
An Introduction to

Matlab and Mathcad

Spring 2014 Edition

Troy Siemers, Ph.D.
Department of Mathematics and Computer Science

Virginia Military Institute

Copyright © 2014 Troy Siemers
Licensed to the public under Creative Commons
Attribution-Noncommercial 3.0 United States Li-
cense

Thanks

Many thanks to Greg Hartman for his huge amount of help with the LATEX
layout.

Thanks to students for finding errors in the drafts leading up to this text,
including Chris Fraser, Stephen States, Heather Chichura and Joey Bishop.

The LATEX community has provided a large amount of online (and free!) as-
sistance, including MiKTEXand TEXnicCenter. These are flexible and powerful
tools that allowed me to produce a text with just the look I wanted. Many
thanks.

iii

Preface
A Note to Students, Teachers, and other Readers

This text is used in a mathematical software course at VMI that provides
an introduction to Matlab and Mathcad. However, it is also intended to be a
course book instead of an all inclusive resource. I encourage my students to take
full advantage of the built-in help capabilities of these software packages, addi-
tional texts (I keep a few in a small library that is always available to students)
and to use Google - I certainly did when learning the material and still do today.

This text is much shorter than a traditional text. I have tried to provide the
right amount of discussion and examples. The exercise sets have a small number
of problems, but I assign all of them when I teach the course. I have tried to
give problems that come from real-world situations and contemporary data and
aren’t simply contrived just to fill space. Some of the problems reference the
electronic course management system at VMI (Angel), but these can be ignored
as the data sets are also included in the Appendix.

This text is also an “open” text. If you wish to change the text for your
needs, please do so. I would also share source files if you are interested. The
Creative Commons copyright must be honored and that any changes be ac-
knowledged and that the resulting work be used only in non-commercial areas.

Note that throughout the text, I make reference to colors (regarding text
or pictures). This book is printed in black and white on purpose, but you can
contact me for the full color pdf version (www.vmi.edu/math > faculty).

I welcome any comments or corrections.

Sincerely,

Troy Siemers
troy@vmi.edu

v

Contents

Thanks iii

Preface v

Table of Contents vii

1 Matlab: Introduction 1
1.1 Matlab: Introduction . 1
1.2 Matlab: Layout . 1
1.3 Matlab: Command Window Examples 3
1.4 Matlab: Editor . 4
1.5 Matlab: Headers . 5
1.6 Matlab: Editor Tips . 6

Exercises . 8

2 Matlab: Matrices 9
2.1 Matlab: Matrices . 9
2.2 Matlab: Using Matrices . 12
2.3 Matlab: Matrix Operations . 14
2.4 Matlab: Common Matrix Functions 15
2.5 Matlab: Systems of Equations . 19

Exercises . 21

3 Matlab: Functions 23
3.1 Matlab: Built-In Functions . 23

Exercises . 29

4 Matlab: Graphics 30
4.1 Matlab: Graphics . 30

Exercises . 35

5 Matlab: User Defined Functions 37
5.1 Matlab: User-Defined Functions 37

Exercises . 41

Contents

6 Matlab: Input/Output 43

6.1 Matlab: Input Commands . 43

Exercises . 50

7 Matlab: Programming Structures 51

7.1 Matlab: Relational Operators . 51

7.2 Matlab: Logical Operators . 51

7.3 Matlab: if and switch commands 53

7.4 Matlab: for and while Loops 54

Exercises . 57

8 Matlab: Applications 58

8.1 Matlab: Numerical Methods . 58

8.2 Matlab Traveling Salesman . 60

9 Matlab: Curve Fitting 63

9.1 Matlab: Curve Fitting . 63

Exercises . 68

10 Mathcad: Introduction 70

10.1 Mathcad: Introduction . 70

11 Mathcad: Entering Equations 72

11.1 Mathcad: Equations . 72

11.2 Mathcad: Editing Equations . 77

11.3 Mathcad: Units . 79

Exercises . 81

12 Mathcad: Given/Find and Solve 82

12.1 Mathcad: Given/Find Blocks . 82

12.2 Mathcad: Solve Blocks . 84

Exercises . 86

13 Mathcad: Functions 87

13.1 Mathcad: Built-in Functions . 87

13.2 Mathcad: User-Defined Functions 88

Exercises . 90

14 Mathcad: Matrices 91

14.1 Mathcad: Matrix Definition . 91

14.2 Mathcad: Editing Matrices . 93

14.3 Mathcad: Referencing Parts of Matrices 95

14.4 Mathcad: Solving Systems of Linear Equations 97

Exercises . 101

viii

CONTENTS

15 Mathcad: Graphing 103
15.1 Mathcad: Graphing . 103

Exercises . 110

16 Mathcad: Curve Fitting 111
16.1 Mathcad: Curve Fitting . 111

Exercises . 116

17 Mathcad: Calculus and Symbolics 118
17.1 Mathcad: Calculus . 118
17.2 Mathcad: Symbolics . 119

Exercises . 121

Appendix 123

Index 124

ix

Chapter 1

Matlab: Introduction

In this section, we discuss the basics of Matlab.

1.1 Matlab: Introduction

There are many different software packages available. It’s important to under-
stand the different capabilities of each as one software package may be the best
tool depending on the task. Here, we introduce Matlab, which stands for MA-
Trix LABoratory. Matlab is cost-effective, easy to learn and blends powerful
number crunching capabilities with graphical display. It is an excellent tool for
working with large data sets.

Other packages that you may wish to consider, include Mathematica, Maple,
Fortran, C, C++, or Java. In some cases, even a basic TI calculator or Excel is
the appropriate tool.

Matlab has become the industry standard for use in many fields includ-
ing Mathematics, Bioinformatics, Finance, and Engineering. The basic Matlab
package includes the core package and Simulink, a platform for modeling dy-
namic systems. Matlab can also be enhanced through the addition of “tool-
boxes” (available from Mathworks) including such topics as Control Systems,
Image Processing, Splines and SimBiology.

1.2 Matlab: Layout

We now take a look at the (default) layout of Matlab:

1

Chapter 1 Matlab: Introduction

You can customize how the layout appears, but there are a few main com-
ponents:

Command Window

The command window is where you can perform basic calculations, enter
commands, run programs, and view the numeric output.

Command History

The command history keeps a record of past commands that were entered
in the command window. To run a command again from the command history,
you can simply double click it. Or, if you want to alter the command before
running it, you can click and drag it to the command window, change it and
then run it (by hitting Enter).

Directory and Workspace (in tabs)

The directory shows the files in the current directory (which itself is listed at
the top of the screen). These files can be run by double clicking, or by clicking
and dragging them into the command window. The workspace keeps track of
the variables that are created. Double clicking a variable in the workspace opens
a spreadsheet where the variable can be altered.

2

1.3 Matlab: Command Window Examples

Current Directory

When you run any program, it is important that your Current Directory is
set to the location of your program. You can also run programs in a different
directory by setting the “path” to that directory. To keep it simple, we will not
explain how to do this here, but refer you to the help files.

Help

The help capabilities in Matlab are well documented. It does take some time
to understand Matlab syntax, but if a user is familar with another programming
language, the commands are easy to pick up. Functions in Matlab are also well
named, so you can often guess the name of a function that you may need.

1.3 Matlab: Command Window Examples

Let’s try some basic examples in the command window. Enter 5+5 in the com-
mand window (and press Enter)

>> 5+5
ans =

10

The value 10 has been assigned to the variable ans. Next, try the following

>>a=5+5
a=

10

>>b=5+5; % the semicolon suppresses output.

A few things to note. First, assignment of values to the variables is right
to left (whatever is on the right of the equals sign is assigned to the variable
on the left). Here, both both a and b are equal to 10, but only a’s value is
displayed because the semicolon is used to suppress the output to the screen.
This is a very useful tool in programs where, for example, you want to hide the
intermediate calculations.

While there are thousands of commands in Matlab, here are a few that you
will use often:

clc clears the command window
clear all clears all the variables
clear variablename clears the variable named variablename
close all closes all open plot windows
ctrl + c stops a running process (important later!)

3

Chapter 1 Matlab: Introduction

There are several rules about the naming of variables (look those up in Help
or Google), but in particular, all variable names must start with a letter and
all variables are case sensitive (upper case and lower case letters are considered
different)!! So, for example, the variables Math and math are treated as different
variables.

One final “peculiar” aspect of Matlab, is that you can only edit the line
you are on!! You can however recall previous commands with the up and down
arrow keys, or type text and use the up and down arrow keys to scroll through
the commands starting with that text.

1.4 Matlab: Editor

It is tedious to type everything into the command window, not to mention trying
to fix any errors. We now look at the Editor, where you will write your Matlab
script files (basic programs) and function files (user-defined functions).

As with many aspects of Matlab, there are usually many ways to perform a
task. To start the Editor window, you can either type edit in the command

window or you can click on the “new script” button .

The Editor is shown below. In the blue bar at the top of this image, you can
see that the file is currently Untitled. The asterisk indicates that the file has
not been saved since the last change to the file. Try entering the text exactly
as shown.

4

1.5 Matlab: Headers

There are few more key parts to this file. Any text that follows a percent sign
(%) is a comment and is colored green. These are ignored when the program
is actually run, but are an important part of the documentation of the file. It
is crucial that you document your files properly both to remind yourself what
parts of the program do and to inform any other users that may work with the
program in the future.

As you type lines into the program (hitting Enter at the end of the lines),
either orange or red lines may appear on the right. You can hover your
cursor over these lines to see related messages. In general, orange lines are
suggestions, for example, that you should add semicolons on the end of lines to
suppress output, or perhaps that another command would be better. Red lines
indicate errors. You should pay close attention to these. The messages related
to red lines may indicate missing parentheses, a missing “end” to close a loop,
or something worse, like improper syntax. In this particular file, we are missing
a semicolon in the definition of the variable a (the orange line) and haven’t
completed the line for the definition of c (the red line).

When you save this program, the file name will have a “.m” extension. We
refer you to the help files for proper naming conventions of files (and variables
in general).

1.5 Matlab: Headers

For each assignment for this course, you will be submitting either a script or
function M-file. At the top of each file, you must include a descriptive header
(as comments). They must look like the following, adjusted to fit your name,
the date, etc.

% Troy Siemers
% Program Name: Assignment1.m
% Date: 10 January 2010
% Course: MA110
% Description: In this assignment, we focus on how
% matrices are entered and referenced in Matlab. We also
% use component-wise multiplication and
% matrix exponentiation.

We can not stress enough the importance of proper documentation. You may
be working with other people on coding or may return to a file that you wrote
several days ago (or weeks, years, etc.). Without the comments to explain your
work (to others or as reminder to yourself), it is often difficult to understand
the code (and fix it when it doesn’t function properly).

5

Chapter 1 Matlab: Introduction

1.6 Matlab: Editor Tips

Here we include some tips and keyboard shortcuts that come up often and can
save time. Note that many of these are accessible by using the right mouse
button while in the Editor.

Block Commenting

Instead of deleting code, it is often adventageous to simply “comment it
out” for later editing. To do this, simply highlight the code that you wish to
comment out and use Ctrl + R. Note that if you only want to comment out
a single line, just make sure your cursor is on the line and use Ctrl + R (you
don’t have to highlight the whole line). You can uncomment any of these later
by highlighting any comment lines and using Ctrl + T.

Running Code

There are several ways to execute your files, but there are a few short-cuts
when running script files. To run the entire file, you can either use the F5 key

or click on the green “run” button . To see how smaller blocks of code may
run, you can highlight sections of the code and use the F9 button.

Indenting

Inside of several structures, like loops, it is important that you indent the
code properly. This not only for correct syntax, but also makes for easier read-
ing. To make sure code is indented in the right way, simply highlight the code
and type Ctrl + I.

Example 1

For this example, you could run these commands one at a time at the >> in
the Command Window, but we will create a script M-file in the Editor, which
we open by typing edit and hitting return or you can click on the “new script”

button . Enter the following commands on separate lines:

SideLength = sqrt(5)
Value = cos(pi)
DegValue = cosd(180)
radius = 5;
Area = pi * radius ∧ 2

Now save the file as test.m. To run the file you have the options listed in

6

1.6 Matlab: Editor Tips

this chapter, but another easy way is to go to the Command Window and type
test at the >> line. The output for this file should look like:

SideLength =
2.2361

Value =
-1

DegValue =
-1

Area =
78.5398

Note that there was no output of the value for radius to the Command
Window (the semicolon suppresses the output), but the value was stored in the
variable named radius (and can be found in the Workspace window - look!).

7

Chapter 1 Matlab: Introduction

Chapter 1 Exercises

1. Which of the following are valid and useable variable names? Explain your answers

a. Homework 1

b. 1Homework

c. Homework#1

d. Homework 1

e. HoMeWoRkNuMbEr1

2. Compute the following using the correct order of operations

a. 2− 4 ∗ (53−2 + 2 ∗ (5 + 6))

b. 2− 4 ∗ 53−2

2 ∗ (5 + 6)

c. 2− 4 ∗ 53−2

2
5

+ 6

3. The volume of a truncated pyramid with a square base is given by

V =
1

3
(a2 + ab+ b2)h

where h is the height, a is the length of one of the sides of the base and b is the length
of the sides of one of the top (also a square). Find the volume if a = 5, b = 3, h = 10
by first defining a, b and h as separate variables and then defining V in terms of
them.

4. The escape velocity from a planet is given by v =

√
2GM

R
where G is the

gravitational constant, M is the mass and R is the radius of the planet. Compute
the escape velocity of both earth and the moon using an online source to find the
constants. In each case, first define G,M and R and then define v in terms of
them. Make sure to give the citation of your source.

5. Stirling’s formula for computing the factorial is given by n! ≈
√

2πn
(n
e

)n
. For

each of n = 1, 2, 3, · · · , 20, compute both sides of this approximation. Hint: Use
the factorial command in Matlab.

6. In considering Stirling’s formula, since the numbers grow so quickly in using the
factorial, it can be advantageous to use the natural logarithm function. A related
approximation is given by ln(n!) ≈ n lnn − n. Compute the difference ln(n!) −
(n lnn − n) for n = 10, 20, 30, 40, 50. What is the largest value of n that Matlab
will allow in this difference calculation?

8

Chapter 2

Matlab: Matrices

In this section, we discuss how matrices are created, referenced and used in
calculations.

2.1 Matlab: Matrices

Each variable in Matlab is stored as a matrix, which is an array of numbers
arranged in a rectangle of m rows and n columns. One says that such a matrix
is an m by n matrix, written as m × n. A vector is any matrix that has either
only one row (a “row vector”) or one column (a “column vector”). A scalar, or
number, is stored as a matrix that has exactly one row and one column (i.e, a
1× 1 matrix).

Let’s look at some examples of how matrices are entered in Matlab. Each
matrix is enclosed in the symbols [and], each comma (or space) separates
entries on the same row and each semicolon indicates a new row.

Example 2

>> A = [1,2,3,4;5,6,7,8] (or A = [1 2 3 4;5 6 7 8])

gives the 2× 4 matrix

A =
1 2 3 4
5 6 7 8

and

>> B = [1; 6; 0; 9]

gives the 4× 1 matrix

9

Chapter 2 Matlab: Matrices

B =
1
6
0
9

and

>> C=[3]

gives the 1× 1 matrix (i.e. a scalar)

C =
3

You may have noticed that the semicolon is used in a new way in the last
example. It is perhaps unfortunate, but there are symbols that are reused
throughout Matlab code (including the semicolon, colon and comma) and the
meaning of a particular symbol will depend on context. Semicolons are used
inside matrix definitions to indicate a new row while semicolons are used at the
end of a line to suppress output. Let’s look at a few more examples.

Example 3

Suppose we wanted a matrix with the values 1 through 19 in a single (row)
vector. We could enter this as

>> M = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

although this takes a little while to type (what if we wanted 1 to 1000?!).
Instead we use the colon operator. The syntax to create this same matrix of
1 to 19 is shortened to

>> M = [1:19].

In the last example, we can think of the colon as a “range operator.” Note
that Matlab also accepts the slightly shorter M = 1:19 as well, which will be
useful when we come to loops. In fact, the colon is more flexible (pun intended?)
as we see in the next example.

Example 4

The matrix defined as

>> N = [1:2:19]

10

2.1 Matlab: Matrices

is the same as if we typed

>> N = [1 3 5 7 9 11 13 15 17 19].

What is going on in this example? Well, the general form in using two colons
this way is

start value : step size : end value

In N, the 2 means to simply count “by twos” starting at 1 and ending at 19.
There’s a slight limitation in that if we tried P = [1:2:20] we would also
get P to equal [1 3 5 7 9 11 13 15 17 19]. Where’s the 20? Well, the
syntax of start:step:end actually means to begin at start, add the step
one at a time and then stop at the point where adding one more step size would
take us past the end value. So, in the matrix P, we have to stop at 19 since
adding two more would take us to 21 (past the end value of 20). But, suppose
we actually wanted to end exactly at your last value? That’s where we use the
command linspace instead.

Example 5

>> P = linspace(1,6,4)

Here we get

P =
1.0000 2.6667 4.3333 6.0000

You can see that we started at 1 and ended at 6 and have 4 total values.
That’s the exact syntax:

linspace(start,end,number of values)

There are two special matrices that come up a lot too:

Example 6

>> G = ones(3,4)

gives the 3× 4 matrix of all ones:

G =
1 1 1 1
1 1 1 1
1 1 1 1

11

Chapter 2 Matlab: Matrices

>> H = zeros(2,5)

gives the 2× 5 matrix of all zeros:

H =
0 0 0 0 0
0 0 0 0 0

2.2 Matlab: Using Matrices

Let’s look at how we can reference parts of a matrix.

Example 7

Consider the matrix A = [1 2 3 4;5 6 7 8]. There are actually two
ways to view this matrix, either as a rectangular array of 2 rows and 4 columns,
or as a list of 8 elements. Suppose we wanted to isolate the 7 in the matrix A
and store it as the variable temp. First, we can think of the 7 as being located
in the second row and third column. In this case, we can type:

>> A = [1 2 3 4;5 6 7 8];
>> temp = A(2,3)

with the result being:

temp =
7

Second, we can think of 7 as being one of the eight elements total. But, it
is crucial to realize that we count elements in this way using a “column prece-
dence.” This means that we count, one at a time, down the columns. This
means that we can think of 7 as being located in the 6th entry, or:

>> temp = A(6)

also gives the result:

temp =
7

For completeness, in the last example, if we think of A as a matrix:

A(1,1) = 1 A(1,2) = 2 A(1,3) = 3 A(1,4) = 4
A(2,1) = 5 A(2,2) = 6 A(2,3) = 7 A(2,4) = 8

12

2.2 Matlab: Using Matrices

or, thinking of A as a vector:

A(1) = 1 A(3) = 2 A(5) = 3 A(7) = 4
A(2) = 5 A(4) = 6 A(6) = 7 A(8) = 8

If we wanted to store the entire first row of A in the variable firstrow, we
would say that we want “all four columns of the first row.” This suggests that
we can use the colon operator to shorten our work. Namely,

>> firstrow = A(1,1:4)

which gives

firstrow =
1 2 3 4

But, there’s an even shorter way to do this! If the colon doesn’t have a start
and end value, it simply lists all possible values! Namely,

>> firstrow = A(1,:)

also gives

firstrow =
1 2 3 4

Ok, now what if we wanted the first row, but not the element in the first
column? There are two ways to do this. First, we can use the colon as:

>> mostoffirstrow = A(1,2:4)

which gives

mostoffirstrow =
2 3 4

But, what if the matrix changes and we don’t know how big A has changed
to? Those sneaky programmers at Mathworks have a work around:

>> mostoffirstrow = A(1,2:end)

also gives

mostoffirstrow =
2 3 4

13

Chapter 2 Matlab: Matrices

2.3 Matlab: Matrix Operations

Here we will explore the algebra of matrices. It would be wise for the reader to
have a basic knowledge of matrix algebra (or even linear algebra), but we will
try and give plenty of explanatory examples.

Just as for scalars, many of the common algebraic operations apply to ma-
trices. The symbols + and − carry over quite nicely in “element-by-element”
operations as one would expect (or at least hope for). Similarly, if you want
element-by-element multiplication, division, or even exponentiation, these are
given by .∗, ./ and .∧ (yes, those each have a preceeding period and are pro-
nounced “dot times”, “dot divide” and “dot exponent”). Operations like
“regular” multiplication, division, exponents, etc. have a very different meaning
than one who hasn’t been exposed to linear algebra might expect. We also have
operations like the matrix transpose.

Let’s look at some examples using the matrices A = [1 2 3 4;5 6 7 8]
and B = [1; 6; 0; 9]. Again,

A =
1 2 3 4
5 6 7 8

and
B =

1
6
0
9

Example 8 Scalar Multiplication

Here we show how to multiply every entry in a matrix by a scalar:

>> A = [1 2 3 4;5 6 7 8];3*A

gives

ans =
3 6 9 12
15 18 21 24

One special operation for matrices is the matrix transpose, given by either
transpose(A) or the shorter A'. The transpose of a matrix is another matrix
with the rows and columns interchanged.

Example 9 Transpose

>> A = [1 2 3 4;5 6 7 8];A'

14

2.4 Matlab: Common Matrix Functions

ans =
1 5
2 6
3 7
4 8

and

>> B = [1; 6; 0; 9];B'

ans =
1 6 0 9

The example A∧2 gives an error saying A must be square (here it is good to
know some linear algebra), but A. ∧ 2 gives element-by-element squaring:

Example 10 Element by element squaring

>> A = [1 2 3 4;5 6 7 8];A. ∧ 2

ans =
1 4 9 16

25 36 49 64

Finally, we can create “block” matrices from smaller matrices by treating
them as elements themselves and using the comma (or space) and the semicolon
to create rows and columns. We just have to make sure the dimensions of the
matrices line up properly. For example, we can stack two matrices.

Example 11 Stacking Matrices

>> A = [1 2 3 4;5 6 7 8];B = [1; 6; 0; 9];AoverBprime = [A ; B']

AoverBprime =
1 2 3 4
5 6 7 8
1 6 0 9

2.4 Matlab: Common Matrix Functions

size and length

Many functions involving matrices will only work if the dimensions of the
matrices satisfy certain conditions. The size(M) command returns the num-

15

Chapter 2 Matlab: Matrices

ber of rows and columns in M.

Example 12 size of a matrix

>> A = [1 2 3 4;5 6 7 8];size(A)

ans =
2 4

and

>> B = [1; 6; 0; 9];size(B)

ans =
4 1

The size command is also what is known as an “overloaded” function in
that it can be used in a couple of ways. Suppose we only wanted to know only
the number of rows in a matrix M. We could find the size(M), store this as
a variable and then select the first entry. Instead, the size command takes a
second entry that will allow us to get what we want.

Example 13 Number of Rows or Columns Using size

>> A = [1 2 3 4;5 6 7 8];size(A,1)

ans =
2

(the number of rows)

and

>> A = [1 2 3 4;5 6 7 8];size(A,2)

ans =
4

(the number of columns).

The length of a vector (either a row or column) is simply the number of
elements in the vector:

Example 14 Length of a vector

>> c=1:5;

16

2.4 Matlab: Common Matrix Functions

>> length(c)

ans =
5

However, the “length of a matrix” is defined in Matlab as the larger of the
number of rows and the number of columns. That is, length(A) is equivalent
to max(size(A)).

max and min

These two functions are (almost) self explanatory. For the matrix that we
are using, A = [1 2 3 4;5 6 7 8], if we try max(A), we get 5 6 7 8.
What’s going on? Remember that Matlab works on column precedence so
that what max is doing is not finding the maximum value of the entire ma-
trix, but instead finding the maximums of each column. The only exception
occurs when the starting matrix is either a row or column vector. For exam-
ple, for B = [1; 6; 0; 9], max(B) does give us 9 (the largest value in B).
So, to get the largest element in A, we would have to “nest” the functions as
max(max(A)), which would give us 8.

17

Chapter 2 Matlab: Matrices

sum and prod

Once again, these seem reasonably named functions (see previous bullet).
And once again, they return not the sum\product of every entry in matrix, but
the column sums\products with the exception being for vectors, in which case
you do get the sum\product of every entry in the vector. But, what if you want
to get the sum along the rows? Well, once again sum is an overloaded operator
and we can use:

Example 15 Column and Row sums

>> A = [1 2 3 4;5 6 7 8]
>> sum(A)

ans =
6 8 10 12

(the column sums)

and

>> sum(A,2)

ans =
10
26

(the row sums)

For those that know more linear algebra, we list some familar commands.

cross and dot

These are the functions to find the cross product or dot product of two vec-
tors using dot(v1,v2) and cross(v1,v2). A few things to note. First, the
vectors both have to be the same length, but it doesn’t matter if they are both
row vectors, both column vectors, or even one of each. Second, for the cross
product, recall that you need them both to be of length 3 (i.e. each of dimension
1× 3 or 3× 1).

det and inv

For a square matrix S, you can find the determinant and inverse using the
commands det(S) and inv(S). You can also use the command S∧(-1) al-
though a common mistake is to forget the parentheses around the −1.

18

2.5 Matlab: Systems of Equations

eye

The folks at Mathworks do have an interesting sense of humor. To create the
5×5 identity matrix, for example, you could type all 25 entries of ones and zeros,
or you can use the command eye(5). Get it? “eye”? Get it? Nevermind.

2.5 Matlab: Systems of Equations

We can use matrices to solve systems of linear equations. Here it is a good idea
to read up a bit on some matrix algebra.

Suppose we have the following system of equations: 3x+ 2y − z = 10
−x+ 3y + 2z = 5
x− y − z = −1

We will solve this system, i.e. find the values of the variables that satisfy all

of the equations simultaneously, in three ways: using reduced row echelon form,
using matrix inverses, and using “left division.”

Method 1: Reduced Row Echelon Form

Here we create the “augmented matrix” of the coefficients of the variables
with the constants to the right of the equals signs.

>> AugmentedMatrix = [3 2 -1 10;-1 3 2 5;1 -1 -1 -1];
>> rref(AugmentedMatrix)

ans =
1 0 0 -2
0 1 0 5
0 0 1 -6

This tells us that there is only one way to solve this system, i.e. only one
solution, namely x = -2, y = 5, z = -6. You can check that is correct
by substituting these values back into the system of equations: 3(−2) + 2(5)− (−6) = 10

−(−2) + 3(5) + 2(−6) = 5
(−2)− (5)− (−6) = −1

and verifying that they are all correct.

19

Chapter 2 Matlab: Matrices

Method 2: Using the matrix inverse

Here we create two matrices, one for the coefficients of the variables and one
for the constants to the right of the equals signs. Note that we can define these
on the same line to save space:

>> Coeffs = [3 2 -1;-1 3 2;1 -1 -1]; Constants=[10; 5; -1];

Since the determinant of Coeffs is non-zero (check!) we can solve the sys-
tem with the inverse:

>> inv(Coeffs)*Constants

ans =
-2
5
-6

This also tells us that the only solution is x = -2, y = 5, z = -6.

Method 3: Using left division

The motivation for this method is complicated. We suggest that you read
the Matlab documentation on left (and right) division of matrices. Again we
create the two matrices, Coeffs and Constants

>> Coeffs = [3 2 -1;-1 3 2;1 -1 -1]; Constants=[10; 5; -1];

and use the backslash (be careful to use the correct slash):

>> Coeffs\Constants

ans =
-2
5
-6

This also tells us that the only solution is x = -2, y = 5, z = -6.

20

2.5 Matlab: Systems of Equations

Chapter 2 Exercises

1. Basic calculations

a. Using colons, create the matrix that contains the numbers from 1 to 491 by
steps of 10.

b. Using linspace, create the matrix that contains the numbers from 1 to 491
by steps of 10.

c. Using colons, create a 1× 50 matrix containing evenly spaced numbers from
1 to 32 (inclusive).

d. Using linspace, create a 1 × 50 matrix containing evenly spaced numbers
from 1 to 32 (inclusive).

2. Consider the 5× 5 “Hilbert matrix”

H5 =

1 1/2 1/3 1/4 1/5

1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9

a. Find the determinant of H5.

b. Find the transpose and inverse of H5.

c. Using the commands in the text, find the dimensions of H5, the column sums,
and the row sums of H5.

d. Use the max function to determine the value of the maximum entry of H5.

e. Find the eigenvalues and eigenvectors of H5.

f. Find the matrices H2
5 , H5. ∧ 2 and H5./H5 and explain your answers.

g. By referencing H5, create a matrix that consists of the 2nd and 3rd rows of
H5 (do not simply retype the entries).

3. Counterclockwise rotation in two dimensions (about the origin) can be done through
matrix multiplication (multiplying on the left) by the matrix

[
cos θ − sin θ
sin θ cos θ

]
Rotate the point (x, y) = (−2, 3) counterclockwise about the origin by each of
θ = 30◦, 90◦ and 200◦ and give the final positions in each case.

4. Counterclockwise rotation in two dimensions about an arbitrary point, P , can be
done by a translation (moving P to the origin), rotation about the origin (through
matrix multiplication as in the last problem), and then retranslation (of the origin
back to P) .

Rotate the point (x, y) = (−2, 3) counterclockwise about the point (1, 3) by each
of θ = 30◦, 90◦ and 200◦ and give the final positions in each case.

21

Chapter 2 Matlab: Matrices

5. Rotation in 3-dimensions is a more difficult process. For example, if you rotate
the point (1, 0, 0) counterclockwise around the z axis, you will arrive at the point
(0, 1, 0). Look up (online) for the matrix that corresponds how to rotate by an angle
θ around the z axis in 3D and make sure you cite the online source. Implement
this matrix to indicate the rotation of (1, 0, 0) about the z axis by θ radians for
θ = π/4, π/2 and π/8.

6. In computing an approximating function for a set of data, a spline is often used.
The theory of splines is covered in numerical analysis, but for a specific data set,
the following system of equations must be solved.

0.28S1 + 0.1S2 = −64.65
0.1S1 + 0.34S2 + 0.07S3 = −54.81

0.07S2 + 2.16S3 + 1.01S4 = −8.43
1.01S3 + 2.58S4 + 0.28S5 = −7.92

0.28S4 + 1.42S5 = −2.78

Find the values for S1 through S5 by solving this system in three ways:

a. Using the command rref.

b. Using left division.

c. Using the matrix inverse.

22

Chapter 3

Matlab: Functions

In this section, we look at some functions that are built-in to Matlab. In a later
section, we discuss how a user may write their own.

3.1 Matlab: Built-In Functions

As with most parts of Matlab, the Help window is useful in describing the func-
tions that are in Matlab, Simulink, and any toolbox add-ons that you may have.
To access the entire list of functions, grouped in various ways, click on the Help
button, the one shaped like a question mark at the top of the main Matlab
window, or simply use the F1 button. Once on the Help window, you can click
on “MATLAB Functions” at the bottom.

23

Chapter 3 Matlab: Functions

In discovering what a function does, we suggest to simply try it. Let’s start
with the matrix A = [1 2 49 4;25 36 3 81] and look at the output from
several functions. First type in

>> A = [1 2 49 4;25 36 3 81]

• sqrt(A)

The output:

>> sqrt(A)
ans =

1.0000 1.4142 7.0000 2.0000
5.0000 6.0000 1.7321 9.0000

is (hopefully) what you might expect. It finds the square root of each of the
entries. If you know a little more linear algebra and was expecting the “prin-
cipal” square root, or a matrix B so that B * B = A, this is created using
B = sqrtm(A).

• sin(A), sind(A)

The function sin(A) finds the sine of every entry in A, assuming the entries
of A are in radians:

>> sin(A)

ans =
0.8415 0.9093 -0.9538 -0.7568

-0.1324 -0.9918 0.1411 -0.6299

and the function sind(A) does the same, but assumes the entries of A are
in degrees:

>> sind(A)

ans =
0.0175 0.0349 0.7547 0.0698
0.4226 0.5878 0.0523 0.9877

The other trigonometric functions are similarly named.

• exp(A), log(A), log10(A)

These three functions are base e exponentiation, the natural log and the
logarithm base 10. They act entry-wise:

24

3.1 Matlab: Built-In Functions

>> exp(A)

ans =
1.0e+035 *

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.5061

>> log(A)

ans =
0 0.6931 3.8918 1.3863

3.2189 3.5835 1.0986 4.3944

>> log10(A)

ans =
0 0.3010 1.6902 0.6021

1.3979 1.5563 0.4771 1.9085

We do see something curious here for the function exp(A). It looks like all
of the entries are zero until a closer look shows the leading term “1.0e+035 *”.
This means that every entry in the answer is multiplied by this factor 1035 (a
rather large number). The fact that the other entries look like zero is that there
aren’t enough decimal places to store each answer.

• mean(A), median(A), std(A)

These are some of the basic statistical functions. The output for these are
the mean, meadian, and standard deviation of the columns of A.

>> mean(A)

ans =
13.0000 19.0000 26.0000 42.5000

>> std(A)

ans =
16.9706 24.0416 32.5269 54.4472

>> median(A)

ans =
13.0000 19.0000 26.0000 42.5000

25

Chapter 3 Matlab: Functions

• sort(A), sortrows(A)

The command sort rearranges the data in the columns of A in increasing
order. The command sortrows sorts the rows of A in increasing order (deter-
mined by the first column).

>> sort(A)

ans =
1 2 3 4
25 36 49 81

>> sortrows(A)

ans =
1 2 49 4
25 36 3 81

However, both of these functions can take other arguments. For example,
the sort function can also be used to sort the columns, or can sort using either
‘descend’ or ‘ascend’. The sortrows function can also be used to sort accord-
ing to other columns. See the Help files for more details.

• flipud(A), fliplr(A)

These two functions are abbreviations of “flip up-and-down” and “flip left-
to-right”. That’s exactly what they do:

>> flipud(A)

ans =
25 36 3 81
1 2 49 4

>> fliplr(A)

ans =
4 49 2 1
81 3 36 25

• find

The function find is used to located the position of values in a matrix.

>> find(A==1)

26

3.1 Matlab: Built-In Functions

ans =
1

A couple of comments about this example. First, there is a double equals
sign in A==1. There will be more about this in a future chapter (on relational
operators), but you can read this as a question “does A equal 1?.” The entire
line find(A==1) indicates the location where the (element of) A does in fact
equal 1 (namely the first entry). Another example:

>> find(a>5)

ans =
2
4
5
8

Here we must again remember to read down the columns of A to get to the
2nd, 4th, 5th and 8th entries. We can tweak this last example to get the exact
rows and columns containing entries greater than 5:

>> [r,c]=find(A>5);[r,c]

ans =
2 1
2 2
1 3
2 4

Here we have given the find function two outputs to write to, the variables
r and c, which are displayed together for easier reading using [r,c]. The
output indicates that the entries of A that are greater than 5 can be found in
the 2nd row & 1st column, 2nd row & 2nd column, 1st row & 3rd column, and
2nd row & 4th column.

In the next example, we investigate the function meshgrid. The meshgrid
function is used to transform vectors x and y into arrays X and Y of sizes ap-
propriate for computation and plotting.

Example 16 Using meshgrid

Suppose we wanted to compute the area of a triangle for all possible combi-
nations of the base, ranging from 7 to 10 units, and the height, ranging from 2
to 6 units. Here’s the set up (output suppressed):

>> Base = 7:10;

27

Chapter 3 Matlab: Functions

>> Height = 2:6;

Now, we can’t just multiply these two matrices together, nor can we “dot
multiply” them either, since the dimensions of Base, 1× 4, and Height, 1× 5,
do not line up properly in either case. Instead we resize using meshgrid:

>> [NewBase,NewHeight] = meshgrid(Base,Height)

This creates two matrices, NewBase and NewHeight, which are both 5×4.
We did not suppress the output, so one can see that these are:

NewBase =
7 8 9 10
7 8 9 10
7 8 9 10
7 8 9 10
7 8 9 10

and

NewHeight =
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6

We can now “dot multiply” them together:

>> Area= (NewBase.*NewHeight)/2

Area =

7.0000 8.0000 9.0000 10.0000
10.5000 12.0000 13.5000 15.0000
14.0000 16.0000 18.0000 20.0000
17.5000 20.0000 22.5000 25.0000
21.0000 24.0000 27.0000 30.0000

28

3.1 Matlab: Built-In Functions

Chapter 3 Exercises

1. Consider a triangle ABC. Suppose the length of the sides AB and AC are 3 and
4, resp. Let θ denote the angle at the vertex A. Use the law of cosines to create a
table with two columns: the first column containing θ in increments of 10 degrees
from 0 to 180 degrees and the second column containing the length of the side BC.
First define the variables AB,AC and θ and then define BC in terms of them.
What is the average length of BC for θ between 20 and 150 degrees?

2. Two blocks of masses m1 and m2 are connected by a string over a smooth pulley as
shown. Assume that m2 > m1. If the coefficient of friction is µ and r = m1/m2,
then the masses will move at a constant speed (m2 slides down the slope) if the

angle θ is given by cos(θ) =
−µr +

√
1− r2 + µ2

1 + µ2
.

θ

m2

m1

a. Compute the values of the angle θ if m2 is twice the value of m1 and µ ranges
from 0 to 1 in increments of 0.1.

b. Compute the values of the angle θ if m2 is ten times the value of m1 and µ
ranges from 0 to 1 in increments of 0.1.

c. What can you say if m1 = m2?

3. Write a file that will convert a given number of seconds into years, days, hours, min-
utes and seconds. Use this file to give the conversion for 1,000 seconds, 1,000,000
seconds and 1,000,000,000 seconds. Some of the following commands may help
fix, floor, mod, and rem.

4. For a continuous money stream, we have the equation F = Pert where F is final
value, r is the interest rate, P is the principal, and t is time. Use the meshgrid
and the exp commands to find possible values of F for P ranging from 10, 000 to
50, 000 (in increments of 10, 000) and t ranging from 0 to 10 (in increments of 1).
You can select the value of r, but use a reasonable, real-world interest rate (explain
how you chose your value of r too).

5. A uniform beam is freely hinged at its ends x = 0 and x = L, so that the ends are
at the same level. It carries a uniformly distributed load of W per unit length and
there is a tension T along the x-axis. The deflection y of the beam a distance x
from on end is given by

y =
W · EI
T 2

[
cosh [a(L/2− x)]

cosh(aL/2)
− 1

]
+
Wx(L− x)

2T

where a2 = T/EI , E is Young’s Modulus of the beam and I is the moment of
inertia of a cross-section of a beam. If the beam is 10m long, the tension is 1000N ,
the load 100N/m and EI is 104, make a table of x versus y where x ranges from
0 to 10 in increments of 1m. Make sure to define the variables a,W,EI, T and x
and then define y in terms of them.

29

Chapter 4

Matlab: Graphics

In this section, we discuss the graphics capabilities of Matlab.

4.1 Matlab: Graphics

The main commands that we will use in this chapter are

plot, subplot,figure and hold

and the customizations

xlim, ylim, xlabel, ylabel, and title.

Plots in Matlab are created by simply “connecting the dots.” This means
that you have to provide the actual coordinates of the points − both the x and
y coordinates. It is not enough to simply say plot y = x2, you must give exactly
which x values you want squared.

Example 17 Basic Plot

Define:

>> x = [1:10]; y = [4 15 7 17 8 19:23];

Then to plot the corresponding coordinates, connected by line segments, use

plot(x,y)

That’s all you do. The resulting plot is:

30

4.1 Matlab: Graphics

Let’s take the last example and add some markers and labels.

Example 18 Plot with labels

>> x = [1:10]; y = [4 15 7 17 8 19:23];
>> plot(x,y,'-->b')
>> title('My plot')
>> xlim([0,11])
>> ylim([0,30])
>> text(7,15,'My function')

The plot is now:

31

Chapter 4 Matlab: Graphics

In this last example, you can see that there is a title, the limits on the graph
are now 0 to 11 (for x) and 0 to 30 (for y), and there is text on the screen,
starting at the coordinate (7,15). The symbols '-->b ' indicate that the lines
should be dashed, the points marked with triangles and the lines colored blue
(the default color if none is provided).

If you want to plot more than one set of data in the same figure window,
there are two ways to do this. You can put both in the same plot command
or by using the hold command with two plot commands (see next example).

Example 19 Two Functions - one plot command

>> x1 = [1:10];y1 = [4 15 7 17 8 19:23];
>> x2 = [3:3:12];y2 = [0 5 3 10];
>> plot(x1,y1,x2,y2,'+')
>> xlim([0,13]),ylim([-1,25])

The plot is now:

So, from this example we can see that if you want to use the same plot
command, you simply list the pairings, (with any details following each pair)
x1,y1,x2,y2,x3,y3,· · · . The default colors start with blue followed by
green. The symbol '+' means that the second plot is points (not lines) marked
with plus signs.

Example 20 Two Functions - two plot commands

We use data from the last example, but use the hold command.

32

4.1 Matlab: Graphics

>> x1 = [1:10];y1 = [4 15 7 17 8 19:23];
>> x2 = [3:3:12];y2 = [0 5 3 10];
>> hold on
>> plot(x1,y1)
>> plot(x2,y2,'+')
>> xlim([0,13]),ylim([-1,25])

The plot is now:

In the last example, if you didn’t include the hold command, the second
plot would simply overwrite the first. Also, since we didn’t specify new colors,
both plots are blue (the default color of a single plot).

Here we look at the subplot command as well as bar graphs and pie charts
to create multiple graphs on the same figure.

Example 21 The subplot command

>> x = [1,2,4,5,8]; y = [x;1:5];
>> subplot(2,3,1), bar(x)
>> subplot(2,3,2), bar(y)
>> subplot(2,3,3), bar3(y)
>> subplot(2,1,2), pie(x)

33

Chapter 4 Matlab: Graphics

In this example, the subplot on each line does two things. First, it (invisi-
bly) subdivides the figure into rows and columns and second, it indicates where
the plot will be shown (counting across the rows). That is:

subplot(# rows,# columns, location)

You can see in the example that even though the plot was “broken up” into 2
rows and 3 columns in the first three subplot lines, the fourth line re-subdivides
the plot into 2 rows and 1 column so that the final plot can take up the entire
bottom of the plot. Using the subplots does not require the hold command.

The previous examples give just a beginning of the graphics capabilities of
Matlab (including 3D as in the last example). We will see more graphics in the
remainder of the text, but we suggest reading through the help files for (many)
more details.

34

4.1 Matlab: Graphics

Chapter 4 Exercises

For each problem, include appropriate titles and labels. Make sure to use xlim and ylim
so that the plots fit well in their figure windows.

1. The double logistic curve is defined by

y = sign(x− 5) ·

(
1− exp

[
−
(
x− 5

50

)2
])

Use the command linspace to get x values from −100 to 100 and plot y for
these x values. Add appropriate labels (something simple) to the axes and a title.

2. For the functions y = ex/5, y = sin(x), y =
√
x for x between 0 and 10:

a. Plot all three on the same plot, but with different colors (use linspace with
enough points so that the curves look smooth). Put in a descriptive title and
add text inside the window to label the individual graphs.

b. Plot all three in the same figure window, but with each in their own subplot
and each with its own descriptive title.

3. Plot the following curves, either on separate plot windows or as subplots in the
same figure window, by first defining the parameter t=linspace(0,6π) and then
defining x and y in terms of t. Use the standard plot command to plot them and
add appropriate titles. For each, adjust t for a smoother curve as necessary.

a. Cardioid: x = 2 cos t− cos 2t, y = 2 sin t− sin 2t.

b. Astroid: x = cos3 t, y = sin3 t.

c. Hypotrochoid: x = 2 cos t+ 5 cos
(
2
3
t
)
, y = 2 sin t− 5 sin

(
2
3
t
)
.

d. Epicycloid: x = 6.5 cos(t)− cos(6.5t), y = 6.5 sin(t)− sin(6.5t)

4. In the same figure window, plot y = sin(t + φ) for each of φ = 0, π/4 and π/2,
on the range for t from 0 to 2π. Using the text command, label the plots inside
the figure window. Also, use xlim, ylim to make the plots fit nicely in the plot
window.

Problems continue on the next page...

35

Chapter 4 Matlab: Graphics

5. The following data are coordinates of an analemma. Look up the definition of an
analemma and give a short description here. Make sure to cite your source.

y x

89.814 −4.67

83.222 −6.824

71.282 −7.7697

60.581 −7.33

50.572 −6.22

41.748 −4.759

38.36 −4.105

32.748 −3.045

26.664 −1.957

21.141 −1.146

17.445 −0.946

14.548 −1.193

13.38 −1.713

13.1497 −1.946

13.569 −2.388

14.942 −2.854

18.269 −3.087

22.189 −2.84

28.455 −1.992

34.742 −0.834

38.876 −0.117

43.349 0.607

52.124 1.824

64.591 2.842

74.997 2.775

85.45 1.196

90.649 −1.265

91.403 −2.559

As you can see, the data was unfortunately entered backwards so that the second
column gives the x coordinate and the first column gives the y coordinate. First
enter the data into a 2-column matrix (in a variable of your choice). Use fliplr
to redefine the columns and define the variable x by referencing the first column
and y by referencing the second column. Plot the data with an appropriate title.
Note that you may have to adjust the data so that the analemma is a closed figure.

Extra credit Use the data to find the length of the analemma curve.

36

Chapter 5

Matlab: User Defined
Functions

In this section, we discuss how to create new functions in Matlab.

5.1 Matlab: User-Defined Functions

Up to now, the M-files that you have created are called “script” files. Now we
use the editor to create function M-files. Why would you want to do this?
Well, Matlab has many built-in functions, but you may need to create your own
to solve a specialized problem.

Lets look at how a function is put together. In the command window, if you
were to type

>> help sin

you would get

SIN Sine of argument in radians.
SIN(X) is the sine of the elements of X.

See also asin, sind

Reference page in Help browser
doc sin

In reading this, you can see the purpose of the function, the correct usage
of the function and references to additional related functions. When you create
your own functions, you will also need to create similar information.

37

Chapter 5 Matlab: User Defined Functions

Here’s how to create a function in Matlab. In the Editor window, follow
these steps:

1) On the first line(s) put comments that describe the function and, most impor-
tantly, a usage statement or HOW THE USER ENTERS THE FUNCTION!!!
2) On the next line, put the word function followed by:
a) In [], put the variable(s) (separated by commas) for the function output(s).
b) The = symbol
c) Your function name
d) In (), put the variable(s) (separated by commas) for the function input(s).
3) On the following lines, put the calculations that define the output variables
based on the input variables.

Easy right??

A couple of comments before we get to some examples.

Key Idea 1 Function Tips
1) If you have exactly one output the brackets aren’t
needed (see step 2a)
2) Functions must follow the same naming conventions
as for variables (do a Google search)

Let’s look at an example of a function that computes the area of a triangle.

Example 22 Area of a triangle function

Here is the syntax that you would type into an editor window:

% Usage: Area=TriangleArea(base,height)
% Inputs: base and height are scalars
% Output: Area - area of a triangle
function Area=TriangleArea(base,height)
Area = 0.5*base.*height;

Now save this file as TriangleArea.m. Your file name must exactly match
the name of the function (except for the .m part) or else the function will not
run.

In order to execute any function, you cannot use the Matlab run button.
You must run the function from the command window or another M-file since
you need to provide the input(s). First, check that you have provided enough
comments about how to use the function:

38

5.1 Matlab: User-Defined Functions

>> help TriangleArea

which will give your description of how to use the function. Now, run the
function with:

>> A = TriangleArea(3,4)

A =
6

NOTE: In the program TriangleArea.m the variables Area, base and
height are called local variables. That means they are only used in this spe-
cific program. They don’t appear outside the function (or in the Workspace).

Example 23 Rectangle function

Here is the syntax that you would type into an editor window:

% Usage: [Area,Perimeter]=Rectangle(base,height)
% Inputs: base and height are vectors of the same length
% Outputs:
% Area - area of a rectangle
% Perimeter perimeter of a rectangle
function [Area,Perimeter]=Rectangle(base,height)
Area = base.*height;
Perimeter = 2*(base+height);

Now save this file as Rectangle.m Again, make sure the usage comments
are correct:

>> help Rectangle

to see your helpful comments. Now run the function:

>> [A,P] = Rectangle(3,4)

A =
12

P =
14

Here again we are reminded of the fact that Area and Perimeter are lo-
cal to the function, so when we run the function, we can call the outputs by
different names. When we run the function we use the shorter A and P to store

39

Chapter 5 Matlab: User Defined Functions

the areas and perimeters.

What happens if you try to run the function without output variables? Try

>> Rectangle(3,4)

ans =
12

You only get the value that would have been assigned to the first output
variable (here it’s the area). Since the calculations are just as they would be for
matrices, we can try:

>> base = 1:4; height = [3 6 10 12];

and run the function:

>> [A,P] = Rectangle(base,height)

A =
3 12 30 48

P =
8 16 26 32

which gives us the areas and perimeters of the rectangles of the correspond-
ing bases and heights.

Here are a few commands of interest:

nargin('TriangleArea') (number of inputs)

nargout('TriangleArea') (number of outputs)

nargin('mesh') (variable number of inputs)

type('TriangleArea') (returns code of M file)

One more example:

type('sin')

gives an output of ‘sin’ is a built-in function, which indicates that
this last one is a built-in function whose code is not accessible.

40

5.1 Matlab: User-Defined Functions

Chapter 5 Exercises

When you submit this assignment, there should be seven separate files. Problems 1-6
should be in their own function m-files (properly commented of course). Problem 7 should
be a separate script m-file that uses the code from the first 6 problems. Make sure each
of your files starts with your VMI id (mine would be siemerstjFunction).

1. The height of a projectile is given by

f(t) = −9.8

2
t2 + 147t+ 500, t > 0

Create the function ProjMotion that has one input, time, and two outputs
height and velocity.

2. Create an appropriately named conversion function that has one input (dollars)
and one output (ConversionTable). The conversion table should contain four
columns, with dollars in the first column and the conversions into Yen, Euros,
and British Pounds in the next three columns (look up the current conversion rates
online and cite your source).

3. Create a function called plotlines with two inputs and no outputs with the
following details. The first input should be a 1 × 2 matrix (representing the base
point, B, in the plane). The second input should be a 2 × 2 matrix (representing
two more points in the plane, P and Q). When the function is run, there should be
a plot of two line segments, BP and BQ, with the two distances displayed halfway
along each line.

4. Create a function called RemRow with two inputs M and n. The output should be a
matrix NewM that comes from removing the nth row of M.

5. Create a function called RemCol with two inputs M and n. The output should be a
matrix NewM that comes from removing the nth column of M.

6. Create a function that will convert a given number of seconds (the input of the
function) into years, days, hours, minutes and seconds (listed in one 1 × 5 matrix
output). Some of the following commands may help: fix, floor, mod, and rem.

7. In this problem, you will use your functions from the previous problems, running
them with specific numeric input(s).

(a) Run your ProjMotion function for 0 to 30 seconds in increments of 0.5 sec-
onds and use the output to plot time versus height. Use the output of the
function (and appropriate Matlab functions) to figure out at what time the
object starts to fall back to the ground.

(b) Run your currency conversion function to give the output from an input
dollars) ranging from 0 to 100 in increments of 5.

(c) Run your plotlines function with the inputs [1, 1] and [2, 4;5, 6].
Your output should look like

41

Chapter 5 Matlab: User Defined Functions

(d) Run your RemRow function with inputs [1 2 3; 4 5 6; 7 8 9] and 2.
The output should be the matrix with the 2nd row removed.

(e) Run your RemCol function with inputs [1 2 3; 4 5 6; 7 8 9] and 2.
The output should be the matrix with the 2nd columns removed.

(f) Run your time conversion function to give the conversion for 1,000 seconds,
1,000,000 seconds and 1,000,000,000 seconds.

42

Chapter 6

Matlab: Input/Output

In this section, we discuss the input/output (I/O) capabilities in Matlab.

6.1 Matlab: Input Commands

In order to run either script M-files or function M-files, the user needs to pro-
vide data, either numerical or text (“strings”). The first command we consider
is simply called input.

Example 24 Using the input command

Here is a simple section of code to collect a person’s first name and their age.

>> FirstName = input('Enter your first name : ','s');
>> Age = input('Enter your age : ');

Once executed, the user enters values for each, say

Enter your first name : Bob
Enter your age : 25

In this example, the 's' in the first input indicates that the program
expects text input and the second input (without the 's') indicates that
the program expects numeric input. When executed, the lines collect input
one at a time. Note the text Waiting for input on the bottom left of the
Matlab window while the user enters the name, Bob, and age, 25. Due to the
semicolons, there is no output to the screen, but the values have been stored in
the variables FirstName and Age (see the Workspace window to confirm).

So how do we display this information? There are several ways to output
this information. Here we consider the two commands disp (for “display”) and
fprintf (“formated print to file”). The help files are useful so look them up!

43

Chapter 6 Matlab: Input/Output

We can present this information as follows.

Example 25 Using the disp command

Using the data from the last example:

>> disp('Your first name is ')
>> disp(FirstName)
>> disp('Your age is ')
>> disp(Age)

which has the output:

Your first name is
Bob
Your age is

25

This example is ok, but it would be nicer if the data was in one line. That’s
where the command fprintf comes in. Even though it is a formatted print
“to file” you can have the output sent to the Command Window instead.

Example 26 Using the command fprintf

>> fprintf('%s is %.0f years old.\n ',FirstName,Age)

produces

Bob is 25 years old.

Certainly, there is more involved in the function fprintf in order to pro-
duce the output we want. Let’s look at the individual pieces of this example.

• The % signs are NOT for comments this time (note: they aren’t green), they
are now used as place holders for the data.

• The %s indicates that a string is expected as input.

• The %.0f indicates that we expect a numeric input, want zero decimal points
and the value should be in Fixed-point format.

For more information on specific formats and “conversion characters” (which
is what f and s are here), look at the fprintf command in the help files.

• The \n is an “escape character” that creates a New Line.

44

6.1 Matlab: Input Commands

• The data FirstName and Age are listed after this, separated by commas.

• When the command is run, Matlab places the first data value, FirstName
(i.e. Bob), in the %s position and the second data value, Age (i.e. 25), in the
%.0f position. Got it?

Just for completeness, we can also force the disp command to act like
fprintf as follows:

Example 27 disp using concatenated strings

>> disp([FirstName,' is ', num2str(Age),' years old.'])

produces

Bob is 25 years old.

Basically, we are displaying a string array made up of several strings through
concatenation. We also see the command num2str which does exactly what it
says, it converts a number into a string. This is necessary since numeric data
and strings don’t play well together in Matlab. In order to create a string array,
all of the parts must be strings. If we tried to run this without the num2str
command, we would get

>> disp([FirstName,' is ', Age,' years old.'])

with output

Bob is � years old.

where the square indicates that the ASCII code for the value 25 is unprint-
able (look it up or don’t worry about it - just remember the num2str).

Let’s look at how to read and write larger data files next.

Example 28

Create the following table of years and monthly world steel production (in
thousand metric tons) in an Excel file and save the file as WorldSteelProduc-
tion.xls (or .xlsx). Make sure to save this file in the directory listed at the top
of the Matlab window, the Currect Directory.

45

Chapter 6 Matlab: Input/Output

2005 2006 2007 2008 2009 2010
91377 95037 107789 112870 86476 113375
84980 91183 101465 107465 86610 107119
93198 102183 112988 119934 92144 122196
93381 101604 110241 117023 89644 120497
95290 105501 112933 121062 96177 124567
92095 104636 112159 118851 100661 118346
90205 104350 110377 116770 104701 114365
91536 102630 109024 112726 108351 113141
93144 103676 111956 107723 110773 112340
98534 106913 114703 99202 114765 117377
94340 104817 109936 86513 108596 114637
95368 105306 111506 81704 107792 116157

We will now read in this data using xlsread, plot it, and access data from
it using the mouse and the graphical input command ginput (“gee-input”).

>> Steel = xlsread('WorldSteelProduction.xls');

Next, we plot the data

>> plot(1:12,Steel(2:end,:))
>> legend('2005','2006','2007','2008','2009','2010', ...

'Location','best')

The initial problem is to find the first time in 2009 that steel production is
at 100,000 thousand metric tons. We use the ginput command for the user to
collect this data.

>> disp('Select the 2009 time when production is 100,000.');
>> [t,l] = ginput(1) % mouse click

If the user hovers the cursor over the resulting plot, we see cross-hairs appear:

46

6.1 Matlab: Input Commands

A left-click creates the output to appear in the Command Window:

t =
5.8756

l =
9.9934e+004

Note that the level is listed in engineering format. If we want to finish this
example with a formatted output, we could use the following:

>> fprintf('Level %6.1f occurs %3.1f months into 2009.\n',l,t)

Level 99934.2 occurs 5.9 months into 2009.

which is in mid-June 2009. Note that the accuracy of the level and time are
dependent on the user’s mouse click so the output may not look exactly the
same.
(Data from http://www.worldsteel.org/)

47

Chapter 6 Matlab: Input/Output

Key Idea 2 fprintf with matrices
If there are not enough place holders, fprintf will cy-
cle through the values in the given data matrix, USING
COLUMN PRECEDENCE, until all of the values are
exhausted.

Example 29

Here we use fprintf and Key Idea 2 to display a matrix of values. Find
the sine, cosine and tangent of theta from 0 to 2π by steps of π/10.

>> theta=[0:pi/10:2*pi];
>> values=[theta;sin(theta);cos(theta);tan(theta)];

To display these, we can use a simple fprintf.

>> disp('Theta Sine Cosine Tangent ');
>> fprintf('%5.2f %6.2f %7.2f %9.2f\ n ',values)

gives output:

Theta Sine Cosine Tangent
0.00 0.00 1.00 0.00
0.31 0.31 0.95 0.32
0.63 0.59 0.81 0.73
0.94 0.81 0.59 1.38
1.26 0.95 0.31 3.08
1.57 1.00 0.00 16331239353195370.00
1.88 0.95 -0.31 -3.08
2.20 0.81 -0.59 -1.38
2.51 0.59 -0.81 -0.73
2.83 0.31 -0.95 -0.32
3.14 0.00 -1.00 -0.00
3.46 -0.31 -0.95 0.32
3.77 -0.59 -0.81 0.73
4.08 -0.81 -0.59 1.38
4.40 -0.95 -0.31 3.08
4.71 -1.00 -0.00 5443746451065123.00
5.03 -0.95 0.31 -3.08
5.34 -0.81 0.59 -1.38
5.65 -0.59 0.81 -0.73
5.97 -0.31 0.95 -0.32
6.28 -0.00 1.00 -0.00

48

6.1 Matlab: Input Commands

In this example, the reason for the large values in the last column are because
the tangent function tends to infinity as the angle tends to π/2 (and 1.5708 is
close to π/2). Actually, the value tan(π/2) returns 1.6331e+016. Why isn’t
“infinity” the returned value? Well, it has to do with how values are stored
in Matlab (using double-precision). The value 1.6331e+016 is actually the
reciprocal of the value eps = 10∧(-52). If you want to know more, head to
the help files (or Google, of course).

49

Chapter 6 Matlab: Input/Output

Chapter 6 Exercises

When you submit this assignment, there should be three separate files. Problems 1
and 2 should be in their own function m-files (properly commented of course). Problems
3-6 should be a separate script m-file that uses the code from the first 2 problems and
Excel spreadsheets on Angel. As usual, make sure each of your file names start with your
VMI id.

1. For this problem, you will modify your projectile motion function from the last
homework. Now, as part of your new function, ProjMotion2, plot the height
versus time, use ginput for the user to identify the maximum height, and use
fprintf to display a sentence describing the maximum height and corresponding
time.

2. For this problem, modify your conversion function from the previous homework and
rename it Conversion2. Now, use fprintf in order to create a nice-looking
table showing conversions between Dollar, Euro, Yen, and British Pounds. Include
a header for each column.

3. Run your ProjMotion2 function for time 0 to 30 seconds (in increments of
0.5 seconds) and your function Conversion2 for dollars from 0 to 100 in
increments of 5.

4. Data on the Federal GDP and Deficit (as a percentage of GDP) is in a file called
GDPAndDeficitByYear.xlsx (in the Appendix in Table 1 and saved on Angel).
First save this file to a directory on your computer and then use the command
xlsread to load this file. Assign the data in the file to a variable of your choice
and create a plot of year (1st column) versus GDP (2nd column, in billions of
dollars) including appropriate titles and labels on the axes. Use ginput for the
user to click on the first time the GDP exceeds $10 trillion. Use fprintf to
display the information in a useful way.

5. Consider the data from the previous problem (loaded with xlsread from the file
called GDPAndDeficitByYear.xlsx). Now create a plot of year versus Deficit
(3rd column), which is listed as a percentage of the GDP for the corresponding
year. Including appropriate titles and labels on the axes. Use ginput for the user
to click on all of the times the Deficit percentage has hit 10 percent and then use
fprintf to display the information in a useful way.

6. Data on unemployment percentages (per month) during 2000-2010 is in a file called
UnemploymentByYear.xlsx (in the Appendix in Table 2 and saved on Angel).
First save this file to a directory on your computer and then use the command
xlsread to load this file. Note that the first row of the file is text so you will only
want to load the information on rows 2 through 12. Assign the data in the file to
a variable of your choice. Since the data for December 2010 has not been entered,
correct it (in Matlab) with the correct value (look it up online). Next, create a plot
of month versus unemployment (including appropriate titles and labels on the axes).
Your plot should have 11 curves, one for each year and in different colors. Include
a legend in your plot for reference (labelled correctly).

50

Chapter 7

Matlab: Programming
Structures

In this section, we discuss relational operators, logical operators and loop struc-
tures in Matlab.

7.1 Matlab: Relational Operators

If we want to compare two values, we have the following relation operations:

< , <= , >, >=, ==, ∼=

It is helpful to read any statement involving these symbols as a question as
the answer is either 0 (false) or 1 (true).

Example 30 Basic Relations

>> 3 == 4 (“is 3 equal to 4?”) gives 0 (false)
>> 3 <= 4 (“is 3 less than or equal to 4?”) gives 1 (true)

7.2 Matlab: Logical Operators

To create compound statments of the relational operators, we can combine these
using the logical operators. The truth or falsity of these follows basic rules of
logic, so it helps to have some knowledge of truth tables. Again, read them as

51

Chapter 7 Matlab: Programming Structures

questions!

& (“and” returns true if both parts are true)

∼ (“not” returns true if the initial value is false)

| (‘or” returns true if either part is true)

xor (“exclusive or” returns true if either part is true, but NOT both true)

Example 31 Basic Logic

>> (3 >= 2) & (3+4 == 6)

ans=
0

Here, the question “is 3 greater than or equal to 2 AND 3 plus 4 equal to
6?” is answered as false (or a zero) since even though 3 is greater than 2, it is
not true that 3 plus 4 is 6.

Note that there are also the operators && and || which also mean “and”
and “or” but are called “short-circuited” operators (look it up). As you work
with these in the Editor, orange lines on the right side of the screen may appear
suggesting you use && in place of & (or vice-versa) and || in place of | (or vice
versa). Just take those suggestions and you’ll be fine.

These operations extend to matrices with an entry-by-entry comparison of
matrices of the same size.

Example 32

>> a=[0,1;1,2], b=[0,0;1,1]

a =
0 1
1 2

b =
0 0
1 1

with

>> a&b, a|b, xor(a,b)

returns

ans =
0 0
1 1

52

7.3 Matlab: if and switch commands

ans =
0 1
1 1

ans =
0 1
0 0

One minor point to note is that while Matlab treats 0 as false, any other
positive whole number is considered as true. So, in this example, even though
the (2, 2) entry of a is a 2, it is considered as “true” for logical comparison.

7.3 Matlab: if and switch commands

We discuss the constructs if\elseif\else and switch\case\otherwise
in this section.

Suppose we want to have part of our program run only under certain condi-
tions. For this, we use an if\else structure. The basic format of this structure
is:

if (put condition(s) here)
(put calculations here to be run if the conditions are met)

elseif (other condition(s))
(calculations that will run under the new conditions)

... (more elseif statements, if desired)
else

(calculations run if none of the previous conditions are met)
end

Example 33 Using if

Let’s write a script M-file that lets a user input a number and then displays
if that number is less than 5, between 5 and 10 (inclusive), or greater than 10.

number = input('Input a number ');
if number < 5

disp('Your number is less than 5.')
elseif number >=5 && number <= 10

disp('Your number is between 5 and 10.')
else

disp('Your number is greater than 10.')
end

Try running this program using various numbers for input.

53

Chapter 7 Matlab: Programming Structures

The switch\case structure is similar to the if structure, but has a few
advantages. First of all it is easier to read and second, it is better if you are
comparing strings (of possibly different lengths). The basic format is:

switch (expression to test)
case (case condition)

(output in that case)
case (case condition)

(output in that case)
...(more cases)
otherwise

(do this if no cases are met)
end

Example 34 Using switch

Let’s check to see if a cadet is in his\her first two years at VMI.

Year = 'second class';

switch Year
case {'fourth class','third class'}

disp('You are in the first two years.')
case {'second class','first class'}

disp('You are in the last two years.')
otherwise

disp('You must be a 5th year.')
end

The cases are grouped by curly brackets so that a case will be satisfied if the
value of Year is any of the values in a specific case. Once this code is executed,
the switch command will look at the value of Year and the output should be

You are in the last two years.

7.4 Matlab: for and while Loops

We discuss the for and while loops in this section.
Suppose we want to have part of our program re-run a preset number of

times. For this, we use a for loop. The basic format of this structure is:

for (put counter conditions here)
(put calculations here)

end

54

7.4 Matlab: for and while Loops

Example 35 Comparing for and sum

Let’s compare two methods for adding up the first five integers. Using the
sum command we can use

>> sum(1:5)
ans =

15

Now, using a for loop to create a cumulative sum:

totalsum=0; % initialize
for i=1:5

totalsum=totalsum+i;
end
disp(totalsum)

The variable totalsum will have value 15.

In example 35, the for loop was the long way of doing the problem (and
therefore stresses the power of the sum function), but the following example
shows a more in-depth for loop.

Example 36 Using for

Let’s find the first 10 Fibonacci numbers using the recursive definition.

%initialize the matrix
A=zeros(1,10);
A(1)=0;
A(2)=1;

for i=3:10
A(i)=A(i-1)+A(i-2);

end

disp(A)

The output for this would be

A =
0 1 1 2 3 5 8 13 21 34

Now, suppose want to have part of our program run until a certain condition

55

Chapter 7 Matlab: Programming Structures

is met, even though we may not know how many times the loop will need to
run until that happens. For this, we use a while loop.

The basic format of this structure is:

while (put conditions for the loop to keep running)
(put calculations here)

end

Let’s rewrite the last example with a slight twist. Let’s find the Fibonacci
numbers until they exceed 1000.

Example 37 Using while

%initialize the matrix (we dont know how big it will be so
% we will grow it in the while loop).
A(1)=0;
A(2)=1;
j=2; %initialize a counter
while A(j) < 1000

j=j+1; %move the counter along
A(j)=A(j-1)+A(j-2);

end

disp(A)

The output for this would be

A =
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The loop concludes when we pass 1000.

56

7.4 Matlab: for and while Loops

Chapter 7 Exercises

When you submit this assignment, there should be five separate files. Problems 1-3
should be in one script m-file. Problems 4a and 4b should be in their own function m-files
(properly commented of course). Make sure each of your files starts with your VMI id.

1. In some computer programs, a loop is necessary to add a list of numbers. Consider
the cubes of the first 100 integers, 13, 23, 33, · · · , 1003.

a. Create a matrix of the numbers 1 to 100 and use the sum command to find
the sum of the cubes of the numbers.

b. Use a for loop to find the same sum by adding the cubes of the numbers one
at a time (onto a cumulative sum).

c. A formula that you may have seen is that the sum of the cubes of the numbers

from 1 to n is given by
n2(n+ 1)2

4
. Confirm your sum in the previous parts

using this formula.

2. Use the data in chapter 4 exercises and a loop structure to find the length of the
Analemma.

3. In this exercise, you will be comparing the capabilities of the if\else and switch\case
structures by creating two programs. In each program, prompt the user to enter the
last name of one of the last 10 presidents of the United States. Your program should
display an informative sentence in response (including the presidency number and
when he served), or display an error message if the entered name is invalid. In the
first program, use an if\else structure and in the second program, use a switch\case
structure. Note: you will need to know how to compare strings (look in the help
files).

4. Modify your RemoveRow Function from the previous homework in two ways (you
should have two functions, perhaps called RemoveRowIf and RemoveRowWhile)

a. In the first function, use an if statement to have an error message displayed if
the user enters an invalid row. Then prompt them to enter a new row number.
In your prompt, you must indicate the allowable range of rows. Here they only
have one chance to re-enter the row.

b. In the second function, use a while loop so that if the user enters an invalid
row on their first try, they will be able to continue to enter rows until they
enter a correct value. Again, in your prompt, you must indicate the allowable
range of rows.

57

Chapter 8

Matlab: Applications

In this chapter, we put several aspects of programming together. You will
learn about the numerical methods of Riemann sums, the Trapezoidal Rule
and Simpson’s rule. We’ll also investigate aspects of the Traveling Salesman
problem.

8.1 Matlab: Numerical Methods

In Calculus, you learn how to use Riemann sums, the Trapezoidal Rule and
Simpson’s rule to approximate definite integrals, which represent area under a
curve for positive functions f(x).

The area between the function and thex-axis =

∫ b

a

f(x) dx

Each involves finding the sum of areas of approximating shapes. Given a
function f(x) defined on an interval [a, b], and a value n, the process is as follows.

1. First subdivide the interval [a, b] into n equal subintervals.

2. Assign x0 = a, x1 as the right endpoint of the first subinterval, x2 as the
right endpoint of the second subinterval, · · · , xn as the right endpoint of
the nth interval (that is xn = b).

For example, if a = 0, b = 1, n = 4, then x0 = 0, x1 = .25, x2 = .5, x3 = .75
and x4 = 1.

In this example, note that even though n = 4, there are five x values.

3. Next, calculate the values f(x0), f(x1), f(x2), · · · , f(xn) by substituting
the xi values into f(x).

58

8.1 Matlab: Numerical Methods

The formulas for each of the methods are:

Riemann Sum:∫ b

a

f(x) dx ≈
(
b− a
n

)
[f(x0) + f(x1) + f(x2) + · · ·+ f(xn−2) + f(xn−1)]

Trapezoidal Rule:∫ b

a

f(x) dx ≈
(
b− a
2n

)
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−2) + 2f(xn−1) + f(xn))]

Simpson’s Rule:∫ b

a

f(x) dx ≈
(
b− a
3n

)
[f(x0) + 4f(x1) + 2f(x2) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn))]

NOTE: The pattern of coefficients in the Trapezoidal rule is 1, 2, 2, 2, · · · , 2, 2, 1
(each of the middle terms is a 2). In Simpson’s rule, the pattern is 1, 4, 2, 4, 2, 4, · · · , 2, 4, 2, 4, 1
where the middle terms start with a 4, alternate between 2 and 4, and end on
a 4 (important!!). This last fact forces n to be an even number for Simpson’s
rule to work.

Homework

Write a Matlab function with the following details.

• Name the function appropriately (mine could be siemerstj num methods)
• Comment the function appropriately including a description of the usage.
• The function should have three inputs a,b,n
• The function should have three outputs Rsum, Tsum, Ssum
• Once the function is run, a menu should appear with three choices of functions
to choose from:

x2, sinx,

√
1

2π
e−x2/2

• Once the user clicks on a function from the menu, the function should com-
pute the three approximations and output the values in a nice format (Hint:
use fprintf).
• If n is not even, then only the Rsum and Tsum should be displayed with a
message saying the Ssum could not be calculated.

Here is a sample run. Suppose I typed this :

>> [Rsum,Tsum,Ssum]=siemerstj num methods(0,1,6)

and then clicked on the x2 button in the menu. Then the output should be:

Rsum=.25463, Tsum=.3380, Ssum=0.33333

59

Chapter 8 Matlab: Applications

8.2 Matlab Traveling Salesman

A famous problem in mathematics is the Traveling Salesman Problem where
the minimum distance of traveling from a home city, through n cities and back
to the home city. In this program, you will simulate part of this problem.

Homework

You will write a Matlab function with the following details:

• Name the function appropriately (like siemerstjTravelingSalesman)
• Comment the function appropriately including a description of the usage.
• The function has one input (a matrix of locations of the cities) and no out-
puts.
• Once the function is run, a figure will appear with the cities indicated with
one type of symbol and the home city (at the origin) with another.
• The user will select cities one at a time with the mouse.
• Each time a city is selected, a line is drawn from the previous city with a
message of the city selected.
• Repeat until all cities are selected.
• Once the last remaining city is selected, a line is drawn back to the home city
and the total distance of the trip is displayed.

Code execution:

Suppose I enter siemerstjTravelingSalesman([1 1;2 2;3 10]).
Then the following picture chould appear. The “home base” plotted as a
green asterisk at the origin and the three cities are plotted at the coordinates
(1, 1), (2, 2), (3, 10). Note that the screen is a little larger so that the cities do
not fall on the edge of the plot (see either xlim\ylim or axes).

60

8.2 Matlab Traveling Salesman

When I click on the closest city (at (1, 1)), I now have

Click the next city...

Finish with the last city...

61

Chapter 8 Matlab: Applications

A few issues arise as you work through the code for this project:

1) Does the user have to click exactly on top of a city, or can you write the
code so that they can click close to the city (and how “close” is close enough?).
2) How do you keep the user from selecting the same city twice?
3) How do you make the text for one city “disappear” when the next city is
clicked? (see set command for one possibility).

62

Chapter 9

Matlab: Curve Fitting

In this section, we discuss how to fit various types of curves to data.

9.1 Matlab: Curve Fitting

The main commands for this section are polyfit, polyval and interp1.
Let’s begin with linear regression.

Example 38 Linear Regression

Plot a set of data:

>> x=0:5;y=[12,10,9,6,2,0];
>> plot(x,y,'o')

63

Chapter 9 Matlab: Curve Fitting

The data certainly seems to have a (downward) linear trend. We can find
the line of best fit as follows:
>>coeffs=polyfit(x,y,1);
>>besty=coeffs(1)*x+coeffs(2);

The command polyfit returns the matrix [-2.4857 12.7143] of the
slope and y-intercept of the line of best fit. The y values of this line correspond-
ing to x (from 0 to 5) are stored in the variable besty. We plot them together
using:

>>plot(x,y,'o',x,besty)

We often use regression lines to guess y values for x values that are not in-
cluded in the data set. For this, we use interpolation.

Example 39 Interpolation

Using the data from example 38, we would like to know the y value corre-
sponding to the x value 3.5. For this, we use the command interp1 (that’s
the number one on the end, not a lowercase for the letter L).

>> interp1(x,y,3.5,'linear')
ans =

4

We plot these together with the interpolated point indicated with a red tri-
angle.

plot(x,y,'o',x,besty,3.5,4,'r>')

64

9.1 Matlab: Curve Fitting

Note that if you try to use the interp1 function for data that is outside
the data set, you will get an error since you are trying to “extrapolate” instead
of interpolate.

>>interp1(x,y,10.5,'linear')

gives

ans =
NaN

This indicates that the answer is NaN or “Not a Number” (look it up in the
Help files).

Higher Order Polynomial Fitting

Let’s try fitting a fifth degree polynomial to the data in example 38.

Example 40

>> x=0:5;y=[12,10,9,6,2,0];
>> coeffs5=polyfit(x,y,5)

returns

coeffs5 =
-0.0167 0.3333 -2.0833 4.6667 -4.9000 12.0000

65

Chapter 9 Matlab: Curve Fitting

which are the coefficients for the approximating 5th order polynomial, namely
y = −0.0167x5 + 0.3333x4 − 2.0833x3 + 4.6667x2 − 4.9x+ 12.

We could type out the full polynomial, but there is a shortcut. We can use
the function polyval along with linspace to give a smooth approximating
curve.

>> x5=linspace(0,5);
>> y5=polyval(coeffs5,x5);

We plot the curves
>> plot(x,y,’o’,x,besty,x5,y5)

Interactive Fitting Tools

If you aren’t sure about the fit you want, you can use the interactive fitting
tools. We start again by closing any figure windows, clearing out the variables
and clearing the Command Window. A short cut to do this could be:

>> close all,clear,clc

Re-enter the data.

>> x=0:5;
>> y=[12,10,9,6,2,0];
>> plot(x,y,'o')

On the figure screen, go to the menu item Tools > Basic Fitting. This will

66

9.1 Matlab: Curve Fitting

launch a new window:

Now you simply have to select the polynomial(s) that you want to fit (try
a few!). You can even see the corresponding equations (and more) using the

big arrow button . If we select the “linear” and “5th degree polynomial”
check boxes, and the “Show equations” check box, we will see the equations on
the graph itself.

67

Chapter 9 Matlab: Curve Fitting

Chapter 9 Exercises

In all of the sections that require plots, make sure that your graphs are smooth, data
is represented as points (with markers) and both titles and labels are added appropriately.

1. The volume (in m3) and pressure (in kPa) of a gas at a constant temperature is
recorded in the table as

Volume Pressure

1 2494

2 1247

3 831

4 623

5 499

6 416

a. Use the polyfit and polyval commands to find the first, second, third,
and fourth-order approximating polynomials.

b. Plot the data from the table along with the curves that you found in part a.
Make sure the curves are smooth, the plot is well labeled and there is a legend
describing the different curves.

2. Resistance (in ohms) and current (in amps) are related through the equation I=V/R.
Data was collected from a circuit with unknown constant voltage and is shown in
the table.

Resistance(R) Current(I)

10 11.11

15 8.04

25 6.03

40 2.77

65 1.97

100 1.51

a. Plot R (x-axis) versus I (y-axis) as data points. What kind of relationship do
you see?

b. Plot 1/R (x-axis) versus I (y-axis) as data points. Now, what kind of rela-
tionship do you see?

c. Use polyfit to calculate the slope and intercept of the line in part b. What
does the slope of the line represent?

d. Use interp1 to approximate the current when the resistance is 80 ohms.

e. Create a new plot with the data points from part b, a line with slope and
intercept from part c, and the interpolated point (with a different symbol)
from part d. Label and title appropriately.

Problems continue on the next page...

68

9.1 Matlab: Curve Fitting

3. Suppose that a population, P, grows over time, t, according to exponential growth
with the following data.

Time(years) Population(thousands)

1 1.61

2 2.51

3 2.17

4 6.14

5 6.81

6 17.53

7 16.36

8 25.04

9 39.61

10 55.50

We have that the population is therefore growing according to the equation P =
P0e

kt. Taking a logarithm, we can convert this into ln(P) = ln(P0)+kt (i.e. ln(P)
is linear in t).

a. Plot the data with t on the horizontal axis and ln(P) on the vertical axis.

b. Use the polyfit and polyval functions to find the slope and intercept and
add the regression line to the plot in part a.

c. Find the values of P0 and k and, in a second figure, plot the original data
along with the curve P = P0e

kt.

69

Chapter 10

Mathcad: Introduction

In this chapter, we discuss the basics of Mathcad.

10.1 Mathcad: Introduction

Let’s dive right in and take a look at Mathcad. The first thing you notice that
the screen looks like a blank sheet. In fact, the vertical lines define the edges of
how the document would be printed.

To enter information in a certain place, you can (left) click there and start
typing (try it!).

Mathcad provides for a nice blend of text and mathematics, including equa-
tions, data and graphs. There is also a good balance between using toolbar
buttons and the flexibility of entering commands, for those who like “command
line” type languages.

In general, Mathcad is inexpensive, easy to learn & use and provides for
readable documents. Mathcad handles units and unit conversions very well
with a large, built-in list of units. There are many reference tables available
including: Basic Science constants, Calculus Formula, Geometric tables, Me-
chanics, Electromagnetics, and Properties of Liquids, Solids, Gases & Metals.
Mathcad has both the ability to combine numerical and symbolic capabilities.

As for Mathcad’s weaknesses, programming is awkward. Also, while it can
combine both the ability to do numerics and symbolics, there are packages that
do these better individually, like Matlab for numerical calculations and Mathe-
matica for symbolics.

HOMEWORK ASSIGNMENT RULE:

When you turn in your assignments, you must provide a header file. To
create one, simply click near the top left corner of the page and start typing;
you will be put into text mode as you type the first word and a space.

An example for the first homework may look like:

70

10.1 Mathcad: Introduction

Name: Troy Siemers
Assignment: Mathcad Chapter 10 and 11
Course: MA110
Date: <fill in>
Description: In this file we investigate the overall layout of Mathcad and how
the toolbars are used.

We refer you to the help files for additional information. There are helpful
“Quick sheets” that give tutorials on many subjects.

71

Chapter 11

Mathcad: Entering
Equations

In this section, we learn about different uses of the equal sign, entering and
editing equations, using the blue guidelines, formatting output, highlighting,
alignment of equations, and working with units.

11.1 Mathcad: Equations

There are often many ways to access tools in Mathcad: through a menu at the
top of the screen, a toolbar, a right click with the mouse, or a shortcut keystroke.

Entering Text

To enter simple text anywhere on the screen, click at the desired spot (a red
plus sign will appear) and do one of the following:

• Type “ (the region will become a text region). Then type your text.
• Use the menu: Insert > Text Region
• Start typing text (the region will become a text region after the first word).

Different uses of the equals sign

To enter equations in Mathcad, it is a bit trickier. There are in fact FOUR
different ways to use an equals sign (these will be explained soon):

• The evaluation equals sign (=)
• The assignment equals sign (:=)
• The symbolic equals sign ()
• The global equals definition (≡)

72

11.1 Mathcad: Equations

Evaluation Equals Sign (=)

Mathcad can be used as a simple calulator. To compute 1 + 1, 210, or 50.5,
we type these, as one might expect, in the normal way and then type =.

1 1 2

2
10

1.024 10
3

5
0.5

2.236

For a few more advanced computations, we can try cos(π), sin(90◦),
√

5, and

ln

(
1

2

)
.

cos() 1

sin 90deg() 1

5 2.236

ln
1

2
0.693

Creating the symbols in these calculations can be done in many ways! The
trigonometric and natural logarithm are simply typed in as sin, cos and ln. The
symbol for pi can be created from the Greek toolbar, or with the shortcut key
ctrl+shift+p (or type p followed by ctrl+g). Note that the default is radian
mode for the trig functions, but if you want degrees, type the word deg inside
the trig function (just as it appears). To get a fraction, type 1, backslash and 2
(the format of the fraction and size of the parentheses are automatically done
by Mathcad). To get the square root symbol, use the calculator toolbar (or
shortcut key \).

We especially encourage the reader to explore the toolbars, menus, keyboard
shortcuts, mouse clicks, help files, etc. That’s how we learned a lot of Math-
cad’s functionality. Also, if there is something that you can’t figure out, try
your favorite internet search engine. We do.

73

Chapter 11 Mathcad: Entering Equations

Assignment Equals Sign (:=)

It is often useful to assign values to variables that can be used later. This is
done with the assignment equals sign, created not by using the = key, but by
typing a colon (:).

For example, suppose we wanted to find the area of a circle of radius 5 meters.
We could of course do the calculation “pi r squared” but we will instead store
the value 5m in the variable radius and then compute and store the area in
the variable Area. Make sure to type a colon instead of = in order to get the
symbol :=.

radius 5m

Area radius
2

Note that with the assignment equals, you don’t see the actual value of
Area. To see the actual value, you need to either put in an additional line

radius 5m

Area radius
2

radius 5m

Area radius
2

Area 78.54m
2

(where the second equation with the variable Area does use the = sign) or
type an additional equals sign (=) at the end of the line defining Area

radius 5m

Area radius
2

78.54m
2

74

11.1 Mathcad: Equations

Symbolic Equals Sign ()

The symbolic equals sign (an equals sign appearing in bold font) is used in
setting up an equation without actually providing any values for the variables.
For example, in computing the area of a circle, we may not necessarily know
the value of the radius, but want to use the equation “A equals pi r squared.”
If we try to enter this with the assignment equals (without providing the radius
value), we get an error (the variable radius is in red).

 Area radius

2
radius

To fix this, we use the symbolic equals sign (a bold equals sign) by typing
Ctrl + =.

Area radius

2

One reason for using the symbolic equals is that you might want to later
solve (symbolically) for the radius in terms of the area. We will show how to
do this and give more reasons why you might want to use the symbolic equals
sign in later sections.

Global Equals Definition (≡)

Consider the following example:

Area radius
2

radius

radius 5m

Why is the word radius in red? All of the parts of the computation are
present, but for Mathcad, this is not enough. The order of the computations is
important (as we will discuss further). Mathcad computations have the order
“left to right, top to bottom” meaning that any variable used in a calculation
must be defined previously (either higher up on the page, or to the left on the
page). There is one exception to this rule - the global equals definition. The
global equals definition is created using the tilde (∼) symbol. A variable that

75

Chapter 11 Mathcad: Entering Equations

is defined with the global equals definition can be used in any other equation,
regardless of its location on the page.

Area radius
2

radius 5m

Also, if a variable is defined globally, that does not mean that it will override
another definition of the same variable, for example consider

x 3 2x 6

x 7

x 2 x
2

4

Here we see that even though x is globally defined to be 7, the top line
computation of 2x is using x equal to 3 and the bottom line computation of x2

is using x equal to 2.

We strongly suggest against using the global equals definition. Finding errors
in equations can be difficult enough without having to worry about possible
miscalculations due to a globally defined variable.

76

11.2 Mathcad: Editing Equations

Key Idea 3 Variable Names

In deciding on variable names, consider the following:

• Variable names cannot begin with a number.

• Use descriptive names such as “Area” instead of
simply A

• Try not to use variable names for predefined Mathcad
units, like m (meter), c (speed of light), K (degrees
Kelvin), etc. If you try to do so, the variable will be
marked with a green squiggly line as a reminder.

11.2 Mathcad: Editing Equations

Once an equation is entered, editing it can be tricky. We recommend first read-
ing the help file under

Contents > Getting Started > Entering and Evaluating Expressions > Edit-
ing an Expression.

Here we give a few pointers, but also suggest plenty practice and trial-and-
error.

Blue Guidelines

As you type, you should notice a pair of blue lines appear and change size as
you enter the expression, one as an underline and one as a vertical line. This pair
of guidelines indicates the insertion point if you were to type something new.
In order to move the blue guidelines to the desired spot you can try the following

• Using the spacebar

Each time the spacebar is depressed, the blue guidelines increase in length
and enclose more of the equation for editing. Try it.

• Using the arrow keys

You can scroll through an equation using the left and right arrow keys. With
the up and down arrow keys, you can move between exponents and subscripts.

77

Chapter 11 Mathcad: Entering Equations

Give it a shot.

• Using the insert key

Using the insert key, you can move the vertical blue guideline to the opposite
side of the horizontal blue guideline. Once, again, you’ll figure it out by trying it.

Using the mouse

You can of course use the mouse to click within an equation or to move
selected equation blocks.

To edit within an equation, click at the desired location in the equation. If
you want to select a variable name, try double clicking on the variable name, or
highlighting it with the usual click-and-drag.

To select multiple equations into a block that can be moved or aligned,
click and hold at a location outside the equation and drag the dotted box that
appears to include the desired equations. Once the mouse button is released,
the selected equations can be moved by putting the mouse cursor over one of
the selected boxes (a small hand should appear), then click and move the entire
block to the desired location.

To align a selected block of equations, do one of the following:

• Use the menu: Format > Align Regions > (either Across or Down)
• Click on the align Across or align Down button (as pictured).

Other Customization of Equation Blocks

One of Mathcad’s strengths is the ability of the user to make the work sim-
ply look nice. Combining text and equations along with graphs is easy to do.
In addition, you can customize your equations in a number of ways

• Highlighting the equation

This is useful to make parts of the sheet stand out. If you right click on
an equation, you can select Properties. From there, you can select “Highlight
Region” (and select a color) or “Show Border” (around the equation).

78

11.3 Mathcad: Units

• Formatting the result

Under the menu Format > Result, you can set the number of decimal places,
change the “Number format” (Decimal, Scientific, Engineering, etc.), “Display
Options” (useful for tables and matrices) and customize how units are shown
in “Unit Display.” You can also double click any evaluated equation to get this
dialog box.

11.3 Mathcad: Units

A very powerful part of Mathcad comes from its ability to handle units and
unit conversions. When entering an equation, you can access the complete set
of units under the menu at Insert > Units

or if you know the name of the unit, you can just type it in:

Volume 34gal

Volume 128.704L

Distance 10ft

Distance 3.048m

79

Chapter 11 Mathcad: Entering Equations

In this example, we entered the first and third lines exactly as they look,
using the colon to make the assignment equals sign := and typing the letters
“gal” and “ft”. In the second and fourth equations, we used the evaluation
equals sign = to calculate. Note that Mathcad automatically calculates using
metric units as a default.

To keep an expression with a specific unit, consider the following example
where we want the final answer in feet. We want to calculate the distance
travelled by an object moving at 10 feet per second for 15 minutes. We enter
the corresponding variables using the assignment equals in defining Velocity,
Time and Distance. But, in the fourth line, when we use the evaluation equals,
Mathcad automatically converts Distance to meters. To adjust this, first, click
at the end of the line where Distance is computed. A small black box appears
that we select...

... type ft in the box:

... and hit return:

80

11.3 Mathcad: Units

Chapter 11 Exercises

1. For each part, define appropriate variables and complete the conversions.

a. Gravity on earth from 9.80665m/s2 to ft/s2.

b. Speed of light from 299, 792, 458m/s to mph and also to miles per second.

c. Length of the marathon from 26 miles, 385 yards into kilometers.

d. KFC Original Recipe Double Down from 610 calories to Joules.

2. The volume of a truncated pyramid with a square base is given by V = 1
3
(a2 +ab+

b2)h where h is the height, a is the length of one of the sides of the base and b is
the length of the sides of one of the top (also a square).

a. Find the volume if a = 5ft, b = 3ft, h = 10ft by first defining a, b and h as
separate variables and then defining V in terms of them.

b. In part a, the solution is probably in liters. Convert the answer to ft3.

3. In this problem, you will use the quadratic equation.

a. Using the bold equals sign (a symbolic equals), write out the general form of
a quadratic equation ax2 + bx+ c 0.

b. Using the bold equals sign in each case, write out both possible solutions to

the quadratic equation. Recall: x
−b±

√
b2 − 4ac

2a
.

c. Define a = 1, b = 6 and c = 5 and actually compute both x values that are
solutions to ax2 + bx+ c = 0.

d. What are the solutions to the quadratic equation when a = 1, b = 2 and
c = 2. Explain what’s going on.

4. In this problem, you will see part of Cardano’s formula for solving a cubic equation.

a. Using the bold equals sign (a symbolic equals), write out the general form of
a cubic equation ax3 + bx2 + cx+ d 0.

b. The “discriminant” of the cubic equation in part a is defined as

∆ 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2

Using symbolic equals & Greek toolbar write this equation in your worksheet.

c. Existence of solutions to the cubic equation will depend on the value of ∆ in
part b. In one particular case, it is important that ∆ be negative. In the case
that a, b, c and d all have value 1, show that ∆ is negative. First define a
through d and then write ∆ in terms of them.

d. When ∆ is negative (like in part c), one solution is (all one line):

x = − b

3a
− 1

3a
3

√
1

2

[
2b3 − 9abc+ 27a2d+

√
(2b3 − 9abc+ 27a2d)2 − 4(b2 − 3ac)3

]
− 1

3a
3

√
1

2

[
2b3 − 9abc+ 27a2d−

√
(2b3 − 9abc+ 27a2d)2 − 4(b2 − 3ac)3

]
In the case where a, b, c and d are all 1, compute this root. (Hint: Try using
ctrl + Enter in the middle)

E.C. What are the other two roots? (Hint: Look at the Mathcad “factor” function).

81

Chapter 12

Mathcad: Given/Find and
Solve

Here we investigate using “given/find” and “solve” blocks for solving equations
or systems of equations.

12.1 Mathcad: Given/Find Blocks

given/find block

We illustrate this through the following example.

Example 41 Solve 2 = x4 + 3x2 − 1.

In the worksheet, the syntax is

given
2 x4 + 3x2 - 1 (Use ctrl + = for bold symbolic equals sign)
guess
x := 1
x := find(x)
x =

The last line will show x = 0.89 once the equals sign is entered. The line
x := find(x) solves for x and then stores it back as the variable x. For full de-
tails, the guess of x := 1 provides the “seed” for the Newton-Raphson algorithm
(Google it). Try changing the seed value to see what happens. For example, if
we start with x := −1 we end up with a different answer, namely x = −0.89.

The given/find process can be extended to solving systems of equations as
well as in the next example:

82

12.1 Mathcad: Given/Find Blocks

Example 42 Simultaneously solve a+ b = 3, a− b = 4 for a, b.

In the worksheet, using ctrl + = for bold symbolic equals sign, the syntax is

given
a+b 3
a-b 4
guess
a := 1
b := 1
find(a,b)=

Once, you hit return on the last line, it will become

find(a,b)=
(

3.5
−0.5

)
So, the solution is a = 3.5, b = −0.5.

The given/find capabilities are not limited to linear equations as can be seen
in the next example.

Example 43 Simultaneously solve t4 + r3 = 1 and r − t2 = −2

In the worksheet, using ctrl + = for bold symbolic equals sign, the syntax is

given
t4 + r3 1
r − t2 −2
guess
r := 1
t := 1
find(r,t)=

Once, you hit return on the last line, it will become

find(r,t)=
(
−0.783
1.103

)
So, one solution is r = −0.783, t = 1.103. Note that this is not the only solution.
Can you change the seed (or “guess”) values to get the rest of the solutions?

83

Chapter 12 Mathcad: Given/Find and Solve

12.2 Mathcad: Solve Blocks

solve block

To use the solve block, first open the symbolic toolbar. We show how to
solve the example 41 with this new technique.

Example 44 Solve 2 = x4 + 3x2 − 1.

In the worksheet, using ctrl + = for the bold symbolic equals sign and click-
ing on the word “solve” in the symbolic toolbar, the syntax is

2 x4 + 3x2 - 1 solve, x →

Once you hit return, it will look like:

2 x4 + 3x2 - 1 solve, x →

−
√
−1

2

√
21− 3

2√
−
√

21

2
− 3

2

−
√
−1

2

√
21− 3

2√√
21

2
− 3

2

If you type an equals sign on the end of the last line, it will become:

2 x4 + 3x2 - 1 solve, x →

−
√
−1

2

√
21− 3

2√
−
√

21

2
− 3

2

−
√
−1

2

√
21− 3

2√√
21

2
− 3

2

=

−1.947i
1.947i
−0.89
0.89

Note that two of these solutions are not real valued. Also, it is proper syntax
to leave off the “, x” after the word solve as Mathcad will solve for the only
variable present by default. That is,

2 x4 + 3x2 - 1 solve →

will still give the same solution.

The solve block can be extended to equations with multiple variables as seen
in the next example.

84

12.2 Mathcad: Solve Blocks

Example 45 Solve 1 =
x2y

x2 + y2
for each variable

Using the bold equals and the word “solve” from the symbolic toolbar, the
syntax is:

1
x2y

x2 + y2
solve, x →

Once you hit return, it will look like:

1
x2y

x2 + y2
solve, x →

− y√

y− 1

y√
y− 1

and

1
x2y

x2 + y2
solve, y →

Once you hit return, it will look like:

1
x2y

x2 + y2
solve, y →

 x(x +
√

x2 − 4)

2
x2

2
− x
√

x2 − 4

2

85

Chapter 12 Mathcad: Given/Find and Solve

Chapter 12 Exercises

1. In this exercise, we apply both given/find and solve techniques to a quadratic equa-
tion.

a. Use the solve command to find the solutions to x2 + 5x+ 6 = 0.

b. Create a given/find setup for the equation x2 + 5x + 6 = 0 similar to the
example at the beginning of this section. Find the value of x using the different
the seed values 10,−5 and −2.5. What is special about the seed value −2.5?

2. The volume of a truncated pyramid with a square base is given by V = 1
3
(a2 +ab+

b2)h where h is the height, a is the length of one of the sides of the base and b is
the length of the sides of one of the top (also a square).

a. Use the solve command to isolate the variable b in terms of V, a and h.

b. If b = 1ft, h = 10ft and V = 100ft3, use a given/find block (and a guess for
the value of a) to find the value of a. Make sure your answer is in feet.

3. In the exercises for chapter 2 there is an exercise dealing with the theory of splines
in which you are to find values S1, S2, S3, S4 and S5. Using the equations from that
exercise, set up a given/find block to solve for the S values if the initial guesses are
S1 = S2 = −100 and S3 = S4 = S5 = 0.

4. Using a given/find block to find the points of intersection between the circle of
radius 2 centered at the origin and the line of slope 1 and y-intercept 1. You will
have to adjust your initial guesses to get all of the solutions.

86

Chapter 13

Mathcad: Functions

In this section, we learn about functions. Mathcad has a large library of built-
in functions (logarithms, trigonometric functions, statistical functions, etc), but
we can create new functions as well.

13.1 Mathcad: Built-in Functions

To access the complete list of built-in functions in Mathcad, use the menu with
Insert > Function or type Ctrl + e.

87

Chapter 13 Mathcad: Functions

Selecting a “Function Category” (left side of the dialog box) will restrict the
list under “Function Name” (right side of the dialog box) for easier searching.
A description of the highlighted function’s output will appear in the lower part
of the dialog box.

A few special functions that one might use often:

• Square root

The square root function can be created either using the Calculator toolbar
or by simply typing \. To create an nth root, also in the Calculator toolbar,
the shortcut key is Ctrl + \.

• Absolute value

Both bars in the total absolute value symbol are created at the same time
when selected from the Calculator toolbar (the |x| button), or by typing the
vertical bar | (located on your keyboard above the Enter key - it looks like two
stacked bars, but will create one solid vertical bar).

Key Idea 4 Absolute Value versus Matrix Determinant
If you already know about determinant of matrices:
The determinant and the absolute value look exactly
the same on the page (both are |x|) and both are cre-
ated using the same keyboard shortcut key (the vertical
bar |)!
If you have an error using the vertical bars, it could be
that you are either trying to take the absolute value of
a matrix (not allowed), or the determinant of a num-
ber (not allowed either). You have to be very careful
as to the context of your problem in using these two
functions!

13.2 Mathcad: User-Defined Functions

User-Defined Functions

Sometimes you will need to create your own function in Mathcad, perhaps
for repeated use throughout a worksheet. The syntax looks very similar to the
way a function might appear in a math textbook. The function name is followed
immediately by the input variables (in parentheses and separated by commas),
a definition equals sign (colon), and then the expression in terms of the input

88

13.2 Mathcad: User-Defined Functions

variables. When the function is executed, the input variables are replaced with
constants, including units as desired, and followed by the evaluation equals sign.
Consider the following example.

Example 46 Create a function for the volume of a cylinder

The function, called Volume, is defined in terms of the variables radius and
height (don’t forget to use the assignment equals, created with a colon :).

Volume(radius,height):=π radius2 height

The symbol for π can be created on the Greek toolbar, or with the keyboard
shortcut Ctrl + Shift + p. Now, when we want to compute with the function,
we substitute values for radius and height (including any unit) into the function

Volume(2ft,3ft):= 1.068× 103 L

or

Volume(500cm,2000cm):= 1.571× 106 L

Note that Mathcad converts to the metric unit L (liters) as default.

89

Chapter 13 Mathcad: Functions

Chapter 13 Exercises

1. The volume of a truncated pyramid with a square base is given by

V =
1

3
(a2 + ab+ b2)h

where h is the height, a is the length of one of the sides of the base and b is the
length of the sides of one of the top (also a square).

a. Create a function in Mathcad for the volume in terms of a, b and h.

b. Use the functon in part a to compute the volume for the values a = 5ft, b =
3ft, h = 10ft. The answer should be in corresponding cubic units.

c. Use the functon in part a to compute the volume for the values a = 1m, b =
0.5m,h = 2m. The answer should be in corresponding cubic units.

2. A uniform beam is freely hinged at its ends x = 0 and x = L, so that the ends are
at the same level. It carries a uniformly distributed load of W per unit length and
there is a tension T along the x-axis. The deflection y of the beam a distance x
from on end is given by

y =
W · EI
T 2

[
cosh [a(L/2− x)]

cosh(aL/2)
− 1

]
+
Wx(L− x)

2T

where a2 = T/EI , E is Young’s Modulus of the beam and I is the moment of
inertia of a cross-section of a beam.

a. Create a function y in terms of all of these variables.

b. Use the function from part a to compute y if the beam is 10m long, the tension
is 1000N , the load 100N/m and EI is 104, and x is 5m. Note that cosh may
have trouble with units, but make sure to give the units of your answer.

3. Two blocks of masses m1 and m2 are connected by a string over a smooth pulley as
shown. Assume that m2 > m1. If the coefficient of friction is µ and r = m1/m2,
then the masses will move at a constant speed (m2 slides down the slope) if the

angle θ is given by cos(θ) =
−µr +

√
1− r2 + µ2

1 + µ2
.

θ

m2

m1

a. Create a function for θ in terms of the other variables.

b. Use the function in part a. to find θ if m1 = 5kg,m2 = 10kg, and µ = 0.6.

c. Use a solve block to find µ if m1 = 5kg,m2 = 10kg, and θ = 30◦.

90

Chapter 14

Mathcad: Matrices

In this section, we learn about matrices. We discuss how to input matrices,
alter existing matrices, and use them in computations. We use such functions
as inverse, determinant, and transpose. We show how to select specific rows,
columns or entries in a matrix and how to use matrices in solving systems of
equations.

14.1 Mathcad: Matrix Definition

We begin with showing how to input a matrix into a Mathcad worksheet.

Entering matrices and basic operations

First, open the matrix toolbar with File > Toolbars > Matrix:

and select the button in the upper left corner to launch the “Insert
Matrix” dialog box:

91

Chapter 14 Mathcad: Matrices

Input the desired number of rows and columns and click on “Insert”. This
creates a template of the correct size that you can use for your matrix. Note
that as you enter numbers in the black boxes, you can move to the next black
box with the Tab key, or between the entries with the arrow keys.

Let’s try an example.

Find the sum and the product of the matrices

 1 2 4
0 −1 7
1 1 1

 and

 2 0 0
3 −3 1
7 8 9

We input the matrices and store them as variables a and b. Here we see

them partially filled in:

The sum and product of the resulting matrices are done using the standard
plus + and times ∗ (which appears as a dot):

92

14.2 Mathcad: Editing Matrices

14.2 Mathcad: Editing Matrices

There are many different ways to alter an existing matrix. In these examples,
note that we don’t use the variable c since that is the built-in variable for the
speed of light (although we could redefine c, there is no need to do so and it is
generally a good idea not to overwrite the built-in variables).

• Augmenting a matrix by another matrix (side-by-side)

If two matrices have the same number of rows, we can create a new matrix
with the command augment:

93

Chapter 14 Mathcad: Matrices

• Stacking two matrices

If two matrices have the same number of columns, we can create a new ma-
trix with the command stack:

• Inserting a row or column

To insert new row(s) or column(s) to an existing matrix, select an entry of
the matrix. The inserted row(s) or column(s) will appear below or to the right

of the selected entry. Then click the button. Change the entries for the
desired number of rows and columns and click “Insert”. If you only want to
insert a single row, set the number of columns to zero. If you only want to
insert a single column, set the number of rows to zero.

Before inserting a column and after

a

1

0

1

2

1

1

a

1

0

1

2

1

1

New rows are inserted below a highlighted row and columns are inserted to
the right of a highlighted row. If you want to insert a new first row or column,

you need to select the whole matrix before using the button and making
the insertion.

• Deleting a row or column

The process of deleting rows or columns is similar to making insertions. To
delete rows or columns from an existing matrix, select an entry of the matrix.

94

14.3 Mathcad: Referencing Parts of Matrices

The deleted rows) or columns will contain that entry and delete rows below and

columns to the right. Then click the button. Change the entries for the
desired number of rows and columns and click “Delete”.

14.3 Mathcad: Referencing Parts of Matrices

Sometimes you may need to use part of a matrix: an entry, a row, a column, or a
submatrix inside another matrix. You must be very careful in referencing parts
of a matrix, since the default for the starting index is zero!! This means that the
“first” row of a matrix is referenced as if it was “row zero”. The start index is
stored in a variable called ORIGIN and can be changed for a worksheet in two
ways, either by using Tools > Worksheet Options (and changing ORIGIN) or
by typing ORIGIN:=1 at the top of the worksheet.

• Referencing one entry in a matrix

To select a single number out of an existing matrix, one can use the “sub-
script” operator from the matrix toolbar (the xn button), or with the [key.
Here we select the entry in the 2nd row and 2nd column by resetting the ORI-
GIN to 1 and defining b from the matrix a.

Note that if a matrix has only one column (a “column vector”) or a single
row (a “row vector”) then only one subscript is necessary.

95

Chapter 14 Mathcad: Matrices

• To reference one column in a matrix

To select a single column out of an existing matrix, one can use the “Col-
umn” operator from the matrix toolbar (the M<> button), or with the keyboard
shortcut Ctrl +6. Here we select the 2nd column by resetting the ORIGIN to
1 and defining b from the matrix a.

• To reference one row in a matrix

It is trickier to select a single row out of an existing matrix. One must use
a combination of the “Transpose” operator (that switches rows and columns)
together with the “Column” operator. The transpose operation on the matrix
toolbar is the MT button and can also be created with the keyboard shortcut
Ctrl +1. Here we select the 2nd row by resetting the ORIGIN to 1 and defining
b from the matrix a. Typing this is a bit tricky. The exact sequence of keys is

b : a (Ctrl + 1) (Ctrl + 6) 2 (spacebar) (Ctrl + 1) =

96

14.4 Mathcad: Solving Systems of Linear Equations

• To reference a submatrix

Selecting a submatrix from an existing matrix is done only through the com-
mand submatrix. Here we select the submatrix using the 2nd through 4th rows
and 2nd through 3rd columns from the matrix a.

14.4 Mathcad: Solving Systems of Linear Equa-
tions

Suppose we have the following system of linear equations.

97

Chapter 14 Mathcad: Matrices

3w − x+ y + z = 3
−x− y + 3z = 1

5w + 3x− y − z = −1
2w + 2x− y = 0

The goal is to solve them simultaneously for the variables w, x, y and z. As-
suming that there is exactly one answer (i.e. one quadruple for w, x, y, z) then
there are many ways to do this. Here we use rref, lsolve and the matrix inverse
as examples.

• rref

The command rref is short for “reduced row echelon form.” Through a pro-
cess called Gaussian elimination the matrix of coefficients (on w, x, y, z) aug-
mented by the matrix of constants (the numbers on the right of the equals
signs) is reduced to a matrix of zeros and ones (the “identity matrix”) together
with the solution (in the last column). In the matrix a, we store the cofficients
for w in the first column, x in the second column, y in the third column, z in
the fourth column and the constants in the fifth column. If a variable does not
occur in an equation, a zero is in the corresponding entry of the matrix a.

The last column indicates that the only solution to the system of equations
is w = −0.286, x = 2.143, y = 3.714, z = 2.286 to three place decimal accuracy.
Recall, for more decimal places, select Format > Result or simply double click
the equation.

98

14.4 Mathcad: Solving Systems of Linear Equations

• lsolve

To use the command lsolve, we need two separate matrices, one with the
coefficients of w, x, y, z and one with the constants to the right side of the equals
sign. We could input this from scratch or practice referencing them from the
matrix a above. Here is the syntax for how to use the lsolve command.

The variable answer contains the only solution to the system of equations as
w = −0.286, x = 2.143, y = 3.714, z = 2.286.

• Using the matrix inverse

The setup for the using the inverse of a matrix is similar as for using lsolve.
We need the coefficient matrix of w, x, y, z and the constant matrix. The inverse
of a matrix is found by typing the name of the matrix and then selecting the
x-1 button. When entering the equation for the variable answer, make sure
that b is multiplying correctly. Here is the sequence of commands:

answer : A x−1 (spacebar) (spacebar) b =

99

Chapter 14 Mathcad: Matrices

The variable answer contains the only solution to the system of equations as
w = −0.286, x = 2.143, y = 3.714, z = 2.286.

You might be wondering “if there are several methods to find the solution,
then which technique should you use?” The answer is (of course) more complex
than we will go into here, but leave it to say that some techniques are faster or
more accurate than others. In fact if a system is either “non-square” (has a dif-
ferent number of equations and variables) or the coefficient matrix is “singular”
(look it up) then the lsolve and inverse techniques don’t work and in this case
the system of equations either has no solution (“inconsistent”) or has infinitely
many solutions (“underdetermined”). Ok, enough theory.

100

14.4 Mathcad: Solving Systems of Linear Equations

Chapter 14 Exercises

1. Consider the following matrices.

H5 =

1 1/2 1/3 1/4 1/5

1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9

M3 =

 0 1 0
0 0 1
1 0 0

 A =

1 −1
0 2
3 5
10 4

a. Find det(H5), det(M3) .

b. Find H2
5

c. Find H−1
5 ,M−1

3 .

d. AugmentA with itself to form a new matrix (calledB) and then find det(B), B2

and B−1.

e. Find M2
3 ,M

3
3 ,M

4
3 and M5

3 . What is the pattern you see? What is M20112011
3 ?

2. A square matrix A is called nilpotent if some power of the matrix is equal to the
zero matrix, i.e. An = 0 for some integer n. The smallest such n is called the
degree of A. Consider the matrix

A =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

a. Show that A is nilpotent, and find its degree.

b. The eigenvalues of any nilpotent matrix are all zero. Confirm this by finding
the eigenvalues of A.

c. Find a matrix that is nilpotent with order 10.

E.C. Give (or describe) a matrix that is nilpotent with order 2011.

3. The L2 condition number of a matrix is given by the 2-norm of the matrix times
the 2-norm of the inverse of the matrix (written ||A||2 · ||A−1||2)

a. Find the condition number of H5 from problem 1. Look in the help files for
the correct command.

b. Find a value of x so that the following matrix C has L2 condition number as
close to 100 as possible. Guess and check.

C =

 x 2 2
2 2 2
2 2 x

101

Chapter 14 Mathcad: Matrices

4. In computing an approximating function for a set of data, a spline is often used. The
theory of splines is covered in numerical analysis, but for a specific data set, the following
system of equations must be solved.

0.28S1 + 0.1S2 = −64.65
0.1S1 + 0.34S2 + 0.07S3 = −54.81

0.07S2 + 2.16S3 + 1.01S4 = −8.43
1.01S3 + 2.58S4 + 0.28S5 = −7.92

0.28S4 + 1.42S5 = −2.78

Find the values for S1 through S5 by solving this system in three ways:

a. Using the command rref.
b. Using the command lsolve.

c. Using the matrix inverse.

102

Chapter 15

Mathcad: Graphing

Here we investigate the graphing capabilities of Mathcad.

15.1 Mathcad: Graphing

Graphing is a great way for interpreting technical and scientific data. Two ar-
eas will be discussed: 1) graphical presentation of data, 2) graphical analysis.
Mathcad provides several graphing options.

The easiest way to begin a plot is to use the graphing toolbox.
OR
Use the menu options Insert/Graph/X-Y Plot
OR
Shortcut [Shift + 2]

The toolbar looks like

and clicking on the first button creates a blank plot

103

Chapter 15 Mathcad: Graphing

There are six place holders in the empty graph. The centered place holders
are used for x-coordinate and y-coordinate data and the other four are for the
x and y bounds.

Example 47

An engineer is testing a new material to find its modulus of elasticity, defined
as the stress over the strain (or N/m). Plot the data given F vs. δ.

F :=

2
4
6
8
10
12
14
16
18
20

· kN δ :=

0.82
1.47
2.05
3.37
3.75
4.17
5.25
5.44
6.62
7.97

· mm

104

15.1 Mathcad: Graphing

If you wish to make any plot bigger, click on the plot. Grab the bottom
right hand handle with the mouse and drag it to make it larger.

If you want to reposition a plot, click on the plot, point to the outside edge
of the area until you see the hand, hold the mouse button down and drag the
plot to a new location.

Note: Mathcad always plots in base units. So the plot in example 47 is in
Newtons for the F and in meters for the δ. Here we show the enlarged plot with
the units removed. As you see the plot now shows the values in the above tables
with a unit on the axis. The center place holders have the data value divided
by the unit F/kN and δ/mm.

However, in example 47 suppose we really want to see just the data points,
not the connecting lines. To do this, double click the graph to bring up the
formatting dialog box.

105

Chapter 15 Mathcad: Graphing

Go to the TRACES tab to add a symbol and remove the line. As you can
see from the other tabs in this dialog box, you make many changes to the way
the graph is formatted. A possible, reformatted graph appears below.

How about plotting multiple curves on the same plot? We demonstrate this
in the following example.

106

15.1 Mathcad: Graphing

Example 48

Begin by entering the data for the variables Time, Distance1 and Distance2.

Time :=

0
1
2
3
4
5
6

Distance1 :=

0
4.9
19.6
44.1
78.4
122.5
176.4

Distance2 :=

5
19.8
76.8
153.3
256.2
394.5
559.2

Open a new plot and put Time in the x-axis. For the y-axis, enter Distance1

and then type a comma (important!!). This will move you to a new line where
you can type Distance2. When you are done, click outside the graph to see the
plot. To customize the plot, double click the plot and use the Formatting dialog
box. See if you can match the plot below:

If you want to see a plot of a predefined function, you can use a Quickplot.

Example 49

Simply open a new plot, enter the variable x on the x-axis and a function,
say sin(x) on the y-axis. The default plot has x from -10 to 10.

107

Chapter 15 Mathcad: Graphing

In example 49 if you want to change the x values, first single click on the
plot. The numbers -10 and 10 appear at the bottom. One at a time simply click
on them and type in the new values 0 and 2π (using the Greek toolbar).

Now for a more advanced example...

108

15.1 Mathcad: Graphing

Example 50

Here is the vibration response of a damped signal of freedom system to a step
input.

with resulting plot:

The last example may be difficult to reproduce. Mastering how to input all
of these parts into Mathcad takes time. Be patient.

109

Chapter 15 Mathcad: Graphing

Chapter 15 Exercises

1. The double logistic curve is defined by

y1(x) = sign(x− 5) ·

(
1− exp

[
−
(
x− 5

50

)2
])

and a scaled logistic curve is defined by

y2(x) =
5

3 + 3 exp
(
− x

10

) − 5

6

a. Plot y1(x) and y2(x) on the same graph (adjusting x from −100 to 100).
Format y1(x) as a thick dotted line and y2(x) as a thick dashed curve. Add
an appropriate title.

b. Use the trace functionality (right click on the graph) to find when each plot
reaches a y value of 1

2
. Write a sentence below the plot giving this information.

E.C. Use solve or given/find blocks to check your answers to part b.

2. Enter the Analemma data from the exercise in chapter 4 into a table. Plot the
table using the matrix column button to plot one column on the x-axis and one on
the y-axis. Make sure to adjust the data so the plot is a closed figure and add an
appropriate title.

3. In this exercise, you will plot some parametric equations for t from 0 to 6π.

a. First set t by using the range variable (which is both on the matrix toolbar or
just type the semicolon). Make sure to use a small step size to make a smooth
curve.

Plot each of the following curves with descriptive titles.

b. Cardioid: x(t) = 2 cos t− cos 2t, y(t) = 2 sin t− sin 2t.

c. Astroid: x(t) = cos3 t, y(t) = sin3 t.

d. Hypotrochoid:
x(t) = 2 cos t+ 5 cos

(
2
3
t
)
, y(t) = 2 sin t− 5 sin

(
2
3
t
)
.

e. Epicycloid:
x(t) = 6.5 cos(t)− cos(6.5t)
y(t) = 6.5 sin(t)− sin(6.5t)

4. Reproduce the plot in example 50.

110

Chapter 16

Mathcad: Curve Fitting

Now that we know how to plot, let’s look at how to fit some curves to data and
then plot the results.

16.1 Mathcad: Curve Fitting

Data sets are by definition a discrete set of points. We can plot them, but we
often want to view trends, interpolate new points and (carefully!) extrapolate
for prediction purposes. Linear regression is a powerful tool, although some-
times the data would be better fit by another curve. Here we show how to do
linear and quadratic regression.

Example 51

Consider the following data set from example 47 in the previous chapter.

F :=

2
4
6
8
10
12
14
16
18
20

· kN δ :=

0.82
1.47
2.05
3.37
3.75
4.17
5.25
5.44
6.62
7.97

· mm

A plot of the data suggests a linear relationship:

111

Chapter 16 Mathcad: Curve Fitting

Let’s find the least squares line. We consider two methods to do this.

Method 1

Now put them together on the same plot:

112

16.1 Mathcad: Curve Fitting

Method 2

This method uses the command linfit. It is a bit awkward here, but will be
useful when we do higher order regression. We do have to first remove the units
from our variables (a limitation of linfit)

Now put them together on the same plot:

Example 52 Consider the following data set:

Time :=

0
1
2
3
4
5
6

Distance :=

5
19.8
76.8
153.3
256.2
394.5
559.2

Plotted:

113

Chapter 16 Mathcad: Curve Fitting

The plot of the data suggests a quadratic fit, i.e. a curve y = a+ bx+ cx2.
How do we find this quadratic curve?

Here’s how we implement this in Mathcad:

Now plot them together:

We can compute the R-squared value to see the correlation between Distance
and Qpredicted.

114

16.1 Mathcad: Curve Fitting

RR=1 means a great fit.

115

Chapter 16 Mathcad: Curve Fitting

Chapter 16 Exercises

1. The volume (in m3) and pressure (in kPa) of a gas at a constant temperature is
recorded in the table as

Volume Pressure

1 2494

2 1247

3 831

4 623

5 499

6 416

a. Find the least squares line using the intercept and slope functions and plot it
along with the data points. Add an appropriate title.

b. Use the linfit command to find the second-order approximating polynomial.
Plot it along with the data points and add an appropriate title.

c. Use the linfit command to find the third-order approximating polynomial. Plot
it along with the data points and add an appropriate title.

2. Resistance (in ohms) and current (in amps) are related through the equation I=V/R.
Data was collected from a circuit with unknown constant voltage and is shown in
the table.

Resistance(R) Current(I)

10 11.11

15 8.04

25 6.03

40 2.77

65 1.97

100 1.51

a. Plot R (x-axis) versus I (y-axis). What kind of relationship do you see?

b. Plot 1/R (x-axis) versus I (y-axis). Now, what kind of relationship do you
see?

c. Use intercept and slope (or use linfit) to calculate the slope and intercept of
the line in part b.

d. Approximate the current when the resistance is 80 ohms. You can use the
trace capability here.

e. Create a new plot with the data points from part b, a line with slope and
intercept from part c, and the interpolated point (with a different symbol)
from part d. Label and title appropriately.

Problems continue on the next page...

116

16.1 Mathcad: Curve Fitting

3. Suppose that a population, P, grows over time, t, according to exponential growth
with the following data.

Time(years) Population(thousands)

1 1.61

2 2.51

3 2.17

4 6.14

5 6.81

6 17.53

7 16.36

8 25.04

9 39.61

10 55.50

We have that the population is therefore growing according to the equation P =
P0e

kt. Taking a logarithm, we can convert this into ln(P) = ln(P0)+kt (i.e. ln(P)
is linear in t).

a. Plot the data with t on the horizontal axis and ln(P) on the vertical axis.

b. Find the slope and intercept for the data in part a and then create a new plot
with this regression line and the data in part a.

117

Chapter 17

Mathcad: Calculus and
Symbolics

Up to this point, we have investigated the numeric capabilities of Mathcad. In
this section, we learn about the calculus and symbolic capabilities of Mathcad.

17.1 Mathcad: Calculus

Using the calculus toolbar

First, open both the calculus and the the symbolic toolbar with File >
Toolbars > Calculus, and File > Toolbars > Symbolic.

Many of the key concepts from a two-semester sequence of Calculus courses
can be found on the calculus toolbar: limits, derivatives (including the gradient),
integrals (definite and indefinite), summations and products. The symbol for
infinity is also on this toolbar. The symbolic toolbar may look a bit more
complicated (it is). We will cover many of the symbolic toolbar buttons in the

118

17.2 Mathcad: Symbolics

next section, but in order to complete many of the symbolic calculations using
the calculus toolbar, we will need the “Symbolic Evaluation” (the −→ button)
from the symbolic toolbar too. Of course, there is a shortcut for symbolic
evaluation: Ctrl + . (hold the Ctrl key and press the period).

We start with some simple examples.

Example 53 Compute the derivative and integral of x2.

By hand, we know the answers are 2x and x3/3+C. Using Mathcad, we use

the symbolic differentiation and indefinite integral buttons. In each
case, we end the calculation with the symbolic evaulation button →.

Note that the +c part of the indefinite integral is not shown.

17.2 Mathcad: Symbolics

Here we look at many of the other capabilities of the symbolic toolbar. The
“solve” button was discussed in a previous chapter.

Example 54 Expand (x+2)4, factor x3 +3x2 +3x+1, find the Taylor
polynomial of order 8 for cosx, find the partial fraction expansion of

1

x3 − x
, and find the Laplace transform of t2 − 1.

In each case, we enter the expression, select the button from the symbolic
toolbar, make any alterations (like in the Taylor polynomial question - adding
the comma and 8) and click outside the expression

119

Chapter 17 Mathcad: Calculus and Symbolics

x 2()
4

expand x
4

8 x
3

24 x
2

32 x 16

x
3

3 x
2

3 x 1 factor x 1()
3

cos x() series 8 1
x
2

2

x
4

24

x
6

720

1

x
3

x

parfrac
1

2 x 1()

1

x

1

2 x 1()

t
2

1 laplace
s
2

2

s
3

In the next example, we point out the difference between symbolic evaluation
and approximation.

Example 55 The Error Function

The error function f(t) comes up in many applications. It is defined as

If we use the standard symbolic evaluation symbol −→, then we will get the
answer in terms of the built in error function “erf”

If we instead use the evaluation equals sign (just =), we get the approxima-
tion

120

17.2 Mathcad: Symbolics

Chapter 17 Exercises

In these exercises, you need to use the calculus and symbolic keyword toolbars.

1. Compute the following limits.

a. lim
x→0

sinx

x

b. lim
x→0+

1

x2

c. lim
x→∞

arctanx

2. Find the following derivatives.

a. If f(x) =
1

(x− 1)(x− 2)
, find f ′(x) and f ′′(x).

b. If f(x) = 3
√
x2 − 1, find f ′(x).

c. If f(x, y) = ex
2+y2 , find

∂f

∂x
,
∂f

∂y
, and

∂2f

∂x∂y
.

3. Find the following integrals.

a. The area under the bell curve between -1 and 1 represents the percentage of
a population that is one standard deviation away from the mean (or 68.3%).
Show this is true by approximating the integral√

1

2π

∫ 1

−1

e−x
2/2 dx.

b. The area between the cardioid r = 1 + cos θ and the circle r = 1 is given by
the polar integral ∫ π/2

−π/2

∫ 1+cos θ

1

r drdθ.

Find the exact value of this integral using the exact variables r and θ.

c. The volume of the solid bounded by the sphere of radius 1 (centered at the
origin) and the cone φ = π/3 is given by∫ 2π

0

∫ π/3

0

∫ 1

0

ρ2 sinφ dρdφdθ.

Find the exact value of this integral, using the exact variables ρ, φ and θ.

4. Find the partial fraction decomposition of each of the following.

a.
x3 + 1

x2 − 1

b.
1

2x6 − x4 − x2

121

Chapter 17 Mathcad: Calculus and Symbolics

5. Find the following sums and products.

a.
10∑
i=1

i2 and
10∏
i=1

i2.

b.
n∑
i=1

i1,

n∑
i=1

i2,

n∑
i=1

i3 and
n∑
i=1

i4

(your answers should be in terms of n).

c.
100∑
i=0

1

i!
and

1000∑
j=1

(−1)j+1

j
.

E.C. Do the numbers in part c look familiar? What are they?

6. Find the following Taylor Polynomials (i.e. series expansions).

a. The 8th order polynomial for e2x.

b. The 6th order polynomial for cos(x2).

122

Appendix

This section contains tables, plots, etc. that are referred to in various locations
throughout the text and the exercises.

Table 1 GDPAndDeficitByYear.xlsx - used in Chapter 6 exercises

Columns with year, GDP (in billions), Deficit (% of GDP)

1910 33.4 -0.11 1935 73.3 4.12 1960 526.4 -0.48 1985 4217.5 5.03
1911 34.3 -0.12 1936 83.8 4.76 1961 544.8 0.65 1986 4460.1 4.96
1912 37.4 0.01 1937 91.9 2.84 1962 585.7 1.22 1987 4736.4 3.16
1913 39.1 0.02 1938 86.1 1.42 1963 617.8 0.77 1988 5100.4 3.04
1914 36.5 0.2 1939 92.2 2.32 1964 663.6 0.89 1989 5482.1 2.78
1915 38.7 0.56 1940 101.4 3.02 1965 719.1 0.2 1990 5800.5 3.81
1916 49.6 0.31 1941 126.7 3.73 1966 787.7 0.47 1991 5992.1 4.49
1917 59.7 1.82 1942 161.9 12.04 1967 832.4 1.04 1992 6342.3 4.58
1918 75.8 11.88 1943 198.6 28.05 1968 909.8 2.77 1993 6667.4 3.83
1919 78.3 16.86 1944 219.8 22.35 1969 984.4 -0.33 1994 7085.2 2.87
1920 88.4 -0.68 1945 223 24.07 1970 1038.3 0.27 1995 7414.7 2.21
1921 73.6 -0.91 1946 222.2 9.06 1971 1126.8 2.04 1996 7838.5 1.37
1922 73.4 -0.68 1947 244.1 -1.32 1972 1237.9 1.89 1997 8332.4 0.26
1923 85.4 -0.66 1948 269.1 -4.33 1973 1382.3 1.08 1998 8793.5 -0.79
1924 86.9 -0.73 1949 267.2 -1.48 1974 1499.5 0.41 1999 9353.5 -1.34
1925 90.6 -0.47 1950 293.7 0.43 1975 1637.7 3.25 2000 9951.5 -2.37
1926 96.9 -0.67 1951 339.3 -2.3 1976 1824.6 4.04 2001 10286.2 -1.25
1927 95.5 -0.98 1952 358.3 -0.06 1977 2030.1 2.64 2002 10642.3 1.48
1928 97.4 -0.68 1953 379.3 1.52 1978 2293.8 2.58 2003 11142.1 3.39
1929 103.6 -0.46 1954 380.4 0.49 1979 2562.2 1.59 2004 11867.8 3.48
1930 91.2 -0.96 1955 414.7 0.37 1980 2788.1 2.65 2005 12638.4 2.52
1931 76.5 0.17 1956 437.4 -1.21 1981 3126.8 2.53 2006 13398.9 1.85
1932 58.7 2.78 1957 461.1 -1.15 1982 3253.2 3.93 2007 14077.6 1.14
1933 56.4 3.27 1958 467.2 0.01 1983 3534.6 5.88 2008 14441.4 3.18
1934 66 3.11 1959 506.6 1.59 1984 3930.9 4.72 2009 14258.2 9.91

2010 14623.9 10.64

123

Chapter 17 Mathcad: Calculus and Symbolics

Table 2 UnemploymentByYear.xlsx - used in Chapter 6 exercises

Values are given in percentages.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2000 4 4.1 4 3.8 4 4 4 4.1 3.9 3.9 3.9 3.9
2001 4.2 4.2 4.3 4.4 4.3 4.5 4.6 4.9 5 5.3 5.5 5.7
2002 5.7 5.7 5.7 5.9 5.8 5.8 5.8 5.7 5.7 5.7 5.9 6
2003 5.8 5.9 5.9 6 6.1 6.3 6.2 6.1 6.1 6 5.8 5.7
2004 5.7 5.6 5.8 5.6 5.6 5.6 5.5 5.4 5.4 5.5 5.4 5.4
2005 5.3 5.4 5.2 5.2 5.1 5 5 4.9 5 5 5 4.9
2006 4.7 4.8 4.7 4.7 4.6 4.6 4.7 4.7 4.5 4.4 4.5 4.4
2007 4.6 4.5 4.4 4.5 4.4 4.6 4.6 4.6 4.7 4.7 4.7 5
2008 5 4.8 5.1 5 5.4 5.5 5.8 6.1 6.2 6.6 6.9 7.4
2009 7.7 8.2 8.6 8.9 9.4 9.5 9.4 9.7 9.8 10.1 10 10
2010 9.7 9.7 9.7 9.9 9.7 9.5 9.5 9.6 9.6 9.6 9.8

124

Index

Mathcad
:=, Assignment Equals, 74
=, Evaluation Equals, 72
≡, Global Equals, 75
=, Symbolic Equals, 75
Reference matrix entries, 95
Aligning Regions, 78
Formatting Results, 79
Function Listing, 87
Highlighting Regions, 78
Insert\Delete Matrix Row or Col-

umn, 94
Matrices, 91
Plot Customization, 105
Quickplot, 107
Reference matrix column, 96
Reference matrix row, 96
Symbolic Evaluation, 119
Toolbars

Calculus, 118
Graphing, 103
Matrix, 91
Symbolic, 118

Units, 79
User-defined Functions, 88

Mathcad Functions
corr, 115
intercept, 112
linfit, 113
slope, 112
augment, 93
expand, 119
factor, 119
given\find block, 82
laplace, 119
lsolve, 99
parfrac, 119

rref, 98
series, 119
solve block, 84
stack, 94
submatrix, 97
absolute value, 88
square root, 88

Matlab
Block Commenting, 5
Block Matrices, 15
Built-in Help, 3
colon (:), 10
Command History, 2
Command Window, 2
Directory, 3
dot operations (.∗, ./, .∧), 14
Editor, 4
Left Division, 20
Logical Operators, 51
Matrix Definition, 9
Relational Operators, 51
Running Code, 6
semicolon (;), 3, 10

Matlab Functions
clc, 3
clear, 3
close, 3
cross, 18
ctrl + c, 3
det, 18
disp, 44
dot, 18
exp, 24
eye, 19
find, 26
fliplr, 26
flipud, 26

125

Index

for, 54
fprintf, 44
function, 37
hold, 32
if\elseif, 53
input, 43
interp1, 64
inv, 18
length, 16
linspace, 11
log,log10, 24
max, 17
mean, 25
median, 25
meshgrid, 27
min, 17
nargin, 40
nargout, 40
num2str, 45
ones, 11
plot, 30
polyfit, 63
prod, 18
rref, 19
sin, sind, 24
size, 15
sortrows, 26
sort, 26
sqrt, 24
std, 25
subplot, 33
sum, 18
switch\case, 53
text, 31
title, 31
type, 40
while, 54
xlim, 31
ylim, 31
zeros, 11
ginput, 46
legend, 46
polyval, 66
xlsread, 46

126

	Thanks
	Preface
	Table of Contents
	1 Matlab: Introduction
	1.1 Matlab: Introduction
	1.2 Matlab: Layout
	1.3 Matlab: Command Window Examples
	1.4 Matlab: Editor
	1.5 Matlab: Headers
	1.6 Matlab: Editor Tips
	 Exercises

	2 Matlab: Matrices
	2.1 Matlab: Matrices
	2.2 Matlab: Using Matrices
	2.3 Matlab: Matrix Operations
	2.4 Matlab: Common Matrix Functions
	2.5 Matlab: Systems of Equations
	 Exercises

	3 Matlab: Functions
	3.1 Matlab: Built-In Functions
	 Exercises

	4 Matlab: Graphics
	4.1 Matlab: Graphics
	 Exercises

	5 Matlab: User Defined Functions
	5.1 Matlab: User-Defined Functions
	 Exercises

	6 Matlab: Input/Output
	6.1 Matlab: Input Commands
	 Exercises

	7 Matlab: Programming Structures
	7.1 Matlab: Relational Operators
	7.2 Matlab: Logical Operators
	7.3 Matlab: if and switch commands
	7.4 Matlab: for and while Loops
	 Exercises

	8 Matlab: Applications
	8.1 Matlab: Numerical Methods
	8.2 Matlab Traveling Salesman

	9 Matlab: Curve Fitting
	9.1 Matlab: Curve Fitting
	 Exercises

	10 Mathcad: Introduction
	10.1 Mathcad: Introduction

	11 Mathcad: Entering Equations
	11.1 Mathcad: Equations
	11.2 Mathcad: Editing Equations
	11.3 Mathcad: Units
	 Exercises

	12 Mathcad: Given/Find and Solve
	12.1 Mathcad: Given/Find Blocks
	12.2 Mathcad: Solve Blocks
	 Exercises

	13 Mathcad: Functions
	13.1 Mathcad: Built-in Functions
	13.2 Mathcad: User-Defined Functions
	 Exercises

	14 Mathcad: Matrices
	14.1 Mathcad: Matrix Definition
	14.2 Mathcad: Editing Matrices
	14.3 Mathcad: Referencing Parts of Matrices
	14.4 Mathcad: Solving Systems of Linear Equations
	 Exercises

	15 Mathcad: Graphing
	15.1 Mathcad: Graphing
	 Exercises

	16 Mathcad: Curve Fitting
	16.1 Mathcad: Curve Fitting
	 Exercises

	17 Mathcad: Calculus and Symbolics
	17.1 Mathcad: Calculus
	17.2 Mathcad: Symbolics
	 Exercises

	Appendix
	Index

