⎢⎢⎣

ρ
−11ρ+ 19ρ(u2

x + u2
y + u2

z)

3ρ− 11
2 ρ(u

2
x + u2

y + u2
z)

ρux

− 2
3ρux

ρuy

− 2
3ρuy

ρuz

− 2
3ρuz

ρ(2u2
x − u2

y − u2
z)

− 1
2ρ(2u2

x − u2
y − u2

z)

ρ(u2
y − u2

z)

− 1
2ρ(u

2
y − u2

z)

ρuxuy

ρuyuz

ρuxuz

0
0
0

⎤⎥⎥⎦

. (24)

The diagonal matrix Λ is Λ = diag(s1, s2, , s18, s19), where s1 = s4 = s6 = s8 = 1.0, s2 = s5 = s7

= s9 = 1.2, s3 = s11 = s13 = 1.4, s10 = s12 = s14 = s15 = s16 = 1/τ, s17 = s18 = s19 = 1.98.

3.2. Boundary Conditions

In the LBM, the conventional velocity and pressure boundary conditions cannot be applied
directly, since these quantities are not primary variables in the LBE. Instead, the boundary conditions
are imposed with the distribution functions. In this section, only the ‘no-slip’ wall and the periodic
boundary conditions are introduced. It should be noted that particles are treated as moving boundaries,
which play important roles in the coupling between LBM and DEM. The interactions between the
moving particles and the fluid will be discussed separately later.

The ‘no-slip’ boundary condition is implemented with the so-called bounce-back rule [65,66].
As shown in Figure 2, if fi is a distribution function entering into the solid stationary wall,
the undetermined distribution function that comes out of the wall is simply a reflection of fi, i.e.,

f−i(x, t + Δt) = f+i (x, t), (25)

where f−i and fi+ denote the distribution functions in the opposite direction of i and after collision,
respectively. This simple bounce-back rule ensures a strict ‘no-slip’ condition at the wall position,
as the tangential velocity is zero. It should be noted that the accuracy of the simple bounce-back rule is
only first order, except that the wall is just in the middle of the link between a solid node and a fluid
node, where the accuracy is second order. However, the bounce-back rule is easy to implement and
can be extended to obstacles with arbitrary shape, which makes the LBM quite suitable for problems
with complex geometries.

36

ChemEng 2020, 4, 55

Figure 2. Schematic of the bounce-back rules and periodic boundary conditions for D2Q9 model.

Periodic boundary conditions are also straightforward to impose in the LBM. As shown in Figure 2,
distribution functions propagating out of the domain stream into the corresponding boundary node at
the opposite boundary in the same direction. Take Figure 2 as an example, the inlet and outlet planes
are periodic. As a result, the distribution functions f 1, f 5 and f 8 at the outlet boundary will stream into
the corresponding node at the inlet, while f 3, f 6 and f 7 at the inlet propagate into the corresponding
node at the outlet.

3.3. Unit Conversion in LBM

In the LBM, the physical parameters in the computation are commonly dimensionless,
which necessitates a unit conversion. In principle, one only needs to determine the conversion
coefficients of three fundamental units, i.e., length, time and mass, and then the conversion coefficients
of all the other physical parameters can be sequentially decided.

Normally, the lattice space Δx, the time step Δt, and the fluid density ρ are set to be one in the
LBM computation. How to perform the unit conversion will be explained using an example of pipe
flow in 3D. Suppose that the pipe size is L × D = 8 mm × 4 mm, where L is the pipe length and D is the
pipe diameter, and water flows through this pipe with an average velocity of V = 0.0125 m/s. First,
set the number of lattice as, for instance, nx × ny × nz = 100 × 50 × 50, which results in a lattice length
of dx = L/nx = D/ny = D/nz = 0.08 mm. Note that the lattice should be square in 2D or cube in 3D,
indicating that the lattice length is identical in every dimension. Then the conversion coefficient of
length is decided by Cl = dx/Δx = 8 × 10−5 m. Second, given that the density of water is ρf = 1000 kg/m3,
the conversion coefficient of density is Cρ = ρf/ρ = 1000 kg/m3. Then the conversion coefficient of mass
is determined by Cm = CρCl

3 = 5.12 × 10−10 kg. For better numerical stability, the relaxation time τ shall
be at least 0.55, implying that the kinematic viscosity ν shall be at least 0.017. Here let us set ν = 0.05.
Given that the kinematic viscosity of water is νwater = 1.0 × 10−6 m2/s, the conversion coefficient of
viscosity is Cν = νwater/ν = 2.0 × 10−5 m2/s. Then the conversion coefficient of time is determined as
Ct = Cl

2/Cν = 3.2 × 10−4 s. So far, the conversion coefficients of the three fundamental units are decided.
Other parameters that need to be nondimensionalized can be converted accordingly. As a summary,
the unit conversion of this pipe flow problem is listed in Table 1.

37

ChemEng 2020, 4, 55

Table 1. Unit conversion of 3D pipe flow.

Physical Parameters Unit Real Value Lattice Value
Conversion
Coefficient

Pipe length (L) m 0.008 100 8.0 × 10−5

Pipe diameter (D) m 0.004 50 8.0 × 10−5

Fluid density (ρf) kg/m3 1000 1 1000
Fluid kinematic viscosity (νf) m2/s 1.0 × 10−6 0.05 2.0 × 10−5

Average fluid velocity (V) m/s 0.0125 0.05 0.025
Pressure drop (ΔP) Pa 0.2 3.2 × 10−3 62.5

Time step (Δt) s 3.2 × 10−4 1 3.2 × 10−4

4. LBM-DEM Coupling

For coupling LBM with DEM, it is of significant importance to properly describe the fluid-solid
interactions. The first step is to establish a lattice discretisation of the solid particle on the lattice
grid. As illustrated in Figure 3, four types of lattice nodes are obtained as: (1) the pure fluid node
without connection to any pure solid node; (2) the pure solid node that is not adjacent to any pure fluid
node; (3) the fluid boundary node that is linked with both pure fluid node and solid boundary node;
and (4) the solid boundary node that is connected with both fluid boundary node and pure solid node.
Obviously, it becomes very easy and straightforward to handle any shaped particles with the discrete
lattice representation. Hence, there was a variety of techniques with different levels of complexity
and accuracy to compute the fluid-solid interaction, including the modified bounce-back (MBB)
scheme [65,66], interpolated bounce-back (IBB) scheme [67–72] and immersed boundary methods
(IBM) [73–81].

Figure 3. The mapping of a circular solid particle on the lattice grid, showing solid boundary nodes
(orange), fluid boundary nodes (blue), internal solid nodes (grey) and pure fluid node (white).

4.1. Modified Bounce-Back Scheme

The MBB scheme was proposed by Ladd [65,66] in order to improve the simple bounce-back
rules to incorporate the influence of moving fluid-solid interfaces. As shown in Figure 3, this method
assumes that the exact solid surface lies halfway between fluid boundary node and solid boundary

38

ChemEng 2020, 4, 55

node, where the bounce-back condition is enforced. The particle is treated as a shell full of fluid.
Therefore, the bounce-back takes place on both side of the fluid-solid interface.

The first step is to estimate the velocity at the fluid-solid interface based on the solid particle’s
velocity, which is given as:

vb = Up + Ωp × (x + 1
2

eiΔt−Xp), (26)

where Xp is centre of the solid particle. Then the undetermined distribution functions at the fluid
boundary node and solid boundary node are computed respectively, according to the modified
bounce-back rule,

f−i(x, t + Δt) = f+i (x, t) − 2ωiρvb · ei,
fi(x + eiΔt, t + Δt) = f+−i(x + eiΔt, t) + 2ωiρvb · ei.

(27)

It can be seen that Equation (27) reduces to the simple bounce-back scheme (Equation (25)) when
vb = 0. Once the bounce-back procedure is accomplished, the hydrodynamic force on the solid particle
at this particular boundary node is calculated with the momentum exchange method,

F f ,−i(x +
1
2

eiΔt, t +
1
2

Δt) = 2[f+i (x, t) − f+−i(x + eiΔt, t) − 2ωiρvb · ei] · ei. (28)

The total hydrodynamic force and torque are computed by summing up the contributions from
every lattice speed direction and boundary node,

F f =
∑
link

∑
i

F f ,−i,

M f =
∑
link

∑
i
(x + 1

2 eiΔt−Xp) × F f ,−i.
(29)

Apparently, the discrete representation of the solid particle surface on the lattice grid is in a
stepwise fashion. It is reported that the accuracy of MBB is of first order only due to the zig-zag
staircases of a curved surface. Large fluctuations of the hydrodynamic interactions are also observed.
Using a sufficiently high lattice resolution could provide much more smooth and accurate force
evaluations, which, however, will lead to a huge increase of the computational cost. To overcome these
drawbacks of MBB, several improved techniques were proposed, which will be introduced below.

4.2. Interpolated Bounce-Back Scheme

To precisely describe the actual boundary of the solid particle, several bounce-back schemes using
the spatial interpolation were also proposed [67–72]. In all these techniques, the relative location of
the exact fluid-solid interface is interpolated with a location parameter q. Hence more accurate and
smoother evaluations of the hydrodynamic force and torque are obtained, which is demonstrated to
maintain the second-order accuracy. Here a double interpolation scheme proposed by Yu et al. [71,72]
is introduced to show how these schemes work. As shown in Figure 4, the undetermined distribution
function is the one coming out of the solid boundary f−i(xf, t + Δt). In most of time, the solid boundary
is not exactly located on a lattice node. Then the relative location of the solid boundary can be described
by a weighting parameter q by means of spatial interpolation,

q =
∣∣∣x f − xb

∣∣∣/∣∣∣x f − xs
∣∣∣, (30)

where xs, xb and xf represent the positions of the solid node, the solid boundary and the first fluid
node next to the solid boundary, respectively. The weighting parameter q varies between 0 and 1.
When q = 0, the solid boundary is exactly located on the nearest fluid node, which is turned into a solid
node. When q = 1, the solid boundary lies just on the nearest solid node. Then the density function at
the temporary location xb that propagates exactly to the solid boundary during the streaming process

39

ChemEng 2020, 4, 55

can be interpolated with the existing density functions fi(xf, t + Δt) and fi(xff, t + Δt), through a first
order form,

fi(xb, t + Δt) = q fi(x f , t) + (1− q) fi(x f f , t). (31)

Next, a bounce-back operation takes place instantaneously at the solid boundary as:

f−i(xb, t + Δt) = fi(xb, t + Δt) − 2ωiρub · ei, (32)

which is the same as the MBB described in Equation (27). In the last step, the unknown density function
f−i(xf, t + Δt) is determined from f−i(xb, t + Δt) and f−i(xff, t + Δt) through a first order interpolation,

f−i(x f , t + Δt) =
1

1 + q
f−i(xb, t + Δt) +

q
1 + q

f−i(x f f , t + Δt). (33)

It should be noted that the interpolation can also be performed with second order form, where the
density function from further fluid node xfff is needed. The force and torque on the solid particle can
be evaluated similarly with a momentum exchange method,

F f =
∑

all x f

∑
i
[f+i (x f , t) + f−i(x f , t + Δt)]ei,

M f =
∑

all x f

∑
i
(xb −Xp) × [f+i (x f , t) + f−i(x f , t + Δt)]ei.

(34)

Figure 4. Schematic of the double interpolation scheme.

4.3. Immersed Moving Boundary Method

The immersed boundary method (IBM) was proposed by Peskin [73,74] and further implemented
in LBM by other researchers [75–80]. In this method, extra moving Lagrangian nodes are introduced to
represent the solid particle shape, which are assumed to be deformable with a large stiffness. The effects
of the immersed particle boundary on the fluid are modelled by restoring forces based on the ‘no-slip’
boundary condition, which tend to keep the particle to its original shape. Then the restoring forces

40

ChemEng 2020, 4, 55

are distributed to their surrounding fluid nodes and considered as the external force terms in the
governing equations. The drawbacks of the IBM include the introduction of additional free parameters,
the problem-sensitive determination of the spring stiffness and the damping constant, as well as the
severely restricted computational time step.

As an alternative, Noble and Torczynski [81] proposed an immersed moving boundary technique
based on the local solid fraction in each lattice cell, which is also known as the partially-solid scheme.
This method not only overcomes the momentum discontinuity of MBB-based techniques and provides
an adequate representation of complex boundaries at relative lower lattice resolutions, but also retains
the prominent advantages of the LBM, i.e., the simple linear collision operator and its locality in
computation. In this method, the lattice Boltzmann equation is modified to include an additional
collision term, which depends on the local volume fraction of solid (see Figure 3 right part),

fi(x + eiΔt, t + Δt) = fi(x, t) − (1− Bn)[
Δt
τ
(fi(x, t) − f eq

i (x, t))] +
∑

s
BsΩs

i + (1− Bn)FiΔt, (35)

where Bn is a total weighting function in each lattice cell, Bs is the weighting function from each solid
particle in the same lattice cell, and Ωi

s is the additional collision term. The total weighting function is
calculated by summing up the weighting function of each solid particle that intersect with the same
lattice cell such that Bn =

∑
s Bs. Each particle’s weighting function is determined by its own solid

fraction and the relaxation parameter as:

Bs(εs, τ) =
εs(τ/Δt− 0.5)

(1− εn) + (τ/Δt− 0.5)
, (36)

where εs is the corresponding particle’s solid fraction and εn is total solid fraction in the same lattice
cell that is the sum of each particle’s contribution, i.e., εn =

∑
s εs. It can be seen that when the solid

fraction εs varies from 0 (a completely fluid cell) to 1 (a completely solid cell), Bs varies from 0 to 1.
Equation (35) returns to the original SRT-LBE for pure fluid when Bs = 0, and returns the new collision
operator Ωs

i plus the distribution from the previous time step when Bs = 1. The new collision operator
is given by

Ωs
i = f−i(x, t) − f eq

−i (ρ, u) + f eq
i (ρ, Up) − fi(x, t). (37)

The total hydrodynamic force and torque acting on the solid particle can be evaluated using the
momentum exchange method with the additional collision operator over all lattice directions at each
node and then over all fluid boundary, solid boundary and internal solid nodes, which are expressed as:

F f = −∑
n

Bs(
∑
i

Ωs
i ei),

T f = −∑
n
[(xn −Xp) × Bs(

∑
i

Ωs
i ei)].

(38)

Note that the implementation of the immersed moving boundary method is straightforward.
Only quantities already available in the lattice cell or easily derived are used. No additional data
storage or organization is needed, which is a crucial advantage over other moving boundary techniques.
However, it is also noticed that the critical step in this method is the calculation of the solid fraction in
each lattice cell, which is primarily a geometry problem. Many methods are proposed to estimate the
solid coverage ratio of a geometry with a square or a cube, including analytically solution, Monte Carlo
sampling technique, cell decomposition method, polygonal approximation, edge-intersection averaging
method, linear approximation and so on [82,83]. In the current LBM-DEM numerical framework,
the analytical solution is used for 2D problems, while for 3D a linear approximation method is adopted,
in order to save computational cost but still retain relatively accurate results.

41

ChemEng 2020, 4, 55

4.4. Time Steps in the LBM-DEM Coupling

The time step coupling is also a crucial issue in the LBM-DEM coupling [31,82]. As we discussed
previously, the time step of LBM is generally set as a dimensionless value of one in the computation.
The real physical time is implicitly determined by computational parameters as well as the unit
conversion scheme. Based on Li and Marshall’s work [3,58], the DEM time step depends on the
interparticle collision time scale,

tc ≈ R(
ρ2

p

E2vR
)

1/5

, (39)

which typically varies around 10−6 ~ 10−9 s. Therefore, it is believed that the LBM time step is generally
larger than the DEM time step. A time step ratio λ is then introduced as ΔtLBM = λΔtDEM, which can
be decided after all the parameters are settled. It should be noted that the time step ratio λ could be
either greater or lower than one. If λ < 1, the critical time step can be simply set as ΔtLBM, and the DEM
time step can be equal to ΔtLBM. When λ > 1, a number of DEM computation steps are performed
within one LBM time step, during which the fluid forces and torques are kept unchanged.

5. Validation

In this section, a few validation studies are performed to demonstrate the accuracy of our
LBM-DEM numerical approach, including single-phase Poiseuille flow, gravitational settling of a
particle, and the drag force on a stationary particle.

5.1. Poiseuille Flow

Single-phase Poiseuille flows in both 2D and 3D are first analysed using the LBM-DEM.
The validation is performed with both SRT and MRT models. As shown in Figure 5, the boundaries
in are periodic, and y-direction are bounded by two ‘no-slip’ walls. A constant pressure gradient is
imposed in the channel in x-direction to drive the flow. The channel size is H × H for the 2D case and
10 × H × H for the 3D case. A few lattice resolutions are selected in the range H = 11 ~ 101 to examine
the convergence of the numerical model. The relaxation parameter is fixed at 0.65. Different channel
Reynolds numbers are achieved by changing the magnitude of the body force. Figures 6 and 7 show
the normalised velocity profiles for 2D and 3D Poiseuille flow, respectively. The L-2 norm calculation
is used to compute the relative error:

relative error =
∑

n

√√√
(U −Utheory)

2

U2
theory

, (40)

where U is the flow velocity obtained from the simulation and Utheory is the analytical solution of the
Poiseuille flow [84]. It can be inferred that the numerical results agree very well with the theoretical
prediction. The accuracy is second order for the 2D flow, while it is slightly lower than second order
for the 3D duct flow.

42

ChemEng 2020, 4, 55

Figure 5. Schematic of single-phase Poiseuille flow in 2D.

Figure 6. (a) Normalised velocity profile for 2D Poiseuille flow with channel size 101 × 101. (b) The
relative error of the fluid velocity as a function of the lattice resolution.

Figure 7. (a) Normalised velocity profile for 3D duct flow with channel size 10 × 51 × 51. The velocity
profile is along the vertical direction in the mid-plane in y-direction. (b) The relative error of the fluid
velocity as a function of the lattice resolution.

43

ChemEng 2020, 4, 55

5.2. Gravitational Settling of a Particle

For gravitational settling of a particle, both 2D and 3D cases are simulated to evaluate the validity
of our numerical approach in a dynamic system. This validation is performed with SRT-LBM along
with the Hertz model in DEM. For the 2D case, the computational setup is identical to that in Wen et al.’s
work [85]. As shown in Figure 8, a cylinder with diameter dp = 0.1 cm is initially located 0.076 cm
away from the left wall of a vertical channel with width 0.4 cm. The fluid density and kinematic
viscosity are 1000 kg/m3 and 1 × 10−6m2/s, respectively. The mass density of the cylinder is 1030 kg/m3.
Therefore, the cylinder will settle under the gravitational force and finally reaches a steady state that
moves along the centreline at a constant velocity. The computational setup in the lattice unit scheme is
as follows. The size of the channel is nx × ny = 121 × 1201 and ‘no-slip’ wall boundaries are imposed
on all the four faces. The cylinder’s diameter and mass density are dp = 30 and ρp = 1.03, respectively.
The dimensionless relaxation parameter is set as 0.6. Note that the IBM is applied in the solid–fluid
coupling in this particular problem.

A detailed comparison between the present numerical results and that obtained by the arbitrary
Lagrangian–Eulerian technique (ALE) [85] is presented in Figure 9, where very good agreement is
reached. Furthermore, the force profiles are quite smooth without any large fluctuations.

Figure 8. Schematic of a single particle settling under gravity.

44

ChemEng 2020, 4, 55

Figure 9. Time-dependent (a) particle trajectory, (b) angular velocity, (c) horizontal velocity, (d) vertical
velocity, (e) horizontal force and (f) vertical force.

For the 3D case, the single particle settling experiment reported by Ten Cate et al. [86] is numerically
reproduced. A spherical particle with diameter dp = 15 mm and density ρp = 1,120 kg/m3 is initially
released from a height h = 120 mm in a cuboid box with a size of 100 × 100 × 160 mm3. The box
is full of silicon oil, and four different types of oil are used in the experiment. The densities and
dynamic viscosities of the silicon oil are ρf = 970, 965, 962, 960 kg/m3 and νf = 373, 212, 113, 58 Pa·s,
respectively. The terminal settling velocity of the particle in the four oils are uter = 0.038, 0.060, 0.091,
0.128 m/s, respectively, which results in four different particle Reynolds number Rep = 1.5, 4.1, 11.6,
31.9, respectively. The computational parameters in the dimensionless lattice unit are given below.
The domain size is 51 × 51 × 81 and the particle diameter is dp = 7.5. The density of the fluid is fixed at
ρf = 1.0, so that the corresponding particle density is ρp = 1.155, 1.161, 1.164, and 1.167 for different
fluids considered, respectively. The relaxation parameter is set as 0.65. Figure 10 shows the time
evolution of particle trajectory and velocity profiles for different Reynolds numbers. It is apparent
that the numerical results are in excellent agreement with the experimental results, which further
demonstrates the validity and accuracy of the present numerical approach.

45

ChemEng 2020, 4, 55

Figure 10. (a) Particle trajectory and (b) velocity profiles as a function of time.

5.3. Drag Force on a Stationary Particle

The classical drag force problem is also simulated to verify the accuracy of the force evaluation in
our LBM-DEM coupling, which is carried out with the SRT-LBM. As depicted in Figure 11, a circular
(spherical) particle is placed in the centre of a rectangular (cuboid) domain and kept stationary.
The domain size is L × H = 50dp × 50dp in 2D and L × H × H = 20dp × 10dp × 10dp in 3D. The inlet
boundary is constant flow with velocity U0 and the outlet is set as constant pressure boundary. All the
other boundaries are set as open boundary (zero gradient). The particle Reynolds number and the
drag coefficient are calculated as

Rep =
U0dp
ν ,

Cd =
8Fd

ρ f U2
0πd2

p
,

(41)

where Fd is the fluid drag force on the particle. Note that both the IBB and IBM are used in the drag
force validation.

Figure 11. Schematic of flow past a stationary particle.

Figure 12 shows the drag coefficient Cd as a function of the particle Reynolds number Rep for both
2D and 3D cases. For the 2D case shown in Figure 12a, the experimental results reported by Tritton
are also superimposed for comparison [87]. It is clear that both the results obtained by IBB and IBM
agree well with the experiments. Second order accuracy of the force evaluation is achieved for IBM,
while the accuracy for IBB is lower than second order but higher than first order. For the 3D case

46

ChemEng 2020, 4, 55

shown in Figure 12a,b widely accepted empirical law of the drag coefficient is introduced to serve as
the theoretical prediction [88]

Cd =
24

Rep
(1 + 0.15Re0.687

p). (42)

We can see that the simulation results agree well with the above theoretical prediction,
which demonstrates the validity and accuracy of our coupled LBM-DEM. Furthermore, it is noticed
that accurate drag coefficients are obtained using both IBB and IBM even with a relatively low size
resolution dp = 6, implying that acceptable accuracy can still be retained when the computational cost
is reduced.

Figure 12. Drag coefficient as a function of particle Reynolds number for (a) 2D and (b) 3D cases.

6. LBM-DEM Applications

In this section, a few numerical examples are presented to demonstrate the capability of LBM-DEM,
which include inertial migration of dense particle suspensions, agglomeration of adhesive particles in
channel flow, and sedimentation of particle suspensions in a cavity flow.

6.1. Inertial Migration of Dense Particle Suspensions

In an experimental study of pipe flow of a dilute suspension consisting of neutrally buoyant
particles, Segré and Silberberg [89,90] first observed that the particle suspensions tend to migrate laterally
and focus in an annulus at radial position r ≈ 0.6R, with R being the pipe radius. This phenomenon
is named as the tubular pinch effect (or the Segré–Silberberg effect). Due to the lack of theoretical
explanation at the time when it was discovered, this interesting phenomenon prompted a great deal of
interest to further explore the underlying mechanism. Since then, many studies were carried out on this
fascinating phenomenon experimentally [91–95], theoretically [96–99] and computationally [100–106].
The lateral focusing of the particle suspensions is found to be closely related to the fluid inertia.
It is well recognised that the lateral migration exists in both 2D and 3D flows, and the equilibrium
position moves closer to the wall as the channel Reynolds number increases, which is successfully
described with the theoretical solution based on the perturbation theory and the asymptotic expansion
method. However, most of the previous works are limited to very dilute suspensions with a particle
concentration lower than 1%. When the particle concentration is increased, whether the lateral focusing
phenomenon still exists remains less explored. Therefore, the coupled LBM-DEM is employed in the
current study to explore this problem.

As shown in Figure 13, let us consider a pressure-driven flow of non-Brownian particle suspensions
in a 2D channel. Periodic boundary conditions are applied in x-direction and the top and bottom
planes in y-direction are set as ‘no-slip’ walls. The particles are neutrally buoyant, i.e., the fluid and the
particle have the same mass density. The particles’ initial positions are randomly generated inside the

47

ChemEng 2020, 4, 55

channel at the beginning of the simulation. Driven by the pressure gradient, the particle suspensions
will transport and migrate to their equilibrium positions. A steady particle–fluid flow is expected after
a sufficient long time of computation. The parameters used in the simulation are as follows. The size
of the channel is L × H = 501 × 101. The particle diameter is dp = 6 and 12. The particle concentration
φ ranges between 1% and 50%. The channel Reynolds number Re0 is tuned in the range 4 ~ 100 by
varying the pressure gradient. Note that the channel Reynolds number refers to the one under a single
phase flow with no particles. The SRT model and the Hertz contact model are used in the LBM and
DEM for this particular problem, respectively.

Figure 13. Schematic of pressure-driven flow of dense particle suspensions.

Figure 14 displays the snapshots of the particle suspension with different channel Reynolds
numbers, where the particle concentration is fixed at φ = 10%. It is observed that only a small part of
the particles undergoes the lateral migration at a relatively small Reynolds number Re0 = 4. As Re0

increases, a complete migration takes place at both Re0 = 40 and Re0 = 100, where all the particles are
focused at a certain lateral position. Furthermore, it is found out that the larger Re0 is, the shorter time
it takes to develop into a full migration. For example, it occurs around t = 5.5 × 104 for Re0 = 40, while it
is much earlier around t = 4 × 104 for Re0 = 100. Figure 15 illustrates the effects of particle concentration
on the particle migration. It is clear that with relatively low particle concentration (φ = 1% and 10%),
the lateral migration is still notable. However, as φ increases to 40%, the migration is dramatically
suppressed and the particle suspensions appear to jam near the wall.

Figure 14. Snapshots of the migration process of particle suspensions with different channel Reynolds
numbers, (a) Re0 = 4, (b) Re0 = 40, and (c) Re0 = 100. The particle diameter is dp = 6 and the concentration
is φ = 10%.

To quantify the influence of the particle concentration, the degree of inertial migration can be
defined as [94],

P f =
∑

PDF(
∣∣∣y∣∣∣ ≥ 1

2
H), (43)

which estimates the total probability distribution function (PDF) of the particles in the upper
and lower quarter of the channel. Since the lateral equilibrium position is around 0.6 according to the
Segré and Silberberg effect, the degree of the migration must be Pf = 1 if all the particles are laterally

48

ChemEng 2020, 4, 55

focused. On the other hand, if the particle suspension remains randomly distributed in the channel,
Pf is expected to be 0.5. Figure 16 shows the variation of the degree of inertial migration with particle
concentration for different dp and Re0. It is observed that Pf equals one for all the Re0 at a low particle
concentration (φ ≤ 5%), while Pf remains around 0.5 ~ 0.6 at φ = 50% for all the Re0, implying a huge
impact of the particle concentration on the lateral migration. A full migration is always accessible
when the particle suspension is not dense, but it is completely suppressed with a very large particle
concentration for the range of Re0 in the present study. However, when φ is between 5% and 50%,
the variation of Pf strongly depends on Re0. With a fixed φ, a larger Re0 leads to a larger Pf, i.e., a higher
degree of lateral migration.

Figure 15. Snapshots of the particle positions with different particle concentrations, (a) φ = 1%, (b) φ =
10%, (c) φ = 40%. The particle diameter is dp = 6 and all the snapshots are captured at the steady state.

Figure 16. The degree of inertial migration Pf as a function of particle concentration for different particle
sizes dp and channel Reynolds numbers Re0. The data was originally reported in [37].

The above discussion reveals that the degree of the migration is determined by the particle
concentration and channel Reynolds number. A dimensionless focusing number was proposed to
characterise the degree of migration [37],

Fc =
Rem

0

φn , (44)

where m = 0.36 and n = 2.33 are obtained from the fitting of simulation data. Figure 17 shows the
degree of migration Pf as a function of the focusing number Fc, where an empirical fitting is given

49

ChemEng 2020, 4, 55

by an exponential equation P f = 1− 0.5× 10−0.0043×(log Fc)
6.51

. It can be seen that the numerical results
coalesce onto a single master curve and three distinct regimes can be identified based on the value
of Fc: a laterally unfocused regime (Fc < 30), a partially migration regime (30 < Fc < 300) and a fully
migration regime (Fc > 300).

Figure 17. The degree of inertial migration as a function of the focusing number. The data was originally
reported in [37].

6.2. Agglomeration of Adhesive Particles in Channel Flow

The inertial focusing introduced in the previous section has prompted a variety of novel
applications in the microfabrication, such as particle filtration, segregation and flow cytometry
in the micro channels [107–109]. An inevitable problem of particle agglomeration due to the cohesive
nature when the size reduces to the micron scale must be taken into consideration. The agglomeration
is ubiquitous in nature and industry, and sometimes will cause unfavourable effects in industrial facility.
For example, the agglomeration of asphaltenes or gas hydrates results in the pipeline blockage in the
oil and gas engineering [110,111]. Therefore, it is worth investigating the fundamental mechanism of
micro-particle agglomeration.

As displayed in Figure 18, a stream of dilute particle suspension flowing through a 3D square
channel is considered. Periodic boundary conditions are imposed at the inlet and outlet, while other
four faces of the channel are set as ‘no-slip’ walls. The flow is driven by a constant pressure gradient.
The particles are neutrally buoyant and adhesive, with initial positions randomly distributed in the
channel. The computational parameters are set as follow. The dimension of the channel is L × H × H =
201 × 61 × 61. By varying the pressure gradient, the channel Reynolds number ranges between 5.4 and
108. The particle size is dp = 5 and the particle concentration is fixed at 1%, corresponding to a particle
number of 110. The strength of the particle adhesion is represented by the surface energy, which is
chosen as 0.075 and 0.0075. The SRT model and the JKR contact theory are used in the LBM and DEM
for this problem, respectively.

50

ChemEng 2020, 4, 55

Figure 18. Schematic of agglomeration of adhesive particles in channel flow.

Figures 19 and 20 display the snapshots of adhesive particle suspensions with different surface
energies γ = 0.075 and γ = 0.0075, respectively. It can be found that large sized agglomerates are
formed with relatively higher surface energy (γ = 0.075). Some particles even stick on the wall due to
strong adhesion. However, when the surface energy is reduced by one order of magnitude (γ = 0.0075),
the size of the agglomerates becomes smaller and the particles appear to focus around a certain
lateral position with Re = 54 and 108 (see Figure 20c,d), which resembles the Segré-Silberberg effect as
discussed in the last section.

Figure 19. Snapshots of adhesive particle suspensions with γ = 0.075 and different Reynolds numbers
(a) Re = 5.4, (b) Re = 21.6, (c) Re = 54 and (d) Re = 108. The left columns are side views and the right
columns are cross-sectional view.

51

ChemEng 2020, 4, 55

Figure 20. Snapshots of adhesive particle suspensions with γ = 0.0075 and different Reynolds numbers
(a) Re = 5.4, (b) Re = 21.6, (c) Re = 54 and (d) Re = 108. The left columns are side views and the right
columns are cross-sectional view.

Figure 21 shows the lateral PDF of the particle suspensions based on the following definition,

f (l) =
N(l, l + Δl)

N
, (45)

where N is the total number of particles in the channel and N(l, l+Δl) is the number of particles in the
square annulus between l and l + Δl. For comparison, the channel flow with non-adhesive particles is
also modelled and the results are included. It can be seen from Figure 21a that a single peak at the
lateral position around 0.6 is observed in the PDF for non-adhesive particles, which moves closer to the
wall as Re increases and is in consistent with the Segré and Silberberg effect. However, the PDFs are
quite distinct for adhesive particles. The single peak distribution is not clearly observed for particles
with γ = 0.075 (see Figure 21b). Moreover, there appears to be a peak close to the wall position, where a
number of particles are found to stick to wall because of the strong adhesion, as indicated by Figure 19.
On the other hand, for much less adhesive particles (γ = 0.0075), the PDFs become similar to those
of non-adhesive particles (see Figure 21c). The average lateral position as a function of Re is further
shown in Figure 22. Note that the relatively larger value of average lateral position for Re = 5.4 is
caused by the statistical effect [38], because the fluid inertia is relatively small to drive the lateral
migration and the particles almost remain randomly distributed in the cross-sectional area. Except for

52

ChemEng 2020, 4, 55

the data for Re = 5.4, it is observed that the average lateral position increases monotonically with the
increase of Re for both non-adhesive and less adhesive particles (γ = 0.0075), which demonstrates a
similar dynamics between non-adhesive and weak adhesive particles. However, for strongly adhesive
particles (γ = 0.075), the monotonic increase of the average lateral position disappears because of the
agglomeration.

Figure 21. Lateral probability distribution functions for different cases, (a) non-adhesive particles,
(b) adhesive particles with γ = 0.075, and (c) adhesive particles with γ = 0.0075.

Figure 22. The average lateral position as a function of Reynolds number.

The agglomeration mechanism for such channel flow can be attributed to the competition between
the interparticle adhesive contact force and the hydrodynamic force. The adhesive force sticks
particles together, which imposes a positive effect on the agglomeration. The hydrodynamic force
exerts two opposite effects on the particle suspensions. First, it induces the particle lateral migration,
which motivates the interparticle collision and facilitates the agglomeration. Secondly, the fluid inertia
also tears particles apart from each other, resulting in the breakup of agglomerates. As a consequence,
a new dimensionless adhesion number Ad is proposed based on the balance of the critical pull-off force
and the drag force [11,12,38],

Ad =
γ

μ f U
, (46)

where μf is the fluid dynamic viscosity and U is the mean fluid velocity. Using the adhesion number,
the degree of the agglomeration can be characterised and represented by the agglomerate ratio that is
defined as the ratio of the number of particles involved in agglomerate to the total particle number.
Figure 23 shows the relationship between the agglomerate ratio and the adhesion number. A monotonic

53

ChemEng 2020, 4, 55

increase of the agglomerate ratio as a function of Ad is observed. After Ad reaches a critical value,
the agglomerate ratio seems to converge to one. Therefore, two different regimes can be identified,
i.e., a partial agglomeration regime where the hydrodynamic force dominates over the adhesive force,
and a complete agglomeration regime where all the particles are involved in agglomerates.

Figure 23. The agglomerate ratio as a function of the adhesion number. The vertical dashed line denotes
the critical value of adhesion number in the present study. The data was originally reported in [38].

6.3. Sedimentation of Particle Suspensions in Cavity Flow

Sedimentation is extensively used in industries to separate particles from fluid or other
particles with different sizes or velocities, such as separating particles and cells in microfluids [112],
dewatering coal slurries [113], and post-treating wastewater [114–116]. Furthermore, sediments are
also physical pollutants in the river, which could have great influence on the ecosystem and
human health [117–120]. Therefore, it is of great importance to study the sedimentation, which is
a very complicated process, due to the complex fluid mechanics involved with the sediment
particles. With LBM-DEM, a numerical investigation is then performed to gain some insights
to the sedimentation problem.

As shown in Figure 24, we consider a sedimentation system composed of a cuboid channel and a
cavity, which is placed in the middle of the channel. The boundaries in x and y directions are periodic,
and all the other faces are set as no-slip walls. The particles are initially generated at random positions
in the main channel (no particles in the cavity). The particle density is larger than the fluid, so that they
can sedimentate into the cavity under the gravity. The size of the main channel is L ×W × H = 321
× 81 × 49. The cavity has the same width as the main channel. The length of the cavity is l = 40 and 80,
while the height is h = 16 and 32, which gives rise to four configurations of the cavity. The channel
Reynolds number, defined as Re = UxH/ν varies between 28.44 and 88.32. The particle diameter is
dp = 6 and the density is in the range 1.1 ~ 2.0. The total number of particles is fixed at 110, which is
equal to an overall concentration less than 1%. The SRT model and the Hertz model are used in the
LBM and DEM for this particular problem, respectively.

54

ChemEng 2020, 4, 55

Figure 24. Schematic of the sedimentation system.

Figure 25 shows the snapshots of the particle suspensions at different time. The particles are
initially located at random positions in the main channel with no particles trapped inside the cavity.
Then the particles settle to the bottom of the channel and flow over the cavity. During the transportation
of the suspensions, some particles fall into the cavity and stay stationary inside, while some other keep
circulating around an orbit in the central vortex inside the cavity. The total number of particles trapped
inside the cavity is evaluated after a sufficiently long time, when the transportation of the particles
reaches a steady state. From Figure 25 the typical trajectories of particle suspensions in the cavity are
analysed, where three distinct dynamic behaviours can be identified: resuspension, deposition and
circulation. Resuspension means that the particles fall into the cavity and then come out due to the
lift force from the fluid. Deposition happens mostly at the rear edge of the cavity, where the particles
deposit to the corner of the cavity and stay motionless. Circulation indicates that the particles are
captured by the central vortex inside the cavity and keeps moving along an orbit in a periodic way.
Both deposition and circulation are treated as the entrapment of a particle.

Figure 25. Snapshots of the particle suspensions for Re = 56.88, h = 32, l = 80 and ρp = 1.5. The time
point for each subplot is t = 0, t = 50,000, t = 200,000 and t = 500,000 from top to bottom, respectively.
The flow field only contains a slice at the mid-plane in y direction. Some particles may be sheltered and
look smaller.

55

ChemEng 2020, 4, 55

Figure 26 shows the trap efficiency η, defined as the ratio of the trapped particle number to the total
particle number, as a function of the particle density for different cavity configurations and Reynolds
numbers. It is clear that as the particle density increases, the trap efficiency increases continuously from
0 to 1. For a fixed Reynolds number, the largest cavity (h = 32, l = 80) has the highest trap efficiency,
while the smallest cavity (h = 16, l = 40) has the lowest trap efficiency. The results of the other two
cavity configurations are in between, which indicates that increasing either length or depth leads to
a higher trap efficiency. Furthermore, for a fixed cavity configuration, an increase in the Reynolds
number results in a decrease in the trap efficiency. With a larger Reynolds number, the particle’s
translational velocity in x direction becomes larger, so that it has less time to enter the cavity in the
vertical direction. Meanwhile, a larger Reynolds number produces a larger lift force. As a consequence,
the particles are less easily trapped in the cavity.

Figure 26. The trap efficiency as a function of particle density for different Reynolds numbers:
(a) Re = 28.44, (b) Re = 56.88, (c) Re = 85.32.

7. Summary

An overview of the coupled discrete element method with the lattice Boltzmann method is
presented together with its applications in solid–liquid flows. The fundamentals of DEM and
LBM, including the contact mechanics based on Hertz model and JKR theory, the lattice Boltzmann
equation with both single-relaxation-time model and multi-relaxation-time model are introduced.
Several solid–fluid interaction models, i.e., the coupling between DEM and LBM, are discussed and
compared in detail. The validity and accuracy of the numerical method are validated for three classical
solid–liquid flow problems, and the results are in good quantitative agreement with those from
experiments and other numerical approaches. Three case studies, including the inertial migration of
particle suspensions, the agglomeration of adhesive particles, and the sedimentation problem, are also
performed to demonstrate the capability of the coupled DEM-LBM to solid–liquid flow problems and
potential engineering applications.

Author Contributions: Conceptualization, C.-Y.W.; formal analysis, W.L.; funding acquisition, C.-Y.W.;
methodology, W.L. and C.-Y.W.; project administration, C.-Y.W.; supervision, C.-Y.W.; validation, W.L.;
writing—original draft, W.L.; writing—review and editing, C.-Y.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Engineering and Physical Sciences Research Council (EPSRC), grant
number No: EP/N033876/1.

Acknowledgments: The authors acknowledge Duo Zhang and Nicolin Govender in the University of Surrey for
their helpful suggestions and fruitful discussion in developing the numerical approach.

Conflicts of Interest: The authors declare no conflict of interest.

56

ChemEng 2020, 4, 55

References

1. Zhu, H.; Zhou, Z.; Yang, R.; Yu, A. Discrete particle simulation of particulate systems:
Theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [CrossRef]

2. Zhu, H.; Zhou, Z.; Yang, R.; Yu, A. Discrete particle simulation of particulate systems: A review of major
applications and findings. Chem. Eng. Sci. 2008, 63, 5728–5770. [CrossRef]

3. Li, S.; Marshall, J.S.; Liu, G.; Yao, Q. Adhesive particulate flow: The discrete-element method and its
application in energy and environmental engineering. Prog. Energy Combust. Sci. 2011, 37, 633–668.
[CrossRef]

4. Hounslow, M.; Ryall, R.L.; Marshall, V.R. A discretized population balance for nucleation, growth,
and aggregation. AIChE J. 1988, 34, 1821–1832. [CrossRef]

5. Lister, J.D.; Smit, D.J.; Hounslow, M. Adjustable discretized population balance for growth and aggregation.
AIChE J. 1995, 41, 591–603. [CrossRef]

6. Gidaspow, D. Multiphase Flow and Fluidization; Elsevier: Amsterdam, The Netherlands, 1994.
7. Zhu, R.; Zhu, W.; Xing, L.; Sun, Q. DEM simulation on particle mixing in dry and wet particles spouted bed.

Powder Technol. 2011, 210, 73–81. [CrossRef]
8. Liu, G.; Li, S.; Yao, Q. A JKR-based dynamic model for the impact of micro-particle with a flat surface.

Powder Technol. 2011, 207, 215–223. [CrossRef]
9. Yang, M.; Li, S.; Yao, Q. Mechanistic studies of initial deposition of fine adhesive particles on a fiber using

discrete-element methods. Powder Technol. 2013, 248, 44–53. [CrossRef]
10. Chen, S.; Li, S.; Yang, M. Sticking/rebound criterion for collisions of small adhesive particles: Effects of

impact parameter and particle size. Powder Technol. 2015, 274, 431–440. [CrossRef]
11. Liu, W.; Li, S.; Baule, A.; Makse, H.A. Adhesive loose packings of small dry particles. Soft Matter 2015, 11,

6492–6498. [CrossRef]
12. Liu, W.; Li, S.; Chen, S. Computer simulation of random loose packings of micro-particles in presence of

adhesion and friction. Powder Technol. 2016, 302, 414–422. [CrossRef]
13. Liu, W.; Jin, Y.; Li, S.; Chen, S.; Makse, H.A. Equation of state for random sphere packing with arbitrary

adhesion and friction. Soft Matter 2017, 13, 421–427. [CrossRef] [PubMed]
14. Liu, W.; Chen, S.; Li, S. Random adhesive loose packings of micron-sized particles under a uniform flow

field. Powder Technol. 2018, 335, 70–76. [CrossRef]
15. Chen, S.; Liu, W.; Li, S. A fast adhesive discrete element method for random packings of fine particles.

Chem. Eng. Sci. 2019, 193, 336–345. [CrossRef]
16. Zhang, H.; Sharma, G.; Wang, Y.; Li, S.; Biswas, P. Numerical modeling of the performance of high flow

DMAs to classify sub-2 nm particles. Aerosol Sci. Technol. 2018, 53, 106–118. [CrossRef]
17. Dong, M.; Li, J.; Shang, Y.; Li, S. Numerical investigation on deposition process of submicron particles in

collision with a single cylindrical fiber. J. Aerosol Sci. 2019, 129, 1–15. [CrossRef]
18. Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29,

47–65. [CrossRef]
19. Chen, S.; Doolen, G.D. Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364.

[CrossRef]
20. Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid Mech. 2010, 42,

439–472. [CrossRef]
21. Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method;

Springer Science and Business Media: Berlin, Germany, 2017; Volume 10, pp. 4–15.
22. Moin, P.; Mahesh, K. Direct Numerical Simulation: A Tool in Turbulence Research. Annu. Rev. Fluid Mech.

1998, 30, 539–578. [CrossRef]
23. Sagaut, P. Large Eddy Simulation for Incompressible Flows; Springer Science and Business Media: Berlin,

Germany, 2006.
24. Ishii, M.; Mishima, K. Two-fluid model and hydrodynamic constitutive relations. Nucl. Eng. Des. 1984, 82,

107–126. [CrossRef]
25. Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed.

Powder Technol. 1993, 77, 79–87. [CrossRef]

57

ChemEng 2020, 4, 55

26. Kuipers, J.; Van Duin, K.; Van Beckum, F.; Van Swaaij, W. A numerical model of gas-fluidized beds.
Chem. Eng. Sci. 1992, 47, 1913–1924. [CrossRef]

27. Kafui, K.; Thornton, C.; Adams, M. Discrete particle-continuum fluid modelling of gas-solid fluidised beds.
Chem. Eng. Sci. 2002, 57, 2395–2410. [CrossRef]

28. Guo, Y.; Kafui, K.D.; Wu, C.-Y.; Thornton, C.; Seville, J.P.K. A coupled DEM/CFD analysis of the effect of air
on powder flow during die filling. AIChE J. 2009, 55, 49–62. [CrossRef]

29. Guo, Y.; Wu, C.-Y.; Kafui, K.; Thornton, C. 3D DEM/CFD analysis of size-induced segregation during die
filling. Powder Technol. 2011, 206, 177–188. [CrossRef]

30. Guo, Y.; Wu, C.-Y.; Thornton, C. Modeling gas-particle two-phase flows with complex and moving boundaries
using DEM-CFD with an immersed boundary method. AIChE J. 2012, 59, 1075–1087. [CrossRef]

31. Feng, Y.T.; Han, K.; Owen, D.R.J. Coupled lattice Boltzmann method and discrete element modelling of
particle transport in turbulent fluid flows: Computational issues. Int. J. Numer. Methods Eng. 2007, 72,
1111–1134. [CrossRef]

32. Strack, O.E.; Cook, B.K. Three-dimensional immersed boundary conditions for moving solids in the
lattice-Boltzmann method. Int. J. Numer. Methods Fluids 2007, 55, 103–125. [CrossRef]

33. van der Hoef, M.A.; Annaland, M.V.S.; Deen, N.; Kuipers, H. Numerical Simulation of Dense Gas-Solid
Fluidized Beds: A Multiscale Modeling Strategy. Annu. Rev. Fluid Mech. 2008, 40, 47–70. [CrossRef]

34. Van Wachem, B.; Schouten, J.C.; Bleek, C.M.V.D.; Krishna, R.; Sinclair, J.L. Comparative analysis of CFD
models of dense gas–solid systems. AIChE J. 2001, 47, 1035–1051. [CrossRef]

35. Ladd, A.J.C.; Verberg, R. Lattice-Boltzmann Simulations of Particle-Fluid Suspensions. J. Stat. Phys. 2001,
104, 1191–1251. [CrossRef]

36. Nguyen, N.-Q.; Ladd, A.J.C. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions.
Phys. Rev. E 2002, 66, 046708. [CrossRef] [PubMed]

37. Liu, W. Analysis of inertial migration of neutrally buoyant particle suspensions in a planar Poiseuille flow
with a coupled lattice Boltzmann method-discrete element method. Phys. Fluids 2019, 31, 063301. [CrossRef]

38. Liu, W.; Wu, C.-Y. Migration and agglomeration of adhesive microparticle suspensions in a pressure-driven
duct flow. AIChE J. 2020, 66, 16974. [CrossRef]

39. Maier, R.S.; Kroll, D.M.; Kutsovsky, Y.E.; Davis, H.T.; Bernard, R.S. Simulation of flow through bead packs
using the lattice Boltzmann method. Phys. Fluids 1998, 10, 60–74. [CrossRef]

40. Guo, Z.; Zhao, T. Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E
2002, 66, 036304. [CrossRef] [PubMed]

41. Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N. A lattice Boltzmann method for incompressible two-phase
flows with large density differences. J. Comput. Phys. 2004, 198, 628–644. [CrossRef]

42. Li, Q.; Luo, K.H.; Kang, Q.; He, Y.; Chen, Q.; Liu, Q. Lattice Boltzmann methods for multiphase flow and
phase-change heat transfer. Prog. Energy Combust. Sci. 2016, 52, 62–105. [CrossRef]

43. Han, Y.; Cundall, P.A. LBM-DEM modeling of fluid-solid interaction in porous media. Int. J. Numer. Anal.
Methods Geomech. 2012, 37, 1391–1407. [CrossRef]

44. Peng, C.; Ayala, O.M.; Wang, L.-P. A direct numerical investigation of two-way interactions in a particle-laden
turbulent channel flow. J. Fluid Mech. 2019, 875, 1096–1144. [CrossRef]

45. Chen, S.; Chen, H.; Martnez, D.; Matthaeus, W. Lattice Boltzmann model for simulation of
magnetohydrodynamics. Phys. Rev. Lett. 1991, 67, 3776–3779. [CrossRef] [PubMed]

46. Pei, C.; Wu, C.-Y.; England, D.; Byard, S.; Berchtold, H.; Adams, M. DEM-CFD modeling of particle systems
with long-range electrostatic interactions. AIChE J. 2015, 61, 1792–1803. [CrossRef]

47. Pei, C.; Wu, C.-Y.; Adams, M.; England, D.; Byard, S.; Berchtold, H. Contact electrification and charge
distribution on elongated particles in a vibrating container. Chem. Eng. Sci. 2015, 125, 238–247. [CrossRef]

48. Pei, C.; Wu, C.-Y.; Adams, M. Numerical analysis of contact electrification of non-spherical particles in a
rotating drum. Powder Technol. 2015, 285, 110–122. [CrossRef]

49. Chen, S.; Li, S.; Liu, W.; Makse, H.A. Effect of long-range repulsive Coulomb interactions on packing structure
of adhesive particles. Soft Matter 2016, 12, 1836–1846. [CrossRef]

50. Chen, S.; Liu, W.; Li, S. Effect of long-range electrostatic repulsion on pore clogging during microfiltration.
Phys. Rev. E 2016, 94, 063108. [CrossRef]

51. Chen, S.; Liu, W.; Li, S. Scaling laws for migrating cloud of low-Reynolds-number particles with Coulomb
repulsion. J. Fluid Mech. 2017, 835, 880–897. [CrossRef]

58

ChemEng 2020, 4, 55

52. Zhu, R.; Li, S.; Yao, Q. Effects of cohesion on the flow patterns of granular materials in spouted beds.
Phys. Rev. E 2013, 87, 022206. [CrossRef]

53. Zhang, H.; Li, S. DEM simulation of wet granular-fluid flows in spouted beds: Numerical studies and
experimental verifications. Powder Technol. 2017, 318, 337–349. [CrossRef]

54. Chen, H.; Liu, W.; Li, S. Deposition of wet microparticles on a fiber: Effects of impact velocity and initial spin.
Powder Technol. 2019, 357, 83–96. [CrossRef]

55. Hertz, H. Ueber die Berührung fester elastischer Körper. J. für die reine und angewandte Mathematik (Crelles J.)
1882, 1882, 156–171. [CrossRef]

56. Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Proc. R. Soc. London.
Ser. A Math. Phys. Sci. 1971, 324, 301–313. [CrossRef]

57. Derjaguin, B.; Muller, V.; Toporov, Y. Effect of contact deformations on the adhesion of particles. J. Colloid
Interface Sci. 1975, 53, 314–326. [CrossRef]

58. Marshall, J.S.; Li, S. Adhesive Particle Flows; Cambridge University Press (CUP): Cambridge, UK, 2014.
59. Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes

in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [CrossRef]
60. Chen, H.; Chen, S.; Matthaeus, W.H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann

method. Phys. Rev. A 1992, 45, R5339–R5342. [CrossRef] [PubMed]
61. Qian, Y.H.; D’Humières, D.; Lallemand, P. Lattice BGK Models for Navier-Stokes Equation. EPL (Europhysics

Lett.) 1992, 17, 479–484. [CrossRef]
62. Wolf-Gladrow, D.A. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction; Springer:

New York, NY, USA, 2004.
63. Guo, Z.; Zheng, C.; Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method.

Phys. Rev. E 2002, 65, 046308. [CrossRef]
64. Lallemand, P.; Luo, L.-S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean

invariance, and stability. Phys. Rev. E 2000, 61, 6546–6562. [CrossRef]
65. Ladd, A.J.C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1.

Theoretical foundation. J. Fluid Mech. 1994, 271, 285. [CrossRef]
66. Ladd, A.J.C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2.

Numerical results. J. Fluid Mech. 1994, 271, 311. [CrossRef]
67. Bouzidi, M.; Firdaouss, M.; Lallemand, P. Momentum transfer of a Boltzmann-lattice fluid with boundaries.

Phys. Fluids 2001, 13, 3452–3459. [CrossRef]
68. Filippova, O.; Hänel, D. Grid Refinement for Lattice-BGK Models. J. Comput. Phys. 1998, 147, 219–228.

[CrossRef]
69. Mei, R.; Luo, L.-S.; Shyy, W. An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method.

J. Comput. Phys. 1999, 155, 307–330. [CrossRef]
70. Mei, R.; Shyy, W.; Yu, D.; Luo, L.-S. Lattice Boltzmann Method for 3-D Flows with Curved Boundary.

J. Comput. Phys. 2000, 161, 680–699. [CrossRef]
71. Yu, D.; Mei, R.; Luo, L.-S.; Shyy, W. Viscous flow computations with the method of lattice Boltzmann equation.

Prog. Aerosp. Sci. 2003, 39, 329–367. [CrossRef]
72. Peng, C.; Teng, Y.; Hwang, B.; Guo, Z.; Wang, L.-P. Implementation issues and benchmarking of lattice

Boltzmann method for moving rigid particle simulations in a viscous flow. Comput. Math. Appl. 2016, 72,
349–374. [CrossRef]

73. Peskin, C.S. Numerical analysis of blood flow in the heart. J. Comput. Phys. 1977, 25, 220–252. [CrossRef]
74. Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [CrossRef]
75. Feng, Z.-G.; Michaelides, E.E. The immersed boundary-lattice Boltzmann method for solving fluid–particles

interaction problems. J. Comput. Phys. 2004, 195, 602–628. [CrossRef]
76. Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate flows.

J. Comput. Phys. 2005, 209, 448–476. [CrossRef]
77. Breugem, W.-P. A second-order accurate immersed boundary method for fully resolved simulations of

particle-laden flows. J. Comput. Phys. 2012, 231, 4469–4498. [CrossRef]
78. Favier, J.; Revell, A.; Pinelli, A. A Lattice Boltzmann–Immersed Boundary method to simulate the fluid

interaction with moving and slender flexible objects. J. Comput. Phys. 2014, 261, 145–161. [CrossRef]

59

ChemEng 2020, 4, 55

79. Valero-Lara, P.; Igual, F.D.; Prieto, M.; Pinelli, A.; Favier, J. Accelerating fluid–solid simulations
(Lattice-Boltzmann & Immersed-Boundary) on heterogeneous architectures. J. Comput. Sci. 2015, 10,
249–261. [CrossRef]

80. Valero-Lara, P.; Pinelli, A.; Prieto, M. Accelerating Solid-fluid Interaction using Lattice-boltzmann and
Immersed Boundary Coupled Simulations on Heterogeneous Platforms. Procedia Comput. Sci. 2014, 29,
50–61. [CrossRef]

81. Noble, D.R.; Torczynski, J.R. A Lattice-Boltzmann Method for Partially Saturated Computational Cells. Int. J.
Mod. Phys. C 1998, 9, 1189–1201. [CrossRef]

82. Owen, D.R.J.; Leonardi, C.R.; Feng, Y. An efficient framework for fluid-structure interaction using the
lattice Boltzmann method and immersed moving boundaries. Int. J. Numer. Methods Eng. 2010, 87, 66–95.
[CrossRef]

83. Jones, B.D.; Williams, J.R. Fast computation of accurate sphere-cube intersection volume. Eng. Comput. 2017,
34, 1204–1216. [CrossRef]

84. Sutera, S.P.; Skalak, R. The history of Poiseuille’s law. Annu. Rev. Fluid Mechan. 1993, 25, 1–20. [CrossRef]
85. Wen, B.; Zhang, C.; Tu, Y.; Wang, C.; Fang, H. Galilean invariant fluid–solid interfacial dynamics in lattice

Boltzmann simulations. J. Comput. Phys. 2014, 266, 161–170. [CrossRef]
86. Cate, A.T.; Nieuwstad, C.H.; Derksen, J.J.; Akker, H.V.D. Particle imaging velocimetry experiments and

lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 2002, 14, 4012–4025.
[CrossRef]

87. Tritton, D.J. Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 1959, 6,
547. [CrossRef]

88. Schiller, L.; Naumann, A. A drag coefficient correlation. Z. des Ver. Deutsch. Ing. 1935, 77, 318–320.
89. Segre, G.; Silberberg, A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of

local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech.
1962, 14, 115–135. [CrossRef]

90. Segre, G.; Silberberg, A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results
and interpretation. J. Fluid Mech. 1962, 14, 136–157. [CrossRef]

91. Han, M.; Kim, C.; Kim, M.; Lee, S. Particle migration in tube flow of suspensions. J. Rheol. 1999, 43, 1157–1174.
[CrossRef]

92. Matas, J.-P.; Morris, J.F.; Guazzelli, É. Inertial migration of rigid spherical particles in Poiseuille flow.
J. Fluid Mech. 2004, 515, 171–195. [CrossRef]

93. Di Carlo, D.; Irimia, D.; Tompkins, R.G.; Toner, M. Continuous inertial focusing, ordering, and separation of
particles in microchannels. Proc. Natl. Acad. Sci. USA 2007, 104, 18892–18897. [CrossRef]

94. Choi, Y.-S.; Seo, K.W.; Lee, S.J. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
Lab. Chip 2011, 11, 460–465. [CrossRef]

95. Seo, K.W.; Kang, Y.J.; Lee, S.J. Lateral migration and focusing of microspheres in a microchannel flow of
viscoelastic fluids. Phys. Fluids 2014, 26, 063301. [CrossRef]

96. Ho, B.P.; Leal, L.G. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech.
1974, 65, 365–400. [CrossRef]

97. Schonberg, J.A.; Hinch, E.J. Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 1989, 203, 517.
[CrossRef]

98. Asmolov, E.S. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds
number. J. Fluid Mech. 1999, 381, 63–87. [CrossRef]

99. Matas, J.-P.; Morris, J.F.; Guazzelli, É. Lateral force on a rigid sphere in large-inertia laminar pipe flow.
J. Fluid Mech. 2009, 621, 59. [CrossRef]

100. Feng, J.J.; Hu, H.H.; Joseph, D.D. Direct simulation of initial value problems for the motion of solid bodies in
a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid Mech. 1994, 277, 271. [CrossRef]

101. Yang, B.H.; Wang, J.; Joseph, D.D.; Hu, H.H.; Pan, T.-W.; Glowinski, R. Migration of a sphere in tube flow.
J. Fluid Mech. 2005, 540, 109. [CrossRef]

102. Shao, X.; Yu, Z.; Sun, B. Inertial migration of spherical particles in circular Poiseuille flow at moderately high
Reynolds numbers. Phys. Fluids 2008, 20, 103307. [CrossRef]

103. Inamuro, T.; Maeba, K.; Ogino, F. Flow between parallel walls containing the lines of neutrally buoyant
circular cylinders. Int. J. Multiph. Flow 2000, 26, 1981–2004. [CrossRef]

60

ChemEng 2020, 4, 55

104. Chun, B.; Ladd, A.J.C. Inertial migration of neutrally buoyant particles in a square duct: An investigation of
multiple equilibrium positions. Phys. Fluids 2006, 18, 31704. [CrossRef]

105. Sun, D.-K.; Bo, Z. Numerical simulation of hydrodynamic focusing of particles in straight channel flows with
the immersed boundary-lattice Boltzmann method. Int. J. Heat Mass Transf. 2015, 80, 139–149. [CrossRef]

106. Hu, J.; Guo, Z. A numerical study on the migration of a neutrally buoyant particle in a Poiseuille flow with
thermal convection. Int. J. Heat Mass Transf. 2017, 108, 2158–2168. [CrossRef]

107. Ookawara, S.; Agrawal, M.; Street, D.; Ogawa, K. Quasi-direct numerical simulation of lift force-induced
particle separation in a curved microchannel by use of a macroscopic particle model. Chem. Eng. Sci. 2007,
62, 2454–2465. [CrossRef]

108. Di Carlo, D. Inertial microfluidics. Lab Chip 2009, 9, 3038. [CrossRef] [PubMed]
109. Ahn, S.W.; Lee, S.S.; Lee, S.J.; Kim, J.M. Microfluidic particle separator utilizing sheathless elasto-inertial

focusing. Chem. Eng. Sci. 2015, 126, 237–243. [CrossRef]
110. Eskin, D.; Ratulowski, J.; Akbarzadeh, K.; Pan, S. Modelling asphaltene deposition in turbulent pipeline

flows. Can. J. Chem. Eng. 2011, 89, 421–441. [CrossRef]
111. Balakin, B.V.; Hoffmann, A.; Kosinski, P. Experimental study and computational fluid dynamics modeling of

deposition of hydrate particles in a pipeline with turbulent water flow. Chem. Eng. Sci. 2011, 66, 755–765.
[CrossRef]

112. Bernate, J.A.; Liu, C.; Lagae, L.; Konstantopoulos, K.; Drazer, G. Vector separation of particles and cells using
an array of slanted open cavities. Lab Chip 2013, 13, 1086–1092. [CrossRef] [PubMed]

113. Davis, R.H.; Acrivos, A. Sedimentation of noncolloidal particles at low Reynolds numbers. Annu. Rev.
Fluid Mechan. 1985, 17, 91–118. [CrossRef]

114. Mahmoud, M.; Tawfik, A.; El-Gohary, F. Use of down-flow hanging sponge (DHS) reactor as a promising
post-treatment system for municipal wastewater. Chem. Eng. J. 2011, 168, 535–543. [CrossRef]

115. Al-Sammarraee, M.; Chan, A.; Salim, S.M.; Mahabaleswar, U.S. Large-eddy simulations of particle
sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part I: Particle settling
performance. Chem. Eng. J. 2009, 152, 307–314. [CrossRef]

116. Samaras, K.; Zouboulis, A.; Karapantsios, T.; Kostoglou, M. A CFD-based simulation study of a large scale
flocculation tank for potable water treatment. Chem. Eng. J. 2010, 162, 208–216. [CrossRef]

117. Black, K.S.; Tolhurst, T.J.; Paterson, D.M.; Hagerthey, S.E. Working with Natural Cohesive Sediments.
J. Hydraul. Eng. 2002, 128, 2–8. [CrossRef]

118. Vignati, D.A.L.; Pardos, M.; Diserens, J.; Ugazio, G.; Thomas, R.; Dominik, J. Characterisation of bed
sediments and suspension of the river Po (Italy) during normal and high flow conditions. Water Res. 2003,
37, 2847–2864. [CrossRef]

119. Walker, S.; Narbaitz, R.M. Hollow fiber ultrafiltration of Ottawa River water: Floatation versus sedimentation
pre-treatment. Chem. Eng. J. 2016, 288, 228–237. [CrossRef]

120. Su, S.; Xiao, R.; Mi, X.; Xu, X.; Zhang, Z.; Wu, J. Spatial determinants of hazardous chemicals in surface water
of Qiantang River, China. Ecol. Indic. 2013, 24, 375–381. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

61

chemengineering

Article

Mass Spring Models of Amorphous Solids

Maciej Kot

��������	
�������

Citation: Kot, M. Mass Spring Models

of Amorphous Solids. ChemEng 2021,

5, 3. https://doi.org/10.3390/

chemengineering5010003

Received: 4 August 2020

Accepted: 4 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Old Technologies sp. z o.o., Kombatantów 11, 23-400 Biłgoraj, Poland; eustachy@gmail.com

Abstract: In this paper we analyse static properties of mass spring models (MSMs) with the focus of
modelling non crystalline materials, and explore basic improvements, which can be made to MSMs
with disordered point placement. Presented techniques address the problem of high variance of
MSM properties which occur due to randomised nature of point distribution. The focus is placed on
tuning spring parameters in a way which would compensate for local non-uniformity of point and
spring density. We demonstrate that a simple force balancing algorithm can improve properties of
the MSM on a global scale, while a more detailed stress distribution analysis is needed to achieve
local scale improvements. Considered MSMs are three dimensional.

Keywords: mass spring model; soft body deformation; physically based modelling

1. Introduction

Mass spring models are used for the purpose of simulating elastic objects in various
fields. Their potential applications include computer games, animations, virtual reality
environments as well as engineering of structures or materials in which deformation under
stress is considered, crack propagation studies or human tissue simulations. Related fields
range from ultramicroscopy to astrophysics [1–6]. Specific needs of specific application
may vary, but the general theory of how mass spring models (MSM) deform concerns all
of them.

We distinguish two broad classes of mass-spring networks—crystal (lattice) based
and disordered. In crystal based networks, mass points are placed on a periodic lattice
and mechanical properties of such networks can be expressed with analytical formulas.
This allows for more precise analysis and description of their behaviour. In disordered
networks, on the other hand, the mass placement rules are relaxed and do not have to
follow any regular order (Figure 1). The downside of such models is reduced accuracy
and increased difficulty of estimating their mechanical properties [7]. Consequently, lattice
based networks are usually preferred over disordered ones and are even used to model
materials, which are known not to be crystals.

Figure 1. Cubic lattice and disordered mass placement.

ChemEng 2021, 5, 3. https://doi.org/10.3390/chemengineering5010003 https://www.mdpi.com/journal/chemengineering

63

ChemEng 2021, 5, 3

For numerous applications this is not a problem, however, there is a danger that in
certain situations the material may inherit some unexpected properties of the periodic
network and exhibit unintended behaviours. An example is the crack propagation problem,
where geometry of the network may influence the observed crack patterns considerably.
If the numerical model has a regular, lattice-like topology which determines the potential
crack placement, it creates “easy propagation planes” for cracks (whether it is based on
MSM or FEM, or some other modelling technique). In such models cracks tend to form
and propagate along lattice dependent directions and resulting patterns may reflect lattice
properties instead of material ones (Figure 2). In such cases it is difficult to asses, if the
obtained results follow from the mathematical model, or if they are only artefacts of the
numerical representation. For example, in a model with cubic lattice topology a curved
crack may appear as two straight segments approaching each other at 45 degrees, or worse,
the crack may not bend at all, if breaking of subsequent segments influences tensions
within the system.

Some attempts have been made to address these problems, such as Chen et al. [8],
where introduction of non-local interactions into the model is shown to reduce negative
effects of a lattice topology. Such solutions may mitigate most apparent artefacts in cer-
tain situations, however they do not eliminate the problem completely. A class of conditions
for which such methods are unlikely to work involves situations where cracking is induced
by a shrinkage front progressing through a material, such as in the case of drying or cooling
materials [9–13]. For example if a cooling front is advancing through solidifying lava in
presence of water, the problem has a translational symmetry. Cracks which appear at the
top, allow for the water to be in contact with the top of the front, keeping the temperature
at 100 ◦C, while the bottom of the front is in contact with non-solidified lava at an approxi-
mately constant temperature TL. The front itself is expected to have a linear gradient of
temperature between these two values [14]. Modelling such process with lattice-based
networks will result with exactly the same conditions at each cracking step, and since the
tip of the crack can follow only discretised paths, it may never turn if the incentive to turn
is too weak.

Figure 2. Example crack patterns observed on cubic lattice and disordered networks.

In such situations it may be beneficial to use disordered MSMs instead of lattice-based
ones. As mentioned, the downside of such models is the reduced accuracy when compared
to lattice-based MSMs, which in turn may cause discrepancies between modelled and
theoretical properties of the material e.g., such as reported in [15]. In this work we place
focus on disordered MSMs.

Mass spring models studied in this work are based on [7,16] and the reader is en-
couraged to refer to these papers for a more detailed introduction. We achieve varying
values of Poisson’s ratio ν in our models, by introducing a force dissipation mechanism.
This technique offers a considerable simplicity in terms of implementation as well as low
conceptual and computational complexity, when compared to alternative methods capable
of achieving full spectrum of ν. A comprehensive review of other MSM-like techniques
can be found in [17].

In the following sections we show how to formalise the force dissipation mechanism
proposed in [16], with a focus on ease of implementation. We introduce a new pair of

64

ChemEng 2021, 5, 3

elastic constants for the material, which translate into simple properties of springs and
nodes of the network. We also demonstrate how to mitigate the accuracy problems of
disordered MSMs by adjusting stiffness coefficients of the springs. Presented techniques
allow to improve both global and local behaviour of disordered mass-spring networks.

It should be noted, that we investigate only the static properties of MSMs. We do
not address here the question of how these systems evolve over time or what are the
most efficient numerical schemes to track their dynamics. Efficient ways of simulating the
dynamics can be found e.g., in [18,19].

2. Elastic Moduli

In linear elasticity, the relation between tensions and deformations of a continuous
medium is linear. This can be expressed in general form by:

σij = Λijklεkl , (1)

where σ̂ denotes the stress and ε̂ the strain tensor; Λ̂ is a tensor of elastic constants.
Components of Λ̂ are tied together by various relations which follow from symmetry of σ̂
and ε̂. In this paper we discuss homogeneous isotropic media, which further restricts the
values of Λijkl .

In a medium which behaves like fluid or gas, in an equilibrium state, all the “tensions”
are distributed equally in all directions, that is σij = −δij p, where p denotes pressure
(for fluids or gasses we should not be using quantities like stress or strain, however the
purpose here is only to highlight analogies in the description of various media, in situations,
where it is applicable to do so; same comment applies to E and ν below). More precisely
σij = −δijdp if we consider a small deformation from a reference configuration, so that:

K = −V
dp
dV

= − dp
εkk

,

εij = −δij
dp
KN

,

σij = δijεkkK,

Λijkl = Kδijδkl

(2)

where K is a bulk modulus, V volume and N is the number of dimensions of the space.
In this case Lamé parameters are equal λ = K, μ = 0, Young’s modulus E = 0 and Poisson’s
ratio ν = 1

N−1 . One realisation of such a medium is a disordered collection of particles,
which collide with each other, bouncing off randomly, so that there is no way to induce a
momentum flow/surface pressure higher in one direction than in others. We will say, that
the interactions which lead to such relations, are of a completely dispersive nature.

Let us now take our ensemble of particles and impose fixed relative positions on them,
so that deformations are properly expressed by the strain tensor. We will assume here, that
a change in the distance r between a pair of particles gives rise to a force (acting between
them) which can be represented by a central potential V(r). In such setup there is no way
to displace a chosen particle and induce tension in only one given direction. If we move a
particle by dl along x axis, y components of the distances to its neighbours will be affected
as well. This is a geometrical property of euclidian space and it gives rise to the elastic
moduli tensor of the from [7,17,20]:

Λijkl = μ(δijδkl + δikδjl + δilδjk) (3)

There is, similarly as in the case of gas/fluid, only one elastic constant here, however,
this time bulk modulus depends on the connectivity, which follows from the dimensionality
(the higher the dimension, the more particles are present in the immediate neighbourhood).
It is given by K = μ(1 + 2

N). Similarly E = 2μ N+2
N+1 and ν = 1

N+1 . We also have λ = μ. This
one elastic constant corresponds to direct interactions.

65

ChemEng 2021, 5, 3

There exist materials with these properties, an example of which is a diamond, how-
ever this model is too simplistic to properly describe elastic solids in general, as it results in
only one degree of freedom, corresponding to a single elastic constant, while real materials
are characterised by two.

Possible solutions, which allow to achieve two degrees of freedom, include introduc-
tion of angular springs or beams into the model, usage of non central forces or introduction
of a volume change component into the potential energy [17,21–25] (some of them limited
to very specific lattice topologies). However, a particularly simple way of extending this
model, which works both with lattice based networks as well as disordered ones, is to allow
for the force to be partially dispersed, so that all the interactions become superpositions
between direct and dispersive forces [16].

F̄ = F̄μ + F̄∗, (4)

where F̄μ denotes the direct, and F̄∗ dispersive component of the force. The resulting elastic
body then becomes a superposition between fluid and diamond like materials [16,17,26].

The reasoning behind this is, that direct interactions are in essence interactions by
means of idealised classical Newtonian force, which acts across time and space, instantly,
without accounting for relative velocities or other possible characteristics of the bodies
involved in the problem, such as their shape, which could potentially influence the net
effect of one body acting on another from a distance (There is plenty of evidence suggesting
that the real character of the interaction on a distance depends on factors other than just
relative position of the bodies in question, the prime example of which is electrodynamics,
where the presence of relative velocity gives rise to a magnetic force).

If we take:

σij = μδijεkk + 2μεij + Bδijεkk, B = λ − μ

Q =
B

μ(1 + 2
N)

,
(5)

then Q denotes the ratio between dissipative forces and the direct ones, with its values
spanning from −1 to infinity. F̄μ ∼ μ, and F̄∗ ∼ μQ. Other elastic constants become:

K = B(1 +
1
Q
),

E =
B
Q

2N2(Q + 1)
(N − 1)(N + 2)(Q + 1) + 2

ν =
(1 + 2

N)Q + 1

(N − 1)(1 + 2
N)Q + N + 1

.

(6)

In practice, when implementing a mass spring model for the representation of an
elastic material, it may be more convenient to introduce yet another pair of constants.

C = μ + μ|Q|, (7)

D =
Q

1 + |Q| . (8)

C now can be interpreted as the total amount of interaction potential (e.g., a density of
interaction carriers between two particles). The dissipative part is given by C · D, and the
direct one by C · (1 − |D|). D is the dispersion fraction with values between −0.5 and 1.
With this description we avoid the singularity in Q around the ν = 0.5 point and allow for
expressing possible dynamic differences between media with K = 0, but varying C (the
aspects of MSMs not explicitly addressed in this work). Other elastic constants become:

μ = C(1 − |D|) (9)

66

ChemEng 2021, 5, 3

λ = C((1 +
2
N
)D − |D|+ 1) (10)

K = C(1 +
2
N
)(D − |D|+ 1) (11)

ν =
(1 + 2

N)D + 1 − |D|
(N − 1)(1 + 2

N)D + (N + 1)(1 − |D|) (12)

E = 2μ
Nλ + 2μ

(N − 1)λ + 2μ
(13)

A few examples of the decomposition of the interactions into dissipative and direct
parts are illustrated in the Figure 3 (with E = const). The first extreme, ν = 0.49, corre-
sponds to D ≈ 1, where almost all the forces are dispersed, making the material fluid-like
(ν = 0.5 in 3D means no change in volume under unidirectional compression; the limit
value of ν = 0.5 is unstable). The second extreme, ν = −0.99 has D ≈ −0.5 (ν = −1
once again is an unstable limit), which means that half of the compressing force acts in a
dispersive manner, but with a “reversed sign”. In such regime K = 0 and the material can
be uniformly compressed without changing its elastic energy. As we can see, the unidi-
rectional compression gives rise to considerably high forces, both direct and dispersive,
which cancel out each other almost perfectly in the resulting concave shape. The ν = 0.25
has no dispersive forces at all and for ν = 0, we have D = −3/8.

Figure 3. A cube compressed in x direction by 10% (x-borders frozen). First row ν = 0.49, second
ν = 0.25, third ν = 0, fourth ν = −0.99. First column: total force on springs, second: direct
component, third: dispersive component. Red colour indicates expansive force, blue compressive.

3. Mass Spring Models

Mass spring models represent elastic solids with discrete points connected by springs.
As mentioned in Section 1, we distinguish two broad classes here—a regular crystal-like
models and disordered ones [7]. In both cases, elastic constants of the material follow from
spring coefficients. As elucidated in the previous section, if classical, direct force springs are

67

ChemEng 2021, 5, 3

used, the value of Poisson’s ratio for three dimensional isotropic and homogeneous models
is fixed and equal to 1

4 . The relation between bulk modulus K and spring parameters is
given by:

K =
5
3

μ =
1

9V ∑
i

kiL2
i , (14)

where Li and ki denote the length of i-th spring and its stiffness coefficient. V is the volume
of the object and the sum is taken over all springs inside this volume.

In order to model materials with other values of Poisson’s ratio, we can introduce the
force dissipation mechanism discussed in previous sections with the C modulus obeying:

5
3

C =
1

9V ∑
i

kiL2
i , (15)

where the classical stiffness coefficient of a spring is now κi = ki(1 − |D|). And the force
propagation follows the algorithm [16]:

For each node:

• Compute forces from springs Fi = −kiΔLi.
• Apply Fμ

i = (1 − |D|)Fi as a regular force
• Additionally accumulate 0.5DFiLi as Jacc.

In the second pass:

• Redistribute the accumulated force as
F∗ = Jacc/(Lib)
to all the springs connected with the node (by applying it on both nodes the spring
connects), where b denotes the number of these springs

Estimates given by Equations (14) and (15) can be applied to any mass spring network,
however the more homogeneous and isotropic the network is, the better it will approximate
elastic properties of a given material.

4. Accuracy of Random MSM Models

In this study we consider MSM networks with randomly generated points connected
by springs with their nearest neighbours. The network topology is characterised by two
parameters—first, minL, gives a minimal allowed distance between any pair of MSM
nodes; second, maxL, is the range within which spring connections are formed (any two
nodes which are less than maxL apart get connected by a spring) [7]. Please note, that
the random point generation mechanism described in [7] is flawed. The article suggests
a performance improvement for the implementation, which advocates a usage of a small
spherical brush-like window traveling through the material in order to fill it with random
points. The performance improvement for point collision calculation is real, however the
“window” should be moved after each point addition, in contrast to a procedure which fills
the window region fully first, before advancing to the next region of the material. The latter
may introduce a non-homogeneity at the window borders. This was not stated clearly in
the original article.

For such MSMs, our previous experiments show, that as long as the average number
of springs attached to one node is sufficiently high, Equations (12) and (14) give the elastic
properties of the network in bulk with a reasonable accuracy. The values of Poisson’s
ratio for such models are very close to theoretical predictions (observed discrepancies
were in many cases of magnitude of measurement errors) and the values of E diverge
from theoretical by no more than 10% [7,16]. Such accuracy may be satisfactory for many
applications, but there is certainly a room for improvement.

Currently we will focus not only on bulk properties, but also investigate how MSMs
behave locally, on a scale of internode distances. We perform a simple test, in which we
consider a model of a cube 10a0 × 10a0 × 10a0, that undergoes compression (expansion)
uniformly in all directions and observe how the MSM reacts. The following setup was

68

ChemEng 2021, 5, 3

used for this test. The elastic constants of the material were set to K = 100 k0
a0

and ν = 0.25
(this means D = 0, which makes the theoretical analysis simpler. Materials with D �= 0
are expected to inherit the same properties here, which was confirmed by additional tests
afterwards). The material was modelled with a random MSM with minL = 0.92 · 0.5a0 and
maxL = 1.77 · 0.5a0, which gives around 6700 nodes, 55,000 springs and approximately
〈S〉 = 18 springs connected to one node inside of the material. All springs were assigned
the same spring constant k[k0] calculated with Equation (14). The cube was expanded
uniformly in all directions by 1% (We will use expansion and compression interchangeably
in the rest of the article when discussing the phenomenon analysed in this experiment;
for technical reasons expansion is easier to perform). In such setup the values of diagonal
components of the strain tensor should be equal to 0.01 and corresponding diagonal
elements of the stress tensor should be equal to 3 k0

a0
(with a0 being the unit of length and k0

the unit of force).
In our numerical experiments we measure the stress inside of MSM according to the

procedure proposed by Hardy [27,28]. It estimates the stress by measuring the tension
inside a probe sphere placed in the point of interest. The tension in each spring in the
surroundings of the point is weighted by a bond function. If only a fraction of the spring
is contained within the probe sphere, the corresponding fraction of the tension is taken
into account:

σ̂ =
1
2

N

∑
α=1

N

∑
β �=α

x̄αβ ⊗ F̄αβBαβ(x̄), (16)

where:
xαβ—distance between nodes α and β
F̄ab—force acting through the spring ab
Bαβ—bond value

In order to calculate the bond value, we associate an influence sphere with each
spring—the center of the sphere is placed in the middle of the spring, and its radius is
equal to half of the length of the spring. Then the bond value is calculated as a fraction of
the volume of that sphere, intersecting with a probing region. This is a slight modification
to the original method, which measured intersections between raw springs and a probing
region. Our experiments shown that calculating intersections with three dimensional
spheres surrounding the springs reduces noice and allows for more localised measurements
(smaller probe regions).

Experiments presented in this article are using spherical probing region with the
radius 1.5〈L〉, where 〈L〉 denotes the average length of a spring in MSM.

The test consists of two steps. First we scale the cube uniformly, mimicking the perfect
uniform deformation, then we let the MSM relax (holding only borders in place). In both
stages we measure stress and strain present inside of the cube. In a perfect model the
relaxation phase should not lead to any additional displacements.

As an example the ε22 strain tensor component and the σ22 stress tensor component
measured in this experiment are presented on Figures 4 and 5. The character of discrep-
ancies in other tensor components is similar. The measurements were taken along the
line in X direction in the middle of the cube, with regions in close proximity to the border
omitted (to avoid various problems with stress measurements near the border). Standard
deviation from theoretical value of the final (relaxed) stress is denoted by Δt, and the
standard deviation from the average value by Δ. Standard deviation between the stress in
compressed (scaled) state σs and the stress in relaxed state σr is denoted by Δr.

Δ =

√
1
M ∑ (A − 〈A〉)2, (17)

Δt =

√
1
M ∑ (A − A0)2, (18)

69

ChemEng 2021, 5, 3

Δr =

√
1
M ∑ (σr − σs)2, (19)

where A denotes measured, 〈A〉 average and A0 theoretical value of a strain or stress
component; M is a number of measurements.

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

-4 -3 -2 -1 0 1 2 3 4

ε22 const k Δt=0.0024

x [a0]

Figure 4. The strain component ε22 in a uniformly compressed solid modeled with mass spring
models (MSM) with constant k, same for all springs. Dotted lines represent theoretical values. Solid
lines indicate the strain after material has relaxed to the equilibrium compressed state.

 2

 2.5

 3

 3.5

 4

-4 -3 -2 -1 0 1 2 3 4

σ22 const k Δ=0.21
Δt=0.25
Δr=0.43

x [a0]

Figure 5. Same as Figure 4, but for σ22[
k0
a0
]. Dotted lines represent stress in uniformly compressed

material. Solid lines indicate stress after the material has relaxed to its new equilibrium state.

As we can see, the plotted tensor components average out to match theoretical pre-
dictions reasonably well. Local divergences, however, are high. The root cause of this
behaviour is that the random MSM achieves isotropy statistically in bulk, but is not isotropic
on singular nodes. To understand what exactly we mean by that, let us look at a simplified,
one dimensional example from Figure 6. In disordered MSMs lengths of the springs are not
equal. In uniform compression ΔL/L0 = ε and if all the springs have the same k, the force
acting on a spring is FA = −kLAε, and as a result springs do not compress by the same
degree under a constant pressure. If they did, the red coloured node from Figure 6 would
experience non-zero net force and would move. In 3D networks, additionally, the number
of springs facing each direction may differ, which further influences local isotropy.

Figure 6. An MSM node with springs of different lengths connected to it.

These are the reasons for local discrepancies in deformation as well as Δr for stress
in the material from Figures 4 and 5. Forces on the nodes do not balance to zero when
the springs get compressed by the same degree. This also affects the estimation of C
(and consequently K and E) from Equations (14) and (15). These equations measure the
energy needed to compress material uniformly, but in this case the energy is lower, and the
corresponding K is lower as well. The values of σ22 average to the desired 3 k0

a0
when the

70

ChemEng 2021, 5, 3

MSM is scaled uniformly (indicated by dotted line on the Figure 5), however after the
relaxation this value drops to around 2.8 k0

a0
.

5. MSM Tuning

Our goal is to adjust stiffness coefficients for springs in such way, that in an MSM
subjected to uniform compression (realized by simple scaling):

(a) forces acting on inner MSM nodes sum to zero,
(b) stress is isotropic.

Achieving (a) would reduce both, the variations of strain, and the change in stress
which occurs when a scaled model relaxes (Δr), and in consequence would allow for a
better estimation of the actual K in bulk. Achieving (b) would reduce the variations of
stress. It should be noted, that condition (a) does not apply to the nodes which lie on the
border of the MSM, where forces will sum to a value that counteracts the outside pressure.
To distinguish which nodes are “inner”, and which lie on the border, for each node, we
measure the intersection between modelled object and a sphere centered on the node,
with a radius equal to maxL. If the whole sphere intersects we treat the node as inner.
Otherwise we assume it lies on the border.

To give some notion about how well (a) holds for a chosen MSM, we introduce the
following measure, which we call kL-score:

SkL =
1
N ∑

n

∣∣∣∣ ∑b kb L̄b

∑b kb|L̄b|
∣∣∣∣, (20)

where the inner sums indexed by b are taken over all springs connected to a node n. Outer
sum is taken over all the nodes, the total number of nodes is N, and L̄b is the vector between
nodes connected by a spring b; |x̄| is the length of a vector x̄. The lower the value of SkL is,
the closer to zero is the sum of forces acting on an MSM node (the lower the better). Such
inner kl-score of the model from Figures 4 and 5 is equal SkL = 0.11.

5.1. Constant kL

Since we have identified that in uniform compression the force exerted by a spring
equals F = −kLε, our first attempt at improving accuracy of random MSMs could be by
setting the stiffness coefficients of the springs in such way that kL = const. This would
certainly help in 1-d case from Figure 6, however for three dimensional MSMs effects
of such modification should be rather limited. In 3D the number of springs facing each
direction is of bigger importance than differences in their lengths.

Setting kL = const does however improve the MSM slightly with SkL dropping to 0.091
and divergences from Figures 4 and 5 becoming: Δtε22 = 0.0023, Δtσ22 = 0.17 Δrσ22 = 0.4.

This actually results, right away, in improvement for the estimation of the bulk value
of K by a few percent (more results in following sections).

5.2. kL-Tuning

As described in previous sections, the source of divergences in strain within MSM are
unbalanced forces which appear during uniform compression. They cause the nodes to
move and springs relax to new equilibrium lengths.

Our first goal is to construct an MSM in which the unbalanced forces do not appear.
It can be achieved in a number of ways, one of which is simply by solving as a set of
linear equations for stiffness coefficients ki. As the number of springs is an order of
magnitude larger than the number of nodes, this may turn out to be problematic (but not
impossible) for large systems, unless we have a whole computational cluster at our disposal.
An alternative way, is to use the original MSM (with either k = const or kL = const) and
follow the same relaxation path which our MSM from Figure 5 traveled when reaching the
equilibrium state. If we consider a simple time integrator (e.g., Euler or Verlet scheme) its
basic steps are:

71

ChemEng 2021, 5, 3

• compute forces
• update velocities
• update positions

the “update positions” step will result in changes in lengths of springs and consequently
in changes of forces exerted by these springs. We can achieve the same change in forces
by changing stiffness coefficients of the springs ki instead of moving the nodes. Such
algorithm (with damping) will find an MSM with SkL ≈ 0.

This is the approach we use, however in our case we skip the “update velocities” step
and modify spring coefficients directly, increasing or decreasing their value depending on
the magnitude of the projection of the force vector onto the direction of the spring. This
is analogous to a simulation of an overdamped movement and basically is a variation of
steepest descent minimisation procedure. The tuning procedure starts by artificially chang-
ing natural lengths of all springs by the same degree and then following with a number of
minimisation steps. In our implementation we use L−L0

L0
= ε = 1%. Additionally appropri-

ate border conditions need to be set, similarly as it was done in compression/expansion
experiment, where borders were frozen in place. This basically means that the relaxation
should only be applied to inner nodes. Nodes that lie near the border have by definition
non-isotropic spring connections and achieving SkL = 0 is not even possible for them.

Each iteration of the algorithm reduces SkL and increases the MSM quality. We stop
when a certain value of SkL is reached (0.0003), or the progress becomes too slow (max
relative change of k smaller than 0.002).

Additionally, we place a restriction on the maximal allowed change of k for each
spring to 50% of its original value. This way we explore only the set of solutions close to
our original choice of k, and avoid degenerate solutions with negative k. In the last step we
restore natural lengths of springs to their original values.

The values of ε22 and σ22 for the resulting MSM of the cube test are presented on
Figures 7 and 8. The divergence in strain is now practically zero and Δr is two orders of
magnitude smaller than for k = const. The profile of stress in this case is exactly the same
as the relaxed profile from k-const model (Figure 5), but shifted towards desired value of
3 k0

a0
. This means that we have managed to improve the estimate of bulk K, however local

divergences did not change.

 0.0099

 0.00995

 0.01

 0.01005

 0.0101

-4 -3 -2 -1 0 1 2 3 4

ε22 kL tune Δt=9e-06

x [a0]

Figure 7. Same as Figure 4, but for kl–tune MSM.

 2

 2.5

 3

 3.5

 4

-4 -3 -2 -1 0 1 2 3 4

σ22 kL tune Δ=0.22
Δt=0.25

Δr=0.0017

x [a0]

Figure 8. Same as Figure 5, but for kl–tune MSM.

72

ChemEng 2021, 5, 3

5.3. ikL-Tuning

Figure 8 shows, that SkL ≈ 0 does not necessary translate into isotropy on a node basis.
To further improve MSM representations we need to make sure, that not only forces on
singular nodes sum up to zero, but also that their magnitude is approximately the same
in all directions. Figure 9 illustrates an MSM node for which this is not the case; in this
example forces do sum to zero, but their magnitude is different in X and Y directions.

Figure 9. An MSM node for which forces balance to zero but are not isotropic.

In kL-tuning at each step of the algorithm we modified ki based on the current value
of the force acting on each node. In the improved procedure, instead of calculating the
force, we will calculate the stress tensor at the point where the node is placed and see how
much it diverges from the expected tensor:

σ̂err
ij = σ̂ij − 3Kεδij, (21)

where δij is the Kronecker’s delta.
The contribution of each spring to σ̂ can be expressed as:

δσ̂ =
Bkε

V
L̄ ⊗ L̄0, (22)

where ε is the relative length change of the spring, L the current length and L0 the neutral
length. V is the volume of the region in which we are measuring the stress and B is a
bond between this region and the spring. The bond can be calculated in a number of
ways [27,28]; in our case we use the percentage of the overlap between probing region,
which is a sphere and another sphere placed in the middle of the spring with radius equal
0.5L. As we remember L0 is artificially changed in the first step of the tuning procedure.

We project the spring influence onto the σ̂err and compute the Δk for each spring as:

Δk = −t
V

BεLL0

L̄ ⊗ L̄0 : σ̂err

LL0
, (23)

where Â : B̂ = ∑ij AijBij, and t is step size for the steepest descent algorithm (t ∼ 1
b ,

where b is the number of springs connected to a node). The stress tensor tuning is run in
addition to kL-tuning, and it also has a limit for the relative change of k on each spring to
prevent degenerate solutions in which k becomes negative. After this procedure the strain
tensor is as close to theoretical as it was in Figure 7. This time however we observe an
improvement in stress tensor. The σ22 component is presented on Figure 10. The divergence
Δσ22 dropped to 0.067, and is about three times smaller than it was for kL-tune.

Comparison of the four presented algorithms is terms of divergences Δtε, Δrσ and Δtσ
observed in the cube compression test is presented on Figures 11–13. As we can see kL-tune
procedure eliminates divergencies Δtε, Δrσ, which are caused by internal relaxation of
unbalanced forces. The ikL-tune additionally reduces local variations in stress and reduces
divergencies between stress present in the deformed body and its theoretical value.

73

ChemEng 2021, 5, 3

 2

 2.5

 3

 3.5

 4

-4 -3 -2 -1 0 1 2 3 4

σ22 ikL tune Δ=0.067
Δt=0.072

Δr=0.0017

x [a0]

Figure 10. Same as Figure 5, but for ikl–tune MSM.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

ε11 ε12 ε13 ε21 ε22 ε23 ε31 ε32 ε33

Δε [a0/a0] k const
kL const

kl tune
ikl tune

Figure 11. Comparison of Δtε for four variants of random MSM.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33

Δrσ [k0/a0] k const
kL const

kl tune
ikl tune

Figure 12. Comparison of Δrσ for four variants of random MSM.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33

Δtσ [k0/a0] k const
kL const

kl tune
ikl tune

Figure 13. Comparison of Δtσ for four variants of random MSM.

6. Effects on Young’s Modulus

Next we investigate what are the effects of tuning, on global material properties
and how reduced variations of local stress and strain translate into the value of Young’s
modulus E.

We measure the value of E by performing a numerical experiment similar to the one
described in [7]. We apply a static displacement to a block of material with dimensions
35a0 × 7.5a0 × 7.5a0, so that it gets compressed along X axis and we estimate E by measuring
forces present in the material. In [7] we have measured the force passing through YZ plane
in the middle of the system, following the equation:

74

ChemEng 2021, 5, 3

E =
F/A

Δx/Lx
,

where F is the reaction force, A the cross-sectional area of the block (in YZ plane), and Δx
is the deformation of the block along x direction.

This equation however does not account for the possibility of non-zero stress in
directions other than X in the system. As we have seen in previous section such stress may
be present even for stress components which theoretically should be equal zero. A more
accurate equation gives E as:

E =
Fx/Ayz − ν · (Fy/Axz + Fz/Axy)

Δx/Lx
. (24)

This time we measure not only a force through yz plane, but also xy and xz planes.
After applying this correction to the measurement procedure, the resulting estimates of
E become smaller by 2–5%, showing that the E calculated this way may diverge from
theoretical value by a higher degree than our original estimates.

The results for the four variants of random MSM are presented in the Figure 14. First
we notice that simple setting kL = const instead of k = const does improve the value of E
noticeably. Introduction of kL-tune gives further improvement, however ikL-tune does
not. For high 〈S〉 it is as good as kL-tune, however for lower values it is worse. The curve
seems however more stable with lower variations around its trend value.

In all the cases the lower the number of springs, the higher divergence from theoretical
value we observe. The average number of springs connected to one node for the cubic
lattice MSM is 〈S〉 = 18, and it seems that in our experiment all the curves reach plateau
around this point. While the effects of tuning are positive for MSM with mid to high 〈S〉,
for values lower than 14 other issues related to low network connectivity seem to dominate
and the tuning can no longer compensate for them. For 〈S〉 < 12 we observe a rapid
decrease of rigidity of the network. This result is consistent with [29], where the loss of
rigidity caused by reduced network connectivity is studied. Authors show, that weakened
FCC networks with 〈S〉 around 8–10 suffer from the loss of rigidity and become floppy for
lower values of 〈S〉 (exact numbers depend on applied strain).

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 8 10 12 14 16 18 20 22 24 26

E/E0

<S>

const k
const kL

kL tune
ikL tune

Figure 14. Values of Young’s modulus relative to theoretical value for four variants of random MSM.

75

ChemEng 2021, 5, 3

7. Conclusions

In this article, we have demonstrated possible accuracy problems one may face when
using disordered MSMs. We have proposed two tuning procedures which aim to improve
the accuracy of such MSMs. The first one, kL-tuning, eliminates unbalanced forces on MSM
nodes which allows for better estimates of K (and E) of the whole network. The second, ikL-
tuning aims to additionally reduce local stress variations. In both cases, the implementation
details are of a lesser importance, than the effects each tuning procedure has on the MSM
quality (as mentioned one might simply use linear solvers).

The presented analysis gives an overview of what should be expected of randomised
models and what are their limitations. The proposed techniques can be used to reduce
both global and local discrepancies and inhomogeneities present in the material, however
one should keep in mind that such tuning may not always be necessary or even desirable.
As mentioned in the introduction, real materials are not perfect, and the presence of inho-
mogeneities may be advantageous for certain applications and purposes. Overaggressive
tuning may simply destroy the desired properties of our models (For the same reason, we
did not even consider annealing-like approaches which modify position of nodes—such
procedures may very well lead to node reorganisation into crystalline structures).

In the view of this, one may decide to abandon the tuning altogether and use k = const
for the whole network, with k scaled to match the desired K, not based on Equation (14),
but rather on experiments. Typically a given network characteristics (minL and maxL)
lead to discrepancies of the same order, independent on the specific specimen of the
MSM, therefore once we establish, that e.g., k should be increased by 10% relative to the
original estimate, we can simply apply the 10% increase for all models generated with
these parameters and get plausible results. The stress and strain figures in Section 5 should
give a good intuition as to what to expect.

In our reference single threaded implementations, for the model with 55,000 springs,
kL-tuning took 1s to complete, while ikL-tuning about 10s. The achieved reduction of stress
variations is about 60% for the stress measured with resolution comparable to internode
distances. However if such localised measurements are not needed, the kL-tune alone may
be sufficient as it is considerably faster and much easier to implement.

Finally, we should remember, that problems discussed here concern disordered MSMs.
If for a given application, a crystal-like structure is appropriate, then cubic lattice MSMs
offer very high accuracy for typical deformation scenarios [7,30], and if we consider simple
compression or shearing, the errors in local stresses and deformations are of an order of
numerical precision of floating point numbers.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declare no conflict of interest.

References

1. Klapetek, P.; Charvátová Campbell, A.; Buršíková, V. Fast mechanical model for probe–sample elastic deformation estimation in
scanning probe microscopy. Ultramicroscopy 2019, 201, 18–27. [CrossRef] [PubMed]

2. Cristoforetti, A.; Masè, M.; Bonmassari, R.; Dallago, M.; Nollo, G.; Ravelli, F. A patient-specific mass-spring model for
biomechanical simulation of aortic root tissue during transcatheter aortic valve implantation. Phys. Med. Biol. 2019, 64, 085014.
[CrossRef] [PubMed]

3. Quillen, A.C.; Martini, L.; Nakajima, M. Near/far side asymmetry in the tidally heated Moon. Icarus 2019, 329, 182–196.
[CrossRef] [PubMed]

4. Quillen, A.C.; Zhao, Y.; Chen, Y.; Sánchez, P.; Nelson, R.C.; Schwartz, S.R. Impact excitation of a seismic pulse and vibrational
normal modes on asteroid Bennu and associated slumping of regolith. Icarus 2019, 319, 312–333. [CrossRef] [PubMed]

5. Sahputra, I.; Alexiadis, A.; Adams, M. A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations.
ChemEngineering 2020, 4, 30. [CrossRef]

76

ChemEng 2021, 5, 3

6. Vicente, G.S.; Buchart, C.; Borro, D.; Celigüeta, J.T. Maxillofacial surgery simulation using a mass-spring model derived from
continuum and the scaled displacement method. Int. J. Comput. Assist. Radiol. Surg. 2009, 4, 89–98. [CrossRef]

7. Kot, M.; Nagahashi, H.; Szymczak, P. Elastic moduli of simple mass spring models. Vis. Comput. 2015, 31, 1339–1350. [CrossRef]
8. Chen, H.; Lin, E.; Jiao, Y.; Liu, Y. A generalized 2D non-local lattice spring model for fracture simulation. Comput. Mech. 2014,

54, 1541–1558. [CrossRef]
9. Goehring, L.; Mahadevan, L.; Morris, S.W. Nonequilibrium scale selection mechanism for columnar jointing. Proc. Natl. Acad. Sci.

USA 2009, 106, 387–392. [CrossRef]
10. Aydin, A.; Degraff, J. Evoluton of Polygonal Fracture Patterns in Lava Flows. Science 1988, 239, 471–476. [CrossRef]
11. Hofmann, M.; Anderssohn, R.; Bahr, H.A.; Weiß, H.J.; Nellesen, J. Why Hexagonal Basalt Columns? Phys. Rev. Lett. 2015,

115, 154301. [CrossRef] [PubMed]
12. Maurini, C.; Bourdin, B.; Gauthier, G.; Lazarus, V. Crack patterns obtained by unidirectional drying of a colloidal suspension in a

capillary tube: Experiments and numerical simulations using a two-dimensional variational approach. Int. J. Fract. 2013, 184.
[CrossRef]

13. Gauthier, G.; Lazarus, V.; Pauchard, L. Shrinkage star-shaped cracks: Explaining the transition from 90 degrees to 120 degrees.
EPL 2010, 89, 26002. [CrossRef]

14. Goehring, L. Evolving fracture patterns: Columnar joints, mud cracks and polygonal terrain. Philos. Trans. Ser. A Math. Phys.
Eng. Sci. 2013, 371, 20120353. [CrossRef] [PubMed]

15. Frouard, J.; Quillen, A.; Efroimsky, M.; Giannella, D. Numerical Simulation of Tidal Evolution of a Viscoelastic Body Modelled
with a Mass-Spring Network. Mon. Not. R. Astron. Soc. 2016, 458, stw491. [CrossRef]

16. Kot, M.; Nagahashi, H. Mass Spring Models with Adjustable Poisson’s Ratio. Vis. Comput. 2017, 33, 283–291. [CrossRef]
17. Golec, K.; Palierne, J.F.; Zara, F.; Nicolle, S.; Damiand, G. Hybrid 3D mass-spring system for simulation of isotropic materials

with any Poisson’s ratio. Vis. Comput. 2019. [CrossRef]
18. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed.;

Cambridge University Press: New York, NY, USA, 2007.
19. Liu, T.; Bargteil, A.W.; O’Brien, J.F.; Kavan, L. Fast Simulation of Mass-Spring Systems. ACM Trans. Graph. 2013, 32. [CrossRef]
20. Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity; Cambridge University Press: Cambridge, UK, 1906.
21. Baudet, V.; Beuve, M.; Jaillet, F.; Shariat, B.; Zara, F. Integrating Tensile Parameters in 3D Mass-Spring System; Technical Report

RR-LIRIS-2007-004, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumiére Lyon
2/École Centrale de Lyon; 2007. Available online: https://link.springer.com/article/10.1007/s11548-008-0271-0 (accessed on
1 December 2020).

22. Lloyd, B.A.; Szekely, G.; Harders, M. Identification of Spring Parameters for Deformable Object Simulation. IEEE Trans. Vis.
Comput. Graph. 2007, 13, 1081–1094. [CrossRef]

23. Ostoja-Starzewski, M. Lattice models in micromechanics. Appl. Mech. Rev. 2002, 55, 35–60. [CrossRef]
24. Chen, H.; Lin, E.; Liu, Y. A novel Volume-Compensated Particle method for 2D elasticity and plasticity analysis. Int. J. Solids

Struct. 2014, 51, 1819–1833. [CrossRef]
25. Chen, H.; Liu, Y. A Nonlocal Lattice Particle Framework for Modeling of Solids. In ASME International Mechanical Engineering

Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2016; p. V001T03A001. [CrossRef]
26. Golec, K. Hybrid 3D Mass Spring System for Soft Tissue Simulation. Ph.D. Theses, Université de Lyon, Lyon, France, 2018.
27. Hardy, R.J. Formulas for determining local properties in molecular-dynamics simulations—Shock waves. J. Chem. Phys. 1982,

76, 622–628. [CrossRef]
28. Zimmerman, J.A.; WebbIII, E.B.; Hoyt, J.J.; Jones, R.E.; Klein, P.A.; Bammann, D.J. Calculation of stress in atomistic simulation.

Model. Simul. Mater. Sci. Eng. 2004, 12, S319. [CrossRef]
29. Sheinman, M.; Broedersz, C.P.; MacKintosh, F.C. Nonlinear effective-medium theory of disordered spring networks. Phys. Rev. E

2012, 85, 021801. [CrossRef] [PubMed]
30. Banks, M.K.; Hazel, A.L.; Riley, G.D. Quantitative Validation of Physically Based Deformable Models in Computer Graphics.

In Workshop on Virtual Reality Interaction and Physical Simulation; Andrews, S., Erleben, K., Jaillet, F., Zachmann, G., Eds.; The
Eurographics Association: Genoa, Italy, 2018. [CrossRef]

77

chemengineering

Article

Fortran Coarray Implementation of Semi-Lagrangian Convected
Air Particles within an Atmospheric Model

Soren Rasmussen 1,*, Ethan D. Gutmann 2, Irene Moulitsas 1 and Salvatore Filippone 3

��������	
�������

Citation: Rasmussen, S.; Gutmann,

E.D.; Moulitsas, I.; Filippone, S.

Fortran Coarray Implementation of

Semi-Lagrangian Convected Air

Particles within an Atmospheric

Model. ChemEng 2021, 5, 21.

https://doi.org/10.3390/

chemengineering5020021

Academic Editor: Alessio Alexiadis

Received: 16 January 2021

Accepted: 19 April 2021

Published: 6 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Computational Engineering Sciences, Cranfield University, Bedford MK43 0AL, UK;
i.moulitsas@cranfield.ac.uk

2 National Center for Atmospheric Research, Boulder, CO 80305, USA; gutmann@ucar.edu
3 Department of Civil and Computer Engineering, Università di Roma “Tor Vergata”, 32249 Rome, Italy;

salvatore.filippone@uniroma2.it
* Correspondence: s.rasmussen@cranfield.ac.uk

Abstract: This work added semi-Lagrangian convected air particles to the Intermediate Complexity
Atmospheric Research (ICAR) model. The ICAR model is a simplified atmospheric model using
quasi-dynamical downscaling to gain performance over more traditional atmospheric models. The
ICAR model uses Fortran coarrays to split the domain amongst images and handle the halo region
communication of the image’s boundary regions. The newly implemented convected air particles
use trilinear interpolation to compute initial properties from the Eulerian domain and calculate
humidity and buoyancy forces as the model runs. This paper investigated the performance cost and
scaling attributes of executing unsaturated and saturated air particles versus the original particle-less
model. An in-depth analysis was done on the communication patterns and performance of the
semi-Lagrangian air particles, as well as the performance cost of a variety of initial conditions such
as wind speed and saturation mixing ratios. This study found that given a linear increase in the
number of particles communicated, there is an initial decrease in performance, but that it then levels
out, indicating that over the runtime of the model, there is an initial cost of particle communication,
but that the computational benefits quickly offset it. The study provided insight into the number of
processors required to amortize the additional computational cost of the air particles.

Keywords: convection; air parcels; atmospheric model; high-performance computing; Coarray
Fortran; PGAS

1. Introduction

The Intermediate Complexity Atmospheric Research (ICAR) model is an atmospheric
model that balances the complexity of more accurate, high-order modeling schemes with
the resources required to model larger scale scenarios [1]. It is currently in use at the
National Center for Atmospheric Research (NCAR) in the United States and has been used
for simulations such as a year-long precipitation simulation of a 169 × 132 km section of the
Rocky Mountains and precipitation patterns in the European Alps and the South Island of
New Zealand [2–4]. ICAR has a three-dimensional model that handles a three-dimensional
wind field, advection of heat and moisture. The ICAR model initializes the domain and
tracks the changes of variables such as temperature, humidity, and pressure. The model is
able to emulate realistic terrain by handling hills and mountains within the environment.

This paper aimed to examine the implications of adding semi-Lagrangian convected
parcels that move through the existing three-dimensional Cartesian grid of the ICAR
application. The ICAR model was implemented using Coarray Fortran, a partitioned
global address space (PGAS) parallel programming model, to handle the communication
required for the domain decomposition of the problem [5–7]. The PGAS model functions
as a global memory address space, such that each process or thread has local memory that

ChemEng 2021, 5, 21. https://doi.org/10.3390/chemengineering5020021 https://www.mdpi.com/journal/chemengineering

79

ChemEng 2021, 5, 21

is accessible by all other processes or threads [8]. Coarrays offer high-level syntax to easily
provide the benefits of the PGAS model and will be examined more later (Section 1.1).

This work performed an in-depth analysis of the performance and communication
implications of adding semi-Lagrangian convected air parcels on top of a Cartesian atmo-
spheric model. Within the atmospheric community, air parcel is the term used to refer to
pockets of air, but due to the nature of the parcels used here and for sake of unity, parcels
are referred to as particles.

Other work in the field has been done examining aspects of using Fortran coarrays
and the performance cost of various semi-Lagrangian schemes. The Integrated Forecasting
System (IFS), which is used by the European Centre for Medium Range Weather Forecasts
(ECMWF), has examined the performance benefits of using coarrays and OpenMP within
their large-scale model [9,10]. Similar work has been done within the Yi-He Global Spectral
Model (YHGSM), which examined the benefits of changing the communication of the
semi-Lagrangian scheme from two-sided to one-sided Message Passing Interface (MPI)
communication [11]. MPI and two-sided and one-sided communication are discussed
in Section 1.1.

A framework called Moist Parcel-in-Cell (MPIC) has been developed for convection of
Lagrangian particles [12,13]. These papers focused on the convection physics and accuracy
of the MPIC modeling. MPIC uses OpenMP for parallelization, and the research group has
worked to integrate it with the Met-Office/NERC cloud model (MONC) infrastructure,
which uses the MPI for communication [14]. Work that has closely looked at the results
of scaling coarrays and Message Passing Interface (MPI) have done so looking at the
Cellular Automata (CA) problem [15,16]. The ICAR model has also previously been used
to examine the performance and ease-of-programmability comparisons between the MPI
and coarrays [17]. This study showed that re-coding coarrays to an asynchronous two-
sided MPI implementation, while having little impact on additional lines for the physics
files, required 226 extra lines of code in the module that controlled the communication.
This equated to ∼91% additional lines.

The use of particles in atmospheric science is more commonly applied to trajectory
analysis using offline models such as the Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model [18]. In the current implementation, the particles are directly
coupled within the model analogous to the approach taken by [19] for chemical transport
studies. While it is beyond the scope of the current study, future work could use this
particle implementation to add a simple atmospheric chemistry module to ICAR to permit
the study of atmospheric chemistry in this computationally efficient model.

The novelty of the work presented here is the in-depth analysis of the performance
and communication cost of adding semi-Lagrangian air particles to the coarray ICAR
model. We analyzed a variety of parameters, such as wind speed and moisture, to under-
stand their effects on performance. We also examined the use of Fortran coarrays with
two different communication back-ends, OpenCoarrays with one-sided MPI puts, and
Cray’s SHMEM-based communication. This helps showcase the performance of HPC
clusters from two different manufactures, as well as the performance of a Free and Open-
Source Software (FOSS) library with OpenCoarrays and the proprietary Cray SHMEM
communication backend.

1.1. Fortran Coarrays

The performance of code has traditionally increased due to advancements in hard-
ware or algorithms, but as time passed and the physical limits of hardware were being
approached, this meant the end of Moore’s law and Dennard scaling [20]. The move to
parallel programming with multicore processors and off-loading to devices such as GPUs
has meant that performance gains could still be achieved. Computing with MPI has been
a traditional way to use multiple processors locally and communicate data across nodes.
The MPI functions on the Single-Program Multiple-Data (SPMD) paradigm, where the
user writes a single program that gets run by every processing element, called rank within

80

ChemEng 2021, 5, 21

the MPI, at the same time. Similar to the MPI, coarrays also follow the SPMD paradigm,
but refer to the processing elements as images, instead of ranks. In the SPMDP paradigm,
data are often split up amongst images, as in Figure 1, so that each processor can work on a
chunk of the problem before communicating the results back to a main node.

Figure 1. Overhead of the hill contour, distributed across 16 images.

Fortran coarrays started out as a language extension and were formally added to the
Fortran Standard in 2008 [5,6]. Coarrays are similar in concept to the MPI, but offer the
advantage of a simplified syntax with square brackets [17]. A variable without square
brackets will always refer to the current image’s copy of a coarray variable. Adding square
brackets, such as var[i], will allow any image to access or change the ith image’s var

variable data. For instance, the following code allows the first image to send the local data
in the cloud_moisture variable to the second image’s rain variable Figure 2.

Figure 2. Coarray example of variable rain.

In this instance, the coarray variables are scalars, but they can also be arrays and even
derived types. Coarrays allow blocking synchronization with the sync all command and
offer the typical range of collective communication, sum, reduce, etc.

To perform the same action in the MPI, one could use two-sided or one-sided com-
munication. Two-sided communication is communication where a sender and a receiver
both need to make a function call for a message to be communicated. Two-sided commu-
nication can be done using blocking MPI_Send and MPI_Recv or non-blocking MPI_Isend

and MPI_Irecv. One-sided communication is a Remote Memory Access (RMA) method to
allow a single rank to perform communication between multiple ranks. For example, either
a sender calls a put to send a message or a receiver calls a get to retrieve the information.
This MPI method of calling puts and gets is equivalent to the PGAS of coarrays.

The example above could be done with an MPI_Put. A code snippet showing the
equivalent method with one-sided MPI communication is shown below Figure 3.

81

ChemEng 2021, 5, 21

Figure 3. One-sided MPI example.

The ICAR model uses coarrays to handle domain decomposition; see Figure 1. The
ICAR mini-app used here has two different topologies, one that contains a single hill, which
is split among the available images, and one that is a flat plain. Figure 4 shows a side view
of the hill with particles, and Figure 1 shows a top-down view of the hill’s contour lines
and how the distribution of the domain across 16 images would occur. The physics in the
ICAR model has a variety of parameters that need to be updated using numerical analysis
and stencils. The stencils have halo regions of depth one that are contained in variables
of the exchangeable_t type. The type exchangeable_t has been created based on object-
oriented principles. Each variable of type exchangeable_t has a local three-dimensional
array that represents parameters such as water vapor, cloud water mass, or potential
temperature. It contains halo regions for the north, south, east, and west directions and
has procedures, such as put_north and retrieve_south_halo, to help facilitate the halo
communication. The ICAR model uses coarrays to update halo regions; see Figure 5. These
halo regions are coarrays that perform “puts” during the update phase. The update phase
occurs between the initialization step and the start of the computation and after each
computational time step.

Figure 4. Side view of hill and air particles.

82

ChemEng 2021, 5, 21

Figure 5. Halo regions to deal with trilinear interpolation.

To handle the movement of the particles, a number of additions needed to be made
to the ICAR application. A new type convection_exchangeable_t was created that was
based on the exchangeable_t type. The new type convection_exchangeable_t changed
the coarray halo arrays to coarray buffers. These are buffers into which the neighboring
images will directly put particles that need to be transferred across the boundary. When a
particle’s horizontal x or y values are greater than the image’s local grid, they are loaded
into an “input” coarray buffer of the neighboring region. Then, at the end of the particle
computation phase, the buffer holding the particles is iterated over and unloaded into the
image’s array of particles. This is a key difference from the original ICAR model, where
there is an explicit compute phase and then a communication phase of the halo regions.
With the particles, there is an explicit compute phase and unloading phase.

A complication that occurred from adding semi-Lagrangian particles to the code is
that a particle could exist between the boundaries with a halo region of one. Figure 6
indicates how an air particle would look as it exists between the boundaries of Image 1
and 2. A halo region of one would solve this issue because the particle could access the
data points 2,3,n-1,n-2.The complication occurs because horizontal forces are applied to the
particle, and further calculations for its pressure, saturated mixing ratio, etc., are needed.
This sometimes results in a particle in Image 2 needing the points n-1, n-2, n-5, and n-6.
This is why the boundary regions within the convection_exchangeable_t type were all
changed from one to two. While the original code only had halo regions in the north,
south, east, and west directions, four additional coarray buffers were needed to handle the
diagonal movement of the particles. Since the u and v wind fields work simultaneously,
they can move the particle diagonally. If a particle is near the “x” and “y” boundary at the
same time, there is a possibility that the particle will jump to a diagonal neighbor.

83

ChemEng 2021, 5, 21

Figure 6. Lagrangian air particle existing on the boundary.

1.2. Convection

As the introduced semi-Lagrangian convected air particles warm, they rise and cool
until their momentum brings them to an area where the surrounding region is cooler and
they start to fall. As they fall, the particles warm until they reach an area where they are
warmer than the surrounding environment, and they begin to rise. This oscillation causes
a number of transformations within the air particle. As the air particle is rising, as long as
its relative humidity is below 100%, it is considered a dry air particle and will cool at the
adiabatic lapse rate with a constant mixing ratio and potential temperature [21]. Potential
temperature is defined as the temperature a particle of air would be at if it were brought to
a standard reference pressure P0, defined as 1000 hPa. The equation used for calculating
the potential temperature is θ = T(P0

P)R/cp , where T is the absolute temperature of the air
particle with pressure P. R/cp = 0.286, where R is the gas constant of air and cp is the
specific heat of air at a constant pressure [22,23].

When the relative humidity increases over 100%, the air particle is saturated, and
the water vapor within the particle will be converted into liquid cloud water. This phase
change causes a change in temperature and potential temperature while pressure stays
constant. As the particle falls, this process is reversed.

The air particles are implemented in a semi-Lagrangian manner. They are kept within
an unordered buffer and operate essentially independently of the environment. This is
allowable because as air particles rise, they do so in an adiabatic manner. It is standard
practice to assume that the convected air particle’s heat exchange with the surrounding
environment is so small that it can be neglected [23].

2. Materials and Methods

In accordance with MDPI research data policies, the source code used and data sets
created for this paper are publicly available [24,25].

2.1. Air Particle Physics

The framework for handling the physics of the air particle is roughly broken into the
steps depicted in Figure 7. An overview of the process will be discussed before going over
the equations of state. The first calculations, shown in the Move Particle Section, are to
find the buoyancy force in the z-direction and the horizontal forces from the wind. This
calculates the trajectory of the air particle and where it should be placed. Once the particle
is moved, the changes in the physical properties of the particle are calculated. This process
is depicted in the lapse rate section of the figure. First, the dry lapse rate is calculated, and
if the relative humidity stays below 100%, the process continues. The particle is checked to
see if it has moved beyond the image’s boundaries and communicated if so. If the relative
humidity goes above 100%, then an iterative process is started to find the correct amount
of phase and lapse rate change.

84

ChemEng 2021, 5, 21

Figure 7. Overview of the computational phase of a particle.

The two equations of state used during this process are presented here. The equation
of state used to formulate important properties of the air particle is the ideal gas law, where
P is pressure, V is volume, n is the amount of moles, R is the ideal gas constant, and T
is temperature.

PV = nRT

The other equation of state is the first law of thermodynamics and is used such that
the change of internal energy within a closed system is equal to the quantity of energy from
heat, minus the amount of thermodynamic work done on its surroundings [26], where U is
the internal energy of a closed system, Q is the heat, and W is the thermodynamic work.

ΔU = Q − W

From these equations of state, the following formulas have been derived and are
commonly used within the meteorological community. The subsequent equation is how
the buoyancy force for movement of the air particle is calculated. The downward force on
the air particle is ρgV, where ρ is the particle’s density, g is gravity, and V is the volume [23].
When an air particle rises, it displaces an equal volume of ambient air, so the downward
force on the displaced air is ρ′gV, where ρ′ is the displaced air’s density. The upward force
is the same for both the air particle and the displaced air and equal to −V(δp/δz). For
the air particles, this is the only force in the z-direction, and so, the particle’s equation of
motion is:

d2

dt2 = Fb = g
(

T − T′

T

)

where T is the particle’s temperature and T′ is the environment’s.

85

ChemEng 2021, 5, 21

The force is applied at a constant rate through the time period, where d is displacement,
a = Fb is acceleration, and v0 is the previous time step’s velocity.

d = vot +
1
2

at2

2.1.1. Lapse Rate

After the buoyancy force has been applied and the air particle has been moved to its
new elevation, the change in temperature is calculated. The following equation is applied
to calculate the new pressure:

p = p0 − zd × g × p0

287.05 × T0

where the gravity variable is g = 9.81, T0 and p0 are the original temperature and pressure,
and zd is the distance the particle is displaced in the z-direction.

For the change in temperature of a dry air particle, the Exner (Π) function is used. The
Exner function is defined as the following, where p is pressure, Rd is the gas constant of dry
air, cp is the heat capacity of dry air, T is temperature, and θ is the potential temperature:

Π =

(
p
p0

)Rd/cp

=
T
θ

Rearranging, the new temperature is obtained from T = Π
θ .

The next step is to check if the relative humidity of the air particle has exceeded
100%. This saturated mixing ratio is obtained from a function within the ICAR code that
calculates it from temperature and pressure arguments. The relative humidity is calculated
by dividing the particle’s current water vapor by the saturated mixing ratio and multiplying
by 100 to get the percentage. If the relative humidity is above 100%, then the extra humidity
is taken and changed to cloud water. If the relative humidity is below 100% and there is
cloud water in the particle, the cloud water will be converted back into water vapor so as
to keep the relative humidity as close to 100% as possible. The change in temperature is
calculated as follows, where q is heat, Cp is the specific heat of air at constant pressure, T is
temperature, and P is pressure. Cp is calculated from Cp = (1004 ∗ (1 + 1.84 ∗ v)), where v
is the mass of water vapor divided by the mass of dry air [22].

Δq = Cp × ΔT − ΔP
ρ

For this, a specific latent heat of 2.5 × 106 J kg−1 is used for the particle. There is no
change in pressure during the moist adiabatic process, so the ΔP

ρ expression is zero. The
potential temperature does not change during the dry adiabatic process, but for the moist
adiabatic process, the Exner function is used to calculate the new potential temperature.

2.1.2. Orographic Lifting

In addition to forces applied in the z-direction, a wind field is applied for movement
in the x- and y-direction. As the air particle moves through the environment, orographic
lifting will occur when the particle hits a barrier and has to rise to flow over the barrier.
The ICAR application keeps track of the altitude of the ground, and when an air particle
is moving in the x- and y-direction due to wind flow, the air particles will rise or fall
accordingly. Bilinear interpolation is used in the x- and y-direction to estimate the altitude
of the ground. The orographic lifting is simplistic in that the altitude of the air particle is
changed the exact amount as the change in altitude of the ground floor.

86

ChemEng 2021, 5, 21

2.2. Methodology

Within this section, a detailed account of how the air particles are handled is given.
It is the purpose of this study to implement and add the fundamental components of
functioning semi-Lagrangian air particles to the ICAR mini-app. Every air particle is
initialized by randomly choosing a position within a coarray image’s subdomain. The
program uses Fortran’s intrinsic random number generator with a seed of −1. The intrinsic
random_init is called with both values equal to true.This is to ensure that each image has
distinct random values when calling the function and that each time the program is run as
a whole, the random numbers will be the same to ensure reproducibility between runs.

At initialization, an air particle of type convection_particle is created using the values
of the environment at its current position. The convection_particle type has variables to
keep track of the particle’s x, y, z position within the image’s grid, the height of the particle
in meters, the u, v, w values of the wind field, the velocity, pressure, temperature, potential
temperature, water vapor, and relative humidity. For orographic lifting, the height of
the ground below the particle is also kept. After the initial x, y, z position is randomly
generated, trilinear interpolation is used to gather the values of convection_particle’s types.
See Figure 8 for an example of trilinear interpolation. For example, the initial x, y, z po-
sition would be the red C in Figure 8. Calculating C requires eight regular grid points
from the surrounding particle’s area, and five of those points are listed in the figure as
c000, c001, c100, c110, c111. Note, when using trilinear interpolation, one needs to be sure that
if ∃i ∈ {x, y, z}, such that f loor(i) = ceiling(i), then bilinear interpolation is used. For
example, if c000 and c001 were equal, then f loor(x) = ceiling(x) would be true. In that case,
the trilinear interpolation to calculate the value in a cube would have to be switched to
a bilinear interpolation, which finds the value in a square. Likewise, if ∃i ∈ {x, y} such
that f loor(i) = ceiling(i), then bilinear interpolation needs to be substituted for linear
interpolation. If in the rare case that ∀i ∈ {x, y}, it is true that f loor(i) = ceiling(i), there is
no need for interpolation. Finding the right level of interpolation is done to avoid divide
by zero errors from f loor(i)− ceiling(i) = 0.

Figure 8. Trilinear interpolation [27].

When running performance tests, to keep the communication costs of each image as
similar as possible, any particle that goes beyond the original domain is wrapped around
to the other side. In Figure 1, a birds-eye view of the domain is shown and how it would be
split up amongst 16 images. If a particle were to leave the top of that image heading north,
it would continue to head north from the corresponding bottommost image. This allows
for the particle count over the entire domain to remain constant. Likewise, if convection
causes a particle to go off the top or bottom of the z-axis, a replacement particle is created.

There were two different types of initialization of atmospheric and environment
variables that were tested in our model. One was an ideal case, where the potential

87

ChemEng 2021, 5, 21

temperature θ was set at 300 K for the entire model. The other setup was done by using a
real atmospheric sounding of Seattle. The soundings were extracted from the University of
Wyoming’s weather website; a site with atmospheric soundings from locations around the
world [28]. This was done using Python libraries BeautifulSoup, to extract the sounding
data, and Pandas to handle the data manipulation and preprocessing. The atmospheric
sounding was interpolated to produce data at every meter of elevation and written to
a file for later use. The atmospheric sounding of Seattle gave the real-world potential
temperature at elevations above 1600 m. This was beyond our model’s upper limit, so the
extra data were unused in this case, but could be used if the domain of the model were
expanded. Potential temperatures below the sounding’s lowest elevation were set at 300 K.

2.3. Hardware and Software

It has been noted in the literature that different hardware platforms, coupled with differ-
ent software environments and compiler vendors, can result in performance variation [29].
For our experiments, we used two different HPC systems and employed two different
compilers, thus covering both open-source and proprietary software implementations.

Cheyenne was one of two HPC clusters used. Cheyenne is a 5.34 petaflop SGI machine
run by the National Center for Atmospheric Research (NCAR). The SGI ICE XA cluster
has 145,152 Intel Xeon cores. Each node is dual socket with two Intel Xeon E5-2697V4
(Broadwell) processors, and a Mellanox EDR InfiniBand interconnect is used. The project
uses the caf compiler wrapper provided by the Sourcery Institute with the OpenCoarrays
library. The OpenCoarrays library is an open-source project that provides the coarray
implementation for GNU gfortran [30]. The underlying compiler that caf wraps is GNU
gfortran 10.0.0 with flags -fcoarray=lib and includes paths to the OpenCoarray library.
caf was used with flags -cpp -O3 for preprocessing and optimization. The project used
OpenCoarrays 2.9.0, which itself was built with MPICH 3.3.2. OpenCoarrays handles
the communication requirements of coarrays with a number of possible communication
backends. This project uses the MPI backend with ones-sided RMA puts and gets, though it
is possible to use OpenSHMEM.

A Cray cluster was used with nodes of two Intel Xeon Broadwell chips for a total of
44 cores. The Cray Fortran compiler Version 11.0.0 was used with flags -e F -h caf -O3

for preprocessing, coarrays, and optimization. Cray’s underlying communication layer for
Fortran coarrays is the SHMEM library, standing for Symmetric Hierarchical MEMory [31].
SHMEM was created to implement one-sided PGAS routines. When accessing intran-
ode coarray memory, the program quickly ran out of the default allocation of memory.
This led to lib-4205 : UNRECOVERABLE library error: The program was unable to

request more memory space. This issue was fixed with the help of an environment vari-
able that influences the amount of available memory. By setting PGAS_MEMINFO_DISPLAY

to one, the system report information on the PGAS library was displayed. It showed that
the symmetric heap was equal to 65 MB per process. By increasing the memory by setting
XT_SYMMETRIC_HEAP_SIZE to 500M, the program was able to procure the memory it needed
and run successfully.

When compiling with Cray, the flags -Rbcps were initially used. They allowed for
run-time checks of array bounds (b), array conformance checking (c), check array allocation
status and other items (p), and character substring bounds (s). After initial development,
these flags were removed. Flags that were also used included -e F, which turns on the
preprocessor expansion of macros in Fortran source lines. This was required to handle
macros for assertions, changing Cray output to files, and to delay PGAS synchronization.

If the _CRAYFTN macro was defined, the following code would be called:

call assign (‘‘ assign −S on −y on p:\%.txt’’ , ierrr)

This would ensure repeat data values, such as “8 8 8”, would be output with spaces
between them. This is not the normal Cray behavior, which would output those values
as “3*8”, presumably for the sake of saving file space. While helpful for memory and time
saving, it does make final data analysis more difficult. The additional flag -h caf was

88

ChemEng 2021, 5, 21

used, which allows the compiler to recognize coarray syntax. This is a default flag, but
when it is defined on the command line, the macro _CRAY_COARRAY gets set to one [32]. An
important directive to use when using coarrays is !DIR$ PGAS DEFER_SYNC. This ensures
that the synchronization of data is delayed until a synchronization point [33,34]. This can
be verified using Cray’s profiling tools to see if the PGAS library calls are the non-blocking
routine __pgas_put_nbi.

2.3.1. Profiling Tools

Basic performance measurements were done using hand-coded system_clock timers.
When more sophisticated profiling and analysis was needed, HPE Cray’s CrayPat per-
formance analysis tool and the Tuning and Analysis Utility (TAU) were used. TAU was
developed by the University of Oregon Performance Research Lab, the LANL Advanced
Computing Laboratory, and The Research Center Julich at ZAM, Germany [35]. TAU
Commander is TAU’s tool that packages all the capabilities of TAU in a simple package
for users. Depending on the user’s needs, TAU Commander builds the required tools and
allows for flexibility in choosing the combination of profiling, tracing, and other counters
required. This project, with its use of CMake and the OpenCoarray Library, required a few
tweaks to get everything working.

TAU’s Fortran compiler wrapper taucaf was used as the Fortran compiler when
building the ICAR application. The wrapper was missing the OpenCoarray library though,
so the system paths needed to be added, and the libcaf library had to be loaded. A simple
way to achieve this is to call “caf -show” from the terminal. The caf compiler is itself a
wrapper to call gfortran, so this option will expand the full command needed to use the
OpenCoarray Library. By copying that whole output, without the ${@}, and then adding
it to the CMAKE_Fortran_FLAGS Cmake variable, the project will be able to load and link
everything correctly. The caf compiler is a bash script to implement the wrapper correctly,
and the ${@} is a special parameter that expands the positional arguments, every argument
after the script’s name [36]. The users can inform TAU of which information that they want
in a few ways. One is using environment variables, such as TAU_COMM_MATRIX, to profile
the communication matrix or running tau_exec with command line arguments. This was
used in conjunction with the other default values, which turn on sampling and generate a
performance profile.

Craypat was designed by Cray to allow the instrumentation of an application without
recompilation, only through linking [37]. Using the original binary, pat_build was used
with the -g caf flag to create a new executable that would produce profiling data when
run. There are many additional profiling flags that can be passed; this project would
sometimes add heap for a closer look at the memory behavior. The new binary can then be
run using aprun in the same usual fashion “aprun -n $num_procs ./test-ideal+pat”.

3. Results and Discussions

3.1. Validation

Validation of the model was done by ensuring that the air particles showed the same
properties as real-world data and other modeling equations. The domain size used for
the validation runs had dimensions nx = 20, ny = 20, nz = 30. Each cell corresponds to a
length, width, and height of 500 m, and this is consistent throughout the modeling. To test
the dry air particles, the hill was removed from the model, and the atmospheric sounding
of Seattle was used. During the dry particle runs, the water vapor in the environment and
particles was then set to zero to remove all moisture. For the wet particle runs, the water
vapor in the particles was set to the saturated mixing ratio of the environment where its
coordinates are. This means that if the particle stayed at the current temperature and
pressure, the relative humidity would be 100%. Given that particles were initialized with
an initial upward velocity of 5 m/s, the wet particles would become saturated immediately.
The runs were done for 200 time steps of 20 s each for the ICAR model and time steps of
one every second for the particles, totaling 4000 steps for the particles.

89

ChemEng 2021, 5, 21

The results of the dry and wet runs are shown in Figure 9a,b, respectively. Both figures
show a behavior that would be expected for a working model. The potential temperature of
a particle experiencing dry adiabatic lifting is constant, which is what occurs in Figure 9a.
The potential temperature only changes during the moist adiabatic lapse rate, during the
process of the phase shift from water vapor to rain water, or vice versa. The third graph
in Figure 9b confirms this behavior. Additionally, the trajectories of the temperature and
pressure of the saturated and unsaturated particles follow what would be expected [28].

(a)

(b)

Figure 9. Particle attributes over time and varying elevation for: (a) eight dry air particles (b) eight
saturated air particles; note that the grayscale indicates the particles are saturated.

3.2. Halo Depth

The addition of air particles to the ICAR model required the increase of the halo depth
from one to two, and this study wanted to quantify the effects of increasing halo depth size.

90

ChemEng 2021, 5, 21

Increasing the halo depth size results in creating more data that need to be communicated
during the halo exchange. Another benefit of understanding the performance cost is
that different numerical methods, possibly used for greater precision, could require larger
stencils that would also increase the halo depth size. In Figure 10, the performance is shown
as the depth of the halo region is increased using grid dimensions of size 500 × 500 × 30
and 2000 × 2000 × 30. For those two sizes, this graph shows the scaling of one node using
44 cores and two nodes using 22 cores each. The reason for increasing the node count while
keeping the work per image constant is to summarize the cost of intranode communication
with halo depth variance. Figure 10 shows that while increased halo depth affects run-time,
splitting the work across nodes in this case had minimal effect on performance.

Figure 10. Effects of changing halo depth using a Cray machine.

3.3. Particle Count and Wind Speed

In addition to halo depth, the wind speed and particle count are variables that could
possibly affect performance. As wind speed increases the amount of particles to communi-
cate across, image boundaries will naturally increase. The particles are moving faster and
will cross an image boundary in a shorter time frame. A larger number of particles would
also translate to a larger amount of particles being transferred across image boundaries.
Additionally, as the number of particles increases, it is intuitive that the computation cost
to extract environmental information for the particle physics would also grow. The graph
in Figure 11 attempts to isolate the effects of adding particles to the model by looking at the
performance cost of increasing the particle count of two types of particles. Additionally,
the graphs in Figure 12 attempt to examine the effects of wind on the number of particles
communicated, how that communication looks, and the performance.

Figure 11. Performance effects of increasing the particle count using a Cray machine.

91

ChemEng 2021, 5, 21

Figure 11 shows the computation costs of saturated and unsaturated particles as the
number of particles increases. For these runs, wind speed was changed to zero, so no
communication cost was measured. This figure was run on a single node of the Cray
machine with 44 images. The number of particles per image ranged from one to two
million, for a total of 88 million particles. The domain was 200 × 200 × 30, and the problem
was run for 200 time steps, with 19 additional time steps of 1 s for the particles. There
was clearly linear growth for both dry and saturated air particles. The cost of saturated
particles grew at a faster rate, with the time cost of 88 million particles being ∼9.5 times
the dry particles. One-point-one million saturated particles took ∼1.7 times, and the dry
particles and 2.2 million saturated particles took ∼2.5 times. Therefore, around 1.5 million
particles, the cost of saturated particles doubled the cost of dry particles. The additional
performance cost of the saturated air particles was intuitive since the anytime a particle’s
relative humidity was over 100%, an iterative process was used to calculate the exact
change in temperature and water mass.

(a)

(b)

Figure 12. On a Cray machine. (a) The effects of wind speed with varying particle count using dry
and saturated particles. (b) The number of total particles communicated with the change in wind.

To examine the effects of wind speed on the model, we first turn to Figure 12a.
This figure was created using a problem domain of 500 × 500 × 30 over 200 time steps.
The runs were done with initially dry or saturated particles and a total particle count

92

ChemEng 2021, 5, 21

of around 250 thousand, 1 million, and 5 million particles. The 250 thousand particles
were chosen as the starting point since that would equate to a particle per horizontal
grid cell. In all of the varying particle count, the results showed the expected behavior
of saturated particles taking more time than unsaturated. As the particle count grew, so
did the difference between dry and saturated. This was also an intuitive result since each
saturated particle had to perform an iterative process to correctly convert water vapor and
cloud water. What was more unexpected was that after an initial performance hit from
increased communication, there was negligible cost as the wind speed increased. This was
most clearly shown in the five million particle run, where from 0 m/s to 1 m/s, there was a
4.03% performance cost, but from 4 to 8 m/s, there was a 0.45% increase.

Examining Figure 12b shows a linear increase in the number of particles communicated
when the wind speed was increased in the model. For five million particles, a change of 0 to
1 m/s in wind speed resulted in zero total particles communicated to 1,048,073. That initial
cost of one million particles communicated took an extra 4.03% of the initial time. Compare
that with the 0.45% cost when moving from 4 to 8 m/s, even though 4,819,692 additional
particles were communicated. This indicated that there was a cost to the communication
phase of the particles, but that it did not matter how often they were communicated.

All the previous runs were done on one node, meaning that the communication would
all be inter-node. This choice was made due to the exponential growth of runs that would
have to be done if this were scaled out to include more nodes. To get a feel for the intra- vs.
inter-node communication though, additional runs were done holding the image count
constant, but adding two and four nodes. The runs were done over 200 time steps with
a wind speed of 8 m/s and with dry air particles. Table 1 shows that running a total of
44 images with one or two nodes leads to approximately the same performance while the
jump to four nodes results in a 29.5% performance increase.

Table 1. Inter- vs. intra-node communication.

Nodes Images

Time Average
Time (s)

Percent of
Time

Average Time (s) Percent of Time
Average

Maximum

(s.) PGAS PGAS __pgas_sync_all __pgas_sync_all
Memory

Usage (MBs)

1 44 235.58 12.37 5.0% 6.47 2.6% 100
2 44 234.93 — — — — —
4 44 165.55 24.49 13.0% 10.88 5.8% 468.8

2 88 117.61 — — — — —
4 176 59.6 — — — — —

This jump in performance was a surprising result and required further investigation.
Cray’s Performance Tools were used to look closely at the data to understand what was
occurring. The percent of time spent using PGAS functions was as expected much higher
for the four node version, 13.0% vs. 5.0%. While the largest PGAS function in the single-
node version was sync all, at 2.6%, for the four-node version it was co_broadcast at 6.0%.
The co_broadcast was used in the initial setup phase of the model to communicate physics
calculations to all images. The table conveys that sync all within the retrieve function
used by the particles took up most of the wait time, but the actual communication of the
data did not. The __pgas_put_nbi, used by the particle communication function, took 0.0%
and 0.1% of the time for the single- and four-node runs. From testing, it appeared that in
__pgas_put_nbi, nbi likely stood for the non-blocking interface, since it was called when
a non-blocking put was specifically requested with the !DIR$ PGAS DEFER_SYNC directive.
Two things should be noted from this part of the analysis. First, the particle communication
in this method took almost no time, and it was the syncs during the unloading of the
communication buffers that took the time. Second, despite PGAS taking much longer on
the four-node version, it still ran 29.5% faster. It could possibly be from the larger amount

93

ChemEng 2021, 5, 21

of memory each image used, but further investigation would be needed. This would fall
in line with what has been noted before, that increasing memory per core will increase
performance before reaching saturation [38].

Analysis was done on the distribution of the number of particles communicated.
Figure 13a was created using a base wind speed of 8.0 m/s on a 500 × 500 × 30 domain.
This figure exhibits how with varying particle counts, the distribution of how many times
a particle is communicated will stay relatively constant. The consistency in the distribution
suggests we can fix the particle count, without loss of generality, to perform the runs done
in Figure 13b. Figure 13b was made with a particle count of 250 thousand. Figure 13b
shows the probability distribution of the number of times a particle is communicated as
the wind speed changes. Again, this confirmed that particles were being communicated as
expected. These figures and Figure 12a,b express that despite linear growth in the number
of particles communicated with an increase in wind speed, only the initial increase had a
noticeable effect on the runtime.

Particle Communication Distribution

(a)

(b)

Figure 13. (a) Distribution of particles communicated with the change in particle count. (b) Distribu-
tion of particles communicated with the change in wind speed.

94

ChemEng 2021, 5, 21

3.4. Scaling and Speedup

As is common practice, we present both strong and weak scaling results to evaluate
the performance. Strong scaling suggests that the overall problem size is fixed, and
performance is assessed by increasing the number of images. In weak scaling, the size of
the problem is fixed per image; therefore, the overall problem size is scaled along with the
number of images. The following strong scaling runs were done on a 500 × 500 × 30 and
2000 × 2000 × 30 domain size on both the CRAYand SGI HPC systems. The weak scaling
runs were done using 12 thousand and 768 thousand grid points per process. Both strong
and weak scaling were run for 200 time steps with each time step being 20 s. The convected
air particles’ time steps were run every second.

The strong scaling experiments, Figure 14a,b, were created using one image and
doubling until 36 images. After that, the full processor count of the nodes was used,
which for the Cray cluster was 44 processes times the node count and for the SGI cluster
36 processes times the node count. The number of nodes was doubled every time, up to
16 nodes with a total of 704 processes.

Strong Scaling

(a)

(b)

Figure 14. Log-log graphs of the domains of (a) grid dimensions 500 × 500 × 30 and (b) grid
dimensions 2000 × 2000 × 30.

95

ChemEng 2021, 5, 21

In Figure 14a, the air particles are one per horizontal grid cell. This graph shows that
the addition of particles did not really affect the runtime and scaled at the same pace as
the particle-less runs. Figure 14b shows that the addition of particles had a consistent
cost that did not disappear. However, it also shows that the addition of particles did
not affect the scaling on the larger domain size. The strong scaling efficiency, defined
as T1

n×tn
× 100, is shown in Figure 15a,b. T1 is the time to complete the work using one

processor; n is the number of processors used; and tn is the amount of time n processors
took to complete. Figure 15a shows that the strong scaling efficiency for the SGI machine
did not seem to be affected by the addition of particles. On the Cray machine, the efficiency
of the run with particles actually increased. This actually switched around with the larger
problem domain, where the addition of particles made the efficiency slightly worse. This
seemed to indicate that as the problem size grew, the efficiency cost of the addition of
particles would be less and less.

Strong Scaling Efficiency

(a)

(b)

Figure 15. (a) Grid dimensions 500 × 500 × 30. (b) Grid dimensions 2000 × 2000 × 30.

96

ChemEng 2021, 5, 21

In Figure 16a,b, the weak scaling results are shown. When the runs were done
with particles, a particle per cell was used. Figure 16a starts at the size 20 × 20 × 30,
and Figure 16b starts at 160 × 160 × 30. In both figures, the runtime increases until the node
processes are all used, at which point the scaling generally levels out. This first increase
indicated better cache use and lower communication cost of a single processor. Figure 16a’s
runtimes are rather low, ranging from 1.15 to 3.2 s. This might be the reason the weak
scaling curve never flattened, but oscillated up and down. Figure 16b on the other hand
has a weak scaling curve that flattens as all of the first node’s 36 or 44 processors are being
used and stays flat. Thus, it can be said that linear scaling was achieved and that the ICAR
application with and without particles should scale well with larger processor counts. This
matched the strong scaling results as well.

Weak Scaling

(a)

(b)

Figure 16. (a) Twelve-thousand grid cells per process; (b) 768 k grid cells per process.

97

ChemEng 2021, 5, 21

4. Conclusions

The strong and weak scaling graphs showed that the ICAR model scales well and that
the addition of the semi-Lagrangian convected air particles does not affect the scaling. The
weak scaling indicated that the framework of communicating the convected air particles
immediately upon leaving an image’s boundary is an effective way to take advantage
of scaling. The strong scaling efficiency suggested that there is better efficiency as the
problem size grows. This would need to be tested on larger problem sizes, but the scaling
for 2000 × 2000 × 30 was better than 500 × 500 × 30. Furthermore, at 2000 × 2000 × 30,
Figure 15b suggested that the scaling efficiency levels off for runs with and without parti-
cles, which is desirable.

Investigating the particle communication showed that there was an initial performance
hit from communicating the air particles. After that original hit though, increasing the
number of times a particle was communicated across boundaries had a minimal effect on
the performance. The cost of the communication of the air particles really comes from
the cost of the synchronization points. The synchronization time of the air particles took
2.6% and 5.8% of the time for one and four nodes. Communicating the particles across the
boundaries took 0.0% and 0.1% percent of the time; note this percentage and the rounding
were done by the performance tool.

This work showed that there was a performance cost of adding air particles, but that
it did not affect the HPC scalability of the original program. Scaling to a large number of
images is a very important feature of any scientific code, even more so in our case where the
underlying problem is that of downscaling atmospheric models. Hence, if the introduction
of semi-Lagrangian convected air particles did not scale well, our approach would conflict
with the primary goal of the underlying model.

Within the ICAR model, it indicates the benefit of spending more time in the future to
make some of the processing more efficient. Currently, the air particle physics are calculated
every second, and comparing that with the environment time step being 20 s, there is room
for improvement. If additional features of air particles are deemed helpful for the ICAR
model, it shows that they should not affect scaling; for example, the extra computation
from calculating the coriolis force due to the Earth’s rotation. Additionally, it would be
beneficial to have the particles interact more with the surrounding environment. Currently,
the environment is used to calculate buoyancy forces and saturation ratios, but once cloud
water is converted, the particle never “rains”.

Author Contributions: Conceptualization, S.R., E.D.G., I.M., and S.F.; data curation, S.R.; formal
analysis, S.R. and E.D.G.; investigation, S.R. and E.D.G.; methodology, S.R., E.D.G., I.M. and S.F.;
software, S.R. and E.D.G.; supervision, E.D.G., I.M. and S.F.; validation, S.R. and E.D.G.; visualization,
S.R.; writing—original draft, S.R.; writing—review and editing, S.R., E.D.G., I.M. and S.F. All authors
read and agreed to the published version of the manuscript.

Funding: The National Center for Atmospheric Research is sponsored by the National Science
Foundation. Funding support provided by the U.S. Army Corps of Engineers. The author Soren
Rasmussen is funded by a fellowship provided by Sourcery Institute.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository. The data presented
in this study are openly available in scrasmussen/icar_data at 10.5281/zenodo.4734314.

Acknowledgments: We would like to acknowledge the high-performance computing support from
Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems
Laboratory, sponsored by the National Science Foundation. We would also like to acknowledge the
high-performance computing support from Swan provided by Cray Inc.

Conflicts of Interest: The author Soren Rasmussen is funded by a fellowship provided by Sourcery
Institute. The funders had no role in the design of the study; in the collection, analyses, or interpreta-
tion of data; in the writing of the manuscript; nor in the decision to publish the results. Cray Inc. had

98

ChemEng 2021, 5, 21

no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing
of the manuscript; nor in the decision to publish the results.

References

1. Gutmann, E.; Barstad, I.; Clark, M.; Arnold, J.; Rasmussen, R. The intermediate complexity atmospheric research model (ICAR). J.
Hydrometeorol. 2016, 17, 957–973. [CrossRef]

2. Bernhardt, M.; Härer, S.; Feigl, M.; Schulz, K. Der Wert Alpiner Forschungseinzugsgebiete im Bereich der Fernerkundung, der
Schneedeckenmodellierung und der lokalen Klimamodellierung. ÖSterreichische-Wasser-Und Abfallwirtsch. 2018, 70, 515–528.
[CrossRef]

3. Horak, J.; Hofer, M.; Maussion, F.; Gutmann, E.; Gohm, A.; Rotach, M.W. Assessing the added value of the Intermediate
Complexity Atmospheric Research (ICAR) model for precipitation in complex topography. Hydrol. Earth Syst. Sci. 2019,
23, 2715–2734. [CrossRef]

4. Horak, J.; Hofer, M.; Gutmann, E.; Gohm, A.; Rotach, M.W. A process-based evaluation of the Intermediate Complexity
Atmospheric Research Model (ICAR) 1.0. 1. Geosci. Model Dev. 2021, 14, 1657–1680. [CrossRef]

5. Numrich, R.W.; Reid, J. Co-Array Fortran for parallel programming. In ACM Sigplan Fortran Forum; ACM: New York, NY, USA,
1998; Volume 17:2, pp. 1–31.

6. ISO/IEC. Fortran Standard 2008; Technical report, J3; ISO/IEC: Geneva, Switzerland, 2010.
7. Coarfa, C.; Dotsenko, Y.; Mellor-Crummey, J.; Cantonnet, F.; El-Ghazawi, T.; Mohanti, A.; Yao, Y.; Chavarría-Miranda, D. An

evaluation of global address space languages: Co-array fortran and unified parallel C. In Proceedings of the tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Chicago, IL, USA, 15–17 June 2005; pp. 36–47.

8. Stitt, T. An Introduction to the Partitioned Global Address Space (PGAS) Programming Model; Connexions, Rice University: Houston,
TX, USA, 2009.

9. Mozdzynski, G.; Hamrud, M.; Wedi, N. A partitioned global address space implementation of the European centre for medium
range weather forecasts integrated forecasting system. Int. J. High Perform. Comput. Appl. 2015, 29, 261–273. [CrossRef]

10. Simmons, A.; Burridge, D.; Jarraud, M.; Girard, C.; Wergen, W. The ECMWF medium-range prediction models development of
the numerical formulations and the impact of increased resolution. Meteorol. Atmos. Phys. 1989, 40, 28–60. [CrossRef]

11. Jiang, T.; Guo, P.; Wu, J. One-sided on-demand communication technology for the semi-Lagrange scheme in the YHGSM. Concurr.
Comput. Pract. Exp. 2020, 32, e5586. [CrossRef]

12. Dritschel, D.G.; Böing, S.J.; Parker, D.J.; Blyth, A.M. The moist parcel-in-cell method for modelling moist convection. Q. J. R.
Meteorol. Soc. 2018, 144, 1695–1718. [CrossRef]

13. Böing, S.J.; Dritschel, D.G.; Parker, D.J.; Blyth, A.M. Comparison of the Moist Parcel-in-Cell (MPIC) model with large-eddy
simulation for an idealized cloud. Q. J. R. Meteorol. Soc. 2019, 145, 1865–1881. [CrossRef]

14. Brown, N.; Weiland, M.; Hill, A.; Shipway, B.; Maynard, C.; Allen, T.; Rezny, M. A highly scalable met office nerc cloud model.
arXiv 2020, arXiv:2009.12849.

15. Shterenlikht, A.; Cebamanos, L. Cellular automata beyond 100k cores: MPI vs. Fortran coarrays. In Proceedings of the 25th
European MPI Users’ Group Meeting, Barcelona, Spain, 23 September 2018; pp. 1–10.

16. Shterenlikht, A.; Cebamanos, L. MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata. Parallel Comput. 2019,
84, 37–49. [CrossRef]

17. Rasmussen, S.; Gutmann, E.D.; Friesen, B.; Rouson, D.; Filippone, S.; Moulitsas, I. Development and Performance Comparison
of MPI and Fortran Coarrays within an Atmospheric Research Model. Presented at the Workshop 2018 IEEE/ACM Parallel
Applications Workshop, Alternatives To MPI (PAW-ATM), Dallas, TX, USA, 16 November 2018.

18. Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion
modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [CrossRef]

19. Ngan, F.; Stein, A.; Finn, D.; Eckman, R. Dispersion simulations using HYSPLIT for the Sagebrush Tracer Experiment. Atmos.
Environ. 2018, 186, 18–31. [CrossRef]

20. Esmaeilzadeh, H.; Blem, E.; Amant, R.S.; Sankaralingam, K.; Burger, D. Dark silicon and the end of multicore scaling. In
Proceedings of the 2011 38th Annual International Symposium on Computer Architecture (ISCA), San Jose, CA, USA, 4–8 June
2011; pp. 365–376.

21. Moisseeva, N.; Stull, R. A noniterative approach to modelling moist thermodynamics. Atmos. Chem. Phys. 2017, 17. [CrossRef]
22. Stull, R.B. Practical Meteorology: An Algebra-Based Survey of Atmospheric Science; University of British Columbia: Vancouver, BC,

Canada, 2018.
23. Yau, M.K.; Rogers, R.R. A Short Course in Cloud Physics; Elsevier: Amsterdam, The Netherlands, 1996.
24. Rasmussen, S.; Gutmann, E. Coarray ICAR Fork. [Code]. Available online: github.com/scrasmussen/coarray_icar/releases/tag/

v0.1 (accessed on 14 January 2021).
25. Rasmussen, S.; Gutmann, E. ICAR Data. [Dataset]. Available online: github.com/scrasmussen/icar_data/releases/tag/v0.0.1

(accessed on 14 January 2021).
26. Mandl, F. Statistical Physics; Wiley: Hoboken, NJ, USA, 1971.
27. Marmelad. 3D Interpolation. Available online: https://en.wikipedia.org/wiki/Trilinear_interpolation#/media/File:3D_

interpolation2.svg (access on 14 January 2021).

99

ChemEng 2021, 5, 21

28. University of Wyoming. Upper Air Soundings. Available online: weather.uwyo.edu/upperair/sounding.html (accessed on 10
November 2020).

29. Sharma, A.; Moulitsas, I. MPI to Coarray Fortran: Experiences with a CFD Solver for Unstructured Meshes. Sci. Program. 2017,
2017, 3409647. [CrossRef]

30. Fanfarillo, A.; Burnus, T.; Cardellini, V.; Filippone, S.; Nagle, D.; Rouson, D. OpenCoarrays: Open-source transport layers
supporting coarray Fortran compilers. In Proceedings of the 8th International Conference on Partitioned Global Address Space
Programming Models, Eugene, OR, USA, 6–10 October 2014; pp. 1–11.

31. Feind, K. Shared memory access (SHMEM) routines. Cray Res. 1995, 53, 303–308.
32. HPE Cray. Cray Fortran Reference Manual; Technical Report; Cray Inc.: Seattle, DC, USA, 2018.
33. Shan, H.; Wright, N.J.; Shalf, J.; Yelick, K.; Wagner, M.; Wichmann, N. A preliminary evaluation of the hardware acceleration of

the Cray Gemini interconnect for PGAS languages and comparison with MPI. ACM Sigmetrics Perform. Eval. Rev. 2012, 40, 92–98.
[CrossRef]

34. Shan, H.; Austin, B.; Wright, N.J.; Strohmaier, E.; Shalf, J.; Yelick, K. Accelerating applications at scale using one-sided
communication. In Proceedings of the Conference on Partitioned Global Address Space Programming Models (PGAS’12), Santa
Barbara, CA, USA, 10–12 October 2012.

35. Shende, S.S.; Malony, A.D. The TAU parallel performance system. Int. J. High Perform. Comput. Appl. 2006, 20, 287–311. [CrossRef]
36. Ramey, C.; Fox, B. Bash 5.0 Reference Manual. 2019. Available online: gnu.org/software/bash/manual/ (accessed on 12 May

2020).
37. Kaufmann, S.; Homer, B. Craypat-Cray X1 Performance Analysis Tool; Cray User Group: Seattle, DC, USA, 2003; pp. 1–32.
38. Zivanovic, D.; Pavlovic, M.; Radulovic, M.; Shin, H.; Son, J.; Mckee, S.A.; Carpenter, P.M.; Radojković, P.; Ayguadé, E. Main

memory in HPC: Do we need more or could we live with less? ACM Trans. Archit. Code Optim. (TACO) 2017, 14, 1–26. [CrossRef]

100

chemengineering

Article

How to Modify LAMMPS: From the Prospective of a Particle
Method Researcher

Andrea Albano 1,*, Eve le Guillou 2, Antoine Danzé 2, Irene Moulitsas 2, Iwan H. Sahputra 1,3, Amin Rahmat 1,

Carlos Alberto Duque-Daza 1,4, Xiaocheng Shang 5, Khai Ching Ng 6, Mostapha Ariane 7 and Alessio Alexiadis 1,*

��������	
�������

Citation: Albano, A.; le Guillou, E.;

Danzé, A.; Moulitsas, I.; Sahputra,

I.H.; Rahmat, A.; Duque-Daza, C.A.;

Shang, X.; Ching Ng, K.; Ariane, M.;

et al. How to Modify LAMMPS: From

the Prospective of a Particle Method

Researcher. ChemEng 2021, 5, 30.

https://doi.org/10.3390/

chemengineering5020030

Academic Editors: Mark P. Heitz and

Andrew S. Paluch

Received: 11 January 2021

Accepted: 26 May 2021

Published: 13 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
halimits@yahoo.com (I.H.S.); A.Rahmat@bham.ac.uk (A.R.); C.A.Duque-Daza@bham.ac.uk (C.A.D.-D.)

2 Centre for Computational Engineering Sciences, Cranfield University, Bedford MK43 0AL, UK;
Eve.M.Le-Guillou@cranfield.ac.uk (E.l.G.); A.Danze@cranfield.ac.uk (A.D.); i.moulitsas@cranfield.ac.uk (I.M.)

3 Industrial Engineering Department, Petra Christian University, Surabaya 60236, Indonesia
4 Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia,

Bogotá 111321, Colombia
5 School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;

X.Shang.1@bham.ac.uk
6 Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia,

Jalan Broga, Semenyih 43500, Malaysia; KhaiChing.Ng@nottingham.edu.my
7 Department of Materials and Engineering, Sayens-University of Burgundy, 21000 Dijon, France;

Mostapha.Ariane@u-bourgogne.fr
* Correspondence: axa1220@student.bham.ac.uk or aaalbano@gmail.com (A.A.);

a.alexiadis@bham.ac.uk (A.A.)

Abstract: LAMMPS is a powerful simulator originally developed for molecular dynamics that, today,
also accounts for other particle-based algorithms such as DEM, SPH, or Peridynamics. The versatility
of this software is further enhanced by the fact that it is open-source and modifiable by users. This
property suits particularly well Discrete Multiphysics and hybrid models that combine multiple
particle methods in the same simulation. Modifying LAMMPS can be challenging for researchers
with little coding experience. The available material explaining how to modify LAMMPS is either
too basic or too advanced for the average researcher. In this work, we provide several examples, with
increasing level of complexity, suitable for researchers and practitioners in physics and engineering,
who are familiar with coding without been experts. For each feature, step by step instructions for
implementing them in LAMMPS are shown to allow researchers to easily follow the procedure and
compile a new version of the code. The aim is to fill a gap in the literature with particular reference
to the scientific community that uses particle methods for (discrete) multiphysics.

Keywords: LAMMPS; particle method; discrete multiphysics

1. Introduction

LAMMPS, acronym for Large-scale Atomic/Molecular Massively Parallel Simulator,
was originally written in F77 by Steve Plimpton [1] in 1993 with the goal of having a
large-scale parallel classical Molecular Dynamic (MD) code. The project was a Cooperative
Research and Development Agreement (CRADA) between two DOE labs (Sandia and
LLNL) and three companies (Cray, Bristol Myers Squibb, and Dupont). Since the initial
release LAMMPS has been improved and expanded by many researchers who imple-
mented many mesh-free computational methods such as Perydynamics, Smoothed particle
hydrodynamics (SPH), Discrete Elemet Method (DEM) and many more [2–11].

Such a large number of computational methods within the same simulator allows
researchers to easily combine them for the simulation of complex phenomena. In particular,
our research group has used during the years LAMMPS in a variety of settings that go from
classic Molecular Dynamics [12–16], to Discrete Multiphysics simulations of cardiovascular

ChemEng 2021, 5, 30. https://doi.org/10.3390/chemengineering5020030 https://www.mdpi.com/journal/chemengineering

101

ChemEng 2021, 5, 30

flows [17–20], Modelling drug adsorption in human organs [21–24], Cavitation [25–27],
multiphase flow containing cells or capsules [28–31], solidification/dissolution [32–34],
material properties [35,36] and even epidemiology [37] and coupling particles methods
with Artificial Intelligence [38–40]. An example of a Discrete Multiphysics simulation run
with the basic LAMMPS’s code is shown in Appendix A.

Thanks to its modular design open source nature and its large community, LAMMPS
has been conceived to be modified and expanded by adding new features. In fact, about
95% of its source code is add-on file [41]. However, this can be a tough challenge for
researcher with no to little knowledge of coding. The LAMMPS user manual [41] describes
the internal structure and algorithms of the code with the intent of helping researcher to
expand LAMMPS. However, due to the lack of examples of implementation and validation,
the document can be hard to read for user who are not programmers. In fact, the available
material is either very basic [41] or requires advanced programming skills [42,43].

The aim of this work is to provide several step-by-step examples with increasing level
of complexity that can fill the gap in the middle to help and encourage researchers to use
LAMMPS for discrete multiphysics and expand it with new adds on to the code that could
fit their needs. In fact, most of the available material focuses on Molecular Dynamics (MD)
and implicitly assumes that the reader’s background is in MD rather than other particle
methods such as SPH or DEM. On the contrary, this paper is dedicated to the particle
community and highlights how LAMMPS can be used and modified for methods other
than MD. This goal fits particularly well with the scope of this Special Issue on “Discrete
Multiphysics: Modelling Complex Systems with Particle Methods” In particular, it relates
to some of the topics of the Special Issue such by exploring the potential of LAMMPS for
coupling particle methods, and by sharing some “tricks of the trade” on how to modify its
code that cannot be found anywhere else in the literature.

In Section 2 LAMMPS structure and hierarchy are explained introducing the concept
of style. Following the LAMMPS authors advice, to avoid writing a new style from scratch,
Sections 3–6 new styles are developed using existing style are as reference. Finally, in
Section 7, all the steps to write a class from scratch are shown.

2. LAMMPS Structure

After initial releases in F77 and F90, LAMMPS is now written in C++, an object
oriented language that allows any programmer to exploit the class programming paradigm.
The declaration of a class, including the signature of the instance variables and functions
(or methods), which can be accessed and used by creating an instance of that class. The
data and functions within a class are called members of the class. The definition (or
implementation) of a member function can be given inside or outside the class definition.

A class has private, public, and protected sections which contain the corresponding
class members.

• The private members, defined before the keyword public, cannot be accessed from
outside the class. They can only be accessed by class or “friend” functions, which are
declared as having access to class members, without themselves being members. All
the class members are private by default.

• The public members can be accessed from outside the class anywhere within the scope
of the class object.

• The protected members are similar to private members but they can be accessed by
derived classes or child classes while private members cannot.

2.1. Inheritance

An important concepts in object-oriented programming is that of inheritance. Inher-
itance allows to define a class in terms of another class and the new class inherits the
members of the existing class. This existing class is called the base (or parent) class, and
the new class is referred to as a subclass, or child class, or derived class.

102

ChemEng 2021, 5, 30

The idea of inheritance implements the “is a” relationship. For example, Mammal
IS-A Animal, Dog IS-A Mammal hence Dog IS-A Animal as well.

The inheritance relationship between the parent and the derived classes is declared in
the derived class with the following syntax:

Listing 1: C++ syntax for classes inheritance

1 class name_child_class: access_specifier name_parent_class

2 { /*...*/ };

The type of inheritance is specified by the access-specifier, one of public, protected,
or private. If the access-specifier is not used, then it is private by default, but public
inheritance is commonly used: public members of the base class become public members
of the derived class and protected members of the base class become protected members
of the derived class. A base class’s private members are never accessible directly from a
derived class, but can be accessed through calls to the public and protected members of the
base class.

2.2. Virtual Function

The signature of a function f must be declared with a virtual keyword in a base class C
to allow its definition (implementation), or redefinition, in a derived class D. Then, when a
derived class D object is used as an element of the base class C, and f is called, the derived
class’s implementation of the function is executed.

There is nothing wrong with putting the virtual in front of functions inside of the
derived classes, but it is not required, unless it is known for sure that the class will not
have any children who would need to override the functions of the base class. A class that
declares or inherits a virtual function is called a polymorphic class.

2.3. LAMMPS Inheritance and Class Syntax

A schematic representation of the LAMMPS inheritance tree is shown in Figure 1:
LAMMPS is the top-level class for the entire code, then all the core classes, highlighted in
blue, inherit all the constructors, destructors, assignment operator members, friends and
private members declared and defined in LAMMPS. The core classes perform LAMMPS
fundamental actions. For instance, the Atom class collects and stores all the per-atom, or
per-particle, data while Neighbor class builds the neighbor lists [41].

The style classes, highlighted in reds, inherit all the constructors, destructors, assign-
ment operator members, friends and private members declared and defined in LAMMPS
and in the corresponding core class. The style classes are also virtual parents class of many
child classes that implement the interface defined by the parent class. For example, the fix
style has around 100 child classes.

Each style is composed of a pair of files:

• namestyle.h
The header of the style, where the class style is defined and all the objects, methods
and constructors are declared.

• namestyle.cpp
Where all the objects, methods and constructors declared in the class of style are
defined.

When a new style is written both namestyle.h and namestyle.cpp files need to
be created.

Each “family” style has its own set of methods, declared in the header and defined in
the cpp file, in order to define the scope of the style. For example, the pair style are classes
that set the formula(s) LAMMPS uses to compute pairwise interactions while bond style
set the formula(s) to compute bond interactions between pairs of atoms [41].

Each pair style has some recurrent functions such as compute, allocate and coeff.
Although the final scope of those functions can differ for different styles, they all share a
similar role within the classes.

103

ChemEng 2021, 5, 30

LAMMPS

Memory

Timer

Force

KSpace
Remap

FFT3D

Improper

Dihedral

Bond BondHarmonic

Angle

Pair PairSPHTaitwater

Error

Input
Command

Special

Finish

Variable

Modify
Compute

Fix FixMesoStationary

Group

Neighbor
NeighRequest

NeighList

Common
Lattice

Region

Output

Thermo

Dump

WriteRestart

Universe

Atom AtomVec

Common Irregular

Update
Min

Integrate

Figure 1. Class hierarchy within LAMMPS source code.

An example of a pair style, sph/taitwater, header in LAMMPS is shown in Listing 2.

Listing 2: Header file of sph/taitwater pair style (pair_sph_taitwater.h)

1 class PairSPHTaitwater: public Pair{// class definition, accessibility and Inheritance

2 public: // access specifier: public

3 // public methods

4 PairSPHTaitwater(class LAMMPS *); // Constructors

5 virtual ∼PairSPHTaitwater(); // Destructors

6 virtual void compute(int, int);

7 void settings(int, char **);

8 void coeff(int, char **);

9 virtual double init_one(int, int);

10 virtual double single(int, int, int, int, double, double, double, double &);

11

12 protected: // access specifier: protected

13 double *rho0, *soundspeed, *B;

14 double **cut,**viscosity;

15 int first;

16 // protected methods

17 void allocate();

18 };

104

ChemEng 2021, 5, 30

All the class members are defined in the cpp file. Taking sph/taitwater pair style as
reference, each method declared in Listing 2 will be defined and commented in the next
sections. Although this can be style-specific, the aim is to give an overview of how the
methods are defined in the cpp in LAMMPS. Albeit different style has different methods,
the understanding gained can be transferred into others style, as shown in Sections 3 and 6.

2.3.1. Constructor

Any class usually include a member function called constructors. The constructor
is mechanically invoked when an object of the class is created. This allows the class to
initialise members or allocate storage. Unlike the other member of the class, the constructor
name must match the name of the class and it does not have a return type.

Listing 3: Constructor definition in sph/taitwater pair style (pair_sph_taitwater.cpp)

1 PairSPHTaitwater::PairSPHTaitwater(LAMMPS *lmp) : Pair(lmp)

2 {

3 restartinfo = 0;

4 first = 1;

5 }

2.3.2. Destructor

The role of destructors is to de-allocate the allocated dynamic memory, see Section 2.3.8,
being mechanically invoked just before the end of the class lifetime. Similarly to construc-
tors, destructors does not have a return type and have the same name as the class name
with a tilde (∼) prefix.

Listing 4: Destructors definition in sph/taitwater pair style (pair_sph_taitwater.cpp)

1 PairSPHTaitwater::∼PairSPHTaitwater() {

2 if (allocated) { /// check if the pair style uses allocate, see Section 2.8

3 /// cleanup the memory used by allocate, see Section 2.8

4 memory->destroy(setflag);

5 memory->destroy(cutsq);

6 memory->destroy(cut);

7 memory->destroy(rho0);

8 memory->destroy(soundspeed);

9 memory->destroy(B);

10 memory->destroy(viscosity);

11 }

12 }

2.3.3. compute

compute is virtual member of the pair style and is one of the most relevant functions
in a number of classes in LAMMPS. For instance, in pair style classes is used to compute
pairwise interaction of the specific pair style. This can seen in the commented Listing 5,
where the force applied on a pair of neighboring particles is derived using the Tait equa-
tion, lines 131–151. In compute all the local parameters needed to compute the pairwise
interaction are declared and defined within the method.

Listing 5: compute definition in sph/taitwater pair style (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::compute(int eflag, int vflag) {

2

3 /// start variables and pointer declaration

4 int i, j, ii, jj, inum, jnum, itype, jtype;

5 double xtmp, ytmp, ztmp, delx, dely, delz, fpair;

6

7 int *ilist, *jlist, *numneigh, **firstneigh;

8 double vxtmp, vytmp, vztmp, imass, jmass, fi, fj, fvisc, h, ih, ihsq;

9 double rsq, tmp, wfd, delVdotDelR, mu, deltaE;

10 // end

11

12 if (eflag || vflag)

105

ChemEng 2021, 5, 30

13 ev_setup(eflag, vflag);

14 else

15 evflag = vflag_fdotr = 0;

16

17 /// others variables and pointers declaration and initialisation

18 double **v = atom->vest; // pass the value of the pointer that points to a pointers

19 // pointing to the first element of velocity vector of the particles

20 double **x = atom->x; // pass the value of the pointer that points to a pointers

21 // pointing to the first element of position vector of the particles

22 double **f = atom->f; // pass the value of the pointer that points to a pointers

23 // pointing to the first element of force vector of the particles

24 double *rho = atom->rho; // pass the value of the pointer that points

25 // to the density vector of the particles

26 double *mass = atom->mass; // pass the value of the pointer that points

27 // to the mass vector of the particles

28 double *de = atom->de; // pass the value of the pointer that points

29 // to the change of internal energy of the particles

30 double *drho = atom->drho; // pass the value of the pointer that points

31 // to the change of density of the particles

32 int *type = atom->type; // pass the value of the pointer that points to the type of the
particles

33 int nlocal = atom->nlocal; // pass the value of the numbers of owned and ghost atoms on
this proc

34 int newton_pair = force->newton_pair; // pass the value of the Newton’s 3rd law
settings

35 /// end

36

37

38 // check consistency of pair coefficients

39

40 if (first) {

41 for (i = 1; i <= atom->ntypes; i++) {

42 for (j = 1; i <= atom->ntypes; j++) {

43 if (cutsq[i][j] > 1.e-32) {

44 if (!setflag[i][i] || !setflag[j][j]) {

45 if (comm->me == 0) {

46 printf(

47 "SPH particle types %d and %d interact with cutoff=%g,

48 but not all of their single particle properties are set.\n",

49 i, j, sqrt(cutsq[i][j]));

50 } } } } }

51 first = 0;

52 }

53

54

55 inum = list->inum; // pass the value of number of I atoms neighbors are stored for

56 ilist = list->ilist; // pass the value of the pointer pointing to the local indices of I
atoms

57 numneigh = list->numneigh; // pass the address of a pointer pointing to the number of J
neighbors

58 // for each I atom

59 firstneigh = list->firstneigh; // pass the value of a pointer that points to pointer

60 // pointing to 1st J int value of each I atom

61

62

63

64

65 for (ii = 0; ii < inum; ii++) { // loop for each i particles stored in inum

66 i = ilist[ii]; // pass the index of the i particle

67 xtmp = x[i][0]; // pass the x position of the i particle

68 ytmp = x[i][1]; // pass the y position of the i particle

69 ztmp = x[i][2]; // pass the z position of the i particle

70 vxtmp = v[i][0]; // pass the x velocity of the i particle

71 vytmp = v[i][1]; // pass the y velocity of the i particle

72 vztmp = v[i][2]; // pass the z velocity of the i particle

73 itype = type[i]; // pass the type of the i particle

74 jlist = firstneigh[i]; // pass the 1st J int value of each I atom

75 jnum = numneigh[i]; //pass number of J neighbors for each I atom

76

77 imass = mass[itype]; // pass the mass of the i particle

78

106

ChemEng 2021, 5, 30

79 // compute force of atom i with Tait EOS

80 tmp = rho[i] / rho0[itype];

81 fi = tmp * tmp * tmp;

82 fi = B[itype] * (fi * fi * tmp - 1.0) / (rho[i] * rho[i]);

83 // end

84

85 for (jj = 0; jj < jnum; jj++) { // loop over neighbours list of particle i

86 j = jlist[jj]; // pass the index of the j particle

87 j &= NEIGHMASK;

88

89 delx = xtmp - x[j][0]; // x distance between particles i and j

90 dely = ytmp - x[j][1]; // y distance between particles i and j

91 delz = ztmp - x[j][2]; // z distance between particles i and j

92 rsq = delx * delx + dely * dely + delz * delz; // squared distance between particles
i and j

93 jtype = type[j]; // pass the type of the i particle

94 jmass = mass[jtype]; // pass the mass of the j particle

95

96 if (rsq < cutsq[itype][jtype]) { // check if i and j are neighbor

97

98 h = cut[itype][jtype]; // pass the smoothing length

99 ih = 1.0 / h; // calculate the inverse, divisions are computationally expensive

100 ihsq = ih * ih; // squared inverse

101

102 wfd = h - sqrt(rsq);

103

104 if (domain->dimension == 3) {

105 // Lucy Kernel, 3d

106 wfd = -25.066903536973515383e0 * wfd * wfd * ihsq * ihsq * ihsq * ih;

107 } else {

108 // Lucy Kernel, 2d

109 wfd = -19.098593171027440292e0 * wfd * wfd * ihsq * ihsq * ihsq;

110 }

111

112 // compute force of atom j with Tait EOS

113 tmp = rho[j] / rho0[jtype];

114 fj = tmp * tmp * tmp;

115 fj = B[jtype] * (fj * fj * tmp - 1.0) / (rho[j] * rho[j]);

116 // end

117

118 // dot product of velocity delta and distance vector

119 delVdotDelR = delx * (vxtmp - v[j][0]) + dely * (vytmp - v[j][1])

120 + delz * (vztmp - v[j][2]);

121

122 // artificial viscosity (Monaghan 1992)

123 if (delVdotDelR < 0.) {

124 mu = h * delVdotDelR / (rsq + 0.01 * h * h);

125 fvisc = -viscosity[itype][jtype] * (soundspeed[itype]

126 + soundspeed[jtype]) * mu / (rho[i] + rho[j]);

127 } else {

128 fvisc = 0.;

129 }

130

131 fpair = -imass * jmass * (fi + fj + fvisc) * wfd; // total pair force

132 deltaE = -0.5 * fpair * delVdotDelR; // internal energy increment

133

134 // change in force in each direction for particle i

135 f[i][0] += delx * fpair;

136 f[i][1] += dely * fpair;

137 f[i][2] += delz * fpair;

138

139 //change in density for particle i

140 drho[i] += jmass * delVdotDelR * wfd;

141

142 // change in internal energy for particle i

143 de[i] += deltaE;

144

145 if (newton_pair || j < nlocal) {

146 // change in force in each direction for particle j

107

ChemEng 2021, 5, 30

147 f[j][0] -= delx * fpair;

148 f[j][1] -= dely * fpair;

149 f[j][2] -= delz * fpair;

150

151 de[j] += deltaE; // change in internal energy for particle j

152

153 drho[j] += imass * delVdotDelR * wfd; // change in density for particle j

154 }

155

156 if (evflag)

157 ev_tally(i, j, nlocal, newton_pair, 0.0, 0.0, fpair, delx, dely, delz);

158 }

159 }

160 }

161

162 if (vflag_fdotr) virial_fdotr_compute();

163 }

2.3.4. settings

settings is a public void function that reads the input script checking that all the
arguments of the pair style are declared. If arguments are present, settings stores them so
they can be used by compute. Examples for no arguments pair style and arguments pair
style input script with the corresponding settings are listed below:

• No arguments pair style: sph/taitwater
As described in the SPH for LAMMPS manual [6], the command line to invoke the
sph/taitwater pair style is shown in Listing 6.

Listing 6: Command line to invoke sph/taitwater pair style

1 pair_style sph/taitwater

In this pair style there is just a string defining the pair style, sph/taitwater, with
no arguments. For this reason in settings, Listing 7, when the if statement is true
(number of arguments other than zero) an error is produced.

Listing 7: setting definition in sph/taitwater pair style (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::settings(int narg, char **arg) {

2 if (narg != 0) /// check the number of arguments

3 error->all(FLERR,"Illegal number of setting arguments for pair_style sph/
taitwater");

4 }

• Arguments pair syle: sph/rhosum
As described in the SPH for LAMMPS manual [6], the command line to invoke the
sph/rhosum pair style is shown in Listing 8.

Listing 8: Command lines to invoke sph/rhosum pair style

1 pair_style sph/rhosum Nstep

In this pair style there is a string defining the pair style, sph/rhosum, plus one argu-
ment, Nstep. For this reason in settings, Listing 9, when the if statement is true
(number of arguments other than one) an error is produced. When the if statement is
false settings assigns the value of Nstep in the variable nstep, line 5, by using the
inumeric function defined in the force class.

Listing 9: setting definition in sph/rhosum pair style (pair_sph_rhosum.cpp)

1 void PairSPHRhoSum::settings(int narg, char **arg) {

2 if (narg != 1) /// check the number of arguments

3 error->all(FLERR,

4 "Illegal number of setting arguments for pair_style sph/rhosum");

5 nstep = force->inumeric(FLERR,arg[0]); // store the variable in the position 0 (Nstep)
into nstep

6 }

108

ChemEng 2021, 5, 30

2.3.5. coeff

Similar to setting, coeff is a public void function that reads and set the coefficients
used in by compute of the pair style. For each i j pair is possible to set different coefficients.
The coefficients are passed in the input file with the command line pair coeff, see Listing 10.
As before, examples for different pair coeff input script and the corresponding coeff are
listed below:

• sph/taitwater

As described in the SPH for LAMMPS manual [6], the command line to invoke
sph/taitwater pair coeff is shown in Listing 10.

Listing 10: Command line to invoke sph/taitwater pair coeff

1 pair_coeff I J rho_0 c_0 alpha h

In total there are six arguments. Thus, in coeff, Listing 11, when if statement is true
(number of arguments other than six) an error is produced. When the if statement
is false coeff assigns the type of particles I and J plus the value of rho_0, c_0, alpha
and h in from the string to the variables by using the numeric function defined in
force class. At last, within the double for loop from line 19 to 32, the variables are
assigned for each particles.

Listing 11: coeff definition in sph/taitwater pair style (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::coeff(int narg, char **arg) {

2 if (narg != 6) /// check the number of arguments

3 error->all(FLERR,

4 "Incorrect args for pair_style sph/taitwater coefficients");

5 if (!allocated) /// check if allocate has been called

6 allocate(); /// call allocate, see section 2.8

7

8 int ilo, ihi, jlo, jhi;

9 force->bounds(arg[0], atom->ntypes, ilo, ihi);

10 force->bounds(arg[1], atom->ntypes, jlo, jhi);

11

12 /// store the variables in the position 2--5

13 double rho0_one = force->numeric(FLERR,arg[2]);

14 double soundspeed_one = force->numeric(FLERR,arg[3]);

15 double viscosity_one = force->numeric(FLERR,arg[4]);

16 double cut_one = force->numeric(FLERR,arg[5]);

17 /// B_one is a constant used in tait EOS inside compute, see section 2.3

18 double B_one = soundspeed_one * soundspeed_one * rho0_one / 7.0;

19

20 /// assign the coefficient to the corresponding particle (i)

21 /// and to the pair of particles (i,j)

22 int count = 0;

23 for (int i = ilo; i <= ihi; i++) {

24 rho0[i] = rho0_one;

25 soundspeed[i] = soundspeed_one;

26 B[i] = B_one;

27 for (int j = MAX(jlo,i); j <= jhi; j++) {

28 viscosity[i][j] = viscosity_one;

29 cut[i][j] = cut_one;

30

31 setflag[i][j] = 1;

32

33 count++;

34 }

35 }

36 if (count == 0) /// check if the arguments have been assigned

37 error->all(FLERR,"Incorrect args for pair coefficients");

38 }

• sph/rhosum

As described in the SPH for LAMMPS manual [6], the syntax to invoke the command
is shown in Listing 12.

109

ChemEng 2021, 5, 30

Listing 12: Command lines to invoke sph/rhosum pair style

1 pair_coeff I J h

In this case there are three arguments. Thus, in the coeff, Listing 13, when the if

statement is true (number of arguments other than six) an error is produced. When
the error is not produced function assigns the type of particles I and J plus the value of
h in the string to the variable cut_one, line 11, by using bounds and numeric function
defined in force class. At last, within the double for loop from line 14 to 20, the
variables are assigned for each particles.

Listing 13: coeff definition in sph/rhosum pair style (pair_sph_rhosum.cpp)

1 void PairSPHRhoSum::coeff(int narg, char **arg) {

2 if (narg != 3) /// check the number of arguments

3 error->all(FLERR,"Incorrect number of args for sph/rhosum coefficients");

4 if (!allocated) /// check if allocate has been called

5 allocate(); /// call allocate, see section 2.8

6

7 int ilo, ihi, jlo, jhi;

8 force->bounds(arg[0], atom->ntypes, ilo, ihi);

9 force->bounds(arg[1], atom->ntypes, jlo, jhi);

10

11 double cut_one = force->numeric(FLERR,arg[2]);

12

13 /// assign the coefficient to the pair of particles (i,j)

14 int count = 0;

15 for (int i = ilo; i <= ihi; i++) {

16 for (int j = MAX(jlo,i); j <= jhi; j++) {

17 cut[i][j] = cut_one;

18 setflag[i][j] = 1;

19 count++;

20 }

21 }

22

23 if (count == 0) /// check if the arguments have been assigned

24 error->all(FLERR,"Incorrect args for pair coefficients");

25 }

2.3.6. init_one

init_one check if all the pair coefficients for a given i j pair have been assigned. If
they were assigned the methods ensure the symmetry of the matrix.

Listing 14: init_one definition in sph/taitwater pair style (pair_sph_taitwater.cpp)

1 double PairSPHTaitwater::init_one(int i, int j) {

2 /// check if the coefficient of the pair of particles (i,j) were assigned

3 if (setflag[i][j] == 0) {

4 error->all(FLERR,"Not all pair sph/taitwater coeffs are set");

5 }

6 /// ensure the matrix symmetry

7 cut[j][i] = cut[i][j];

8 viscosity[j][i] = viscosity[i][j];

9

10 return cut[i][j];

11 }

2.3.7. single

In single the force and energy of a single pairwise interaction, or single bond or angle
(in case of bond or angle style), between two atoms is evalutated. The method is specifically
invoked by the command line compute pair/local (or compute bond/local) to calculate
properties of individual pair, or bond, interactions [41].

110

ChemEng 2021, 5, 30

Listing 15: single definition in sph/taitwater pair style (pair_sph_taitwater.cpp)

1 double PairSPHTaitwater::single(int i, int j, int itype, int jtype,

2 double rsq, double factor_coul, double factor_lj, double &fforce) {

3 fforce = 0.0;

4

5 return 0.0;

6 }

2.3.8. allocate

allocate is a protected void function that allocates dynamic memory. The dynamic
memory allocation is used when the amount of memory needed depends on user input.
As explained before, at the end of the lifetime of the class, the destructors will de-allocate
the memory the memory used by allocate.

Listing 16: allocate definition in sph/taitwater pair style (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::allocate() {

2 allocated = 1; /// confirm that allocated has been called

3 int n = atom->ntypes; /// assigm the value of the number of types

4

5 memory->create(setflag, n + 1, n + 1, "pair:setflag");

6 for (int i = 1; i <= n; i++)

7 for (int j = i; j <= n; j++)

8 setflag[i][j] = 0;

9

10 /// allocate the memory for the arguments of the pair style

11 memory->create(cutsq, n + 1, n + 1, "pair:cutsq");

12 memory->create(rho0, n + 1, "pair:rho0");

13 memory->create(soundspeed, n + 1, "pair:soundspeed");

14 memory->create(B, n + 1, "pair:B");

15 memory->create(cut, n + 1, n + 1, "pair:cut");

16 memory->create(viscosity, n + 1, n + 1, "pair:viscosity");

17 }

3. Kelvin–Voigt Bond Style

We can use what we learned in the previous section to generate a new dissipative bond
potential that can be used to model viscoelastic materials. The Kelvin–Voigt model [44] is
used to model viscoelastic material as a purely viscous damper and purely elastic spring
connected in parallel as shown in Figure 2.

Since the two components of the model are arranged in parallel, the strain in each
component is identical:

εtot = εspring = εdamper. (1)

On the other hand, the total stress σtot will be split into σspring and σdamper to have εspring =
εdamper. Thus we have

σtot = σspring + σdamper. (2)

Combining Equations (1) and (2) with the constitutive relation for both the spring and the
dumper, σspring = kε and σdamper = bε̇ , is possible to write that

σ = kε(t) + b
dε(t)

dt
= kε(t) + bε̇, (3)

where k is the elastic modulus and b is the coefficient of viscosity. Equation (3) relates stress
to strain and strain rate for a Kelvin–Voigt material [44].

111

ChemEng 2021, 5, 30

Figure 2. Schematic representation of Kelvin–Voigt model [44].

Similarly to bond test to write a new pair style called bond kv we take the bond
harmonic pair style as reference. The new pair style is declared and initialised in bond_kv.h
and bond_kv.cpp saved in the /src/MOLECULE directory and its hierarchy is shown in
Figure 3.

LAMMPS Force Bond
BondKv

BondHarmonic

Figure 3. Class hierarchy of the new bond style.

3.1. Validation

The bond kv pair style has been validated by Sahputra et al. [45] in their Discrete
Multiphysics model for encapsulate particles with a soft outer shell.

3.2. bond_kv.cpp

All the functions will be the same as in the reference bond harmonic. However, in our
new bond kv, we need to substitute the “BondHarmonic” text by a new “BondKv” text, as
can be seen in Listings 17 and 18. Form now on, when we show a side-by-side comparison
between the reference and the modified file, we highlight in yellow the modified lines and
in red the deleted lines.

Listing 17: Original script (bond_harmonic.cpp)

1 #include "math.h"

2 #include "stdlib.h"

3 #include "bond_harmonic.h"

4 #include "atom.h"

5 #include "neighbor.h"

6 #include "domain.h"

7 #include "comm.h"

8 #include "force.h"

9 #include "memory.h"

10 #include "error.h"

11

12 using namespace LAMMPS_NS;

13

14 BondHarmonic::BondHarmonic(LAMMPS *lmp) : Bond(lmp)

15 {}

16 BondHarmonic::∼BondHarmonic()

17 { ... }

18 void BondHarmonic::compute(int eflag, int vflag)

19 { ... }

20 void BondHarmonic::allocate()

21 { ... }

22 void BondHarmonic::coeff(int narg, char **arg)

112

ChemEng 2021, 5, 30

23 { ... }

24 double BondHarmonic::equilibrium_distance(int i)

25 { ... }

26 void BondHarmonic::write_restart(FILE *fp)

27 { ... }

28 void BondHarmonic::read_restart(FILE *fp)

29 { ... }

30 void BondHarmonic::write_data(FILE *fp)

31 { ... }

32 double BondHarmonic::single(int type, double rsq,

33 int i, int j, double &fforce)

34 { ... }

Listing 18: Modified script (bond_kv.cpp)

1 #include "math.h"

2 #include "stdlib.h"

3 #include "bond_kv.h"

4 #include "atom.h"

5 #include "neighbor.h"

6 #include "domain.h"

7 #include "comm.h"

8 #include "force.h"

9 #include "memory.h"

10 #include "error.h"

11

12 using namespace LAMMPS_NS;

13

14 BondKv::BondKv(LAMMPS *lmp) : Bond(lmp)

15 {}

16 BondKv::∼BondKv()

17 { ... }

18 void BondKv::compute(int eflag, int vflag)

19 { ... }

20 void BondKv::allocate()

21 { ... }

22 void BondKv::coeff(int narg, char **arg)

23 { ... }

24 double BondKv::equilibrium_distance(int i)

25 { ... }

26 void BondKv::write_restart(FILE *fp)

27 { ... }

28 void BondKv::read_restart(FILE *fp)

29 { ... }

30 void BondKv::write_data(FILE *fp)

31 { ... }

32 double BondKv::single(int type, double rsq,

33 int i, int j, double &fforce)

34 { ... }

Compared to the bond harmonic we are introducing a new parameter, b, from the
input file. For this reason we need to modify destructor, compute, allocate, coeff,
write_restart and read_restart. Following the order of function initialisation, see
Listing 18, the destructor is modified as shown in Listing 20.

Listing 19: Original destructor (bond_harmonic.cpp)

1 BondHarmonic::∼BondHarmonic()

2 {

3 if (allocated) {

4 memory->destroy(setflag);

5 memory->destroy(k);

6 memory->destroy(r0);

7 }

8 }

113

ChemEng 2021, 5, 30

Listing 20: Modified destructor (bond_kv.cpp)

1 BondKv::∼ BondKv()

2 {

3 if (allocated) {

4 memory->destroy(setflag);

5 memory->destroy(k);

6 memory->destroy(r0);

7 memory->destroy(b); /* dashpot/damper costant */

8 }

9 }

The next function to modify is compute. The strain rate, ε̇, can also be seen as the speed
of deformation. To use it within the new pair style we need to declared and initialised the
velocities of each particles, see Listing 22.

Listing 21: Original compute (bond_harmonic.cpp)

1 void BondTest::compute(int eflag, int vflag)

2 {

3 int i1,i2,n,type;

4 double delx,dely,delz,ebond,fbond;

5 double rsq,r,dr,rk;

6

7 ebond = 0.0;

8 if (eflag || vflag) ev_setup(eflag,vflag);

9 else evflag = 0;

10

11 double **x = atom->x;

12 double **f = atom->f;

13 }

14 }

Listing 22: Modified compute (bond_kv.cpp)

1 void BondTest::compute(int eflag, int vflag)

2 {

3 int i1,i2,n,type;

4 double delx,dely,delz,ebond,fbond;

5 double rsq,r,dr,rk

6

7 /* declaration of new variables */

8 double delv_x, delv_y, delv_z;

9 double dir_vx1, dir_vy1, dir_vz1, dir_vx2, dir_vy2,

10 dir_vz2, dir_vx1, dir_vx1;

11 double rsq_x, rsq_y, rsq_z;

12 /* end declaration of new variables */

13

14

15

16 ebond = 0.0;

17 if (eflag || vflag) ev_setup(eflag,vflag);

18 else evflag = 0;

19

20 double **x = atom->x;

21 double **f = atom->f;

22 double **v = atom->v; /* delcaration and inizalitaizon

23 of a new pointer*/

24 }

25 }

Moreover, inside the loop for (n = 0; n < nbondlist; n++) of the original compute,
we need to add a new set of lines between the lines to calculate the spring force and the
lines to calculate force and energy increment. Those lines calculate velocities and directions
to compute the dashpot forces, see Listing 23.

Now is possible to write the new expression of the force applied to pair of atoms.

114

ChemEng 2021, 5, 30

Listing 23: Modified compute (bond_kv.cpp)

1 /* dashpot velocities and directions */

2 dev_x = v[i1][0] - v[i2][0];

3 dev_y = v[i1][1] - v[i2][1];

4 dev_z = v[i1][2] - v[i2][2];

5 rsq_vx = dev_x * dev_x;

6 rsq_vy = dev_y * dev_y;

7 rsq_vz = dev_z * dev_z;

8 velx = sqrt(rsq_vx);

9 vely = sqrt(rsq_vy);

10 velz = sqrt(rsq_vz);

11

12 if (v[i1][0] >= 0.0) dir_vx1 = 1;

13 else dir_vx1 = -1;

14

15 if (v[i1][1] >= 0.0) dir_vy1 = 1;

16 else dir_vy1 = -1;

17

18 if (v[i1][2] >= 0.0) dir_vz1 = 1;

19 else dir_vz1 = -1;

20

21 if (v[i2][0] >= 0.0) dir_vx2 = 1;

22 else dir_vx2 = -1;

23

24 if (v[i2][1] >= 0.0) dir_vy2 = 1;

25 else dir_vy2 = -1;

26

27 if (v[i2][2] >= 0.0) dir_vz2 = 1;

28 else dir_vz2 = -1;

Listing 24: Original compute (bond_harmonic.cpp)

1 if (newton_bond || i1 < nlocal) {

2 f[i1][0] += delx*fbond;

3 f[i1][1] += dely*fbond;

4 f[i1][2] += delz*fbond;

5 }

6

7 if (newton_bond || i2 < nlocal) {

8 f[i2][0] -= delx*fbond;

9 f[i2][1] -= dely*fbond;

10 f[i2][2] -= delz*fbond;

11 }

12

13 if (evflag) ev_tally(i1,i2,nlocal,

14 newton_bond,ebond,fbond,delx,dely,delz);

15 }

16 }

Listing 25: Modified compute (bond_kv.cpp)

1 /// eq 3 implementation for each force component

2 if (newton_bond || i1 < nlocal) {

3 f[i1][0] += (delx*fbond) - (dir_vx1*b[type]*velx);

4 f[i1][1] += (dely*fbond) - (dir_vy1*b[type]*vely);

5 f[i1][2] += (delz*fbond) - (dir_vy1*b[type]*velz);

6 }

7

8 if (newton_bond || i2 < nlocal) {

9 f[i2][0] -= (delx*fbond) - (dir_vx2*b[type]*velx);

10 f[i2][1] -= (dely*fbond) - (dir_vy2*b[type]*vely);

11 f[i2][2] -= (delz*fbond) - (dir_vz2*b[type]*velz);

12 }

13

14 if (evflag) ev_tally(i1,i2,nlocal,

15 newton_bond,ebond,fbond,delx,dely,delz);

16 }

17 }

115

ChemEng 2021, 5, 30

With the introduction of a new parameter in the pair style we need to make a new
dynamic memory allocation by modifying allocate.

Listing 26: Original allocate (bond_harmonic.cpp)

1 void BondHarmonic::allocate()

2 {

3 allocated = 1;

4 int n = atom->nbondtypes;

5

6 memory->create(k,n+1,"bond:k");

7 memory->create(r0,n+1,"bond:r0");

8

9 memory->create(setflag,n+1,"bond:setflag");

10 for (int i = 1; i <= n; i++) setflag[i] = 0;

11 }

Listing 27: Modified allocate (bond_kv.cpp)

1 void BondKv::allocate()

2 {

3 allocated = 1;

4 int n = atom->nbondtypes;

5

6 memory->create(k,n+1,"bond:k");

7 memory->create(r0,n+1,"bond:r0");

8 memory->create(b,n+1,"bond:b"); // new line to

9 // dynamically allocate b

10

11 memory->create(setflag,n+1,"bond:setflag");

12 for (int i = 1; i <= n; i++) setflag[i] = 0;

13 }

The viscosity of the damper, b, is given by the user in the input file. For this reason,
we also need to modify coeff.

Listing 28: Original coeff (bond_harmonic.cpp)

1 void BondHarmonic::coeff(int narg, char **arg)

2 {

3 if (narg != 3) error->all(FLERR,"Incorrect args for

4 bond coefficients");

5 if (!allocated) allocate();

6

7 int ilo,ihi;

8 force->bounds(arg[0],atom->nbondtypes,ilo,ihi);

9

10 double k_one = force->numeric(FLERR,arg[1]);

11 double r0_one = force->numeric(FLERR,arg[2]);

12

13 int count = 0;

14 for (int i = ilo; i <= ihi; i++) {

15 k[i] = k_one;

16 r0[i] = r0_one;

17 setflag[i] = 1;

18 count++;

19 }

20

21 if (count == 0) error->all(FLERR,"Incorrect args for

22 bond coefficients");

23 }

116

ChemEng 2021, 5, 30

Listing 29: Modified coeff (bond_kv.cpp)

1 void BondKv::coeff(int narg, char **arg)

2 {

3 if (narg != 4) error->all(FLERR,"Incorrect args for

4 bond coefficients");

5 if (!allocated) allocate();

6

7 int ilo,ihi;

8 force->bounds(arg[0],atom->nbondtypes,ilo,ihi);

9

10 double k_one = force->numeric(FLERR,arg[1]);

11 double r0_one = force->numeric(FLERR,arg[2]);

12 double b_one = force->numeric(FLERR,arg[3]);

13 // to allocate in b_one the 3rd argument of bond_coeff

14 int count = 0;

15 for (int i = ilo; i <= ihi; i++) {

16 k[i] = k_one;

17 r0[i] = r0_one;

18 b[i] = b_one;

19 // to allocate the value stored in b_one used in compute

20 setflag[i] = 1;

21 count++;

22 }

23

24 if (count == 0) error->all(FLERR,"Incorrect args for

25 bond coefficients");

26 }

This pair style also has the write_restart and read_restart functions that have to
be modified. They basically, write and read geometry file that can be used as a support file
in the input file.

Listing 30: Original write_restart and read_restart (bond_harmonic.cpp)

1 void BondHarmonic::write_restart(FILE *fp)

2 {

3 fwrite(&k[1],sizeof(double),atom->nbondtypes,fp);

4 fwrite(&r0[1],sizeof(double),atom->nbondtypes,fp);

5 }

6 /*------------*/

7 void BondHarmonic::read_restart(FILE *fp)

8 {

9 allocate();

10

11 if (comm->me == 0) {

12 fread(&k[1],sizeof(double),atom->nbondtypes,fp);

13 fread(&r0[1],sizeof(double),atom->nbondtypes,fp);

14 }

15 MPI_Bcast(&k[1],atom->nbondtypes,MPI_DOUBLE,0,world);

16 MPI_Bcast(&r0[1],atom->nbondtypes,MPI_DOUBLE,0,world);

17

18 for (int i = 1; i <= atom->nbondtypes; i++)

19 setflag[i] = 1;

20 }

Listing 31: Modified write_restart and read_restart (bond_kv.cpp)

1 void BondKv::write_restart(FILE *fp)

2 {

3 fwrite(&k[1],sizeof(double),atom->nbondtypes,fp);

4 fwrite(&r0[1],sizeof(double),atom->nbondtypes,fp);

5 fwrite(&b[1],sizeof(double),atom->nbondtypes,fp);

6 }

7 /*------------*/

8 void BondKv::read_restart(FILE *fp)

9 {

10 allocate();

11

117

ChemEng 2021, 5, 30

12 if (comm->me == 0) {

13 fread(&k[1],sizeof(double),atom->nbondtypes,fp);

14 fread(&r0[1],sizeof(double),atom->nbondtypes,fp);

15 fread(&b[1],sizeof(double),atom->nbondtypes,fp);

16 }

17 MPI_Bcast(&k[1],atom->nbondtypes,MPI_DOUBLE,0,world);

18 MPI_Bcast(&r0[1],atom->nbondtypes,MPI_DOUBLE,0,world);

19 MPI_Bcast(&n[1],atom->nbondtypes,MPI_DOUBLE,0,world);

20

21

22 for (int i = 1; i <= atom->nbondtypes; i++)

23 setflag[i] = 1;

24 }

3.3. bond_kv.h

In the header of the new pair style we need to substitute the “BondHarmonic” text by a
new “BondKv” text as well as declare a new protected member in the class, the pointer to b.

Listing 32: Original header (bond_harmonic.h)

1 #ifdef BOND_CLASS

2

3 BondStyle(harmonic,BondHarmonic)

4

5 #else

6

7 #ifndef LMP_BOND_HARMONIC_H

8 #define LMP_BOND_HARMONIC_H

9

10 #include "stdio.h"

11 #include "bond.h"

12

13 namespace LAMMPS_NS {

14

15 class BondHarmonic : public Bond {

16 public:

17 BondHarmonic(class LAMMPS *);

18 virtual ∼BondHarmonic();

19 virtual void compute(int, int);

20 void coeff(int, char **);

21 double equilibrium_distance(int);

22 void write_restart(FILE *);

23 void read_restart(FILE *);

24 void write_data(FILE *);

25 double single(int, double, int, int, double &);

26

27 protected:

28 double *k,*r0;

29

30 void allocate();

31 };

32 }

33 #endif

34 #endif

Listing 33: Modified header (bond_kv.h)

1 #ifdef BOND_CLASS

2

3 BondStyle(kv,BondKv)

4

5 #else

6

7 #ifndef LMP_BOND_KV_H

8 #define LMP_BOND_KV_H

9

10 #include "stdio.h"

118

ChemEng 2021, 5, 30

11 #include "bond.h"

12

13 namespace LAMMPS_NS {

14

15 class BondKv : public Bond {

16 public:

17 BondKv(class LAMMPS *);

18 virtual ∼BondKv();

19 virtual void compute(int, int);

20 void coeff(int, char **);

21 double equilibrium_distance(int);

22 void write_restart(FILE *);

23 void read_restart(FILE *);

24 void write_data(FILE *);

25 double single(int, double, int, int, double &);

26

27 protected:

28 double *k,*r0, *b; // new pointer

29

30 void allocate();

31 };

32 }

33 #endif

34 #endif

3.4. Invoking kv Pair Style

Now the new pair style is completed. To run LAMMPS with the new style we need to
compile it and then invoke it by writing the command lines in shown in Listing 34 in the
input file.

Listing 34: Command lines to invoke the kv pair style

1 bond_style kv

2 bond_coeff K r0 b

4. Noble–Abel Stiffened-Gas Pair Style

In the SPH framework is possible to determine all the particles properties by solving
the particle form of the continuity equation [6,26]

dρi
dt

= ∑
j

mjvij∇jWij; (4)

the momentum equation [6,26]

mi
dvi
dt

= ∑
j

mimj

(
Pi
ρi

+
Pi
ρi

+ Πij

)
∇jWij; (5)

and the energy conservation equation [6,26]

mi
dei

dt
=

1
2 ∑

j
mimj

(
Pi

ρi
+

Pi

ρi
+ Πij

)
: vij∇jWij − ∑

j

mimj

ρiρj

(κi + κj)(Ti − Tj)

r2
ij

rij · ∇jWij. (6)

However, to be able to solve this set of equations an Equation of State (EOS) linking the
pressure P and the density ρ is needed [46]. In the user-SPH package of LAMMPS one EOS
is used for the liquid (Tait’s EOS) and one for gas phase (ideal gas EOS). In this section
we will implement a new EOS for the liquid phase. Note that with similar steps is also
possible to implement a new gas EOS.

119

ChemEng 2021, 5, 30

Le Métayer and Saurel [47] combined the “Noble–Abel” and the “Stiffened-Gas” EOS
proposing a new EOS called Noble–Abel Stiffened-Gas (NASG), suitable for multiphase
flow. The expression of the EOS does not change with the phase considered. For each
phases, the pressure and temperature are calculated as function of density and specific
internal energy, e.g.,

P(ρ, e) = (γ − 1)
(e − q)(

1
ρ − b

) − γP∞, (7)

and temperature-wise

T(ρ, e) =
e − q

Cv
−

(
1
ρ
− b

)
P∞

Cv
, (8)

where P, ρ, e, and q are, respectively, the pressure, the density, the specific internal energy,
and the heat bond of the corresponding phase. γ, P∞, q, and b are constant coefficients that
defines the thermodynamic properties of the fluid.

For this new pair style, called sph/nasgliquid, we take as a reference the sph/taitwater
pair style declared and initialised in pair_sph_taitwater.h and pair_sph_taitwater.cpp files
in the directory /src/USER-SPH. All the files regarding sph/nasgliquid must be saved in
the /src/USER-SPH directory and its hierarchy is shown in Figure 4..

LAMMPS Force Pair
PairSPHNasgliquid

PairSPHTaitwater

Figure 4. Class hierarchy of the new bond style.

4.1. Validation

The sph/nasgliquid pair style has validated by Albano and Alexiadis [26] to study
the Rayleigh collapse of an empty cavity.

4.2. pair_sph_nasgliquid.cpp

All the functions will be the same as in the reference sph/taitwater. However, in our
new sph/nasgliquid, we need to substitute the “PairSPHTaitwater” text in “PairSPHNas-
gliquid”, as can be seen in Listings 35 and 36.

Listing 35: Original script (pair_sph_taitwater.cpp)

1 #include <cmath>

2 #include <cstdlib>

3 #include "pair_sph_taitwater.h"

4 #include "atom.h"

5 #include "force.h"

6 #include "comm.h"

7 #include "neigh_list.h"

8 #include "memory.h"

9 #include "error.h"

10 #include "domain.h"

11

12 using namespace LAMMPS_NS;

13

14 PairSPHTaitwater::PairSPHTaitwater(LAMMPS *lmp) :

15 Pair(lmp)

16 {...}

17 PairSPHTaitwater::∼PairSPHTaitwater()

18 {...}

19 void PairSPHTaitwater::compute(int eflag, int vflag)

20 {...}

21 void PairSPHTaitwater::allocate()

120

ChemEng 2021, 5, 30

22 {...}

23 void PairSPHTaitwater::settings(int narg, char **/*arg*/)

24 {...}

25 void PairSPHTaitwater::coeff(int narg, char **arg)

26 {...}

27 double PairSPHTaitwater::init_one(int i, int j)

28 {...}

Listing 36: Modified script (pair_sph_nasgliquid.cpp)

1 #include <cmath>

2 #include <cstdlib>

3 #include "pair_sph_nasgliquid.h"

4 #include "atom.h"

5 #include "force.h"

6 #include "comm.h"

7 #include "neigh_list.h"

8 #include "memory.h"

9 #include "error.h"

10 #include "domain.h"

11

12 using namespace LAMMPS_NS;

13

14 PairSPHNasgliquid:: PairSPHNasgliquid(LAMMPS *lmp) :

15 Pair(lmp)

16 {...}

17 PairSPHNasgliquid::∼ PairSPHNasgliquid()

18 {...}

19 void PairSPHNasgliquid::compute(int eflag, int vflag)

20 {...}

21 void PairSPHNasgliquid::allocate()

22 {...}

23 void PairSPHNasgliquid::settings(int narg, char **/*arg*/)

24 {...}

25 void PairSPHNasgliquid::coeff(int narg, char **arg)

26 {...}

27 double PairSPHNasgliquid::init_one(int i, int j)

28 {...}

For the sph/nasgliquid we need to pass a total of 12 arguments from the input file,
while they were only six for sph/taitwater. For this reason we need to modify destructor,
compute, allocate, settings and coeff. Following the order of function initialisation, see
Listing 36, the destructor is modified as shown in Listing 38.

Listing 37: Original destructor (pair_sph_taitwater.cpp)

1 PairSPHTaitwater::∼PairSPHTaitwater() {

2 if (allocated) {

3 memory->destroy(setflag);

4 memory->destroy(cutsq);

5 memory->destroy(cut);

6 memory->destroy(rho0);

7 memory->destroy(soundspeed);

8 memory->destroy(B);

9 memory->destroy(viscosity);

10 }

11 }

Listing 38: Modified destructor (pair_sph_nasgliquid.cpp)

1 PairSPHNasgliquid::∼PairSPHNasgliquid() {

2 if (allocated) {

3 memory->destroy(setflag);

4 memory->destroy(cutsq);

5 memory->destroy(cut);

6 memory->destroy(soundspeed);

7 memory->destroy(B);

8 memory->destroy(CP);

121

ChemEng 2021, 5, 30

9 memory->destroy(CV);

10 memory->destroy(gamma);

11 memory->destroy(P00);

12 memory->destroy(b);

13 memory->destroy(q);

14 memory->destroy(q1);

15 memory->destroy(viscosity);

16 }

17 }

In the NASG EOS the pressure is function of both density, ρ, and internal energy, e.
For this reason, we need to declare more pointers and variables in compute compared to
the reference pair style, see line 6 and 20 in Listing 40.

Listing 39: Original compute (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::compute(int eflag, int vflag) {

2 int i, j, ii, jj, inum, jnum, itype, jtype;

3 double xtmp, ytmp, ztmp, delx, dely, delz, fpair;

4

5 int *ilist, *jlist, *numneigh, **firstneigh;

6 double vxtmp, vytmp, vztmp, imass, jmass,

7 fi, fj, fvisc, h, ih, ihsq;

8 double rsq, tmp, wfd, delVdotDelR, mu, deltaE;

9

10 if (eflag || vflag)

11 ev_setup(eflag, vflag);

12 else

13 evflag = vflag_fdotr = 0;

14

15 double **v = atom->vest;

16 double **x = atom->x;

17 double **f = atom->f;

18 double *rho = atom->rho;

19 double *mass = atom->mass;

20 double *de = atom->de;

21 double *drho = atom->drho;

22 int *type = atom->type;

23 int nlocal = atom->nlocal;

24 int newton_pair = force->newton_pair;

Listing 40: Modified compute (pair_sph_nasgliquid.cpp)

1 void PairSPHNasgliquid::compute(int eflag, int vflag) {

2 int i, j, ii, jj, inum, jnum, itype, jtype;

3 double xtmp, ytmp, ztmp, delx, dely, delz, fpair;

4

5 int *ilist, *jlist, *numneigh, **firstneigh;

6 double vxtmp, vytmp, vztmp, imass, jmass,

7 fi, fj, fvisc, h, ih, ihsq, iirho, ijrho;

8 double rsq, tmp, wfd, delVdotDelR, mu, deltaE;

9

10 if (eflag || vflag)

11 ev_setup(eflag, vflag);

12 else

13 evflag = vflag_fdotr = 0;

14

15 double **v = atom->vest;

16 double **x = atom->x;

17 double **f = atom->f;

18 double *rho = atom->rho;

19 double *mass = atom->mass;

20 double *de = atom->de;

21 double *e = atom->e;

22 double *drho = atom->drho;

23 int *type = atom->type;

24 int nlocal = atom->nlocal;

25 int newton_pair = force->newton_pair;

122

ChemEng 2021, 5, 30

Another modification for compute regards the expression of the force applied to the
i-th, see Listing 42, and j-th, see Listing 44, particle.

Listing 41: Original compute (pair_sph_taitwater.cpp)

1 // compute pressure of atom i with Tait EOS

2 tmp = rho[i]/rho0[itype];

3 fi = tmp * tmp * tmp;

4 fi = B[itype] * (fi * fi * tmp - 1.0)/ (rho[i] * rho[i]);

Listing 42: Modified compute (pair_sph_nasgliquid.cpp)

1 // compute pressure of atom i with NASG EOS

2 tmp = e[i] / imass;

3 iirho= 1.0/rho[i];

4 iirho= iirho - b[itype];

5 fi = ((tmp - q[itype]) * B[itype] / iirho);

6 fi = fi - gamma[itype] * P00[itype];

7 fi = fi / (rho[i] * rho[i]);

Listing 43: Original compute (pair_sph_taitwater.cpp)

1 // compute pressure of atom j with Tait EOS

2 tmp = rho[j] / rho0[jtype];

3 fj = tmp * tmp * tmp;

4 fj = B[jtype] * (fj * fj * tmp - 1.0) / (rho[j] * rho[j]);

Listing 44: Modified compute (pair_sph_nasgliquid.cpp)

1 // compute pressure of atom j with NASG EOS

2 tmp = e[j] / jmass;

3 ijrho= 1/rho[j];

4 ijrho= ijrho - b[jtype];

5 fj = ((tmp - q[jtype])* B[jtype]/ijrho);

6 fj = fj - gamma[jtype]*P00[jtype];

7 fj = fj / (rho[j] * rho[j]);

With the introduction of a new parameter in the pair style we need to make a new
dynamic memory allocation by modifying allocate.

Listing 45: Original allocate (pair_sph_taitwater.pp)

1 void PairSPHTaitwater::allocate() {

2 allocated = 1;

3 int n = atom->ntypes;

4

5 memory->create(setflag, n + 1, n + 1, "pair:setflag");

6 for (int i = 1; i <= n; i++)

7 for (int j = i; j <= n; j++)

8 setflag[i][j] = 0;

9

10 memory->create(cutsq, n + 1, n + 1, "pair:cutsq");

11 memory->create(rho0, n + 1, "pair:rho0");

12 memory->create(soundspeed, n + 1, "pair:soundspeed");

13 memory->create(B, n + 1, "pair:B");

14 memory->create(cut, n + 1, n + 1, "pair:cut");

15 memory->create(viscosity,n + 1,n + 1,"pair:viscosity");

16 }

Listing 46: Modified allocate (pair_sph_nasgliquid.cpp)

1 void PairSPHNasgliquid::allocate() {

2 allocated = 1;

3 int n = atom->ntypes;

4

5 memory->create(setflag, n + 1, n + 1, "pair:setflag");

6 for (int i = 1; i <= n; i++)

7 for (int j = i; j <= n; j++)

8 setflag[i][j] = 0;

123

ChemEng 2021, 5, 30

9

10 memory->create(cutsq, n + 1, n + 1, "pair:cutsq");

11 memory->create(soundspeed, n + 1, "pair:soundspeed");

12 memory->create(B, n + 1, "pair:B");

13 memory->create(CP, n + 1, "pair:CP");

14 memory->create(CV, n + 1, "pair:CV");

15 memory->create(gamma, n + 1, "pair:gamma");

16 memory->create(P00, n + 1, "pair:P00");

17 memory->create(b, n + 1, "pair:b");

18 memory->create(q, n + 1, "pair:q");

19 memory->create(q1, n + 1, "pair:q1");

20 memory->create(cut, n + 1, n + 1, "pair:cut");

21 memory->create(viscosity,n + 1,n + 1,"pair:viscosity");

22 }

The 12 arguments used in the pair style are passed by the used in the input file. For
this reason, we also have to modify coeff.

Listing 47: Original coeff (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::coeff(int narg, char **arg) {

2 if (narg != 6)

3 error->all(FLERR,

4 "Incorrect args for pair_style sph/taitwater

5 coefficients");

6 if (!allocated)

7 allocate();

8 int ilo, ihi, jlo, jhi;

9 force->bounds(FLERR,arg[0], atom->ntypes, ilo, ihi);

10 force->bounds(FLERR,arg[1], atom->ntypes, jlo, jhi);

11 double rho0_one = force->numeric(FLERR,arg[2]);

12 double soundspeed_one = force->numeric(FLERR,arg[3]);

13 double viscosity_one = force->numeric(FLERR,arg[4]);

14 double cut_one = force->numeric(FLERR,arg[5]);

15 double B_one=soundspeed_one*soundspeed_one*rho0_one/7.0;

16 int count = 0;

17 for (int i = ilo; i <= ihi; i++) {

18 rho0[i] = rho0_one;

19 soundspeed[i] = soundspeed_one;

20 B[i] = B_one;

21 for (int j = MAX(jlo,i); j <= jhi; j++) {

22 viscosity[i][j] = viscosity_one;

23 cut[i][j] = cut_one;

24 setflag[i][j] = 1;

25 count++; } }

Listing 48: Modified coeff (pair_sph_nasgliquid.cpp)

1 void PairSPHNasgliquid::coeff(int narg, char **arg) {

2 if (narg != 12)

3 error->all(FLERR,

4 "Incorrect args for pair_style sph/nasgliquid

5 coefficients");

6 if (!allocated)

7 allocate();

8 int ilo, ihi, jlo, jhi;

9 force->bounds(FLERR,arg[0], atom->ntypes, ilo, ihi);

10 force->bounds(FLERR,arg[1], atom->ntypes, jlo, jhi);

11 double soundspeed_one = force->numeric(FLERR,arg[2]);

12 double viscosity_one = force->numeric(FLERR,arg[3]);

13 double cut_one = force->numeric(FLERR,arg[4]);

14 double CP_one = force->numeric(FLERR,arg[5]);

15 double CV_one = force->numeric(FLERR,arg[6]);

16 double gamma_one = force->numeric(FLERR,arg[7]);

17 double P00_one = force->numeric(FLERR,arg[8]);

18 double b_one = force->numeric(FLERR,arg[9]);

19 double q_one = force->numeric(FLERR,arg[10]);

20 double q1_one = force->numeric(FLERR,arg[11]);

21 double B_one = (gamma_one - 1);

124

ChemEng 2021, 5, 30

22 int count = 0;

23 for (int i = ilo; i <= ihi; i++) {

24 soundspeed[i] = soundspeed_one;

25 B[i] = B_one;

26 CP[i] = CP_one;

27 CV[i] = CV_one;

28 gamma[i] = gamma_one;

29 P00[i] = P00_one;

30 b[i] = b_one;

31 q[i] = q_one;

32 q1[i] = q1_one;

33 for (int j = MAX(jlo,i); j <= jhi; j++) {

34 viscosity[i][j] = viscosity_one;

35 cut[i][j] = cut_one;

36 setflag[i][j] = 1;

37 count++; } }

4.3. pair_sph_nasgliquid.h

In the header of the new pair style we need to substitute the “PairSPHTaitwater” text
in “PairSPHNasgliquid” as well as declare new protected members in the class, the pointers
to the new arguments.

Listing 49: Original header (pair_sph_taitwater.h)

1 #ifdef PAIR_CLASS

2

3 PairStyle(sph/taitwater,PairSPHTaitwater)

4

5 #else

6

7 #ifndef LMP_PAIR_TAITWATER_H

8 #define LMP_PAIR_TAITWATER_H

9

10 #include "pair.h"

11

12 namespace LAMMPS_NS {

13

14 class PairSPHTaitwater : public Pair {

15 public:

16 PairSPHTaitwater(class LAMMPS *);

17 virtual ∼PairSPHTaitwater();

18 virtual void compute(int, int);

19 void settings(int, char **);

20 void coeff(int, char **);

21 virtual double init_one(int, int);

22

23 protected:

24 double *rho0, *soundspeed, *B;

25 double **cut,**viscosity;

26 int first;

27 void allocate();

28 };

29 }

30 #endif

31 #endif

Listing 50: Modified header (pair_sph_nasgliquid.h)

1 #ifdef PAIR_CLASS

2

3 PairStyle(sph/nasgliquid,PairSPHNasgliquid)

4

5 #else

6

7 #ifndef LMP_PAIR_NASGLIQUID_H

8 #define LMP_PAIR_NASGLIQUID_H

9

125

ChemEng 2021, 5, 30

10 #include "pair.h"

11

12 namespace LAMMPS_NS {

13

14 class PairSPHNasgliquid : public Pair {

15 public:

16 PairSPHNasgliquid(class LAMMPS *);

17 virtual ∼PairSPHNasgliquid();

18 virtual void compute(int, int);

19 void settings(int, char **);

20 void coeff(int, char **);

21 virtual double init_one(int, int);

22

23 protected:

24 double *soundspeed, *B, *CP, *CV, *gamma, *P00,

25 *b, *q, *q1;

26 double **cut,**viscosity;

27 int first;

28 void allocate();

29 };

30 }

31 #endif

32 #endif

4.4. Invoking Sph/Nasgliquid Pair Style

Now the new pair style is completed. To run LAMMPS with the new style we need
to compile it and then invoke it by writing the command lines shown in Listing 51 in the
input file.

Listing 51: Command lines to invoke the NASG pair style for liquid

1 pair_style sph/nasgliquid

2 pair_coeff I J c_0 alpha h Cv Cp gamma P00 b q q’

5. Multiphase (Liquid–Gas) Heat Exchange Pair Style

In LAMMPS thermal conductivity between SPH particles is enabled using the sph/heat-
conduction pair style inside the user-SPH package. However, the pair style is designed
only for mono phase fluid where the thermal conductivities is constant (κi = κ). When
more than one phase is present, the heat conduction at the interface can be implemented
by using [6,26]

mi
dei
dt

= ∑
j

mimj

ρiρj

(κi + κj)(Ti − Tj)

r2
ij

rij · ∇jWij. (9)

In the new pair style, called sph/heatgasliquid, one phase is assumed to be liquid with an
initial temperature of Tl,0 and the other is assumed to be and ideal gas. Each time-step the
temperature of the fluid is updated as [26].

Tl = Tl,0 +
El − El,0

Cp,l
, (10)

where Tl,0 is the reference temperature, E0 the internal energy in [J], El internal energy [J]
at the current time step and Cp,l is heat capacity of the fluid in [J K−1]. The temperature of
the gas is updated following the ideal EOS [26].

Tg = MM
(γ − 1)eg

R
, (11)

126

ChemEng 2021, 5, 30

where MM is the molar mass [kg kmol−1], eg is the specific internal energy in [J kg−1],
γ is the heat capacity ratio and R is the ideal gas constant in [J K−1 kmol−1]. Generally
the choice of the reference states El,0 is arbitrary, but if the Equation of State (EOS) used
for the phase is function of both density and internal energy of the reference state will be
determined by the EOS.

In the sph/heatgasliquid pair style is important to check if the i-th and j-th particles
are liquid or gas phase to apply either Equation (10) or Equation (11). This “phase check” is
explained in Section 5.2 compute function is modified.

For the energy balance the new pair style needs Tl,0, El,0, Cp,l and κl for the liquid
phase and κg for the gas phase. Moreover, for the phase check, the particle types of each
phases must be specified. All this informations is passed by the user in the in the input file.

The reference pair style is sph/heatconduction. It is declared and initialised in the
pair_sph_heatconduction.cpp pair_sph_heatconduction.cpp files in the directory /src/USER-
SPH. All the files regarding sph/heatgasliquid must be saved in the /src/USER-SPH directory
and its hierarchy is shown in Figure 5.

LAMMPS Force Pair
PairSPHHeatgasliquid

PairSPHHeatConduction

Figure 5. Class hierarchy of the new pair style.

5.1. Validation

The sph/heatgasliquid pair style has validated by Albano and Alexiadis [26] to study
the role of the heat diffusion in for a gas filled Rayleigh collapse in water.

5.2. pair_sph_heatgasliquid.cpp

All the functions will be the same as in the reference sph/heatconduction. However,
in our new sph/heatgasliquid, we need to substitute the “PairSPHHeatConduction” text
in “PairSPHHeatgasliquid”, as can be seen in Listings 52 and 53.

Listing 52: Original script (pair_sph_heatconduction.cpp)

1 #include "math.h"

2 #include "stdlib.h"

3 #include "pair_sph_heatconduction.h"

4 #include "atom.h"

5 #include "force.h"

6 #include "comm.h"

7 #include "memory.h"

8 #include "error.h"

9 #include "neigh_list.h"

10 #include "domain.h"

11

12 using namespace LAMMPS_NS;

13

14 PairSPHHeatConduction::PairSPHHeatConduction(LAMMPS *lmp)

15 : Pair(lmp)

16 { ... }

17 PairSPHHeatConduction::∼PairSPHHeatConduction()

18 { ... }

19 void PairSPHHeatConduction::compute(int eflag, int vflag)

20 { ... }

21 void PairSPHHeatConduction::allocate()

22 { ... }

23 void PairSPHHeatConduction::settings(int narg, char **arg)

24 { ... }

25 void PairSPHHeatConduction::coeff(int narg, char **arg)

26 { ... }

27 double PairSPHHeatConduction::init_one(int i, int j)

28 { ... }

29 double PairSPHHeatConduction::single(int i, int j,

30 int itype, int jtype, double rsq, double factor_coul,

31 double factor_lj, double &fforce)

32 { ... }
127

ChemEng 2021, 5, 30

Listing 53: Modified script (pair_sph_heatgasliquid.cpp)

1 #include <cmath>

2 #include <cstdlib>

3 #include "pair_sph_heatgasliquid.h"

4 #include "atom.h"

5 #include "force.h"

6 #include "comm.h"

7 #include "memory.h"

8 #include "error.h"

9 #include "neigh_list.h"

10 #include "domain.h"

11

12 using namespace LAMMPS_NS;

13

14 PairSPHHeatgasliquid::PairSPHHeatgasliquid(LAMMPS *lmp)

15 : Pair(lmp)

16 { ... }

17 PairSPHHeatgasliquid::∼PairSPHHeatgasliquid()

18 { ... }

19 void PairSPHHeatgasliquid::compute(int eflag, int vflag)

20 { ... }

21 void PairSPHHeatgasliquid::allocate()

22 { ... }

23 void PairSPHHeatgasliquid::settings(int narg, char **arg)

24 { ... }

25 void PairSPHHeatgasliquid::coeff(int narg, char **arg)

26 { ...

27 double PairSPHHeatgasliquid::init_one(int i, int j)

28 { ... }

29 double PairSPHHeatgasliquid::single(int i, int j,

30 int itype, int jtype, double rsq, double factor_coul,

31 double factor_lj, double &fforce)

32 { ... }

For the sph/heatgasliquid we need to pass a total of nine arguments from the input
file, while they were only seven for sph/heatconduction. For this reason we need to modify
destructor, compute, allocate, settings and coeff. Following the order of function
initialisation, see Listing 53, the destructor is modified by removing the heat diffusion
coefficient, line 6 in Listing 54.

Listing 54: Original destructor (pair_sph_heatconduction.cpp)

1 PairSPHHeatConduction::∼PairSPHHeatConduction() {

2 if (allocated) {

3 memory->destroy(setflag);

4 memory->destroy(cutsq);

5 memory->destroy(cut);

6 memory->destroy(alpha);

7 }

8 }

Listing 55: Modified destructor (pair_sph_heatgasliquid.cpp)

1 PairSPHHeatgasliquid::∼PairSPHHeatgasliquid() {

2 if (allocated) {

3 memory->destroy(setflag);

4 memory->destroy(cutsq);

5 memory->destroy(cut);

6 }

7 }

To compute Equation (6) we need to declare more variables in compute compared to
the reference pair style, see line 4 in Listing 57.

128

ChemEng 2021, 5, 30

Listing 56: Original compute (pair_sph_heatconduction.cpp)

1 void PairSPHHeatConduction::compute(int eflag, int vflag){

2 int i, j, ii, jj, inum, jnum, itype, jtype;

3 double xtmp, ytmp, ztmp, delx, dely, delz;

Listing 57: Modified compute (pair_sph_heatgasliquid.cpp)

1 void PairSPHHeatgasliquid::compute(int eflag, int vflag){

2 int i, j, ii, jj, inum, jnum, itype, jtype;

3 double xtmp, ytmp, ztmp, delx, dely, delz;

4 double Ti, Tj, ki, kj; /// new parameters

Another important modification is to add the phase check inside compute. The phase
check has to be implemented for both the i-th particle and the j-th particle inside the loop
over neighbours, for (ii = 0; ii < inum; ii++) in the reference pair style. The phase
check for the i-th particle starts after the assignment of imass, line 3 of Listing 58.

Listing 58: Modified compute (pair_sph_heatgasliquid.cpp)

1 imass = mass[itype];

2

3 if (itype == liquidtype)

4 {

5 Ti= e[i] - el0;

6 Ti= Ti/CPl;

7 Ti= T0l + Ti;

8 ki=kl;

9 }

10 else {

11 Ti=0.40*e[i]*18;

12 Ti= Ti/imass;

13 Ti= Ti/8314.33;

14 ki=kg;

15 }

Similarly, for the j-th the phase check start at line 3 of Listing 59.

Listing 59: Modified compute (pair_sph_heatgasliquid.cpp)

1 jmass = mass[jtype];

2

3 if (jtype == liquidtype)

4 {

5 Tj= e[j] - el0;

6 Tj= Tj/CPl;

7 Tj= T0l + Tj;

8 kj=kl;

9 }

10 else {

11 Tj=0.40*e[j]*18;

12 Tj= Tj/jmass;

13 Tj= Tj/8314.33;

14 kj=kg;

15 }

16

The last change in compute is to implement the change in internal energy as shown in
Equation (9).

129

ChemEng 2021, 5, 30

Listing 60: Original compute (pair_sph_heatconduction.cpp)

1 D = alpha[itype][jtype]; // diffusion coefficient

2

3 deltaE = 2.0 * imass * jmass / (imass+jmass);

4 deltaE *= (rho[i] + rho[j]) / (rho[i] * rho[j]);

5 deltaE *= D * (e[i] - e[j]) * wfd;

6

7 de[i] += deltaE;

8 if (newton_pair || j < nlocal) {

9 de[j] -= deltaE;

10 }

Listing 61: Modified compute (pair_sph_heatgasliquid.cpp)

1 deltaE = imass * jmass / (rho[i] * rho[j]); ///

2 deltaE *= (ki + kj) * (Ti - Tj) * wfd; ///

3 /// implementation of eq 3.4

4 de[i] += deltaE;

5 if (newton_pair || j < nlocal) {

6 de[j] -= deltaE;

7 }

With the introduction of new arguments in the pair style we need to make a new
dynamic memory allocation by modifying allocate.

Listing 62: Original allocate (pair_sph_heatconduction.cpp)

1 void PairSPHHeatConduction::allocate() {

2 allocated = 1;

3 int n = atom->ntypes;

4

5 memory->create(setflag, n + 1, n + 1, "pair:setflag");

6 for (int i = 1; i <= n; i++)

7 for (int j = i; j <= n; j++)

8 setflag[i][j] = 0;

9

10 memory->create(cutsq, n + 1, n + 1, "pair:cutsq");

11 memory->create(cut, n + 1, n + 1, "pair:cut");

12 memory->create(alpha, n + 1, n + 1, "pair:alpha");

13 }

Listing 63: Modified allocate (pair_sph_heatgasliquid.cpp)

1 void PairSPHHeatgasliquid::allocate() {

2 allocated = 1;

3 int n = atom->ntypes;

4

5 memory->create(setflag, n + 1, n + 1, "pair:setflag");

6 for (int i = 1; i <= n; i++)

7 for (int j = i; j <= n; j++)

8 setflag[i][j] = 0;

9

10 memory->create(cutsq, n + 1, n + 1, "pair:cutsq");

11 memory->create(cut, n + 1, n + 1, "pair:cut");

12 }

The nine arguments used in the pair style are passed by the user in the input file. For
this reason, we also have to modify coeff.

Listing 64: Original coeff (pair_sph_heatconduction.cpp)

1 void PairSPHHeatConduction::coeff(int narg, char **arg) {

2 if (narg != 4)

3 error->all(FLERR,"Incorrect number of args for

4 pair_style sph/heatconduction coefficients");

5 if (!allocated)

6 allocate();

7

130

ChemEng 2021, 5, 30

8 int ilo, ihi, jlo, jhi;

9 force->bounds(arg[0], atom->ntypes, ilo, ihi);

10 force->bounds(arg[1], atom->ntypes, jlo, jhi);

11

12 double alpha_one = force->numeric(FLERR,arg[2]);

13 double cut_one = force->numeric(FLERR,arg[3]);

14

15 int count = 0;

16 for (int i = ilo; i <= ihi; i++) {

17 for (int j = MAX(jlo,i); j <= jhi; j++) {

18 //printf("setting cut[%d][%d] = %f\n", i, j, cut_one);

19 cut[i][j] = cut_one;

20 alpha[i][j] = alpha_one;

21 setflag[i][j] = 1;

22 count++;

23 }

24 }

25

26 if (count == 0)

27 error->all(FLERR,"Incorrect args for pair

28 coefficients");

29 }

Listing 65: Modified coeff (pair_sph_heatgasliquid.cpp)

1 void PairSPHHeatgasliquid::coeff(int narg, char **arg) {

2 if (narg != 9)

3 error->all(FLERR,"Incorrect number of args for

4 pair_style sph/heatgasliquid coefficients");

5 if (!allocated)

6 allocate();

7

8 int ilo, ihi, jlo, jhi;

9 force->bounds(FLERR,arg[0], atom->ntypes, ilo, ihi);

10 force->bounds(FLERR,arg[1], atom->ntypes, jlo, jhi);

11

12 el0 = force->numeric(FLERR,arg[2]);

13 kl = force->numeric(FLERR,arg[3]);

14 kg = force->numeric(FLERR,arg[4]);

15 T0l = force->numeric(FLERR,arg[5]);

16 double cut_one = force->numeric(FLERR,arg[6]);

17 CPl = force->numeric(FLERR,arg[7]);

18 liquidtype = force->numeric(FLERR,arg[8]);

19

20 int count = 0;

21 for (int i = ilo; i <= ihi; i++) {

22 for (int j = MAX(jlo,i); j <= jhi; j++) {

23 //printf("setting cut[%d][%d] = %f\n", i, j, cut_one);

24 cut[i][j] = cut_one;

25 setflag[i][j] = 1;

26 count++;

27 }

28 }

29 if (count == 0)

30 error->all(FLERR,"Incorrect args for pair

31 coefficients");

32 }

5.3. pair_sph_heatgasliquid.h

In the header of the new pair style we need to substitute the “PairSPHHeatConduction”
text in “PairSPHHeatgasliquid” and declare new protected members in the class.

131

ChemEng 2021, 5, 30

Listing 66: Original header (pair_sph_heatconduction.h)

1 #ifdef PAIR_CLASS

2

3 PairStyle(sph/heatconduction,PairSPHHeatConduction)

4

5 #else

6

7 #ifndef LMP_PAIR_SPH_HEATCONDUCTION_H

8 #define LMP_PAIR_SPH_HEATCONDUCTION_H

9

10 #include "pair.h"

11

12 namespace LAMMPS_NS {

13

14 class PairSPHHeatConduction : public Pair {

15 public:

16 PairSPHHeatConduction(class LAMMPS *);

17 virtual ∼PairSPHHeatConduction();

18 virtual void compute(int, int);

19 void settings(int, char **);

20 void coeff(int, char **);

21 virtual double init_one(int, int);

22 virtual double single(int, int, int, int, double,

23 double, double, double &);

24

25 protected:

26 double **cut, **alpha;

27 void allocate();

28 };

29 }

30 #endif

31 #endif

Listing 67: Modified header (pair_sph_heatgasliquid.h)

1 #ifdef PAIR_CLASS

2

3 PairStyle(sph/heatgasliquid,PairSPHHeatgasliquid)

4

5 #else

6

7 #ifndef LMP_PAIR_SPH_HEATGASLIQUID_H

8 #define LMP_PAIR_SPH_HEATGASLIQUID_H

9

10 #include "pair.h"

11

12 namespace LAMMPS_NS {

13

14 class PairSPHHeatgasliquid : public Pair {

15 public:

16 PairSPHHeatgasliquid(class LAMMPS *);

17 virtual ∼PairSPHHeatgasliquid();

18 virtual void compute(int, int);

19 void settings(int, char **);

20 void coeff(int, char **);

21 virtual double init_one(int, int);

22 virtual double single(int, int, int, int, double,

23 double, double, double &);

24

25 protected:

26 int liquidtype;

27 double el0, kg, kl, T0l, CPl;

28 double **cut;

29 void allocate();

30 };

31 }

32 #endif

33 #endif

132

ChemEng 2021, 5, 30

5.4. Invoking Sph/Heatgasliquid Pair Style

Now the new pair style is completed. To run LAMMPS with the new style we need
to compile it and then invoke it by writing the command lines shown in Listing 68 in the
input file.

Listing 68: Command lines to invoke the sph/heatgasliquid pair style

1 pair_style sph/heatgasliquid

2 pair_coeff i j el0 kl kg Tl0 h Cpl liquidtype

6. Full Stationary Fix Style

In LAMMPS a fix style is any operation that is applied to the system, usually to a
group of particles, during time stepping or minimisation used to alter some property of
the sytem [41]. There are hundreds of fixes defined in LAMMPS and new ones can be
added. Usually fixes are used for time integration, force constraints, boundary conditions
and diagnostics.

In the user-sph package in LAMMPS there is the so called meso/stationary fix used to
set boundary condition. With meso/stationary is possible to fix position and velocity for
a group of particles, walls as example, but internal energy and density will be updated.
In some cases, it is useful to have a fully stationary conditions that maintains constant
also the energy and the density. For this new fix, called meso/fullstationary, we take
as a reference the meso/stationary fix declared and initialised in fix_meso_stationary.h
and fix_meso_stationary.cpp files in the directory /src/USER-SPH. All the files regarding
meso/fullstationary must be saved in the /src/USER-SPH directory and its hierarchy is
shown in Figure 6.

LAMMPS Modify Fix
FixMesoFullStationary

FixMesoStationary

Figure 6. Class hierarchy of the new fix style.

6.1. Validation

The meso/fullstationary has been used in the validation of the new viscosity class to
set the boundary condition of a constant asymmetric heated walls, see Section 7.2.

6.2. fix_meso_fullstationary.cpp

All the functions will be the same as in the reference meso/stationary. However, in
our new fullstationary, we need to substitute the “FixMesoStationary” text in “FixMeso-
FullStationary”, as can be seen in Listings 69 and 70.

Listing 69: Original script (fix_meso_stationary.cpp)

1 #include <cstdio>

2 #include <cstring>

3 #include <cmath>

4 #include <cstdlib>

5 #include "fix_meso_stationary.h"

6 #include "atom.h"

7 #include "comm.h"

8 #include "force.h"

9 #include "neighbor.h"

10 #include "neigh_list.h"

11 #include "neigh_request.h"

12 #include "update.h"

13 #include "integrate.h"

14 #include "respa.h"

15 #include "memory.h"

16 #include "error.h"

17 #include "pair.h"

18

133

ChemEng 2021, 5, 30

19 using namespace LAMMPS_NS;

20 using namespace FixConst;

21

22 FixMesoStationary:: FixMesoStationary(LAMMPS *lmp,

23 int narg, char **arg) : Fix(lmp, narg, arg)

24 {...}

25 int FixMesoStationary::setmask()

26 {...}

27 void FixMesoStationary::init()

28 {...}

29 void FixMesoStationary::initial_integrate(int /*vflag*/)

30 {...}

31 void FixMesoStationary::final_integrate()

32 {...}

33 void FixMesoStationary::reset_dt()

34 {...}

Listing 70: Modified script (fix_meso_fullstationary.cpp)

1 #include <cstdio>

2 #include <cstring>

3 #include <cmath>

4 #include <cstdlib>

5 #include "fix_meso_fullstationary.h"

6 #include "atom.h"

7 #include "comm.h"

8 #include "force.h"

9 #include "neighbor.h"

10 #include "neigh_list.h"

11 #include "neigh_request.h"

12 #include "update.h"

13 #include "integrate.h"

14 #include "respa.h"

15 #include "memory.h"

16 #include "error.h"

17 #include "pair.h"

18

19 using namespace LAMMPS_NS;

20 using namespace FixConst;

21

22 FixMesoFullStationary::FixMesoFullStationary(LAMMPS *lmp,

23 int narg, char **arg) : Fix(lmp, narg, arg)

24 {...}

25 int FixMesoFullStationary::setmask()

26 {...}

27 void FixMesoFullStationary::init()

28 {...}

29 void FixMesoFullStationary::initial_integrate

30 (int /*vflag*/)

31 {...}

32 void FixMesoFullStationary::final_integrate()

33 {...}

34 void FixMesoFullStationary::reset_dt()

35 {...}

For the meso/fullstationary we need to modify two function: initial_integrate,
see Listing 72 line 16 and 17, and final_integrate, see Listing 74 line 14 and 15.

134

ChemEng 2021, 5, 30

Listing 71: Original initial_integrate (fix_meso_stationary.cpp)

1 void FixMesoStationary::initial_integrate(int vflag) {

2

3 double *rho = atom->rho;

4 double *drho = atom->drho;

5 double *e = atom->e;

6 double *de = atom->de;

7 int *type = atom->type;

8 int *mask = atom->mask;

9 int nlocal = atom->nlocal;

10 int i;

11

12 if (igroup == atom->firstgroup)

13 nlocal = atom->nfirst;

14

15 for (i = 0; i < nlocal; i++) {

16 if (mask[i] & groupbit) {

17 e[i] += dtf * de[i];

18 // with this line is possible to update internal energy

19 rho[i] += dtf * drho[i];

20 // ... and density every half-step

21 }}}

Listing 72: Modified initial_integrate (fix_meso_fullstationary.cpp)

1 void FixMesoFullStationary::initial_integrate(int vflag) {

2

3 double *rho = atom->rho;

4 double *drho = atom->drho;

5 double *e = atom->e;

6 double *de = atom->de;

7 int *mask = atom->mask;

8 int nlocal = atom->nlocal;

9 int i;

10

11 if (igroup == atom->firstgroup)

12 nlocal = atom->nfirst;

13

14 for (i = 0; i < nlocal; i++) {

15 if (mask[i] & groupbit) {

16 e[i] +=0; // with this line internal energy

17 rho[i] += 0; // ... and density are constant

18 }}}

Listing 73: Original final_integrate (fix_meso_stationary.cpp)

1 void FixMesoStationary::final_integrate() {

2

3 double *e = atom->e;

4 double *de = atom->de;

5 double *rho = atom->rho;

6 double *drho = atom->drho;

7 int *type = atom->type;

8 int *mask = atom->mask;

9 double *mass = atom->mass;

10 int nlocal = atom->nlocal;

11 if (igroup == atom->firstgroup)

12 nlocal = atom->nfirst;

13

14 for (int i = 0; i < nlocal; i++) {

15 if (mask[i] & groupbit) {

16 e[i] += dtf * de[i];

17 rho[i] += dtf * drho[i];

18 }}}

135

ChemEng 2021, 5, 30

Listing 74: Modified final_integrate (fix_meso_fullstationary.cpp)

1 vvoid FixMesoFullStationary::final_integrate() {

2

3 double *e = atom->e;

4 double *de = atom->de;

5 double *rho = atom->rho;

6 double *drho = atom->drho;

7 int *mask = atom->mask;

8 int nlocal = atom->nlocal;

9 if (igroup == atom->firstgroup)

10 nlocal = atom->nfirst;

11

12 for (int i = 0; i < nlocal; i++) {

13 if (mask[i] & groupbit) {

14 e[i] += 0; // with this line internal energy

15 rho[i] += 0; //... and density are constant

16 }}}

6.3. fix_mes_fullstationary.h

In the header of the new fix we need to substitute the “FixMesoStationary” text in
“FixMesoFullStationary”.

Listing 75: Original header (pair_sph_heatconduction.h)

1 #ifdef FIX_CLASS

2

3 FixStyle(meso/stationary,FixMesoStationary)

4

5 #else

6

7 #ifndef LMP_FIX_MESO_STATIONARY_H

8 #define LMP_FIX_MESO_STATIONARY_H

9

10 #include "fix.h"

11

12 namespace LAMMPS_NS {

13

14 class FixMesoStationary : public Fix {

15 public:

16 FixMesoStationary(class LAMMPS *, int, char **);

17 int setmask();

18 virtual void init();

19 virtual void initial_integrate(int);

20 virtual void final_integrate();

21 void reset_dt();

22

23 private:

24 class NeighList *list;

25 protected:

26 double dtv,dtf;

27 double *step_respa;

28 int mass_require;

29

30 class Pair *pair;

31 };

32 }

33 #endif

34 #endif

Listing 76: Modified header (pair_sph_heatgasliquid.h)

1 #ifdef FIX_CLASS

2

3 FixStyle(meso/fullstationary,FixMesoFullStationary)

4

5 #else

6

136

ChemEng 2021, 5, 30

7 #ifndef LMP_FIX_MESO_FULLSTATIONARY_H

8 #define LMP_FIX_MESO_FULLSTATIONARY_H

9

10 #include "fix.h"

11

12 namespace LAMMPS_NS {

13

14 class FixMesoFullStationary: public Fix {

15 public:

16 FixMesoFullStationary(class LAMMPS *, int, char **);

17 int setmask();

18 virtual void init();

19 virtual void initial_integrate(int);

20 virtual void final_integrate();

21 void reset_dt();

22

23 private:

24 class NeighList *list;

25 protected:

26 double dtv,dtf;

27 double *step_respa;

28 int mass_require;

29

30 class Pair *pair;

31 };

32 }

33 #endif

34 #endif

6.4. Invoking Meso/Fullstationary Fix

Now the new fix is completed. To run LAMMPS with the new style we need to
compile it and then invoke it by writing the command lines shown in Listing 77 in the
input file.

Listing 77: Command lines to invoke the new pair style

1 fix ID group-ID meso/fullstationary

7. Viscosity Class

Viscosity in the SPH method has been addressed with different solutions [46]. Shock
waves, for example, have been a challenge to model due to the arise of numerical oscilla-
tions around the shocked region. Monaghan solved this problem with the introduction of
the so-called Monaghan artificial viscosity [48]. Artificial viscosity is still used nowadays
for energy dissipation and to prevent unphysical penetration for particles approaching
each other [25,49]. The SPH package of LAMMPS uses the following artificial viscosity
expression [6], within the sph/idealgas and sph/taitwater pair style.

Πij = −αh
ci + cj

ρi + ρj

vij · rij

r2
ij + εh2

, (12)

where α is the dimensionless dissipation factor, ci and cj are the speed of sound of particle i
and j. The dissipation factor, α, can be linked with the real viscosity in term of [6]

α = 8
μ

chρ
, (13)

where c is the speed of sound, ρ the density, μ the dynamic viscosity and h the smooth-
ing length.

The artificial viscosity approach performs well at a high Reynolds number but better
solutions are available for laminar flow: Morris et al. [50] approximated and implemented
the viscosity momentum term for SPH. The same solution can be found in the sph/taitwa-
ter/morris pair style with the expression [6].

137

ChemEng 2021, 5, 30

∑
j

mimj(μi + μj)vij

ρiρj

(
1
rij

∂Wij

∂ri

)
, (14)

where μ is the real dynamic viscosity.
In LAMMPS both the dissipation factor and the dynamic viscosity are treated as a

constant between a pair of particles when they interact within the smoothing length. In this
section we want to make the viscosity a per atom property instead of a pair property only
existing within a pair style. Moreover, five temperature dependent viscosity models are
added. For this example, no reference file is used; a new class, Viscosity, is implemented in
LAMMPS from scratch and its hierarchy is shown in Figure 7.

Viscosity

ViscosityConstant

ViscosityArrhenius

ViscoPowerLawGas

ViscoSutherlandViscosityLaw

ViscoFourParameterExp

Figure 7. Class hierarchy of the new class.

7.1. Temperature Dependant Viscosity

In literature multiples empirical models that correlate viscosity with temperature
are available [51–53]. In the new viscosity class five different viscosity models have been
implemented:

1. Andrade’s equation [54]

μ = Aexp
(

B
T
+ CT + DT2

)
, (15)

where μ is the viscosity in [Kg m−1 s−1], T is the static temperature in Kelvin, A, B, C
and D are fluid-dependent dimensional coefficients available in literature.

2. Arrhenius viscosity by Raman [55,56]

μ = C1exp(C2/T), (16)

where μ is the dynamic viscosity in [Kg m−1 s−1], T is the temperature in Kelvin, C1
and C2 are fluid-dependent dimensional coefficients available in literature.

3. Sutherland’s viscosity [57,58] for gas phase
Sutherland’s law can be expressed as:

μ =
C1T3/2

T + C2
, (17)

where μ is the viscosity in [Kg m−1 s−1], T is the static temperature in Kelvin, C1 and
C2 are dimensional coefficients.

4. Power-Law viscosity law [57] for gas phase
A power-law viscosity law with two coefficients has the form :

μ = BTn, (18)

where μ is the viscosity in [Kg m−1 s−1], T is the static temperature in Kelvin, and B
is a dimensional coefficient.

5. Constant viscosity

138

ChemEng 2021, 5, 30

With constant viscosity both dissipation factor and dynamic viscosity will be constant
during the simulation.

When the artificial viscosity is used the dissipation factor of Equation (12) is defined
as the arithmetic mean of the dissipation factors of i-th particle and j-th particle.

αij = −4
h

(
μi

ciρi
+

μj

cjρj

)
, (19)

where αij is the dissipation factor of the particles pair i and j.

7.2. Validation

In order to validate the new Viscosity class, we will study the effect of asymmetrically
heating walls in a channel flow, and more specifically the effect on the velocity field of the
fluid. The data obtained with our model will be compared with the analytical solution
obtained by Sameen and Govindarajan [59].

The water flows between two walls in the x-direction with periodic conditions. The
walls are set at different temperatures Tcold and Thot , see Figure 8. Both water and walls
are modelled as fluid following the tait EOS. The physical properties of the walls are
set constant throughout the simulation using the full stationary conditions described in
Section 6.

Figure 8. Geometry of the simulation.

To match the condition used by Sameen and Govindarajan we set the cold wall
temperature to Tcold = 295 K and the temperature dependence of the dynamic viscosity
described by the Arrhenius model, Equation (16), with C1 = 0.000183 [Ns m−2] and C2 =
1879.9 K [59]. To describe the asymmetric heating Sameen and Govindarajan introduced
the parameter m, defined as:

m =
μcold
μre f

(20)

where μre f = μhot is the viscosity at the hot wall in the case of asymmetric heating and
μcold is the viscosity at the cold wall. By combining (16) and (20), with the given Tcold, is
possible to express the temperature difference of the walls ΔT as function of m.

Figure 9 shows the viscosity trend for different values of m and the corresponding ΔT.
Sometimes, in particle methods, instantaneous data can be noisy (scattered) as can be seen
from the blue circles of both Figures 9 and 10.

139

ChemEng 2021, 5, 30

(a) m = 1 ↔ ΔT = 0 K (b) m = 1.65 ↔ ΔT = 25 K

(c) m = 2.5 ↔ ΔT = 50 K

Figure 9. Dimensionless viscosity profile for different m = μcold/μre f . Blue circles are the instantaneous data in the x
direction, the orange curve is the trend curve extrapolated from the instantaneous data, yellow circles are obtained form the
analytical solution from Sameen and Govindarajan [59].

In all the cases considered, the model is in good agreement with the work of Sameen
and Govindarajan.

Figure 10 shows the dimensionless velocity trend for different values of m.
Again, the model is in good agreement with the analytical solution of Sameen and

Govindarajan always laying within the velocity scattered points. In both our model and in
the analytical solution the maximum of the velocity shifts to the right as m increases. We
can conclude that our model is in good agreement with the literature, showing the typical
viscosity and velocity profiles for asymmetric heating confirming the correct functionality
of the new viscosity class.

7.3. New Abstract Class: Viscosity

To implement the new viscosity model a new abstract class has been created, called
Viscosity. The class has no attribute, and one virtual method: compute_visc, that is used to
compute the viscosity using one of the Equations (15)–(18). As usual, the Viscosity class is
divided in two files, see Listings 78 and 79. As it is an abstract class, it cannot be instantiated.
It is used as a base, a mold, to implement the viscosity models. All implemented viscosity
classes, such as the ones implementing the Arrhenius viscosity or the Sutherland viscosity,
will inherit from this class.

140

ChemEng 2021, 5, 30

(a) m = 1 ↔ ΔT = 0 K (b) m = 1.65 ↔ ΔT = 25 K

(c) m = 2.5 ↔ ΔT = 50 K

Figure 10. Dimensionless velocity profile for different m = μcold/μre f . Blue circles are the instantaneous data in the x
direction, the orange curve is the trend curve extrapolated from the instantaneous data, yellow circles are obtained form the
analytical solution from Sameen and Govindarajan [59].

Listing 78: viscosity.cpp

1 #include "viscosity.h"

2

3 using namespace LAMMPS_NS;

4

5 Viscosity::Viscosity() {};

Listing 79: viscosity.h

1 #ifndef LAMMPS_VISCOSITY_H

2 #define LAMMPS_VISCOSITY_H

3

4 namespace LAMMPS_NS {

5 class Viscosity {

6 /**

7 * Abstract base class for the viscosity attribute.

8 * All viscosity types should inherit from this class.

9 */

10 public:

11 Viscosity();

12 /**

13 * Virtual function.

14 * Returns the viscosity, given the temperature.

15 */

16 virtual double compute_visc(double temperature) = 0;

141

ChemEng 2021, 5, 30

17 };

18 }

19 #endif //LAMMPS_VISCOSITY_H

This type of base class is called an interface, though as the code is written in C++,
there is no actual difference in the implementation. The difference is only in concepts.

This structure allows for a very simple procedure to add a new viscosity type to
LAMMPS, as one doesn’t have to go through all of the code everytime a new viscosity
type is implemented. All that is required is to implement a new viscosity class inheriting
from the Viscosity abstract class and modify the add_viscosity function. The details of
the changes required for those two actions are detailed later in this section.

Another structure one might think of to implement the viscosity abstract base class
would be a template. Indeed, templates are more efficient than inherited classes as inherited
classes create additional virtual calls when calling the class’s methods. However, the choice
of which viscosity should be called is made at runtime, and not at compile time, which
means the abstract base class would be a better fit. When runtime polymorphism is needed,
the structure preferred is an abstract base class.

The abstract class is not the most efficient implementation, but it allows for simplicity
of use, which is important considering most of LAMMPS users are not programmers. In
this work, we have chosen to sacrifice a bit of efficiency to gain ease of use.

7.4. Implementing a New Viscosity Class

In this section the steps to implement one of Equations (15)–(18) are shown, using the
four parameter exponential viscosity as an example.

A new class is created that inherits from the Viscosity abstract class. The new class
have as much attributes as the viscosity type has parameters. In this example that means
four, as shown in the header in Listing 80.

Listing 80: viscosity_four_parameter_exp.h

1 #ifndef LAMMPS_VISCOSITY_FOURPARAMETEREXP_H

2 #define LAMMPS_VISCOSITY_FOURPARAMETEREXP_H

3

4 #include "math.h"

5 #include "viscosity.h"

6 namespace LAMMPS_NS{

7

8 class ViscosityFourParameterExp : public Viscosity{

9 /**

10 * Implementation of the four parameter exponential viscosity.

11 * This viscosity has four attributes.

12 */

13 private:

14 double A;

15 double B;

16 double C;

17 double D;

18 public:

19 ViscosityFourParameterExp(double A, double B, double C, double D);

20

21 double compute_visc(double temperature) override final;

22

23 };

24 };

25 #endif //LAMMPS_VISCOSITY_FOURPARAMETEREXP_H

The constructor therefore should take as arguments the four parameters of the An-
drade’s equation and initialise the class’s attributes with those values. The last step is to
implement the compute_visc method so it returns the value of the viscosity at the given
temperature. The implementation of both those functions is shown in Listing 81.

142

ChemEng 2021, 5, 30

Listing 81: viscosity_four_parameter_exp.cpp

1 #include "viscosity_four_parameter_exp.h"

2

3 using namespace LAMMPS_NS;

4

5 ViscosityFourParameterExp::ViscosityFourParameterExp(double A, double B, double C,
double D) {

6 this->A = A;

7 this->B = B;

8 this->C = C;

9 this->D = D;

10 }

11

12 double ViscosityFourParameterExp::compute_visc(double temperature) {

13 return A*exp(B/temperature +C*temperature + D *temperature*temperature);

14 }

Similar steps have to be taken to implement the classes corresponding to the other
viscosity models, see the Supplementary material.

7.5. Processing the Viscosity in the Atom Class

In the header of the Atom class we need to include the new viscosity class and declare
a new set of public members.

Listing 82: Original header (atom.h)

1 #include "pointers.h"

2 #include <map>

3 #include <string>

Listing 83: Modified header (atom.h)

1 #include "pointers.h"

2 #include "viscosity.h"

3 #include <map>

4 #include <string>

We add two new attributes in the USER-SPH section of the Atom attribute lists:
viscosity, a pointer to a Viscosity object and viscosities, a pointer to an array containing
the values of dynamic viscosities for all atoms at the current time step.

Listing 84: Original header (atom.h)

1 // USER-SPH package

2 double *rho,*drho,*e,*de,*cv;

3 double **vest;

Listing 85: Modified header (atom.h)

1 // USER-SPH package

2 double *rho,*drho,*e,*de,*cv;

3 double **vest;

4 Viscosity *viscosity;

5 double *viscosities;

6

We want to be able to choose which type of viscosity is being used in the simulation
from the input file, using a new command called viscosity. Let’s discuss the implemen-
tation of this feature. First we need to define the viscosity command. This is done by
modifying the execute_command method of the Input class. We then define a new func-
tion called add_viscosity, whose declaration is shown in Listing 86 and definition in
Listing 87. This function will have to be modified each time one wants to create a new
viscosity class. In add_viscosity, the element arg[0] is the string representing the type of
viscosity. For each viscosity class, the method performs the following procedure:

143

ChemEng 2021, 5, 30

• It checks which type of viscosity is asked to be created using the function strcmp on
arg[0] (for Andrade’s viscosity it corresponds to line 3 of Listing 87)

• It checks if the number of arguments is coherent with the number of parameter of the
viscosity type (line 4–5)

• It scans the coefficients of that viscosity type (line 6–10)
• It creates the appropriate viscosity and initializes the Viscosity attribute (line 11).

This process should be followed for any new implementation.

Listing 86: Modified header (atom.h)

1 void add_viscosity(int narg, char **arg);

Listing 87: New add_viscosity function (atom.cpp)

1 void Atom::add_viscosity(int narg, char **arg) {

2 if (narg < 1) error->all(FLERR, "Too few arguments for creation of viscosity");

3 if (!strcmp(arg[0], "FourParameterExp")) {

4 if (narg != 5)

5 error->all(FLERR, "Wrong number of arguments for creation of four

6 parameter exponential viscosity");

7 double A, B, C, D;

8 sscanf(arg[1], "%lg", &A);

9 sscanf(arg[2], "%lg", &B);

10 sscanf(arg[3], "%lg", &C);

11 sscanf(arg[4], "%lg", &D);

12 this->viscosity = new ViscosityFourParameterExp(A, B, C, D);

13 std::cout <<"Viscosity created" <<std::endl;

14 } else {

15 if (!strcmp(arg[0], "SutherlandViscosityLaw")) {

16 if (narg != 3)

17 error->all(FLERR, "Wrong number of arguments for creation of Sutherland
viscosity");

18 double A, B;

19 sscanf(arg[1], "%lg", &A);

20 sscanf(arg[2], "%lg", &B);

21 this->viscosity = new SutherlandViscosityLaw(A, B);

22 std::cout <<"Viscosity created" <<std::endl;

23 } else {

24 if (!strcmp(arg[0], "PowerLawGas")) {

25 if (narg != 2)

26 error->all(FLERR, "Wrong number of arguments for creation of power law
gas viscosity");

27 double B;

28 sscanf(arg[1], "%lg", &B);

29 this->viscosity = new PowerLawGas(B);

30 std::cout <<"Viscosity created" <<std::endl;

31 } else {

32 if (!strcmp(arg[0], "Arrhenius")) {

33 if (narg != 3)

34 error->all(FLERR, "Wrong number of arguments for creation of
Arrhenius viscosity");

35 double A;

36 double B;

37 sscanf(arg[1], "%lg", &A);

38 sscanf(arg[2], "%lg", &B);

39 this->viscosity = new ViscosityArrhenius(A, B);

40 std::cout <<"Viscosity created" <<std::endl;

41 } else {

42 if (!strcmp(arg[0], "Constant")) {

43 if (narg != 2)

44 error->all(FLERR, "Wrong number of arguments for creation

45 of Constant viscosity");

46 double A;

47 sscanf(arg[1], "%lg", &A);

48 this->viscosity = new ViscosityConstant(A);

49 std::cout <<"Viscosity created" <<std::endl;

50 } else {

51 std::cout <<"Nothing implemented for " << arg[0]<< std::endl;

144

ChemEng 2021, 5, 30

52 }

53 }

54 }

55 }

56 }

57 }

All headers of the new viscosity types implemented in the add_viscosity function
need to be included in the Atom class, see Listing 88.

Listing 88: New include (atom.cpp)

1 #include <string.h>

2 #include <iostream>

3 #include "viscosity_four_parameter_exp.h"

4 #include "viscosity_sutherland_law.h"

5 #include "viscosity_power_law_gas.h"

6 #include "viscosity_arrhenius.h"

7 #include "viscosity_constant.h"

The viscosity attribute is initialised to NULL in the constructor, see Listing 89.

Listing 89: Inside Atom::Atom(LAMMPS *lmp) : Pointers(lmp) (atom.cpp)

1 viscosity = NULL;

In the destructor of the Atom class, we add a line to delete the viscosity attribute, see
Listing 90.

Listing 90: Inside Atom:: Atom() (atom.cpp)

1 memory->destroy(viscosity);

The extract function is modified to process the viscosity attribute, see Listing 91.

Listing 91: Modified extract function (atom.cpp)

1 if (strcmp(name, "viscosity") == 0) return (void *) viscosity;

7.6. Using compute_Visc in SPH Pair Styles: Tait Water Implementation

The dynamic viscosity is used to compute the artificial viscosity force, that is used
in the compute function of the following SPH pair style: sph/idealgas, sph/lj, sph/tait-
water and sph/taitwater/morris. In this section the steps to implement compute_visc in
sph/taitwater are shown, the others required a similar procedure.

The first function to modify is the destructor, as we don’t have to allocate the viscosity
parameter anymore.

Listing 92: Original file (pair_sph_taitwater.cpp)

1 PairSPHTaitwater::∼PairSPHTaitwater() {

2 if (allocated) {

3 memory->destroy(setflag);

4 memory->destroy(cutsq);

5 memory->destroy(cut);

6 memory->destroy(rho0);

7 memory->destroy(soundspeed);

8 memory->destroy(B);

9 memory->destroy(viscosity);

10 }

11 }

Listing 93: Modified file (pair_sph_taitwater.cpp)

1 PairSPHTaitwater::∼PairSPHTaitwater() {

2 if (allocated) {

3 memory->destroy(setflag);

4 memory->destroy(cutsq);

145

ChemEng 2021, 5, 30

5 memory->destroy(cut);

6 memory->destroy(rho0);

7 memory->destroy(soundspeed);

8 memory->destroy(B);

9 }

10 }

For the same reason as the destructor we need to modify allocate.
Listing 94: Original file (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::allocate() {

2 allocated = 1;

3 int n = atom->ntypes;

4 memory->create(setflag, n + 1, n + 1, "pair:setflag");

5 for (int i = 1; i <= n; i++)

6 for (int j = i; j <= n; j++)

7 setflag[i][j] = 0;

8 memory->create(cutsq, n + 1, n + 1, "pair:cutsq");

9 memory->create(rho0, n + 1, "pair:rho0");

10 memory->create(soundspeed, n + 1, "pair:soundspeed");

11 memory->create(B, n + 1, "pair:B");

12 memory->create(cut, n + 1, n + 1, "pair:cut");

13 memory->create(viscosity, n + 1,n + 1,"pair:viscosity");

14 }

Listing 95: Modified file (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::allocate() {

2 allocated = 1;

3 int n = atom->ntypes;

4 memory->create(setflag, n + 1, n + 1, "pair:setflag");

5 for (int i = 1; i <= n; i++)

6 for (int j = i; j <= n; j++)

7 setflag[i][j] = 0;

8 memory->create(cutsq, n + 1, n + 1, "pair:cutsq");

9 memory->create(rho0, n + 1, "pair:rho0");

10 memory->create(soundspeed, n + 1, "pair:soundspeed");

11 memory->create(B, n + 1, "pair:B");

12 memory->create(cut, n + 1, n + 1, "pair:cut");

13 }

Inside the compute function of the sph/taitwater pair style we need to declare a new
set of variables. Where e is the energy and cv the heat capacity, now needed to calculate the
temperature and thus the viscosity.

Listing 96: Original file (pair_sph_taitwater.cpp)

1 int *type = atom->type;

2 int nlocal = atom->nlocal;

3 int newton_pair = force->newton_pair;

1 [linebackgroundcolor={\listyellow{4,5,6,7}},

2 label=820, caption={\small Modified file (pair\textunderscore sph\textunderscore

taitwater.cpp)}\label{32}] % Start your code-block

3

4 int *type = atom->type;

5 int nlocal = atom->nlocal;

6 int newton_pair = force->newton_pair;

7 double *e = atom->e;

8 double *cv = atom->cv;

9 Viscosity* viscosity = atom->viscosity;

10 double* viscosities = atom->viscosities;

The next modification is inside the loop over the j-th atom when the force induced by
the artificial viscosity is calculated inside the pair’s compute function.

The dynamic viscosities μi and μj are calculated for each atoms, using the formula
implemented in the compute_visc method. The temperature for the i-th atom is obtained

146

ChemEng 2021, 5, 30

using Ti = ei/cvi. It is important to note that using such expression for the energy balance
prevents the reference state of the internal energy to be set at 0.

The constant viscosity matrix element is replaced by the formula defined in Equation (19),
see Listings 97 and 98.

Listing 97: Original file (pair_sph_taitwater.cpp)

1 // artificial viscosity (Monaghan 1992)

2 if (delVdotDelR < 0.) {

3 mu = h * delVdotDelR / (rsq + 0.01 * h * h);

4 fvisc = -viscosity[itype][jtype] * (soundspeed[itype]

5 + soundspeed[jtype]) * mu / (rho[i] + rho[j]);

6 } else {

7 fvisc = 0.;

8 }

Listing 98: Modified file (pair_sph_taitwater.cpp)

1 viscosities[i] = viscosity->compute_visc(e[i]/cv[i]);

2 viscosities[j] = viscosity->compute_visc(e[j]/cv[j]);

3 // artificial viscosity (Monaghan 1992)

4 if (delVdotDelR < 0.) {

5 mu = h * delVdotDelR / (rsq + 0.01 * h * h);

6 fvisc =-4/h*(viscosities[i]/(soundspeed[itype]*rho[i])

7 +viscosities[j]/(soundspeed[jtype]*rho[j]))

8 *(soundspeed[itype]+ soundspeed[jtype])

9 * mu / (rho[i] + rho[j]);

10 } else {

11 fvisc = 0.;

12 }

Viscosity is now a per atom property, this means that we don’t have to pass its value
then the pair style is invoked. For this reason we need to delete the viscosity related lines
inside coeff.

Listing 99: Original coeff (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::coeff(int narg, char **arg) {

2 if (narg != 6)

3 error->all(FLERR,

4 "Incorrect args for pair_style sph/taitwater

5 coefficients");

6 if (!allocated)

7 allocate();

8

9 int ilo, ihi, jlo, jhi;

10 force->bounds(FLERR,arg[0], atom->ntypes, ilo, ihi);

11 force->bounds(FLERR,arg[1], atom->ntypes, jlo, jhi);

12

13 double rho0_one = force->numeric(FLERR,arg[2]);

14 double soundspeed_one = force->numeric(FLERR,arg[3]);

15 double viscosity_one = force->numeric(FLERR,arg[4]);

16 double cut_one = force->numeric(FLERR,arg[5]);

17 double B_one = soundspeed_one*soundspeed_one*rho0_one/7;

18

19 int count = 0;

20 for (int i = ilo; i <= ihi; i++) {

21 rho0[i] = rho0_one;

22 soundspeed[i] = soundspeed_one;

23 B[i] = B_one;

24 for (int j = MAX(jlo,i); j <= jhi; j++) {

25 viscosity[i][j] = viscosity_one;

26 cut[i][j] = cut_one;

27 setflag[i][j] = 1;

28 count++;

29 }

30 }

31 if (count == 0)

32 error->all(FLERR,"Incorrect args for pair

147

ChemEng 2021, 5, 30

33 coefficients");

34 }

Listing 100: Modified coeff (pair_sph_taitwater.cpp)

1 void PairSPHTaitwater::coeff(int narg, char **arg) {

2 if (narg != 5)

3 error->all(FLERR,

4 "Incorrect args for pair_style sph/taitwater

5 coefficients");

6 if (!allocated)

7 allocate();

8

9 int ilo, ihi, jlo, jhi;

10 force->bounds(FLERR,arg[0], atom->ntypes, ilo, ihi);

11 force->bounds(FLERR,arg[1], atom->ntypes, jlo, jhi);

12

13 double rho0_one = force->numeric(FLERR,arg[2]);

14 double soundspeed_one = force->numeric(FLERR,arg[3]);

15 double cut_one = force->numeric(FLERR,arg[4]);

16 double B_one = soundspeed_one*soundspeed_one*rho0_one/7;

17

18 int count = 0;

19 for (int i = ilo; i <= ihi; i++) {

20 rho0[i] = rho0_one;

21 soundspeed[i] = soundspeed_one;

22 B[i] = B_one;

23 for (int j = MAX(jlo,i); j <= jhi; j++) {

24 cut[i][j] = cut_one;

25 setflag[i][j] = 1;

26 count++;

27 }

28 }

29 if (count == 0)

30 error->all(FLERR,"Incorrect args for pair

31 coefficients");

32 }

The last modification is in init_one. Again, we delete lines related to the former
viscosity attribute.

Listing 101: Original file (pair_sph_taitwater.cpp)

1 double PairSPHTaitwater::init_one(int i, int j) {

2 if (setflag[i][j] == 0) {

3 error->all(FLERR,"All pair sph/taitwater coeffs

4 are set");

5 }

6 cut[j][i] = cut[i][j];

7 viscosity[j][i] = viscosity[i][j];

8 return cut[i][j];

9 }

Listing 102: Modified file (pair_sph_taitwater.cpp)

1 double PairSPHTaitwater::init_one(int i, int j) {

2 if (setflag[i][j] == 0) {

3 error->all(FLERR,"All pair sph/taitwater coeffs

4 are set");

5 }

6 cut[j][i] = cut[i][j];

7 return cut[i][j];

8 }

7.7. Running the New Software with Mpirun

At this stage, the software is designed to only run in serial. Changes need to be
made to make it run with Message Passing Interface (MPI). This will allow the software

148

ChemEng 2021, 5, 30

to run in parallel: some computations being independent from each other, they can be
performed at the same time. Instead of using one processor for a long time, we will use
multiple processors for a shorter period. The simulation will therefore take more computing
resources but will take a lot shorter to compute. The original SPH module can already be
run with MPI however as we have modified the code that is no longer true. We need to
make additional changes to the software. All those changes are located in the Atom Vec
Meso class of the SPH module.

In LAMMPS, the different MPI processes have to communicate with each other as the
computations they perform are not completely independent from each other. They need
data from other processes in order to perform their own calculations. They communicate
with each other using a buffer that will contain all the necessary data. The buffer is simply
an array that we will fill with the data. The different methods for packing and unpacking
this buffer are defined in the Atom Vec Meso class. We need to add a new data to transmit:
the calculated viscosity.

The first thing to do is to increase the size of the buffers in their initialisation so they
can accept the viscosity value, an example is shown in Listings 103 and 104.

Listing 103: Original constructor (atom_vec_meso.cpp)

1 AtomVecMeso::AtomVecMeso(LAMMPS *lmp) : AtomVec(lmp)

2 {

3 molecular = 0;

4 mass_type = 1;

5 forceclearflag = 1;

6

7 // we communicate not only x forward but also vest ..

8 comm_x_only = 0; .

9 // we also communicate de and drho in reverse direction

10 comm_f_only = 0;

11 // 3 + rho + e + vest[3], that means we may

12 // only communicate 5 in hybrid

13 size_forward = 8;

14 size_reverse = 5; // 3 + drho + de

15 size_border = 12; // 6 + rho + e + vest[3] + cv

16 size_velocity = 3;

17 size_data_atom = 8;

18 size_data_vel = 4;

19 xcol_data = 6;

20

21 atom->e_flag = 1;

22 atom->rho_flag = 1;

23 atom->cv_flag = 1;

24 atom->vest_flag = 1;

25 }

Listing 104: Modified constructor (atom_vec_meso.cpp)

1 AtomVecMeso::AtomVecMeso(LAMMPS *lmp) : AtomVec(lmp)

2 {

3 molecular = 0;

4 mass_type = 1;

5 forceclearflag = 1;

6

7 // we communicate not only x forward but also vest ...

8 comm_x_only = 0;

9 // we also communicate de and drho in reverse direction

10 comm_f_only = 0;

11 // 3 + rho + e + vest[3] + viscosities, that means we may

12 // only communicate 6 in hybrid

13 size_forward = 9;

14 size_reverse = 5; // 3 + drho + de

15 // 6 + rho + e + vest[3] + cv + viscosities

16 size_border = 13;

17 size_velocity = 3;

18 size_data_atom = 8;

19 size_data_vel = 4;

149

ChemEng 2021, 5, 30

20 xcol_data = 6;

21

22 atom->e_flag = 1;

23 atom->rho_flag = 1;

24 atom->cv_flag = 1;

25 atom->vest_flag = 1;

26 }

Then, we added the relevant elements of the attribute viscosities to the buffer in all
the methods handling buffers, an example is shown in Listings 105 and 106.

Listing 105: Original pack_vec_hybrid (atom_vec_meso.cpp)

1 int AtomVecMeso::pack_comm_hybrid(int n, int *list,

2 double *buf) {

3 //printf("in AtomVecMeso::pack_comm_hybrid\n");

4 int i, j, m;

5

6 m = 0;

7 for (i = 0; i < n; i++) {

8 j = list[i];

9 buf[m++] = rho[j];

10 buf[m++] = e[j];

11 buf[m++] = vest[j][0];

12 buf[m++] = vest[j][1];

13 buf[m++] = vest[j][2];

14 }

15 return m;

16 }

Listing 106: Modified pack_vec_hybrid (atom_vec_meso.cpp)

1 int AtomVecMeso::pack_comm_hybrid(int n, int *list,

2 double *buf) {

3 //printf("in AtomVecMeso::pack_comm_hybrid\n");

4 int i, j, m;

5

6 m = 0;

7 for (i = 0; i < n; i++) {

8 j = list[i];

9 buf[m++] = rho[j];

10 buf[m++] = e[j];

11 buf[m++] = vest[j][0];

12 buf[m++] = vest[j][1];

13 buf[m++] = vest[j][2];

14 buf[m++] = viscosities[j];

15 }

16 return m;

17 }

After making those changes for all the methods in the class, the software can be run
using mpirun.

7.8. Invoking, Selecting and Computing a Viscosity Object

To compute the new viscosity a new argument was added to the compute command:
viscosities. This allows the user to use the compute command to output the dynamic
viscosity to the dump file. This can be done by the following command:

1 compute viscosities_peratom all meso/viscosities/atom

The implementation of this feature is simple, as it is very similar to other compute
argument implementation. All that needs to be done is to modify another compute’s
implementation, such as compute_meso_rho_atom so it processes the variable viscosities
instead of rho.

The viscosity used in the simulation can be invoked in the input file, using the
following command:

150

ChemEng 2021, 5, 30

1 viscosity [type of viscosity] [parameters of the viscosity]

The type of viscosity can be chosen from the following list:

• FourParameterExp: the four parameter exponential viscosity law.
• SutherlandViscosityLaw: the Sutherland viscosity law.
• PowerLawGas: the power viscosity law for gases.
• Arrhenius: the Arrhenius viscosity law.
• Constant: a constant viscosity.

For example, to invoke the four parameter exponential viscosity, we can write in the
input file:

1 viscosity FourParameterExp C1 C2 C3 C4

As stated earlier, this list can easily be extended by the user by modifying the
add_viscosity function defined earlier.

8. Conclusions

Particle methods are very versatile and can be applied in a variety of applications,
ranging from modelling of molecules to the simulation of galaxies. Their power is even
amplified when they are coupled together within a discrete multiphysics framework. This
versatility matches well with LAMMPS, which is a particle simulator, whose open-source
code can be extended with new functionalities. However, modifying LAMMPS can be
challenging for researchers with little coding experience and the available support material
on how to modify LAMMPS is either too basic or too advanced for the average researcher.
Moreover, most of the available material focuses on MD; while the aim of this paper is to
support researchers that use other particle methods such as SPH or DEM.

In this work, we present several examples, explained step-by-step and with increasing
level of complexity. We begin with simple cases and concluding with more complex ones:
Section 3 shows the implementation of the Kelvin–Voigt bond style used to model encap-
sulate particles with a soft outer shell and validated validated by simulating spherical
homogeneous linear elastic and viscoelastic particles [45]; Section 7 show how to imple-
ment a new per-atom temperature dependant viscosity property and is validated finding
the same viscosity and velocity trend shown by Sameen and Govindarajan [59] in their
analytical solution for a channel flow in a asymmetrical heating walls.

The work perfectly fits in the “Discrete Multiphysics: Modelling Complex Systems
with Particle Methods” special issue by sharing some in dept know-how and “trick and
trades” developed by our group in years of use of LAMMPS. In fact, the aim is to support,
in several ways, researchers that use computational particle methods. Often researchers
tend to write their own code. The advantage of this approach is that the code is well
understood by the researcher and, therefore, easily extendible. However, this sometimes
implies reinventing the wheel and countless hours of debugging. Familiarity with a code
like LAMMPS, which has an active community of practice and is periodically enriched
with new features would be beneficial to this type of researchers allowing them to save
considerable time. In the long term, there is another advantage. Modules written for
in-house code are hardly sharable. At the moment, the largest portion of the LAMMPS
community is dedicated to MD. While this article was under review, for instance, a new
book dedicated to modifying LAMMPS came out [60]. However, it focuses only on MD and
it does not mention other discrete methods like SPH or DEM. Instead, the aim of this paper
is to make LAMMPS more accessible for the Discrete Multiphysics community facilitating
sharing reusable code among practitioners in this field.

Supplementary Materials: The codes used in this work are freely available under the GNU General
Public License v3 and can be downloaded from the University of Birmingham repository (http:
//edata.bham.ac.uk/560/).

151

ChemEng 2021, 5, 30

Author Contributions: Conceptualization, A.A. (Andrea Albano) and A.A. (Alessio Alexiadis);
methodology, A.A. (Andrea Albano); validation, A.A. (Andrea Albano), E.l.G., A.D., I.H.S. and A.R.;
writing—original draft preparation, A.A. (Andrea Albano), E.l.G., A.D., I.H.S.; writing—review
and editing, A.A. (Andrea Albano), A.A. (Alessio Alexiadis), C.A.D.-D., X.S., K.C.N. and M.A.;
supervision, A.A. (Alessio Alexiadis), A.R. and I.M.; funding acquisition, A.A. (Alessio Alexiadis).
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the US office of Naval Research Global (ONRG) under NICOP
Grant N62909-17-1-2051.

Acknowledgments: The authors would like to thank Prof Albano (University of Pisa) for his advice
and comments. The computations described in this paper were performed using the University of
Birmingham’s BlueBEAR HPC service, which provides a High Performance Computing service to
the University’s research community. See http://www.birmingham.ac.uk/bear for more details.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MS Molecular Dynamics
DMP Discrete MultiPhysics
SPH Smoothed Particle Hydrodynamics
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
EOS Equation Of State
LSM Lattice Spring Model

Appendix A. An Example of Discrete Multiphysics Simulation in LAMMPS

In this section we present a simple case of DMP simulation with LAMMPS. It is an
explanatory example deliberately simple for illustrative purposes. It involves only a small
number of particles. Sensitivity analysis of the results with the model resolution or other
numerical parameters are beyond the scope of this example and not carried out.

The geometry is a 2D tube with an elastic membrane at one end (Figure A1). The tube
contains a liquid simulated with the SPH model, Tait EOS and Morris viscosity. The wall
is simulated with stationary particles and the membrane with the LSM using Hookean
springs. In Figure A1, the liquid particles are red, the wall particles blue and the membrane
particles yellow. During the simulation, the fluid is subjected to a force in the x-direction
that pushed the particles against the membrane. Because the membrane is elastic, it
stretches inflating the right end of the tube like a balloon. The resolution of the membrane
is ten times higher than the fluid. This ensures that, as the membrane stretches, fluid
particles do not ‘leak’ in the gaps formed between two consecutive membrane particles.
The Lennard Jones potential, truncated to consider only the repulsive part, is used to avoid
compenetration between solid and liquid particles. A weaker Lennard Jones potential is
used as ‘artificial pressure’ to avoid excessive compression of the fluid particles.

The initial data file (data.initial) for the geometry was create according to LAMMPS’
rules for formatting the Data File [41] and is shared as additional material. In Data File, the
fluid particles are called type 1, the wall particles type 2 and the membrane particles type
3. Here we focus on the input file (membrane.lmp), which is also shared in its entirety as
additional material. We do not discuss LAMMPS syntax (the reader can refer to LAMMPS
User’s Guide for this [41]), but only on specific parts of the input file that concern the DMP
implementation.

152

ChemEng 2021, 5, 30

Figure A1. The inflating balloon simulation.

The first section of the input file determines the dimensionality of the problem (2D),
the boundary conditions (periodic), the units used (SI), the type of potential used in
the simulation (atom_style) and the input file that contains the initial position of all
the particles

1 dimension 2

2 boundary p p p

3 units si

4 atom_style hybrid meso bond angle

5 read_data data.initial

The crucial line for DMP simulations is the hybrid keyword of the atom_style, which
allows for combining different particle models. The keyword meso refers to the SPH model
and bond, in the case under consideration, to the LSM. The angle keyword corresponds to
angular springs, but, as it will be clear later, it is not used in this simulation.

The following section contains several variables that are going to be used later on.
In particular, the initial particle distance is dL and their mass m. The resolution of the
membrane is Nt times higher than the fluid. The initial distance between membrane
particle is therefore db=dL/Nt and their mass mM=m/Nt.

1 variable dL equal 0.000111111

2 variable m equal 1.23457e-05

3 variable Nt equal 10

4 variable dB equal ${dL}/${Nt}

5 variable mM equal ${m}/${Nt}

6 variable h equal 1.5*${dL}

7 variable h2 equal ${dL}/${Nt}

8 variable c equal 0.1

9 variable mu equal 1.0e-3

10 variable rho equal 1000

11 variable kA equal 1.e-8

12 variable kB equal 100

13 variable skin equal 0.3*${h}

14 variable epsL equal 1.e-12

15 variable epsS equal 1.e-10

16 variable sgmL equal ${dL}

153

ChemEng 2021, 5, 30

17 variable sgmS equal 0.5*${sgmL}/${Nt}

18 variable fmax equal 0.00005

19 variable ft equal ramp(0.,${fmax})

The section below identifies particles type 1 as a group called fluid, particles type
2 as a group called wall and particles type 3 as a group called membrane. The mass of
type 3 particles is assigned (the mass of type 1, 2 was assigned in the data.initial file).
The density of all particle is also assigned based on the value rho defined previously.

1 group fluid type 1

2 group wall type 2

3 group membrane type 3

4 mass 3 ${mM}

5 set group all meso/rho ${rho}

The next section defines the pair potentials for non-bonded particles. In this simulation,
we use different styles together (keyword hybrid/overlay). The sph/taitwater/morris

pair style, which is used for all pair interactions except 2-2 (i.e., wall particles with them-
selves); and the Lennard Jones potential lj/cut, which, as explained above, is used both
as ’artificial pressure’ and to avoid compenetration of solid and fluid particles.

1 pair_style hybrid/overlay sph/taitwater/morris lj/cut ${sgmL}

2 pair_coeff 1 * sph/taitwater/morris ${rho} ${c} ${mu} ${h}

3 pair_coeff 2 3 sph/taitwater/morris ${rho} ${c} ${mu} ${h2}

4 pair_coeff 3 3 sph/taitwater/morris ${rho} ${c} ${mu} ${h2}

5

6 pair_coeff 1 * lj/cut ${epsL} ${sgmL}

7 pair_coeff 2 * lj/cut ${epsL} ${sgmL}

8 pair_coeff 1 3 lj/cut ${epsS} ${sgmL}

9 pair_coeff 3 3 lj/cut ${epsS} ${sgmS}

After the non-bonded potentials, the script assigns the harmonic potential, with Hook
constant kB and equilibrium distance dB, to the bonded particles (i.e., the membrane). All
pairs of bonded particles are assigned in the data.initial file.

1 bond_style harmonic

2 bond_coeff 1 ${kB} ${dB}

3 angle_style none

The next section assigns several parameters that determine how the Newton equation
of motion is solved numerically. The force fmax is added to all fluid particle in the x-
direction, and an artificial viscosity is added for stability reasons.

1 fix 2 fluid addforce ${fmax} 0.0 0.0

2 fix 5 fluid meso

3 fix 6 membrane meso

4 fix 8 wall meso/stationary

5 fix 9 all viscous 0.01

The last commands determine the value and the number of timesteps used in the
simulation plus a variety of computations for output and other purposes that are not
discussed here (the reader can refer to the User’s Guide).

1 compute rho_peratom all meso/rho/atom

2 compute rho_ave all reduce ave c_rho_peratom

3 compute vmax fluid reduce max vx

4 thermo 10000

5 thermo_style custom step c_rho_ave c_vmax

6 thermo_modify norm no

7 neighbor ${skin} bin

8 dump dump_id all custom 10000 dump.lammpstrj id type x y z vx vy

9 timestep 1.e-6

10 run 2500000

154

ChemEng 2021, 5, 30

Appendix B. How to Compile LAMMPS

LAMMPS is build as a library and executable [41] either by using GNU make [61] or
a build environment with CMake [62]. In this appendix LAMMPS will be compiled only
using make and it is compiled in BlueBEAR. For more details of the compiling process in
LAMMPS refer to the user manual [41].

To compile LAMMPS in your own directory you can follow those steps

1. Download the file from here. Select the code you want, click the “Download Now”
button, and your browser should download a gzipped tar file. Save the file in your
directory on BlueBEAR

2. Unpack the file with the following command line command prompt:

Listing A1: Command to open the tar file on BlueBEAR

1 tar -xvf lammps-stable.tar.gz

3. Before compiling is important to set up the environment, with BlueBEAR

Listing A2: Commands to set the environment for compile LAMMPS on BlueBEAR

1 module purge

2

3 module load bluebear

4

5 module load Eigen/3.3.4-foss-2019a

4. Enter in the /src directory in your new LAMMPS directory. The src directory directory
contains the C++ source and header files for LAMMPS. It also contains a top-level
Makefile and a MAKE sub-directory with low-level Makefile.* files for many systems
and machines.

5. Type the following command to compile a serial version of LAMMPS:

Listing A3: Command to compile LAMMPS on BlueBEAR

1 make serial

or a multi-threaded (parallel) version of LAMMPS:

Listing A4: Command to compile LAMMPS on BlueBEAR

1 make mpi

If you get no errors and an executable file lmp_mpi is produced.
6. Depending on the features you need, you will have to install same packages in your

compiled LAMMPS. Is possible to check which packages is installed in your compiled
LAMMPS by typing

Listing A5: Command to check the list of installed packages (you must be inside the /src
directory)

1 make ps

It is possible to install the packages you need with the command line

Listing A6: Command to install a specific package

1 make yes-NAMEPACK

or un-install them with

Listing A7: Command to un-install a specific package

1 make no-NAMEPACK

More make commands are explained in LAMMPS user manual [41]. After the installa-
tion of the desired packages you need to compile it again (step 5).

155

ChemEng 2021, 5, 30

References

1. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics; Technical Report; Sandia National Labs.: Albuquerque,
NM, USA, 1993.

2. Plimpton, S.; Pollock, R.; Stevens, M. Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations. In
Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, USA, 14–17
March 1997.

3. Auhl, R.; Everaers, R.; Grest, G.S.; Kremer, K.; Plimpton, S.J. Equilibration of long chain polymer melts in computer simulations.
J. Chem. Phys. 2003, 119, 12718–12728.

4. Parks, M.L.; Lehoucq, R.B.; Plimpton, S.J.; Silling, S.A. Implementing peridynamics within a molecular dynamics code. Comput.
Phys. Commun. 2008, 179, 777–783.

5. Petersen, M.K.; Lechman, J.B.; Plimpton, S.J.; Grest, G.S.; Veld, P.J.; Schunk, P. Mesoscale hydrodynamics via stochastic rotation
dynamics: Comparison with Lennard-Jones fluid. J. Chem. Phys. 2010, 132, 174106.

6. Ganzenmüller, G.C.; Steinhauser, M.O.; Van Liedekerke, P.; Leuven, K.U. The implementation of Smooth Particle Hydrodynamics
in LAMMPS. Paul Van Liedekerke Kathol. Univ. Leuven 2011, 1, 1–26.

7. Jaramillo-Botero, A.; Su, J.; Qi, A.; Goddard III, W.A. Large-scale, long-term nonadiabatic electron molecular dynamics for
describing material properties and phenomena in extreme environments. J. Comput. Chem. 2011, 32, 497–512.

8. Coleman, S.; Spearot, D.; Capolungo, L. Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries. Model. Simul.
Mater. Sci. Eng. 2013, 21, 055020.

9. Singraber, A.; Behler, J.; Dellago, C. Library-based LAMMPS implementation of high-dimensional neural network potentials. J.
Chem. Theory Comput. 2019, 15, 1827–1840.

10. Ng, K.; Alexiadis, A.; Chen, H.; Sheu, T. A coupled Smoothed Particle Hydrodynamics-Volume Compensated Particle Method
(SPH-VCPM) for Fluid Structure Interaction (FSI) modelling. Ocean Eng. 2020, 218, 107923.

11. Daraio, D.; Villoria, J.; Ingram, A.; Alexiadis, A.; Stitt, E.H.; Munnoch, A.L.; Marigo, M. Using Discrete Element method (DEM)
simulations to reveal the differences in the γ-Al2O3 to α-Al2O3 mechanically induced phase transformation between a planetary
ball mill and an attritor mill. Miner. Eng. 2020, 155, 106374.

12. Qiao, G.; Lasfargues, M.; Alexiadis, A.; Ding, Y. Simulation and experimental study of the specific heat capacity of molten salt
based nanofluids. Appl. Therm. Eng. 2017, 111, 1517–1522.

13. Qiao, G.; Alexiadis, A.; Ding, Y. Simulation study of anomalous thermal properties of molten nitrate salt. Powder Technol. 2017,
314, 660–664.

14. Anagnostopoulos, A.; Navarro, H.; Alexiadis, A.; Ding, Y. Wettability of NaNO3 and KNO3 on MgO and Carbon Surfaces—
Understanding the Substrate and the Length Scale Effects. J. Phys. Chem. C 2020, 124, 8140–8152.

15. Sahputra, I.H.; Alexiadis, A.; Adams, M.J. Effects of Moisture on the Mechanical Properties of Microcrystalline Cellulose and the
Mobility of the Water Molecules as Studied by the Hybrid Molecular Mechanics–Molecular Dynamics Simulation Method. J.
Polym. Sci. Part B Polym. Phys. 2019, 57, 454–464.

16. Sahputra, I.H.; Alexiadis, A.; Adams, M.J. Temperature dependence of the Young’s modulus of polymers calculated using a
hybrid molecular mechanics–molecular dynamics method. J. Phys. Condens. Matter 2018, 30, 355901.

17. Mohammed, A.M.; Ariane, M.; Alexiadis, A. Using Discrete Multiphysics Modelling to Assess the Effect of Calcification on
Hemodynamic and Mechanical Deformation of Aortic Valve. ChemEngineering 2020, 4, 48.

18. Ariane, M.; Vigolo, D.; Brill, A.; Nash, F.; Barigou, M.; Alexiadis, A. Using Discrete Multi-Physics for studying the dynamics of
emboli in flexible venous valves. Comput. Fluids 2018, 166, 57–63.

19. Ariane, M.; Wen, W.; Vigolo, D.; Brill, A.; Nash, F.; Barigou, M.; Alexiadis, A. Modelling and simulation of flow and agglomeration
in deep veins valves using discrete multi physics. Comput. Biol. Med. 2017, 89, 96–103.

20. Ariane, M.; Allouche, M.H.; Bussone, M.; Giacosa, F.; Bernard, F.; Barigou, M.; Alexiadis, A. Discrete multi-physics: A mesh-free
model of blood flow in flexible biological valve including solid aggregate formation. PLoS ONE 2017, 12, e0174795.

21. Schütt, M.; Stamatopoulos, K.; Simmons, M.; Batchelor, H.; Alexiadis, A. Modelling and simulation of the hydrodynamics and
mixing profiles in the human proximal colon using Discrete Multiphysics. Comput. Biol. Med. 2020, 121, 103819.

22. Alexiadis, A.; Stamatopoulos, K.; Wen, W.; Batchelor, H.; Bakalis, S.; Barigou, M.; Simmons, M. Using discrete multi-physics for
detailed exploration of hydrodynamics in an in vitro colon system. Comput. Biol. Med. 2017, 81, 188–198.

23. Ariane, M.; Kassinos, S.; Velaga, S.; Alexiadis, A. Discrete multi-physics simulations of diffusive and convective mass transfer in
boundary layers containing motile cilia in lungs. Comput. Biol. Med. 2018, 95, 34–42.

24. Ariane, M.; Sommerfeld, M.; Alexiadis, A. Wall collision and drug-carrier detachment in dry powder inhalers: Using DEM to
devise a sub-scale model for CFD calculations. Powder Technol. 2018, 334, 65–75.

25. Albano, A.; Alexiadis, A. Interaction of Shock Waves with Discrete Gas Inhomogeneities: A Smoothed Particle Hydrodynamics
Approach. Appl. Sci. 2019, 9, 5435.

26. Albano, A.; Alexiadis, A. A smoothed particle hydrodynamics study of the collapse for a cylindrical cavity. PLoS ONE 2020,
15, e0239830.

27. Albano, A.; Alexiadis, A. Non-Symmetrical Collapse of an Empty Cylindrical Cavity Studied with Smoothed Particle Hydrody-
namics. Appl. Sci. 2021, 11, 3500.

28. Alexiadis, A. The discrete multi-hybrid system for the simulation of solid-liquid flows. PLoS ONE 2015, 10, e0124678.

156

ChemEng 2021, 5, 30

29. Alexiadis, A. A new framework for modelling the dynamics and the breakage of capsules, vesicles and cells in fluid flow. Procedia
IUTAM 2015, 16, 80–88.

30. Alexiadis, A. A smoothed particle hydrodynamics and coarse-grained molecular dynamics hybrid technique for modelling
elastic particles and breakable capsules under various flow conditions. Int. J. Numer. Methods Eng. 2014, 100, 713–719.

31. Rahmat, A.; Barigou, M.; Alexiadis, A. Deformation and rupture of compound cells under shear: A discrete multiphysics study.
Phys. Fluids 2019, 31, 051903.

32. Alexiadis, A.; Ghraybeh, S.; Qiao, G. Natural convection and solidification of phase-change materials in circular pipes: A SPH
approach. Comput. Mater. Sci. 2018, 150, 475–483.

33. Rahmat, A.; Barigou, M.; Alexiadis, A. Numerical simulation of dissolution of solid particles in fluid flow using the SPH method.
Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 290–307.

34. Rahmat, A.; Meng, J.; Emerson, D.; Wu, C.Y.; Barigou, M.; Alexiadis, A. A practical approach for extracting mechanical properties
of microcapsules using a hybrid numerical model. Microfluid. Nanofluidics 2021, 25, 1–17.

35. Ruiz-Riancho, I.N.; Alexiadis, A.; Zhang, Z.; Hernandez, A.G. A Discrete Multi-Physics Model to Simulate Fluid Structure
Interaction and Breakage of Capsules Filled with Liquid under Coaxial Load. Processes 2021, 9, 354.

36. Sanfilippo, D.; Ghiassi, B.; Alexiadis, A.; Hernandez, A.G. Combined Peridynamics and Discrete Multiphysics to Study the
Effects of Air Voids and Freeze-Thaw on the Mechanical Properties of Asphalt. Materials 2021, 14, 1579.

37. Alexiadis, A.; Albano, A.; Rahmat, A.; Yildiz, M.; Kefal, A.; Ozbulut, M.; Bakirci, N.; Garzón-Alvarado, D.; Duque-Daza, C.;
Eslava-Schmalbach, J. Simulation of pandemics in real cities: Enhanced and accurate digital laboratories. Proc. R. Soc. A 2021,
477, 20200653.

38. Alexiadis, A. Deep Multiphysics and Particle–Neuron Duality: A Computational Framework Coupling (Discrete) Multiphysics
and Deep Learning. Appl. Sci. 2019, 9, 5369.

39. Alexiadis, A. Deep multiphysics: Coupling discrete multiphysics with machine learning to attain self-learning in-silico models
replicating human physiology. Artif. Intell. Med. 2019, 98, 27–34.

40. Alexiadis, A.; Simmons, M.; Stamatopoulos, K.; Batchelor, H.; Moulitsas, I. The duality between particle methods and artificial
neural networks. Sci. Rep. 2020, 10, 1–7.

41. Sandia Corporation LAMMPS Users Manual. 2003. Available online: https://lammps.sandia.gov/doc/Developer.pdf (accessed
on 11 Jauaury 2021).

42. Plimpton. LAMMPS Developer Guide. Available online: https://lammps.sandia.gov/doc/Developer.pdf (accessed on 11
Jauaury 2021).

43. Plimpton, S.J. Modifying & Extending LAMMPS; Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA,
2014.

44. Flügge, W. Viscoelasticity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
45. Sahputra, I.H.; Alexiadis, A.; Adams, M.J. A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations.

ChemEngineering 2020, 4, 30.
46. Liu, M.; Liu, G. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch. Comput. Methods Eng.

2010, 17, 25–76.
47. Le Métayer, O.; Saurel, R. The Noble-Abel stiffened-gas equation of state. Phys. Fluids 2016, 28, 046102.
48. Monaghan, J.J.; Gingold, R.A. Shock simulation by the particle method SPH. J. Comput. Phys. 1983, 52, 374–389.
49. Lattanzio, J.; Monaghan, J.; Pongracic, H.; Schwarz, M. Controlling penetration. SIAM J. Sci. Stat. Comput. 1986, 7, 591–598.
50. Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 1997, 136, 214–226.
51. Cornelissen, J.; Waterman, H. The viscosity temperature relationship of liquids. Chem. Eng. Sci. 1955, 4, 238–246.
52. Seeton, C.J. Viscosity–temperature correlation for liquids. Tribol. Lett. 2006, 22, 67–78.
53. Stanciu, I. A new viscosity-temperature relationship for vegetable oil. J. Pet. Technol. Altern. Fuels 2012, 3, 19–23.
54. Gutmann, F.; Simmons, L. The temperature dependence of the viscosity of liquids. J. Appl. Phys. 1952, 23, 977–978.
55. De Guzman, J. Relation between fluidity and heat of fusion. Anales Soc. Espan. Fis. Quim 1913, 11, 353–362.
56. Raman, C. A theory of the viscosity of liquids. Nature 1923, 111, 532–533.
57. Chapman, S.; Cowling, T.G.; Burnett, D. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity,

Thermal Conduction and Diffusion in Gases; Cambridge University Press: Cambridge, UK, 1990.
58. Rathakrishnan, E. Theoretical Aerodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2013.
59. Sameen, A.; Govindarajan, R. The effect of wall heating on instability of channel flow. J. Fluid Mech. 2007, 577, 417–442.
60. Mubin, S.; Li, J. Extending and Modifying LAMMPS; Packt Publishing Ltd.: Birmingham, UK, 2021.
61. Project, G. Make-GNU Project-Free Software Fondation. Available online: https://www.gnu.org/software/make/ (accessed on

14 October 2020).
62. Martin, K.; Hoffman, B. Mastering CMake: A Cross-Platform Build System; Kitware: Clifton Park, NY, USA, 2010.

157

chemengineering

Article

Numerical Simulations of Red-Blood Cells in Fluid Flow:
A Discrete Multiphysics Study

Amin Rahmat 1,*, Philip Kuchel 2, Mostafa Barigou 1 and Alessio Alexiadis 1,*

��������	
�������

Citation: Rahmat, A.; Kuchel, P.;

Barigou, M.; Alexiadis, A. Numerical

Simulations of Red-Blood Cells in

Fluid Flow: A Discrete Multiphysics

Study. ChemEng 2021, 5, 33.

https://doi.org/10.3390/

chemengineering5030033

Academic Editor: Evangelos Tsotsas

Received: 4 May 2021

Accepted: 23 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
m.barigou@bham.ac.uk

2 School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia;
philip.kuchel@sydney.edu.au

* Correspondence: a.rahmat@bham.ac.uk (A.R.); a.alexiadis@bham.ac.uk (A.A.)

Abstract: In this paper, we present a methodological study of modelling red blood cells (RBCs) in
shear-induced flows based on the discrete multiphysics (DMP) approach. The DMP is an alternative
approach from traditional multiphysics based on meshless particle-based methods. The proposed
technique has been successful in modelling multiphysics and multi-phase problems with large
interfacial deformations such as those in biological systems. In this study, we present the proposed
method and introduce an accurate geometrical representation of the RBC. The results were validated
against available data in the literature. We further illustrate that the proposed method is capable of
modelling the rupture of the RBC membrane with minimum computational difficulty.

Keywords: discrete multiphysics; the smoothed particle hydrodynamics (SPH) method; fluid–solid
interactions (FSI); red-blood cells; numerical modelling; shear flow

1. Introduction

The human red blood cell (RBC; erythrocyte) is a homogeneous biconcave disk-like
microparticle that is surrounded by a fluidic incompressible lipid bilayer membrane that
is underpinned by a thin elastic cytoskeleton [1]. The membrane and its underlying
cytoskeleton have been naturally selected to be sufficiently flexible to allow passage of
the RBC through capillaries of 4 μm diameter in all tissues; this is approximately half of
the cell’s main diameter. The main physiological function of the RBC is the transfer of
oxygen from the lungs to all tissues and the return of CO2 to the lungs where it is exhaled.
The RBC actively metabolises glucose that provides free energy from its bond cleavage to
phosphorylate ADP to make ATP, the ‘energy currency’ of the cell. In the RBC, an ionic
disequilibrium exists across the membrane with a much higher Na+ concentration outside
in the blood plasma, while inside the concentration of K+ is relatively high. The steady-
state of these concentrations is maintained by the membrane protein Na, K-ATPase that
catalyses the hydrolysis of one molecule of ATP for three Na+ ion ejected and two K+

taken up. The detailed kinetics of RBC metabolism and ATP turnover are encapsulated in
a comprehensive computer model [2–4].

Other functions of the RBC are mooted to involve the transfer of ATP and ADP agents
inward and outward in the cell to release various molecules in blood flow through cell
deformation in shear-induced strain fields [5]. These purines are proposed by some to
be key effectors of arteriolar smooth muscle tone and hence affect peripheral resistance
to blood flow and thence blood pressure. The dynamics and deformation of the RBC in
shear flows are crucial in numerous biomedical applications including the detection of
diseases associated with tissue perfusion, the experimental separation of healthy cells from
infected parasitised ones, and studying human metabolism in vivo, and using nuclear mag-
netic resonance spectroscopy (MRS) [6]. The cell might also undergo membrane rupture

ChemEng 2021, 5, 33. https://doi.org/10.3390/chemengineering5030033 https://www.mdpi.com/journal/chemengineering

159

ChemEng 2021, 5, 33

(haemolysis) under conditions of extreme deformation. To have a deep understanding of
these cellular responses, the dynamics of the RBC require investigation.

Furthermore, mechanobiology is concerned with the relationship between cell shape
and energy consumption. Experimental methods to study this interrelationship are few,
but NMR spectroscopy of RBCs distorted in stretched or compressed hydrogels is one
recent example in this field. Specifically, stretching human RBCs by a factor of two enhances
their rate of glucose consumption by approximately the same factor [7]. Therefore, being
able to model the extent of altered membrane geometry will be key to understanding the
role of mechanical or flow induced shape changes of RBCs (and other cells) in whole body
energy metabolism.

There are some notable examples of numerical modelling for investigating the com-
plex fluid dynamics of the RBC in shear-induced flows. RBCs in this context have been
modelled by many methods including the lattice Boltzmann method (LBM) [8–10] and
the finite element (FE) method [11–13] in which the fluid–solid interface is captured by the
immersed boundary method (IBM). Particle-based methods such as the smoothed particle
hydrodynamics (SPH) [14–16], discrete particle dynamics (DPD) [17], and moving-particle
semi-implicit (MPS) [18] methods have also been used for modelling RBC shape in shear
induced fluid flow.

The Lagrangian feature of particle-based methods is one of its advantages by which
fluid–solid interfaces such as the RBC membrane can be explicitly captured. In all these
methods, it is challenging to represent the RBC shape accurately. It is this that undergoes
large deformations while leading to no structural damage. The RBC displays in-plane area
incompressibility as observed in experimental studies [19,20].

In general, there are two main approaches to representing the RBC membrane, namely
shell-based, and spring-based models. In the shell-based model [21], the membrane is
represented by a zero-thickness quasi-two-dimensional structure. This view provides a
continuum representation of the membrane that can be coupled with several constitutive
laws including the neo-Hookean [22–24] and Skalak [13,25,26] laws for evaluating in-plane
tension and transverse shear. A detailed comparison and investigation of the effect of the
requisite constitutive laws has been conducted by Lac et al. [27] for spherical capsules
under shear-induced deformations. On the other hand, spring-based models e.g., the lattice-
spring model (LSM) and mass-spring model (MSM) represent the membrane through a
(structured) geometrical network of points and particles that are inter-connected by means
of virtual springs. In the latter approach, the mechanical response of the membrane depends
on the geometry of the structured network (i.e., triangular, tetrahedral, etc.) and it is
specified through mathematical correlations that relate the spring constant of the connecting
bonds with the overall elastic properties of the membrane. For specifying the in-plane area
incompressibility of the membrane in mathematical correlations, we can use linear models
that employ Hookean spring characteristics [28], or nonlinear correlations that include
virtual dampers [29], or angular springs [30,31]. In addition to these two main approaches
(LSM and MSM), other models have also been used for capturing the deformation of
the RBC membrane; these include an area-difference-elasticity-theory [32,33]; linear finite
element (LFE) method [34], and high fidelity simulations of RBCs [35,36].

As mentioned above, the modelling of RBC behaviour under conditions of flow
might also include the sporadic occurrence of haemolysis (membrane rupture) under
specific conditions. Taking into account that haemolysis might occur in extreme conditions,
a comprehensive model should be able to accommodate all these possible scenarios. On the
other hand, and to the best of our knowledge, all models thus far in the literature are
not fully comprehensive in this regard. Therefore, this motivated our use of hybrid
multiphysics numerical modelling, which is fully capable of capturing all possible scenarios
of the RBCs under a shear field.

Therefore, we present a methodological study of modelling RBCs in shear-induced
flows based on using what we call the discrete multiphysics (DMP) approach [37–39].
DMP is an alternative approach from traditional multiphysics by combining particle-

160

ChemEng 2021, 5, 33

based methods, e.g., the SPH for solving fluid flow and the MSM for capturing the elastic
deformation of flexible solid materials, and it has been particularly successful in modelling
biological systems [40–42]. The SPH method is a Lagrangian particle-based technique,
which was developed for astrophysical studies [43,44]. The method was later extended
for modelling fluid flow [45,46]. In SPH modelling the fluid domain is discretised into
Lagrangian computational particles that possess fluid properties viz. density, viscosity,
and internal energy, while interacting with their neighbouring particles in a way that is
described mathematically by a kernel function [47]. The Lagrangian nature of the SPH
method makes it suitable for simulating systems that undergo large deformations, such as
occur in free surface flows [46,48], droplet and bubble dynamics [49–51], and fluid–solid
interactions [52,53]. Within the DMP framework, the MSM was used to generate the RBC
membrane through a linear mathematical correlation. In order to accommodate haemolysis
in our model, we extended the DMP by setting a limited strain threshold beyond which
the virtual bonds, that connect the membrane particles are dispelled, thus representing
membrane rupture.

2. Methodology

2.1. General Equations

An incompressible Newtonian fluid in laminar flow is governed by:

Dρ

Dt
= −ρ∇ · u, (1)

Du

Dt
=

−∇p
ρ

+
1
ρ
(∇ · μ∇u) + F, (2)

where u is the velocity vector, while ρ, μ, and p are the fluid properties density, kinematic
viscosity, and pressure, respectively. D

Dt is the material time derivative where t denotes
time, and F denotes denotes the volumetric body force.

We note once again that the present numerical approach was based on the DMP
model [38], which combines the SPH method for modelling fluid flow, and the MSM for
representing the elastic properties of membrane particles. It is relevant to outline these
approaches along with how their coupling has been achieved mathematically.

2.2. The SPH Method

The governing equations of motion i.e., Equations (1) and (2) are solved by the SPH
method over computational particles using a kernel function, W(rij, h). The kernel func-
tion, which can be concisely represented by Wij, relates particle i with its neighbouring
particle j [46,54], based on their distance rij = |ri − rj|, and the smoothing length, h as
the horizon limit for the interactions with neighbouring particles. Figure 1 represents the
interactions between two-dimensional SPH particles based on their relative proximity,
through a smoothing kernel function. Among several kernel functions in the literature,
the Lucy kernel function [44] was used in this study:

Wij = β

{
(1 + 3q)(1 − q)3 if 0 ≤ q ≤ 1
0 if q > 1,

(3)

where q = (rij/κh) and β = (105/16 πh3) for three-dimensional simulations.

161

ChemEng 2021, 5, 33

Figure 1. Schematic of the SPH method representing the interaction between particles through the
kernel function.

In the SPH method, any field variable f can be approximated using the summation
over discrete particles as:

fi �
Ji

∑
j=1

mj

ρj
f jWij, (4)

where mj and Ji denote the mass and the number of computational neighboring particles
for particle i. The SPH method discretizes the continuity and momentum equations,
Equations (1) and (2) into the following form as:

ρ̇i = −
Ji

∑
j=1

mjuij
∂Wij

∂xi
, (5)

fi = −
Ji

∑
j=1

mimj

(
pi

ρ2
i
+

pj

ρ2
j

)
∂Wij

∂xi
+

Ji

∑
j=1

mimj
(
μi + μj

)
ρiρj

uij
∂Wij

∂xi
+ Fi. (6)

In Equation (6), the first term is the pressure gradient and the second is the dis-
sipation term that conforms to a laminar viscosity model [55]. To evaluate the pres-
sure term in the SPH method, one may solve a Poisson equation to obtain an incom-
pressible solution [50,56,57] or might consider a weakly compressible SPH (WCSPH) ap-
proach [48,58,59], in which the pressure is obtained by an equation of state (EOS) using
density variations. We used this approach by using the so-called Tait EOS [47,48]:

p =
c2

0ρ0

γ

[(
ρ

ρ0

)γ

− 1
]

. (7)

where, c0 is the reference speed of sound. In order to keep density variations below 1%, it is
recommended that the speed of sound should be set at least one order of magnitude larger
than the maximum velocity in the domain [45]. ρ0 is the reference density (1000 kg m−3),
and γ is empirically set to be 7 in this power law equation [45,46].

162

ChemEng 2021, 5, 33

2.3. The MSM

As mentioned, the MSM [60], which is sometimes referred to as coarse grained molec-
ular dynamics (CGMD) [38], was employed to implement elasticity of the RBC membrane.
In the MSM [61], a network of harmonic bonds connects computational particles, allowing
them to deform and stretch according to the Newtonian equations of motion using linear
spring bonds. Figure 2 shows the structure of the MSM for a quasi-two-dimensional RBC
membrane. To account for Hookean elasticity, harmonic bonds are used as follows:

Fi,bond = kb
(
rij − r0

)
(8)

where kb and r0 are the coefficient and the equilibrium distance of Hookean springs,
respectively. In this methodological approach, our emphasis is on the discretization and
implementation of the model, so we adopted the linear Hookean model for the sake of
simplicity and lower computational costs, while other nonlinear models can be easily
replaced without further difficulties. Another advantage of the MSM is inherited in the
modelling of membrane rupture, for which we nullified the springs once their length
exceed the ultimate threshold set equal to 1.05 of their initial value.exceed the ultimate threshold set equal to 1.05 of their initi

Figure 2. Schematic of the MSM representing the network of interconnected particles via spring network.

2.4. Coupling of SPH and MSM

To model the physical properties at the fluid–solid interface, we considered three
types of boundary conditions to be taken into consideration [62], i.e., the no-penetration,
the no-slip, and continuity of stresses at the interface. In continuum mechanics these
conditions are often represented, respectively, as:(

∂

∂t
u f − us

)
· n = 0, (9)

(
∂

∂t
u f − us

)
× n = 0, (10)

and

σsn = σf (−n), (11)

where n represents the unit normal vector. us and u f denote the solid displacement and
fluid velocity, respectively, while the solid and fluid stresses are represented by σs and σf .
Within the DMP framework, we considered ghost SPH particles, which are assigned to
MSM particles at the fluid–solid interface. To satisfy all three boundary conditions, these
particles have dual identity; they interact with the SPH fluid particles for solving fluid
properties but they interact with other MSM particles as membrane particles.

163

ChemEng 2021, 5, 33

2.5. Numerical Algorithm

The velocity verlet (VV) algorithm was used to integrate over time by using a first-
order Euler approach with a variable time step, specified by the following stability condi-
tion, Δt = ζh2/ν. Here, ν represents the dynamic viscosity equal to ν = ρ/μ and ζ = 0.125
provided satisfactory results [38]. Considering that (∗) and (n) superscripts denote vari-
ables at the intermediate and nth time step, the particle velocities were calculated using the
VV algorithm as:

u∗
i = u

(n)
i +

Δt
2mi

f
(n)
i . (12)

Then, particle densities were calculated according to:

ρ∗i = ρ
(n)
i +

Δt
2

ρ̇
(n)
i . (13)

In the above equation, ρ̇ is the rate of density variations according to Equation (5),
in which the density should be updated based on the velocity difference between the
particles uij. However, using uij causes numerical instabilities arising from the lag of the
velocity in the VV algorithm. So, we use an extrapolated velocity in the calculation of the
rate of density variations, which can be represented as:

ui = u
(n)
i +

Δt
mi

f
(n)
i , (14)

where uij = (ui − uj). Once particle velocities are updated, computational particles are
moved to their new positions using:

x
(n+1)
i = x

(n)
i + Δtu∗

i . (15)

Then, ρ̇
(n+1)
i , and f

(n+1)
i were calculated at the (n+ 1) time step using Equations (5) and (6),

respectively. Finally, the velocity and density were calculated at the (n + 1) time step,
respectively, as:

u
(n+1)
i = u∗

i +
Δt

2mi
f
(n+1)
i , (16)

and,

ρ
(n+1)
i = ρ∗i +

Δt
2

ρ̇
(n+1)
i . (17)

We have extensively used the above-mentioned numerical algorithm in our previous
studies [28,63,64] where we can refer interested readers to for more detailed discussions.

3. Problem Set-Up

The literature contains several models of the geometry of the RBC, including the
frequently cited one by Evans et al. [25]. In this study, we used a model which we consider
represents the dimples of the biconcave disc more accurately. The model consists of a set of
three parametric equations that involve Jacobi elliptic functions [65] as:

x = A
CN (μ, m) CN (ν1, mp)

g
cos(ψ), (18)

y = A
CN (μ, m) CN (ν1, mp)

g
sin(ψ), (19)

and

z = A
SN (μ, m)DN (μ′, m) SN (ν1, mp)DN (ν1, mp)

g
, (20)

164

ChemEng 2021, 5, 33

where, SN , CN , and DN are the Jacobi elliptic functions. The coefficient A was defined by us-
ing three geometrical distances obtained from experimental electron microscope measurements.

A =
1
2

√
d2 − 2h2 − 2

√
h2(−b2 + h2)cos(ψ), (21)

This was used to define other intermediate parameters. Also, g = 1 − (DN (μ, m)2

SN (ν1, mp)2) and,

m = 1 − mp = k2 = 2d
√
(A2(−4A2 − b2 + d2))/d2)√
(4A2) + b2

√
(−4A2) + d22 . (22)

The key specific lengths of the RBC are the cell diameter at the plane splitting the
biconcave into two cup-shaped halves d = 8 × 10−6 m, the thickness of the cell at the
thickest position (like the width of the tyre on a car wheel) h = 2.12 × 10−6 m, and the
thickness at the centre of the dimple, b = 1 × 10−6 m. Considering these parameters,
the surface area and volume of the RBC are found to be equal to S = 85.8 fL and
V = 128 μm2 respectively [65]. Figure 3 shows the shape of the RBC in a two dimensional
projection of the three-dimensional body.

Figure 3. A representative illustration of an RBC.

In the present analysis the RBC was represented by a hybrid model, as described in
Section 2 by which the SPH was used for modelling the fluid flow, and the RBC membrane
was simulated by the MSM. In order to apply the surface area incompressibility of the
membrane (conservation of area), the spring constants were taken to be sufficiently large
so that a change in the net surface area was minimized. The spring constant could not
be taken to be very large since large spring constants resulted in numerical instabilities.
Here, the spring constant was set to kb = 0.0005 N/m. The shear modulus of the RBC was
tuned by adjusting the angular spring constant. It has been seen that the angular constant
of ka = 1 × 10−20 Nm/rad led to convincing simulated behaviours in shear fields.

Figure 4 represents the 3D simulation domain with height, width, and depth of H, W,
and D, respectively. The top and bottom walls abide the no-slip boundary conditions, while
periodic boundary conditions were implemented on the rest of boundaries. To maintain a

165

ChemEng 2021, 5, 33

constant shear rate γ̇, the top and bottom boundaries were given with velocity U and −U,
respectively. The RBC was placed at the centre, equidistant from all domain boundaries.
A uniformly-spaced Cartesian grid was used to populate the domain with fluid particles.
All in all, there were four different types of particles in this model: (1) particles of the
top boundary (white); (2) particles of the bottom boundary (red); (3) the RBC particles
(blue); (4) the fluid particles (green), as illustrated in Figure 4. In total, the simulation
domain contained more than one million computational particles comprising all four
particle types. It should be noted that a particle-resolution study was carried out for four
different particle resolutions in a shear flow [28] in our previous study, and it was observed
that the results and hydrodynamics did not improve significantly beyond the resolution
that is equivalent to the one we used in this study. The test-case was simulated on the UK’s
national super computing facilities (ARCHER with 2.7 GHz, 12-core Intel Xeon E5-2697).
The computational cost was 23 h of wall-time on approximately 1500 CPU cores (MPI) for
each test-case.

The domain undergoes shear in the x-direction by moving the top and bottom bound-
ary particles in opposite directions. Subsequently, the shear imposed RBC deformation are
described and analysed in the next section.

Figure 4. Computational domain for cell under shear rate; the RBC is illustrated by red particles,
the top and bottom boundaries are blue, and the fluid particles are green (different particle size,
particularly for green and red particles, is a post-processing trick for better illustration and has no
further modelling or physical interpretations).

4. Results

In this section, we show that the presented model was capable of capturing the
dynamics of the RBC with superior features, relative to other models reported in the
literature. Thus, we show how the current model could predict membrane rupture that
was induced by extreme flow conditions.

In order to characterise the deformation of the RBC, a quantitative measure was
introduced. Specifically, this was the deformation index, D12 = |L−H|/(L+H), where L
and H were the length of the RBC in the plane passing through its origin in the direction of

166

ChemEng 2021, 5, 33

the main axis, and its transverse direction, respectively. Figure 5 represents the variation of
the deformation index for three capillary numbers with respect to dimensionless simulation
time and compares them with the numerical data in the literature [13]. It was shown that
the present model produced accurate results with respect to the models in the literature
and it captured the frequency of deformation with the sinusoidal variations of flow rate.
Any discrepancy in the results was due to the different geometries used to model a RBC;
these produced a larger amplitude in the sinusoidal variation of the deformation index [13].

Figure 5. Validation of the present RBC model with those of Omori et al. [13].

Considering the variations of the deformation index shown in Figure 6, it was interest-
ing to note that the RBC underwent a tumbling motion, and it rotated around its centre of
mass when the shear rates were symmetrical. This is the reason why there was a sinusoidal
trend in the deformation index. At small capillary numbers, the RBC did not deform
very much, and accordingly the deformation index exhibited minimal variation over time.
The variation of the deformation index was restricted between 0.56 ≤ D12 ≤ 0.58 for the
smallest capillary number. At moderate capillary numbers i.e., Ca = 0.02, the deformation
index indicated sinusoidal behaviour of large amplitude. This was interpreted to be due to
the resistance of the RBC against the applied shear. When the applied shear met the RBC
when it was oriented such that its main diameter was along the flow direction, the RBC
geometry was similar to its undisturbed shape. This was the point in time when the
deformation index was at its peak value. On the other hand, when the main diameter of the
RBC was transverse to the flow direction, the deformation index decreased considerably.
For large capillary numbers, the shear rate was sufficiently high to stretch the RBC along
the direction of shear. The variation of the deformation index with such high capillary
numbers was also due to the re-orientation of the RBC during its tumbling motion.

Figure 6 represents the RBC shape at different simulation times for three capillary
numbers corresponding to Figure 6. Our numerical model was further compared with
data in the literature [13] and it showed that the shape of the RBC was accurately captured.
The shape of the RBC remained almost undisturbed during its tumbling motion. For mod-
erate values of capillary number, the RBC was similar in shape to its undisturbed form
whereby its major diameter was along the direction of the applied shear. For large capillary
numbers, the RBC was stretched along it direction of shear.

167

ChemEng 2021, 5, 33

Figure 6. Validation of the present RBC model with those of Omori et al. [13] for three test-cases
(a) Ca = 0.002, (b) Ca = 0.02, and (c) Ca = 3.0 at different dimensionless times.

In many applications, once RBCs are exposed to high shear rates, the membranes of
unhealthy cells might rupture. To simulate this biomedical eventuality is difficult but our
method is one that can model the responses under shear of healthy cells and unhealthy
or parasite-infected ones. On the other hand, current numerical techniques generally
have systemic problems for modelling the membrane rupture of RBCs under shear fields.
In summary, we present in Figure 7 membrane rupture of a RBC under flow-induced shear.
It was clear that rupture could occur at relatively low shear rates in contrast to when the
RBC was exposed to extreme shear such as those in Figure 5.

The modelling is a numerical depiction of RBCs under shear and serves to illustrate its
capabilities for applications to particles of other geometries and elastic properties. In other
words, in order to simulate realistic membrane rupture, careful experimental analysis and
membrane characterisation were required to determine the threshold strain that must be in
the numerical model. These characterisations lie in the realm of cellular biophysics of RBCs
(and other cell types) that will be developed as we refine the current numerical modelling
to help interpret experimental data.

168

ChemEng 2021, 5, 33

(a) (b)

(c) (d)

Figure 7. Rupture of the membrane under shear (Ca = 2.0) at different dimensionless times (a) γ̇t = 0,
(b) γ̇t = 2, (c) γ̇t = 4, and (d) γ̇t = 6.

5. Conclusions

In this study, we employed a novel numerical technique using the DMP model for
simulating the deformation of RBCs in shear-induced flows. This methodological study
describes a simple but accurate and flexible numerical technique for simulating a myriad of
problems involving RBCs in in vivo and in vitro applications. In this study, we discussed
the methodology in details from the mathematical, numerical, and technical perspectives,
describing the governing equations, numerical algorithm, and implementation techniques.

The model has a Lagrangian particle-based nature and utilised a complex mathemat-
ical formulation derived from the Jacobi elliptic functions, which provided an accurate
representation of the RBC geometry. Then, the proposed mathematical formulation was
linked to the MSM, which modelled the RBC through a complex network of interconnected
particles on its interface. The proposed model is employed for modelling RBC deformation
under shear at various capillary numbers. It was observed that RBCs represented a sinu-
soidal behaviour in their deformation index factor which is accurately comparable with
available data in the literature.

We have further extended the model to simulate the rupture of the RBC’s membrane
under extremely large shear rates, which could be used in many biological and pharmaceu-
tical applications. The membrane rupture was implemented via breaking the spring bonds
between particles of which their deformation exceeded a certain strain threshold. Another

169

ChemEng 2021, 5, 33

advantage of the proposed method is that it can be easily extended to other complex
physics, and applied to other real-world problems.

Author Contributions: Conceptualization, P.K. and A.A.; methodology, A.R., P.K. and A.A.; software,
A.R. and A.A.; validation, A.R.; formal analysis, A.R.; investigation, A.R.; resources, M.B. and A.A.;
writing—original draft preparation, A.R.; writing—review and editing, P.K. and A.A.; visualization,
A.R.; supervision, A.A.; project administration, A.A.; funding acquisition, M.B. and A.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) under Grant No. EP/N033698/1. Philip Kuchel acknowledges an Australian Research
Council Discovery Project Grant, DP190100510. Amin Rahmat acknowledges a financial support
from the Birmingham International Engagement Fund (BIEF).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CGMD: coarse grained molecular dynamics; DMP: discrete multi-physics; DPD: discrete particle
dynamics; EOS: equation of state; FE: finite element; IBM: immersed boundary method; ISPH:
incompressible smoothed particle hydrodynamics; LBM: lattice Boltzmann method; LFE: linear finite
element; LSM: lattice spring model; MSM: mass spring model; MPS: moving-particle semi-implicit;
SPH: smoothed particle hydrodynamics; VV: velocity verlet; WCSPH: weakly compressible smoothed
particle hydrodynamics.

References

1. Mohandas, N.; Evans, E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects.
Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 787–818. [CrossRef] [PubMed]

2. Mulquiney, P.J.; Bubb, W.A.; Kuchel, P.W. Model of 2, 3-bisphosphoglycerate metabolism in the human erythrocyte based on
detailed enzyme kinetic Equations (1): In vivo kinetic characterization of 2, 3-bisphosphoglycerate synthase/phosphatase using
13C and 31P NMR. Biochem. J. 1999, 342, 567–580. [CrossRef]

3. Mulquiney, P.J.; Kuchel, P.W. Model of 2, 3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme
kinetic equations: Equations and parameter refinement. Biochem. J. 1999, 342, 581–596. [CrossRef] [PubMed]

4. Mulquiney, P.J.; Kuchel, P.W. Model of 2, 3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme
kinetic equations: Computer simulation and metabolic control analysis. Biochem. J. 1999, 342, 597–604. [CrossRef]

5. Wan, J.; Ristenpart, W.D.; Stone, H.A. Dynamics of shear-induced ATP release from red blood cells. Proc. Natl. Acad. Sci. USA
2008, 105, 16432–16437. [CrossRef] [PubMed]

6. Shishmarev, D.; Kuchel, P.W.; Pagès, G.; Wright, A.J.; Hesketh, R.L.; Kreis, F.; Brindle, K.M. Glyoxalase activity in human
erythrocytes and mouse lymphoma, liver and brain probed with hyperpolarized 13 C-methylglyoxal. Commun. Biol. 2018, 1, 1–8.
[CrossRef] [PubMed]

7. Kuchel, P.W.; Shishmarev, D. Accelerating metabolism and transmembrane cation flux by distorting red blood cells. Sci. Adv.
2017, 3, eaao1016. [CrossRef] [PubMed]

8. Dupin, M.; Halliday, I.; Care, C.; Munn, L. Lattice Boltzmann modelling of blood cell dynamics. Int. J. Comput. Fluid Dyn. 2008,
22, 481–492. [CrossRef]

9. Shi, X.; Lin, G.; Zou, J.; Fedosov, D.A. A lattice Boltzmann fictitious domain method for modeling red blood cell deformation and
multiple-cell hydrodynamic interactions in flow. Int. J. Numer. Methods Fluids 2013, 72, 895–911. [CrossRef]

10. Zhang, J. Lattice Boltzmann method for microfluidics: Models and applications. Microfluid. Nanofluid. 2011, 10, 1–28. [CrossRef]
11. Chen, M.; Boyle, F.J. Investigation of membrane mechanics using spring networks: Application to red-blood-cell modelling.

Mater. Sci. Eng. C 2014, 43, 506–516. [CrossRef] [PubMed]
12. Eggleton, C.D.; Popel, A.S. Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 1998, 10, 1834–1845.

[CrossRef] [PubMed]
13. Omori, T.; Ishikawa, T.; Barthès-Biesel, D.; Salsac, A.V.; Imai, Y.; Yamaguchi, T. Tension of red blood cell membrane in simple

shear flow. Phys. Rev. E 2012, 86, 056321. [CrossRef]
14. Hosseini, S.M.; Feng, J.J. A particle-based model for the transport of erythrocytes in capillaries. Chem. Eng. Sci. 2009, 64,

4488–4497. [CrossRef]

170

ChemEng 2021, 5, 33

15. Freund, J.B. Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 2014, 46, 67–95. [CrossRef]
16. Wu, T.; Feng, J.J. Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. Biomicrofluidics

2013, 7, 044115. [CrossRef]
17. Boryczko, K.; Dzwinel, W.; Yuen, D.A. Dynamical clustering of red blood cells in capillary vessels. J. Mol. Model. 2003, 9, 16–33.

[CrossRef] [PubMed]
18. Tsubota, K.; Wada, S.; Yamaguchi, T. Particle method for computer simulation of red blood cell motion in blood flow.

Comput. Methods Programs Biomed. 2006, 83, 139–146. [CrossRef]
19. Hochmuth, R.; Mohandas, N. Uniaxial loading of the red-cell membrane. J. Biomech. 1972, 5, 501–509. [CrossRef]
20. Hochmuth, R.; Wiles, H.; Evans, E.; McCown, J. Extensional flow of erythrocyte membrane from cell body to elastic tether. II.

Experiment. Biophys. J. 1982, 39, 83–89. [CrossRef]
21. Pozrikidis, C. Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 2001, 440,

269–291. [CrossRef]
22. Zhang, J.; Johnson, P.C.; Popel, A.S. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules

and its application to microscopic blood flows. Phys. Biol. 2007, 4, 285. [CrossRef] [PubMed]
23. Bagchi, P. Mesoscale simulation of blood flow in small vessels. Biophys. J. 2007, 92, 1858–1877. [CrossRef] [PubMed]
24. Barthes-Biesel, D.; Diaz, A.; Dhenin, E. Effect of constitutive laws for two-dimensional membranes on flow-induced capsule

deformation. J. Fluid Mech. 2002, 460, 211–222. [CrossRef]
25. Evans, E.A.; Skalak, R. Mechanics and Thermodynamics of Biomembranes; CRC Press: Boca Raton, FL, USA, 1980.
26. Sui, Y.; Chew, Y.; Roy, P.; Cheng, Y.; Low, H. Dynamic motion of red blood cells in simple shear flow. Phys. Fluids 2008, 20, 112106.

[CrossRef]
27. Lac, E.; Barthes-Biesel, D.; Pelekasis, N.; Tsamopoulos, J. Spherical capsules in three-dimensional unbounded Stokes flows: Effect

of the membrane constitutive law and onset of buckling. J. Fluid Mech. 2004, 516, 303–334. [CrossRef]
28. Rahmat, A.; Barigou, M.; Alexiadis, A. Deformation and rupture of compound cells under shear: A discrete multiphysics study.

Phys. Fluids 2019, 31, 051903. [CrossRef]
29. Secomb, T.W.; Styp-Rekowska, B.; Pries, A.R. Two-dimensional simulation of red blood cell deformation and lateral migration in

microvessels. Ann. Biomed. Eng. 2007, 35, 755–765. [CrossRef]
30. Fedosov, D.A.; Caswell, B.; Karniadakis, G.E. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

Biophys. J. 2010, 98, 2215–2225. [CrossRef]
31. Fedosov, D.A.; Peltomäki, M.; Gompper, G. Deformation and dynamics of red blood cells in flow through cylindrical microchan-

nels. Soft Matter 2014, 10, 4258–4267. [CrossRef] [PubMed]
32. Ziherl, P.; Svetina, S. Nonaxisymmetric phospholipid vesicles: Rackets, boomerangs, and starfish. EPL Europhys. Lett. 2005,

70, 690. [CrossRef]
33. Svetina, S.; Ziherl, P. Morphology of small aggregates of red blood cells. Bioelectrochemistry 2008, 73, 84–91. [CrossRef] [PubMed]
34. MacMeccan, R.M.; Clausen, J.; Neitzel, G.; Aidun, C. Simulating deformable particle suspensions using a coupled lattice-

Boltzmann and finite-element method. J. Fluid Mech. 2009, 618, 13. [CrossRef]
35. Janoschek, F.; Toschi, F.; Harting, J. Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E

2010, 82, 056710. [CrossRef] [PubMed]
36. Melchionna, S. A Model for Red Blood Cells in Simulations of Large-scale Blood Flows. Macromol. Theory Simul. 2011, 20, 548–561.

[CrossRef]
37. Alexiadis, A. A smoothed particle hydrodynamics and coarse-grained molecular dynamics hybrid technique for modelling

elastic particles and breakable capsules under various flow conditions. Int. J. Numer. Methods Eng. 2014, 100, 713–719. [CrossRef]
38. Alexiadis, A. The discrete multi-hybrid system for the simulation of solid-liquid flows. PLoS ONE 2015, 10, e0124678. [CrossRef]

[PubMed]
39. Alexiadis, A. A new framework for modelling the dynamics and the breakage of capsules, vesicles and cells in fluid

flow. In Proceedings of the Iutam Symposium on Dynamics of Capsules, Vesicles and Cells in Flow, Rio de Janeiro, Brazil,
8–12 September 2015; Barthes Biesel, D., Blyth, M.G., Salsac, A.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 80–88.

40. Ariane, M.; Vigolo, D.; Brill, A.; Nash, F.; Barigou, M.; Alexiadis, A. Using Discrete Multi-Physics for studying the dynamics of
emboli in flexible venous valves. Comput. Fluids 2018, 166, 57–63. [CrossRef]

41. Mohammed, A.M.; Ariane, M.; Alexiadis, A. Using Discrete Multiphysics Modelling to Assess the Effect of Calcification on
Hemodynamic and Mechanical Deformation of Aortic Valve. ChemEngineering 2020, 4, 48. [CrossRef]

42. Schütt, M.; Stamatopoulos, K.; Simmons, M.; Batchelor, H.; Alexiadis, A. Modelling and simulation of the hydrodynamics and
mixing profiles in the human proximal colon using Discrete Multiphysics. Comput. Biol. Med. 2020, 121, 103819. [CrossRef]

43. Gingold, R.A.; Monaghan, J.J. Smoothed Particle Hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R.
Astron. Soc. 1977, 181, 375–389. [CrossRef]

44. Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [CrossRef]
45. Monaghan, J.J. Simulating free surface flows with SPH. J. Comput. Phys. 1994, 110, 399–406. [CrossRef]
46. Monaghan, J.J.; Kocharyan, A. SPH simulation of multi-phase flow. Comput. Phys. Commun. 1995, 87, 225–235. [CrossRef]
47. Monaghan, J.; Kos, A. Solitary waves on a Cretan beach. J. Waterw. Port. Coast. Ocean Eng. 1999, 125, 145–155. [CrossRef]

171

ChemEng 2021, 5, 33

48. Ozbulut, M.; Tofighi, N.; Goren, O.; Yildiz, M. Investigation of Wave Characteristics in Oscillatory Motion of Partially Filled
Rectangular Tanks. J. Fluids Eng. 2018, 140, 041204. [CrossRef]

49. Rahmat, A.; Tofighi, N.; Yildiz, M. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH
method. Int. J. Heat Fluid Flow 2016, 62, 313–323. [CrossRef]

50. Rahmat, A.; Tofighi, N.; Shadloo, M.; Yildiz, M. Numerical simulation of wall bounded and electrically excited Rayleigh-Taylor
Instability using incompressible Smoothed Particle Hydrodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 60–70.
[CrossRef]

51. Shadloo, M.; Rahmat, A.; Yildiz, M. A Smoothed Particle Hydrodynamics study on the electrohydrodynamic deformation of a
droplet suspended in a neutrally buoyant Newtonian fluid. Comput. Mech. 2013, 52, 693–707. [CrossRef]

52. Rahmat, A.; Barigou, M.; Alexiadis, A. Numerical simulation of dissolution of solid particles in fluid flow using the SPH method.
Int. J. Numer. Methods Heat Fluid Flow 2019. [CrossRef]

53. Rahmat, A.; Nasiri, H.; Goodarzi, M.; Heidaryan, E. Numerical investigation of anguilliform locomotion by the SPH method.
Int. J. Numer. Methods Heat Fluid Flow 2019. [CrossRef]

54. Monaghan, J.J.; Lattanzio, J.C. A refined particle method for astrophysical problems. Astron. Astrophys. 1985, 149, 135–143.
55. Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 1997, 136,

214–226. [CrossRef]
56. Tofighi, N.; Ozbulut, M.; Rahmat, A.; Feng, J.; Yildiz, M. An incompressible Smoothed Particle Hydrodynamics method for the

motion of rigid bodies in fluids. J. Comput. Phys. 2015, 297, 207–220. [CrossRef]
57. Morris, J.P. Simulating surface tension with Smoothed Particle Hydrodynamics. Int. J. Numer. Methods Fluids 2000, 33, 333–353.

[CrossRef]
58. Fatehi, R.; Rahmat, A.; Tofighi, N.; Yildiz, M.; Shadloo, M. Density-Based Smoothed Particle Hydrodynamics Methods for

Incompressible Flows. Comput. Fluids 2019, 185, 22–33. [CrossRef]
59. Hopp-Hirschler, M.; Shadloo, M.S.; Nieken, U. A Smoothed Particle Hydrodynamics approach for thermo-capillary flows.

Comput. Fluids 2018, 176, 1–19. [CrossRef]
60. Kilimnik, A.; Mao, W.; Alexeev, A. Inertial migration of deformable capsules in channel flow. Phys. Fluids 2011, 23, 123302.

[CrossRef]
61. Lloyd, B.; Székely, G.; Harders, M. Identification of spring parameters for deformable object simulation. IEEE Trans. Vis.

Comput. Graph. 2007, 13. [CrossRef]
62. Esmon, C.T. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev. 2009, 23, 225–229. [CrossRef]
63. Rahmat, A.; Meng, J.; Emerson, D.; Wu, C.Y.; Barigou, M.; Alexiadis, A. A practical approach for extracting mechanical properties

of microcapsules using a hybrid numerical model. Microfluid. Nanofluid. 2021, 25, 1–17. [CrossRef]
64. Rahmat, A.; Weston, D.; Madden, D.; Usher, S.; Barigou, M.; Alexiadis, A. Modeling the agglomeration of settling particles in a

dewatering process. Phys. Fluids 2020, 32, 123314. [CrossRef]
65. Kuchel, P.W.; Fackerell, E.D. Parametric-equation representation of biconcave erythrocytes. Bull. Math. Biol. 1999, 61, 209–220.

[CrossRef] [PubMed]

172

chemengineering

Article

Modelling Particle Agglomeration on through Elastic Valves
under Flow

Hosam Alden Baksamawi 1,*, Mostapha Ariane 2, Alexander Brill 3, Daniele Vigolo 1,4,5 and Alessio Alexiadis 1,*

��������	
�������

Citation: Baksamawi, H.A.; Ariane,

M.; Brill, A.; Vigolo, D.; Alexiadis, A.

Modelling Particle Agglomeration on

through Elastic Valves under Flow.

ChemEng 2021, 5, 40.

https://doi.org/10.3390/

chemengineering5030040

Academic Editor: Timothy Hunter

Received: 31 May 2021

Accepted: 19 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; d.vigolo@bham.ac.uk
2 Laboratoire Interdisciplinaire Carnot de Bourgogne, Université Bourgogne, 9 Avenue Alain Savary, BP 47 870,

21078 Dijon, France; Mostapha.Ariane@u-bourgogne.fr
3 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham,

Birmingham B15 2TT, UK; A.Brill@bham.ac.uk
4 School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
5 The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
* Correspondence: hxb799@bham.ac.uk (H.A.B.); a.alexiadis@bham.ac.uk (A.A.)

Abstract: This work proposes a model of particle agglomeration in elastic valves replicating the
geometry and the fluid dynamics of a venous valve. The fluid dynamics is simulated with Smooth
Particle Hydrodynamics, the elastic leaflets of the valve with the Lattice Spring Model, while agglom-
eration is modelled with a 4-2 Lennard-Jones potential. All the models are combined together within
a single Discrete Multiphysics framework. The results show that particle agglomeration occurs near
the leaflets, supporting the hypothesis, proposed in previous experimental work, that clot formation
in deep venous thrombosis is driven by the fluid dynamics in the valve.

Keywords: Deep Vein Thrombosis (DVT); computer simulation; Discrete Multiphysics (DMP);
Smoothed Particle Hydrodynamics (SPH); Lattice Spring Model (LSM); solid-solid interaction; ag-
glomeration and venous valves

1. Introduction

Various ‘non-return’ valves are found in our leg veins [1]. These valves consist of two
elastic leaflets that open and close in conjunction with the musculoskeletal system. When
we are physically active, the muscles in the leg constantly contract and relax, causing the
vein valves to open, allowing blood to return to the heart, and close to avoid blood flowing
back in the opposite direction [2,3].

Deep Vein Thrombosis (DVT) occurs when a thrombus forms in the veins as an
aggregation of blood components [4]. One hypothesis suggests that these thrombi initially
form in the venous valves [5], and subsequently detach from the veins and travel within the
blood flow until they reach the pulmonary vascular system. Here, they cause blockage of
the pulmonary artery branches, resulting in death or significant disabilities [6–9]. Moreover,
it is recognised that the lack of physical activity or long static position causes poor blood
circulation, thus increasing the risk of DVT. This suggests that fluid dynamics in the valve
play an important role in causing DVT [10].

To understand the flow in venous valves, we carried out a computer simulation
of various valve typologies both without [11] and with the presence of thrombi [12].
However, the role of the flow in the initiation of the venous clot due to the aggregation
of blood components is still not clear. For this reason, in a previous study conducted
by Schofield et al. [10], we developed an in vitro model of DVT. The model comprises a
microchannel fabricated out of polydimethylsiloxane (PDMS) by means of soft lithography.
Within the microchannel, we fabricated a flexible valve made of cured polyethylene glycol
diacrylate (PEGDA). An aqueous dispersion of polystyrene particles was perfused within
the microfluidic device using pulsed flow to simulate rhythmic contractions of the leg

ChemEng 2021, 5, 40. https://doi.org/10.3390/chemengineering5030040 https://www.mdpi.com/journal/chemengineering

173

ChemEng 2021, 5, 40

muscles. In the in vitro models, polystyrene particles tend to form aggregates due to van
der Waals and electrostatic interactions between themselves and the solid surfaces, and this
simulated the formation of aggregates. We also compared these results with experiments of
perfusing blood flow with fluorescently labelled platelets, where platelets tended to form
aggregates when activated [13,14].

The results show that the agglomeration of polystyrene particles and platelets occurs
near the valve leaflets. These results support that a thrombus forms in the venous valves
at least in part due to altered flow. However, they open a new question that could not be
answered in the in vitro experiments. Can hydrodynamic alone explain agglomeration?

In the valve, when the leaflets close, the flow streamlines converge and subsequently
the probability of particles colliding enhances agglomeration. Moreover, both polystyrene
particles and platelets accrue at the leaflet’s surface. Therefore, it is not clear how much of
the observed agglomeration is caused by hydrodynamics and how much is simply due to
the particle sticking to the leaflets surface.

Therefore, in this study, we further developed our original DVT model [11,12] to
include particle agglomeration. Since, in the computer model, we can arbitrarily tune the
properties of the particles, we can account for ‘fictional’ particles that are sticky only with
each other and not with the leaflets. By studying this virtual system, we can answer the
research question of this paper: when removing particle-leaflets adhesion, can hydrody-
namics alone explain at least part of the agglomeration observed by Schofield et al. [10]. If,
in the virtual system set up in the computer simulations, we observe agglomeration near
the leaflets, we can conclude that hydrodynamics play a role; if not, this means that, in
Schofield et al. [10], agglomeration is mostly due to the interaction between the particles
and the leaflet surface. Thus, this study proposes a novel model (to the best of our knowl-
edge, this is the first DVT model that accounts for agglomeration) and uses this model to
answer a specific research question from a medical-related area.

This paper is organized as follows. Firstly, we introduce the general theory behind
Discrete Multiphysics (DMP), the modelling approach used to simulate the system. Then,
we show how the theory is applied to the concrete case of flow in flexible valves. Lastly, we
use the model to simulate particle agglomeration in the valve and show that larger clusters
are formed near the leaflets.

2. Methodology

2.1. The Theory of Discrete Multiphysics

Discrete Multiphysics (DMP) is a computational approach on computational particles
rather than computational mesh [15]. It links together different discrete models such as
Smoothed Particle Hydrodynamics (SPH) [16], Lattice Spring Model (LSM) [17,18], Discrete
Element Method (DEM) [19], and Peridynamics [20], which can be used for a range of
applications ranging from biological to energy application [21–24]. In particular, DMP
was previously used to simulate the flow in cardiovascular [25] and venous valves [11],
including the presence of emboli in the blood flow circulation [18].

In this work, we combine the hydrodynamic venous valve model of Ariane et al. [11]
and Ariane et al. [18] with the model of particle agglomeration in shear flow of Rah-
mat et al. [24]. The DMP model combines SPH for the fluid, LSM for the valve and a
pseudo-Lennard-Jones potential for particle agglomeration. This section introduces the
theory behind these computational methods and explains how they are combined together.

2.1.1. Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics is a computational meshless Lagrangian method
independently developed by Lucy [26] and Gingold and Monaghan [27], which is used
here to simulate the fluid dynamics. Each particle in the SPH domain represents a set of
properties such as positions r, mass m, density ρ, pressure p, velocity v and viscosity μ,
which are updated at each timestep. For a desired group of computational particles, the

174

ChemEng 2021, 5, 40

SPH equation of motion is achieved from the discrete approximations of the Navier–Stokes
equation [28,29]:

fi = mi
dvi
dt

= −∑
j

mimj

(
pi

ρ2
i
+

pj

ρ2
j
+ Πij

)
∇iWij, (1)

where mi , mj are the masses of the particles i, j, respectively, vi is the velocity of the particle
i, p is the pressure, ρi is the density of particle i, and f is the sum of all external forces
applied to the system. W is the smoothing kernel function and W is a bell-shaped function
that describes how the interaction between particle ith and jth decays with their distance∣∣ri − rj

∣∣. Πij is the so-called artificial viscosity [30]:

Πij =

(
μi + μj

)
vij

ρi ρj rij
(2)

where μ is the dynamic viscosity and vij = vi − vj. In this work, we use the so-called Lucy
kernel [29]:

W(r < h) =
1
s

[
1 + 3

r
h

][
1 − r

h

]3
(3)

where h is the so-called smoothing length and s is a parameter used to normalise the kernel
function.

An equation of state (EOS) is required to link the pressure p with the density ρ. In this
study, the Tait’s equation is used:

p =
c2

0ρ0

7

[(
ρ

ρ0

)7
− 1

]
(4)

where ρ0 is a reference density and c0 is a reference for fluid velocity. This formulation
refers to the so-called weakly compressible SPH. To keep the variation of the fluid density
in the domain less than 1 per cent, c0 is normally set as ten times the maximum velocity
in the flow [31]. This produces repulsive forces between particles aimed at approximately
conserving their distance during the simulation [32]

2.1.2. Lattice Spring Model (LSM)

The elastic leaflets and moving walls of the membrane are simulated with the so-
called Lattice Spring Model (LSM) or Mass Spring Models (MSM) [33]. The elastic body is
subdivided in computational particles which are linked together by Hookean springs. The
force between two particles i and j connected with a Hookean spring is given by

Fi,j = k(|r0 − r|)2 (5)

where k is the Hookean elasticity coefficient, r0 is the equilibrium distance between the
particles and r their instantaneous distance. The spring coefficients is determined by the
physical properties (e.g., Young’s modulus) of the modelled materials as discussed in Kot,
Nagahashi and Szymczak [33] and Pazdniakou and Adler [34].

2.1.3. Coupling SPH and LSM (Fluid–Structure Interaction)

In the model, SPH is used to simulate the fluid and LSM used for the elastic structure
(valve leaflets). SPH provides the forces acting between two fluid computational particles,
where LSM provides the forces between two solid particles. To model the fluid structure
interaction, we need to set the forces between liquid and solid computational particles.
These forces must ensure no-penetration, no-slip, and continuity of stresses between the
solid–liquid interface. In continuum mechanics, these conditions are often represented as

175

ChemEng 2021, 5, 40

(
∂

∂t
u − v

)
· n = 0 (no − penration), (6)

(
∂

∂t
u − v

)
× n = 0 (no − slip) (7)

σ sn = σ f (−|r|) (continuity of stresses) (8)

where n is the normal to the boundary, u the displacement of the solid, v the velocity of the
liquid, σ s the stresses in the solid and σ f in the fluid [15].

In DMP, these conditions need to be ‘translated’ in terms of forces Fi,j in order to be
introduced in the model. Here, we use the same approach employed in other DMP studies
such as Schütt et al. [35], M. Ariane et al. [12] and Alexiadis [15]. The no-penetration
conditions are implemented by means of a repulsive Lennard-Jones potential between SPH
and LSM particles:

V(r) = K

[(
r∗

r

)12
−

(
r∗

r

)6
]

for r < rcut (9)

where r = |r|, r∗ is a reference distance between particles and K is chosen to guarantee no
penetration between SPH and LSM particles.

From the potential V(r), the force between two particles is calculated from the potential:

F(r) = −∂U
∂r

(10)

Figure 1a shows the potential V(r) and the force F(r) applied between the SPH and
LSM, with only values for r < 21/6r∗ being studied so that only the repulsive potential
is considered.

Figure 1. Diagram illustrating (a) the 12-6 potential used for the no-penetration conditions and (b) the 4-2 potential used
for particle agglomeration. In both cases, the cut-off is selected so that only the white area of the diagram is used in the
potential. This implies that (a) is only repulsive because only the positive part is considered, while in (b) the negative part
of the force, which is attractive, is considered; particles tend to agglomerate at the location where the force is zero, which is
where is the minimum of the potential is located.

No-slip conditions are enforced by imposing SPH-like viscous forces at the solid–liquid
interface. Once both the no-penetration and no-slip boundary conditions are enforced, the
continuity of stress is automatically satisfied by the fact that particle methods satisfy the
Newton equation of motion. The numerical scheme used to solve the resulting equations is
reported in Ganzenmüller and Steinhauser [29].

176

ChemEng 2021, 5, 40

2.1.4. Solid-Solid Interaction (Agglomeration)

Besides fluid–structure interaction, the model also accounts for solid particles moving
within the flow. These particles are ‘sticky’ and prone to agglomeration. To model this
phenomenon, we use a similar approach to Rhamat et al. [24] that used soft, pseudo-
Lennard-Jones, potentials of the type:

U(r) = 4ε

[(
r∗

r

)4
−

(
r∗

r

)2
]

for r < rcut (11)

where ε provides the strength of the agglomeration, to model the interaction between sticky
particles. In this case, we consider both repulsive and attractive parts (Figure 1b); this
produces a minimum in the potential that represents the equilibrium distance between two
agglomerating particles. The value of the cut-off is selected at 3r∗. For r > 3r∗, we assume
F(r) ≈ 0, which simplifies the calculations. Equation (11) is a numerically convenient way to
implement agglomeration avoiding the sharp minima of the DLVO theory [36], but it does
not represent a very accurate model of agglomeration. As in Rhamat et al. [24], this does
not constitute a problem here since we are not interested in a specific type of interaction
(the actual potential among particles/platelets in Schofield et al. [10] is unknown anyway);
rather, we hope to enable particle–particle agglomeration in our virtual environment. For
the same reason, ε is left as a free parameter, and simulations with different values of ε
are compared. For a theoretically more accurate approach based on the concept of surface
energy, the reader can refer to Ariane et al. [19].

2.2. The Valve Model and Geometry

The DMP methodology discussed previously is applied to a system of flexible valves
(Figure 2a), which represents a series of venous valves distributed along a venous vessel
located in the leg. The geometry is two-dimensional and adapted from previous work by
Ariane [18] and Wijeratne and Hoo [37].

Two consecutive valves are connected by a channel with flexible walls. The model
is periodic, meaning that the flow exiting the system from the right boundary re-enters it
from the left boundary and vice versa. Therefore, the system is composed of two valves
and two flexible sections. These sections are contracted periodically to simulate pulsatile
blood flow. During typical daily activities, when the muscles in the leg contract, they
squeeze the blood flow which promotes blood circulation [2,3]. The pressure generated
by the contraction, opens the valve on the right (Figure 2b) and closes the valve on the
left. This mechanism allows flow to circulate in one direction and prevents backflow. The
opening and closing rate of the venous valve is around twenty rounds for each minute [38].
To save computational time, in the model, the rhythm is slightly accelerated by considering
five cycles in 15 s.

As Figure 2b shows, there are different types of computational particles in the model:
SPH particles modelling the blood flow; LSM particles modelling the leaflets and the
flexible sections between two valves. The walls that encase the valves are also made of
solid particles, but they are fixed and do not change their position during the simulation.
Additionally, a certain number of ‘sticky’ particles are randomly dispersed in the flow at
the beginning of the simulation.

In the model the fluid is considered Newtonian and the flow laminar. Table 1 shows
all the numerical parameters used in the simulation. The simulations were carried out with
the open-source code LAMMPS [39] and the open-source code of OVITO [40] was used for
the visualisation and analysis of the data.

177

ChemEng 2021, 5, 40

Figure 2. Two-dimensional geometry and structure of a dual venous valve: (a) geometry showing the location of the
contraction forces and (b) geometry showing the computational particles and their location in the model.

Table 1. Model’s numerical parameters.

Parameter Values and Units

SPH

Number of all particles that created our model domain. 168,676

Number of wall stationary particles (SPH particles), three layers. 4972

Number of wall flexible particles (LSM particles), three layers. 5750

Number of the valve’s particles (LSM particles), two layers.
Valve particles 1404

Each leaflet 351

Number of SPH fluid particles 141,030

Number of SPH agglomerating particles 15,520

Mass of each particle (Fluid) 1.056 × 10−5 kg

Mass of each particle (Solid) 2 × 10−5 kg

Initial distance between particles Δr 10−4 m

Density ρ0 1056 kg m−3

Smoothing length h 2.5 × 10−4 m

Dynamic viscosity μ0 0.0035 Pa s

178

ChemEng 2021, 5, 40

Table 1. Cont.

Parameter Values and Units

Virtual sound speed c0 10 m s−1

Contraction Forces F 0.008 N

Max velocity in the valve 0.04 m s−1

Time step Δt 10−6 s

LSM

Hookian coefficient kb
Flexible wall 1 × 105 J m−2

Valve’s membrane 5 × 106 J m−2

Viscous damping coefficient kv
Flexible wall 1 kg s−1

Valve’s membrane 0.1 kg s−1

Equilibrium distance r0 10−4 m

Boundaries

Repulsive radius r∗ 1 × 10−4 m

Constant k 1 × 10−4 J

Attractive forces potential

Mass of solid particles 1.056 × 10−5 kg

Solid diameter 10−4 m

Particle density 1056 kg m−3

Pair potential ε 2 × 10−5 J − 1 × 10−16 J

3. Results and Discussion:

3.1. Hydrodynamics

The blood flow moves from left to right (Figure 3) under the pressure generated by
applying the force F to the flexible sections. As mentioned, F simulates the effect of muscles
in the leg contracting around the vein. The higher pressure generated by F opens the valve
on the left and simultaneously closes the valve on the right of the contracted section, as
is illustrated in Figure 3a, where periodic boundary conditions are applied to the system.
Subsequently, the contracted section is released, and F is applied to the other section,
causing the open valve to close and the closed valve to open. This prevents backflow and
produces a unidirectional flow in Figure 3b from left to right.

In our model, the force F is calibrated to produce a maximal blood velocity of around
0.04 m s−1, which is a reasonable value for blood flow in human veins as it can vary during
average physical activity [11]. The velocity magnitude during the closing and opening
phases is reported in Figure 3. In all the simulations discussed in the next system, the
system is simulated for 15 s, representing five opening and closing cycles.

179

ChemEng 2021, 5, 40

Figure 3. Velocity magnitude in the valve during opening and closing phases: (a) F is applied to the channel 1 and (b) F is
applied to the channel 2.

180

ChemEng 2021, 5, 40

3.2. Particle Agglomeration

At the beginning of the simulation, ‘sticky’ elemental particles are uniformly dis-
tributed in the liquid domain with a concentration of ~10% in the flow. When the simulation
runs, these sticky particles start to aggregate in larger clusters depending on their ‘sticki-
ness’, which is controlled by the value of ε in Equation (11). The goal of this study is not to
replicate the physiochemical property of actual clots, but to separate the effect of hydrody-
namics from the particle–wall interaction in the in vitro experiments by Schofield et al. [10]
and verify that agglomeration occurs near the valve even when attractive forces between
the leaflets and the particles are arbitrarily removed. The surface energy of the elemental
particles is used in the in vitro experiment, and therefore their ‘stickiness’ is not known.
For this reason, in this study, we use the value of ε as a free parameter. Figure 4 shows how
the size of the average aggregate changes during the simulation

Figure 4. Dependence of the average size of particle agglomerates on the pair potential values
between ε = 10−8 J and ε = 10−5 J as the simulation is running.

Initially, all particles are separated, and the average size is equal to one, which repre-
sents the size of a solid single particle. As time progresses, particles randomly collide in the
flow and form agglomerates. Therefore, the average size of the agglomerate increases. As
particles lump into larger and larger agglomerates, the number of agglomerates in the flow
decreases, reducing their collision probability. Therefore, the average size tends to plateau
as the simulation progresses (Figure 4). An explanation for this is that there are greater at-
tractive forces, as a result of the higher pair potential energy. However, there is a minimum
pair potential energy where the attractive forces are not enough for particle agglomeration.

As expected, the higher the value of ε (and, therefore, the ‘stickiness’ of the particles),
the higher the average size of the aggregate. Figure 4 shows that for small values of ε,
no agglomeration occurs in the flow. The particles are not sticky enough, and the inertial
forces generated in the flow prevent the formation of larger agglomerates. Above the value
ε = 10−8 J, agglomeration starts, and the size of the agglomerates increases linearly with
log(ε) (Figure 5).

181

ChemEng 2021, 5, 40

Figure 5. Average size of the agglomerates associated with different pair potential values between
ε = 10−8 J and ε = 10−6 J at specific times (t = 12.5 s). Above the value of ε = 10−8 J, agglomeration
starts, and the size of the agglomerates increases linearly with log(ε).

3.3. Larger Agglomerates

In Figure 5, the average size of the agglomerates is presented. The size distribution,
however, is not uniform. Figure 6 shows how the size is distributed in the valve during
the simulation.

Figure 6. Simulation and experiment (platelets, fluorescently labelled, agglomeration in
Schofield et al., 2020) snapshots illustrating the aggregates near the valve’s leaflet at different time
points. The arrows indicate the aggregates near the valve leaflets.

182

ChemEng 2021, 5, 40

Moreover, larger agglomerates form near the leaflets. During their motion, the leaflets
temporarily reduce the section of the channel available to the flow. This increases the
probability of collision between particles forming larger agglomerates. Some of the ag-
glomerates move into the main flow, whereas others remain trapped in the valve district
and accumulate in this area. This is very similar to what we observe in the experiments.
Therefore, hydrodynamics plays an important role in the in vitro model in a previous study
by Schofield et al. (2020) (Figure 6).

4. Conclusions

In this study, we developed a Discrete Multiphysics model combining the fluid–
structure interaction model of [11,12] with the agglomeration model of Rhamat et al. [24].
It combines an element of novelty (first DVT model that accounts for agglomeration) with
a specific research question concerning the potential role of hydrodynamics in the early
stages of agglomeration in DVT.

We investigated agglomeration around the valve leaflets and how this is affected
by the hydrodynamics. The results show that larger agglomerates are likely to form
near valve leaflets even when the interaction potential between the valve leaflet and the
particles is removed. This supports our previous hypothesis [10] that the combination
of blood hydrodynamics and the valve’s mechanical characteristic is a key factor during
agglomeration in venous valves.

Besides its specific results, this study is also a good example of how in vitro and in
silico modelling can work together in research areas such as biology and medicine. In vitro
models aim at providing a physical replica of a biological system. However, it is sometimes
difficult to understand all the interrelated mechanical features of this physical model. At
this point, in silico models can offer virtual replicas of the biological system where certain
mechanical features can be switched on or off ad libitum. In this way, we can somehow
‘dissect’ the physics of the system and discern what the most important features are that
regulate the system under investigation. In practice, the model can be used to assess which
factors can enhance or decrease the tendency of agglomerates to form in the valve.

Author Contributions: Conceptualization, H.A.B. and A.A.; methodology, H.A.B., M.A., A.A. and
D.V.; software, H.A.B., A.A. and M.A.; validation, H.A.B., A.A., M.A., A.B. and D.V.; formal analysis,
H.A.B., M.A., A.B. and A.A.; investigation, H.A.B., A.B., D.V. and A.A.; resources, H.A.B., M.A., A.B.,
D.V. and A.A.; data curation, H.A.B., A.A., M.A., A.B. and D.V.; writing—original draft preparation,
H.A.B.; writing—review and editing, H.A.B., A.A., M.A., A.B. and D.V.; visualization, H.A.B. and
A.A; supervision, M.A., A.B., D.V. and A.A.; project administration, A.B., D.V. and A.A.; funding
acquisition, A.B., D.V. and A.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by NC3Rs and the British Heart Foundation (NC/S001360/1
and FS/18/68/34226).

Acknowledgments: A.B. is supported by the British Heart Foundation Senior Basic Science Research
Fellowship (FS/19/30/34173). H.A.B. is supported by NC3Rs and the British Heart Foundation
(NC/S001360/1 and FS/18/68/34226).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Raskob, G.E.; Spyropoulos, A.C.; Cohen, A.T.; Weitz, J.I.; Ageno, W.; De Sanctis, Y.; Lu, W.; Xu, J.; Albanese, J.; Sugarmann,
C.; et al. Association between Asymptomatic Proximal Deep Vein Thrombosis and Mortality in Acutely Ill Medical Patients. J.
Am. Hear. Assoc. 2021, 10, e019459.

2. Wu, W.T.; Zhussupbekov, M.; Aubry, N.; Antaki, J.F.; Massoudi, M. Simulation of thrombosis in a stenotic microchannel: The
effects of vWF-enhanced shear activation of platelets. Int. J. Eng. Sci. 2020, 147, 103206. [CrossRef]

3. Lurie, F.; Kistner, R.L.; Eklof, B.; Kessler, D. Mechanism of venous valve closure and role of the valve in circulation: A new
concept. J. Vasc. Surg. 2003, 38, 955–961. [CrossRef]

4. Shen, R.; Gao, M.; Tao, Y.; Chen, Q.; Wu, G.; Guo, X.; Xia, Z.; You, G.; Hong, Z.; Huang, K. Prognostic nomogram for 30-day
mortality of deep vein thrombosis patients in intensive care unit. BMC Cardiovasc. Disord. 2021, 21, 11. [CrossRef]

183

ChemEng 2021, 5, 40

5. Bovill, E.G.; van der Vliet, A. Venous valvular stasis–associated hypoxia and thrombosis: What is the link? Annu. Rev. Physiol.
2011, 73, 527–545. [CrossRef] [PubMed]

6. Siegal, D.M.; Eikelboom, J.W.; Lee, S.F.; Rangarajan, S.; Bosch, J.; Zhu, J.; Yusuf, S.; the Venous Thromboembolism Collaboration.
Variations in incidence of venous thromboembolism in low-, middle-, and high-income countries. Cardiovasc. Res. 2021, 117,
576–584. [CrossRef]

7. Das, K.; Biradar, M.S. (Eds.) Hypoxia and Anoxia; BoD–Books on Demand; IntechOpen: London, UK, 2018; ISBN 978-1-78984-828-1.
8. Payne, H.; Brill, A. Stenosis of the Inferior Vena Cava: A Murine Model of Deep Vein Thrombosis. J. Vis. Exp. 2017, 2017, e56697.

[CrossRef]
9. Cook, D.J.; Crowther, M.A. Thromboprophylaxis in the intensive care unit: Focus on medical–surgical patients. Critical Care Med.

2010, 38, S76–S82. [CrossRef] [PubMed]
10. Schofield, Z.; Baksamawi, H.A.; Campos, J.; Alexiadis, A.; Nash, G.B.; Brill, A.; Vigolo, D. The role of valve stiffness in the

insurgence of deep vein thrombosis. Commun. Mater. 2020, 1, 1–10. [CrossRef]
11. Ariane, M.; Wen, W.; Vigolo, D.; Brill, A.; Nash, F.G.B.; Barigou, M.; Alexiadis, A. Modelling and simulation of flow and

agglomeration in deep veins valves using discrete multi physics. Comput. Biol. Med. 2017, 89, 96–103. [CrossRef]
12. Ariane, M.; Allouche, H.; Bussone, M.; Giacosa, F.; Bernard, F.; Barigou, M.; Alexiadis, A. Discrete Multiphysics: A mesh-free

approach to model biological valves including the formation of solid aggregates at the membrane surface and in the flow. PLoS
ONE 2017, 12, e0174795. [CrossRef]

13. Bain, B.J. Structure and function of red and white blood cells and platelets. Medicine 2021, 49, 183–188. [CrossRef]
14. Cattaneo, M. Light Transmission Aggregometry and ATP Release for the Diagnostic Assessment of Platelet Function. Semin.

Thromb. Hemost. 2009, 35, 158–167. [CrossRef]
15. Alexiadis, A. The discrete multi-hybrid system for the simulation of solid-liquid flows. PLoS ONE 2015, 10, e0124678. [CrossRef]
16. Alexiadis, A.; Stamatopoulos, K.; Wen, W.; Batchelor, H.; Bakalis, S.; Barigou, M.; Simmons, M. Using discrete multi-physics for

detailed exploration of hydrodynamics in an in vitro colon system. Comput. Biol. Med. 2017, 81, 188–198. [CrossRef]
17. Ariane, M.; Kassinos, S.; Velaga, S.; Alexiadis, A. Discrete multi-physics simulations of diffusive and convective mass transfer in

boundary layers containing motile cilia in lungs. Comput. Biol. Med. 2018, 95, 34–42. [CrossRef] [PubMed]
18. Ariane, M.; Vigolo, D.; Brill, A.; Nash, F.; Barigou, M.; Alexiadis, A. Using Discrete Multi-Physics for studying the dynamics of

emboli in flexible venous valves. Comput. Fluids 2018, 166, 57–63. [CrossRef]
19. Ariane, M.; Sommerfeld, M.; Alexiadis, A. Wall collision and drug-carrier detachment in dry powder inhalers: Using DEM to

devise a sub-scale model for CFD calculations. Powder Technol. 2018, 334, 65–75. [CrossRef]
20. Sanfilippo, D.; Ghiassi, B.; Alexiadis, A.; Hernandez, A.G. Combined peridynamics and discrete multiphysics to study the effects

of air voids and freeze-thaw on the mechanical properties of asphalt. Materials 2021, 14, 1579. [CrossRef] [PubMed]
21. Alexiadis, A.; Simmons, M.J.H.; Stamatopoulos, K.; Batchelor, H.K.; Moulitsas, I. The virtual physiological human gets nerves!

How to account for the action of the nervous system in multiphysics simulations of human organs. J. R. Soc. Interface 2021, 18,
20201024. [CrossRef] [PubMed]

22. Ruiz-Riancho, I.N.; Alexiadis, A.; Zhang, Z.; Hernandez, A.G. A discrete multi-physics model to simulate fluid structure
interaction and breakage of capsules filled with liquid under coaxial load. Processes 2021, 9, 354. [CrossRef]

23. Ng, K.C.; Alexiadis, A.; Chen, H.; Sheu, T.W.H. A coupled Smoothed Particle Hydrodynamics-Volume Compensated Particle
Method (SPH-VCPM) for Fluid Structure Interaction (FSI) modelling. Ocean Eng. 2020, 218, 107923. [CrossRef]

24. Rahmat, A.; Weston, D.; Madden, D.; Usher, S.; Barigou, M.; Alexiadis, A. Modeling the agglomeration of settling particles in a
dewatering process. Phys. Fluids 2020, 32, 123314. [CrossRef]

25. Mohammed, A.M.; Ariane, M.; Alexiadis, A. Using discrete multiphysics modelling to assess the effect of calcification on
hemodynamic and mechanical deformation of aortic valve. ChemEngineering 2020, 4, 48. [CrossRef]

26. Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [CrossRef]
27. Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R.

Astron. Soc. 1977, 181, 375–389. [CrossRef]
28. Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore, 2003.
29. Ganzenmüller, G.C.; Steinhauser, M.O.; Van Liedekerke, P.; Leuven, K.U. The implementation of Smooth Particle Hydrodynamics

in LAMMPS. Paul Van Liedekerke Kathol. Univ. Leuven 2011, 1, 1–26.
30. Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling Low Reynolds Number Incompressible Flows Using SPH. J. Comput. Phys. 1997, 136,

214–226. [CrossRef]
31. Monaghan, J.J. Simulating Free Surface. J. Comput. Phys. 1994, 110, 399–406. [CrossRef]
32. Lee, E.S.; Moulinec, C.; Xu, R.; Violeau, D.; Laurence, D.; Stansby, P. Comparisons of weakly compressible and truly incompressible

algorithms for the SPH mesh free particle method. J. Comput. Phys. 2008, 227, 8417–8436. [CrossRef]
33. Kot, M.; Nagahashi, H.; Szymczak, P. Elastic moduli of simple mass spring models. Vis. Comput. 2015, 31, 1339–1350. [CrossRef]
34. Pazdniakou, A.; Adler, P.M. Lattice Spring Models. Transp. Porous Media 2012, 93, 243–262. [CrossRef]
35. Schütt, M.; Stamatopoulos, K.; Simmons, M.; Batchelor, H.; Alexiadis, A. Modelling and simulation of the hydrodynamics and

mixing profiles in the human proximal colon using Discrete Multiphysics. Comput. Biol. Med. 2020, 121, 103819. [CrossRef]
[PubMed]

184

ChemEng 2021, 5, 40

36. Boström, M.; Deniz, V.; Franks, G.; Ninham, B. Extended DLVO theory: Electrostatic and non-electrostatic forces in oxide
suspensions. Adv. Colloid Interface Sci. 2006, 123–126, 5–15. [CrossRef] [PubMed]

37. Wijeratne, N.S.; Hoo, K.A. Numerical studies on the hemodynamics in the human vein and venous valve. In Proceedings of the
2008 American Control Conference, Seattle, DC, USA, 11–13 June 2008; IEEE: New York, NY, USA, 2008; pp. 147–152.

38. Aird, W.C. Vascular bed-specific thrombosis. J. Thromb. Haemost. 2007, 5, 283–291. [CrossRef]
39. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [CrossRef]
40. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul.

Mater. Sci. Eng. 2010, 18, 015012. [CrossRef]

185

chemengineering

Article

Fluid-Structure Interaction in Coronary Stents: A Discrete
Multiphysics Approach

Adamu Musa Mohammed 1,2,*, Mostapha Ariane 3 and Alessio Alexiadis 1,*

��������	
�������

Citation: Mohammed, A.M.; Ariane,

M.; Alexiadis, A. Fluid-Structure

Interaction in Coronary Stents: A

Discrete Multiphysics Approach.

ChemEng 2021, 5, 60. https://

doi.org/10.3390/chemengineering

5030060

Academic Editor: Evangelos Tsotsas

Received: 29 June 2021

Accepted: 3 September 2021

Published: 8 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
2 Department of Chemical Engineering, Faculty of Engineering and Engineering Technology, Abubakar Tafawa

Balewa University, Bauchi 740272, Nigeria
3 Department of Materials and Engineering, Sayens—University of Burgundy, 21000 Dijon, France;

Mostapha.Ariane@u-bourgogne.fr
* Correspondence: amm702@bham.ac.uk or ammohd@atbu.edu.ng (A.M.M.); A.Alexiadis@bham.ac.uk (A.A.);

Tel.: +44-(0)-776-717-3356 (A.M.M.); +44-(0)-121-414-5305 (A.A.)

Abstract: Stenting is a common method for treating atherosclerosis. A metal or polymer stent is
deployed to open the stenosed artery or vein. After the stent is deployed, the blood flow dynamics
influence the mechanics by compressing and expanding the structure. If the stent does not respond
properly to the resulting stress, vascular wall injury or re-stenosis can occur. In this work, a Discrete
Multiphysics modelling approach is used to study the mechanical deformation of the coronary stent
and its relationship with the blood flow dynamics. The major parameters responsible for deforming
the stent are sorted in terms of dimensionless numbers and a relationship between the elastic forces
in the stent and pressure forces in the fluid is established. The blood flow and the stiffness of the stent
material contribute significantly to the stent deformation and affect its rate of deformation. The stress
distribution in the stent is not uniform with the higher stresses occurring at the nodes of the structure.
From the relationship (correlation) between the elastic force and the pressure force, depending on the
type of material used for the stent, the model can be used to predict whether the stent is at risk of
fracture or not after deployment.

Keywords: discrete multiphysics; smooth particle hydrodynamics; lattice spring model; fluid-
structure interaction; particle-based method; coronary stent; mechanical deformation

1. Introduction

Atherosclerosis is a condition where arteries become clogged with fatty substances
called plaque. The plaque is deposited on the arterial wall, and this leads to the nar-
rowing of the artery and subsequently obstruction of the blood flow known as stenosis.
This obstruction hinders the smooth transportation of blood through these arteries and
consequently poses a serious health problem. When atherosclerosis affects an artery that
transports oxygenated blood to the heart, it is called coronary artery disease. Coronary
artery disease is the most common heart disease that becomes the leading cause of death
globally. Worldwide, it is associated with 17.8 million death annually [1]. The healthcare
service for coronary artery disease poses a serious economic burden even on the developed
countries, costing about 200 dollars annually in the United States.

The obstruction of the flow line (stenosis) also alters the blood flow regime and causes
a deviation from laminar to turbulence, or even transitional flow [2,3], a situation that
signifies severely disturbed flow. Studies were carried out on the types of plaque and its
morphologies as well as the flow type and its consequence [4–7] that occurred in human
arteries. Although the disease is deadly, it is preventable. Therefore, it is paramount to
manage or prevent it in order to restore normal blood flow in the affected artery.

One of the ways of managing coronary artery disease is restoring normal blood flow
or revascularization in a patient with a severe condition using the percutaneous coronary

ChemEng 2021, 5, 60. https://doi.org/10.3390/chemengineering5030060 https://www.mdpi.com/journal/chemengineering

187

ChemEng 2021, 5, 60

intervention (with stent) [8]. Coronary stents are tubular scaffolds that are deployed to
recover the shrinking size of a diseased (narrowed) arterial segment [9] and stenting is a
primary treatment of a stenosed artery that hinders smooth blood flow [10].

The stents used in clinical practice come in differential geometry and design which
implies varying stress distribution within the local hemodynamic environment as well
as on the plaque and artery [11,12]. The stent structure also induces different levels of
Wall Shear Stress (WSS) on the wall of the artery [9,13]. Many cases of stent failure due to
unbearable stress were reported and therefore, a careful study on how these stresses are
distributed is needed. In fact, stent fracture or failure often occurs after stent implantation,
and it can be avoidable if the mechanical property and the performance of the material are
predicted. An ideal stent should provide good arterial support after expansion by having
high radial strength. It should also cause minimal injury to the artery when expanded and
should have high flexibility for easy maneuvering during insertion [14,15].

Studies on the different stent designs and how they affect their mechanical perfor-
mance were reported [12,13]. Stent deformation and fracture after implantation were also
investigated [16–20]. Moreover, numerical modelling and simulations were also used in
studying coronary stent and stent implantation. For instance, Di Venuta et al., 2017 carried
out a numerical simulation on a failed coronary stent implant on the degree of residual
stenosis and discovered that the wall shear stress increases monotonically, but not linearly
with the degree of residual stenosis [8]. Simulation of hemodynamics in a stented coronary
artery and for in-stent restenosis was performed by [21,22].

With a few exceptions [23–25], the mechanical properties of the stent and the blood
fluid dynamics around the stent were studied separately. In this work, we propose a single
Fluid-Structure Interaction (FSI) model that calculates the stress on the stent produced by
the pulsatile flow around the stent; both the stent mechanics and the blood hydrodynamics
are calculated at the same time. The model is based on the Discrete Multiphysics (DMP)
framework [26], which has been used in a variety of FSI problems in biological systems
such as the intestine [27], aortic valve [28,29], the lungs [28], deep venous valves [30,31].
In this study, therefore, we use the DMP framework to develop an FSI 3D coronary stent
model coupled with the blood hydrodynamics and analyse the mechanical deformations
produced by the flow hydrodynamics.

2. Methods

2.1. Discrete Multiphysics

Discrete Multiphysics framework combines together particle-based techniques such
as Smooth Particle Hydrodynamics (SPH) [32,33], Discrete Element Method (DEM) [34,35],
Lattice Spring Model (LSM) [36,37], PeriDynamics (PD) [38], and even Artificial Neural
Networks (ANN) [39,40]. In this case, the model couples SPH and LSM. The computational
domain is divided into the liquid domain and the solid domain. The liquid domain
represents the blood, and it is modelled with SPH particles; the solid domain represents the
stent and the arterial walls and it is modelled with LSM particles. Details on SPH theory
can be found in [41], and of LSM in [42,43]. Here a brief introduction of the equations used
in SPH and LSM is provided.

2.2. Smooth Particle Hydrodynamics (SPH)

This section provides a basic introduction to SPH; additional details can be found
in [41,44]. The general idea of SPH is to approximate a partial differential equation over a
group of movable computational particles that are not connected over a grid or a mesh [37].
Newton’s second law is integrated to give an approximate motion of the particles charac-
terized by their own properties such as mass, velocity, pressure, and density expressed by
the fundamental identity:

f (r) = f
(
r′
)
δ
(
r − r′

)
dr′, (1)

where f (r) is a generic function defined over the volume, r is the position where the
property is measured, and δ(r) is the delta function which is approximated by a smoothing

188

ChemEng 2021, 5, 60

(Kernel) function W over a characteristic with h (smoothing length). In this study, we use
the so-called Lucy Kernel [41]. This approximation gives rise to

f (r) ≈ f
(
r′
)
W

(
r − r′, h

)
dr′, (2)

which can be discretised over a series of particles of mass m = ρ(r)dr obtaining

f (r) ≈ ∑
i

mi
ρi

f (ri)W(r − ri, h), (3)

where mi and ρi are the mass and density of the ith particles, and i ranges over all particles
within the smoothing Kernel. Using this approximation, the Navier-Stoke equation can be
discretised over a series of particles to obtain:

mi
dvi
dt

= ∑
j

mimj(
Pi

ρ2
i
+

Pj

ρ2
j
+ Πi,j)∇jWi,j + fi, (4)

where v is the particle velocity, t the time, m is the mass, ρ the density, and P the pressure
associated with particles i and j. The term fi is the volumetric body force acting on the fluid
and Πi,j introduces the viscous force as defined by [45]. An equation of state is required to
relate pressure and density. In this paper, Tait’s equation of state is used:

P(ρ) =
c0ρ0

7

[(
ρ

ρ0

)7
− 1

]
, (5)

where c0 and ρ0 are a reference sound speed and density. To ensure weak compressibility,
c0 is chosen to be at least 10 times larger than the highest fluid velocity.

2.3. Lattice Spring Model (LSM)

Elastic objects can be simulated using lattice spring models. As already discussed
in [29], the main element of this model is composed of a mass point and linear spring
which exerts forces at the nodes connected by a linear spring and placed on a lattice. Any
material point of the body can be referred to by its position vector r = (x, y, z) [46]; when
the body undergoes deformation its position changes and the displacement is related to
the applied force as:

F = k(l − l0) (6)

where F is the force, l0 is the initial distance between two particles, l is the instantaneous
distance, and k the spring constant (or Hookean constant).

According to [42], in a regular cubic lattice structure, the spring constant is related to
the bulk modulus of the material by

K =
5
3

k
l0

(7)

and
E =

3
2

K (8)

where K is the bulk modulus, E the young modulus, l0 is the initial particle distance and k
the spring constant.

From Equations (7) and (8) the spring constant is then related to the Young modulus
of the material by

k =
El0
2.5

. (9)

189

ChemEng 2021, 5, 60

3. Model and Geometry

A three-dimensional stent model including blood flow hydrodynamics and stent
mechanics is developed. The model simulates the blood dynamics in a 3D channel similar
to a coronary artery with a 1.5 × 10−3 m internal radius, including a PS-shape stent of 4
struts in the x-direction and 4 struts in the z-direction (circumference). The stent has a
thickness of 100 μm, and 7.5 mm length, the size that is within the range of the stent used
in clinical practice [47]. We choose a PS-Shaped because it performs better compare to most
commercially shaped stents as reported by [25].

The geometry was created using CAD. From the geometry, we used MATLAB script
to generate the coordinate of the computational particles as the points are created with
MATLAB (details can be found in [29]). The script also generates a LAMMPS data file for
the simulations and the simulations were run with LAMMPS, an open-source software [48].
The three-dimensional model consists of 1,862,804 particles: 1,609,452 particles for the fluid,
46,336 particles for the stent and 207,016 particles for the arterial wall. The fluid has a den-
sity (ρ) of 1056 kg m−3 and viscosity (μ) 0.0035 Pa·s. Figure 1 shows the section geometry
of the stent within and outside the arterial wall. Local acceleration term g0 was included
to force the fluid to flow at a particular velocity. The inclusion of the local velocity is due
to the unsteady or pulsatile flow existing in the cardiovascular system [49]. Womersley
parameter α, which is the ratio of unsteady force to viscous force, was used in the model to
induce the velocity profile of the flow. The particle spacing is 3.33 × 10−5 m. The optimal
spacing value is obtained after several simulations with different particle spacings to make
sure the results are independent of the particle resolution. Stress and deformation and
other postprocessing calculations were done with the visualization software OVITO [50].
The arterial wall is assumed to be rigid with a no-slip condition [25] whereas the stent is
elastic. The no-slip and no penetration boundary condition is imposed at the interface
of the solid-liquid interaction as discussed in our previous work [51]. Figure 1a,b shows
a section of the solid geometry which includes the stent and the wall and the complete
geometry of the stent respectively.

Figure 1. Illustration of the 3D stent geometry at (a) section view; and (b) front view showing complete stent.

The flow is being driven by a sinusoidal (pulsatile) acceleration (G) of the flow in
the axial direction to simulate a heartbeat of 60/min with a period (T) of 1 s; the same
approach was used in a previous publication [29], where the reader can find more details.

Eighteen (18) sets of simulations were run with a combination of v1 − v3 and k1 − k6
(see Section 4 for reasons). The University of Birmingham Bluebear (super-computer) was
used for the computation (simulation) where ninety (90) processors were assigned for 72 h
to run each simulation. For each simulation, a dump file (result file) of 9–10 GB of memory
is obtained.

To better understand the hydrodynamics of the fluid and to be able to access the
deformation of the stent, the discussion is carried out in terms of dimensionless numbers.
According to the Buckingham π theorem, a physically meaningful equation involving n
physical variables can be rewritten in terms of a set of p = n − k dimensionless parameters

190

ChemEng 2021, 5, 60

Π1, Π2, . . . , Πp, where k is the number of physical dimensions involved. In this case, the
physiochemical properties of blood are constant, and the geometry is fixed. Therefore, we
want to express the resulting stress on the stent as a function f of the type

σ = f (P, d, E), (10)

where s [kg m−1s−2] is the stress on the stent, P [kg m−1s−2] the dynamic pressure in the
fluid (the force exerted by the fluid to the stent depends on P), d [m] a characteristic length
of the stent (here, we use the thickness of the stent), and E [kg m−1s−2] the Young Modulus.

In this case, the dynamic pressure can be written in terms of fluid average velocity v
and density r,

P = ρv2, (11)

Moreover, k [kg s−2] and E are related in Equation (9). Therefore, assuming that the
lattice spacing is fixed, we can replace Equation (10) with

σ = f (ρ, v, d, k), (12)

Since we have 5 variables and 3 units, we can rewrite Equation (12) based on two
dimensionless numbers

Π2 = ϕ(Π1). (13)

The first dimensionless number can be defined as

Π1 =
k

ρv2d
[elastic forces that contrast deformation (in the solid)]

[pressure forces that tend to deform the stent (from the liquid)]
(14)

Knowing the typical ranges of E and d for the stent, and ρ and v for the blood, we can
calculate the typical range of Π1. The second parameter Π2 can be defined as

Π2 =
σ d
k

. (15)

We can have different types of Π2 according to the type of stress we use in Equation (15).
The stress tensor has 6 independent components that can be composed in different ways to
provide different types of information. One possibility is to use the Frobenius norm.

σF =
√

σ2
xx + σ2

yy + σ2
zz + 2σ2

xy + 2σ2
xz + 2σ2

yz (16)

In this case, we have a Π2 based on the Frobenius norm

ΠF
2 =

σF d
k

. (17)

that expresses, in dimensionless form, the total stress in the stent. Another possibility is the
von Mises stress

σV =

√
1
2

[(
σxx − σyy

)2
+

(
σyy − σzz

)2
+ (σzz − σxx)

2
]
+ 3

(
σ2

xy + σ2
yz + σ2

zx

)
(18)

which provides another Π2 number defined as

ΠV
2 =

σV d
k

. (19)

Physically, ΠF
2 and ΠV

2 are dimensionless stresses and can have both a local form Π2
(x, y, z) (when we calculate them at each x, y, z position), and a global form <Π2> (when we
average them over the whole stent). Table 1 shows the parameters used in the simulation.

191

ChemEng 2021, 5, 60

Table 1. Parameters used in the simulation.

SPH

Number of SPH fluid particles 1,609,452
Mass of each particle (fluid) 3.41 × 10−12 kg

Length L 7.5 × 10−3 m
Diameter D 3.0 × 10−3 m

Particle spacing l 3.33 × 10−5 m
Smoothing length h 7.5 × 10−5 m

Local acceleration term g0 0.47138–1.25 m s−2

Fluid Density ρ 1056 kg m−3

Viscosity μ 0.0035 Pa·s
Sound speed c0 4 m s−1

Alpha α 0.1–0.25 [-]
Time step Δt 1 × 10−7 s

LSM

Number of SPH stent particles 46,336
Number of SPH wall particles 207,016

Mass of each particle of the stent (Solid) 3.41 × 10−12 kg
Mass of each particle of the wall (Solid) 6.0 × 10−12 kg

Stent thickness d 1.0 × 10−4 m
Elastic constant k 0.5−25 kg s−2

4. Results and Discussion

Three flow velocities of 0.4 ms−1, 0.23 ms−1 and 0.16 ms−1 were chosen to represent
the normal coronary artery and the baseline flow, respectively. The value of k was chosen
from 0.5 to 5 to cover materials with the lowest to highest Young modulus. The blood
flow velocity observed within the stent ranges from 0.23 ms−1 to 0.4 ms−1, whereas the
minimum flow velocity which may occur due to stenosis is 0.16 ms−1 and taken to be the
baseline [52]. The velocity profile at different viewpoints is shown in Figure 2.

Figure 2. Velocity profile; (a) x-y view (steady state profile), (b) y-z view, and (c) parabolic profile at the beginning of the flow.

The dimensionless von Mises stress is shown in Figure 3 for two stents at different
〈Π1〉. Different values of 〈Π1〉 means different k and v. It is shown that the stress is more
severe at the nodes (joints) with higher stress at higher 〈Π1〉 as clearly shown in Figure 3b.
This may lead to potential stent failure (rapture) at the joins or size change of the stent
resulting from compression or expansion. The expansion characteristics of a stent are
the main causes of vascular wall injuries [53]. Either of these conditions (failure or size

192

ChemEng 2021, 5, 60

change) will cause severe pain and damage to the patient and lead to restenosis and or
stent redeployment.

Figure 3. Local ΠV
2 at (a) Π1 = 296, and (b) Π1 = 1480.

The result is first presented in Figure 4 and shows how the stress varies with k and v.
This is then sorted in dimensionless form and presented in Figures 5 and 6, which shows
the average stress <ΠF

2>, and <ΠV
2> versus <Π1> in dimensionless form. If we use dimen-

sionless numbers the three curves of Figure 4 collapse in only one curve (Figures 5 and 6).

Figure 4. Stress (Frobenius norm of the stress tensor) with respect to k and v.

Figure 5. Relationship between average stress <ΠF
2> and <Π1>.

193

ChemEng 2021, 5, 60

Figure 6. Relationship between average stress <ΠV
2> and <Π1>.

The plot confirms that the stress can be effectively sorted out with two dimensionless
numbers based on the Buckingham π theorem. The three curves of Figure 4 can be fit by
the same function as indicated in Equation (13). This function can be approximated by the
following correlation (dotted line in)

< ΠF
2 >= 0.026〈Π1〉−0.723. (20)

The same approach can be used for the von Mises stress which also has a correlation

< ΠV
2 > = 0.058〈Π1〉−0.6737. (21)

Numerically, we identified that the dimensionless numbers computed can be used as the
fundamental group of the system in which the stress can be express in terms of Π1 and Π2.

Due to the pulsatile flow, the stent contracts and expands during the simulation. This
causes the diameter of the stent to change with the flow. Figure 7 shows that the percentage
change in the stent’s diameter is fluctuating. This is because the arterial blood flow, which
contributed to the stent deformation, is pulsatile in nature [54,55], therefore, it is expected
to have a nonlinear change in the diameter. Note that the deformation is not only a function
of the pressure forces from the liquid (blood) but also the elastic forces from the solid (stent).
For that reason, several oscillation modes occur at the same time and the diameter change
is not a simple repetition of the pulsatile flow.

Figure 7. Average diameter change with time.

194

ChemEng 2021, 5, 60

Another likely incidence of vascular wall injury associated with stent expansion which
can be quantified using the model is the so-called dogboning (DB) effect/ratio. This
phenomenon occurs when the stent expands at the ends, resulting in increased stress and
injuries at the arterial wall [53]. This occurs when the diameter expands at both ends of the
stent and contracts at the centre. The dogboning ratio is defined as,

DB =
Dmax,end − Dmin,central

Dmax,end
× 100% (22)

where Dmax,end is the maximum stent diameter at the end (distal and proximal), and
Dmin,central is the minimum stent diameter at the centre. Our model is capable of analysing
the dogboning ratio which could be used to assess and reduce the potential risk of vascular
wall injury, and therefore, in this study, DB was calculated to be 4.4%. This is less than the
6.3% reported by [25] for PS-shaped stent.

5. Conclusions

In this paper, a Discrete Multiphysics model is used to simulate a coronary stent ac-
counting for both its hemodynamics and mechanical stress. The model is three-dimensional
and includes both the fluid (blood) and the solid structures (arterial wall and stent) and it
is used to study the link between the flow dynamics and the mechanical deformation of the
stent. The mechanical stress is computed using dimensionless numbers and a relationship
between elastic forces and pressure forces was established. The results show that the
blood flow contributes significantly to the stent deformation and the stiffness of the stent
material affected the rate of deformation. Nonuniform stress distributions are observed. In
particular, high stresses are observed at the nodes of the stent.

Given a specific Π1 and from the corresponding ΠV
2 , the maximum stress can be

obtained. However, a fracture is not directly accounted for. This will depend on the
pressure (stress) and type of material used for the stent as reported by [19]. Different
materials have different yield stress (above which the stent fracture occurs). Our model can
be used for all types of material by comparing the maximal stress in the structure against
the material yield stress. Using the correlation in Equation (21), maximum ΠV

2 . can be
found when a specific stent material’s property (Young modulus) is known. That means,
from the value of Π1, we will be able to predict the Von Mises stress from ΠV

2 (which can
be compared against the yield stress) as well as the flow velocity. For clinical purposes,
one just needs to know the material and the blood flow velocity in the diseased artery to
be able to predict whether the stent is at risk of fracture or not. Therefore, the model can
be used to predict the deformation of the stent once in place and the conditions that can
potentially cause its failure.

Author Contributions: Conceptualization, M.A., A.M.M. and A.A.; simulation and visualization,
A.M.M.; numerical calculations, A.M.M., M.A. and A.A.; interpretation and analysis of results,
A.M.M. and A.A.; writing—original draft preparation, A.M.M.; supervision, A.A. and M.A.; writing—
review and editing, A.A., A.M.M. and M.A.; input script, M.A. and A.M.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The Nigerian Petroleum Technology Development Fund (PTDF) is acknowl-
edged for the provision of a scholarship to Adamu Musa Mohammed.

Conflicts of Interest: The authors declare no conflict of interest.

195

ChemEng 2021, 5, 60

References

1. Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure
Island, FL, USA, 2021.

2. Kolodgie, F.D.; Nakazawa, G.; Sangiorgi, G.; Ladich, E.; Burke, A.P.; Virmani, R. Pathology of Atherosclerosis and Stenting.
Neuroimaging Clin. N. Am. 2007, 17, 285–301. [CrossRef] [PubMed]

3. Evju, Ø.; Mardal, K.-A. On the Assumption of Laminar Flow in Physiological Flows: Cerebral Aneurysms as an Illustrative
Example. In Modeling the Heart and the Circulatory System; Quarteroni, A., Ed.; MS&A.; Springer International Publishing: Cham,
Germany, 2015; Volume 14, pp. 177–195. ISBN 978-3-319-05229-8.

4. Otsuka, F.; Yasuda, S.; Noguchi, T.; Ishibashi-Ueda, H. Pathology of Coronary Atherosclerosis and Thrombosis. Cardiovasc. Diagn.
Ther. 2016, 6, 396–408. [CrossRef]

5. Griffith, M.D.; Leweke, T.; Thompson, M.C.; Hourigan, K. Effect of Small Asymmetries on Axisymmetric Stenotic Flow. J. Fluid
Mech. 2013, 721, R1. [CrossRef]

6. Jain, K. Transition to Turbulence in an Oscillatory Flow through Stenosis. Biomech. Model. Mechanobiol. 2020, 19, 113–131.
[CrossRef] [PubMed]

7. Ahmed, S.A.; Giddens, D.P. Pulsatile Poststenotic Flow Studies with Laser Doppler Anemometry. J. Biomech. 1984, 17, 695–705.
[CrossRef]

8. Di Venuta, I.; Boghi, A.; Gori, F. Three-Dimensional Numerical Simulation of a Failed Coronary Stent Implant at Different Degrees
of Residual Stenosis. Part I: Fluid Dynamics and Shear Stress on the Vascular Wall. Numer. Heat Transf. Part A Appl. 2017, 71,
638–652. [CrossRef]

9. Pant, S.; Bressloff, N.W.; Limbert, G. Geometry Parameterization and Multidisciplinary Constrained Optimization of Coronary
Stents. Biomech. Model. Mechanobiol. 2012, 11, 61–82. [CrossRef]

10. Hsiao, H.-M.; Lee, K.-H.; Liao, Y.-C.; Cheng, Y.-C. Hemodynamic Simulation of Intra-Stent Blood Flow. Procedia Eng. 2012, 36,
128–136. [CrossRef]

11. Wei, L.; Chen, Q.; Li, Z. Influences of Plaque Eccentricity and Composition on the Stent–Plaque–Artery Interaction during Stent
Implantation. Biomech. Model. Mechanobiol. 2019, 18, 45–56. [CrossRef]

12. Colombo, A.; Stankovic, G.; Moses, J.W. Selection of Coronary Stents. J. Am. Coll. Cardiol. 2002, 40, 1021–1033. [CrossRef]
13. Balossino, R.; Gervaso, F.; Migliavacca, F.; Dubini, G. Effects of Different Stent Designs on Local Hemodynamics in Stented

Arteries. J. Biomech. 2008, 41, 1053–1061. [CrossRef]
14. Duraiswamy, N.; Jayachandran, B.; Byrne, J.; Moore, J.E.; Schoephoerster, R.T. Spatial Distribution of Platelet Deposition in

Stented Arterial Models under Physiologic Flow. Ann. Biomed. Eng. 2005, 33, 1767–1777. [CrossRef] [PubMed]
15. Pant, S.; Bressloff, N.W.; Forrester, A.I.J.; Curzen, N. The Influence of Strut-Connectors in Stented Vessels: A Comparison of

Pulsatile Flow Through Five Coronary Stents. Ann. Biomed. Eng. 2010, 38, 1893–1907. [CrossRef] [PubMed]
16. Finet, G.; Rioufol, G. Coronary Stent Longitudinal Deformation by Compression: Is This a New Global Stent Failure, a Specific

Failure of a Particular Stent Design or Simply an Angiographic Detection of an Exceptional PCI Complication? EuroIntervention
2012, 8, 177–181. [CrossRef] [PubMed]

17. Choudhury, T.R.; Al-Saigh, S.; Burley, S.; Li, L.; Shakhshir, N.; Mirhosseini, N.; Wang, T.; Arnous, S.; Khan, M.A.; Mamas, M.A.;
et al. Longitudinal Deformation Bench Testing Using a Coronary Artery Model: A New Standard? Open Heart 2017, 4, e000537.
[CrossRef] [PubMed]

18. Ding, H.; Zhang, Y.; Liu, Y.; Shi, C.; Nie, Z.; Liu, H.; Gu, Y. Analysis of Vascular Mechanical Characteristics after Coronary
Degradable Stent Implantation. BioMed Res. Int. 2019, 2019, 8265374. [CrossRef]

19. Chinikar, M.; Sadeghipour, P. Coronary Stent Fracture: A Recently Appreciated Phenomenon with Clinical Relevance. Curr.
Cardiol. Rev. 2014, 10, 349–354. [CrossRef] [PubMed]

20. Alqahtani, A.; Suwaidi, J.; Mohsen, M. Stent Fracture: How Frequently Is It Recognized? Heart Views 2013, 14, 72. [CrossRef]
[PubMed]

21. Faik, I.; Mongrain, R.; Leask, R.L.; Rodes-Cabau, J.; Larose, E.; Bertrand, O. Time-Dependent 3D Simulations of the Hemodynamics
in a Stented Coronary Artery. Biomed. Mater. 2007, 2, S28–S37. [CrossRef]

22. Caiazzo, A.; Evans, D.; Falcone, J.-L.; Hegewald, J.; Lorenz, E.; Stahl, B.; Wang, D.; Bernsdorf, J.; Chopard, B.; Gunn, J.; et al. A
Complex Automata Approach for In-Stent Restenosis: Two-Dimensional Multiscale Modelling and Simulations. J. Comput. Sci.
2011, 2, 9–17. [CrossRef]

23. Beier, S.; Ormiston, J.; Webster, M.; Cater, J.; Norris, S.; Medrano-Gracia, P.; Young, A.; Cowan, B. Hemodynamics in Idealized
Stented Coronary Arteries: Important Stent Design Considerations. Ann. Biomed. Eng. 2016, 44, 315–329. [CrossRef] [PubMed]

24. Xu, J.; Yang, J.; Huang, N.; Uhl, C.; Zhou, Y.; Liu, Y. Mechanical Response of Cardiovascular Stents under Vascular Dynamic
Bending. Biomed. Eng. Online 2016, 15, 21. [CrossRef] [PubMed]

25. Wei, L.; Leo, H.L.; Chen, Q.; Li, Z. Structural and Hemodynamic Analyses of Different Stent Structures in Curved and Stenotic
Coronary Artery. Front. Bioeng. Biotechnol. 2019, 7, 366. [CrossRef] [PubMed]

26. Alexiadis, A. A Smoothed Particle Hydrodynamics and Coarse-Grained Molecular Dynamics Hybrid Technique for Modelling
Elastic Particles and Breakable Capsules under Various Flow Conditions: SPH-CGMD HYBRID. Int. J. Numer. Meth. Eng. 2014,
100, 713–719. [CrossRef]

196

ChemEng 2021, 5, 60

27. Schütt, M.; Stamatopoulos, K.; Simmons, M.J.H.; Batchelor, H.K.; Alexiadis, A. Modelling and Simulation of the Hydrodynamics
and Mixing Profiles in the Human Proximal Colon Using Discrete Multiphysics. Comput. Biol. Med. 2020, 121, 103819. [CrossRef]

28. Ariane, M.; Kassinos, S.; Velaga, S.; Alexiadis, A. Discrete Multi-Physics Simulations of Diffusive and Convective Mass Transfer
in Boundary Layers Containing Motile Cilia in Lungs. Comput. Biol. Med. 2018, 95, 34–42. [CrossRef] [PubMed]

29. Mohammed, A.M.; Ariane, M.; Alexiadis, A. Using Discrete Multiphysics Modelling to Assess the Effect of Calcification on
Hemodynamic and Mechanical Deformation of Aortic Valve. ChemEngineering 2020, 4, 48. [CrossRef]

30. Ariane, M.; Wen, W.; Vigolo, D.; Brill, A.; Nash, F.G.B.; Barigou, M.; Alexiadis, A. Modelling and Simulation of Flow and
Agglomeration in Deep Veins Valves Using Discrete Multi Physics. Comput. Biol. Med. 2017, 89, 96–103. [CrossRef]

31. Ariane, M.; Vigolo, D.; Brill, A.; Nash, F.G.B.; Barigou, M.; Alexiadis, A. Using Discrete Multi-Physics for Studying the Dynamics
of Emboli in Flexible Venous Valves. Comput. Fluids 2018, 166, 57–63. [CrossRef]

32. Albano, A.; Alexiadis, A. A Smoothed Particle Hydrodynamics Study of the Collapse for a Cylindrical Cavity. PLoS ONE 2020, 15,
e0239830. [CrossRef]

33. Albano, A.; Alexiadis, A. Non-Symmetrical Collapse of an Empty Cylindrical Cavity Studied with Smoothed Particle Hydrody-
namics. Appl. Sci. 2021, 11, 3500. [CrossRef]

34. Liu, W.; Wu, C.-Y. Modelling Complex Particle–Fluid Flow with a Discrete Element Method Coupled with Lattice Boltzmann
Methods (DEM-LBM). ChemEngineering 2020, 4, 55. [CrossRef]

35. Ng, K.C.; Alexiadis, A.; Chen, H.; Sheu, T.W.H. A Coupled Smoothed Particle Hydrodynamics-Volume Compensated Particle
Method (SPH-VCPM) for Fluid Structure Interaction (FSI) Modelling. Ocean Eng. 2020, 218, 107923. [CrossRef]

36. Sahputra, I.H.; Alexiadis, A.; Adams, M.J. A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations.
ChemEngineering 2020, 4, 30. [CrossRef]

37. Ruiz-Riancho, I.N.; Alexiadis, A.; Zhang, Z.; Garcia Hernandez, A. A Discrete Multi-Physics Model to Simulate Fluid Structure
Interaction and Breakage of Capsules Filled with Liquid under Coaxial Load. Processes 2021, 9, 354. [CrossRef]

38. Sanfilippo, D.; Ghiassi, B.; Alexiadis, A.; Hernandez, A.G. Combined Peridynamics and Discrete Multiphysics to Study the Effects
of Air Voids and Freeze-Thaw on the Mechanical Properties of Asphalt. Materials 2021, 14, 1579. [CrossRef] [PubMed]

39. Alexiadis, A. Deep Multiphysics and Particle–Neuron Duality: A Computational Framework Coupling (Discrete) Multiphysics
and Deep Learning. Appl. Sci. 2019, 9, 5369. [CrossRef]

40. Alexiadis, A.; Simmons, M.J.H.; Stamatopoulos, K.; Batchelor, H.K.; Moulitsas, I. The Duality between Particle Methods and
Artificial Neural Networks. Sci. Rep. 2020, 10, 16247. [CrossRef]

41. Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore, 2003; ISBN
978-981-238-456-0.

42. Kot, M.; Nagahashi, H.; Szymczak, P. Elastic Moduli of Simple Mass Spring Models. Vis. Comput. 2015, 31, 1339–1350. [CrossRef]
43. Kot, M. Mass Spring Models of Amorphous Solids. ChemEngineering 2021, 5, 3. [CrossRef]
44. Monaghan, J.J. Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574. [CrossRef]
45. Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling Low Reynolds Number Incompressible Flows Using SPH. J. Comput. Phys. 1997, 136,

214–226. [CrossRef]
46. Pazdniakou, A.; Adler, P.M. Lattice Spring Models. Transp. Porous Med. 2012, 93, 243–262. [CrossRef]
47. Wall, J.G.; Podbielska, H.; Wawrzyńska, M. (Eds.) Functionalized Cardiovascular Stents; Woodhead Publishing Series in Biomaterials;

Elsevier: Amsterdam, The Netherlands; Woodhead Publishing: Duxford, UK; Cambridge, MA, USA, 2018; ISBN 978-0-08-100496-
8.

48. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [CrossRef]
49. Ku, D.N. Blood Flow in Arteries. Annu. Rev. Fluid Mech. 1997, 29, 399–434. [CrossRef]
50. Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul.

Mater. Sci. Eng. 2010, 18, 015012. [CrossRef]
51. Alexiadis, A. The Discrete Multi-Hybrid System for the Simulation of Solid-Liquid Flows. PLoS ONE 2015, 10, e0124678.

[CrossRef]
52. Vrints, C.J.; Claeys, M.J.; Bosmans, J.; Conraads, V.; Snoeck, J.P. Effect of Stenting on Coronary Flow Velocity Reserve: Comparison

of Coil and Tubular Stents. Heart 1999, 82, 465–470. [CrossRef] [PubMed]
53. Wiesent, L.; Schultheiß, U.; Schmid, C.; Schratzenstaller, T.; Nonn, A. Experimentally Validated Simulation of Coronary Stents

Considering Different Dogboning Ratios and Asymmetric Stent Positioning. PLoS ONE 2019, 14, e0224026. [CrossRef]
54. Huo, Y.; Kassab, G.S. Pulsatile Blood Flow in the Entire Coronary Arterial Tree: Theory and Experiment. Am. J. Physiol. Heart Circ.

Physiol. 2006, 291, H1074–H1087. [CrossRef]
55. Cheung, Y. Systemic Circulation. In Paediatric Cardiology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 91–116. ISBN

978-0-7020-3064-2.

197

chemengineering

Article

A Simplified Framework for Modelling Viscoelastic Fluids in
Discrete Multiphysics

Carlos Duque-Daza 1,2,* and Alessio Alexiadis 1,*

��������	
�������

Citation: Duque-Daza, C.; Alexiadis,

A. A Simplified Framework for

Modelling Viscoelastic Fluids in

Discrete Multiphysics. ChemEng 2021,

5, 61. https://doi.org/10.3390/

chemengineering5030061

Academic Editor: Luca Brandt

Received: 13 July 2021

Accepted: 23 August 2021

Published: 12 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemical Engineering, University of Birmingham, Birmingham B152TT, UK
2 GNUM Research Group, Universidad Nacional de Colombia, Bogotá 111321, Colombia
* Correspondence: caduqued@unal.edu.co (C.D.-D.); A.Alexiadis@bham.ac.uk (A.A.)

Abstract: A simplified modelling technique for modelling viscoelastic fluids is proposed from
the perspective of Discrete Multiphysics. This approach, based on the concept of linear additive
composition of energy potentials, aims to integrate Smooth Particle Hydrodynamics (SPH) with an
equivalent elastic potential tailored for fluid flow simulations. The model was implemented using a
particle-based software, explored and thoroughly validated with results from numerical experiments
on three different flow conditions. The model was able to successfully capture a large extent of
viscoelastic responses to external forcing, ranging from pure viscous flows to creep-dominated
Bingham type of behaviour. It is concluded that, thanks to the modularity and tunable characteristics
of the parameters involved, the proposed modelling approach can be a powerful simulation tool for
modelling or mimicking the behaviour of viscoelastic substances.

Keywords: Discrete Multiphysics; viscoelasticity; viscoleastic fluids; Smooth Particle Hydrodynam-
ics; coarse-grained molecular dynamics; viscoelasticity modelling

1. Introduction

Viscoelastic materials combine mechanical properties typical of solids (i.e., elasticity)
and fluids (i.e., viscosity). For instance, many polymer substances exhibit both viscous
and elastic properties during deformation of the material. For these substances, instead
of a well defined elastic or viscous response to deformation, a time-dependent or shear-
dependent strain can be observed. Although polymers can be taken as a clear example of
viscoelastic substances, there are many other materials that also exhibit a large range of
time-dependent stress–strain behaviour [1–3]. Viscoelasticity, the field devoted to study
viscoelastic behaviour, is an important tool to understand a large number of physical
processes, including molecular mobility in polymers [4], and analysis of dynamics of defects
in crystalline interfaces in solids [5]. It is also instrumental in the process of designing new
materials and devices employed for a variety of purposes, including vibration abatement,
control of mechanical shocks and vibrations, and noise reduction [6]. Viscoelastic flows
are important for a great number of industrial applications, as well as present in many
common daily situations. For instance, the behaviour ranges from toothpaste flowing by
extrusion [7], to metals or molten polymers casting [8], and includes many food industry
production processes and analysis [9,10]. The viscoelastic behaviour has been recognised as
a dominant and extremely important characteristic of many practical flows, and therefore
a key phenomenon that needs to be better understood.

Viscoelasticity is one of the main subjects of rheology, a field of study concerned with
the description of the flow of matter and the mechanical properties of substances under
various deformation conditions. In rheology experimental methods have usually been the
main source of data for the analysis of the flow-type response of matter [11]. Nonethe-
less, to understand and effectively use available experimental rheological information,
it is essential to have a consistent mechanistic framework. Moreover, interpretation of
viscoelastic behaviour in terms of clear theoretical concepts should produce guidelines to

ChemEng 2021, 5, 61. https://doi.org/10.3390/chemengineering5030061 https://www.mdpi.com/journal/chemengineering

199

ChemEng 2021, 5, 61

make a clean sense of observations, to relate behaviour to composition and structure, to
predict or estimate physical properties, and to facilitate control of practical applications of
viscoelastic substances. In spite of the large number of current practical uses of viscoelas-
tic materials, there are not simple expressions or models that could be considered as a
generalised mechanistic framework that fit all experimental data. Although the body of
studies on modelling viscoelastic fluids is large, it is still relatively modest compared to the
extension of research dedicated to other “more conventional” fluid flow cases.

Modelling is a valid alternative to explore complex viscoelastic materials, to comple-
ment any experimental approach and a field to be further explored [12]. For instance, a new
spectral modelling approach has been recently proposed where constitutive equations are
formulated in terms of spectral invariants (see [13]), and which has been employed to
formulate three-dimensional constitutive modelling framework employing a viscoelastic
matrix to model residually stressed viscoelastic solids using the finite element method [14].
However, modelling viscoelastic fluids is not an immediate or simple task. The complex
nature of the viscoelastic flows has somehow precluded attempts to obtain a general and
accurate model. Some of this complexity can be perceived in the number of theoretical mod-
els that have been brought about to capture the extended range of possible cases [15–18],
which seems to confirm that obtaining a simple universal model is far from easy. Mackay
and Phillips [19] highlight that although the experimental contributions to the characteriza-
tion of polymeric materials in recent decades have been abundant, there seems to be a lack
of similar momentum in the development of modelling techniques for those type of fluids.
Some examples on viscoelastic behaviour modelling include the use of particle-based
viscoelastic fluids modelling [20], modelling based on the finite element method coupled
with the generalised bracket method [19], continuum models formulated in terms of tensor
diffusion and the Tensor Stokes problem [21], and the use of a formulation based on the
Gibbs-potential aiming to obtain thermodynamically consistent modelling of viscoelastic
fluids [22]. Besides these rigorous but computationally expensive approaches, viscoelastic-
ity is also of interest for computer graphics [23–25]. In this case, the focus is not so much on
the accuracy of the physical model, but rather on obtaining a fast simulation that preserves
the overall visual effect of the viscoelastic material.

In the present work, we propose an alternative modelling technique for viscoelastic
fluids within the Discrete Multiphysics (DMP) framework (see [26]) that is somehow in
between the rigorous approach and computer graphics. DMP is an alternative hybrid
approach for modelling multiphysics phenomena in which particle-based methods, e.g.,
Smooth Particle Hydrodynamics (SPH), are combined with coarse-grained molecular
dynamics to capture a wide range of material’s behaviour, and which has been particularly
successful in modelling multiphysics and multi-phase problems with large interfacial
deformations (see [26–30]). In the present work we do not directly modify the equations
of motion to account for viscoelasticity, but we build a particle model where force fields
typically used for modelling elastic and viscous materials are coupled together. This
approach is easy to implement and more accurate than the one used in computer graphics
since the viscoelastic properties of the fluid can be verified in detail. However, it loses
the ability to directly derive the viscoelastic property of the model from first principles.
Thus, it is required to establish these properties ex-post by performing a series of numerical
experiments. In [31], a similar approach was used for viscoelastic solids; here, it is extended
to viscoelastic fluids.

The paper is organized as follows. In Section 2, we discuss several theoretical concepts
related to viscoelasticity. After that, we introduce Smooth particle Hydrodynamics (SPH,
Section 3) used for modelling the viscous behaviour and the potentials (Section 4) used
for modelling the elastic behaviour. Subsequently in Section 5, three benchmark cases
are chosen to validate the results and to explain how the modelling approach works in
practical settings.

200

ChemEng 2021, 5, 61

2. Viscoelastic Behaviour and Standard Models

A compelling feature associated with the deformation of a viscoelastic substance is
its simultaneous display of “fluid-like” and “solid-like” characteristics [32]. Arguably,
one of the most important features to examine in a fluid-like substance, regardless of its
Newtonian or non-Newtonian nature, is the response to shear forcing. In fact, this is the
property that has traditionally been taught as the ultimate differentiating element between
fluids and solids: if the substance is able to stand shear forcing, without large or permanent
deformation, it is generally classified as solid, whereas if the substance is unable to stand
shear forcing, thus permanently being deformed, then it is considered a fluid [33]. However,
this description is not complete, as there exist a range of materials and substances that
clearly show a blended behaviour between pure elastic or pure viscous. This dual response,
clearly distinguishable in many aspects of the behaviour of certain substances to external
forcing (i.e., shearing), has motivated many of the attempts to describe the viscoelastic
behaviour in terms of basic mechanistic models, through which a simple description was
always pursued. For instance, in the traditional view of elasticity, the stress found in a
substance undergoing deformation is directly proportional to the strain, so the traditional
applicable model is the Hooke’s law that, in tension, reads as

τij = −G
∂Xj

∂xi
= −Gγij (1)

where G is known as Young’s modulus, Xj is the shear displacement in any given j-th
direction of two elements separated by an infinitesimal gap in the xi direction, and γij
is the shear strain. If a deformed substance is able to recover its original shape once the
stress is withdrawn, then Equation (1) is an appropriate model for characterizing the elastic
mechanical response of the system. Most of the elastic substances might exhibit also a
threshold stress beyond which the substance will “flow”, and a complete recovery of the
shape is not longer possible, a condition known as creep. On the other hand, a Newtonian
fluid, the most representative example of a pure viscous substance, will show a shear stress
proportional to the shearing rate, and for which a standard simple model can be written as
the Newton law of viscosity,

τij = μ
∂Ẋj

∂xi
= μγ̇ij (2)

where μ is the dynamic viscosity, a proportionality constant in Equation (2), Ẋj is the
velocity displacement in any given j-th direction, and γ̇ij is the shear strain rate. The
fact that the stress in a pure elastic substance is directly defined by the strain by virtue
of Equation (1), whereas in a pure viscous substance is proportional to the strain rate
(Equation (2)), brings about a phase synchronisation/de-synchronisation between strain
and stress when a substance is subject to an oscillating strain. As a simple example,
if a material is subject to a periodic shearing strain, for instance a sinusoidal function
γ = γ0 sin(ω t), with angular frequency ω and amplitude γ0, then the elastic substance
will present a stress in phase with the strain. A viscous substance, subject to the same
periodic strain, will instead exhibit a 90◦-out-of-phase in time stress signal with respect to
the same oscillating strain (see Figure 1).

201

ChemEng 2021, 5, 61

Figure 1. Strain rate and stress of ideal elastic and viscous substances under an oscillating strain
γ = γ0 sin(ωt).

The outlined mechanical response can be somehow captured by using two simple
mechanical analogues, i.e., by using a “spring” model to represent an elastic behaviour,
and a raw “dashpot” model for representing a viscous response. On the basis of these two
simple mechanical models, and aiming to get a quantitative description of the viscoelastic
behaviour, the rationale behind many of the models that have been formulated is that by
a simple coupling process of the crude mechanical analogues, for instance in an additive
way, the more complex response of viscoelastic substances could be attained [34–36]; some
of the most known models for modelling viscoelastic substances are Maxwell, Kelvin,
Kelvin–Voigt, and Burgers models. Schematic representations of three of these models
are presented in Figure 2. Examples of use and applications of these models can be found
in [37–39] for the Maxwell model, in [40] for the Kelvin–Voigt and Maxwell fractional
models, and in [41] for the Kelvin–Voigt and Burgers models, just to cite a few.

(a) (b) (c)

Figure 2. Schematic representation of some standard models based on mechanical analogues.
(a) Maxwell model. (b) Kelvin model. (c) Kelvin–Voigt model.

In the Maxwell model the spring and dashpot are arranged in a serial configuration
(see Figure 2a), while in the Kelvin model the spring and dashpot are arranged in parallel
(see Figure 2b). The simple arrangements of these two models, for example, produce
constitutive equations than can be written as [35]

σ(t) = kε(t) + ηε̇ (3)

202

ChemEng 2021, 5, 61

for the Maxwell model, and

σ(t) +
η

k
dσ(t)

dt
= ηε̇ (4)

for the Kelvin model, where σ is stress, ε is the strain, ε̇ is the strain rate, k is the charac-
teristic Hooke elastic spring constant, and η is the equivalent Newtonian viscous dashpot
constant. In a general oscillating strain condition, for instance if we prescribe ε = ε0 sin(ωt),
and excluding transient periods, it is possible to see that both models, Maxwell and Kelvin,
predict similar stress responses in time, although with variations in amplitude and out-of-
phase angle with respect to the strain signal. As an illustrative case, if the constant of the
viscous component is set as η = k/ω, this configuration produces similar stress signals
for both models that, in general, are out-of-phase with respect to the driving oscillating
strain, although they are in phase to each other, as shown in Figure 3. On the other hand,
if the ratio between η and k is changed, the same oscillating strain will produce a variety
of responses for the Maxwell and Kelvin models. For instance, if the dashpot constant is
set as η = 0.5k/ω, it is possible to observe phase difference between the stress response
predicted by the Maxwell model and the stress predicted by the Kelvin model, as presented
in Figure 4, although both stress responses still exhibit a phase difference with the strain
signal. This particular configuration brings about an almost elastic response in the Maxwell
model, but a more dissipative behaviour in the Kelvin model. This situation is inverted if
the dashpot constant is defined as η = 2.0k/ω, as shown in Figure 5.

Figure 3. Strain, strain rate, and stress evolution in time for ideal Maxwell and Kelvin models forced
with a synthetic strain ε = ε0 sin(ωt). Curves for ε = 1.0, ω = 1.0, k = 0.8, η = k/ω.

203

ChemEng 2021, 5, 61

Figure 4. Strain, strain rate, and stress evolution in time for ideal Maxwell and Kelvin models forced
with a synthetic strain ε = ε0 sin(ωt). Curves for ε = 1.0, ω = 1.0, k = 0.8, η = 0.5k/ω.

Figure 5. Strain, strain rate, and stress evolution in time for ideal Maxwell and Kelvin models forced
with a synthetic strain ε = ε0 sin(ωt). Curves for ε = 1.0, ω = 1.0, k = 0.8, η = 2.0k/ω.

It is important to highlight that the aforementioned models are valid for linear or
quasi-linear viscoelastic behaviour, i.e., assuming that the substance is undergoing small
deformations. If linear viscoelasticity is adopted, the stress function σ(t) and the strain
function ε(t) can de considered as linear proportional models, so if the strain function ε(t)
is amplified by a constant factor, the outcoming stress would be scaled by the same factor,
and if a substance is subject to a linear combination of two (or more) arbitrary strain signals,
the stress can be obtained as the linear combination of the two (or more) individual stress
responses [35]. The out-of-phase stress response, captured by the linear viscoelastic models,
can be gauged through the so-called loss angle (δ), the phase angle between stress and
strain during sinusoidal deformation in time, as the example cases presented in Figures 3–5.

204

ChemEng 2021, 5, 61

The use of the loss angle or its tangent (tan δ), is extremely useful to produce a measure
of damping or internal friction when linear viscous nature is assumed. The loss angle (or
tan δ), depends mostly on the frequency of the external excitation. Although the discussion
for the viscoelastic models has been based on a general normal stress σ and longitudinal
strain ε, it is clear from Equations (1) and (2) that the whole discussion can easily and
immediately be extended to a case of a pure oscillating shear applied to a substance. It
is also customary to express the oscillatory behaviour of linear viscoelastic substances in
complex notation, so a pure oscillating shear condition can be obtained if a shear strain
γ(t) = γ0eiωt is imposed, which will produce a shear stress response equal to τ(t) = Geiωt.
The resulting coefficient G will be frequency-dependent and in general a complex number
that can be expanded as,

G(ω) = G′(ω) + iG′′(ω) (5)

and from which it is possible to discriminate between the real component G′(ω), associated
to the elastic part of the response, and the complex component G′′(ω), usually considered
as a quantification of the viscous part of the response. The first component is called the
Storage Modulus, while the complex part is known as the Loss Modulus.

3. SPH Formulation

In this study, we combine different particle methods together. SPH, discussed in this
section, is used for viscous behaviour and other specific potentials (see next Section) for the
elastic behaviour. This approach of combining different particle methods is called Discrete
Multiphysics (e.g., see [26–28]) and it is here extended to account for viscoelastic fluids.
The numerical method used in the present work to model the fluid is Smooth Particle
Hydrodynamics, or simply SPH, an approximate method to obtain numerical solutions
to the equations of fluid dynamics. This is done by replacing the continuum of fluid by a
discrete set of particles. It was originally devised for the simulation of stars [42,43], and was
later found applicable to molecular dynamics (MD) due to the inherent similarity between
SPH and MD. To reproduce the equations of fluid dynamics or continuum mechanics,
the statistical concept of kernel interpolation is used to ’smooth’ out discrete fields of a
quantity of interest (such as density, pressure and velocity). Moreover, in SPH each particle
is represented by a kernel function (more generally a window function) W(�r −�r′,�h). The
local average of the desired property f , in a domain of interest Ω, is the convolution of the
quantity f with the chosen smoothing function W(�r −�r′,�h),

〈 f (�r)〉 =
∫

Ω
f (�r′)W(�r −�r′,�h) d3�r′ (6)

The kernel functions considered in SPH are generally radially symmetric (spherical)
functions centred at �r′ and must decrease monotonically in the outward radial direction.
These kernel functions must be normalised to 1 so that constants are interpolated exactly,

∫
Ω

W(�r −�r′,�h) d3�r′ → 1 as h → 0. (7)

and they should tend to a Dirac delta function δ(�r −�r′) as the smoothing length tends to
zero, h → 0, in order to recover the original function f in the limit.

〈 f (�r)〉 → f (�r) as h → 0 (8)

The chosen smoothing length h is often a characteristic length of the target domain Ω.
In general, it is advisable for this smoothing length to be a constant value for the prescribed
problem so that its spatial and temporal derivatives are identically zero, although variable
smoothing lengths in time and space can provide simulation resolutions that adapt to local
conditions. It is important to note that the shape of the constructed continuous field will be
fully determined by the choice of the kernel function W(�r −�r′,�h), the smoothing length

205

ChemEng 2021, 5, 61

h, and the position of each particle in the domain of interest i.e., the particle distribution,
as schematically represented in Figure 6. In SPH the interest is focused on the cases when
neighbouring particles are each encircled by the radius of the smoothing length h, as any
other particles outside this radius would not be considered by the compact support of the
kernel function, and so would generate a discontinuous field. This can be easily enforced
by setting the smoothing length to be an appropriate characteristic length.

Figure 6. Conceptual example of the effect that the smoothing length has on 〈 f (x)〉 for multiple point-particles, separated
one length unit, and with Gaussian function as kernel. The smoothing lengths employed in the examples are: h = 1, upper
plot; h = 2, middle plot; and h = 3, bottom plot.

For computational interest, we can discretise Equation (6) as follows,

〈 f (�r)〉 =
N

∑
i=1

f (�ri)W(�r −�ri,�h)Vi (9)

where Vi is the volume of the particle of interest and N is the number of particles within the
domain. An equivalent way of this discretisation, common in fluid dynamics applications,
can be expressed as

〈 f (�r)〉 =
N

∑
i=1

mi
ρi

f (�ri)W(�r −�ri,�h) (10)

in which ρi is the mass density of the i-th particle (considered a local density) and mi its
mass. By using index notation this can be simplified further as,

〈 fi〉 =
N

∑
j=1

mj
fj

ρj
Wij (11)

with Wij = W(�ri − �rj) and fi = f (�ri). For fluid dynamics applications it is also highly
relevant to define appropriate discrete forms of the gradients present in the governing
equations of motion. It is noteworthy that SPH is rather convenient in that neither mi or
fi are affected by the ∇ operator since they are particle properties. The kernel function is

206

ChemEng 2021, 5, 61

usually a polynomial so we can generate an expression for the gradient by simply taking
the gradient of Wij,

∇ fi =
N

∑
j=1

mj
fj

ρj
∇Wij (12)

As a simple example, we demonstrate the SPH approximation of the continuity equation,

dρ

dt
+ ρ∇ ·�v = 0 (13)

which, by using the identity ∇(�vρ) = ρ∇�v +�v∇ρ, can be rewritten as,

dρ

dt
= ∇(ρ�v)−�v∇ρ (14)

and so using the gradient approximation we have:

dρi
dt

=
N

∑
j=1

mj�vj∇jWij − �vi

N

∑
j=1

mj∇jWij = −
N

∑
j=1

mj �vij∇jWij (15)

Discretised SPH forms of the other relevant conservation equations are widely avail-
able in the literature (see [44–46]).

The numerical implementation of our model, including the SPH-viscous component,
was performed using LAMMPS [47,48]. In LAMMPS, the SPH method is achieved through
the use of pair styles defining the interaction between neighbouring particles following
the SPH formulation. For liquids, the two most common SPH models are the compressible
model, proposed by [44] apt for high speed flows, and the model proposed by [49], usually
better suited for low Reynolds number incompressible flows. One of the main differences
between the two models lies in the role of the viscosity within the SPH simulation, which
appears naturally in the equations of conservation of momentum in flow dynamics as
part of the relationship between stress and strain rate. In SPH, the viscosity is incorpo-
rated into the numerical formulation in a number of different ways [44,46]. Nevertheless,
some physical phenomena have been more challenging for SPH, requiring the use of
numerical strategies aiming to minimize problems like numerical spurious oscillations
(generally around shock regions) or unphysical particles penetration, and usually through
the introduction of energy dissipation strategies that exploit the viscosity as a dissipative
tool [50–52]. In the model proposed in [49], the dynamic viscosity is one of the parameters
to be provided, together with the smoothing length h, the speed of sound c, and the den-
sity ρ. Alternatively, a common artificial viscosity employed in SPH, introduced in [44]
originally as an extension of the von Neumann–Richter artificial viscosity, is defined as

Πij = −αh
ci + cj

ρi + ρj

vi · rij

r2
ij + εh2

(16)

where ci and cj represent the speed of sound of particles i and j, ε is a constant to avoid
singularities in the definition of the viscous component Πij, and α is a dissipation factor
that serves as a modulating coefficient of the viscous response from the SPH perspective.
A widely accepted equivalence between the real dynamic viscosity μ and the dissipation
factor α is given as,

μ =
α c h ρ

2(n + 2)
(17)

where, as usual, c represents a numerical speed of sound, h the smoothing length, ρ
the density of the target fluid and n is the number of spatial dimensions involved. It is
noteworthy that in our DMP approach point-particles rather than finite-size particles are
employed, although particle volume is defined to correlate particles mass and density.

207

ChemEng 2021, 5, 61

4. Proposed Modelling Technique

Viscoelasticity can be directly implemented in SPH (e.g., [53]). However, this implies
rewriting the equation of motion to account for a specific model of viscoelasticity. In the
case of a particle code like LAMMPS, for instance, this would imply rewriting large sections
of the code dedicated to SPH every time we introduce a new model of viscoelasticity. The
approach proposed in this study models viscoelasticity by combining different particle
potentials, which is a standard procedure in particle codes, rather than rewriting the
equations of motion. For the viscous part, the standard SPH approach discussed in the
previous section is adopted. The elastic part is discussed in this section.

In an analogue manner to the idea supporting the most widely used basic viscoelastic
models discussed previously, we propose an alternative modelling technique within a
particle-based framework, where inter-particle potentials tackling viscous and elastic
interactions separately are blended in an additive way in order to mimic the dual dissipative
and restoring response of viscoelastic substances. For this purpose, the SPH viscous support
is blended with a potential that resembles a restorative elastic behaviour, aiming to bring
about the characteristic dual response of viscoelastic substances. In our approach, the
viscous properties are given to the fluid by the SPH Equations (16) and (17). Furthermore,
in principle, we would like to use harmonic springs that are used in the Lattice Spring
Model (LSM) to add elasticity to the material (see [54]),

ULSM(r) =
1
2

k(r − r0)
2 (18)

which would provide a force F(r) = −∇U(r) = −k(r − r0) between two particles con-
nected by the spring with a stiffness k, separated a distance r, and featuring an equilibrium
distance r0. The combination of Equations (16) and (17) and LSM will confer viscoelastic
properties to the material. A similar approach to model viscoelastic solids was employed
in [31]. However, fluids cannot be modelled in the same way because the springs constrain
the particles, which cannot flow as it should occur in fluids. The solution we propose is to
employ a blending of two potentials to partially imitate the LSM, but with the advantage of
featuring a deactivation or cutoff distance beyond which the composed potential not longer
acts, allowing the particles to flow freely. An exclusively attractive potential, first proposed
by [55], was chosen to provide the attractive portion of our LSM analogue, defined as,

UCS(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−εCS r < σ

−εCS cos
(

π(r − σ)

2(rc,CS − σ)

)2

σ ≤ r < rc,CS

0 r ≥ rc,CS

(19)

which, as schematically illustrated in Figure 7a, is a constant value of εCS below an inter-
particle distance σ, that increases proportional to r until it vanishes above a cutoff distance
rc,CS, according to Equation (19). This allows us to account for the fact that particles may
no longer feel an attractive force when separated far apart; thus fluid particles are not
constrained into a lattice structure like in Equation (18), but they are free to flow within
the domain.

208

ChemEng 2021, 5, 61

(a) (b)

Figure 7. Comparison of energy potentials and forces used for modelling elastic behaviour. LSM: Lattice-Spring-Model
potential; CS: Attractive potential (Cosine/squared); So f t: Repulsive potential (Soft); Total: Combined Soft-Cosine/Squared
potential. Curves obtained for εCS = 1, εSoft = 0.4εCS, σ = 1, rc,CS = rc,Soft = 2.5. (a) Energy potentials. Location of the
harmonic LSM potential adjusted for illustration purposes. (b) Force field obtained with elastic, attractive, repulsive, and
total potentials.

To avoid particle overlap, a repulsive portion in our model is provided by another
potential given as,

USoft(r) = εSoft

[
1 + cos

(
πr

rc,Soft

)]
r < rc,Soft (20)

where, εSoft is the magnitude and rc,Soft is the cutoff distance for this repulsive component
of our potential therefore, once again, limiting the distance at which repulsion exists for
particles far apart. In our proposed model we use a total potential by adding these com-
ponents aiming to mimic the elastic behaviour of the LSM model, but with the advantage
that when the distance between the two particles is above the cutoff value, the force is
deactivated and the particle is free to flow. An illustration of the LSM, repulsive, attractive,
and total potentials is presented in Figure 7a, while a representation of the forces produced
by them is shown in Figure 7b, where the repulsive and attractive components of the elastic
equivalent forces are schematically depicted.

As the rationale behind our model is to be able to get a coupling between the two
pair styles producing stable repulsion/attraction within a close range of each particle, this
coupling requires a sensible choice of values given the possible complex interaction that
can be brought about by the number of parameters at play. For instance, an important
consideration, usually critical in other mesh-based methods only from the numerical
stability perspective, is the spatial resolution. In our case, the spatial resolution is somehow
linked to the distribution of particles, so the stability and effectiveness of the model is
also dependent of the lattice employed for the initial arrangements of such particles, as
well as on the characteristic length in the lattice, or lattice scale ΔL. Specifically, in order
to reduce the number of free parameters, the repulsive potential was defined in terms of
the characteristics of the attractive potential, so only a single set of values could define
entirely the elastic coupled model. It is important to mention that, as our model is strongly
dependent of the inter-particle spacing, the data presented along the present paper as
reference values should be taken as a guide for setting up working simulations, rather than
as a restrictive range of operating conditions. In any case, some ranges and definitions
employed in the characterization of the elastic component of our model, determined
through several numerical experiments and found to provide numerical stability and
consistency with expected behaviour, are presented in Table 1 for reference purposes. In
Table 1 the acronyms BCC and FCC stand for Body-centred cubic and Face-centred cubic
unit cells, respectively, which are some of the most common type of regular lattices for
molecular dynamics simulations.

209

ChemEng 2021, 5, 61

Table 1. Summary of some ranges and relationships between parameters for the elastic potential.

BCC Lattice FCC Lattice

Activation distance-attractive potential σ =
√

3 ΔL/2 σ =
√

2 ΔL/2
Cutoff distance-attractive potential 0.95 ΔL ≤ rc,CS ≤ 2.1 ΔL 0.9 ΔL ≤ rc,CS ≤ 1.1 ΔL

Cutoff distance-repulsive potential rc,Soft ≈ 1.05 rc,CS rc,Soft ≈ 0.955 rc,CS

Prefactor-repulsive potential 0.8 εCS ≤ εSoft ≤ 3.0 εCS 1.25 εCS ≤ εSoft ≤ 4.0 εCS

5. Numerical Experiments

The proposed model was characterised and tested using mainly two types of con-
ditions: oscillatory shearing between parallel plates, and constant gradient in a circular
pipe flow. Numerical simulations with two types of lattice, namely Body-centred cubic or
BCC, and Face-centred cubic or FCC, were performed for both conditions, although results
reported here are mainly based on the numerical experiments using the FCC lattice. Re-
gardless of the lattice employed, the final number of particles in each of our numerical
experiments was obtained following a same methodology, i.e., preliminary exploratory
simulations were performed first to get time evolution of some representative local mea-
sures, like velocity and force ensemble averages, together with an assessment of the level
of “mesh independence”, and the final selection of the number of particles for each test was
decided with basis in those results. Statistical convergence was assumed once the mean
and standard deviation of the ensemble averages converged in the preliminary simula-
tions. Furthermore, it is important to mention that although the proposed methodology
is general and easy to implement with any SPH and coarse-grained molecular dynamics
software, the numerical experiments of the present work were performed using LAMMPS
(see [47,48]). The computations described in this paper were completed using the Univer-
sity of Birmingham’s BlueBEAR HPC service, and executed in parallel using LAMPPS’
MPI capabilities.

5.1. Dynamic Response to Oscillating Shear

The most traditional way to differentiate the viscous from the viscoelastic behaviour is
through the determination of the storage and loss moduli presented before. These quantities
should be obtained from oscillatory shear tests. To this end, a substance contained between
two parallel plates, one of them stationary and the other one oscillating at a fixed frequency,
was modelled using our viscoelastic model. The domain for this numerical experiment is a
box of dimensions 0.30 m × 0.14 m × 0.02 m, including two regions representing the plates.
The bottom plate is set as a stationary region, whereas the top plate is set to oscillate at a
fixed frequency, and following the simple function,

δx = δx,0 sin(ωt) (21)

with δx,0 defining the amplitude of the oscillation, and ω the frequency. The computational
domain and lattice structure is presented in Figure 8.

210

ChemEng 2021, 5, 61

Figure 8. Configuration of oscillatory shear case.

Some preliminary tests were performed in order to gauge the ability of the proposed
model to effectively reproduce, separately, the elastic or viscous response. A simple visual
example of the test configuration and dynamic response for the pure elastic case is presented
in Figure 9. In this figure a group of particles has been selected to be tracked as timeline
and three different instants of the oscillatory test, for a pure elastic substance, are presented.
Particles not included in the timeline group have been coloured using the velocity in the
x−direction, which is the direction of the forced oscillating strain. The dynamic relationship
between strain and stress for this case is illustrated in Figure 10, where the time evolution of
both quantities are plotted and an in-phase evolution can be clearly observed. In Figure 11,
are presented the results obtained for the Loss and Storage Moduli from the numerical tests
using only the elastic component, for different values of the magnitude of εCS, at different
oscillatory shear amplitudes γ, and for three different oscillation frequencies ω. As it can
be appreciated, the model performs very well in defined ranges of shear strain amplitude,
providing a response that exhibits a clear elastic behaviour. It is noteworthy, however,
that some deviations from the expected response can also be observed. For instance, by
examining Figure 11, it is always possible to distinguish a range of oscillation amplitudes
where the Storage moduli is clearly larger than the Loss moduli, as predicted by theory for
elastic materials and, although we did not explore a large number of frequencies, there is
a clear frequency dependency, especially observable in the results for εCS = 1 × 10−6 and
εCS = 1 × 10−5, as expected. Nevertheless, it is important to note that our model exhibits
some numerical discrepancies at some of the extreme conditions explored and presented in
Figure 11. Clearly, there is an operational range for the model and therefore simulations
performed out of those bounds could produce unexpected behaviour, although this can be
somehow anticipated. For example, if deformation magnitude is too small, the substance
deformation is effectively masked by the simple relaxation of the lattice structure, and
therefore not enough to transfer the stress to the neighbouring layers. This can be observed
in Figure 11 where some of the explored cases failed to show a clear elastic behaviour
at very low values of strain (i.e., at low values of oscillation amplitude). On the other
hand, it is important to bear in mind that our proposed modelling approached is based
on the concepts and theory of linear viscoelasticity, and therefore applicable mostly to
small deformations. This is specially important from the elastic component perspective.
It is then expected that the model fails at large values of strain, which can be observed
also in Figure 11. In any case, the large range of values explored in the present work
is somehow justified because although theory indicates that applicability of the linear
viscoelastic behaviour should be expected at small deformations, there is not a clear sense
of what “small deformation” might be in a generic substance, like those explored in this
work. In fact, the range of parameters was selected only on the basis of exploring the

211

ChemEng 2021, 5, 61

ability of our modelling approach to capture different substances, as well as the reliability
and stability of our approach when employed under extreme conditions. Our results
indicate that the applicability of our model requires an adequate selection of parameters
and operating ranges to avoid problems with very large deformations, as well as with very
small deformations, but that it is able to reliably reproduce expected theoretical elastic
behaviour within appropriate ranges of shear strain.

(a) (b) (c)

Figure 9. Illustration of set of particles tracked during the oscillatory test in a pure elastic substance. Particles not included
in the timelines have been coloured by velocity in x−direction, at three different time instants. (a) t = 0 s. (b) t = 5 × 10−5 s.
(c) t = 4.5 × 10−4 s.

Figure 10. Shear stress τ and strain γ vs. time in the example elastic case.

As our model involves a potential emulating the harmonic LSM model, it is important
to asses the impact of oscillatory external forcing or deformation. Then, by performing
external forced strain on a pure elastic substance, internal forces and stresses are developed,
affecting the movement of each particle in the lattice. This can eventually cause harmonic
instabilities to start and grow and, if care is not taken, these internal oscillations and
instabilities can render the lattice and model inaccurate. For instance, from the numerical
experiments, it was possible to observe that configurations with low level of stiffness caused
the generation and propagation of internal longitudinal waves that, given the conditions,
might disrupt the structure of the lattice, and therefore rendering the simulation unstable
and not physically representative. Clearly, if the elastic potentials are set to low values,
but above a given threshold, the behaviour is still elastic but with extremely low stiffness,
which might still cause the appearance of some longitudinal waves. The important aspect
to consider is then the numerical stability and physical consistency, which will help to
determine a good configuration of parameters. Precisely, the parameters assignment for
the repulsive component play also an important role in this stability. If the magnitude
of repulsive potential, represented by εSoft, is made too small, internal oscillations and
waves appear, and they might end up breaking the structure of the lattice. In the limiting
stable cases, longitudinal waves appearing and propagating through the whole domain,
bring about interference patterns that travel across the modelled substance, but without

212

ChemEng 2021, 5, 61

causing disruption to the particles lattice. Examples of both situations are shown in
Figures 12 and 13.

(a) (b)

(c)

Figure 11. Storage and Loss moduli obtained with an exclusively elastic configuration of the proposed
model. Blue: Storage modulus G′, red: Loss modulus G′′. Tests obtained for 5 × 10−3 ≤ γ ≤ 1, and
for oscillating frequencies ω = 1.26, 3.14, 6.28 rad s−1. (a) Results for εCS = 1 × 10−6. (b) Results for
εCS = 1 × 10−5. (c) Results for εCS = 1 × 10−4.

(a) (b) (c)

Figure 12. Set of particles tracked during the oscillatory test in a pure elastic substance. Example of a limiting stable case.
Longitudinal waves below stability threshold. (a) t = 3.9 × 10−4 s. (b) t = 4.3 × 10−4 s. (c) t = 7.8 × 10−4 s.

(a) (b) (c)

Figure 13. Set of particles tracked during the oscillatory test in a pure elastic substance. Example of a unstable case.
Longitudinal waves above stability threshold. (a) t = 5.5 × 10−5 s. (b) t = 7.5 × 10−5 s. (c) t = 8.5 × 10−5 s.

213

ChemEng 2021, 5, 61

The viscous component in our model is captured by a standard SPH model, as men-
tioned before. As it can be appreciated from Figures 14 and 15, the viscous component
employed in our model is able to capture the intended dissipative nature, exhibiting the
expected loss angle δ ≈ 90◦ between the signals of strain and stress. The consistency
of the viscous response was also tested for a number of nominal strain amplitudes and
oscillation frequencies with the oscillatory strain test. Numerical results shown in Figure 16
allow us to conclude that the model is able to capture the expected behaviour of higher loss
than storage moduli, for all the different frequencies and magnitudes of strain oscillation
explored in the numerical experiments.

(a) (b) (c)

Figure 14. Set of particles tracked during the oscillatory test in a pure viscous substance. (a) t = 0 s. (b) t = 1 × 10−4 s.
(c) t = 4.7 × 10−4 s.

Figure 15. Shear stress τ and strain γ vs. time in the example viscous case.

Results of the oscillatory tests obtained with the proposed viscoelastic methodol-
ogy are presented graphically in Figure 17 for the timelines of a selected set of particles.
Figure 17 shows the presence of elastic internal waves, similar to those longitudinal waves
observed for the elastic configuration and presented in Figure 12. However, these internal
waves are essentially below any unstable threshold, as they remain stable for more than 4
oscillation periods. The stability is also clear from the consistency of the lattice structure
even after several periods of oscillation. In Figure 18, is shown the time evolution of shear
stress (τ) and strain (γ) for a selected viscoelastic configuration. It is clear that, compared
to the elastic and viscous cases, the viscoelastic fluid shows a loss angle that is neither
δ = 0◦ or δ = 90◦, which is very much in line with the results observed in some real
viscoelastic substances that present stress and strain signals out of phase, but not to the
degree of a fully viscous substance. This distinctive characteristic was tested for a number
of oscillation frequencies and shear strain amplitudes. The results for the different shear
conditions are presented in Figure 19. From the graphs it is clear that the response for the
different viscoelastic settings are dependent from the oscillation frequency and the amount
of strain imposed. This feature has been documented [56–58], and indeed it is one of the

214

ChemEng 2021, 5, 61

main results of many experimental tests showing that substances response to shear exhibit
a clear frequency dependency, as well as a strain magnitude dependency.

(a) (b)

(c)

Figure 16. Storage and Loss moduli obtained with an exclusively viscous configuration of the proposed model. Blue:
Storage modulus G′, red: Loss modulus G′′. Tests obtained for 1 × 10−1 ≤ γ ≤ 1, and for oscillating frequencies ω = 1.26,
3.14, 6.28, 12.57, 31.42 rad s−1. (a) Results for μ = 1 × 10−4. (b) Results for μ = 5 × 10−4. (c) Results for μ = 1 × 10−3.

(a) (b) (c)

Figure 17. Illustration of set of particles tracked during the oscillatory test in a viscoelastic substance modelled with
εCS = 1 × 10−5 and μ = 0.1. Particles coloured by velocity in x−direction, at three different time instants. (a) t = 2.0 s.
(b) t = 2.35 s. (c) t = 2.6 s.

215

ChemEng 2021, 5, 61

Figure 18. Shear stress τ and strain γ vs. time for a viscoelastic case.

(a) (b)

Figure 19. Storage and Loss moduli obtained for a combined viscoelastic configuration accord-
ing to proposed model. Blue: Storage modulus G′, red: Loss modulus G′′. Tests obtained for
3 × 10−2 ≤ γ ≤ 0.5, and for oscillating frequencies ω = 1.57, 2.09, 3.14, 6.28 rad s−1. (a) Results for
μ = 1 × 10−2. (b) Results for μ = 1 × 10−1.

5.2. Viscoelastic Flows in Cylindrical Pipes

In the previous section, we showed that the model can produce materials whose
storage and loss moduli are consistent with those of viscoelastic materials. However, this
was the result of very small fluctuations that do not generate a real flow in the material.
In this section, we will discuss the case of pipe flow, which produce a fluid-like motion
of the particles and it is one of the most common mechanisms of transport of fluid-like
substances. This particular flow, from the perspective of a viscoelastic substance, is also
extremely important as it represents a standard constant shear condition employed in
many viscometers. In this type of flow, a well-known characteristic is the expected velocity
profile, specially for laminar low speed flows. In the case of a mostly viscous or Newtonian
substance, both experience and theory have demonstrated that a parabolic velocity profile
is formed, with maximum or peak velocity present in the centre-line of the pipe. Instead,
for a mostly elastic fluid, the viscoelastic nature produces the so-called Bingham velocity
profile or Bingham flow, where the velocity remains mostly constant in the cross section
within the pipe, except near the pipe walls where there is usually a sharp drop towards the
no-slip velocity at the wall. This type of flow is usually also known as “plug flow”. The
Bingham fluids are characterised by the existence of a yield stress and their ability to also
transmit a shear stress without a velocity gradient, unlike Newtonian fluids. Nevertheless,
in order to make Bingham fluids flow, the driving shear stress has to be larger than the
yield stress. Below this yield stress the fluid will behave almost like a solid body and above
as a liquid. Interestingly, although a precise estimation of the nature of the viscoelastic

216

ChemEng 2021, 5, 61

flow will require the estimation of such a yield stress, through the examination of the flow
velocity profiles it is possible to ascertain what the respective shear stress is present in a
given flow. Specifically, the ability of our model to capture viscoelastic behaviour under
constant shear was explored in a constant gradient pipe flow case. Before presenting the
simulation setup and results, a brief summary of the models and relationships to estimate
some characteristics of a Bingham flow are included next.

5.2.1. Bingham Flows: Velocity Profiles and Yield Stress

As the numerical experiments presented in this section were performed in a cylindrical
domain, it is convenient to express the shear stress in cylindrical coordinates and for a
general condition (Newtonian or Bingham). For this, we consider an incompressible,
laminar flow under the effects of a general pressure gradient, that in general can be
decomposed into a gravity component (fx) and a standard pressure difference ΔP, in a
system of length L, which might be at an angle β to the vertical. Neglecting end effects, by
assuming the dimension of the system in the radial direction is relatively small compared
to that in the axial direction (L), and assuming an axial flow so vr = 0, vθ = 0, and vz �= 0,
it is possible to obtain a general expression for the momentum conservation equation as,

− μ∇2vz = −∇p + ρgz (22)

where μ is the dynamic viscosity, ρ the density of the flow, and vz the velocity along the
axis of the pipe. In this expression it is also assumed that there are small flow rates so that
the viscous forces impose strictly uniform flow. With this assumption vz is independent of
z and we may reasonably postulate that the velocity vz = vz(r) and pressure p = p(z). In
this manner, the only non-vanishing components of the stress tensor are τrz = τzr, which
depend only on r, and which can then be expressed as,

τrz =
ΔP
2L

r (23)

These equations are derived without making any assumption about the type of fluid
and so are applicable to both Newtonian and non-Newtonian fluids. If we use Newton’s
law of viscosity, τrz = −μ d

dr vz we can use Equation (23) to generate a differential equation
for the velocity, which after integration gives the following flow profile,

vz = − Δp
4μL

r2 − C1

μ
ln(r) + C2 (24)

that, however, it is only applicable to Newtonian fluids due to the use of Newton’s law. To
construct the flow velocity for Bingham fluids, we must make the following considerations:
(i) The velocity profile of Newtonian fluids in pipe flows consists of a velocity gradient
which decreases towards the centre of the pipe which in turn causes the shear stress,
transmitted by fluid layers, to decline toward the pipe centre. (ii) Since Bingham fluids
become solid when the applied shear stress falls below the yield stress we recognize that
Bingham-fluids will become solid in the central layers of the pipe. Thus, we will have a
solid ‘plug’ moving within the flow. (iii) In the process of deriving the velocity profile the
radius of this solid area has to be additionally determined. Using these considerations, and
applying adequate boundary conditions, it is possible to obtain a simple Bingham model
where there is no flow until the critical/yield stress τ0 is reached:

η → ∞ or
d
dr

(vz) = 0 when |τrz| ≤ τ0 (25)

η = μ0 +
τ0

± d
dr (vz)

or τrz = −μ0
d
dr

(vz)± τ0 when |τrz| ≥ τ0 (26)

217

ChemEng 2021, 5, 61

where η is the non-Newtonian viscosity and μ0 is a Bingham model parameter with units
of viscosity. τrz is positive when the positive sign is used with τ0 and the negative sign with
d(vz)/dr. We can calculate the yield stress τ0 by considering that τrz = τ0 at some r = r0.
This follows from both Equations (25) and (26) at |τrz| = τ0, which gives the following
expression for the yield stress:

τ0 =
ΔP
2L

r0 (27)

It is clear that the velocity profile can be split it into an inner (r ≤ r0) and outer
(r0 ≤ r ≤ R) region, where appropriate models for these profiles are:

vzo =
ΔP

4μ0L
R2

(
1 − r2

R2

)
− τ0

μ0
R
(

1 − r
R

)
for r0 ≤ r ≤ R (28)

for the flow velocity profile in the outer region, and

vzi =
ΔP

4μ0L
R2

(
1 − r0

R

)2
for r ≤ r0 (29)

for the inner region. This last model gives a constant velocity in the inner region, as
expected, for a fluid with plug flow, with r0 = 2Lτ0/ΔP being the radius of the plug-flow
region in the central part of the pipe. In this manner, the velocity profile is parabolic
in the outer region as given by Equation (28) and is flat in the inner region as given by
Equation (29). Finally, the mass flow rate can be obtained by integration by parts of the
velocity profile over the cross section of the circular pipe,

ṁ =
πR3ρ

τ3
R

∫ τR

0
τ2

rz

(
− d

dr
(vz)

)
dτrz (30)

where we have used Equation (23) so that r/R = τrz/τR, with τR = (ΔP/(2L))R defining
the shear stress at the wall. After some manipulation, it is possible to obtain the so-called
Buckingham–Reiner equation for the mass flow rate,

ṁ =
πΔPR4ρ

8μ0L

(
1 − 4

3
τ0

τR
+

1
3

τ4
0

τ4
R

)
(31)

where the mass flow rate is defined in terms of the yield stress τ0 and the wall shear stress
τR. Note that no flow occurs below the yield stress, so the equation is valid only for τR > τ0.

5.2.2. Pipe Flow-Numerical Experiments

In order to test the ability of our model to capture viscoelastic behaviour at dif-
ferent spatial ranges, numerical experiments on small- and medium-scale pipes were
performed for a number of parameters adequate to our model. For instance, the small-scale
simulations were performed in a pipe with inner radius rinner = 2 × 10−3 m and length
L = 2.4 × 10−2 m. The SPH simulation was configured with a FCC lattice cubic of size
ΔL = 2.5 × 10−4, and smoothing length defined as h = 1.95 ΔL. A schematic representation
of the pipe geometry used is presented in Figure 20. Experiments were performed for
a number of values of our base potential elastic model εCS, and using the viscous SPH
Taitwater–Morris model with a set of values for the SPH dynamic viscosity. The combina-
tion of these parameters allowed us to reproduced a range of viscoelastic behaviours in
response to a body force imposed over the set of fluid particles. The virtual fluid was forced
to flow by imposing a body force fx in the x−direction, while the domain was defined as
periodic along the flow direction.

218

ChemEng 2021, 5, 61

Figure 20. Pipe geometry for the small scale simulations.

In order to visualize the multiple flow regimes obtained, both velocity profiles and
snapshots of the particles of our “numerical fluid” at different times have been produced.
For the latter, a timeline analysis, a set of particles is preselected to represent a control
volume travelling with the particles at different time instants, in the same fashion as in
the oscillatory tests. The selection of particles used to construct the timelines is shown in
Figure 21 as observed at the initial time, t = 0 s.

Figure 21. Tracking particles for construction of timelines in pipe simulations.

The model was assessed by a parametric study changing 3 variables: the elastic
factor εCS, the driving body force fx, and the dynamic viscosity μ. It is worth noting that,
an additional parameter in our model that is tied to the factor εCS, is the factor of the
repulsive potential εSoft. As it was described earlier, this parameter was linked to the εCS by
a proportional relation, although for this case a reasonably dependency was found to be
given as εSoft = 0.4εCS. Varying the coefficients in turn means that we are both varying the
attractive and the repulsive potentials, therefore changing the ratio between elastic and
viscous nature.

From the experiments, the cases exhibiting a Newtonian flow featured the expected
predominant parabolic shape. The resolution of the velocity profiles was constrained to to
the limit of particle points in the simulation, which caused a few Newtonian cases to lack
a well defined parabolic shape and would tend to slightly skew from this pattern when
approaching the wall, as it can be seen in Figure 22 below for the Newtonian plot. On
the same figure the results for a Bingham flow are also presented. This flow, presented
with a blue line, was almost ideal in shape, with the plug flow region containing mainly
zero velocity gradient (as expected). As before there are some points that skew from the
theoretical shape, specially at the yield stress point, where it can be seen that the flow
increases locally before behaving Newtonian as one approaches the wall. Another case
presented in Figure 22 is a flow that displays a mixed behaviour. For this generic flow,
we see characteristics of Newtonian behaviour as well as features of a Bingham plug flow.

219

ChemEng 2021, 5, 61

However, the regions in which the plug flow occurs do not follow the theory for Bingham
flows, so it cannot be considered properly Bingham. This is because the flow is only plug
flow in two regions: at a coaxial annulus and at a smaller radius around the centre, whilst
maintaining Newtonian flow features elsewhere.

(a) (b)

Figure 22. (a) Velocity profiles in axial direction in the pipe flow. profiles obtained for Newtonian,
Bingham and Generic cases. (b) Normalised axial velocity profiles.

For the timelines analysis, we first considered the case when the attractive, and hence
the repulsive potentials, were null by assigning εCS = 0. As established earlier, these
represent an elastic potential when considered together, and hence we expect a Bingham
plug flow when this potential is dominant. On the other hand, for conditions where
εCS = 0 we expected flows to be essentially viscous Newtonian in nature. Our model
is able to capture this condition, as ratified by the results presented in Figure 23, where
the flow can be regarded as laminar, but more importantly Newtonian. Clearly, the flow
travels downstream and, as the domain is periodic in the x−direction, particles re-enter
the domain in the left side of the pipe still maintaining the parabolic profile, as seen in the
third time snapshot at t = 0.4032 s in this figure.

Figure 23. Snapshots of timelines evolution (tracking particles) in a pipe for a Newtonian viscous
flow, obtained at three different instants. At third instant particles are going through the domain for
the second time, as per periodic configuration. Flow obtained with: εCS = 0, ρ = 1 × 103, c = 1 × 10−1,
μ = 1 × 10−3, g = 5 × 10−1.

220

ChemEng 2021, 5, 61

By assigning εCS to any non-zero value, it is expected that the model shows a mixed
behaviour between complete Newtonian or complete Bingham, being the latter the extreme
case of our viscoelastic model. By just setting εCS = 1 × 10−14, even with a relatively low
viscosity of μ = 1 × 10−3, the model brings about a flow that resembles more a Bingham
plug flow, as shown in Figure 24. However, some caution must be advised when assuming
only these parameters to be involved in determining the flow type. This can be seen by
the next result in which the viscosity was reduced to 3 orders of magnitude below, and we
obtained Bingham flow, even with no elastic potential in action Figure 25.

Figure 24. Evolution of timelines (tracking particles) in the pipe for response type “Bingham flow”.
Flow obtained with: εCS = 1 × 10−14, ρ = 1 × 103, c = 1 × 10−1, μ = 1 × 10−4, g = 1 × 10−1.

(a) (b)

Figure 25. Bingham flow obtained with null elastic component. (a) Flow timelines at t = 0.16 s.
(b) Flow timelines at t = 0.6 s. Flow obtained with: εCS = 0, ρ = 1 × 103, c = 1 × 10−1, μ = 1 × 10−6,
g = 1 × 10−1.

For conditions of constant shear as in the pipe flow, the elastic factor εCS is still a
variable that plays a role into the possible appearance of some instabilities, as could be
expected from the results of the oscillatory shear case. The change of settings in the model,
from a case with εCS = 0.0 to a configuration with εCS = 1 × 10−12 produces a dramatic
alteration of the behaviour of the flow, as appreciated in Figure 26. At t = 0.16 s the
slow speed plug flow that was just beginning to form with εCS = 0.0 (see Figure 25), has
already developed an abnormal pattern, with the lattice starting to be disrupted, and
some regions of low and high velocity appearing in an alternating fashion in the radial
direction. The instability finally produces a completely ill-conditioned lattice, with large
scale voids, that are completely clear at t = 0.4 s, in contrast with the completely stable
plug flow obtained with εCS = 0.0, that even at t = 0.6 s keeps a essentially flat velocity
profile towards the centre of the pipe. In any case, once a set of parameters is identified as a
potential troublesome setting, by a simple re-tuning of the model it is possible to effectively
subdue the detected unstable mode. In spite of those few cases developing instabilities, the

221

ChemEng 2021, 5, 61

model behaves extremely well, considering the breadth of potential conditions that can be
captured with the proposed methodology.

(a) (b)

Figure 26. Unstable Bingham flow obtained with εCS = 1 × 10−12. (a) Timelines at t = 0.16 s after the
start of the simulation. (b) Timelines at t = 0.40 s. Flow obtained with: εCS = 1 × 10−12, ρ = 1 × 103,
c = 1 × 10−1, μ = 1 × 10−6, g = 1 × 10−1.

To analyse the behaviour of the flow with respect to these variables more rigidly, we
propose a dimensionless constant π1 defined as,

π1 =
gρ2h7

μ2 (32)

By constructing graphs of π1 vs. μ for the different numerical experiments, it is possi-
ble to discern an operating region where the flow exhibited a “Bingham flow” response, as
presented in Figures 27 and 28. In those plots we have coloured those points that exhibited
predominantly plug flow. As can be seen from these figures, at higher values of π1, or
equivalently at lower values of μ, our model brings about a mostly viscoelastic behaviour,
as would be expected. From the graphs it seems clear that there is a consistency in the
region for which π1 relates to Bingham flow. As a simple preliminary guide, values of
yield stress obtained in the numerical experiments are plotted against π1 for a number
of values of εCS in Figure 29. From this graph, it is clear that yield stress can be obtained
at low levels of π1, but only if the elastic factor εCS is high enough. It is also important
to highlight that large values of τ0 can be obtained with our model even at low levels
of stiffness, as there are some points showing high yield stress, even though the elastic
factor was relatively reduced in comparison. Noteworthy, although there is an apparent
region in the plot where the values of yield stress are clustered, it is clearly necessary
to perform additional experiments to corroborate the full validity and application of the
region observed in Figure 29.

Figure 27. Dimensionless constant π1 vs. μ at εCS = 0 for different values of fx.

222

ChemEng 2021, 5, 61

Figure 28. Dimensionless constant π1 vs. μ at εCS = 1e − 14 for different values of fx.

Figure 29. Values of yield shear stress τ0 obtained in the pipe flow numerical experiments for different
values of π1 and εCS.

5.3. Column Collapse Due to Gravitational Potential

A third set of experiments was devised aiming to get a general overview of the effect
of overlaying the potentials as proposed in this work in a more general and everyday
situation. A benchmark case employed to show the ability of SPH to capture, among
other phenomena, the free surface dynamics of a substance flowing freely is that of a
two-dimensional column of water that suddenly collapses due to a gravitational force
(see [59–61]). We test the hybrid modelling in two similar alternative cases, i.e., following
the same rationale of the liquid column collapse, although with two volumetric domains of
substance: a square prismatic column, and a cylindrical column, as shown in Figure 30. In
these experiments an initial column of substance is enclosed within a cubic box, indicated
partially by the dark grey particles in Figure 30 and used as container with non-permeable
walls. The substance is then subjected to a vertical body force (in the form of an accel-
eration), for instance representing a gravity field in the negative z − direction. The box
was prescribed as a cube with an internal volume of 1 m × 1 m × 1 m. The column of
substance was prescribed in one of the experiments as a square prism with dimensions
0.5 m × 0.5 m × 0.9 m, in the x−, y− and z−directions, respectively. In the second exper-

223

ChemEng 2021, 5, 61

iment the substance column, also contained within a box of same dimensions as in the
previous experiment, was prescribed as a cylinder with a height of 0.9 m, and a base radius
of 0.25 m. In both cases gravity was set to 9.81 m/s2 and density was set to a standard
density of 1 × 103 kg/m3.

(a) (b)

Figure 30. General view of particles configuration for the substance column collapse. Wall particles
shown in dark-grey; substance particles shown in light blue. Cutting plane only for visualisation.
(a) Cylindrical column. (b) Prismatic column.

Numerical experiments were performed using a similar SPH configuration as previ-
ously described, with a smoothing length h = 0.0525 m, and an initial face-centred cubic
lattice (fcc). This set of experiments was performed using the SPH model as proposed
by [44]. The selected SPH model adopted for these tests aimed at exploiting its ability
to simulate flows at relatively high velocities with a consistent numerical stability. As
presented previously, and discussed extensively by other authors (e.g., [45,52]), the Mon-
aghan’s model uses an artificial viscosity that can easily be converted to the standard
absolute viscosity thanks to a widely accepted equivalence between the real dynamic
viscosity μ and the dissipation factor α. The relationship between α and μ, presented in
Equation (17), was employed here, with a minor modification to account for the effect of
the imposed body force. Equally, with the goal of discriminating between the different
cases explored numerically, a second non-dimensional relationship was constructed using
the main parameters of our model, although tailored to the case of a column of a substance
collapsing by its own weight, and given as

π2 =
μ h c3

g εCS
(33)

where μ is the dynamic viscosity, c the numerical speed of sound, h the smoothing length
and εCS the factor of the attractive component of the equivalent elastic potential. As usual,
the value of the factor for the repulsive potential εSoft has been intentionally omitted but
defined in terms of εCS. Numerical experiments showed that in this case the model was not
strongly affected by variations of εSoft and that changes of its value, in a given range, had
minimal influence on the overall performance and prediction capabilities. For instance, at
the length and time scales involved in this case, the inclusion of the repulsive potential
showed consistent numerical stability for values of potential magnitude in a range between
20% and 60% of the magnitude of the attractive potential. Figure 31, suggests that changing
the ratio from 0.2 to 0.6 has a minimal impact in the overall evolution of the collapse
of the column of liquid simulated. This appreciation is reinforced when examining the
energy budgets presented in Figure 32, where the internal, kinetic, potential, and total

224

ChemEng 2021, 5, 61

energy components are plotted in time. The local maxima and minima for the kinetic and
internal potential energies occur essentially at the same instants, and their values are also
equivalent, making even difficult to distinguish the energy budgets evolution from each
other. The remaining tests presented through the rest of the present section use εSoft = 0.4 εCS,
unless otherwise stated.

(a) (b)

(c) (d)

Figure 31. Column collapse at two different instants for different εSoft/εCSratios. Experiments
performed for π2 = 9.9 × 102. (a) εSoft = 0.2εCS, t ≈ 0.4τ (τ = 1.50 s). (b) εSoft = 0.2εCS, t ≈ 0.55τ

(τ = 1.50 s). (c) εSoft = 0.6εCS, t ≈ 0.4τ (τ = 1.57 s). (d) εSoft = 0.6εCS, t ≈ 0.55τ (τ = 1.57 s).

(a) (b)

Figure 32. Time evolution of the components of the energy budget for the column collapse case.
Viscoelastic response obtained by using εCS = 1 × 10−4 and two values for εSoft. Simulation settings:
μ = 1 × 10−3, c = 10.0, νartf = 0.8, ρ =1 × 103, h = 5.25 × 10−2, ΔL = 2.5 × 10−2, π2 = 9.9 × 102.
(a) εSoft = 0.2εCS. (b) εSoft = 0.6εCS.

An example of the effect of changing or tuning the equivalent quasi-elastic potential,
is presented in Figure 33, where a substance with the same viscous component μ, and

225

ChemEng 2021, 5, 61

under the effect of the same vertical downwards acceleration of gz = −9.81, develop
three different collapse evolutions in time. For these cases, by examining the evolution
of the energy budget, it was possible to assess the impact of modulating the viscoelastic
response through several values of the quasi-elastic potential. As in Figure 32, Energy vs.
time plots reflecting on the evolution of the main components of the energy budget are
used to assess the impact of altering the elastic factor εCS. In the energy budget plots, a
simple characteristic time was employed to analyse the results at different instants. This
characteristic time was defined as the point in time when the internal SPH energy reaches
99% of its steady-state value,

τ = tesph=0.99eSS

Results for three different elastic factors are presented here: εCS = 1 × 10−2, 1 × 10−3,
1 × 10−4. In the first case, for εCS = 1 × 10−2, Figure 33a–c show a extremely slow collapse
of the substance column, clearly mimicking a gel-like behaviour, where the substance is
affected by the downwards acceleration, but not really collapsing completely. Even after
t = 0.464 s, when the collapse has already stopped and a balanced steady state has been
reached, the column of the substance is still distinguishable. The time elapsed until steady
state is reached has been estimated as t ≈ 0.43 s, based on the time-story of the energy
budget shown in Figure 34. On the other hand, Figure 33g–i show the evolution of the
column collapse for a substance with εCS = 1 × 10−4, that clearly presents a complete
fluid-like behaviour. The collapse lasts t = 1.76 s, but during this time there is even a clear
formation of a substance bouncing stage, observable at t = 0.896 s. The probable formation
of ripples, and the occurrence of more than one bounce, can be inferred from the energy
budget curve presented in Figure 35, where at least three clear maxima and minima in the
potential gravitational energy are observed (blue line in the plot). The case with a relatively
moderate elastic intensity of εCS = 1 × 10−3, also shows a liquid-type of collapse, but it
clearly behaves with some solid-like features, observable in the lack of multiple maxima in
the energy plot presented in Figure 36.

A simple example of the collapse of a cylindrical column is presented in Figure 37. In
this case, the initial particles’ lattice has been set in such a way that an intentional slightly
unbalanced initial spatial distribution is achieved, allowing the evolution of the collapse
to follow a non-symmetrical trajectory. It is important to mention that the simulations
with the cylindrical column for the settings used in the prismatic cases offered the same
or equivalent type of responses. However, the non-symmetrical evolution captured by
this configuration is included here as an example of the flexibility and potential variety
of viscoelastic behaviours that can be captured with the methodology proposed in the
present work.

Finally, the ability to capture the dynamic behaviour of viscoelastic substances can be
better appreciated through animations of the simulations performed using our proposed
methodology. Precisely, to get a better grasp of the capabilities of our proposed modelling
approach, movies of some of the cases presented in this paper have been produced and
made available as supplementary materials. In these videos is possible to appreciate the
effect of some of the parameters discussed in this work, and the wide range of possi-
ble dynamic response that it is possible to mimic by simply modulating the viscous or
elastic components of our model. In Video movie01.mp4 is presented the full evolution
represented in Figure 31a,b, whereas in Video movie02.mp4 it is possible to fully appre-
ciate the case presented in Figure 31c,d. The substance column collapse presented in
Figure 33a–c can be visualized in Video movie03.mp4, while Videos movie04.mp4 and
movie05.mp4 are the animations corresponding to the Figure 33d–i, respectively. The last
non-symmetrical column collapse discussed in the previous paragraph, and presented
through the snapshots depicted in Figure 37 have been also included in the supplementary
material as Video movie06.mp4. From the animations it is clear that our modelling ap-
proach is able to represent the wide variety of behaviours and dynamic responses expected
from viscoelastic substances.

226

ChemEng 2021, 5, 61

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 33. Column collapse at three different instants for different ratios of potentials magnitude.
(a) εCS = 1 × 10−2, t ≈ 0.20τ. (b) εCS = 1 × 10−2, t ≈ 0.55τ. (c) εCS = 1 × 10−2, t ≈ 1.1τ.
(d) εCS = 1 × 10−3, t ≈ 0.20τ. (e) εCS = 1 × 10−3, t ≈ 0.55τ. (f) εCS = 1 × 10−3, t ≈ 1.1τ.
(g) εCS = 1 × 10−4, t ≈ 0.20τ. (h) εCS = 1 × 10−4, t ≈ 0.55τ. (i) εCS = 1 × 10−4, t ≈ 1.1τ.

Figure 34. Energy budget vs. time for a “mostly” elastic substance. εCS = 1 × 10−2, A = 0.4εCS.

227

ChemEng 2021, 5, 61

Figure 35. Energy budget vs. time for a “mostly” viscous substance. εCS = 1 × 10−4, A = 0.4εCS.

Figure 36. Energy budget vs. time for a viscoelastic substance. εCS = 1 × 10−3, A = 0.4εCS.

Figure 37. Cont.

228

ChemEng 2021, 5, 61

Figure 37. Time evolution of a cylindrical column of a viscoelastic substance in a non-symmetrical
fashion. Substance settings: εCS = 1 × 10−4, εSoft = 0.2εCS, ρ = 1000, c = 10.0, νartf = 0.8.

229

ChemEng 2021, 5, 61

6. Conclusions

A simplified methodology for simulating and modelling viscoelastic fluids, based
on the concept of linear additive composition of energy potentials, has been proposed,
validated, and tested in a wide extent of conditions and applications. The model showed
a consistent and clear ability to capture classical features of viscoelastic substances from
the rheology perspective. Trends obtained for the Loss and Storage moduli in terms of
oscillating frequency and strain showed that the model produces consistent results with
some well known and observed characteristics of viscoelastic substances. The methodology
and its implementation allowed us to capture with relatively ease the elastic, viscous, and
viscoelastic behaviours for different frequencies and strain amplitudes. Some instabilities
mostly associated with the equivalent or quasi-elastic potential were identified, but it is
clear that an early identification of troublesome combinations of parameters is possible,
which would facilitate to any modeller or researcher to search for a more convenient or
stable setting.

The model was also tested in a more conventional engineering application, i.e., as
a model for flow in a circular pipe of a given viscoelastic substance. In this case, again
the model was able to obtain and capture the main features, from the classical parabolic
profiles of a pure viscous fluid, to the extreme of a substance showing yield stress, and
therefore exhibiting plug flow regime. The model proved to be flexible enough to capture
both situations, as well as a number of conditions in between.

The simplified modelling approach was also successful in mimicking the behaviour
of substances that might be considered as gels, or extremely viscoelastic, as well as the
natural free surface evolution of a liquid column collapsing under the effect of gravity. The
simplicity and modularity of the modelling framework proposed in this work suggests
that it might be used both as a rigorous simulation tool to study phenomena from a
rheological/engineering perspective, as well as a practical modelling tool to emulate
the flow of substances that exhibit some level of elasticity. Thanks to the modularity,
tunable characteristics of the parameters involved, and conceptual simplicity, the proposed
modelling approach can be a powerful simulation tool to be used for researchers and visual
graphics modellers alike.

This simplified approach is proposed as a sort of “quick and dirty” method for parti-
cle simulations involving viscoelastic materials. If the simulation specifically focuses on
the mechanical property the viscoelastic material, we suggest a more rigorous approach
(see [53]) that requires rewriting the equation of motion to account for the specific viscoelas-
ticity model. However, if the simulation focuses on the effect of the viscoelastic material on
a larger computational domain, the proposed method is easier to implement because it only
requires combining together different particle potentials, which is a standard procedure in
particle simulations. For instance, in [62], we modelled the watery periciliary layer (PCL)
located between the respiratory epithelium and a mucus layer. The PCL is a Newtonian
fluid, but mucus has a complex viscoelastic response. In this case, it was important to
account for the effect of the mucus layer on the PCL, but an easily implementable ap-
proximation of the mucus rheology based on the method proposed here would have been
sufficient for the scope of that study.

As a future work, amongst some other possibilities, it would be extremely valuable
to perform a clear categorization of relations between geometrical lattice properties, and
magnitudes of the potentials used to replicate the quasi-elastic interaction. Furthermore, it
is necessary to test the model in more intensive applications, to examine performance and
computational costs demanded by any implementation. These factors clearly might help to
decide on the more extended use of the technique herein proposed.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/chemengineering5030061/s1, Video movie01.mp4: Animation of column collapse simulation
using proposed methodology, for a fluid-like substance modelled with π2 = 9.9 × 102, εSoft = 0.2εCS;
Video movie02.mp4: Animation of column collapse simulation using proposed methodology, for

230

ChemEng 2021, 5, 61

a fluid-like substance modelled with π2 = 9.9 × 102, εSoft = 0.6εCS; Video movie03.mp4: Animation
of column collapse for a viscoelastic substance modelled with εCS = 1 × 10−2; Video movie04.mp4:
Animation of column collapse for a viscoelastic substance modelled with εCS = 1 × 10−3; Video
movie05.mp4: Animation of column collapse for a viscoelastic substance modelled with εCS = 1 ×
10−4; Video movie06.mp4: Animation of a cylindrical column collapse of a viscoelastic substance
modelled with εCS = 1 × 10−4, εSoft = 0.2 εCS, ρ = 1 × 103, c = 10, νartf = 8 × 10−1;

Author Contributions: Conceptualization, C.D.-D. and A.A.; methodology, C.D.-D. and A.A.; soft-
ware, C.D.-D.; validation, C.D.-D.; writing, original draft preparation, C.D.-D.; writing, review and
editing, C.D.-D. and A.A.; funding acquisition, C.D.-D. and A.A. All authors read and agreed to the
published version of the manuscript.

Funding: This research was funded European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement No 841814.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Metadata for all research data created throughout this project has
been recorded in the University of Birmingham’s current research information system PURE. These
records can be searched within the University’s Research Portal, FindtIt@Bham.

Acknowledgments: The computations described in this paper were performed using the University
of Birmingham’s BlueBEAR HPC service, which provides a High Performance Computing service
to the University’s research community. See http://www.birmingham.ac.uk/bear (accessed on
9 August 2021) for more details.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stamper, R.L.; Lieberman, M.F.; Drake, M.V. Secondary open angle glaucoma. In Becker-Shaffer's Diagnosis and Therapy of the
Glaucomas; Elsevier: Edinburgh, UK, 2009; pp. 266–293. [CrossRef]

2. Yang, K.H. Material Laws and Properties. In Basic Finite Element Method as Applied to Injury Biomechanics; Associated Press:
London, UK, 2018; pp. 231–256. [CrossRef]

3. Chandran, N.; Sarathchandran, C.; Thomas, S. Introduction to rheology. In Rheology of Polymer Blends and Nanocomposites; Springer:
Dordrecht, The Netherlands, 2009; pp. 1–17. [CrossRef]

4. Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: New York, NY, USA, 1980.
5. Nowick, A. Anelastic Relaxation in Crystalline Solids; Academic Press: New York, NY, USA, 1972.
6. Lakes, R.S. Viscoelastic measurement techniques. Rev. Sci. Instrum. 2004, 75, 797–810. [CrossRef]
7. Ardakani, H.A.; Mitsoulis, E.; Hatzikiriakos, S.G. Thixotropic flow of toothpaste through extrusion dies. J. Non-Newton. Fluid

Mech. 2011, 166, 1262–1271. [CrossRef]
8. Mitsoulis, E.; Khalfalla, Y.; Benyounis, K. Polymer Film Casting: Modeling. In Reference Module in Materials Science and Materials

Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [CrossRef]
9. Tabilo-Munizaga, G.; Barbosa-Cánovas, G.V. Rheology for the food industry. J. Food Eng. 2005, 67, 147–156. [CrossRef]
10. Myhan, R.; Białobrzewski, I.; Markowski, M. An approach to modeling the rheological properties of food materials. J. Food Eng.

2012, 111, 351–359. [CrossRef]
11. Derkach, S.R.; Krägel, J.; Miller, R. Methods of measuring rheological properties of interfacial layers (Experimental methods of

2D rheology). Colloid J. 2009, 71, 1–17. [CrossRef]
12. Denn, M.M. Issues in Viscoelastic Fluid Mechanics. Annu. Rev. Fluid Mech. 1990, 22, 13–32. [CrossRef]
13. Shariff, M.H.B.M.; Bustamante, R.; Merodio, J. Rate type constitutive equations for fiber reinforced nonlinearly vicoelastic solids

using spectral invariants. Mech. Res. Commun. 2017, 84, 60–64. [CrossRef]
14. Jha, N.K.; Reinoso, J.; Dehghani, H.; Merodio, J. Constitutive modeling framework for residually stressed viscoelastic solids at

finite strains. Mech. Res. Commun. 2019, 95, 79–84. [CrossRef]
15. Drozdov, A.D.; Kolmanovskii, V.B. Constitutive Models of Viscoelastic Materials. In Stability in Viscoelasticity; Academic Press,

Elsevier: Amsterdam, The Netherlands, 1994; pp. 1–132. [CrossRef]
16. Wineman, A. Nonlinear Viscoelastic Solids—A Review. Math. Mech. Solids 2009, 14, 300–366. [CrossRef]
17. Balbi, V.; Shearer, T.; Parnell, W.J. A modified formulation of quasi-linear viscoelasticity for transversely isotropic materials under

finite deformation. Proc. R. Soc. Math. Phys. Eng. Sci. 2018, 474, 20180231. [CrossRef]
18. Zhang, W.; Capilnasiu, A.; Nordsletten, D. Comparative Analysis of Nonlinear Viscoelastic Models across Common Biomechanical

Experiments. J. Elast. 2021, 1–36. [CrossRef]

231

ChemEng 2021, 5, 61

19. Mackay, A.T.; Phillips, T.N. On the derivation of macroscopic models for compressible viscoelastic fluids using the generalized
bracket framework. J. Non-Newton. Fluid Mech. 2019, 266, 59–71. [CrossRef]

20. Clavet, S.; Beaudoin, P.; Poulin, P. Particle-based viscoelastic fluid simulation. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer Animation-SCA’05, Los Angeles, CA, USA, 29–31 July 2005; ACM Press:
New York, NY, USA, 2005. [CrossRef]

21. Westervoß, P.; Turek, S.; Damanik, H.; Ouazzi, A. The Tensor Diffusion approach for simulating viscoelastic fluids. J. Non-Newton.
Fluid Mech. 2020, 286, 104431. [CrossRef]

22. Rajagopal, K.R.; Srinivasa, A.R. A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic
materials. Proc. R. Soc. Math. Phys. Eng. Sci. 2011, 467, 39–58. [CrossRef]

23. Goktekin, T.G.; Bargteil, A.W.; O’Brien, J.F. A method for animating viscoelastic fluids. ACM Trans. Graph. 2004, 23, 463–468.
[CrossRef]

24. Chang, Y.; Bao, K.; Liu, Y.; Zhu, J.; Wu, E. A particle-based method for viscoelastic fluids animation. In Proceedings of the 16th
ACM Symposium on Virtual Reality Software and Technology-VRST’09, Kyoto, Japan, 18–20 November 2009; ACM Press: New
York, NY, USA, 2009; pp. 111–117. [CrossRef]

25. Takamatsu, K.; Kanai, T. A fast and practical method for animating particle-based viscoelastic fluids. Int. J. Virtual Real. 2011,
10, 29–35. [CrossRef]

26. Alexiadis, A. A smoothed particle hydrodynamics and coarse-grained molecular dynamics hybrid technique for modelling
elastic particles and breakable capsules under various flow conditions. Int. J. Numer. Methods Eng. 2014, 100, 713–719. [CrossRef]

27. Alexiadis, A. A new Framework for Modelling the Dynamics and the Breakage of Capsules, Vesicles and Cells in Fluid Flow.
Procedia IUTAM 2015, 16, 80–88. [CrossRef]

28. Alexiadis, A. The Discrete Multi-Hybrid System for the Simulation of Solid-Liquid Flows. PLoS ONE 2015, 10, e0124678.
[CrossRef]

29. Mohammed, A.M.; Ariane, M.; Alexiadis, A. Using Discrete Multiphysics Modelling to Assess the Effect of Calcification on
Hemodynamic and Mechanical Deformation of Aortic Valve. ChemEngineering 2020, 4, 48. [CrossRef]

30. Schütt, M.; Stamatopoulos, K.; Simmons, M.; Batchelor, H.; Alexiadis, A. Modelling and simulation of the hydrodynamics and
mixing profiles in the human proximal colon using Discrete Multiphysics. Comput. Biol. Med. 2020, 121, 103819. [CrossRef]

31. Sahputra, I.H.; Alexiadis, A.; Adams, M.J. A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations.
ChemEngineering 2020, 4, 30. [CrossRef]

32. Chhabra, R.P.; Richardson, J.F. Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications; Butterworth-
Heinemann: Oxford, MS, USA, 1999.

33. Mai-Duy, N.; Phan-Thien, N. Understanding Viscoelasticity; Springer International Publishing AG: Berlin/Heidelberg, Germany,
2017.

34. Flügge, W. Viscoelasticity; Springer: Berlin/Heidelberg, Germany, 1975.
35. Bonfanti, A.; Kaplan, J.L.; Charras, G.; Kabla, A. Fractional viscoelastic models for power-law materials. Soft Matter 2020,

16, 6002–6020. [CrossRef] [PubMed]
36. Wang, S.; Xu, Y.; Li, J. Stationary probability densities of generalized Maxwell-type viscoelastic systems under combined harmonic

and Gaussian white noise excitations. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–9. [CrossRef]
37. Epaarachchi, J.A. The effect of viscoelasticity on fatigue behaviour of polymer matrix composites. In Creep and Fatigue in Polymer

Matrix Composites; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 492–513. [CrossRef]
38. Renaud, F.; Dion, J.L.; Chevallier, G.; Tawfiq, I.; Lemaire, R. A new identification method of viscoelastic behavior: Application to

the generalized Maxwell model. Mech. Syst. Signal Process. 2011, 25, 991–1010. [CrossRef]
39. Qi, H.; Xu, M. Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel. Mech. Res. Commun. 2007,

34, 210–212. [CrossRef]
40. Lewandowski, R.; Chorążyczewski, B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models,

used to modeling of viscoelastic dampers. Comput. Struct. 2010, 88, 1–17. [CrossRef]
41. Marynowski, K.; Kapitaniak, T. Kelvin–Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web.

Int. J. Non-Linear Mech. 2002, 37, 1147–1161. [CrossRef]
42. Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R.

Astron. Soc. 1977, 181, 375–389. [CrossRef]
43. Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013. [CrossRef]
44. Monaghan, J.J.; Gingold, R.A. Shock simulation by the particle method SPH. J. Comput. Phys. 1983, 52, 374–389. [CrossRef]
45. Ganzenmuller, G.C.; Steinhauser, M.O.; Liedekerke, P.V. The implementation of Smooth Particle Hydrodynamics in LAMMPS.

Liedekerke Kathol. Univ. Leuven 2011, 1, 1–26.
46. Liu, M.B.; Liu, G.R. Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments. Arch. Comput. Methods

Eng. 2010, 17, 25–76. [CrossRef]
47. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [CrossRef]
48. LAMMPS. LAMMPS Molecular Dynamics Simulator. Available online: https://www.lammps.org/index.html (accessed on

1 August 2021).

232

ChemEng 2021, 5, 61

49. Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling Low Reynolds Number Incompressible Flows Using SPH. J. Comput. Phys. 1997,
136, 214–226. [CrossRef]

50. Lattanzio, J.C.; Monaghan, J.J.; Monaghan, H.; Schwarz, M.P. Controlling Penetration. SIAM J. Sci. Stat. Comput. 1986, 7, 591–598.
[CrossRef]

51. Albano, A.; Alexiadis, A. Interaction of Shock Waves with Discrete Gas Inhomogeneities: A Smoothed Particle Hydrodynamics
Approach. Appl. Sci. 2019, 9, 5435. [CrossRef]

52. Albano, A.; le Guillou, E.; Danzé, A.; Moulitsas, I.; Sahputra, I.H.; Rahmat, A.; Duque-Daza, C.A.; Shang, X.; Ching Ng, K.;
Ariane, M.; et al. How to Modify LAMMPS: From the Prospective of a Particle Method Researcher. ChemEngineering 2021, 5, 30.
[CrossRef]

53. Ellero, M.; Kröger, M.; Hess, S. Viscoelastic flows studied by smoothed particle dynamics. J. Non–Newton. Fluid Mech. 2002,
105, 35–51. [CrossRef]

54. Pazdniakou, A.; Adler, P.M. Lattice Spring Models. Transp. Porous Media 2012, 93, 243–262. [CrossRef]
55. Cooke, I.R.; Kremer, K.; Deserno, M. Tunable generic model for fluid bilayer membranes. Phys. Rev. E 2005, 72, 011506. [CrossRef]
56. Frasca, P.; Harper, R.; Katz, L. Strain and frequency dependence of shear storage modulus for human single osteons and cortical

bone microsamples—Size and hydration effects. J. Biomech. 1981, 14, 679–690. [CrossRef]
57. Mason, T.G.; Weitz, D.A. Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids. Phys.

Rev. Lett. 1995, 74, 1250–1253. [CrossRef]
58. Xu, X.; Gupta, N. Determining elastic modulus from dynamic mechanical analysis: A general model based on loss modulus data

Materialia 2018, 4, 221–226. [CrossRef]
59. Cruchaga, M.A.; Celentano, D.J.; Tezduyar, T.E. Collapse of a liquid column: Numerical simulation and experimental validation.

Comput. Mech. 2007, 39, 453–476. [CrossRef]
60. Cruchaga, M.A.; Celentano, D.J.; Tezduyar, T.E. Computational Modeling of the Collapse of a Liquid Column Over an Obstacle

and Experimental Validation. J. Appl. Mech. Trans. ASME 2009, 76, 021202. [CrossRef]
61. Greaves, D.M. Simulation of viscous water column collapse using adapting hierarchical grids. Int. J. Numer. Methods Fluids 2006,

50, 693–711. [CrossRef]
62. Ariane, M.; Kassinos, S.; Velaga, S.; Alexiadis, A. Discrete multi-physics simulations of diffusive and convective mass transfer in

boundary layers containing motile cilia in lungs. Comput. Biol. Med. 2018, 95, 34–42. [CrossRef]

233

chemengineering

Article

A 3D Smoothed Particle Hydrodynamics Study of a
Non-Symmetrical Rayleigh Collapse for an Empty Cavity

Andrea Albano *,† and Alessio Alexiadis *,†

��������	
�������

Citation: Albano, A.; Alexiadis, A. A

3D Smoothed Particle

Hydrodynamics Study of a

Non-Symmetrical Rayleigh Collapse

for an Empty Cavity. ChemEng 2021,

5, 63. https://doi.org/

10.3390/chemengineering5030063

Academic Editors: Timothy Hunter

and Francesco Di Natale

Received: 31 May 2021

Accepted: 9 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
* Correspondence: AXA1220@student.bham.ac.uk (A.A.); a.alexiadis@bham.ac.uk (A.A.)
† These authors contributed equally to this work.

Abstract: In this work the first 3D Smoothed Particle Hydrodynamics model of a Rayleigh collapse
for an empty cavity is proposed with the aim of improving the hydrodynamic analysis of a non-
symmetrical collapse. The hydrodynamics of the model is validated against the solution of the
Rayleigh-Plesset equation for a symmetrical collapse. The model is then used to simulate a non-
symmetrical collapse of an empty cavity attached to a solid surface with γ = 0.6 induced by an
external pressure of 50 [MPa]. The results shows that is possible to identify three regions where the
hydrodynamics of the collapsing cavity shows different features. For all the stages of the collapse
the simulation shows smooth pressure and velocity fields in the liquid and in the solid phase with
the formation of a vortex ring in the final phase of the collapse. Finally, the model is compared to a
previous 2D model to highlight strong, weak points and the key differences of both approaches in
final phase of the collapse.

Keywords: particle method; smoothed particle hydrodynamics; simulation; cavitation; shock wave

1. Introduction

The collapse of bubbles, or cavities, has been studied for more than a hundred
years [1–11] since the first study by Besant in 1859 [12]. The collapse is the second phase of
the cavitation phenomenon, and generally occurs after the growth phase of the so-called
cavitation nuclei present in a liquid medium as water [13]. When the driving force of the
collapse phase is the pressure difference between the pressure of the liquid and the pressure
inside the cavity the collapse is called Rayleigh collapse named after Lord Rayleigh who
first derived the analytical expression to describe the dynamics of a collapsing empty
cavity [2].

The collapse phase is considered one of the main sources of erosion in applications
related to hydraulic machines, propellers and many more [14–16] and, during the decades,
has been investigated theoretically [17–21], experimentally [7,8,22–25] and computation-
ally [26–29].

The erosion process induced by the collapse of cavities, called cavitation erosion, is
associated to the strong shock waves generated at the collapse [13,15]. The intensity of the
interaction between the shock waves and a nearby surface depends on the proximity of the
cavity respect to the surface [13]. Moreover, when a spherical cavity is within a specific
distance with the surface, of approximately five times the cavity radius, the cavity does not
preserve its symmetry generating a high-speed jet in the direction of the surface [30].

When the collapsing cavity is attached to the surface, the jet impacts directly on it
generating a strong water hammer shock followed by other post-impact shocks of different
intensity induced by the complex hydrodynamic patterns of the collapsing cavity [1,13].

Due to practical difficulties (i.e., short time scale of the collapse, small dimension scale
of the cavity) in studying the collapse of a single cavity with an experimental approach,
researchers started studying the collapse phase of a single cavity with numerical experi-

ChemEng 2021, 5, 63. https://doi.org/10.3390/chemengineering5030063 https://www.mdpi.com/journal/chemengineering

235

ChemEng 2021, 5, 63

ments. Initially, only traditional mesh-based methods were used to address the problem,
and lately also mesh-free particle methods [1,31–34] were used.

Mesh-free particle methods, where the domain is discretised using a finite number of
particles interacting with each other without a grid, show advantages over mesh-based
method in presence of large liquid deformation and break up of solid structures [35].
In particular, Smoothed Particle Hydrodynamics (SPH) has been successfully used for
simulating shock waves [36,37], underwater explosion [38,39], multiphase flow and high
velocity impact phenomena [40]. For this reasons, it looks promising for simulating the
hydrodynamics of the collapse phase of a cavity and its interaction with a solid surface.

However, to the best of our knowledge, all cavitation studies based on mesh-free
methods are limited to two-dimensional domains. In this paper, we present the first
three-dimensional SPH model of a collapsing cavity near a solid surface with the aim to
investigate the hydrodynamics of the last phases of a non-symmetrical collapse. The results
show several key differences between two- and three-dimensional simulations regarding
the last phase of the collapse.

2. Smoothed Particle Hydrodynamics

The SPH method has been originally developed by Lucy [41] and Gingold & Mon-
aghan [42] in 1977 to simulate astrophysics problems. In the following years it was ex-
panded to be able to simulate a wide range of applications such as shock waves [43,44],
Riemann problem [45], explosion [46], non Newtonian fluid flow [47,48], multiphase
flow [49,50], thermo-capillary flows [51], nano-fluid flows [52], and thermo-fluid applica-
tion [53].

The SPH method uses a particle representation of continuous functions to discretise
set of equations [35]. To derive a particle expression of a function and of the gradient of a
function we start from the integral representation of a function: given a domain delimited
within a volume V, is possible to express any continuum function f (r), function of the
position r, with the integral representation

f (r) =
∫∫∫

f (r′)δ(|r − r′|)dr′, (1)

where δ(r − r′) is the Dirac delta function. In the SPH framework the Dirac delta function
is replaced with a bell-shaped, normalised, symmetric function with compact support
function called smoothing function or kernel, W. The kernel only depends on the position
r and on the smoothing length h [35]. With this substitution we obtain the so-called
SPH interpolant.

f (r) ≈
∫∫∫

f (r′)W(|r − r′|, h)dr′. (2)

From the SPH interpolant, we can now derive the particle representation of the
function: in the SPH framework, the control volume defined before is represented with
a finite number of particles with their own volume and mass, and carrying physical
information. The idea of the particle approximation is to assume that a smaller portion
of V, dr3, is occupied by a particle with a finite volume and a mass m = ρdr3. With this
assumption, it is possible to discretise Equation (2) as follows

f (ri) ≈ ∑
mj

ρj
f (rj)W(|ri − rj|, h) = ∑

mj

ρj
f jWij, (3)

where ri is the position of the i-th particle and mj , ρj and rj are mass, density and position
of the j-th neighbour particle, which is the neighbour of the i-th particle. In fact, particles
for which |ri − rj| < hi are considered neighbouring particles and accounted for in the
summation [35].

236

ChemEng 2021, 5, 63

To discretise a PDE or ODE we also need a particle expression for the gradient operator:
since f and m are particle properties the gradient operator is only going to operate on W.
We obtain

∇ f (ri) ≈ ∇∑
mj

ρj
f (rj)W(|ri − rj|, h) = ∑

mj

ρj
f j∇Wij. (4)

Kernel Function

There are several kernels in literature, all of them must satisfy the Unity, Delta, Com-
pact, and Positivity conditions [35]. In this work we choose to use the original Lucy kernel:

W(R, h) =

{
χ(1 + 3S)(1 − S)3 S ≤ 1
0 S > 1,

(5)

where S = |r− r′|/h and χ is the parameter used to satisfy the unity condition. χ is, for one,
two and three dimensions, equal to 5/4h, 5/πh2 and 105/16πh3.

Despite being the first kernel used by Lucy in 1977, it performs well in the model
presented in this work. In fact, as shown in the next sections, the simulation does not show
any forms of instability and its simple form helps to lower the overall computational cost
of the simulation. Elsewhere [34], we compared the effect of different kernels for the case
of void collapse and no significant difference was found in the results.

3. Model

3.1. Particle Expression of Governing Equations

The following continuity and momentum equations

{ dρ
dt = −ρ ∂vβ

∂xβ ,
dvα

dt = − 1
ρ

∂P
∂xα ,

(6)

in the SPH framework have the following particle expressions
⎧⎪⎪⎨
⎪⎪⎩

dρi
dt

= ∑j mjv
β
ij

∂Wij

∂x
β
i

,

mi
dv

η
i

dt
= ∑j mimj

(
Pi
ρ2

i
+ Pi

ρ2
j
+ Πij

)
∂Wij

∂x
η
i

,
(7)

where η and β are the Einstein notation indexes, v is the velocity vector with vij = vi − vj,
and Πij is the artificial viscosity introduced by Monaghan [43] to model shock wave:

Πij = −αh
ci + cj

ρi + ρj

vij · rij

r2
ij + εh2

, (8)

where α is the dimensionless dissipation factor, ci and cj the speed of sound of particle i
and j, and ε = 0.01 is used to avoid singularities when particles are very close to each other.

To solve the set of Equation (7) an Equation Of State (EOS) linking the pressure P
with density ρ is required to solve the set of equations. In SPH a common EOS is the Tait
equation [35]

P(ρ) =
c2

0ρ0

7

((
ρ

ρ0

)7
− 1

)
, (9)

where c0 is the speed of sound of the liquid and ρ0 is the reference density. In this work
c0 = 1484 [ms], that is the real speed of sound of the water, and ρ0 = 978.46 [kg m−3].
The value of the reference density was chosen to set the initial pressure of the system to
50 [MPa].

237

ChemEng 2021, 5, 63

3.2. Problem Description

The aim of this work is to simulate a non-symmetrical Rayleigh collapse of a wall-
attached empty cavity. The term Rayleigh collapse is generally used to describe a collapse
whose collapse driving force is the pressure difference between the pressure of the liquid,
P∞, and the pressure inside the cavity, pb, as described by the Rayleigh-Plesset equation:

pB − P∞(t)
ρL

= R(t)
d2R(t)

dt2 +
3
2

(
dR(t)

dt

)2

+
4νL
R(t)

dR(t)
dt

+
2S

ρLR(t)
, (10)

where νL is the liquid viscosity, S the surface tension of the cavity, and the R(t) the radius
of the cavity.

In Equation (10), the viscosity and the surface tension terms are often neglected since
their order of magnitude is smaller than that of the inertial term [15]. Under this assumption
is possible to directly determine the Rayleigh collapse time [2] with an analytical expression:

tTC = 0.915R0

(
ρL

p∞ − pB

) 1
2
, (11)

where R0 is the initial radius of the cavity.
Another reason to use the term Rayleigh collapse is to differentiate it from another

collapse mechanism called shock-induced collapse. In the shock-induced collapse the
collapse driving force is the interaction of the cavity with a travelling shock wave [28,33].
Another difference is that the shock-induced collapse is always non-symmetrical since a
re-entrant jet is formed in the shock direction. On the contrary, the Rayleigh collapse can
be either symmetric in presence of an isotropic pressure field or non-symmetric in presence
of anisotropic pressure field. The anisotropic pressure field is generated by the presence
of anisotropic drivers such as gravitational field, nearby rigid or free surface, stationary
potential flow, liquid interfaces, or inertial boundaries [30].

To quantify the degree of anisotropy in the pressure field induced by a nearby rigid
surface anisotropic driver we use the standoff defined as:

γ =
d

R0
, (12)

where d is the distance between the centre of the cavity and the surface, see Figure 1.

Figure 1. Section of the simulation box obtained with a slicing plan perpendicular to the y-axis
and the collapsing cavity at t = 0. The radii dimensions are: R0 = 1 × 10−4 [m], RS = 3 × 10−3 [m],
and RC =3.1 × 10−3 [m] .

238

ChemEng 2021, 5, 63

3.3. Geometry

The 3D domain shown in Figure 1 is divided in three concentric regions, delimited
by three different radii. In those regions the particles are distributed using a lattice, a set
of point in space, determined by a face-centred cubic (fcc) unit cell with basis atoms,
with characteristic size equal to 2.5×10−6 [m], that is replicated in all dimensions. In this
model, two types of computational particles are used:

• Cavity (r < R0): the particles in this region are removed to model an empty cavity
with pb = 0 and ρb = 0. Modelling the cavity as a void region is a common procedure
in computational [1,17,33,34] and theoretical [2,20] studies.

• Liquid (R0 < r < Rs): the particles inside this region are modelled as water follow-
ing the Tait EOS. The density is set as ρ = 1000 [Kg m−3] with an initial pressure
P = 50 [MPa].

• Shell (Rs < r < Rc): In this region the particles are modelled as described in the
liquid region. However, the have fixed position and density to keep constant pressure
as boundary condition. The lower part of this region also acts as anisotropy driver
inducing an anisotropic pressure field during the collapse. Between the shell region
and the liquid region a non compenetration condition is used.

A green spot, with a radius of 0.01 mm, is highlighted in Figure 1; this spot will be
used to monitor the pressure evolution during the collapse.

In this work, we focus on a single case of non-symmetrical Rayleigh collapse with
γ = 0.6 to investigate the hydrodynamic evolution of the cavity during the collapse and
the pressure developed on the surface. The reason for that is that the 3D simulations
are considerably more computationally intensive than the 2D simulations. Therefore,
a complete parametric study would be impractical. In a previous work [1], we carried out a
parametric study in 2D. We identified the case of γ = 0.6 as particularly interesting because
of its complex mechanics. Therefore, we focus the 3D simulations on this value of γ and
compare the 2D and 3D results.

3.4. Validation

To validate the hydrodynamics of the model we compare evolution of the dimen-
sionless radius, R(t)/R0, plotted against the dimensionless time, τ = t/tTC (where tTC is
the Rayleigh collapse time for this configuration determined using Equation (11)), of our
model to the solution of Equation (10) for a symmetrical collapse

For validation, we use the case of symmetric collapse, where the cavity is not near a
solid surface (γ → ∞) because it has a theoretical solution (see Equation (10)). The model
is in good agreement with the theoretical solution. There is a certain difference in the
final phase of the collapse where the particles resolution is no enough to preserve the
spherical symmetry (this issue is also been discussed in a previous work [34]). The final
dimensionless time is τ = 1.08.

During the validation, we choose the minimal resolution of dL/R0 = 40, with dL initial
spacing between particle, identified in previous works [32–34]. Although this resolution
was identified for the 2D model, Figure 2 shows that it is also good for the 3D case.
However, for the non-symmetrical collapse, a higher resolution is required, see Section 4,
to see all the hydrodynamic features [1].

239

ChemEng 2021, 5, 63

Figure 2. Dimensionless ratio (R/R0) against dimensionless time (t/tc) for both SPH (blue circle dot)
and the numerical solution of the Rayleigh-Plesset equation (continuum black curve) for the empty
cavity collapse (P∞ = 50 [MPa], ρL =1000 [Kg m−3] , Pb = 0, ρb = 0).

3.5. Software for Simulation, Visualisation and Post-Process

The simulations were run with the open source code simulator LAMMPS [54–56].
The visualisation and data post-processing were generated with the Open Source code
OVITO [57].

4. Results

The Results shown in this section are obtained using the Lucy Kernel and smoothing
length of h = 1.3dL. The dimensionless dissipation factor is set as α = 1 as usually done
for shock wave problems [1,34,37,44] while the time step ts =1 × 10−10 has been chosen
following the CFL criterion. The resolution, particle numbers, the collapse driving force,
the initial radius and the magnitude of the anisotropic diver are respectively, dL/R0 = 133,
Np = 20,292,752, P = 50 [MPa], R0 = 100 μm and γ = 0.6.

Figure 3 shows the pressure history over the green region in Figure 1.

Figure 3. Pressure trend over the green region of Figure 1 for a non-symmetrical wall attached
collapse (dL/R0=133, γ = 0.6 & P∞ = 50 [MPa]). The profile is divided in three regions: (I) Jet
formation, (I I) Jet impact and ring formation, (I I I) Ring expansion.

240

ChemEng 2021, 5, 63

The pressure trend can be divided in three regions corresponding to different collaps-
ing phase and hydrodynamics features of the cavity that are discussed in the next sections.

4.1. Region I: Jet Formation

With a stand off of γ = 0.6, the collapse cannot be symmetric and an anisotropic
pressure field is expected. Figure 4a shows a high-pressure area above the cavity.

[] [-1]

() = () =

() =

[
]

[]

Figure 4. Pressure and velocity field in the domain represented in Figure 1 for different collapse snapshots in Region I
(dL/R0 = 133, γ = 0.6 & P∞ = 50 [MPa]): (a) Anisotropic pressure field formation in the liquid phase (b) Generation of the
jet towards the surface. (c) High-speed/Low pressure profile of the fully-developed jet.

As the time passes the pressure of this area raises and accelerate the liquid of the top
of the cavity pushing it the direction of the solid surface. This generates the re-entrant jet
(Figure 4b).

The jet, before the impact with the surface, has a high speed/ low-pressure profile as
can be seen from Figure 4c.

4.2. Region II: Jet Impact and Ring Formation

At the impact, Figure 5a, the pressure at the centre of the surface reaches a maximal
peak of around 1500 MPa (see Figure 6a). Because of the impact the jet splits in circular
lateral jet (see Figures 5b and 6b) that will eventually hit the side of the collapsing cavity
generating side shocks, see Figures 5c and 6c. When the lateral jets impact with the cavity
side the cavity assumes the shape of a ring.

241

ChemEng 2021, 5, 63

[] [-1]

() = () =

() =

[
]

[]

Figure 5. Pressure and velocity field in the domain represented in Figure 1 for different collapse snapshots in Region
II (dL/R0 = 133, γ = 0.6 & P∞ = 50 [MPa]): (a) The jet impacts with the surface generating a water hammer impact.
(b) The impact splits the jet in a high-speed/low pressure circular lateral jet. (c) The lateral jet impacts with the cavity side
generating side shocks in the liquid phase.

[]

() = () =

() =

[]

[
]

Figure 6. Pressure field over the surface for different collapse snapshots in Region II (dL/R0 = 133, γ = 0.6 & P∞ = 50 [MPa]):
(a) Pressure field of the surface during the water hammer impact between the surface and the jet. (b) Pressure field of the
surface during the jet split. (c) Pressure field of the surface at the impact between the lateral jet and the cavity side.

242

ChemEng 2021, 5, 63

The pressure field shown in Figure 6 have non-intuitive square symmetry. This
symmetry is forced by the topology of the particle distribution. However, these “artefacts”
are temporary and only appears when the fluid instantly interacts with the surface plane
and the circular symmetry is restored during the ring expansion, see Figure 7.

4.3. Region III: Ring Expansions

After the ring formation the collapse proceeds and, as the ring reduces its volume,
a high-pressure shock is generated in the inner section of the ring (see Figure 8a). This
produces a maximal pressure wave with the shape of circle, Figure 7a, whose pressure is
higher than the pressure the centre of the plate. This shock will move to the centre of the
surface, Figures 7b and 8b, generating the second pressure peak at the centre shown in
Figure 3.

[]

() =() =

() =

[]

[
]

Figure 7. Pressure field over the surface for different collapse snapshots in Region III (dL/R0 = 133, γ = 0.6 & P∞ = 50 [MPa]):
(a) Pressure field on the surface at the inner shock generation. (b) Pressure field of the surface at the second pressure peak.
(c) Pressure field of the surface during the ring expansion.

Around the ring there is a non-uniform pressure field, see Figure 8c, that prevents
a final “inertial collapse” but rather induce a rotation and an expansion of the ring to
dissipate the energy gained during the collapse.

The ring behaves as a vortex ring, which dissipates the energy gained during the
collapse by spinning and expanding around its central axis. This behaviour can be seen in
the Videos S1–S3 available in the supplementary materials, while a schematic representation
of the ring is shown in Figure 9.

243

ChemEng 2021, 5, 63

[] [-1]

() =() =

() =

[
]

[]

Figure 8. Pressure and velocity field in the domain represented in Figure 1 for different collapse snapshots in Region III
(dL/R0 = 133, γ = 0.6 & P∞ = 50 [MPa]): (a) Inner high pressure shock generation. (b) Second pressure peak generated by
the travelling inner shock. (c) Collapsing ring expansion.

Figure 9. Schematic representation collapsing vortex ring: blue surface represents the collapsing ring,
black arrows represent the liquid flow.

At the end of its motion the ring closes without generating shock waves, unlike noticed
on the 2D model for the similar chase [1].

4.4. 3D and 2D Hydrodynamics Comparison

In this section we compare the hydrodynamics features and the pressures field be-
tween the 3D model and analogous 2D models [31–33] and, particularly, the 2D study
made by Albano and Alexiadis [1]. We chose to compare 2D and 3D models using our

244

ChemEng 2021, 5, 63

previous (cartesian) 2D model [1] because we already have all the simulations available.
Joshi et al. [33] carried out axisymmetric 2D simulations and the main features of the
cartesian 2D and the axisymmetric 2D are the same. Our conclusions, therefore, can be
generalised to both cartesian and axisymmetric 2D.

In Albano and Alexiadis [1] and here, we use exactly the same physical parameters for
the simulation: driving pressure, initial radius, gamma, EOS, h, α and particle resolution.
Figure 10 shows a side-by-side comparison of the last phase for a high-resolution collapse
between the 2D model and the 3D model.

[] []

[
]

[
]

(a)

[]

[
]

[
]

[]

(b)

[][]

[
]

[
]

(c)

Figure 10. Cont.

245

ChemEng 2021, 5, 63

[]

[
]

[
]

[]

(d)

[
]

[]

[
]

[]

(e)

Figure 10. Pressure field for 2D [1] (left side) and 3D (right side) SPH model for a non symmetrical
Rayleigh collapse (dL/R0 = 133, γ = 0.6 & P∞ = 50 MPa): (a) Water hammer impact of the jet with
the surface. (b) Lateral jet formation. (c) Lateral jet impact with the cavity sides and side shock
formation. (d) Inner high pressure shock generation. (e) Second pressure peak generated by the
travelling inner shock.

In all phases of the collapse, the 3D model shows a smother pressure field. This shows
that the 2D parameters were good enough to simulate the phenomenon, but the model
induces additional constrains to keep the particle in the plane affecting the smoothness of
the pressure field.

Overall, the 3D and the 2D models are both able to capture similar hydrodynamics
features: (1) formation of re-entrant jet (2) formation of lateral jets (3) ring formation
(corresponding to circle formation in 2D) (4) generation of side pressure waves. However,
unlike the 3D model, in the 2D the new-formed circle does not dissipate their energy as
vortex rings, but they generate a third pair of shock waves during the final phase of the
collapse. This implies that 2D simulations of Rayleigh collapse can be considered accurate
up to the final phase of the collapse where they show a third pressure peak that, which
does not occur in 3D simulations.

This hydrodynamic difference also reflects on the pressure trend over the nearby solid.
As can be seen in Figure 3, the second pressure peak is lower than the first peak while for
the 2D the second is higher than the first [1]. This can be explained as follow:

• For the 3D: the energy gained by the fluid during the collapse, as a high speed jet, is
partially used to generate a first maximal pressure peak shown in Figure 3 because
of the water hammer impact between the jet and the surface. The residual energy is
partially used to generate the second local maximal peak in region III and partially
dissipate during the ring expansion.

• For the 2D: as before, the energy gained by the fluid is partially used to generate a first
local maximal peak with the water hammer impact. The residual energy, since the
vortex dissipation is not present, is totally dissipated by the circle collapse generating
a second maximal pressure peak [1].

Another advantages of the 3D model over 2D models is for studying the pressure
field over the nearby surface: with the 2D the layer of particles representing the surface is
composed only by a single line and this makes complicate to study the spatial distribution

246

ChemEng 2021, 5, 63

and some noise is expected [1,34]. However, the advantage of the 2D model over the 3D is
the computational cost of the simulation. A simulation with a total time of t = 1 μs with
Np,2D = 9,575,802 particles took 4 h of runtime on a supercomputer using 200 computa-
tional cores. On the other hand the 3D simulation with a total time of t = 0.8 μs with
Np,3D = 20,292,752 particles took 27 h of runtime using 200 computational cores.

5. Conclusions

In this work we proposed the first 3D SPH model to simulate a Rayleigh collapse.
The Hydrodynamics of the model is validated for the symmetrical collapse case using the
Rayleigh-Plesset Equation.

The model is then used to simulate a non symmetrical collapse of an empty cavity
where a solid surface is acting as an anisotropic driver with γ = 0.6.

From the pressure trend over the surface is possible to identify three regions where
the hydrodynamics of the collapsing cavity shows different features:

• Region I: The anisotropic pressure field in the liquid by the driver generates a high-
speed jet from the top of the cavity that will impact on the surface.

• Region I I:The jet impacts with the solid surface generating the first pressure peak
and splitting in lateral a lateral jet that, by impacting with the cavity sides, makes the
cavity assume the shape of a ring.

• Region I I I: The new formed ring reaches its minimal volume generating a shock wave
an a second pressure peak and then the ring behaves as a vortex ring by dissipating
its energy by rotating and expanding.

Finally, the model is compared with a similarly set up 2D model to investigate the
difference between the two approaches: at cost of a great increase in computational cost,
the 3D shows smoother pressure and velocity fields and also displays a different hydrody-
namics behaviour in the last moment of the collapse with the formation of the vortex ring.

A natural evolution of the presented model is in the Discrete Multi-Physics frame-
work [58]:

1. By substituting the SPH particle acting as a solid surface with Discrete Element
Method or Peridynamic particles would be possible to study the erosion process
of cavitation.

2. By filling the cavity with SPH particles, as done in previous work [31,32,34], following
a gas EOS would be possible to study the temperature and pressure profile inside
the cavity.

3. By enabling a multiphase energy exchange (gas-liquid, gas-solid and liquid-solid),
as done in a previous work [34], would be possible to investigate the role of tempera-
ture in the hydrodynamic of the collapse and tin the erosion process within the same
computational framework.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemengineering5030063/s1, Video S1: Non-symmetrical Rayleigh collapse (γ = 0.6) with
pressure field in the liquid phase, Video S2: Non-symmetrical Rayleigh collapse (γ = 0.6) with
velocity field in the liquid phase, Video S3: Pressure field over the surface generated during the
Rayleigh non-symmetrical collapse (γ = 0.6).

Author Contributions: A.A. (Andrea Albano) and A.A. (Alessio Alexiadis) conceptualise the work;
A.A. (Andrea Albano) designed the work and performed the simulations; A.A. (Andrea Albano) and
A.A. (Alessio Alexiadis) contributed in writing/reviewing and editing the paper. Both authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the US Office of Naval Research Global (ONRG) under 256
NICOP Grant N62909-17-1-2051.

Data Availability Statement: All relevant data are within the manuscript and its Supporting Infor-
mation files.

247

ChemEng 2021, 5, 63

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Albano, A.; Alexiadis, A. Non-Symmetrical Collapse of an Empty Cylindrical Cavity Studied with Smoothed Particle Hydrody-
namics. Appl. Sci. 2021, 11, 3500. [CrossRef]

2. Rayleigh, L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag.
J. Sci. 1917, 34, 94–98. [CrossRef]

3. Plesset, M.S. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 16, 277–282. [CrossRef]
4. Benjamin, T.B. Pressure waves from collapsing cavities. In Proceedings of the 2nd Symposium on Naval Hydrodynamics,

Washington, DC, USA, 25–29 August 1958; pp. 207–229.
5. Hickling, R.; Plesset, M.S. Collapse and rebound of a spherical bubble in water. Phys. Fluids 1964, 7, 7–14. [CrossRef]
6. Knapp, R.; Daily, J.; Hammitt, F. Cavitation; McGraw-Hill: New York, NY, USA, 1970; Volume 39.
7. Vogel, A.; Lauterborn, W.; Timm, R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles

near a solid boundary. J. Fluid Mech. 1989, 206, 299–338. [CrossRef]
8. Philipp, A.; Lauterborn, W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 1998, 361, 75–116. [CrossRef]
9. Giannadakis, E.; Gavaises, M.; Arcoumanis, C. Modelling of cavitation in diesel injector nozzles. J. Fluid Mech. 2008, 616, 153–193.

[CrossRef]
10. Hsiao, C.T.; Jayaprakash, A.; Kapahi, A.; Choi, J.K.; Chahine, G.L. Modelling of material pitting from cavitation bubble collapse.

J. Fluid Mech. 2014, 755, 142–175. [CrossRef]
11. Sun, X.; Xuan, X.; Song, Y.; Jia, X.; Ji, L.; Zhao, S.; Yoon, J.Y.; Chen, S.; Liu, J.; Wang, G. Experimental and numerical studies on the

cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment. Ultrason. Sonochem. 2021, 70, 105311.
[CrossRef]

12. Besant, W.H. A Treatise on Hydrostatics and Hydrodynamics; Deighton, Bell: London, UK, 1859.
13. Kim, K.H.; Chahine, G.; Franc, J.P.; Karimi, A. Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction;

Springer: Berlin/Heidelberg, Germany, 2014; Volume 106.
14. Karimi, A.; Martin, J. Cavitation erosion of materials. Int. Met. Rev. 1986, 31, 1–26. [CrossRef]
15. Brennen, C.E. Cavitation and Bubble Dynamics; Cambridge University Press: Cambridge, UK, 2014.
16. Turangan, C.; Ball, G.; Jamaluddin, A.; Leighton, T. Numerical studies of cavitation erosion on an elastic–plastic material caused

by shock-induced bubble collapse. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170315. [CrossRef]
17. Plesset, M.S.; Prosperetti, A. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 1977, 9, 145–185. [CrossRef]
18. Keller, J.B.; Miksis, M. Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 1980, 68, 628–633. [CrossRef]
19. Tomita, Y.; Shima, A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech.

1986, 169, 535–564. [CrossRef]
20. Kudryashov, N.A.; Sinelshchikov, D.I. Analytical solutions of the Rayleigh equation for empty and gas-filled bubble. J. Phys. A

Math. Theor. 2014, 47, 405202. [CrossRef]
21. Kudryashov, N.A.; Sinelshchikov, D.I. Analytical solutions for problems of bubble dynamics. Phys. Lett. A 2015, 379, 798–802.

[CrossRef]
22. Naude, C.F.; Ellis, A.T. On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact with a

Solid Boundary. J. Basic Eng. 1961, 83, 648–656. [CrossRef]
23. Kling, C.L.; Hammitt, F.G. A photographic Study of Spark-Induced Cavitation Bubble Collapse. J. Basic Eng. 1972, 94, 825–832.

[CrossRef]
24. Lauterborn, W.; Bolle, H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary.

J. Fluid Mech. 1975, 72, 391–399. [CrossRef]
25. Flannigan, D.J.; Suslick, K.S. Inertially confined plasma in an imploding bubble. Nat. Phys. 2010, 6, 598–601. [CrossRef]
26. Plesset, M.S.; Chapman, R.B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid

Mech. 1971, 47, 283–290. [CrossRef]
27. Blake, J.; Taib, B.; Doherty, G. Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 1986, 170, 479–497.

[CrossRef]
28. Johnsen, E.; Colonius, T. Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 2009, 629, 231–262. [CrossRef]
29. Beig, S.; Aboulhasanzadeh, B.; Johnsen, E. Temperatures produced by inertially collapsing bubbles near rigid surfaces. J. Fluid

Mech. 2018, 852, 105–125. [CrossRef]
30. Supponen, O.; Obreschkow, D.; Tinguely, M.; Kobel, P.; Dorsaz, N.; Farhat, M. Scaling laws for jets of single cavitation bubbles.

J. Fluid Mech. 2016, 802, 263–293. [CrossRef]
31. Nair, P.; Tomar, G. Simulations of gas-liquid compressible-incompressible systems using SPH. Comput. Fluids 2019, 179, 301–308.

[CrossRef]
32. Pineda, S.; Marongiu, J.C.; Aubert, S.; Lance, M. Simulation of a gas bubble compression in water near a wall using the SPH-ALE

method. Comput. Fluids 2019, 179, 459–475. [CrossRef]
33. Joshi, S.; Franc, J.P.; Ghigliotti, G.; Fivel, M. SPH modelling of a cavitation bubble collapse near an elasto-visco-plastic material.

J. Mech. Phys. Solids 2019, 125, 420–439. [CrossRef]

248

ChemEng 2021, 5, 63

34. Albano, A.; Alexiadis, A. A smoothed particle hydrodynamics study of the collapse for a cylindrical cavity. PLoS ONE 2020,
15, e0239830.

35. Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore, 2003.
36. Liu, M.; Liu, G.; Lam, K. Investigations into water mitigation using a meshless particle method. Shock Waves 2002, 12, 181–195.

[CrossRef]
37. Albano, A.; Alexiadis, A. Interaction of Shock Waves with Discrete Gas Inhomogeneities: A Smoothed Particle Hydrodynamics

Approach. Appl. Sci. 2019, 9, 5435. [CrossRef]
38. Swegle, J.; Attaway, S. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations.

Comput. Mech. 1995, 17, 151–168. [CrossRef]
39. Liu, M.; Liu, G.; Lam, K.; Zong, Z. Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput.

Mech. 2003, 30, 106–118. [CrossRef]
40. Johnson, G.R.; Stryk, R.A.; Beissel, S.R. SPH for high velocity impact computations. Comput. Methods Appl. Mech. Eng. 1996,

139, 347–373. [CrossRef]
41. Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [CrossRef]
42. Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R.

Astron. Soc. 1977, 181, 375–389. [CrossRef]
43. Monaghan, J.; Gingold, R.A. Shock simulation by the particle method SPH. J. Comput. Phys. 1983, 52, 374–389. [CrossRef]
44. Morris, J.; Monaghan, J. A switch to reduce SPH viscosity. J. Comput. Phys. 1997, 136, 41–50. [CrossRef]
45. Monaghan, J. SPH and Riemann solvers. J. Comput. Phys. 1997, 136, 298–307. [CrossRef]
46. Sirotkin, F.V.; Yoh, J.J. A Smoothed Particle Hydrodynamics method with approximate Riemann solvers for simulation of strong

explosions. Comput. Fluids 2013, 88, 418–429. [CrossRef]
47. Shao, S.; Lo, E.Y. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv.

Water Resour. 2003, 26, 787–800. [CrossRef]
48. Hosseini, S.; Manzari, M.; Hannani, S. A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow. Int.

J. Numer. Methods Heat Fluid Flow 2007, 17, 715–735. [CrossRef]
49. Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications:

Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34. [CrossRef]
50. Rahmat, A.; Yildiz, M. A multiphase ISPH method for simulation of droplet coalescence and electro-coalescence. Int. J. Multiph.

Flow 2018, 105, 32–44. [CrossRef]
51. Hopp-Hirschler, M.; Shadloo, M.S.; Nieken, U. A smoothed particle hydrodynamics approach for thermo-capillary flows. Comput.

Fluids 2018, 176, 1–19. [CrossRef]
52. Nasiri, H.; Jamalabadi, M.Y.A.; Sadeghi, R.; Safaei, M.R.; Nguyen, T.K.; Shadloo, M.S. A smoothed particle hydrodynamics

approach for numerical simulation of nano-fluid flows. J. Therm. Anal. Calorim. 2019, 135, 1733–1741. [CrossRef]
53. Ng, K.; Ng, Y.; Sheu, T.; Alexiadis, A. Assessment of Smoothed Particle Hydrodynamics (SPH) models for predicting wall heat

transfer rate at complex boundary. Eng. Anal. Bound. Elem. 2020, 111, 195–205. [CrossRef]
54. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics; Technical Report; Sandia National Labs.: Albuquerque,

NM, USA, 1993.
55. Ganzenmüller, G.C.; Steinhauser, M.O.; Van Liedekerke, P.; Leuven, K.U. The implementation of Smooth Particle Hydrodynamics

in LAMMPS. Paul Van Liedekerke Kathol. Univ. Leuven 2011, 1, 1–26.
56. Albano, A.; Le Guillou, E.; Danzé, A.; Moulitsas, I.; Sahputra, I.H.; Rahmat, A.; Duque-Daza, C.A.; Shang, X.; Ng, K.C.; Ariane, M.;

et al. How to modify LAMMPS: From the prospective of a Particle method researcher. ChemEngineering 2021, 5, 30. [CrossRef]
57. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul.

Mater. Sci. Eng. 2009, 18, 015012. [CrossRef]
58. Alexiadis, A. The discrete multi-hybrid system for the simulation of solid-liquid flows. PLoS ONE 2015, 10, e0124678. [CrossRef]

[PubMed]

249

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

ChemEngineering Editorial Office
E-mail: chemengineering@mdpi.com

www.mdpi.com/journal/chemengineering

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-2214-2

	Discrete Multiphysics cover.pdf
	ChemEngineering Discrete Multiphysics.pdf
	Discrete Multiphysics cover
	空白页面

